Science.gov

Sample records for photonic crystal fibre

  1. Better photonic crystal fibres

    NASA Astrophysics Data System (ADS)

    Knight, J. C.

    2008-11-01

    The development of optical fibers with two-dimensional patterns of air holes running down their length has reinvigorated research in the field of fiber optics. It has greatly - and fundamentally - broadened the range of specialty optical fibers, by demonstrating that optical fibers can be more 'special" than previously thought. Applications of such special fibers have not been hard to find. Fibers with air cores have made it possible to deliver energetic femtosecond-scale optical pulses, transform limited, as solitons, using single-mode fiber. Other fibers with anomalous dispersion at visible wavelengths have spawned a new generation of single-mode optical supercontinuum sources, spanning visible and near-infrared wavelengths and based on compact pump sources. A third example is in the field of fiber lasers, where the use of photonic crystal fiber concepts has led to a new hybrid laser technology, in which the very high numerical aperture available using air holes have enabled fibers so short they are more naturally held straight than bent. However, commercial success demands more than just a fiber and an application. The useful properties of the fibers need to be optimized for the specific application. This tutorial will describe some of the basic physics and technology behind these photonic crystal fibers (PCF's), illustrated with some of the impressive demonstrations of the past 18 months.

  2. Helically twisted photonic crystal fibres.

    PubMed

    Russell, P St J; Beravat, R; Wong, G K L

    2017-02-28

    Recent theoretical and experimental work on helically twisted photonic crystal fibres (PCFs) is reviewed. Helical Bloch theory is introduced, including a new formalism based on the tight-binding approximation. It is used to explore and explain a variety of unusual effects that appear in a range of different twisted PCFs, including fibres with a single core and fibres with N cores arranged in a ring around the fibre axis. We discuss a new kind of birefringence that causes the propagation constants of left- and right-spinning optical vortices to be non-degenerate for the same order of orbital angular momentum (OAM). Topological effects, arising from the twisted periodic 'space', cause light to spiral around the fibre axis, with fascinating consequences, including the appearance of dips in the transmission spectrum and low loss guidance in coreless PCF. Discussing twisted fibres with a single off-axis core, we report that optical activity in a PCF is opposite in sign to that seen in a step-index fibre. Fabrication techniques are briefly described and emerging applications reviewed. The analytical results of helical Bloch theory are verified by an extensive series of 'numerical experiments' based on finite-element solutions of Maxwell's equations in a helicoidal frame.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Authors.

  3. Helically twisted photonic crystal fibres

    PubMed Central

    Beravat, R.; Wong, G. K. L.

    2017-01-01

    Recent theoretical and experimental work on helically twisted photonic crystal fibres (PCFs) is reviewed. Helical Bloch theory is introduced, including a new formalism based on the tight-binding approximation. It is used to explore and explain a variety of unusual effects that appear in a range of different twisted PCFs, including fibres with a single core and fibres with N cores arranged in a ring around the fibre axis. We discuss a new kind of birefringence that causes the propagation constants of left- and right-spinning optical vortices to be non-degenerate for the same order of orbital angular momentum (OAM). Topological effects, arising from the twisted periodic ‘space’, cause light to spiral around the fibre axis, with fascinating consequences, including the appearance of dips in the transmission spectrum and low loss guidance in coreless PCF. Discussing twisted fibres with a single off-axis core, we report that optical activity in a PCF is opposite in sign to that seen in a step-index fibre. Fabrication techniques are briefly described and emerging applications reviewed. The analytical results of helical Bloch theory are verified by an extensive series of ‘numerical experiments’ based on finite-element solutions of Maxwell's equations in a helicoidal frame. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069771

  4. Helically twisted photonic crystal fibres

    NASA Astrophysics Data System (ADS)

    Russell, P. St. J.; Beravat, R.; Wong, G. K. L.

    2017-02-01

    Recent theoretical and experimental work on helically twisted photonic crystal fibres (PCFs) is reviewed. Helical Bloch theory is introduced, including a new formalism based on the tight-binding approximation. It is used to explore and explain a variety of unusual effects that appear in a range of different twisted PCFs, including fibres with a single core and fibres with N cores arranged in a ring around the fibre axis. We discuss a new kind of birefringence that causes the propagation constants of left- and right-spinning optical vortices to be non-degenerate for the same order of orbital angular momentum (OAM). Topological effects, arising from the twisted periodic `space', cause light to spiral around the fibre axis, with fascinating consequences, including the appearance of dips in the transmission spectrum and low loss guidance in coreless PCF. Discussing twisted fibres with a single off-axis core, we report that optical activity in a PCF is opposite in sign to that seen in a step-index fibre. Fabrication techniques are briefly described and emerging applications reviewed. The analytical results of helical Bloch theory are verified by an extensive series of `numerical experiments' based on finite-element solutions of Maxwell's equations in a helicoidal frame. This article is part of the themed issue 'Optical orbital angular momentum'.

  5. Polymer photonic crystal fibre for sensor applications

    NASA Astrophysics Data System (ADS)

    Webb, David J.

    2010-04-01

    Polymer photonic crystal fibres combine two relatively recent developments in fibre technology. On the one hand, polymer optical fibre has very different physical and chemical properties to silica. In particular, polymer fibre has a much smaller Young's modulus than silica, can survive higher strains, is amenable to organic chemical processing and, depending on the constituent polymer, may absorb water. All of these features can be utilised to extend the range of applications of optical fibre sensors. On the other hand, the photonic crystal - or microstructured - geometry also offers advantages: flexibility in the fibre design including control of the dispersion properties of core and cladding modes, the possibility of introducing minute quantities of analyte directly into the electric field of the guided light and enhanced pressure sensitivity. When brought together these two technologies provide interesting possibilities for fibre sensors, particularly when combined with fibre Bragg or long period gratings. This paper discusses the features of polymer photonic crystal fibre relevant to sensing and provides examples of the applications demonstrated to date.

  6. Mode conversion in magneto photonic crystal fibre

    NASA Astrophysics Data System (ADS)

    otmani, Hamza; Bouchemat, Mohamed; Hocini, Abdesselam; Boumaza, Touraya; benmerkhi, ahlem

    2017-01-01

    The first concept of an integrated isolator was based on nonreciprocal TE-TM mode conversion, the nonreciprocal coupling between these modes is caused by the Faraday rotation if the magnetization is aligned along the z-axis, parallel to mode propagation. We propose to study this magneto-optical phenomenon, by the simulation of magneto photonic crystal fibre (MPCF), it consists of a periodic triangular lattice of air-holes filled with magnetic fluid which consists of magnetic nanoparticles into a BIG (Bismuth Iron Garnet) fibre. We simulated the influence of gyrotropy and the wavelength, and calculated Faraday rotation and modal birefringence. In this fibre the light is guided by internal total reflection, like classical fibres. However it was shown that they could function on a mode conversion much stronger than conventional fibres.

  7. Soft glass photonic crystal fibres and their applications

    NASA Astrophysics Data System (ADS)

    Buczyński, Ryszard; Klimczak, Mariusz; Pysz, Dariusz; Stepniewski, Grzegorz; Siwicki, Bartłomiej; Cimek, Jarosław; Kujawa, Ireneusz; Piechal, Bernard; Stepień, Ryszard

    2015-05-01

    Most of the research work related to photonic crystal fibres has to date been focused on silica based fibres. Only in the recent years has there been a fraction of research devoted to fibres based on soft glasses, since some of them offer interesting properties as significantly higher nonlinearity than silica glass and wide transparency in the infrared range. On the other hand, attenuation in those glasses is usually one or more orders of magnitude higher that in silica glass, which limits their application area due to limited length of the fibres, which can be practically used. We report on the development of single-mode photonic crystal fibres made of highly nonlinear lead-bismuth-gallate glass with a zero dispersion wavelength at 1460 nm and flat anomalous dispersion. A two-octave spanning supercontinuum in the range 700-3000 nm was generated in 2 cm of the fibre. In contrast to the silica glass, various oxide based soft glasses with large refractive index difference can jointly undergo multiple thermal processing steps without degradation. The use of two soft glasses gives additional degrees of freedom in the design of photonic crystal fibres. As a result, highly nonlinear fibres with unique dispersion characteristics can be obtained. Soft glass allow also development of fibres with complex subwavelength refractive index distribution inside core of the fibre. A highly birefringent fibre with anisotropic core composed of subwavelength glass layers ordered in a rectangular structure was developed and is demonstrated

  8. Flying particle sensors in hollow-core photonic crystal fibre

    NASA Astrophysics Data System (ADS)

    Bykov, D. S.; Schmidt, O. A.; Euser, T. G.; Russell, P. St. J.

    2015-07-01

    Optical fibre sensors make use of diverse physical effects to measure parameters such as strain, temperature and electric field. Here we introduce a new class of reconfigurable fibre sensor, based on a ‘flying-particle’ optically trapped inside a hollow-core photonic crystal fibre and illustrate its use in electric field and temperature sensing with high spatial resolution. The electric field distribution near the surface of a multi-element electrode is measured with a resolution of ∼100 μm by monitoring changes in the transmitted light signal due to the transverse displacement of a charged silica microparticle trapped within the hollow core. Doppler-based velocity measurements are used to map the gas viscosity, and thus the temperature, along a hollow-core photonic crystal fibre. The flying-particle approach represents a new paradigm in fibre sensors, potentially allowing multiple physical quantities to be mapped with high positional accuracy over kilometre-scale distances.

  9. [INVITED] New perspectives in photonic crystal fibre sensors

    NASA Astrophysics Data System (ADS)

    Villatoro, Joel; Zubia, Joseba

    2016-04-01

    In this paper we analyse the recent advances on sensors based on photonic crystal fibres(PCFs) and discuss their advantages and disadvantages. Some innovative approaches to overcome the main limitations of PCF sensors are also analysed. In addition, we discuss some opportunities and challenges in PCF sensing for the coming years.

  10. Hollow-core photonic-crystal fibres for laser dentistry.

    PubMed

    Konorov, Stanislav O; Mitrokhin, Vladimir P; Fedotov, Andrei B; Sidorov-Biryukov, Dmitrii A; Beloglazov, Valentin I; Skibina, Nina B; Wintner, Ernst; Scalora, Michael; Zheltikov, Aleksei M

    2004-04-07

    Hollow-core photonic-crystal fibres (PCFs) for the delivery of high-fluence laser radiation capable of ablating tooth enamel are developed. Sequences of picosecond pulses of 1.06 microm Nd:YAG-laser radiation with a total energy of about 2 mJ are transmitted through a hollow-core photonic-crystal fibre with a core diameter of approximately 14 microm and are focused on a tooth surface in vitro to ablate dental tissue. The hollow-core PCF is shown to support the single-fundamental-mode regime for 1.06 microm laser radiation, serving as a spatial filter and allowing the laser beam quality to be substantially improved. The same fibre is used to transmit emission from plasmas produced by laser pulses on the tooth surface in the backward direction for detection and optical diagnostics.

  11. Characterisation of longitudinal variation in photonic crystal fibre.

    PubMed

    Francis-Jones, Robert J A; Mosley, Peter J

    2016-10-31

    We present a method by which the degree of longitudinal variation in photonic crystal fibre (PCF) may be characterised through seeded four-wave mixing (FWM). Using an iterative numerical reconstruction, we created a theoretical model of the PCF that displays FWM phasematching properties that are similar to experiment across all measured length scales. Our results demonstrate that the structure of our PCF varies by less than ±1 % and that the characteristic length of the variations is approximately 15 cm.

  12. An ion trap built with photonic crystal fibre technology

    SciTech Connect

    Lindenfelser, F. Keitch, B.; Kienzler, D.; Home, J. P.; Bykov, D.; Uebel, P.; Russell, P. St. J.

    2015-03-15

    We demonstrate a surface-electrode ion trap fabricated using techniques transferred from the manufacture of photonic-crystal fibres. This provides a relatively straightforward route for realizing traps with an electrode structure on the 100 micron scale with high optical access. We demonstrate the basic functionality of the trap by cooling a single ion to the quantum ground state, allowing us to measure a heating rate from the ground state of 787 ± 24 quanta/s. Variation of the fabrication procedure used here may provide access to traps in this geometry with trap scales between 100 μm and 10 μm.

  13. Rydberg atoms in hollow-core photonic crystal fibres

    PubMed Central

    Epple, G.; Kleinbach, K. S.; Euser, T. G.; Joly, N. Y.; Pfau, T.; Russell, P. St. J.; Löw, R.

    2014-01-01

    The exceptionally large polarizability of highly excited Rydberg atoms—six orders of magnitude higher than ground-state atoms—makes them of great interest in fields such as quantum optics, quantum computing, quantum simulation and metrology. However, if they are to be used routinely in applications, a major requirement is their integration into technically feasible, miniaturized devices. Here we show that a Rydberg medium based on room temperature caesium vapour can be confined in broadband-guiding kagome-style hollow-core photonic crystal fibres. Three-photon spectroscopy performed on a caesium-filled fibre detects Rydberg states up to a principal quantum number of n=40. Besides small energy-level shifts we observe narrow lines confirming the coherence of the Rydberg excitation. Using different Rydberg states and core diameters we study the influence of confinement within the fibre core after different exposure times. Understanding these effects is essential for the successful future development of novel applications based on integrated room temperature Rydberg systems. PMID:24942281

  14. Numerical simulation of photonic-crystal tellurite-tungstate glass fibres used in parametric fibre devices

    SciTech Connect

    Sokolov, V O; Plotnichenko, V G; Nazaryants, V O; Dianov, Evgenii M

    2006-01-31

    Using the MIT Photonic-Bands Package to calculate fully vectorial definite-mode eigenmodes of Maxwell's equations with periodic boundary conditions in a plane-wave basis, light propagation is simulated in fibres formed by point defects in two-dimensional periodic lattices of cylindrical holes in a glass or of glass tubes. The holes and gaps between tubes are assumed filled with air. Single-site hexagonal and square lattices are considered, which were most often studied both theoretically and experimentally and are used to fabricate silica photonic-crystal fibres. As a defect, a single vacancy is studied - the absent lattice site (one hole in a glass or one of the tubes are filled with the same glass) and a similar vacancy with nearest neighbours representing holes of a larger diameter. The obtained solutions are analysed by the method of effective mode area. The dependences of the effective refractive index and dispersion of the fundamental mode on the geometrical parameters of a fibre are found. The calculations are performed for tellurite-tungstate 80TeO{sub 2}-20WO{sub 3} glass fibres taking into account the frequency dispersion of the refractive index. (optical fibres)

  15. European Union R&D Next Generation Photonic Crystal Fibres project

    NASA Astrophysics Data System (ADS)

    Sansonetti, P.; Gasca, L.; Nouchi, P.

    2008-04-01

    This communication introduces Next Generation Photonic Crystal Fibres (NextGenPCF) Project consortium, objectives and activities. The Project consortium, comprising leading European industries and research institutes, aims to advance the state of the art in photonic crystal fibre technology, and utilize the new fibres in key Biomedical, Telecom and Sensing applications. This Integrated project, launched in the scope of the EU "Information Society Technology (IST)" programme commenced on June 1st 2006 and is to run for 3 years.

  16. Envelope and phase evolution of femtosecond pulses in hollow photonic-crystal fibres

    SciTech Connect

    Konorov, Stanislav O; Fedotov, Andrei B; Zheltikov, Aleksei M; Beloglazov, V I; Skibina, N B; Shcherbakov, Andrei V

    2004-01-31

    Changes in the envelope and the evolution of the spectral phase and chirp of femtosecond pulses propagating through hollow fibres with a photonic-crystal cladding are experimentally studied. Envelope and phase distortions of ultrashort pulses transmitted through such fibres are shown to be controlled by the detuning of the carrier frequency of laser pulses from the central frequency of the passband in the transmission of the fibre. Near the passband edges, which map the edges of photonic band gaps of the fibre cladding, ultrashort pulses transmitted through the fibre display considerable envelope distortions, as well as frequency- and time-dependent phase shifts. (optical fibres)

  17. Waveguiding properties and the spectrum of modes of hollow-core photonic-crystal fibres

    SciTech Connect

    Fedotov, Andrei B; Konorov, Stanislav O; Kolevatova, O A; Zheltikov, Aleksei M; Beloglazov, V I; Skibina, N B; Shcherbakov, Andrei V; Mel'nikov, L A

    2003-03-31

    Glass fibres with a hollow core and a two-dimensionally periodic cladding are studied experimentally and theoretically. The spectrum of modes guided in the hollow core of these fibres displays isolated maxima, indicating that waveguiding is supported due to the high reflectivity of the fibre cladding within photonic band gaps. The main properties of the spectrum of modes guided in a hollow core of a photonic-crystal fibre and radiation intensity distribution in these modes are qualitatively explained in terms of the model of a periodic coaxial waveguide. (fibre optics)

  18. In-line microfluidic integration of photonic crystal fibres as a highly sensitive refractometer.

    PubMed

    Wu, Chuang; Tse, Ming-Leung Vincent; Liu, Zhengyong; Guan, Bai-Ou; Zhang, A Ping; Lu, Chao; Tam, Hwa-Yaw

    2014-11-07

    Photonic crystal fibres appear to be an ideal platform for the realisation of novel optofluidic devices and sensors due to their waveguide nature and microstructured architecture. In this paper, we present the fabrication and characterisation of an in-line photonic crystal fibre microfluidic refractometer enabled by a C-shaped fibre. The C-shaped fibre spliced in-between the photonic crystal fibre and the single-mode fibre allows simultaneous in-line optical signal delivery and analyte fluid feeding. Through an arc discharge pre-treatment technique, we successfully achieve selective exploitation of only the central two channels of the photonic crystal fibre for microfluidic sensing. After constructing a Sagnac interferometer, a highly sensitive refractometer with a sensitivity of 8699 nm per RIU was achieved experimentally; this agrees very well with the theoretical value of 8675 nm per RIU. As a demonstration for label-free optical sensing application, the refractometer was used to measure the concentration of NaCl solution with a sensitivity of 15.08 nm/(1 wt%) and a detection limit of 2.3 × 10(-3) wt% (23 ppm).

  19. Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres

    NASA Astrophysics Data System (ADS)

    Benabid, F.; Couny, F.; Knight, J. C.; Birks, T. A.; Russell, P. St J.

    2005-03-01

    Gas-phase materials are used in a variety of laser-based applications-for example, in high-precision frequency measurement, quantum optics and nonlinear optics. Their full potential has however not been realized because of the lack of a suitable technology for creating gas cells that can guide light over long lengths in a single transverse mode while still offering a high level of integration in a practical and compact set-up or device. As a result, solid-phase materials are still often favoured, even when their performance compares unfavourably with gas-phase systems. Here we report the development of all-fibre gas cells that meet these challenges. Our structures are based on gas-filled hollow-core photonic crystal fibres, in which we have recently demonstrated substantially enhanced stimulated Raman scattering, and which exhibit high performance, excellent long-term pressure stability and ease of use. To illustrate the practical potential of these structures, we report two different devices: a hydrogen-filled cell for efficient generation of rotational Raman scattering using only quasi-continuous-wave laser pulses; and acetylene-filled cells, which we use for absolute frequency-locking of diode lasers with very high signal-to-noise ratios. The stable performance of these compact gas-phase devices could permit, for example, gas-phase laser devices incorporated in a `credit card' or even in a laser pointer.

  20. Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre.

    PubMed

    Okaba, Shoichi; Takano, Tetsushi; Benabid, Fetah; Bradley, Tom; Vincetti, Luca; Maizelis, Zakhar; Yampol'skii, Valery; Nori, Franco; Katori, Hidetoshi

    2014-06-17

    Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom-atom and atom-wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kagome-lattice hollow-core photonic crystal fibre are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom-atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the (1)S0-(3)P1(m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibres improve the optical depth while preserving atomic coherence time.

  1. Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre

    PubMed Central

    Okaba, Shoichi; Takano, Tetsushi; Benabid, Fetah; Bradley, Tom; Vincetti, Luca; Maizelis, Zakhar; Yampol'skii, Valery; Nori, Franco; Katori, Hidetoshi

    2014-01-01

    Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom–atom and atom–wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kagome-lattice hollow-core photonic crystal fibre are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom–atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the 1S0−3P1(m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibres improve the optical depth while preserving atomic coherence time. PMID:24934478

  2. Transient dynamic distributed strain sensing using photonic crystal fibres

    NASA Astrophysics Data System (ADS)

    Samad, Shafeek A.; Hegde, G. M.; Roy Mahapatra, D.; Hanagud, S.

    2014-02-01

    A technique to determine the strain field in one-dimensional (1D) photonic crystal (PC) involving high strain rate, high temperature around shock or ballistic impact is proposed. Transient strain sensing is important in aerospace and other structural health monitoring (SHM) applications. We consider a MEMS based smart sensor design with photonic crystal integrated on a silicon substrate for dynamic strain correlation. Deeply etched silicon rib waveguides with distributed Bragg reflectors are suitable candidates for miniaturization of sensing elements, replacing the conventional FBG. Main objective here is to investigate the effect of non-uniform strain localization on the sensor output. Computational analysis is done to determine the static and dynamic strain sensing characteristics of the 1D photonic crystal based sensor. The structure is designed and modeled using Finite Element Method. Dynamic localization of strain field is observed. The distributed strain field is used to calculated the PC waveguide response. The sensitivity of the proposed sensor is estimated to be 0.6 pm/μɛ.

  3. Nonlinear refractive index on multiwavelength generation through mismatch photonic crystal fibre from transmission wavelength

    NASA Astrophysics Data System (ADS)

    Abdullah, Mohd Nizam; Shaari, Sahbudin; Ehsan, Abang Annuar; Menon, Susthitha; Zakaria, Osman; Marzuki, Nazri

    2014-05-01

    This paper proposes a measurement of nonlinear refractive index in the course of multi wavelength technique. We have generated a multi wavelengths formation by utilising a photonic crystal fibre (PCF) which mismatches zero dispersion wavelength from transmission wavelength at 1550 nm. We provide an experimental set-up in generating the multi wavelength phenomenon. A fibre ring laser configuration consists of erbium doped fibre amplifier (EDFA) set up and arrangement of FBGs is described. Encouraging results obtained from the set up proves the relations of signals generated through FBGs and new wavelengths. These findings shows, multi wavelengths able to present valuable inputs in determination of nonlinear refractive index parameter.

  4. Thermoluminescence Response of Ge-Doped Cylindrical-, Flat- and Photonic Crystal Silica-Fibres to Electron and Photon Radiation.

    PubMed

    Entezam, A; Khandaker, M U; Amin, Y M; Ung, N M; Bradley, D A; Maah, J; Safari, M J; Moradi, F

    2016-01-01

    Study has been made of the thermoluminescence (TL) response of silica-based Ge-doped cylindrical, flat and photonic crystal fibres (referred to herein as PCF-collapsed) to electron (6, 12 and 20 MeV) and photon (6, 10 MV) irradiation and 1.25 MeV γ-rays, for doses from 0.1 Gy to 100 Gy. The electron and photon irradiations were delivered through use of a Varian Model 2100C linear accelerator located at the University of Malaya Medical Centre and γ-rays delivered from a 60Co irradiator located at the Secondary Standard Dosimetry Laboratory (SSDL), Malaysian Nuclear Agency. Tailor-made to be of various dimensions and dopant concentrations (6-10% Ge), the fibres were observed to provide TL yield linear with radiation dose, reproducibility being within 1-5%, with insensitivity to energy and angular variation. The sensitivity dependency of both detectors with respect to field size follows the dependency of the output factors. For flat fibres exposed to 6 MV X-rays, the 6% Ge-doped fibre provided the greatest TL yield while PCF-collapsed showed a response 2.4 times greater than that of the 6% Ge-doped flat fibres. The response of cylindrical fibres increased with core size. The fibres offer uniform response, high spatial resolution and sensitivity, providing the basis of promising TL systems for radiotherapy applications.

  5. Thermoluminescence Response of Ge-Doped Cylindrical-, Flat- and Photonic Crystal Silica-Fibres to Electron and Photon Radiation

    PubMed Central

    Entezam, A.; Khandaker, M. U.; Amin, Y. M.; Ung, N. M.; Bradley, D. A.; Maah, J.; Safari, M. J.; Moradi, F.

    2016-01-01

    Study has been made of the thermoluminescence (TL) response of silica-based Ge-doped cylindrical, flat and photonic crystal fibres (referred to herein as PCF-collapsed) to electron (6, 12 and 20 MeV) and photon (6, 10 MV) irradiation and 1.25 MeV γ-rays, for doses from 0.1 Gy to 100 Gy. The electron and photon irradiations were delivered through use of a Varian Model 2100C linear accelerator located at the University of Malaya Medical Centre and γ-rays delivered from a 60Co irradiator located at the Secondary Standard Dosimetry Laboratory (SSDL), Malaysian Nuclear Agency. Tailor-made to be of various dimensions and dopant concentrations (6–10% Ge), the fibres were observed to provide TL yield linear with radiation dose, reproducibility being within 1–5%, with insensitivity to energy and angular variation. The sensitivity dependency of both detectors with respect to field size follows the dependency of the output factors. For flat fibres exposed to 6 MV X-rays, the 6% Ge-doped fibre provided the greatest TL yield while PCF-collapsed showed a response 2.4 times greater than that of the 6% Ge-doped flat fibres. The response of cylindrical fibres increased with core size. The fibres offer uniform response, high spatial resolution and sensitivity, providing the basis of promising TL systems for radiotherapy applications. PMID:27149115

  6. Highly versatile in-reflection photonic crystal fibre interferometer

    NASA Astrophysics Data System (ADS)

    Jha, Rajan; Villatoro, Joel; Kreuzer, Mark; Finazzi, Vittoria; Pruneri, Valerio

    2009-10-01

    We report a simple and highly versatile photonic crystal fiber (PCF) interferometer that operates in reflection mode. The device consists of a short section of PCF fusion spliced at the distal end of a standard single mode fiber. The air-holes of the PCF are intentionally collapsed over a microscopic region around the splice. The collapsed region broadens the propagating mode because of diffraction. This allows the coupling and recombination of two PCF modes. Depending on the PCF structure two core modes or a core and a cladding mode can be excited. In either case the devices exhibit sinusoidal interference patterns with fringe spacing depending on the PCF length. The interferometers are highly stable over time and can operate at high temperatures with minimal degradation. The interferometers are suitable for highresolution sensing of strain, refractive index (biosensing), gases, volatile organic compounds, etc.

  7. High birefringence, low loss terahertz photonic crystal fibres with zero dispersion at 0.3 THz

    NASA Astrophysics Data System (ADS)

    Yin, Guo-Bing; Li, Shu-Guang; Wang, Xiao-Yan; Liu, Shuo

    2011-09-01

    A terahertz photonic crystal fibre (THz-PCF) is designed for terahertz wave propagation. The dispersion property and model birefringence are studied by employing the finite element method. The simulation result reveals the changing patten of dispersion parameter versus the geometry. The influence of the large frequency band of terahertz on birefringence is also discussed. The design of low loss, high birefringence THz-PCFs with zero dispersion frequency at 0.3 THz is presented.

  8. Photochemistry in a soft-glass single-ring hollow-core photonic crystal fibre.

    PubMed

    Cubillas, Ana M; Jiang, Xin; Euser, Tijmen G; Taccardi, Nicola; Etzold, Bastian J M; Wasserscheid, Peter; Russell, Philip St J

    2017-03-13

    A hollow-core photonic crystal fibre (HC-PCF), guided by photonic bandgap effects or anti-resonant reflection, offers strong light confinement and long photochemical interaction lengths in a microscale channel filled with a solvent of refractive index lower than that of glass (usually fused silica). These unique advantages have motivated its recent use as a highly efficient and versatile microreactor for liquid-phase photochemistry and catalysis. In this work, we use a single-ring HC-PCF made from a high-index soft glass, thus enabling photochemical experiments in higher index solvents. The optimized light-matter interaction in the fibre is used to strongly enhance the reaction rate in a proof-of-principle photolysis reaction in toluene.

