Sample records for photon trigger selection

  1. The CMS electron and photon trigger for the LHC Run 2

    NASA Astrophysics Data System (ADS)

    Dezoort, Gage; Xia, Fan

    2017-01-01

    The CMS experiment implements a sophisticated two-level triggering system composed of Level-1, instrumented by custom-design hardware boards, and a software High-Level-Trigger. A new Level-1 trigger architecture with improved performance is now being used to maintain the thresholds that were used in LHC Run I for the more challenging luminosity conditions experienced during Run II. The upgrades to the calorimetry trigger will be described along with performance data. The algorithms for the selection of final states with electrons and photons, both for precision measurements and for searches of new physics beyond the Standard Model, will be described in detail.

  2. High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots.

    PubMed

    Zhang, Jiaxiang; Wildmann, Johannes S; Ding, Fei; Trotta, Rinaldo; Huo, Yongheng; Zallo, Eugenio; Huber, Daniel; Rastelli, Armando; Schmidt, Oliver G

    2015-12-01

    Triggered sources of entangled photon pairs are key components in most quantum communication protocols. For practical quantum applications, electrical triggering would allow the realization of compact and deterministic sources of entangled photons. Entangled-light-emitting-diodes based on semiconductor quantum dots are among the most promising sources that can potentially address this task. However, entangled-light-emitting-diodes are plagued by a source of randomness, which results in a very low probability of finding quantum dots with sufficiently small fine structure splitting for entangled-photon generation (∼10(-2)). Here we introduce strain-tunable entangled-light-emitting-diodes that exploit piezoelectric-induced strains to tune quantum dots for entangled-photon generation. We demonstrate that up to 30% of the quantum dots in strain-tunable entangled-light-emitting-diodes emit polarization-entangled photons. An entanglement fidelity as high as 0.83 is achieved with fast temporal post selection. Driven at high speed, that is 400 MHz, strain-tunable entangled-light-emitting-diodes emerge as promising devices for high data-rate quantum applications.

  3. The CMS trigger system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khachatryan, Vardan

    This paper describes the CMS trigger system and its performance during Run 1 of the LHC. The trigger system consists of two levels designed to select events of potential physics interest from a GHz (MHz) interaction rate of proton-proton (heavy ion) collisions. The first level of the trigger is implemented in hardware, and selects events containing detector signals consistent with an electron, photon, muon, tau lepton, jet, or missing transverse energy. A programmable menu of up to 128 object-based algorithms is used to select events for subsequent processing. The trigger thresholds are adjusted to the LHC instantaneous luminosity during datamore » taking in order to restrict the output rate to 100 kHz, the upper limit imposed by the CMS readout electronics. The second level, implemented in software, further refines the purity of the output stream, selecting an average rate of 400 Hz for offline event storage. The objectives, strategy and performance of the trigger system during the LHC Run 1 are described.« less

  4. The CMS trigger system

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Van Parijs, I.; Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Fasanella, G.; Favart, L.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-conde, A.; Reis, T.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Musich, M.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Damiao, D. De Jesus; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; De Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M., Jr.; Assran, Y.; El Sawy, M.; Elgammal, S.; Ellithi Kamel, A.; Mahmoud, M. A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Scharf, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schwandt, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Sieber, G.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Mal, P.; Mandal, K.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Jain, Sa.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Chowdhury, S. Roy; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Kothekar, K.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Cappello, G.; Chiorboli, M.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Bacchetta, N.; Bellato, M.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Passaseo, M.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Ventura, S.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Zanetti, A.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.; Song, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Ali, M. A. B. Md; Mohamad Idris, F.; Abdullah, W. A. T. Wan; Yusli, M. N.; Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Kierzkowski, K.; Konecki, M.; Krolikowski, J.; Misiura, M.; Oklinski, W.; Olszewski, M.; Pozniak, K.; Walczak, M.; Zabolotny, W.; Bargassa, P.; Silva, C. Beirão Da Cruz E.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Leonardo, N.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Kaminskiy, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Myagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras De Saa, J. R.; De Castro Manzano, P.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Castello, R.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Piparo, D.; Racz, A.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Salerno, D.; Yang, Y.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Yu, S. S.; Kumar, Arun; Bartek, R.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. f.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Demiroglu, Z. S.; Dozen, C.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Onengut, G.; Ozdemir, K.; Polatoz, A.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Cripps, N.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Arcaro, D.; Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Zou, D.; Alimena, J.; Berry, E.; Bhattacharya, S.; Cutts, D.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Syarif, R.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova PANEVA, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Derdzinski, M.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Sevilla, M. Franco; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Jung, A. W.; Klima, B.; Kreis, B.; Kwan, S.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Weber, H. A.; Whitbeck, A.; Yang, F.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Di Giovanni, G. P.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Hugon, J.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Silkworth, C.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Roskes, J.; Sady, A.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P., III; Majumder, D.; Malek, M.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Dahmes, B.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.; Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Pearson, T.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Kotov, K.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Saka, H.; Stickland, D.; Tully, C.; Zuranski, A.; Malik, S.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Tan, P.; Verzetti, M.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Nash, K.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Kamon, T.; Krutelyov, V.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Ni, H.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2017-01-01

    This paper describes the CMS trigger system and its performance during Run 1 of the LHC. The trigger system consists of two levels designed to select events of potential physics interest from a GHz (MHz) interaction rate of proton-proton (heavy ion) collisions. The first level of the trigger is implemented in hardware, and selects events containing detector signals consistent with an electron, photon, muon, τ lepton, jet, or missing transverse energy. A programmable menu of up to 128 object-based algorithms is used to select events for subsequent processing. The trigger thresholds are adjusted to the LHC instantaneous luminosity during data taking in order to restrict the output rate to 100 kHz, the upper limit imposed by the CMS readout electronics. The second level, implemented in software, further refines the purity of the output stream, selecting an average rate of 400 Hz for offline event storage. The objectives, strategy and performance of the trigger system during the LHC Run 1 are described.

  5. The CMS trigger system

    DOE PAGES

    Khachatryan, Vardan

    2017-01-24

    This paper describes the CMS trigger system and its performance during Run 1 of the LHC. The trigger system consists of two levels designed to select events of potential physics interest from a GHz (MHz) interaction rate of proton-proton (heavy ion) collisions. The first level of the trigger is implemented in hardware, and selects events containing detector signals consistent with an electron, photon, muon, tau lepton, jet, or missing transverse energy. A programmable menu of up to 128 object-based algorithms is used to select events for subsequent processing. The trigger thresholds are adjusted to the LHC instantaneous luminosity during datamore » taking in order to restrict the output rate to 100 kHz, the upper limit imposed by the CMS readout electronics. The second level, implemented in software, further refines the purity of the output stream, selecting an average rate of 400 Hz for offline event storage. The objectives, strategy and performance of the trigger system during the LHC Run 1 are described.« less

  6. Performance of the ATLAS Trigger System in 2010

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Akiyama, A.; Alam, M. S.; Alam, M. A.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andari, N.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Bachy, G.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, D.; Bartsch, V.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Battistoni, G.; Bauer, F.; Bawa, H. S.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bona, M.; Bondarenko, V. G.; Boonekamp, M.; Boorman, G.; Booth, C. N.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brown, H.; Brubaker, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchanan, N. J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Buira-Clark, D.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Byatt, T.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camard, A.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Cammin, J.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Cazzato, A.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, L.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chislett, R. T.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciba, K.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Clifft, R. W.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coe, P.; Cogan, J. G.; Coggeshall, J.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuciuc, C.-M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Cuneo, S.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czirr, H.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Rocha Gesualdi Mello, A.; Da Silva, P. V. M.; Da Via, C.; Dabrowski, W.; Dahlhoff, A.; Dai, T.; Dallapiccola, C.; Dam, M.; Dameri, M.; Damiani, D. S.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Daum, C.; Dauvergne, J. P.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, E.; Davies, M.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Dawson, J. W.; Daya, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Castro Faria Salgado, P. E.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De La Taille, C.; De la Torre, H.; De Lotto, B.; De Mora, L.; De Nooij, L.; De Oliveira Branco, M.; De Pedis, D.; de Saintignon, P.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dean, S.; Dedovich, D. V.; Degenhardt, J.; Dehchar, M.; Deile, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delpierre, P.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Devetak, E.; Deviveiros, P. O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dieli, M. V.; Dietl, H.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Dogan, O. B.; Doglioni, C.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donadelli, M.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M. T.; Dowell, J. D.; Doxiadis, A. D.; Doyle, A. T.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Dubbert, J.; Dubbs, T.; Dube, S.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duerdoth, I. P.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duran Yildiz, H.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Dzahini, D.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Fakhrutdinov, R. M.; Falciano, S.; Falou, A. C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, I.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Fellmann, D.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fischer, P.; Fisher, M. J.; Fisher, S. M.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T.; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Frank, T.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallas, M. V.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gapienko, V. A.; Gaponenko, A.; Garberson, F.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giunta, M.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goldfarb, S.; Goldin, D.; Golling, T.; Golovnia, S. N.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; Gonidec, A.; Gonzalez, S.; González de la Hoz, S.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gorokhov, S. A.; Goryachev, V. N.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gouanère, M.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grabski, V.; Grafström, P.; Grah, C.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenfield, D.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grinstein, S.; Grishkevich, Y. V.; Grivaz, J.-F.; Grognuz, J.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V. J.; Guest, D.; Guicheney, C.; Guida, A.; Guillemin, T.; Guindon, S.; Guler, H.; Gunther, J.; Guo, B.; Guo, J.; Gupta, A.; Gusakov, Y.; Gushchin, V. N.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamal, P.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Hatch, M.; Hauff, D.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawes, B. M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, D.; Hayakawa, T.; Hayden, D.; Hayward, H. S.; Haywood, S. J.; Hazen, E.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heine, K.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heldmann, M.; Heller, M.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Henry-Couannier, F.; Hensel, C.; Henß, T.; Hernandez, C. M.; Hernández Jiménez, Y.; Herrberg, R.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hill, N.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Holmes, A.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Hong, T. M.; Hooft van Huysduynen, L.; Horazdovsky, T.; Horn, C.; Horner, S.; Horton, K.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howarth, J.; Howell, D. F.; Hristova, I.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Huhtinen, M.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Idzik, M.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Imbault, D.; Imhaeuser, M.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Ioannou, P.; Iodice, M.; Ionescu, G.; Irles Quiles, A.; Ishii, K.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D. K.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jež, P.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joram, C.; Jorge, P. M.; Joseph, J.; Ju, X.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagoz, M.; Karnevskiy, M.; Karr, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kazanin, V. A.; Kazarinov, M. Y.; Keates, J. R.; Keeler, R.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenney, C. J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Ketterer, C.; Keung, J.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kiver, A. M.; Kiyamura, H.; Kladiva, E.; Klaiber-Lodewigs, J.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Kluth, S.; Kneringer, E.; Knobloch, J.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Koenig, S.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kokott, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kollefrath, M.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Komori, Y.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Kopikov, S. V.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasel, O.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumshteyn, Z. V.; Kruth, A.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kundu, N.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuykendall, W.; Kuze, M.; Kuzhir, P.; Kvasnicka, O.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laisne, E.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Landsman, H.; Lane, J. L.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lapin, V. V.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Lau, W.; Laurelli, P.; Lavorato, A.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Lebedev, A.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, M.; Legendre, M.; Leger, A.; LeGeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Leroy, C.; Lessard, J.-R.; Lesser, J.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Lewandowska, M.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lifshitz, R.; Lilley, J. N.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Linnemann, J. T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, S.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lombardo, V. P.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lo Sterzo, F.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lu, L.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lungwitz, M.; Lupi, A.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magnoni, L.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marin, A.; Marino, C. P.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti-Garcia, S.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, Ph.; Martin, T. A.; Martin dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Maß, M.; Massa, I.; Massaro, G.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maugain, J. M.; Maxfield, S. J.; Maximov, D. A.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzoni, E.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; McGlone, H.; Mchedlidze, G.; McLaren, R. A.; Mclaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meinhardt, J.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Menot, C.; Meoni, E.; Mercurio, K. M.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meuser, S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Miele, P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Miralles Verge, L.; Misiejuk, A.; Mitrevski, J.; Mitrofanov, G. Y.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Miyazaki, K.; Mjörnmark, J. U.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohapatra, S.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moisseev, A. M.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Monzani, S.; Moore, R. W.; Moorhead, G. F.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morange, N.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morii, M.; Morin, J.; Morita, Y.; Morley, A. K.; Mornacchi, G.; Morone, M.-C.; Morozov, S. V.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muijs, A.; Muir, A.; Munwes, Y.; Murakami, K.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakano, I.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nebot, E.; Nechaeva, P. Yu.; Negri, A.; Negri, G.; Nektarijevic, S.; Nelson, A.; Nelson, S.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Nesterov, S. Y.; Neubauer, M. S.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen Thi Hong, V.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Niinikoski, T.; Nikiforov, A.; Nikolaenko, V.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nomoto, H.; Nordberg, M.; Nordkvist, B.; Norton, P. R.; Novakova, J.; Nozaki, M.; Nožička, M.; Nozka, L.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nyman, T.; O'Brien, B. J.; O'Neale, S. W.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohska, T. K.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olcese, M.; Olchevski, A. G.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Ortega, E. O.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero y Garzon, G.; Ottersbach, J. P.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Øye, O. K.; Ozcan, V. E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadelis, A.; Papadopoulou, Th. D.; Paramonov, A.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Pengo, R.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Peric, I.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Peshekhonov, V. D.; Peters, O.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A. W.; Phillips, P. W.; Piacquadio, G.; Piccaro, E.; Piccinini, M.; Pickford, A.; Piec, S. M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Pleskach, A. V.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Poghosyan, T.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Porter, R.; Posch, C.; Pospelov, G. E.; Pospisil, S.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Price, M. J.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Qian, Z.; Qin, Z.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Ramstedt, M.; Randrianarivony, K.; Ratoff, P. N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reichold, A.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renaud, A.; Renkel, P.; Rensch, B.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodier, S.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, A.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, M.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosendahl, P. L.; Rosselet, L.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rossi, L.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubinskiy, I.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rulikowska-Zarebska, E.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Runolfsson, O.; Rurikova, Z.; Rusakovich, N. A.; Rust, D. R.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Rzaeva, S.; Saavedra, A. F.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Savva, P.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scallon, O.; Scannicchio, D. A.; Scarcella, M.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaepe, S.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmidt, E.; Schmidt, M. P.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, M.; Schöning, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schuh, S.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shichi, H.; Shimizu, S.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skovpen, K.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloan, T. J.; Sloper, J.; Smakhtin, V.; Smirnov, S. Yu.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Sondericker, J.; Soni, N.; Sopko, V.; Sopko, B.; Sorbi, M.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiriti, E.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahl, T.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G. A.; Stillings, J. A.; Stockmanns, T.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Soh, D. A.; Su, D.; Subramania, HS.; Succurro, A.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suita, K.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos, M.; Sviridov, Yu. M.; Swedish, S.; Sykora, I.; Sykora, T.; Szeless, B.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tani, K.; Tannoury, N.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Tayalati, Y.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Thadome, J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomson, E.; Thomson, M.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokunaga, K.; Tokushuku, K.; Tollefson, K.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torchiani, I.; Torrence, E.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Traynor, D.; Trefzger, T.; Treis, J.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tuggle, J. M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Tyrvainen, H.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; van der Ster, D.; Van Eijk, B.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Virchaux, M.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Wakabayashi, J.; Walbersloh, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, J. C.; Wang, R.; Wang, S. M.; Warburton, A.; Ward, C. P.; Warsinsky, M.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, J.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Weydert, C.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wunstorf, R.; Wynne, B. M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xie, Y.; Xu, C.; Xu, D.; Xu, G.; Yabsley, B.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ybeles Smit, G. V.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.; Yu, D.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaets, V. G.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zalite, Yo. K.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zemla, A.; Zendler, C.; Zenin, A. V.; Zenin, O.; Ženiš, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G.; Zhan, Z.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, X.; Zhang, Z.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zieminska, D.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zolnierowski, Y.; Zsenei, A.; zur Nedden, M.; Zutshi, V.; Zwalinski, L.

    2012-01-01

    Proton-proton collisions at sqrt{s}=7 TeV and heavy ion collisions at sqrt{s_{NN}}=2.76 TeV were produced by the LHC and recorded using the ATLAS experiment's trigger system in 2010. The LHC is designed with a maximum bunch crossing rate of 40 MHz and the ATLAS trigger system is designed to record approximately 200 of these per second. The trigger system selects events by rapidly identifying signatures of muon, electron, photon, tau lepton, jet, and B meson candidates, as well as using global event signatures, such as missing transverse energy. An overview of the ATLAS trigger system, the evolution of the system during 2010 and the performance of the trigger system components and selections based on the 2010 collision data are shown. A brief outline of plans for the trigger system in 2011 is presented.

  7. Photon-triggered nanowire transistors

    NASA Astrophysics Data System (ADS)

    Kim, Jungkil; Lee, Hoo-Cheol; Kim, Kyoung-Ho; Hwang, Min-Soo; Park, Jin-Sung; Lee, Jung Min; So, Jae-Pil; Choi, Jae-Hyuck; Kwon, Soon-Hong; Barrelet, Carl J.; Park, Hong-Gyu

    2017-10-01

    Photon-triggered electronic circuits have been a long-standing goal of photonics. Recent demonstrations include either all-optical transistors in which photons control other photons or phototransistors with the gate response tuned or enhanced by photons. However, only a few studies report on devices in which electronic currents are optically switched and amplified without an electrical gate. Here we show photon-triggered nanowire (NW) transistors, photon-triggered NW logic gates and a single NW photodetection system. NWs are synthesized with long crystalline silicon (CSi) segments connected by short porous silicon (PSi) segments. In a fabricated device, the electrical contacts on both ends of the NW are connected to a single PSi segment in the middle. Exposing the PSi segment to light triggers a current in the NW with a high on/off ratio of >8 × 106. A device that contains two PSi segments along the NW can be triggered using two independent optical input signals. Using localized pump lasers, we demonstrate photon-triggered logic gates including AND, OR and NAND gates. A photon-triggered NW transistor of diameter 25 nm with a single 100 nm PSi segment requires less than 300 pW of power. Furthermore, we take advantage of the high photosensitivity and fabricate a submicrometre-resolution photodetection system. Photon-triggered transistors offer a new venue towards multifunctional device applications such as programmable logic elements and ultrasensitive photodetectors.

  8. Photon-triggered nanowire transistors.

    PubMed

    Kim, Jungkil; Lee, Hoo-Cheol; Kim, Kyoung-Ho; Hwang, Min-Soo; Park, Jin-Sung; Lee, Jung Min; So, Jae-Pil; Choi, Jae-Hyuck; Kwon, Soon-Hong; Barrelet, Carl J; Park, Hong-Gyu

    2017-10-01

    Photon-triggered electronic circuits have been a long-standing goal of photonics. Recent demonstrations include either all-optical transistors in which photons control other photons or phototransistors with the gate response tuned or enhanced by photons. However, only a few studies report on devices in which electronic currents are optically switched and amplified without an electrical gate. Here we show photon-triggered nanowire (NW) transistors, photon-triggered NW logic gates and a single NW photodetection system. NWs are synthesized with long crystalline silicon (CSi) segments connected by short porous silicon (PSi) segments. In a fabricated device, the electrical contacts on both ends of the NW are connected to a single PSi segment in the middle. Exposing the PSi segment to light triggers a current in the NW with a high on/off ratio of >8 × 10 6 . A device that contains two PSi segments along the NW can be triggered using two independent optical input signals. Using localized pump lasers, we demonstrate photon-triggered logic gates including AND, OR and NAND gates. A photon-triggered NW transistor of diameter 25 nm with a single 100 nm PSi segment requires less than 300 pW of power. Furthermore, we take advantage of the high photosensitivity and fabricate a submicrometre-resolution photodetection system. Photon-triggered transistors offer a new venue towards multifunctional device applications such as programmable logic elements and ultrasensitive photodetectors.

  9. Performance of the ATLAS Trigger System in 2010

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2012-01-03

    Proton-proton collisions atmore » $$\\sqrt{s}$$ = 7 TeV and heavy ion collisions at $$\\sqrt{s}$$$_ {NN}$$ = 2.76 TeV were produced by the LHC and recorded using the ATLAS experiment's trigger system in 2010. The LHC is designed with a maximum bunch crossing rate of 40 MHz and the ATLAS trigger system is designed to record approximately 200 of these per second. The trigger system selects events by rapidly identifying signatures of muon, electron, photon, tau lepton, jet, and B meson candidates, as well as using global event signatures, such as missing transverse energy. An overview of the ATLAS trigger system, the evolution of the system during 2010 and the performance of the trigger system components and selections based on the 2010 collision data are shown. In conclusion, a brief outline of plans for the trigger system in 2011 is presented.« less

  10. The CMS High-Level Trigger

    NASA Astrophysics Data System (ADS)

    Covarelli, R.

    2009-12-01

    At the startup of the LHC, the CMS data acquisition is expected to be able to sustain an event readout rate of up to 100 kHz from the Level-1 trigger. These events will be read into a large processor farm which will run the "High-Level Trigger" (HLT) selection algorithms and will output a rate of about 150 Hz for permanent data storage. In this report HLT performances are shown for selections based on muons, electrons, photons, jets, missing transverse energy, τ leptons and b quarks: expected efficiencies, background rates and CPU time consumption are reported as well as relaxation criteria foreseen for a LHC startup instantaneous luminosity.

  11. Single-Photon-Triggered Quantum Phase Transition

    NASA Astrophysics Data System (ADS)

    Lü, Xin-You; Zheng, Li-Li; Zhu, Gui-Lei; Wu, Ying

    2018-06-01

    We propose a hybrid quantum model combining cavity QED and optomechanics, which allows the occurrence of an equilibrium superradiant quantum phase transition (QPT) triggered by a single photon. This single-photon-triggered QPT exists in the cases of both ignoring and including the so-called A2 term; i.e., it is immune to the no-go theorem. It originally comes from the photon-dependent quantum criticality featured by the proposed hybrid quantum model. Moreover, a reversed superradiant QPT is induced by the competition between the introduced A2 term and the optomechanical interaction. This work offers an approach to manipulate QPT with a single photon, which should inspire the exploration of single-photon quantum-criticality physics and the engineering of new single-photon quantum devices.

  12. Electrons and photons at High Level Trigger in CMS for Run II

    NASA Astrophysics Data System (ADS)

    Anuar, Afiq A.

    2015-12-01

    The CMS experiment has been designed with a 2-level trigger system. The first level is implemented using custom-designed electronics. The second level is the so-called High Level Trigger (HLT), a streamlined version of the CMS offline reconstruction software running on a computer farm. For Run II of the Large Hadron Collider, the increase in center-of-mass energy and luminosity will raise the event rate to a level challenging for the HLT algorithms. New approaches have been studied to keep the HLT output rate manageable while maintaining thresholds low enough to cover physics analyses. The strategy mainly relies on porting online the ingredients that have been successfully applied in the offline reconstruction, thus allowing to move HLT selection closer to offline cuts. Improvements in HLT electron and photon definitions will be presented, focusing in particular on: updated clustering algorithm and the energy calibration procedure, new Particle-Flow-based isolation approach and pileup mitigation techniques, and the electron-dedicated track fitting algorithm based on Gaussian Sum Filter.

  13. Two-photon-induced cycloreversion reaction of chalcone photodimers

    NASA Astrophysics Data System (ADS)

    Träger, J.; Härtner, S.; Heinzer, J.; Kim, H.-C.; Hampp, N.

    2008-04-01

    The photocleavage reaction of chalcone photodimers has been studied using a two-photon process. For this purpose, a novel chalcone dimer has been synthesized as a low molecular weight model substance for polymer bound chalcones and its photochemistry triggered by two-photon-absorption (2PA) has been investigated using a pulsed frequency-doubled Nd:YAG-laser. The 2PA-induced cycloreversion reaction selectively leads to the cleavage of the chalcone photodimers resulting in the formation of monomeric chalcone molecules. Hence, as an application chalcones can be used as a photosensitive linker which can be cleaved beyond an UV-absorbing barrier. The 2PA cross section of the chalcone photodimer was determined to be of 1.1 × 10 -49 cm 4 s photon -1 (11 GM).

  14. Two-Color Single Hybrid Plasmonic Nanoemitters with Real Time Switchable Dominant Emission Wavelength.

    PubMed

    Zhou, Xuan; Wenger, Jérémie; Viscomi, Francesco N; Le Cunff, Loïc; Béal, Jérémie; Kochtcheev, Serguei; Yang, Xuyong; Wiederrecht, Gary P; Colas des Francs, Gérard; Bisht, Anu Singh; Jradi, Safi; Caputo, Roberto; Demir, Hilmi Volkan; Schaller, Richard D; Plain, Jérôme; Vial, Alexandre; Sun, Xiao Wei; Bachelot, Renaud

    2015-11-11

    We demonstrate two-color nanoemitters that enable the selection of the dominant emitting wavelength by varying the polarization of excitation light. The nanoemitters were fabricated via surface plasmon-triggered two-photon polymerization. By using two polymerizable solutions with different quantum dots, emitters of different colors can be positioned selectively in different orientations in the close vicinity of the metal nanoparticles. The dominant emission wavelength of the metal/polymer anisotropic hybrid nanoemitter thus can be selected by altering the incident polarization.

  15. A bright triggered twin-photon source in the solid state

    PubMed Central

    Heindel, T.; Thoma, A.; von Helversen, M.; Schmidt, M.; Schlehahn, A.; Gschrey, M.; Schnauber, P.; Schulze, J. -H.; Strittmatter, A.; Beyer, J.; Rodt, S.; Carmele, A.; Knorr, A.; Reitzenstein, S.

    2017-01-01

    A non-classical light source emitting pairs of identical photons represents a versatile resource of interdisciplinary importance with applications in quantum optics and quantum biology. To date, photon twins have mostly been generated using parametric downconversion sources, relying on Poissonian number distributions, or atoms, exhibiting low emission rates. Here we propose and experimentally demonstrate the efficient, triggered generation of photon twins using the energy-degenerate biexciton–exciton radiative cascade of a single semiconductor quantum dot. Deterministically integrated within a microlens, this nanostructure emits highly correlated photon pairs, degenerate in energy and polarization, at a rate of up to (234±4) kHz. Furthermore, we verify a significant degree of photon indistinguishability and directly observe twin-photon emission by employing photon-number-resolving detectors, which enables the reconstruction of the emitted photon number distribution. Our work represents an important step towards the realization of efficient sources of twin-photon states on a fully scalable technology platform. PMID:28367950

  16. Fully Digital Arrays of Silicon Photomultipliers (dSiPM) - a Scalable Alternative to Vacuum Photomultiplier Tubes (PMT)

    NASA Astrophysics Data System (ADS)

    Haemisch, York; Frach, Thomas; Degenhardt, Carsten; Thon, Andreas

    Silicon Photomultipliers (SiPMs) have emerged as promising alternative to fast vacuum photomultiplier tubes (PMT). A fully digital implementation of the Silicon Photomultiplier (dSiPM) has been developed in order to overcome the deficiencies and limitations of the so far only analog SiPMs (aSiPMs). Our sensor is based on arrays of single photon avalanche photodiodes (SPADs) integrated in a standard CMOS process. Photons are detected directly by sensing the voltage at the SPAD anode using a dedicated cell electronics block next to each diode. This block also contains active quenching and recharge circuits as well as a one bit memory for the selective inhibit of detector cells. A balanced trigger network is used to propagate the trigger signal from all cells to the integrated time-to-digital converter. In consequence, photons are detected and counted as digital signals, thus making the sensor less susceptible to temperature variations and electronic noise. The integration with CMOS logic provides the added benefit of low power consumption and possible integration of data post-processing directly in the sensor. In this overview paper, we discuss the sensor architecture together with its characteristics with a focus on scalability and practicability aspects for applications in medical imaging, high energy- and astrophysics.

  17. Deterministic Integration of Quantum Dots into on-Chip Multimode Interference Beamsplitters Using in Situ Electron Beam Lithography

    NASA Astrophysics Data System (ADS)

    Schnauber, Peter; Schall, Johannes; Bounouar, Samir; Höhne, Theresa; Park, Suk-In; Ryu, Geun-Hwan; Heindel, Tobias; Burger, Sven; Song, Jin-Dong; Rodt, Sven; Reitzenstein, Stephan

    2018-04-01

    The development of multi-node quantum optical circuits has attracted great attention in recent years. In particular, interfacing quantum-light sources, gates and detectors on a single chip is highly desirable for the realization of large networks. In this context, fabrication techniques that enable the deterministic integration of pre-selected quantum-light emitters into nanophotonic elements play a key role when moving forward to circuits containing multiple emitters. Here, we present the deterministic integration of an InAs quantum dot into a 50/50 multi-mode interference beamsplitter via in-situ electron beam lithography. We demonstrate the combined emitter-gate interface functionality by measuring triggered single-photon emission on-chip with $g^{(2)}(0) = 0.13\\pm 0.02$. Due to its high patterning resolution as well as spectral and spatial control, in-situ electron beam lithography allows for integration of pre-selected quantum emitters into complex photonic systems. Being a scalable single-step approach, it paves the way towards multi-node, fully integrated quantum photonic chips.

  18. Optical tweezers and multiphoton microscopies integrated photonic tool for mechanical and biochemical cell processes studies

    NASA Astrophysics Data System (ADS)

    de Thomaz, A. A.; Faustino, W. M.; Fontes, A.; Fernandes, H. P.; Barjas-Castro, M. d. L.; Metze, K.; Giorgio, S.; Barbosa, L. C.; Cesar, C. L.

    2007-09-01

    The research in biomedical photonics is clearly evolving in the direction of the understanding of biological processes at the cell level. The spatial resolution to accomplish this task practically requires photonics tools. However, an integration of different photonic tools and a multimodal and functional approach will be necessary to access the mechanical and biochemical cell processes. This way we can observe mechanicaly triggered biochemical events or biochemicaly triggered mechanical events, or even observe simultaneously mechanical and biochemical events triggered by other means, e.g. electricaly. One great advantage of the photonic tools is its easiness for integration. Therefore, we developed such integrated tool by incorporating single and double Optical Tweezers with Confocal Single and Multiphoton Microscopies. This system can perform 2-photon excited fluorescence and Second Harmonic Generation microscopies together with optical manipulations. It also can acquire Fluorescence and SHG spectra of specific spots. Force, elasticity and viscosity measurements of stretched membranes can be followed by real time confocal microscopies. Also opticaly trapped living protozoas, such as leishmania amazonensis. Integration with CARS microscopy is under way. We will show several examples of the use of such integrated instrument and its potential to observe mechanical and biochemical processes at cell level.

  19. In-depth study of single photon time resolution for the Philips digital silicon photomultiplier

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Gundacker, S.; Pizzichemi, M.; Ghezzi, A.; Auffray, E.; Lecoq, P.; Paganoni, M.

    2016-06-01

    The digital silicon photomultiplier (SiPM) has been commercialised by Philips as an innovative technology compared to analog silicon photomultiplier devices. The Philips digital SiPM, has a pair of time to digital converters (TDCs) connected to 12800 single photon avalanche diodes (SPADs). Detailed measurements were performed to understand the low photon time response of the Philips digital SiPM. The single photon time resolution (SPTR) of every single SPAD in a pixel consisting of 3200 SPADs was measured and an average value of 85 ps full width at half maximum (FWHM) was observed. Each SPAD sends the signal to the TDC with different signal propagation time, resulting in a so called trigger network skew. This distribution of the trigger network skew for a pixel (3200 SPADs) has been measured and a variation of 50 ps FWHM was extracted. The SPTR of the whole pixel is the combination of SPAD jitter, trigger network skew, and the SPAD non-uniformity. The SPTR of a complete pixel was 103 ps FWHM at 3.3 V above breakdown voltage. Further, the effect of the crosstalk at a low photon level has been studied, with the two photon time resolution degrading if the events are a combination of detected (true) photons and crosstalk events. Finally, the time response to multiple photons was investigated.

  20. Triggered high-purity telecom-wavelength single-photon generation from p-shell-driven InGaAs/GaAs quantum dot.

    PubMed

    Dusanowski, Ł; Holewa, P; Maryński, A; Musiał, A; Heuser, T; Srocka, N; Quandt, D; Strittmatter, A; Rodt, S; Misiewicz, J; Reitzenstein, S; Sęk, G

    2017-12-11

    We report on the experimental demonstration of triggered single-photon emission at the telecom O-band from In(Ga)As/GaAs quantum dots (QDs) grown by metal-organic vapor-phase epitaxy. Micro-photoluminescence excitation experiments allowed us to identify the p-shell excitonic states in agreement with high excitation photoluminescence on the ensemble of QDs. Hereby we drive an O-band-emitting GaAs-based QD into the p-shell states to get a triggered single photon source of high purity. Applying pulsed p-shell resonant excitation results in strong suppression of multiphoton events evidenced by the as measured value of the second-order correlation function at zero delay of 0.03 (and ~0.005 after background correction).

  1. Search for (W/Z → jets) + γ Events in Proton-Antiproton Collisions at the Fermilab Tevatron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bocci, Andrea

    We present a study of the p¯p → W(Z)γ → γq¯q process at the center-of-mass energy √s = 1.96 TeV using data collected by the Collider Detector at Fermilab. The analysis is based on the selection of low transverse momentum photons produced in association with at least two jets. A modification of an existing photon trigger was studied and implemented in the data acquisition system to enhance the sensitivity of this analysis. The data presented are from approximately 184 pb -1 of integrated luminosity collected by this new trigger. A preliminary event sample is obtained requiring a central photon withmore » E T > 12 GeV and two jets with E T > 15 GeV. The corresponding efficiency is studied using a Monte Carlo simulation of the W(Z)γ → γq¯q based on Standard Model predictions. Monte Carlo estimation of the background is not necessary as it is measured from the data. A more advanced selection based on a Neural Network method improves the signal-to-noise ratio from 1/333 to 1/71, and further optimization of the dijet mass search region increases the ratio to its final value of 1/41. No evidence of a W/Z → q¯q peak in the dijet mass distribution is visible when the background contribution is subtracted. Using a fully Bayesian approach, the 95% confidence level upper limit on σ(p¯p → Wγ) x Β(W → q¯q) + σ(p¯p → Zγ) x Β(Z → q¯q) is calculated to be 54 pb, which is consistent with the Standard Model prediction of 20.5 pb.« less

  2. Jet-like correlations with direct-photon and neutral-pion triggers at √{sNN} = 200 GeV

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Anderson, D. M.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A. I.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, B.; Huang, X.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jentsch, A.; Jia, J.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, Y.; Li, C.; Li, W.; Li, X.; Lin, T.; Lisa, M. A.; Liu, F.; Liu, Y.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Luo, S.; Ma, G. L.; Ma, L.; Ma, Y. G.; Ma, R.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Matis, H. S.; McDonald, D.; McKinzie, S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, B.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, Z.; Sun, X. M.; Surrow, B.; Svirida, D. N.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, H.; Wang, F.; Wang, Y.; Wang, J. S.; Wang, G.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xin, K.; Xu, N.; Xu, Q. H.; Xu, Z.; Xu, J.; Xu, H.; Xu, Y. F.; Yang, S.; Yang, Y.; Yang, C.; Yang, Y.; Yang, Y.; Yang, Q.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, J. B.; Zhang, S.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, J.; Zhang, J.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2016-09-01

    Azimuthal correlations of charged hadrons with direct-photon (γdir) and neutral-pion (π0) trigger particles are analyzed in central Au+Au and minimum-bias p + p collisions at √{sNN} = 200 GeV in the STAR experiment. The charged-hadron per-trigger yields at mid-rapidity from central Au+Au collisions are compared with p + p collisions to quantify the suppression in Au+Au collisions. The suppression of the away-side associated-particle yields per γdir trigger is independent of the transverse momentum of the trigger particle (pTtrig), whereas the suppression is smaller at low transverse momentum of the associated charged hadrons (pTassoc). Within uncertainty, similar levels of suppression are observed for γdir and π0 triggers as a function of zT (≡ pTassoc/pTtrig). The results are compared with energy-loss-inspired theoretical model predictions. Our studies support previous conclusions that the lost energy reappears predominantly at low transverse momentum, regardless of the trigger energy.

  3. Room temperature solid-state quantum emitters in the telecom range.

    PubMed

    Zhou, Yu; Wang, Ziyu; Rasmita, Abdullah; Kim, Sejeong; Berhane, Amanuel; Bodrog, Zoltán; Adamo, Giorgio; Gali, Adam; Aharonovich, Igor; Gao, Wei-Bo

    2018-03-01

    On-demand, single-photon emitters (SPEs) play a key role across a broad range of quantum technologies. In quantum networks and quantum key distribution protocols, where photons are used as flying qubits, telecom wavelength operation is preferred because of the reduced fiber loss. However, despite the tremendous efforts to develop various triggered SPE platforms, a robust source of triggered SPEs operating at room temperature and the telecom wavelength is still missing. We report a triggered, optically stable, room temperature solid-state SPE operating at telecom wavelengths. The emitters exhibit high photon purity (~5% multiphoton events) and a record-high brightness of ~1.5 MHz. The emission is attributed to localized defects in a gallium nitride (GaN) crystal. The high-performance SPEs embedded in a technologically mature semiconductor are promising for on-chip quantum simulators and practical quantum communication technologies.

  4. Searching for Dark Photons with the SeaQuest Spectrometer

    NASA Astrophysics Data System (ADS)

    Uemura, Sho; SeaQuest Collaboration

    2017-09-01

    The existence of a dark sector, containing families of particles that do not couple directly to the Standard Model, is motivated as a possible model for dark matter. A ``dark photon'' - a massive vector boson that couples weakly to electric charge - is a common component of dark sector models. The SeaQuest spectrometer at Fermilab is designed to detect dimuon pairs produced by the interaction of a 120 GeV proton beam with a rotating set of thin fixed targets. An iron-filled magnet downstream of the target, 5 meters in length, serves as a beam dump. The SeaQuest spectrometer is sensitive to dark photons that are mostly produced in the beam dump and decay to dimuons, and a SeaQuest search for dark sector particles was approved as Fermilab experiment E1067. As part of E1067, a displaced-vertex trigger was built, installed and commissioned this year. This trigger uses two planes of extruded scintillators to identify dimuons originating far downstream of the target, and is sensitive to dark photons that travel deep inside the beam dump before decaying to dimuons. This trigger will be used to take data parasitically with the primary SeaQuest physics program. In this talk I will present the displaced-vertex trigger and its performance, and projected sensitivity from future running.

  5. Hong-Ou-Mandel Interference Between Triggered And Heralded Single Photons From Separate Atomic Systems

    NASA Astrophysics Data System (ADS)

    Cere, Alessandro; Leong, Victor; Kaur Gulati, Gurpreet; Srivathsan, Bharath; Kosen, Sandoko; Kurtsiefer, Christian

    2015-05-01

    The realization of quantum networks and long distance quantum communication rely on the capability of generating entanglement between separated nodes. We demonstrate the compatibility of two different sources of single photons: a single atom and four-wave mixing in a cold cloud of atoms. The four-wave mixing process in a cloud of cold 87Rb generates photon pairs. The cascade level scheme used ensures the generation of heralded single photons with exponentially decaying temporal envelope. The temporal shape of the heralding photons matches the shape of photons emitted by spontaneous decay but for the shorter coherence time A single 87Rb atom is trapped in an far-off-resonance optical dipole trap and can be excited with high probability using a short (~3 ns) intense pulse of resonant light, emitting a single photon by spontaneous decay. A large numerical aperture lens collects ~4% of the total fluorescence. The heralded and the triggered photons are launched into a Houng-Ou-Mandel interferometer: a symmetrical beam-splitter with outputs connected to single photon detectors. Scanning the relative delay between the two sources we observe the HOM dip with a maximum visibility of 70 +/-4%.

  6. A stable wavelength-tunable triggered source of single photons and cascaded photon pairs at the telecom C-band

    NASA Astrophysics Data System (ADS)

    Zeuner, Katharina D.; Paul, Matthias; Lettner, Thomas; Reuterskiöld Hedlund, Carl; Schweickert, Lucas; Steinhauer, Stephan; Yang, Lily; Zichi, Julien; Hammar, Mattias; Jöns, Klaus D.; Zwiller, Val

    2018-04-01

    The implementation of fiber-based long-range quantum communication requires tunable sources of single photons at the telecom C-band. Stable and easy-to-implement wavelength-tunability of individual sources is crucial to (i) bring remote sources into resonance, (ii) define a wavelength standard, and (iii) ensure scalability to operate a quantum repeater. So far, the most promising sources for true, telecom single photons are semiconductor quantum dots, due to their ability to deterministically and reliably emit single and entangled photons. However, the required wavelength-tunability is hard to attain. Here, we show a stable wavelength-tunable quantum light source by integrating strain-released InAs quantum dots on piezoelectric substrates. We present triggered single-photon emission at 1.55 μm with a multi-photon emission probability as low as 0.097, as well as photon pair emission from the radiative biexciton-exciton cascade. We achieve a tuning range of 0.25 nm which will allow us to spectrally overlap remote quantum dots or tuning distant quantum dots into resonance with quantum memories. This opens up realistic avenues for the implementation of photonic quantum information processing applications at telecom wavelengths.

  7. Ultra-bright GeV photon source via controlled electromagnetic cascades in laser-dipole waves

    NASA Astrophysics Data System (ADS)

    Gonoskov, Arkady; Bashinov, Alexey; Efimenko, Evgeny; Muraviev, Alexander; Kim, Arkady; Ilderton, Anton; Bastrakov, Sergey; Meyerov, Iosif; Marklund, Mattias; Sergeev, Alexander

    2017-10-01

    The prospect of achieving conditions for triggering strong-field QED phenomena at upcoming large-scale laser facilities raises a number of intriguing questions. What kind of new effects and interaction regimes can be accessed by basic QED phenomena? What are the minimal (optimal) requirements to trigger these effects and enter these regimes? How can we, from this, gain new fundamental knowledge or create important applications? The talk will concern the prospects of producing high fluxes of GeV photons by triggering a special type of self-sustaining cascade in the field of several colliding laser pulses that form a dipole wave. Apart from reaching the highest field strength for a given total power of laser pulses, the dipole wave enables anomalous radiative trapping that favors pair production and high-energy photon generation. An extensive theoretical analysis and 3D QED-PIC simulations indicate that the concept is feasible at upcoming large-scale laser facilities of 10 PW level and can provide an extraordinary intense source of GeV photons for novel experimental studies in nuclear and quark-nuclear physics.

  8. Room temperature solid-state quantum emitters in the telecom range

    PubMed Central

    Bodrog, Zoltán; Adamo, Giorgio; Gali, Adam

    2018-01-01

    On-demand, single-photon emitters (SPEs) play a key role across a broad range of quantum technologies. In quantum networks and quantum key distribution protocols, where photons are used as flying qubits, telecom wavelength operation is preferred because of the reduced fiber loss. However, despite the tremendous efforts to develop various triggered SPE platforms, a robust source of triggered SPEs operating at room temperature and the telecom wavelength is still missing. We report a triggered, optically stable, room temperature solid-state SPE operating at telecom wavelengths. The emitters exhibit high photon purity (~5% multiphoton events) and a record-high brightness of ~1.5 MHz. The emission is attributed to localized defects in a gallium nitride (GaN) crystal. The high-performance SPEs embedded in a technologically mature semiconductor are promising for on-chip quantum simulators and practical quantum communication technologies. PMID:29670945

  9. Photon Tagger Timing Calibration for the Rad Phi Experiment

    NASA Astrophysics Data System (ADS)

    Russell, Mammei; Smith, Elton

    2000-10-01

    Vector mesons provide a rich laboratory for the study of fundamental physics and radiative decays probe the very nature of the internal structure of these mesons, which possess the same quantum numbers of photons. Experiment E94-016, which collected data this past summer in Hall B of the Thomas Jefferson National Accelerator Facility (JLab), has measured the the branching ratios for rare radiative decays of the phi meson, i.e. φarrow f_0(975)γ arrow π^0π^0γ, φ arrow a_0(980)γ arrow π0 η γ, and φ arrow η'γ. A lead glass calorimeter, in concert with several detectors, measured these decays. A tagged beam of bremsstrahlung photons was directed upon a solid Beryllium target. A three-level trigger was then employed to preferentially select radiative decays of the φ meson. We calibrated timing of each detector by referencing individual detectors to one another. Tight timing will enhance signal relative to background.

  10. Jet-like correlations with direct-photon and neutral-pion triggers at s N N = 200  GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.

    2016-07-22

    Azimuthal correlations of charged hadrons with direct-photon (γ dir) and neutral-pion (π 0) trigger particles are analyzed in central Au+Au and minimum-bias p+p collisions atmore » $$\\sqrt{s}$$$_{NN}$$ =200 GeV in the STAR experiment. The charged-hadron per-trigger yields at mid-rapidity from central Au+Au collisions are compared with p+p collisions to quantify the suppression in Au+Au collisions. The suppression of the away-side associated-particle yields per γ dir trigger is independent of the transverse momentum of the trigger particle ( P$$trig\\atop{T}$$, whereas the suppression is smaller at low transverse momentum of the associated charged hadrons ( P$$assoc\\atop{T}$$). Within uncertainty, similar levels of suppression are observed for γ dir and π 0 triggers as a function of z T ($$\\equiv$$ P$$assoc\\atop{T}$$/$ P$$trig\\atop{T}$$). The results are compared with energy-loss-inspired theoretical model predictions. In conclusion, our studies support previous conclusions that the lost energy reappears predominantly at low transverse momentum, regardless of the trigger energy.« less

  11. FocusStack and StimServer: a new open source MATLAB toolchain for visual stimulation and analysis of two-photon calcium neuronal imaging data.

    PubMed

    Muir, Dylan R; Kampa, Björn M

    2014-01-01

    Two-photon calcium imaging of neuronal responses is an increasingly accessible technology for probing population responses in cortex at single cell resolution, and with reasonable and improving temporal resolution. However, analysis of two-photon data is usually performed using ad-hoc solutions. To date, no publicly available software exists for straightforward analysis of stimulus-triggered two-photon imaging experiments. In addition, the increasing data rates of two-photon acquisition systems imply increasing cost of computing hardware required for in-memory analysis. Here we present a Matlab toolbox, FocusStack, for simple and efficient analysis of two-photon calcium imaging stacks on consumer-level hardware, with minimal memory footprint. We also present a Matlab toolbox, StimServer, for generation and sequencing of visual stimuli, designed to be triggered over a network link from a two-photon acquisition system. FocusStack is compatible out of the box with several existing two-photon acquisition systems, and is simple to adapt to arbitrary binary file formats. Analysis tools such as stack alignment for movement correction, automated cell detection and peri-stimulus time histograms are already provided, and further tools can be easily incorporated. Both packages are available as publicly-accessible source-code repositories.

  12. FocusStack and StimServer: a new open source MATLAB toolchain for visual stimulation and analysis of two-photon calcium neuronal imaging data

    PubMed Central

    Muir, Dylan R.; Kampa, Björn M.

    2015-01-01

    Two-photon calcium imaging of neuronal responses is an increasingly accessible technology for probing population responses in cortex at single cell resolution, and with reasonable and improving temporal resolution. However, analysis of two-photon data is usually performed using ad-hoc solutions. To date, no publicly available software exists for straightforward analysis of stimulus-triggered two-photon imaging experiments. In addition, the increasing data rates of two-photon acquisition systems imply increasing cost of computing hardware required for in-memory analysis. Here we present a Matlab toolbox, FocusStack, for simple and efficient analysis of two-photon calcium imaging stacks on consumer-level hardware, with minimal memory footprint. We also present a Matlab toolbox, StimServer, for generation and sequencing of visual stimuli, designed to be triggered over a network link from a two-photon acquisition system. FocusStack is compatible out of the box with several existing two-photon acquisition systems, and is simple to adapt to arbitrary binary file formats. Analysis tools such as stack alignment for movement correction, automated cell detection and peri-stimulus time histograms are already provided, and further tools can be easily incorporated. Both packages are available as publicly-accessible source-code repositories1. PMID:25653614

  13. Generation of Single Photons and Entangled Photon Pairs from a Quantum Dot

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Pelton, M.; Santori, C.; Solomon, G. S.

    2002-10-01

    Current quantum cryptography systems are limited by the Poissonian photon statistics of a standard light source: a security loophole is opened up by the possibility of multiple-photon pulses. By replacing the source with a single-photon emitter, transmission rates of secure information can be improved. A single photon source is also essential to implement a linear optics quantum computer. We have investigated the use of single self-assembled InAs/GaAs quantum dots as such single-photon sources, and have seen a hundred-fold reduction in the multi-photon probability as compared to Poissonian pulses. An extension of our experiment should also allow for the generation of triggered, polarizationentangled photon pairs.

  14. Versatile Polymer Nanoparticles as Two-Photon-Triggered Photosensitizers for Simultaneous Cellular, Deep-Tissue Imaging, and Photodynamic Therapy.

    PubMed

    Guo, Liang; Ge, Jiechao; Liu, Qian; Jia, Qingyan; Zhang, Hongyan; Liu, Weimin; Niu, Guangle; Liu, Sha; Gong, Jianru; Hackbarth, Steffen; Wang, Pengfei

    2017-06-01

    Clinical applications of current photodynamic therapy (PDT) photosensitizers (PSs) are often limited by their absorption in the UV-vis range that possesses limited tissue penetration ability, leading to ineffective therapeutic response for deep-seated tumors. Alternatively, two-photon excited PS (TPE-PS) using NIR light triggered is one the most promising candidates for PDT improvement. Herein, multimodal polymer nanoparticles (PNPs) from polythiophene derivative as two-photon fluorescence imaging as well as two-photon-excited PDT agent are developed. The prepared PNPs exhibit excellent water dispersibility, high photostability and pH stability, strong fluorescence brightness, and low dark toxicity. More importantly, the PNPs also possess other outstanding features including: (1) the high 1 O 2 quantum yield; (2) the strong two-photon-induced fluorescence and efficient 1 O 2 generation; (3) the specific accumulation in lysosomes of HeLa cells; and (4) the imaging detection depth up to 2100 µm in the mock tissue under two-photon. The multifunctional PNPs are promising candidates as TPE-PDT agent for simultaneous cellular, deep-tissue imaging, and highly efficient in vivo PDT of cancer. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fundamental photon orbits: Black hole shadows and spacetime instabilities

    NASA Astrophysics Data System (ADS)

    Cunha, Pedro V. P.; Herdeiro, Carlos A. R.; Radu, Eugen

    2017-07-01

    The standard black holes (BHs) in general relativity, as well as other ultracompact objects (with or without an event horizon) admit planar circular photon orbits. These light rings (LRs) determine several spacetime properties. For instance, stable LRs trigger instabilities and, in spherical symmetry, (unstable) LRs completely determine BH shadows. In generic stationary, axisymmetric spacetimes, nonplanar bound photon orbits may also exist, regardless of the integrability properties of the photon motion. We suggest a classification of these fundamental photon orbits (FPOs) and, using Poincaré maps, determine a criterion for their stability. For the Kerr BH, all FPOs are unstable (similar to its LRs) and completely determine the Kerr shadow. But in non-Kerr spacetimes, stable FPOs may also exist, even when all LRs are unstable, triggering new instabilities. We illustrate this for the case of Kerr BHs with Proca hair, wherein, moreover, qualitatively novel shadows with a cuspy edge exist, a feature that can be understood from the interplay between stable and unstable FPOs. FPOs are the natural generalization of LRs beyond spherical symmetry and should generalize the LRs key role in different spacetime properties.

  16. Scalable high-precision tuning of photonic resonators by resonant cavity-enhanced photoelectrochemical etching

    PubMed Central

    Gil-Santos, Eduardo; Baker, Christopher; Lemaître, Aristide; Gomez, Carmen; Leo, Giuseppe; Favero, Ivan

    2017-01-01

    Photonic lattices of mutually interacting indistinguishable cavities represent a cornerstone of collective phenomena in optics and could become important in advanced sensing or communication devices. The disorder induced by fabrication technologies has so far hindered the development of such resonant cavity architectures, while post-fabrication tuning methods have been limited by complexity and poor scalability. Here we present a new simple and scalable tuning method for ensembles of microphotonic and nanophotonic resonators, which enables their permanent collective spectral alignment. The method introduces an approach of cavity-enhanced photoelectrochemical etching in a fluid, a resonant process triggered by sub-bandgap light that allows for high selectivity and precision. The technique is presented on a gallium arsenide nanophotonic platform and illustrated by finely tuning one, two and up to five resonators. It opens the way to applications requiring large networks of identical resonators and their spectral referencing to external etalons. PMID:28117394

  17. On-demand transfer of trapped photons on a chip.

    PubMed

    Konoike, Ryotaro; Nakagawa, Haruyuki; Nakadai, Masahiro; Asano, Takashi; Tanaka, Yoshinori; Noda, Susumu

    2016-05-01

    Photonic crystal nanocavities, which have modal volumes of the order of a cubic wavelength in the material, are of great interest as flexible platforms for manipulating photons. Recent developments in ultra-high quality factor nanocavities with long photon lifetimes have encouraged us to develop an ultra-compact and flexible photon manipulation technology where photons are trapped in networks of such nanocavities. The most fundamental requirement is the on-demand transfer of photons to and from the trapped states of arbitrary nanocavities. We experimentally demonstrate photon transfer between two nearly resonant nanocavities at arbitrary positions on a chip, triggered by the irradiation of a third nonresonant nanocavity using an optical control pulse. We obtain a high transfer efficiency of ~90% with a photon lifetime of ~200 ps.

  18. Single photons from a gain medium below threshold

    NASA Astrophysics Data System (ADS)

    Ghosh, Sanjib; Liew, Timothy C. H.

    2018-06-01

    The emission from a nonlinear photonic mode coupled weakly to a gain medium operating below threshold is predicted to exhibit antibunching. In the steady state regime, analytical solutions for the relevant observable quantities are found in accurate agreement with exact numerical results. Under pulsed excitation, the unequal time second-order correlation function demonstrates the triggered probabilistic generation of single photons well separated in time.

  19. Trigger and Readout System for the Ashra-1 Detector

    NASA Astrophysics Data System (ADS)

    Aita, Y.; Aoki, T.; Asaoka, Y.; Morimoto, Y.; Motz, H. M.; Sasaki, M.; Abiko, C.; Kanokohata, C.; Ogawa, S.; Shibuya, H.; Takada, T.; Kimura, T.; Learned, J. G.; Matsuno, S.; Kuze, S.; Binder, P. M.; Goldman, J.; Sugiyama, N.; Watanabe, Y.

    Highly sophisticated trigger and readout system has been developed for All-sky Survey High Resolution Air-shower (Ashra) detector. Ashra-1 detector has 42 degree diameter field of view. Detection of Cherenkov and fluorescence light from large background in the large field of view requires finely segmented and high speed trigger and readout system. The system is composed of optical fiber image transmission system, 64 × 64 channel trigger sensor and FPGA based trigger logic processor. The system typically processes the image within 10 to 30 ns and opens the shutter on the fine CMOS sensor. 64 × 64 coarse split image is transferred via 64 × 64 precisely aligned optical fiber bundle to a photon sensor. Current signals from the photon sensor are discriminated by custom made trigger amplifiers. FPGA based processor processes 64 × 64 hit pattern and correspondent partial area of the fine image is acquired. Commissioning earth skimming tau neutrino observational search was carried out with this trigger system. In addition to the geometrical advantage of the Ashra observational site, the excellent tau shower axis measurement based on the fine imaging and the night sky background rejection based on the fine and fast imaging allow zero background tau shower search. Adoption of the optical fiber bundle and trigger LSI realized 4k channel trigger system cheaply. Detectability of tau shower is also confirmed by simultaneously observed Cherenkov air shower. Reduction of the trigger threshold appears to enhance the effective area especially in PeV tau neutrino energy region. New two dimensional trigger LSI was introduced and the trigger threshold was lowered. New calibration system of the trigger system was recently developed and introduced to the Ashra detector

  20. Tagging Efficiency for Nuclear Physics Measurements at MAX-lab

    NASA Astrophysics Data System (ADS)

    Miller, Nevin; Elofson, David; Lewis, Codie; O'Brien, Erin; Buggelli, Kelsey; O'Connor, Kyle; O'Rielly, Grant; Maxtagg Team

    2014-09-01

    A careful study of the tagging efficiency during measurements of near threshold pion photoproduction and high energy Compton scattering has been performed. These experiments are being done at the MAX-lab tagged photon Facility during the June 2014 run period. The determination of the final results from these experiments depends on knowledge of the incident photon flux. The tagging efficiency is a critical part of the photon flux calculation. In addition to daily measurements of the tagging efficiency, a beam monitor was used during the production data runs to monitor the relative tagging efficiency. Two trigger types were used in the daily measurements; one was a logical OR from the tagger array and the other was from the Pb-glass photon detector. Investigations were made to explore the effect of the different trigger conditions and the differences between single and multi hit TDCs on the tagging efficiency. In addition the time evolution and overall uncertainty in the tagging efficiency for each tagger channel was determined. The results will be discussed.

  1. Responsive block copolymer photonics triggered by protein-polyelectrolyte coacervation.

    PubMed

    Fan, Yin; Tang, Shengchang; Thomas, Edwin L; Olsen, Bradley D

    2014-11-25

    Ionic interactions between proteins and polyelectrolytes are demonstrated as a method to trigger responsive transitions in block copolymer (BCP) photonic gels containing one neutral hydrophobic block and one cationic hydrophilic block. Poly(2-vinylpyridine) (P2VP) blocks in lamellar poly(styrene-b-2-vinylpyridine) block copolymer thin films are quaternized with primary bromides to yield swollen gels that show strong reflectivity peaks in the visible range; exposure to aqueous solutions of various proteins alters the swelling ratios of the quaternized P2VP (QP2VP) gel layers in the PS-QP2VP materials due to the ionic interactions between proteins and the polyelectrolyte. Parameters such as charge density, hydrophobicity, and cross-link density of the QP2VP gel layers as well as the charge and size of the proteins play significant roles on the photonic responses of the BCP gels. Differences in the size and pH-dependent charge of proteins provide a basis for fingerprinting proteins based on their temporal and equilibrium photonic response. The results demonstrate that the BCP gels and their photonic effect provide a robust and visually interpretable method to differentiate different proteins.

  2. The solid state detector technology for picosecond laser ranging

    NASA Technical Reports Server (NTRS)

    Prochazka, Ivan

    1993-01-01

    We developed an all solid state laser ranging detector technology, which makes the goal of millimeter accuracy achievable. Our design and construction philosophy is to combine the techniques of single photon ranging, ultrashort laser pulses, and fast fixed threshold discrimination while avoiding any analog signal processing within the laser ranging chain. The all solid state laser ranging detector package consists of the START detector and the STOP solid state photon counting module. Both the detectors are working in an optically triggered avalanche switching regime. The optical signal is triggering an avalanche current buildup which results in the generation of a uniform, fast risetime output pulse.

  3. Single-photon-level quantum image memory based on cold atomic ensembles

    PubMed Central

    Ding, Dong-Sheng; Zhou, Zhi-Yuan; Shi, Bao-Sen; Guo, Guang-Can

    2013-01-01

    A quantum memory is a key component for quantum networks, which will enable the distribution of quantum information. Its successful development requires storage of single-photon light. Encoding photons with spatial shape through higher-dimensional states significantly increases their information-carrying capability and network capacity. However, constructing such quantum memories is challenging. Here we report the first experimental realization of a true single-photon-carrying orbital angular momentum stored via electromagnetically induced transparency in a cold atomic ensemble. Our experiments show that the non-classical pair correlation between trigger photon and retrieved photon is retained, and the spatial structure of input and retrieved photons exhibits strong similarity. More importantly, we demonstrate that single-photon coherence is preserved during storage. The ability to store spatial structure at the single-photon level opens the possibility for high-dimensional quantum memories. PMID:24084711

  4. The Heavy Photon Search test detector

    DOE PAGES

    Battaglieri, M.; Boyarinov, S.; Bueltmann, S.; ...

    2014-12-17

    The Heavy Photon Search (HPS), an experiment to search for a hidden sector photon in fixed target electroproduction, is preparing for installation at the Thomas Jefferson National Accelerator Facility (JLab) in the Fall of 2014. As the first stage of this project, the HPS Test Run apparatus was constructed and operated in 2012 to demonstrate the experiment's technical feasibility and to confirm that the trigger rates and occupancies are as expected. This paper describes the HPS Test Run apparatus and readout electronics and its performance. In this setting, a heavy photon can be identified as a narrow peak in themore » e⁺e⁻invariant mass spectrum above the trident background or as a narrow invariant mass peak with a decay vertex displaced from the production target, so charged particle tracking and vertexing are needed for its detection. In the HPS Test Run, charged particles are measured with a compact forward silicon microstrip tracker inside a dipole magnet. Electromagnetic showers are detected in a PbW0 4 crystal calorimeter situated behind the magnet, and are used to trigger the experiment and identify electrons and positrons. Both detectors are placed close to the beam line and split top-bottom. This arrangement provides sensitivity to low-mass heavy photons, allows clear passage of the unscattered beam, and avoids the spray of degraded electrons coming from the target. The discrimination between prompt and displaced e⁺e⁻ pairs requires the first layer of silicon sensors be placed only 10 cm downstream of the target. The expected signal is small, and the trident background huge, so the experiment requires very large statistics. In addition, the HPS Test Run utilizes high-rate readout and data acquisition electronics and a fast trigger to exploit the essentially 100% duty cycle of the CEBAF accelerator at JLab.« less

  5. Setting Single Photon Detectors for Use with an Entangled Photon Distribution System

    DTIC Science & Technology

    2017-12-01

    NOTICES Disclaimers The findings in this report are not to be construed as an official Department of the Army position unless so designated by...diode (as small as that provided by one photon incident on the detector) triggers an avalanche pulse. This output avalanche pulse is then compared with...with raw concurrence and fidelity ( compared with the Bell state given by Eq. 1) values of 0.871 and 0.934. Furthermore, the accidental-subtracted

  6. Amplitude distributions of dark counts and photon counts in NbN superconducting single-photon detectors integrated with the HEMT readout

    NASA Astrophysics Data System (ADS)

    Kitaygorsky, J.; Słysz, W.; Shouten, R.; Dorenbos, S.; Reiger, E.; Zwiller, V.; Sobolewski, Roman

    2017-01-01

    We present a new operation regime of NbN superconducting single-photon detectors (SSPDs) by integrating them with a low-noise cryogenic high-electron-mobility transistor and a high-load resistor. The integrated sensors are designed to get a better understanding of the origin of dark counts triggered by the detector, as our scheme allows us to distinguish the origin of dark pulses from the actual photon pulses in SSPDs. The presented approach is based on a statistical analysis of amplitude distributions of recorded trains of the SSPD photoresponse transients. It also enables to obtain information on energy of the incident photons, as well as demonstrates some photon-number-resolving capability of meander-type SSPDs.

  7. The Trigger and Data Acquisition System for the 8 tower subsystem of the KM3NeT detector

    NASA Astrophysics Data System (ADS)

    Manzali, M.; Chiarusi, T.; Favaro, M.; Giacomini, F.; Margiotta, A.; Pellegrino, C.

    2016-07-01

    KM3NeT is a deep-sea research infrastructure being constructed in the Mediterranean Sea. It will host a large Cherenkov neutrino telescope that will collect photons emitted along the path of the charged particles produced in neutrino interactions in the vicinity of the detector. The philosophy of the DAQ system of the detector foresees that all data are sent to shore after a proper sampling of the photomultiplier signals. No off-shore hardware trigger is implemented and a software selection of the data is performed with an on-line Trigger and Data Acquisition System (TriDAS) to reduce the large throughput due to the environmental light background. A first version of the TriDAS has been developed to operate a prototype detection unit deployed in March 2013 in the abyssal site of Capo Passero (Sicily, Italy), about 3500 m deep. A revised and improved version has been developed to meet the requirements of the final detector, using new tools and modern design solutions. First installation and scalability tests have been performed at the Bologna Common Infrastructure and results comparable to what expected have been observed.

  8. Photon-photon entanglement with a single trapped atom.

    PubMed

    Weber, B; Specht, H P; Müller, T; Bochmann, J; Mücke, M; Moehring, D L; Rempe, G

    2009-01-23

    An experiment is performed where a single rubidium atom trapped within a high-finesse optical cavity emits two independently triggered entangled photons. The entanglement is mediated by the atom and is characterized both by a Bell inequality violation of S=2.5, as well as full quantum-state tomography, resulting in a fidelity exceeding F=90%. The combination of cavity-QED and trapped atom techniques makes our protocol inherently deterministic--an essential step for the generation of scalable entanglement between the nodes of a distributed quantum network.

  9. A quantum dot single-photon source with on-the-fly all-optical polarization control and timed emission.

    PubMed

    Heinze, Dirk; Breddermann, Dominik; Zrenner, Artur; Schumacher, Stefan

    2015-10-05

    Sources of single photons are key elements for applications in quantum information science. Among the different sources available, semiconductor quantum dots excel with their integrability in semiconductor on-chip solutions and the potential that photon emission can be triggered on demand. Usually, the photon is emitted from a single-exciton ground state. Polarization of the photon and time of emission are either probabilistic or pre-determined by electronic properties of the system. Here, we study the direct two-photon emission from the biexciton. The two-photon emission is enabled by a laser pulse driving the system into a virtual state inside the band gap. From this intermediate state, the single photon of interest is then spontaneously emitted. We show that emission through this higher-order transition provides a versatile approach to generate a single photon. Through the driving laser pulse, polarization state, frequency and emission time of the photon can be controlled on-the-fly.

  10. Nonperturbative-transverse-momentum effects and evolution in dihadron and direct photon-hadron angular correlations in p +p collisions at √{s } =510 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Andrieux, V.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Atomssa, E. T.; Awes, T. C.; Ayuso, C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bai, X.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bathe, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Black, D.; Blau, D. S.; Boer, M.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Butler, C.; Butsyk, S.; Campbell, S.; Canoa Roman, V.; Cervantes, R.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Christiansen, P.; Chujo, T.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Connors, M.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Danley, T. W.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Ding, L.; Dion, A.; Dixit, D.; Do, J. H.; D'Orazio, L.; Drapier, O.; Drees, A.; Drees, K. A.; Dumancic, M.; Durham, J. M.; Durum, A.; Elder, T.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Fan, W.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Fukuda, Y.; Fusayasu, T.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guragain, H.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamilton, H. F.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Hayano, R.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hill, K.; Hollis, R. S.; Homma, K.; Hong, B.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ichihara, T.; Ikeda, Y.; Imai, K.; Imazu, Y.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Isinhue, A.; Ito, Y.; Ivanishchev, D.; Jacak, B. V.; Jeon, S. J.; Jezghani, M.; Ji, Z.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, E.; Joo, K. S.; Jorjadze, V.; Jouan, D.; Jumper, D. S.; Kamin, J.; Kanda, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapukchyan, D.; Kapustinsky, J.; Karthas, S.; Kawall, D.; Kazantsev, A. V.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kihara, K.; Kijima, K. M.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.-J.; Kim, H.-J.; Kim, M. H.; Kim, M.; Kim, Y.-J.; Kim, Y. K.; Kincses, D.; Kistenev, E.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kofarago, M.; Komkov, B.; Koster, J.; Kotchetkov, D.; Kotov, D.; Krizek, F.; Kudo, S.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lallow, E. O.; Lebedev, A.; Lee, D. M.; Lee, G. H.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S.; Lee, S. H.; Leitch, M. J.; Leitgab, M.; Leung, Y. H.; Lewis, B.; Lewis, N. A.; Li, X.; Li, X.; Lim, S. H.; Liu, L. D.; Liu, M. X.; Loggins, V.-R.; Loggins, V.-R.; Lovasz, K.; Lynch, D.; Maguire, C. F.; Majoros, T.; Makdisi, Y. I.; Makek, M.; Malaev, M.; Manion, A.; Manko, V. I.; Mannel, E.; Masuda, H.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Mihalik, D. E.; Miller, A. J.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Mitsuka, G.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Mohapatra, S.; Montuenga, P.; Moon, T.; Morrison, D. P.; Morrow, S. I. M.; Moskowitz, M.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagai, K.; Nagamiya, S.; Nagashima, K.; Nagashima, T.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Nihashi, M.; Niida, T.; Nouicer, R.; Novák, T.; Novitzky, N.; Novotny, R.; Nyanin, A. S.; O'Brien, E.; Ogilvie, C. A.; Oide, H.; Okada, K.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ottino, G. J.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, J. S.; Park, S.; Park, S. K.; Pate, S. F.; Patel, L.; Patel, M.; Peng, J.-C.; Peng, W.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perezlara, C. E.; Perry, J.; Petti, R.; Phipps, M.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Pun, A.; Purschke, M. L.; Qu, H.; Rak, J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Richford, D.; Rinn, T.; Riveli, N.; Roach, D.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Rubin, J. G.; Runchey, J.; Ryu, M. S.; Safonov, A. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, K.; Sato, S.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sekiguchi, Y.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shaver, A.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shioya, T.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Slunečka, M.; Smith, K. L.; Snowball, M.; Solano, S.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Stone, M. R.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Syed, S.; Sziklai, J.; Takahara, A.; Takeda, A.; Taketani, A.; Tanaka, Y.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarnai, G.; Tennant, E.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, M.; Towell, R.; Towell, R. S.; Tserruya, I.; Ueda, Y.; Ujvari, B.; van Hecke, H. W.; Vargyas, M.; Vazquez-Carson, S.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Vrba, V.; Vukman, N.; Vznuzdaev, E.; Wang, X. R.; Wang, Z.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Whitaker, S.; Wolin, S.; Wong, C. P.; Woody, C. L.; Wysocki, M.; Xia, B.; Xu, C.; Xu, Q.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamamoto, H.; Yanovich, A.; Yin, P.; Yokkaichi, S.; Yoo, J. H.; Yoon, I.; You, Z.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zharko, S.; Zhou, S.; Zou, L.; Phenix Collaboration

    2017-04-01

    Dihadron and isolated direct photon-hadron angular correlations are measured in p +p collisions at √{s }=510 GeV . Correlations of charged hadrons of 0.7

  11. Reconfigurable Photonic Crystals Enabled by Multistimuli-Responsive Shape Memory Polymers Possessing Room Temperature Shape Processability.

    PubMed

    Fang, Yin; Leo, Sin-Yen; Ni, Yongliang; Wang, Junyu; Wang, Bingchen; Yu, Long; Dong, Zhe; Dai, Yuqiong; Basile, Vito; Taylor, Curtis; Jiang, Peng

    2017-02-15

    Traditional shape memory polymers (SMPs) are mostly thermoresponsive, and their applications in nano-optics are hindered by heat-demanding programming and recovery processes. By integrating a polyurethane-based shape memory copolymer with templating nanofabrication, reconfigurable/rewritable macroporous photonic crystals have been demonstrated. This SMP coupled with the unique macroporous structure enables unusual all-room-temperature shape memory cycles. "Cold" programming involving microscopic order-disorder transitions of the templated macropores is achieved by mechanically deforming the macroporous SMP membranes. The rapid recovery of the permanent, highly ordered photonic crystal structure from the temporary, disordered configuration can be triggered by multiple stimuli including a large variety of vapors and solvents, heat, and microwave radiation. Importantly, the striking chromogenic effects associated with these athermal and thermal processes render a sensitive and noninvasive optical methodology for quantitatively characterizing the intriguing nanoscopic shape memory effects. Some critical parameters/mechanisms that could significantly affect the final performance of SMP-based reconfigurable photonic crystals including strain recovery ratio, dynamics and reversibility of shape recovery, as well as capillary condensation of vapors in macropores, which play a crucial role in vapor-triggered recovery, can be evaluated using this new optical technology.

  12. High on/off ratio nanosecond laser pulses for a triggered single-photon source

    NASA Astrophysics Data System (ADS)

    Jin, Gang; Liu, Bei; He, Jun; Wang, Junmin

    2016-07-01

    An 852 nm nanosecond laser pulse chain with a high on/off ratio is generated by chopping a continuous-wave laser beam using a Mach-Zehnder-type electro-optic intensity modulator (MZ-EOIM). The detailed dependence of the MZ-EOIM’s on/off ratio on various parameters is characterized. By optimizing the incident beam polarization and stabilizing the MZ-EOIM temperature, a static on/off ratio of 12600:1 is achieved. The dynamic on/off ratios versus the pulse repetition rate and the pulse duty cycle are measured and discussed. The high-on/off-ratio nanosecond pulsed laser system was used in a triggered single-photon source based on a trapped single cesium atom, which reveals clear antibunching.

  13. Single photon source with individualized single photon certifications

    NASA Astrophysics Data System (ADS)

    Migdall, Alan L.; Branning, David A.; Castelletto, Stefania; Ware, M.

    2002-12-01

    As currently implemented, single-photon sources cannot be made to produce single photons with high probability, while simultaneously suppressing the probability of yielding two or more photons. Because of this, single photon sources cannot really produce single photons on demand. We describe a multiplexed system that allows the probabilities of producing one and more photons to be adjusted independently, enabling a much better approximation of a source of single photons on demand. The scheme uses a heralded photon source based on parametric downconversion, but by effectively breaking the trigger detector area into multiple regions, we are able to extract more information about a heralded photon than is possible with a conventional arrangement. This scheme allows photons to be produced along with a quantitative 'certification' that they are single photons. Some of the single-photon certifications can be significantly better than what is possible with conventional downconversion sources, as well as being better than faint laser sources. With such a source of more tightly certified single photons, it should be possible to improve the maximum secure bit rate possible over a quantum cryptographic link. We present an analysis of the relative merits of this method over the conventional arrangement.

  14. Direct Writing of Three-Dimensional Macroporous Photonic Crystals on Pressure-Responsive Shape Memory Polymers.

    PubMed

    Fang, Yin; Ni, Yongliang; Leo, Sin-Yen; Wang, Bingchen; Basile, Vito; Taylor, Curtis; Jiang, Peng

    2015-10-28

    Here we report a single-step direct writing technology for making three-dimensional (3D) macroporous photonic crystal patterns on a new type of pressure-responsive shape memory polymer (SMP). This approach integrates two disparate fields that do not typically intersect: the well-established templating nanofabrication and shape memory materials. Periodic arrays of polymer macropores templated from self-assembled colloidal crystals are squeezed into disordered arrays in an unusual shape memory "cold" programming process. The recovery of the original macroporous photonic crystal lattices can be triggered by direct writing at ambient conditions using both macroscopic and nanoscopic tools, like a pencil or a nanoindenter. Interestingly, this shape memory disorder-order transition is reversible and the photonic crystal patterns can be erased and regenerated hundreds of times, promising the making of reconfigurable/rewritable nanooptical devices. Quantitative insights into the shape memory recovery of collapsed macropores induced by the lateral shear stresses in direct writing are gained through fundamental investigations on important process parameters, including the tip material, the critical pressure and writing speed for triggering the recovery of the deformed macropores, and the minimal feature size that can be directly written on the SMP membranes. Besides straightforward applications in photonic crystal devices, these smart mechanochromic SMPs that are sensitive to various mechanical stresses could render important technological applications ranging from chromogenic stress and impact sensors to rewritable high-density optical data storage media.

  15. Heterometallic Ru-Pt metallacycle for two-photon photodynamic therapy.

    PubMed

    Zhou, Zhixuan; Liu, Jiangping; Rees, Thomas W; Wang, Heng; Li, Xiaopeng; Chao, Hui; Stang, Peter J

    2018-05-29

    As an effective and noninvasive treatment of various diseases, photodynamic therapy (PTD) relies on the combination of light, a photosensitizer, and oxygen to generate cytotoxic reactive oxygen species that can damage malignant tissue. Much attention has been paid to covalent modifications of the photosensitizers to improve their photophysical properties and to optimize the pathway of the photosensitizers interacting with cells within the target tissue. Herein we report the design and synthesis of a supramolecular heterometallic Ru-Pt metallacycle via coordination-driven self-assembly. While inheriting the excellent photostability and two-photon absorption characteristics of the Ru(II) polypyridyl precursor, the metallacycle also exhibits red-shifted luminescence to the near-infrared region, a larger two-photon absorption cross-section, and higher singlet oxygen generation efficiency, making it an excellent candidate as a photosensitizer for PTD. Cellular studies reveal that the metallacycle selectively accumulates in mitochondria and nuclei upon internalization. As a result, singlet oxygen generated by photoexcitation of the metallacycle can efficiently trigger cell death via the simultaneous damage to mitochondrial function and intranuclear DNA. In vivo studies on tumor-bearing mice show that the metallacycle can efficiently inhibit tumor growth under a low light dose with minimal side effects. The supramolecular approach presented in this work provides a paradigm for the development of PDT agents with high efficacy.

  16. Selective two-photon excitation of a vibronic state by correlated photons.

    PubMed

    Oka, Hisaki

    2011-03-28

    We theoretically investigate the two-photon excitation of a molecular vibronic state by correlated photons with energy anticorrelation. A Morse oscillator having three sets of vibronic states is used, as an example, to evaluate the selectivity and efficiency of two-photon excitation. We show that a vibrational mode can be selectively excited with high efficiency by the correlated photons, without phase manipulation or pulse-shaping techniques. This can be achieved by controlling the quantum correlation so that the photon pair concurrently has two pulse widths, namely, a temporally narrow width and a spectrally narrow width. Though this concurrence is seemingly contradictory, we can create such a photon pair by tailoring the quantum correlation between two photons.

  17. EDITORIAL: Progress in quantum technology: one photon at a time Progress in quantum technology: one photon at a time

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2012-07-01

    Technological developments sparked by quantum mechanics and wave-particle duality are still gaining ground over a hundred years after the theories were devised. While the impact of the theories in fundamental research, philosophy and even art and literature is widely appreciated, the implications in device innovations continue to breed potential. Applications inspired by these concepts include quantum computation and quantum cryptography protocols based on single photons, among many others. In this issue, researchers in Germany and the US report a step towards precisely triggered single-photon sources driven by surface acoustic waves (SAWs) [1]. The work brings technology based on quantum mechanics yet another step closer to practical device reality. Generation of single 'antibunched' photons has been one of the key challenges to progress in quantum information processing and communication. Researchers from Toshiba and Cambridge University in the UK recently reported what they described as 'the first electrically driven single-photon source capable of emitting indistinguishable photons' [2]. Single-photon sources have been reported previously [3]. However the approach demonstrated by Shields and colleagues allows electrical control, which is particularly useful for implementing in compact devices. The researchers used a layer of InAs quantum dots embedded in the intrinsic region of a p-i-n diode to demonstrate interference between single photons. They also present a complete theory based on the interference of photons with a Lorentzian spectrum, which they compare with both continuous-wave and pulsed experiments. The application of SAWs in achieving precisely triggered single-photon sources develops the work of researchers in Germany in the late 1990s [4]. Surface acoustic waves travel like sound waves, but are characterized by an amplitude that typically decays exponentially with depth into the substrate. As Rocke and colleagues demonstrated, they can be used to dissociate an optically excited exciton and spatially separate the electron and hole, thereby increasing the radiative lifetime by orders of magnitude. The interesting behaviour of SAWs has led to studies towards a number of other applications including sensing [5-7], synthesis and nanoassembly [8]. For applications in single-photon sources, the electron-hole pairs are transported by the SAW to a quantum dot where they recombine emitting a single photon. However, so far various limiting factors in the system, such as the low quality of the quantum dots used leading to multiple-exciton recombinations, have hindered potential applications of the system as a single-photon source. Control over high-quality quantum-dot self-assembly is constantly improving. Researchers at the University of California at Berkeley and Harvard University in the US report the ability to successfully position a small number of colloidal quantum dots to within less than 100 nm accuracy on metallic surfaces [9]. They use single-stranded DNA both to act as an anchor to the gold or silver substrates and to selectively bind to the quantum dots, allowing programmed assembly of quantum dots on plasmonic structures. More recently still, researchers in Germany have reported how they can controllably reduce the density of self-assembled InP quantum dots by cyclic deposition with growth interruptions [10]. The impressive control has great potential for quantum emitter use. In this issue, Völk, Krenner and colleagues use an alternative approach to demonstrate how they can improve the performance of single-photon sources using SAWs. They use an optimized system of isolated self-assembled quantum posts in a quantum-well structure and inject the carriers at a distance from the posts where recombination and emission take place [3]. The SAW dissociates the electron-hole pairs and transports them to the quantum posts, so the two carrier types arrive at the quantum post with a set time delay. Other approaches, such as Coulomb blockade ones, have struggled to achieve the sequential injection of the carriers

  18. Analytical model of coincidence resolving time in TOF-PET

    NASA Astrophysics Data System (ADS)

    Wieczorek, H.; Thon, A.; Dey, T.; Khanin, V.; Rodnyi, P.

    2016-06-01

    The coincidence resolving time (CRT) of scintillation detectors is the parameter determining noise reduction in time-of-flight PET. We derive an analytical CRT model based on the statistical distribution of photons for two different prototype scintillators. For the first one, characterized by single exponential decay, CRT is proportional to the decay time and inversely proportional to the number of photons, with a square root dependence on the trigger level. For the second scintillator prototype, characterized by exponential rise and decay, CRT is proportional to the square root of the product of rise time and decay time divided by the doubled number of photons, and it is nearly independent of the trigger level. This theory is verified by measurements of scintillation time constants, light yield and CRT on scintillator sticks. Trapping effects are taken into account by defining an effective decay time. We show that in terms of signal-to-noise ratio, CRT is as important as patient dose, imaging time or PET system sensitivity. The noise reduction effect of better timing resolution is verified and visualized by Monte Carlo simulation of a NEMA image quality phantom.

  19. Quantum non-demolition detection of an itinerant microwave photon

    NASA Astrophysics Data System (ADS)

    Kono, S.; Koshino, K.; Tabuchi, Y.; Noguchi, A.; Nakamura, Y.

    2018-06-01

    Photon detectors are an elementary tool to measure electromagnetic waves at the quantum limit1,2 and are heavily demanded in the emerging quantum technologies such as communication3, sensing4 and computing5. Of particular interest is a quantum non-demolition (QND)-type detector, which projects an electromagnetic wave onto the photon-number basis6-10. This is in stark contrast to conventional photon detectors2 that absorb a photon to trigger a `click'. The long-sought QND detection of a flying photon was recently demonstrated in the optical domain using a single atom in a cavity11,12. However, the counterpart for microwaves has been elusive despite the recent progress in microwave quantum optics using superconducting circuits13-19. Here, we implement a deterministic entangling gate between a superconducting qubit and an itinerant microwave photon reflected by a cavity containing the qubit. Using the entanglement and the high-fidelity qubit readout, we demonstrate a QND detection of a single photon with the quantum efficiency of 0.84 and the photon survival probability of 0.87. Our scheme can serve as a building block for quantum networks connecting distant qubit modules as well as a microwave-photon-counting device for multiple-photon signals.

  20. Overview of Hall D Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chudakov, Eugene A.

    Hall D is a new experimental hall at Jefferson Lab, designed for experiments with a photon beam. The primary motivation for Hall D is the GlueX experiment [1,2], dedicated to meson spectroscopy. The Hall D complex consists of: An electron beam line used to extract the 5.5-pass electrons from the accelerator into the Tagger Hall. The designed beam energy is E e = 12 GeV;The Tagger Hall, where the electron beam passes through a thin radiator (~0.01% R.L.) and is deflected into the beam dump. The electrons that lost >30% of their energy in the radiator are detected with scintillatormore » hodoscopes providing a ~0.1% energy resolution for the tagged photons. Aligned diamond radiators allow to produce linearly polarized photons via the Coherent Bremsstrahlung. The beam dump is limited to 60 kW (5 µA at 12 GeV); The Collimator Cave contains a collimator for the photon beam and dipole magnets downstream in order to remove charged particles. The 3.4 mm diameter collimator, located about 75 m downstream of the radiator, selects the central cone of the photon beam increasing its average linear polarization, up to ~40%in the coherent peak at 9 GeV; Hall D contains several elements of the photon beam line, and themain spectrometer. A Pair Spectrometer consists of a thin converter, a dipole magnet, and a two-arm detector used to measure the energy spectrum of the photon beam. The main spectrometer is based on a 2-T superconducting solenoid, 4 m long and 1.85 m bore diameter. The liquid hydrogen target is located in the front part the solenoid. The charged tracks are detected with a set of drift chambers; photons are detected with two electromagnetic calorimeters. There are also scintillator hodoscopes for triggering and time-of-flight measurements. The spectrometer is nearly hermetic in an angular range of 1° < θ < 120 •. The momentum resolution is σ p /p ~ 1 ₋ ₋3% depending on the polar angle θ. The energy resolution of the electromagnetic calorimeters is about 7% at 1 GeV.« less

  1. Spatial and temporal control of microwave triggered chemiluminescence: a protein detection platform.

    PubMed

    Previte, Michael J R; Aslan, Kadir; Geddes, Chris D

    2007-09-15

    We have combined the principles of microwave circuitry and antenna design and our recent work in microwave-triggered metal-enhanced chemiluminescence to now "trigger" chemically and enzyme-catalyzed chemiluminescent reactions with spatial and temporal control. With this technology platform, we achieve spatial and temporal control of enzyme and chemically catalyzed chemiluminescence reactions to achieve more than 500-fold increases in "on-demand" photon flux from chemically catalyzed chemiluminescent reactions. We also report a 6-fold increase in photon flux from HRP-catalyzed assays on disposable coverslips functionalized with HRP and placed proximal to the substrates modified with thin-film aluminum triangle disjointed "bow-tie" structures. In addition, we demonstrate the applicability of this technology to develop multiplexed or high-throughput chemiluminescent assays. We also demonstrate the clinical and biological relevance of this technology platform by affixing aluminum structures in proximity to HRP protein immobilized on nitrocellulose to improve the sensitivity for this model Western blot scheme by 50-fold. We believe analytical applications that rely on enzyme-catalyzed chemiluminescence, such as immunoassays, may greatly benefit from this new platform technology.

  2. Investigation of Self Triggered Cosmic Ray Detectors using Silicon Photomultiplier

    NASA Astrophysics Data System (ADS)

    Knox, Adrian; Niduaza, Rommel; Hernandez, Victor; Ruiz, Daniel; Ramos, Daniel; Fan, Sewan; Fatuzzo, Laura; Ritt, Stefan

    2015-04-01

    The silicon photomultiplier (SiPM) is a highly sensitive light detector capable of measuring single photons. It costs a fraction of the photomultiplier tube and operates slightly above the breakdown voltage. At this conference we describe our investigation of SiPM, the multipixel photon counters (MPPC) from Hamamatsu as readout detectors for plastic scintillators working for detecting cosmic ray particles. Our setup consists of scintillator sheets embedded with blue to green wavelength shifting fibers optically coupled to MPPCs to detect scintillating light. Four detector assemblies would be constructed and arranged to work in self triggered mode. Using custom matching tee boxes, the amplified MPPC signals are fed to discriminators with threshold set to give a reasonable coincidence count rate. Moreover, the detector waveforms are digitized using a 5 Giga Samples per second waveform digitizer, the DRS4, and triggered with the coincidence logic to capture the MPPC waveforms. Offline analysis of the digitized waveforms is accomplished using the CERN package PAW and results of our experiments and the data analysis would also be discussed. US Department of Education Title V Grant Number PO31S090007.

  3. Electrically driven quantum light emission in electromechanically tuneable photonic crystal cavities

    NASA Astrophysics Data System (ADS)

    Petruzzella, M.; Pagliano, F. M.; Zobenica, Ž.; Birindelli, S.; Cotrufo, M.; van Otten, F. W. M.; van der Heijden, R. W.; Fiore, A.

    2017-12-01

    A single quantum dot deterministically coupled to a photonic crystal environment constitutes an indispensable elementary unit to both generate and manipulate single-photons in next-generation quantum photonic circuits. To date, the scaling of the number of these quantum nodes on a fully integrated chip has been prevented by the use of optical pumping strategies that require a bulky off-chip laser along with the lack of methods to control the energies of nano-cavities and emitters. Here, we concurrently overcome these limitations by demonstrating electrical injection of single excitonic lines within a nano-electro-mechanically tuneable photonic crystal cavity. When an electrically driven dot line is brought into resonance with a photonic crystal mode, its emission rate is enhanced. Anti-bunching experiments reveal the quantum nature of these on-demand sources emitting in the telecom range. These results represent an important step forward in the realization of integrated quantum optics experiments featuring multiple electrically triggered Purcell-enhanced single-photon sources embedded in a reconfigurable semiconductor architecture.

  4. Artificial Structural Color Pixels: A Review

    PubMed Central

    Zhao, Yuqian; Zhao, Yong; Hu, Sheng; Lv, Jiangtao; Ying, Yu; Gervinskas, Gediminas; Si, Guangyuan

    2017-01-01

    Inspired by natural photonic structures (Morpho butterfly, for instance), researchers have demonstrated varying artificial color display devices using different designs. Photonic-crystal/plasmonic color filters have drawn increasing attention most recently. In this review article, we show the developing trend of artificial structural color pixels from photonic crystals to plasmonic nanostructures. Such devices normally utilize the distinctive optical features of photonic/plasmon resonance, resulting in high compatibility with current display and imaging technologies. Moreover, dynamical color filtering devices are highly desirable because tunable optical components are critical for developing new optical platforms which can be integrated or combined with other existing imaging and display techniques. Thus, extensive promising potential applications have been triggered and enabled including more abundant functionalities in integrated optics and nanophotonics. PMID:28805736

  5. Anti-aliasing techniques in photon-counting depth imaging using GHz clock rates

    NASA Astrophysics Data System (ADS)

    Krichel, Nils J.; McCarthy, Aongus; Collins, Robert J.; Buller, Gerald S.

    2010-04-01

    Single-photon detection technologies in conjunction with low laser illumination powers allow for the eye-safe acquisition of time-of-flight range information on non-cooperative target surfaces. We previously presented a photon-counting depth imaging system designed for the rapid acquisition of three-dimensional target models by steering a single scanning pixel across the field angle of interest. To minimise the per-pixel dwelling times required to obtain sufficient photon statistics for accurate distance resolution, periodic illumination at multi- MHz repetition rates was applied. Modern time-correlated single-photon counting (TCSPC) hardware allowed for depth measurements with sub-mm precision. Resolving the absolute target range with a fast periodic signal is only possible at sufficiently short distances: if the round-trip time towards an object is extended beyond the timespan between two trigger pulses, the return signal cannot be assigned to an unambiguous range value. Whereas constructing a precise depth image based on relative results may still be possible, problems emerge for large or unknown pixel-by-pixel separations or in applications with a wide range of possible scene distances. We introduce a technique to avoid range ambiguity effects in time-of-flight depth imaging systems at high average pulse rates. A long pseudo-random bitstream is used to trigger the illuminating laser. A cyclic, fast-Fourier supported analysis algorithm is used to search for the pattern within return photon events. We demonstrate this approach at base clock rates of up to 2 GHz with varying pattern lengths, allowing for unambiguous distances of several kilometers. Scans at long stand-off distances and of scenes with large pixel-to-pixel range differences are presented. Numerical simulations are performed to investigate the relative merits of the technique.

  6. The Argonne CDF Group

    Science.gov Websites

    calorimeter, Shower Max., Preshower, Crack Chambers (1979-present) Run II Upgrade: Front end electronics (QIE , Preshower electronics and DAQ Support for Level-2 electron and photon triggers (RECES and ISO) Deputy Head

  7. Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide

    PubMed Central

    DAVEAU, RAPHAËL S.; BALRAM, KRISHNA C.; PREGNOLATO, TOMMASO; LIU, JIN; LEE, EUN H.; SONG, JIN D.; VERMA, VARUN; MIRIN, RICHARD; NAM, SAE WOO; MIDOLO, LEONARDO; STOBBE, SØREN; SRINIVASAN, KARTIK; LODAHL, PETER

    2017-01-01

    Many photonic quantum information processing applications would benefit from a high brightness, fiber-coupled source of triggered single photons. Here, we present a fiber-coupled photonic-crystal waveguide single-photon source relying on evanescent coupling of the light field from a tapered out-coupler to an optical fiber. A two-step approach is taken where the performance of the tapered out-coupler is recorded first on an independent device containing an on-chip reflector. Reflection measurements establish that the chip-to-fiber coupling efficiency exceeds 80 %. The detailed characterization of a high-efficiency photonic-crystal waveguide extended with a tapered out-coupling section is then performed. The corresponding overall single-photon source efficiency is 10.9 % ± 2.3 %, which quantifies the success probability to prepare an exciton in the quantum dot, couple it out as a photon in the waveguide, and subsequently transfer it to the fiber. The applied out-coupling method is robust, stable over time, and broadband over several tens of nanometers, which makes it a highly promising pathway to increase the efficiency and reliability of planar chip-based single-photon sources. PMID:28584859

  8. Monte Carlo calculations of PET coincidence timing: single and double-ended readout

    PubMed Central

    Derenzo, Stephen E; Choong, Woon-Seng; Moses, William W

    2016-01-01

    We present Monte Carlo computational methods for estimating the coincidence resolving time (CRT) of scintillator detector pairs in positron emission tomography (PET) and present results for Lu2SiO5 : Ce (LSO), LaBr3 : Ce, and a hypothetical ultra-fast scintillator with a 1 ns decay time. The calculations were applied to both single-ended and double-ended photodetector readout with constant-fraction triggering. They explicitly include (1) the intrinsic scintillator properties (luminosity, rise time, decay time, and index of refraction), (2) the exponentially distributed depths of interaction, (3) the optical photon transport efficiency, delay, and time dispersion, (4) the photodetector properties (fill factor, quantum efficiency, transit time jitter, and single electron response), and (5) the determination of the constant fraction trigger level that minimizes the CRT. The calculations for single-ended readout include the delayed photons from the opposite reflective surface. The calculations for double-ended readout include (1) the simple average of the two photodetector trigger times, (2) more accurate estimators of the annihilation photon entrance time using the pulse height ratio to estimate the depth of interaction and correct for annihilation photon, optical photon, and trigger delays, and (3) the statistical lower bound for interactions at the center of the crystal. For time-of-flight (TOF) PET we combine stopping power and TOF information in a figure of merit equal to the sensitivity gain relative to whole-body non-TOF PET using LSO. For LSO crystals 3 mm × 3 mm × 30 mm, a decay time of 37 ns, a total photoelectron count of 4000, and a photodetector with 0.2 ns full-width at half-maximum (fwhm) timing jitter, single-ended readout has a CRT of 0.16 ns fwhm and double-ended readout has a CRT of 0.111 ns fwhm. For LaBr3 : Ce crystals 3 mm × 3 mm × 30 mm, a rise time of 0.2 ns, a decay time of 18 ns, and a total of 7600 photoelectrons the CRT numbers are 0.14 ns and 0.072 ns fwhm, respectively. For a hypothetical ultra-fast scintillator 3 mm × 3 mm × 30 mm, a decay time of 1 ns, and a total of 4000 photoelectrons, the CRT numbers are 0.070 and 0.020 ns fwhm, respectively. Over a range of examples, values for double-ended readout are about 10% larger than the statistical lower bound. PMID:26350162

  9. Quantum Secure Group Communication.

    PubMed

    Li, Zheng-Hong; Zubairy, M Suhail; Al-Amri, M

    2018-03-01

    We propose a quantum secure group communication protocol for the purpose of sharing the same message among multiple authorized users. Our protocol can remove the need for key management that is needed for the quantum network built on quantum key distribution. Comparing with the secure quantum network based on BB84, we show our protocol is more efficient and securer. Particularly, in the security analysis, we introduce a new way of attack, i.e., the counterfactual quantum attack, which can steal information by "invisible" photons. This invisible photon can reveal a single-photon detector in the photon path without triggering the detector. Moreover, the photon can identify phase operations applied to itself, thereby stealing information. To defeat this counterfactual quantum attack, we propose a quantum multi-user authorization system. It allows us to precisely control the communication time so that the attack can not be completed in time.

  10. Triggered generation of single guided photons from a single atom in a nanofiber cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Kien, Fam; Hakuta, K.

    2011-04-15

    We study the deterministic generation of single guided-mode photons from an atom in the vicinity of a nanofiber with two fiber-Bragg-grating (FBG) mirrors. The technique is based on a cavity-enhanced Raman scattering process involving an adiabatic passage. We take into account the scattering of the pump field from the fiber, the multilevel structure of the atom, and the surface-induced van der Waals potential in describing the photon generation process. We find that, due to the confinement of the cavity field in the transverse plane of the fiber and in the space between the FBG mirrors, the probability of the generationmore » of a single guided-mode photon can be close to unity even when the finesse of the nanofiber cavity is moderate. We show the possibilities of saturation and power broadening in the behavior of the number of photons emitted into the nanofiber.« less

  11. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots.

    PubMed

    Huber, Daniel; Reindl, Marcus; Huo, Yongheng; Huang, Huiying; Wildmann, Johannes S; Schmidt, Oliver G; Rastelli, Armando; Trotta, Rinaldo

    2017-05-26

    The development of scalable sources of non-classical light is fundamental to unlocking the technological potential of quantum photonics. Semiconductor quantum dots are emerging as near-optimal sources of indistinguishable single photons. However, their performance as sources of entangled-photon pairs are still modest compared to parametric down converters. Photons emitted from conventional Stranski-Krastanov InGaAs quantum dots have shown non-optimal levels of entanglement and indistinguishability. For quantum networks, both criteria must be met simultaneously. Here, we show that this is possible with a system that has received limited attention so far: GaAs quantum dots. They can emit triggered polarization-entangled photons with high purity (g (2) (0) = 0.002±0.002), high indistinguishability (0.93±0.07 for 2 ns pulse separation) and high entanglement fidelity (0.94±0.01). Our results show that GaAs might be the material of choice for quantum-dot entanglement sources in future quantum technologies.

  12. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots

    PubMed Central

    Huber, Daniel; Reindl, Marcus; Huo, Yongheng; Huang, Huiying; Wildmann, Johannes S.; Schmidt, Oliver G.; Rastelli, Armando; Trotta, Rinaldo

    2017-01-01

    The development of scalable sources of non-classical light is fundamental to unlocking the technological potential of quantum photonics. Semiconductor quantum dots are emerging as near-optimal sources of indistinguishable single photons. However, their performance as sources of entangled-photon pairs are still modest compared to parametric down converters. Photons emitted from conventional Stranski–Krastanov InGaAs quantum dots have shown non-optimal levels of entanglement and indistinguishability. For quantum networks, both criteria must be met simultaneously. Here, we show that this is possible with a system that has received limited attention so far: GaAs quantum dots. They can emit triggered polarization-entangled photons with high purity (g(2)(0) = 0.002±0.002), high indistinguishability (0.93±0.07 for 2 ns pulse separation) and high entanglement fidelity (0.94±0.01). Our results show that GaAs might be the material of choice for quantum-dot entanglement sources in future quantum technologies. PMID:28548081

  13. Electric-Field-Induced Energy Tuning of On-Demand Entangled-Photon Emission from Self-Assembled Quantum Dots.

    PubMed

    Zhang, Jiaxiang; Zallo, Eugenio; Höfer, Bianca; Chen, Yan; Keil, Robert; Zopf, Michael; Böttner, Stefan; Ding, Fei; Schmidt, Oliver G

    2017-01-11

    We explore a method to achieve electrical control over the energy of on-demand entangled-photon emission from self-assembled quantum dots (QDs). The device used in our work consists of an electrically tunable diode-like membrane integrated onto a piezoactuator, which is capable of exerting a uniaxial stress on QDs. We theoretically reveal that, through application of the quantum-confined Stark effect to QDs by a vertical electric field, the critical uniaxial stress used to eliminate the fine structure splitting of QDs can be linearly tuned. This feature allows experimental realization of a triggered source of energy-tunable entangled-photon emission. Our demonstration represents an important step toward realization of a solid-state quantum repeater using indistinguishable entangled photons in Bell state measurements.

  14. Hybrid metamaterials for electrically triggered multifunctional control

    PubMed Central

    Liu, Liu; Kang, Lei; Mayer, Theresa S.; Werner, Douglas H.

    2016-01-01

    Despite the exotic material properties that have been demonstrated to date, practical examples of versatile metamaterials remain exceedingly rare. The concept of metadevices has been proposed in the context of hybrid metamaterial composites: systems in which active materials are introduced to advance tunability, switchability and nonlinearity. In contrast to the successful hybridizations seen at lower frequencies, there has been limited exploration into plasmonic and photonic nanostructures due to the lack of available optical materials with non-trivial activity, together with difficulties in regulating responses to external forces in an integrated manner. Here, by presenting a series of proof-of-concept studies on electrically triggered functionalities, we demonstrate a vanadium dioxide integrated photonic metamaterial as a transformative platform for multifunctional control. The proposed hybrid metamaterial integrated with transition materials represents a major step forward by providing a universal approach to creating self-sufficient and highly versatile nanophotonic systems. PMID:27807342

  15. The spread of Ras activity triggered by activation of a single dendritic spine.

    PubMed

    Harvey, Christopher D; Yasuda, Ryohei; Zhong, Haining; Svoboda, Karel

    2008-07-04

    In neurons, individual dendritic spines isolate N-methyl-d-aspartate (NMDA) receptor-mediated calcium ion (Ca2+) accumulations from the dendrite and other spines. However, the extent to which spines compartmentalize signaling events downstream of Ca2+ influx is not known. We combined two-photon fluorescence lifetime imaging with two-photon glutamate uncaging to image the activity of the small guanosine triphosphatase Ras after NMDA receptor activation at individual spines. Induction of long-term potentiation (LTP) triggered robust Ca2+-dependent Ras activation in single spines that decayed in approximately 5 minutes. Ras activity spread over approximately 10 micrometers of dendrite and invaded neighboring spines by diffusion. The spread of Ras-dependent signaling was necessary for the local regulation of the threshold for LTP induction. Thus, Ca2+-dependent synaptic signals can spread to couple multiple synapses on short stretches of dendrite.

  16. Single photon ranging system using two wavelengths laser and analysis of precision

    NASA Astrophysics Data System (ADS)

    Chen, Yunfei; He, Weiji; Miao, Zhuang; Gu, Guohua; Chen, Qian

    2013-09-01

    The laser ranging system based on time correlation single photon counting technology and single photon detector has the feature of high precision and low emergent energy etc. In this paper, we established a single photon laser ranging system that use the supercontinuum laser as light source, and two wavelengths (532nm and 830nm) of echo signal as the stop signal. We propose a new method that is capable to improve the single photon ranging system performance. The method is implemented by using two single-photon detectors to receive respectively the two different wavelength signals at the same time. We extracted the firings of the two detectors triggered by the same laser pulse at the same time and then took mean time of the two firings as the combined detection time-of-flight. The detection by two channels using two wavelengths will effectively improve the detection precision and decrease the false alarm probability. Finally, an experimental single photon ranging system was established. Through a lot of experiments, we got the system precision using both single and two wavelengths and verified the effectiveness of the method.

  17. UWB transmitter

    DOEpatents

    Dallum, Gregory E.; Pratt, Garth C.; Haugen, Peter C.; Romero, Carlos E.

    2013-01-15

    An ultra-wideband (UWB) dual impulse transmitter is made up of a trigger edge selection circuit actuated by a single trigger input pulse; a first step recovery diode (SRD) based pulser connected to the trigger edge selection circuit to generate a first impulse output; and a second step recovery diode (SRD) based pulser connected to the trigger edge selection circuit in parallel to the first pulser to generate a second impulse output having a selected delay from the first impulse output.

  18. Status of the photomultiplier-based FlashCam camera for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Pühlhofer, G.; Bauer, C.; Eisenkolb, F.; Florin, D.; Föhr, C.; Gadola, A.; Garrecht, F.; Hermann, G.; Jung, I.; Kalekin, O.; Kalkuhl, C.; Kasperek, J.; Kihm, T.; Koziol, J.; Lahmann, R.; Manalaysay, A.; Marszalek, A.; Rajda, P. J.; Reimer, O.; Romaszkan, W.; Rupinski, M.; Schanz, T.; Schwab, T.; Steiner, S.; Straumann, U.; Tenzer, C.; Vollhardt, A.; Weitzel, Q.; Winiarski, K.; Zietara, K.

    2014-07-01

    The FlashCam project is preparing a camera prototype around a fully digital FADC-based readout system, for the medium sized telescopes (MST) of the Cherenkov Telescope Array (CTA). The FlashCam design is the first fully digital readout system for Cherenkov cameras, based on commercial FADCs and FPGAs as key components for digitization and triggering, and a high performance camera server as back end. It provides the option to easily implement different types of trigger algorithms as well as digitization and readout scenarios using identical hardware, by simply changing the firmware on the FPGAs. The readout of the front end modules into the camera server is Ethernet-based using standard Ethernet switches and a custom, raw Ethernet protocol. In the current implementation of the system, data transfer and back end processing rates of 3.8 GB/s and 2.4 GB/s have been achieved, respectively. Together with the dead-time-free front end event buffering on the FPGAs, this permits the cameras to operate at trigger rates of up to several ten kHz. In the horizontal architecture of FlashCam, the photon detector plane (PDP), consisting of photon detectors, preamplifiers, high voltage-, control-, and monitoring systems, is a self-contained unit, mechanically detached from the front end modules. It interfaces to the digital readout system via analogue signal transmission. The horizontal integration of FlashCam is expected not only to be more cost efficient, it also allows PDPs with different types of photon detectors to be adapted to the FlashCam readout system. By now, a 144-pixel mini-camera" setup, fully equipped with photomultipliers, PDP electronics, and digitization/ trigger electronics, has been realized and extensively tested. Preparations for a full-scale, 1764 pixel camera mechanics and a cooling system are ongoing. The paper describes the status of the project.

  19. SiPMs characterization and selection for the DUNE far detector photon detection system

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Maricic, J.

    2016-01-01

    The Deep Underground Neutrino Experiment (DUNE) together with the Long Baseline Neutrino Facility (LBNF) hosted at the Fermilab will provide a unique, world-leading program for the exploration of key questions at the forefront of neutrino physics and astrophysics. CP violation in neutrino flavor mixing is one of its most important potential discoveries. Additionally, the experiment will determine the neutrino mass hierarchy and precisely measure the neutrino mixing parameters which may potentially reveal new fundamental symmetries of nature. Moreover, the DUNE is also designed for the observation of nucleon decay and supernova burst neutrinos. The photon detection (PD) system in the DUNE far detector provides trigger for cosmic backgrounds, enhances supernova burst trigger efficiency and improves the energy resolution of the detector. The DUNE adopts the technology of liquid argon time projection chamber (LArTPC) that requires the PD sensors, silicon photomultipliers (SiPM), to be carefully chosen to not only work properly in LAr temperature, but also meet certain specifications for the life of the experiment. A comprehensive testing of SiPMs in cryostat is necessary since the datasheet provided by the manufactures in the market does not cover this temperature regime. This paper gives the detailed characterization results of SenSL C-Series 60035 SiPMs, including gain, dark count rate (DCR), cross-talk and after-pulse rate. Characteristic studies on SiPMs from other vendors are also discussed in order to avoid any potential problems associated with using a single source. Moreover, the results of the ongoing mechanical durability tests are shown for the current candidate, SenSL B/C-Series 60035 SiPMs.

  20. Electron Dynamics in the Core-Excited CS2 Molecule Revealed through Resonant Inelastic X-Ray Scattering Spectroscopy

    NASA Astrophysics Data System (ADS)

    Marchenko, T.; Carniato, S.; Journel, L.; Guillemin, R.; Kawerk, E.; Žitnik, M.; Kavčič, M.; Bučar, K.; Bohinc, R.; Petric, M.; Vaz da Cruz, V.; Gel'mukhanov, F.; Simon, M.

    2015-07-01

    We present an experimental and theoretical study of resonant inelastic x-ray scattering (RIXS) in the carbon disulphide CS2 molecule near the sulfur K-absorption edge. We observe a strong evolution of the RIXS spectral profile with the excitation energy tuned below the lowest unoccupied molecular orbital (LUMO) absorption resonance. The reason for this is twofold. Reducing the photon energy in the vicinity of the LUMO absorption resonance leads to a relative suppression of the LUMO contribution with respect to the emission signal from the higher unoccupied molecular orbitals, which results in the modulation of the total RIXS profile. At even larger negative photon-energy detuning from the resonance, the excitation-energy dependence of the RIXS profile is dominated by the onset of electron dynamics triggered by a coherent excitation of multiple electronic states. Furthermore, our study demonstrates that in the hard x-ray regime, localization of the S 1s core hole occurs in CS2 during the RIXS process because of the orientational dephasing of interference between the waves scattering on the two sulfur atoms. Core-hole localization leads to violation of the symmetry selection rules for the electron transitions observed in the spectra.

  1. The Latest Space-Borne Observations of TGFs from Fermi-GBM

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2010-01-01

    The Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope Observatory (Fermi) is detecting about two TGFs per week. This rate has increased by a factor of approx.eight since launch when flight software was uploaded to the spacecraft in November 2009 in order to increase the sensitivity of GBM to TGFs. Weaker, un-triggered TGFs are now also being observed about once per day over selected low-latitude regions Americas. The high efficiency and time resolution (2 s) of GBM allows temporal features to be resolved so that some insight may be gained on the origin and transport of the gamma-ray photons through the atmosphere. TGFs are observed to be shorter than previously thought, with an average duration of approx.100 micro-s. The absolute times of TGFs are known to approx.10 micro-s, allowing accurate correlations of TGFs with lightning networks and other lightning-related phenomena. The events are observed in the thick bismuth germanate (BGO) scintillation detectors of GBM with photon energies above 40 MeV. Other new results on the temporal and spectral characteristics of TGFs will be presented, along with properties of several electron-positron TGF events that have been identified.

  2. Energy-tunable sources of entangled photons: a viable concept for solid-state-based quantum relays.

    PubMed

    Trotta, Rinaldo; Martín-Sánchez, Javier; Daruka, Istvan; Ortix, Carmine; Rastelli, Armando

    2015-04-17

    We propose a new method of generating triggered entangled photon pairs with wavelength on demand. The method uses a microstructured semiconductor-piezoelectric device capable of dynamically reshaping the electronic properties of self-assembled quantum dots (QDs) via anisotropic strain engineering. Theoretical models based on k·p theory in combination with finite-element calculations show that the energy of the polarization-entangled photons emitted by QDs can be tuned in a range larger than 100 meV without affecting the degree of entanglement of the quantum source. These results pave the way towards the deterministic implementation of QD entanglement resources in all-electrically-controlled solid-state-based quantum relays.

  3. Energy-Tunable Sources of Entangled Photons: A Viable Concept for Solid-State-Based Quantum Relays

    NASA Astrophysics Data System (ADS)

    Trotta, Rinaldo; Martín-Sánchez, Javier; Daruka, Istvan; Ortix, Carmine; Rastelli, Armando

    2015-04-01

    We propose a new method of generating triggered entangled photon pairs with wavelength on demand. The method uses a microstructured semiconductor-piezoelectric device capable of dynamically reshaping the electronic properties of self-assembled quantum dots (QDs) via anisotropic strain engineering. Theoretical models based on k .p theory in combination with finite-element calculations show that the energy of the polarization-entangled photons emitted by QDs can be tuned in a range larger than 100 meV without affecting the degree of entanglement of the quantum source. These results pave the way towards the deterministic implementation of QD entanglement resources in all-electrically-controlled solid-state-based quantum relays.

  4. Broadband enhancement of single photon emission and polarization dependent coupling in silicon nitride waveguides.

    PubMed

    Bisschop, Suzanne; Guille, Antoine; Van Thourhout, Dries; Hens, Zeger; Brainis, Edouard

    2015-06-01

    Single-photon (SP) sources are important for a number of optical quantum information processing applications. We study the possibility to integrate triggered solid-state SP emitters directly on a photonic chip. A major challenge consists in efficiently extracting their emission into a single guided mode. Using 3D finite-difference time-domain simulations, we investigate the SP emission from dipole-like nanometer-sized inclusions embedded into different silicon nitride (SiNx) photonic nanowire waveguide designs. We elucidate the effect of the geometry on the emission lifetime and the polarization of the emitted SP. The results show that highly efficient and polarized SP sources can be realized using suspended SiNx slot-waveguides. Combining this with the well-established CMOS-compatible processing technology, fully integrated and complex optical circuits for quantum optics experiments can be developed.

  5. TECHNICAL DESIGN REPORT FOR A NOSECONE CALORIMETER (NCC) FOR THE PHENIX EXPERIMENT.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PHENIX EXPERIMENT; OBRIEN,E.; BOOSE, S.

    2007-08-01

    A remarkable result has emerged from the first several years of data taking at RHIC--the high temperature and density phase of QCD matter created in heavy ion collisions at RHIC is best described as a near perfect fluid--the strongly interacting Quark-Gluon-Plasma (sQGP). This state is characterized by a small viscosity to entropy ratio, and a high density of color charges which induces huge energy losses of partons transversing the medium. The task for the future is to understand the characteristics of the sQGP, and perhaps more importantly--to gain some insight into how and why such a medium is created. Themore » PHENIX detector has been one of the primary experimental tools at RHIC; in particular the electromagnetic calorimeter has been a critical component of many of the measurements leading to this discovery. The coverage of the present PHENIX electromagnetic calorimeter is rather limited, covering half the azimuth and -0.35< {eta} <0.35 Further progress requires larger coverage of electromagnetic calorimetry, both to increase the rate for low cross section phenomena, and to cover a broader range of pseudorapidity to study the rapidity dependence of the medium. A pair of Nosecone Calorimeters (NCC) has been designed covering both positive and negative rapidity regions 1< |{eta}| <3 of the PHENIX detector. The NCC will make it possible to perform tomographic studies of the jet energy dependence of energy loss and medium response, by using direct photons as trigger particles over a large rapidity range. The technique of correlating trigger hadrons with low momentum hadrons has been powerfully exploited at RHIC to study the evolution of back to back jets [1, 2] and hence the response of the medium. The NCC will make it possible to do such studies using direct photons as the trigger particles. The direct photon in such ''photon-jet'' events tags the transverse momentum of outgoing parton which then fragments into lower energy particles. Together with the Forward Silicon Vertex detector (FVTX), the NCC will make PHENIX a large acceptance spectrometer, capable of detecting photons, electrons, muons, and hadrons. Our prime motivation is to provide precision measurements of direct photons, {pi}{sup 0}s and dielectrons in A+A, p(d)+A, and polarized p+p collisions. The upgrade will provide access to physics observables that are not currently accessible to PHENIX or that are now available only indirectly with very limited accuracy.« less

  6. Monte Carlo calculations of PET coincidence timing: single and double-ended readout

    NASA Astrophysics Data System (ADS)

    Derenzo, Stephen E.; Choong, Woon-Seng; Moses, William W.

    2015-09-01

    We present Monte Carlo computational methods for estimating the coincidence resolving time (CRT) of scintillator detector pairs in positron emission tomography (PET) and present results for Lu2SiO5 : Ce (LSO), LaBr3 : Ce, and a hypothetical ultra-fast scintillator with a 1 ns decay time. The calculations were applied to both single-ended and double-ended photodetector readout with constant-fraction triggering. They explicitly include (1) the intrinsic scintillator properties (luminosity, rise time, decay time, and index of refraction), (2) the exponentially distributed depths of interaction, (3) the optical photon transport efficiency, delay, and time dispersion, (4) the photodetector properties (fill factor, quantum efficiency, transit time jitter, and single electron response), and (5) the determination of the constant fraction trigger level that minimizes the CRT. The calculations for single-ended readout include the delayed photons from the opposite reflective surface. The calculations for double-ended readout include (1) the simple average of the two photodetector trigger times, (2) more accurate estimators of the annihilation photon entrance time using the pulse height ratio to estimate the depth of interaction and correct for annihilation photon, optical photon, and trigger delays, and (3) the statistical lower bound for interactions at the center of the crystal. For time-of-flight (TOF) PET we combine stopping power and TOF information in a figure of merit equal to the sensitivity gain relative to whole-body non-TOF PET using LSO. For LSO crystals 3 mm  ×  3 mm  ×  30 mm, a decay time of 37 ns, a total photoelectron count of 4000, and a photodetector with 0.2 ns full-width at half-maximum (fwhm) timing jitter, single-ended readout has a CRT of 0.16 ns fwhm and double-ended readout has a CRT of 0.111 ns fwhm. For LaBr3 : Ce crystals 3 mm  ×  3 mm  ×  30 mm, a rise time of 0.2 ns, a decay time of 18 ns, and a total of 7600 photoelectrons the CRT numbers are 0.14 ns and 0.072 ns fwhm, respectively. For a hypothetical ultra-fast scintillator 3 mm  ×  3 mm  ×  30 mm, a decay time of 1 ns, and a total of 4000 photoelectrons, the CRT numbers are 0.070 and 0.020 ns fwhm, respectively. Over a range of examples, values for double-ended readout are about 10% larger than the statistical lower bound.

  7. Monte Carlo calculations of PET coincidence timing: single and double-ended readout.

    PubMed

    Derenzo, Stephen E; Choong, Woon-Seng; Moses, William W

    2015-09-21

    We present Monte Carlo computational methods for estimating the coincidence resolving time (CRT) of scintillator detector pairs in positron emission tomography (PET) and present results for Lu2SiO5 : Ce (LSO), LaBr3 : Ce, and a hypothetical ultra-fast scintillator with a 1 ns decay time. The calculations were applied to both single-ended and double-ended photodetector readout with constant-fraction triggering. They explicitly include (1) the intrinsic scintillator properties (luminosity, rise time, decay time, and index of refraction), (2) the exponentially distributed depths of interaction, (3) the optical photon transport efficiency, delay, and time dispersion, (4) the photodetector properties (fill factor, quantum efficiency, transit time jitter, and single electron response), and (5) the determination of the constant fraction trigger level that minimizes the CRT. The calculations for single-ended readout include the delayed photons from the opposite reflective surface. The calculations for double-ended readout include (1) the simple average of the two photodetector trigger times, (2) more accurate estimators of the annihilation photon entrance time using the pulse height ratio to estimate the depth of interaction and correct for annihilation photon, optical photon, and trigger delays, and (3) the statistical lower bound for interactions at the center of the crystal. For time-of-flight (TOF) PET we combine stopping power and TOF information in a figure of merit equal to the sensitivity gain relative to whole-body non-TOF PET using LSO. For LSO crystals 3 mm  ×  3 mm  ×  30 mm, a decay time of 37 ns, a total photoelectron count of 4000, and a photodetector with 0.2 ns full-width at half-maximum (fwhm) timing jitter, single-ended readout has a CRT of 0.16 ns fwhm and double-ended readout has a CRT of 0.111 ns fwhm. For LaBr3 : Ce crystals 3 mm  ×  3 mm  ×  30 mm, a rise time of 0.2 ns, a decay time of 18 ns, and a total of 7600 photoelectrons the CRT numbers are 0.14 ns and 0.072 ns fwhm, respectively. For a hypothetical ultra-fast scintillator 3 mm  ×  3 mm  ×  30 mm, a decay time of 1 ns, and a total of 4000 photoelectrons, the CRT numbers are 0.070 and 0.020 ns fwhm, respectively. Over a range of examples, values for double-ended readout are about 10% larger than the statistical lower bound.

  8. The Heavy Photon Search beamline and its performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baltzell, N.; Egiyan, H.; Ehrhart, M.

    The Heavy Photon Search (HPS) is an experiment to search for a hidden sector photon, aka a heavy photon or dark photon, in fixed target electroproduction at the Thomas Jefferson National Accelerator Facility (JLab). The HPS experiment searches for the emore » $^+$e$^-$ decay of the heavy photon with bump hunt and detached vertex strategies using a compact, large acceptance forward spectrometer, consisting of a silicon microstrip detector (SVT) for tracking and vertexing, and a PbWO$$_4$$ electromagnetic calorimeter for energy measurement and fast triggering. To achieve large acceptance and good vertexing resolution, the first layer of silicon detectors is placed just 10 cm downstream of the target with the sensor edges only 500 $$\\mu$$m above and below the beam. Placing the SVT in such close proximity to the beam puts stringent requirements on the beam profile and beam position stability. As part of an approved engineering run, HPS took data in 2015 and 2016 at 1.05 GeV and 2.3 GeV beam energies, respectively. This study describes the beam line and its performance during that data taking.« less

  9. The Heavy Photon Search beamline and its performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baltzell, N.; Egiyan, H.; Ehrhart, M.

    The Heavy Photon Search (HPS) is an experiment to search for a hidden sector photon, aka a heavy photon or dark photon, in fixed target electroproduction at the Thomas Jefferson National Accelerator Facility (JLab). The HPS experiment searches for the e+e- decay of the heavy photon with bump hunt and detached vertex strategies using a compact, large acceptance forward spectrometer, consisting of a silicon microstrip detector (SVT) for tracking and vertexing, and a PbWO 4 electromagnetic calorimeter for energy measurement and fast triggering. To achieve large acceptance and good vertexing resolution, the first layer of silicon detectors is placed justmore » 10 cm downstream of the target with the sensor edges only 500 μm above and below the beam. Placing the SVT in such close proximity to the beam puts stringent requirements on the beam profile and beam position stability. As part of an approved engineering run, HPS took data in 2015 and 2016 at 1.05 GeV and 2.3 GeV beam energies, respectively. This paper describes the beam line and its performance during that data taking.« less

  10. The Heavy Photon Search beamline and its performance

    DOE PAGES

    Baltzell, N.; Egiyan, H.; Ehrhart, M.; ...

    2017-07-01

    The Heavy Photon Search (HPS) is an experiment to search for a hidden sector photon, aka a heavy photon or dark photon, in fixed target electroproduction at the Thomas Jefferson National Accelerator Facility (JLab). The HPS experiment searches for the emore » $^+$e$^-$ decay of the heavy photon with bump hunt and detached vertex strategies using a compact, large acceptance forward spectrometer, consisting of a silicon microstrip detector (SVT) for tracking and vertexing, and a PbWO$$_4$$ electromagnetic calorimeter for energy measurement and fast triggering. To achieve large acceptance and good vertexing resolution, the first layer of silicon detectors is placed just 10 cm downstream of the target with the sensor edges only 500 $$\\mu$$m above and below the beam. Placing the SVT in such close proximity to the beam puts stringent requirements on the beam profile and beam position stability. As part of an approved engineering run, HPS took data in 2015 and 2016 at 1.05 GeV and 2.3 GeV beam energies, respectively. This study describes the beam line and its performance during that data taking.« less

  11. Spectra of double-cumulative photons in the central rapidity region at high transverse momenta

    NASA Astrophysics Data System (ADS)

    Alekseev, I. G.; Golubev, A. A.; Goryachev, V. S.; Dzubenko, G. B.; Dolgolenko, A. G.; Zhigareva, N. M.; Kiselev, S. M.; Mikhaylov, K. R.; Morozova, E. A.; Polozov, P. A.; Prokudin, M. S.; Romanov, D. V.; Svirida, D. N.; Stavinsky, A. V.; Stolin, V. L.; Sharkov, G. B.

    2015-11-01

    The spectra of photons produced in the interaction between carbon ions of kinetic energy 2.0 and 3.2 GeV per nucleon and beryllium nuclei were measured at the FLINT facility by means of electromagnetic calorimeters that is deployed at the accelerator of the Institute for Theoretical and Experimental Physics (ITEP, Moscow). The spectra in question were measured in the central rapidity region (at angles between 35° and 73° in the laboratory frame) at photon energies of 1 to 3 GeV by using a cumulative-photon trigger. An analysis of the data obtained in this way reveals that the interaction of multinucleon fluctuation in the projectile nucleus with a multinucleon fluctuation in the target nucleus is a dominant process that leads to photon production in the measured region of angles and momenta. As a development of the generally accepted terminology, an interaction of this type may be called a double cumulative interaction.

  12. Photonic-structured fibers assembled from cellulose nanocrystals with tunable polarized selective reflection.

    PubMed

    Meng, Xin; Pan, Hui; Lu, Tao; Chen, Zhixin; Chen, Yanru; Zhang, Di; Zhu, Shenmin

    2018-08-10

    Fibers with self-assembled photonic structures are of special interest due to their unique photonic properties and potential applications in the smart textile industry. Inspired by nature, the photonic-structured fibers were fabricated through the self-assembly of chiral nematic cellulose nanocrystals (CNCs) and the fibers showed tunably brilliant and selectively reflected colors under crossed-polarization. A simple wet-spinning method was applied to prepare composite fibers of the mixed CNC matrix and polyvinyl alcohol (PVA) additions. During the processing, a cholesteric CNC phase formed photonic fibers through a self-assembly process. The selective color reflection of the composite fibers in the polarized condition showed a typical red-shift tendency with an increase in the PVA content, which was attributed to the increased helical pitch of the CNC. Furthermore, the polarized angle could also alter the reflected colors. Owing to their excellent selective reflection properties under the polarized condition, CNC-based photonic fibers are promising as the next-generation of smart fibers, applied in the fields of specific display and sensing.

  13. Topological photonic crystal with equifrequency Weyl points

    NASA Astrophysics Data System (ADS)

    Wang, Luyang; Jian, Shao-Kai; Yao, Hong

    2016-06-01

    Weyl points in three-dimensional photonic crystals behave as monopoles of Berry flux in momentum space. Here, based on general symmetry analysis, we show that a minimal number of four symmetry-related (consequently equifrequency) Weyl points can be realized in time-reversal invariant photonic crystals. We further propose an experimentally feasible way to modify double-gyroid photonic crystals to realize four equifrequency Weyl points, which is explicitly confirmed by our first-principle photonic band-structure calculations. Remarkably, photonic crystals with equifrequency Weyl points are qualitatively advantageous in applications including angular selectivity, frequency selectivity, invisibility cloaking, and three-dimensional imaging.

  14. Five-Photon Absorption and Selective Enhancement of Multiphoton Absorption Processes

    PubMed Central

    2015-01-01

    We study one-, two-, three-, four-, and five-photon absorption of three centrosymmetric molecules using density functional theory. These calculations are the first ab initio calculations of five-photon absorption. Even- and odd-order absorption processes show different trends in the absorption cross sections. The behavior of all even- and odd-photon absorption properties shows a semiquantitative similarity, which can be explained using few-state models. This analysis shows that odd-photon absorption processes are largely determined by the one-photon absorption strength, whereas all even-photon absorption strengths are largely dominated by the two-photon absorption strength, in both cases modulated by powers of the polarizability of the final excited state. We demonstrate how to selectively enhance a specific multiphoton absorption process. PMID:26120588

  15. Five-Photon Absorption and Selective Enhancement of Multiphoton Absorption Processes.

    PubMed

    Friese, Daniel H; Bast, Radovan; Ruud, Kenneth

    2015-05-20

    We study one-, two-, three-, four-, and five-photon absorption of three centrosymmetric molecules using density functional theory. These calculations are the first ab initio calculations of five-photon absorption. Even- and odd-order absorption processes show different trends in the absorption cross sections. The behavior of all even- and odd-photon absorption properties shows a semiquantitative similarity, which can be explained using few-state models. This analysis shows that odd-photon absorption processes are largely determined by the one-photon absorption strength, whereas all even-photon absorption strengths are largely dominated by the two-photon absorption strength, in both cases modulated by powers of the polarizability of the final excited state. We demonstrate how to selectively enhance a specific multiphoton absorption process.

  16. Fermi GBM Observations of Terrestrial Gamma Flashes

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Briggs, M. S.; Connaughton, V.; Fishman, G. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R. D.; Kippen, R. M.; vonKienlin, A.; Dwyer, J. R.; hide

    2010-01-01

    In its first two years of operation, the Fermi Gamma Ray Burst Monitor (GBM) has observed 79 Terrestrial Gamma Flashes (TGFs). The thick Bismuth Germanate (BGO) detectors are excellent for TGF spectroscopy, having a high probability of recording the full energy of an incident photon, spanning a broad energy range from 150 keV to 40 MeV, and recording a large number of photons per TGF. Correlations between GBM TGF triggers and lightning sferics detected with the World-Wide Lightning Location Network indicate that TGFs and lightning are simultaneous to within tens of microseconds.

  17. An ultrafast electron microscope gun driven by two-photon photoemission from a nanotip cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bormann, Reiner; Strauch, Stefanie; Schäfer, Sascha, E-mail: schaefer@ph4.physik.uni-goettingen.de

    We experimentally and numerically investigate the performance of an advanced ultrafast electron source, based on two-photon photoemission from a tungsten needle cathode incorporated in an electron microscope gun geometry. Emission properties are characterized as a function of the electrostatic gun settings, and operating conditions leading to laser-triggered electron beams of very low emittance (below 20 nm mrad) are identified. The results highlight the excellent suitability of optically driven nano-cathodes for the further development of ultrafast transmission electron microscopy.

  18. Exciton Polaritons in a Two-Dimensional Lieb Lattice with Spin-Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Whittaker, C. E.; Cancellieri, E.; Walker, P. M.; Gulevich, D. R.; Schomerus, H.; Vaitiekus, D.; Royall, B.; Whittaker, D. M.; Clarke, E.; Iorsh, I. V.; Shelykh, I. A.; Skolnick, M. S.; Krizhanovskii, D. N.

    2018-03-01

    We study exciton polaritons in a two-dimensional Lieb lattice of micropillars. The energy spectrum of the system features two flat bands formed from S and Px ,y photonic orbitals, into which we trigger bosonic condensation under high power excitation. The symmetry of the orbital wave functions combined with photonic spin-orbit coupling gives rise to emission patterns with pseudospin texture in the flat band condensates. Our Letter shows the potential of polariton lattices for emulating flat band Hamiltonians with spin-orbit coupling, orbital degrees of freedom, and interactions.

  19. Exciton Polaritons in a Two-Dimensional Lieb Lattice with Spin-Orbit Coupling.

    PubMed

    Whittaker, C E; Cancellieri, E; Walker, P M; Gulevich, D R; Schomerus, H; Vaitiekus, D; Royall, B; Whittaker, D M; Clarke, E; Iorsh, I V; Shelykh, I A; Skolnick, M S; Krizhanovskii, D N

    2018-03-02

    We study exciton polaritons in a two-dimensional Lieb lattice of micropillars. The energy spectrum of the system features two flat bands formed from S and P_{x,y} photonic orbitals, into which we trigger bosonic condensation under high power excitation. The symmetry of the orbital wave functions combined with photonic spin-orbit coupling gives rise to emission patterns with pseudospin texture in the flat band condensates. Our Letter shows the potential of polariton lattices for emulating flat band Hamiltonians with spin-orbit coupling, orbital degrees of freedom, and interactions.

  20. Bismuth germanate coupled to near ultraviolet silicon photomultipliers for time-of-flight PET

    PubMed Central

    Kwon, Sun Il; Gola, Alberto; Ferri, Alessandro; Piemonte, Claudio; Cherry, Simon R.

    2016-01-01

    Bismuth germanate (BGO) was a very attractive scintillator in early-generation positron emission tomography (PET) scanners. However, the major disadvantages of BGO are lower light yield and longer rise and decay time compared to currently popular scintillators such as LSO and LYSO. This results in poorer coincidence timing resolution and it has generally been assumed that BGO is not a suitable scintillator for time-of-flight (TOF) PET applications. However, when a 511-keV photon interacts in a scintillator, a number of Cerenkov photons are produced promptly by energetic electrons released by photoelectric or Compton interactions. If these prompt photons can be captured, they could provide a better timing trigger for PET. Since BGO has a high refractive index (increasing the Cerenkov light yield) and excellent optical transparency down to 320 nm (Cerenkov light yield is higher at shorter wavelengths), we hypothesized that the coincidence timing resolution of BGO can be significantly improved by efficient detection of the Cerenkov photons. However, since the number of Cerenkov photons is far less than the number of scintillation photons, and they are more abundant in the UV and blue part of the spectrum, photosensors need to have high UV/blue sensitivity, fast temporal response, and very low noise in order to trigger on the faint Cerenkov signal. In this respect, NUV-HD silicon photomultipliers (SiPMs) (FBK, Trento, Italy) are an excellent fit for our approach. In this study, coincidence events were measured using BGO crystals coupled with NUV-HD SiPMs. The existence and influence of Cerenkov photons on the timing measurements were studied using different configurations to exploit the directionality of the Cerenkov emissions. Coincidence resolving time values (FWHM) of ~270 ps from 2 × 3 × 2 mm3 BGO crystals and ~560 ps from 3 × 3 × 20 mm3 BGO crystals were obtained. To our knowledge, these are the best coincidence resolving time values reported for BGO to date. With these values, BGO can be considered as a relevant scintillator for TOF PET scanners, especially if photodetectors with even better near UV/blue response can be developed to further improve the efficiency of Cerenkov light detection. PMID:27589153

  1. Quantum key distribution with entangled photon sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma Xiongfeng; Fung, Chi-Hang Fred; Lo, H.-K.

    2007-07-15

    A parametric down-conversion (PDC) source can be used as either a triggered single-photon source or an entangled-photon source in quantum key distribution (QKD). The triggering PDC QKD has already been studied in the literature. On the other hand, a model and a post-processing protocol for the entanglement PDC QKD are still missing. We fill in this important gap by proposing such a model and a post-processing protocol for the entanglement PDC QKD. Although the PDC model is proposed to study the entanglement-based QKD, we emphasize that our generic model may also be useful for other non-QKD experiments involving a PDCmore » source. Since an entangled PDC source is a basis-independent source, we apply Koashi and Preskill's security analysis to the entanglement PDC QKD. We also investigate the entanglement PDC QKD with two-way classical communications. We find that the recurrence scheme increases the key rate and the Gottesman-Lo protocol helps tolerate higher channel losses. By simulating a recent 144-km open-air PDC experiment, we compare three implementations: entanglement PDC QKD, triggering PDC QKD, and coherent-state QKD. The simulation result suggests that the entanglement PDC QKD can tolerate higher channel losses than the coherent-state QKD. The coherent-state QKD with decoy states is able to achieve highest key rate in the low- and medium-loss regions. By applying the Gottesman-Lo two-way post-processing protocol, the entanglement PDC QKD can tolerate up to 70 dB combined channel losses (35 dB for each channel) provided that the PDC source is placed in between Alice and Bob. After considering statistical fluctuations, the PDC setup can tolerate up to 53 dB channel losses.« less

  2. Crystalline metamaterials for topological properties at subwavelength scales

    PubMed Central

    Yves, Simon; Fleury, Romain; Berthelot, Thomas; Fink, Mathias; Lemoult, Fabrice; Lerosey, Geoffroy

    2017-01-01

    The exciting discovery of topological condensed matter systems has lately triggered a search for their photonic analogues, motivated by the possibility of robust backscattering-immune light transport. However, topological photonic phases have so far only been observed in photonic crystals and waveguide arrays, which are inherently physically wavelength scaled, hindering their application in compact subwavelength systems. In this letter, we tackle this problem by patterning the deep subwavelength resonant elements of metamaterials onto specific lattices, and create crystalline metamaterials that can develop complex nonlocal properties due to multiple scattering, despite their very subwavelength spatial scale that usually implies to disregard their structure. These spatially dispersive systems can support subwavelength topological phases, as we demonstrate at microwaves by direct field mapping. Our approach gives a straightforward tabletop platform for the study of photonic topological phases, and allows to envision applications benefiting the compactness of metamaterials and the amazing potential of topological insulators. PMID:28719573

  3. Controlling gain one photon at a time

    PubMed Central

    Schwartz, Gregory W; Rieke, Fred

    2013-01-01

    Adaptation is a salient property of sensory processing. All adaptational or gain control mechanisms face the challenge of obtaining a reliable estimate of the property of the input to be adapted to and obtaining this estimate sufficiently rapidly to be useful. Here, we explore how the primate retina balances the need to change gain rapidly and reliably when photons arrive rarely at individual rod photoreceptors. We find that the weakest backgrounds that decrease the gain of the retinal output signals are similar to those that increase human behavioral threshold, and identify a novel site of gain control in the retinal circuitry. Thus, surprisingly, the gain of retinal signals begins to decrease essentially as soon as background lights are detectable; under these conditions, gain control does not rely on a highly averaged estimate of the photon count, but instead signals from individual photon absorptions trigger changes in gain. DOI: http://dx.doi.org/10.7554/eLife.00467.001 PMID:23682314

  4. Photon Detector System Timing Performance in the DUNE 35-ton Prototype Liquid Argon Time Projection Chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, D.L.; et al.

    The 35-ton prototype for the Deep Underground Neutrino Experiment far detector was a single-phase liquid argon time projection chamber with an integrated photon detector system, all situated inside a membrane cryostat. The detector took cosmic-ray data for six weeks during the period of February 1, 2016 to March 12, 2016. The performance of the photon detection system was checked with these data. An installed photon detector was demonstrated to measure the arrival times of cosmic-ray muons with a resolution better than 32 ns, limited by the timing of the trigger system. A measurement of the timing resolution using closely-spaced calibration pulses yielded a resolution of 15 ns for pulses at a level of 6 photo-electrons. Scintillation light from cosmic-ray muons was observed to be attenuated with increasing distance with a characteristic length ofmore » $$155 \\pm 28$$ cm.« less

  5. Crystalline metamaterials for topological properties at subwavelength scales

    NASA Astrophysics Data System (ADS)

    Yves, Simon; Fleury, Romain; Berthelot, Thomas; Fink, Mathias; Lemoult, Fabrice; Lerosey, Geoffroy

    2017-07-01

    The exciting discovery of topological condensed matter systems has lately triggered a search for their photonic analogues, motivated by the possibility of robust backscattering-immune light transport. However, topological photonic phases have so far only been observed in photonic crystals and waveguide arrays, which are inherently physically wavelength scaled, hindering their application in compact subwavelength systems. In this letter, we tackle this problem by patterning the deep subwavelength resonant elements of metamaterials onto specific lattices, and create crystalline metamaterials that can develop complex nonlocal properties due to multiple scattering, despite their very subwavelength spatial scale that usually implies to disregard their structure. These spatially dispersive systems can support subwavelength topological phases, as we demonstrate at microwaves by direct field mapping. Our approach gives a straightforward tabletop platform for the study of photonic topological phases, and allows to envision applications benefiting the compactness of metamaterials and the amazing potential of topological insulators.

  6. Self-regulated transport in photonic crystals with phase-changing defects

    NASA Astrophysics Data System (ADS)

    Thomas, Roney; Ellis, Fred M.; Vitebskiy, Ilya; Kottos, Tsampikos

    2018-01-01

    Phase-changing materials (PCMs) are widely used for optical data recording, sensing, all-optical switching, and optical limiting. Our focus here is on the case when the change in transmission characteristics of the optical material is caused by the input light itself. Specifically, the light-induced heating triggers the phase transition in the PCM. In this paper, using a numerical example, we demonstrate that the incorporation of the PCM in a photonic structure can lead to a dramatic modification of the effects of light-induced phase transition, as compared to a stand-alone sample of the same PCM. Our focus is on short pulses. We discuss some possible applications of such phase-changing photonic structures for optical sensing and limiting.

  7. Laser pumping of thyristors for fast high current rise-times

    DOEpatents

    Glidden, Steven C.; Sanders, Howard D.

    2013-06-11

    An optically triggered semiconductor switch includes an anode metallization layer; a cathode metallization layer; a semiconductor between the anode metallization layer and the cathode metallization layer and a photon source. The semiconductor includes at least four layers of alternating doping in the form P-N-P-N, in which an outer layer adjacent to the anode metallization layer forms an anode and an outer layer adjacent the cathode metallization layer forms a cathode and in which the anode metallization layer has a window pattern of optically transparent material exposing the anode layer to light. The photon source emits light having a wavelength, with the light from the photon source being configured to match the window pattern of the anode metallization layer.

  8. Atom detection and photon production in a scalable, open, optical microcavity.

    PubMed

    Trupke, M; Goldwin, J; Darquié, B; Dutier, G; Eriksson, S; Ashmore, J; Hinds, E A

    2007-08-10

    A microfabricated Fabry-Perot optical resonator has been used for atom detection and photon production with less than 1 atom on average in the cavity mode. Our cavity design combines the intrinsic scalability of microfabrication processes with direct coupling of the cavity field to single-mode optical waveguides or fibers. The presence of the atom is seen through changes in both the intensity and the noise characteristics of probe light reflected from the cavity input mirror. An excitation laser passing transversely through the cavity triggers photon emission into the cavity mode and hence into the single-mode fiber. These are first steps toward building an optical microcavity network on an atom chip for applications in quantum information processing.

  9. In vivo high-resolution structural imaging of large arteries in small rodents using two-photon laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Megens, Remco T. A.; Reitsma, Sietze; Prinzen, Lenneke; Oude Egbrink, Mirjam G. A.; Engels, Wim; Leenders, Peter J. A.; Brunenberg, Ellen J. L.; Reesink, Koen D.; Janssen, Ben J. A.; Ter Haar Romeny, Bart M.; Slaaf, Dick W.; van Zandvoort, Marc A. M. J.

    2010-01-01

    In vivo (molecular) imaging of the vessel wall of large arteries at subcellular resolution is crucial for unraveling vascular pathophysiology. We previously showed the applicability of two-photon laser scanning microscopy (TPLSM) in mounted arteries ex vivo. However, in vivo TPLSM has thus far suffered from in-frame and between-frame motion artifacts due to arterial movement with cardiac and respiratory activity. Now, motion artifacts are suppressed by accelerated image acquisition triggered on cardiac and respiratory activity. In vivo TPLSM is performed on rat renal and mouse carotid arteries, both surgically exposed and labeled fluorescently (cell nuclei, elastin, and collagen). The use of short acquisition times consistently limit in-frame motion artifacts. Additionally, triggered imaging reduces between-frame artifacts. Indeed, structures in the vessel wall (cell nuclei, elastic laminae) can be imaged at subcellular resolution. In mechanically damaged carotid arteries, even the subendothelial collagen sheet (~1 μm) is visualized using collagen-targeted quantum dots. We demonstrate stable in vivo imaging of large arteries at subcellular resolution using TPLSM triggered on cardiac and respiratory cycles. This creates great opportunities for studying (diseased) arteries in vivo or immediate validation of in vivo molecular imaging techniques such as magnetic resonance imaging (MRI), ultrasound, and positron emission tomography (PET).

  10. Maximum likelihood-based analysis of single-molecule photon arrival trajectories

    NASA Astrophysics Data System (ADS)

    Hajdziona, Marta; Molski, Andrzej

    2011-02-01

    In this work we explore the statistical properties of the maximum likelihood-based analysis of one-color photon arrival trajectories. This approach does not involve binning and, therefore, all of the information contained in an observed photon strajectory is used. We study the accuracy and precision of parameter estimates and the efficiency of the Akaike information criterion and the Bayesian information criterion (BIC) in selecting the true kinetic model. We focus on the low excitation regime where photon trajectories can be modeled as realizations of Markov modulated Poisson processes. The number of observed photons is the key parameter in determining model selection and parameter estimation. For example, the BIC can select the true three-state model from competing two-, three-, and four-state kinetic models even for relatively short trajectories made up of 2 × 103 photons. When the intensity levels are well-separated and 104 photons are observed, the two-state model parameters can be estimated with about 10% precision and those for a three-state model with about 20% precision.

  11. Database and interactive monitoring system for the photonics and electronics of RPC Muon Trigger in CMS experiment

    NASA Astrophysics Data System (ADS)

    Wiacek, Daniel; Kudla, Ignacy M.; Pozniak, Krzysztof T.; Bunkowski, Karol

    2005-02-01

    The main task of the RPC (Resistive Plate Chamber) Muon Trigger monitoring system design for the CMS (Compact Muon Solenoid) experiment (at LHC in CERN Geneva) is the visualization of data that includes the structure of electronic trigger system (e.g. geometry and imagery), the way of its processes and to generate automatically files with VHDL source code used for programming of the FPGA matrix. In the near future, the system will enable the analysis of condition, operation and efficiency of individual Muon Trigger elements, registration of information about some Muon Trigger devices and present previously obtained results in interactive presentation layer. A broad variety of different database and programming concepts for design of Muon Trigger monitoring system was presented in this article. The structure and architecture of the system and its principle of operation were described. One of ideas for building this system is use object-oriented programming and design techniques to describe real electronics systems through abstract object models stored in database and implement these models in Java language.

  12. Thermophotovoltaic energy conversion using photonic bandgap selective emitters

    DOEpatents

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2003-06-24

    A method for thermophotovoltaic generation of electricity comprises heating a metallic photonic crystal to provide selective emission of radiation that is matched to the peak spectral response of a photovoltaic cell that converts the radiation to electricity. The use of a refractory metal, such as tungsten, for the photonic crystal enables high temperature operation for high radiant flux and high dielectric contrast for a full 3D photonic bandgap, preferable for efficient thermophotovoltaic energy conversion.

  13. Selective labeling of a single organelle by using two-photon conversion of a photoconvertible fluorescent protein

    NASA Astrophysics Data System (ADS)

    Watanabe, Wataru; Shimada, Tomoko; Matsunaga, Sachihiro; Kurihara, Daisuke; Arimura, Shin-ichi; Tsutsumi, Nobuhiro; Fukui, Kiichi; Itoh, Kazuyoshi

    2008-02-01

    We present space-selective labeling of organelles by using two-photon conversion of a photoconvertible fluorescent protein with near-infrared femtosecond laser pulses. Two-photon excitation of photoconvertible fluorescent-protein, Kaede, enables space-selective labeling of organelles. We alter the fluorescence of target mitochondria in a tobacco BY-2 cell from green to red by focusing femtosecond laser pulses with a wavelength of 750 nm.

  14. Brillouin Selective Sideband Amplification of Microwave Photonic Signals

    NASA Technical Reports Server (NTRS)

    Yao, S.

    1997-01-01

    We introduce a powerful Brillouin selective sideband amplification technique and demonstrate its application for achieving gain in photonix signal up- and down- conversions in microwave photonic systems.

  15. Selective photon counter for digital x-ray mammography tomosynthesis

    NASA Astrophysics Data System (ADS)

    Goldan, Amir H.; Karim, Karim S.; Rowlands, J. A.

    2006-03-01

    Photon counting is an emerging detection technique that is promising for mammography tomosynthesis imagers. In photon counting systems, the value of each image pixel is equal to the number of photons that interact with the detector. In this research, we introduce the design and implementation of a low noise, novel selective photon counting pixel for digital mammography tomosynthesis in crystalline silicon CMOS (complementary metal oxide semiconductor) 0.18 micron technology. The design comprises of a low noise charge amplifier (CA), two low offset voltage comparators, a decision-making unit (DMU), a mode selector, and a pseudo-random counter. Theoretical calculations and simulation results of linearity, gain, and noise of the photon counting pixel are presented.

  16. Solution processable and optically switchable 1D photonic structures.

    PubMed

    Paternò, Giuseppe M; Iseppon, Chiara; D'Altri, Alessia; Fasanotti, Carlo; Merati, Giulia; Randi, Mattia; Desii, Andrea; Pogna, Eva A A; Viola, Daniele; Cerullo, Giulio; Scotognella, Francesco; Kriegel, Ilka

    2018-02-23

    We report the first demonstration of a solution processable, optically switchable 1D photonic crystal which incorporates phototunable doped metal oxide nanocrystals. The resulting device structure shows a dual optical response with the photonic bandgap covering the visible spectral range and the plasmon resonance of the doped metal oxide the near infrared. By means of a facile photodoping process, we tuned the plasmonic response and switched effectively the optical properties of the photonic crystal, translating the effect from the near infrared to the visible. The ultrafast bandgap pumping induces a signal change in the region of the photonic stopband, with recovery times of several picoseconds, providing a step toward the ultrafast optical switching. Optical modeling uncovers the importance of a complete modeling of the variations of the dielectric function of the photodoped material, including the high frequency region of the Drude response which is responsible for the strong switching in the visible after photodoping. Our device configuration offers unprecedented tunability due to flexibility in device design, covering a wavelength range from the visible to the near infrared. Our findings indicate a new protocol to modify the optical response of photonic devices by optical triggers only.

  17. Emergent gauge theories and supersymmetry: A QED primer

    NASA Astrophysics Data System (ADS)

    Chkareuli, J. L.

    2013-04-01

    We argue that a generic trigger for photon and other gauge fields to emerge as massless Nambu-Goldstone modes could be spontaneously broken supersymmetry rather than physically manifested Lorentz violation. We consider supersymmetric QED model extended by an arbitrary polynomial potential of vector superfield that induces the spontaneous SUSY violation in the visible sector. As a consequence, massless photon appears as a companion of massless photino being Goldstone fermion state in tree approximation. Remarkably, the photon masslessness appearing at tree level is further protected against radiative corrections due to the simultaneously generated special gauge invariance in the broken SUSY phase. Meanwhile, photino being mixed with another goldstino appearing from a spontaneous SUSY violation in the hidden sector largely turns into light pseudo-goldstino whose physics seems to be of special interest.

  18. A High-Speed, Event-Driven, Active Pixel Sensor Readout for Photon-Counting Microchannel Plate Detectors

    NASA Technical Reports Server (NTRS)

    Kimble, Randy A.; Pain, Bedabrata; Norton, Timothy J.; Haas, J. Patrick; Oegerle, William R. (Technical Monitor)

    2002-01-01

    Silicon array readouts for microchannel plate intensifiers offer several attractive features. In this class of detector, the electron cloud output of the MCP intensifier is converted to visible light by a phosphor; that light is then fiber-optically coupled to the silicon array. In photon-counting mode, the resulting light splashes on the silicon array are recognized and centroided to fractional pixel accuracy by off-chip electronics. This process can result in very high (MCP-limited) spatial resolution while operating at a modest MCP gain (desirable for dynamic range and long term stability). The principal limitation of intensified CCD systems of this type is their severely limited local dynamic range, as accurate photon counting is achieved only if there are not overlapping event splashes within the frame time of the device. This problem can be ameliorated somewhat by processing events only in pre-selected windows of interest of by using an addressable charge injection device (CID) for the readout array. We are currently pursuing the development of an intriguing alternative readout concept based on using an event-driven CMOS Active Pixel Sensor. APS technology permits the incorporation of discriminator circuitry within each pixel. When coupled with suitable CMOS logic outside the array area, the discriminator circuitry can be used to trigger the readout of small sub-array windows only when and where an event splash has been detected, completely eliminating the local dynamic range problem, while achieving a high global count rate capability and maintaining high spatial resolution. We elaborate on this concept and present our progress toward implementing an event-driven APS readout.