  9. Multimodal interference based on large-core air-clad photonic crystal fibres for simultaneous measurement of multiparameters

    NASA Astrophysics Data System (ADS)

    Silva, Susana; Santos, J. L.; Malcata, F. X.; Kobelke, Jens; Schuster, Kay; Frazão, O.

    2011-05-01

    This work describes a large-core air-clad photonic crystal fibre-based sensing structure that is sensitive to refractive index, temperature and strain. The sensing head is based on multimodal interference, and relies on a single mode - largecore air-clad photonic crystal fibre - single mode fibre configuration. Using two distinct large-core air-clad PCF geometries it is possible to obtain an optical spectrum with two dominant loss bands, at wavelengths that have different sensitivities to physical parameters. This characteristic is explored to demonstrate a sensing head that permits the straintemperature discrimination functionality. It is also shown the large-core air-clad photonic crystal fibre can be applied to implement a sensing head sensitive to the water refractive index changes induced by temperature variations.

  10. Responses of photonic crystal fibres to pressure, axial strain and temperature

    NASA Astrophysics Data System (ADS)

    Pang, Meng

    Photonic crystal fibres (PCFs) show different elastic and optical properties from conventional silica fibres because they contain periodic transverse microstructures in their profiles. In this dissertation, the microstructure cladding of PCF is regarded as a honeycomb structure which has inhomogeneous elastic properties. Both Young's modulus and Poisson's ratio of this region are anisotropic, and are the functions of the air-filling ratio of the microstructure cladding. Based on this assumption, three theoretical models for three types of PCFs (solid-core PCF, hollow-core photonic bandgap fibre and hybrid PCF) are constructed. Using the theoretical models, the responses of PCFs to axial strain, acoustic pressure, temperature and lateral pressure are investigated respectively. The simulation results show that compared with conventional silica fibres, PCFs are predicted to have several novel or improved responses to external measurands, which can be used to enhance the performance of the fibre sensors or construct new PCF-based devices. Hybrid PCF guides light by a novel guiding mechanism, which is a combination of index-guiding and bandgap-guiding. Because the guiding mechanisms of the hybrid PCF are different in two orthogonal directions, high birefringence property is expected. To our knowledge, there is no theoretical model that can simulate the birefringence properties of hybrid PCFs. In this dissertation, a theoretical model for hybrid PCFs is constructed to simulate the birefringence property of hybrid PCFs and the responses of hybrid fibres' birefringence to axial strain and temperature. Using this theoretical model, the birefringence/responses of hybrid PCFs are predicted, as the functions of their design parameters. In experiment, the birefringence of one type of hybrid PCF and its responses to axial strain and temperature is measured. The experimental results agree well with the simulation results, which give us the confidence to use this theoretical model

  11. Periodically tapered photonic crystal fibre based strain sensor fabricated by a CO2 laser technique

    NASA Astrophysics Data System (ADS)

    Farrell, Gerald; Bo, Lin; Guan, Chunying; Semenova, Yuliya; Wang, Pengfei

    2014-05-01

    A focused CO2 laser beam has been previously used to successfully fabricate both symmetric and asymmetric long period fiber gratings which have been used for a variety of sensing applications. However fabrication by a CO2 laser beam demands a time consuming laser scanning process which increases the difficulty and cost of fabrication. In this paper a fibre sensor based on a fibre heterostructure with a simple configuration consisting of a series of periodical tapers in a photonic crystal fibre (PCF) sandwiched between two singlemode fibres is proposed and investigated experimentally. The tapers are periodically fabricated along the PCF section using a CO2 laser beam. The proposed fibre heterostructure can be used for strain sensing by measuring the wavelength blueshift of the multimode interference dip of the transmission spectrum as a function of strain. An average stain sensitivity of -68.4 pm/μ ɛ has been experimentally achieved over a microstrain range from 0 to 100 μ ɛ. Assuming in practice that the sensor is interrrogated with a ratiometric power measurement system, then the strain resolution is estimated to be better than 1.18×10-2 microstrain. The mechanisms for refractive index modulation periodically tapered PCF under tensile strain measurements are complex but may be regarded as a combination of stress-relaxation and refractive index perturbations over the length of the tapered PCF induced by strain and by tapering. The proposed fibre strain sensor has the advantage of low temperature sensitivity (average 8.4 pm/°C) and an experimental demonstration of this reduced sensitivity is also presented. The proposed strain sensor benefits from simplicity of fabrication and achieves a competitive sensitivity compared with other existing fibre-optic sensors.

  12. Photonic Crystal Fibers

    DTIC Science & Technology

    2005-12-01

    passive and active versions of each fiber designed under this task. Crystal Fibre shall provide characteristics of the fiber fabricated to include core...passive version of multicore fiber iteration 2. 15. SUBJECT TERMS EOARD, Laser physics, Fibre Lasers, Photonic Crystal, Multicore, Fiber Laser 16...9 00* 0 " CRYSTAL FIBRE INT ODUCTION This report describes the photonic crystal fibers developed under agreement No FA8655-o5-a- 3046. All

  13. Nonlinear ultrafast switching based on soliton self-trapping in dual-core photonic crystal fibre

    NASA Astrophysics Data System (ADS)

    Stajanca, P.; Bugar, I.

    2016-11-01

    In this paper, we present a systematic numerical study of a novel ultrafast nonlinear switching concept based on soliton self-trapping in dual-core (DC) photonic crystal fibre (PCF). The geometrical parameters of highly-nonlinear (HN) DC microstructure are optimized with regard to desired linear and nonlinear propagation characteristics. The comparable magnitude of fibre coupling length and soliton period is identified as a key condition for presented switching concept. The optimized DC PCF design is subjected to detailed nonlinear numerical study. Complex temporal-spectral-spatial transformations of 100 fs hyperbolic secant pulse at 1550 nm in the DC PCF are studied numerically employing a model based on coupled generalized nonlinear Schrödinger equations solved by a split-step Fourier method. For the optimized DC structure, mutual interplay of solitonic and coupling processes gives rise to nonlinear switching of self-trapped soliton. The output channel (fibre core) for the generated soliton can be controlled via the input pulse energy. For vertical polarization, the optimal soliton switching with extinction ratio contrast of 32.4 dB at 10.75 mm propagation distance is achieved. Even better switching contrast of 34.8 dB can be achieved for horizontal polarization at optimal propagation distance of 10.25 mm. Besides energy-controlled soliton self-trapping switching, the fibre supports also nonlinear polarization switching with soliton switching contrast as high as 37.4 dB. The proposed fibre holds a high application potential allowing efficient ultrafast switching of sub-nanojoule pulses at over-Tb/s data rates requiring only about 1 cm fibre length.

  14. Reinforced concrete structural corrosion monitoring using Hi-Bi photonic crystal fibres in a fiber loop structure

    NASA Astrophysics Data System (ADS)

    Bravo, M.; McCague, C.; Fabian, M.; Jaroszewicz, L.; Mergo, P.; Lopez-Amo, M.; Grattan, K. T. V.; Sun, T.

    2014-05-01

    A novel sensing approach has been developed for in-situ corrosion monitoring of steel in reinforced concrete structures, using a fibre loop interferometer sensor system based on a Hi-Bi photonic crystal fibre (PCF). To do so an accurate fibre alignment procedure has been implemented in order to improve the performance of the sensor system embedded into the concrete structure when it is subjected to an accelerated corrosion test. The positive results obtained have confirmed the effectiveness of such a sensor system for applications in structural health monitoring.

  15. Analysis of a highly birefringent asymmetric photonic crystal fibre based on a surface plasmon resonance sensor

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Wang, Famei; Zheng, Shijie; Sun, Tao; Lv, Jingwei; Liu, Qiang; Yang, Lin; Mu, Haiwei; Chu, Paul K.

    2016-07-01

    A highly birefringent photonic crystal fibre is proposed and characterized based on a surface plasmon resonance sensor. The birefringence of the sensor is numerically analyzed by the finite-element method. In the numerical simulation, the resonance wavelength can be directly positioned at this birefringence abrupt change point and the depth of the abrupt change of birefringence reflects the intensity of excited surface plasmon. Consequently, the novel approach can accurately locate the resonance peak of the system without analyzing the loss spectrum. Simulated average sensitivity is as high as 1131 nm/RIU, corresponding to a resolution of 1 × 10-4 RIU in this sensor. Therefore, results obtained via the approach not only show polarization independence and less noble metal consumption, but also reveal better performance in terms of accuracy and computation efficiency.

  16. Microwave-driven plasmas in hollow-core photonic crystal fibres

    NASA Astrophysics Data System (ADS)

    Debord, B.; Alves, L. L.; Gérôme, F.; Jamier, R.; Leroy, O.; Boisse-Laporte, C.; Leprince, P.; Benabid, F.

    2014-02-01

    Argon micro-plasmas a few centimetres long are generated at low gas pressure (6 mbar) in hollow-core photonic crystal fibres with 100 µm core diameter, using microwave excitation (2.45 GHz) based on a surfatron, with no damage to the host structure. Electromagnetic simulations assist the design of the surfatron cavity, finding optimal conditions for discharge ignition and maintenance. The plasma characterization reveals an electron density in the range 8 × 1014-1015 cm-3 (estimated from a semi-empirical analysis of the power coupled to the plasma, along the axial-direction) and a gas temperature of 1100-1300 K at the centre of the fibre (measured by optical emission spectroscopy diagnostics), thus showing an impressive ionization degree of ˜10-2 for power densities of ˜0.1 MW cm-3. The micro-plasma dynamics is investigated using a self-consistent one-dimensional (radial) fluid model, describing the charged particle and the electron energy transport, the electromagnetic excitation and the gas heating. Model results are used to confirm the diagnostics, revealing an extreme plasma confinement and a steep temperature gradient that give rise to the main operation features of this novel compact UV source.

  17. Computational study of nanostructured composite materials for photonic crystal fibre sensors

    NASA Astrophysics Data System (ADS)

    Johny, Jincy; Prabhu, Radhakrishna; Keung Fung, Wai

    2017-05-01

    Photonic Crystal Fibres (PCFs) developed using nanostructured composite materials provides special optical properties which can revolutionise current optical sensing technologies. The modal and propagation characteristics of the PCF can be tailored by altering their geometrical parameters and material infiltrations. A drawback of commercially available PCF is their limited operating wavelengths, which is mostly in the infrared (IR) spectral band. Nanostructured composite materials manipulates the optical properties of the PCF, facilitating their operation in the higher sensitivity near infrared (NIR) wavelength regime. Hence, there arises a need to closely investigate the effect of nanostructure and composite materials on various optical parameters of the PCF sensor. This paper presents a hexagonal PCF designed using COMSOL MULTIPHYSICS 5.1 software, with a nanostructured core and microstructured cladding. Propagation characteristics like confinement loss and mode field diameter (MFD) are investigated and compared with various geometrical parameters like core diameter, cladding hole diameter, pitch, etc. Theoretical study revealed that a nanostructured PCF experiences reduced confinement losses and also improved mode field diameter. Furthermore, studies are also carried out by infiltrating the cladding holes with composite materials (liquid crystal and glass). These simulations helped in analysing the effect of different liquid crystal materials on PCF bandwidth and spectral positions.

  18. Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres.

    PubMed

    Wadsworth, W; Joly, N; Knight, J; Birks, T; Biancalana, F; Russell, P

    2004-01-26

    Photonic crystal fibres exhibiting endlessly single-mode operation and dispersion zero in the range 1040 to 1100 nm are demonstrated. A sub-ns pump source at 1064 nm generates a parametric output at 732 nm with an efficiency of 35%, or parametric gain of 55 dB at 1315 nm. A broad, flat supercontinuum extending from 500 nm to beyond 1750 nm is also demonstrated using the same pump source.

  19. Ge and B doped collapsed photonic crystal optical fibre, a potential TLD material for low dose measurements

    NASA Astrophysics Data System (ADS)

    Rozaila, Z. Siti; Alyahyawi, Amjad; Khandaker, M. U.; Amin, Y. M.; Bradley, D. A.; Maah, M. J.

    2016-09-01

    Offering a number of advantageous features, tailor-made silica-based fibres are attracting attention as thermoluminesence (TL) dosimeters. We have performed a detailed study of the TL properties of Ge-doped and Ge-B-doped collapsed photonic crystal fibres (PCFc), most particularly with regard to their potential use for the environmental and X-ray diagnostic dose monitoring. Extrinsic doping and defects generated by strain at the fused inner walls of the collapsed fibres result in the PCFc-Ge-B and PCFc-Ge fibres producing markedly greater TL response than that of the phosphor-based dosimeter TLD-100, by some 9 and 7×, respectively. The linearity of TL yield has been investigated for X-ray doses from 0.5 mGy to 10 mGy. For a dose of 1 Gy, the energy response of the PCFs and TLD-100 has been studied using X-rays generated at accelerating potentials from 20 kVp through to 200 kVp and for the 1.25 MeV mean gamma-ray energy from 60Co. The effective atomic number , Zeffof PCFc-Ge and PCFc-Ge-B was estimated to be 12.5 and 14.4, respectively. Some 35 days post-irradiation, fading of the stored TL signal from PCFc-Ge-B and PCFc-Ge were found to be ∼15% and 20% respectively, with mean loss in TL emission of 0.4-0.5% per day. The present doped-silica collapsed PCFs provide greatly improved TLD performance compared to that of previous fibre designs and phosphor-based TLD-100.

  20. Polarized supercontinuum in birefringent photonic crystal fibre pumped at 1064 nm and application to tuneable visible/UV generation.

    PubMed

    Xiong, C; Wadsworth, W J

    2008-02-18

    We generate a flat, polarized and single mode supercontinuum (SC) spanning 450-1750 nm in a highly birefringent photonic crystal fibre (PCF) pumped by a 1064 nm microchip laser. More than 99% of the total power is kept in a single linear polarization. The measured power coupling penalty due to the elliptical core is less than 6% (0.25 dB). As one of its applications, we demonstrate tuneable visible/UV generation in the nonlinear crystal BIBO pumped by this polarized SC source. A tuneable range of 400-525 nm is obtained by critical phase matching in BIBO. We also show the results of visible/UV generation in BIBO pumped by the signal wavelength of polarized four-wave mixing (FWM) in PCF.

  1. Toward cold atom guidance in a hollow-core photonic crystal fibre using a blue detuned hollow laser beam

    NASA Astrophysics Data System (ADS)

    Poulin, Jerome

    This thesis describes advances and techniques toward the efficient coupling of cold 85Rb atoms into a low loss hollow core photonic crystal fibre using a blue-detuned first order hollow beam. In the proposed system, the low diffraction of the blue-detuned first order hollow beam acts as a repulsive potential optical funnel that allows the coupling of cold atoms under the influence of gravity into the fibre's hollow core. Using a low loss fibre with a blue detuned hollow beam shows potential for guiding atoms over an arbitrary path and longer distances on the laboratory scale, which would enable several new applications in nanofabrication and optical metrology. To realize this objective, a Magneto-Optical Trap of 85Rb was built from scratch and by using advanced polarization gradient cooling techniques was turned into a 9 muK cold optical molasses containing 10 7 atoms. These cold atoms were guided over 23 cm in a collimated blue detuned hollow beam tunnel and through a focused hollow beam mimicking as closely as possible the coupling conditions for a hollow core optical fibre. Three classes of atoms were observed: lost, trapped and guided atoms. The dynamics of the system as well as the optimal coupling conditions were identified through the use of a numerical model. A novel approach to modelling cold atom dynamics in an optical funnel was developed during the course of this thesis. This new model was not only able to reproduce the dynamics of atoms in the experiment but also simulate dense cold atoms cooled into the MOT and predict final temperatures attained. This was achieved by 3D modelling of the conservative and non-conservative components of optical forces acting on atoms but also through the implementation of known heat mechanisms: light scattering and momentum diffusion. The model identified the best coupling conditions of this system, confirmed by experiment, and an optimal light potential for a given distance of coupling that must not be exceeded. A

  2. The modeling of supercontinuum generation in photonic-crystal fibre in the spectral broadening unit of high-intensity laser system

    NASA Astrophysics Data System (ADS)

    Kuptsov, G. V.; Petrov, V. V.; Petrov, V. A.; Laptev, A. V.; Pestryakov, E. V.

    2015-12-01

    A numerical simulation of the generation of supercontinuum (SC) in highly-nonlinear photonic crystal fibre pumped with picoseconds-long pulses has been done using the RK4IP algorithm. Simulation and experimental results are in good agreement. The supercontinuum will be used for further amplification.

  3. Delivery of high energy Er:YAG pulsed laser light at 2.94 µm through a silica hollow core photonic crystal fibre.

    PubMed

    Urich, A; Maier, R R J; Mangan, B J; Renshaw, S; Knight, J C; Hand, D P; Shephard, J D

    2012-03-12

    In this paper the delivery of high power Er:YAG laser pulses through a silica hollow core photonic crystal fibre is demonstrated. The Er:YAG wavelength of 2.94 µm is well beyond the normal transmittance of bulk silica but the unique hollow core guidance allows silica to guide in this regime. We have demonstrated for the first time the ability to deliver high energy pulses through an all-silica fibre at 2.94 µm. These silica fibres are mechanically and chemically robust, biocompatible and have low sensitivity to bending. A maximum pulse energy of 14 mJ at 2.94 µm was delivered through the fibre. This, to our knowledge, is the first time a silica hollow core photonic crystal fibre has been shown to transmit 2.94 μm laser light at a fluence exceeding the thresholds required for modification (e.g. cutting and drilling) of hard biological tissue. Consequently, laser delivery systems based on these fibres have the potential for the realization of novel, minimally-invasive surgical procedures.

  4. Short wavelength (UV + VIS) guidance in kagomé lattice hollow core photonic crystal fibre

    NASA Astrophysics Data System (ADS)

    Février, Sébastien; Beaudou, Benoît

    2010-04-01

    Hollow-core microstructured fibres are designed for the short wavelength domains, either visible or ultra-violet ones. The experimental results confirm that kagomé-lattice antiresonant fibres are good candidate for this purpose. Thorough numerical modelling is carried out in order to determine the physical causes responsible for the loss level observed. From these computations the following conclusions are drawn: (i) the sole antiresonant core surround dictates the location of the transmission windows and (ii) the cladding bridges are sources of extra leakage from the core to the surrounding solid cladding. A straightforward model is therefore devised to determine accurately the loss level in this kind of structure by quasi-analytical calculus.

  5. Broad and ultra-flattened supercontinuum generation in the visible wavelengths based on the fundamental mode of photonic crystal fibre with central holes

    NASA Astrophysics Data System (ADS)

    Yuan, Jin-Hui; Sang, Xin-Zhu; Yu, Chong-Xiu; Xin, Xiang-Jun; Shen, Xiang-Wei; Zhang, Jin-Long; Zhou, Gui-Yao; Li, Shu-Guang; Hou, Lan-Tian

    2011-05-01

    By coupling a train of femtosecond pulses with 100 fs pulse width at a repetition rate of 76 MHz generated by a mode-locked Ti: sapphire laser into the fundamental mode of photonic crystal fibre (PCF) with central holes fabricated through extracting air from the central hole, the broad and ultra-flattened supercontinuum (SC) in the visible wavelengths is generated. When the fundamental mode experiences an anomalous dispersion regime, three phases in the SC generation process are primarily presented. The SC generation (SCG) in the wavelength range from 470 nm to 805 nm does not emerge significant ripples due to a higher pump peak power and the corresponding mode fields at different wavelengths are observed using Bragg gratings. The relative intensity fluctuations of output spectrum in the wavelength ranges of 530 nm to 640 nm and 543 nm to 590 nm are only 0.028 and 0.0071, respectively.

  6. Photonic crystal light source

    DOEpatents

    Fleming, James G [Albuquerque, NM; Lin, Shawn-Yu [Albuquerque, NM; Bur, James A [Corrales, NM

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  7. Dispersion in photonic crystals

    NASA Astrophysics Data System (ADS)

    Witzens, Jeremy

    2005-11-01

    Investigations on the dispersive properties of photonic crystals, modified scattering in ring-resonators, monolithic integration of vertical-cavity surface-emitting lasers and advanced data processing techniques for the finite-difference time-domain method are presented. Photonic crystals are periodic mesoscopic arrays of scatterers that modify the propagation properties of electromagnetic waves in a similar way as "natural" crystals modify the properties of electrons in solid-state physics. In this thesis photonic crystals are implemented as planar photonic crystals, i.e., optically thin semiconductor films with periodic arrays of holes etched into them, with a hole-to-hole spacing of the order of the wavelength of light in the dielectric media. Photonic crystals can feature forbidden frequency ranges (the band-gaps) in which light cannot propagate. Even though most work on photonic crystals has focused on these band-gaps for application such as confinement and guiding of light, this thesis focuses on the allowed frequency regions (the photonic bands) and investigates how the propagation of light is modified by the crystal lattice. In particular the guiding of light in bulk photonic crystals in the absence of lattice defects (the self-collimation effect) and the angular steering of light in photonic crystals (the superprism effect) are investigated. The latter is used to design a planar lightwave circuit for frequency domain demultiplexion. Difficulties such as efficient insertion of light into the crystal are resolved and previously predicted limitations on the resolution are circumvented. The demultiplexer is also fabricated and characterized. Monolithic integration of vertical-cavity surface-emitting lasers by means of resonantly enhanced grating couplers is investigated. The grating coupler is designed to bend light through a ninety-degree angle and is characterized with the finite-difference time-domain method. The vertical-cavity surface-emitting lasers are

  8. Wall modified photonic crystal fibre capillaries as porous layer open tubular columns for in-capillary micro-extraction and capillary chromatography.

    PubMed

    Kazarian, Artaches A; Sanz Rodriguez, Estrella; Deverell, Jeremy A; McCord, James; Muddiman, David C; Paull, Brett

    2016-01-28

    Wall modified photonic crystal fibre capillary columns for in-capillary micro-extraction and liquid chromatographic separations is presented. Columns contained 126 internal parallel 4 μm channels, each containing a wall bonded porous monolithic type polystyrene-divinylbenzene layer in open tubular column format (PLOT). Modification longitudinal homogeneity was monitored using scanning contactless conductivity detection and scanning electron microscopy. The multichannel open tubular capillary column showed channel diameter and polymer layer consistency of 4.2 ± 0.1 μm and 0.26 ± 0.02 μm respectively, and modification of 100% of the parallel channels with the monolithic polymer. The modified multi-channel capillaries were applied to the in-capillary micro-extraction of water samples. 500 μL of water samples containing single μg L(-1) levels of polyaromatic hydrocarbons were extracted at a flow rate of 10 μL min(-1), and eluted in 50 μL of acetonitrile for analysis using HPLC with fluorescence detection. HPLC LODs were 0.08, 0.02 and 0.05 μg L(-1) for acenaphthene, anthracene and pyrene, respectively, with extraction recoveries of between 77 and 103%. The modified capillaries were also investigated briefly for direct application to liquid chromatographic separations, with the retention and elution of a standard protein (cytochrome c) under isocratic conditions demonstrated, proving chromatographic potential of the new column format, with run-to-run retention time reproducibility of below 1%.

  9. Photonic Crystal Microchip Laser

    NASA Astrophysics Data System (ADS)

    Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis

    2016-09-01

    The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M2 reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the “photonic crystal microchip laser”, a very compact and efficient light source emitting high spatial quality high brightness radiation.

  10. Photonic Crystal Microchip Laser

    PubMed Central

    Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis

    2016-01-01

    The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M2 reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the “photonic crystal microchip laser”, a very compact and efficient light source emitting high spatial quality high brightness radiation. PMID:27683066

  11. Photonic Crystal Microchip Laser.

    PubMed

    Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis

    2016-09-29

    The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M(2) reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the "photonic crystal microchip laser", a very compact and efficient light source emitting high spatial quality high brightness radiation.

  12. Photonic crystal microchip laser

    NASA Astrophysics Data System (ADS)

    Gailevicius, D.; Koliadenko, V.; Purlys, V.; Peckus, M.; Taranenko, V.; Staliunas, K.

    2017-02-01

    The microchip lasers, being sources of coherent light, suffer from one serious drawback: low spatial quality of the beam, strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here we propose that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. We experimentally show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M2 reducing it by factor of 2, and thus increase the brightness of radiation by a factor of 4. This comprises a new kind of laser, the "photonic crystal microchip laser", a very compact and efficient light source emitting high spatial high brightness radiation.

  13. Fibre-integrated noise gating of high-purity heralded single photons

    NASA Astrophysics Data System (ADS)

    Francis-Jones, Robert J. A.; Mosley, Peter J.

    2017-10-01

    We present an all-fibre source of high-purity heralded single photons with an integrated conditional optical gate that reduces uncorrelated noise by almost an order of magnitude. Generating photon pairs by four-wave mixing in photonic crystal fibre, we observe with the noise gate active a factor of 7 reduction in the rate of single counts in the heralded channel with no measurable drop in coincidence count rate. In contrast to electronic post-selection of coincidence events, the real reduction in the flux of unwanted photons is beneficial for example to avoid bleaching light-sensitive samples or in generating entangled states.

  14. Narrowband high-fidelity all-fibre source of heralded single photons at 1570 nm.

    PubMed

    McMillan, A R; Fulconis, J; Halder, M; Xiong, C; Rarity, J G; Wadsworth, W J

    2009-04-13

    An all-fibre heralded single photon source operating at 1570 nm has been demonstrated. The device generates correlated photon pairs, widely spaced in frequency, through four-wave mixing in a photonic crystal fibre. Separation of the pair photons and narrowband filtering is all achieved in fibre. The output heralded single photon rate was 9.2 x 10(4) per second, with a counts-to-accidentals ratio of 10.4 and a heralding fidelity of 52 %. Furthermore, narrowband filtering ensured that the output single photon state was near time-bandwidth limited with a coherence length of 4 ps. Such a source is well suited to quantum information processing applications.

  15. Ballistic and snake photon imaging for locating optical endomicroscopy fibres

    PubMed Central

    Tanner, M. G.; Choudhary, T. R.; Craven, T. H.; Mills, B.; Bradley, M.; Henderson, R. K.; Dhaliwal, K.; Thomson, R. R.

    2017-01-01

    We demonstrate determination of the location of the distal-end of a fibre-optic device deep in tissue through the imaging of ballistic and snake photons using a time resolved single-photon detector array. The fibre was imaged with centimetre resolution, within clinically relevant settings and models. This technique can overcome the limitations imposed by tissue scattering in optically determining the in vivo location of fibre-optic medical instruments. PMID:28966848

  16. Slotted photonic crystal biosensors

    NASA Astrophysics Data System (ADS)

    Scullion, Mark Gerard

    Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them result in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This thesis presents a new platform for optical biosensors, namely slotted photonic crystals, which engender higher sensitivities due to their ability to confine, spatially and temporally, the peak of optical mode within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. High sensitivities were observed in smaller structures than most competing devices in the literature. Initial tests with cellular material for real applications was also performed, and shown to be of promise. In addition, groundwork to make an integrated device that includes the spectrometer function was also carried out showing that slotted photonic crystals themselves can be used for on-chip wavelength specific filtering and spectroscopy, whilst gas-free microvalves for automation were also developed. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study.