  19. Generating single microwave photons in a circuit.

    PubMed

    Houck, A A; Schuster, D I; Gambetta, J M; Schreier, J A; Johnson, B R; Chow, J M; Frunzio, L; Majer, J; Devoret, M H; Girvin, S M; Schoelkopf, R J

    2007-09-20

    Microwaves have widespread use in classical communication technologies, from long-distance broadcasts to short-distance signals within a computer chip. Like all forms of light, microwaves, even those guided by the wires of an integrated circuit, consist of discrete photons. To enable quantum communication between distant parts of a quantum computer, the signals must also be quantum, consisting of single photons, for example. However, conventional sources can generate only classical light, not single photons. One way to realize a single-photon source is to collect the fluorescence of a single atom. Early experiments measured the quantum nature of continuous radiation, and further advances allowed triggered sources of photons on demand. To allow efficient photon collection, emitters are typically placed inside optical or microwave cavities, but these sources are difficult to employ for quantum communication on wires within an integrated circuit. Here we demonstrate an on-chip, on-demand single-photon source, where the microwave photons are injected into a wire with high efficiency and spectral purity. This is accomplished in a circuit quantum electrodynamics architecture, with a microwave transmission line cavity that enhances the spontaneous emission of a single superconducting qubit. When the qubit spontaneously emits, the generated photon acts as a flying qubit, transmitting the quantum information across a chip. We perform tomography of both the qubit and the emitted photons, clearly showing that both the quantum phase and amplitude are transferred during the emission. Both the average power and voltage of the photon source are characterized to verify performance of the system. This single-photon source is an important addition to a rapidly growing toolbox for quantum optics on a chip.

  20. The Lick Observatory image-dissector scanner.

    NASA Technical Reports Server (NTRS)

    Robinson, L. B.; Wampler, E. J.

    1972-01-01

    A scanner that uses an image dissector to scan the output screen of an image tube has proven to be a sensitive and linear detector for faint astronomical spectra. The image-tube phosphor screen acts as a short-term storage element and allows the system to approach the performance of an ideal multichannel photon counter. Pulses resulting from individual photons, emitted from the output phosphor and detected by the image dissector, trigger an amplifier-discriminator and are counted in a 24-bit, 4096-word circulating memory. Aspects of system performance are discussed, giving attention to linearity, dynamic range, sensitivity, stability, and scattered light properties.

  1. Maximum likelihood-based analysis of single-molecule photon arrival trajectories.

    PubMed

    Hajdziona, Marta; Molski, Andrzej

    2011-02-07

    In this work we explore the statistical properties of the maximum likelihood-based analysis of one-color photon arrival trajectories. This approach does not involve binning and, therefore, all of the information contained in an observed photon strajectory is used. We study the accuracy and precision of parameter estimates and the efficiency of the Akaike information criterion and the Bayesian information criterion (BIC) in selecting the true kinetic model. We focus on the low excitation regime where photon trajectories can be modeled as realizations of Markov modulated Poisson processes. The number of observed photons is the key parameter in determining model selection and parameter estimation. For example, the BIC can select the true three-state model from competing two-, three-, and four-state kinetic models even for relatively short trajectories made up of 2 × 10(3) photons. When the intensity levels are well-separated and 10(4) photons are observed, the two-state model parameters can be estimated with about 10% precision and those for a three-state model with about 20% precision.

  2. Selective two-photon collagen crosslinking in situ measured by Brillouin microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kwok, Sheldon J. J.; Kuznetsov, Ivan A.; Kim, Moonseok; Choi, Myunghwan; Scarcelli, Giuliano; Yun, Seok-Hyun

    2017-02-01

    Two-photon polymerization and crosslinking are commonly used methods for microfabrication of three-dimensional structures with applications spanning from photonic microdevices, drug delivery systems, to cellular scaffolds. However, the use of two-photon processes for precise, internal modification of biological tissues has not yet been reported. One of the major challenges has been a lack of appropriate tools to monitor and characterize crosslinked regions nondestructively. Here, we demonstrate spatially selective two-photon collagen crosslinking (2P-CXL) in intact tissue for the first time. Using riboflavin photosensitizer and femtosecond laser irradiation, we crosslinked a small volume of tissue within animal corneas. Collagen fiber orientations and photobleaching were characterized by second harmonic generation and two-photon fluorescence imaging, respectively. Using confocal Brillouin microscopy, we measured local changes in longitudinal mechanical moduli and visualized the cross-linked pattern without perturbing surrounding non-irradiated regions. 2P-CXL-induced tissue stiffening was comparable to that achieved with conventional one-photon CXL. Our results demonstrate the ability to selectively stiffen biological tissue in situ at high spatial resolution, with broad implications in ophthalmology, laser surgery, and tissue engineering.

  3. Chemically Patterned Inverse Opal Created by a Selective Photolysis Modification Process.

    PubMed

    Tian, Tian; Gao, Ning; Gu, Chen; Li, Jian; Wang, Hui; Lan, Yue; Yin, Xianpeng; Li, Guangtao

    2015-09-02

    Anisotropic photonic crystal materials have long been pursued for their broad applications. A novel method for creating chemically patterned inverse opals is proposed here. The patterning technique is based on selective photolysis of a photolabile polymer together with postmodification on released amine groups. The patterning method allows regioselective modification within an inverse opal structure, taking advantage of selective chemical reaction. Moreover, combined with the unique signal self-reporting feature of the photonic crystal, the fabricated structure is capable of various applications, including gradient photonic bandgap and dynamic chemical patterns. The proposed method provides the ability to extend the structural and chemical complexity of the photonic crystal, as well as its potential applications.

  4. Effect of Photon Hormesis on Dose Responses to Alpha Particles in Zebrafish Embryos.

    PubMed

    Ng, Candy Yuen Ping; Cheng, Shuk Han; Yu, Kwan Ngok

    2017-02-11

    Photon hormesis refers to the phenomenon where the biological effect of ionizing radiation with a high linear energy transfer (LET) value is diminished by photons with a low LET value. The present paper studied the effect of photon hormesis from X-rays on dose responses to alpha particles using embryos of the zebrafish ( Danio rerio ) as the in vivo vertebrate model. The toxicity of these ionizing radiations in the zebrafish embryos was assessed using the apoptotic counts at 20, 24, or 30 h post fertilization (hpf) revealed through acridine orange (AO) staining. For alpha-particle doses ≥ 4.4 mGy, the additional X-ray dose of 10 mGy significantly reduced the number of apoptotic cells at 24 hpf, which proved the presence of photon hormesis. Smaller alpha-particle doses might not have inflicted sufficient aggregate damages to trigger photon hormesis. The time gap T between the X-ray (10 mGy) and alpha-particle (4.4 mGy) exposures was also studied. Photon hormesis was present when T ≤ 30 min, but was absent when T = 60 min, at which time repair of damage induced by alpha particles would have completed to prevent their interactions with those induced by X-rays. Finally, the drop in the apoptotic counts at 24 hpf due to photon hormesis was explained by bringing the apoptotic events earlier to 20 hpf, which strongly supported the removal of aberrant cells through apoptosis as an underlying mechanism for photon hormesis.

  5. Studies of Interactions Between Nano-Objects and Polarized Light

    NASA Astrophysics Data System (ADS)

    Xie, Dan

    Optical studies of nano-objects that have dimensions 10--1000 nm have become a flourishing field of research. This special dimension category, connecting the smaller (molecular) world and the larger (cellular) world, have enabled these nano-objects to be widely utilized as novel optical tools in many fields. In addition to the extensive applications of nano objects, increasing efforts are also being put to better understand their interactions with light at a fundamental level. The work presented in this dissertation is part of such efforts, in which I selected three types of nano-objects and studied their optical properties both in theory and experiment. Second-harmonic and sum-frequency generations are among the most well-known nonlinear optical processes. Dielectric nanocrystals that are SHG- and SFG-active are favored tools in bioimaging. For a nanocrystal, its SHG/SFG intensity depends on the geometry of the light-particle system, i.e., the relationship between the nanocrystal orientation and the laser polarization. Using BaTiO 3 nanocrystals as an example, I carried out an in-depth, theoretical investigation of such dependence. Particularly, I studied the possibility of selectively maximizing the contrast between light signals from two or more nanocrystals by manipulating laser polarization. I will present a discussion on how the capacity of this selective illumination depends on the relative orientation between the two nanocrystals and the polarization of the excitation field. The optical responses of non-spherical plasmonic particles, being dynamic and complex, are only partially understood. Gold nanorods (AuNRs) are one of the most popular members in this nanoparticle family. They can produce two-photon luminescence (TPL) and amplify molecular events occurring at their surface. Both phenomena are known to be associated with surface plasmon resonances (SPR) of AuNRs, but details of the mechanisms are yet to be understood and quantified. I constructed a two-photon laser-scanning microscopy system to study these phenomena at the single-particle level. In the experiment, I measured the polarization-dependent TPL emissions from single nanorods that are triggered by time-resolved two-photon excitations. The observation indicates that, different from what was generally believed, the TPL in AuNRs is resulted from two sequentially one-photon absorption process that are both coupled to the longitudinal SPR mode. The studies on the two-photon fluorescence in dyes conjugated with AuNRs confirmed the coherent nature of the two-photon absorption process and provided an estimate of the fluorescence enhancement due to the presence of AuNRs. Molecules with cross-conjugated structures have a special role in molecular electronics. Their inherent quantum interference property can be utilized to create molecular switches with excellent on/off ratio. When a molecular junction is exposed to light, photons may open extra pathways for electron tunneling, and thus modify the conduction properties of the junction. Such modification depends on the electronic structure of the molecule, as well as on the frequency, amplitude, and polarization of the driving field. In collaboration with my colleague, I simulated electron tunneling properties of junctions with cross-conjugated molecules and discussed their dependence on light properties. It is noteworthy that symmetry plays a major role in zero-bias tunneling: the molecule-field systems with general parity show distinct tunneling behaviors from their counterparts without general parity.

  6. LIGO Triggered Search for Coincidence with High Energy Photon Survey Missions

    NASA Technical Reports Server (NTRS)

    Camp, Jordan

    2009-01-01

    LIGO is about to begin a new, higher sensitivity science run, where gravitational detection is plausible. A possible candidate for detection is a compact binary merger, which would also be likely to emit a high energy electromagnetic signal. Coincident observation of the gw signal from a compact merger with an x-ray or gamma-ray signal would add considerable weight to the claim for gw detection. In this talk I will consider the possibility of using LIGO triggers with time and sky position to perform a coincident analysis of EM signals from the RXTE, SWIFT, and FERMI missions.

  7. Zero-index structures as an alternative platform for quantum optics

    PubMed Central

    Liberal, Iñigo

    2017-01-01

    Vacuum fluctuations are one of the most distinctive aspects of quantum optics, being the trigger of multiple nonclassical phenomena. Thus, platforms like resonant cavities and photonic crystals that enable the inhibition and manipulation of vacuum fluctuations have been key to our ability to control light–matter interactions (e.g., the decay of quantum emitters). Here, we theoretically demonstrate that vacuum fluctuations may be naturally inhibited within bodies immersed in epsilon-and-mu-near-zero (EMNZ) media, while they can also be selectively excited via bound eigenmodes. Therefore, zero-index structures are proposed as an alternative platform to manipulate the decay of quantum emitters, possibly leading to the exploration of qualitatively different dynamics. For example, a direct modulation of the vacuum Rabi frequency is obtained by deforming the EMNZ region without detuning a bound eigenmode. Ideas for the possible implementation of these concepts using synthetic implementations based on structural dispersion are also proposed. PMID:28096367

  8. Zero-index structures as an alternative platform for quantum optics.

    PubMed

    Liberal, Iñigo; Engheta, Nader

    2017-01-31

    Vacuum fluctuations are one of the most distinctive aspects of quantum optics, being the trigger of multiple nonclassical phenomena. Thus, platforms like resonant cavities and photonic crystals that enable the inhibition and manipulation of vacuum fluctuations have been key to our ability to control light-matter interactions (e.g., the decay of quantum emitters). Here, we theoretically demonstrate that vacuum fluctuations may be naturally inhibited within bodies immersed in epsilon-and-mu-near-zero (EMNZ) media, while they can also be selectively excited via bound eigenmodes. Therefore, zero-index structures are proposed as an alternative platform to manipulate the decay of quantum emitters, possibly leading to the exploration of qualitatively different dynamics. For example, a direct modulation of the vacuum Rabi frequency is obtained by deforming the EMNZ region without detuning a bound eigenmode. Ideas for the possible implementation of these concepts using synthetic implementations based on structural dispersion are also proposed.

  9. MoDOT pavement preservation research program volume VI, pavement treatment trigger tables/decision trees and treatment candidate selection process.

    DOT National Transportation Integrated Search

    2015-10-01

    The objective of Task 5 was the development of pavement treatment trigger tables and the treatment candidate selection process. : The input to the trigger tables entails such factors as an overall condition indicator, smoothness, individual distress ...

  10. Reionization during the dark ages from a cosmic axion background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evoli, Carmelo; Leo, Matteo; Mirizzi, Alessandro

    2016-05-01

    Recently it has been pointed out that a cosmic background of relativistic axion-like particles (ALPs) would be produced by the primordial decays of heavy fields in the post-inflation epoch, contributing to the extra-radiation content in the Universe today. Primordial magnetic fields would trigger conversions of these ALPs into sub-MeV photons during the dark ages. This photon flux would produce an early reionization of the Universe, leaving a significant imprint on the total optical depth to recombination τ. Using the current measurement of τ and the limit on the extra-radiation content Δ N {sub eff} by the Planck experiment we putmore » a strong bound on the ALP-photon conversions. Namely we obtain upper limits on the product of the photon-ALP coupling constant g {sub a} {sub γ} times the magnetic field strength B down to g {sub a} {sub γ} B ∼> 6 × 10{sup −18} GeV{sup −1} nG for ultralight ALPs.« less

  11. Near-Infrared Trigged Stimulus-Responsive Photonic Crystals with Hierarchical Structures.

    PubMed

    Lu, Tao; Pan, Hui; Ma, Jun; Li, Yao; Zhu, Shenmin; Zhang, Di

    2017-10-04

    Stimuli-responsive photonic crystals (PCs) trigged by light would provide a novel intuitive and quantitative method for noninvasive detection. Inspired by the flame-detecting aptitude of fire beetles and the hierarchical photonic structures of butterfly wings, we herein developed near-infrared stimuli-responsive PCs through coupling photothermal Fe 3 O 4 nanoparticles with thermoresponsive poly(N-isopropylacrylamide) (PNIPAM), with hierarchical photonic structured butterfly wing scales as the template. The nanoparticles within 10 s transferred near-infrared radiation into heat that triggered the phase transition of PNIPAM; this almost immediately posed an anticipated effect on the PNIPAM refractive index and resulted in a composite spectrum change of ∼26 nm, leading to the direct visual readout. It is noteworthy that the whole process is durable and stable mainly owing to the chemical bonding formed between PNIPAM and the biotemplate. We envision that this biologically inspired approach could be utilized in a broad range of applications and would have a great impact on various monitoring processes and medical sensing.

  12. Distributing entanglement and single photons through an intra-city, free-space quantum channel.

    PubMed

    Resch, K; Lindenthal, M; Blauensteiner, B; Böhm, H; Fedrizzi, A; Kurtsiefer, C; Poppe, A; Schmitt-Manderbach, T; Taraba, M; Ursin, R; Walther, P; Weier, H; Weinfurter, H; Zeilinger, A

    2005-01-10

    We have distributed entangled photons directly through the atmosphere to a receiver station 7.8 km away over the city of Vienna, Austria at night. Detection of one photon from our entangled pairs constitutes a triggered single photon source from the sender. With no direct time-stable connection, the two stations found coincidence counts in the detection events by calculating the cross-correlation of locally-recorded time stamps shared over a public internet channel. For this experiment, our quantum channel was maintained for a total of 40 minutes during which time a coincidence lock found approximately 60000 coincident detection events. The polarization correlations in those events yielded a Bell parameter, S=2.27+/-0.019, which violates the CHSH-Bell inequality by 14 standard deviations. This result is promising for entanglement-based freespace quantum communication in high-density urban areas. It is also encouraging for optical quantum communication between ground stations and satellites since the length of our free-space link exceeds the atmospheric equivalent.

  13. Bismuth germanate coupled to near ultraviolet silicon photomultipliers for time-of-flight PET.

    PubMed

    Kwon, Sun Il; Gola, Alberto; Ferri, Alessandro; Piemonte, Claudio; Cherry, Simon R

    2016-09-21

    Bismuth germanate (BGO) was a very attractive scintillator in early-generation positron emission tomography (PET) scanners. However, the major disadvantages of BGO are lower light yield and longer rise and decay time compared to currently popular scintillators such as LSO and LYSO. This results in poorer coincidence timing resolution and it has generally been assumed that BGO is not a suitable scintillator for time-of-flight (TOF) PET applications. However, when a 511 keV photon interacts in a scintillator, a number of Cerenkov photons are produced promptly by energetic electrons released by photoelectric or Compton interactions. If these prompt photons can be captured, they could provide a better timing trigger for PET. Since BGO has a high refractive index (increasing the Cerenkov light yield) and excellent optical transparency down to 320 nm (Cerenkov light yield is higher at shorter wavelengths), we hypothesized that the coincidence timing resolution of BGO can be significantly improved by efficient detection of the Cerenkov photons. However, since the number of Cerenkov photons is far less than the number of scintillation photons, and they are more abundant in the UV and blue part of the spectrum, photosensors need to have high UV/blue sensitivity, fast temporal response, and very low noise in order to trigger on the faint Cerenkov signal. In this respect, NUV-HD silicon photomultipliers (SiPMs) (FBK, Trento, Italy) are an excellent fit for our approach. In this study, coincidence events were measured using BGO crystals coupled with NUV-HD SiPMs. The existence and influence of Cerenkov photons on the timing measurements were studied using different configurations to exploit the directionality of the Cerenkov emissions. Coincidence resolving time values (FWHM) of ~270 ps from 2  ×  3  ×  2 mm 3 BGO crystals and ~560 ps from 3  ×  3  ×  20 mm 3 BGO crystals were obtained. To our knowledge, these are the best coincidence resolving time values reported for BGO to date. With these values, BGO can be considered as a relevant scintillator for TOF PET scanners, especially if photodetectors with even better near UV/blue response can be developed to further improve the efficiency of Cerenkov light detection.

  14. Molecular photosensitisers for two-photon photodynamic therapy.

    PubMed

    Bolze, F; Jenni, S; Sour, A; Heitz, V

    2017-11-30

    Two-photon excitation has attracted the attention of biologists, especially after the development of two-photon excited microscopy in the nineties. Since then, new applications have rapidly emerged such as the release of biologically active molecules and photodynamic therapy (PDT) using two-photon excitation. PDT, which requires a light-activated drug (photosensitiser), is a clinically approved and minimally invasive treatment for cancer and for non-malignant diseases. This feature article focuses on the engineering of molecular two-photon photosensitisers for PDT, which should bring important benefits to the treatment, increase the treatment penetration depth with near-infrared light excitation, improve the spatial selectivity and reduce the photodamage to healthy tissues. After an overview of the two-photon absorption phenomenon and the methods to evaluate two-photon induced phototoxicity on cell cultures, the different classes of photosensitisers described in the literature are discussed. The two-photon PDT performed with historical one-photon sensitisers are briefly presented, followed by specifically engineered cyclic tetrapyrrole photosensitisers, purely organic photosensitisers and transition metal complexes. Finally, targeted two-photon photosensitisers and theranostic agents that should enhance the selectivity and efficiency of the treatment are discussed.

  15. Skier triggering of backcountry avalanches with skilled route selection

    NASA Astrophysics Data System (ADS)

    Sinickas, Alexandra; Haegeli, Pascal; Jamieson, Bruce

    2015-04-01

    Jamieson (2009) provided numerical estimates for the baseline probabilities of triggering an avalanche by a backcountry skier making fresh tracks without skilled route selection as a function of the North American avalanche danger scale (i.e., hazard levels Low, Moderate, Considerable, High and Extreme). Using the results of an expert survey, he showed that triggering probabilities while skiing directly up, down or across a trigger zone without skilled route selection increase roughly by a factor of 10 with each step of the North American avalanche danger scale (i.e. hazard level). The objective of the present study is to examine the effect of skilled route selection on the relationship between triggering probability and hazard level. To assess the effect of skilled route selection on triggering probability by hazard level, we analysed avalanche hazard assessments as well as reports of skiing activity and triggering of avalanches from 11 Canadian helicopter and snowcat operations during two winters (2012-13 and 2013-14). These reports were submitted to the daily information exchange among Canadian avalanche safety operations, and reflect professional decision-making and route selection practices of guides leading groups of skiers. We selected all skier-controlled or accidentally triggered avalanches with a destructive size greater than size 1 according to the Canadian avalanche size classification, triggered by any member of a guided group (guide or guest). These operations forecast the avalanche hazard daily for each of three elevation bands: alpine, treeline and below treeline. In contrast to the 2009 study, an exposure was defined as a group skiing within any one of the three elevation bands, and consequently within a hazard rating, for the day (~4,300 ratings over two winters). For example, a group that skied below treeline (rated Moderate) and treeline (rated Considerable) in one day, would receive one count for exposure to Moderate hazard, and one count for exposure to Considerable hazard. While the absolute values for triggering probability cannot be compared to the 2009 study because of different definitions of exposure, our preliminary results suggest that with skilled route selection the triggering probability is similar all hazard levels, except for extreme for which there are few exposures. This means that the guiding teams of backcountry skiing operations effectively control the hazard from triggering avalanches with skilled route selection. Groups were exposed relatively evenly to Low hazard (1275 times or 29% of total exposure), Moderate hazard (1450 times or 33 %) and Considerable hazard (1215 times or 28 %). At higher levels, the exposure reduced to roughly 380 times (9 % of total exposure) to High hazard, and only 13 times (0.3 %) to Extreme hazard. We assess the sensitivity of the results to some of our key assumptions.

  16. Mapping color fluctuations in the photon in ultraperipheral heavy ion collisions at the Large Hadron Collider

    DOE PAGES

    Alvioli, M.; Frankfurt, L.; Guzey, V.; ...

    2017-02-20

    Here, we model effects of color fluctuations (CFs) in the light-cone photon wave function and for the first time make predictions for the distribution over the number of wounded nucleons ν in the inelastic photon–nucleus scattering. We show that CFs lead to a dramatic enhancement of this distribution at ν=1 and large ν>10. We also study the implications of different scales and CFs in the photon wave function on the total transverse energy ΣE T and other observables in inelastic γA scattering with different triggers. Our predictions can be tested in proton–nucleus and nucleus–nucleus ultraperipheral collisions at the LHC andmore » will help to map CFs, whose first indications have already been observed at the LHC.« less

  17. Voltage-matched, monolithic, multi-band-gap devices

    DOEpatents

    Wanlass, Mark W.; Mascarenhas, Angelo

    2006-08-22

    Monolithic, tandem, photonic cells include at least a first semiconductor layer and a second semiconductor layer, wherein each semiconductor layer includes an n-type region, a p-type region, and a given band-gap energy. Formed within each semiconductor layer is a sting of electrically connected photonic sub-cells. By carefully selecting the numbers of photonic sub-cells in the first and second layer photonic sub-cell string(s), and by carefully selecting the manner in which the sub-cells in a first and second layer photonic sub-cell string(s) are electrically connected, each of the first and second layer sub-cell strings may be made to achieve one or more substantially identical electrical characteristics.

  18. Voltage-Matched, Monolithic, Multi-Band-Gap Devices

    DOEpatents

    Wanlass, M. W.; Mascarenhas, A.

    2006-08-22

    Monolithic, tandem, photonic cells include at least a first semiconductor layer and a second semiconductor layer, wherein each semiconductor layer includes an n-type region, a p-type region, and a given band-gap energy. Formed within each semiconductor layer is a string of electrically connected photonic sub-cells. By carefully selecting the numbers of photonic sub-cells in the first and second layer photonic sub-cell string(s), and by carefully selecting the manner in which the sub-cells in a first and second layer photonic sub-cell string(s) are electrically connected, each of the first and second layer sub-cell strings may be made to achieve one or more substantially identical electrical characteristics.

  19. Brillouin Amplification--A Powerful New Scheme for Microwave Photonic Communications

    NASA Technical Reports Server (NTRS)

    Yao, S.; Maleki, L.

    1997-01-01

    We introduce the Brillouin selective sideband amplification technique and demonstrate many important applications of this technique in photonic microwave systems, including efficient phase modulation to amplitude modulation conversion, photonic frequency multiplication, photonic signal mixing with gain, and frequency multiplied signal up conversion.

  20. LIGO-VIRGO Triggered Follow-Up with NASA High Energy Photon Survey Missions

    NASA Technical Reports Server (NTRS)

    Camp, Jordan

    2010-01-01

    We discuss the proposed use of LIGO-VIRGO S6 triggers from comparatively loud events to search for both prompt and afterglow EM counterparts with RXTE, SWIFT and FERMI. Using a 2 or 3-fold coincident trigger from the two LIGO and one VIRGO detectors to provide sky position information, we can search the data from these missions within a limited time window and a constrained portion of their respective FOVs, allowing us to look at a level below the threshold normally used to publicly indicate an event. Since we propose to use these missions in their survey mode, no re-pointing of the missions is envisioned. The search for a coincidence between the data from LIGO-VIRGO and the EM survey missions can then be analyzed off-line; if a coincident EM signal is found it would have a significant effect in establishing the validity of the GW trigger. We discuss some relevant aspects of the NASA missions and give some preliminary estimates of thresholds and coincident background rates.

  1. Nonperturbative-transverse-momentum effects and evolution in dihadron and direct photon-hadron angular correlations in p + p collisions at s = 510 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adare, A.; Aidala, C.; Ajitanand, N. N.

    Dihadron and isolated direct photon-hadron angular correlations are measured in p+p collisions at √s=510 GeV. Correlations of charged hadrons of 0.7T<10 GeV/c with π 0 mesons of 4T<15 GeV/c or isolated direct photons of 7T direct photon or π 0. Nonperturbative evolution effects are extracted from Gaussian fits to the away-side inclusive-charged-hadron yields for different trigger-particle transverse momenta (pmore » $$trig\\atop{T}$$). The Gaussian widths and root mean square of p out are reported as a function of the interaction hard scale p$$trig\\atop{T}$$ to investigate possible transverse-momentum-dependent evolution differences between the π 0-h ± and direct photon-h ± correlations and factorization breaking effects. The widths are found to decrease with p$$trig\\atop{T}$$, which indicates that the Collins-Soper-Sterman soft factor is not driving the evolution with the hard scale in nearly back-to-back dihadron and direct photon-hadron production in p+p collisions. This behavior is in contrast to Drell-Yan and semi-inclusive deep-inelastic scattering measurements.« less

  2. Nonperturbative-transverse-momentum effects and evolution in dihadron and direct photon-hadron angular correlations in p + p collisions at s = 510 GeV

    DOE PAGES

    Adare, A.; Aidala, C.; Ajitanand, N. N.; ...

    2017-04-04

    Dihadron and isolated direct photon-hadron angular correlations are measured in p+p collisions at √s=510 GeV. Correlations of charged hadrons of 0.7T<10 GeV/c with π 0 mesons of 4T<15 GeV/c or isolated direct photons of 7T direct photon or π 0. Nonperturbative evolution effects are extracted from Gaussian fits to the away-side inclusive-charged-hadron yields for different trigger-particle transverse momenta (pmore » $$trig\\atop{T}$$). The Gaussian widths and root mean square of p out are reported as a function of the interaction hard scale p$$trig\\atop{T}$$ to investigate possible transverse-momentum-dependent evolution differences between the π 0-h ± and direct photon-h ± correlations and factorization breaking effects. The widths are found to decrease with p$$trig\\atop{T}$$, which indicates that the Collins-Soper-Sterman soft factor is not driving the evolution with the hard scale in nearly back-to-back dihadron and direct photon-hadron production in p+p collisions. This behavior is in contrast to Drell-Yan and semi-inclusive deep-inelastic scattering measurements.« less

  3. Energy-discrimination x-ray computed tomography system utilizing a scanning cadmium-telluride detector

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Abduraxit, Ablajan; Enomoto, Toshiyuki; Watanabe, Manabu; Hitomi, Keitaro; Takahashi, Kiyomi; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2010-04-01

    An energy-discrimination K-edge x-ray computed tomography (CT) system is useful for controlling the image contrast of a target region by selecting both the photon energy and the energy width. The CT system has an oscillation-type linear cadmium telluride (CdTe) detectror. CT is performed by repeated linear scans and rotations of an object. Penetrating x-ray photons from the object are detected by a CdTe detector, and event signals of x-ray photons are produced using charge-sensitive and shaping amplifiers. Both photon energy and energy width are selected out using a multichannel analyzer, and the number of photons is counted by a counter card. In energy-discrimination CT, the tube voltage and tube current were 80 kV and 20 μA, respectively, and the x-ray intensity was 1.92 μGy/s at a distance of 1.0 m from the source and a tube voltage of 80 kV. The energy-discrimination CT was carried out by selecting x-ray photon energies.

  4. Performance of the LHCb RICH detectors during the LHC Run II

    NASA Astrophysics Data System (ADS)

    Papanestis, A.; D'Ambrosio, C.; LHCb RICH Collaboration

    2017-12-01

    The LHCb RICH system provides hadron identification over a wide momentum range (2-100 GeV/c). This detector system is key to LHCb's precision flavour physics programme, which has unique sensitivity to physics beyond the standard model. This paper reports on the performance of the LHCb RICH in Run II, following significant changes in the detector and operating conditions. The changes include the refurbishment of significant number of photon detectors, assembled using new vacuum technologies, and the removal of the aerogel radiator. The start of Run II of the LHC saw the beam energy increase to 6.5 TeV per beam and a new trigger strategy for LHCb with full online detector calibration. The RICH information has also been made available for all trigger streams in the High Level Trigger for the first time.

  5. A High-Speed, Event-Driven, Active Pixel Sensor Readout for Photon-Counting Microchannel Plate Detectors

    NASA Technical Reports Server (NTRS)

    Kimble, Randy A.; Pain, B.; Norton, T. J.; Haas, P.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Silicon array readouts for microchannel plate intensifiers offer several attractive features. In this class of detector, the electron cloud output of the MCP intensifier is converted to visible light by a phosphor; that light is then fiber-optically coupled to the silicon array. In photon-counting mode, the resulting light splashes on the silicon array are recognized and centroided to fractional pixel accuracy by off-chip electronics. This process can result in very high (MCP-limited) spatial resolution for the readout while operating at a modest MCP gain (desirable for dynamic range and long term stability). The principal limitation of intensified CCD systems of this type is their severely limited local dynamic range, as accurate photon counting is achieved only if there are not overlapping event splashes within the frame time of the device. This problem can be ameliorated somewhat by processing events only in pre-selected windows of interest or by using an addressable charge injection device (CID) for the readout array. We are currently pursuing the development of an intriguing alternative readout concept based on using an event-driven CMOS Active Pixel Sensor. APS technology permits the incorporation of discriminator circuitry within each pixel. When coupled with suitable CMOS logic outside the array area, the discriminator circuitry can be used to trigger the readout of small sub-array windows only when and where an event splash has been detected, completely eliminating the local dynamic range problem, while achieving a high global count rate capability and maintaining high spatial resolution. We elaborate on this concept and present our progress toward implementing an event-driven APS readout.

  6. Searching for Heavy Photons with Detached Verices in the Heavy Photon Search Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szumila-Vance, Holly

    The Jefferson Lab Heavy Photon Search (HPS) experiment is searching for a hypothetical massive particle called the heavy photon which could mediate a dark electromagnetic-type force. If heavy photons kinetically mix with Standard Model photons, they may be radiated by electrons scattering from a heavy nucleus and then decay to e+e- pairs. HPS uniquely searches for heavy photons that either decay at the target or a measurable distance after. The experiment utilizes a silicon vertex tracker (SVT) for momentum and vertex reconstruction, together with an electromagnetic calorimeter for measuring particle energies and triggering events. The HPS experiment took its firstmore » data during the spring 2015 engineering run using a 1 GeV electron beam incident on a tungsten target and its second data in the spring of 2016 at a beam energy of 2.3 GeV. The 2015 run obtained two days of production data that was used for the first physics results. The analysis of the data was conducted as a blinded analysis by tuning cuts on 10% of the data. This dissertation discusses the displaced vertex search for heavy photons in the 2015 engineering run. It describes the theoretical motivation for looking for heavy photons and provides an overview of the HPS experimental design and performance. The performance details of the experiment are primarily derived from the 2015 engineering run with some discussion from the higher energy running in 2016. This dissertation further discusses the cuts used to optimize the displaced vertex search and the results of the search. The displaced vertex search did not set a limit on the heavy photon but did validate the methodology for conducting the search. Finally, we used the full data set to make projections and guide future analyses.« less

  7. Measurement of the inclusive isolated prompt photon production cross section at the Tevatron using the CDF detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deluca Silberberg, Carolina

    2009-04-01

    In this thesis we present the measurement of the inclusive isolated prompt photon cross section with a total integrated luminosity of 2.5 fb -1 of data collected with the CDF Run II detector at the Fermilab Tevatron Collider. The prompt photon cross section is a classic measurement to test perturbative QCD (pQCD) with potential to provide information on the parton distribution function (PDF), and sensitive to the presence of new physics at large photon transverse momentum. Prompt photons also constitute an irreducible background for important searches such as H → γγ, or SUSY and extra-dimensions with energetic photons in themore » final state. The Tevatron at Fermilab (Batavia, U.S.A.) is currently the hadron collider that operates at the highest energies in the world. It collides protons and antiprotons with a center-of-mass energy of 1.96 TeV. The CDF and the D0 experiments are located in two of its four interaction regions. In Run I at the Tevatron, the direct photon production cross section was measured by both CDF and DO, and first results in Run II have been presented by the DO Collaboration based on 380 pb -1. Both Run I and Run II results show agreement with the theoretical predictions except for the low p T γ region, where the observed and predicted shapes are different. Prompt photon production has been also extensively measured at fixed-target experiments in lower p T γ ranges, showing excess of data compared to the theory, particularly at high x T. From an experimental point of view, the study of the direct photon production has several advantages compared to QCD studies using jets. Electromagnetic calorimeters have better energy resolution than hadronic calorimeters, and the systematic uncertainty on the photon absolute energy scale is smaller. Furthermore, the determination of the photon kinematics does not require the use of jet algorithms. However, the measurements using photons require a good understanding of the background, mainly dominated by light mesons (π 0 and η) which decay into two very collinear photons. Since these photons are produced within a jet, they tend to be non-isolated in most of the cases, and can be suppressed by requiring the photon candidates to be isolated in the calorimeter. In the case the hard scattered parton hadronizes leaving most of its energy to the meson, the photon produced in the decay will not be surrounded by large energy depositions. To further reduce this remaining isolated background, we present a new technique based on the isolation distribution in the calorimeter. The measured cross section is compared to next-to-leading order (NLO) pQCD calculations, which have been corrected for non-perturbative contributions. This thesis is organized as follows: we start with a brief review of QCD theory and the formalism to calculate cross sections in Chapter 2, where we also introduce the physics of prompt photon production and summarize the current status of the prompt photon phenomenology. Chapter 3 contains a description of the Tevatron and the CDF detector. The experimental measurement is described in Chapter 4, where we provide details on the different datasets used in the measurement, the trigger, and the event selection requirements. Most of this Chapter is devoted to the explanation of the background subtraction method and the determination of the photon signal fraction. The systematic uncertainties on the measurement are evaluated in Chapter 5, while Chapter 6 discusses the final results and the comparison to the theoretical predictions. Finally, the conclusions are presented in Chapter 7.« less

  8. Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers.

    PubMed

    Vieweg, M; Gissibl, T; Pricking, S; Kuhlmey, B T; Wu, D C; Eggleton, B J; Giessen, H

    2010-11-22

    Selective filling of photonic crystal fibers with different media enables a plethora of possibilities in linear and nonlinear optics. Using two-photon direct-laser writing we demonstrate full flexibility of individual closing of holes and subsequent filling of photonic crystal fibers with highly nonlinear liquids. We experimentally demonstrate solitonic supercontinuum generation over 600 nm bandwidth using a compact femtosecond oscillator as pump source. Encapsulating our fibers at the ends we realize a compact ultrafast nonlinear optofluidic device. Our work is fundamentally important to the field of nonlinear optics as it provides a new platform for investigations of spatio-temporal nonlinear effects and underpins new applications in sensing and communications. Selective filling of different linear and nonlinear liquids, metals, gases, gain media, and liquid crystals into photonic crystal fibers will be the basis of new reconfigurable and versatile optical fiber devices with unprecedented performance. Control over both temporal and spatial dispersion as well as linear and nonlinear coupling will lead to the generation of spatial-temporal solitons, so-called optical bullets.

  9. Probing the Intergalactic Magnetic Field with the Anisotropy of the Extragalactic Gamma-Ray Background

    NASA Technical Reports Server (NTRS)

    Venters, T. M.; Pavlidou, V.

    2012-01-01

    The intergalactic magnetic field (IGMF) may leave an imprint on the anisotropy properties of the extragalactic gamma-ray background, through its effect on electromagnetic cascades triggered by interactions between very high energy photons and the extragalactic background light. A strong IGMF will deflect secondary particles produced in these cascades and will thus tend to isotropize lower energy cascade photons, thus inducing a modulation in the anisotropy energy spectrum of the gamma-ray background. Here we present a simple, proof-of-concept calculation of the magnitude of this effect and demonstrate that the two extreme cases (zero IGMF and IGMF strong enough to completely isotropize cascade photons) would be separable by ten years of Fermi observations and reasonable model parameters for the gamma-ray background. The anisotropy energy spectrum of the Fermi gamma-ray background could thus be used as a probe of the IGMF strength.

  10. Two-photon excited autofluorescence imaging of human retinal pigment epithelial cells

    NASA Astrophysics Data System (ADS)

    Han, Meng; Blindewald-Wittich, Almut; Holz, Frank G.; Giese, Günter; Niemz, Markolf H.; Snyder, Sarah; Sun, Hui; Yu, Jiayi; Agopov, Michael; La Schiazza, Olivier; Bille, Josef F.

    2006-01-01

    Degeneration of retinal pigment epithelial (RPE) cells severely impairs the visual function of retina photoreceptors. However, little is known about the events that trigger the death of RPE cells at the subcellular level. Two-photon excited autofluorescence (TPEF) imaging of RPE cells proves to be well suited to investigate both the morphological and the spectral characteristics of the human RPE cells. The dominant fluorophores of autofluorescence derive from lipofuscin (LF) granules that accumulate in the cytoplasm of the RPE cells with increasing age. Spectral TPEF imaging reveals the existence of abnormal LF granules with blue shifted autofluorescence in RPE cells of aging patients and brings new insights into the complicated composition of the LF granules. Based on a proposed two-photon laser scanning ophthalmoscope, TPEF imaging of the living retina may be valuable for diagnostic and pathological studies of age related eye diseases.

  11. Imaging Live Drosophila Brain with Two-Photon Fluorescence Microscopy

    NASA Astrophysics Data System (ADS)

    Ahmed, Syeed Ehsan

    Two-photon fluorescence microscopy is an imaging technique which delivers distinct benefits for in vivo cellular and molecular imaging. Cyclic adenosine monophosphate (cAMP), a second messenger molecule, is responsible for triggering many physiological changes in neural system. However, the mechanism by which this molecule regulates responses in neuron cells is not yet clearly understood. When cAMP binds to a target protein, it changes the structure of that protein. Therefore, studying this molecular structure change with fluorescence resonance energy transfer (FRET) imaging can shed light on the cAMP functioning mechanism. FRET is a non-radiative dipole-dipole coupling which is sensitive to small distance change in nanometer scale. In this study we have investigated the effect of dopamine in cAMP dynamics in vivo. In our study two-photon fluorescence microscope was used for imaging mushroom bodies inside live Drosophila melanogaster brain and we developed a method for studying the change in cyclic AMP level.

  12. Analysis of a photon assisted field emission device

    NASA Astrophysics Data System (ADS)

    Jensen, K. L.; Lau, Y. Y.; McGregor, D. S.

    2000-07-01

    A field emitter array held at the threshold of emission by a dc gate potential from which current pulses are triggered by the application of a laser pulse on the backside of the semiconductor may produce electron bunches ("density modulation") at gigahertz frequencies. We develop an analytical model of such optically controlled emission from a silicon tip using a modified Wentzel-Kramers-Brillouin and Airy function approach to solving Schrödinger's equation. Band bending and an approximation to the exchange-correlation effects on the image charge potential are included for an array of hyperbolic emitters with a distribution in tip radii and work function. For a simple relationship between the incident photon flux and the resultant electron density at the emission site, an estimation of the tunneling current is made. An example of the operation and design of such a photon-assisted field emission device is given.

  13. The HPS electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Balossino, I.; Baltzell, N.; Battaglieri, M.; Bondì, M.; Buchanan, E.; Calvo, D.; Celentano, A.; Charles, G.; Colaneri, L.; D'Angelo, A.; Napoli, M. De; Vita, R. De; Dupré, R.; Egiyan, H.; Ehrhart, M.; Filippi, A.; Garçon, M.; Gevorgyan, N.; Girod, F.-X.; Guidal, M.; Holtrop, M.; Iurasov, V.; Kubarovsky, V.; Livingston, K.; McCarty, K.; McCormick, J.; McKinnon, B.; Osipenko, M.; Paremuzyan, R.; Randazzo, N.; Rauly, E.; Raydo, B.; Rindel, E.; Rizzo, A.; Rosier, P.; Sipala, V.; Stepanyan, S.; Szumila-Vance, H.; Weinstein, L. B.

    2017-05-01

    The Heavy Photon Search experiment (HPS) is searching for a new gauge boson, the so-called "heavy photon." Through its kinetic mixing with the Standard Model photon, this particle could decay into an electron-positron pair. It would then be detectable as a narrow peak in the invariant mass spectrum of such pairs, or, depending on its lifetime, by a decay downstream of the production target. The HPS experiment is installed in Hall-B of Jefferson Lab. This article presents the design and performance of one of the two detectors of the experiment, the electromagnetic calorimeter, during the runs performed in 2015-2016. The calorimeter's main purpose is to provide a fast trigger and reduce the copious background from electromagnetic processes through matching with a tracking detector. The detector is a homogeneous calorimeter, made of 442 lead-tungstate (PbWO4) scintillating crystals, each read out by an avalanche photodiode coupled to a custom trans-impedance amplifier.

  14. The HPS electromagnetic calorimeter

    DOE PAGES

    Balossino, I.; Baltzell, N.; Battaglieri, M.; ...

    2017-02-22

    The Heavy Photon Search experiment (HPS) is searching for a new gauge boson, the so-called "heavy photon". Through its kinetic mixing with the Standard Model photon, this particle could decay into an electron-positron pair. It would then be detectable as a narrow peak in the invariant mass spectrum of such pairs, or, depending on its lifetime, by a decay downstream of the production target. The HPS experiment is installed in Hall-B of Jefferson Lab. This article presents the design and performance of one of the two detectors of the experiment, the electromagnetic calorimeter, during the runs performed in 2015-2016. The calorimeter's main purpose is to provide a fast trigger and reduce the copious background from electromagnetic processes through matching with a tracking detector. Finally, the detector is a homogeneous calorimeter, made of 442 lead-tungsten (PbWOmore » $$_4$$) scintillating crystals, each read-out by an avalanche photodiode coupled to a custom trans-impedance amplifier.« less

  15. The HPS electromagnetic calorimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balossino, I.; Baltzell, N.; Battaglieri, M.

    The Heavy Photon Search experiment (HPS) is searching for a new gauge boson, the so-called "heavy photon". Through its kinetic mixing with the Standard Model photon, this particle could decay into an electron-positron pair. It would then be detectable as a narrow peak in the invariant mass spectrum of such pairs, or, depending on its lifetime, by a decay downstream of the production target. The HPS experiment is installed in Hall-B of Jefferson Lab. This article presents the design and performance of one of the two detectors of the experiment, the electromagnetic calorimeter, during the runs performed in 2015-2016. The calorimeter's main purpose is to provide a fast trigger and reduce the copious background from electromagnetic processes through matching with a tracking detector. Finally, the detector is a homogeneous calorimeter, made of 442 lead-tungsten (PbWOmore » $$_4$$) scintillating crystals, each read-out by an avalanche photodiode coupled to a custom trans-impedance amplifier.« less

  16. Real-time imaging of quantum entanglement.

    PubMed

    Fickler, Robert; Krenn, Mario; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton

    2013-01-01

    Quantum Entanglement is widely regarded as one of the most prominent features of quantum mechanics and quantum information science. Although, photonic entanglement is routinely studied in many experiments nowadays, its signature has been out of the grasp for real-time imaging. Here we show that modern technology, namely triggered intensified charge coupled device (ICCD) cameras are fast and sensitive enough to image in real-time the effect of the measurement of one photon on its entangled partner. To quantitatively verify the non-classicality of the measurements we determine the detected photon number and error margin from the registered intensity image within a certain region. Additionally, the use of the ICCD camera allows us to demonstrate the high flexibility of the setup in creating any desired spatial-mode entanglement, which suggests as well that visual imaging in quantum optics not only provides a better intuitive understanding of entanglement but will improve applications of quantum science.

  17. γ-radiation of excited nuclear discrete levels in peripheral heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Korotkikh, V. L.; Chikin, K. A.

    A new process of a nuclear excitation to discrete states in peripheral heavy ion collisions is studied. High-energy photons are emitted by the exited nuclei with energies up to a few tens of GeV at angles of a few hundred microradians with respect to the beam direction. We show that a two-stage process, where an electron-positron pair is produced by virtual photons emitted by nuclei and then the electron or positron excites the nucleus, has a large cross-section. It is equal to about 5 b for CaCa collisions. On the one hand, it produces a significant γ-rays background in the nuclear fragmentation region but, on the other hand, it could be used for monitoring the nuclear beam intensity at the LHC. These secondary nuclear photons could be a good signal for triggering peripheral nuclear collisions.

  18. Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers

    PubMed Central

    Fang, Yin; Ni, Yongliang; Leo, Sin-Yen; Taylor, Curtis; Basile, Vito; Jiang, Peng

    2015-01-01

    Smart shape-memory polymers can memorize and recover their permanent shape in response to an external stimulus (for example, heat). They have been extensively exploited for a wide spectrum of applications ranging from biomedical devices to aerospace morphing structures. However, most of the existing shape-memory polymers are thermoresponsive and their performance is hindered by heat-demanding programming and recovery steps. Although pressure is an easily adjustable process variable such as temperature, pressure-responsive shape-memory polymers are largely unexplored. Here we report a series of shape-memory polymers that enable unusual ‘cold' programming and instantaneous shape recovery triggered by applying a contact pressure at ambient conditions. Moreover, the interdisciplinary integration of scientific principles drawn from two disparate fields—the fast-growing photonic crystal and shape-memory polymer technologies—enables fabrication of reconfigurable photonic crystals and simultaneously provides a simple and sensitive optical technique for investigating the intriguing shape-memory effects at nanoscale. PMID:26074349

  19. Real-Time Imaging of Quantum Entanglement

    PubMed Central

    Fickler, Robert; Krenn, Mario; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton

    2013-01-01

    Quantum Entanglement is widely regarded as one of the most prominent features of quantum mechanics and quantum information science. Although, photonic entanglement is routinely studied in many experiments nowadays, its signature has been out of the grasp for real-time imaging. Here we show that modern technology, namely triggered intensified charge coupled device (ICCD) cameras are fast and sensitive enough to image in real-time the effect of the measurement of one photon on its entangled partner. To quantitatively verify the non-classicality of the measurements we determine the detected photon number and error margin from the registered intensity image within a certain region. Additionally, the use of the ICCD camera allows us to demonstrate the high flexibility of the setup in creating any desired spatial-mode entanglement, which suggests as well that visual imaging in quantum optics not only provides a better intuitive understanding of entanglement but will improve applications of quantum science. PMID:23715056

  20. Bis-reaction-trigger as a strategy to improve the selectivity of fluorescent probes.

    PubMed

    Li, Dan; Cheng, Juan; Wang, Cheng-Kun; Ying, Huazhou; Hu, Yongzhou; Han, Feng; Li, Xin

    2018-06-01

    By the strategy of equipping a fluorophore with two reaction triggers that are tailored to the specific chemistry of peroxynitrite, we have developed a highly selective probe for detecting peroxynitrite in live cells. Sequential response by the two triggers enabled the probe to reveal various degrees of nitrosative stress in live cells via a sensitive emission colour change.

  1. The Topo-trigger: a new concept of stereo trigger system for imaging atmospheric Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    López-Coto, R.; Mazin, D.; Paoletti, R.; Blanch Bigas, O.; Cortina, J.

    2016-04-01

    Imaging atmospheric Cherenkov telescopes (IACTs) such as the Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) telescopes endeavor to reach the lowest possible energy threshold. In doing so the trigger system is a key element. Reducing the trigger threshold is hampered by the rapid increase of accidental triggers generated by ambient light (the so-called Night Sky Background NSB). In this paper we present a topological trigger, dubbed Topo-trigger, which rejects events on the basis of their relative orientation in the telescope cameras. We have simulated and tested the trigger selection algorithm in the MAGIC telescopes. The algorithm was tested using MonteCarlo simulations and shows a rejection of 85% of the accidental stereo triggers while preserving 99% of the gamma rays. A full implementation of this trigger system would achieve an increase in collection area between 10 and 20% at the energy threshold. The analysis energy threshold of the instrument is expected to decrease by ~ 8%. The selection algorithm was tested on real MAGIC data taken with the current trigger configuration and no γ-like events were found to be lost.

  2. Selective and reversible ammonia gas detection with nanoporous film functionalized silicon photonic micro-ring resonator.

    PubMed

    Yebo, Nebiyu A; Sree, Sreeprasanth Pulinthanathu; Levrau, Elisabeth; Detavernier, Christophe; Hens, Zeger; Martens, Johan A; Baets, Roel

    2012-05-21

    Portable, low cost and real-time gas sensors have a considerable potential in various biomedical and industrial applications. For such applications, nano-photonic gas sensors based on standard silicon fabrication technology offer attractive opportunities. Deposition of high surface area nano-porous coatings on silicon photonic sensors is a means to achieve selective, highly sensitive and multiplexed gas detection on an optical chip. Here we demonstrate selective and reversible ammonia gas detection with functionalized silicon-on-insulator optical micro-ring resonators. The micro-ring resonators are coated with acidic nano-porous aluminosilicate films for specific ammonia sensing, which results in a reversible response to NH(3)with selectivity relative to CO(2). The ammonia detection limit is estimated at about 5 ppm. The detectors reach a steady response to NH(3) within 30 and return to their base level within 60 to 90 seconds. The work opens perspectives on development of nano-photonic sensors for real-time, non-invasive, low cost and light weight biomedical and industrial sensing applications.

  3. Chiral current generation in QED by longitudinal photons

    NASA Astrophysics Data System (ADS)

    Acosta Avalo, J. L.; Pérez Rojas, H.

    2016-08-01

    We report the generation of a pseudovector electric current having imbalanced chirality in an electron-positron strongly magnetized gas in QED. It propagates along the external applied magnetic field B as a chiral magnetic effect in QED. It is triggered by a perturbative electric field parallel to B, associated to a pseudovector longitudinal mode propagating along B. An electromagnetic chemical potential was introduced, but our results remain valid even when it vanishes. A nonzero fermion mass was assumed, which is usually considered vanishing in the literature. In the quantum field theory formalism at finite temperature and density, an anomaly relation for the axial current was found for a medium of massive fermions. It bears some analogy to the Adler-Bell-Jackiw anomaly. From the expression for the chiral current in terms of the photon self-energy tensor in a medium, it is obtained that electrons and positrons scattered by longitudinal photons (inside the light cone) contribute to the chiral current, as well as the to pair creation due to longitudinal photons (out of light cone). In the static limit, an electric pseudovector current is obtained in the lowest Landau level.

  4. EDITORIAL: Selected papers from Photon08 Selected papers from Photon08

    NASA Astrophysics Data System (ADS)

    Boardman, Allan D.; Harvey, Andrew; Jones, Julian C.

    2009-05-01

    Photon08 was the fifth in a biennial series of events that began in 2000 and has grown to become the largest optics research meeting in the UK. Two of the co-located constituent conferences of Photon08 were generated by the Institute of Physics. These were the Optics and Photonics Division conference plus QEP-18 organised by the Quantum Electronics and Photonics Group. In addition, Photon08 contained a major exhibition and an Industry Technology Programme. Photon08 was organised by the UK Consortium for Photonics and Optics (UKCPO), whose members comprise all organisations that represent the UK optics community, whether learned societies, professional institutions, trade associations, or regional special interest groups. In hosting the Photon series, it is the objective of the UKCPO to provide a single forum for UK optics. Photon08 was held at Heriot-Watt University, Edinburgh, 26-29 August 2008, and was attended by around 500 people. The international representation was very impressive and the range of topics was mapped onto a wide audience, which embraced every aspect of photonics from quantum information processing to biomedical imaging and technology transfer into the commercial domain. The purpose of this special issue is to present a characteristic selection of the research reported at Photon08. On behalf of the conference, we are very grateful to the editors of Journal of Optics A: Pure and Applied Optics for the opportunity to provide this archival record. The majority of the papers in this special issue follow the theme of measurement and instrumentation. This reflects one of the traditional strengths of the UK community that spans the interests of the Optical Group, the Optics and Photonics Division and the Instrument Science and Technology Group of the Institute of Physics, and the Fringe Analysis Special Interest Group. The other papers illustrate other UK strengths in quantum processing and nonlinear optics. There can be few areas of physics so diverse in application, and of such immediate value in the wider world, as photonics and this is evident from the content of this issue. It is a fascinating example of what Photon08 had to offer. As well as its intrinsic interest, we hope that it will inspire readers to attend Photon10, which will be held in Southampton at the end of August 2010.

  5. The osteogenic response of mesenchymal stem cells to an injectable PLGA bone regeneration system.

    PubMed

    Curran, Judith M; Fawcett, Sandra; Hamilton, Lloyd; Rhodes, Nicholas P; Rahman, Cheryl V; Alexander, Morgan; Shakesheff, Kevin; Hunt, John A

    2013-12-01

    The enrichment of substrates/surfaces with selected functional groups, methyl (-CH3), allyl amine (-NH2), allyl alcohol (-OH) and acrylic acid (-COOH), can be used to trigger mesenchymal stem (MSC) cell differentiation into specified lineages, minimising the need for exogenous biological supplementation. We present the successful translation of this research phenomenon to an injectable two phase injectable PLGA system, utilising plasma techniques, for the repair of bone defects. Modified microspheres were characterised using water contact angel (WCA), X-ray Photon Spectroscopy (XPS) and scanning electron microscopy (SEM). When cultured in contact with MSCs in vitro, the ability of the modified particles, within the 2 phase system, to induce differentiation was characterised using quantitative assays for cell viability and histological analysis for key markers of differentiation throughout the entirety of the three dimensional scaffold. Biological analysis proved that selected modified microspheres have the ability to induce MSC osteogenic (-NH2 modified scaffolds) and chondrogenic (-OH modified scaffolds) differentiation throughout the entirety of the formed scaffold. Therefore optimised plasma modification of microspheres is an effective tool for the production of injectable systems for the repair of bone and cartilage defects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Ultra compact spectrometer apparatus and method using photonic crystals

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Hill, Cory J. (Inventor); Bandara, Sumith V. (Inventor); Gunapala, Sarath D. (Inventor)

    2009-01-01

    The present invention is directed to methods of photonic crystal formation, and to methods and apparatus for using such photonic crystals, particularly in conjunction with detector arrays. Photonic crystal parameters and detector array parameters are compared to optimize the selection and orientation of a photonic crystal shape. A photonic crystal is operatively positioned relative to a plurality of light sensors. The light sensors can be separated by a pitch distance and positioned within one half of the pitch distance of an exit surface of the photonic crystals.

  7. Metallic dielectric photonic crystals and methods of fabrication

    DOEpatents

    Chou, Jeffrey Brian; Kim, Sang-Gook

    2017-12-05

    A metallic-dielectric photonic crystal is formed with a periodic structure defining a plurality of resonant cavities to selectively absorb incident radiation. A metal layer is deposited on the inner surfaces of the resonant cavities and a dielectric material fills inside the resonant cavities. This photonic crystal can be used to selectively absorb broadband solar radiation and then reemit absorbed radiation in a wavelength band that matches the absorption band of a photovoltaic cell. The photonic crystal can be fabricated by patterning a sacrificial layer with a plurality of holes, into which is deposited a supporting material. Removing the rest of the sacrificial layer creates a supporting structure, on which a layer of metal is deposited to define resonant cavities. A dielectric material then fills the cavities to form the photonic crystal.

  8. Stimulated Raman Spectroscopy with Entangled Light: Enhanced Resolution and Pathway Selection

    PubMed Central

    2015-01-01

    We propose a novel femtosecond stimulated Raman spectroscopy (FSRS) technique that combines entangled photons with interference detection to select matter pathways and enhance the resolution. Following photoexcitation by an actinic pump, the measurement uses a pair of broad-band entangled photons; one (signal) interacts with the molecule and together with a third narrow-band pulse induces the Raman process. The other (idler) photon provides a reference for the coincidence measurement. This interferometric photon coincidence counting detection allows one to separately measure the Raman gain and loss signals, which is not possible with conventional probe transmission detection. Entangled photons further provide a unique temporal and spectral detection window that can better resolve fast excited-state dynamics compared to classical and correlated disentangled states of light. PMID:25177427

  9. Metallic dielectric photonic crystals and methods of fabrication

    DOEpatents

    Chou, Jeffrey Brian; Kim, Sang-Gook

    2016-12-20

    A metallic-dielectric photonic crystal is formed with a periodic structure defining a plurality of resonant cavities to selectively absorb incident radiation. A metal layer is deposited on the inner surfaces of the resonant cavities and a dielectric material fills inside the resonant cavities. This photonic crystal can be used to selectively absorb broadband solar radiation and then reemit absorbed radiation in a wavelength band that matches the absorption band of a photovoltaic cell. The photonic crystal can be fabricated by patterning a sacrificial layer with a plurality of holes, into which is deposited a supporting material. Removing the rest of the sacrificial layer creates a supporting structure, on which a layer of metal is deposited to define resonant cavities. A dielectric material then fills the cavities to form the photonic crystal.

  10. Photonic approach to the selective inactivation of viruses with a near-infrared ultrashort pulsed laser

    NASA Astrophysics Data System (ADS)

    Tsen, K. T.; Tsen, Shaw-Wei D.; Fu, Q.; Lindsay, S. M.; Kibler, K.; Jacobs, B.; Wu, T. C.; Li, Zhe; Yan, Hao; Cope, Stephanie; Vaiana, Sara; Kiang, Juliann G.

    2010-02-01

    We report a photonic approach for selective inactivation of viruses with a near-infrared ultrashort pulsed (USP) laser. We demonstrate that this method can selectively inactivate viral particles ranging from nonpathogenic viruses such as M13 bacteriophage, tobacco mosaic virus (TMV) to pathogenic viruses like human papillomavirus (HPV) and human immunodeficiency virus (HIV). At the same time sensitive materials like human Jurkat T cells, human red blood cells, and mouse dendritic cells remain unharmed. Our photonic approach could be used for the disinfection of viral pathogens in blood products and for the treatment of blood-borne viral diseases in the clinic.

  11. Basic concepts and architectural details of the Delphi trigger system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bocci, V.; Booth, P.S.L.; Bozzo, M.

    1995-08-01

    Delphi (DEtector with Lepton, Photon and Hadron Identification) is one of the four experiments of the LEP (Large Electron Positron) collider at CERN. The detector is laid out to provide a nearly 4 {pi} coverage for charged particle tracking, electromagnetic, hadronic calorimetry and extended particle identification. The trigger system consists of four levels. The first two are synchronous with the BCO (Beam Cross Over) and rely on hardwired control units, while the last two are performed asynchronously with respect to the BCO and are driven by the Delphi host computers. The aim of this paper is to give a comprehensivemore » global view of the trigger system architecture, presenting in detail the first two levels, their various hardware components and the latest modifications introduced in order to improve their performance and make more user friendly the whole software user interface.« less

  12. Upgraded Readout Electronics for the ATLAS Liquid Argon Calorimeters at the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Andeen, Timothy R.; ATLAS Liquid Argon Calorimeter Group

    2012-12-01

    The ATLAS liquid-argon calorimeters produce a total of 182,486 signals which are digitized and processed by the front-end and back-end electronics at every triggered event. In addition, the front-end electronics sum analog signals to provide coarsely grained energy sums, called trigger towers, to the first-level trigger system, which is optimized for nominal LHC luminosities. However, the pile-up background expected during the high luminosity phases of the LHC will be increased by factors of 3 to 7. An improved spatial granularity of the trigger primitives is therefore proposed in order to improve the identification performance for trigger signatures, like electrons or photons, at high background rejection rates. For the first upgrade phase in 2018, new Liquid Argon Trigger Digitizer Boards are being designed to receive higher granularity signals, digitize them on detector and send them via fast optical links to a new, off-detector digital processing system. The digital processing system applies digital filtering and identifies significant energy depositions. The refined trigger primitives are then transmitted to the first level trigger system to extract improved trigger signatures. The general concept of the upgraded liquid-argon calorimeter readout together with the various electronics components to be developed for such a complex system is presented. The research activities and architectural studies undertaken by the ATLAS Liquid Argon Calorimeter Group are described, particularly details of the on-going design of mixed-signal front-end electronics, of radiation tolerant optical-links, and of the high-speed off-detector digital processing system.

  13. Effect of background dielectric on TE-polarized photonic bandgap of metallodielectric photonic crystals using Dirichlet-to-Neumann map method.

    PubMed

    Sedghi, Aliasghar; Rezaei, Behrooz

    2016-11-20

    Using the Dirichlet-to-Neumann map method, we have calculated the photonic band structure of two-dimensional metallodielectric photonic crystals having the square and triangular lattices of circular metal rods in a dielectric background. We have selected the transverse electric mode of electromagnetic waves, and the resulting band structures showed the existence of photonic bandgap in these structures. We theoretically study the effect of background dielectric on the photonic bandgap.

  14. Observation of valley-selective microwave transport in photonic crystals

    NASA Astrophysics Data System (ADS)

    Ye, Liping; Yang, Yuting; Hong Hang, Zhi; Qiu, Chunyin; Liu, Zhengyou

    2017-12-01

    Recently, the discrete valley degree of freedom has attracted extensive attention in condensed matter physics. Here, we present an experimental observation of the intriguing valley transport for microwaves in photonic crystals, including the bulk valley transport and the valley-projected edge modes along the interface separating different photonic insulating phases. For both cases, valley-selective excitations are realized by a point-like chiral source located at proper locations inside the samples. Our results are promising for exploring unprecedented routes to manipulate microwaves.

  15. Metal nanoparticles triggered persistent negative photoconductivity in silk protein hydrogels

    NASA Astrophysics Data System (ADS)

    Gogurla, Narendar; Sinha, Arun K.; Naskar, Deboki; Kundu, Subhas C.; Ray, Samit K.

    2016-03-01

    Silk protein is a natural biopolymer with intriguing properties, which are attractive for next generation bio-integrated electronic and photonic devices. Here, we demonstrate the negative photoconductive response of Bombyx mori silk protein fibroin hydrogels, triggered by Au nanoparticles. The room temperature electrical conductivity of Au-silk hydrogels is found to be enhanced with the incorporation of Au nanoparticles over the control sample, due to the increased charge transporting networks within the hydrogel. Au-silk lateral photoconductor devices show a unique negative photoconductive response under an illumination of 325 nm, with excitation energy higher than the characteristic metal plasmon resonance band. The enhanced photoconductance yield in the hydrogels over the silk protein is attributed to the photo-oxidation of amino groups in the β-pleated sheets of the silk around the Au nanoparticles followed by the breaking of charge transport networks. The Au-silk nanocomposite does not show any photoresponse under visible illumination because of the localization of excited charges in Au nanoparticles. The negative photoconductive response of hybrid Au-silk under UV illumination may pave the way towards the utilization of silk for future bio-photonic devices using metal nanoparticle platforms.

  16. Trigger design for a gamma ray detector of HIRFL-ETF

    NASA Astrophysics Data System (ADS)

    Du, Zhong-Wei; Su, Hong; Qian, Yi; Kong, Jie

    2013-10-01

    The Gamma Ray Array Detector (GRAD) is one subsystem of HIRFL-ETF (the External Target Facility (ETF) of the Heavy Ion Research Facility in Lanzhou (HIRFL)). It is capable of measuring the energy of gamma-rays with 1024 CsI scintillators in in-beam nuclear experiments. The GRAD trigger should select the valid events and reject the data from the scintillators which are not hit by the gamma-ray. The GRAD trigger has been developed based on the Field Programmable Gate Array (FPGAs) and PXI interface. It makes prompt trigger decisions to select valid events by processing the hit signals from the 1024 CsI scintillators. According to the physical requirements, the GRAD trigger module supplies 12-bit trigger information for the global trigger system of ETF and supplies a trigger signal for data acquisition (DAQ) system of GRAD. In addition, the GRAD trigger generates trigger data that are packed and transmitted to the host computer via PXI bus to be saved for off-line analysis. The trigger processing is implemented in the front-end electronics of GRAD and one FPGA of the GRAD trigger module. The logic of PXI transmission and reconfiguration is implemented in another FPGA of the GRAD trigger module. During the gamma-ray experiments, the GRAD trigger performs reliably and efficiently. The function of GRAD trigger is capable of satisfying the physical requirements.

  17. Full color stop bands in hybrid organic/inorganic block copolymer photonic gels by swelling-freezing.

    PubMed

    Kang, Changjoon; Kim, Eunjoo; Baek, Heeyoel; Hwang, Kyosung; Kwak, Dongwoo; Kang, Youngjong; Thomas, Edwin L

    2009-06-10

    We report a facile way of fabricating hybrid organic/inorganic photonic gels by selective swelling and subsequent infiltration of SiO(2) into one type of lamellar microdomain previously self-assembled from modest-molecular-weight block copolymers. Transparent, in-plane lamellar films were first prepared by assembly of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP), and subsequently the P2VP domains were swollen with a selective solvent, methanol. The swollen structures were then fixated by synthesizing SiO(2) nanoparticles within P2VP domains. The resulting frozen photonic gels (f-photonic gels) exhibited strong reflective colors with stop bands across the visible region of wavelengths.

  18. Application of Fault Management Theory to the Quantitive Selection of a Launch Vehicle Abort Trigger Suite

    NASA Technical Reports Server (NTRS)

    Lo, Yunnhon; Johnson, Stephen B.; Breckenridge, Jonathan T.

    2014-01-01

    SHM/FM theory has been successfully applied to the selection of the baseline set Abort Triggers for the NASA SLS center dot Quantitative assessment played a useful role in the decision process ? M&FM, which is new within NASA MSFC, required the most "new" work, as this quantitative analysis had never been done before center dot Required development of the methodology and tool to mechanize the process center dot Established new relationships to the other groups ? The process is now an accepted part of the SLS design process, and will likely be applied to similar programs in the future at NASA MSFC ? Future improvements center dot Improve technical accuracy ?Differentiate crew survivability due to an abort, vs. survivability even no immediate abort occurs (small explosion with little debris) ?Account for contingent dependence of secondary triggers on primary triggers ?Allocate "? LOC Benefit" of each trigger when added to the previously selected triggers. center dot Reduce future costs through the development of a specialized tool ? Methodology can be applied to any manned/unmanned vehicle, in space or terrestrial

  19. Topological photonic crystal with ideal Weyl points

    NASA Astrophysics Data System (ADS)

    Wang, Luyang; Jian, Shao-Kai; Yao, Hong

    Weyl points in three-dimensional photonic crystals behave as monopoles of Berry flux in momentum space. Here, based on symmetry analysis, we show that a minimal number of symmetry-related Weyl points can be realized in time-reversal invariant photonic crystals. We propose to realize these ``ideal'' Weyl points in modified double-gyroid photonic crystals, which is confirmed by our first-principle photonic band-structure calculations. Photonic crystals with ideal Weyl points are qualitatively advantageous in applications such as angular and frequency selectivity, broadband invisibility cloaking, and broadband 3D-imaging.

  20. Application of Fault Management Theory to the Quantitative Selection of a Launch Vehicle Abort Trigger Suite

    NASA Technical Reports Server (NTRS)

    Lo, Yunnhon; Johnson, Stephen B.; Breckenridge, Jonathan T.

    2014-01-01

    This paper describes the quantitative application of the theory of System Health Management and its operational subset, Fault Management, to the selection of abort triggers for a human-rated launch vehicle, the United States' National Aeronautics and Space Administration's (NASA) Space Launch System (SLS). The results demonstrate the efficacy of the theory to assess the effectiveness of candidate failure detection and response mechanisms to protect humans from time-critical and severe hazards. The quantitative method was successfully used on the SLS to aid selection of its suite of abort triggers.

  1. Application of Fault Management Theory to the Quantitative Selection of a Launch Vehicle Abort Trigger Suite

    NASA Technical Reports Server (NTRS)

    Lo, Yunnhon; Johnson, Stephen B.; Breckenridge, Jonathan T.

    2014-01-01

    This paper describes the quantitative application of the theory of System Health Management and its operational subset, Fault Management, to the selection of Abort Triggers for a human-rated launch vehicle, the United States' National Aeronautics and Space Administration's (NASA) Space Launch System (SLS). The results demonstrate the efficacy of the theory to assess the effectiveness of candidate failure detection and response mechanisms to protect humans from time-critical and severe hazards. The quantitative method was successfully used on the SLS to aid selection of its suite of Abort Triggers.

  2. Photonically engineered incandescent emitter

    DOEpatents

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2003-08-26

    A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

  3. Photonically Engineered Incandescent Emitter

    DOEpatents

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2005-03-22

    A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

  4. Viability of Cladosporium herbarum spores under 157 nm laser and vacuum ultraviolet irradiation, low temperature (10 K) and vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarantopoulou, E., E-mail: esarant@eie.gr; Stefi, A.; Kollia, Z.

    Ultraviolet photons can damage microorganisms, which rarely survive prolonged irradiation. In addition to the need for intact DNA, cell viability is directly linked to the functionality of the cell wall and membrane. In this work, Cladosporium herbarum spore monolayers exhibit high viability (7%) when exposed to 157 nm laser irradiation (412 kJm⁻²) or vacuum-ultraviolet irradiation (110–180 nm) under standard pressure and temperature in a nitrogen atmosphere. Spore viability can be determined by atomic-force microscopy, nano-indentation, mass, μ-Raman and attenuated reflectance Fourier-transform far-infrared spectroscopies and DNA electrophoresis. Vacuum ultraviolet photons cause molecular damage to the cell wall, but radiation resistance inmore » spores arises from the activation of a photon-triggered signaling reaction, expressed via the exudation of intracellular substances, which, in combination with the low penetration depth of vacuum-ultraviolet photons, shields DNA from radiation. Resistance to phototoxicity under standard conditions was assessed, as was resistance to additional environmental stresses, including exposure in a vacuum, under different rates of change of pressure during pumping time and low (10 K) temperatures. Vacuum conditions were far more destructive to spores than vacuum-ultraviolet irradiation, and UV-B photons were two orders of magnitude more damaging than vacuum-ultraviolet photons. The viability of irradiated spores was also enhanced at 10 K. This work, in addition to contributing to the photonic control of the viability of microorganisms exposed under extreme conditions, including decontamination of biological warfare agents, outlines the basis for identifying bio-signaling in vivo using physical methodologies.« less

  5. Method and apparatus for signal processing in a sensor system for use in spectroscopy

    DOEpatents

    O'Connor, Paul [Bellport, NY; DeGeronimo, Gianluigi [Nesconset, NY; Grosholz, Joseph [Natrona Heights, PA

    2008-05-27

    A method for processing pulses arriving randomly in time on at least one channel using multiple peak detectors includes asynchronously selecting a non-busy peak detector (PD) in response to a pulse-generated trigger signal, connecting the channel to the selected PD in response to the trigger signal, and detecting a pulse peak amplitude. Amplitude and time of arrival data are output in first-in first-out (FIFO) sequence. An apparatus includes trigger comparators to generate the trigger signal for the pulse-receiving channel, PDs, a switch for connecting the channel to the selected PD, and logic circuitry which maintains the write pointer. Also included, time-to-amplitude converters (TACs) convert time of arrival to analog voltage and an analog multiplexer provides FIFO output. A multi-element sensor system for spectroscopy includes detector elements, channels, trigger comparators, PDs, a switch, and a logic circuit with asynchronous write pointer. The system includes TACs, a multiplexer and analog-to-digital converter.

  6. X-Ray Diffraction Apparatus

    NASA Technical Reports Server (NTRS)

    Blake, David F. (Inventor); Bryson, Charles (Inventor); Freund, Friedmann (Inventor)

    1996-01-01

    An x-ray diffraction apparatus for use in analyzing the x-ray diffraction pattern of a sample is introduced. The apparatus includes a beam source for generating a collimated x-ray beam having one or more discrete x-ray energies, a holder for holding the sample to be analyzed in the path of the beam, and a charge-coupled device having an array of pixels for detecting, in one or more selected photon energy ranges, x-ray diffraction photons produced by irradiating such a sample with said beam. The CCD is coupled to an output unit which receives input information relating to the energies of photons striking each pixel in the CCD, and constructs the diffraction pattern of photons within a selected energy range striking the CCD.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvioli, M.; Frankfurt, L.; Guzey, V.

    Here, we model effects of color fluctuations (CFs) in the light-cone photon wave function and for the first time make predictions for the distribution over the number of wounded nucleons ν in the inelastic photon–nucleus scattering. We show that CFs lead to a dramatic enhancement of this distribution at ν=1 and large ν>10. We also study the implications of different scales and CFs in the photon wave function on the total transverse energy ΣE T and other observables in inelastic γA scattering with different triggers. Our predictions can be tested in proton–nucleus and nucleus–nucleus ultraperipheral collisions at the LHC andmore » will help to map CFs, whose first indications have already been observed at the LHC.« less

  8. Fermi GBM Observations of Terrestrial Gamma Flashes

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Briggs, M. S.; Fishman, G. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R.; Kippen, R. M.; von Kienlin, A.; Dwyer, J. R.; Smith, D. M.; hide

    2010-01-01

    In its first two years of operation, the Fermi Gamma Ray Burst Monitor (GBM) has observed more than 77 Terrestrial Gamma Flashes (TGFs). The thick Bismuth Germanate (BGO) detectors are excellent for TGF spectroscopy, having a high probability of recording the full energy of an incident photon, spanning a broad energy range from 150 keV to 40 MeV, and recording a large number of photons per TGF. Correlations between GBM TGF triggers and lightning sferics detected with the World-Wide Lightning Location Network indicate that TGFs and lightning are simultaneous to within tens of microseconds. The energy spectra of some TGFs have strong 511 keV positron annihilation lines, indicating that these TGFs contain a large fraction of positrons

  9. Precision Compton polarimetry for the QWeak experiment at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wouter Deconinck

    2011-10-01

    The Q Weak experiment, scheduled to run in 2010-2012 in Hall C at Jefferson Lab, will measure the parity-violating asymmetry in elastic electron-proton scattering at 1.1 GeV to determine the weak charge of the proton, Q{sub Weak}{sup p} = 1 - 4 sin{sup 2} {theta}{sub W}. The dominant experimental systematic uncertainty will be the knowledge of the electron beam polarization. With a new Compton polarimeter we aim to measure the beam polarization with a statistical precision of 1% in one hour and a systematic uncertainty of 1%. A low-gain Fabry-Perot cavity laser system provides the circularly polarized photons. The scatteredmore » electrons are detected in radiation-hard diamond strip detectors, and form the basis for a coincidence trigger using distributed logic boards. The photon detector uses a fast, undoped CsI crystal with simultaneous sampling and integrating read-out. Coincident events are used to cross-calibrate the photon and electron detectors.« less

  10. Human infrared vision is triggered by two-photon chromophore isomerization

    PubMed Central

    Palczewska, Grazyna; Vinberg, Frans; Stremplewski, Patrycjusz; Bircher, Martin P.; Salom, David; Komar, Katarzyna; Zhang, Jianye; Cascella, Michele; Wojtkowski, Maciej; Kefalov, Vladimir J.; Palczewski, Krzysztof

    2014-01-01

    Vision relies on photoactivation of visual pigments in rod and cone photoreceptor cells of the retina. The human eye structure and the absorption spectra of pigments limit our visual perception of light. Our visual perception is most responsive to stimulating light in the 400- to 720-nm (visible) range. First, we demonstrate by psychophysical experiments that humans can perceive infrared laser emission as visible light. Moreover, we show that mammalian photoreceptors can be directly activated by near infrared light with a sensitivity that paradoxically increases at wavelengths above 900 nm, and display quadratic dependence on laser power, indicating a nonlinear optical process. Biochemical experiments with rhodopsin, cone visual pigments, and a chromophore model compound 11-cis-retinyl-propylamine Schiff base demonstrate the direct isomerization of visual chromophore by a two-photon chromophore isomerization. Indeed, quantum mechanics modeling indicates the feasibility of this mechanism. Together, these findings clearly show that human visual perception of near infrared light occurs by two-photon isomerization of visual pigments. PMID:25453064

  11. Nanostructured Porous Silicon: The Winding Road from Photonics to Cell Scaffolds – A Review

    PubMed Central

    Hernández-Montelongo, Jacobo; Muñoz-Noval, Alvaro; García-Ruíz, Josefa Predestinación; Torres-Costa, Vicente; Martín-Palma, Raul J.; Manso-Silván, Miguel

    2015-01-01

    For over 20 years, nanostructured porous silicon (nanoPS) has found a vast number of applications in the broad fields of photonics and optoelectronics, triggered by the discovery of its photoluminescent behavior in 1990. Besides, its biocompatibility, biodegradability, and bioresorbability make porous silicon (PSi) an appealing biomaterial. These properties are largely a consequence of its particular susceptibility to oxidation, leading to the formation of silicon oxide, which is readily dissolved by body fluids. This paper reviews the evolution of the applications of PSi and nanoPS from photonics through biophotonics, to their use as cell scaffolds, whether as an implantable substitute biomaterial, mainly for bony and ophthalmological tissues, or as an in vitro cell conditioning support, especially for pluripotent cells. For any of these applications, PSi/nanoPS can be used directly after synthesis from Si wafers, upon appropriate surface modification processes, or as a composite biomaterial. Unedited studies of fluorescently active PSi structures for cell culture are brought to evidence the margin for new developments. PMID:26029688

  12. Upconversion-Triggered Charge Separation in Polymer Semiconductors.

    PubMed

    Jang, Yu Jin; Kim, Eunah; Ahn, Seonghyeon; Chung, Kyungwha; Kim, Jihyeon; Kim, Heejun; Wang, Huan; Lee, Jiseok; Kim, Dong-Wook; Kim, Dong Ha

    2017-01-19

    Upconversion is a unique optical property that is driven by a sequential photon pumping and generation of higher energy photons in a consecutive manner. The efficiency improvement in photovoltaic devices can be achieved when upconverters are integrated since upconverters contribute to the generation of extra photons. Despite numerous experimental studies confirming the relationship, fundamental explanations for a real contribution of upconversion to photovoltaic efficiency are still in demand. In this respect, we suggest a new approach to visualize the upconversion event in terms of surface photovoltage (SPV) by virtue of Kelvin probe force microscopy (KPFM). One of the most conventional polymer semiconductors, poly(3-hexyl thiophene) (P3HT), is employed as a sensitizer to generate charge carriers by upconverted light. KPFM measurements reveal that the light upconversion enabled the formation of charge carriers in P3HT, resulting in large SPV of -54.9 mV. It confirms that the energy transfer from upconverters to P3HT can positively impact the device performance in organic solar cells (OSCs).

  13. Endoplasmic Reticulum-Localized Two-Photon-Absorbing Boron Dipyrromethenes as Advanced Photosensitizers for Photodynamic Therapy.

    PubMed

    Zhou, Yimin; Cheung, Ying-Kit; Ma, Chao; Zhao, Shirui; Gao, Di; Lo, Pui-Chi; Fong, Wing-Ping; Wong, Kam Sing; Ng, Dennis K P

    2018-05-10

    Two advanced boron dipyrromethene (BODIPY) based photosensitizers have been synthesized and characterized. With a glibenclamide analogous moiety, these compounds can localize in the endoplasmic reticulum (ER) of HeLa human cervical carcinoma cells and HepG2 human hepatocarcinoma cells. The BODIPY π skeleton is conjugated with two styryl or carbazolylethenyl groups, which can substantially red-shift the Q-band absorption and fluorescence emission and impart two-photon absorption (TPA) property to the chromophores. The TPA cross section of the carbazole-containing analogue reaches a value of 453 GM at 1010 nm. These compounds also behave as singlet oxygen generators with high photostability. Upon irradiation at λ > 610 nm, these photosensitizers cause photocytotoxicity to these two cell lines with IC 50 values down to 0.09 μM, for which the cell death is triggered mainly by ER stress. The two-photon photodynamic activity of the distyryl derivative upon excitation at λ = 800 nm has also been demonstrated.

  14. Single photon detection and timing in the Lunar Laser Ranging Experiment.

    NASA Technical Reports Server (NTRS)

    Poultney, S. K.

    1972-01-01

    The goals of the Lunar Laser Ranging Experiment lead to the need for the measurement of a 2.5 sec time interval to an accuracy of a nanosecond or better. The systems analysis which included practical retroreflector arrays, available laser systems, and large telescopes led to the necessity of single photon detection. Operation under all background illumination conditions required auxiliary range gates and extremely narrow spectral and spatial filters in addition to the effective gate provided by the time resolution. Nanosecond timing precision at relatively high detection efficiency was obtained using the RCA C31000F photomultiplier and Ortec 270 constant fraction of pulse-height timing discriminator. The timing accuracy over the 2.5 sec interval was obtained using a digital interval with analog vernier ends. Both precision and accuracy are currently checked internally using a triggerable, nanosecond light pulser. Future measurements using sub-nanosecond laser pulses will be limited by the time resolution of single photon detectors.

  15. Cascaded emission of single photons from the biexciton in monolayered WSe2

    PubMed Central

    He, Yu-Ming; Iff, Oliver; Lundt, Nils; Baumann, Vasilij; Davanco, Marcelo; Srinivasan, Kartik; Höfling, Sven; Schneider, Christian

    2016-01-01

    Monolayers of transition metal dichalcogenide materials emerged as a new material class to study excitonic effects in solid state, as they benefit from enormous Coulomb correlations between electrons and holes. Especially in WSe2, sharp emission features have been observed at cryogenic temperatures, which act as single photon sources. Tight exciton localization has been assumed to induce an anharmonic excitation spectrum; however, the evidence of the hypothesis, namely the demonstration of a localized biexciton, is elusive. Here we unambiguously demonstrate the existence of a localized biexciton in a monolayer of WSe2, which triggers an emission cascade of single photons. The biexciton is identified by its time-resolved photoluminescence, superlinearity and distinct polarization in micro-photoluminescence experiments. We evidence the cascaded nature of the emission process in a cross-correlation experiment, which yields a strong bunching behaviour. Our work paves the way to a new generation of quantum optics experiments with two-dimensional semiconductors. PMID:27830703

  16. Deterministic Integration of Quantum Dots into on-Chip Multimode Interference Beamsplitters Using in Situ Electron Beam Lithography.

    PubMed

    Schnauber, Peter; Schall, Johannes; Bounouar, Samir; Höhne, Theresa; Park, Suk-In; Ryu, Geun-Hwan; Heindel, Tobias; Burger, Sven; Song, Jin-Dong; Rodt, Sven; Reitzenstein, Stephan

    2018-04-11

    The development of multinode quantum optical circuits has attracted great attention in recent years. In particular, interfacing quantum-light sources, gates, and detectors on a single chip is highly desirable for the realization of large networks. In this context, fabrication techniques that enable the deterministic integration of preselected quantum-light emitters into nanophotonic elements play a key role when moving forward to circuits containing multiple emitters. Here, we present the deterministic integration of an InAs quantum dot into a 50/50 multimode interference beamsplitter via in situ electron beam lithography. We demonstrate the combined emitter-gate interface functionality by measuring triggered single-photon emission on-chip with g (2) (0) = 0.13 ± 0.02. Due to its high patterning resolution as well as spectral and spatial control, in situ electron beam lithography allows for integration of preselected quantum emitters into complex photonic systems. Being a scalable single-step approach, it paves the way toward multinode, fully integrated quantum photonic chips.

  17. Superlinear threshold detectors in quantum cryptography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lydersen, Lars; Maroey, Oystein; Skaar, Johannes

    2011-09-15

    We introduce the concept of a superlinear threshold detector, a detector that has a higher probability to detect multiple photons if it receives them simultaneously rather than at separate times. Highly superlinear threshold detectors in quantum key distribution systems allow eavesdropping the full secret key without being revealed. Here, we generalize the detector control attack, and analyze how it performs against quantum key distribution systems with moderately superlinear detectors. We quantify the superlinearity in superconducting single-photon detectors based on earlier published data, and gated avalanche photodiode detectors based on our own measurements. The analysis shows that quantum key distribution systemsmore » using detector(s) of either type can be vulnerable to eavesdropping. The avalanche photodiode detector becomes superlinear toward the end of the gate. For systems expecting substantial loss, or for systems not monitoring loss, this would allow eavesdropping using trigger pulses containing less than 120 photons per pulse. Such an attack would be virtually impossible to catch with an optical power meter at the receiver entrance.« less

  18. g8: Physics with Linearly-Polarized Photons in Hall B of JLab

    NASA Astrophysics Data System (ADS)

    Cole, Philip L.

    2001-11-01

    The set of experiments forming the g8 run in Hall B took place this past summer (6/4/01-8/13/01) in Hall B of Jefferson Lab. These experiments make use of a beam of linearly-polarized photons produced through coherent bremsstrahlung and represent the first time such a probe has been employed at Jefferson Lab. Several new and upgraded Hall-B beamline devices were commissioned prior to the production running of g8. The scientific purpose of g8 is to improve the understanding of the underlying symmetry of the quark degrees of freedom in the nucleon, the nature of the parity exchange between the incident photon and the target nucleon, and the mechanism of associated strangeness production in electromagnetic reactions. With the high-quality beam of the tagged and collimated linearly-polarized photons and the nearly complete angular coverage of the Hall-B spectrometer, we will extract the differential cross sections and polarization observables for the photoproduction of vector mesons and kaons at photon energies ranging between 1.9 and 2.1 GeV. We collected over 1.2 trillion triggers. After data cuts, we expect to have 500 times the world's data set on rhos and omegas produced via a beam of linearly-polarized photons. A report on the results of the commissioning of the beamline devices and the progress of the analysis of the g8 run will be presented.

  19. Search for supersymmetry in electroweak production with photons and large missing transverse energy in pp collisions at √{ s} = 8TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Van Parijs, I.; Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Musich, M.; Nuttens, C.; Perrini, L.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; De Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Leggat, D.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Abdelalim, A. A.; Awad, A.; Mahrous, A.; Radi, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Peltola, T.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Filipovic, N.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Schulz, J.; Verlage, T.; Weber, H.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Borras, K.; Burgmeier, A.; Campbell, A.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Scharf, C.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Mal, P.; Mandal, K.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Jain, Sa.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Kapoor, A.; Kothekar, K.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Cappello, G.; Chiorboli, M.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gonella, F.; Gozzelino, A.; Gulmini, M.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Zanetti, A.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.; Song, S.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Chadeeva, M.; Chistov, R.; Danilov, M.; Rusinov, V.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras De Saa, J. R.; De Castro Manzano, P.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Castello, R.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Piparo, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. f.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Eskut, E.; Gecit, F. H.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Onengut, G.; Ozcan, M.; Ozdemir, K.; Polatoz, A.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Futyan, D.; Hall, G.; Iles, G.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Alimena, J.; Berry, E.; Cutts, D.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Jesus, O.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Syarif, R.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Paneva, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Derdzinski, M.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Osherson, M.; Roskes, J.; Sady, A.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P., III; Majumder, D.; Malek, M.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Dahmes, B.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bartek, R.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Knowlton, D.; Kravchenko, I.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Bhattacharya, S.; Hahn, K. A.; Kubik, A.; Low, J. F.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Zuranski, A.; Malik, S.; Barker, A.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Jung, K.; Kumar, A.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Petrillo, G.; Tan, P.; Verzetti, M.; Chou, J. P.; Contreras-Campana, E.; Ferencek, D.; Gershtein, Y.; Halkiadakis, E.; Heindl, M.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Krutelyov, V.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Verwilligen, P.; Woods, N.

    2016-08-01

    Results are reported from a search for supersymmetry with gauge-mediated supersymmetry breaking in electroweak production. Final states with photons and large missing transverse energy (ETmiss) were examined. The data sample was collected in pp collisions at √{ s} = 8TeV with the CMS detector at the LHC and corresponds to 7.4fb-1. The analysis focuses on scenarios in which the lightest neutralino has bino- or wino-like components, resulting in decays to photons and gravitinos, where the gravitinos escape undetected. The data were obtained using a specially designed trigger with dedicated low thresholds, providing good sensitivity to signatures with photons, ETmiss, and low hadronic energy. No excess of events over the standard model expectation is observed. The results are interpreted using the model of general gauge mediation. With the wino mass fixed at 10GeV above that of the bino, wino masses below 710GeV are excluded at 95% confidence level. Constraints are also set in the context of two simplified models, for which the analysis sets the lowest cross section limits on the electroweak production of supersymmetric particles.

  20. THE ROLE OF KELVIN–HELMHOLTZ INSTABILITY FOR PRODUCING LOOP-TOP HARD X-RAY SOURCES IN SOLAR FLARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Xia; Yuan, Ding; Xia, Chun

    We propose a model for the formation of loop-top hard X-ray (HXR) sources in solar flares through the inverse Compton mechanism, scattering the surrounding soft X-ray (SXR) photons to higher energy HXR photons. We simulate the consequences of a flare-driven energy deposit in the upper chromosphere in the impulsive phase of single loop flares. The consequent chromosphere evaporation flows from both footpoints reach speeds up to hundreds of kilometers per second, and we demonstrate how this triggers Kelvin–Helmholtz instability (KHI) in the loop top, under mildly asymmetric conditions, or more toward the loop flank for strongly asymmetric cases. The KHImore » vortices further fragment the magnetic topology into multiple magnetic islands and current sheets, and the hot plasma within leads to a bright loop-top SXR source region. We argue that the magnetohydrodynamic turbulence that appears at the loop apex could be an efficient accelerator of non-thermal particles, which the island structures can trap at the loop-top. These accelerated non-thermal particles can upscatter the surrounding thermal SXR photons emitted by the extremely hot evaporated plasma to HXR photons.« less

  1. Pegylated and nanoparticle-conjugated sulfonium salt photo triggers necrotic cell death.

    PubMed

    Fadhel, Alaa A; Yue, Xiling; Ghazvini Zadeh, Ebrahim H; Bondar, Mykhailo V; Belfield, Kevin D

    Photodynamic therapy (PDT) processes involving the production of singlet oxygen face the issue of oxygen concentration dependency. Despite high oxygen delivery, a variety of properties related to metabolism and vascular morphology in cancer cells result in hypoxic environments, resulting in limited effectiveness of such therapies. An alternative oxygen-independent agent whose cell cytotoxicity can be remotely controlled by light may allow access to treatment of hypoxic tumors. Toward that end, we developed and tested both polyethylene glycol (PEG)-functionalized and hydrophilic silica nanoparticle (SiNP)-enriched photoacid generator (PAG) as a nontraditional PDT agent to effectively induce necrotic cell death in HCT-116 cells. Already known for applications in lithography and cationic polymerization, our developed oxygen-independent PDT, whether free or highly monodispersed on SiNPs, generates acid when a one-photon (1P) or two-photon (2P) excitation source is used, thus potentially permitting deep tissue treatment. Our study shows that when conjugated to SiNPs with protruding amine functionalities (SiNP-PAG9), such atypical PDT agents can be effectively delivered into HCT-116 cells and compartmentalize exclusively in lysosomes and endosomes. Loss of cell adhesion and cell swelling are detected when an excitation source is applied, suggesting that SiNP-PAG9, when excited via near-infrared 2P absorption (a subject of future investigation), can be used as a delivery system to selectively induce cell death in oxygen-deprived optically thick tissue.

  2. Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity

    NASA Astrophysics Data System (ADS)

    Xie, Yiwei; Geng, Zihan; Zhuang, Leimeng; Burla, Maurizio; Taddei, Caterina; Hoekman, Marcel; Leinse, Arne; Roeloffzen, Chris G. H.; Boller, Klaus-J.; Lowery, Arthur J.

    2017-12-01

    Integrated optical signal processors have been identified as a powerful engine for optical processing of microwave signals. They enable wideband and stable signal processing operations on miniaturized chips with ultimate control precision. As a promising application, such processors enables photonic implementations of reconfigurable radio frequency (RF) filters with wide design flexibility, large bandwidth, and high-frequency selectivity. This is a key technology for photonic-assisted RF front ends that opens a path to overcoming the bandwidth limitation of current digital electronics. Here, the recent progress of integrated optical signal processors for implementing such RF filters is reviewed. We highlight the use of a low-loss, high-index-contrast stoichiometric silicon nitride waveguide which promises to serve as a practical material platform for realizing high-performance optical signal processors and points toward photonic RF filters with digital signal processing (DSP)-level flexibility, hundreds-GHz bandwidth, MHz-band frequency selectivity, and full system integration on a chip scale.

  3. Photonic technology revolution influence on the defence area

    NASA Astrophysics Data System (ADS)

    Galas, Jacek; Litwin, Dariusz; Błocki, Narcyz; Daszkiewicz, Marek

    2017-10-01

    Revolutionary progress in the photonic technology provides the ability to develop military systems of new properties not possible to obtain with the use of classical technologies. In recent years, this progress has resulted in developing advanced, complex, multifunctional and relatively cheap Photonic Integrated Circuits (PIC) or Hybrid Photonics Circuits (HPC) built of a collection of standardized optical, optoelectronic and photonic components. This idea is similar to the technology of Electronic Integrated Circuits, which has revolutionized the microelectronic market. The novel approach to photonic technology is now revolutionizing the photonics' market. It simplifies the photonics technology and enables creation of technological centers for designing, development and production of advanced optical and photonic systems in the EU and other countries. This paper presents some selected photonic technologies and their impact on such defense systems like radars, radiolocation, telecommunication, and radio-communication systems.

  4. Multifunctional biocompatible graphene oxide quantum dots decorated magnetic nanoplatform for efficient capture and two-photon imaging of rare tumor cells.

    PubMed

    Shi, Yongliang; Pramanik, Avijit; Tchounwou, Christine; Pedraza, Francisco; Crouch, Rebecca A; Chavva, Suhash Reddy; Vangara, Aruna; Sinha, Sudarson Sekhar; Jones, Stacy; Sardar, Dhiraj; Hawker, Craig; Ray, Paresh Chandra

    2015-05-27

    Circulating tumor cells (CTCs) are extremely rare cells in blood containing billions of other cells. The selective capture and identification of rare cells with sufficient sensitivity is a real challenge. Driven by this need, this manuscript reports the development of a multifunctional biocompatible graphene oxide quantum dots (GOQDs) coated, high-luminescence magnetic nanoplatform for the selective separation and diagnosis of Glypican-3 (GPC3)-expressed Hep G2 liver cancer tumor CTCs from infected blood. Experimental data show that an anti-GPC3-antibody-attached multifunctional nanoplatform can be used for selective Hep G2 hepatocellular carcinoma tumor cell separation from infected blood containing 10 tumor cells/mL of blood in a 15 mL sample. Reported data indicate that, because of an extremely high two-photon absorption cross section (40530 GM), an anti-GPC3-antibody-attached GOQDs-coated magnetic nanoplatform can be used as a two-photon luminescence platform for selective and very bright imaging of a Hep G2 tumor cell in a biological transparency window using 960 nm light. Experimental results with nontargeted GPC3(-) and SK-BR-3 breast cancer cells show that multifunctional-nanoplatform-based cell separation, followed by two-photon imaging, is highly selective for Hep G2 hepatocellular carcinoma tumor cells.

  5. Discriminating electromagnetic radiation based on angle of incidence

    DOEpatents

    Hamam, Rafif E.; Bermel, Peter; Celanovic, Ivan; Soljacic, Marin; Yeng, Adrian Y. X.; Ghebrebrhan, Michael; Joannopoulos, John D.

    2015-06-16

    The present invention provides systems, articles, and methods for discriminating electromagnetic radiation based upon the angle of incidence of the electromagnetic radiation. In some cases, the materials and systems described herein can be capable of inhibiting reflection of electromagnetic radiation (e.g., the materials and systems can be capable of transmitting and/or absorbing electromagnetic radiation) within a given range of angles of incidence at a first incident surface, while substantially reflecting electromagnetic radiation outside the range of angles of incidence at a second incident surface (which can be the same as or different from the first incident surface). A photonic material comprising a plurality of periodically occurring separate domains can be used, in some cases, to selectively transmit and/or selectively absorb one portion of incoming electromagnetic radiation while reflecting another portion of incoming electromagnetic radiation, based upon the angle of incidence. In some embodiments, one domain of the photonic material can include an isotropic dielectric function, while another domain of the photonic material can include an anisotropic dielectric function. In some instances, one domain of the photonic material can include an isotropic magnetic permeability, while another domain of the photonic material can include an anisotropic magnetic permeability. In some embodiments, non-photonic materials (e.g., materials with relatively large scale features) can be used to selectively absorb incoming electromagnetic radiation based on angle of incidence.

  6. Arrayed Micro-Ring Spectrometer System and Method of Use

    NASA Technical Reports Server (NTRS)

    Choi, Sang H. (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2012-01-01

    A spectrometer system includes an array of micro-zone plates (MZP) each having coaxially-aligned ring gratings, a sample plate for supporting and illuminating a sample, and an array of photon detectors for measuring a spectral characteristic of the predetermined wavelength. The sample plate emits an evanescent wave in response to incident light, which excites molecules of the sample to thereby cause an emission of secondary photons. A method of detecting the intensity of a selected wavelength of incident light includes directing the incident light onto an array of MZP, diffracting a selected wavelength of the incident light onto a target focal point using the array of MZP, and detecting the intensity of the selected portion using an array of photon detectors. An electro-optic layer positioned adjacent to the array of MZP may be excited via an applied voltage to select the wavelength of the incident light.

  7. Laser isotope separation by multiple photon absorption

    DOEpatents

    Robinson, C. Paul; Rockwood, Stephen D.; Jensen, Reed J.; Lyman, John L.; Aldridge, III, Jack P.

    1987-01-01

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

  8. Laser isotope separation by multiple photon absorption

    DOEpatents

    Robinson, C. Paul; Rockwood, Stephen D.; Jensen, Reed J.; Lyman, John L.; Aldridge, III, Jack P.

    1977-01-01

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, in the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

  9. Asymmetric Iridium Catalyzed C-C Coupling of Chiral Diols via Site-Selective Redox-Triggered Carbonyl Addition

    PubMed Central

    Shin, Inji; Krische, Michael J.

    2015-01-01

    Cyclometalated π-allyliridium C,O-benzoate complexes modified by axially chiral chelating phosphine ligands display a pronounced kinetic preference for primary alcohol dehydrogenation, enabling highly site-selective redox-triggered carbonyl additions of chiral primary-secondary 1,3-diols with exceptional levels of catalyst-directed diastereoselectivity. Unlike conventional methods for carbonyl allylation, the present redox-triggered alcohol C-H functionalizations bypass the use of protecting groups, premetalated reagents, and discrete alcohol-to-aldehyde redox reactions. PMID:26187028

  10. Triggering extreme events at the nanoscale in photonic seas

    NASA Astrophysics Data System (ADS)

    Liu, C.; van der Wel, R. E. C.; Rotenberg, N.; Kuipers, L.; Krauss, T. F.; di Falco, A.; Fratalocchi, A.

    2015-04-01

    Hurricanes, tsunamis, rogue waves and tornadoes are rare natural phenomena that embed an exceptionally large amount of energy, which appears and quickly disappears in a probabilistic fashion. This makes them difficult to predict and hard to generate on demand. Here we demonstrate that we can trigger the onset of rare events akin to rogue waves controllably, and systematically use their generation to break the diffraction limit of light propagation. We illustrate this phenomenon in the case of a random field, where energy oscillates among incoherent degrees of freedom. Despite the low energy carried by each wave, we illustrate how to control a mechanism of spontaneous synchronization, which constructively builds up the spectral energy available in the whole bandwidth of the field into giant structures, whose statistics is predictable. The larger the frequency bandwidth of the random field, the larger the amplitude of rare events that are built up by this mechanism. Our system is composed of an integrated optical resonator, realized on a photonic crystal chip. Through near-field imaging experiments, we record confined rogue waves characterized by a spatial localization of 206 nm and with an ultrashort duration of 163 fs at a wavelength of 1.55 μm. Such localized energy patterns are formed in a deterministic dielectric structure that does not require nonlinear properties.

  11. Multichannel FPGA-Based Data-Acquisition-System for Time-Resolved Synchrotron Radiation Experiments

    NASA Astrophysics Data System (ADS)

    Choe, Hyeokmin; Gorfman, Semen; Heidbrink, Stefan; Pietsch, Ullrich; Vogt, Marco; Winter, Jens; Ziolkowski, Michael

    2017-06-01

    The aim of this contribution is to describe our recent development of a novel compact field-programmable gatearray (FPGA)-based data acquisition (DAQ) system for use with multichannel X-ray detectors at synchrotron radiation facilities. The system is designed for time resolved counting of single photons arriving from several-currently 12-independent detector channels simultaneously. Detector signals of at least 2.8 ns duration are latched by asynchronous logic and then synchronized with the system clock of 100 MHz. The incoming signals are subsequently sorted out into 10 000 time-bins where they are counted. This occurs according to the arrival time of photons with respect to the trigger signal. Repeatable mode of triggered operation is used to achieve high statistic of accumulated counts. The time-bin width is adjustable from 10 ns to 1 ms. In addition, a special mode of operation with 2 ns time resolution is provided for two detector channels. The system is implemented in a pocketsize FPGA-based hardware of 10 cm × 10 cm × 3 cm and thus can easily be transported between synchrotron radiation facilities. For setup of operation and data read-out, the hardware is connected via USB interface to a portable control computer. DAQ applications are provided in both LabVIEW and MATLAB environments.

  12. FERMI Observations of GRB 090902B: A Distinct Spectral Component in the Prompt and Delayed Emission

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2009-11-03

    Here, we report on the observation of the bright, long gamma-ray burst (GRB), GRB 090902B, by the Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) instruments on-board the Fermi observatory. This was one of the brightest GRBs to have been observed by the LAT, which detected several hundred photons during the prompt phase. With a redshift of z = 1.822, this burst is among the most luminous detected by Fermi. Time-resolved spectral analysis reveals a significant power-law component in the LAT data that is distinct from the usual Band model emission that is seen in the sub-MeV energy range.more » This power-law component appears to extrapolate from the GeV range to the lowest energies and is more intense than the Band component, both below ~50 keV and above 100 MeV. The Band component undergoes substantial spectral evolution over the entire course of the burst, while the photon index of the power-law component remains constant for most of the prompt phase, then hardens significantly toward the end. After the prompt phase, power-law emission persists in the LAT data as late as 1 ks post-trigger, with its flux declining as t –1.5. The LAT detected a photon with the highest energy so far measured from a GRB, 33.4 +2.7 –3.5 GeV. This event arrived 82 s after the GBM trigger and ~50 s after the prompt phase emission had ended in the GBM band. In conclusion, we discuss the implications of these results for models of GRB emission and for constraints on models of the extragalactic background light.« less

  13. Method for photon activation positron annihilation analysis

    DOEpatents

    Akers, Douglas W.

    2006-06-06

    A non-destructive testing method comprises providing a specimen having at least one positron emitter therein; determining a threshold energy for activating the positron emitter; and determining whether a half-life of the positron emitter is less than a selected half-life. If the half-life of the positron emitter is greater than or equal to the selected half-life, then activating the positron emitter by bombarding the specimen with photons having energies greater than the threshold energy and detecting gamma rays produced by annihilation of positrons in the specimen. If the half-life of the positron emitter is less then the selected half-life, then alternately activating the positron emitter by bombarding the specimen with photons having energies greater then the threshold energy and detecting gamma rays produced by positron annihilation within the specimen.

  14. Femtosecond laser structuring of silver-containing glass: Silver redistribution, selective etching, and surface topology engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desmoulin, Jean-Charles; Petit, Yannick; Cardinal, Thierry, E-mail: thierry.cardinal@icmcb.cnrs.fr

    2015-12-07

    Femtosecond direct laser writing in silver-containing phosphate glasses allows for the three-dimensional (3D) implementation of complex photonic structures. Sample translation along or perpendicular to the direction of the beam propagation has been performed, which led to the permanent formation of fluorescent structures, either corresponding to a tubular shape or to two parallel planes at the vicinity of the interaction voxel, respectively. These optical features are related to significant modifications of the local material chemistry. Indeed, silver depletion areas with a diameter below 200 nm were evidenced at the center of the photo-produced structures while photo-produced luminescence properties are attributed to themore » formation of silver clusters around the multiphoton interaction voxel. The laser-triggered oxidation-reduction processes and the associated photo-induced silver redistribution are proposed to be at the origin of the observed original 3D luminescent structures. Thanks to such material structuring, surface engineering has been also demonstrated. Selective surface chemical etching of the glass has been obtained subsequently to laser writing at the location of the photo-produced structures, revealing features with nanometric depth profiles and radial dimensions strongly related to the spatial distributions of the silver clusters.« less

  15. Controlled Photon Switch Assisted by Coupled Quantum Dots

    PubMed Central

    Luo, Ming-Xing; Ma, Song-Ya; Chen, Xiu-Bo; Wang, Xiaojun

    2015-01-01

    Quantum switch is a primitive element in quantum network communication. In contrast to previous switch schemes on one degree of freedom (DOF) of quantum systems, we consider controlled switches of photon system with two DOFs. These controlled photon switches are constructed by exploring the optical selection rules derived from the quantum-dot spins in one-sided optical microcavities. Several double controlled-NOT gate on different joint systems are greatly simplified with an auxiliary DOF of the controlling photon. The photon switches show that two DOFs of photons can be independently transmitted in quantum networks. This result reduces the quantum resources for quantum network communication. PMID:26095049

  16. Upgrade project and plans for the ATLAS detector and trigger

    NASA Astrophysics Data System (ADS)

    Pastore, Francesca; Atlas Collaboration

    2013-08-01

    The LHC is expected to under go upgrades over the coming years in order to extend its scientific potential. Through two different phases (namely Phase-I and Phase-II), the average luminosity will be increased by a factor 5-10 above the design luminosity, 1034 cm-2 s-1. Consequently, the LHC experiments will need upgraded detectors and new infrastructure of the trigger and DAQ systems, to take into account the increase of radiation level and of particle rates foreseen at such high luminosity. In this paper we describe the planned changes and the investigations for the ATLAS experiment, focusing on the requirements for the trigger system to handle the increase rate of collisions per beam crossing, while maintaining widely inclusive selections. In different steps, the trigger detectors will improve their selectivity by benefiting from increased granularity. To improve the flexibility of the system, the use of the tracking information in the lower levels of the trigger selection is also discussed. Lastly different scenarios are compared, based on the expected physics potential of ATLAS in this high luminosity regime.

  17. Readout Electronics for the ATLAS LAr Calorimeter at HL-LHC

    NASA Astrophysics Data System (ADS)

    Chen, Hucheng; ATLAS Liquid Argon Calorimeter Group

    The ATLAS Liquid Argon (LAr) calorimeters are high precision, high sensitivity and high granularity detectors designed to provide precision measurements of electrons, photons, jets and missing transverse energy. ATLAS and its LAr calorimeters have been operating and collecting proton-proton collisions at LHC since 2009. The current front-end electronics of the LAr calorimeters need to be upgraded to sustain the higher radiation levels and data rates expected at the upgraded high luminosity LHC machine (HL-LHC), which will have 5 times more luminosity than the LHC in its ultimate configuration. The complexity of the present electronics and the obsolescence of some of components of which it is made, will not allow a partial replacement of the system. A completely new readout architecture scheme is under study and many components are being developed in various R&D programs of the LAr Calorimeter Group.The new front-end readout electronics will send data continuously at each bunch crossing through high speed radiation resistant optical links. The data will be processed real-time with the possibility of implementing trigger algorithms for clusters and electron/photon identification at a higher granularity than that which is currently implemented. The new architecture will eliminate the intrinsic limitation presently existing on Level-1 trigger acceptance. This article is an overview of the R&D activities which covers architectural design aspects of the new electronics as well as some detailed progress on the development of several ASICs needed, and preliminary studies with FPGAs to cover the backend functions including part of the Level-1 trigger requirements. A recently proposed staged upgrade with hybrid Tower Builder Board (TBB) is also described.

  18. An FPGA-based trigger for the phase II of the MEG experiment

    NASA Astrophysics Data System (ADS)

    Baldini, A.; Bemporad, C.; Cei, F.; Galli, L.; Grassi, M.; Morsani, F.; Nicolò, D.; Ritt, S.; Venturini, M.

    2016-07-01

    For the phase II of MEG, we are going to develop a combined trigger and DAQ system. Here we focus on the former side, which operates an on-line reconstruction of detector signals and event selection within 450 μs from event occurrence. Trigger concentrator boards (TCB) are under development to gather data from different crates, each connected to a set of detector channels, to accomplish higher-level algorithms to issue a trigger in the case of a candidate signal event. We describe the major features of the new system, in comparison with phase I, as well as its performances in terms of selection efficiency and background rejection.

  19. Bright and dark singlet excitons via linear and two-photon spectroscopy in monolayer transition metal dichalcogenides

    DOE PAGES

    Berkelbach, Timothy C.; Hybertsen, Mark S.; Reichmann, David R.

    2015-08-10

    We discuss the linear and two-photon spectroscopic selection rules for spin-singlet excitons in monolayer transition-metal dichalcogenides. Our microscopic formalism combines a fully k-dependent few-orbital band structure with a many-body Bethe-Salpeter equation treatment of the electron-hole interaction, using a model dielectric function. We show analytically and numerically that the single-particle, valley-dependent selection rules are preserved in the presence of excitonic effects. Furthermore, we definitively demonstrate that the bright (one-photon allowed) excitons have s-type azimuthal symmetry and that dark p-type excitons can be probed via two-photon spectroscopy. Thus, the screened Coulomb interaction in these materials substantially deviates from the 1/ε₀r form; thismore » breaks the “accidental” angular momentum degeneracy in the exciton spectrum, such that the 2p exciton has a lower energy than the 2s exciton by at least 50 meV. We compare our calculated two-photon absorption spectra to recent experimental measurements.« less

  20. Design of ultra compact polarization splitter based on complete photonic band gap

    NASA Astrophysics Data System (ADS)

    Sinha, R. K.; Nagpal, Yogita

    2005-11-01

    Certain select structures in photonic crystals (PhCs) exhibit complete photonic band gap i.e. a frequency region where the photonic band gaps for both polarizations (i.e. transverse electric and transverse magnetic modes) exist and overlap. One of the most fundamental applications of the photonic band gap structures is the design of photonic crystal waveguides, which can be made by inserting linear defects in the photonic crystal structures. By setting closely two parallel 2D PhC waveguides, a directional waveguide coupler can be designed, which can be used to design a polarization splitter. In this paper we design a polarization splitter in a photonic crystal structure composed of two dimensional honeycomb pattern of dielectric rods in air. This photonic crystal structure exhibits a complete photonic band gap that extends from λ = 1.49 μm to λ = 1.61 μm, where lambda is the wavelength in free space, providing a large bandwidth of 120 nm. A polarization splitter can be made by designing a polarization selective coupler. The coupling lengths at various wavelengths for both polarizations have been calculated using the Finite Difference Time Domain method. It has been shown that the coupling length, for TE polarization is much smaller as compared to that for the TM polarization. This principle is used to design a polarization splitter of length 32 μm at λ = 1.55 μm. Further, the spectral response of the extinction ratios for both polarizations in the two waveguides at propagation distance of 32 μm has been studied.

  1. Weak Value Amplification of a Post-Selected Single Photon

    NASA Astrophysics Data System (ADS)

    Hallaji, Matin

    Weak value amplification (WVA) is a measurement technique in which the effect of a pre- and post-selected system on a weakly interacting probe is magnified. In this thesis, I present the first experimental observation of WVA of a single photon. We observed that a signal photon --- sent through a polarization interferometer and post-selected by photodetection in the almost-dark port --- can act like eight photons. The effect of this single photon is measured as a nonlinear phase shift on a separate laser beam. The interaction between the two is mediated by a sample of laser- cooled 85Rb atoms. Electromagnetically induced transparency (EIT) is used to enhance the nonlinearity and overcome resonant absorption. I believe this work to be the first demonstration of WVA where a deterministic interaction is used to entangle two distinct optical systems. In WVA, the amplification is contingent on discarding a large portion of the original data set. While amplification increases measurement sensitivity, discarding data worsens it. Questioning whether these competing effects conspire to improve or diminish measurement accuracy has resulted recently in controversy. I address this question by calculating the maximum amount of information achievable with the WVA technique. By comparing this information to that achievable by the standard technique, where no post-selection is employed, I show that the WVA technique can be advantageous under a certain class of noise models. Finally, I propose a way to optimally apply the WVA technique.

  2. Electro-magnetic physics studies at RHIC: Neutral pion production, direct photon HBT, photon elliptic flow in gold-gold collisions at sqrt(s_NN) = 200 GeV and the Muon Telescope Detector simulation

    NASA Astrophysics Data System (ADS)

    Lin, Guoji

    Electro-magnetic (E&M) probes such as direct photons and muons (mu) are important tools to study the properties of the extremely hot and dense matter created in heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC). In this thesis, several topics of E&M physics will be addressed, including neutral pion (pi0) production, direct photon HBT, and photon elliptic flow (v2) in Au+Au collisions at sNN = 200 GeV. A discussion on the simulation study of the new Muon Telescope Detector (MTD) will also be presented. The pi0 production is a fundamental measurement of hadron production and prerequisite for the background study of direct photons. Neutral pions are reconstructed using the photons detected by the STAR Barrel Electro-magnetic Calorimeter (BEMC) and the Time Projection Chamber (TPC). Spectra of pi 0 are measured at transverse momentum 1 < pT < 12 GeV/c near mid-rapidity (0 < eta < 0.8) in 200 GeV Au+Au collisions. The spectra and nuclear modification factors RCP and RAA are compared to earlier pi+/- and pi0 results. Direct photon Hanbury-Brown and Twiss (HBT) correlations can reveal information of the system size throughout the whole collision. A first attempt of direct photon HBT study at RHIC in 200 GeV Au+Au collisions is done using photons detected by the STAR BEMC and TPC. All unknown correlation at small Qinv is observed, whose magnitude is much larger than the expected HBT signal, and possible causes of the correlation will be discussed. Direct photon elliptic flow (v2) at intermediate to high pT is sensitive to the source of direct photon production. Results of inclusive photon v2 in 200 GeV Au+Au collisions are presented. The v2 of pi0 decay photons is calculated from the previously published pi results. The comparison between inclusive and decay photon v 2 indicates that direct photon v2 is small. A new large-area Muon Telescope Detector at mid-rapidity at RHIC is proposed and under investigation, using the Long-strip Multi-Gap Resistive Plate Chamber (Long-MRPC). Simulations indicate that the MTD can effectively identify mu and reject hadron backgrounds, and it can serve as a mu trigger. A beam test result of the Long-MRPC at Fermi National Accelerator Laboratory (FNAL) is also discussed.

  3. Probing the Intergalactic Magnetic Field with the Anisotropy of the Extragalactic Gamma-ray Background

    NASA Technical Reports Server (NTRS)

    Venters, T. M.; Pavlidou, V.

    2013-01-01

    The intergalactic magnetic field (IGMF) may leave an imprint on the angular anisotropy of the extragalactic gamma-ray background through its effect on electromagnetic cascades triggered by interactions between very high energy photons and the extragalactic background light. A strong IGMF will deflect secondary particles produced in these cascades and will thus tend to isotropize lower energy cascade photons, thereby inducing a modulation in the anisotropy energy spectrum of the gamma-ray background. Here we present a simple, proof-of-concept calculation of the magnitude of this effect and demonstrate that current Fermi data already seem to prefer nonnegligible IGMF values. The anisotropy energy spectrum of the Fermi gamma-ray background could thus be used as a probe of the IGMF strength.

  4. Multistep fluorescence gated proportional counters

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian D.; Weisskopf, Martin C.

    1990-01-01

    A proportional counter is introduced in which the levels of energy and spatial resolutions and background rejection permit the application of the device to X-ray astronomy. A multistep approach is employed in which photons cause a signal that triggers the system and measures the energy of the incident photon. The multistep approach permits good energy resolution from parallel geometry and from the imaging stage due to coupling of the imaging and amplification stages. The design also employs fluorescence gating to reduce background, a method that is compatible with the multistep technique. Use of the proportional counter is reported for NASA's supernova campaign, and the pair background is below 0.0001 counts/sq cm sec keV at the xenon k-edge. Potential improvements and applications are listed including the CASES, POF, and EXOSS mission programs.

  5. Silicon-based photonic crystals fabricated using proton beam writing combined with electrochemical etching method

    PubMed Central

    2012-01-01

    A method for fabrication of three-dimensional (3D) silicon nanostructures based on selective formation of porous silicon using ion beam irradiation of bulk p-type silicon followed by electrochemical etching is shown. It opens a route towards the fabrication of two-dimensional (2D) and 3D silicon-based photonic crystals with high flexibility and industrial compatibility. In this work, we present the fabrication of 2D photonic lattice and photonic slab structures and propose a process for the fabrication of 3D woodpile photonic crystals based on this approach. Simulated results of photonic band structures for the fabricated 2D photonic crystals show the presence of TE or TM gap in mid-infrared range. PMID:22824206

  6. Investigation of Energy-Dispersive X-ray Computed Tomography System with CdTe Scan Detector and Comparing-Differentiator and Its Application to Gadolinium K-Edge Imaging

    NASA Astrophysics Data System (ADS)

    Chiba, Hiraku; Sato, Yuichi; Sato, Eiichi; Maeda, Tomoko; Matsushita, Ryo; Yanbe, Yutaka; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2012-10-01

    An energy-dispersive (ED) X-ray computed tomography (CT) system is useful for carrying out monochromatic imaging by selecting optimal energy photons. CT is performed by repeated linear scans and rotations of an object. X-ray photons from the object are detected by the cadmium telluride (CdTe) detector, and event pulses of X-ray photons are produced using charge-sensitive and shaping amplifiers. The lower photon energy is determined by a comparator, and the maximum photon energy of 70 keV corresponds to the tube voltage. Logical pulses from the comparator are counted by a counter card through a differentiator to reduce pulse width and rise time. In the ED-CT system, tube voltage and current were 70 kV and 0.30 mA, respectively, and X-ray intensity was 18.2 µGy/s at 1.0 m from the source at a tube voltage of 70 kV. Demonstration of gadolinium K-edge CT for cancer diagnosis was carried out by selecting photons with energies ranging from 50.4 to 70 keV, and photon-count energy subtraction imaging from 30 to 50.3 keV was also performed.

  7. Laser isotope separation by multiple photon absorption

    DOEpatents

    Robinson, C.P.; Rockwood, S.D.; Jensen, R.J.; Lyman, J.L.; Aldridge, J.P. III.

    1987-04-07

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO[sub 2] laser light may be used to highly enrich [sup 34]S in natural SF[sub 6] and [sup 11]B in natural BCl[sub 3]. 8 figs.

  8. Near-IR Two-Photon Fluorescent Sensor for K(+) Imaging in Live Cells.

    PubMed

    Sui, Binglin; Yue, Xiling; Kim, Bosung; Belfield, Kevin D

    2015-08-19

    A new two-photon excited fluorescent K(+) sensor is reported. The sensor comprises three moieties, a highly selective K(+) chelator as the K(+) recognition unit, a boron-dipyrromethene (BODIPY) derivative modified with phenylethynyl groups as the fluorophore, and two polyethylene glycol chains to afford water solubility. The sensor displays very high selectivity (>52-fold) in detecting K(+) over other physiological metal cations. Upon binding K(+), the sensor switches from nonfluorescent to highly fluorescent, emitting red to near-IR (NIR) fluorescence. The sensor exhibited a good two-photon absorption cross section, 500 GM at 940 nm. Moreover, it is not sensitive to pH in the physiological pH range. Time-dependent cell imaging studies via both one- and two-photon fluorescence microscopy demonstrate that the sensor is suitable for dynamic K(+) sensing in living cells.

  9. Optical proposals for controlled delayed-choice experiment based on weak cross-Kerr nonlinearities

    NASA Astrophysics Data System (ADS)

    Dong, Li; Lin, Yan-Fang; Li, Qing-Yang; Xiu, Xiao-Ming; Dong, Hai-Kuan; Gao, Ya-Jun

    2017-05-01

    Employing polarization modes of a photon, we propose two theoretical proposals to exhibit the wave-particle duality of the photon with the assistance of weak cross-Kerr nonlinearities. The first proposal is a classical controlled delayed-choice experiment (that is, Wheeler's delayed-choice experiment), where we can observe selectively wave property or particle property of the photon relying on the experimenter's selection, whereas the second proposal is a quantum controlled delayed-choice experiment, by which the mixture phenomenon of a wave and a particle will be exhibited. Both of them can be realized with near-unity probability and embody the charming characteristics of quantum mechanics. The employment of the mature techniques and simple operations (e.g., Homodyne measurement, classical feed forward, and single-photon transformations) provides the feasibility of the delayed-choice experiment proposals presented here.

  10. Multifunctional Biocompatible Graphene Oxide Quantum Dots Decorated Magnetic Nanoplatform for Efficient Capture and Two-Photon Imaging of Rare Tumor Cells

    PubMed Central

    2016-01-01

    Circulating tumor cells (CTCs) are extremely rare cells in blood containing billions of other cells. The selective capture and identification of rare cells with sufficient sensitivity is a real challenge. Driven by this need, this manuscript reports the development of a multifunctional biocompatible graphene oxide quantum dots (GOQDs) coated, high-luminescence magnetic nanoplatform for the selective separation and diagnosis of Glypican-3 (GPC3)-expressed Hep G2 liver cancer tumor CTCs from infected blood. Experimental data show that an anti-GPC3-antibody-attached multifunctional nanoplatform can be used for selective Hep G2 hepatocellular carcinoma tumor cell separation from infected blood containing 10 tumor cells/mL of blood in a 15 mL sample. Reported data indicate that, because of an extremely high two-photon absorption cross section (40530 GM), an anti-GPC3-antibody-attached GOQDs-coated magnetic nanoplatform can be used as a two-photon luminescence platform for selective and very bright imaging of a Hep G2 tumor cell in a biological transparency window using 960 nm light. Experimental results with nontargeted GPC3(−) and SK-BR-3 breast cancer cells show that multifunctional-nanoplatform-based cell separation, followed by two-photon imaging, is highly selective for Hep G2 hepatocellular carcinoma tumor cells. PMID:25939643

  11. Photon correlation in single-photon frequency upconversion.

    PubMed

    Gu, Xiaorong; Huang, Kun; Pan, Haifeng; Wu, E; Zeng, Heping

    2012-01-30

    We experimentally investigated the intensity cross-correlation between the upconverted photons and the unconverted photons in the single-photon frequency upconversion process with multi-longitudinal mode pump and signal sources. In theoretical analysis, with this multi-longitudinal mode of both signal and pump sources system, the properties of the signal photons could also be maintained as in the single-mode frequency upconversion system. Experimentally, based on the conversion efficiency of 80.5%, the joint probability of simultaneously detecting at upconverted and unconverted photons showed an anti-correlation as a function of conversion efficiency which indicated the upconverted photons were one-to-one from the signal photons. While due to the coherent state of the signal photons, the intensity cross-correlation function g(2)(0) was shown to be equal to unity at any conversion efficiency, agreeing with the theoretical prediction. This study will benefit the high-speed wavelength-tunable quantum state translation or photonic quantum interface together with the mature frequency tuning or longitudinal mode selection techniques.

  12. Terahertz photonic crystals

    NASA Astrophysics Data System (ADS)

    Jian, Zhongping

    This thesis describes the study of two-dimensional photonic crystals slabs with terahertz time domain spectroscopy. In our study we first demonstrate the realization of planar photonic components to manipulate terahertz waves, and then characterize photonic crystals using terahertz pulses. Photonic crystal slabs at the scale of micrometers are first designed and fabricated free of defects. Terahertz time domain spectrometer generates and detects the electric fields of single-cycle terahertz pulses. By putting photonic crystals into waveguide geometry, we successfully demonstrate planar photonic components such as transmission filters, reflection frequency-selective filters, defects modes as well as superprisms. In the characterization study of out-of-plane properties of photonic crystal slabs, we observe very strong dispersion at low frequencies, guided resonance modes at middle frequencies, and a group velocity anomaly at high frequencies. We employ Finite Element Method and Finite-Difference Time-Domain method to simulate the photonic crystals, and excellent agreement is achieved between simulation results and experimental results.

  13. Use of chemical-mechanical polishing for fabricating photonic bandgap structures

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu; Hetherington, Dale L.; Smith, Bradley K.

    1999-01-01

    A method is disclosed for fabricating a two- or three-dimensional photonic bandgap structure (also termed a photonic crystal, photonic lattice, or photonic dielectric structure). The method uses microelectronic integrated circuit (IC) processes to fabricate the photonic bandgap structure directly upon a silicon substrate. One or more layers of arrayed elements used to form the structure are deposited and patterned, with chemical-mechanical polishing being used to planarize each layer for uniformity and a precise vertical tolerancing of the layer. The use of chemical-mechanical planarization allows the photonic bandgap structure to be formed over a large area with a layer uniformity of about two-percent. Air-gap photonic bandgap structures can also be formed by removing a spacer material separating the arrayed elements by selective etching. The method is useful for fabricating photonic bandgap structures including Fabry-Perot resonators and optical filters for use at wavelengths in the range of about 0.2-20 .mu.m.

  14. Ultraviolet Raman Wide-Field Hyperspectral Imaging Spectrometer for Standoff Trace Explosive Detection.

    PubMed

    Hufziger, Kyle T; Bykov, Sergei V; Asher, Sanford A

    2017-02-01

    We constructed the first deep ultraviolet (UV) Raman standoff wide-field imaging spectrometer. Our novel deep UV imaging spectrometer utilizes a photonic crystal to select Raman spectral regions for detection. The photonic crystal is composed of highly charged, monodisperse 35.5 ± 2.9 nm silica nanoparticles that self-assemble in solution to produce a face centered cubic crystalline colloidal array that Bragg diffracts a narrow ∼1.0 nm full width at half-maximum (FWHM) UV spectral region. We utilize this photonic crystal to select and image two different spectral regions containing resonance Raman bands of pentaerythritol tetranitrate (PETN) and NH 4 NO 3 (AN). These two deep UV Raman spectral regions diffracted were selected by angle tuning the photonic crystal. We utilized this imaging spectrometer to measure 229 nm excited UV Raman images containing ∼10-1000 µg/cm 2 samples of solid PETN and AN on aluminum surfaces at 2.3 m standoff distances. We estimate detection limits of ∼1 µg/cm 2 for PETN and AN films under these experimental conditions.

  15. Glucagon-Secreting Alpha Cell Selective Two-Photon Fluorescent Probe TP-α: For Live Pancreatic Islet Imaging.

    PubMed

    Agrawalla, Bikram Keshari; Chandran, Yogeswari; Phue, Wut-Hmone; Lee, Sung-Chan; Jeong, Yun-Mi; Wan, Si Yan Diana; Kang, Nam-Young; Chang, Young-Tae

    2015-04-29

    Two-photon (TP) microscopy has an advantage for live tissue imaging which allows a deeper tissue penetration up to 1 mm comparing to one-photon (OP) microscopy. While there are several OP fluorescence probes in use for pancreatic islet imaging, TP imaging of selective cells in live islet still remains a challenge. Herein, we report the discovery of first TP live pancreatic islet imaging probe; TP-α (Two Photon-alpha) which can selectively stain glucagon secreting alpha cells. Through fluorescent image based screening using three pancreatic cell lines, we discovered TP-α from a TP fluorescent dye library TPG (TP-Green). In vitro fluorescence test showed that TP-α have direct interaction and appear glucagon with a significant fluorescence increase, but not with insulin or other hormones/analytes. Finally, TP-α was successfully applied for 3D imaging of live islets by staining alpha cell directly. The newly developed TP-α can be a practical tool to evaluate and identify live alpha cells in terms of localization, distribution and availability in the intact islets.

  16. The photon identification loophole in EPRB experiments: computer models with single-wing selection

    NASA Astrophysics Data System (ADS)

    De Raedt, Hans; Michielsen, Kristel; Hess, Karl

    2017-11-01

    Recent Einstein-Podolsky-Rosen-Bohm experiments [M. Giustina et al. Phys. Rev. Lett. 115, 250401 (2015); L. K. Shalm et al. Phys. Rev. Lett. 115, 250402 (2015)] that claim to be loophole free are scrutinized. The combination of a digital computer and discrete-event simulation is used to construct a minimal but faithful model of the most perfected realization of these laboratory experiments. In contrast to prior simulations, all photon selections are strictly made, as they are in the actual experiments, at the local station and no other "post-selection" is involved. The simulation results demonstrate that a manifestly non-quantum model that identifies photons in the same local manner as in these experiments can produce correlations that are in excellent agreement with those of the quantum theoretical description of the corresponding thought experiment, in conflict with Bell's theorem which states that this is impossible. The failure of Bell's theorem is possible because of our recognition of the photon identification loophole. Such identification measurement-procedures are necessarily included in all actual experiments but are not included in the theory of Bell and his followers.

  17. Analysis of photonic band gap in novel piezoelectric photonic crystal

    NASA Astrophysics Data System (ADS)

    Malar Kodi, A.; Doni Pon, V.; Joseph Wilson, K. S.

    2018-03-01

    The transmission properties of one-dimensional novel photonic crystal having silver-doped novel piezoelectric superlattice and air as the two constituent layers have been investigated by means of transfer matrix method. By changing the appropriate thickness of the layers and filling factor of nanocomposite system, the variation in the photonic band gap can be studied. It is found that the photonic band gap increases with the filling factor of the metal nanocomposite and with the thickness of the layer. These structures possess unique characteristics enabling one to operate as optical waveguides, selective filters, optical switches, integrated piezoelectric microactuators, etc.

  18. Time-reversal-symmetric single-photon wave packets for free-space quantum communication.

    PubMed

    Trautmann, N; Alber, G; Agarwal, G S; Leuchs, G

    2015-05-01

    Readout and retrieval processes are proposed for efficient, high-fidelity quantum state transfer between a matter qubit, encoded in the level structure of a single atom or ion, and a photonic qubit, encoded in a time-reversal-symmetric single-photon wave packet. They are based on controlling spontaneous photon emission and absorption of a matter qubit on demand in free space by stimulated Raman adiabatic passage. As these processes do not involve mode selection by high-finesse cavities or photon transport through optical fibers, they offer interesting perspectives as basic building blocks for free-space quantum-communication protocols.

  19. NASA EM Followup of LIGO-Virgo Candidate Events

    NASA Technical Reports Server (NTRS)

    Blackburn, Lindy L.

    2011-01-01

    We present a strategy for a follow-up of LIGO-Virgo candidate events using offline survey data from several NASA high-energy photon instruments aboard RXTE, Swift, and Fermi. Time and sky-location information provided by the GW trigger allows for a targeted search for prompt and afterglow EM signals. In doing so, we expect to be sensitive to signals which are too weak to be publicly reported as astrophysical EM events.

  20. Compact silicon photonic wavelength-tunable laser diode with ultra-wide wavelength tuning range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kita, Tomohiro, E-mail: tkita@ecei.tohoku.ac.jp; Tang, Rui; Yamada, Hirohito

    2015-03-16

    We present a wavelength-tunable laser diode with a 99-nm-wide wavelength tuning range. It has a compact wavelength-tunable filter with high wavelength selectivity fabricated using silicon photonics technology. The silicon photonic wavelength-tunable filter with wide wavelength tuning range was realized using two ring resonators and an asymmetric Mach-Zehnder interferometer. The wavelength-tunable laser diode fabricated by butt-joining a silicon photonic filter and semiconductor optical amplifier shows stable single-mode operation over a wide wavelength range.

  1. Search for supersymmetry in electroweak production with photons and large missing transverse energy in pp collisions at $$\\sqrt{s}$$ = 8 TeV

    DOE PAGES

    Khachatryan, Vardan

    2016-06-01

    Results are reported from a search for supersymmetry with gauge-mediated supersymmetry breaking in electroweak production. Final states with photons and large missing transverse energy (more » $$E_{\\mathrm{T}}^{\\text{miss}}$$) were examined. The data sample was collected in pp collisions at $$\\sqrt{s} = $$ 8 TeV with the CMS detector at the LHC and corresponds to 7.4 fb$$^{-1}$$. The analysis focuses on scenarios in which the lightest neutralino has bino- or wino-like components, resulting in decays to photons and gravitinos, where the gravitinos escape undetected. The data were obtained using a specially designed trigger with dedicated low thresholds, providing good sensitivity to signatures with photons, $$E_{\\mathrm{T}}^{\\text{miss}}$$, and low hadronic energy. No excess of events over the standard model expectation is observed. The results are interpreted using the model of general gauge mediation. With the wino mass fixed at 10 GeV above that of the bino, wino masses below 710 GeV are excluded at 95% confidence level. Lastly, constraints are also set in the context of two simplified models, for which the analysis sets the lowest cross section limits on the electroweak production of supersymmetric particles.« less

  2. Data Acquisition Software for Experiments at the MAMI-C Tagged Photon Facility

    NASA Astrophysics Data System (ADS)

    Oussena, Baya; Annand, John

    2013-10-01

    Tagged-photon experiments at Mainz use the electron beam of the MAMI (Mainzer MIcrotron) accelerator, in combination with the Glasgow Tagged Photon Spectrometer. The AcquDAQ DAQ system is implemented in the C + + language and makes use of CERN ROOT software libraries and tools. Electronic hardware is characterized in C + + classes, based on a general purpose class TDAQmodule and implementation in an object-oriented framework makes the system very flexible. The DAQ system provides slow control and event-by-event readout of the Photon Tagger, the Crystal Ball 4-pi electromagnetic calorimeter, central MWPC tracker and plastic-scintillator, particle-ID systems and the TAPS forward-angle calorimeter. A variety of front-end controllers running Linux are supported, reading data from VMEbus, FASTBUS and CAMAC systems. More specialist hardware, based on optical communication systems and developed for the COMPASS experiment at CERN, is also supported. AcquDAQ also provides an interface to configure and control the Mainz programmable trigger system, which uses FPGA-based hardware developed at GSI. Currently the DAQ system runs at data rates of up to 3MB/s and, with upgrades to both hardware and software later this year, we anticipate a doubling of that rate. This work was supported in part by the U.S. DOE Grant No. DE-FG02-99ER41110.

  3. SPD very front end electronics

    NASA Astrophysics Data System (ADS)

    Luengo, S.; Gascón, D.; Comerma, A.; Garrido, L.; Riera, J.; Tortella, S.; Vilasís, X.

    2006-11-01

    The Scintillator Pad Detector (SPD) is part of the LHCb calorimetry system [D. Breton, The front-end electronics for LHCb calorimeters, Tenth International Conference on Calorimetry in Particle Physics, CALOR, Pasadena, 2002] that provides high-energy hadron, electron and photon candidates for the first level trigger. The SPD is designed to distinguish electrons from photons. It consists of a plastic scintillator layer, divided into about 6000 cells of different size to obtain better granularity near the beam [S. Amato, et al., LHCb technical design report, CERN/LHCC/2000-0036, 2000]. Charged particles will produce, and photons will not, ionization in the scintillator. This ionization generates a light pulse that is collected by a WaveLength Shifting (WLS) fiber that is coiled inside the scintillator cell. The light is transmitted through a clear fiber to the readout system that is placed at the periphery of the detector. Due to space constraints, and in order to reduce costs, these 6000 cells are divided in groups using a MAPMT [Z. Ajaltouni, et al., Nucl. Instr. and Meth. A 504 (2003) 9] of 64 channels that provides information to the VFE readout electronics. The SPD signal has rather large statistical fluctuations because of the low number (20-30) of photoelectrons per MIP. Therefore the signal is integrated over the whole bunch crossing length of 25 ns in order to have the maximum value. Since in average about 85% of the SPD signal is within 25 ns, 15% of a sample is subtracted from the following one using an operational amplifier. The SPD VFE readout system that will be presented consists of the following components. A specific ASIC [D. Gascon, et al., Discriminator ASIC for the VFE SPD of the LHCb Calorimeter, LHCB Technical Note, LHCB 2004-xx] integrates the signal, makes the signal-tail subtraction, and compares the level obtained to a programmable threshold (to distinguish electrons from photons). A FPGA programmes the ASIC threshold and the value for signal-tail subtraction. Finally, a LVDS serializer sends the information to the first level trigger system.

  4. Highly selective and compact tunable MOEMS photonic crystal Fabry-Perot filter.

    PubMed

    Boutami, S; Ben Bakir, B; Leclercq, J-L; Letartre, X; Rojo-Romeo, P; Garrigues, M; Viktorovitch, P; Sagnes, I; Legratiet, L; Strassner, M

    2006-04-17

    The authors report a compact and highly selective tunable filter using a Fabry-Perot resonator combining a bottom micromachined 3-pair-InP/air-gap Bragg reflector with a top photonic crystal slab mirror. It is based on the coupling between radiated vertical cavity modes and waveguided modes of the photonic crystal. The full-width at half maximum (FWHM) of the resonance, as measured by microreflectivity experiments, is close to 1.5nm (around 1.55 microm). The presence of the photonic crystal slab mirror results in a very compact resonator, with a limited number of layers. The demonstrator was tuned over a 20nm range for a 4V tuning voltage, the FWHM being kept below 2.5nm. Bending of membranes is a critical issue, and better results (FWHM=0.5nm) should be obtained on the same structure if this technological point is fixed.

  5. Spatially selective photonic crystal enhanced fluorescence and application to background reduction for biomolecule detection assays

    PubMed Central

    Chaudhery, Vikram; Huang, Cheng-Sheng; Pokhriyal, Anusha; Polans, James; Cunningham, Brian T.

    2011-01-01

    By combining photonic crystal label-free biosensor imaging with photonic crystal enhanced fluorescence, it is possible to selectively enhance the fluorescence emission from regions of the PC surface based upon the density of immobilized capture molecules. A label-free image of the capture molecules enables determination of optimal coupling conditions of the laser used for fluorescence imaging of the photonic crystal surface on a pixel-by-pixel basis, allowing maximization of fluorescence enhancement factor from regions incorporating a biomolecule capture spot and minimization of background autofluorescence from areas between capture spots. This capability significantly improves the contrast of enhanced fluorescent images, and when applied to an antibody protein microarray, provides a substantial advantage over conventional fluorescence microscopy. Using the new approach, we demonstrate detection limits as low as 0.97 pg/ml for a representative protein biomarker in buffer. PMID:22109210

  6. Spatially selective photonic crystal enhanced fluorescence and application to background reduction for biomolecule detection assays.

    PubMed

    Chaudhery, Vikram; Huang, Cheng-Sheng; Pokhriyal, Anusha; Polans, James; Cunningham, Brian T

    2011-11-07

    By combining photonic crystal label-free biosensor imaging with photonic crystal enhanced fluorescence, it is possible to selectively enhance the fluorescence emission from regions of the PC surface based upon the density of immobilized capture molecules. A label-free image of the capture molecules enables determination of optimal coupling conditions of the laser used for fluorescence imaging of the photonic crystal surface on a pixel-by-pixel basis, allowing maximization of fluorescence enhancement factor from regions incorporating a biomolecule capture spot and minimization of background autofluorescence from areas between capture spots. This capability significantly improves the contrast of enhanced fluorescent images, and when applied to an antibody protein microarray, provides a substantial advantage over conventional fluorescence microscopy. Using the new approach, we demonstrate detection limits as low as 0.97 pg/ml for a representative protein biomarker in buffer.

  7. Dissociative double-photoionization of butadiene in the 25-45 eV energy range using 3-D multi-coincidence ion momentum imaging spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oghbaie, Shabnam; Gisselbrecht, Mathieu; Laksman, Joakim

    Dissociative double-photoionization of butadiene in the 25-45 eV energy range has been studied with tunable synchrotron radiation using full three-dimensional ion momentum imaging. Using ab initio calculations, the electronic states of the molecular dication below 33 eV are identified. The results of the measurement and calculation show that double ionization from π orbitals selectively triggers twisting about the terminal or central C–C bonds. We show that this conformational rearrangement depends upon the dication electronic state, which effectively acts as a gateway for the dissociation reaction pathway. For photon energies above 33 eV, three-body dissociation channels where neutral H-atom evaporation precedesmore » C–C charge-separation in the dication species appear in the correlation map. The fragment angular distributions support a model where the dication species is initially aligned with the molecular backbone parallel to the polarization vector of the light, indicating a high probability for double-ionization to the “gateway states” for molecules with this orientation.« less

  8. Non-Geiger-Mode Single-Photon Avalanche Detector with Low Excess Noise

    NASA Technical Reports Server (NTRS)

    Zhao, Kai; Lo, YuHwa; Farr, William

    2010-01-01

    This design constitutes a self-resetting (gain quenching), room-temperature operational semiconductor single-photon-sensitive detector that is sensitive to telecommunications optical wavelengths and is scalable to large areas (millimeter diameter) with high bandwidth and efficiencies. The device can detect single photons at a 1,550-nm wavelength at a gain of 1 x 10(exp 6). Unlike conventional single photon avalanche detectors (SPADs), where gain is an extremely sensitive function to the bias voltage, the multiplication gain of this device is stable at 1 x 10(exp 6) over a wide range of bias from 30.2 to 30.9 V. Here, the multiplication gain is defined as the total number of charge carriers contained in one output pulse that is triggered by the absorption of a single photon. The statistics of magnitude of output signals also shows that the device has a very narrow pulse height distribution, which demonstrates a greatly suppressed gain fluctuation. From the histograms of both pulse height and pulse charge, the equivalent gain variance (excess noise) is between 1.001 and 1.007 at a gain of 1 x 10(exp 6). With these advantages, the device holds promise to function as a PMT-like photon counter at a 1,550- nm wavelength. The epitaxial layer structure of the device allows photons to be absorbed in the InGaAs layer, generating electron/hole (e-h) pairs. Driven by an electrical field in InGaAs, electrons are collected at the anode while holes reach the multiplication region (InAlAs p-i-n structure) and trigger the avalanche process. As a result, a large number of e-h pairs are created, and the holes move toward the cathode. Holes created by the avalanche process gain large kinetic energy through the electric field, and are considered hot. These hot holes are cooled as they travel across a p -InAlAs low field region, and are eventually blocked by energy barriers formed by the InGaAsP/ InAlAs heterojunctions. The composition of the InGaAsP alloy was chosen to have an 80 meV valance band offset with InAlAs, which is high enough to hinder the transport of the already cooled holes. Being stopped by the energy barrier, holes are accumulated at the junctions to shield the electric field, resulting in a decrease of the electric field in the multiplication region. Because the impact ionization rate is extremely sensitive to the magnitude of the electric field, the field-screening effect drastically reduces the impact ionization rate and quenches the output signals. After the avalanche pulse signal is self-quenched, the accumulated holes at the InGaAsP/ InAlAs interface escape the energy barrier through thermal excitation and tunneling and finally leave the device. The device is thus reset and ready for subsequent photon detection. This recovery time is controlled by the height of the energy barrier and the hole-cooling rate.

  9. VizieR Online Data Catalog: Rapidly pulsating sdB stars search with GALEX (Boudreaux+, 2017)

    NASA Astrophysics Data System (ADS)

    Boudreaux, T. M.; Barlow, B. N.; Fleming, S. W.; Soto, A. V.; Million, C.; Reichart, D. E.; Haislip, J. B.; Linder, T. R.; Moore, J. P.

    2018-04-01

    Here we present a search for short-period hot subdwarf B (sdB) pulsations in the archived GALEX data set using gPhoton (Million+ 2016ApJ...833..292M). An initial sample of 5613 hot subdwarfs (Geier+ 2017, J/A+A/600/A50), which represents a good approximation of all cataloged hot subdwarf stars, was down-selected based on magnitudes, coordinates, and total exposure time available in the gPhoton database, described fully in Section 2. These selection criteria yielded 1881 targets upon which we focused our investigation. Calibrated light curves with time bins of 30s were generated for each target using gPhoton. (4 data files).

  10. Two-photon excitation of nitric oxide fluorescence as a temperature indicator in unsteady gas-dynamic processes

    NASA Technical Reports Server (NTRS)

    Mckenzie, R. L.; Gross, K. P.

    1980-01-01

    A laser induced fluorescence technique, suitable for measuring fluctuating temperatures in cold turbulent flows containing very low concentrations of nitric oxide is described. Temperatures below 300 K may be resolved with signal to noise ratios greater than 50 to 1 using high peak power, tunable dye lasers. The method relies on the two photon excitation of selected ro-vibronic transitions. The analysis includes the effects of fluorescence quenching and shows the technique to be effective at all densities below ambient. Signal to noise ratio estimates are based on a preliminary measurement of the two photon absorptivity for a selected rotational transition in the NO gamma (0,0) band.

  11. Probing the Cosmic Gamma-Ray Burst Rate with Trigger Simulations of the Swift Burst Alert Telescope

    NASA Technical Reports Server (NTRS)

    Lien, Amy; Sakamoto, Takanori; Gehrels, Neil; Palmer, David M.; Barthelmy, Scott D.; Graziani, Carlo; Cannizzo, John K.

    2013-01-01

    The gamma-ray burst (GRB) rate is essential for revealing the connection between GRBs, supernovae and stellar evolution. Additionally, the GRB rate at high redshift provides a strong probe of star formation history in the early universe. While hundreds of GRBs are observed by Swift, it remains difficult to determine the intrinsic GRB rate due to the complex trigger algorithm of Swift. Current studies of the GRB rate usually approximate the Swift trigger algorithm by a single detection threshold. However, unlike the previously own GRB instruments, Swift has over 500 trigger criteria based on photon count rate and additional image threshold for localization. To investigate possible systematic biases and explore the intrinsic GRB properties, we develop a program that is capable of simulating all the rate trigger criteria and mimicking the image threshold. Our simulations show that adopting the complex trigger algorithm of Swift increases the detection rate of dim bursts. As a result, our simulations suggest bursts need to be dimmer than previously expected to avoid over-producing the number of detections and to match with Swift observations. Moreover, our results indicate that these dim bursts are more likely to be high redshift events than low-luminosity GRBs. This would imply an even higher cosmic GRB rate at large redshifts than previous expectations based on star-formation rate measurements, unless other factors, such as the luminosity evolution, are taken into account. The GRB rate from our best result gives a total number of 4568 +825 -1429 GRBs per year that are beamed toward us in the whole universe.

  12. Phospholipase C mediated Suppression of Dark Noise Enables Single Photon Detection in Drosophila Photoreceptors

    PubMed Central

    Katz, Ben; Minke, Baruch

    2012-01-01

    Drosophila photoreceptor cells use the ubiquitous G-protein-mediated phospholipase C (PLC) cascade to achieve ultimate single photon sensitivity. This is manifested in the single photon responses (quantum bumps). In photoreceptor cells, dark activation of Gqα molecules occurs spontaneously and produces unitary dark events (dark bumps). A high rate of spontaneous Gqα activation and dark bump production potentially hampers single photon detection. We found that in wild type flies the in vivo rate of spontaneous Gqα activation is very high. Nevertheless, this high rate is not manifested in a substantially high rate of dark bumps. Therefore, it is unclear how phototransduction suppresses dark bump production, arising from spontaneous Gqα activation, while still maintaining high-fidelity representation of single photons. In this study we show that reduced PLC catalytic activity selectively suppressed production of dark bumps but not light-induced bumps. Manipulations of PLC activity using PLC mutant flies and Ca2+ modulations revealed that a critical level of PLC activity is required to induce bump production. The required minimal level of PLC activity, selectively suppressed random production of single Gqα-activated dark bumps despite a high rate of spontaneous Gqα activation. This minimal PLC activity level is reliably obtained by photon induced synchronized activation of several neighboring Gqα molecules activating several PLC molecules, but not by random activation of single Gqα molecules. We thus demonstrate how a G-protein-mediated transduction system, with PLC as its target, selectively suppresses its intrinsic noise while preserving reliable signaling. PMID:22357856

  13. Reflection spectra and their angular dependences of one-dimensional photonic crystals based on aluminium oxide

    NASA Astrophysics Data System (ADS)

    Gorelik, V. S.; Yashin, M. M.; Pudovkin, A. V.; Vodchits, A. I.