  17. Slotted Photonic Crystal Sensors

    PubMed Central

    Scullion, Mark G.; Krauss, Thomas F.; Di Falco, Andrea

    2013-01-01

    Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them results in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This review article presents a new platform for optical biosensors, namely slotted photonic crystals, which provide higher sensitivities due to their ability to confine, spatially and temporally, the optical mode peak within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. Higher sensitivities were observed in smaller structures than possible with most competing devices reported in the literature. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study. PMID:23503295

  18. Photonic Crystal Laser Accelerator Structures

    SciTech Connect

    Cowan, Benjamin M

    2003-05-21

    Photonic crystals have great potential for use as laser-driven accelerator structures. A photonic crystal is a dielectric structure arranged in a periodic geometry. Like a crystalline solid with its electronic band structure, the modes of a photonic crystal lie in a set of allowed photonic bands. Similarly, it is possible for a photonic crystal to exhibit one or more photonic band gaps, with frequencies in the gap unable to propagate in the crystal. Thus photonic crystals can confine an optical mode in an all-dielectric structure, eliminating the need for metals and their characteristic losses at optical frequencies. We discuss several geometries of photonic crystal accelerator structures. Photonic crystal fibers (PCFs) are optical fibers which can confine a speed-of-light optical mode in vacuum. Planar structures, both two- and three-dimensional, can also confine such a mode, and have the additional advantage that they can be manufactured using common microfabrication techniques such as those used for integrated circuits. This allows for a variety of possible materials, so that dielectrics with desirable optical and radiation-hardness properties can be chosen. We discuss examples of simulated photonic crystal structures to demonstrate the scaling laws and trade-offs involved, and touch on potential fabrication processes.

  19. Natural photonic crystals

    NASA Astrophysics Data System (ADS)

    Vigneron, Jean Pol; Simonis, Priscilla

    2012-10-01

    Photonic structures appeared in nature several hundred millions years ago. In the living world, color is used for communication and this important function strongly impacts the individual chances of survival as well as the chances to reproduce. This has a statistical influence on species populations. Therefore, because they are involved in evolution, natural color-generating structures are - from some point of view - highly optimized. In this short review, a survey is presented of the development of natural photonic crystal-type structures occurring in insects, spiders, birds, fishes and other marine animals, in plants and more, from the standpoint of light-waves propagation. One-, two-, and three-dimensional structures will be reviewed with selected examples.

  20. Optics of globular photonic crystals

    SciTech Connect

    Gorelik, V S

    2007-05-31

    The results of experimental and theoretical studies of the optical properties of globular photonic crystals - new physical objects having a crystal structure with the lattice period exceeding considerably the atomic size, are presented. As globular photonic crystals, artificial opal matrices consisting of close-packed silica globules of diameter {approx}200 nm were used. The reflection spectra of these objects characterising the parameters of photonic bands existing in these crystals in the visible spectral region are presented. The idealised models of the energy band structure of photonic crystals investigated in the review give analytic dispersion dependences for the group velocity and the effective photon mass in a globular photonic crystal. The characteristics of secondary emission excited in globular photonic crystals by monochromatic and broadband radiation are presented. The results of investigations of single-photon-excited delayed scattering of light observed in globular photonic crystals exposed to cw UV radiation and radiation from a repetitively pulsed copper vapour laser are presented. The possibilities of using globular photonic crystals as active media for lasing in different spectral regions are considered. It is proposed to use globular photonic crystals as sensitive sensors in optoelectronic devices for molecular analysis of organic and inorganic materials by the modern methods of laser spectroscopy. The results of experimental studies of spontaneous and stimulated globular scattering of light are discussed. The conditions for observing resonance and two-photon-excited delayed scattering of light are found. The possibility of accumulation and localisation of the laser radiation energy inside a globular photonic crystal is reported. (review)

  1. Photonic crystal optofluidic biolaser

    NASA Astrophysics Data System (ADS)

    Mozaffari, Mohammad Hazhir; Ebnali-Heidari, Majid; Abaeiani, Gholamreza; Moravvej-Farshi, Mohammad Kazem

    2017-09-01

    Optofluidic biolasers are recently being considered in bioanalytical applications due to their advantages over the conventional biosensing methods Exploiting a photonic crystal slab with selectively dye-infiltrated air holes, we propose a new optofluidic heterostructure biolaser, with a power conversion efficiency of 25% and the spectral linewidth of 0.24 nm. Simulations show that in addition to these satisfactory lasing characteristics, the proposed lab-on-a-chip biolaser is highly sensitive to the minute biological changes that may occur in its cavity and can detect a single virus with a radius as small as 13 nm.

  2. Photonic crystal microspheres

    NASA Astrophysics Data System (ADS)

    Zhokhov, A. A.; Masalov, V. M.; Sukhinina, N. S.; Matveev, D. V.; Dolganov, P. V.; Dolganov, V. K.; Emelchenko, G. A.

    2015-11-01

    Spherical samples of photonic crystals formed by colloidal SiO2 nanoparticles were synthesized. Synthesis of microspheres from 160 nm, 200 nm and 430 nm diameter colloidal nanoparticles was performed over a wide size range, from 5 μm to 50 μm. The mechanism of formation of void microparticles exceeding 50 μm is discussed. The spectral measurements verified the association of the spectra with the peaks of selective reflection from the cubic lattice planes. The microparticle morphology is characterized by scanning electron microscopy (SEM).

  3. Using photonic crystal fiber in the frame of stellar interferometer

    NASA Astrophysics Data System (ADS)

    Vergnole, Sebastien; Delage, Laurent; Reynaud, Francois; Labonte, Laurent; Roy, Philippe; Melin, Gilles; Gasca, Laurent

    2004-10-01

    The Photonic Crystal Fibres (PCF) are microstructured waveguides currently developed in the frame of fibre telecommunications. This study is mainly focused on the improvement of dispersion property and wide spectral single-mode operating domain. Moreover, these fibres are highly birefringent and thus are able to maintain polarization. Consequently, in the astronomical context, this kind of fibre is a good candidate to design a fibre linked version of stellar interferometer. In this paper, we experimentally study the potential of these fibres taking advantage of the wide spectral single-mode operation. We propose an experimental setup acting as a two-beam interferometer using PCF. In a first time, the aim of this experiment is to measure fringes contrast at four different wavelengths (670 nm, 980nm, 1310 nm and 1543 nm

  4. Polymeric photonic crystals

    NASA Astrophysics Data System (ADS)

    Fink, Yoel

    Two novel and practical methods for controlling the propagation of light are presented: First, a design criterion that permits truly omnidirectional reflectivity for all polarizations of incident light over a wide selectable range of frequencies is derived and used in fabricating an alldielectric omnidirectional reflector consisting of multilayer films. Because the omnidirectionality criterion is general, it can be used to design omnidirectional reflectors in many frequency ranges of interest. Potential uses depend on the geometry of the system. For example, coating of an enclosure will result in an optical cavity. A hollow tube will produce a low-loss, broadband waveguide, planar film could be used as an efficient radiative heat barrier or collector in thermoelectric devices. A comprehensive framework for creating one-, two- and three-dimensional photonic crystals out of self- assembling block copolymers has been formulated. In order to form useful band gaps in the visible regime, periodic dielectric structures made of typical block copolymers need to be modified to obtain appropriate characteristic distances and dielectric constants. Moreover, the absorption and defect concentration must also be controlled. This affords the opportunity to tap into the large structural repertoire, the flexibility and intrinsic tunability that these self-assembled block copolymer systems offer. A block copolymer was used to achieve a self assembled photonic band gap in the visible regime. By swelling the diblock copolymer with lower molecular weight constituents control over the location of the stop band across the visible regime is achieved. One and three- dimensional crystals have been formed by changing the volume fraction of the swelling media. Methods for incorporating defects of prescribed dimensions into the self-assembled structures have been explored leading to the construction of a self assembled microcavity light- emitting device. (Copies available exclusively from MIT

  5. Room-temperature dual-wavelength erbium-doped fibre laser based on a sampled fibre Bragg grating and a photonic Robin Hood

    NASA Astrophysics Data System (ADS)

    Liu, Xueming; Zhao, Wei; Lu, Keqing; Zhang, Tongyi; Sun, Chuandong; Wang, Yishan; Hou, Xun; Chen, Guofu

    2006-12-01

    With the assistance of a kind of photonic Robin Hood that is originated from four-wave mixing in a dispersion-flattened high-nonlinearity photonic-crystal fibre, a novel dual-wavelength erbium-doped fibre (EDF) laser is proposed and demonstrated by using a sampled fibre Bragg grating. The experiments show that, due to the contribution of the photonic Robin Hood, the proposed fibre laser has the advantage of excellent uniformity, high stability and stable operation at room temperature. Our dual-wavelength EDF laser has the unique merit that the wavelength spacing remains unchanged when tuning the two wavelengths of laser, and this laser is simpler and more stable than the laser reported by Liu et al. [Opt. Express, 13 142 (2005)].

  6. Photonic crystal enhanced cytokine immunoassay.

    PubMed

    Mathias, Patrick C; Ganesh, Nikhil; Cunningham, Brian T

    2009-01-01

    Photonic crystal surfaces are demonstrated as a means for enhancing the detection sensitivity and resolution for assays that use a fluorescent tag to quantify the concentration of an analyte protein molecule in a liquid test sample. Computer modeling of the spatial distribution of resonantly coupled electromagnetic fields on the photonic crystal surface are used to estimate the magnitude of enhancement factor compared to performing the same fluorescent assay on a plain glass surface, and the photonic crystal structure is fabricated and tested to experimentally verify the performance using a sandwich immunoassay for the protein Tumor Necrosis Factor-alpha (TNF-alpha). The demonstrated photonic crystal fabrication method utilizes a nanoreplica molding technique that allows for large-area inexpensive fabrication of the structure in a format that is compatible with confocal microarray laser scanners. The signal-to-noise ratio for fluorescent spots on the photonic crystal is increased by at least five-fold relative to the glass slide, allowing a TNF-alpha concentration of 1.6 pg/ml to be distinguished from noise on a photonic crystal surface. In addition, the minimum quantitative limit of detection on the photonic crystal surface is one-third the limit on the glass slide - a decrease from 18 pg/ml to 6 pg/ml. The increased performance of the immunoassay allows for more accurate quantitation of physiologically relevant concentrations of TNF-alpha in a protein microarray format that can be expanded to multiple cytokines.

  7. Spherical colloidal photonic crystals.

    PubMed

    Zhao, Yuanjin; Shang, Luoran; Cheng, Yao; Gu, Zhongze

    2014-12-16

    CONSPECTUS: Colloidal photonic crystals (PhCs), periodically arranged monodisperse nanoparticles, have emerged as one of the most promising materials for light manipulation because of their photonic band gaps (PBGs), which affect photons in a manner similar to the effect of semiconductor energy band gaps on electrons. The PBGs arise due to the periodic modulation of the refractive index between the building nanoparticles and the surrounding medium in space with subwavelength period. This leads to light with certain wavelengths or frequencies located in the PBG being prohibited from propagating. Because of this special property, the fabrication and application of colloidal PhCs have attracted increasing interest from researchers. The most simple and economical method for fabrication of colloidal PhCs is the bottom-up approach of nanoparticle self-assembly. Common colloidal PhCs from this approach in nature are gem opals, which are made from the ordered assembly and deposition of spherical silica nanoparticles after years of siliceous sedimentation and compression. Besides naturally occurring opals, a variety of manmade colloidal PhCs with thin film or bulk morphology have also been developed. In principle, because of the effect of Bragg diffraction, these PhC materials show different structural colors when observed from different angles, resulting in brilliant colors and important applications. However, this angle dependence is disadvantageous for the construction of some optical materials and devices in which wide viewing angles are desired. Recently, a series of colloidal PhC materials with spherical macroscopic morphology have been created. Because of their spherical symmetry, the PBGs of spherical colloidal PhCs are independent of rotation under illumination of the surface at a fixed incident angle of the light, broadening the perspective of their applications. Based on droplet templates containing colloidal nanoparticles, these spherical colloidal PhCs can be

  8. Configurable silicon photonic crystal waveguides

    SciTech Connect

    Prorok, Stefan; Petrov, Alexander; Eich, Manfred; Luo, Jingdong; Jen, Alex K.-Y.

    2013-12-23

    In this Letter, we demonstrate that the mode cut off of a photonic crystal waveguide can be trimmed with high accuracy by electron beam bleaching of a chromophore doped polymer cladding. Using this method, configurable waveguides are realized, which allow for spatially resolved changes of the photonic crystal's effective lattice constant as small as 7.6 pm. We show three different examples how to take advantage of configurable photonic crystal waveguides: Shifting of the complete transmission spectrum, definition of cavities with high quality factor, and tuning of existing cavities.

  9. Multicolor photonic crystal laser array

    SciTech Connect

    Wright, Jeremy B; Brener, Igal; Subramania, Ganapathi S; Wang, George T; Li, Qiming

    2015-04-28

    A multicolor photonic crystal laser array comprises pixels of monolithically grown gain sections each with a different emission center wavelength. As an example, two-dimensional surface-emitting photonic crystal lasers comprising broad gain-bandwidth III-nitride multiple quantum well axial heterostructures were fabricated using a novel top-down nanowire fabrication method. Single-mode lasing was obtained in the blue-violet spectral region with 60 nm of tuning (or 16% of the nominal center wavelength) that was determined purely by the photonic crystal geometry. This approach can be extended to cover the entire visible spectrum.

  10. Amplification and ASE suppression in a polarization-maintaining ytterbium-doped all-solid photonic bandgap fibre.

    PubMed

    Olausson, C B; Falk, C I; Lyngsø, J K; Jensen, B B; Therkildsen, K T; Thomsen, J W; Hansen, K P; Bjarklev, A; Broeng, J

    2008-09-01

    We demonstrate suppression of amplified spontaneous emission at the conventional ytterbium gain wavelengths around 1030 nm in a cladding-pumped polarization-maintaining ytterbium-doped all-solid photonic crystal fibre. The fibre works through combined index and bandgap guiding. Furthermore, we show that the peak of the amplified spontaneous emission can be shifted towards longer wavelengths by rescaling the fibre dimensions. Thereby one can obtain lasing or amplification at longer wavelengths (1100 nm - 1200 nm) as the amount of amplification in the fibre is shown to scale with the power of the amplified spontaneous emission.

  11. Spatial filtering with photonic crystals

    SciTech Connect

    Maigyte, Lina; Staliunas, Kestutis

    2015-03-15

    Photonic crystals are well known for their celebrated photonic band-gaps—the forbidden frequency ranges, for which the light waves cannot propagate through the structure. The frequency (or chromatic) band-gaps of photonic crystals can be utilized for frequency filtering. In analogy to the chromatic band-gaps and the frequency filtering, the angular band-gaps and the angular (spatial) filtering are also possible in photonic crystals. In this article, we review the recent advances of the spatial filtering using the photonic crystals in different propagation regimes and for different geometries. We review the most evident configuration of filtering in Bragg regime (with the back-reflection—i.e., in the configuration with band-gaps) as well as in Laue regime (with forward deflection—i.e., in the configuration without band-gaps). We explore the spatial filtering in crystals with different symmetries, including axisymmetric crystals; we discuss the role of chirping, i.e., the dependence of the longitudinal period along the structure. We also review the experimental techniques to fabricate the photonic crystals and numerical techniques to explore the spatial filtering. Finally, we discuss several implementations of such filters for intracavity spatial filtering.

  12. Patterned Colloidal Photonic Crystals.

    PubMed

    Hou, Jue; Li, Mingzhu; Song, Yanlin

    2017-09-11

    Colloidal photonic crystals (PCs) have been well developed because they are easy-to-prepare, cost-effective, and versatile to be modified and functionalized. Patterned colloidal PCs contributes a novel approach to constructing high-performance PC devices with unique structures and specific functions. In this review, an overview of the strategies for fabricating patterned colloidal PCs, including patterned substrate induced assembly, inkjet printing, and selective immobilization and modification is presented. The advantages of patterned PC devices are also discussed in detail, for example, the detection sensitivity and response speed of sensors can be improved; the flow direction and wicking rate of the microfluidic channel can be well controlled; cross-reactive molecules can be recognized through array patterned microchip; the display devices with tunable pattern, well-arranged RGB unit, and wide viewing-angle can be fabricated; and several anti-counterfeiting devices with different security strategies can be constructed. Finally, the perspective of future developments and challenges is presented and widely exhibited. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Photonic crystal fiber nanospectrometer

    NASA Astrophysics Data System (ADS)

    Reimlinger, Mark; Battinelli, Emily; Wynne, Rosalind

    2012-04-01

    A silica-based steering wheel core photonic crystal fiber (SW-PCF) with a nano-featured spectrometer chemical agent detection configuration is presented. The spectrometer chip acquired from Nano-Optic DevicesTM can reduce the size of the spectrometer down to a coin. Results are provided for PCF structures filled with sample materials for spectroscopic identification. Portable and compact spectroscopic detectors with long interaction lengths (> few mm) specially outfitted for extreme environmental conditions are of interest to both military and civil institutions who wish to monitor air/water composition. The featured PCF spectrometer has the potential to measure optical absorption spectra in order to detect trace amounts of contaminants in gaseous or aqueous samples. The absorption spectrum of the SW-PCF detection system was measured as a function of the fiber interaction length and material volume. The SW-PCF measured spectra agreed with reference spectra. The SW-PCF has a core diameter of 3.9μm, outer diameter of 132.5μm. A nearly 5 cm length of the SW-PCF was coupled to the surface of a thin nanofeatured chip. The remaining end of the SW-PCF section is coupled to a laser light source centered at λ=635nm. The diffraction pattern produced by the nano-featured chip is captured by an objective lens and CCD camera for image analysis. The position of the intensity pattern extracted from the analyzed image indicates the spectral components of the absorption characteristics for the detected sample. This nano-featured spectrometer offers spectral resolution down to 0.1nm that makes it possible to detect substances with very detailed spectral features.

  14. Manufacturing method of photonic crystal

    SciTech Connect

    Park, In Sung; Lee, Tae Ho; Ahn, Jin Ho; Biswas, Rana; Constant, Kristen P.; Ho, Kai-Ming; Lee, Jae-Hwang

    2013-01-29

    A manufacturing method of a photonic crystal is provided. In the method, a high-refractive-index material is conformally deposited on an exposed portion of a periodic template composed of a low-refractive-index material by an atomic layer deposition process so that a difference in refractive indices or dielectric constants between the template and adjacent air becomes greater, which makes it possible to form a three-dimensional photonic crystal having a superior photonic bandgap. Herein, the three-dimensional structure may be prepared by a layer-by-layer method.

  15. Mechanically tunable photonic crystal lens

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Tamma, V. A.; Lee, J.-B.; Park, W.

    2010-08-01

    We designed, fabricated and characterized MEMS-enabled mechanically-tunable photonic crystal lens comprised of 2D photonic crystal and symmetrical electro-thermal actuators. The 2D photonic crystal was made of a honeycomb-lattice of 340 nm thick, 260 nm diameter high-index silicon rods embedded in low-index 10 μm thick SU-8 cladding. Silicon input waveguide and deflection block were also fabricated for light in-coupling and monitoring of focused spot size, respectively. When actuated, the electro-thermal actuators induced mechanical strain which changed the lattice constant of the photonic crystal and consequently modified the photonic band structure. This in turn modified the focal-length of the photonic crystal lens. The fabricated device was characterized using a tunable laser (1400~1602 nm) and an infrared camera during actuation. At the wavelength of 1450 nm, the lateral light spot size observed at the deflection block gradually decreased 40%, as applied current increased from 0 to 0.7 A, indicating changes in focal length in response to the mechanical stretching.

  16. Photon Correlation Spectroscopy and Electrophoretic Light Scattering Using Optical Fibres.

    NASA Astrophysics Data System (ADS)

    MacFadyen, Allan John

    Available from UMI in association with The British Library. In photon correlation spectroscopy, the fast local fluctuations in the intensity of the light scattered by submicron particles in suspension are recorded and analysed in terms of the particle motion. These may then be related to the particle size, or, when the particles are subjected to an electric field, the electrophoretic mobility. Light scattering apparatus traditionally incorporates a fixed goniometer arrangement. Recently, however, systems have been reported which incorporate optical fibres for use in remote or on-line situations. In this thesis, recent advances in the development of fibre-based photon correlation systems are reviewed and the design and construction of two novel optical fibre apparatus prototypes, incorporating "SELFOC" lenses, miniature prisms and single mode detection fibre, is discussed. The final outcome, an optical fibre sensor, which combines both photon correlation and electrophoretic light scattering measurements in a single, compact dip -in probe for the first time, is described. Results are presented for a variety of colloidal particles in suspension including polystyrene and "Microsilica" spheres, PTFE ellipsoids and kaolinite platelets, all of which demonstrate the viability of the apparatus.

  17. From optical MEMS to photonic crystal

    NASA Astrophysics Data System (ADS)

    Lee, Sukhan; Kim, Jideog; Lee, Hong-Seok; Moon, Il-Kwon; Won, JongHwa; Ku, Janam; Choi, Hyung; Shin, Hyungjae

    2002-10-01

    This paper presents the emergence of photonic crystals as significant optomechatronics components, following optical MEMS. It is predicted that, in the coming years, optical MEMS and photonic crystals may go through dynamic interactions leading to synergy as well as competition. First, we present the Structured Defect Photonic Crystal (SDPCTM) devised by the authors for providing the freedom of designing photonic bandgap structures, such that the application of photonic crystals be greatly extended. Then, we present the applications of optical MEMS and photonic crystals to displays and telecommunications. It is shown that many of the applications that optical MEMS can contribute to telecommunications and displays may be implemented by photonic crystals.

  18. Radiating dipoles in photonic crystals

    PubMed

    Busch; Vats; John; Sanders

    2000-09-01

    The radiation dynamics of a dipole antenna embedded in a photonic crystal are modeled by an initially excited harmonic oscillator coupled to a non-Markovian bath of harmonic oscillators representing the colored electromagnetic vacuum within the crystal. Realistic coupling constants based on the natural modes of the photonic crystal, i.e., Bloch waves and their associated dispersion relation, are derived. For simple model systems, well-known results such as decay times and emission spectra are reproduced. This approach enables direct incorporation of realistic band structure computations into studies of radiative emission from atoms and molecules within photonic crystals. We therefore provide a predictive and interpretative tool for experiments in both the microwave and optical regimes.

  19. Multicore fibre technology: the road to multimode photonics

    NASA Astrophysics Data System (ADS)

    Bland-Hawthorn, J.; Min, Seong-Sik; Lindley, Emma; Leon-Saval, Sergio; Ellis, Simon; Lawrence, Jon; Beyrand, Nicolas; Roth, Martin; Löhmannsröben, Hans-Gerd; Veilleux, Sylvain

    2016-07-01

    For the past forty years, optical fibres have found widespread use in ground-based and space-based instruments. In most applications, these fibres are used in conjunction with conventional optics to transport light. But photonics offers a huge range of optical manipulations beyond light transport that were rarely exploited before 2001. The fundamental obstacle to the broader use of photonics is the difficulty of achieving photonic action in a multimode fibre. The first step towards a general solution was the invention of the photonic lantern1 in 2004 and the delivery of high-efficiency devices (< 1 dB loss) five years on2. Multicore fibres (MCF), used in conjunction with lanterns, are now enabling an even bigger leap towards multimode photonics. Until recently, the single-moded cores in MCFs were not sufficiently uniform to achieve telecom (SMF-28) performance. Now that high-quality MCFs have been realized, we turn our attention to printing complex functions (e.g. Bragg gratings for OH suppression) into their N cores. Our first work in this direction used a Mach-Zehnder interferometer (near-field phase mask) but this approach was only adequate for N=7 MCFs as measured by the grating uniformity3. We have now built a Sagnac interferometer that gives a three-fold increase in the depth of field sufficient to print across N >= 127 cores. We achieved first light this year with our 500mW Sabre FRED laser. These are sophisticated and complex interferometers. We report on our progress to date and summarize our first-year goals which include multimode OH suppression fibres for the Anglo-Australian Telescope/PRAXIS instrument and the Discovery Channel Telescope/MOHSIS instrument under development at the University of Maryland.

  20. Photonic crystals as optical components

    NASA Astrophysics Data System (ADS)

    Halevi, P.; Krokhin, A. A.; Arriaga, J.

    1999-11-01

    Photonic crystals (PCs) have already found numerous applications associated with the photonic band gap. We point out that PCs could be also employed as custom-made optical components in the linear region well below the photonic gap. As an example, we discuss a birefringent PC lens that acts as a polarizing beam splitter. This idea is supported by a precise method of calculation of the optical constants of a transparent two-dimensional (2D) PC. Such a process of homogenization is performed for hexagonal arrays of polymer-based PCs and also for the mammalian cornea. Finally, 2D PCs are classified as optically uniaxial or biaxial.

  1. Graphene chiral liquid crystals and macroscopic assembled fibres

    PubMed Central

    Xu, Zhen; Gao, Chao

    2011-01-01

    Chirality and liquid crystals are both widely expressed in nature and biology. Helical assembly of mesophasic molecules and colloids may produce intriguing chiral liquid crystals. To date, chiral liquid crystals of 2D colloids have not been explored. As a typical 2D colloid, graphene is now receiving unprecedented attention. However, making macroscopic graphene fibres is hindered by the poor dispersibility of graphene and by the lack of an assembly method. Here we report that soluble, chemically oxidized graphene or graphene oxide sheets can form chiral liquid crystals in a twist-grain-boundary phase-like model with simultaneous lamellar ordering and long-range helical frustrations. Aqueous graphene oxide liquid crystals were continuously spun into metres of macroscopic graphene oxide fibres; subsequent chemical reduction gave the first macroscopic neat graphene fibres with high conductivity and good mechanical performance. The flexible, strong graphene fibres were knitted into designed patterns and into directionally conductive textiles. PMID:22146390

  2. Photonic crystal surface-emitting lasers

    SciTech Connect

    Chua, Song Liang; Lu, Ling; Soljacic, Marin

    2015-06-23

    A photonic-crystal surface-emitting laser (PCSEL) includes a gain medium electromagnetically coupled to a photonic crystal whose energy band structure exhibits a Dirac cone of linear dispersion at the center of the photonic crystal's Brillouin zone. This Dirac cone's vertex is called a Dirac point; because it is at the Brillouin zone center, it is called an accidental Dirac point. Tuning the photonic crystal's band structure (e.g., by changing the photonic crystal's dimensions or refractive index) to exhibit an accidental Dirac point increases the photonic crystal's mode spacing by orders of magnitudes and reduces or eliminates the photonic crystal's distributed in-plane feedback. Thus, the photonic crystal can act as a resonator that supports single-mode output from the PCSEL over a larger area than is possible with conventional PCSELs, which have quadratic band edge dispersion. Because output power generally scales with output area, this increase in output area results in higher possible output powers.

  3. Dispersion compensation in slot photonic crystal waveguide

    NASA Astrophysics Data System (ADS)

    Plastun, Alexander; Konyukhov, Andrey

    2015-03-01

    Dispersion tailoring using photonic crystal cladding for slot waveguide is proposed. Numerical modeling based on the Maxwell equation for Te and TM modes of the photonic crystal is performed. Slot waveguide provide high intencity at the central area. Photonic crystal cladding of the slot waveguide allow us to compensate high values of the host glass dispersion.

  4. Photonic quantum well composed of photonic crystal and quasicrystal

    NASA Astrophysics Data System (ADS)

    Xu, Shaohui; Zhu, Yiping; Wang, Lianwei; Yang, Pingxiong; Chu, Paul K.

    2014-02-01

    A photonic quantum well structure composed of photonic crystal and Fibonacci quasicrystal is investigated by analyzing the transmission spectra and electric field distributions. The defect band in the photonic well can form confined quantized photonic states that can change in the band-gap of the photonic barriers by varying the thickness ratio of the two stacking layers. The number of confined states can be tuned by adjusting the period of the photonic well. The photons traverse the photonic quantum well by resonance tunneling and the coupling effect leads to the high transmission intensity of the confined photonic states.