    2017-11-01

    The article considers optical properties (transmission and reflection) of one-dimensional photonic crystals based on mesoporous anodic aluminum oxide, with periods of crystal lattices 188 and 194 nm. A comparison of the experimentally measured reflection spectrum in the spectral region of the first stop-zone with the theoretical dependence obtained from the dispersion relation for one-dimensional photonic crystal is carried out. The angular dependence of the first stop-zone spectral positions of one-dimensional photonic crystal is established. The authors analyze the possibility of applications of mesoporous one-dimensional photonic crystals based on aluminum oxide as the selective narrowband filters and mirrors.

  14. A series of fluorene-based two-photon absorbing molecules: synthesis, linear and nonlinear characterization, and bioimaging

    PubMed Central

    Andrade, Carolina D.; Yanez, Ciceron O.; Rodriguez, Luis; Belfield, Kevin D.

    2010-01-01

    The synthesis, structural, and photophysical characterization of a series of new fluorescent donor–acceptor and acceptor-acceptor molecules, based on the fluorenyl ring system, with two-photon absorbing properties is described. These new compounds exhibited large Stokes shifts, high fluorescent quantum yields, and, significantly, high two-photon absorption cross sections, making them well suited for two-photon fluorescence microscopy (2PFM) imaging. Confocal and two-photon fluorescence microscopy imaging of COS-7 and HCT 116 cells incubated with probe I showed endosomal selectivity, demonstrating the potential of this class of fluorescent probes in multiphoton fluorescence microscopy. PMID:20481596

  15. Self-assembled block copolymer photonic crystal for selective fructose detection.

    PubMed

    Ayyub, Omar B; Ibrahim, Michael B; Briber, Robert M; Kofinas, Peter

    2013-08-15

    The use of one-dimensional photonic crystals fabricated from a self-assembled lamellar block copolymer as a sensitive and selective fructose sensor is investigated. The polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP) films are functionalized with 2-(bromomethyl)phenylboronic acid. The boronic acid moiety confined within the lamellar morphology can reversibly bind to sugars such as fructose, imparting the photonic properties of the PS-b-P2VP film. The films exhibit a detection limit of 500 μM in water and 1mM in phosphate buffered saline. Exposure to a 50 mM solution of fructose invokes a highly visible color change from blue to orange. The films are also able to selectively recognize and respond to fructose in competitive studies in the presence of glucose, mannose and sucrose. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Single-organelle tracking by two-photon conversion

    NASA Astrophysics Data System (ADS)

    Watanabe, Wataru; Shimada, Tomoko; Matsunaga, Sachihiro; Kurihara, Daisuke; Fukui, Kiichi; Shin-Ichi Arimura, Shin-Ichi; Tsutsumi, Nobuhiro; Isobe, Keisuke; Itoh, Kazuyoshi

    2007-03-01

    Spatial and temporal information about intracellular objects and their dynamics within a living cell are essential for dynamic analysis of such objects in cell biology. A specific intracellular object can be discriminated by photoactivatable fluorescent proteins that exhibit pronounced light-induced spectral changes. Here, we report on selective labeling and tracking of a single organelle by using two-photon conversion of a photoconvertible fluorescent protein with near-infrared femtosecond laser pulses. We performed selective labeling of a single mitochondrion in a living tobacco BY-2 cell using two-photon photoconversion of Kaede. Using this technique, we demonstrated that, in plants, the directed movement of individual mitochondria along the cytoskeletons was mediated by actin filaments, whereas microtubules were not required for the movement of mitochondria. This single-organelle labeling technique enabled us to track the dynamics of a single organelle, revealing the mechanisms involved in organelle dynamics. The technique has potential application in direct tracking of selective cellular and intracellular structures.

  17. Selective Photophysical Modification on Light-Emitting Polymer Films for Micro- and Nano-Patterning

    PubMed Central

    Zhang, Xinping; Liu, Feifei; Li, Hongwei

    2016-01-01

    Laser-induced cross-linking in polymeric semiconductors was utilized to achieve micro- and nano-structuring in thin films. Single- and two-photon cross-linking processes led to the reduction in both the refractive index and thickness of the polymer films. The resultant photonic structures combine the features of both relief- and phase-gratings. Selective cross-linking in polymer blend films based on different optical response of different molecular phases enabled “solidification” of the phase-separation scheme, providing a stable template for further photonic structuring. Dielectric and metallic structures are demonstrated for the fabrication methods using cross-linking in polymer films. Selective cross-linking enables direct patterning into polymer films without introducing additional fabrication procedures or additional materials. The diffraction processes of the emission of the patterned polymeric semiconductors may provide enhanced output coupling for light-emitting diodes or distributed feedback for lasers. PMID:28773248

  18. Energy-discriminating X-ray computed tomography system utilizing a cadmium telluride detector

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Abderyim, Purkhet; Enomoto, Toshiyuki; Watanabe, Manabu; Hitomi, Keitaro; Takahasi, Kiyomi; Sato, Shigehiro; Ogawae, Akira; Onagawa, Jun

    2010-07-01

    An energy-discriminating K-edge X-ray computed tomography (CT) system is useful for increasing contrast resolution of a target region utilizing contrast media and for reducing the absorbed dose for patients. The CT system is of the first-generation type with a cadmium telluride (CdTe) detector, and a projection curve is obtained by translation scanning using the CdTe detector in conjunction with an x-stage. An object is rotated by the rotation step angle using a turntable between the translation scans. Thus, CT is carried out by repeating the translation scanning and the rotation of an object. Penetrating X-ray photons from the object are detected by the CdTe detector, and event signals of X-ray photons are produced using charge-sensitive and shaping amplifiers. Both the photon energy and the energy width are selected by use of a multi-channel analyzer, and the number of photons is counted by a counter card. Demonstration of enhanced iodine K-edge X-ray CT was carried out by selecting photons with energies just beyond the iodine K-edge energy of 33.2 keV.

  19. Bioinspired M-13 bacteriophage-based photonic nose for differential cell recognition† †Electronic supplementary information (ESI) available: Instrumentation, diagrams, protein sequences and additional results. See DOI: 10.1039/c6sc02021f Click here for additional data file.

    PubMed Central

    Moon, Jong-Sik; Kim, Won-Geun; Shin, Dong-Myeong; Lee, So-Young; Kim, Chuntae; Lee, Yujin; Han, Jiye; Kim, Kyujung

    2017-01-01

    A bioinspired M-13 bacteriophage-based photonic nose was developed for differential cell recognition. The M-13 bacteriophage-based photonic nose exhibits characteristic color patterns when phage bundle nanostructures, which were genetically modified to selectively capture vapor phase molecules, are structurally deformed. We characterized the color patterns of the phage bundle nanostructure in response to cell proliferation via several biomarkers differentially produced by cells, including hydrazine, o-xylene, ethylbenzene, ethanol and toluene. A specific color enables the successful identification of different types of molecular and cellular species. Our sensing technique utilized the versatile M-13 bacteriophage as a building block for fabricating bioinspired photonic crystals, which enables ease of fabrication and tunable selectivity through genetic engineering. Our simple and versatile bioinspired photonic nose could have possible applications in sensors for human health and national security, food discrimination, environmental monitoring, and portable and wearable sensors. PMID:28572902

  20. Two-photon double ionization of helium in the region of photon energies 42-50eV

    NASA Astrophysics Data System (ADS)

    Ivanov, I. A.; Kheifets, A. S.

    2007-03-01

    We report the total integrated cross section (TICS) of two-photon double ionization of helium in the photon energy range from 42to50eV . Our computational procedure relies on a numerical solution of the time-dependent Schrödinger equation on a square-integrable basis and subsequent projection of this solution on a set of final field-free states describing correlation in the two-electron continuum. Our results suggest that the TICS grows monotonically as a function of photon energy in the region of 42-50eV , possibly reaching a maximum in the vicinity of 50eV . We also present fully resolved triple-differential cross sections for selected photon energies.

  1. On-chip electrically controlled routing of photons from a single quantum dot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bentham, C.; Coles, R. J.; Royall, B.

    2015-06-01

    Electrical control of on-chip routing of photons emitted by a single InAs/GaAs self-assembled quantum dot (SAQD) is demonstrated in a photonic crystal cavity-waveguide system. The SAQD is located inside an H1 cavity, which is coupled to two photonic crystal waveguides. The SAQD emission wavelength is electrically tunable by the quantum-confined Stark effect. When the SAQD emission is brought into resonance with one of two H1 cavity modes, it is preferentially routed to the waveguide to which that mode is selectively coupled. This proof of concept provides the basis for scalable, low-power, high-speed operation of single-photon routers for use in integratedmore » quantum photonic circuits.« less

  2. Defining the safe current limit for opening ID photon shutter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seletskiy, S.

    The NSLS-II storage ring is protected from possible damage from insertion devices (IDs) synchrotron radiation by a dedicated active interlock system (AIS). It monitors electron beam position and angle and triggers beam drop if beam orbit exceeds the boundaries of pre-calculated active interlock envelope (AIE). The beamlines (BL) and beamline frontends (FE) are designed under assumption that the electron beam is interlocked within the AIE. For historic reasons the AIS engages the ID active interlock (AI-ID) at any non-zero beam current whenever the ID photon shutter (IDPS) is getting opened. Such arrangement creates major inconveniences for BLs commissioning. Apparently theremore » is some IDPS safe current limit (SCL) under which the IDPS can be opened without interlocking the e-beam. The goal of this paper is to find such limit.« less

  3. Metal-organic vapor-phase epitaxy-grown ultra-low density InGaAs/GaAs quantum dots exhibiting cascaded single-photon emission at 1.3 μm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Matthias, E-mail: m.paul@ihfg.uni-stuttgart.de; Kettler, Jan; Zeuner, Katharina

    By metal-organic vapor-phase epitaxy, we have fabricated InGaAs quantum dots on GaAs substrate with an ultra-low lateral density (<10{sup 7} cm{sup −2}). The photoluminescence emission from the quantum dots is shifted to the telecom O-band at 1.31 μm by an InGaAs strain reducing layer. In time-resolved measurements, we find fast decay times for exciton (∼600 ps) and biexciton (∼300 ps). We demonstrate triggered single-photon emission (g{sup (2)}(0)=0.08) as well as cascaded emission from the biexciton decay. Our results suggest that these quantum dots can compete with their counterparts grown by state-of-the-art molecular beam epitaxy.

  4. The neural basis of functional neuroimaging signal with positron and single-photon emission tomography.

    PubMed

    Sestini, S

    2007-07-01

    Functional imaging techniques such as positron and single-photon emission tomography exploit the relationship between neural activity, energy demand and cerebral blood flow to functionally map the brain. Despite the fact that neurobiological processes are not completely understood, several results have revealed the signals that trigger the metabolic and vascular changes accompanying variations in neural activity. Advances in this field have demonstrated that release of the major excitatory neurotransmitter glutamate initiates diverse signaling processes between neurons, astrocytes and blood perfusion, and that this signaling is crucial for the occurrence of brain imaging signals. Better understanding of the neural sites of energy consumption and the temporal correlation between energy demand, energy consumption and associated cerebrovascular hemodynamics gives novel insight into the potential of these imaging tools in the study of metabolic neurodegenerative disorders.

  5. Fermi GBM: Highlights from the First Year

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2009-01-01

    The Fermi Gamma ray Burst Monitor is an all-sky instrument sensitive to photons from about 8 keV to 40 MeV. I will summarize highlights from the first year, including triggered observations of gamma ray bursts, soft gamma ray repeaters, and terrestrial gamma flashes, and observations in the continuous data of X-ray binaries and accreting X-ray pulsars. GBM provides complementary observations to Swift/BAT, observing many of the same sources, but over a wider energy range.

  6. The Crystal Zero Degree Detector at BESIII

    NASA Astrophysics Data System (ADS)

    Koch, L.; Denig, A.; Drexler, P.; Garillon, B.; Johansson, T.; Kühn, W.; Lange, S.; Lauth, W.; Liang, Y.; Marciniewski, P.; Rathmann, T.; Redmer, C.

    2017-07-01

    The BESIII experiment at the BEPCII electron positron collider at IHEP (Beijing) is collecting data in the charm-τ mass region. Electron positron collisions are a very well suited environment for the study of initial state radiation (ISR). However, the photons from ISR are strongly peaked towards small polar angles and are currently detected with limited efficiency. In order to increase the detection efficiency of ISR photons, we are developing small-size calorimeters to be placed in the very forward and backward regions. Each detector will consist of two 4×3 arrays of 1×1×14 cm3 LYSO crystals. A 1 cm gap separating each of the two arrays will reduce the contamination from background at very low angles. The scintillation light will be collected by silicon photomultipliers (SiPMs). The expected event rate in the MHz range requires flash ADCs recording the preamplified SiPM outputs.The digitized waveforms will be analyzed in realtime yielding data reduction and pile-up detection. This high bandwidth data stream will be transmitted via optical fibers to FPGA-based hardware performing sub-event building, buffering, and event correlation with the BESIII trigger. The sub-events with a corresponding trigger will be sent to the BESIII event builder via TCP/IP. A single crystal equipped with a SiPM was instrumented as a prototype detector. Tests with radioactive sources were performed successfully.

  7. Radiation Tolerant Electronics and Digital Processing for the Phase-I Trigger Readout Upgrade of the ATLAS Liquid Argon Calorimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milic, A.

    The high luminosities of L > 10{sup 34} cm{sup -2}s{sup -1} at the Large Hadron Collider (LHC) at CERN produce an intense radiation environment that the detectors and their electronics must withstand. The ATLAS detector is a multi-purpose apparatus constructed to explore the new particle physics regime opened by the LHC. Of the many decay particles observed by the ATLAS detector, the energy of the created electrons and photons is measured by a sampling calorimeter technique that uses Liquid Argon (LAr) as its active medium. The front end (FE) electronic readout of the ATLAS LAr calorimeter located on the detectormore » itself consists of a combined analog and digital processing system. In order to exploit the higher luminosity while keeping the same trigger bandwidth of 100 kHz, higher transverse granularity, higher resolution and longitudinal shower shape information will be provided from the LAr calorimeter to the Level-l trigger processors. New trigger readout electronics have been designed for this purpose, which will withstand the radiation dose levels expected for an integrated luminosity of 3000 fb{sup -1} during the high luminosity LHC (HL-LHC), which is well above the original LHC design qualifications. (authors)« less

  8. Signature-based search for delayed photons in exclusive photon plus missing transverse energy events from pp¯ collisions with s=1.96TeV

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Ciocci, M. A.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; De Barbaro, P.; Demortier, L.; Deninno, M.; d'Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Eusebi, R.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucà, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, P.; Martínez, M.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Ranjan, N.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sinervo, P.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; Stancari, M.; Denis, R. St.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Wester, W. C., III; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.

    2013-08-01

    We present the first signature-based search for delayed photons using an exclusive photon plus missing transverse energy final state. Events are reconstructed in a data sample from the CDF II detector corresponding to 6.3fb-1 of integrated luminosity from s=1.96TeV proton-antiproton collisions. Candidate events are selected if they contain a photon with an arrival time in the detector larger than expected from a promptly produced photon. The mean number of events from standard model sources predicted by the data-driven background model based on the photon timing distribution is 286±24. A total of 322 events are observed. A p value of 12% is obtained, showing consistency of the data with standard model predictions.

  9. Performance of photon reconstruction and identification with the CMS detector in proton-proton collisions at √s = 8 TeV

    DOE PAGES

    Khachatryan, Vardan

    2015-08-10

    A description is provided of the performance of the CMS detector for photon reconstruction and identification in proton-proton collisions at a centre-of-mass energy of 8 TeV at the CERN LHC. Details are given on the reconstruction of photons from energy deposits in the electromagnetic calorimeter (ECAL) and the extraction of photon energy estimates. Furthermore, the reconstruction of electron tracks from photons that convert to electrons in the CMS tracker is also described, as is the optimization of the photon energy reconstruction and its accurate modelling in simulation, in the analysis of the Higgs boson decay into two photons. In themore » barrel section of the ECAL, an energy resolution of about 1% is achieved for unconverted or late-converting photons from H → γγ decays. Furthermore, different photon identification methods are discussed and their corresponding selection efficiencies in data are compared with those found in simulated events.« less

  10. Valley photonic crystals for control of spin and topology

    NASA Astrophysics Data System (ADS)

    Dong, Jian-Wen; Chen, Xiao-Dong; Zhu, Hanyu; Wang, Yuan; Zhang, Xiang

    2017-03-01

    Photonic crystals offer unprecedented opportunity for light manipulation and applications in optical communication and sensing. Exploration of topology in photonic crystals and metamaterials with non-zero gauge field has inspired a number of intriguing optical phenomena such as one-way transport and Weyl points. Recently, a new degree of freedom, valley, has been demonstrated in two-dimensional materials. Here, we propose a concept of valley photonic crystals with electromagnetic duality symmetry but broken inversion symmetry. We observe photonic valley Hall effect originating from valley-dependent spin-split bulk bands, even in topologically trivial photonic crystals. Valley-spin locking behaviour results in selective net spin flow inside bulk valley photonic crystals. We also show the independent control of valley and topology in a single system that has been long pursued in electronic systems, resulting in topologically-protected flat edge states. Valley photonic crystals not only offer a route towards the observation of non-trivial states, but also open the way for device applications in integrated photonics and information processing using spin-dependent transportation.

  11. Valley photonic crystals for control of spin and topology.

    PubMed

    Dong, Jian-Wen; Chen, Xiao-Dong; Zhu, Hanyu; Wang, Yuan; Zhang, Xiang

    2017-03-01

    Photonic crystals offer unprecedented opportunity for light manipulation and applications in optical communication and sensing. Exploration of topology in photonic crystals and metamaterials with non-zero gauge field has inspired a number of intriguing optical phenomena such as one-way transport and Weyl points. Recently, a new degree of freedom, valley, has been demonstrated in two-dimensional materials. Here, we propose a concept of valley photonic crystals with electromagnetic duality symmetry but broken inversion symmetry. We observe photonic valley Hall effect originating from valley-dependent spin-split bulk bands, even in topologically trivial photonic crystals. Valley-spin locking behaviour results in selective net spin flow inside bulk valley photonic crystals. We also show the independent control of valley and topology in a single system that has been long pursued in electronic systems, resulting in topologically-protected flat edge states. Valley photonic crystals not only offer a route towards the observation of non-trivial states, but also open the way for device applications in integrated photonics and information processing using spin-dependent transportation.

  12. Selective Optical Addressing of Nuclear Spins through Superhyperfine Interaction in Rare-Earth Doped Solids.

    PubMed

    Car, B; Veissier, L; Louchet-Chauvet, A; Le Gouët, J-L; Chanelière, T

    2018-05-11

    In Er^{3+}:Y_{2}SiO_{5}, we demonstrate the selective optical addressing of the ^{89}Y^{3+} nuclear spins through their superhyperfine coupling with the Er^{3+} electronic spins possessing large Landé g factors. We experimentally probe the electron-nuclear spin mixing with photon echo techniques and validate our model. The site-selective optical addressing of the Y^{3+} nuclear spins is designed by adjusting the magnetic field strength and orientation. This constitutes an important step towards the realization of long-lived solid-state qubits optically addressed by telecom photons.

  13. Selective Optical Addressing of Nuclear Spins through Superhyperfine Interaction in Rare-Earth Doped Solids

    NASA Astrophysics Data System (ADS)

    Car, B.; Veissier, L.; Louchet-Chauvet, A.; Le Gouët, J.-L.; Chanelière, T.

    2018-05-01

    In Er3 +:Y2SiO5 , we demonstrate the selective optical addressing of the Y89 3 + nuclear spins through their superhyperfine coupling with the Er3 + electronic spins possessing large Landé g factors. We experimentally probe the electron-nuclear spin mixing with photon echo techniques and validate our model. The site-selective optical addressing of the Y3 + nuclear spins is designed by adjusting the magnetic field strength and orientation. This constitutes an important step towards the realization of long-lived solid-state qubits optically addressed by telecom photons.

  14. Extraction of the photon beam asymmetry Sigma in pi 0 photoproduction off the proton using the CBELSA/TAPS experiment

    NASA Astrophysics Data System (ADS)

    Sparks, Nathan Andrew

    The CBELSA/TAPS experiment at the electron accelerator ELSA, in Bonn, Germany, was used in order to study the photoproduction of neutral pions off the proton with a linearly polarized photon beam; Neutral pions were reconstructed through their dominant decay mode into two photons. The photons were detected in a barrel/forward electromagnetic calorimeter system which covered 99% of the 4pi solid angle. The Crystal Barrel CsI(Tl) calorimeter detected photons at polar angles from 30° to 168°, while TAPS, a BaF2 spectrometer, covered forward polar angles from 5.8° to 30° and served as a fast trigger; Both calorimeters had complete azimuthal angular coverage. Coherent bremsstrahlung of electrons in a diamond radiator was used to produce a linearly polarized beam of photons with a coherent peak at 1305 or 1610 MeV. The analysis of these two datasets allowed for the measurement of the photon beam asymmetry in the beam photon energy range of 920 to 1680 MeV. For the first time, these results cover the very forward polar angles of the neutral pion. The measurements are compared to the SAID, MAID, and BnGa models and to previous measurements. These new measurements of the photon beam asymmetry contribute to the ongoing experimentally-driven exploration of the N and Delta resonances. The study of strange baryons provides a link between the strong interaction physics of the excited nucleons and the heavy flavor baryons. The upcoming GlueX experiment at Jefferson Lab is expected to provide an opportunity to examine strange baryons in much greater detail than ever before. GEANT-based Monte Carlo simulations of Cascade baryons at the GlueX experiment were conducted in order to better understand the capabilities of this experiment. A proposal, "An initial study of mesons and baryons containing strange quarks with GlueX", was submitted to the 40th Jefferson Lab Program Advisory Committee (PAC), in part, supported by these Cascade baryon simulations. 200 days of additional beam time were approved, with the proposal receiving an A scientific rating.

  15. Nonlinear optical effects in semi-polar GaN micro-cavity emitter

    NASA Astrophysics Data System (ADS)

    Butler, Sween; Jiang, Hongxing; Lin, Jingyu; Neogi, Arup

    Nonlinear optical (NLO) response of low dimensional emitters is of current interest because of the need for active elements in photonic applications. NLO effects in a selectively grown array of semi-polar GaN microcavity structures offer a promising route toward devices for integrated optical circuitry in optoelectronics and photonics field. Localized spatial excitation of a single hexagonal GaN microcavity with semipolar facets formed by selective area growth was optimized for nonlinear optical light generation due to second harmonic generation (SHG) and multi-photon luminescence(MPL). Multi-photon transition induced by tightly focused femtosecond NIR incident field results in ultra-violet and yellow luminescence for excitations above and below half bandgap energy, whereas SHG was observed for below half bandgap energy. We show that color and coherence of the light generation from the emitter can be controlled by selective onset of the nonlinear process which depends not only on the incident laser energy and intensity but also on the geometry of the microcavity. Quasi-WGM like modes were observed for off-resonant excitations from the GaN microcavity resulting in enhanced SHG. The directionality of MPL and SHG will be presented as a function of the pump polarization.

  16. Measurement-device-independent quantum key distribution with multiple crystal heralded source with post-selection

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Shang-Hong, Zhao; MengYi, Deng

    2018-03-01

    The multiple crystal heralded source with post-selection (MHPS), originally introduced to improve the single-photon character of the heralded source, has specific applications for quantum information protocols. In this paper, by combining decoy-state measurement-device-independent quantum key distribution (MDI-QKD) with spontaneous parametric downconversion process, we present a modified MDI-QKD scheme with MHPS where two architectures are proposed corresponding to symmetric scheme and asymmetric scheme. The symmetric scheme, which linked by photon switches in a log-tree structure, is adopted to overcome the limitation of the current low efficiency of m-to-1 optical switches. The asymmetric scheme, which shows a chained structure, is used to cope with the scalability issue with increase in the number of crystals suffered in symmetric scheme. The numerical simulations show that our modified scheme has apparent advances both in transmission distance and key generation rate compared to the original MDI-QKD with weak coherent source and traditional heralded source with post-selection. Furthermore, the recent advances in integrated photonics suggest that if built into a single chip, the MHPS might be a practical alternative source in quantum key distribution tasks requiring single photons to work.

  17. Analyzing and Improving Image Quality in Reflective Ghost Imaging

    DTIC Science & Technology

    2011-02-01

    photon quantum entanglement ," Phys. Rev. A 52, 3429 (1995). [2] A. Valencia, G. Scarcelli. M. D. Angelo, and Y. Shih. "Two- photon imaging with thermal...and reference fields, which were generated by spontaneous parametric downconversion (SPDC) and post- selection [1]. Because biphotons are entangled ...envelopes about center frequency we of linearly-polarized light fields normalized to have V/ photons /m 2s units as functions of their transverse

  18. Nanoporous hard data: optical encoding of information within nanoporous anodic alumina photonic crystals

    NASA Astrophysics Data System (ADS)

    Santos, Abel; Law, Cheryl Suwen; Pereira, Taj; Losic, Dusan

    2016-04-01

    Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for developing advanced nanophotonic tools for a wide range of applications, including sensing, photonic tagging, self-reporting drug releasing systems and secure encoding of information.Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for developing advanced nanophotonic tools for a wide range of applications, including sensing, photonic tagging, self-reporting drug releasing systems and secure encoding of information. Electronic supplementary information (ESI) available: Further details about anodisation profiles, SEM cross-section images, digital pictures, transmission spectra, photonic barcodes and ASCII codes of the different NAA photonic crystals fabricated and analysed in our study. See DOI: 10.1039/c6nr01068g

  19. Tunable mesoporous bilayer photonic resins with chiral nematic structures and actuator properties.

    PubMed

    Khan, Mostofa K; Hamad, Wadood Y; Maclachlan, Mark J

    2014-04-16

    Chiral nematic structures with different helical pitch from layer to layer are embedded into phenol-formaldehyde bilayer resin composite films using cellulose nanocrystals (CNCs) as templates. Selective removal of CNCs results in mesoporous resins with different pore size and helical pitch between the layers. Consequently, these materials exhibit photonic properties by selectively reflecting lights of two different wavelengths and concomitant actuation properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Background-Source Cosmic-Photon Elevation Scaling and Cosmic-Neutron/Photon Date Scaling in MCNP6

    DOE PAGES

    Tutt, James Robert; Anderson, Casey Alan; McKinney, Gregg Walter

    2017-10-26

    Here, cosmic neutron and photon fluxes are known to scale exponentially with elevation. Consequently, cosmic neutron elevation scaling was implemented for use with the background-source option shortly after its introduction into MCNP6, whereby the neutron flux weight factor was adjusted by the elevation scaling factor when the user-specified elevation differed from the selected background.dat grid-point elevation. At the same time, an elevation scaling factor was suggested for the cosmic photon flux, however, cosmic photon elevation scaling is complicated by the fact that the photon background consists of two components: cosmic and terrestrial. Previous versions of the background.dat file did notmore » provide any way to separate these components. With Rel. 4 of this file in 2015, two new columns were added that provide the energy grid and differential cosmic photon flux separately from the total photon flux. Here we show that the cosmic photon flux component can now be scaled independently and combined with the terrestrial component to form the total photon flux at a user-specified elevation in MCNP6.« less

  1. Background-Source Cosmic-Photon Elevation Scaling and Cosmic-Neutron/Photon Date Scaling in MCNP6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tutt, James Robert; Anderson, Casey Alan; McKinney, Gregg Walter

    Here, cosmic neutron and photon fluxes are known to scale exponentially with elevation. Consequently, cosmic neutron elevation scaling was implemented for use with the background-source option shortly after its introduction into MCNP6, whereby the neutron flux weight factor was adjusted by the elevation scaling factor when the user-specified elevation differed from the selected background.dat grid-point elevation. At the same time, an elevation scaling factor was suggested for the cosmic photon flux, however, cosmic photon elevation scaling is complicated by the fact that the photon background consists of two components: cosmic and terrestrial. Previous versions of the background.dat file did notmore » provide any way to separate these components. With Rel. 4 of this file in 2015, two new columns were added that provide the energy grid and differential cosmic photon flux separately from the total photon flux. Here we show that the cosmic photon flux component can now be scaled independently and combined with the terrestrial component to form the total photon flux at a user-specified elevation in MCNP6.« less

  2. Two-photon excitation cross-section in light and intermediate atoms

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1980-01-01

    The method of explicit summation over the intermediate states is used along with LS coupling to derive an expression for two-photon absorption cross section in light and intermediate atoms in terms of integrals over radial wave functions. Two selection rules, one exact and one approximate, are also derived. In evaluating the radial integrals, for low-lying levels, the Hartree-Fock wave functions, and for high-lying levels, hydrogenic wave functions obtained by the quantum defect method are used. A relationship between the cross section and the oscillator strengths is derived. Cross sections due to selected transitions in nitrogen, oxygen, and chlorine are given. The expression for the cross section is useful in calculating the two-photon absorption in light and intermediate atoms.

  3. Composition/bandgap selective dry photochemical etching of semiconductor materials

    DOEpatents

    Ashby, Carol I. H.; Dishman, James L.

    1987-01-01

    A method of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap Eg.sub.1 in the presence of a second semiconductor material of a different composition and direct bandgap Eg.sub.2, wherein Eg.sub.2 >Eg.sub.1, said second semiconductor material substantially not being etched during said method, comprises subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said photons being of an energy greater than Eg.sub.1 but less than Eg.sub.2, whereby said first semiconductor material is photochemically etched and said second material is substantially not etched.

  4. Far-field photostable optical nanoscopy (PHOTON) for real-time super-resolution single-molecular imaging of signaling pathways of single live cells

    NASA Astrophysics Data System (ADS)

    Huang, Tao; Browning, Lauren M.; Xu, Xiao-Hong Nancy

    2012-04-01

    Cellular signaling pathways play crucial roles in cellular functions and design of effective therapies. Unfortunately, study of cellular signaling pathways remains formidably challenging because sophisticated cascades are involved, and a few molecules are sufficient to trigger signaling responses of a single cell. Here we report the development of far-field photostable-optical-nanoscopy (PHOTON) with photostable single-molecule-nanoparticle-optical-biosensors (SMNOBS) for mapping dynamic cascades of apoptotic signaling pathways of single live cells in real-time at single-molecule (SM) and nanometer (nm) resolutions. We have quantitatively imaged single ligand molecules (tumor necrosis factor α, TNFα) and their binding kinetics with their receptors (TNFR1) on single live cells; tracked formation and internalization of their clusters and their initiation of intracellular signaling pathways in real-time; and studied apoptotic signaling dynamics and mechanisms of single live cells with sufficient temporal and spatial resolutions. This study provides new insights into complex real-time dynamic cascades and molecular mechanisms of apoptotic signaling pathways of single live cells. PHOTON provides superior imaging and sensing capabilities and SMNOBS offer unrivaled biocompatibility and photostability, which enable probing of signaling pathways of single live cells in real-time at SM and nm resolutions.Cellular signaling pathways play crucial roles in cellular functions and design of effective therapies. Unfortunately, study of cellular signaling pathways remains formidably challenging because sophisticated cascades are involved, and a few molecules are sufficient to trigger signaling responses of a single cell. Here we report the development of far-field photostable-optical-nanoscopy (PHOTON) with photostable single-molecule-nanoparticle-optical-biosensors (SMNOBS) for mapping dynamic cascades of apoptotic signaling pathways of single live cells in real-time at single-molecule (SM) and nanometer (nm) resolutions. We have quantitatively imaged single ligand molecules (tumor necrosis factor α, TNFα) and their binding kinetics with their receptors (TNFR1) on single live cells; tracked formation and internalization of their clusters and their initiation of intracellular signaling pathways in real-time; and studied apoptotic signaling dynamics and mechanisms of single live cells with sufficient temporal and spatial resolutions. This study provides new insights into complex real-time dynamic cascades and molecular mechanisms of apoptotic signaling pathways of single live cells. PHOTON provides superior imaging and sensing capabilities and SMNOBS offer unrivaled biocompatibility and photostability, which enable probing of signaling pathways of single live cells in real-time at SM and nm resolutions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11739h

  5. Wiring up pre-characterized single-photon emitters by laser lithography

    NASA Astrophysics Data System (ADS)

    Shi, Q.; Sontheimer, B.; Nikolay, N.; Schell, A. W.; Fischer, J.; Naber, A.; Benson, O.; Wegener, M.

    2016-08-01

    Future quantum optical chips will likely be hybrid in nature and include many single-photon emitters, waveguides, filters, as well as single-photon detectors. Here, we introduce a scalable optical localization-selection-lithography procedure for wiring up a large number of single-photon emitters via polymeric photonic wire bonds in three dimensions. First, we localize and characterize nitrogen vacancies in nanodiamonds inside a solid photoresist exhibiting low background fluorescence. Next, without intermediate steps and using the same optical instrument, we perform aligned three-dimensional laser lithography. As a proof of concept, we design, fabricate, and characterize three-dimensional functional waveguide elements on an optical chip. Each element consists of one single-photon emitter centered in a crossed-arc waveguide configuration, allowing for integrated optical excitation and efficient background suppression at the same time.

  6. In vitro selection of shape-changing DNA nanostructures capable of binding-induced cargo release.

    PubMed

    Oh, Seung Soo; Plakos, Kory; Xiao, Yi; Eisenstein, Michael; Soh, H Tom

    2013-11-26

    Many biological systems employ allosteric regulatory mechanisms, which offer a powerful means of directly linking a specific binding event to a wide spectrum of molecular functionalities. There is considerable interest in generating synthetic allosteric regulators that can perform useful molecular functions for applications in diagnostics, imaging and targeted therapies, but generating such molecules through either rational design or directed evolution has proven exceptionally challenging. To address this need, we present an in vitro selection strategy for generating conformation-switching DNA nanostructures that selectively release a small-molecule payload in response to binding of a specific trigger molecule. As an exemplar, we have generated a DNA nanostructure that hybridizes with a separate 'cargo strand' containing an abasic site. This abasic site stably sequesters a fluorescent cargo molecule in an inactive state until the DNA nanostructure encounters an ATP trigger molecule. This ATP trigger causes the nanostructure to release the cargo strand, thereby liberating the fluorescent payload and generating a detectable fluorescent readout. Our DNA nanostructure is highly sensitive, with an EC50 of 30 μM, and highly specific, releasing its payload in response to ATP but not to other chemically similar nucleotide triphosphates. We believe that this selection approach could be generalized to generate synthetic nanostructures capable of selective and controlled release of other small-molecule cargos in response to a variety of triggers, for both research and clinical applications.

  7. Discovery of the surface polarity gradient on iridescent Morpho butterfly scales reveals a mechanism of their selective vapor response

    PubMed Central

    Potyrailo, Radislav A.; Starkey, Timothy A.; Vukusic, Peter; Ghiradella, Helen; Vasudev, Milana; Bunning, Timothy; Naik, Rajesh R.; Tang, Zhexiong; Larsen, Michael; Deng, Tao; Zhong, Sheng; Palacios, Manuel; Grande, James C.; Zorn, Gilad; Goddard, Gregory; Zalubovsky, Sergey

    2013-01-01

    For almost a century, the iridescence of tropical Morpho butterfly scales has been known to originate from 3D vertical ridge structures of stacked periodic layers of cuticle separated by air gaps. Here we describe a biological pattern of surface functionality that we have found in these photonic structures. This pattern is a gradient of surface polarity of the ridge structures that runs from their polar tops to their less-polar bottoms. This finding shows a biological pattern design that could stimulate numerous technological applications ranging from photonic security tags to self-cleaning surfaces, gas separators, protective clothing, sensors, and many others. As an important first step, this biomaterial property and our knowledge of its basis has allowed us to unveil a general mechanism of selective vapor response observed in the photonic Morpho nanostructures. This mechanism of selective vapor response brings a multivariable perspective for sensing, where selectivity is achieved within a single chemically graded nanostructured sensing unit, rather than from an array of separate sensors. PMID:24019497

  8. A novel in situ trigger combination method

    DOE PAGES

    Buzatu, Adrian; Warburton, Andreas; Krumnack, Nils; ...

    2013-01-30

    Searches for rare physics processes using particle detectors in high-luminosity colliding hadronic beam environments require the use of multi-level trigger systems to reject colossal background rates in real time. In analyses like the search for the Higgs boson, there is a need to maximize the signal acceptance by combining multiple different trigger chains when forming the offline data sample. In such statistically limited searches, datasets are often amassed over periods of several years, during which the trigger characteristics evolve and system performance can vary significantly. Reliable production cross-section measurements and upper limits must take into account a detailed understanding ofmore » the effective trigger inefficiency for every selected candidate event. We present as an example the complex situation of three trigger chains, based on missing energy and jet energy, that were combined in the context of the search for the Higgs (H) boson produced in association with a $W$ boson at the Collider Detector at Fermilab (CDF). We briefly review the existing techniques for combining triggers, namely the inclusion, division, and exclusion methods. We introduce and describe a novel fourth in situ method whereby, for each candidate event, only the trigger chain with the highest a priori probability of selecting the event is considered. We compare the inclusion and novel in situ methods for signal event yields in the CDF $WH$ search. This new combination method, by virtue of its scalability to large numbers of differing trigger chains and insensitivity to correlations between triggers, will benefit future long-running collider experiments, including those currently operating on the Large Hadron Collider.« less

  9. A novel in situ trigger combination method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buzatu, Adrian; Warburton, Andreas; Krumnack, Nils

    Searches for rare physics processes using particle detectors in high-luminosity colliding hadronic beam environments require the use of multi-level trigger systems to reject colossal background rates in real time. In analyses like the search for the Higgs boson, there is a need to maximize the signal acceptance by combining multiple different trigger chains when forming the offline data sample. In such statistically limited searches, datasets are often amassed over periods of several years, during which the trigger characteristics evolve and system performance can vary significantly. Reliable production cross-section measurements and upper limits must take into account a detailed understanding ofmore » the effective trigger inefficiency for every selected candidate event. We present as an example the complex situation of three trigger chains, based on missing energy and jet energy, that were combined in the context of the search for the Higgs (H) boson produced in association with a $W$ boson at the Collider Detector at Fermilab (CDF). We briefly review the existing techniques for combining triggers, namely the inclusion, division, and exclusion methods. We introduce and describe a novel fourth in situ method whereby, for each candidate event, only the trigger chain with the highest a priori probability of selecting the event is considered. We compare the inclusion and novel in situ methods for signal event yields in the CDF $WH$ search. This new combination method, by virtue of its scalability to large numbers of differing trigger chains and insensitivity to correlations between triggers, will benefit future long-running collider experiments, including those currently operating on the Large Hadron Collider.« less

  10. Acoustic emission intrusion detector

    DOEpatents

    Carver, Donald W.; Whittaker, Jerry W.

    1980-01-01

    An intrusion detector is provided for detecting a forcible entry into a secured structure while minimizing false alarms. The detector uses a piezoelectric crystal transducer to sense acoustic emissions. The transducer output is amplified by a selectable gain amplifier to control the sensitivity. The rectified output of the amplifier is applied to a Schmitt trigger circuit having a preselected threshold level to provide amplitude discrimination. Timing circuitry is provided which is activated by successive pulses from the Schmitt trigger which lie within a selected time frame for frequency discrimination. Detected signals having proper amplitude and frequency trigger an alarm within the first complete cycle time of a detected acoustical disturbance signal.

  11. Control of coherent information via on-chip photonic-phononic emitter-receivers.

    PubMed

    Shin, Heedeuk; Cox, Jonathan A; Jarecki, Robert; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T

    2015-03-05

    Rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon-phonon transduction, which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics--which supports GHz frequencies--we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes.

  12. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels.

    PubMed

    Yin, Juan; Ren, Ji-Gang; Lu, He; Cao, Yuan; Yong, Hai-Lin; Wu, Yu-Ping; Liu, Chang; Liao, Sheng-Kai; Zhou, Fei; Jiang, Yan; Cai, Xin-Dong; Xu, Ping; Pan, Ge-Sheng; Jia, Jian-Jun; Huang, Yong-Mei; Yin, Hao; Wang, Jian-Yu; Chen, Yu-Ao; Peng, Cheng-Zhi; Pan, Jian-Wei

    2012-08-09

    Transferring an unknown quantum state over arbitrary distances is essential for large-scale quantum communication and distributed quantum networks. It can be achieved with the help of long-distance quantum teleportation and entanglement distribution. The latter is also important for fundamental tests of the laws of quantum mechanics. Although quantum teleportation and entanglement distribution over moderate distances have been realized using optical fibre links, the huge photon loss and decoherence in fibres necessitate the use of quantum repeaters for larger distances. However, the practical realization of quantum repeaters remains experimentally challenging. Free-space channels, first used for quantum key distribution, offer a more promising approach because photon loss and decoherence are almost negligible in the atmosphere. Furthermore, by using satellites, ultra-long-distance quantum communication and tests of quantum foundations could be achieved on a global scale. Previous experiments have achieved free-space distribution of entangled photon pairs over distances of 600 metres (ref. 14) and 13 kilometres (ref. 15), and transfer of triggered single photons over a 144-kilometre one-link free-space channel. Most recently, following a modified scheme, free-space quantum teleportation over 16 kilometres was demonstrated with a single pair of entangled photons. Here we report quantum teleportation of independent qubits over a 97-kilometre one-link free-space channel with multi-photon entanglement. An average fidelity of 80.4 ± 0.9 per cent is achieved for six distinct states. Furthermore, we demonstrate entanglement distribution over a two-link channel, in which the entangled photons are separated by 101.8 kilometres. Violation of the Clauser-Horne-Shimony-Holt inequality is observed without the locality loophole. Besides being of fundamental interest, our results represent an important step towards a global quantum network. Moreover, the high-frequency and high-accuracy acquiring, pointing and tracking technique developed in our experiment can be directly used for future satellite-based quantum communication and large-scale tests of quantum foundations.

  13. Fermi GBM: Results from the First Year +

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2009-01-01

    Gamma-ray Burst Monitor (GBM) has performed well in the first year+. GBM triggers 353 Gamma-ray Bursts (GRBs), 168 SGR events, 18 TGFs, and 1 solar flare to date. Short GRBs appear contracted in time and shifted to higher energy than long GRBs. Pulsed persistent emission from SGR 1550-5418 detected. TGFs are shorter, have higher average photon energies, and much higher count rates than GRBs. GBM monitoring of accreting pulsars provides long-term spin-histories. GBM Earth occultation monitoring complements Swift.

  14. Photochemical tools to study dynamic biological processes

    PubMed Central

    Specht, Alexandre; Bolze, Frédéric; Omran, Ziad; Nicoud, Jean-François; Goeldner, Maurice

    2009-01-01

    Light-responsive biologically active compounds offer the possibility to study the dynamics of biological processes. Phototriggers and photoswitches have been designed, providing the capability to rapidly cause the initiation of wide range of dynamic biological phenomena. We will discuss, in this article, recent developments in the field of light-triggered chemical tools, specially how two-photon excitation, “caged” fluorophores, and the photoregulation of protein activities in combination with time-resolved x-ray techniques should break new grounds in the understanding of dynamic biological processes. PMID:20119482

  15. The CMS High-Level Trigger and Trigger Menus

    NASA Astrophysics Data System (ADS)

    Avetisyan, Aram

    2008-04-01

    The CMS experiment is one of the two general-purpose experiments due to start operation soon at the Large Hadron Collider (LHC). The LHC will collide protons at a centre of mass energy of 14 TeV, with a bunch-crossing rate of 40 MHz. The online event selection for the CMS experiment is carried out in two distinct stages. At Level-1 the trigger electronics reduces the 40 MHz collision rate to provide up to 100 kHz of interesting events, based on objects found using its calorimeter and muon subsystems. The High Level Trigger (HLT) that runs in the Filter Farm of the CMS experiment is a set of sophisticated software tools that run in a real-time environment to make a further selection and archive few hundred Hz of interesting events. The coherent tuning of the HLT algorithms to accommodate multiple physics channels is a key issue for CMS, one that literally defines the reach of the experiment's physics program. In this presentation we will discuss the strategies and trigger configuration developed for startup physics program of the CMS experiment, up to a luminosity of 10^31 s-1cm-2. Emphasis will be given to the full trigger menus, including physics and calibration triggers.

  16. An Active Metamaterial Platform for Chiral Responsive Optoelectronics.

    PubMed

    Kang, Lei; Lan, Shoufeng; Cui, Yonghao; Rodrigues, Sean P; Liu, Yongmin; Werner, Douglas H; Cai, Wenshan

    2015-08-05

    Chiral-selective non-linear optics and optoelectronic signal generation are demonstrated in an electrically active photonic metamaterial. The metamaterial reveals significant chiroptical responses in both harmonic generation and the photon drag effect, correlated to the resonance behavior in the linear regime. The multifunctional chiral metamaterial with dual electrical and optical functionality enables transduction of chiroptical responses to electrical signals for integrated photonics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Nonclassicality and decoherence of photon-added squeezed coherent Schrödinger kitten states in a Kerr medium

    NASA Astrophysics Data System (ADS)

    Chakrabarti, R.; Yogesh, V.

    2018-01-01

    We study the nonclassicality of the evolution of a superposition of an arbitrary number of photon-added squeezed coherent Schrödinger cat states in a nonlinear Kerr medium. The nonlinearity of the medium gives rise to the periodicities of the quantities such as the Wehrl entropy SQ and the negativity δW of the W-distribution, and a series of local minima of these quantities arise at the rational submultiples of the said period. At these local minima the evolving state coincides with the transient Yurke-Stoler type of photon-added squeezed kitten states, which, for the choice of the phase space variables reflecting their macroscopic nature, show extremely short-lived behavior. Proceeding further we provide the closed form tomograms, which furnish the alternate description of these short-lived states. The increasing complexity in the kitten formations induces more number of interference terms that trigger more quantumness of the corresponding states. The nonclassical depth of the photon-added squeezed kitten states are observed to be of maximum possible value. Employing the Lindblad master equation approach we study the amplitude and the phase damping models for the initial state considered here. In the phase damping model the nonclassicality is not completely erased even in the long time limit when the dynamical quantities, such as the negativity δW and the tomogram, assume nontrivial asymptotic values.

  18. Using a knowledge-based planning solution to select patients for proton therapy.

    PubMed

    Delaney, Alexander R; Dahele, Max; Tol, Jim P; Kuijper, Ingrid T; Slotman, Ben J; Verbakel, Wilko F A R

    2017-08-01

    Patient selection for proton therapy by comparing proton/photon treatment plans is time-consuming and prone to bias. RapidPlan™, a knowledge-based-planning solution, uses plan-libraries to model and predict organ-at-risk (OAR) dose-volume-histograms (DVHs). We investigated whether RapidPlan, utilizing an algorithm based only on photon beam characteristics, could generate proton DVH-predictions and whether these could correctly identify patients for proton therapy. Model PROT and Model PHOT comprised 30 head-and-neck cancer proton and photon plans, respectively. Proton and photon knowledge-based-plans (KBPs) were made for ten evaluation-patients. DVH-prediction accuracy was analyzed by comparing predicted-vs-achieved mean OAR doses. KBPs and manual plans were compared using salivary gland and swallowing muscle mean doses. For illustration, patients were selected for protons if predicted Model PHOT mean dose minus predicted Model PROT mean dose (ΔPrediction) for combined OARs was ≥6Gy, and benchmarked using achieved KBP doses. Achieved and predicted Model PROT /Model PHOT mean dose R 2 was 0.95/0.98. Generally, achieved mean dose for Model PHOT /Model PROT KBPs was respectively lower/higher than predicted. Comparing Model PROT /Model PHOT KBPs with manual plans, salivary and swallowing mean doses increased/decreased by <2Gy, on average. ΔPrediction≥6Gy correctly selected 4 of 5 patients for protons. Knowledge-based DVH-predictions can provide efficient, patient-specific selection for protons. A proton-specific RapidPlan-solution could improve results. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Manipulation of fluids in three-dimensional porous photonic structures with patterned surface properties

    DOEpatents

    Aizenberg, Joanna; Burgess, Ian B.; Mishchenko, Lidiya; Hatton, Benjamin; Loncar, Marko

    2016-03-08

    A three-dimensional porous photonic structure, whose internal pore surfaces can be provided with desired surface properties in a spatially selective manner with arbitrary patterns, and methods for making the same are described. When exposed to a fluid (e.g., via immersion or wicking), the fluid can selectively penetrate the regions of the structure with compatible surface properties. Broad applications, for example in security, encryption and document authentication, as well as in areas such as simple microfluidics and diagnostics, are anticipated.

  20. Manipulation of fluids in three-dimensional porous photonic structures with patterned surface properties

    DOEpatents

    Aizenberg, Joanna; Burgess, Ian; Mishchenko, Lidiya; Hatton, Benjamin; Loncar, Marko

    2017-12-26

    A three-dimensional porous photonic structure, whose internal pore surfaces can be provided with desired surface properties in a spatially selective manner with arbitrary patterns, and methods for making the same are described. When exposed to a fluid (e.g., via immersion or wicking), the fluid can selectively penetrate the regions of the structure with compatible surface properties. Broad applications, for example in security, encryption and document authentication, as well as in areas such as simple microfluidics and diagnostics, are anticipated.

  1. Quantum key distribution with passive decoy state selection

    NASA Astrophysics Data System (ADS)

    Mauerer, Wolfgang; Silberhorn, Christine

    2007-05-01

    We propose a quantum key distribution scheme which closely matches the performance of a perfect single photon source. It nearly attains the physical upper bound in terms of key generation rate and maximally achievable distance. Our scheme relies on a practical setup based on a parametric downconversion source and present day, nonideal photon-number detection. Arbitrary experimental imperfections which lead to bit errors are included. We select decoy states by classical postprocessing. This allows one to improve the effective signal statistics and achievable distance.

  2. Magneto-photonic crystal optical sensors with sensitive covers

    NASA Astrophysics Data System (ADS)

    Dissanayake, Neluka; Levy, Miguel; Chakravarty, A.; Heiden, P. A.; Chen, N.; Fratello, V. J.

    2011-08-01

    We report on a magneto-photonic crystal on-chip optical sensor for specific analyte detection with polypyrrole and gold nano particles as modified photonic crystal waveguide cover layers. The reaction of the active sensor material with various analytes modifies the electronic structure of the sensor layer causing changes in its refractive index and a strong transduction signal. Magneto-photonic crystal enhanced polarization rotation sensitive to the nature of the cover layer detects the index modification upon analyte adsorption. A high degree of selectivity and sensitivity are observed for aqueous ammonia and methanol with polypyrrole and for thiolated-gold- with gold-nanoparticles covers.

  3. Sequential two-photon double ionization of noble gases by circularly polarized XUV radiation

    NASA Astrophysics Data System (ADS)

    Gryzlova, E. V.; Grum-Grzhimailo, A. N.; Kuzmina, E. I.; Strakhova, S. I.

    2014-10-01

    Photoelectron angular distributions (PADs) and angular correlations between two emitted electrons in sequential two-photon double ionization (2PDI) of atoms by circularly polarized radiation are studied theoretically. In particular, the sequential 2PDI of the valence n{{p}6} shell in noble gas atoms (neon, argon, krypton) is analyzed, accounting for the first-order corrections to the dipole approximation. Due to different selection rules in ionization transitions, the circular polarization of photons causes some new features of the cross sections, PADs and angular correlation functions in comparison with the case of linearly polarized photons.

  4. Two-photon direct frequency comb spectroscopy of alkali atoms

    NASA Astrophysics Data System (ADS)

    Palm, Christopher; Pradhananga, Trinity; Nguyen, Khoa; Montcrieffe, Caitlin; Kimball, Derek

    2012-11-01

    We have studied transition frequencies and excited state hyperfine structure in rubidium using 2-photon transitions excited directly with the frequency-doubled output of a erbium fiber optical frequency comb. The frequency comb output is directed in two counterpropagating directions through a vapor cell containing the rubidium vapor. A pair of optical filters is used to select teeth of the comb in order to identify the transition wavelengths. A photomultiplier tube (PMT) measures fluorescence from a decay channel wavelength selected with another optical filter. Using different combinations of filters enables a wide range of transitions to be investigated. By scanning the repetition rate, a Doppler-free spectrum can be obtained enabling kHz-resolution spectral measurements. An interesting dependence of the 2-photon spectrum on the energy of the intermediate state of the 2-photon transition is discussed. Our investigations are laying the groundwork for a long-term research program to use direct frequency comb spectroscopy to understand the complex spectra of rare-earth atoms.

  5. Comb-based radiofrequency photonic filters with rapid tunability and high selectivity

    NASA Astrophysics Data System (ADS)

    Supradeepa, V. R.; Long, Christopher M.; Wu, Rui; Ferdous, Fahmida; Hamidi, Ehsan; Leaird, Daniel E.; Weiner, Andrew M.

    2012-03-01

    Photonic technologies have received considerable attention regarding the enhancement of radiofrequency electrical systems, including high-frequency analogue signal transmission, control of phased arrays, analog-to-digital conversion and signal processing. Although the potential of radiofrequency photonics for the implementation of tunable electrical filters over broad radiofrequency bandwidths has been much discussed, the realization of programmable filters with highly selective filter lineshapes and rapid reconfigurability has faced significant challenges. A new approach for radiofrequency photonic filters based on frequency combs offers a potential route to simultaneous high stopband attenuation, fast tunability and bandwidth reconfiguration. In one configuration, tuning of the radiofrequency passband frequency is demonstrated with unprecedented (~40 ns) speed by controlling the optical delay between combs. In a second, fixed filter configuration, cascaded four-wave mixing simultaneously broadens and smoothes the comb spectra, resulting in Gaussian radiofrequency filter lineshapes exhibiting an extremely high (>60 dB) main lobe to sidelobe suppression ratio and (>70 dB) stopband attenuation.

  6. Design of elliptical-core mode-selective photonic lanterns with six modes for MIMO-free mode division multiplexing systems.

    PubMed

    Sai, Xiaowei; Li, Yan; Yang, Chen; Li, Wei; Qiu, Jifang; Hong, Xiaobin; Zuo, Yong; Guo, Hongxiang; Tong, Weijun; Wu, Jian

    2017-11-01

    Elliptical-core few mode fiber (EC-FMF) is used in a mode division multiplexing (MDM) transmission system to release multiple-input-multiple-output (MIMO) digital-signal-processing, which reduces the cost and the complexity of the receiver. However, EC-FMF does not match with conventional multiplexers/de-multiplexers (MUXs/DeMUXs) such as a photonic lantern, leading to extra mode coupling loss and crosstalk. We design elliptical-core mode-selective photonic lanterns (EC-MSPLs) with six modes, which can match well with EC-FMF in MIMO-free MDM systems. Simulation of the EC-MSPL using the beam propagation method was demonstrated employing a combination of either step-index or graded-index fibers with six different sizes of cores, and the taper transition length of 8 cm or 4 cm. Through numerical simulations and optimizations, both types of photonic lanterns can realize low loss transmission and low crosstalk of below -20.0  dB for all modes.

  7. Metastability and avalanche dynamics in strongly correlated gases with long-range interactions

    NASA Astrophysics Data System (ADS)

    Hruby, Lorenz; Dogra, Nishant; Landini, Manuele; Donner, Tobias; Esslinger, Tilman

    2018-03-01

    We experimentally study the stability of a bosonic Mott insulator against the formation of a density wave induced by long-range interactions and characterize the intrinsic dynamics between these two states. The Mott insulator is created in a quantum degenerate gas of 87-Rubidium atoms, trapped in a 3D optical lattice. The gas is located inside and globally coupled to an optical cavity. This causes interactions of global range, mediated by photons dispersively scattered between a transverse lattice and the cavity. The scattering comes with an atomic density modulation, which is measured by the photon flux leaking from the cavity. We initialize the system in a Mott-insulating state and then rapidly increase the global coupling strength. We observe that the system falls into either of two distinct final states. One is characterized by a low photon flux, signaling a Mott insulator, and the other is characterized by a high photon flux, which we associate with a density wave. Ramping the global coupling slowly, we observe a hysteresis loop between the two states—a further signature of metastability. A comparison with a theoretical model confirms that the metastability originates in the competition between short- and global-range interactions. From the increasing photon flux monitored during the switching process, we find that several thousand atoms tunnel to a neighboring site on the timescale of the single-particle dynamics. We argue that a density modulation, initially forming in the compressible surface of the trapped gas, triggers an avalanche tunneling process in the Mott-insulating region.

  8. Gas Hydrate Exploration, Mid Chilean Coast; Geochemical-Geophysical Survey

    DTIC Science & Technology

    2006-12-27

    design for the piston core provided a more safe core delivery and retrieval protocol with changes in the messenger weight and triggering mechanism ...selection of samples that were analyzed onboard depended on key data needed to assist in sample station selection and the ability to transport and...weight and triggering mechanism . Through the cruise there were 17 piston coring attempts resulting in 15 successful cores. Failures in the core

  9. Compensatable muon collider calorimeter with manageable backgrounds

    DOEpatents

    Raja, Rajendran

    2015-02-17

    A method and system for reducing background noise in a particle collider, comprises identifying an interaction point among a plurality of particles within a particle collider associated with a detector element, defining a trigger start time for each of the pixels as the time taken for light to travel from the interaction point to the pixel and a trigger stop time as a selected time after the trigger start time, and collecting only detections that occur between the start trigger time and the stop trigger time in order to thereafter compensate the result from the particle collider to reduce unwanted background detection.

  10. Atomic clouds as spectrally selective and tunable delay lines for single photons from quantum dots

    NASA Astrophysics Data System (ADS)

    Wildmann, Johannes S.; Trotta, Rinaldo; Martín-Sánchez, Javier; Zallo, Eugenio; O'Steen, Mark; Schmidt, Oliver G.; Rastelli, Armando

    2015-12-01

    We demonstrate a compact, spectrally selective, and tunable delay line for single photons emitted by quantum dots. This is achieved by fine-tuning the wavelength of the optical transitions of such "artificial atoms" into a spectral window in which a cloud of natural atoms behaves as a slow-light medium. By employing the ground-state fine-structure-split exciton confined in an InGaAs/GaAs quantum dot as a source of single photons at different frequencies and the hyperfine-structure-split D1 transition of Cs-vapors as a tunable delay medium, we achieve a differential delay of up 2.4 ns on a 7.5-cm-long path for photons that are only 60 μ eV (14.5 GHz) apart. To quantitatively explain the experimental data, we develop a theoretical model that accounts for both the inhomogeneous broadening of the quantum-dot emission lines and the Doppler broadening of the atomic lines. The concept we proposed here may be used to implement time-reordering operations aimed at erasing the "which-path" information that deteriorates entangled-photon emission from excitons with finite fine-structure splitting.

  11. Application of an oscillation-type linear cadmium telluride detector to enhanced gadolinium K-edge computed tomography

    NASA Astrophysics Data System (ADS)

    Matsukiyo, Hiroshi; Sato, Eiichi; Hagiwara, Osahiko; Abudurexiti, Abulajiang; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Nagao, Jiro; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2011-03-01

    A linear cadmium telluride (CdTe) detector is useful for carrying out energy-discrimination X-ray imaging, including computed tomography (CT). To perform enhanced gadolinium K-edge CT, we used an oscillation-type linear CdTe detector with an energy resolution of 1.2 keV. CT is performed by repeating the linear scan and the rotation of an object. Penetrating X-ray photons from the object are detected by the CdTe detector, and event signals of X-ray photons are produced using charge-sensitive and shaping amplifiers. Both the photon energy and the energy width are selected using a multichannel analyzer, and the number of photons is counted by a counter card. In energy-discrimination CT, tube voltage and current were 80 kV and 20 μA, respectively, and X-ray intensity was 1.55 μGy/s at 1.0 m from the source at a tube voltage of 80 kV. Demonstration of enhanced gadolinium K-edge X-ray CT was carried out by selecting photons with energies just beyond gadolinium K-edge energy of 50.3 keV.

  12. First demonstration of iodine mapping in nonliving phantoms using an X-ray fluorescence computed tomography system with a cadmium telluride detector and a tungsten-target tube

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Sato, Yuichi; Ehara, Shigeru; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Nagao, Jiro; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2011-05-01

    X-ray fluorescence (XRF) analysis is useful for mapping various atoms in objects, and XRF is emitted by absorbing X-ray photons with energies beyond the K-edge energy of the target atom. Narrow-energy-width bremsstrahlung X-rays are selected using a 3.0-mm-thick aluminum filter. These rays are absorbed by iodine media in objects, and iodine XRF is produced from the iodine atoms. Next, iodine Kα photons are discriminated by a multichannel analyzer and the number of photons is counted by a counter card. CT is performed by repeated linear scans and rotations of an object. The X-ray generator has a 100 μm focus tube with a 0.5-mm-thick beryllium window, and the tube voltage and the current for XRF were 80 kV and 0.50 mA, respectively. The demonstration of XRF-CT for mapping iodine atoms was carried out by selection of photons in an energy range from 27.5 to 29.5 keV with a photon-energy resolution of 1.2 keV.

  13. Probing the cosmic gamma-ray burst rate with trigger simulations of the swift burst alert telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lien, Amy; Cannizzo, John K.; Sakamoto, Takanori

    The gamma-ray burst (GRB) rate is essential for revealing the connection between GRBs, supernovae, and stellar evolution. Additionally, the GRB rate at high redshift provides a strong probe of star formation history in the early universe. While hundreds of GRBs are observed by Swift, it remains difficult to determine the intrinsic GRB rate due to the complex trigger algorithm of Swift. Current studies of the GRB rate usually approximate the Swift trigger algorithm by a single detection threshold. However, unlike the previously flown GRB instruments, Swift has over 500 trigger criteria based on photon count rate and an additional imagemore » threshold for localization. To investigate possible systematic biases and explore the intrinsic GRB properties, we develop a program that is capable of simulating all the rate trigger criteria and mimicking the image threshold. Our simulations show that adopting the complex trigger algorithm of Swift increases the detection rate of dim bursts. As a result, our simulations suggest that bursts need to be dimmer than previously expected to avoid overproducing the number of detections and to match with Swift observations. Moreover, our results indicate that these dim bursts are more likely to be high redshift events than low-luminosity GRBs. This would imply an even higher cosmic GRB rate at large redshifts than previous expectations based on star formation rate measurements, unless other factors, such as the luminosity evolution, are taken into account. The GRB rate from our best result gives a total number of 4568{sub −1429}{sup +825} GRBs per year that are beamed toward us in the whole universe.« less

  14. Experimental methods of post-growth tuning of the excitonic fine structure splitting in semiconductor quantum dots

    PubMed Central

    2012-01-01

    Deterministic sources of polarization entangled photon pairs on demand are considered as important building blocks for quantum communication technology. It has been demonstrated that semiconductor quantum dots (QDs), which exhibit a sufficiently small excitonic fine structure splitting (FSS) can be used as triggered, on-chip sources of polarization entangled photon pairs. As-grown QDs usually do not have the required values of the FSS, making the availability of post-growth tuning techniques highly desired. This article reviews the effect of different post-growth treatments and external fields on the FSS such as thermal annealing, magnetic fields, the optical Stark effect, electric fields, and anisotropic stress. As a consequence of the tuning of the FSS, for some tuning techniques a rotation of the polarization of the emitted light is observed. The joint modification of polarization orientation and FSS can be described by an anticrossing of the bright excitonic states. PMID:22726724

  15. Noninvasive two-photon fluorescence microscopy imaging of mouse retina and RPE through the pupil of the eye

    PubMed Central

    Palczewska, Grazyna; Dong, Zhiqian; Golczak, Marcin; Hunter, Jennifer J.; Williams, David R.; Alexander, Nathan S.; Palczewski, Krzysztof

    2014-01-01

    Two-photon excitation microscopy (TPM) can image retinal molecular processes in vivo. Intrinsically fluorescent retinyl esters in sub-cellular structures called retinosomes are an integral part of the visual chromophore regeneration pathway. Fluorescent condensation products of all–trans–retinal accumulate in the eye with age and are also associated with age-related macular degeneration (AMD). Here we report repetitive, dynamic imaging of these compounds in live mice, through the pupil of the eye. Leveraging advanced adaptive optics we developed a data acquisition algorithm that permitted the identification of retinosomes and condensation products in the retinal pigment epithelium (RPE) by their characteristic localization, spectral properties, and absence in genetically modified or drug-treated mice. This imaging approach has the potential to detect early molecular changes in retinoid metabolism that trigger light and AMD-induced retinal defects and to assess the effectiveness of treatments for these conditions. PMID:24952647

  16. PF-AR NW14, a new time-resolved diffraction/scattering beamline

    NASA Astrophysics Data System (ADS)

    Nozawa, Shunsuke; Adachi, Shin-ichi; Tazaki, Ryoko; Takahashi, Jun-ichi; Itatani, Jiro; Daimon, Masahiro; Mori, Takeharu; Sawa, Hiroshi; Kawata, Hiroshi; Koshihara, Shin-ya

    2005-01-01

    NW14 is a new insertion device beamline at the Photon Factory Advanced Ring (PF-AR), which is a unique ring with full-time single-bunched operation, aiming for timeresolved x-ray diffraction/scattering and XAFS experiments. The primary scientific goal of this beamline is to observe the ultrafast dynamics of condensed matter systems such as organic and inorganic crystals, biological systems and liquids triggered by optical pulses. With the large photon fluxes derived from the undulator, it should become possible to take a snapshoot an atomic-scale image of the electron density distribution. By combining a series of images it is possible to produce a movie of the photo-induced dynamics with 50-ps resolution. The construction of the beamline is being funded by the ERATO Koshihara Non-equilibrium Dynamics Project of the Japan Science and Technology Agency (JST), and the beamline will be operational from autumn 2005.

  17. Camera Concepts for the Advanced Gamma-Ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Nepomuk Otte, Adam

    2009-05-01

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. Design goals are ten times better sensitivity, higher angular resolution, and a lower energy threshold than existing Cherenkov telescopes. Each telescope is equipped with a camera that detects and records the Cherenkov-light flashes from air showers. The camera is comprised of a pixelated focal plane of blue sensitive and fast (nanosecond) photon detectors that detect the photon signal and convert it into an electrical one. The incorporation of trigger electronics and signal digitization into the camera are under study. Given the size of AGIS, the camera must be reliable, robust, and cost effective. We are investigating several directions that include innovative technologies such as Geiger-mode avalanche-photodiodes as a possible detector and switched capacitor arrays for the digitization.

  18. VizieR Online Data Catalog: Fermi/GBM GRB time-resolved spectral catalog (Yu+, 2016)

    NASA Astrophysics Data System (ADS)

    Yu, H.-F.; Preece, R. D.; Greiner, J.; Bhat, P. N.; Bissaldi, E.; Briggs, M. S.; Cleveland, W. H.; Connaughton, V.; Goldstein, A.; von Kienlin; A.; Kouveliotou, C.; Mailyan, B.; Meegan, C. A.; Paciesas, W. S.; Rau, A.; Roberts, O. J.; Veres, P.; Wilson-Hodge, C.; Zhang, B.-B.; van Eerten, H. J.

    2016-01-01

    Time-resolved spectral analysis results of BEST models: for each spectrum GRB name using the Fermi GBM trigger designation, spectrum number within individual burst, start time Tstart and end time Tstop for the time bin, BEST model, best-fit parameters of the BEST model, value of CSTAT per degrees of freedom, 10keV-1MeV photon and energy flux are given. Ep evolutionary trends: for each burst GRB name, number of spectra with Ep, Spearman's Rank Correlation Coefficients between Ep_ and photon flux and 90%, 95%, and 99% confidence intervals, Spearman's Rank Correlation Coefficients between Ep and energy flux and 90%, 95%, and 99% confidence intervals, Spearman's Rank Correlation Coefficient between Ep and time and 90%, 95%, and 99% confidence intervals, trends as determined by computer for 90%, 95%, and 99% confidence intervals, trends as determined by human eyes are given. (2 data files).

  19. Pulse-shaping based two-photon FRET stoichiometry

    PubMed Central

    Flynn, Daniel C.; Bhagwat, Amar R.; Brenner, Meredith H.; Núñez, Marcos F.; Mork, Briana E.; Cai, Dawen; Swanson, Joel A.; Ogilvie, Jennifer P.

    2015-01-01

    Förster Resonance Energy Transfer (FRET) based measurements that calculate the stoichiometry of intermolecular interactions in living cells have recently been demonstrated, where the technique utilizes selective one-photon excitation of donor and acceptor fluorophores to isolate the pure FRET signal. Here, we present work towards extending this FRET stoichiometry method to employ two-photon excitation using a pulse-shaping methodology. In pulse-shaping, frequency-dependent phases are applied to a broadband femtosecond laser pulse to tailor the two-photon excitation conditions to preferentially excite donor and acceptor fluorophores. We have also generalized the existing stoichiometry theory to account for additional cross-talk terms that are non-vanishing under two-photon excitation conditions. Using the generalized theory we demonstrate two-photon FRET stoichiometry in live COS-7 cells expressing fluorescent proteins mAmetrine as the donor and tdTomato as the acceptor. PMID:25836193

  20. Photon merging and splitting in electromagnetic field inhomogeneities

    NASA Astrophysics Data System (ADS)

    Gies, Holger; Karbstein, Felix; Seegert, Nico

    2016-04-01

    We investigate photon merging and splitting processes in inhomogeneous, slowly varying electromagnetic fields. Our study is based on the three-photon polarization tensor following from the Heisenberg-Euler effective action. We put special emphasis on deviations from the well-known constant field results, also revisiting the selection rules for these processes. In the context of high-intensity laser facilities, we analytically determine compact expressions for the number of merged/split photons as obtained in the focal spots of intense laser beams. For the parameter range of typical petawatt class laser systems as pump and probe, we provide estimates for the numbers of signal photons attainable in an actual experiment. The combination of frequency upshifting, polarization dependence and scattering off the inhomogeneities renders photon merging an ideal signature for the experimental exploration of nonlinear quantum vacuum properties.

  1. Atomic-level imaging, processing and characterization of semiconductor surfaces

    DOEpatents

    Kazmerski, Lawrence L.

    1995-01-01

    A method for selecting and removing single specific atoms from a solid material surface uses photon biasing to break down bonds that hold the selected atom in the lattice and to reduce barrier effects that hold the atom from transferring to a probe. The photon bias is preferably light or other electromagnetic radiation with a wavelength and frequency that approximately matches the wave function of the target atom species to be removed to induce high energy, selective thermionic-like vibration. An electric field potential is then applied between the probe and the surface of the solid material to pull the atom out of the lattice and to transfer the atom to the probe. Different extrinsic atoms can be installed in the lattice sites that are vacated by the removed atoms by using a photon bias that resonates the extrinsic atom species, reversing polarity of the electric field, and blowing gas comprising the extrinsic atoms through a hollow catheter probe.

  2. Atomic-level imaging, processing and characterization of semiconductor surfaces

    DOEpatents

    Kazmerski, L.L.

    1995-08-22

    A method for selecting and removing single specific atoms from a solid material surface uses photon biasing to break down bonds that hold the selected atom in the lattice and to reduce barrier effects that hold the atom from transferring to a probe. The photon bias is preferably light or other electromagnetic radiation with a wavelength and frequency that approximately matches the wave function of the target atom species to be removed to induce high energy, selective thermionic-like vibration. An electric field potential is then applied between the probe and the surface of the solid material to pull the atom out of the lattice and to transfer the atom to the probe. Different extrinsic atoms can be installed in the lattice sites that are vacated by the removed atoms by using a photon bias that resonates the extrinsic atom species, reversing polarity of the electric field, and blowing gas comprising the extrinsic atoms through a hollow catheter probe. 8 figs.

  3. Multi-Threaded Algorithms for GPGPU in the ATLAS High Level Trigger

    NASA Astrophysics Data System (ADS)

    Conde Muíño, P.; ATLAS Collaboration

    2017-10-01

    General purpose Graphics Processor Units (GPGPU) are being evaluated for possible future inclusion in an upgraded ATLAS High Level Trigger farm. We have developed a demonstrator including GPGPU implementations of Inner Detector and Muon tracking and Calorimeter clustering within the ATLAS software framework. ATLAS is a general purpose particle physics experiment located on the LHC collider at CERN. The ATLAS Trigger system consists of two levels, with Level-1 implemented in hardware and the High Level Trigger implemented in software running on a farm of commodity CPU. The High Level Trigger reduces the trigger rate from the 100 kHz Level-1 acceptance rate to 1.5 kHz for recording, requiring an average per-event processing time of ∼ 250 ms for this task. The selection in the high level trigger is based on reconstructing tracks in the Inner Detector and Muon Spectrometer and clusters of energy deposited in the Calorimeter. Performing this reconstruction within the available farm resources presents a significant challenge that will increase significantly with future LHC upgrades. During the LHC data taking period starting in 2021, luminosity will reach up to three times the original design value. Luminosity will increase further to 7.5 times the design value in 2026 following LHC and ATLAS upgrades. Corresponding improvements in the speed of the reconstruction code will be needed to provide the required trigger selection power within affordable computing resources. Key factors determining the potential benefit of including GPGPU as part of the HLT processor farm are: the relative speed of the CPU and GPGPU algorithm implementations; the relative execution times of the GPGPU algorithms and serial code remaining on the CPU; the number of GPGPU required, and the relative financial cost of the selected GPGPU. We give a brief overview of the algorithms implemented and present new measurements that compare the performance of various configurations exploiting GPGPU cards.

  4. Target molecules detection by waveguiding in a photonic silicon membrane

    DOEpatents

    Letant, Sonia; Van Buuren, Anthony; Terminello, Louis

    2004-08-31

    Disclosed herein is a photonic silicon filter capable of binding and detecting biological and chemical target molecules in liquid or gas samples. A photonic waveguiding silicon filter with chemical and/or biological anchors covalently attached to the pore walls selectively bind target molecules. The system uses transmission curve engineering principles to allow measurements to be made in situ and in real time to detect the presence of various target molecules and determine the concentration of bound target.

  5. Structural Color Palettes of Core-Shell Photonic Ink Capsules Containing Cholesteric Liquid Crystals.

    PubMed

    Lee, Sang Seok; Seo, Hyeon Jin; Kim, Yun Ho; Kim, Shin-Hyun

    2017-06-01

    Photonic microcapsules with onion-like topology are microfluidically designed to have cholesteric liquid crystals with opposite handedness in their core and shell. The microcapsules exhibit structural colors caused by dual photonic bandgaps, resulting in a rich variety of color on the optical palette. Moreover, the microcapsules can switch the colors from either core or shell depending on the selection of light-handedness. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khachatryan, Vardan

    Results are reported from a search for supersymmetry with gauge-mediated supersymmetry breaking in electroweak production. Final states with photons and large missing transverse energy (more » $$E_{\\mathrm{T}}^{\\text{miss}}$$) were examined. The data sample was collected in pp collisions at $$\\sqrt{s} = $$ 8 TeV with the CMS detector at the LHC and corresponds to 7.4 fb$$^{-1}$$. The analysis focuses on scenarios in which the lightest neutralino has bino- or wino-like components, resulting in decays to photons and gravitinos, where the gravitinos escape undetected. The data were obtained using a specially designed trigger with dedicated low thresholds, providing good sensitivity to signatures with photons, $$E_{\\mathrm{T}}^{\\text{miss}}$$, and low hadronic energy. No excess of events over the standard model expectation is observed. The results are interpreted using the model of general gauge mediation. With the wino mass fixed at 10 GeV above that of the bino, wino masses below 710 GeV are excluded at 95% confidence level. Lastly, constraints are also set in the context of two simplified models, for which the analysis sets the lowest cross section limits on the electroweak production of supersymmetric particles.« less

  7. Investigation of the Effect of Temperature and Light Emission from Silicon Photomultiplier Detectors

    NASA Astrophysics Data System (ADS)

    Ruiz Castruita, Daniel; Ramos, Daniel; Hernandez, Victor; Niduaza, Rommel; Konx, Adrian; Fan, Sewan; Fatuzzo, Laura; Ritt, Stefan

    2015-04-01

    The silicon photomultiplier (SiPM) is an extremely sensitive light detector capable of measuring very dim light and operates as a photon-number resolving detector. Its high gain comes from operating at slightly above the breakdown voltage, which is also accompanied by a high dark count rate. At this conference poster session we describe our investigation of using SiPMs, the multipixel photon counters (MPPC) from Hamamatsu, as readout detectors for development in a cosmic ray scintillating detector array. Our research includes implementation of a novel design that automatically adjusts for the bias voltage to the MPPC detectors to compensate for changes in the ambient temperature. Furthermore, we describe our investigations for the MPPC detector characteristics at different bias voltages, temperatures and light emission properties. To measure the faint light emitted from the MPPC we use a photomultiplier tube capable of detecting single photons. Our data acquisition setup consists of a 5 Giga sample/second waveform digitizer, the DRS4, triggered to capture the MPPC detector waveforms. Analysis of the digitized waveforms, using the CERN package PAW, would be discussed and presented. US Department of Education Title V Grant PO31S090007.

  8. Topological Valley Transport in Two-dimensional Honeycomb Photonic Crystals.

    PubMed

    Yang, Yuting; Jiang, Hua; Hang, Zhi Hong

    2018-01-25

    Two-dimensional photonic crystals, in analogy to AB/BA stacking bilayer graphene in electronic system, are studied. Inequivalent valleys in the momentum space for photons can be manipulated by simply engineering diameters of cylinders in a honeycomb lattice. The inequivalent valleys in photonic crystal are selectively excited by a designed optical chiral source and bulk valley polarizations are visualized. Unidirectional valley interface states are proved to exist on a domain wall connecting two photonic crystals with different valley Chern numbers. With the similar optical vortex index, interface states can couple with bulk valley polarizations and thus valley filter and valley coupler can be designed. Our simple dielectric PC scheme can help to exploit the valley degree of freedom for future optical devices.

  9. Composition/bandgap selective dry photochemical etching of semiconductor materials

    DOEpatents

    Ashby, C.I.H.; Dishman, J.L.

    1985-10-11

    Disclosed is a method of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap Eg/sub 1/ in the presence of a second semiconductor material of a different composition and direct bandgap Eg/sub 2/, wherein Eg/sub 2/ > Eg/sub 1/, said second semiconductor material substantially not being etched during said method. The method comprises subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said photons being of an energy greater than Eg/sub 1/ but less than Eg/sub 2/, whereby said first semiconductor material is photochemically etched and said second material is substantially not etched.

  10. Deterministic quantum teleportation of photonic quantum bits by a hybrid technique.

    PubMed

    Takeda, Shuntaro; Mizuta, Takahiro; Fuwa, Maria; van Loock, Peter; Furusawa, Akira

    2013-08-15

    Quantum teleportation allows for the transfer of arbitrary unknown quantum states from a sender to a spatially distant receiver, provided that the two parties share an entangled state and can communicate classically. It is the essence of many sophisticated protocols for quantum communication and computation. Photons are an optimal choice for carrying information in the form of 'flying qubits', but the teleportation of photonic quantum bits (qubits) has been limited by experimental inefficiencies and restrictions. Main disadvantages include the fundamentally probabilistic nature of linear-optics Bell measurements, as well as the need either to destroy the teleported qubit or attenuate the input qubit when the detectors do not resolve photon numbers. Here we experimentally realize fully deterministic quantum teleportation of photonic qubits without post-selection. The key step is to make use of a hybrid technique involving continuous-variable teleportation of a discrete-variable, photonic qubit. When the receiver's feedforward gain is optimally tuned, the continuous-variable teleporter acts as a pure loss channel, and the input dual-rail-encoded qubit, based on a single photon, represents a quantum error detection code against photon loss and hence remains completely intact for most teleportation events. This allows for a faithful qubit transfer even with imperfect continuous-variable entangled states: for four qubits the overall transfer fidelities range from 0.79 to 0.82 and all of them exceed the classical limit of teleportation. Furthermore, even for a relatively low level of the entanglement, qubits are teleported much more efficiently than in previous experiments, albeit post-selectively (taking into account only the qubit subspaces), and with a fidelity comparable to the previously reported values.

  11. Measurement of exposure buildup factors: The influence of scattered photons on gamma-ray attenuation coefficients

    NASA Astrophysics Data System (ADS)

    Mann, Kulwinder Singh

    2018-01-01

    Scattered photon's influence on measured values of attenuation coefficients (μm, cm2g-1) for six low-Z (effective atomic number) building materials, at three photon energies has been estimated. Narrow-beam transmission geometry has been used for the measurements. Samples of commonly used engineering materials (Cements, Clay, Lime-Stone, Plaster of Paris) have been selected for the present study. Standard radioactive sources Cs137 and Co60 have been used for obtaining γ-ray energies 661.66, 1173.24 and 1332.50 keV. The optical thickness (OT) of 0.5 mfp (mean free path) has been found the optimum optical thickness (OOT) for μm-measurement in the selected energy range (661.66-1332.50 keV). The aim of this investigation is to provide neglected information regarding subsistence of scattered photons in narrow beam geometry measurements for low-Z materials. The measurements have been performed for a wide range of sample-thickness (2-26 cm) such that their OT varies between 0.2-3.5 mfp in selected energy range. A computer program (GRIC2-toolkit) has been used for various theoretical computations required in this investigation. It has been concluded that in selected energy-range, good accuracy in μm-measurement of low-Z materials can be achieved by keeping their sample's OT below 0.5 mfp. The exposure buildup factors have been measured with the help of mathematical-model developed in this investigation.

  12. Construction of an alkaline phosphatase-specific two-photon probe and its imaging application in living cells and tissues.

    PubMed

    Zhang, Huatang; Xiao, Peng; Wong, Yin Ting; Shen, Wei; Chhabra, Mohit; Peltier, Raoul; Jiang, Yin; He, Yonghe; He, Jun; Tan, Yi; Xie, Yusheng; Ho, Derek; Lam, Yun-Wah; Sun, Jinpeng; Sun, Hongyan

    2017-09-01

    Alkaline phosphatase (ALP) is a family of enzymes involved in the regulation of important biological processes such as cell differentiation and bone mineralization. Monitoring the activity of ALP in serum can help diagnose a variety of diseases including bone and liver diseases. There has been growing interest in developing new chemical tools for monitoring ALP activity in living systems. Such tools will help further delineate the roles of ALP in biological and pathological processes. Previously reported fluorescent probes has a number of disadvantages that limit their application, such as poor selectivity and short-wavelength excitation. In this work, we report a new two-photon fluorescent probe (TP-Phos) to selectively detect ALP activity. The probe is composed of a two-photon fluorophore, a phosphate recognition moiety, and a self-cleavable adaptor. It offers a number of advantages over previously reported probes, such as fast reaction kinetics, high sensitivity and low cytotoxicity. Experimental results also showed that TP-Phos displayed improved selectivity over DIFMUP, a commonly utilized ALP probe. The selectivity is attributed to the utilization of an ortho-functionalised phenyl phosphate group, which increases the steric hindrance of the probe and the active site of phosphatases. Moreover, the two-photon nature of the probe confers enhanced imaging properties such as increased penetration depth and lower tissue autofluorescence. TP-Phos was successfully used to image the endogenous ALP activity of hippocampus, kidney and liver tissues from rat. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Thermal blinding of gated detectors in quantum cryptography.

    PubMed

    Lydersen, Lars; Wiechers, Carlos; Wittmann, Christoffer; Elser, Dominique; Skaar, Johannes; Makarov, Vadim

    2010-12-20

    It has previously been shown that the gated detectors of two commercially available quantum key distribution (QKD) systems are blindable and controllable by an eavesdropper using continuous-wave illumination and short bright trigger pulses, manipulating voltages in the circuit [Nat. Photonics 4, 686 (2010)]. This allows for an attack eavesdropping the full raw and secret key without increasing the quantum bit error rate (QBER). Here we show how thermal effects in detectors under bright illumination can lead to the same outcome. We demonstrate that the detectors in a commercial QKD system Clavis2 can be blinded by heating the avalanche photo diodes (APDs) using bright illumination, so-called thermal blinding. Further, the detectors can be triggered using short bright pulses once they are blind. For systems with pauses between packet transmission such as the plug-and-play systems, thermal inertia enables Eve to apply the bright blinding illumination before eavesdropping, making her more difficult to catch.

  14. Crossover from polariton lasing to exciton lasing in a strongly coupled ZnO microcavity.

    PubMed

    Lai, Ying-Yu; Chou, Yu-Hsun; Lan, Yu-Pin; Lu, Tien-Chang; Wang, Shing-Chung; Yamamoto, Yoshihisa

    2016-02-03

    Unlike conventional photon lasing, in which the threshold is limited by the population inversion of the electron-hole plasma, the exciton lasing generated by exciton-exciton scattering and the polariton lasing generated by dynamical condensates have received considerable attention in recent years because of the sub-Mott density and low-threshold operation. This paper presents a novel approach to generate both exciton and polariton lasing in a strongly coupled microcavity (MC) and determine the critical driving requirements for simultaneously triggering these two lasing operation in temperature <140 K and large negative polariton-exciton offset (<-133 meV) conditions. In addition, the corresponding lasing behaviors, such as threshold energy, linewidth, phase diagram, and angular dispersion are verified. The results afford a basis from which to understand the complicated lasing mechanisms in strongly coupled MCs and verify a new method with which to trigger dual laser emission based on exciton and polariton.

  15. Photocatalytic water splitting: Materials design and high-throughput screening of molecular compositions

    NASA Astrophysics Data System (ADS)

    Khnayzer, Rony S.

    Due to the expected increases on energy demand in the near future, the development of new catalytic molecular compositions and materials capable of directly converting water, with the aid of solar photons, into hydrogen becomes obviated. Hydrogen is a combustible fuel and precious high-energy feedstock chemical. However, for the water-splitting reaction to proceed efficiently and economically enough for large-scale application, efficient light-absorbing sensitizers and water splitting catalysts are required. To study the kinetics of the water reduction reaction, we have used titania (TiO2) nanoparticles as a robust scaffold to photochemically grow platinum (Pt) nanoparticles from a unique surface-anchored molecular precursor Pt(dcbpy)Cl2 [dcbpy = 4,4'-dicarboxylic acid-2,2'-bipyridine]. The hybrid Pt/TiO 2 nanomaterials obtained were shown to be a superior water reduction catalyst (WRC) in aqueous suspensions when compared with the benchmark platinized TiO2. In addition, cobalt phosphate (CoPi) water oxidation catalyst (WOC) was photochemically assembled on the surface of TiO2, and its structure and mechanism of activity showed resemblance to the established electrochemically grown CoPi material. Both WRC and WOC described above possessed near unity Faradaic efficiency for hydrogen and oxygen production respectively, and were fully characterized by electron microscopy, x-ray absorption spectroscopy, electrochemistry and photochemistry. While there are established materials and molecules that are able to drive water splitting catalysis, some of these efficient semiconductors, including titanium dioxide (TiO2) and tungsten trioxide (WO3), are only able to absorb high-energy (ultraviolet or blue) photons. This high-energy light represents merely a fraction of the solar spectrum that strikes the earth and the energy content of those remaining photons is simply wasted. A strategy to mitigate this problem has been developed over the years in our laboratory. Briefly, photons of low energy are converted into higher energy light using a process termed photon upconversion. Using this technique, low energy photons supplied by the sun can be converted into light of appropriate energy to trigger electronic transitions in high energy absorbing photoactive materials without any chemical modification of the latter. We have shown, that this technology is capable of upconverting visible sunlight to sensitize wide-bandgap semiconductors such as WO3, subsequently extending the photoaction of these materials to cover a larger portion of the solar spectrum. Besides the engineering of different compositions that serve as either sensitizers or catalysts in these solar energy conversion schemes, we have designed an apparatus for parallel high-throughput screening of these photocatalytic compositions. This combinatorial approach to solar fuels photocatalysis has already led to unprecedented fundamental understanding of the generation of hydrogen gas from pure water. The activity of a series of new Ru(II) sensitizers along with Co(II) molecular WRCs were optimized under visible light excitation utilizing different experimental conditions. The multi-step mechanism of activity of selected compositions was further elucidated by pump-probe transient absorption spectroscopy.

  16. Microwave photonic filter using multiwavelength Brillouin-erbium fiber laser with double-Brillouin-frequency shift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loh, K. K.; Yeo, K. S.; Shee, Y. G.

    2015-04-24

    A microwave photonic filter based on double-Brillouin-frequency spaced multiwavelength Brillouin-erbium fiber laser (BEFL) is experimentally demonstrated. The filter selectivity can be easily adjusted by tuning and apodizing the optical taps generated from the multiwavelength BEFL. Reconfiguration of different frequency responses are demonstrated.

  17. A novel photonic crystal ring resonator configuration for add/drop filtering

    NASA Astrophysics Data System (ADS)

    Zhang, Juan; Liu, Hao; Ding, Yipeng; Wang, Yang

    2018-07-01

    A novel compact photonic crystal ring resonator (PCRR) configuration is proposed to realize high-efficiency waveguided add-drop filtering. Its wavelength selection and dropping-direction exchange functions are demonstrated numerically. The working mechanism of this nested dual-loop resonant cavity structure is analyzed in detail.

  18. Smart Nanostructures for Cargo Delivery: Uncaging and Activating by Light.

    PubMed

    Karimi, Mahdi; Sahandi Zangabad, Parham; Baghaee-Ravari, Soodeh; Ghazadeh, Mehdi; Mirshekari, Hamid; Hamblin, Michael R

    2017-04-05

    Nanotechnology has begun to play a remarkable role in various fields of science and technology. In biomedical applications, nanoparticles have opened new horizons, especially for biosensing, targeted delivery of therapeutics, and so forth. Among drug delivery systems (DDSs), smart nanocarriers that respond to specific stimuli in their environment represent a growing field. Nanoplatforms that can be activated by an external application of light can be used for a wide variety of photoactivated therapies, especially light-triggered DDSs, relying on photoisomerization, photo-cross-linking/un-cross-linking, photoreduction, and so forth. In addition, light activation has potential in photodynamic therapy, photothermal therapy, radiotherapy, protected delivery of bioactive moieties, anticancer drug delivery systems, and theranostics (i.e., real-time monitoring and tracking combined with a therapeutic action to different diseases sites and organs). Combinations of these approaches can lead to enhanced and synergistic therapies, employing light as a trigger or for activation. Nonlinear light absorption mechanisms such as two-photon absorption and photon upconversion have been employed in the design of light-responsive DDSs. The integration of a light stimulus into dual/multiresponsive nanocarriers can provide spatiotemporal controlled delivery and release of therapeutic agents, targeted and controlled nanosystems, combined delivery of two or more agents, their on-demand release under specific conditions, and so forth. Overall, light-activated nanomedicines and DDSs are expected to provide more effective therapies against serious diseases such as cancers, inflammation, infections, and cardiovascular disease with reduced side effects and will open new doors toward the treatment of patients worldwide.

  19. Search for new physics in final states with low transverse energy photon and missing transverse energy in proton-proton collisions at $$\\sqrt{s} = 8$$ TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demiragli, Zeynep

    2015-05-01

    A search for new physics in the γ+E T final state is performed using pp collision data corresponding to an integrated luminosity of 7.3 fb -1 collected at √s = 8 TeV using low threshold triggers in a phase space region defined by E T > 45 GeV and E-slash T > 40 GeV. The data are also examined using optimized selections for maximum sensitivity to an exotic (gravitino/neutralino) decay of the Higgs boson predicted in a low-scale SUSY breaking scenario. The results are found to be compatible with the Standard Model hypothesis. These results are the first limits onmore » this model from collider searches. Furthermore, proton-proton collision events containing high-energy photon and missing transverse momentum have been investigated. No deviations from the standard model have been observed using the √s = 8 TeV data set corresponding to 19.6 fb -1 of integrated luminosity. Further constraints are set on χ production and translated into upper limits on vector and axial-vector contributions to the χ-nucleon scattering cross section. For M χ = 10 GeV, the χ-nucleon cross section is constrained to be 2.6 x 10 -39 cm 2 (9.6 x 10 -41 cm 2) for a spin-independent (spin-dependent) interaction at 90% confidence level. In addition the most stringent limits to date are obtained on the effective Planck scale in the ADD model with large spatial extra dimensions and on the brane tension scale in the branon model.« less

  20. Two-Photon Probes for Lysosomes and Mitochondria: Simultaneous Detection of Lysosomes and Mitochondria in Live Tissues by Dual-Color Two-Photon Microscopy Imaging.

    PubMed

    Lim, Chang Su; Hong, Seung Taek; Ryu, Seong Shick; Kang, Dong Eun; Cho, Bong Rae

    2015-10-01

    Novel two-photon (TP) probes were developed for lysosomes (PLT-yellow) and mitochondria (BMT-blue and PMT-yellow). These probes emitted strong TP-excited fluorescence in cells at widely separated wavelength regions and displayed high organelle selectivity, good cell permeability, low cytotoxicity, and pH insensitivity. The BMT-blue and PLT-yellow probes could be utilized to detect lysosomes and mitochondria simultaneously in live tissues by using dual-color two-photon microscopy, with minimum interference from each other. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Implementation and Qualifications Lessons Learned for Space Flight Photonic Components

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.

    2010-01-01

    This slide presentation reviews the process for implementation and qualification of space flight photonic components. It discusses the causes for most common anomalies for the space flight components, design compatibility, a specific failure analysis of optical fiber that occurred in a cable in 1999-2000, and another ExPCA connector anomaly involving pins that broke off. It reviews issues around material selection, quality processes and documentation, and current projects that the Photonics group is involved in. The importance of good documentation is stressed.

  2. Recent advances in integrated photonic sensors.

    PubMed

    Passaro, Vittorio M N; de Tullio, Corrado; Troia, Benedetto; La Notte, Mario; Giannoccaro, Giovanni; De Leonardis, Francesco

    2012-11-09

    Nowadays, optical devices and circuits are becoming fundamental components in several application fields such as medicine, biotechnology, automotive, aerospace, food quality control, chemistry, to name a few. In this context, we propose a complete review on integrated photonic sensors, with specific attention to materials, technologies, architectures and optical sensing principles. To this aim, sensing principles commonly used in optical detection are presented, focusing on sensor performance features such as sensitivity, selectivity and rangeability. Since photonic sensors provide substantial benefits regarding compatibility with CMOS technology and integration on chips characterized by micrometric footprints, design and optimization strategies of photonic devices are widely discussed for sensing applications. In addition, several numerical methods employed in photonic circuits and devices, simulations and design are presented, focusing on their advantages and drawbacks. Finally, recent developments in the field of photonic sensing are reviewed, considering advanced photonic sensor architectures based on linear and non-linear optical effects and to be employed in chemical/biochemical sensing, angular velocity and electric field detection.

  3. Recent Advances in Integrated Photonic Sensors

    PubMed Central

    Passaro, Vittorio M. N.; de Tullio, Corrado; Troia, Benedetto; La Notte, Mario; Giannoccaro, Giovanni; De Leonardis, Francesco

    2012-01-01

    Nowadays, optical devices and circuits are becoming fundamental components in several application fields such as medicine, biotechnology, automotive, aerospace, food quality control, chemistry, to name a few. In this context, we propose a complete review on integrated photonic sensors, with specific attention to materials, technologies, architectures and optical sensing principles. To this aim, sensing principles commonly used in optical detection are presented, focusing on sensor performance features such as sensitivity, selectivity and rangeability. Since photonic sensors provide substantial benefits regarding compatibility with CMOS technology and integration on chips characterized by micrometric footprints, design and optimization strategies of photonic devices are widely discussed for sensing applications. In addition, several numerical methods employed in photonic circuits and devices, simulations and design are presented, focusing on their advantages and drawbacks. Finally, recent developments in the field of photonic sensing are reviewed, considering advanced photonic sensor architectures based on linear and non-linear optical effects and to be employed in chemical/biochemical sensing, angular velocity and electric field detection. PMID:23202223

  4. Single photon detection in a waveguide-coupled Ge-on-Si lateral avalanche photodiode.

    PubMed

    Martinez, Nicholas J D; Gehl, Michael; Derose, Christopher T; Starbuck, Andrew L; Pomerene, Andrew T; Lentine, Anthony L; Trotter, Douglas C; Davids, Paul S

    2017-07-10

    We examine gated-Geiger mode operation of an integrated waveguide-coupled Ge-on-Si lateral avalanche photodiode (APD) and demonstrate single photon detection at low dark count for this mode of operation. Our integrated waveguide-coupled APD is fabricated using a selective epitaxial Ge-on-Si growth process resulting in a separate absorption and charge multiplication (SACM) design compatible with our silicon photonics platform. Single photon detection efficiency and dark count rate is measured as a function of temperature in order to understand and optimize performance characteristics in this device. We report single photon detection of 5.27% at 1310 nm and a dark count rate of 534 kHz at 80 K for a Ge-on-Si single photon avalanche diode. Dark count rate is the lowest for a Ge-on-Si single photon detector in this range of temperatures while maintaining competitive detection efficiency. A jitter of 105 ps was measured for this device.

  5. Improvement of two-way continuous-variable quantum key distribution with virtual photon subtraction

    NASA Astrophysics Data System (ADS)

    Zhao, Yijia; Zhang, Yichen; Li, Zhengyu; Yu, Song; Guo, Hong

    2017-08-01

    We propose a method to improve the performance of two-way continuous-variable quantum key distribution protocol by virtual photon subtraction. The virtual photon subtraction implemented via non-Gaussian post-selection not only enhances the entanglement of two-mode squeezed vacuum state but also has advantages in simplifying physical operation and promoting efficiency. In two-way protocol, virtual photon subtraction could be applied on two sources independently. Numerical simulations show that the optimal performance of renovated two-way protocol is obtained with photon subtraction only used by Alice. The transmission distance and tolerable excess noise are improved by using the virtual photon subtraction with appropriate parameters. Moreover, the tolerable excess noise maintains a high value with the increase in distance so that the robustness of two-way continuous-variable quantum key distribution system is significantly improved, especially at long transmission distance.

  6. Ca2+ -dependent regulation of phototransduction.

    PubMed

    Stephen, Ricardo; Filipek, Sławomir; Palczewski, Krzysztof; Sousa, Marcelo Carlos

    2008-01-01

    Photon absorption by rhodopsin triggers the phototransduction signaling pathway that culminates in degradation of cGMP, closure of cGMP-gated ion channels and hyperpolarization of the photoreceptor membrane. This process is accompanied by a decrease in free Ca(2+) concentration in the photoreceptor cytosol sensed by Ca(2+)-binding proteins that modulate phototransduction and activate the recovery phase to reestablish the photoreceptor dark potential. Guanylate cyclase-activating proteins (GCAPs) belong to the neuronal calcium sensor (NCS) family and are responsible for activating retinal guanylate cyclases (retGCs) at low Ca(2+) concentrations triggering synthesis of cGMP and recovery of the dark potential. Here we review recent structural insight into the role of the N-terminal myristoylation in GCAPs and compare it to other NCS family members. We discuss previous studies identifying regions of GCAPs important for retGC1 regulation in the context of the new structural data available for myristoylated GCAP1. In addition, we present a hypothetical model for the Ca(2+)-triggered conformational change in GCAPs and retGC1 regulation. Finally, we briefly discuss the involvement of mutant GCAP1 proteins in the etiology of retinal degeneration as well as the importance of other Ca(2+) sensors in the modulation of phototransduction.

  7. Triggering the volume phase transition of core-shell Au nanorod-microgel nanocomposites with light

    NASA Astrophysics Data System (ADS)

    Rodríguez-Fernández, Jessica; Fedoruk, Michael; Hrelescu, Calin; Lutich, Andrey A.; Feldmann, Jochen

    2011-06-01

    We have coated gold nanorods (NRs) with thermoresponsive microgel shells based on poly(N-isopropylacrylamide) (pNIPAM). We demonstrate by simultaneous laser-heating and optical extinction measurements that the Au NR cores can be simultaneously used as fast optothermal manipulators (switchers) and sensitive optical reporters of the microgel state in a fully externally controlled and reversible manner. We support our results with optical modeling based on the boundary element method and 3D numerical analysis on the temperature distribution. Briefly, we show that due to the sharp increase in refractive index resulting from the optothermally triggered microgel collapse, the longitudinal plasmon band of the coated Au NRs is significantly red-shifted. The optothermal control over the pNIPAM shell, and thereby over the optical response of the nanocomposite, is fully reversible and can be simply controlled by switching on and off a NIR heating laser. In contrast to bulk solution heating, we demonstrate that light-triggering does not compromise colloidal stability, which is of primary importance for the ultimate utilization of these types of nanocomposites as remotely controlled optomechanical actuators, for applications spanning from drug delivery to photonic crystals and nanoscale motion.

  8. Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials.

    PubMed

    Rodriguez, Alejandro W; Ilic, Ognjen; Bermel, Peter; Celanovic, Ivan; Joannopoulos, John D; Soljačić, Marin; Johnson, Steven G

    2011-09-09

    We demonstrate the possibility of achieving enhanced frequency-selective near-field radiative heat transfer between patterned (photonic-crystal) slabs at designable frequencies and separations, exploiting a general numerical approach for computing heat transfer in arbitrary geometries and materials based on the finite-difference time-domain method. Our simulations reveal a tradeoff between selectivity and near-field enhancement as the slab-slab separation decreases, with the patterned heat transfer eventually reducing to the unpatterned result multiplied by a fill factor (described by a standard proximity approximation). We also find that heat transfer can be further enhanced at selective frequencies when the slabs are brought into a glide-symmetric configuration, a consequence of the degeneracies associated with the nonsymmorphic symmetry group.

  9. Exceptional enhancement of Raman scattering on silver chlorobromide nanocube photonic crystals: chemical and photonic contributions

    DOE PAGES

    Li, Zheng; Gosztola, David J.; Sun, Cheng-Jun; ...

    2015-02-02

    Photonic crystals made from self-assembly of mono-dispersed AgCl xBr 1-x nanocubes, which are not plasmonically active, have been discovered to exceptionally enhance Raman scattering of molecules chemically adsorbed on their surfaces. Comprehensive control measurements and X-ray absorption near-edge structure spectroscopy indicate that the Raman enhancement on the AgCl xBr 1-x nanocube photonic crystals is primarily ascribed to the chemical enhancement mechanism associated with the chemical interactions between adsorbing molecules and the AgCl xBr 1-x surfaces. In addition, the ordering of the AgCl xBr 1-x nanocubes in the photonic crystals can selectively reflect Raman scattering back to the detector at themore » bandgap position of the photonic crystals to provide additional enhancement, i.e., photonic mode enhancement. The thiophenol molecules adsorbed on the AgCl 0.44Br 0.56 nanocube photonic crystals exhibit astonishingly strong Raman signals that are on the same order of magnitude as those recorded from the thiophenol molecules adsorbed on the assembled Ag nanocubes.« less

  10. Two-Photon Emission of a Hydrogenlike Atom with Photon Polarization and Electron Spin States Taken into Account

    NASA Astrophysics Data System (ADS)

    Skobelev, V. V.

    2017-02-01

    The process of two-photon emission ( Ze)* → ( Ze) + 2 γ of a hydrogenlike atom is considered with spin states of the electron and polarization of the photons taken into account, which had not been done before. A general expression for the probability of the process per unit time has been obtained for different polarization states of the photons with a formulation of hard and soft selection rules for the quantum numbers m and l. It is shown that by virtue of the established specifics of the properties of the two-photon emission process (absence of a Zeeman effect and dependence of the probability on the polarization states of the photons), it can in principle be identified against the background of single-photon emission ( Ze)* → ( Ze) + γ, despite the presence of additional small factors: 1) α = e 2/ ћc ≈ 1/137 of the perturbation theory in e, and 2) the square of the atomic expansion parameter ( Zα)2 in the expression for the probability.

  11. Photo-ignition process of multiwall carbon nanotubes and ferrocene by continuous wave Xe lamp illumination.

    PubMed

    Visconti, Paolo; Primiceri, Patrizio; Longo, Daniele; Strafella, Luciano; Carlucci, Paolo; Lomascolo, Mauro; Cretì, Arianna; Mele, Giuseppe

    2017-01-01

    This work aims to investigate and characterize the photo-ignition phenomenon of MWCNT/ferrocene mixtures by using a continuous wave (CW) xenon (Xe) light source, in order to find the power ignition threshold by employing a different type of light source as was used in previous research (i.e., pulsed Xe lamp). The experimental photo-ignition tests were carried out by varying the weight ratio of the used mixtures, luminous power, and wavelength range of the incident Xe light by using selective optical filters. For a better explanation of the photo-induced ignition process, the absorption spectra of MWCNT/ferrocene mixtures and ferrocene only were obtained. The experimental results show that the luminous power (related to the entire spectrum of the Xe lamp) needed to trigger the ignition of MWCNT/ferrocene mixtures decreases with increasing metal nanoparticles content according to previously published results when using a different type of light source (i.e., pulsed vs CW Xe light source). Furthermore, less light power is required to trigger photo-ignition when moving towards the ultraviolet (UV) region. This is in agreement with the measured absorption spectra, which present higher absorption values in the UV-vis region for both MWCNT/ferrocene mixtures and ferrocene only diluted in toluene. Finally, a chemo-physical interpretation of the ignition phenomenon is proposed whereby ferrocene photo-excitation, due to photon absorption, produces ferrocene itself in its excited form and is thus capable of promoting electron transfer to MWCNTs. In this way, the resulting radical species, FeCp2 +∙ and MWCNT - , easily react with oxygen giving rise to the ignition of MWCNT/ferrocene samples.

  12. Photo-ignition process of multiwall carbon nanotubes and ferrocene by continuous wave Xe lamp illumination

    PubMed Central

    Primiceri, Patrizio; Longo, Daniele; Strafella, Luciano; Carlucci, Paolo; Lomascolo, Mauro; Cretì, Arianna; Mele, Giuseppe

    2017-01-01

    This work aims to investigate and characterize the photo-ignition phenomenon of MWCNT/ferrocene mixtures by using a continuous wave (CW) xenon (Xe) light source, in order to find the power ignition threshold by employing a different type of light source as was used in previous research (i.e., pulsed Xe lamp). The experimental photo-ignition tests were carried out by varying the weight ratio of the used mixtures, luminous power, and wavelength range of the incident Xe light by using selective optical filters. For a better explanation of the photo-induced ignition process, the absorption spectra of MWCNT/ferrocene mixtures and ferrocene only were obtained. The experimental results show that the luminous power (related to the entire spectrum of the Xe lamp) needed to trigger the ignition of MWCNT/ferrocene mixtures decreases with increasing metal nanoparticles content according to previously published results when using a different type of light source (i.e., pulsed vs CW Xe light source). Furthermore, less light power is required to trigger photo-ignition when moving towards the ultraviolet (UV) region. This is in agreement with the measured absorption spectra, which present higher absorption values in the UV–vis region for both MWCNT/ferrocene mixtures and ferrocene only diluted in toluene. Finally, a chemo-physical interpretation of the ignition phenomenon is proposed whereby ferrocene photo-excitation, due to photon absorption, produces ferrocene itself in its excited form and is thus capable of promoting electron transfer to MWCNTs. In this way, the resulting radical species, FeCp2+∙ and MWCNT−, easily react with oxygen giving rise to the ignition of MWCNT/ferrocene samples. PMID:28144572

  13. Discovery of a diamond-based photonic crystal structure in beetle scales.

    PubMed

    Galusha, Jeremy W; Richey, Lauren R; Gardner, John S; Cha, Jennifer N; Bartl, Michael H

    2008-05-01

    We investigated the photonic crystal structure inside iridescent scales of the weevil Lamprocyphus augustus. By combining a high-resolution structure analysis technique based on sequential focused ion beam milling and scanning electron microscopy imaging with theoretical modeling and photonic band-structure calculations, we discovered a natural three-dimensional photonic structure with a diamond-based crystal lattice operating at visible wavelengths. Moreover, we found that within individual scales, the diamond-based structure is assembled in the form of differently oriented single-crystalline micrometer-sized pixels with only selected lattice planes facing the scales' top surface. A comparison of results obtained from optical microreflectance measurements with photonic band-structure calculations reveals that it is this sophisticated microassembly of the diamond-based crystal lattice that lends Lamprocyphus augustus its macroscopically near angle-independent green coloration.

  14. Optimization of single photon detection model based on GM-APD

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Yang, Yi; Hao, Peiyu

    2017-11-01

    One hundred kilometers high precision laser ranging hopes the detector has very strong detection ability for very weak light. At present, Geiger-Mode of Avalanche Photodiode has more use. It has high sensitivity and high photoelectric conversion efficiency. Selecting and designing the detector parameters according to the system index is of great importance to the improvement of photon detection efficiency. Design optimization requires a good model. In this paper, we research the existing Poisson distribution model, and consider the important detector parameters of dark count rate, dead time, quantum efficiency and so on. We improve the optimization of detection model, select the appropriate parameters to achieve optimal photon detection efficiency. The simulation is carried out by using Matlab and compared with the actual test results. The rationality of the model is verified. It has certain reference value in engineering applications.

  15. Valley photonic crystals for control of spin and topology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Jian-Wen; Chen, Xiao-Dong; Zhu, Hanyu

    2016-11-28

    Photonic crystals offer unprecedented opportunity for light manipulation and applications in optical communication and sensing1,2,3,4. Exploration of topology in photonic crystals and metamaterials with non-zero gauge field has inspired a number of intriguing optical phenomena such as one-way transport and Weyl points5,6,7,8,9,10. Recently, a new degree of freedom, valley, has been demonstrated in two-dimensional materials11,12,13,14,15. Here, we propose a concept of valley photonic crystals with electromagnetic duality symmetry but broken inversion symmetry. We observe photonic valley Hall effect originating from valley-dependent spin-split bulk bands, even in topologically trivial photonic crystals. Valley–spin locking behaviour results in selective net spin flow insidemore » bulk valley photonic crystals. We also show the independent control of valley and topology in a single system that has been long pursued in electronic systems, resulting in topologically-protected flat edge states. Valley photonic crystals not only offer a route towards the observation of non-trivial states, but also open the way for device applications in integrated photonics and information processing using spin-dependent transportation.« less

  16. Trigger readout electronics upgrade for the ATLAS Liquid Argon Calorimeters

    NASA Astrophysics Data System (ADS)

    Dinkespiler, B.

    2017-09-01

    The upgrade of the Large Hadron Collider (LHC) scheduled for the 2019-2020 shut-down period, referred to as Phase-I upgrade, will increase the instantaneous luminosity to about three times the design value. Since the current ATLAS trigger system does not allow sufficient increase of the trigger rate, an improvement of the trigger system is required. The Liquid Argon (LAr) Calorimeter read-out will therefore be modified to deliver digital trigger signals with a higher spatial granularity in order to improve the identification efficiencies of electrons, photons, tau, jets and missing energy, at high background rejection rates at the Level-1 trigger. The new trigger signals will be arranged in 34000 so-called Super Cells which achieves 5-10 times better granularity than the trigger towers currently used and allows an improved background rejection. The readout of the trigger signals will process the signal of the Super Cells at every LHC bunch-crossing at 12-bit precision and a frequency of 40 MHz. The data will be transmitted to the Back End using a custom serializer and optical converter and 5.12 Gb/s optical links. In order to verify the full functionality of the future Liquid Argon trigger system, a demonstrator set-up has been installed on the ATLAS detector and is operated in parallel to the regular ATLAS data taking during the LHC Run-2 in 2015 and 2016. Noise level and linearity on the energy measurement have been verified to be within our requirements. In addition, we have collected data from 13 TeV proton collisions during the LHC 2015 and 2016 runs, and have observed real pulses from the detector through the demonstrator system. The talk will give an overview of the Phase-I Upgrade of the ATLAS Liquid Argon Calorimeter readout and present the custom developed hardware including their role in real-time data processing and fast data transfer. This contribution will also report on the performance of the newly developed ASICs including their radiation tolerance and on the performance of the prototype boards in the demonstrator system based on various measurements with the 13 TeV collision data. Results of the high-speed link test with the prototypes of the final electronic boards will be also reported.

  17. A novel pixellated solid-state photon detector for enhancing the Everhart-Thornley detector.

    PubMed

    Chuah, Joon Huang; Holburn, David

    2013-06-01

    This article presents a pixellated solid-state photon detector designed specifically to improve certain aspects of the existing Everhart-Thornley detector. The photon detector was constructed and fabricated in an Austriamicrosystems 0.35 µm complementary metal-oxide-semiconductor process technology. This integrated circuit consists of an array of high-responsivity photodiodes coupled to corresponding low-noise transimpedance amplifiers, a selector-combiner circuit and a variable-gain postamplifier. Simulated and experimental results show that the photon detector can achieve a maximum transimpedance gain of 170 dBΩ and minimum bandwidth of 3.6 MHz. It is able to detect signals with optical power as low as 10 nW and produces a minimum signal-to-noise ratio (SNR) of 24 dB regardless of gain configuration. The detector has been proven to be able to effectively select and combine signals from different pixels. The key advantages of this detector are smaller dimensions, higher cost effectiveness, lower voltage and power requirements and better integration. The photon detector supports pixel-selection configurability which may improve overall SNR and also potentially generate images for different analyses. This work has contributed to the future research of system-level integration of a pixellated solid-state detector for secondary electron detection in the scanning electron microscope. Copyright © 2013 Wiley Periodicals, Inc.

  18. Quartz substrate infrared photonic crystal

    NASA Astrophysics Data System (ADS)

    Ghadiri, Khosrow; Rejeb, Jalel; Vitchev, Vladimir N.

    2003-01-01

    This paper presents the fabrication of a planar photonic crystal (p2c) made of a square array of dielectric rods embedded in air, operating in the infrared spectrum. A quartz substrate is employed instead of the commonly used silicon or column III-V substrate. Our square structure has a normalized cylinder radius-to-pitch ratio of r/a = 0.248 and dielectric material contrast ɛr of 4.5. We choose a Z-cut synthetic quartz for its cut (geometry), and etching properties. Then a particular Z-axis etching process is employed in order to ensure the sharp-edged verticality of the rods and fast etching speed. We also present the computer simulations that allowed the establishment of the photonic band gaps (PBG) of our photonic crystal, as well as the actual measurements. An experimental measurement have been carried out and compared with different simulations. It was found that experimental results are in good agreement with different simulation results. Finally, a frequency selective device for optical communication based on the introduction of impurity sites in the photonic crystal is presented. With our proposed structure Optical System on a Chip (OsoC) with micro-cavity based active devices such as lasers, diodes, modulators, couplers, frequency selective emitters, add-drop filters, detectors, mux/demuxes and polarizers connected by passive waveguide links can be realized.

  19. The evolution of the Trigger and Data Acquisition System in the ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Krasznahorkay, A.; Atlas Collaboration

    2014-06-01

    The ATLAS experiment, aimed at recording the results of LHC proton-proton collisions, is upgrading its Trigger and Data Acquisition (TDAQ) system during the current LHC first long shutdown. The purpose of the upgrade is to add robustness and flexibility to the selection and the conveyance of the physics data, simplify the maintenance of the infrastructure, exploit new technologies and, overall, make ATLAS data-taking capable of dealing with increasing event rates. The TDAQ system used to date is organised in a three-level selection scheme, including a hardware-based first-level trigger and second- and third-level triggers implemented as separate software systems distributed on separate, commodity hardware nodes. While this architecture was successfully operated well beyond the original design goals, the accumulated experience stimulated interest to explore possible evolutions. We will also be upgrading the hardware of the TDAQ system by introducing new elements to it. For the high-level trigger, the current plan is to deploy a single homogeneous system, which merges the execution of the second and third trigger levels, still separated, on a unique hardware node. Prototyping efforts already demonstrated many benefits to the simplified design. In this paper we report on the design and the development status of this new system.

  20. Mitochondrial flashes: From indicator characterization to in vivo imaging.

    PubMed

    Wang, Wang; Zhang, Huiliang; Cheng, Heping

    2016-10-15

    Mitochondrion is an organelle critically responsible for energy production and intracellular signaling in eukaryotic cells and its dysfunction often accompanies and contributes to human disease. Superoxide is the primary reactive oxygen species (ROS) produced in mitochondria. In vivo detection of superoxide has been a challenge in biomedical research. Here we describe the methods used to characterize a circularly permuted yellow fluorescent protein (cpYFP) as a biosensor for mitochondrial superoxide and pH dynamics. In vitro characterization reveals the high selectivity of cpYFP to superoxide over other ROS species and its dual sensitivity to pH. Confocal and two-photon imaging in conjunction with transgenic expression of the biosensor cpYFP targeted to the mitochondrial matrix detects mitochondrial flash events in living cells, perfused intact hearts, and live animals. The mitochondrial flashes are discrete and stochastic single mitochondrial events triggered by transient mitochondrial permeability transition (tMPT) and composed of a bursting superoxide signal and a transient alkalization signal. The real-time monitoring of single mitochondrial flashes provides a unique tool to study the integrated dynamism of mitochondrial respiration, ROS production, pH regulation and tMPT kinetics under diverse physiological and pathophysiological conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Cathodoluminescence | Materials Science | NREL

    Science.gov Websites

    image, the time to acquire the entire spectrum series is about five minutes. When the acquisition is ) processes the spectrum series to reconstruct images of the photon emission (energy resolved) or to extract : Mapping of the photon energy and full-width-half maximum of selected transitions ASCII output Quantitative

  2. Genetic algorithm driven spectral shaping of supercontinuum radiation in a photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Michaeli, Linor; Bahabad, Alon

    2018-05-01

    We employ a genetic algorithm to control a pulse-shaping system pumping a nonlinear photonic crystal with ultrashort pulses. With this system, we are able to modify the spectrum of the generated supercontinuum (SC) radiation to yield narrow Gaussian-like features around pre-selected wavelengths over the whole SC spectrum.

  3. An alternative mechanism for spin-forbidden photo-ionization of diatomic molecules and its rotation-electronic selection rules

    NASA Astrophysics Data System (ADS)

    Chiu, Ying-Nan; Chiu, Lue-Yung Chow

    1990-02-01

    The spin-forbidden photo-ionization of diatomic molecules is proposed. Spin orbit interaction is invoked, resulting in the correction and mixing of the wave functions of different multiplicities. The rotation-electronic selection rules given by Dixit and McKoy (1986) for Hund's case a based on the conventional mechanism of electric dipole transition are rederived and expressed in a different format. This new format permits the generalization of the selection rules to other photoionization transitions caused by the magnetic dipole, the electric quadrupole, and the two- and three-photon operators. These selection rules, which are for transitions from one specific rotational level of a given Kronig reflection symmetry to another, will help understand rotational branching and the dynamics of interaction in the excited state. They will also help in the selective preparation of well-defined rovibronic states in resonant-enhanced multi-photon ionization processes.

  4. Numerical study on characteristic of two-dimensional metal/dielectric photonic crystals

    NASA Astrophysics Data System (ADS)

    Zong, Yi-Xin; Xia, Jian-Bai; Wu, Hai-Bin

    2017-04-01

    An improved plan-wave expansion method is adopted to theoretically study the photonic band diagrams of two-dimensional (2D) metal/dielectric photonic crystals. Based on the photonic band structures, the dependence of flat bands and photonic bandgaps on two parameters (dielectric constant and filling factor) are investigated for two types of 2D metal/dielectric (M/D) photonic crystals, hole and cylinder photonic crystals. The simulation results show that band structures are affected greatly by these two parameters. Flat bands and bandgaps can be easily obtained by tuning these parameters and the bandgap width may reach to the maximum at certain parameters. It is worth noting that the hole-type photonic crystals show more bandgaps than the corresponding cylinder ones, and the frequency ranges of bandgaps also depend strongly on these parameters. Besides, the photonic crystals containing metallic medium can obtain more modulation of photonic bands, band gaps, and large effective refractive index, etc. than the dielectric/dielectric ones. According to the numerical results, the needs of optical devices for flat bands and bandgaps can be met by selecting the suitable geometry and material parameters. Project supported by the National Basic Research Program of China (Grant No. 2011CB922200) and the National Natural Science Foundation of China (Grant No. 605210010).

  5. Selective optical contacting for solar spectrum management

    NASA Astrophysics Data System (ADS)

    Yang, Jianfeng; Chen, Weijian; Wang, Bo; Zhang, Zhilong; Huang, Shujuan; Shrestha, Santosh; Wen, Xiaoming; Patterson, Robert; Conibeer, Gavin

    2017-02-01

    Solar spectrum management using up/down conversion is an important method to improve the photovoltaic energy conversion efficiency. It asks for a monochromatic luminescence absorption at the band edge of the photovoltaic device to reduce both the sub-band-gap and over-band-gap energy losses. Here, we demonstrate an energy selective optical contacting concept to improve the luminescence transfer efficiency for spectrum management. By increasing both the luminescence emission and re-absorption ability through photonic resonance, an efficient photon transfer channel could be established between the luminescence emitter and the photovoltaic component in a near-field region. This concept is not only able to compensate the insufficient band edge absorption ability of the photovoltaic device, but also to break the far-field limitation of luminescence radiation. The energy selection on the optical spectrum naturally imposed by the mode resonance is also helpful to improve the monochromaticity of the luminescence yield. In this paper, a photonic crystal cavity is used to realize the optical contacting concept between a thin silicon film and spectrum converter. The optical power and photon flux transferred between different components are calculated analytically using the electromagnetic Green's function. The corresponding radiative dipole moment is estimated by the fluctuation-dissipation theorem. The example shows an over 80 times enhancement in the luminescence absorbance by the silicon layer, illustrating the great potential of this concept to be applied on nano-structured photovoltaic devices.

  6. Muons in the CMS High Level Trigger System

    NASA Astrophysics Data System (ADS)

    Verwilligen, Piet; CMS Collaboration

    2016-04-01

    The trigger systems of LHC detectors play a fundamental role in defining the physics capabilities of the experiments. A reduction of several orders of magnitude in the rate of collected events, with respect to the proton-proton bunch crossing rate generated by the LHC, is mandatory to cope with the limits imposed by the readout and storage system. An accurate and efficient online selection mechanism is thus required to fulfill the task keeping maximal the acceptance to physics signals. The CMS experiment operates using a two-level trigger system. Firstly a Level-1 Trigger (L1T) system, implemented using custom-designed electronics, is designed to reduce the event rate to a limit compatible to the CMS Data Acquisition (DAQ) capabilities. A High Level Trigger System (HLT) follows, aimed at further reducing the rate of collected events finally stored for analysis purposes. The latter consists of a streamlined version of the CMS offline reconstruction software and operates on a computer farm. It runs algorithms optimized to make a trade-off between computational complexity, rate reduction and high selection efficiency. With the computing power available in 2012 the maximum reconstruction time at HLT was about 200 ms per event, at the nominal L1T rate of 100 kHz. An efficient selection of muons at HLT, as well as an accurate measurement of their properties, such as transverse momentum and isolation, is fundamental for the CMS physics programme. The performance of the muon HLT for single and double muon triggers achieved in Run I will be presented. Results from new developments, aimed at improving the performance of the algorithms for the harsher scenarios of collisions per event (pile-up) and luminosity expected for Run II will also be discussed.

  7. The digital trigger system for the RED-100 detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naumov, P. P., E-mail: ddr727@yandex.ru; Akimov, D. Yu.; Belov, V. A.

    The system for forming a trigger for the liquid xenon detector RED-100 is developed. The trigger can be generated for all types of events that the detector needs for calibration and data acquisition, including the events with a single electron of ionization. In the system, a mechanism of event detection is implemented according to which the timestamp and event type are assigned to each event. The trigger system is required in the systems searching for rare events to select and keep only the necessary information from the ADC array. The specifications and implementation of the trigger unit which provides amore » high efficiency of response even to low-energy events are considered.« less

  8. Photonic crystals, light manipulation, and imaging in complex nematic structures

    NASA Astrophysics Data System (ADS)

    Ravnik, Miha; Å timulak, Mitja; Mur, Urban; Čančula, Miha; Čopar, Simon; Žumer, Slobodan

    2016-03-01

    Three selected approaches for manipulation of light by complex nematic colloidal and non-colloidal structures are presented using different own custom developed theoretical and modelling approaches. Photonic crystals bands of distorted cholesteric liquid crystal helix and of nematic colloidal opals are presented, also revealing distinct photonic modes and density of states. Light propagation along half-integer nematic disclinations is shown with changes in the light polarization of various winding numbers. As third, simulated light transmission polarization micrographs of nematic torons are shown, offering a new insight into the complex structure characterization. Finally, this work is a contribution towards using complex soft matter in optics and photonics for advanced light manipulation.

  9. Rapid creation of distant entanglement by multi-photon resonant fluorescence

    NASA Astrophysics Data System (ADS)

    Cohen, Guy Z.; Sham, L. J.

    2014-03-01

    We study a simple, effective and robust method for entangling two separate stationary quantum dot spin qubits with high fidelity using multi-photon Gaussian state. The fluorescence signals from the two dots interfere at a beam splitter. The bosonic nature of photons leads, in analogy with the Hong-Ou-Mandel (HOM) effect, to selective pairing of photon holes (photon absences in the fluorescent signals). By the HOM effect, two photon holes with the same polarization end up at the same beam splitter output. As a result, two odd photon number detections at the outgoing beams, which must correspond to two photon holes with different polarizations, herald entanglement creation. The robustness of the Gaussian states is evidenced by the ability to compensate for photon absorption and noise by a moderate increase in the number of photons at the input. We calculate the entanglement generation rate in the ideal, non-ideal and near-ideal detector regimes and find substantial improvement over single-photon schemes in all three regimes. Fast and efficient spin-spin entanglement creation can form the basis for a scalable quantum dot quantum computing network. Our predictions can be tested using current experimental capabilities. This research was supported by the U.S. Army Research Office MURI award W911NF0910406, by NSF grant PHY-1104446 and by ARO (IARPA, W911NF-08-1-0487). The authors thank D. G. Steel for useful discussions.

  10. Density of photonic states in cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Dolganov, P. V.

    2015-04-01

    Density of photonic states ρ (ω ) , group vg, and phase vph velocity of light, and the dispersion relation between wave vector k , and frequency ω (k ) were determined in a cholesteric photonic crystal. A highly sensitive method (measurement of rotation of the plane of polarization of light) was used to determine ρ (ω ) in samples of different quality. In high-quality samples a drastic increase in ρ (ω ) near the boundaries of the stop band and oscillations related to Pendellösung beatings are observed. In low-quality samples photonic properties are strongly modified. The maximal value of ρ (ω ) is substantially smaller, and density of photonic states increases near the selective reflection band without oscillations in ρ (ω ) . Peculiarities of ρ (ω ) , vg, and ω (k ) are discussed. Comparison of the experimental results with theory was performed.

  11. Event selection services in ATLAS

    NASA Astrophysics Data System (ADS)

    Cranshaw, J.; Cuhadar-Donszelmann, T.; Gallas, E.; Hrivnac, J.; Kenyon, M.; McGlone, H.; Malon, D.; Mambelli, M.; Nowak, M.; Viegas, F.; Vinek, E.; Zhang, Q.

    2010-04-01

    ATLAS has developed and deployed event-level selection services based upon event metadata records ("TAGS") and supporting file and database technology. These services allow physicists to extract events that satisfy their selection predicates from any stage of data processing and use them as input to later analyses. One component of these services is a web-based Event-Level Selection Service Interface (ELSSI). ELSSI supports event selection by integrating run-level metadata, luminosity-block-level metadata (e.g., detector status and quality information), and event-by-event information (e.g., triggers passed and physics content). The list of events that survive after some selection criterion is returned in a form that can be used directly as input to local or distributed analysis; indeed, it is possible to submit a skimming job directly from the ELSSI interface using grid proxy credential delegation. ELSSI allows physicists to explore ATLAS event metadata as a means to understand, qualitatively and quantitatively, the distributional characteristics of ATLAS data. In fact, the ELSSI service provides an easy interface to see the highest missing ET events or the events with the most leptons, to count how many events passed a given set of triggers, or to find events that failed a given trigger but nonetheless look relevant to an analysis based upon the results of offline reconstruction, and more. This work provides an overview of ATLAS event-level selection services, with an emphasis upon the interactive Event-Level Selection Service Interface.

  12. Photonic structures in diamond based on femtosecond UV laser induced periodic surface structuring (LIPSS).

    PubMed

    Granados, Eduardo; Martinez-Calderon, Miguel; Gomez, Mikel; Rodriguez, Ainara; Olaizola, Santiago M

    2017-06-26

    We study the fabrication of photonic surface structures in single crystal diamond by means of highly controllable direct femtosecond UV laser induced periodic surface structuring. By appropriately selecting the excitation wavelength, intensity, number of impinging pulses and their polarization state, we demonstrate emerging high quality and fidelity diamond grating structures with surface roughness below 1.4 nm. We characterize their optical properties and study their potential for the fabrication of photonic structure anti-reflection coatings for diamond Raman lasers in the near-IR.

  13. Performance of the ATLAS trigger system in 2015.

    PubMed

    Aaboud, M; Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Abeloos, B; Aben, R; AbouZeid, O S; Abraham, N L; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adachi, S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Ali, B; Aliev, M; Alimonti, G; Alison, J; Alkire, S P; Allbrooke, B M M; Allen, B W; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Alshehri, A A; Alstaty, M; Alvarez Gonzalez, B; Álvarez Piqueras, D; Alviggi, M G; Amadio, B T; Amaral Coutinho, Y; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antel, C; Antonelli, M; Antonov, A; Antrim, D J; Anulli, F; Aoki, M; Aperio Bella, L; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Armitage, L J; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Augsten, K; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Baca, M J; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Baines, J T; Bajic, M; Baker, O K; Baldin, E M; Balek, P; Balestri, T; Balli, F; Balunas, W K; Banas, E; Banerjee, Sw; Bannoura, A A E; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisits, M-S; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska-Blenessy, Z; Baroncelli, A; Barone, G; Barr, A J; Barranco Navarro, L; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Bechtle, P; Beck, H P; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bedognetti, M; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Bell, A S; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Belyaev, N L; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez, J; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Beringer, J; Berlendis, S; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertram, I A; Bertsche, C; Bertsche, D; Besjes, G J; Bessidskaia Bylund, O; Bessner, M; Besson, N; Betancourt, C; Bethani, A; Bethke, S; Bevan, A J; Bianchi, R M; Bianco, M; Biebel, O; Biedermann, D; Bielski, R; Biesuz, N V; Biglietti, M; Bilbao De Mendizabal, J; Billoud, T R V; Bilokon, H; Bindi, M; Bingul, A; Bini, C; Biondi, S; Bisanz, T; Bjergaard, D M; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blazek, T; Bloch, I; Blocker, C; Blue, A; Blum, W; Blumenschein, U; Blunier, S; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Boerner, D; Bogaerts, J A; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bokan, P; Bold, T; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Bortfeldt, J; Bortoletto, D; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Bossio Sola, J D; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Boutle, S K; Boveia, A; Boyd, J; Boyko, I R; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Breaden Madden, W D; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Broughton, J H; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Bruni, L S; Brunt, B H; Bruschi, M; Bruscino, N; Bryant, P; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Budagov, I A; Buehrer, F; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burgard, C D; Burger, A M; Burghgrave, B; Burka, K; Burke, S; Burmeister, I; Burr, J T P; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Cabrera Urbán, S; Caforio, D; Cairo, V M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Callea, G; Caloba, L P; Calvente Lopez, S; Calvet, D; Calvet, S; Calvet, T P; Camacho Toro, R; Camarda, S; Camarri, P; Cameron, D; Caminal Armadans, R; Camincher, C; Campana, S; Campanelli, M; Camplani, A; Campoverde, A; Canale, V; Canepa, A; Cano Bret, M; Cantero, J; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Carbone, R M; Cardarelli, R; Cardillo, F; Carli, I; Carli, T; Carlino, G; Carlson, B T; Carminati, L; Carney, R M D; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Casper, D W; Castaneda-Miranda, E; Castelijn, R; Castelli, A; Castillo Gimenez, V; Castro, N F; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavallaro, E; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerda Alberich, L; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chan, S K; Chan, Y L; Chang, P; Chapman, J D; Charlton, D G; Chatterjee, A; Chau, C C; Chavez Barajas, C A; Che, S; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, S; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, H J; Cheng, Y; Cheplakov, A; Cheremushkina, E; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiarelli, G; Chiodini, G; Chisholm, A S; Chitan, A; Chizhov, M V; Choi, K; Chomont, A R; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocca, C; Ciocio, A; Cirotto, F; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, B L; Clark, M R; Clark, P J; Clarke, R N; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Colasurdo, L; Cole, B; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Conde Muiño, P; Coniavitis, E; Connell, S H; Connelly, I A; Consorti, V; Constantinescu, S; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cormier, F; Cormier, K J R; Cornelissen, T; Corradi, M; Corriveau, F; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Crawley, S J; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Crispin Ortuzar, M; Cristinziani, M; Croft, V; Crosetti, G; Cueto, A; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cúth, J; Czirr, H; Czodrowski, P; D'amen, G; D'Auria, S; D'Onofrio, M; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dado, T; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Dann, N S; Danninger, M; Dano Hoffmann, M; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, M; Davison, P; Dawe, E; Dawson, I; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Maria, A; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Dehghanian, N; Deigaard, I; Del Gaudio, M; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Denysiuk, D; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Dette, K; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Clemente, W K; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Díez Cornell, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dolejsi, J; Dolezal, Z; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Du, Y; Duarte-Campderros, J; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Dudder, A Chr; Duffield, E M; Duflot, L; Dührssen, M; Dumancic, M; Duncan, A K; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Duschinger, D; Dutta, B; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edwards, N C; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; Ellajosyula, V; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Ennis, J S; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Ezzi, M; Fabbri, F; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farina, C; Farina, E M; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Faucci Giannelli, M; Favareto, A; Fawcett, W J; Fayard, L; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Feremenga, L; Fernandez Martinez, P; Fernandez Perez, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Flaschel, N; Fleck, I; Fleischmann, P; Fletcher, G T; Fletcher, R R M; Flick, T; Flierl, B M; Flores Castillo, L R; Flowerdew, M J; Forcolin, G T; Formica, A; Forti, A; Foster, A G; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; Fressard-Batraneanu, S M; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fusayasu, T; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gagliardi, G; Gagnon, L G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Ganguly, S; Gao, J; Gao, Y; Gao, Y S; Garay Walls, F M; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gascon Bravo, A; Gasnikova, K; Gatti, C; Gaudiello, A; Gaudio, G; Gauthier, L; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Gecse, Z; Gee, C N P; Geich-Gimbel, Ch; Geisen, M; Geisler, M P; Gellerstedt, K; Gemme, C; Genest, M H; Geng, C; Gentile, S; Gentsos, C; George, S; Gerbaudo, D; Gershon, A; Ghasemi, S; Ghneimat, M; Giacobbe, B; Giagu, S; Giannetti, P; Gibson, S M; Gignac, M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuli, F; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, G; Gonella, L; Gongadze, A; González de la Hoz, S; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Goudet, C R; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Graber, L; Grabowska-Bold, I; Gradin, P O J; Grafström, P; Gramling, J; Gramstad, E; Grancagnolo, S; Gratchev, V; Gravila, P M; Gray, H M; Graziani, E; Greenwood, Z D; Grefe, C; Gregersen, K; Gregor, I M; Grenier, P; Grevtsov, K; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Groh, S; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guan, W; Guenther, J; Guescini, F; Guest, D; Gueta, O; Gui, B; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, Y; Gupta, R; Gupta, S; Gustavino, G; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Hadef, A; Hageböck, S; Hagihara, M; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Haney, B; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hartmann, N M; Hasegawa, M; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hayakawa, D; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, J J; Heinrich, L; Heinz, C; Hejbal, J; Helary, L; Hellman, S; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Henkelmann, S; Henriques Correia, A M; Henrot-Versille, S; Herbert, G H; Herde, H; Herget, V; Hernández Jiménez, Y; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirschbuehl, D; Hoad, X; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohn, D; Holmes, T R; Homann, M; Honda, T; Hong, T M; Hooberman, B H; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howarth, J; Hoya, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, P J; Hsu, S-C; Hu, Q; Hu, S; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Huo, P; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikai, T; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Ishijima, N; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Ito, F; Iturbe Ponce, J M; Iuppa, R; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, P; Jain, V; Jakobi, K B; Jakobs, K; Jakobsen, S; Jakoubek, T; Jamin, D O; Jana, D K; Jansky, R; Janssen, J; Janus, M; Janus, P A; Jarlskog, G; Javadov, N; Javůrek, T; Jeanneau, F; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, H; Jiang, Y; Jiang, Z; Jiggins, S; Jimenez Pena, J; Jin, S; Jinaru, A; Jinnouchi, O; Jivan, H; Johansson, P; Johns, K A; Johnson, W J; Jon-And, K; Jones, G; Jones, R W L; Jones, S; Jones, T J; Jongmanns, J; Jorge, P M; Jovicevic, J; Ju, X; Juste Rozas, A; Köhler, M K; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kaji, T; Kajomovitz, E; Kalderon, C W; Kaluza, A; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneti, S; Kanjir, L; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karentzos, E; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kasahara, K; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawade, K; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khader, M; Khalil-Zada, F; Khanov, A; Kharlamov, A G; Kharlamova, T; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kido, S; Kilby, C R; Kim, H Y; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; King, M; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Knapik, J; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Köhler, N M; Koi, T; Kolanoski, H; Kolb, M; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotwal, A; Koulouris, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Kowalewska, A B; Kowalewski, R; Kowalski, T Z; Kozakai, C; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kravchenko, A; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuechler, J T; Kuehn, S; Kugel, A; Kuger, F; Kuhl, T; Kukhtin, V; Kukla, R; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurchaninov, L L; Kurochkin, Y A; Kurth, M G; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; La Rosa, A; La Rosa Navarro, J L; Rotonda, L La; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lammers, S; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lanfermann, M C; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Lasagni Manghi, F; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Lazzaroni, M; Le, B; Le Dortz, O; Le Guirriec, E; Le Quilleuc, E P; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, B; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmann Miotto, G; Lei, X; Leight, W A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Lerner, G; Leroy, C; Lesage, A A J; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, D; Leyton, M; Li, B; Li, C; Li, H; Li, L; Li, L; Li, Q; Li, S; Li, X; Li, Y; Liang, Z; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limosani, A; Lin, S C; Lin, T H; Lindquist, B E; Lionti, A E; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, H; Liu, H; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, Y L; Liu, Y; Livan, M; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E M; Loch, P; Loebinger, F K; Loew, K M; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Longo, L; Looper, K A; Lopez Lopez, J A; Lopez Mateos, D; Lopez Paredes, B; Lopez Paz, I; Lopez Solis, A; Lorenz, J; Lorenzo Martinez, N; Losada, M; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, H; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luedtke, C; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Luzi, P M; Lynn, D; Lysak, R; Lytken, E; Lyubushkin, V; Ma, H; Ma, L L; Ma, Y; Maccarrone, G; Macchiolo, A; Macdonald, C M; Maček, B; Machado Miguens, J; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeda, J; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Malone, C; Maltezos, S; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, L; Mandić, I; Maneira, J; Manhaes de Andrade Filho, L; Manjarres Ramos, J; Mann, A; Manousos, A; Mansoulie, B; Mansour, J D; Mantifel, R; Mantoani, M; Manzoni, S; Mapelli, L; Marceca, G; March, L; Marchiori, G; Marcisovsky, M; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, M; Martinez Outschoorn, V I; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Maznas, I; Mazza, S M; Mc Fadden, N C; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McClymont, L I; McDonald, E F; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McNamara, P C; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melini, D; Mellado Garcia, B R; Melo, M; Meloni, F; Menary, S B; Meng, L; Meng, X T; Mengarelli, A; Menke, S; Meoni, E; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Meyer Zu Theenhausen, H; Miano, F; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Minegishi, Y; Ming, Y; Mir, L M; Mistry, K P; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mizukami, A; Mjörnmark, J U; Mlynarikova, M; Moa, T; Mochizuki, K; Mogg, P; Mohapatra, S; Molander, S; Moles-Valls, R; Monden, R; Mondragon, M C; Mönig, K; Monk, J; Monnier, E; Montalbano, A; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, S; Mori, D; Mori, T; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Mortensen, S S; Morvaj, L; Moschovakos, P; Mosidze, M; Moss, H J; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Mullier, G A; Munoz Sanchez, F J; Murillo Quijada, J A; Murray, W J; Musheghyan, H; Muškinja, M; Myagkov, A G; Myska, M; Nachman, B P; Nackenhorst, O; Nagai, K; Nagai, R; Nagano, K; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Naranjo Garcia, R F; Narayan, R; Narrias Villar, D I; Naryshkin, I; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nguyen Manh, T; Nickerson, R B; Nicolaidou, R; Nielsen, J; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Norjoharuddeen, N; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nurse, E; Nuti, F; O'grady, F; O'Neil, D C; O'Rourke, A A; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Oleiro Seabra, L F; Olivares Pino, S A; Damazio, D Oliveira; Olszewski, A; Olszowska, J; Onofre, A; Onogi, K; Onyisi, P U E; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Pacheco Rodriguez, L; Padilla Aranda, C; Pagáčová, M; Pagan Griso, S; Paganini, M; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palazzo, S; Palestini, S; Palka, M; Pallin, D; St Panagiotopoulou, E; Panagoulias, I; Pandini, C E; Panduro Vazquez, J G; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, A J; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pascuzzi, V R; Pasqualucci, E; Passaggio, S; Pastore, Fr; Pásztor, G; Pataraia, S; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedersen, M; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Penc, O; Peng, C; Peng, H; Penwell, J; Peralva, B S; Perego, M M; Perepelitsa, D V; Perez Codina, E; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrov, M; Petrucci, F; Pettersson, N E; Peyaud, A; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pilcher, J E; Pilkington, A D; Pin, A W J; Pinamonti, M; Pinfold, J L; Pingel, A; Pires, S; Pirumov, H; Pitt, M; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Pozo Astigarraga, M E; Pralavorio, P; Pranko, A; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Przybycien, M; Puddu, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Raine, J A; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Ratti, M G; Rauch, D M; Rauscher, F; Rave, S; Ravenscroft, T; Ravinovich, I; Raymond, M; Read, A L; Readioff, N P; Reale, M; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reed, R G; Reeves, K; Rehnisch, L; Reichert, J; Reiss, A; Rembser, C; Ren, H; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rifki, O; Rijssenbeek, M; Rimoldi, A; Rimoldi, M; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Rizzi, C; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Rodina, Y; Rodriguez Perez, A; Rodriguez Rodriguez, D; Roe, S; Rogan, C S; Røhne, O; Roloff, J; Romaniouk, A; Romano, M; Romano Saez, S M; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosien, N-A; Rossetti, V; Rossi, E; Rossi, L P; Rosten, J H N; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryu, S; Ryzhov, A; Rzehorz, G F; Saavedra, A F; Sabato, G; Sacerdoti, S; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Saha, P; Sahinsoy, M; Saimpert, M; Saito, T; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Salazar Loyola, J E; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sánchez, J; Sanchez Martinez, V; Sanchez Pineda, A; Sandaker, H; Sandbach, R L; Sandhoff, M; Sandoval, C; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sato, K; Sauvan, E; Savage, G; Savard, P; Savic, N; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schachtner, B M; Schaefer, D; Schaefer, L; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schier, S; Schillo, C; Schioppa, M; Schlenker, S; Schmidt-Sommerfeld, K R; Schmieden, K; Schmitt, C; Schmitt, S; Schmitz, S; Schneider, B; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schott, M; Schouwenberg, J F P; Schovancova, J; Schramm, S; Schreyer, M; Schuh, N; Schulte, A; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwartzman, A; Schwarz, T A; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shaikh, N W; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shirabe, S; Shiyakova, M; Shmeleva, A; Shoaleh Saadi, D; Shochet, M J; Shojaii, S; Shope, D R; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sickles, A M; Sidebo, P E; Sideras Haddad, E; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silverstein, S B; Simak, V; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simon, M; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Sivoklokov, S Yu; Sjölin, J; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Slovak, R; Smakhtin, V; Smart, B H; Smestad, L; Smiesko, J; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, J W; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snyder, I M; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Sokhrannyi, G; Solans Sanchez, C A; Solar, M; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Son, H; Song, H Y; Sood, A; Sopczak, A; Sopko, V; Sorin, V; Sosa, D; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spangenberg, M; Spanò, F; Sperlich, D; Spettel, F; Spieker, T M; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; St Denis, R D; Stabile, A; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, G H; Stark, J; Staroba, P; Starovoitov, P; Stärz, S; Staszewski, R; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Suchek, S; Sugaya, Y; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Suster, C J E; Sutton, M R; Suzuki, S; Svatos, M; Swiatlowski, M; Swift, S P; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tan, K G; Tanaka, J; Tanaka, M; Tanaka, R; Tanaka, S; Tanioka, R; Tannenwald, B B; Tapia Araya, S; Tapprogge, S; Tarem, S; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, A C; Taylor, G N; Taylor, P T E; Taylor, W; Teischinger, F A; Teixeira-Dias, P; Temming, K K; Temple, D; Ten Kate, H; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Tibbetts, M J; Ticse Torres, R E; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tipton, P; Tisserant, S; Todome, K; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Tong, B; Tornambe, P; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Trofymov, A; Troncon, C; Trottier-McDonald, M; Trovatelli, M; Truong, L; Trzebinski, M; Trzupek, A; Tseng, J C-L; Tsiareshka, P V; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsui, K M; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tu, Y; Tudorache, A; Tudorache, V; Tulbure, T T; Tuna, A N; Tupputi, S A; Turchikhin, S; Turgeman, D; Turk Cakir, I; Turra, R; Tuts, P M; Ucchielli, G; Ueda, I; Ughetto, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usui, J; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Valdes Santurio, E; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valls Ferrer, J A; Van Den Wollenberg, W; Van Der Deijl, P C; van der Graaf, H; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vankov, P; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vasquez, J G; Vasquez, G A; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veeraraghavan, V; Veloce, L M; Veloso, F; Veneziano, S; Ventura, A; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigani, L; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vittori, C; Vivarelli, I; Vlachos, S; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wallangen, V; Wang, C; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, W; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Washbrook, A; Watkins, P M; Watson, A T; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Weber, S A; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M D; Werner, P; Wessels, M; Wetter, J; Whalen, K; Whallon, N L; Wharton, A M; White, A; White, M J; White, R; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilk, F; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winston, O J; Winter, B T; Wittgen, M; Wolf, T M H; Wolff, R; Wolter, M W; Wolters, H; Worm, S D; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xi, Z; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yamaguchi, D; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yang, Z; Yao, W-M; Yap, Y C; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yuen, S P Y; Yusuff, I; Zabinski, B; Zacharis, G; Zaidan, R; Zaitsev, A M; Zakharchuk, N; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zeng, J C; Zeng, Q; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, G; Zhang, H; Zhang, J; Zhang, L; Zhang, L; Zhang, M; Zhang, R; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, M; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zwalinski, L

    2017-01-01

    During 2015 the ATLAS experiment recorded [Formula: see text] of proton-proton collision data at a centre-of-mass energy of [Formula: see text]. The ATLAS trigger system is a crucial component of the experiment, responsible for selecting events of interest at a recording rate of approximately 1 kHz from up to 40 MHz of collisions. This paper presents a short overview of the changes to the trigger and data acquisition systems during the first long shutdown of the LHC and shows the performance of the trigger system and its components based on the 2015 proton-proton collision data.

  14. Performance of the ATLAS trigger system in 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaboud, M.; Aad, G.; Abbott, B.

    During 2015 the ATLAS experiment recorded 3.8fb –1 of proton–proton collision data at a centre-of-mass energy of 13TeV. The ATLAS trigger system is a crucial component of the experiment, responsible for selecting events of interest at a recording rate of approximately 1 kHz from up to 40 MHz of collisions. This paper presents a short overview of the changes to the trigger and data acquisition systems during the first long shutdown of the LHC and shows the performance of the trigger system and its components based on the 2015 proton–proton collision data.

  15. Performance of the ATLAS trigger system in 2015

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2017-05-18

    During 2015 the ATLAS experiment recorded 3.8fb –1 of proton–proton collision data at a centre-of-mass energy of 13TeV. The ATLAS trigger system is a crucial component of the experiment, responsible for selecting events of interest at a recording rate of approximately 1 kHz from up to 40 MHz of collisions. This paper presents a short overview of the changes to the trigger and data acquisition systems during the first long shutdown of the LHC and shows the performance of the trigger system and its components based on the 2015 proton–proton collision data.

  16. A hardware fast tracker for the ATLAS trigger

    NASA Astrophysics Data System (ADS)

    Asbah, Nedaa

    2016-09-01

    The trigger system of the ATLAS experiment is designed to reduce the event rate from the LHC nominal bunch crossing at 40 MHz to about 1 kHz, at the design luminosity of 1034 cm-2 s-1. After a successful period of data taking from 2010 to early 2013, the LHC already started with much higher instantaneous luminosity. This will increase the load on High Level Trigger system, the second stage of the selection based on software algorithms. More sophisticated algorithms will be needed to achieve higher background rejection while maintaining good efficiency for interesting physics signals. The Fast TracKer (FTK) is part of the ATLAS trigger upgrade project. It is a hardware processor that will provide, at every Level-1 accepted event (100 kHz) and within 100 microseconds, full tracking information for tracks with momentum as low as 1 GeV. Providing fast, extensive access to tracking information, with resolution comparable to the offline reconstruction, FTK will help in precise detection of the primary and secondary vertices to ensure robust selections and improve the trigger performance. FTK exploits hardware technologies with massive parallelism, combining Associative Memory ASICs, FPGAs and high-speed communication links.

  17. Dual Mechanism Nonlinear Response of Selected Metal Organic Chromophores

    DTIC Science & Technology

    2007-10-01

    emission was observed due to the high quantum efficiency of the free ligand despite having a relatively low two photon cross section at this wavelength...nonlinear absorbing chromophores. .............................30 2-1 Beer’s Law relationships of linear absorption...optical processes; (4) structure-property relationships of nonlinear absorption as it relates to two photon absorption and reverse saturable absorption

  18. Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging (STARFLEET) Velocimetry in Flow and Combustion Diagnostics

    NASA Technical Reports Server (NTRS)

    Jiang, Naibo; Halls, Benjamin R.; Stauffer, Hans U.; Roy, Sukesh; Danehy, Paul M.; Gord, James R.