  5. Photonic bandgap single-mode optical fibre with ytterbium-doped silica glass core

    SciTech Connect

    Egorova, O N; Semenov, S L; Vel'miskin, V V; Dianov, Evgenii M; Salganskii, M Yu; Yashkov, M V; Gur'yanov, Aleksei N

    2011-01-24

    A photonic bandgap fibre with an ytterbium-doped silica glass core is fabricated and investigated. The possibility of implementing single-mode operation of such fibres in a wide spectral range at a large (above 20 {mu}m) mode field diameter makes them promising for fibre lasers and amplifiers. To ensure a high quality of the beam emerging from the fibre, particular attention is paid to increasing the optical homogeneity of the ytterbium-doped core glass. (optical fibres)

  6. Photonic crystals, amorphous materials, and quasicrystals.

    PubMed

    Edagawa, Keiichi

    2014-06-01

    Photonic crystals consist of artificial periodic structures of dielectrics, which have attracted much attention because of their wide range of potential applications in the field of optics. We may also fabricate artificial amorphous or quasicrystalline structures of dielectrics, i.e. photonic amorphous materials or photonic quasicrystals. So far, both theoretical and experimental studies have been conducted to reveal the characteristic features of their optical properties, as compared with those of conventional photonic crystals. In this article, we review these studies and discuss various aspects of photonic amorphous materials and photonic quasicrystals, including photonic band gap formation, light propagation properties, and characteristic photonic states.

  7. Photonic crystals, amorphous materials, and quasicrystals

    PubMed Central

    Edagawa, Keiichi

    2014-01-01

    Photonic crystals consist of artificial periodic structures of dielectrics, which have attracted much attention because of their wide range of potential applications in the field of optics. We may also fabricate artificial amorphous or quasicrystalline structures of dielectrics, i.e. photonic amorphous materials or photonic quasicrystals. So far, both theoretical and experimental studies have been conducted to reveal the characteristic features of their optical properties, as compared with those of conventional photonic crystals. In this article, we review these studies and discuss various aspects of photonic amorphous materials and photonic quasicrystals, including photonic band gap formation, light propagation properties, and characteristic photonic states. PMID:27877676

  8. Optical Magnetometer Incorporating Photonic Crystals

    NASA Technical Reports Server (NTRS)

    Kulikov, Igor; Florescu, Lucia

    2007-01-01

    According to a proposal, photonic crystals would be used to greatly increase the sensitivities of optical magnetometers that are already regarded as ultrasensitive. The proposal applies, more specifically, to a state-of-the-art type of quantum coherent magnetometer that exploits the electromagnetically-induced-transparency (EIT) method for determining a small change in a magnetic field indirectly via measurement of the shift, induced by that change, in the hyperfine levels of resonant atoms exposed to the field.

  9. Hybrid colloidal plasmonic-photonic crystals.

    PubMed

    Romanov, Sergei G; Korovin, Alexander V; Regensburger, Alois; Peschel, Ulf

    2011-06-17

    We review the recently emerged class of hybrid metal-dielectric colloidal photonic crystals. The hybrid approach is understood as the combination of a dielectric photonic crystal with a continuous metal film. It allows to achieve a strong modification of the optical properties of photonic crystals by involving the light scattering at electronic excitations in the metal component into moulding of the light flow in series to the diffraction resonances occurring in the body of the photonic crystal. We consider different realizations of hybrid plasmonic-photonic crystals based on two- and three-dimensional colloidal photonic crystals in association with flat and corrugated metal films. In agreement with model calculations, different resonance phenomena determine the optical response of hybrid crystals leading to a broadly tuneable functionality of these crystals.

  10. Resonant photonic States in coupled heterostructure photonic crystal waveguides.

    PubMed

    Cox, Jd; Sabarinathan, J; Singh, Mr

    2010-02-09

    In this paper, we study the photonic resonance states and transmission spectra of coupled waveguides made from heterostructure photonic crystals. We consider photonic crystal waveguides made from three photonic crystals A, B and C, where the waveguide heterostructure is denoted as B/A/C/A/B. Due to the band structure engineering, light is confined within crystal A, which thus act as waveguides. Here, photonic crystal C is taken as a nonlinear photonic crystal, which has a band gap that may be modified by applying a pump laser. We have found that the number of bound states within the waveguides depends on the width and well depth of photonic crystal A. It has also been found that when both waveguides are far away from each other, the energies of bound photons in each of the waveguides are degenerate. However, when they are brought close to each other, the degeneracy of the bound states is removed due to the coupling between them, which causes these states to split into pairs. We have also investigated the effect of the pump field on photonic crystal C. We have shown that by applying a pump field, the system may be switched between a double waveguide to a single waveguide, which effectively turns on or off the coupling between degenerate states. This reveals interesting results that can be applied to develop new types of nanophotonic devices such as nano-switches and nano-transistors.

  11. Resonant Photonic States in Coupled Heterostructure Photonic Crystal Waveguides

    PubMed Central

    2010-01-01

    In this paper, we study the photonic resonance states and transmission spectra of coupled waveguides made from heterostructure photonic crystals. We consider photonic crystal waveguides made from three photonic crystals A, B and C, where the waveguide heterostructure is denoted as B/A/C/A/B. Due to the band structure engineering, light is confined within crystal A, which thus act as waveguides. Here, photonic crystal C is taken as a nonlinear photonic crystal, which has a band gap that may be modified by applying a pump laser. We have found that the number of bound states within the waveguides depends on the width and well depth of photonic crystal A. It has also been found that when both waveguides are far away from each other, the energies of bound photons in each of the waveguides are degenerate. However, when they are brought close to each other, the degeneracy of the bound states is removed due to the coupling between them, which causes these states to split into pairs. We have also investigated the effect of the pump field on photonic crystal C. We have shown that by applying a pump field, the system may be switched between a double waveguide to a single waveguide, which effectively turns on or off the coupling between degenerate states. This reveals interesting results that can be applied to develop new types of nanophotonic devices such as nano-switches and nano-transistors. PMID:20672066

  12. Investigation of optical thin films printed on the surface of facets of photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Lucki, M.; Kraus, S.; Zeleny, R.; Zehetner, J.; Seyringer, D.; Latal, J.; Perecar, F.

    2015-05-01

    Optical fibres are widely used in various applications as a medium for optical signals or optical transfer. This transport can be realized on long distance, compared to free space optics, which significantly extends reach of applications. Free space optics and fibre optics are combined in practice to yield the maximum performance of individual components forming a particular system. In such cases, light coupling from free space into fibres is required and it is frequently implemented with the use of lenses. An optical signal coupled into a fibre may also need certain modifications of spectral and spatial properties to allow its propagation down the fibre or reduce the amount of power carried in. The above requirement has been fulfilled by modifying surface of facets of photonic crystal fibres. By extrusion of a certain amount of host material from the surface, it is possible to obtain a structure resembling a thin film or an opaque layer for certain wavelengths. Several different structures of photonic crystal fibres and materials are considered to show influence of such thin-film on signal properties. This investigation is carried out in context of abilities of ablation of material from surfaces of photonic crystal fibres. Only certain shapes and geometrical arrangements can be considered. One of the goals is to specify, which of them are key for potential modification of spectral characteristics of photonic crystal fibres. The printed structures could potentially work like a thin-film ablation. Rigorous and versatile finite difference method has been employed to model propagation of light, its incidence onto a surface of the photonic crystal fibre, and subsequent propagation down the fibre. The simulations are carried on small pieces of photonic crystal fibres, with the length of tens of micrometres, due to well-known demands of the simulation technique on computational resources. Nevertheless, such a simplification is valid, since the structure is longitudinally

  13. Two-dimensional function photonic crystals

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Jing; Liang, Yu; Ma, Ji; Zhang, Si-Qi; Li, Hong; Wu, Xiang-Yao; Wu, Yi-Heng

    2017-01-01

    In this paper, we have studied two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , that can become true easily by electro-optical effect and optical kerr effect. We calculated the band gap structures of TE and TM waves, and found the TE (TM) wave band gaps of function photonic crystals are wider (narrower) than the conventional photonic crystals. For the two-dimensional function photonic crystals, when the dielectric constant functions change, the band gaps numbers, width and position should be changed, and the band gap structures of two-dimensional function photonic crystals can be adjusted flexibly, the needed band gap structures can be designed by the two-dimensional function photonic crystals, and it can be of help to design optical devices.

  14. Bulletlike light pulses in photonic crystals

    NASA Astrophysics Data System (ADS)

    Zhou, Chuanhong; Gong, Qian; Yao, Peijun; Zhao, Deyin; Jiang, Xunya

    2008-08-01

    We report the bulletlike propagation of light pulse in a particularly designed two-dimensional (2D) photonic crystal. Unlike traditional light bullet supported by nonlinear materials, this bulletlike propagation is achieved only by 2D photonic crystal, where the diffraction and the group velocity dispersion of a light pulse are eliminated naturally by combining two distinct properties of photonic crystal, i.e., self-collimation and zero group velocity dispersion. Moreover, we studied the influence of third order dispersion on the propagation of light bullet and found that it can be greatly suppressed by an improved structure of photonic crystal.

  15. Higher order modes in photonic crystal slabs.

    PubMed

    Gansch, Roman; Kalchmair, Stefan; Detz, Hermann; Andrews, Aaron M; Klang, Pavel; Schrenk, Werner; Strasser, Gottfried

    2011-08-15

    We present a detailed investigation of higher order modes in photonic crystal slabs. In such structures the resonances exhibit a blue-shift compared to an ideal two-dimensional photonic crystal, which depends on the order of the slab mode and the polarization. By fabricating a series of photonic crystal slab photo detecting devices, with varying ratios of slab thickness to photonic crystal lattice constant, we are able to distinguish between 0th and 1st order slab modes as well as the polarization from the shift of resonances in the photocurrent spectra. This method complements the photonic band structure mapping technique for characterization of photonic crystal slabs. © 2011 Optical Society of America

  16. Photonic Crystal Devices for Quantum and Nanoscale Photonics

    NASA Astrophysics Data System (ADS)

    Vuckovic, Jelena

    2005-03-01

    Photonic crystal structures can be built to operate in two opposite regimes: one is a suppression of photon states inside the photonic band gap, and the other is a large enhancement of the density of photon states. Both regimes are of consequence to a number of applications in nanoscale and nonlinear optics, as well as to photonic quantum information technologies. Our work on the employment of photonic crystals to build hardware of solid-state photonic quantum information systems, as well as to construct miniaturized optical devices will be reviewed in this talk. We have demonstrated sources of single photons on demand based on quantum dots in micropost microcavities that exhibit a large spontaneous emission rate enhancement (Purcell factor of five) together with a small multi-photon probability (2% compared to a Poisson-distributed source of the same intensity). We have also tested the indistinguishability of emitted single photons from such a source through a Hong-Ou-Mandel-type two-photon interference experiment, and found that consecutive photons exhibit a mean wave-packet overlap as large as 0.81, making this source useful in a variety of experiments in quantum optics and quantum information. The applications of such a device include secure quantum cryptography and linear optical quantum computation. We have also developed two-dimensional photonic crystal microcavities of finite depth with embedded quantum dots that exhibit large quality factors (˜3000) together with small mode volumes (˜0.5(λ/n)^3) and with a maximum field intensity in the high-index region, which is of importance for enhanced interaction with quantum dot excitons. We have performed spectroscopy on a single quantum dot coupled to such a cavity, and demonstrated a very strong modification of its radiative properties, as well as a single-photon generation on demand. A strong interaction between a quantum dot exciton and the field enabled by such a microcavity is of importance for

  17. Photonic crystal fibers for food quality analysis

    NASA Astrophysics Data System (ADS)

    Malinin, A. V.; Zanishevskaja, A. A.; Tuchin, V. V.; Skibina, Yu. S.; Silokhin, I. Y.

    2012-06-01

    The aspects of application of the hollow core photonic crystal waveguides for spectroscopic analysis of liquid medium were considered. The possibility of using these structures for analysis of a fruit juice was evaluated. The principles of processing of photonic crystal waveguide transmission spectra, which is sensitive to quality of juice, its composition, and main component concentration, were revealed.

  18. Photonic crystal scintillators and methods of manufacture

    DOEpatents

    Torres, Ricardo D.; Sexton, Lindsay T.; Fuentes, Roderick E.; Cortes-Concepcion, Jose

    2015-08-11

    Photonic crystal scintillators and their methods of manufacture are provided. Exemplary methods of manufacture include using a highly-ordered porous anodic alumina membrane as a pattern transfer mask for either the etching of underlying material or for the deposition of additional material onto the surface of a scintillator. Exemplary detectors utilizing such photonic crystal scintillators are also provided.

  19. Chalcogenide glass photonic crystals: progress and prospects

    NASA Astrophysics Data System (ADS)

    Grillet, Christian; Lee, Michael W.; Gai, Xin; Tomljenovic-Hanic, Snjezana; Monat, Christelle; Mägi, Eric; Moss, David J.; Eggleton, Benjamin J.; Madden, Steve; Choi, Duk-Yong; Bulla, Douglas; Luther-Davies, Barry

    2010-02-01

    In this review, we discuss the progress and prospects offered by chalcogenide glass photonic crystals. We show that by making photonic crystals from a highly-nonlinear chalcogenide glass, we have the potential to integrate a variety of active devices into a photonic chip. We describe the testing of two-dimensional Ge33As12Se55 chalcogenide glass photonic crystal membrane devices (waveguides and microcavities). We then demonstrate the ability to not only post-tune the devices properties but also create high Q cavities by using the material photosensitivity.

  20. Photonic Paint Developed with Metallic Three-Dimensional Photonic Crystals

    PubMed Central

    Sun, Po; Williams, John D.

    2012-01-01

    This work details the design and simulation of an inconspicuous photonic paint that can be applied onto an object for anticounterfeit and tag, track, and locate (TTL) applications. The paint consists of three-dimensional metallic tilted woodpile photonic crystals embedded into a visible and infrared transparent polymer film, which can be applied to almost any surface. The tilted woodpile photonic crystals are designed with a specific pass band detectable at nearly all incident angles of light. When painted onto a surface, these crystals provide a unique reflective infra-red optical signature that can be easily observed and recorded to verify the location or contents of a package.

  1. Luminescence spectra of a cholesteric photonic crystal

    NASA Astrophysics Data System (ADS)

    Dolganov, P. V.

    2017-05-01

    The transmission and luminescence spectra of a cholesteric photonic crystal doped with an organic dye are measured. The density of photon states is calculated using the material parameters obtained from the comparison of the experimental and theoretical spectra. The shape of the luminescence spectra is modified with respect to the density of photon states owing to the difference in the structure of the normal modes of the photonic crystal near the short-wavelength and long-wavelength edges of the photonic quasi-band gap upon the "pushing" of the photon states from the gap and to the nonvanishing orientation ordering of the luminescent molecules. The luminescence spectrum calculated taking into account the chiral structure of the photonic crystal agrees with the experimental spectrum.

  2. Photonic crystal technology for terahertz system integration

    NASA Astrophysics Data System (ADS)

    Fujita, Masayuki; Nagatsuma, Tadao

    2016-04-01

    Developing terahertz integration technology is essential for practical use of terahertz electromagnetic waves (0.1-10 THz) in various applications including broadband wireless communication, spectroscopic sensing, and nondestructive imaging. In this paper, we present our recent challenges towards terahertz system integration based on photonic crystal technology such as the development of terahertz transceivers. We use photonic-crystal slabs consisting of a twodimensional lattice of air holes formed in a silicon slab to develop low loss compact terahertz components in planar structures. The demonstration of ultralow loss (< 0.1 dB/cm) waveguides and integrated transceiver devices in the 0.3 THz band shows the potential for the application of photonic crystals to terahertz integration technology. Improving the coupling efficiency between the photonic crystal waveguide and resonant tunneling diode is important to take full advantage of the ultralow loss photonic crystal waveguides.

  3. Fractional relaxations in photonic crystals

    NASA Astrophysics Data System (ADS)

    Giraldi, Filippo; Petruccione, Francesco

    2014-10-01

    A quantum dot interacting with the radiation field of a photonic crystal is considered. An analytical description of the dynamics and the coherence between the two states of the quantum dot is provided. Besides the well-known trapping, a fractional nature of the dynamics appears via relaxations of the Mittag-Leffler type. Furthermore, coherence exhibits a transition from the decay {{t}-3/2} to {{t}-1/2} if the transition frequency of the quantum dot is exactly in the middle of the band gap. Similarly, the population of the excited level undergoes a transition from the relaxation 1/{{t}3} to 1/t. These resonances and transitions belong also to the context of matter-wave emissions in optical lattices.

  4. Photonic crystal negative refractive optics.

    PubMed

    Baba, Toshihiko; Abe, Hiroshi; Asatsuma, Tomohiko; Matsumoto, Takashi

    2010-03-01

    Photonic crystals (PCs) are multi-dimensional periodic gratings, in which the light propagation is dominated by Bragg diffraction that appears to be refraction at the flat surfaces of the PC. The refraction angle from positive to negative, perfectly or only partially obeying Snell's law, can be tailored using photonic band theory. The negative refraction enables novel prism, collimation, and lens effects. Because PCs usually consist of two transparent media, these effects occur at absorption-free frequencies, affording significant design flexibility for free-space optics. The PC slab, a high-index membrane with a two-dimensional airhole array, must be carefully designed to avoid reflection and diffraction losses. Light focusing based on negative refraction forms a parallel image of a light source, facilitating optical couplers and condenser lenses for wavelength demultiplexing. A compact wavelength demultiplexer can be designed by combining the prism and lens effects. The collimation effect is obtainable not only inside but also outside of the PC by optimizing negative refractive condition.

  5. Optimization of photonic crystal structures.

    PubMed

    Smajic, Jasmin; Hafner, Christian; Erni, Daniel

    2004-11-01

    We report on the numerical structural optimization of two-dimensional photonic crystal (PhC) power dividers by using two different classes of optimization algorithms, namely, a modified truncated Newton (TN) gradient search as deterministic local optimization scheme and an evolutionary optimization representing the probabilistic global search strategies. Because of the severe accuracy requirements during optimization, the proper PhC device has been simulated by using the multiple-multipole program that is contained in the MaX-1 software package. With both optimizer classes, we found reliable and promising solutions that provide vanishing power reflection and perfect power balance at any specified frequency within the photonic bandgap. This outcome is astonishing in light of the discrete nature inherent in the underlying PhC structure, especially when the optimizer is allowed to intervene only within a very small volume of the device. Even under such limiting constraints structural optimization is not only feasible but has proven to be highly successful.

  6. Photonic crystals with topological defects

    NASA Astrophysics Data System (ADS)

    Liew, Seng Fatt; Knitter, Sebastian; Xiong, Wen; Cao, Hui

    2015-02-01

    We introduce topological defects to a square lattice of elliptical cylinders. Despite the broken translational symmetry, the long-range positional order of the cylinders leads to a residual photonic band gap in the local density of optical states. However, the band-edge modes are strongly modified by the spatial variation of the ellipse orientation. The Γ -X band-edge mode splits into four regions of high intensity and the output flux becomes asymmetric due to the formation of crystalline domains with different orientation. The Γ -M band-edge mode has the energy flux circulating around the topological defect center, creating an optical vortex. By removing the elliptical cylinders at the center, we create localized defect states, which are dominated by either clockwise or counterclockwise circulating waves. The flow direction can be switched by changing the ellipse orientation. The deterministic aperiodic variation of the unit cell orientation adds another dimension to the control of light in photonic crystals, enabling the creation of a diversified field pattern and energy flow landscape.

  7. Butterfly wing color: A photonic crystal demonstration

    NASA Astrophysics Data System (ADS)

    Proietti Zaccaria, Remo

    2016-01-01

    We have theoretically modeled the optical behavior of a natural occurring photonic crystal, as defined by the geometrical characteristics of the Teinopalpus Imperialis butterfly. In particular, following a genetic algorithm approach, we demonstrate how its wings follow a triclinic crystal geometry with a tetrahedron unit base. By performing both photonic band analysis and transmission/reflection simulations, we are able to explain the characteristic colors emerging by the butterfly wings, thus confirming their crystal form.

  8. Photonic Crystal Fiber Based Entangled Photon Sources

    DTIC Science & Technology

    2014-03-01

    shifted-fiber ( DSF ) and a highly nonlinear fiber (HNLF) can be cooled at the liquid nitrogen temperature (77K). The advantage of the HNLF is a larger......signal for one of the photon-pair generated in four-wave mixing process. χ : the Kerr nonlinearity. k : wave vector. DSF : dispersion shifted fiber

  9. A proposed fibre optic time domain optical coherence tomography system using a micro-photonic stationary optical delay line

    NASA Astrophysics Data System (ADS)

    Jansz, Paul Vernon; Wild, Graham; Hinckley, Steven

    2008-04-01

    Conventional time domain Optical Coherence Tomography (OCT) relies on a reference Optical Delay Line (ODL). These reference ODLs require the physical movement of a mirror to scan a given depth range. This movement results in instrument degradation. We propose a new optical fibre based time domain OCT system that makes use of a micro-photonic structure as a stationary ODL. The proposed system uses an in-fibre interferometer, either a Michelson or a Mach-Zhender. The reference ODL makes use of a collimator to expand the light from the optical fibre. This is them expanded in one dimension via planar optics, that is, a cylindrical lens based telescope, using a concave and convex lens. The expanded beam is them passed through a transmissive Spatial Light Modulator (SLM), specifically a liquid crystal light valve used as an optical switch. Light is then reflected back through the system off the micro-photonic structure. The micro-photonic structure is a one dimensional array of stagged mirror steps, called a Stepped Mirror Structure (SMS). The system enables the selection of discrete optical delay lengths. The proposed ODL is capable of depth hoping and multicasting. We discuss the fabrication of the SMS, which consists of eight steps, each approximately 150 μm high. A change in notch frequency using an in-fibre Mach Zhender interferometer was used to gauge the average step height. The results gave an average step height of 146 μm.

  10. Photonic crystal slab quantum well infrared photodetector

    NASA Astrophysics Data System (ADS)

    Kalchmair, S.; Detz, H.; Cole, G. D.; Andrews, A. M.; Klang, P.; Nobile, M.; Gansch, R.; Ostermaier, C.; Schrenk, W.; Strasser, G.

    2011-01-01

    In this letter we present a quantum well infrared photodetector (QWIP), which is fabricated as a photonic crystal slab (PCS). With the PCS it is possible to enhance the absorption efficiency by increasing photon lifetime in the detector active region. To understand the optical properties of the device we simulate the PCS photonic band structure, which differs significantly from a real two-dimensional photonic crystal. By fabricating a PCS-QWIP with 100x less quantum well doping, compared to a standard QWIP, we are able to see strong absorption enhancement and sharp resonance peaks up to temperatures of 170 K.

  11. Novel photonic crystal cavities and related structures.

    SciTech Connect

    Luk, Ting Shan

    2007-11-01

    The key accomplishment of this project is to achieve a much more in-depth understanding of the thermal emission physics of metallic photonic crystal through theoretical modeling and experimental measurements. An improved transfer matrix technique was developed to enable incorporation of complex dielectric function. Together with microscopic theory describing emitter radiative and non-radiative relaxation dynamics, a non-equilibrium thermal emission model is developed. Finally, experimental methodology was developed to measure absolute emissivity of photonic crystal at high temperatures with accuracy of +/-2%. Accurate emissivity measurements allow us to validate the procedure to treat the effect of the photonic crystal substrate.

  12. Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre

    NASA Astrophysics Data System (ADS)

    Saglamyurek, Erhan; Jin, Jeongwan; Verma, Varun B.; Shaw, Matthew D.; Marsili, Francesco; Nam, Sae Woo; Oblak, Daniel; Tittel, Wolfgang

    2015-02-01

    The realization of a future quantum Internet requires the processing and storage of quantum information at local nodes and interconnecting distant nodes using free-space and fibre-optic links. Quantum memories for light are key elements of such quantum networks. However, to date, neither an atomic quantum memory for non-classical states of light operating at a wavelength compatible with standard telecom fibre infrastructure, nor a fibre-based implementation of a quantum memory, has been reported. Here, we demonstrate the storage and faithful recall of the state of a 1,532 nm wavelength photon entangled with a 795 nm photon, in an ensemble of cryogenically cooled erbium ions doped into a 20-m-long silica fibre, using a photon-echo quantum memory protocol. Despite its currently limited efficiency and storage time, our broadband light-matter interface brings fibre-based quantum networks one step closer to reality.

  13. Photonics crystal fiber Raman sensors

    NASA Astrophysics Data System (ADS)

    Yang, Xuan; Bond, Tiziana C.; Zhang, Jin Z.; Li, Yat; Gu, Claire

    2012-11-01

    Hollow core photonic crystal fiber (HCPCF) employs a guiding mechanism fundamentally different from that in conventional index guiding fibers. In an HCPCF, periodic air channels in a glass matrix act as reflectors to confine light in an empty core. As a result, the interaction between light and glass can be very small. Therefore, HCPCF has been used in applications that require extremely low non-linearity, high breakdown threshold, and zero dispersion. However, their applications in optical sensing, especially in chemical and biological sensing, have only been extensively explored recently. Besides their well-recognized optical properties the hollow cores of the fibers can be easily filled with liquid or gas, providing an ideal sampling mechanism in sensors. Recently, we have demonstrated that by filling up a HCPCF with gas or liquid samples, it is possible to significantly increase the sensitivity of the sensors in either regular Raman or surface enhanced Raman scattering (SERS) applications. This is because the confinement of both light and sample inside the hollow core enables direct interaction between the propagating wave and the analyte. In this paper, we report our recent work on using HCPCF as a platform for Raman or SERS in the detection of low concentration greenhouse gas (ambient CO2), biomedically significant molecules (e.g., glucose), and bacteria. We have demonstrated that by filling up a HCPCF with gas or liquid samples, it is possible to significantly increase the sensitivity of the sensors in either regular Raman or SERS applications.

  14. Coupled External Cavity Photonic Crystal Enhanced Fluorescence

    PubMed Central

    Pokhriyal, Anusha; Lu, Meng; Ge, Chun; Cunningham, Brian T.

    2016-01-01

    We report a fundamentally new approach to enhance fluorescence in which surface adsorbed fluorophore-tagged biomolecules are excited on a photonic crystal surface that functions as a narrow bandwidth and tunable mirror of an external cavity laser. This scheme leads to ~10× increase in the electromagnetic enhancement factor compared to ordinary photonic crystal enhanced fluorescence. In our experiments, the cavity automatically tunes its lasing wavelength to the resonance wavelength of the photonic crystal, ensuring optimal on-resonance coupling even in the presence of variable device parameters and variations in the density of surface-adsorbed capture molecules. We achieve ~105× improvement in the limit of detection of a fluorophore-tagged protein compared to its detection on an unpatterned glass substrate. The enhanced fluorescence signal and easy optical alignment make cavity-coupled photonic crystals a viable approach for further reducing detection limits of optically-excited light emitters that are used in biological assays. PMID:23129575

  15. Coupled external cavity photonic crystal enhanced fluorescence.

    PubMed

    Pokhriyal, Anusha; Lu, Meng; Ge, Chun; Cunningham, Brian T

    2014-05-01

    We report a fundamentally new approach to enhance fluorescence in which surface adsorbed fluorophore-tagged biomolecules are excited on a photonic crystal surface that functions as a narrow bandwidth and tunable mirror of an external cavity laser. This scheme leads to ∼10× increase in the electromagnetic enhancement factor compared to ordinary photonic crystal enhanced fluorescence. In our experiments, the cavity automatically tunes its lasing wavelength to the resonance wavelength of the photonic crystal, ensuring optimal on-resonance coupling even in the presence of variable device parameters and variations in the density of surface-adsorbed capture molecules. We achieve ∼10(5) × improvement in the limit of detection of a fluorophore-tagged protein compared to its detection on an unpatterned glass substrate. The enhanced fluorescence signal and easy optical alignment make cavity-coupled photonic crystals a viable approach for further reducing detection limits of optically-excited light emitters that are used in biological assays.