    2016-01-01

    Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging (STARFLEET), a non-seeded ultrafast-laser-based velocimetry technique, is demonstrated in reactive and non-reactive flows. STARFLEET is pumped via a two-photon resonance in N2 using 202.25-nm 100-fs light. STARFLEET greatly reduces the per-pulse energy required (30 µJ/pulse) to generate the signature FLEET emission compared to the conventional FLEET technique (1.1 mJ/pulse). This reduction in laser energy results in less energy deposited in the flow, which allows for reduced flow perturbations (reactive and non-reactive), increased thermometric accuracy, and less severe damage to materials. Velocity measurements conducted in a free jet of N2 and in a premixed flame show good agreement with theoretical velocities and further demonstrate the significantly less-intrusive nature of STARFLEET.

  19. Engineering multiphoton states for linear optics computation

    NASA Astrophysics Data System (ADS)

    Aniello, P.; Lupo, C.; Napolitano, M.; Paris, M. G. A.

    2007-03-01

    Transformations achievable by linear optical components allow to generate the whole unitary group only when restricted to the one-photon subspace of a multimode Fock space. In this paper, we address the more general problem of encoding quantum information by multiphoton states, and elaborating it via ancillary extensions, linear optical passive devices and photodetection. Our scheme stems in a natural way from the mathematical structures underlying the physics of linear optical passive devices. In particular, we analyze an economical procedure for mapping a fiducial 2-photon 2-mode state into an arbitrary 2-photon 2-mode state using ancillary resources and linear optical passive N-ports assisted by post-selection. We found that adding a single ancilla mode is enough to generate any desired target state. The effect of imperfect photodetection in post-selection is considered and a simple trade-off between success probability and fidelity is derived.

  20. Mode-selective mapping and control of vectorial nonlinear-optical processes in multimode photonic-crystal fibers.

    PubMed

    Hu, Ming-Lie; Wang, Ching-Yue; Song, You-Jian; Li, Yan-Feng; Chai, Lu; Serebryannikov, Evgenii; Zheltikov, Aleksei

    2006-02-06

    We demonstrate an experimental technique that allows a mapping of vectorial nonlinear-optical processes in multimode photonic-crystal fibers (PCFs). Spatial and polarization modes of PCFs are selectively excited in this technique by varying the tilt angle of the input beam and rotating the polarization of the input field. Intensity spectra of the PCF output plotted as a function of the input field power and polarization then yield mode-resolved maps of nonlinear-optical interactions in multimode PCFs, facilitating the analysis and control of nonlinear-optical transformations of ultrashort laser pulses in such fibers.

  1. Rapid creation of distant entanglement by multiphoton resonant fluorescence

    NASA Astrophysics Data System (ADS)

    Cohen, Guy Z.; Sham, L. J.

    2013-12-01

    We study a simple, effective, and robust method for entangling two separate stationary quantum dot spin qubits with high fidelity using multiphoton Gaussian state. The fluorescence signals from the two dots interfere at a beam splitter. The bosonic nature of photons leads, in analogy with the Hong-Ou-Mandel effect, to selective pairing of photon holes (photon absences in the fluorescent signals). As a result, two odd photon number detections at the outgoing beams herald trion entanglement creation, and subsequent reduction of the trions to the spin ground states leads to spin-spin entanglement. The robustness of the Gaussian states is evidenced by the ability to compensate for photon absorption and noise by a moderate increase in the number of photons at the input. We calculate the entanglement generation rate in the ideal, nonideal, and near-ideal detector regimes and find substantial improvement over single-photon schemes in all three regimes. Fast and efficient spin-spin entanglement creation can form the basis for a scalable quantum dot quantum computing network. Our predictions can be tested using current experimental capabilities.

  2. Spectrometer for shot-to-shot photon energy characterization in the multi-bunch mode of the free electron laser at Hamburg

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palutke, S., E-mail: steffen.palutke@desy.de; Wurth, W.; Deutsches Elekronen Synchrotron

    The setup and first results from commissioning of a fast online photon energy spectrometer for the vacuum ultraviolet free electron laser at Hamburg (FLASH) at DESY are presented. With the use of the latest advances in detector development, the presented spectrometer reaches readout frequencies up to 1 MHz. In this paper, we demonstrate the ability to record online photon energy spectra on a shot-to-shot base in the multi-bunch mode of FLASH. Clearly resolved shifts in the mean wavelength over the pulse train as well as shot-to-shot wavelength fluctuations arising from the statistical nature of the photon generating self-amplified spontaneous emissionmore » process have been observed. In addition to an online tool for beam calibration and photon diagnostics, the spectrometer enables the determination and selection of spectral data taken with a transparent experiment up front over the photon energy of every shot. This leads to higher spectral resolutions without the loss of efficiency or photon flux by using single-bunch mode or monochromators.« less

  3. Observation of entanglement between a quantum dot spin and a single photon.

    PubMed

    Gao, W B; Fallahi, P; Togan, E; Miguel-Sanchez, J; Imamoglu, A

    2012-11-15

    Entanglement has a central role in fundamental tests of quantum mechanics as well as in the burgeoning field of quantum information processing. Particularly in the context of quantum networks and communication, a main challenge is the efficient generation of entanglement between stationary (spin) and propagating (photon) quantum bits. Here we report the observation of quantum entanglement between a semiconductor quantum dot spin and the colour of a propagating optical photon. The demonstration of entanglement relies on the use of fast, single-photon detection, which allows us to project the photon into a superposition of red and blue frequency components. Our results extend the previous demonstrations of single-spin/single-photon entanglement in trapped ions, neutral atoms and nitrogen-vacancy centres to the domain of artificial atoms in semiconductor nanostructures that allow for on-chip integration of electronic and photonic elements. As a result of its fast optical transitions and favourable selection rules, the scheme we implement could in principle generate nearly deterministic entangled spin-photon pairs at a rate determined ultimately by the high spontaneous emission rate. Our observation constitutes a first step towards implementation of a quantum network with nodes consisting of semiconductor spin quantum bits.

  4. Careers and Organizational Labor Markets: Demographic Models of Organizational Behavior.

    ERIC Educational Resources Information Center

    Stewman, Shelby; Konda, Suresh L.

    1983-01-01

    Four organizational micro-structures and two triggering mechanisms that provide clues for assessing individual career prospects within an organization are identified. The four microstructures are grade ratios, vacancy chains, managerial selection preferences, and cohort size. The triggering mechanisms are growth and exit rates. (Author/AM)

  5. A Two‐Photon Ratiometric Fluorescent Probe for Imaging of Hydrogen Peroxide Levels in Rat Organ Tissues

    PubMed Central

    Lim, Chang Su; Cho, Myoung Ki; Park, Mi Yeon

    2017-01-01

    Abstract Hydrogen peroxide (H2O2) is important in the regulation of a variety of biological processes and is involved in various diseases. Quantitative measurement of H2O2 levels at the subcellular level is important for understanding its positive and negative effects on biological processes. Herein, a two‐photon ratiometric fluorescent probe (SHP‐Cyto) with a boronate‐based carbamate leaving group as the H2O2 reactive trigger and 6‐(benzo[d]thiazol‐2′‐yl)‐2‐(N,N‐dimethylamino) naphthalene (BTDAN) as the fluorophore was synthesized and examined for its ability to detect cytosolic H2O2 in situ. This probe, based on the specific reaction between boronate and H2O2, displayed a fluorescent color change (455 to 528 nm) in response to H2O2 in the presence of diverse reactive oxygen species in a physiological medium. In addition, ratiometric two‐photon microscopy (TPM) images with SHP‐Cyto revealed that H2O2 levels gradually increased from brain to kidney, skin, heart, lung, and then liver tissues. SHP‐Cyto was successfully applied to the imaging of endogenously produced cytosolic H2O2 levels in live cells and various rat organs by using TPM. PMID:29318096

  6. UBAT of UFFO/ Lomonosov: The X-Ray Space Telescope to Observe Early Photons from Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Jeong, S.; Panasyuk, M. I.; Reglero, V.; Connell, P.; Kim, M. B.; Lee, J.; Rodrigo, J. M.; Ripa, J.; Eyles, C.; Lim, H.; Gaikov, G.; Jeong, H.; Leonov, V.; Chen, P.; Castro-Tirado, A. J.; Nam, J. W.; Svertilov, S.; Yashin, I.; Garipov, G.; Huang, M.-H. A.; Huang, J.-J.; Kim, J. E.; Liu, T.-C.; Petrov, V.; Bogomolov, V.; Budtz-Jørgensen, C.; Brandt, S.; Park, I. H.

    2018-02-01

    The Ultra-Fast Flash Observatory (UFFO) Burst Alert and Trigger Telescope (UBAT) has been designed and built for the localization of transient X-ray sources such as Gamma Ray Bursts (GRBs). As one of main instruments in the UFFO payload onboard the Lomonosov satellite (hereafter UFFO/ Lomonosov), the UBAT's roles are to monitor the X-ray sky, to rapidly locate and track transient sources, and to trigger the slewing of a UV/optical telescope, namely Slewing Mirror Telescope (SMT). The SMT, a pioneering application of rapid slewing mirror technology has a line of sight parallel to the UBAT, allowing us to measure the early UV/optical GRB counterpart and study the extremely early moments of GRB evolution. To detect X-rays, the UBAT utilizes a 191.1 cm2 scintillation detector composed of Yttrium Oxyorthosilicate (YSO) crystals, Multi-Anode Photomultiplier Tubes (MAPMTs), and associated electronics. To estimate a direction vector of a GRB source in its field of view, it employs the well-known coded aperture mask technique. All functions are written for implementation on a field programmable gate array to enable fast triggering and to run the device's imaging algorithms. The UFFO/ Lomonosov satellite was launched on April 28, 2016, and is now collecting GRB observation data. In this study, we describe the UBAT's design, fabrication, integration, and performance as a GRB X-ray trigger and localization telescope, both on the ground and in space.

  7. A multifunctional magnetic nanocarrier bearing fluorescent dye for targeted drug delivery by enhanced two-photon triggered release

    NASA Astrophysics Data System (ADS)

    Banerjee, Shashwat S.; Chen, Dong-Hwang

    2009-05-01

    We report a novel nanoformulation for targeted drug delivery which utilizes nanophotonics through the fusion of nanotechnology with biomedical application. The approach involves an energy-transferring magnetic nanoscopic co-assembly fabricated of rhodamine B (RDB) fluorescent dye grafted gum arabic modified Fe3O4 magnetic nanoparticle and photosensitive linker by which dexamethasone drug is conjugated to the magnetic nano-assembly. The advantage offered by this nanoformulation is the indirect photo-triggered-on-demand drug release by efficient up-converting energy of the near-IR (NIR) light to higher energy and intraparticle energy transfer from the dye grafted magnetic nanoparticle to the linker for drug release by cleavage. The synthesized nanoparticles were found to be of ultra-small size (13.33 nm) and are monodispersed in an aqueous suspension. Dexamethasone (Dexa) drug conjugated to RDB-GAMNP by photosensitive linker showed appreciable release of Dexa by photo-triggered response on exposure to radiation having a wavelength in the NIR region whereas no detectable release was observed in the dark. Photo-triggered response for the nanoformulation not bearing the rhodamine B dye was drastically less as less Dexa was released on exposure to NIR radiation which suggest that the photo-cleavage of linker and release of Dexa mainly originated from the indirect excitation through the uphill energy conversions based on donor-acceptor model FRET. The promising pathway of nanophotonics for the on-demand release of the drug makes this nanocarrier very promising for applications in nanomedicine.

  8. Tremors Triggered along the Queen Charlotte Fault

    NASA Astrophysics Data System (ADS)

    Aiken, C.; Peng, Z.; Chao, K.

    2012-12-01

    In the past decade, deep tectonic tremors have been observed in numerous tectonic environments surrounding the Pacific and Caribbean plates. In these regions, tremors triggered by both regional and distant earthquakes have also been observed. Despite the ubiquitous observations of triggered tremors, tremors triggered in differing strike-slip environments are less understood. Here, we conduct a preliminary search of tremors triggered by teleseismic earthquakes along the transpressive Queen Charlotte Fault (QCF) located between the Cascadia subduction zone and Alaska. Tectonic tremors have not been previously reported along the QCF. We select teleseismic earthquakes during the 1990-2012 period as having magnitude M ≥ 6.5 and occurring at least 1,000 km away from the region. We reduce the number of mainshocks by selecting those that generate greater than 1 kPa dynamic stress estimated from surface-wave magnitude equations [e.g. van der Elst and Brodsky, 2010]. Our mainshock waveforms are retrieved from the Canadian National Seismograph Network (CNSN), processed, and filtered for triggered tremor observations. We characterize triggered tremors as high-frequency signals visible among several stations and coincident with broadband surface wave peaks. So far, we have found tremors triggered along the QCF by surface waves of five great earthquakes - the 2002/11/03 Mw7.9 Denali Fault, 2004/12/26 Mw9.0 Sumatra, 2010/02/27 Mw8.8 Chile, 2011/03/11 Mw9.0 Japan, and 2012/04/11 Mw8.6 Sumatra earthquakes. We compare our results to tremors triggered by teleseismic earthquakes on strike-slip faults in central and southern California, as well as Cuba [Peng et al., 2012]. Among strike-slip faults in these regions, we also compare triggered tremor amplitudes to peak ground velocities from the mainshocks and compute dynamic stresses to determine a triggering threshold for the QCF. We find that in most cases tremors in the QCF are triggered primarily by the Love waves, and additional tremors are triggered by the subsequent Rayleigh waves. This is consistent with the near strike-parallel incidence for many triggering earthquakes, which tends to produce maximum triggering potential for vertical strike-slip faults. These results suggest a shear faulting mechanism is responsible for the triggered tremor on the QCF. The triggering threshold of dynamic stress is higher than that found at the Parkfield-Cholame section of the San Andreas Fault (2-3 KPa). This could be due to the sparse network coverage in the QCF, which may miss weak tremor signals triggered by smaller-size events. Our observations suggest that triggered tremor could occur in many places on major strike-slip faults around the world, although the necessary conditions for tremor generation are still not clear at this stage.

  9. A NMDA receptor glycine site partial agonist, GLYX-13, simultaneously enhances LTP and reduces LTD at Schaffer collateral-CA1 synapses in hippocampus.

    PubMed

    Zhang, Xiao-lei; Sullivan, John A; Moskal, Joseph R; Stanton, Patric K

    2008-12-01

    N-methyl-D-aspartate glutamate receptors (NMDARs) are a key route for Ca2+ influx into neurons important to both activity-dependent synaptic plasticity and, when uncontrolled, triggering events that cause neuronal degeneration and death. Among regulatory binding sites on the NMDAR complex is a glycine binding site, distinct from the glutamate binding site, which must be co-activated for NMDAR channel opening. We developed a novel glycine site partial agonist, GLYX-13, which is both nootropic and neuroprotective in vivo. Here, we assessed the effects of GLYX-13 on long-term synaptic plasticity and NMDAR transmission at Schaffer collateral-CA1 synapses in hippocampal slices in vitro. GLYX-13 simultaneously enhanced the magnitude of long-term potentiation (LTP) of synaptic transmission, while reducing long-term depression (LTD). GLYX-13 reduced NMDA receptor-mediated synaptic currents in CA1 pyramidal neurons evoked by low frequency Schaffer collateral stimulation, but enhanced NMDAR currents during high frequency bursts of activity, and these actions were occluded by a saturating concentration of the glycine site agonist d-serine. Direct two-photon imaging of Schaffer collateral burst-evoked increases in [Ca2+] in individual dendritic spines revealed that GLYX-13 selectively enhanced burst-induced NMDAR-dependent spine Ca2+ influx. Examining the rate of MK-801 block of synaptic versus extrasynaptic NMDAR-gated channels revealed that GLYX-13 selectively enhanced activation of burst-driven extrasynaptic NMDARs, with an action that was blocked by the NR2B-selective NMDAR antagonist ifenprodil. Our data suggest that GLYX-13 may have unique therapeutic potential as a learning and memory enhancer because of its ability to simultaneously enhance LTP and suppress LTD.

  10. Controlling spontaneous emission with the local density of states of honeycomb photonic crystals

    NASA Astrophysics Data System (ADS)

    Tsai, Ya-Chih; Lin, Chien-Fan; Chang, Jui-Wen

    2009-05-01

    We calculated the local density of state for various positions in a photonic crystal of honeycomb lattice to study how the spontaneous emission rate of a radiating dipole is altered in the presence of the photonic crystal. The local density of states is found to be position-sensitive and its value can be enhanced or depressed relative to the density of states, depending on the location of the dipole. Our study shows that the density of states tends to underestimate the effect of a photonic crystal on the prohibition of light propagation, while on the contrary tends to overestimate the effect on the enhancement of light emission. The calculations also indicate that it is possible to tailor the spontaneous emission of an active medium by careful selecting its location in the photonic crystal. The results are helpful in determining the insertion location of the active medium and in evaluating the efficiency of active photonic crystal devices such as light-emitting diodes or lasers.

  11. Benchmarking comparison and validation of MCNP photon interaction data

    NASA Astrophysics Data System (ADS)

    Colling, Bethany; Kodeli, I.; Lilley, S.; Packer, L. W.

    2017-09-01

    The objective of the research was to test available photoatomic data libraries for fusion relevant applications, comparing against experimental and computational neutronics benchmarks. Photon flux and heating was compared using the photon interaction data libraries (mcplib 04p, 05t, 84p and 12p). Suitable benchmark experiments (iron and water) were selected from the SINBAD database and analysed to compare experimental values with MCNP calculations using mcplib 04p, 84p and 12p. In both the computational and experimental comparisons, the majority of results with the 04p, 84p and 12p photon data libraries were within 1σ of the mean MCNP statistical uncertainty. Larger differences were observed when comparing computational results with the 05t test photon library. The Doppler broadening sampling bug in MCNP-5 is shown to be corrected for fusion relevant problems through use of the 84p photon data library. The recommended libraries for fusion neutronics are 84p (or 04p) with MCNP6 and 84p if using MCNP-5.

  12. Valley-controlled propagation of pseudospin states in bulk metacrystal waveguides

    NASA Astrophysics Data System (ADS)

    Chen, Xiao-Dong; Deng, Wei-Min; Lu, Jin-Cheng; Dong, Jian-Wen

    2018-05-01

    Light manipulations such as spin-direction locking propagation, robust transport, quantum teleportation, and reconfigurable electromagnetic pathways have been investigated at the boundaries of photonic systems. Recently by breaking Dirac cones in time-reversal-invariant photonic crystals, valley-pseudospin coupled edge states have been employed to realize selective propagation of light. Here, we realize the controllable propagation of pseudospin states in three-dimensional bulk metacrystal waveguides by valley degree of freedom. Reconfigurable photonic valley Hall effect is achieved for frequency-direction locking propagation in such a way that the propagation path can be tunable precisely by scanning the working frequency. A complete transition diagram is illustrated on the valley-dependent pseudospin states of Dirac-cone-absent photonic bands. A photonic blocker is proposed by cascading two inversion asymmetric metacrystal waveguides in which pseudospin-direction locking propagation exists. In addition, valley-dependent pseudospin bands are also discussed in a realistic metamaterials sample. These results show an alternative way toward molding the pseudospin flow in photonic systems.

  13. Experimental study of the evanescent-wave photonic sensors response in presence of molecular beacon conformational changes.

    PubMed

    Ruiz-Tórtola, Ángela; Prats-Quílez, Francisco; Gónzalez-Lucas, Daniel; Bañuls, María-José; Maquieira, Ángel; Wheeler, Guy; Dalmay, Tamas; Griol, Amadeu; Hurtado, Juan; Bohlmann, Helge; Götzen, Reiner; García-Rupérez, Jaime

    2018-04-17

    An experimental study of the influence of the conformational change suffered by molecular beacon (MB) probes -upon the biorecognition of nucleic acid target oligonucleotides over evanescent wave photonic sensors- is reported. To this end, high sensitivity photonic sensors based on silicon photonic bandgap (PBG) structures were used, where the MB probes were immobilized via their 5' termination. Those MBs incorporate a biotin moiety close to their 3' termination in order to selectively bind a streptavidin molecule to them. The different photonic sensing responses obtained towards the target oligonucleotide detection, when the streptavidin molecule was bound to the MB probes or not, demonstrate the conformational change suffered by the MB upon hybridization, which promotes the displacement of the streptavidin molecule away from the surface of the photonic sensing structure. Schematic diagram of the PBG sensing structure on which the streptavidin-labeled MB probes were immobilized. This article is protected by copyright. All rights reserved.

  14. Nanoporous hard data: optical encoding of information within nanoporous anodic alumina photonic crystals.

    PubMed

    Santos, Abel; Law, Cheryl Suwen; Pereira, Taj; Losic, Dusan

    2016-04-21

    Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for developing advanced nanophotonic tools for a wide range of applications, including sensing, photonic tagging, self-reporting drug releasing systems and secure encoding of information.

  15. The ATLAS Level-1 Topological Trigger performance in Run 2

    NASA Astrophysics Data System (ADS)

    Riu, Imma; ATLAS Collaboration

    2017-10-01

    The Level-1 trigger is the first event rate reducing step in the ATLAS detector trigger system, with an output rate of up to 100 kHz and decision latency smaller than 2.5 μs. During the LHC shutdown after Run 1, the Level-1 trigger system was upgraded at hardware, firmware and software levels. In particular, a new electronics sub-system was introduced in the real-time data processing path: the Level-1 Topological trigger system. It consists of a single electronics shelf equipped with two Level-1 Topological processor blades. They receive real-time information from the Level-1 calorimeter and muon triggers, which is processed to measure angles between trigger objects, invariant masses or other kinematic variables. Complementary to other requirements, these measurements are taken into account in the final Level-1 trigger decision. The system was installed and commissioning started in 2015 and continued during 2016. As part of the commissioning, the decisions from individual algorithms were simulated and compared with the hardware response. An overview of the Level-1 Topological trigger system design, commissioning process and impact on several event selections are illustrated.

  16. Smart Nanostructures for Cargo Delivery: Uncaging and Activating by Light

    PubMed Central

    Karimi, Mahdi; Zangabad, Parham Sahandi; Baghaee-Ravari, Soodeh; Ghazadeh, Mehdi; Mirshekari, Hamid; Hamblin, Michael R.

    2017-01-01

    Nanotechnology has begun to play a remarkable role in various fields of science and technology. In biomedical applications, nanoparticles have opened new horizons, especially for biosensing, targeted delivery of therapeutics, and so forth. Among drug delivery systems (DDSs), smart nanocarriers that respond to specific stimuli in their environment represent a growing field. Nanoplatforms that can be activated by an external application of light can be used for a wide variety of photoactivated therapies, especially light-triggered DDSs, relying on photoisomerization, photo-cross-linking/un-cross-linking, photoreduction, and so forth. In addition, light activation has potential in photodynamic therapy, photothermal therapy, radiotherapy, protected delivery of bioactive moieties, anticancer drug delivery systems, and theranostics (i.e., real-time monitoring and tracking combined with a therapeutic action to different diseases sites and organs). Combinations of these approaches can lead to enhanced and synergistic therapies, employing light as a trigger or for activation. Nonlinear light absorption mechanisms such as two-photon absorption and photon upconversion have been employed in the design of light-responsive DDSs. The integration of a light stimulus into dual/multiresponsive nanocarriers can provide spatiotemporal controlled delivery and release of therapeutic agents, targeted and controlled nanosystems, combined delivery of two or more agents, their on-demand release under specific conditions, and so forth. Overall, light-activated nanomedicines and DDSs are expected to provide more effective therapies against serious diseases such as cancers, inflammation, infections, and cardiovascular disease with reduced side effects and will open new doors toward the treatment of patients worldwide. PMID:28192672

  17. Two-Photon Activation of p-Hydroxyphenacyl Phototriggers: Toward Spatially Controlled Release of Diethyl Phosphate and ATP.

    PubMed

    Houk, Amanda L; Givens, Richard S; Elles, Christopher G

    2016-03-31

    Two-photon activation of the p-hydroxyphenacyl (pHP) photoactivated protecting group is demonstrated for the first time using visible light at 550 nm from a pulsed laser. Broadband two-photon absorption measurements reveal a strong two-photon transition (>10 GM) near 4.5 eV that closely resembles the lowest-energy band at the same total excitation energy in the one-photon absorption spectrum of the pHP chromophore. The polarization dependence of the two-photon absorption band is consistent with excitation to the same S3 ((1)ππ*) excited state for both one- and two-photon activation. Monitoring the progress of the uncaging reaction under nonresonant excitation at 550 nm confirms a quadratic intensity dependence and that two-photon activation of the uncaging reaction is possible using visible light in the range 500-620 nm. Deprotonation of the pHP chromophore under mildly basic conditions shifts the absorption band to lower energy (3.8 eV) in both the one- and two-photon absorption spectra, suggesting that two-photon activation of the pHP chromophore may be possible using light in the range 550-720 nm. The results of these measurements open the possibility of spatially and temporally selective release of biologically active compounds from the pHP protecting group using visible light from a pulsed laser.

  18. Incoherent manipulation of the photoactive yellow protein photocycle with dispersed pump-dump-probe spectroscopy.

    PubMed

    Larsen, Delmar S; van Stokkum, Ivo H M; Vengris, Mikas; van Der Horst, Michael A; de Weerd, Frank L; Hellingwerf, Klaas J; van Grondelle, Rienk

    2004-09-01

    Photoactive yellow protein is the protein responsible for initiating the "blue-light vision" of Halorhodospira halophila. The dynamical processes responsible for triggering the photoactive yellow protein photocycle have been disentangled with the use of a novel application of dispersed ultrafast pump-dump-probe spectroscopy, where the photocycle can be started and interrupted with appropriately tuned and timed laser pulses. This "incoherent" manipulation of the photocycle allows for the detailed spectroscopic investigation of the underlying photocycle dynamics and the construction of a fully self-consistent dynamical model. This model requires three kinetically distinct excited-state intermediates, two (ground-state) photocycle intermediates, I(0) and pR, and a ground-state intermediate through which the protein, after unsuccessful attempts at initiating the photocycle, returns to the equilibrium ground state. Also observed is a previously unknown two-photon ionization channel that generates a radical and an ejected electron into the protein environment. This second excitation pathway evolves simultaneously with the pathway containing the one-photon photocycle intermediates.

  19. Incoherent Manipulation of the Photoactive Yellow Protein Photocycle with Dispersed Pump-Dump-Probe Spectroscopy

    PubMed Central

    Larsen, Delmar S.; van Stokkum, Ivo H. M.; Vengris, Mikas; van der Horst, Michael A.; de Weerd, Frank L.; Hellingwerf, Klaas J.; van Grondelle, Rienk

    2004-01-01

    Photoactive yellow protein is the protein responsible for initiating the “blue-light vision” of Halorhodospira halophila. The dynamical processes responsible for triggering the photoactive yellow protein photocycle have been disentangled with the use of a novel application of dispersed ultrafast pump-dump-probe spectroscopy, where the photocycle can be started and interrupted with appropriately tuned and timed laser pulses. This “incoherent” manipulation of the photocycle allows for the detailed spectroscopic investigation of the underlying photocycle dynamics and the construction of a fully self-consistent dynamical model. This model requires three kinetically distinct excited-state intermediates, two (ground-state) photocycle intermediates, I0 and pR, and a ground-state intermediate through which the protein, after unsuccessful attempts at initiating the photocycle, returns to the equilibrium ground state. Also observed is a previously unknown two-photon ionization channel that generates a radical and an ejected electron into the protein environment. This second excitation pathway evolves simultaneously with the pathway containing the one-photon photocycle intermediates. PMID:15345564

  20. Age-related structural abnormalities in the human retina-choroid complex revealed by two-photon excited autofluorescence imaging.

    PubMed

    Han, Meng; Giese, Guenter; Schmitz-Valckenberg, Steffen; Bindewald-Wittich, Almut; Holz, Frank G; Yu, Jiayi; Bille, Josef F; Niemz, Markolf H

    2007-01-01

    The intensive metabolism of photoreceptors is delicately maintained by the retinal pigment epithelium (RPE) and the choroid. Dysfunction of either the RPE or choroid may lead to severe damage to the retina. Two-photon excited autofluorescence (TPEF) from endogenous fluorophores in the human retina provides a novel opportunity to reveal age-related structural abnormalities in the retina-choroid complex prior to apparent pathological manifestations of age-related retinal diseases. In the photoreceptor layer, the regularity of the macular photoreceptor mosaic is preserved during aging. In the RPE, enlarged lipofuscin granules demonstrate significantly blue-shifted autofluorescence, which coincides with the depletion of melanin pigments. Prominent fibrillar structures in elderly Bruch's membrane and choriocapillaries represent choroidal structure and permeability alterations. Requiring neither slicing nor labeling, TPEF imaging is an elegant and highly efficient tool to delineate the thick, fragile, and opaque retina-choroid complex, and may provide clues to the trigger events of age-related macular degeneration.

  1. Laboratory Measurements of X-Ray Emissions From Centimeter-Long Streamer Corona Discharges

    NASA Astrophysics Data System (ADS)

    da Silva, C. L.; Millan, R. M.; McGaw, D. G.; Yu, C. T.; Putter, A. S.; LaBelle, J.; Dwyer, J.

    2017-11-01

    We provide extensive evidence that runaway electron acceleration and subsequent bremsstrahlung X-ray emission are a common feature in negative electrical discharges with voltages as low as 100 kV, indicating that all negative lightning could potentially produce runaway electrons. Centimeter long streamer corona discharges produce bursts of X-ray radiation, emitted by a source highly compact in space and time, leading to photon pileup. Median photon burst energies vary between 33 and 96 keV in 100 kV discharges. Statistical analysis of 5,000+ discharges shows that X-rays are observed in as many as 60% of the triggers, depending on the configuration. X-ray detection is more frequent when streamers are not followed by a spark, the detector is oriented perpendicular to the gap, and a thicker anode is used. In an 8-cm-long gap, X-rays are produced when runaway electrons hit the anode, and the electron acceleration is not necessarily correlated with streamer collisions.

  2. VERITAS Discovery of >200 GeV Gamma-Ray Emission from the Intermediate-Frequency-Peaked BL Lacertae Object W Comae

    NASA Astrophysics Data System (ADS)

    Acciari, V. A.; Aliu, E.; Beilicke, M.; Benbow, W.; Böttcher, M.; Bradbury, S. M.; Buckley, J. H.; Bugaev, V.; Butt, Y.; Celik, O.; Cesarini, A.; Ciupik, L.; Chow, Y. C. K.; Cogan, P.; Colin, P.; Cui, W.; Daniel, M. K.; Ergin, T.; Falcone, A. D.; Fegan, S. J.; Finley, J. P.; Finnegan, G.; Fortin, P.; Fortson, L. F.; Furniss, A.; Gall, D.; Gillanders, G. H.; Grube, J.; Guenette, R.; Gyuk, G.; Hanna, D.; Hays, E.; Holder, J.; Horan, D.; Hui, C. M.; Humensky, T. B.; Imran, A.; Kaaret, P.; Karlsson, N.; Kertzman, M.; Kieda, D. B.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Lang, M. J.; LeBohec, S.; Lee, K.; Maier, G.; McCann, A.; McCutcheon, M.; Moriarty, P.; Mukherjee, R.; Nagai, T.; Niemiec, J.; Ong, R. A.; Pandel, D.; Perkins, J. S.; Petry, D.; Pohl, M.; Quinn, J.; Ragan, K.; Reyes, L. C.; Reynolds, P. T.; Roache, E.; Rose, H. J.; Schroedter, M.; Sembroski, G. H.; Smith, A. W.; Steele, D.; Swordy, S. P.; Toner, J. A.; Vassiliev, V. V.; Wagner, R.; Wakely, S. P.; Ward, J. E.; Weekes, T. C.; Weinstein, A.; White, R. J.; Williams, D. A.; Wissel, S. A.; Wood, M.; Zitzer, B.

    2008-09-01

    We report the detection of very high energy γ-ray emission from the intermediate-frequency-peaked BL Lacertae object W Comae (z = 0.102) by VERITAS. The source was observed between 2008 January and April. A strong outburst of γ-ray emission was measured in the middle of March, lasting for only 4 days. The energy spectrum measured during the two highest flare nights is fit by a power law and is found to be very steep, with a differential photon spectral index of Γ = 3.81 +/- 0.35stat+/- 0.34syst. The integral photon flux above 200 GeV during those two nights corresponds to roughly 9% of the flux from the Crab Nebula. Quasi-simultaneous Swift observations at X-ray energies were triggered by the VERITAS observations. The spectral energy distribution of the flare data can be described by synchrotron self-Compton (SSC) or external Compton (EC) leptonic jet models.

  3. The Mini-Calorimeter on-board AGILE: The first year in space

    NASA Astrophysics Data System (ADS)

    Marisaldi, M.; Labanti, C.; Fuschino, F.; Galli, M.; Argan, A.; Bulgarelli, A.; Di Cocco, G.; Gianotti, F.; Tavani, M.; Trifoglio, M.; Trois, A.

    2009-04-01

    AGILE, the Italian space mission dedicated to gamma-ray and hard-X astrophysics, was successfully launched on 23rd April 2007 and is currently fully operative. The Mini-Calorimeter (MCAL) on-board the AGILE satellite is a scintillation detector made of 20 kg of segmented CsI(Tl) scintillator with photodiode readout with a total geometrical area of 1400 cm2. MCAL can work both as a slave of the AGILE Silicon tracker and as an independent detector for gamma-ray bursts (GRB) detection in the 300 keV - 100 MeV energy range. Despite its limited thickness, due to weight constraints, MCAL has proven to successfully self-trigger GRBs at MeV energies providing photon-by-photon data with less than 2 μs time resolution and almost all-sky detection capabilities. The instrument design and characteristics, as well as the in-flight performance after one year of operation in space and the scientific results obtained so far are reviewed and discussed.

  4. Laser opacity in underdense preplasma of solid targets due to quantum electrodynamics effects

    NASA Astrophysics Data System (ADS)

    Wang, W.-M.; Gibbon, P.; Sheng, Z.-M.; Li, Y.-T.; Zhang, J.

    2017-07-01

    We investigate how next-generation laser pulses at 10 -200 PW interact with a solid target in the presence of a relativistically underdense preplasma produced by amplified spontaneous emission (ASE). Laser hole boring and relativistic transparency are strongly restrained due to the generation of electron-positron pairs and γ -ray photons via quantum electrodynamics (QED) processes. A pair plasma with a density above the initial preplasma density is formed, counteracting the electron-free channel produced by hole boring. This pair-dominated plasma can block laser transport and trigger an avalanchelike QED cascade, efficiently transferring the laser energy to the photons. This renders a 1 -μ m scale-length, underdense preplasma completely opaque to laser pulses at this power level. The QED-induced opacity therefore sets much higher contrast requirements for such a pulse in solid-target experiments than expected by classical plasma physics. Our simulations show, for example, that proton acceleration from the rear of a solid with a preplasma would be strongly impaired.

  5. Smart detection of microRNAs through fluorescence enhancement on a photonic crystal.

    PubMed

    Pasquardini, L; Potrich, C; Vaghi, V; Lunelli, L; Frascella, F; Descrovi, E; Pirri, C F; Pederzolli, C

    2016-04-01

    The detection of low abundant biomarkers, such as circulating microRNAs, demands innovative detection methods with increased resolution, sensitivity and specificity. Here, a biofunctional surface was implemented for the selective capture of microRNAs, which were detected through fluorescence enhancement directly on a photonic crystal. To set up the optimal biofunctional surface, epoxy-coated commercially available microscope slides were spotted with specific anti-microRNA probes. The optimal concentration of probe as well as of passivating agent were selected and employed for titrating the microRNA hybridization. Cross-hybridization of different microRNAs was also tested, resulting negligible. Once optimized, the protocol was adapted to the photonic crystal surface, where fluorescent synthetic miR-16 was hybridized and imaged with a dedicated equipment. The photonic crystal consists of a dielectric multilayer patterned with a grating structure. In this way, it is possible to take advantage from both a resonant excitation of fluorophores and an angularly redirection of the emitted radiation. As a result, a significant fluorescence enhancement due to the resonant structure is collected from the patterned photonic crystal with respect to the outer non-structured surface. The dedicated read-out system is compact and based on a wide-field imaging detection, with little or no optical alignment issues, which makes this approach particularly interesting for further development such as for example in microarray-type bioassays. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Search for exclusive or semi-exclusive γγ production and observation of exclusive and semi-exclusive e +e - production in pp collisions at $$ \\sqrt{s}=7 $$ TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.

    A search for exclusive or semi-exclusive photon pair production, pp to p(*) + photon pair + p(*) (where p(*) stands for a diffractively-dissociated proton), and the observation of exclusive and semi-exclusive electron pair production, pp to p(*) + ee + p(*), in proton-proton collisions at sqrt(s) = 7 TeV, are presented. The analysis is based on a data sample corresponding to an integrated luminosity of 36 inverse picobarns recorded by the CMS experiment at the LHC at low instantaneous luminosities. Candidate photon pair or electron pair events are selected by requiring the presence of two photons or a positron andmore » an electron, each with transverse energy ET > 5.5 GeV and pseudorapidity abs(eta) < 2.5, and no other particles in the region abs(eta) < 5.2. No exclusive or semi-exclusive diphoton candidates are found in the data. An upper limit on the cross section for the reaction pp to p(*) + photon pair + p(*), within the above kinematic selections, is set at 1.18 pb at 95% confidence level. Seventeen exclusive or semi-exclusive dielectron candidates are observed, with an estimated background of 0.85 +/- 0.28 (stat.) events, in agreement with the QED-based prediction of 16.3 +/- 1.3 (syst.) events.« less

  7. Light-induced dynamic structural color by intracellular 3D photonic crystals in brown algae.

    PubMed

    Lopez-Garcia, Martin; Masters, Nathan; O'Brien, Heath E; Lennon, Joseph; Atkinson, George; Cryan, Martin J; Oulton, Ruth; Whitney, Heather M

    2018-04-01

    Natural photonic crystals are responsible for strong reflectance at selective wavelengths in different natural systems. We demonstrate that intracellular opal-like photonic crystals formed from lipids within photosynthetic cells produce vivid structural color in the alga Cystoseira tamariscifolia . The reflectance of the opaline vesicles is dynamically responsive to environmental illumination. The structural color is present in low light-adapted samples, whereas higher light levels produce a slow disappearance of the structural color such that it eventually vanishes completely. Once returned to low-light conditions, the color re-emerges. Our results suggest that these complex intracellular natural photonic crystals are responsive to environmental conditions, changing their packing structure reversibly, and have the potential to manipulate light for roles beyond visual signaling.

  8. Optical Properties and Wave Propagation in Semiconductor-Based Two-Dimensional Photonic Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agio, Mario

    2002-12-31

    This work is a theoretical investigation on the physical properties of semiconductor-based two-dimensional photonic crystals, in particular for what concerns systems embedded in planar dielectric waveguides (GaAs/AlGaAs, GaInAsP/InP heterostructures, and self-standing membranes) or based on macro-porous silicon. The photonic-band structure of photonic crystals and photonic-crystal slabs is numerically computed and the associated light-line problem is discussed, which points to the issue of intrinsic out-of-lane diffraction losses for the photonic bands lying above the light line. The photonic states are then classified by the group theory formalism: each mode is related to an irreducible representation of the corresponding small point group.more » The optical properties are investigated by means of the scattering matrix method, which numerically implements a variable-angle-reflectance experiment; comparison with experiments is also provided. The analysis of surface reflectance proves the existence of selection rules for coupling an external wave to a certain photonic mode. Such rules can be directly derived from symmetry considerations. Lastly, the control of wave propagation in weak-index contrast photonic-crystal slabs is tackled in view of designing building blocks for photonic integrated circuits. The proposed designs are found to comply with the major requirements of low-loss propagation, high and single-mode transmission. These notions are then collected to model a photonic-crystal combiner for an integrated multi-wavelength-source laser.« less

  9. Fine tuning of optical signals in nanoporous anodic alumina photonic crystals by apodized sinusoidal pulse anodisation.

    PubMed

    Santos, Abel; Law, Cheryl Suwen; Chin Lei, Dominique Wong; Pereira, Taj; Losic, Dusan

    2016-11-03

    In this study, we present an advanced nanofabrication approach to produce gradient-index photonic crystal structures based on nanoporous anodic alumina. An apodization strategy is for the first time applied to a sinusoidal pulse anodisation process in order to engineer the photonic stop band of nanoporous anodic alumina (NAA) in depth. Four apodization functions are explored, including linear positive, linear negative, logarithmic positive and logarithmic negative, with the aim of finely tuning the characteristic photonic stop band of these photonic crystal structures. We systematically analyse the effect of the amplitude difference (from 0.105 to 0.840 mA cm -2 ), the pore widening time (from 0 to 6 min), the anodisation period (from 650 to 950 s) and the anodisation time (from 15 to 30 h) on the quality and the position of the characteristic photonic stop band and the interferometric colour of these photonic crystal structures using the aforementioned apodization functions. Our results reveal that a logarithmic negative apodisation function is the most optimal approach to obtain unprecedented well-resolved and narrow photonic stop bands across the UV-visible-NIR spectrum of NAA-based gradient-index photonic crystals. Our study establishes a fully comprehensive rationale towards the development of unique NAA-based photonic crystal structures with finely engineered optical properties for advanced photonic devices such as ultra-sensitive optical sensors, selective optical filters and all-optical platforms for quantum computing.

  10. Physics of crypto-nonlocality

    NASA Astrophysics Data System (ADS)

    Navascués, Miguel

    2014-02-01

    In 2003, Leggett introduced his model of crypto-nonlocality based on considerations on the reality of photon polarization [A. J. Leggett, Found. Phys. 33, 1469 (2003), 10.1023/A:1026096313729]. In this paper, we prove that, contrary to hints in subsequent literature, crypto-nonlocality does not follow naturally from the postulate that polarization is a realistic variable. More explicitly, consider physical theories where (a) faster-than-light communication is impossible, (b) all physical photon states have a definite polarization, and (c) given two separate photons, if we measure one of them and post-select on the result, the measurement statistics of the remaining system correspond to a photon state. We show that the outcomes of any two-photon polarization experiment in these theories must follow the statistics generated by measuring a separable two-qubit quantum state. Consequently, in such experiments any instance of entanglement detection—and not necessarily a Leggett inequality violation—can be regarded as a refutation of this class of theories.

  11. Optical sensors based on photonic crystal: a new route

    NASA Astrophysics Data System (ADS)

    Romano, S.; Torino, S.; Coppola, G.; Cabrini, S.; Mocella, V.

    2017-05-01

    The realization of miniaturized devices able to accumulate a higher number of information in a smallest volume is a challenge of the technological development. This trend increases the request of high sensitivity and selectivity sensors which can be integrated in microsystems. In this landscape, optical sensors based on photonic crystal technology can be an appealing solution. Here, a new refractive index sensor device, based on the bound states in the continuum (BIC) resonance shift excited in a photonic crystal membrane, is presented. A microfluidic cell was used to control the injection of fluids with different refractive indices over the photonic crystal surface. The shift of very high Q-factor resonances excited into the photonic crystal open cavity was monitored as a function of the refractive index n of the test liquid. The excellent stability we found and the minimal, loss-free optical equipment requirement, provide a new route for achieving high performance in sensing applications.

  12. Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liebermeister, Lars, E-mail: lars.liebermeister@physik.uni-muenchen.de; Petersen, Fabian; Münchow, Asmus v.

    2014-01-20

    A diamond nano-crystal hosting a single nitrogen vacancy (NV) center is optically selected with a confocal scanning microscope and positioned deterministically onto the subwavelength-diameter waist of a tapered optical fiber (TOF) with the help of an atomic force microscope. Based on this nano-manipulation technique, we experimentally demonstrate the evanescent coupling of single fluorescence photons emitted by a single NV-center to the guided mode of the TOF. By comparing photon count rates of the fiber-guided and the free-space modes and with the help of numerical finite-difference time domain simulations, we determine a lower and upper bound for the coupling efficiency ofmore » (9.5 ± 0.6)% and (10.4 ± 0.7)%, respectively. Our results are a promising starting point for future integration of single photon sources into photonic quantum networks and applications in quantum information science.« less

  13. The electrophotonic silicon biosensor

    NASA Astrophysics Data System (ADS)

    Juan-Colás, José; Parkin, Alison; Dunn, Katherine E.; Scullion, Mark G.; Krauss, Thomas F.; Johnson, Steven D.

    2016-09-01

    The emergence of personalized and stratified medicine requires label-free, low-cost diagnostic technology capable of monitoring multiple disease biomarkers in parallel. Silicon photonic biosensors combine high-sensitivity analysis with scalable, low-cost manufacturing, but they tend to measure only a single biomarker and provide no information about their (bio)chemical activity. Here we introduce an electrochemical silicon photonic sensor capable of highly sensitive and multiparameter profiling of biomarkers. Our electrophotonic technology consists of microring resonators optimally n-doped to support high Q resonances alongside electrochemical processes in situ. The inclusion of electrochemical control enables site-selective immobilization of different biomolecules on individual microrings within a sensor array. The combination of photonic and electrochemical characterization also provides additional quantitative information and unique insight into chemical reactivity that is unavailable with photonic detection alone. By exploiting both the photonic and the electrical properties of silicon, the sensor opens new modalities for sensing on the microscale.

  14. Isotopically selective two-photon ionization of aniline in supersonic beams

    NASA Astrophysics Data System (ADS)

    Leutwyler, S.; Even, U.

    1981-08-01

    Tunable laser two-photon ionization of aniline cooled in supersonic expansions combined with TOF mass spectrometry reveal an isotopic shift of the vibronic origin at 2938 Å (ππ ∗; 1B 2← 1A 1 transition). The shift (+4.6 cm -1) is smaller than the rotational bandwidth and would be unobservable by laser-induced fluorescence.

  15. High efficiency incandescent lighting

    DOEpatents

    Bermel, Peter; Ilic, Ognjen; Chan, Walker R.; Musabeyoglu, Ahmet; Cukierman, Aviv Ruben; Harradon, Michael Robert; Celanovic, Ivan; Soljacic, Marin

    2014-09-02

    Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.

  16. Modification and characterization of a high-energy photon irradiation facility using nitrogen-16

    NASA Astrophysics Data System (ADS)

    Roy, Tapash Kumar

    This work involves fabrication and characterization of a reactor source of high energy (˜7 MeV) nitrogen-16 photons for application in evaluation of dosimetric responses of personnel devices and portable instruments. The N-16 source has been established by continuously flowing coolant water from the core of a 1 MW research reactor through a cylindrical thin walled aluminium chamber. Dose measurements have been made at selected distances of interest along the depth axis both for with and without a near-air equilibrium wall of polymethyl methacrylate (PMMA) in place. Photon dose and exposure measurements were done using condenser-R ionization chambers with sufficiently thick walls to yield an approximate transient charged particle equilibrium (TCPE) condition. Field areal uniformity was defined using large area Kodak Readypack RP films along with lead foil radiators. Dosimetric quantities of interest include skin dose, eye (lens) dose, and 1 cm deep dose. Measurements were made at selected depths of 7, 300, and 1000 mg cm-2 for specific evaluation of these respective quantities. Photon spectral analysis was performed with a NaI(Tl) scintillation spectrometry system. Additionally, beta radiation measurements, and evaluation of neutron dose contributions to the radiation field were completed.

  17. Two-photon fluorescent sensor for K+ imaging in live cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sui, Binglin; Yue, Xiling; Kim, Bosung; Belfield, Kevin D.

    2016-03-01

    It is difficult to overstate the physiological importance of potassium for life as its indispensable roles in a variety of biological processes are widely known. As a result, efficient methods for determining physiological levels of potassium are of paramount importance. Despite this, relatively few K+ fluorescence sensors have been reported, with only one being commercially available. A new two-photon excited fluorescent K+ sensor is reported. The sensor is comprised of three moieties, a highly selective K+ chelator as the K+ recognition unit, a boron-dipyrromethene (BODIPY) derivative modified with phenylethynyl groups as the fluorophore, and two polyethylene glycol chains to afford water solubility. The sensor displays very high selectivity (<52-fold) in detecting K+ over other physiological metal cations. Upon binding K+, the sensor switches from non-fluorescent to highly fluorescent, emitting red to near-IR (NIR) fluorescence. The sensor exhibited a good two-photon absorption cross section, 500 GM at 940 nm. Moreover, it is not sensitive to pH in the physiological pH range. Time-dependent cell imaging studies via both one- and two-photon fluorescence microscopy demonstrate that the sensor is suitable for dynamic K+ sensing in living cells.

  18. Continuous-variable measurement-device-independent quantum key distribution with virtual photon subtraction

    NASA Astrophysics Data System (ADS)

    Zhao, Yijia; Zhang, Yichen; Xu, Bingjie; Yu, Song; Guo, Hong

    2018-04-01

    The method of improving the performance of continuous-variable quantum key distribution protocols by postselection has been recently proposed and verified. In continuous-variable measurement-device-independent quantum key distribution (CV-MDI QKD) protocols, the measurement results are obtained from untrusted third party Charlie. There is still not an effective method of improving CV-MDI QKD by the postselection with untrusted measurement. We propose a method to improve the performance of coherent-state CV-MDI QKD protocol by virtual photon subtraction via non-Gaussian postselection. The non-Gaussian postselection of transmitted data is equivalent to an ideal photon subtraction on the two-mode squeezed vacuum state, which is favorable to enhance the performance of CV-MDI QKD. In CV-MDI QKD protocol with non-Gaussian postselection, two users select their own data independently. We demonstrate that the optimal performance of the renovated CV-MDI QKD protocol is obtained with the transmitted data only selected by Alice. By setting appropriate parameters of the virtual photon subtraction, the secret key rate and tolerable excess noise are both improved at long transmission distance. The method provides an effective optimization scheme for the application of CV-MDI QKD protocols.

  19. Dopant type and/or concentration selective dry photochemical etching of semiconductor materials

    DOEpatents

    Ashby, Carol I. H.; Dishman, James L.

    1987-01-01

    A method of selectively photochemically dry etching a first semiconductor material of a given composition in the presence of a second semiconductor material which is of a composition different from said first material, said second material substantially not being etched during said method, comprises subjecting both materials to the same photon flux of an energy greater than their respective direct bandgaps and to the same gaseous chemical etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said conditions also being such that the resultant electronic structure of the first semiconductor material under said photon flux is sufficient for the first material to undergo substantial photochemical etching under said conditions and being such that the resultant electronic structure of the second semiconductor material under said photon flux is not sufficient for the second material to undergo substantial photochemical etching under said conditions. In a preferred mode, the materials are subjected to a bias voltage which suppresses etching in n- or p- type material but not in p- or n-type material, respectively; or suppresses etching in the more heavily doped of two n-type or two p-type materials.

  20. Dopant type and/or concentration selective dry photochemical etching of semiconductor materials

    DOEpatents

    Ashby, C.R.H.; Dishman, J.L.

    1985-10-11

    Disclosed is a method of selectively photochemically dry etching a first semiconductor material of a given composition in the presence of a second semiconductor material which is of a composition different from said first material, said second material substantially not being etched during said method. The method comprises subjecting both materials to the same photon flux of an energy greater than their respective direct bandgaps and to the same gaseous chemical etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said conditions also being such that the resultant electronic structure of the first semiconductor material under said photon flux is sufficient for the first material to undergo substantial photochemical etching under said conditions and being such that the resultant electronic structure of the second semiconductor material under said photon flux is not sufficient for the second material to undergo substantial photochemical etching under said conditions. In a preferred mode, the materials are subjected to a bias voltage which suppresses etching in n- or p-type material but not in p- or n-type material, respectively; or suppresses etching in the more heavily doped of two n-type or two p-type materials.

  1. Selective two-photon absorption in carbon dots: a piece of the photoluminescence emission puzzle.

    PubMed

    Santos, Carla I M; Mariz, Inês F A; Pinto, Sandra N; Gonçalves, Gil; Bdikin, Igor; Marques, Paula A A P; Neves, Maria Graça P M S; Martinho, José M G; Maçôas, Ermelinda M S

    2018-06-22

    Carbon nanodots (Cdots) are now emerging as promising nonlinear fluorophores for applications in biological environments. A thorough and systematic approach to the two-photon induced emission of Cdots that could provide design guidelines to control their nonlinear emission properties is still missing. In this work, we address the nonlinear optical spectroscopy of Cdots prepared by controlled chemical cutting of graphene oxide (GO). The two-photon absorption in the 700-1000 nm region and the corresponding emission spectrum are carefully investigated. The highest two-photon absorption cross-section estimated was 130 GM at 720 nm. This value is comparable with the one reported for graphene nanoribbons with push-pull architecture. The emission spectrum depends on the excitation mode. At the same excitation energy, nonlinear excitation results in excitation-wavelength independent emission, while upon linear excitation the emission is excitation-wavelength dependent. The biphotonic interaction seems to be selective towards sp2 clusters bearing electron donor and acceptor groups found in push-pull architectures. Both linear and nonlinear emission can be understood based on the existence of isolated sp2 clusters involved in π-π stacking interactions with clusters in adjacent layers.

  2. Four-Photon Stark Induced Ladder Climbing Prepares Large Ensemble of H2in Selected High Lying Vibrational Levels

    NASA Astrophysics Data System (ADS)

    Mukherjee, Nandini; Perreault, William; Zare, Richard

    2017-04-01

    To selectively prepare highly vibrationally excited quantum states of molecules like H2, we present a novel multi-photon ladder-climbing technique where the successive rungs of the ladder are connected by Stark-induced adiabatic Raman passage (SARP). Previously, we have demonstrated that SARP achieves complete population transfer from the v = 0 to the v = 1 and v = 4 levels of H2. We show here that SARP can be generalized into a continuously coupled, multiphoton adiabatic passage which uses one or more intermediate states having strong Raman coupling to access highly vibrationally excited states weakly coupled to the ground state. As an example, we consider the case of four-photon coherent excitation to high vibrational levels of H2 via an intermediate level coupled to both the initial and target levels by two-photon SARP. Using a sequence of commercially available single mode, nanosecond lasers, a pump pulse partially overlapping with two Stokes pulses, we show that the complete population of v = 0 can be selectively transferred to the most weakly coupled v = 6 and v = 9 vibrational levels of H2, without leaving any population stranded in the intermediate level. The present method provides a practical way of generating an entangled pair of fragments without resorting to an ultracold system. This work has been supported by US Army Research Office under ARO Grant No. W911NF-16-1-1061.

  3. A Measurement of the Lifetime of the Λ b Baryon with the CDF Detector at the Tevatron Run II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unverhau, Tatjana Alberta Hanna

    2004-12-01

    In March 2001 the Tevatron accelerator entered its Run II phase, providing colliding proton and anti-proton beams with an unprecedented center-of-mass energy of 1.96 TeV. The Tevatron is currently the only accelerator to produce Λ b baryons, which provides a unique opportunity to measure the properties of these particles. This thesis presents a measurement of the mean lifetime of the Λ b baryon in the semileptonic channel Λmore » $$0\\atop{b}$$ → Λ$$+\\atop{c}$$ μ - $$\\bar{v}$$ μ. In total 186 pb -1 of data were used for this analysis, collected with the CDF detector between February 2002 and September 2003. To select the long-lived events from b-decays, the secondary vertex trigger was utilized. This significant addition to the trigger for Run II allows, for the first time, the selection of events with tracks displaced from the primary interaction vertex at the second trigger level. After the application of selection cuts this trigger sample contains approximately 991 Λ b candidates. To extract the mean lifetime of Λ b baryons from this sample, they transverse decay length of the candidates is fitted with an unbinned maximum likelihood fit under the consideration of the missing neutrino momentum and the bias introduced by the secondary vertex trigger. The mean lifetime of the Λ b is measured to be τ = 1.29 ± 0.11(stat.) ± 0.07(syst.) ps equivalent to a mean decay length of cτ = 387 ± 33(stat.) ± 21 (syst.) μm.« less

  4. Crossover from polariton lasing to exciton lasing in a strongly coupled ZnO microcavity

    PubMed Central

    Lai, Ying-Yu; Chou, Yu-Hsun; Lan, Yu-Pin; Lu, Tien-Chang; Wang, Shing-Chung; Yamamoto, Yoshihisa

    2016-01-01

    Unlike conventional photon lasing, in which the threshold is limited by the population inversion of the electron-hole plasma, the exciton lasing generated by exciton-exciton scattering and the polariton lasing generated by dynamical condensates have received considerable attention in recent years because of the sub-Mott density and low-threshold operation. This paper presents a novel approach to generate both exciton and polariton lasing in a strongly coupled microcavity (MC) and determine the critical driving requirements for simultaneously triggering these two lasing operation in temperature <140 K and large negative polariton-exciton offset (<−133 meV) conditions. In addition, the corresponding lasing behaviors, such as threshold energy, linewidth, phase diagram, and angular dispersion are verified. The results afford a basis from which to understand the complicated lasing mechanisms in strongly coupled MCs and verify a new method with which to trigger dual laser emission based on exciton and polariton. PMID:26838665

  5. Performance of the Versatile Array of Neutron Detectors at Low Energy (VANDLE)

    DOE PAGES

    Peters, W. A.; Ilyushkin, S.; Madurga, M.; ...

    2016-08-26

    The Versatile Array of Neutron Detectors at Low Energy (VANDLE) is a new, highly efficient plastic-scintillator array constructed for decay and transfer reaction experimental setups that require neutron detection. The versatile and modular design allows for customizable experimental setups including beta-delayed neutron spectroscopy and (d,n) transfer reactions in normal and inverse kinematics. The neutron energy and prompt-photon discrimination is determined through the time of flight technique. Fully digital data acquisition electronics and integrated triggering logic enables some VANDLE modules to achieve an intrinsic efficiency over 70% for 300-keV neutrons, measured through two different methods. A custom Geant4 simulation models aspectsmore » of the detector array and the experimental setups to determine efficiency and detector response. Lastly, a low detection threshold, due to the trigger logic and digitizing data acquisition, allowed us to measure the light-yield response curve from elastically scattered carbon nuclei inside the scintillating plastic from incident neutrons with kinetic energies below 2 MeV.« less

  6. Regional cerebral blood flow changes associated with focal electrically administered seizure therapy (FEAST).

    PubMed

    Chahine, George; Short, Baron; Spicer, Ken; Schmidt, Matthew; Burns, Carol; Atoui, Mia; George, Mark S; Sackeim, Harold A; Nahas, Ziad

    2014-01-01

    Use of electroconvulsive therapy (ECT) is limited by cognitive disturbance. Focal electrically-administered seizure therapy (FEAST) is designed to initiate focal seizures in the prefrontal cortex. To date, no studies have documented the effects of FEAST on regional cerebral blood flow (rCBF). A 72 year old depressed man underwent three single photon emission computed tomography (SPECT) scans to capture the onset and resolution of seizures triggered with right unilateral FEAST. We used Bioimage Suite for within-subject statistical analyses of perfusion differences ictally and post-ictally compared with the baseline scan. Early ictal increases in regional cerebral blood flow (rCBF) were limited to the right prefrontal cortex. Post-ictally, perfusion was reduced in bilateral frontal and occipital cortices and increased in left motor and precuneus cortex. FEAST appears to triggers focal onsets of seizure activity in the right prefrontal cortex with subsequent generalization. Future studies are needed on a larger sample. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. In vivo covalent cross-linking of photon-converted rare-earth nanostructures for tumour localization and theranostics

    NASA Astrophysics Data System (ADS)

    Ai, Xiangzhao; Ho, Chris Jun Hui; Aw, Junxin; Attia, Amalina Binte Ebrahim; Mu, Jing; Wang, Yu; Wang, Xiaoyong; Wang, Yong; Liu, Xiaogang; Chen, Huabing; Gao, Mingyuan; Chen, Xiaoyuan; Yeow, Edwin K. L.; Liu, Gang; Olivo, Malini; Xing, Bengang

    2016-01-01

    The development of precision nanomedicines to direct nanostructure-based reagents into tumour-targeted areas remains a critical challenge in clinics. Chemical reaction-mediated localization in response to tumour environmental perturbations offers promising opportunities for rational design of effective nano-theranostics. Here, we present a unique microenvironment-sensitive strategy for localization of peptide-premodified upconversion nanocrystals (UCNs) within tumour areas. Upon tumour-specific cathepsin protease reactions, the cleavage of peptides induces covalent cross-linking between the exposed cysteine and 2-cyanobenzothiazole on neighbouring particles, thus triggering the accumulation of UCNs into tumour site. Such enzyme-triggered cross-linking of UCNs leads to enhanced upconversion emission upon 808 nm laser irradiation, and in turn amplifies the singlet oxygen generation from the photosensitizers attached on UCNs. Importantly, this design enables remarkable tumour inhibition through either intratumoral UCNs injection or intravenous injection of nanoparticles modified with the targeting ligand. Our strategy may provide a multimodality solution for effective molecular sensing and site-specific tumour treatment.

  8. Light driven optofluidic switch developed in a ZnO-overlaid microstructured optical fiber.

    PubMed

    Konidakis, Ioannis; Konstantaki, Maria; Tsibidis, George D; Pissadakis, Stavros

    2015-11-30

    A great challenge of Optofluidics remains the control of the fluidic properties of a photonic circuit by solely utilizing light. In this study, the development of a ZnO nanolayered microstructured optical fiber (MOF) Fabry-Perot interferometer is demonstrated, along with its fully reversible optofluidic switching behaviour. The actuation and switching principle is entirely based on the employment of light sources, i.e. UV 248 nm and green 532 nm lasers, while using modest irradiation doses. The synthesized ZnO within the MOF capillaries acts as a light triggered wettability transducer, allowing the controlled water filling and draining of the MOF Fabry-Perot cavity. The progression of the optofluidic cycle is monitored in situ with optical microscopy, while Fabry-Perot reflection spectra are monitored in real time to probe temporal infiltration behaviour. Finally, a first insight on the light triggered switching mechanism, employing photoluminescence and spectrophotometric measurements is presented. Results appear highly promising towards the design of smart in-fiber optofluidic light switching devices, suitable for actuating and sensing applications.

  9. Non-invasive timing of gas gun projectiles with light detection and ranging

    NASA Astrophysics Data System (ADS)

    Goodwin, P. M.; Bartram, B. D.; Gibson, L. L.; Wu, M.; Dattelbaum, D. M.

    2014-05-01

    We have developed a Light Detection and Ranging (LIDAR) diagnostic to track the position of a projectile inside of a gas gun launch tube in real-time. This capability permits the generation of precisely timed trigger pulses useful for triggering high-latency diagnostics such as a flash lamp-pumped laser. An initial feasibility test was performed using a 72 mm bore diameter single-stage gas gun routinely used for dynamic research at Los Alamos. A 655 nm pulsed diode laser operating at a pulse repetition rate of 100 kHz was used to interrogate the position of the moving projectile in real-time. The position of the projectile in the gun barrel was tracked over a distance of ~ 3 meters prior to impact. The position record showed that the projectile moved at a velocity of 489 m/s prior to impacting the target. This velocity was in good agreement with independent measurements of the projectile velocity by photon Doppler velocimetry and timing of the passage of the projectile through optical marker beams positioned at the muzzle of the gun. The time-to-amplitude conversion electronics used enable the LIDAR data to be processed in real-time to generate trigger pulses at preset separations between the projectile and target.

  10. Optimization of targeted two-photon PDT triads for the treatment of head and neck cancers

    NASA Astrophysics Data System (ADS)

    Spangler, Charles W.; Starkey, Jean R.; Dubinina, Galyna; Fahlstrom, Carl; Shepard, Joyce

    2012-02-01

    Synthesis of new PDT triads that incorporate a tumor-killing porphyrin with large two-photon cross-section for 150 fs laser pulses (2000 GM) in the Near-infrared (NIR) at 840 nm, a NIR imaging agent, and a small peptide that targets over-expressed EGF receptors on the tumor surface. This triad formulation has been optimized over the past year to treat FADU Head and Neck SCC xenograft tumors in SCID mice. Effective PDT triad dose (1-10 mg/Kg) and laser operating parameters (840 nm, 15-45 min, 900 mW) have been established. Light, dark and PDT treatment toxicities were determined, showing no adverse effects. Previous experiments in phantom and mouse models indicate that tumors can be treated directly through the skin to effective depths between 2 and 5 cm. Treated mice demonstrated rapid tumor regression with some complete cures in as little as 15-20 days. No adverse effects were observed in any healthy tissue through which the focused laser beam passed before reaching the tumor site, and excellent healing occurred post treatment including rapid hair re-growth. Not all irradiation protocols lead to complete cures. Since two-photon PDT is carried out by rastering focused irradiation throughout the tumor, there is the possibility that as the treatment depth increases, some parts of the tumor may escape irradiation due to increased scattering, thus raising the possibility that tumor re-growth could be triggered by small islands of untreated cells, especially at the rapidly growing tumor margins, a problem we hope to alleviate by using image-guided two-photon PDT.

  11. Two-photon fluorescence imaging and bimodal phototherapy of epidermal cancer cells with biocompatible self-assembled polymer nanoparticles.

    PubMed

    Kandoth, Noufal; Kirejev, Vladimir; Monti, Sandra; Gref, Ruxandra; Ericson, Marica B; Sortino, Salvatore

    2014-05-12

    We have developed herein an engineered polymer-based nanoplatform showing the convergence of two-photon fluorescence imaging and bimodal phototherapeutic activity in a single nanostructure. It was achieved through the appropriate choice of three different components: a β-cyclodextrin-based polymer acting as a suitable carrier, a zinc phthalocyanine emitting red fluorescence simultaneously as being a singlet oxygen ((1)O2) photosensitizer, and a tailored nitroaniline derivative, functioning as a nitric oxide (NO) photodonor. The self-assembly of these components results in photoactivable nanoparticles, approximately 35 nm in diameter, coencapsulating a multifunctional cargo, which can be delivered to carcinoma cells. The combination of steady-state and time-resolved spectroscopic and photochemical techniques shows that the two photoresponsive guests do not interfere with each other while being enclosed in their supramolecular container and can thus be operated in parallel under control of light stimuli. Specifically, two-photon fluorescence microscopy allows mapping of the nanoassembly, here applied to epidermal cancer cells. By detecting the red emission from the phthalocyanine fluorophore it was also possible to investigate the tissue distribution after topical delivery onto human skin ex vivo. Irradiation of the nanoassembly with visible light triggers the simultaneous delivery of cytotoxic (1)O2 and NO, resulting in an amplified cell photomortality due to a combinatory effect of the two cytotoxic agents. The potential of dual therapeutic photodynamic action and two-photon fluorescence imaging capability in a single nanostructure make this system an appealing candidate for further studies in biomedical research.

  12. Leaf wound induced ultraweak photon emission is suppressed under anoxic stress: Observations of Spathiphyllum under aerobic and anaerobic conditions using novel in vivo methodology.

    PubMed

    Oros, Carl L; Alves, Fabio

    2018-01-01

    Plants have evolved a variety of means to energetically sense and respond to abiotic and biotic environmental stress. Two typical photochemical signaling responses involve the emission of volatile organic compounds and light. The emission of certain leaf wound volatiles and light are mutually dependent upon oxygen which is subsequently required for the wound-induced lipoxygenase reactions that trigger the formation of fatty acids and hydroperoxides; ultimately leading to photon emission by chlorophyll molecules. A low noise photomultiplier with sensitivity in the visible spectrum (300-720 nm) is used to continuously measure long duration ultraweak photon emission of dark-adapting whole Spathiphyllum leaves (in vivo). Leaves were mechanically wounded after two hours of dark adaptation in aerobic and anaerobic conditions. It was found that (1) nitrogen incubation did not affect the pre-wound basal photocounts; (2) wound induced leaf biophoton emission was significantly suppressed when under anoxic stress; and (3) the aerobic wound induced emission spectra observed was > 650 nm, implicating chlorophyll as the likely emitter. Limitations of the PMT photocathode's radiant sensitivity, however, prevented accurate analysis from 700-720 nm. Further examination of leaf wounding profile photon counts revealed that the pre-wounding basal state (aerobic and anoxic), the anoxic wounding state, and the post-wounding aerobic state statistics all approximate a Poisson distribution. It is additionally observed that aerobic wounding induces two distinct exponential decay events. These observations contribute to the body of plant wound-induced luminescence research and provide a novel methodology to measure this phenomenon in vivo.

  13. Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime.

    PubMed

    Press, David; Götzinger, Stephan; Reitzenstein, Stephan; Hofmann, Carolin; Löffler, Andreas; Kamp, Martin; Forchel, Alfred; Yamamoto, Yoshihisa

    2007-03-16

    We observe antibunching in the photons emitted from a strongly coupled single quantum dot and pillar microcavity in resonance. When the quantum dot was spectrally detuned from the cavity mode, the cavity emission remained antibunched, and also anticorrelated from the quantum dot emission. Resonant pumping of the selected quantum dot via an excited state enabled these observations by eliminating the background emitters that are usually coupled to the cavity. This device demonstrates an on-demand single-photon source operating in the strong coupling regime, with a Purcell factor of 61+/-7 and quantum efficiency of 97%.

  14. The rayleigh: interpretation of the unit in terms of column emission rate or apparent radiance expressed in SI units.

    PubMed

    Baker, D J; Romick, G J

    1976-08-01

    The rayleigh, originally defined as a unit to express the total column light emission rate [10(10) photons sec(-1) (m(2)column) (-1)] can equivalently be defined as a unit for apparent photon radiance ((1/4)pi 10(10) photons sec(-1) m(-2) sr(-1)). The selection of the appropriate definition will depend upon the physical situation and the interests of the user. The applicability of the unit for expressing the quantitative measurement of all extended light sources, including optically thick media, is both handy and valid.

  15. Teleportation of entangled states without Bell-state measurement via a two-photon process

    NASA Astrophysics Data System (ADS)

    dSouza, A. D.; Cardoso, W. B.; Avelar, A. T.; Baseia, B.

    2011-02-01

    In this letter we propose a scheme using a two-photon process to teleport an entangled field state of a bimodal cavity to another one without Bell-state measurement. The quantum information is stored in a zero- and two-photon entangled state. This scheme requires two three-level atoms in a ladder configuration, two bimodal cavities, and selective atomic detectors. The fidelity and success probability do not depend on the coefficients of the state to be teleported. For convenient choices of interaction times, the teleportation occurs with fidelity close to the unity.

  16. Highly birefringent suspended-core photonic microcells for refractive-index sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chao; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057; Jin, Wa

    2014-08-11

    An in-line photonic microcell with a highly birefringent suspended microfiber core is fabricated by locally heating and pressurizing selected air-holes of an endless single mode photonic crystal fiber. The microfiber core has rhombus-like cross-sectional geometry and could achieve a high birefringence of up to 10{sup −2}. The microfiber core is fixed at the center of the microcell by thin struts attached to an outer jacket tube, which protects and isolates the microfiber from environmental contaminations. Highly sensitive and robust refractive index sensors based on such microcells are experimentally demonstrated.

  17. Emission polarization control in semiconductor quantum dots coupled to a photonic crystal microcavity.

    PubMed

    Gallardo, E; Martínez, L J; Nowak, A K; van der Meulen, H P; Calleja, J M; Tejedor, C; Prieto, I; Granados, D; Taboada, A G; García, J M; Postigo, P A

    2010-06-07

    We study the optical emission of single semiconductor quantum dots weakly coupled to a photonic-crystal micro-cavity. The linearly polarized emission of a selected quantum dot changes continuously its polarization angle, from nearly perpendicular to the cavity mode polarization at large detuning, to parallel at zero detuning, and reversing sign for negative detuning. The linear polarization rotation is qualitatively interpreted in terms of the detuning dependent mixing of the quantum dot and cavity states. The present result is relevant to achieve continuous control of the linear polarization in single photon emitters.

  18. IEEE 802.21 Assisted Seamless and Energy Efficient Handovers in Mixed Networks

    NASA Astrophysics Data System (ADS)

    Liu, Huaiyu; Maciocco, Christian; Kesavan, Vijay; Low, Andy L. Y.

    Network selection is the decision process for a mobile terminal to handoff between homogeneous or heterogeneous networks. With multiple available networks, the selection process must evaluate factors like network services/conditions, monetary cost, system conditions, user preferences etc. In this paper, we investigate network selection using a cost function and information provided by IEEE 802.21. The cost function provides flexibility to balance different factors in decision making and our research is focused on improving both seamlessness and energy efficiency of handovers. Our solution is evaluated using real WiFi, WiMax, and 3G signal strength traces. The results show that appropriate networks were selected based on selection policies, handovers were triggered at optimal times to increase overall network connectivity as compared to traditional triggering schemes, while at the same time the energy consumption of multi-radio devices for both on-going operations as well as during handovers is optimized.

  19. Dual-color single-mode lasing in axially coupled organic nanowire resonators

    PubMed Central

    Zhang, Chunhuan; Zou, Chang-Ling; Dong, Haiyun; Yan, Yongli; Yao, Jiannian; Zhao, Yong Sheng

    2017-01-01

    Miniaturized lasers with multicolor output and high spectral purity are of crucial importance for yielding more compact and more versatile photonic devices. However, multicolor lasers usually operate in multimode, which largely restricts their practical applications due to the lack of an effective mode selection mechanism that is simultaneously applicable to multiple wavebands. We propose a mutual mode selection strategy to realize dual-color single-mode lasing in axially coupled cavities constructed from two distinct organic self-assembled single-crystal nanowires. The unique mode selection mechanism in the heterogeneously coupled nanowires was elucidated experimentally and theoretically. With each individual nanowire functioning as both the laser source and the mode filter for the other nanowire, dual-color single-mode lasing was successfully achieved in the axially coupled heterogeneous nanowire resonators. Furthermore, the heterogeneously coupled resonators provided multiple nanoscale output ports for delivering coherent signals with different colors, which could greatly contribute to increasing the integration level of functional photonic devices. These results advance the fundamental understanding of the lasing modulation in coupled cavity systems and offer a promising route to building multifunctional nanoscale lasers for high-level practical photonic integrations. PMID:28785731

  20. 4D (x-y-z-t) imaging of thick biological samples by means of Two-Photon inverted Selective Plane Illumination Microscopy (2PE-iSPIM)

    PubMed Central

    Lavagnino, Zeno; Sancataldo, Giuseppe; d’Amora, Marta; Follert, Philipp; De Pietri Tonelli, Davide; Diaspro, Alberto; Cella Zanacchi, Francesca

    2016-01-01

    In the last decade light sheet fluorescence microscopy techniques, such as selective plane illumination microscopy (SPIM), has become a well established method for developmental biology. However, conventional SPIM architectures hardly permit imaging of certain tissues since the common sample mounting procedure, based on gel embedding, could interfere with the sample morphology. In this work we propose an inverted selective plane microscopy system (iSPIM), based on non-linear excitation, suitable for 3D tissue imaging. First, the iSPIM architecture provides flexibility on the sample mounting, getting rid of the gel-based mounting typical of conventional SPIM, permitting 3D imaging of hippocampal slices from mouse brain. Moreover, all the advantages brought by two photon excitation (2PE) in terms of reduction of scattering effects and contrast improvement are exploited, demonstrating an improved image quality and contrast compared to single photon excitation. The system proposed represents an optimal platform for tissue imaging and it smooths the way to the applicability of light sheet microscopy to a wider range of samples including those that have to be mounted on non-transparent surfaces. PMID:27033347

  1. Quasi-periodic photonic crystal Fabry–Perot optical filter based on Si/SiO2 for visible-laser spectral selectivity

    NASA Astrophysics Data System (ADS)

    Qi, Dong; Wang, Xian; Cheng, Yongzhi; Chen, Fu; Liu, Lei; Gong, Rongzhou

    2018-06-01

    We report on a 1D quasi-periodic photonic crystal Fabry–Perot optical filter Cs(Si/SiO2)3(SiO2/Si)3 for spectral selectivity of visible light and 1.55 µm laser. A material transparency interval of 1.03–2.06 µm makes Si a unique choice of high refractive index material. Owing to the CIE 1931 standard and equal inclination interference, the designed structure can be successfully fabricated with a certain color (brown, khaki, or blue) corresponding to the different Cs physical thickness d and response R(λ). In addition, the peak transmittance T max of the proposed structure can reach as high as 92.56% (Cs  =  20 nm), 90.83% (Cs  =  40 nm), and 88.85% (Cs  =  60 nm) with a relatively narrow full width at half maximum of 4.4, 4.6, and 4.8 nm at 1.55 µm. The as-prepared structure indicates that it is feasible for a photonic crystal Fabry–Perot optical filter to achieve visible-laser (1.55 µm) spectral selectivity.