  16. Photonic crystal: energy-related applications

    SciTech Connect

    Ye, Zhuo; Park, Joong-Mok; Constant, Kristen; Kim, Tae-Geun; Ho, Kai-Ming

    2012-06-08

    We review recent work on photonic-crystal fabrication using soft-lithography techniques. We consider applications of the resulting structures in energy-related areas such as lighting and solar-energy harvesting. In general, our aim is to introduce the reader to the concepts of photonic crystals, describe their history, development, and fabrication techniques and discuss a selection of energy-related applications.

  17. Metallic photonic crystals for thermophotovoltaic applications

    NASA Astrophysics Data System (ADS)

    Walsh, Timothy A.

    Since the idea of a photonic bandgap was proposed over two decades ago, photonic crystals have been the subject of significant interest due to their novel optical properties which enable new and varied applications. In this research, the photonic bandgap effect is exploited to tailor the thermal radiation spectrum to a narrow range of wavelengths determined by the lattice symmetry and dimensions of the photonic crystal structure. This sharp emission peak can be matched to the electronic bandgap energy of a p-n junction photovoltaic cell for high efficiency thermophotovoltaic energy conversion. This thesis explores aspects of photonic crystal design, materials considerations, and manufacture for thermophotovoltaic applications. Photonic crystal structures come in many forms, exhibiting various types of 1D, 2D, and 3D lattice symmetry. In this work, the "woodpile" 3D photonic crystal is studied. One advantage of the woodpile lattice is that it can be readily fabricated on a large scale using common integrated circuit manufacturing techniques. Additionally this structure lends itself to efficient and accurate modeling with the use of a plane-wave expansion based transfer matrix method to calculate the scattering properties and band structure of the photonic crystal. This method is used to explore the geometric design parameters of the woodpile structure. Optimal geometric proportions for the structure are found which yield the highest narrowband absorption peak possible. By Kirchoffs law of thermal emission, this strong and sharp absorptance will yield high power and narrowband thermal radiation. The photonic crystal thermal emission spectrum is then evaluated in a TPV system model to evaluate the electrical power density and system efficiency achievable. The results produced by the photonic crystal emitter are compared with the results assuming a blackbody thermal radiation spectrum. The blackbody represents a universal standard against which any selective emitter

  18. Electrically Driven Photonic Crystal Nanocavity Devices

    DTIC Science & Technology

    2012-01-01

    Brown-Goebeler, J. L. Jewell, and J. V. Hove, “Top- surface-emitting GaAs four- quantum - well lasers emitting at 0.85 μm,” Electorn. Lett., vol. 26, pp...modulation, lasers , light-emitting diodes, modulation, photodetectors, photonic bandgap materials, quantum dots (QDs). I. INTRODUCTION PHOTONIC...improved versus similar quantum well (QW) systems [32]. Fig. 2 shows a simplified schematic diagram of the lateral junction photonic crystal fabrication

  19. Photonic crystal waveguide created by selective infiltration

    NASA Astrophysics Data System (ADS)

    Casas Bedoya, A.; Domachuk, P.; Grillet, C.; Monat, C.; Mägi, E. C.; Li, E.; Eggleton, B. J.

    2012-06-01

    The marriage of photonics and microfluidics ("optofluidics") uses the inherent mobility of fluids to reversibly tune photonic structures beyond traditional fabrication methods by infiltrating voids in said structures. Photonic crystals (PhCs) strongly control light on the wavelength scale and are well suited to optofluidic tuning because their periodic airhole microstructure is a natural candidate for housing liquids. The infiltration of a single row of holes in the PhC matrix modifies the effective refractive index allowing optical modes to be guided by the PhC bandgap. In this work we present the first experimental demonstration of a reconfigurable single mode W1 photonic crystal defect waveguide created by selective liquid infiltration. We modified a hexagonal silicon planar photonic crystal membrane by selectively filling a single row of air holes with ~300nm resolution, using high refractive index ionic liquid. The modification creates optical confinement in the infiltrated region and allows propagation of a single optical waveguide mode. We describe the challenges arising from the infiltration process and the liquid/solid surface interaction in the photonic crystal. We include a detailed comparison between analytic and numerical modeling and experimental results, and introduce a new approach to create an offset photonic crystal cavity by varying the nature of the selective infiltration process.

  20. Microfabricated Optical Cavities and Photonic Crystals

    NASA Astrophysics Data System (ADS)

    Lončar, Marko; Scherer, Axel

    Microfabricated periodic structures with a high refractive index contrast have recently become very interesting geometries for the manipulation of light. The existence of a photonic bandgap, a frequency range within which propagation of light is prevented in all directions, is very useful where spatial localization of light is required. Ideally, by constructing three-dimensional confinement geometries, light propagation can be controlled in all three dimensions. However, since the fabrication of 3D photonic crystals is difficult, a more manufacturable approach is based on the use of one- or two-dimensional geometries. Here we describe the evolution of microcavities from 1D Bragg reflectors to 2D photonic crystals. The 1D microcavity laser (VCSEL) has already found widespread commercial use in data communications, and the equivalent 2D geometry has recently attracted a lot of research attention. 2D photonic crystal lasers, fabricated within a thin dielectric membrane and perforated with a two-dimensional lattice of holes, are very appealing for dense integration of photonic devices in telecommunications and optical sensing systems. In this chapter, we describe theory and experiments of planar photonic crystals as well as their applications towards lasers and super-dispersive elements. Low-threshold 2D photonic crystal lasers were recently demonstrated both in air and in different chemical solutions and can now be used to perform spectroscopic tests on ultra-small volumes of analyte.

  1. Optical trapping apparatus, methods and applications using photonic crystal resonators

    SciTech Connect

    Erickson, David; Chen, Yih-Fan

    2015-06-16

    A plurality of photonic crystal resonator optical trapping apparatuses and a plurality optical trapping methods using the plurality of photonic crystal resonator optical trapping apparatuses include located and formed over a substrate a photonic waveguide that is coupled (i.e., either separately coupled or integrally coupled) with a photonic crystal resonator. In a particular embodiment, the photonic waveguide and the photonic crystal resonator comprise a monocrystalline silicon (or other) photonic material absent any chemical functionalization. In another particular embodiment, the photonic waveguide and the photonic crystal resonator comprise a silicon nitride material which when actuating the photonic crystal resonator optical trapping apparatus with a 1064 nanometer resonant photonic radiation wavelength (or other resonant photonic radiation wavelength in a range from about 700 to about 1200 nanometers) provides no appreciable heating of an aqueous sample fluid that is analyzed by the photonic crystal resonator optical trapping apparatus.

  2. Photonic crystal biosensors towards on-chip integration.

    PubMed

    Threm, Daniela; Nazirizadeh, Yousef; Gerken, Martina

    2012-08-01

    Photonic crystal technology has attracted large interest in the last years. The possibility to generate highly sensitive sensor elements with photonic crystal structures is very promising for medical or environmental applications. The low-cost fabrication on the mass scale is as advantageous as the compactness and reliability of photonic crystal biosensors. The possibility to integrate microfluidic channels together with photonic crystal structures allows for highly compact devices. This article reviews different types of photonic crystal sensors including 1D photonic crystal biosensors, biosensors with photonic crystal slabs, photonic crystal waveguide biosensors and biosensors with photonic crystal microcavities. Their applications in biomolecular and pathogen detection are highlighted. The sensitivities and the detection limits of the different biosensors are compared. The focus is on the possibilities to integrate photonic crystal biosensors on-chip. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Crystal structure of raptor adenovirus 1 fibre head and role of the beta-hairpin in siadenovirus fibre head domains.

    PubMed

    Nguyen, Thanh H; Ballmann, Mónika Z; Do, Huyen T; Truong, Hai N; Benkő, Mária; Harrach, Balázs; van Raaij, Mark J

    2016-06-22

    Most adenoviruses recognize their host cells via an interaction of their fibre head domains with a primary receptor. The structural framework of adenovirus fibre heads is conserved between the different adenovirus genera for which crystal structures have been determined (Mastadenovirus, Aviadenovirus, Atadenovirus and Siadenovirus), but genus-specific differences have also been observed. The only known siadenovirus fibre head structure, that of turkey adenovirus 3 (TAdV-3), revealed a twisted beta-sandwich resembling the reovirus fibre head architecture more than that of other adenovirus fibre heads, plus a unique beta-hairpin embracing a neighbouring monomer. The TAdV-3 fibre head was shown to bind sialyllactose. Raptor adenovirus 1 (RAdV-1) fibre head was expressed, crystallized and its structure was solved and refined at 1.5 Å resolution. The structure could be solved by molecular replacement using the TAdV-3 fibre head structure as a search model, despite them sharing a sequence identity of only 19 %. Versions of both the RAdV-1 and TAdV-3 fibre heads with their beta-hairpin arm deleted were prepared and their stabilities were compared with the non-mutated proteins by a thermal unfolding assay. The structure of the RAdV-1 fibre head contains the same twisted ABCJ-GHID beta-sandwich and beta-hairpin arm as the TAdV-3 fibre head. However, while the predicted electro-potential surface charge of the TAdV-3 fibre head is mainly positive, the RAdV-1 fibre head shows positively and negatively charged patches and does not appear to bind sialyllactose. Deletion of the beta-hairpin arm does not affect the structure of the raptor adenovirus 1 fibre head and only affects the stability of the RAdV-1 and TAdV-3 fibre heads slightly. The high-resolution structure of RAdV-1 fibre head is the second known structure of a siadenovirus fibre head domain. The structure shows that the siadenovirus fibre head structure is conserved, but differences in the predicted surface charge

  4. Controlling spontaneous emission in bioreplica photonic crystals

    NASA Astrophysics Data System (ADS)

    Jorgensen, Matthew R.; Butler, Elizabeth S.; Bartl, Michael H.

    2012-04-01

    Sophisticated methods have been created by nature to produce structure-based colors as a way to address the need of a wide variety of organisms. This pallet of available structures presents a unique opportunity for the investigation of new photonic crystal designs. Low-temperature sol-gel biotemplating methods were used to transform a single biotemplate into a variety of inorganic oxide structures. The density of optical states was calculated for a diamond-based natural photonic crystal, as well as several structures templated from it. Calculations were experimentally probed by spontaneous emission studies using time correlated single photon counting measurements.

  5. Enhancement of nonlinear effects using photonic crystals.

    PubMed

    Soljacić, Marin; Joannopoulos, J D

    2004-04-01

    The quest for all-optical signal processing is generally deemed to be impractical because optical nonlinearities are usually weak. The emerging field of nonlinear photonic crystals seems destined to change this view dramatically. Theoretical considerations show that all-optical devices using photonic crystal designs promise to be smaller than the wavelength of light, and to operate with bandwidths that are very difficult to achieve electronically. When created in commonly used materials, these devices could operate at powers of only a few milliwatts. Moreover, if these designs are combined with materials and systems that support electromagnetically induced transparency, operation at single-photon power levels could be feasible.

  6. Chalcogenide Photonic Crystal Filters For Optical Communication

    SciTech Connect

    Suthar, B.; Bhargava, A.

    2011-12-12

    A proper arrangement of photonic crystal waveguide and a point defect cavity gives an important application of photonic filter device in optical communications. We have studied a narrow band filter and a channel drop filter device using 2-D photonic crystal with square lattice structure. A narrow band filter is applied to select a narrow frequency band signal from incoming light, while a channel drop filter is used to drop a particular frequency signal from incoming light. Chalcogenide As{sub 2}S{sub 3} is compared with conventional Si material regarding applications as feasible material for optical devices.

  7. Amplified Photon Upconversion by Photonic Shell of Cholesteric Liquid Crystals.

    PubMed

    Kang, Ji-Hwan; Kim, Shin-Hyun; Fernandez-Nieves, Alberto; Reichmanis, Elsa

    2017-04-26

    As an effective platform to exploit triplet-triplet-annihilation-based photon upconversion (TTA-UC), microcapsules composed of a fluidic UC core and photonic shell are microfluidically prepared using a triple emulsion as the template. The photonic shell consists of cholesteric liquid crystals (CLCs) with a periodic helical structure, exhibiting a photonic band gap. Combined with planar anchoring at the boundaries, the shell serves as a resonance cavity for TTA-UC emission and enables spectral tuning of the UC under low-power-density excitation. The CLC shell can be stabilized by introducing a polymerizable mesogen in the LC host. Because of the microcapsule spherical symmetry, spontaneous emission of the delayed fluorescence is omnidirectionally amplified at the edge of the stop band. These results demonstrate the range of opportunities provided by TTA-UC systems for the future design of low-threshold photonic devices.

  8. Optically switchable liquid crystal photonic structures.

    PubMed

    Urbas, Augustine; Tondiglia, Vincent; Natarajan, Lalgudi; Sutherland, Richard; Yu, Haiping; Li, J-H; Bunning, Timothy

    2004-10-27

    Photo-optic materials offer the possibility of light controlled photonic devices, intelligent and environmentally adaptive optical materials. One strategy for creating these materials is the combination of structure formation through holographic photopolymerization and the variable optical properties of liquid crystals. Holographically patterned, polymer stabilized liquid crystals (HPSLCs) have proven to be useful optical materials. By incorporating photo-optic, azobenzene-derived liquid crystal blends into such material systems, we have generated practical photoresponsive optical materials.

  9. Thermal tunability of photonic bandgaps in liquid crystal filled polymer photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Wang, Doudou; Chen, Guoxiang; Wang, Lili

    2016-05-01

    A highly tunable bandgap-guiding polymer photonic crystal fiber is designed by infiltrating the cladding air holes with liquid crystal 5CB. Structural parameter dependence and thermal tunability of the photonic bandgaps, mode properties and confinement losses of the designed fiber are investigated. Bandgaps red shift as the temperature goes up. Average thermal tuning sensitivity of 30.9 nm/°C and 20.6 nm/°C is achieved around room temperature for the first and second photonic bandgap, respectively. Our results provide theoretical references for applications of polymer photonic crystal fiber in sensing and tunable fiber-optic devices.

  10. Liquid crystal devices for photonics applications

    NASA Astrophysics Data System (ADS)

    Chigrinov, Vladimir G.

    2007-11-01

    Liquid crystal (LC) devices for Photonics applications is a hot topic of research. Such elements begin to appear in Photonics market. Passive elements for fiber optical communication systems (DWDM components) based on LC cells can successfully compete with the other elements used for the purpose, such as micro electromechanical (MEM), thermo-optical, opto-mechanical or acousto-optical devices. Application of nematic and ferroelectric LC for high speed communication systems, producing elements that are extremely fast, stable, durable, of low loss, operable over a wide temperature range, and that require small operating voltages and extremely low power consumption. The known LC applications in fiber optics enable to produce switches, filters, attenuators, equalizers, polarization controllers, phase emulators and other fiber optical components. Good robustness due to the absence of moving parts and compatibility with VLSI technology, excellent parameters in a large photonic wavelength range, whereas the complexity of the design and the cost of the device are equivalent to regular passive matrix LC displays makes LC fiber optical devices very attractive for mass production. We have already successfully fabricated certain prototypes of the optical switches based on ferroelectric and nematic LC materials. The electrooptical modes used for the purpose included the light polarization rotation, voltage controllable diffraction and fast switching of the LC refractive index. We used the powerful software to optimize the LC modulation characteristics. Use of photo-alignment technique pioneered by us makes it possible to develop new LC fiber components. Almost all the criteria of perfect LC alignment are met in case of azo-dye layers. We have already used azo-dye materials to align LC in superthin photonic holes, curved and 3D surfaces and as cladding layers in microring silicon based resonators. The prototypes of new LC efficient Photonics devices are envisaged. Controllable

  11. Switching of Photonic Crystal Lasers by Graphene.

    PubMed

    Hwang, Min-Soo; Kim, Ha-Reem; Kim, Kyoung-Ho; Jeong, Kwang-Yong; Park, Jin-Sung; Choi, Jae-Hyuck; Kang, Ju-Hyung; Lee, Jung Min; Park, Won Il; Song, Jung-Hwan; Seo, Min-Kyo; Park, Hong-Gyu

    2017-03-08

    Unique features of graphene have motivated the development of graphene-integrated photonic devices. In particular, the electrical tunability of graphene loss enables high-speed modulation of light and tuning of cavity resonances in graphene-integrated waveguides and cavities. However, efficient control of light emission such as lasing, using graphene, remains a challenge. In this work, we demonstrate on/off switching of single- and double-cavity photonic crystal lasers by electrical gating of a monolayer graphene sheet on top of photonic crystal cavities. The optical loss of graphene was controlled by varying the gate voltage Vg, with the ion gel atop the graphene sheet. First, the fundamental properties of graphene were investigated through the transmittance measurement and numerical simulations. Next, optically pumped lasing was demonstrated for a graphene-integrated single photonic crystal cavity at Vg below -0.6 V, exhibiting a low lasing threshold of ∼480 μW, whereas lasing was not observed at Vg above -0.6 V owing to the intrinsic optical loss of graphene. Changing quality factor of the graphene-integrated photonic crystal cavity enables or disables the lasing operation. Moreover, in the double-cavity photonic crystal lasers with graphene, switching of individual cavities with separate graphene sheets was achieved, and these two lasing actions were controlled independently despite the close distance of ∼2.2 μm between adjacent cavities. We believe that our simple and practical approach for switching in graphene-integrated active photonic devices will pave the way toward designing high-contrast and ultracompact photonic integrated circuits.

  12. Tuning photonic bands in plasma metallic photonic crystals

    NASA Astrophysics Data System (ADS)

    Chaudhari, Mayank Kumar; Chaudhari, Sachin

    2016-11-01

    Introducing plasma in the background provides additional degrees of freedom for tuning dispersion curves of photonic crystals. 2D photonic crystals in triangular lattice arrangements offer more global bandgap regions and thus are of more interest for various applications. The dispersion characteristics of a two-dimensional plasma metallic photonic crystal (PMPC) in square as well as triangular lattice arrangements have been analyzed in this paper using the orthogonal finite difference time domain method. The dispersion characteristics of PMPCs for the range of r/a ratios and plasma frequencies for triangular lattice configuration have been analyzed. On introducing plasma in the background, the photonic bands of PMPC are shifted towards higher normalized frequencies. This shift is more for lower bands and increases with plasma frequency. The cut-off frequency was observed for both TE and TM polarizations in PMPC and showed strong dependence on r/a ratio as well as plasma frequency. Photonic bandgaps of PMPC may be tuned by controlling plasma parameters, giving opportunity for utilizing these PMPC structures for various applications such as fine-tuning cavities for enhanced light-matter interaction, plasmonic waveguides, and Gyrotron cavities.

  13. Ultrafast optical switching using photonic molecules in photonic crystal waveguides.

    PubMed

    Zhao, Yanhui; Qian, Chenjiang; Qiu, Kangsheng; Gao, Yunan; Xu, Xiulai

    2015-04-06

    We study the coupling between photonic molecules and waveguides in photonic crystal slab structures using finite-difference time-domain method and coupled mode theory. In a photonic molecule with two cavities, the coupling of cavity modes results in two super-modes with symmetric and anti-symmetric field distributions. When two super-modes are excited simultaneously, the energy of electric field oscillates between the two cavities. To excite and probe the energy oscillation, we integrate photonic molecule with two photonic crystal waveguides. In coupled structure, we find that the quality factors of two super-modes might be different because of different field distributions of super-modes. After optimizing the radii of air holes between two cavities of photonic molecule, nearly equal quality factors of two super-modes are achieved, and coupling strengths between the waveguide modes and two super-modes are almost the same. In this case, complete energy oscillations between two cavities can be obtained with a pumping source in one waveguide, which can be read out by another waveguide. Finally, we demonstrate that the designed structure can be used for ultrafast optical switching with a time scale of a few picoseconds.

  14. Photonic quasi-crystal terahertz lasers

    PubMed Central

    Vitiello, Miriam Serena; Nobile, Michele; Ronzani, Alberto; Tredicucci, Alessandro; Castellano, Fabrizio; Talora, Valerio; Li, Lianhe; Linfield, Edmund H.; Davies, A. Giles

    2014-01-01

    Quasi-crystal structures do not present a full spatial periodicity but are nevertheless constructed starting from deterministic generation rules. When made of different dielectric materials, they often possess fascinating optical properties, which lie between those of periodic photonic crystals and those of a random arrangement of scatterers. Indeed, they can support extended band-like states with pseudogaps in the energy spectrum, but lacking translational invariance, they also intrinsically feature a pattern of ‘defects’, which can give rise to critically localized modes confined in space, similar to Anderson modes in random structures. If used as laser resonators, photonic quasi-crystals open up design possibilities that are simply not possible in a conventional periodic photonic crystal. In this letter, we exploit the concept of a 2D photonic quasi crystal in an electrically injected laser; specifically, we pattern the top surface of a terahertz quantum-cascade laser with a Penrose tiling of pentagonal rotational symmetry, reaching 0.1–0.2% wall-plug efficiencies and 65 mW peak output powers with characteristic surface-emitting conical beam profiles, result of the rich quasi-crystal Fourier spectrum. PMID:25523102

  15. Photonic quasi-crystal terahertz lasers.

    PubMed

    Vitiello, Miriam Serena; Nobile, Michele; Ronzani, Alberto; Tredicucci, Alessandro; Castellano, Fabrizio; Talora, Valerio; Li, Lianhe; Linfield, Edmund H; Davies, A Giles

    2014-12-19

    Quasi-crystal structures do not present a full spatial periodicity but are nevertheless constructed starting from deterministic generation rules. When made of different dielectric materials, they often possess fascinating optical properties, which lie between those of periodic photonic crystals and those of a random arrangement of scatterers. Indeed, they can support extended band-like states with pseudogaps in the energy spectrum, but lacking translational invariance, they also intrinsically feature a pattern of 'defects', which can give rise to critically localized modes confined in space, similar to Anderson modes in random structures. If used as laser resonators, photonic quasi-crystals open up design possibilities that are simply not possible in a conventional periodic photonic crystal. In this letter, we exploit the concept of a 2D photonic quasi crystal in an electrically injected laser; specifically, we pattern the top surface of a terahertz quantum-cascade laser with a Penrose tiling of pentagonal rotational symmetry, reaching 0.1-0.2% wall-plug efficiencies and 65 mW peak output powers with characteristic surface-emitting conical beam profiles, result of the rich quasi-crystal Fourier spectrum.

  16. Liquid crystals for photonic applications

    NASA Astrophysics Data System (ADS)

    Miniewicz, A.; Gniewek, A.; Parka, J.

    2003-01-01

    In this paper we describe application of liquid crystals in optical imaging and processing. Electrically and optically addressed liquid crystal spatial light modulators are key elements in real-time holographic devices. Their implementation for beam steering and hologram formation is briefly discussed. The Joint Fourier transform optical correlator for pattern recognition is presented as well as the use of liquid crystals for the adaptive optics purposes is discussed.

  17. Topological photonics: From crystals to particles

    NASA Astrophysics Data System (ADS)

    Siroki, Gleb; Huidobro, Paloma A.; Giannini, Vincenzo

    2017-07-01

    Photonic crystal topological insulators host protected states at their edges. In the band structure these edge states appear as continuous bands crossing the photonic band gap. They allow light to propagate unidirectionally and without scattering. In practice it is essential to make devices relying on these effects as miniature as possible. Here we study photonic topological insulator particles (finite crystals). In such particles the edge state frequencies are discrete. Nevertheless, the discrete states support pseudospin-dependent unidirectional propagation. They allow light to bend around sharp corners similarly to the continuous edge states and act as topologically protected whispering gallery modes, which can store and filter light as well as manipulate its angular momentum. Though we consider a particular all-dielectric realization that does not require a magnetic field, the results in the findings are general, explaining multiple experimental observations of discrete transmission peaks in photonic topological insulators.

  18. One-Dimensional Photonic Crystal Superprisms

    NASA Technical Reports Server (NTRS)

    Ting, David

    2005-01-01

    Theoretical calculations indicate that it should be possible for one-dimensional (1D) photonic crystals (see figure) to exhibit giant dispersions known as the superprism effect. Previously, three-dimensional (3D) photonic crystal superprisms have demonstrated strong wavelength dispersion - about 500 times that of conventional prisms and diffraction gratings. Unlike diffraction gratings, superprisms do not exhibit zero-order transmission or higher-order diffraction, thereby eliminating cross-talk problems. However, the fabrication of these 3D photonic crystals requires complex electron-beam substrate patterning and multilayer thin-film sputtering processes. The proposed 1D superprism is much simpler in structural complexity and, therefore, easier to design and fabricate. Like their 3D counterparts, the 1D superprisms can exhibit giant dispersions over small spectral bands that can be tailored by judicious structure design and tuned by varying incident beam direction. Potential applications include miniature gas-sensing devices.

  19. Generation of Wannier functions for photonic crystals

    NASA Astrophysics Data System (ADS)

    Wolff, Christian; Mack, Patrick; Busch, Kurt

    2013-08-01

    We present an approach for the efficient generation of Wannier functions for Photonic Crystal computations that is based on a combination of group-theoretical analysis and efficient minimization strategies. In particular, we describe the symmetry properties that allow for exponential localization of Wannier functions and how they are related to the underlying Bloch mode symmetries of the photonic band structure and we show that no exponentially localized Wannier functions can be created from the physical modes of a three-dimensional crystal. Moreover, we comment on the use of conjugate gradient and randomized minimization algorithms that—together with the group theoretical considerations—facilitate the efficient numerical determination of maximally localized Wannier functions for many bands. This is a requirement for the accurate computation of Photonic Crystal functional elements and devices.

  20. Veselago lens by photonic hyper-crystals

    SciTech Connect

    Huang, Zun Narimanov, Evgenii E.

    2014-07-21

    Based on the recent concept of the photonic hyper-crystal—an artificial optical medium that combines the properties of hyperbolic materials and photonic crystals, we present the imaging system functioning as a Veselago lens. This planar lens shows a nearly constant negative refractive index with substantially reduced image aberrations, and can find potential applications in photolithography and hot-spots detection of silicon-based integrated circuits.

  1. Natural photonic crystals: formation, structure, function

    NASA Astrophysics Data System (ADS)

    Bartl, Michael H.; Dahlby, Michael R.; Barrows, Frank P.; Richens, Zachary J.; Terooatea, Tommy; Jorgensen, Matthew R.

    2012-03-01

    The structure and properties of natural photonic crystals are discussed using the colored scales of the beetle Lamprocyphus augustus as an example. While the exact mechanism behind the formation of these biopolymeric photonic structures has yet to be fully explored, similarities of these structures to intracellular cubic membrane architectures are introduced. Some crucial parameters behind the formation of cubic membranes are discussed. Using these insights, intracellular cubic membrane structures are transformed into an extracellular environment.

  2. Ultra compact spectrometer apparatus and method using photonic crystals

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Hill, Cory J. (Inventor); Bandara, Sumith V. (Inventor); Gunapala, Sarath D. (Inventor)

    2009-01-01

    The present invention is directed to methods of photonic crystal formation, and to methods and apparatus for using such photonic crystals, particularly in conjunction with detector arrays. Photonic crystal parameters and detector array parameters are compared to optimize the selection and orientation of a photonic crystal shape. A photonic crystal is operatively positioned relative to a plurality of light sensors. The light sensors can be separated by a pitch distance and positioned within one half of the pitch distance of an exit surface of the photonic crystals.

  3. Efficient beaming of self-collimated light from photonic crystals.

    PubMed

    Park, Jong-Moon; Lee, Sun-Goo; Park, Hae Yong; Kim, Jae-Eun

    2008-12-08

    We propose a novel structure for achieving highly efficient beaming of self-collimated light from two-dimensional photonic crystals. The finite-difference time-domain simulations show that both enhanced transmission and highly directional emission of self-collimated beams from photonic crystals are achieved by using the bending and splitting of self-collimated beams in photonic crystals, and also by introducing an antireflection coating-like photonic crystal collimator to the exit surface of the structure. This structure is potentially important for highly efficient coupling of self-collimated beams from photonic crystals into conventional optical fibers and photonic crystal waveguides.

  4. Integrated photonic crystal selective emitter for thermophotovoltaics

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiguang; Yehia, Omar; Bermel, Peter

    2016-01-01

    Converting blackbody thermal radiation to electricity via thermophotovoltaics (TPV) is inherently inefficient. Photon recycling using cold-side filters offers potentially improved performance but requires extremely close spacing between the thermal emitter and the receiver, namely a high view factor. Here, we propose an alternative approach for thermal energy conversion, the use of an integrated photonic crystal selective emitter (IPSE), which combines two-dimensional photonic crystal selective emitters and filters into a single device. Finite difference time domain and current transport simulations show that IPSEs can significantly suppress sub-bandgap photons. This increases heat-to-electricity conversion for photonic crystal based emitters from 35.2 up to 41.8% at 1573 K for a GaSb photovoltaic (PV) diode with matched bandgaps of 0.7 eV. The physical basis of this enhancement is a shift from a perturbative to a nonperturbative regime, which maximized photon recycling. Furthermore, combining IPSEs with nonconductive optical waveguides eliminates a key difficulty associated with TPV: the need for precise alignment between the hot selective emitter and cool PV diode. The physical effects of both the IPSE and waveguide can be quantified in terms of an extension of the concept of an effective view factor.

  5. Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI).

    PubMed

    Zain, Ahmad R; Johnson, Nigel P; Sorel, Marc; De La Rue, Richard M

    2008-08-04

    We present experimental results on photonic crystal/photonic wire micro-cavity structures that demonstrate further enhancement of the quality-factor (Q-factor)--up to approximately 149,000--in the fibre telecommunications wavelength range. The Q-values and the useful transmission levels achieved are due, in particular, to the combination of both tapering within and outside the micro-cavity, with carefully designed hole diameters and non-periodic hole placement within the tapered section. Our 2D Finite Difference Time Domain (FDTD) simulation approach shows good agreement with the experimental results.

  6. Giant lamb shift in photonic crystals.

    PubMed

    Wang, Xue-Hua; Kivshar, Yuri S; Gu, Ben-Yuan

    2004-08-13

    We obtain a general result for the Lamb shift of excited states of multilevel atoms in inhomogeneous electromagnetic structures and apply it to study atomic hydrogen in inverse-opal photonic crystals. We find that the photonic-crystal environment can lead to very large values of the Lamb shift, as compared to the case of vacuum. We also suggest that the position-dependent Lamb shift should extend from a single level to a miniband for an assembly of atoms with random distribution in space, similar to the velocity-dependent Doppler effect in atomic/molecular gases.

  7. Optical amplification enhancement in photonic crystals

    SciTech Connect

    Sapienza, R.; Leonetti, M.; Froufe-Perez, L. S.; Galisteo-Lopez, J. F.; Lopez, C.; Conti, C.

    2011-02-15

    Improving and controlling the efficiency of a gain medium is one of the most challenging problems of laser research. By measuring the gain length in an opal-based photonic crystal doped with laser dye, we demonstrate that optical amplification is more than twenty-fold enhanced along the {Gamma}-K symmetry directions of the face-centered-cubic photonic crystal. These results are theoretically explained by directional variations of the density of states, providing a quantitative connection between density of the states and light amplification.

  8. Two-dimensional photonic crystal surfactant detection.

    PubMed

    Zhang, Jian-Tao; Smith, Natasha; Asher, Sanford A

    2012-08-07

    We developed a novel two-dimensional (2-D) crystalline colloidal array photonic crystal sensing material for the visual detection of amphiphilic molecules in water. A close-packed polystyrene 2-D array monolayer was embedded in a poly(N-isopropylacrylamide) (PNIPAAm)-based hydrogel film. These 2-D photonic crystals placed on a mirror show intense diffraction that enables them to be used for visual determination of analytes. Binding of surfactant molecules attaches ions to the sensor that swells the PNIPAAm-based hydrogel. The resulting increase in particle spacing red shifts the 2-D diffracted light. Incorporation of more hydrophobic monomers increases the sensitivity to surfactants.

  9. Optofluidic Fano resonance photonic crystal refractometric sensors

    NASA Astrophysics Data System (ADS)

    Wang, Shuling; Liu, Yonghao; Zhao, Deyin; Yang, Hongjun; Zhou, Weidong; Sun, Yuze

    2017-02-01

    We report an ultra-compact surface-normal optofluidic refractometric sensor based on a two-dimensional silicon photonic crystal on insulator. In contrast to the conventional symmetric Lorentzian resonance that is prevalently used in the label-free sensors, the asymmetric lineshape and steep peak-to-dip transition of a Fano resonance enable the enhanced detection sensitivity. The detection limit of 1.3 × 10-6 refractive index units is achieved, which is among the lowest reported experimentally in the defect-free photonic crystal sensors.

  10. Fiber based photonic-crystal acoustic sensor

    NASA Astrophysics Data System (ADS)

    Kilic, Onur

    Photonic-crystal slabs are two-dimensional photonic crystals etched into a dielectric layer such as silicon. Standard micro fabrication techniques can be employed to manufacture these structures, which makes it feasible to produce them in large areas, usually an important criterion for practical applications. An appealing feature of these structures is that they can be employed as free-space optical devices such as broadband reflectors. The small thickness of the slab (usually in the vicinity of half a micron) also makes it deflectable. These combined optical and mechanical properties make it possible to employ photonic-crystal slabs in a range of practical applications, including displacement sensors, which in turn can be used for example to detect acoustic waves. An additional benefit of employing a photonic-crystal slab is that it is possible to tailor its optical and mechanical properties by adjusting the geometrical parameters of the structure such as hole radius or shape, pitch, and the slab thickness. By altering the hole radius and pitch, it is possible to make broadband reflectors or sharp transmission filters out of these structures. Adjusting the thickness also affects its deformability, making it possible to make broadband mirrors compliant to acoustic waves. Altering the hole shape, for example by introducing an asymmetry, extends the functionalities of photonic-crystal slabs even further. Breaking the symmetry by introducing asymmetric holes enables polarization-sensitive devices such as retarders, polarization beam splitters, and photonic crystals with additional non-degenerate resonances useful for increased sensitivity in sensors. All these practical advantages of photonic-crystal slabs makes them suitable as key components in micromachined sensor applications. We report one such example of an application of photonic-crystal slabs in the form of a micromachined acoustic sensor. It consists of a Fabry-Perot interferometer made of a photonic-crystal

  11. One-dimensional opal photonic crystals

    NASA Astrophysics Data System (ADS)

    Kapitonov, A. M.

    2008-12-01

    One-dimensional opals are 1D self-assembled close packed colloidal crystals consisting of monodisperse colloidal globules. Polystyrene globules with sizes in the 1.9-10 μm range sit on a flat substrate and touch two neighbors in diametrally opposite contact points. These opals are quasi-1D photonic crystals. Optical modes, including whispering gallery modes of individual globules, coupled collective modes, and nanojet-induced modes, are visualized in 1D opals.

  12. Self-assembled tunable photonic hyper-crystals.

    PubMed

    Smolyaninova, Vera N; Yost, Bradley; Lahneman, David; Narimanov, Evgenii E; Smolyaninov, Igor I

    2014-07-16

    We demonstrate a novel artificial optical material, the "photonic hyper-crystal", which combines the most interesting features of hyperbolic metamaterials and photonic crystals. Similar to hyperbolic metamaterials, photonic hyper-crystals exhibit broadband divergence in their photonic density of states due to the lack of usual diffraction limit on the photon wave vector. On the other hand, similar to photonic crystals, hyperbolic dispersion law of extraordinary photons is modulated by forbidden gaps near the boundaries of photonic Brillouin zones. Three dimensional self-assembly of photonic hyper-crystals has been achieved by application of external magnetic field to a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing.

  13. Photon Irradiation Response on Ge and Al-Doped SiO{sub 2} Optical Fibres

    SciTech Connect

    Yaakob, Nor Haliza; Wagiran, Husin; Ramli, Ahmad Termizi; Asni, Hazila; Ali, Hassan

    2010-07-07

    Recently, research groups have reported a number of radiation effects on the applications of SiO{sub 2} optical fibres with possible use as dosimeter material because these optical fibre provide a good basis for medical radiation dosimetry. The objective of this study is to investigate the thermoluminescence response and fading characteristic for germanium and aluminium doped SiO{sub 2} optical fibres with photon irradiation. These optical fibres are placed in solid phantom and irradiated to 6 and 10 MV photon beam at dose ranging from 0.06 Gy to 0.24 Gy using Primus MLC 3339 linear accelerator at Hospital Sultan Ismail, Johor Bahru. In fading studies, the TL measurements were continued up to 14 days period. The optical fibres will produce glow curves whereby the information is then analyzed. Al and Ge-doped optical fibres have a linear dose-TL signal relationship that is proportionality between the TL signal and the doses. Comparison for TL response between different linear accelerator showed a good agreement because these optical fibres also have a linear dose-TL signal relationship even using different equipments.

  14. Photon Irradiation Response on Ge and Al-Doped SiO2 Optical Fibres

    NASA Astrophysics Data System (ADS)

    Yaakob, Nor Haliza; Wagiran, Husin; Ramli, Ahmad Termizi; Ali, Hassan; Asni, Hazila

    2010-07-01

    Recently, research groups have reported a number of radiation effects on the applications of SiO2 optical fibres with possible use as dosimeter material because these optical fibre provide a good basis for medical radiation dosimetry. The objective of this study is to investigate the thermoluminescence response and fading characteristic for germanium and aluminium doped SiO2 optical fibres with photon irradiation. These optical fibres are placed in solid phantom and irradiated to 6 and 10 MV photon beam at dose ranging from 0.06 Gy to 0.24 Gy using Primus MLC 3339 linear accelerator at Hospital Sultan Ismail, Johor Bahru. In fading studies, the TL measurements were continued up to 14 days period. The optical fibres will produce glow curves whereby the information is then analyzed. Al and Ge-doped optical fibres have a linear dose-TL signal relationship that is proportionality between the TL signal and the doses. Comparison for TL response between different linear accelerator showed a good agreement because these optical fibres also have a linear dose-TL signal relationship even using different equipments.

  15. Photonic crystal microcapsules for label-free multiplex detection.

    PubMed

    Ye, Baofen; Ding, Haibo; Cheng, Yao; Gu, Hongcheng; Zhao, Yuanjin; Xie, Zhuoying; Gu, Zhongze

    2014-05-28

    A novel suspension array, which possesses the joint advantages of photonic crystal encoded technology, bioresponsive hydrogels, and photonic crystal sensors with capability of full multiplexing label-free detection is developed.

  16. Fabrication and Analysis of Photonic Crystals

    ERIC Educational Resources Information Center

    Campbell, Dean J.; Korte, Kylee E.; Xia, Younan

    2007-01-01

    These laboratory experiments are designed to explore aspects of nanoscale chemistry by constructing and spectroscopically analyzing thin films of photonic crystals. Films comprised of colloidal spheres and polydimethylsiloxane exhibit diffraction-based stop bands that shift reversibly upon exposure to some common solvents. Topics covered in these…

  17. Test-Paper-Like Photonic Crystal Viscometer.

    PubMed

    Zhang, Yuqi; Fu, Qianqian; Ge, Jianping

    2017-04-01

    A test-paper-like photonic crystal (PC) viscometer is fabricated based on the positive correlation between viscosity and the infiltration time for viscous liquid to entirely soak the PC film. It can be broadly used in different occasions to quickly determine the viscosity for many liquids, considering its portable and disposable characteristics and the requirement of little samples.

  18. Fabrication and Analysis of Photonic Crystals

    ERIC Educational Resources Information Center

    Campbell, Dean J.; Korte, Kylee E.; Xia, Younan

    2007-01-01

    These laboratory experiments are designed to explore aspects of nanoscale chemistry by constructing and spectroscopically analyzing thin films of photonic crystals. Films comprised of colloidal spheres and polydimethylsiloxane exhibit diffraction-based stop bands that shift reversibly upon exposure to some common solvents. Topics covered in these…

  19. Photonic Crystal Sensors Based on Porous Silicon

    PubMed Central

    Pacholski, Claudia

    2013-01-01

    Porous silicon has been established as an excellent sensing platform for the optical detection of hazardous chemicals and biomolecular interactions such as DNA hybridization, antigen/antibody binding, and enzymatic reactions. Its porous nature provides a high surface area within a small volume, which can be easily controlled by changing the pore sizes. As the porosity and consequently the refractive index of an etched porous silicon layer depends on the electrochemial etching conditions photonic crystals composed of multilayered porous silicon films with well-resolved and narrow optical reflectivity features can easily be obtained. The prominent optical response of the photonic crystal decreases the detection limit and therefore increases the sensitivity of porous silicon sensors in comparison to sensors utilizing Fabry-Pérot based optical transduction. Development of porous silicon photonic crystal sensors which allow for the detection of analytes by the naked eye using a simple color change or the fabrication of stacked porous silicon photonic crystals showing two distinct optical features which can be utilized for the discrimination of analytes emphasize its high application potential. PMID:23571671

  20. Photonic crystal sensors based on porous silicon.

    PubMed

    Pacholski, Claudia

    2013-04-09

    Porous silicon has been established as an excellent sensing platform for the optical detection of hazardous chemicals and biomolecular interactions such as DNA hybridization, antigen/antibody binding, and enzymatic reactions. Its porous nature provides a high surface area within a small volume, which can be easily controlled by changing the pore sizes. As the porosity and consequently the refractive index of an etched porous silicon layer depends on the electrochemial etching conditions photonic crystals composed of multilayered porous silicon films with well-resolved and narrow optical reflectivity features can easily be obtained. The prominent optical response of the photonic crystal decreases the detection limit and therefore increases the sensitivity of porous silicon sensors in comparison to sensors utilizing Fabry-Pérot based optical transduction. Development of porous silicon photonic crystal sensors which allow for the detection of analytes by the naked eye using a simple color change or the fabrication of stacked porous silicon photonic crystals showing two distinct optical features which can be utilized for the discrimination of analytes emphasize its high application potential.

  1. Total internal reflection photonic crystal prism.

    PubMed

    Schonbrun, Ethan; Abashin, Maxim; Blair, John; Wu, Qi; Park, Wounjhang; Fainman, Yeshaiahu; Summers, Christopher J

    2007-06-25

    An integrated total internal reflection prism is demonstrated that generates a transversely localized evanescent wave along the boundary between a photonic crystal and an etched out trench. The reflection can be described by either the odd symmetry of the Bloch wave or a tangential momentum matching condition. In addition, the Bloch wave propagates through the photonic crystal in a negative refraction regime, which manages diffraction within the prism. A device with three input channels has been fabricated and tested that illuminates different regions of the reflection interface. The reflected wave is then sampled by a photonic wire array, where the individual channels are resolved. Heterodyne near field scanning optical microscopy is used to characterize the spatial phase variation of the evanescent wave and its decay constant.

  2. Photon statistics in scintillation crystals

    NASA Astrophysics Data System (ADS)

    Bora, Vaibhav Joga Singh

    Scintillation based gamma-ray detectors are widely used in medical imaging, high-energy physics, astronomy and national security. Scintillation gamma-ray detectors are eld-tested, relatively inexpensive, and have good detection eciency. Semi-conductor detectors are gaining popularity because of their superior capability to resolve gamma-ray energies. However, they are relatively hard to manufacture and therefore, at this time, not available in as large formats and much more expensive than scintillation gamma-ray detectors. Scintillation gamma-ray detectors consist of: a scintillator, a material that emits optical (scintillation) photons when it interacts with ionization radiation, and an optical detector that detects the emitted scintillation photons and converts them into an electrical signal. Compared to semiconductor gamma-ray detectors, scintillation gamma-ray detectors have relatively poor capability to resolve gamma-ray energies. This is in large part attributed to the "statistical limit" on the number of scintillation photons. The origin of this statistical limit is the assumption that scintillation photons are either Poisson distributed or super-Poisson distributed. This statistical limit is often dened by the Fano factor. The Fano factor of an integer-valued random process is dened as the ratio of its variance to its mean. Therefore, a Poisson process has a Fano factor of one. The classical theory of light limits the Fano factor of the number of photons to a value greater than or equal to one (Poisson case). However, the quantum theory of light allows for Fano factors to be less than one. We used two methods to look at the correlations between two detectors looking at same scintillation pulse to estimate the Fano factor of the scintillation photons. The relationship between the Fano factor and the correlation between the integral of the two signals detected was analytically derived, and the Fano factor was estimated using the measurements for SrI2:Eu, YAP

  3. Emerging Applications of Photonic Crystal Fibers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Russell, Philip S. J.

    2016-03-01

    The well-controlled guided modes and long path-lengths offered by both solid and hollow core photonic crystal fibres (PCFs) permit remarkable enhancements (and in some cases reductions) in many kinds of light-matter interaction. Recent examples include: Ultrafast spectrally bright deep and vacuum UV sources based on gas-filled hollow core PCF (pressure-tunable dispersion is a unique feature); generation of stable bright deep UV supercontinuum light in PCF drawn from the fluorozirconate glass ZBLAN; OAM-birefringent helically twisted PCF that preserves the sign of orbital angular momentum; and light-driven optoacoustic devices that permit stable high harmonic mode-locking of fiber ring lasers at GHz repetition rates.

  4. Absorption in photonic crystals: from order to disorder

    NASA Astrophysics Data System (ADS)

    Seassal, Christian; Lalouat, LoÑ--c.; Ding, He; Drouard, Emmanuel; Gomard, Guillaume; Peretti, Romain; Deschamp, Thierry; Mandorlo, Fabien; Orobtchouk, Régis; Fave, Alain

    2014-09-01

    In this communication, we present the potentialities offered by 2D photonic crystals to trap and absorb photons in thin silicon layers. We will specifically focus on the impact of the photonic crystal unit cells symmetry, and the possibility to increase light absorption and generated photocurrent using multi-periodic and pseudo-disordered photonic nanostructures.

  5. Quasicompactons in inverted nonlinear photonic crystals

    SciTech Connect

    Li Yongyao; Malomed, Boris A.; Wu Jianxiong; Pang Wei; Wang Sicong; Zhou Jianying

    2011-10-15

    We study large-amplitude one-dimensional solitary waves in photonic crystals featuring competition between linear and nonlinear lattices, with minima of the linear potential coinciding with maxima of the nonlinear pseudopotential, and vice versa (inverted nonlinear photonic crystals, INPCs), in the case of the saturable self-focusing nonlinearity. Such crystals were recently fabricated using a mixture of SU-8 and Rhodamine-B optical materials. By means of numerical methods and analytical approximations, we find that large-amplitude solitons are broad sharply localized stable pulses (quasicompactons, QCs). With the increase of the total power, P, the QC's centroid performs multiple switchings between minima and maxima of the linear potential. Unlike cubic INPCs, the large-amplitude solitons are mobile in the medium with the saturable nonlinearity. The threshold value of the kick necessary to set the soliton in motion is found as a function of P. Collisions between moving QCs are considered too.

  6. Crystallization of the C-terminal head domain of the avian adenovirus CELO long fibre

    PubMed Central

    Guardado Calvo, Pablo; Llamas-Saiz, Antonio L.; Langlois, Patrick; van Raaij, Mark J.

    2006-01-01

    Avian adenovirus CELO contains two different fibres: fibre 1, the long fibre, and fibre 2, the short fibre. The short fibre is responsible for binding to an unknown avian receptor and is essential for infection of birds. The long fibre is not essential, but is known to bind the coxsackievirus and adenovirus receptor protein. Both trimeric fibres are attached to the same penton base, of which each icosahedral virus contains 12 copies. The short fibre extends straight outwards, while the long fibre emerges at an angle. The carboxy-terminal amino acids 579–793 of the avian adenovirus long fibre have been expressed with an amino-terminal hexahistidine tag and the expressed trimeric protein has been purified by nickel-affinity chromatography and crystallized. Crystals were grown at low pH using PEG 10 000 as precipitant and belonged to space group C2. The crystals diffracted rotating-anode Cu Kα radiation to at least 1.9 Å resolution and a complete data set was collected from a single crystal to 2.2 Å resolution. Unit-cell parameters were a = 216.5, b = 59.2, c = 57.5 Å, β = 101.3°, suggesting one trimer per asymmetric unit and a solvent content of 46%. The long fibre head does not have significant sequence homology to any other protein of known structure and molecular-replacement attempts with known fibre-head structures were unsuccessful. However, a map calculated using SIRAS phasing shows a clear trimer with a shape similar to known adenovirus fibre-head structures. Structure solution is in progress. PMID:16682773

  7. Self-assembled tunable photonic hyper-crystals

    PubMed Central

    Smolyaninova, Vera N.; Yost, Bradley; Lahneman, David; Narimanov, Evgenii E.; Smolyaninov, Igor I.

    2014-01-01

    We demonstrate a novel artificial optical material, the “photonic hyper-crystal”, which combines the most interesting features of hyperbolic metamaterials and photonic crystals. Similar to hyperbolic metamaterials, photonic hyper-crystals exhibit broadband divergence in their photonic density of states due to the lack of usual diffraction limit on the photon wave vector. On the other hand, similar to photonic crystals, hyperbolic dispersion law of extraordinary photons is modulated by forbidden gaps near the boundaries of photonic Brillouin zones. Three dimensional self-assembly of photonic hyper-crystals has been achieved by application of external magnetic field to a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing. PMID:25027947

  8. Review on photonic crystal coatings for scintillators

    NASA Astrophysics Data System (ADS)

    Knapitsch, Arno; Lecoq, Paul

    2014-11-01

    The amount of light and its time distribution are key factors determining the performance of scintillators when used as radiation detectors. However most inorganic scintillators are made of heavy materials and suffer from a high index of refraction which limits light extraction efficiency. This increases the path length of the photons in the material with the consequence of higher absorption and tails in the time distribution of the extracted light. Photonic crystals are a relatively new way of conquering this light extraction problem. Basically they are a way to produce a smooth and controllable index matching between the scintillator and the output medium through the nanostructuration of a thin layer of optically transparent high index material deposited at the coupling face of the scintillator. Our review paper discusses the theory behind this approach as well as the simulation details. Furthermore the different lithography steps of the production of an actual photonic crystal sample will be explained. Measurement results of LSO scintillator pixels covered with a nanolithography machined photonic crystal surface are presented together with practical tips for the further development and improvement of this technique.

  9. Flexible single-crystal silicon nanomembrane photonic crystal cavity.

    PubMed

    Xu, Xiaochuan; Subbaraman, Harish; Chakravarty, Swapnajit; Hosseini, Amir; Covey, John; Yu, Yalin; Kwong, David; Zhang, Yang; Lai, Wei-Cheng; Zou, Yi; Lu, Nanshu; Chen, Ray T

    2014-12-23

    Flexible inorganic electronic devices promise numerous applications, especially in fields that could not be covered satisfactorily by conventional rigid devices. Benefits on a similar scale are also foreseeable for silicon photonic components. However, the difficulty in transferring intricate silicon photonic devices has deterred widespread development. In this paper, we demonstrate a flexible single-crystal silicon nanomembrane photonic crystal microcavity through a bonding and substrate removal approach. The transferred cavity shows a quality factor of 2.2×10(4) and could be bent to a curvature of 5 mm radius without deteriorating the performance compared to its counterparts on rigid substrates. A thorough characterization of the device reveals that the resonant wavelength is a linear function of the bending-induced strain. The device also shows a curvature-independent sensitivity to the ambient index variation.

  10. The bifoil photodyne: a photonic crystal oscillator

    PubMed Central

    Lugo, J. E.; Doti, R.; Sanchez, N.; de la Mora, M. B.; del Rio, J. A.; Faubert, J.

    2014-01-01

    Optical tweezers is an example how to use light to generate a physical force. They have been used to levitate viruses, bacteria, cells, and sub cellular organisms. Nonetheless it would be beneficial to use such force to develop a new kind of applications. However the radiation pressure usually is small to think in moving larger objects. Currently, there is some research investigating novel photonic working principles to generate a higher force. Here, we studied theoretically and experimentally the induction of electromagnetic forces in one-dimensional photonic crystals when light impinges on the off-axis direction. The photonic structure consists of a micro-cavity like structure formed of two one-dimensional photonic crystals made of free-standing porous silicon, separated by a variable air gap and the working wavelength is 633 nm. We show experimental evidence of this force when the photonic structure is capable of making auto-oscillations and forced-oscillations. We measured peak displacements and velocities ranging from 2 up to 35 microns and 0.4 up to 2.1 mm/s with a power of 13 mW. Recent evidence showed that giant resonant light forces could induce average velocity values of 0.45 mm/s in microspheres embedded in water with 43 mW light power. PMID:24423985

  11. The bifoil photodyne: a photonic crystal oscillator.

    PubMed

    Lugo, J E; Doti, R; Sanchez, N; de la Mora, M B; del Rio, J A; Faubert, J

    2014-01-15

    Optical tweezers is an example how to use light to generate a physical force. They have been used to levitate viruses, bacteria, cells, and sub cellular organisms. Nonetheless it would be beneficial to use such force to develop a new kind of applications. However the radiation pressure usually is small to think in moving larger objects. Currently, there is some research investigating novel photonic working principles to generate a higher force. Here, we studied theoretically and experimentally the induction of electromagnetic forces in one-dimensional photonic crystals when light impinges on the off-axis direction. The photonic structure consists of a micro-cavity like structure formed of two one-dimensional photonic crystals made of free-standing porous silicon, separated by a variable air gap and the working wavelength is 633 nm. We show experimental evidence of this force when the photonic structure is capable of making auto-oscillations and forced-oscillations. We measured peak displacements and velocities ranging from 2 up to 35 microns and 0.4 up to 2.1 mm/s with a power of 13 mW. Recent evidence showed that giant resonant light forces could induce average velocity values of 0.45 mm/s in microspheres embedded in water with 43 mW light power.

  12. The bifoil photodyne: a photonic crystal oscillator

    NASA Astrophysics Data System (ADS)

    Lugo, J. E.; Doti, R.; Sanchez, N.; de La Mora, M. B.; Del Rio, J. A.; Faubert, J.

    2014-01-01

    Optical tweezers is an example how to use light to generate a physical force. They have been used to levitate viruses, bacteria, cells, and sub cellular organisms. Nonetheless it would be beneficial to use such force to develop a new kind of applications. However the radiation pressure usually is small to think in moving larger objects. Currently, there is some research investigating novel photonic working principles to generate a higher force. Here, we studied theoretically and experimentally the induction of electromagnetic forces in one-dimensional photonic crystals when light impinges on the off-axis direction. The photonic structure consists of a micro-cavity like structure formed of two one-dimensional photonic crystals made of free-standing porous silicon, separated by a variable air gap and the working wavelength is 633 nm. We show experimental evidence of this force when the photonic structure is capable of making auto-oscillations and forced-oscillations. We measured peak displacements and velocities ranging from 2 up to 35 microns and 0.4 up to 2.1 mm/s with a power of 13 mW. Recent evidence showed that giant resonant light forces could induce average velocity values of 0.45 mm/s in microspheres embedded in water with 43 mW light power.

  13. Atom-light interactions in photonic crystals.

    PubMed

    Goban, A; Hung, C-L; Yu, S-P; Hood, J D; Muniz, J A; Lee, J H; Martin, M J; McClung, A C; Choi, K S; Chang, D E; Painter, O; Kimble, H J

    2014-05-08

    The integration of nanophotonics and atomic physics has been a long-sought goal that would open new frontiers for optical physics, including novel quantum transport and many-body phenomena with photon-mediated atomic interactions. Reaching this goal requires surmounting diverse challenges in nanofabrication and atomic manipulation. Here we report the development of a novel integrated optical circuit with a photonic crystal capable of both localizing and interfacing atoms with guided photons. Optical bands of a photonic crystal waveguide are aligned with selected atomic transitions. From reflection spectra measured with average atom number N=1.1+/-0.4, we infer that atoms are localized within the waveguide by optical dipole forces. The fraction of single-atom radiative decay into the waveguide is Γ1D/Γ'≃(0.32±0.08), where Γ1D is the rate of emission into the guided mode and Γ' is the decay rate into all other channels. Γ1D/Γ' is unprecedented in all current atom-photon interfaces.