  2. Hard-X-Ray-Induced Multistep Ultrafast Dissociation

    NASA Astrophysics Data System (ADS)

    Travnikova, Oksana; Marchenko, Tatiana; Goldsztejn, Gildas; Jänkälä, Kari; Sisourat, Nicolas; Carniato, Stéphane; Guillemin, Renaud; Journel, Loïc; Céolin, Denis; Püttner, Ralph; Iwayama, Hiroshi; Shigemasa, Eiji; Piancastelli, Maria Novella; Simon, Marc

    2016-05-01

    Creation of deep core holes with very short (τ ≤1 fs ) lifetimes triggers a chain of relaxation events leading to extensive nuclear dynamics on a few-femtosecond time scale. Here we demonstrate a general multistep ultrafast dissociation on an example of HCl following Cl 1 s →σ* excitation. Intermediate states with one or multiple holes in the shallower core electron shells are generated in the course of the decay cascades. The repulsive character and large gradients of the potential energy surfaces of these intermediates enable ultrafast fragmentation after the absorption of a hard x-ray photon.

  3. Fission-fragment detector for DANCE based on thin scintillating films

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Roman, A. R.; Daum, J. K.; Springs, R. K.; Bond, E. M.; Jandel, M.; Baramsai, B.; Bredeweg, T. A.; Couture, A.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Ullmann, J. L.; Walker, C. L.

    2015-12-01

    A fission-fragment detector based on thin scintillating films has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing 4 π detection of the fission fragments. The scintillation photons were registered with silicon photomultipliers. A measurement of the 235U (n , f) reaction with this detector at DANCE revealed a correct time-of-flight spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described.

  4. ELECTRONIC TRIGGER CIRCUIT

    DOEpatents

    Russell, J.A.G.

    1958-01-01

    An electronic trigger circuit is described of the type where an output pulse is obtained only after an input voltage has cqualed or exceeded a selected reference voltage. In general, the invention comprises a source of direct current reference voltage in series with an impedance and a diode rectifying element. An input pulse of preselected amplitude causes the diode to conduct and develop a signal across the impedance. The signal is delivered to an amplifier where an output pulse is produced and part of the output is fed back in a positive manner to the diode so that the amplifier produces a steep wave front trigger pulsc at the output. The trigger point of the described circuit is not subject to variation due to the aging, etc., of multi-electrode tabes, since the diode circuit essentially determines the trigger point.

  5. Rational Design of Photonic Dust from Nanoporous Anodic Alumina Films: A Versatile Photonic Nanotool for Visual Sensing

    PubMed Central

    Chen, Yuting; Santos, Abel; Wang, Ye; Kumeria, Tushar; Ho, Daena; Li, Junsheng; Wang, Changhai; Losic, Dusan

    2015-01-01

    Herein, we present a systematic study on the development, optimisation and applicability of interferometrically coloured distributed Bragg reflectors based on nanoporous anodic alumina (NAA-DBRs) in the form of films and nanoporous microparticles as visual/colorimetric analytical tools. Firstly, we synthesise a complete palette of NAA-DBRs by galvanostatic pulse anodisation approach, in which the current density is altered in a periodic fashion in order to engineer the effective medium of the resulting photonic films in depth. NAA-DBR photonic films feature vivid colours that can be tuned across the UV-visible-NIR spectrum by structural engineering. Secondly, the effective medium of the resulting photonic films is assessed systematically by visual analysis and reflectometric interference spectroscopy (RIfS) in order to establish the most optimal nanoporous platforms to develop visual/colorimetric tools. Then, we demonstrate the applicability of NAA-DBR photonic films as a chemically selective sensing platform for visual detection of mercury(II) ions. Finally, we generate a new nanomaterial, so-called photonic dust, by breaking down NAA-DBRs films into nanoporous microparticles. The resulting microparticles (μP-NAA-DBRs) display vivid colours and are sensitive towards changes in their effective medium, opening new opportunities for developing advanced photonic nanotools for a broad range of applications. PMID:26245759

  6. Rational Design of Photonic Dust from Nanoporous Anodic Alumina Films: A Versatile Photonic Nanotool for Visual Sensing

    NASA Astrophysics Data System (ADS)

    Chen, Yuting; Santos, Abel; Wang, Ye; Kumeria, Tushar; Ho, Daena; Li, Junsheng; Wang, Changhai; Losic, Dusan

    2015-08-01

    Herein, we present a systematic study on the development, optimisation and applicability of interferometrically coloured distributed Bragg reflectors based on nanoporous anodic alumina (NAA-DBRs) in the form of films and nanoporous microparticles as visual/colorimetric analytical tools. Firstly, we synthesise a complete palette of NAA-DBRs by galvanostatic pulse anodisation approach, in which the current density is altered in a periodic fashion in order to engineer the effective medium of the resulting photonic films in depth. NAA-DBR photonic films feature vivid colours that can be tuned across the UV-visible-NIR spectrum by structural engineering. Secondly, the effective medium of the resulting photonic films is assessed systematically by visual analysis and reflectometric interference spectroscopy (RIfS) in order to establish the most optimal nanoporous platforms to develop visual/colorimetric tools. Then, we demonstrate the applicability of NAA-DBR photonic films as a chemically selective sensing platform for visual detection of mercury(II) ions. Finally, we generate a new nanomaterial, so-called photonic dust, by breaking down NAA-DBRs films into nanoporous microparticles. The resulting microparticles (μP-NAA-DBRs) display vivid colours and are sensitive towards changes in their effective medium, opening new opportunities for developing advanced photonic nanotools for a broad range of applications.

  7. Bright nanoscale source of deterministic entangled photon pairs violating Bell's inequality.

    PubMed

    Jöns, Klaus D; Schweickert, Lucas; Versteegh, Marijn A M; Dalacu, Dan; Poole, Philip J; Gulinatti, Angelo; Giudice, Andrea; Zwiller, Val; Reimer, Michael E

    2017-05-10

    Global, secure quantum channels will require efficient distribution of entangled photons. Long distance, low-loss interconnects can only be realized using photons as quantum information carriers. However, a quantum light source combining both high qubit fidelity and on-demand bright emission has proven elusive. Here, we show a bright photonic nanostructure generating polarization-entangled photon pairs that strongly violates Bell's inequality. A highly symmetric InAsP quantum dot generating entangled photons is encapsulated in a tapered nanowire waveguide to ensure directional emission and efficient light extraction. We collect ~200 kHz entangled photon pairs at the first lens under 80 MHz pulsed excitation, which is a 20 times enhancement as compared to a bare quantum dot without a photonic nanostructure. The performed Bell test using the Clauser-Horne-Shimony-Holt inequality reveals a clear violation (S CHSH  > 2) by up to 9.3 standard deviations. By using a novel quasi-resonant excitation scheme at the wurtzite InP nanowire resonance to reduce multi-photon emission, the entanglement fidelity (F = 0.817 ± 0.002) is further enhanced without temporal post-selection, allowing for the violation of Bell's inequality in the rectilinear-circular basis by 25 standard deviations. Our results on nanowire-based quantum light sources highlight their potential application in secure data communication utilizing measurement-device-independent quantum key distribution and quantum repeater protocols.

  8. Switchable multiwavelength erbium-doped photonic crystal fiber ring laser based on a length of polarization-maintaining photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Cheng, Jianqun; Ruan, Shuangchen

    2011-11-01

    A switchable multi-wavelength Erbium-doped photonic crystal fiber (ED-PCF) ring laser based on a length of polarization-maintaining photonic crystal fiber(PM-PCF) is presented and demonstrated experimentally. A segment of ED-PCF is used as linear gain medium in the resonant cavity. Due to the polarization hole burning (PHB) caused by the PM-PCF and a polarization controller (PC), the laser can operate in stable dual- or triple- wavelength modes at room temperature. The optical signal-to-noise ratio (OSNR) of the laser without any wavelength-selective components is greater than 30 dB. The amplitude variations of lasing peaks in ten minutes are less than 0.26dB for two different operating modes.

  9. Switchable multiwavelength erbium-doped photonic crystal fiber ring laser based on a length of polarization-maintaining photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Cheng, Jianqun; Ruan, Shuangchen

    2012-03-01

    A switchable multi-wavelength Erbium-doped photonic crystal fiber (ED-PCF) ring laser based on a length of polarization-maintaining photonic crystal fiber(PM-PCF) is presented and demonstrated experimentally. A segment of ED-PCF is used as linear gain medium in the resonant cavity. Due to the polarization hole burning (PHB) caused by the PM-PCF and a polarization controller (PC), the laser can operate in stable dual- or triple- wavelength modes at room temperature. The optical signal-to-noise ratio (OSNR) of the laser without any wavelength-selective components is greater than 30 dB. The amplitude variations of lasing peaks in ten minutes are less than 0.26dB for two different operating modes.

  10. Light-induced dynamic structural color by intracellular 3D photonic crystals in brown algae

    PubMed Central

    2018-01-01

    Natural photonic crystals are responsible for strong reflectance at selective wavelengths in different natural systems. We demonstrate that intracellular opal-like photonic crystals formed from lipids within photosynthetic cells produce vivid structural color in the alga Cystoseira tamariscifolia. The reflectance of the opaline vesicles is dynamically responsive to environmental illumination. The structural color is present in low light–adapted samples, whereas higher light levels produce a slow disappearance of the structural color such that it eventually vanishes completely. Once returned to low-light conditions, the color re-emerges. Our results suggest that these complex intracellular natural photonic crystals are responsive to environmental conditions, changing their packing structure reversibly, and have the potential to manipulate light for roles beyond visual signaling. PMID:29651457

  11. Hybrid Toffoli gate on photons and quantum spins

    PubMed Central

    Luo, Ming-Xing; Ma, Song-Ya; Chen, Xiu-Bo; Wang, Xiaojun

    2015-01-01

    Quantum computation offers potential advantages in solving a number of interesting and difficult problems. Several controlled logic gates, the elemental building blocks of quantum computer, have been realized with various physical systems. A general technique was recently proposed that significantly reduces the realization complexity of multiple-control logic gates by harnessing multi-level information carriers. We present implementations of a key quantum circuit: the three-qubit Toffoli gate. By exploring the optical selection rules of one-sided optical microcavities, a Toffoli gate may be realized on all combinations of photon and quantum spins in the QD-cavity. The three general controlled-NOT gates are involved using an auxiliary photon with two degrees of freedom. Our results show that photons and quantum spins may be used alternatively in quantum information processing. PMID:26568078

  12. Hybrid Toffoli gate on photons and quantum spins.

    PubMed

    Luo, Ming-Xing; Ma, Song-Ya; Chen, Xiu-Bo; Wang, Xiaojun

    2015-11-16

    Quantum computation offers potential advantages in solving a number of interesting and difficult problems. Several controlled logic gates, the elemental building blocks of quantum computer, have been realized with various physical systems. A general technique was recently proposed that significantly reduces the realization complexity of multiple-control logic gates by harnessing multi-level information carriers. We present implementations of a key quantum circuit: the three-qubit Toffoli gate. By exploring the optical selection rules of one-sided optical microcavities, a Toffoli gate may be realized on all combinations of photon and quantum spins in the QD-cavity. The three general controlled-NOT gates are involved using an auxiliary photon with two degrees of freedom. Our results show that photons and quantum spins may be used alternatively in quantum information processing.

  13. Level Zero Trigger Processor for the NA62 experiment

    NASA Astrophysics Data System (ADS)

    Soldi, D.; Chiozzi, S.

    2018-05-01

    The NA62 experiment is designed to measure the ultra-rare decay K+ arrow π+ ν bar nu branching ratio with a precision of ~ 10% at the CERN Super Proton Synchrotron (SPS). The trigger system of NA62 consists in three different levels designed to select events of physics interest in a high beam rate environment. The L0 Trigger Processor (L0TP) is the lowest level system of the trigger chain. It is hardware implemented using programmable logic. The architecture of the NA62 L0TP system is a new approach compared to existing systems used in high-energy physics experiments. It is fully digital, based on a standard gigabit Ethernet communication between detectors and the L0TP Board. The L0TP Board is a commercial development board, mounting a programmable logic device (FPGA). The primitives generated by sub-detectors are sent asynchronously using the UDP protocol to the L0TP during the entire beam spill period. The L0TP realigns in time the primitives coming from seven different sources and performs a data selection based on the characteristics of the event such as energy, multiplicity and topology of hits in the sub-detectors. It guarantees a maximum latency of 1 ms. The maximum input rate is about 10 MHz for each sub-detector, while the design maximum output trigger rate is 1 MHz. A description of the trigger algorithm is presented here.

  14. Demonstration of iodine K-edge imaging by use of an energy-discrimination X-ray computed tomography system with a cadmium telluride detector.

    PubMed

    Abudurexiti, Abulajiang; Kameda, Masashi; Sato, Eiichi; Abderyim, Purkhet; Enomoto, Toshiyuki; Watanabe, Manabu; Hitomi, Keitaro; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Takahashi, Kiyomi; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2010-07-01

    An energy-discrimination K-edge X-ray computed tomography (CT) system is useful for increasing the contrast resolution of a target region by utilizing contrast media. The CT system has a cadmium telluride (CdTe) detector, and a projection curve is obtained by linear scanning with use of the CdTe detector in conjunction with an X-stage. An object is rotated by a rotation step angle with use of a turntable between the linear scans. Thus, CT is carried out by repetition of the linear scanning and the rotation of an object. Penetrating X-ray photons from the object are detected by the CdTe detector, and event signals of X-ray photons are produced with use of charge-sensitive and shaping amplifiers. Both the photon energy and the energy width are selected by use of a multi-channel analyzer, and the number of photons is counted by a counter card. For performing energy discrimination, a low-dose-rate X-ray generator for photon counting was developed; the maximum tube voltage and the minimum tube current were 110 kV and 1.0 microA, respectively. In energy-discrimination CT, the tube voltage and the current were 60 kV and 20.0 microA, respectively, and the X-ray intensity was 0.735 microGy/s at 1.0 m from the source and with a tube voltage of 60 kV. Demonstration of enhanced iodine K-edge X-ray CT was carried out by selection of photons with energies just beyond the iodine K-edge energy of 33.2 keV.

  15. Evidence for tty Production and Measurement of (σ tt)γ/(σ tt)

    DOE PAGES

    Aaltonen, T.

    2011-08-31

    Using data corresponding to 6.0 fb -1 of pp collisions at √s = 1.96 TeV collected by the CDF II detector, we present a cross section measurement of top-quark pair production with an additional radiated photon, ttγ. The events are selected by looking for a lepton (ell), a photon (γ), significant transverse momentum imbalance (E T), large total transverse energy, and three or more jets, with at least one identified as containing a b quark (b). The ttγ sample requires the photon to have 10 GeV or more of transverse energy, and to be in the central region. Using anmore » event selection optimized for the ttγ candidate sample we measure the production cross section of tt (σ tt), and the ratio of cross sections of the two samples. Control samples in the dilepton+photon and lepton+photon+E T, channels are constructed to aid in decay product identification and background measurements. We observe 30 ttγ candidate events compared to the standard model expectation of 26.9 ± 3.4 events. We measure the ttγ cross section (σ tt) to be 0.18 ± 0.08 pb, and the ratio of σ ttγ to σ tt to be 0.024 ± 0.009. Assuming no tty production, we observe a probability of 0.0015 of the background events alone producing 30 events or more, corresponding to 3.0 standard deviations.« less

  16. Calculation of absorption parameters for selected narcotic drugs in the energy range from 1 keV to 100 GeV

    NASA Astrophysics Data System (ADS)

    Akman, Ferdi; Kaçal, Mustafa Recep; Akdemir, Fatma; Araz, Aslı; Turhan, Mehmet Fatih; Durak, Rıdvan

    2017-04-01

    The total mass attenuation coefficients (μ/ρ), total molecular (σt,m), atomic (σt,a) and electronic (σt,e) cross sections, effective atomic numbers (Zeff) and electron density (NE) were computed in the wide energy region from 1 keV to 100 GeV for the selected narcotic drugs such as morphine, heroin, cocaine, ecstasy and cannabis. The changes of μ/ρ, σt,m, σt,a, σt,e, Zeff and NE with photon energy for total photon interaction shows the dominance of different interaction process in different energy regions. The variations of μ/ρ, σt,m, σt,a, σt,e, Zeff and NE depend on the atom number, photon energy and chemical composition of narcotic drugs. Also, these parameters change with number of elements, the range of atomic numbers in narcotic drugs and total molecular weight. These data can be useful in the field of forensic sciences and medical diagnostic.

  17. In Situ Generation of Plasmonic Nanoparticles for Manipulating Photon-Plasmon Coupling in Microtube Cavities.

    PubMed

    Yin, Yin; Wang, Jiawei; Lu, Xueyi; Hao, Qi; Saei Ghareh Naz, Ehsan; Cheng, Chuanfu; Ma, Libo; Schmidt, Oliver G

    2018-04-24

    In situ generation of silver nanoparticles for selective coupling between localized plasmonic resonances and whispering-gallery modes (WGMs) is investigated by spatially resolved laser dewetting on microtube cavities. The size and morphology of the silver nanoparticles are changed by adjusting the laser power and irradiation time, which in turn effectively tune the photon-plasmon coupling strength. Depending on the relative position of the plasmonic nanoparticles spot and resonant field distribution of WGMs, selective coupling between the localized surface plasmon resonances (LSPRs) and WGMs is experimentally demonstrated. Moreover, by creating multiple plasmonic-nanoparticle spots on the microtube cavity, the field distribution of optical axial modes is freely tuned due to multicoupling between LSPRs and WGMs. The multicoupling mechanism is theoretically investigated by a modified quasipotential model based on perturbation theory. This work provides an in situ fabrication of plasmonic nanoparticles on three-dimensional microtube cavities for manipulating photon-plasmon coupling which is of interest for optical tuning abilities and enhanced light-matter interactions.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaboud, M.; Aad, G.; Abbott, B.

    The cross section of a top-quark pair produced in association with a photon is measured in proton-proton collisions at a centre-of-mass energy ofmore » $$ \\sqrt{s}=8 $$ TeV with 20.2 fb –1 of data collected by the ATLAS detector at the Large Hadron Collider in 2012. The measurement is performed by selecting events that contain a photon with transverse momentum p T > 15 GeV, an isolated lepton with large transverse momentum, large missing transverse momentum, and at least four jets, where at least one is identified as originating from a b-quark. The production cross section is measured in a fiducial region close to the selection requirements. It is found to be 139 ± 7 (stat.) ± 17 (syst.) fb, in good agreement with the theoretical prediction at next-to-leading order of 151 ± 24 fb. In addition, differential cross sections in the fiducial region are measured as a function of the transverse momentum and pseudorapidity of the photon.« less

  19. Measurement of Wγ and Zγ production in proton-proton collisions at sqrt {s} = 7 TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Akiyama, A.; Alam, M. S.; Alam, M. A.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andari, N.; Andeen, T.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Bachy, G.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, D.; Bartsch, V.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Battistoni, G.; Bauer, F.; Bawa, H. S.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bona, M.; Bondarenko, V. G.; Boonekamp, M.; Boorman, G.; Booth, C. N.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brown, H.; Brubaker, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchanan, N. J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Buira-Clark, D.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Byatt, T.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camard, A.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Cammin, J.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Cazzato, A.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciba, K.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Clifft, R. W.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coe, P.; Cogan, J. G.; Coggeshall, J.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Cˆoté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuciuc, C.-M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Cuneo, S.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czirr, H.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Rocha Gesualdi Mello, A.; Da Silva, P. V. M.; Da Via, C.; Dabrowski, W.; Dahlhoff, A.; Dai, T.; Dallapiccola, C.; Dam, M.; Dameri, M.; Damiani, D. S.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Daum, C.; Dauvergne, J. P.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, E.; Davies, M.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Dawson, J. W.; Daya, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Castro Faria Salgado, P. E.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De La Taille, C.; De la Torre, H.; De Lotto, B.; De Mora, L.; De Nooij, L.; De Oliveira Branco, M.; De Pedis, D.; de Saintignon, P.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dean, S.; Dedovich, D. V.; Degenhardt, J.; Dehchar, M.; Deile, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delpierre, P.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Devetak, E.; Deviveiros, P. O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietl, H.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Doglioni, C.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donadelli, M.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M. T.; Dowell, J. D.; Doxiadis, A. D.; Doyle, A. T.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Dubbert, J.; Dubbs, T.; Dube, S.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duerdoth, I. P.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duran Yildiz, H.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Dzahini, D.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Fakhrutdinov, R. M.; Falciano, S.; Falou, A. C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, I.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Fellmann, D.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fischer, P.; Fisher, M. J.; Fisher, S. M.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T.; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Frank, T.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallas, M. V.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gapienko, V. A.; Gaponenko, A.; Garberson, F.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giunta, M.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goldfarb, S.; Goldin, D.; Golling, T.; Golovnia, S. N.; Gomes, A.; Gomez Fajardo, L. S.; Gonçcalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; Gonidec, A.; Gonzalez, S.; González de la Hoz, S.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gorokhov, S. A.; Goryachev, V. N.; Gosdzik, B.; Goshaw, A. T.; Gosselink, M.; Gostkin, M. I.; Gouanère, M.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grabski, V.; Grafström, P.; Grah, C.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenfield, D.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grinstein, S.; Gris, Ph.; Grishkevich, Y. V.; Grivaz, J.-F.; Grognuz, J.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V. J.; Guest, D.; Guicheney, C.; Guida, A.; Guillemin, T.; Guindon, S.; Guler, H.; Gunther, J.; Guo, B.; Guo, J.; Gupta, A.; Gusakov, Y.; Gushchin, V. N.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamal, P.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Hatch, M.; Hauff, D.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawes, B. M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, D.; Hayakawa, T.; Hayden, D.; Hayward, H. S.; Haywood, S. J.; Hazen, E.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heldmann, M.; Heller, M.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Henry-Couannier, F.; Hensel, C.; Henß, T.; Hernandez, C. M.; Hernández Jiménez, Y.; Herrberg, R.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hill, N.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Holmes, A.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Hong, T. M.; Hooft van Huysduynen, L.; Horazdovsky, T.; Horn, C.; Horner, S.; Horton, K.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howarth, J.; Howell, D. F.; Hristova, I.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Huhtinen, M.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Idzik, M.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Imbault, D.; Imhaeuser, M.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Ioannou, P.; Iodice, M.; Ionescu, G.; Irles Quiles, A.; Ishii, K.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D. K.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jež, P.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joram, C.; Jorge, P. M.; Joseph, J.; Ju, X.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagoz, M.; Karnevskiy, M.; Karr, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kazanin, V. A.; Kazarinov, M. Y.; Keates, J. R.; Keeler, R.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenney, C. J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Ketterer, C.; Keung, J.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kiver, A. M.; Kiyamura, H.; Kladiva, E.; Klaiber-Lodewigs, J.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Kluth, S.; Knecht, N. S.; Kneringer, E.; Knobloch, J.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Koenig, S.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kokott, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kollefrath, M.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Komori, Y.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Kopikov, S. V.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasel, O.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumshteyn, Z. V.; Kruth, A.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kundu, N.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuykendall, W.; Kuze, M.; Kuzhir, P.; Kvasnicka, O.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laisne, E.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Landsman, H.; Lane, J. L.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lapin, V. V.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Lau, W.; Laurelli, P.; Lavorato, A.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Lebedev, A.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, M.; Legendre, M.; Leger, A.; LeGeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Leroy, C.; Lessard, J.-R.; Lesser, J.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Lewandowska, M.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lifshitz, R.; Lilley, J. N.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Linnemann, J. T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, S.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lombardo, V. P.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lo Sterzo, F.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lu, L.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lungwitz, M.; Lupi, A.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Macina, D.; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magnoni, L.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marin, A.; Marino, C. P.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti-Garcia, S.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, Ph.; Martin, T. A.; Martin dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Maß, M.; Massa, I.; Massaro, G.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maugain, J. M.; Maxfield, S. J.; Maximov, D. A.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzoni, E.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; McGlone, H.; Mchedlidze, G.; McLaren, R. A.; Mclaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meinhardt, J.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Menot, C.; Meoni, E.; Mercurio, K. M.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meuser, S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Miele, P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Miralles Verge, L.; Misiejuk, A.; Mitrevski, J.; Mitrofanov, G. Y.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Miyazaki, K.; Mjörnmark, J. U.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohapatra, S.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moisseev, A. M.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Monzani, S.; Moore, R. W.; Moorhead, G. F.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morange, N.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morii, M.; Morin, J.; Morita, Y.; Morley, A. K.; Mornacchi, G.; Morone, M.-C.; Morozov, S. V.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muijs, A.; Muir, A.; Munwes, Y.; Murakami, K.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakano, I.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nebot, E.; Nechaeva, P. Yu.; Negri, A.; Negri, G.; Nektarijevic, S.; Nelson, A.; Nelson, S.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Nesterov, S. Y.; Neubauer, M. S.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Niinikoski, T.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolaev, K.; Nikolic-Audit, I.; Nomoto, H.; Nikolics, K.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Norton, P. R.; Novakova, J.; Nozaki, M.; Nožička, M.; Nozka, L.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nyman, T.; O'Brien, B. J.; O'Neale, S. W.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohska, T. K.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olcese, M.; Olchevski, A. G.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Ortega, E. O.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero y Garzon, G.; Ottersbach, J. P.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Øye, O. K.; Ozcan, V. E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadelis, A.; Papadopoulou, Th. D.; Paramonov, A.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Pengo, R.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Peric, I.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Peshekhonov, V. D.; Peters, O.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A. W.; Phillips, P. W.; Piacquadio, G.; Piccaro, E.; Piccinini, M.; Pickford, A.; Piec, S. M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Pleskach, A. V.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Poghosyan, T.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Porter, R.; Posch, C.; Pospelov, G. E.; Pospisil, S.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Price, M. J.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Qian, Z.; Qin, Z.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Ramstedt, M.; Randrianarivony, K.; Ratoff, P. N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reichold, A.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renaud, A.; Renkel, P.; Rensch, B.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodier, S.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, A.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, M.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosendahl, P. L.; Rosselet, L.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rossi, L.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubinskiy, I.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rulikowska-Zarebska, E.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Runolfsson, O.; Rurikova, Z.; Rusakovich, N. A.; Rust, D. R.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Rzaeva, S.; Saavedra, A. F.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, E.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Savva, P.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scallon, O.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaepe, S.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmidt, E.; Schmidt, M. P.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, M.; Schöning, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schuh, S.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shichi, H.; Shimizu, S.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skovpen, K.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloan, T. J.; Sloper, J.; Smakhtin, V.; Smirnov, S. Yu.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Sondericker, J.; Soni, N.; Sopko, V.; Sopko, B.; Sorbi, M.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiriti, E.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahl, T.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G. A.; Stillings, J. A.; Stockmanns, T.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Soh, D. A.; Su, D.; Subramania, HS.; Succurro, A.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suita, K.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos, M.; Sviridov, Yu. M.; Swedish, S.; Sykora, I.; Sykora, T.; Szeless, B.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tani, K.; Tannoury, N.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Thadome, J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomson, E.; Thomson, M.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokunaga, K.; Tokushuku, K.; Tollefson, K.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torchiani, I.; Torrence, E.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Traynor, D.; Trefzger, T.; Treis, J.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tuggle, J. M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Tyrvainen, H.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; van der Ster, D.; Van Eijk, B.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Virchaux, M.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Wakabayashi, J.; Walbersloh, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, J. C.; Wang, R.; Wang, S. M.; Warburton, A.; Ward, C. P.; Warsinsky, M.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, J.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Weydert, C.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wunstorf, R.; Wynne, B. M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xie, Y.; Xu, C.; Xu, D.; Xu, G.; Yabsley, B.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ybeles Smit, G. V.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.; Yu, D.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaets, V. G.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zalite, Yo. K.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zemla, A.; Zendler, C.; Zenin, A. V.; Zenin, O.; Ženiš, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G.; Zhan, Z.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, X.; Zhang, Z.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zieminska, D.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zolnierowski, Y.; Zsenei, A.; zur Nedden, M.; Zutshi, V.; Zwalinski, L.

    2011-09-01

    We present studies of W and Z bosons with associated high energy photons produced in pp collisions at sqrt {s} = 7 TeV. The analysis uses 35 pb-1 of data collected by the ATLAS experiment in 2010. The event selection requires W and Z bosons decaying into high p T leptons (electrons or muons) and a photon with E T > 15 GeV separated from the lepton(s) by a distance ∆ R( l, γ) > 0.7 in η- ϕ space. A total of 95 (97) pp → e ± νγ + X( pp → μ ± νγ + X) and 25 (23) pp → e + e - γ + X( pp → μ + μ - γ + X) event candidates are selected. The kinematic distributions of the leptons and photons and the production cross sections are measured. The data are found to agree with Standard Model predictions that include next-to-leading-order O( αα s ) contributions.

  20. Measurement of Wγ and Zγ production in proton-proton collisions at $$ \\sqrt {s} = 7 $$ TeV with the ATLAS detector

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2011-09-14

    We present studies of W and Z bosons with associated high energy photons produced in pp collisions at √s = 7TeV. The analysis uses 35 pb -1 of data collected by the ATLAS experiment in 2010. The event selection requires W and Z bosons decaying into high p T leptons (electrons or muons) and a photon with E T > 15 GeV separated from the lepton(s) by a distance ΔR(l,γ) > 0.7 in η-Φ space. A total of 95 (97) pp → e ±νγ + X(pp → μ ±νγ + X) and 25 (23) pp → e +e -γ +more » X(pp → μ +μ -γ+X) event candidates are selected. The kinematic distributions of the leptons and photons and the production cross sections are measured. The data are found to agree with Standard Model predictions that include next-to-leading-order O(αα s) contributions.« less

  1. Tumor-triggered drug release from calcium carbonate-encapsulated gold nanostars for near-infrared photodynamic/photothermal combination antitumor therapy.

    PubMed

    Liu, Yanlei; Zhi, Xiao; Yang, Meng; Zhang, Jingpu; Lin, Lingnan; Zhao, Xin; Hou, Wenxiu; Zhang, Chunlei; Zhang, Qian; Pan, Fei; Alfranca, Gabriel; Yang, Yuming; de la Fuente, Jesús M; Ni, Jian; Cui, Daxiang

    2017-01-01

    Different stimulus including pH, light and temperature have been used for controlled drug release to prevent drug inactivation and minimize side-effects. Herein a novel nano-platform (GNS@CaCO 3 /ICG) consisting of calcium carbonate-encapsulated gold nanostars loaded with ICG was established to couple the photothermal properties of gold nanostars (GNSs) and the photodynamic properties of indocyanine green (ICG) in the photodynamic/photothermal combination therapy (PDT/PTT). In this study, the calcium carbonate worked not only a drug keeper to entrap ICG on the surface of GNSs in the form of a stable aggregate which was protected from blood clearance, but also as the a pH-responder to achieve highly effective tumor-triggered drug release locally. The application of GNS@CaCO 3 /ICG for in vitro and in vivo therapy achieved the combined antitumor effects upon the NIR irradiation, which was superior to the single PDT or PTT. Meanwhile, the distinct pH-triggered drug release performance of GNS@CaCO 3 /ICG implemented the tumor-targeted NIR fluorescence imaging. In addition, we monitored the bio-distribution and excretion pathway of GNS@CaCO 3 /ICG based on the NIR fluorescence from ICG and two-photon fluorescence and photoacoustic signal from GNSs, and the results proved that GNS@CaCO 3 /ICG had a great ability for tumor-specific and tumor-triggered drug release. We therefore conclude that the GNS@CaCO 3 /ICG holds great promise for clinical applications in anti-tumor therapy with tumor imaging or drug tracing.

  2. Time-Dependent Searches for Point Sources of Neutrinos with the 40-String and 22-String Configurations of IceCube

    NASA Technical Reports Server (NTRS)

    Stamatikos, M.

    2012-01-01

    This paper presents four searches for flaring sources of neutrinos using the IceCube neutrino telescope. For the first time, a search is performed over the entire parameter space of energy, direction and time with sensitivity to neutrino flares lasting between 20 microseconds and a year duration from astrophysical sources. Searches which integrate over time are less sensitive to flares because they are affected by a larger background of atmospheric neutrinos and muons that can be reduced by the use of additional timing information. Flaring sources considered here, such as active galactic nuclei, soft gamma ray repeaters and gamma-ray bursts, are promising candidate neutrino emitters. Two searches are untriggered in the sense that they look for any possible flare in the entire sky and from a predefined catalog of sources from which photon flares have been recorded. The other two searches are triggered by multi-wavelength information on flares from blazars and from a soft gamma-ray repeater. One triggered search uses lightcurves from Fermi-LAT which provides continuous monitoring. A second triggered search uses information where the flux states have been measured only for short periods of time near the flares. The untriggered searches use data taken by 40 strings of IceCube between Apr 5, 2008 and May 20, 2009. The triggered searches also use data taken by the 22-string configuration of IceCube operating between May 31, 2007 and Apr 5, 2008. The results from all four searches are compatible with a fluctuation of the background.

  3. Time-dependent Searches for Point Sources of Neutrinos with the 40-string and 22-string Configurations of IceCube

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brown, A. M.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; Demirörs, L.; Denger, T.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heinen, D.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Majumdar, P.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Ono, M.; Panknin, S.; Paul, L.; Pérez de los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schönwald, A.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stössl, A.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Stür, M.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; IceCube Collaboration

    2012-01-01

    This paper presents four searches for flaring sources of neutrinos using the IceCube neutrino telescope. For the first time, a search is performed over the entire parameter space of energy, direction, and time with sensitivity to neutrino flares lasting between 20 μs and a year duration from astrophysical sources. Searches that integrate over time are less sensitive to flares because they are affected by a larger background of atmospheric neutrinos and muons that can be reduced by the use of additional timing information. Flaring sources considered here, such as active galactic nuclei, soft gamma-ray repeaters, and gamma-ray bursts, are promising candidate neutrino emitters. Two searches are "untriggered" in the sense that they look for any possible flare in the entire sky and from a predefined catalog of sources from which photon flares have been recorded. The other two searches are triggered by multi-wavelength information on flares from blazars and from a soft gamma-ray repeater. One triggered search uses lightcurves from Fermi-LAT which provides continuous monitoring. A second triggered search uses information where the flux states have been measured only for short periods of time near the flares. The untriggered searches use data taken by 40 strings of IceCube between 2008 April 5 and 2009 May 20. The triggered searches also use data taken by the 22-string configuration of IceCube operating between 2007 May 31 and 2008 April 5. The results from all four searches are compatible with a fluctuation of the background.

  4. Time-Dependent Searches for Point Sources of Neutrinos with the 4O-String and 22-String Configurations of IceCube

    NASA Technical Reports Server (NTRS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; hide

    2012-01-01

    This paper presents four searches for flaring sources of neutrinos using the IceCube neutrino telescope. For the first time, a search is performed over the entire parameter space of energy, direction, and time with sensitivity to neutrino flares lasting between 20 micro-s and a year duration from astrophysical sources. Searches that integrate over time are less sensitive to flares because they are affected by a larger background of atmospheric neutrinos and muons that can be reduced by the use of additional timing information. Flaring sources considered here, such as active galactic nuclei, soft gamma-ray repeaters, and gamma-ray bursts, are promising candidate neutrino emitters. Two searches are "untriggered" in the sense that they look for any possible flare in the entire sky and from a predefined catalog of sources from which photon flares have been recorded. The other two searches are triggered by multi-wavelength information on flares from blazars and from a soft gamma-ray repeater. One triggered search uses lightcurves from Fermi-LAT which provides continuous monitoring. A second triggered search uses information where the flux states have been measured only for short periods of time near the flares. The untriggered searches use data taken by 40 strings of IceCube between 2008 April 5 and 2009 May 20. The triggered searches also use data taken by the 22-string configuration of IceCube operating between 2007 May 31 and 2008 April 5. The results from all four searches are compatible with a fluctuation of the background.

  5. Flexible trigger menu implementation on the Global Trigger for the CMS Level-1 trigger upgrade

    NASA Astrophysics Data System (ADS)

    MATSUSHITA, Takashi; CMS Collaboration

    2017-10-01

    The CMS experiment at the Large Hadron Collider (LHC) has continued to explore physics at the high-energy frontier in 2016. The integrated luminosity delivered by the LHC in 2016 was 41 fb-1 with a peak luminosity of 1.5 × 1034 cm-2s-1 and peak mean pile-up of about 50, all exceeding the initial estimations for 2016. The CMS experiment has upgraded its hardware-based Level-1 trigger system to maintain its performance for new physics searches and precision measurements at high luminosities. The Global Trigger is the final step of the CMS Level-1 trigger and implements a trigger menu, a set of selection requirements applied to the final list of objects from calorimeter and muon triggers, for reducing the 40 MHz collision rate to 100 kHz. The Global Trigger has been upgraded with state-of-the-art FPGA processors on Advanced Mezzanine Cards with optical links running at 10 GHz in a MicroTCA crate. The powerful processing resources of the upgraded system enable implementation of more algorithms at a time than previously possible, allowing CMS to be more flexible in how it handles the available trigger bandwidth. Algorithms for a trigger menu, including topological requirements on multi-objects, can be realised in the Global Trigger using the newly developed trigger menu specification grammar. Analysis-like trigger algorithms can be represented in an intuitive manner and the algorithms are translated to corresponding VHDL code blocks to build a firmware. The grammar can be extended in future as the needs arise. The experience of implementing trigger menus on the upgraded Global Trigger system will be presented.

  6. Frontal Cortex Activation Causes Rapid Plasticity of Auditory Cortical Processing

    PubMed Central

    Winkowski, Daniel E.; Bandyopadhyay, Sharba; Shamma, Shihab A.

    2013-01-01

    Neurons in the primary auditory cortex (A1) can show rapid changes in receptive fields when animals are engaged in sound detection and discrimination tasks. The source of a signal to A1 that triggers these changes is suspected to be in frontal cortical areas. How or whether activity in frontal areas can influence activity and sensory processing in A1 and the detailed changes occurring in A1 on the level of single neurons and in neuronal populations remain uncertain. Using electrophysiological techniques in mice, we found that pairing orbitofrontal cortex (OFC) stimulation with sound stimuli caused rapid changes in the sound-driven activity within A1 that are largely mediated by noncholinergic mechanisms. By integrating in vivo two-photon Ca2+ imaging of A1 with OFC stimulation, we found that pairing OFC activity with sounds caused dynamic and selective changes in sensory responses of neural populations in A1. Further, analysis of changes in signal and noise correlation after OFC pairing revealed improvement in neural population-based discrimination performance within A1. This improvement was frequency specific and dependent on correlation changes. These OFC-induced influences on auditory responses resemble behavior-induced influences on auditory responses and demonstrate that OFC activity could underlie the coordination of rapid, dynamic changes in A1 to dynamic sensory environments. PMID:24227723

  7. Surface-enhanced Raman spectroscopic study of p-aminothiophenol.

    PubMed

    Huang, Yi-Fan; Wu, De-Yin; Zhu, Hong-Ping; Zhao, Liu-Bin; Liu, Guo-Kun; Ren, Bin; Tian, Zhong-Qun

    2012-06-28

    p-aminothiophenol (PATP) is an important molecule for surface-enhanced Raman spectroscopy (SERS). It can strongly interact with metallic SERS substrates and produce very strong SERS signals. It is a molecule that has often been used for mechanistic studies of the SERS mechanism as the photon-driven charge transfer (CT) mechanism is believed to be present for this molecule. Recently, a hot debate over the SERS behavior of PATP was triggered by our finding that PATP can be oxidatively transformed into 4,4'-dimercaptoazobenzene (DMAB), which gives a SERS spectra of so-called "b2 modes". In this perspective, we will give a general overview of the SERS mechanism and the current status of SERS studies on PATP. We will then demonstrate with our experimental and theoretical evidence that it is DMAB which contributes to the characteristic SERS behavior in the SERS spectra of PATP and analyze some important experimental phenomena in the framework of the surface reaction instead of the contribution "b2 modes". We will then point out the existing challenges of the present system. A clear understanding of the reaction mechanism for nitrobenzene or aromatic benzene will be important to not only understand the SERS mechanism but to also provide an economic way of producing azo dyes with a very high selectivity and conversion rate.

  8. The Third Swift Burst Alert Telescope Gamma-Ray Burst Catalog

    NASA Astrophysics Data System (ADS)

    Lien, Amy; Sakamoto, Takanori; Barthelmy, Scott D.; Baumgartner, Wayne H.; Cannizzo, John K.; Chen, Kevin; Collins, Nicholas R.; Cummings, Jay R.; Gehrels, Neil; Krimm, Hans A.; Markwardt, Craig. B.; Palmer, David M.; Stamatikos, Michael; Troja, Eleonora; Ukwatta, T. N.

    2016-09-01

    To date, the Burst Alert Telescope (BAT) onboard Swift has detected ˜1000 gamma-ray bursts (GRBs), of which ˜360 GRBs have redshift measurements, ranging from z = 0.03 to z = 9.38. We present the analyses of the BAT-detected GRBs for the past ˜11 years up through GRB 151027B. We report summaries of both the temporal and spectral analyses of the GRB characteristics using event data (I.e., data for each photon within approximately 250 s before and 950 s after the BAT trigger time), and discuss the instrumental sensitivity and selection effects of GRB detections. We also explore the GRB properties with redshift when possible. The result summaries and data products are available at http://swift.gsfc.nasa.gov/results/batgrbcat/index.html. In addition, we perform searches for GRB emissions before or after the event data using the BAT survey data. We estimate the false detection rate to be only one false detection in this sample. There are 15 ultra-long GRBs (˜2% of the BAT GRBs) in this search with confirmed emission beyond ˜1000 s of event data, and only two GRBs (GRB 100316D and GRB 101024A) with detections in the survey data prior to the starting of event data.

  9. THE THIRD SWIFT BURST ALERT TELESCOPE GAMMA-RAY BURST CATALOG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lien, Amy; Baumgartner, Wayne H.; Cannizzo, John K.

    2016-09-20

    To date, the Burst Alert Telescope (BAT) onboard Swift has detected ∼1000 gamma-ray bursts (GRBs), of which ∼360 GRBs have redshift measurements, ranging from z = 0.03 to z = 9.38. We present the analyses of the BAT-detected GRBs for the past ∼11 years up through GRB 151027B. We report summaries of both the temporal and spectral analyses of the GRB characteristics using event data (i.e., data for each photon within approximately 250 s before and 950 s after the BAT trigger time), and discuss the instrumental sensitivity and selection effects of GRB detections. We also explore the GRB propertiesmore » with redshift when possible. The result summaries and data products are available at http://swift.gsfc.nasa.gov/results/batgrbcat/index.html. In addition, we perform searches for GRB emissions before or after the event data using the BAT survey data. We estimate the false detection rate to be only one false detection in this sample. There are 15 ultra-long GRBs (∼2% of the BAT GRBs) in this search with confirmed emission beyond ∼1000 s of event data, and only two GRBs (GRB 100316D and GRB 101024A) with detections in the survey data prior to the starting of event data.« less

  10. Ammonia triggers neuronal disinhibition and seizures by impairing astrocyte potassium buffering

    PubMed Central

    Thrane, Vinita Rangroo; Thrane, Alexander S; Wang, Fushun; Cotrina, Maria L; Smith, Nathan A; Chen, Michael; Xu, Qiwu; Kang, Ning; Fujita, Takumi; Nagelhus, Erlend A; Nedergaard, Maiken

    2013-01-01

    Ammonia is a ubiquitous waste product of protein metabolism that can accumulate in numerous metabolic disorders, causing neurological dysfunction ranging from cognitive impairment to tremor, ataxia, seizures, coma and death1. The brain is especially vulnerable to ammonia as it readily crosses the blood-brain barrier in its gaseous form, NH3, and rapidly saturates its principal removal pathway located in astrocytes2. Thus, we wanted to determine how astrocytes contribute to the initial deterioration of neurological functions characteristic of hyperammonemia in vivo. Using a combination of two-photon imaging and electrophysiology in awake head-restrained mice, we show that ammonia rapidly compromises astrocyte potassium buffering, increasing extracellular potassium concentration and overactivating the Na+-K+-2Cl− cotransporter isoform 1 (NKCC1) in neurons. The consequent depolarization of the neuronal GABA reversal potential (EGABA) selectively impairs cortical inhibitory networks. Genetic deletion of NKCC1 or inhibition of it with the clinically used diuretic bumetanide potently suppresses ammonia-induced neurological dysfunction. We did not observe astrocyte swelling or brain edema in the acute phase, calling into question current concepts regarding the neurotoxic effects of ammonia3,4. Instead, our findings identify failure of potassium buffering in astrocytes as a crucial mechanism in ammonia neurotoxicity and demonstrate the therapeutic potential of blocking this pathway by inhibiting NKCC1. PMID:24240184

  11. Vacancy cascades in small molecules following x-ray inner shell photoionization

    NASA Astrophysics Data System (ADS)

    Ray, D.; Dunford, R. W.; Southworth, S. H.; Kanter, E. P.; Doumy, G.; Gao, Y.; Ho, P. J.; Picon, A.

    2014-05-01

    We are investigating molecular effects in vacancy cascades of small molecules containing heavy atoms - IBr, Br2 and CH2BrI - following K-shell ionization. In addition to fundamental interest in the physics of such decay processes, there are practical applications such as medical treatments that use energetic fragmentation of iodinated compounds with high energy x-rays to selectively treat tumorous cells. Other biological applications are also promising. We utilize the tunable monochromatic x-ray beam at the Advanced Photon Source to trigger K-shell photoionization of Br and I, and measure charge distributions and the kinetic energies released to the fragment ions. A newly designed detection device allows us to do multi-fold coincidence measurements involving momentum imaging of all the ion fragments with very high detection efficiency in coincidence with x-ray fluorescence detection. By comparing the molecular fragmentation probabilities and the kinetic energies released in Br2, IBr and CH2BrI we aim to gain understanding of the fragmentation mechanism as a function of the bond distance between I and Br. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Dept of Energy, Contract DE-AC02-06CH11357.

  12. 47 CFR 27.1168 - Triggering a Reimbursement Obligation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... AWS entity or MSS/ATC entity has triggered a cost-sharing obligation and therefore must pay an AWS... co-channel with the licensed AWS band(s) of the AWS entity or the selected assignment of the MSS operator that seeks and obtains ATC authority (see § 25.149(a)(2)(i) of this chapter); (2) An AWS relocator...

  13. 47 CFR 27.1168 - Triggering a Reimbursement Obligation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... AWS entity or MSS/ATC entity has triggered a cost-sharing obligation and therefore must pay an AWS... co-channel with the licensed AWS band(s) of the AWS entity or the selected assignment of the MSS operator that seeks and obtains ATC authority (see § 25.149(a)(2)(i) of this chapter); (2) An AWS relocator...

  14. Optical dosimetry probes to validate Monte Carlo and empirical-method-based NIR dose planning in the brain.

    PubMed

    Verleker, Akshay Prabhu; Shaffer, Michael; Fang, Qianqian; Choi, Mi-Ran; Clare, Susan; Stantz, Keith M

    2016-12-01

    A three-dimensional photon dosimetry in tissues is critical in designing optical therapeutic protocols to trigger light-activated drug release. The objective of this study is to investigate the feasibility of a Monte Carlo-based optical therapy planning software by developing dosimetry tools to characterize and cross-validate the local photon fluence in brain tissue, as part of a long-term strategy to quantify the effects of photoactivated drug release in brain tumors. An existing GPU-based 3D Monte Carlo (MC) code was modified to simulate near-infrared photon transport with differing laser beam profiles within phantoms of skull bone (B), white matter (WM), and gray matter (GM). A novel titanium-based optical dosimetry probe with isotropic acceptance was used to validate the local photon fluence, and an empirical model of photon transport was developed to significantly decrease execution time for clinical application. Comparisons between the MC and the dosimetry probe measurements were on an average 11.27%, 13.25%, and 11.81% along the illumination beam axis, and 9.4%, 12.06%, 8.91% perpendicular to the beam axis for WM, GM, and B phantoms, respectively. For a heterogeneous head phantom, the measured % errors were 17.71% and 18.04% along and perpendicular to beam axis. The empirical algorithm was validated by probe measurements and matched the MC results (R20.99), with average % error of 10.1%, 45.2%, and 22.1% relative to probe measurements, and 22.6%, 35.8%, and 21.9% relative to the MC, for WM, GM, and B phantoms, respectively. The simulation time for the empirical model was 6 s versus 8 h for the GPU-based Monte Carlo for a head phantom simulation. These tools provide the capability to develop and optimize treatment plans for optimal release of pharmaceuticals in the treatment of cancer. Future work will test and validate these novel delivery and release mechanisms in vivo.

  15. Impact of anti-charge sharing on the zero-frequency detective quantum efficiency of CdTe-based photon counting detector system: cascaded systems analysis and experimental validation

    NASA Astrophysics Data System (ADS)

    Ji, Xu; Zhang, Ran; Chen, Guang-Hong; Li, Ke

    2018-05-01

    Inter-pixel communication and anti-charge sharing (ACS) technologies have been introduced to photon counting detector (PCD) systems to address the undesirable charge sharing problem. In addition to improving the energy resolution of PCD, ACS may also influence other aspects of PCD performance such as detector multiplicity (i.e. the number of pixels triggered by each interacted photon) and detective quantum efficiency (DQE). In this work, a theoretical model was developed to address how ACS impacts the multiplicity and zero-frequency DQE [DQE(0)] of PCD systems. The work focused on cadmium telluride (CdTe)-based PCD that often involves the generation and transport of K-fluorescence photons. Under the parallel cascaded systems analysis framework, the theory takes both photoelectric and scattering effects into account, and it also considers both the reabsorption and escape of photons. In a new theoretical treatment of ACS, it was considered as a modified version of the conventional single pixel (i.e. non-ACS) mode, but with reduced charge spreading distance and K-fluorescence travel distance. The proposed theoretical model does not require prior knowledge of the detailed ACS implementation method for each specific PCD, and its parameters can be experimentally determined using a radioisotope without invoking any Monte-Carlo simulation. After determining the model parameters, independent validation experiments were performed using a diagnostic x-ray tube and four different polychromatic beams (from 50 to 120 kVp). Both the theoretical and experimental results demonstrate that ACS increased the first and second moments of multiplicity for a majority of the x-ray energy and threshold levels tested, except when the threshold level was much lower than the x-ray energy level. However, ACS always improved DQE(0) at all energy and threshold levels tested.

  16. On the way to the creation of next generation photoactive materials.

    PubMed

    Emeline, A V; Kuznetsov, V N; Ryabchuk, V K; Serpone, N

    2012-11-01

    Transition from first- to second-generation photocatalysts has followed the notion that greater absorption of light in the visible region would yield greater spectral sensitivity and greater photoactivity. Though a promising strategy, in practice, it did not meet expectation because of various side issues, which in many cases has led to loss of photoactivity and chemical reactivity. This article examines some earlier notions that arose from applications of different metal oxides (e.g., TiO(2), ZnO, MgO among others) that made these oxides good photocatalysts in many processes. Phenomena that proved relevant in developing next generation photoactive materials are considered: the dependence of the activity of photocatalysts on the band gap energy, the spectral variations of the activity of photoactive materials, and the spectral variations of selectivity of photoactive materials. The tendency to decrease the energy of actinic photons through doping in forming second-generation photocatalysts is completely opposite the fundamental observation in first-generation photocatalysts whereby the activity increased with increasing band gap energy. Extension of spectral sensitivity of second-generation photoactive materials also caused a decrease of their photoactivity; hence, some notions are reconsidered to produce next(third) generation photoactive materials. The article proposes the following concepts to develop next generation photocatalysts: (1) multi(two)-photon excitation of photoactive materials with lower energy photons to achieve the same excited state as with higher energy photons, (2) utilization of heterojunctions to drive electronic processes in the desired direction, and (3) selective photoexcitation of localized electronic states to gain better selectivity.

  17. EDITORIAL: Selected papers from Photon06

    NASA Astrophysics Data System (ADS)

    Jones, Julian D. C.

    2007-06-01

    Photon06 is the fourth in a biennial series of events that began in 2000 and has grown to become the UK's largest optics research meeting. Photon06 is a set of co-located meetings, including the Institute of Physics conferences Optics and Photonics and Quantum Electronics and Photonics QEP-17, plus an exhibition, and the Industry Technology Programme. Photon06 is organized by the UK Consortium for Photonics and Optics (UKCPO), whose members comprise all organizations that represent the UK's optics community, whether learned societies, professional institutions, trade associations or regional special interest groups. In hosting the Photon series it has been the objective of the UKCPO to provide a single forum for UK optics. Photon06 was held at the University of Manchester, 4 7 September 2006, and was attended by around 500 people. Attendance was predominantly from the UK, although international representation is growing steadily. Within the science programme, over 300 papers were presented. The purpose of this special issue is to present a representative selection of the research reported at Photon06. On behalf of the conference, I am grateful to the editors of Journal of Optics A for the opportunity to provide an archival record of a sample of Photon06, as they did for Photon04. Once again, it turns out that the majority of the papers in the special issue follow the theme of measurement and instrumentation. These are subjects where the conference and the UK community have been traditionally strong, and continue to be so, spanning the interests of the Optical Group and the Instrument Science and Technology Group of the Institute of Physics, and the Fringe Analysis Special Interest Group. There can be few areas of physics so diverse in application, and of such immediate value in the wider world. The range of applications covered in this issue is illustrated by two of the papers, that by Blazej et al dealing with photon counting for altimetry in planetary exploration, and that by Sheridan et al on spectral techniques for measuring fading in sliced, cured ham. Applied spectroscopy features strongly, partly driven by the needs of society for more intensive environmental monitoring, e.g. in vehicle emissions (Dooly et al). Imaging has always been an intrinsic and natural theme in applied optics, and I recommend the article `The optics of microscopy' by Sheppard as a comprehensive treatment of an important subject. Fibre optic sensors continue to be a strong theme, with a notable emphasis on in-fibre gratings for in situ monitoring (Ogin et al and Buggy et al). An established feature of the Photon conference is a meeting of the Fringe Analysis Special Interest Group, concentrating on full-field measurement techniques such as speckle pattern interferometry and shape measurement by structured light. A representative sample of contributions in this issue are on that subject (Rajoub et al, Zhang et al and Somers et al). In addition to the papers on optical instrumentation, there are others on laser material processing. One is struck by how sophisticated the subject has become, with one paper concerned with using surface modification by ps pulses (Gakovic et al), and another with two-photon ablation techniques (Fischer et al). This issue is a small sample, but a very worthwhile example of what Photon06 had to offer. As well as its intrinsic interest, I hope that it will inspire readers to attend Photon08, an event for which provisional plans are in hand, to be held in Edinburgh at the end of August 2008.

  18. High-symmetry organic scintillator systems

    DOEpatents

    Feng, Patrick L.

    2018-02-06

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  19. High-symmetry organic scintillator systems

    DOEpatents

    Feng, Patrick L.

    2017-07-18

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  20. High-symmetry organic scintillator systems

    DOEpatents

    Feng, Patrick L.

    2017-06-14

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  1. High-symmetry organic scintillator systems

    DOEpatents

    Feng, Patrick L.

    2017-09-05

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  2. Nonreciprocal lasing in topological cavities of arbitrary geometries

    NASA Astrophysics Data System (ADS)

    Bahari, Babak; Ndao, Abdoulaye; Vallini, Felipe; El Amili, Abdelkrim; Fainman, Yeshaiahu; Kanté, Boubacar

    2017-11-01

    Resonant cavities are essential building blocks governing many wave-based phenomena, but their geometry and reciprocity fundamentally limit the integration of optical devices. We report, at telecommunication wavelengths, geometry-independent and integrated nonreciprocal topological cavities that couple stimulated emission from one-way photonic edge states to a selected waveguide output with an isolation ratio in excess of 10 decibels. Nonreciprocity originates from unidirectional edge states at the boundary between photonic structures with distinct topological invariants. Our experimental demonstration of lasing from topological cavities provides the opportunity to develop complex topological circuitry of arbitrary geometries for the integrated and robust generation and transport of photons in classical and quantum regimes.

  3. A new xanthene-based two-photon fluorescent probe for the imaging of 1,4-dithiothreitol (DTT) in living cells.

    PubMed

    Wang, Chao; Dong, Baoli; Kong, Xiuqi; Zhang, Nan; Song, Wenhui; Lin, Weiying

    2018-06-21

    1,4-Dithiothreitol (DTT) has wide applications in cell biology and biochemistry. Development of effective methods for monitoring DTT in biological systems is important for the safe handling and study of toxicity to humans. Herein, we describe a two-photon fluorescence probe (Rh-DTT) to detect DTT in living systems for the first time. Rh-DTT showed high selectivity and sensitivity to DTT. Rh-DTT can be successfully used for the two-photon imaging of DTT in living cells, and also can detect DTT in living tissues and mice. © 2018 John Wiley & Sons, Ltd.

  4. Selective tuning of high-Q silicon photonic crystal nanocavities via laser-assisted local oxidation.

    PubMed

    Chen, Charlton J; Zheng, Jiangjun; Gu, Tingyi; McMillan, James F; Yu, Mingbin; Lo, Guo-Qiang; Kwong, Dim-Lee; Wong, Chee Wei

    2011-06-20

    We examine the cavity resonance tuning of high-Q silicon photonic crystal heterostructures by localized laser-assisted thermal oxidation using a 532 nm continuous wave laser focused to a 2.5 μm radius spot-size. The total shift is consistent with the parabolic rate law. A tuning range of up to 8.7 nm is achieved with ∼ 30 mW laser powers. Over this tuning range, the cavity Qs decreases from 3.2×10(5) to 1.2×10(5). Numerical simulations model the temperature distributions in the silicon photonic crystal membrane and the cavity resonance shift from oxidation.

  5. Micro-pixelation and color mixing in biological photonic structures (presentation video)

    NASA Astrophysics Data System (ADS)

    Bartl, Michael H.; Nagi, Ramneet K.

    2014-03-01

    The world of insects displays myriad hues of coloration effects produced by elaborate nano-scale architectures built into wings and exoskeleton. For example, we have recently found many weevils possess photonic architectures with cubic lattices. In this talk, we will present high-resolution three-dimensional reconstructions of weevil photonic structures with diamond and gyroid lattices. Moreover, by reconstructing entire scales we found arrays of single-crystalline domains, each oriented such that only selected crystal faces are visible to an observer. This pixel-like arrangement is key to the angle-independent coloration typical of weevils—a strategy that could enable a new generation of coating technologies.

  6. High-symmetry organic scintillator systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Patrick L.

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based onmore » the pulse shapes of the output signals.« less

  7. Characterization of the Exradin W1 scintillator for use in radiotherapy.

    PubMed

    Carrasco, P; Jornet, N; Jordi, O; Lizondo, M; Latorre-Musoll, A; Eudaldo, T; Ruiz, A; Ribas, M

    2015-01-01

    To evaluate the main characteristics of the Exradin W1 scintillator as a dosimeter and to estimate measurement uncertainties when used in radiotherapy. We studied the calibration procedure, energy and modality dependence, short-term repeatability, dose-response linearity, angular dependence, temperature dependence, time to reach thermal equilibrium, dose-rate dependence, water-equivalent depth of the effective measurement point, and long-term stability. An uncertainty budget was derived for relative and absolute dose measurements in photon and electron beams. Exradin W1 showed a temperature dependence of -0.225% °C(-1). The loss of sensitivity with accumulated dose decreased with use. The sensitivity of Exradin W1 was energy independent for high-energy photon and electron beams. All remaining dependencies of Exradin W1 were around or below 0.5%, leading to an uncertainty budget of about 1%. When a dual channel electrometer with automatic trigger was not used, timing effects became significant, increasing uncertainties by one order of magnitude. The Exradin W1 response is energy independent for high energy x-rays and electron beams, and only one calibration coefficient is needed. A temperature correction factor should be applied to keep uncertainties around 2% for absolute dose measurements and around 1% for relative measurements in high-energy photon and electron beams. The Exradin W1 scintillator is an excellent alternative to detectors such as diodes for relative dose measurements.

  8. Digital front end electronics design for the EUSO photon detector

    NASA Astrophysics Data System (ADS)

    Musico, P.; Pallavicini, M.; Petrolini, A.; Pratolongo, F.

    2003-09-01

    In this paper we will present the design status of the Digital Front End Electronic system (DFEE), that will be used for the EUSO photon detector. The DFEE is able to count the single photoelectrons coming form the detector for a given time period, store the numbers in a memory buffer and read them out after a trigger, using a serial communication line. Because of space, mass and power consumption constraints, the system will be implemented in an ASIC using a deep submicron technology. The actual design follows the original ideas of the system, though adding several new functionalities. A fully functional prototype chip has been submitted for fabrication in fall 2002. Extensive tests will be performed on it both with bench instrumentations and with the real sensor (the multi anode photomultiplier Hamamatsu R7600-M64), expecting significant results by early Summer 2003. Future work is needed to convert the design into a more robust RAD-hard technology, suitable for space applications and to include in the final die an additional circuit used to optimize the performances at high photons rates: the Analog Front End Electronics (AFEE). Moreover the base board used to house the multi anode photomultipliers is presented: it is the back-bone of the microcell and will be the basic block used to build up the EUSO focal surface.

  9. Imaging immune response of skin mast cells in vivo with two-photon microscopy

    NASA Astrophysics Data System (ADS)

    Li, Chunqiang; Pastila, Riikka K.; Lin, Charles P.

    2012-02-01

    Intravital multiphoton microscopy has provided insightful information of the dynamic process of immune cells in vivo. However, the use of exogenous labeling agents limits its applications. There is no method to perform functional imaging of mast cells, a population of innate tissue-resident immune cells. Mast cells are widely recognized as the effector cells in allergy. Recently their roles as immunoregulatory cells in certain innate and adaptive immune responses are being actively investigated. Here we report in vivo mouse skin mast cells imaging with two-photon microscopy using endogenous tryptophan as the fluorophore. We studied the following processes. 1) Mast cells degranulation, the first step in the mast cell activation process in which the granules are released into peripheral tissue to trigger downstream reactions. 2) Mast cell reconstitution, a procedure commonly used to study mast cells functioning by comparing the data from wild type mice, mast cell-deficient mice, and mast-cell deficient mice reconstituted with bone marrow-derived mast cells (BMMCs). Imaging the BMMCs engraftment in tissue reveals the mast cells development and the efficiency of BMMCs reconstitution. We observed the reconstitution process for 6 weeks in the ear skin of mast cell-deficient Kit wsh/ w-sh mice by two-photon imaging. Our finding is the first instance of imaging mast cells in vivo with endogenous contrast.

  10. Performance verification and system integration tests of the pulse shape processor for the soft x-ray spectrometer onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Takeda, Sawako; Tashiro, Makoto S.; Ishisaki, Yoshitaka; Tsujimoto, Masahiro; Seta, Hiromi; Shimoda, Yuya; Yamaguchi, Sunao; Uehara, Sho; Terada, Yukikatsu; Fujimoto, Ryuichi; Mitsuda, Kazuhisa

    2014-07-01

    The soft X-ray spectrometer (SXS) aboard ASTRO-H is equipped with dedicated digital signal processing units called pulse shape processors (PSPs). The X-ray microcalorimeter system SXS has 36 sensor pixels, which are operated at 50 mK to measure heat input of X-ray photons and realize an energy resolution of 7 eV FWHM in the range 0.3-12.0 keV. Front-end signal processing electronics are used to filter and amplify the electrical pulse output from the sensor and for analog-to-digital conversion. The digitized pulses from the 36 pixels are multiplexed and are sent to the PSP over low-voltage differential signaling lines. Each of two identical PSP units consists of an FPGA board, which assists the hardware logic, and two CPU boards, which assist the onboard software. The FPGA board triggers at every pixel event and stores the triggering information as a pulse waveform in the installed memory. The CPU boards read the event data to evaluate pulse heights by an optimal filtering algorithm. The evaluated X-ray photon data (including the pixel ID, energy, and arrival time information) are transferred to the satellite data recorder along with event quality information. The PSP units have been developed and tested with the engineering model (EM) and the flight model. Utilizing the EM PSP, we successfully verified the entire hardware system and the basic software design of the PSPs, including their communication capability and signal processing performance. In this paper, we show the key metrics of the EM test, such as accuracy and synchronicity of sampling clocks, event grading capability, and resultant energy resolution.

  11. Photonic integrated circuit implementation of a sub-GHz-selectivity frequency comb filter for optical clock multiplication.

    PubMed

    Geng, Zihan; Xie, Yiwei; Zhuang, Leimeng; Burla, Maurizio; Hoekman, Marcel; Roeloffzen, Chris G H; Lowery, Arthur J

    2017-10-30

    We report a photonic integrated circuit implementation of an optical clock multiplier, or equivalently an optical frequency comb filter. The circuit comprises a novel topology of a ring-resonator-assisted asymmetrical Mach-Zehnder interferometer in a Sagnac loop, providing a reconfigurable comb filter with sub-GHz selectivity and low complexity. A proof-of-concept device is fabricated in a high-index-contrast stoichiometric silicon nitride (Si 3 N 4 /SiO 2 ) waveguide, featuring low loss, small size, and large bandwidth. In the experiment, we show a very narrow passband for filters of this kind, i.e. a -3-dB bandwidth of 0.6 GHz and a -20-dB passband of 1.2 GHz at a frequency interval of 12.5 GHz. As an application example, this particular filter shape enables successful demonstrations of five-fold repetition rate multiplication of optical clock signals, i.e. from 2.5 Gpulses/s to 12.5 Gpulses/s and from 10 Gpulses/s to 50 Gpulses/s. This work addresses comb spectrum processing on an integrated platform, pointing towards a device-compact solution for optical clock multipliers (frequency comb filters) which have diverse applications ranging from photonic-based RF spectrum scanners and photonic radars to GHz-granularity WDM switches and LIDARs.

  12. Analysis of an optically controlled photonic switch.

    PubMed

    Attard, A E

    1999-05-20

    The principle that the coupling of light between two fiber waveguides can be controlled by the resonant interference of a third waveguide has been developed [Attard, Appl. Opt. 37, 2296-2302 (1998)]. Here significant details concerning the operation of a photonic switch are obtained, and a more complete analysis is presented. Multiple-resonant conditions are identified for slab and fiber control waveguides at large indices of refraction. Thus a selection of materials with an appropriate refractive index and a Kerr coefficient is rendered more easily. Furthermore it is shown that the light used to control the index of refraction in the control waveguide does not enter the output of the photonic switch but remains confined to the control waveguide, for either a slab or a multimode fiber control waveguide. Spatial fluctuations of the control light beam in the control waveguide do not affect the operation of the photonic switch. Tolerances have been determined for the spacing between the control waveguide and the photonic coupler and also for the index of refraction of the control waveguide.

  13. Control of coherent information via on-chip photonic–phononic emitter–receivers

    DOE PAGES

    Shin, Heedeuk; Cox, Jonathan A.; Jarecki, Robert; ...

    2015-03-05

    We report that rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon–phonon transduction,more » which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics—which supports GHz frequencies—we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes.« less

  14. Self-Assembled Chiral Photonic Crystals from a Colloidal Helix Racemate.

    PubMed

    Lei, Qun-Li; Ni, Ran; Ma, Yu-Qiang

    2018-06-20

    Chiral crystals consisting of microhelices have many optical properties, while presently available fabrication processes limit their large-scale applications in photonic devices. Here, by using a simplified simulation method, we investigate a bottom-up self-assembly route to build up helical crystals from the smectic monolayer of a colloidal helix racemate. With increasing the density, the system undergoes an entropy-driven cocrystallization by forming crystals of various symmetries with different helical shapes. In particular, we identify two crystals of helices arranged in binary honeycomb and square lattices, which are essentially composed of two sets of opposite-handed chiral crystals. Photonic calculations show that these chiral structures can have large complete photonic band gaps. In addition, in the self-assembled chiral square crystal, we also find dual polarization band gaps that selectively forbid the propagation of circularly polarized light of a specific handedness along the helical axis direction. The self-assembly process in our proposed system is robust, suggesting possibilities of using chiral colloids to assemble photonic metamaterials.

  15. Controlling the spectrum of photons generated on a silicon nanophotonic chip

    PubMed Central

    Kumar, Ranjeet; Ong, Jun Rong; Savanier, Marc; Mookherjea, Shayan

    2014-01-01

    Directly modulated semiconductor lasers are widely used, compact light sources in optical communications. Semiconductors can also be used to generate nonclassical light; in fact, CMOS-compatible silicon chips can be used to generate pairs of single photons at room temperature. Unlike the classical laser, the photon-pair source requires control over a two-dimensional joint spectral intensity (JSI) and it is not possible to process the photons separately, as this could destroy the entanglement. Here we design a photon-pair source, consisting of planar lightwave components fabricated using CMOS-compatible lithography in silicon, which has the capability to vary the JSI. By controlling either the optical pump wavelength, or the temperature of the chip, we demonstrate the ability to select different JSIs, with a large variation in the Schmidt number. Such control can benefit high-dimensional communications where detector-timing constraints can be relaxed by realizing a large Schmidt number in a small frequency range. PMID:25410792

  16. Control of coherent information via on-chip photonic–phononic emitter–receivers

    PubMed Central

    Shin, Heedeuk; Cox, Jonathan A.; Jarecki, Robert; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T.

    2015-01-01

    Rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon–phonon transduction, which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics—which supports GHz frequencies—we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes. PMID:25740405

  17. Decoy-state quantum key distribution with more than three types of photon intensity pulses

    NASA Astrophysics Data System (ADS)

    Chau, H. F.

    2018-04-01

    The decoy-state method closes source security loopholes in quantum key distribution (QKD) using a laser source. In this method, accurate estimates of the detection rates of vacuum and single-photon events plus the error rate of single-photon events are needed to give a good enough lower bound of the secret key rate. Nonetheless, the current estimation method for these detection and error rates, which uses three types of photon intensities, is accurate up to about 1 % relative error. Here I report an experimentally feasible way that greatly improves these estimates and hence increases the one-way key rate of the BB84 QKD protocol with unbiased bases selection by at least 20% on average in realistic settings. The major tricks are the use of more than three types of photon intensities plus the fact that estimating bounds of the above detection and error rates is numerically stable, although these bounds are related to the inversion of a high condition number matrix.

  18. Pairing of near-ultraviolet solar cells with electrochromic windows for smart management of the solar spectrum

    NASA Astrophysics Data System (ADS)

    Davy, Nicholas C.; Sezen-Edmonds, Melda; Gao, Jia; Lin, Xin; Liu, Amy; Yao, Nan; Kahn, Antoine; Loo, Yueh-Lin

    2017-08-01

    Current smart window technologies offer dynamic control of the optical transmission of the visible and near-infrared portions of the solar spectrum to reduce lighting, heating and cooling needs in buildings and to improve occupant comfort. Solar cells harvesting near-ultraviolet photons could satisfy the unmet need of powering such smart windows over the same spatial footprint without competing for visible or infrared photons, and without the same aesthetic and design constraints. Here, we report organic single-junction solar cells that selectively harvest near-ultraviolet photons, produce open-circuit voltages eclipsing 1.6 V and exhibit scalability in power generation, with active layers (10 cm2) substantially larger than those typical of demonstration organic solar cells (0.04-0.2 cm2). Integration of these solar cells with a low-cost, polymer-based electrochromic window enables intelligent management of the solar spectrum, with near-ultraviolet photons powering the regulation of visible and near-infrared photons for natural lighting and heating purposes.

  19. Cancer diagnosis using a conventional x-ray fluorescence camera with a cadmium-telluride detector

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Enomoto, Toshiyuki; Hagiwara, Osahiko; Abudurexiti, Abulajiang; Sato, Koetsu; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2011-10-01

    X-ray fluorescence (XRF) analysis is useful for mapping various atoms in objects. Bremsstrahlung X-rays are selected using a 3.0 mm-thick aluminum filter, and these rays are absorbed by indium, cerium and gadolinium atoms in objects. Then XRF is produced from the objects, and photons are detected by a cadmium-telluride detector. The Kα photons are discriminated using a multichannel analyzer, and the number of photons is counted by a counter card. The objects are moved and scanned by an x-y stage in conjunction with a two-stage controller, and X-ray images obtained by atomic mapping are shown on a personal computer monitor. The scan steps of the x and y axes were both 2.5 mm, and the photon-counting time per mapping point was 0.5 s. We carried out atomic mapping using the X-ray camera, and Kα photons from cerium and gadolinium atoms were produced from cancerous regions in nude mice.

  20. Conventional X-ray fluorescence camera with a cadmium-telluride detector and its application to cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Enomoto, Toshiyuki; Sato, Eiichi; Abderyim, Purkhet; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Watanabe, Manabu; Nagao, Jiro; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2011-04-01

    X-ray fluorescence (XRF) analysis is useful for mapping various molecules in objects. Bremsstrahlung X-rays are selected using a 3.0-mm-thick aluminum filter, and these rays are absorbed by iodine, cerium, and gadolinium molecules in objects. Next, XRF is produced from the objects, and photons are detected by a cadmium-telluride detector. The Kα photons are discriminated using a multichannel analyzer, and the number of photons is counted by a counter card. The objects are moved and scanned by an x- y stage in conjunction with a two-stage controller, and X-ray images obtained by molecular mapping are shown on a personal computer monitor. The scan steps of x and y axes were both 2.5 mm, and the photon-counting time per mapping point was 0.5 s. We carried out molecular mapping using the X-ray camera, and Kα photons from cerium and gadolinium molecules were produced from cancerous regions in nude mice.

Top