  14. Breakdown of Bose-Einstein Distribution in Photonic Crystals

    PubMed Central

    Lo, Ping-Yuan; Xiong, Heng-Na; Zhang, Wei-Min

    2015-01-01

    In the last two decades, considerable advances have been made in the investigation of nano-photonics in photonic crystals. Previous theoretical investigations of photon dynamics were carried out at zero temperature. Here, we investigate micro/nano cavity photonics in photonic crystals at finite temperature. Due to photonic-band-gap-induced localized long-lived photon dynamics, we discover that cavity photons in photonic crystals do not obey Bose-Einstein statistical distribution. Within the photonic band gap and in the vicinity of the band edge, cavity photons combine the long-lived non-Markovain dynamics with thermal fluctuations together to form photon states that memorize the initial cavity state information. As a result, Bose-Einstein distribution is completely broken down in these regimes, even if the thermal energy is larger or much larger than the cavity detuning energy. In this investigation, a crossover phenomenon from equilibrium to nonequilibrium steady states is also revealed. PMID:25822135

  15. Breakdown of Bose-Einstein distribution in photonic crystals.

    PubMed

    Lo, Ping-Yuan; Xiong, Heng-Na; Zhang, Wei-Min

    2015-03-30

    In the last two decades, considerable advances have been made in the investigation of nano-photonics in photonic crystals. Previous theoretical investigations of photon dynamics were carried out at zero temperature. Here, we investigate micro/nano cavity photonics in photonic crystals at finite temperature. Due to photonic-band-gap-induced localized long-lived photon dynamics, we discover that cavity photons in photonic crystals do not obey Bose-Einstein statistical distribution. Within the photonic band gap and in the vicinity of the band edge, cavity photons combine the long-lived non-Markovain dynamics with thermal fluctuations together to form photon states that memorize the initial cavity state information. As a result, Bose-Einstein distribution is completely broken down in these regimes, even if the thermal energy is larger or much larger than the cavity detuning energy. In this investigation, a crossover phenomenon from equilibrium to nonequilibrium steady states is also revealed.

  16. Breakdown of Bose-Einstein Distribution in Photonic Crystals

    NASA Astrophysics Data System (ADS)

    Lo, Ping-Yuan; Xiong, Heng-Na; Zhang, Wei-Min

    2015-03-01

    In the last two decades, considerable advances have been made in the investigation of nano-photonics in photonic crystals. Previous theoretical investigations of photon dynamics were carried out at zero temperature. Here, we investigate micro/nano cavity photonics in photonic crystals at finite temperature. Due to photonic-band-gap-induced localized long-lived photon dynamics, we discover that cavity photons in photonic crystals do not obey Bose-Einstein statistical distribution. Within the photonic band gap and in the vicinity of the band edge, cavity photons combine the long-lived non-Markovain dynamics with thermal fluctuations together to form photon states that memorize the initial cavity state information. As a result, Bose-Einstein distribution is completely broken down in these regimes, even if the thermal energy is larger or much larger than the cavity detuning energy. In this investigation, a crossover phenomenon from equilibrium to nonequilibrium steady states is also revealed.

  17. Polarization-selective resonant photonic crystal photodetector

    NASA Astrophysics Data System (ADS)

    Yang, Jin-Kyu; Seo, Min-Kyo; Hwang, In-Kag; Kim, Sung-Bock; Lee, Yong-Hee

    2008-11-01

    Resonance-assisted photonic crystal (PhC) slab photodetectors are demonstrated by utilizing six 7-nm-thick InGaAsP quantum wells. In order to encourage efficient photon coupling into the slab from the vertical direction, a coupled-dipole-cavity-array PhC structure is employed. Inheriting the characteristics of the dipole mode, this resonant detector is highly polarization selective and shows a 22-nm-wide spectral width. The maximum responsivity of 0.28A/W, which is >20 times larger than that of the identical detector without the pattern, is observed near 1.56μm.

  18. Photonic crystal slab quantum cascade detector

    SciTech Connect

    Reininger, Peter Schwarz, Benedikt; Harrer, Andreas; Zederbauer, Tobias; Detz, Hermann; Maxwell Andrews, Aaron; Gansch, Roman; Schrenk, Werner; Strasser, Gottfried

    2013-12-09

    In this Letter, we demonstrate the design, fabrication, and characterization of a photonic crystal slab quantum cascade detector (PCS-QCD). By employing a specifically designed resonant cavity, the performance of the photodetector is improved in three distinct ways. The PCS makes the QCD sensitive to surface normal incident light. It resonantly enhances the photon lifetime inside the active zone, thus increasing the photocurrent significantly. And, the construction form of the device inherently decreases the noise. Finally, we compare the characteristics of the PCS-QCD to a PCS - quantum well infrared photodetector and outline the advantages for certain fields of applications.

  19. Photonic crystal slab quantum cascade detector

    NASA Astrophysics Data System (ADS)

    Reininger, Peter; Schwarz, Benedikt; Harrer, Andreas; Zederbauer, Tobias; Detz, Hermann; Maxwell Andrews, Aaron; Gansch, Roman; Schrenk, Werner; Strasser, Gottfried

    2013-12-01

    In this Letter, we demonstrate the design, fabrication, and characterization of a photonic crystal slab quantum cascade detector (PCS-QCD). By employing a specifically designed resonant cavity, the performance of the photodetector is improved in three distinct ways. The PCS makes the QCD sensitive to surface normal incident light. It resonantly enhances the photon lifetime inside the active zone, thus increasing the photocurrent significantly. And, the construction form of the device inherently decreases the noise. Finally, we compare the characteristics of the PCS-QCD to a PCS - quantum well infrared photodetector and outline the advantages for certain fields of applications.

  20. Testing ultrafast two-photon spectral amplitudes via optical fibres.

    PubMed

    Brida, G; Caricato, V; Chekhova, M V; Genovese, M; Gramegna, M; Iskhakov, T Sh

    2010-06-07

    We test two-dimensional TPSA of biphoton light emitted via ultrafast spontaneous parametric down-conversion (SPDC) using the effect of group-velocity dispersion in optical fibres. Further, we apply this technique to demonstrate the engineering of biphoton spectral properties by acting on the pump pulse shape.

  1. Electrically tunable liquid crystal photonic bandgap fiber laser

    NASA Astrophysics Data System (ADS)

    Olausson, Christina B.; Scolari, Lara; Wei, Lei; Noordegraaf, Danny; Weirich, Johannes; Alkeskjold, Thomas T.; Hansen, Kim P.; Bjarklev, Anders

    2010-02-01

    We demonstrate electrical tunability of a fiber laser using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an all-spliced laser cavity based on a liquid crystal photonic bandgap fiber mounted on a silicon assembly, a pump/signal combiner with single-mode signal feed-through and an ytterbium-doped photonic crystal fiber. The laser cavity produces a single-mode output and is tuned in the range 1040- 1065 nm by applying an electric field to the silicon assembly.

  2. Thermoluminescence Responses of Photon and Electron Irradiated Ge- and Al-Doped SiO2 Optical Fibres

    NASA Astrophysics Data System (ADS)

    Wagiran, H.; Hossain, I.; D., Bradley; N. H. Yaakob, A.; Ramli, T.

    2012-02-01

    We carry out a comparison of the thermoluminescence (TL) response of photon and electron irradiated Ge- and Al-doped SiO2 optical fibres, as well as cross-comparison with that of TLD-100. Irradiation is made with 6 MeV electrons and 6 MV photons, for doses ranging from 0.2 Gy to 4.0 Gy. The commercially available Al- and Gedoped optical fibres produce a linear dose-TL response. The TL yield for both of the doped fibres and also for TLD-100 is greater for electron irradiation than for photon irradiation. The TL yield of the Al-doped fibres is a small fraction of that of Ge-doped fibres (by a factor of 25), the Ge-doped fibres offering a response of 59% of that of TLD-100.

  3. A plasma photonic crystal bandgap device

    SciTech Connect

    Wang, B.; Cappelli, M. A.

    2016-04-18

    A fully tunable plasma photonic crystal is used to control the propagation of free space electromagnetic waves in the S to X bands of the microwave spectrum. An array of discharge plasma tubes forms a simple square crystal structure with the individual plasma dielectric constant tuned through variation in the plasma density. We show, through simulations and experiments, that transverse electric mode bandgaps exist, arising from the positive and negative dielectric constant regimes of the plasma, and that the respective bandgap frequencies can be shifted through changing the dielectric constant by varying discharge current density.

  4. Ray chaos in a photonic crystal

    NASA Astrophysics Data System (ADS)

    Rousseau, Emmanuel; Felbacq, Didier

    2017-01-01

    The ray dynamics in a photonic crystal was investigated. Chaos occurs for perfectly periodic crystals, the rays dynamics being very sensitive to the initial conditions. Depending on the filling factor, the ray dynamics can exhibit stable paths near (fully) chaotic motion. The degree of chaoticity is quantified through the computation of Lyapunov exponents. As a result, the more diluted is the geometry, the more chaotic is the dynamic. Therefore, despite the perfect periodicity of the geometry, light transport is a diffusive process which can be tuned from normal diffusion (Brownian motion) to anomalous diffusion because of the existence of Lévy flights.

  5. A tunable microwave plasma photonic crystal filter

    SciTech Connect

    Wang, B.; Cappelli, M. A.

    2015-10-26

    The integration of gaseous plasma elements into a microwave photonic crystal band gap cavity structure allows for active tuning of the device. An alumina rod array microwave photonic crystal waveguide resonator is simulated and characterized through finite difference time domain methods. A gaseous plasma element is integrated into the cavity structure and the effect of plasma density on the transmission properties of the structure is investigated. We show, through both simulations and experiments, that the permittivity of the plasma can be adjusted to shift the peak resonance to allow for both switching and tunability of transmission. The experimentally measured peak shifts in transmission are compared to those simulated and the electron density of the gaseous plasma element is calculated and compared to values determined from the measured discharge current density.

  6. Effective medium theory of photonic crystals

    NASA Astrophysics Data System (ADS)

    Lu, W. T.; Zhang, S.; Huang, Y. J.; Sridhar, S.

    2008-03-01

    We develop an effective medium theory for photonic crystals including negative index metamaterials. This theory is based on field summation within the unit cell. The unit cell is determined by the surface termination. The orientation of the surface breaks the field summation symmetry. This theory is self-consistent. The effective permittivity and permeability tensors will give the exact dispersion relation obtained from the band structure calculation. For waves incident into multilayered structures, our theory gives exact transmittance and reflectance for any wavelengths. For interface with periodic surface structures, our theory gives very accurate results for wavelength down to being comparable with the lattice spacing. By properly taking into account the multiple Bloch modes inside the photonic crystal, our theory can be made to give exact Bragg coefficients.

  7. Electrical Control of Silicon Photonic Crystal Cavity by Graphene

    DTIC Science & Technology

    2012-01-01

    Electrical Control of Silicon Photonic Crystal Cavity by Graphene Arka Majumdar,†,‡,∥ Jonghwan Kim,†,∥ Jelena Vuckovic,‡ and Feng Wang...of electronics and photonics . The combination of graphene with photonic crystals is promising for electro-optic modulation. In this paper, we...demonstrate that by electrostatic gating a single layer of graphene on top of a photonic crystal cavity, the cavity resonance can be changed significantly. A

  8. Nonreciprocal photonic crystal add-drop filter

    SciTech Connect

    Tao, Keyu; Xiao, Jun-Jun; Yin, Xiaobo

    2014-11-24

    We present a versatile add-drop integrated photonic filter (ADF) consisting of nonreciprocal waveguides in which the propagation of light is restricted in one predetermined direction. With the bus and add/drop waveguides symmetrically coupled through a cavity, the four-port device allows each individual port to add and/or drop a signal of the same frequency. The scheme is general and we demonstrate the nonreciprocal ADF with magneto-optical photonic crystals. The filter is immune to waveguide defects, allowing straightforward implementation of multi-channel ADFs by cascading the four-port designs. The results should find applications in wavelength-division multiplexing and related integrated photonic techniques.

  9. Photonic Crystal Microcavities for Quantum Information Science

    NASA Astrophysics Data System (ADS)

    Hagemeier, Jenna Nicole

    Quantum information science and technology is a broad and fascinating field, encompassing diverse research areas such as materials science, atomic physics, superconductors, solid-state physics, and photonics. A goal of this field is to demonstrate the basic functions of information initialization, manipulation, and read-out in systems that take advantage of quantum physics to greatly enhance computing performance capabilities. In a hybrid quantum information network, different systems are used to perform different functions, to best exploit the advantageous properties of each system. For example, matter quantum bits (qubits) can be used for local data storage and manipulation while photonic qubits can be used for long-distance communication between storage points of the network. Our research focuses on the following two solid-state realizations of a matter qubit for the purpose of building such a hybrid quantum network: the electronic spin of a self-assembled indium arsenide quantum dot and the electronic spin of a nitrogen-vacancy defect center in diamond. Light--matter interactions are necessary to transfer the information from the matter qubit to the photonic qubit, and this interaction can be enhanced by embedding the spin system in an optical cavity. We focus on photonic crystal microcavities for this purpose, and we study interactions between the optical cavity modes and incorporated spin systems. To improve the performance of this spin--photon interface, it is important to maximize the coupling strength between the spin and photonic systems and to increase the read-out efficiency of information stored in the cavity. In this thesis, we present our work to deterministically couple a nitrogen-vacancy center in diamond to a photonic crystal microcavity in gallium phosphide. This is achieved by nanopositioning a pre-selected diamond nanocrystal in the intensity maximum of the optical cavity mode. We also present an optimized design of a photonic crystal

  10. Nonlinear photonic crystal microdevices for optical integration.

    PubMed

    Soljacić, Marin; Luo, Chiyan; Joannopoulos, J D; Fan, Shanhui

    2003-04-15

    A four-port nonlinear photonic crystal system is discussed that exhibits optical bistability with negligible backscattering to the inputs, making it particularly suitable for integration with other active devices on the same chip. Devices based on this system can be made to be small [O(lambda3)] in volume, have a nearly instantaneous response, and consume only a few milliwatts of power. Among many possible applications, we focus on an all-optical transistor and integrated optical isolation.

  11. Long period gratings in photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Ju, Jian; Jin, Wei

    2012-03-01

    The authors review the recent advances in fabricating long-period gratings (LPGs) in photonic crystal fibers (PCFs). The novel light-guiding properties of the PCFs allow the demonstration of novel sensors and devices based on such LPGs. The sensitivity of these PCF LPGs to temperature, strain and refractive index is discussed and compared with LPGs made on conventional single-mode fibers. In-fiber devices such as tunable band rejection filters, Mach-Zehnder interferometers are discussed.

  12. Electromagnetic waves: Negative refraction by photonic crystals

    NASA Astrophysics Data System (ADS)

    Ozbay, Ekmel

    2004-03-01

    Recently left-handed materials (LHM) attracted great attention since these materials exhibit negative effective index, which is due to simultaneously negative permeability and permittivity. Pendry proposed that negative effective index in left-handed materials can be used for constructing a perfect lens, which is not limited by diffraction(J. B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. vol. 85, 3966 (2000)). Negative refraction is also achievable in a dielectric photonic crystal (PC) that has a periodically modulated positive permittivity and a permeability of unity. Luo et al. has studied negative refraction and subwavelength imaging in photonic crystals(C. Luo, S. G. Johnson, J. D. Joannopoulos, J. B. Pendry, Subwavelength Imaging in Photonic Crystals Phys. Rev. B 68, 045115 (2003)). In this presentation, we report our experimental and theoretical investigation of negative refraction and subwavelength focusing of electromagnetic waves in a 2D PC. Our structure consists of a square array of dielectric rods in air. Transmission measurements are performed for experimentally verifying the predicted negative refraction behavior in our structure. Negative index of refraction determined from the experiment is -1.94 which is very close to the theoretical value of -2.06. Negative refraction is observed for the incidence angles of > 20°(Ertugrul Cubukcu, Koray Aydin, Ekmel Ozbay, S. Foteinopolou, and Costas Soukoulis, Negative Refraction by Photonic Crystals, Nature, vol. 423, 604 (2003)). Since we know the optimum frequency for a broad angle negative refraction, we can use our crystal to test the superlensing effect that was predicted for negative refractive materials. Scanning transmission measurement technique is used to measure the spatial power distribution of the focused electromagnetic waves that radiate from a point source. Full width at half maximum of the focused beam is measured to be 0.21λ, which is in good agreement with the finite

  13. Intravitreal properties of porous silicon photonic crystals

    PubMed Central

    Cheng, L; Anglin, E; Cunin, F; Kim, D; Sailor, M J; Falkenstein, I; Tammewar, A; Freeman, W R

    2009-01-01

    Aim To determine the suitability of porous silicon photonic crystals for intraocular drug-delivery. Methods A rugate structure was electrochemically etched into a highly doped p-type silicon substrate to create a porous silicon film that was subsequently removed and ultrasonically fractured into particles. To stabilise the particles in aqueous media, the silicon particles were modified by surface alkylation (using thermal hydrosilylation) or by thermal oxidation. Unmodified particles, hydrosilylated particles and oxidised particles were injected into rabbit vitreous. The stability and toxicity of each type of particle were studied by indirect ophthalmoscopy, biomicroscopy, tonometry, electroretinography (ERG) and histology. Results No toxicity was observed with any type of the particles during a period of >4 months. Surface alkylation led to dramatically increased intravitreal stability and slow degradation. The estimated vitreous half-life increased from 1 week (fresh particles) to 5 weeks (oxidised particles) and to 16 weeks (hydrosilylated particles). Conclusion The porous silicon photonic crystals showed good biocompatibility and may be used as an intraocular drug-delivery system. The intravitreal injectable porous silicon photonic crystals may be engineered to host a variety of therapeutics and achieve controlled drug release over long periods of time to treat chronic vitreoretinal diseases. PMID:18441177

  14. Parametric wavelength conversion in photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Yang, Sigang; Wu, Zhaohui; Yang, Yi; Chen, Minghua; Xie, Shizhong

    2016-11-01

    Nonlinear wavelength conversion provides flexible solutions for generating wideband tunable radiation in novel wavelength band. Parametric process in photonic crystal fibers (PCFs) has attracted comprehensive interests since it can act as broadband tunable light sources in non-conventional wavelength bands. The current state-of-the-art photonic crystal fibers can provide more freedom for customizing the dispersion and nonlinearity which is critical to the nonlinear process, such as four wave mixing (FWM), compared with the traditional fibers fabricated with doping techniques. Here we demonstrate broadband parametric wavelength conversion in our homemade photonic crystal fibers. The zero dispersion wavelength (ZDW) of PCFs is critical for the requirement of phase matching condition in the parametric four wave mixing process. Firstly a procedure of the theoretical design of PCF with the ZDW at 1060 nm is proposed through our homemade simulation software. A group of PCF samples with gradually variable parameters are fabricated according to the theoretical design. The broadband parametric gain around 1060 nm band is demonstrated pumped with our homemade mode locked fiber laser in the anomalous dispersion region. Also a narrow gain band with very large wavelength detune with the pump wavelength in the normal dispersion region is realized. Wavelength conversion with a span of 194 nm is realized. Furthermore a fiber optical parametric oscillator based on the fabricated PCF is built up. A wavelength tunable range as high as 340 nm is obtained. This report demonstrates a systematic procedure to realize wide band wavelength conversion based on PCFs.

  15. Slotted photonic crystals for biosensing applications

    NASA Astrophysics Data System (ADS)

    Scullion, M. G.; Krauss, T. F.; Di Falco, A.

    2012-06-01

    We discuss the properties and potential of slotted photonic crystals devices as small optical, label-free biosensors. This approach combines slot waveguides, which guide light in a narrow air slot, with photonic crystals in which cavities and slow light behaviour can be engineered. We use cavities based upon the heterostructure approach, demonstrating experimental quality factors of up to 50,000 in air and 4,000 in water. As the peak of the cavity mode interacts with the contents of the slot, small changes in refractive index can be inferred from the cavity resonant wavelength with high sensitivity (~500 nm/RIU). We also integrate microfluidic channels, which when combined with the small footprint of each sensor, allows potential for dense multiplexing with only micro-litres of analyte. As the dispersive properties of the fundamental mode of a standard and slotted photonic crystal differ greatly, a suitable interface for coupling into the device must be found. We here utilise a resonant defect approach, which preferentially couples into the slot mode. Functionalising the surface of the device with antibodies allows us to detect specific binding of a target protein on the sensor surface. As a proof of principle demonstration we show detection of dissolved avidin concentrations as low as 15 nM using biotin functionalised devices.

  16. Amorphous photonic crystals with only short-range order.

    PubMed

    Shi, Lei; Zhang, Yafeng; Dong, Biqin; Zhan, Tianrong; Liu, Xiaohan; Zi, Jian

    2013-10-04

    Distinct from conventional photonic crystals with both short- and long-range order, amorphous photonic crystals that possess only short-range order show interesting optical responses owing to their unique structural features. Amorphous photonic crystals exhibit unique light scattering and transport, which lead to a variety of interesting phenomena such as isotropic photonic bandgaps or pseudogaps, noniridescent structural colors, and light localization. Recent experimental and theoretical advances in the study of amorphous photonic crystals are summarized, focusing on their unique optical properties, artificial fabrication, bionspiration, and potential applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Photonic band gaps structure properties of two-dimensional function photonic crystals

    NASA Astrophysics Data System (ADS)

    Ma, Ji; Wang, Zhi-Guo; Liu, Xiao-Jing; Zhang, Si-Qi; Liang, Yu; Wu, Xiang-Yao

    2017-05-01

    The tunable two-dimensional photonic crystals band gap, absolute photonic band gap and semi-Dirac point are beneficial to designing the novel optical devices. In this paper, tunable photonic band gaps structure was realized by a new type two-dimensional function photonic crystals, which dielectric constants of medium columns are functions of space coordinates. However for the two-dimensional conventional photonic crystals the dielectric constant does not change with space coordinates. As the parameter adjustment, we found that the photonic band gaps structures are dielectric constant function coefficient, medium columns radius, dielectric constant function form period number and pump light intensity dependent, namely, the photonic band gaps position and width can be tuned. we also obtained absolute photonic band gaps and semi-Dirac point in the photonic band gaps structures of two-dimensional function photonic crystals. These results provide an important theoretical foundation for design novel optical devices.

  18. FEM modeling of 3D photonic crystals and photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Burger, Sven; Klose, Roland; Schaedle, Achim; Schmidt, Frank; Zschiedrich, Lin W.

    2005-03-01

    We present a finite-element simulation tool for calculating light fields in 3D nano-optical devices. This allows to solve challenging problems on a standard personal computer. We present solutions to eigenvalue problems, like Bloch-type eigenvalues in photonic crystals and photonic crystal waveguides, and to scattering problems, like the transmission through finite photonic crystals. The discretization is based on unstructured tetrahedral grids with an adaptive grid refinement controlled and steered by an error-estimator. As ansatz functions we use higher order, vectorial elements (Nedelec, edge elements). For a fast convergence of the solution we make use of advanced multi-grid algorithms adapted for the vectorial Maxwell's equations.

  19. Crystallization of the C-terminal head domain of the avian adenovirus CELO long fibre

    SciTech Connect

    Guardado Calvo, Pablo; Llamas-Saiz, Antonio L.; Langlois, Patrick; Raaij, Mark J. van

    2006-05-01

    Avian adenovirus long-fibre head trimers were expressed, purified and crystallized. The crystals belong to space group C2 (unit-cell parameters a = 216.5, b = 59.2, c = 57.5 Å, β = 101.3°). A complete highly redundant data set was collected to 2.2 Å resolution at 100 K using a rotating-anode X-ray source. Avian adenovirus CELO contains two different fibres: fibre 1, the long fibre, and fibre 2, the short fibre. The short fibre is responsible for binding to an unknown avian receptor and is essential for infection of birds. The long fibre is not essential, but is known to bind the coxsackievirus and adenovirus receptor protein. Both trimeric fibres are attached to the same penton base, of which each icosahedral virus contains 12 copies. The short fibre extends straight outwards, while the long fibre emerges at an angle. The carboxy-terminal amino acids 579–793 of the avian adenovirus long fibre have been expressed with an amino-terminal hexahistidine tag and the expressed trimeric protein has been purified by nickel-affinity chromatography and crystallized. Crystals were grown at low pH using PEG 10 000 as precipitant and belonged to space group C2. The crystals diffracted rotating-anode Cu Kα radiation to at least 1.9 Å resolution and a complete data set was collected from a single crystal to 2.2 Å resolution. Unit-cell parameters were a = 216.5, b = 59.2, c = 57.5 Å, β = 101.3°, suggesting one trimer per asymmetric unit and a solvent content of 46%. The long fibre head does not have significant sequence homology to any other protein of known structure and molecular-replacement attempts with known fibre-head structures were unsuccessful. However, a map calculated using SIRAS phasing shows a clear trimer with a shape similar to known adenovirus fibre-head structures. Structure solution is in progress.

  20. Zero-n gap in one dimensional photonic crystal

    SciTech Connect

    Chobey, Mahesh K. Suthar, B.

    2016-05-06

    We study a one-dimensional (1-D) photonic crystal composed of Double Positive (DPS) and Double Negative (DNG) material. This structure shows omnidirectional photonic bandgap, which is insensitive with angle of incidence and polarization. To study the effect of structural parameters on the photonic band structure, we have calculated photonic band gap at various thicknesses of DPS and DNG.

  1. Raman cooling in silicon photonic crystals

    NASA Astrophysics Data System (ADS)

    Chen, Yin-Chung; Bahl, Gaurav

    2016-03-01

    Laser cooling of solids can be achieved through various photon up-conversion processes including anti-Stokes photoluminescence and anti-Stokes light scattering. While it has been shown that cooling using photoluminescence-based methods can achieve efficiency comparable to that of thermoelectric cooling, the reliance on specific transitions of the rare-earth dopants limits material choice. Light scattering, on the other hand, occurs in all materials, and has the potential to enable cooling in most materials. We show that by engineering the photonic density of states of a material, one can suppress the Stokes process, and enhance the anti-Stokes radiation. We employ the well-known diamond-structured photonic crystal patterned in crystalline silicon to demonstrate theoretically that when operating within a high transparency regime, the net energy removal rate from phonon annihilation can overcome the optical absorption. The engineered photonic density of states can thus enable simultaneous cooling of all Raman-active phonon modes and the net cooling of the solid.

  2. Single photon emission from diamond nanocrystals in an opal photonic crystal.

    PubMed

    Stewart, L A; Zhai, Y; Dawes, J M; Steel, M J; Rabeau, J R; Withford, M J

    2009-09-28

    We present the first optical measurement of a single nitrogen-vacancy (NV) center in a three-dimensional photonic crystal. The photonic crystal, fabricated by self-assembly of polystyrene microspheres, exhibits a photonic stopband that overlaps the NV photoluminescence spectrum. A modified emission spectrum and photon antibunching were measured from the NV centers. Time-resolved fluorescence measurements revealed a 30% increase in the source lifetime. Encapsulation of single NV centers in a three-dimensional photonic crystal is a step towards controlling emission properties of a single photon source.

  3. Half-disordered photonic crystal slabs.

    PubMed

    Beque, V; Keilman, J; Citrin, D S

    2016-08-10

    Optical transmission spectra of finite-thickness slabs of two-dimensional triangular-lattice photonic crystals of air holes in a dielectric matrix with various concentrations of randomly located vacancies (absent air holes) are studied. We focus on structures in which only one half of the structure-the incidence or transmission side-is disordered. We find vacancy-induced scattering gives rise to a strong difference in the two cases; for light incident on the disordered side, high transmission within the photonic pseudogap at normal incidence is predicted, in strong contrast to the opposite case, where low transmission is predicted throughout the pseudogap, as is observed in the case of an ideal structure with no defects.

  4. Slab photonic crystals with dimer colloid bases

    SciTech Connect

    Riley, Erin K.; Liddell Watson, Chekesha M.

    2014-06-14

    The photonic band gap properties for centered rectangular monolayers of asymmetric dimers are reported. Colloids in suspension have been organized into the phase under confinement. The theoretical model is inspired by the range of asymmetric dimers synthesized via seeded emulsion polymerization and explores, in particular, the band structures as a function of degree of lobe symmetry and degree of lobe fusion. These parameters are varied incrementally from spheres to lobe-tangent dimers over morphologies yielding physically realizable particles. The work addresses the relative scarcity of theoretical studies on photonic crystal slabs with vertical variation that is consistent with colloidal self-assembly. Odd, even and polarization independent gaps in the guided modes are determined for direct slab structures. A wide range of lobe symmetry and degree of lobe fusion combinations having Brillouin zones with moderate to high isotropy support gaps between odd mode band indices 3-4 and even mode band indices 1-2 and 2-3.

  5. Photonic Crystal Emitters for Thermophotovoltaic Energy Conversion

    NASA Astrophysics Data System (ADS)

    Stelmakh, Veronika; Chan, Walker R.; Ghebrebrhan, Michael; Soljacic, Marin; Joannopoulos, John D.; Celanovic, Ivan

    2015-12-01

    This paper reports the design, fabrication, and characterization of 2D photonic crystal (PhC) thermal emitters for a millimeter-scale hydrocarbon TPV microgenerator as a possible replacement for batteries in portable microelectronics, robotics, etc. In our TPV system, combustion heats a PhC emitter to incandescence and the resulting radiation is converted by a low-bandgap TPV cell. The PhC tailors the photonic density of states to produce spectrally confined thermal emission that matches the bandgap of the TPV cell, enabling high heat-to-electricity conversion efficiency. The work builds on a previously developed fabrication process to produce a square array of cylindrical cavities in a metal substrate. We will present ongoing incremental improvements in the optical and thermo-mechanical properties, the fabrication process, and the system integration, as recently combined with fabrication using novel materials, such as sputtered coatings, to enable a monolithic system.

  6. Band structure peculiarities of magnetic photonic crystals

    NASA Astrophysics Data System (ADS)

    Gevorgyan, A. H.; Golik, S. S.

    2017-10-01

    In this work we studied light diffraction in magneto-photonic crystals (MPC) having large magneto-optical activity and modulation large depth. The case of arbitrary angles between the direction of the external static magnetic field and the normal to the border of the MPC layer is considered. The problem is solved by Ambartsumian's modified layer addition method. It is found that there is a new type of non-reciprocity, namely, the relation R (α) ≠ R (- α) takes place, where R is the reflection coefficient, and α is the incidence angle. It is shown the formation of new photonic band gap (PBG) at oblique incidence of light, which is not selective for the polarization of the incident light, in the case when the external magnetic field is directed along the medium axis. Such a system can be used as: a tunable polarization filter, polarization mirror, circular (elliptical) polarizer, tunable optical diode, etc.

  7. Square lattice photonic crystal surface mode lasers.

    PubMed

    Lu, Tsan-Wen; Lu, Shao-Ping; Chiu, Li-Hsun; Lee, Po-Tsung

    2010-12-06

    In this report, we propose a square lattice photonic crystal hetero-slab-edge microcavity design. In numerical simulations, three surface modes in this microcavity are investigated and optimized by tuning the slab-edge termination τ and gradual mirror layer. High simulated quality (Q) factor of 2.3 × 10(5) and small mode volume of 0.105 μm(3) are obtained from microcavity with τ = 0.80. In experiments, we obtain and identify different surface modes lasing. The surface mode in the second photonic band gap shows a very-low threshold of 140 μW and high Q factor of 5,500, which could be an avenue to low-threshold optical lasers and highly sensitive sensor applications with efficient light-matter interactions.

  8. Dirac directional emission in anisotropic zero refractive index photonic crystals.

    PubMed

    He, Xin-Tao; Zhong, Yao-Nan; Zhou, You; Zhong, Zhi-Chao; Dong, Jian-Wen

    2015-08-14

    A certain class of photonic crystals with conical dispersion is known to behave as isotropic zero-refractive-index medium. However, the discrete building blocks in such photonic crystals are limited to construct multidirectional devices, even for high-symmetric photonic crystals. Here, we show multidirectional emission from low-symmetric photonic crystals with semi-Dirac dispersion at the zone center. We demonstrate that such low-symmetric photonic crystal can be considered as an effective anisotropic zero-refractive-index medium, as long as there is only one propagation mode near Dirac frequency. Four kinds of Dirac multidirectional emitters are achieved with the channel numbers of five, seven, eleven, and thirteen, respectively. Spatial power combination for such kind of Dirac directional emitter is also verified even when multiple sources are randomly placed in the anisotropic zero-refractive-index photonic crystal.

  9. Dirac directional emission in anisotropic zero refractive index photonic crystals

    PubMed Central

    He, Xin-Tao; Zhong, Yao-Nan; Zhou, You; Zhong, Zhi-Chao; Dong, Jian-Wen

    2015-01-01

    A certain class of photonic crystals with conical dispersion is known to behave as isotropic zero-refractive-index medium. However, the discrete building blocks in such photonic crystals are limited to construct multidirectional devices, even for high-symmetric photonic crystals. Here, we show multidirectional emission from low-symmetric photonic crystals with semi-Dirac dispersion at the zone center. We demonstrate that such low-symmetric photonic crystal can be considered as an effective anisotropic zero-refractive-index medium, as long as there is only one propagation mode near Dirac frequency. Four kinds of Dirac multidirectional emitters are achieved with the channel numbers of five, seven, eleven, and thirteen, respectively. Spatial power combination for such kind of Dirac directional emitter is also verified even when multiple sources are randomly placed in the anisotropic zero-refractive-index photonic crystal. PMID:26271208

  10. Photonic crystal devices formed by a charged-particle beam

    DOEpatents

    Lin, Shawn-Yu; Koops, Hans W. P.

    2000-01-01

    A photonic crystal device and method. The photonic crystal device comprises a substrate with at least one photonic crystal formed thereon by a charged-particle beam deposition method. Each photonic crystal comprises a plurality of spaced elements having a composition different from the substrate, and may further include one or more impurity elements substituted for spaced elements. Embodiments of the present invention may be provided as electromagnetic wave filters, polarizers, resonators, sources, mirrors, beam directors and antennas for use at wavelengths in the range from about 0.2 to 200 microns or longer. Additionally, photonic crystal devices may be provided with one or more electromagnetic waveguides adjacent to a photonic crystal for forming integrated electromagnetic circuits for use at optical, infrared, or millimeter-wave frequencies.

  11. Broadband photon-photon interactions mediated by cold atoms in a photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Litinskaya, Marina; Tignone, Edoardo; Pupillo, Guido

    2016-05-01

    We demonstrate theoretically that photon-photon attraction can be engineered in the continuum of scattering states for pairs of photons propagating in a hollow-core photonic crystal fiber filled with cold atoms. The atoms are regularly spaced in an optical lattice configuration and the photons are resonantly tuned to an internal atomic transition. We show that the hard-core repulsion resulting from saturation of the atomic transitions induces bunching in the photonic component of the collective atom-photon modes (polaritons). Bunching is obtained in a frequency range as large as tens of GHz, and can be controlled by the inter-atomic separation. We provide a fully analytical explanation for this phenomenon by proving that correlations result from a mismatch of the quantization volumes for atomic excitations and photons in the continuum. Even stronger correlations can be observed for in-gap two-polariton bound states. Our theoretical results use parameters relevant for current experiments and suggest a simple and feasible way to induce interactions between photons.

  12. Broadband photon-photon interactions mediated by cold atoms in a photonic crystal fiber

    PubMed Central

    Litinskaya, Marina; Tignone, Edoardo; Pupillo, Guido

    2016-01-01

    We demonstrate theoretically that photon-photon attraction can be engineered in the continuum of scattering states for pairs of photons propagating in a hollow-core photonic crystal fiber filled with cold atoms. The atoms are regularly spaced in an optical lattice configuration and the photons are resonantly tuned to an internal atomic transition. We show that the hard-core repulsion resulting from saturation of the atomic transitions induces bunching in the photonic component of the collective atom-photon modes (polaritons). Bunching is obtained in a frequency range as large as tens of GHz, and can be controlled by the inter-atomic separation. We provide a fully analytical explanation for this phenomenon by proving that correlations result from a mismatch of the quantization volumes for atomic excitations and photons in the continuum. Even stronger correlations can be observed for in-gap two-polariton bound states. Our theoretical results use parameters relevant for current experiments and suggest a simple and feasible way to induce interactions between photons. PMID:27170160

  13. FIBRE OPTICS Mid-IR luminescence of Cr2+ : II — VI crystals in chalcogenide glass fibres

    NASA Astrophysics Data System (ADS)

    Mironov, Roman A.; Karaksina, E. V.; Zabezhailov, A. O.; Shapashnikov, R. M.; Churbanov, M. F.; Dianov, Evgenii M.

    2010-11-01

    Optical fibres have been fabricated for the first time from As2S3 glass containing chromium-doped ZnS and ZnSe crystals, and their optical loss and luminescence spectra have been measured in the mid-IR. In the spectral range 2 — 3 μm, the optical loss in the fibres is 2 — 4 dB m-1. The fibres have a broad luminescence band in the range 1.8 — 3 μm, with a maximum near 1.9 μm, which is due to Cr2+ 5E — 5T2 intracentre transitions in the II - VI host.

  14. Hydrogen sensor based on metallic photonic crystal slabs.

    PubMed

    Nau, D; Seidel, A; Orzekowsky, R B; Lee, S-H; Deb, S; Giessen, H

    2010-09-15

    We present a hydrogen sensor based on metallic photonic crystal slabs. Tungsten trioxide (WO(3)) is used as a waveguide layer below an array of gold nanowires. Hydrogen exposure influences the optical properties of this photonic crystal arrangement by gasochromic mechanisms, where the photonic crystal geometry leads to sharp spectral resonances. Measurements reveal a change of the transmission depending on the hydrogen concentration. Theoretical limits for the detection range and sensitivity of this approach are discussed.

  15. Young's double-slit experiment in photonic crystals

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Koschny, Thomas; Soukoulis, C. M.

    2012-10-01

    We present an experimental and numerical study of the transmission of a photonic crystal perforated by two subwavelength slits, separated by two wavelengths. The experimental near-field image of the double-slit design of the photonic crystal shows an interference pattern, which is analogous to Young's experiment. This interference arises as a consequence of the excitation of surface states of the photonic crystals and agrees very well with the simulations.

  16. Young's double-slit experiment in photonic crystals

    SciTech Connect

    Zhang, Lei; Koschny, Thomas; Soukoulis, Costas M.

    2012-10-01

    We present an experimental and numerical study of the transmission of a photonic crystal perforated by two sub-wavelength slits, separated by two wavelengths.The experimental near-field image of the double-slit design of the photonic crystal shows an interference pattern, which is analogous to Young’s experiment. This interference arises as a consequence of the excitation of surface states of the photonic crystals and agrees very well with the simulations.

  17. One-dimensional photonic crystals bound by light

    NASA Astrophysics Data System (ADS)

    Cui, Liyong; Li, Xiao; Chen, Jun; Cao, Yongyin; Du, Guiqiang; Ng, Jack

    2017-08-01

    Through rigorous simulations, the light scattering induced optical binding of one-dimensional (1D) dielectric photonic crystals is studied. The optical forces corresponding to the pass band, band gap, and band edge are qualitatively different. It is shown that light can induce self-organization of dielectric slabs into stable photonic crystals, with its lower band edge coinciding with the incident light frequency. Incident light at normal and oblique incidence and photonic crystals with parity-time symmetry are also considered.

  18. Tuning quantum correlations with intracavity photonic crystals

    SciTech Connect

    Castro, Maria M. de; Gomila, Damia; Zambrini, Roberta; Garcia-March, Miguel Angel

    2011-09-15

    We show how to tune quantum noise in nonlinear systems by means of periodic spatial modulation. We prove that the introduction of an intracavity photonic crystal in a multimode optical parametric oscillator inhibits and enhances light quantum fluctuations. Furthermore, it leads to a significant noise reduction in field quadratures, robustness of squeezing in a wider angular range, and spatial entanglement. These results have potential benefits for quantum imaging, metrology, and quantum information applications and suggest a control mechanism of fluctuations by spatial modulation of interest also in other nonlinear systems.

  19. Photonic crystal self-collimation sensor.

    PubMed

    Wang, Yufei; Wang, Hailing; Xue, Qikun; Zheng, Wanhua

    2012-05-21

    A novel refractive index sensor based on the two dimensional photonic crystal folded Michelson interferometer employing the self-collimation effect is proposed and its performances are theoretically investigated. Two sensing areas are included in the sensor. Simulation results indicate the branch area is suitable for the small index variety range and fine detection, whereas the reflector area prone to the large index change range and coarse detection. Because of no defect waveguides and no crosstalk of signal, the sensor is desirable to perform monolithic integrated, low-cost, label-free real-time parallel sensing. In addition, a flexible design of self-collimation sensors array is demonstrated.

  20. Vorticity cutoff in nonlinear photonic crystals.

    PubMed

    Ferrando, Albert; Zacarés, Mario; García-March, Miguel-Angel

    2005-07-22

    Using group-theory arguments, we demonstrate that, unlike in homogeneous media, no symmetric vortices of arbitrary order can be generated in two-dimensional (2D) nonlinear systems possessing a discrete-point symmetry. The only condition needed is that the nonlinearity term exclusively depends on the modulus of the field. In the particular case of 2D periodic systems, such as nonlinear photonic crystals or Bose-Einstein condensates in periodic potentials, it is shown that the realization of discrete symmetry forbids the existence of symmetric vortex solutions with vorticity higher than two.

  1. Super-collimation by axisymmetric photonic crystals

    SciTech Connect

    Purlys, V.; Gailevičius, D.; Peckus, M.; Gadonas, R.; Maigyte, L.; Staliunas, K.

    2014-06-02

    We propose and experimentally show the mechanism of beam super-collimation by axisymmetric photonic crystals, specifically by periodic (in propagation direction) structure of layers of concentric rings. The physical mechanism behind the effect is an inverse scattering cascade of diffracted wave components back into on- and near-axis angular field components, resulting in substantial enhancement of intensity of these components. We explore the super-collimation by numerical calculations and prove it experimentally. We demonstrate experimentally the axial field enhancement up to 7 times in terms of field intensity.

  2. Efficient photonic crystal Y-junctions

    NASA Astrophysics Data System (ADS)

    Wilson, Rab; Karle, Tim J.; Moerman, I.; Krauss, Thomas F.

    2003-07-01

    A highly efficient Y-junction based on a planar photonic crystal (PhC) platform is presented. The PhC consists of a triangular array of holes etched into a GaAs/AlGaAs heterostructure, with a typical period of 322 nm and ~35% fill factor. The Y-junction has smaller holes positioned at the centre of the junction, giving rise to very uniform splitting and high transmission. The performance is very encouraging, with experimental transmission of approximately 40% for each arm of the Y-splitter relative to a comparable single-defect PhC waveguide.

  3. Broadband dispersion-compensating photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Yang, Sigang; Zhang, Yejin; He, Lina; Xie, Shizhong

    2006-10-01

    We present a modified dual-core photonic crystal fiber, based on pure silica, with special grapefruit holes in the inner cladding. The fiber has large, broadband negative dispersion, and the dispersion value varies linearly from -380to-420 ps/(nmkm) in the C band. To decrease the fabrication difficulty, large air holes are adopted. Furthermore, the chromatic dispersion of the fiber is not sensitive to the structure parameters. So the proposed fiber structure can greatly facilitate fiber drawing and can be used for broadband dispersion compensation.

  4. Anomalous bending effect in photonic crystal fibers.

    PubMed

    Tu, Haohua; Jiang, Zhi; Marks, Daniel L; Boppart, Stephen A

    2008-04-14

    An unexpected transmission loss up to 50% occurs to intense femtosecond pulses propagating along an endlessly single-mode photonic crystal fiber over a length of 1 m. A specific leaky-fiber mode gains amplification along the fiber at the expense of the fundamental fiber mode through stimulated four-wave mixing and Raman scattering, leading to this transmission loss. Bending near the fiber entrance dissipates the propagating seed of this leaky mode, preventing the leaky mode amplification and therefore enhancing the transmission of these pulses.

  5. Biomimetic Photonic Crystals based on Diatom Algae Frustules

    NASA Astrophysics Data System (ADS)

    Mishler, Jonathan; Alverson, Andrew; Herzog, Joseph

    2015-03-01

    Diatom algae are unicellular, photosynthetic microorganisms with a unique external shell known as a frustule. Frustules, which are composed of amorphous silica, exhibit a unique periodic nano-patterning, distinguishing diatoms from other types of phytoplankton. Diatoms have been studied for their distinctive optical properties due to their resemblance of photonic crystals. In this regard, diatoms are not only considered for their applications as photonic crystals, but also for their use as biomimetic templates for artificially fabricated photonic crystals. Through the examination and measurement of the physical characteristics of many scanning electron microscope (SEM) images of diatom frustules, a biomimetic photonic crystal derived from diatom frustules can be recreated and modeled with the finite element method. In this approach, the average geometries of the diatom frustules are used to recreate a 2-dimensional photonic crystal, after which the electric field distribution and optical transmission through the photonic crystal are both measured. The optical transmission is then compared to the transmission spectra of a regular hexagonal photonic crystal, revealing the effects of diatom geometry on their optical properties. Finally, the dimensions of the photonic crystal are parametrically swept, allowing for further control over the transmission of light through the photonic crystal.

  6. Glass beads and Ge-doped optical fibres as thermoluminescence dosimeters for small field photon dosimetry.

    PubMed

    Jafari, S M; Alalawi, A I; Hussein, M; Alsaleh, W; Najem, M A; Hugtenburg, R P; Bradley, D A; Spyrou, N M; Clark, C H; Nisbet, A

    2014-11-21

    An investigation has been made of glass beads and optical fibres as novel dosimeters for small-field photon radiation therapy dosimetry. Commercially available glass beads of largest dimension 1.5 mm and GeO2-doped SiO2 optical fibres of 5 mm length and 120 µm diameter were characterized as thermoluminescence dosimeters. Results were compared against Monte-Carlo simulations with BEAMnrc/DOSXYZnrc, EBT3 Gafchromic film, and a high-resolution 2D-array of liquid-filled ionization chambers. Measurements included relative output factors and dose profiles for square-field sizes of 1, 2, 3, 4, and 10 cm. A customized Solid-Water® phantom was employed, and the beads and fibres were placed at defined positions along the longitudinal axis to allow accurate beam profile measurement. Output factors and the beam profile parameters were compared against those calculated by BEAMnrc/DOSXYZnrc. The output factors and field width measurements were found to be in agreement with reference measurements to within better than 3.5% for all field sizes down to 2 cm2 for both dosimetric systems, with the beads showing a discrepancy of no more than 2.8% for all field sizes. The results confirm the potential of the beads and fibres as thermoluminescent dosimeters for use in small photon radiation field sizes.

  7. Switchable Photonic Crystals Using One-Dimensional Confined Liquid Crystals for Photonic Device Application.

    PubMed

    Ryu, Seong Ho; Gim, Min-Jun; Lee, Wonsuk; Choi, Suk-Won; Yoon, Dong Ki

    2017-01-25

    Photonic crystals (PCs) have recently attracted considerable attention, with much effort devoted to photonic bandgap (PBG) control for varying the reflected color. Here, fabrication of a modulated one-dimensional (1D) anodic aluminum oxide (AAO) PC with a periodic porous structure is reported. The PBG of the fabricated PC can be reversibly changed by switching the ultraviolet (UV) light on/off. The AAO nanopores contain a mixture of photoresponsive liquid crystals (LCs) with irradiation-activated cis/trans photoisomerizable azobenzene. The resultant mixture of LCs in the porous AAO film exhibits a reversible PBG, depending on the cis/trans configuration of azobenzene molecules. The PBG switching is reliable over many cycles, suggesting that the fabricated device can be used in optical and photonic applications such as light modulators, smart windows, and sensors.

  8. Connected hexagonal photonic crystals with largest full band gap.

    PubMed

    Fu, H; Chen, Y; Chern, R; Chang, Chien

    2005-10-03

    A two-dimensional photonic crystal with a large full band gap has been designed, fabricated, and characterized. The photonic crystal design was based on a calculation using inverse iteration with multigrid acceleration. The fabrication of the photonic crystal on silicon was realized by the processes of electron-beam lithography and inductively coupled plasma reactive ion etching. It was found that the hexagonal array of circular columns and rods has an optimal full photonic band gap. In addition, we show that a larger extraction of light from our designed photonic crystal can be obtained when compared with the frequently used photonic crystals reported previously. Our designed PC structure therefore should be very useful for creating highly efficient optoelectronic devices.

  9. Photonic crystal enhanced fluorescence for early breast cancer biomarker detection.

    PubMed

    Cunningham, Brian T; Zangar, Richard C

    2012-08-01

    Photonic crystal surfaces offer a compelling platform for improving the sensitivity of surface-based fluorescent assays used in disease diagnostics. Through the complementary processes of photonic crystal enhanced excitation and enhanced extraction, a periodic dielectric-based nanostructured surface can simultaneously increase the electric field intensity experienced by surface-bound fluorophores and increase the collection efficiency of emitted fluorescent photons. Through the ability to inexpensively fabricate photonic crystal surfaces over substantial surface areas, they are amenable to single-use applications in biological sensing, such as disease biomarker detection in serum. In this review, we will describe the motivation for implementing high-sensitivity, multiplexed biomarker detection in the context of breast cancer diagnosis. We will summarize recent efforts to improve the detection limits of such assays though the use of photonic crystal surfaces. Reduction of detection limits is driven by low autofluorescent substrates for photonic crystal fabrication, and detection instruments that take advantage of their unique features.

  10. Dielectric matrices with air cavities as a waveguide photonic crystal

    NASA Astrophysics Data System (ADS)

    Usanov, D. A.; Skripal', A. V.; Merdanov, M. K.; Gorlitskii, V. O.

    2016-02-01

    Frequency dependences of the transmission coefficient of a microwave photonic crystal that represents a structure containing alternating layers of ceramic material (Al2O3) with a relatively large number of cavities and foam plastic are studied in the presence and absence of distortions of the periodicity of a photonic structure. The frequency dependences of the transmission coefficient can be analyzed using a model of effective medium that makes it possible to consider the interaction of electromagnetic wave and photonic crystal using a transfer matrix of a 1D photonic crystal. The band character of the frequency dependence of the transmission coefficient of the photonic crystal related to the periodicity of the photonic crystal in the transverse plane for the waveguide with a standard cross section is not manifested in a certain range of material permittivities.

  11. Porous photonic crystal external cavity laser biosensor

    SciTech Connect

    Huang, Qinglan; Peh, Jessie; Hergenrother, Paul J.; Cunningham, Brian T.

    2016-08-15

    We report the design, fabrication, and testing of a photonic crystal (PC) biosensor structure that incorporates a porous high refractive index TiO{sub 2} dielectric film that enables immobilization of capture proteins within an enhanced surface-area volume that spatially overlaps with the regions of resonant electromagnetic fields where biomolecular binding can produce the greatest shifts in photonic crystal resonant wavelength. Despite the nanoscale porosity of the sensor structure, the PC slab exhibits narrowband and high efficiency resonant reflection, enabling the structure to serve as a wavelength-tunable element of an external cavity laser. In the context of sensing small molecule interactions with much larger immobilized proteins, we demonstrate that the porous structure provides 3.7× larger biosensor signals than an equivalent nonporous structure, while the external cavity laser (ECL) detection method provides capability for sensing picometer-scale shifts in the PC resonant wavelength caused by small molecule binding. The porous ECL achieves a record high figure of merit for label-free optical biosensors.

  12. Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect

    Cowan, Benjamin M.

    2007-08-22

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques.

  13. Porous photonic crystal external cavity laser biosensor

    NASA Astrophysics Data System (ADS)

    Huang, Qinglan; Peh, Jessie; Hergenrother, Paul J.; Cunningham, Brian T.

    2016-08-01

    We report the design, fabrication, and testing of a photonic crystal (PC) biosensor structure that incorporates a porous high refractive index TiO2 dielectric film that enables immobilization of capture proteins within an enhanced surface-area volume that spatially overlaps with the regions of resonant electromagnetic fields where biomolecular binding can produce the greatest shifts in photonic crystal resonant wavelength. Despite the nanoscale porosity of the sensor structure, the PC slab exhibits narrowband and high efficiency resonant reflection, enabling the structure to serve as a wavelength-tunable element of an external cavity laser. In the context of sensing small molecule interactions with much larger immobilized proteins, we demonstrate that the porous structure provides 3.7× larger biosensor signals than an equivalent nonporous structure, while the external cavity laser (ECL) detection method provides capability for sensing picometer-scale shifts in the PC resonant wavelength caused by small molecule binding. The porous ECL achieves a record high figure of merit for label-free optical biosensors.

  14. Porous photonic crystal external cavity laser biosensor.

    PubMed

    Huang, Qinglan; Peh, Jessie; Hergenrother, Paul J; Cunningham, Brian T

    2016-08-15

    We report the design, fabrication, and testing of a photonic crystal (PC) biosensor structure that incorporates a porous high refractive index TiO2 dielectric film that enables immobilization of capture proteins within an enhanced surface-area volume that spatially overlaps with the regions of resonant electromagnetic fields where biomolecular binding can produce the greatest shifts in photonic crystal resonant wavelength. Despite the nanoscale porosity of the sensor structure, the PC slab exhibits narrowband and high efficiency resonant reflection, enabling the structure to serve as a wavelength-tunable element of an external cavity laser. In the context of sensing small molecule interactions with much larger immobilized proteins, we demonstrate that the porous structure provides 3.7× larger biosensor signals than an equivalent nonporous structure, while the external cavity laser (ECL) detection method provides capability for sensing picometer-scale shifts in the PC resonant wavelength caused by small molecule binding. The porous ECL achieves a record high figure of merit for label-free optical biosensors.

  15. All-fibre photonic signal generator for attosecond timing and ultralow-noise microwave

    NASA Astrophysics Data System (ADS)

    Jung, Kwangyun; Kim, Jungwon

    2015-11-01

    High-impact frequency comb applications that are critically dependent on precise pulse timing (i.e., repetition rate) have recently emerged and include the synchronization of X-ray free-electron lasers, photonic analogue-to-digital conversion and photonic radar systems. These applications have used attosecond-level timing jitter of free-running mode-locked lasers on a fast time scale within ~100 μs. Maintaining attosecond-level absolute jitter over a significantly longer time scale can dramatically improve many high-precision comb applications. To date, ultrahigh quality-factor (Q) optical resonators have been used to achieve the highest-level repetition-rate stabilization of mode-locked lasers. However, ultrahigh-Q optical-resonator-based methods are often fragile, alignment sensitive and complex, which limits their widespread use. Here we demonstrate a fibre-delay line-based repetition-rate stabilization method that enables the all-fibre photonic generation of optical pulse trains with 980-as (20-fs) absolute r.m.s. timing jitter accumulated over 0.01 s (1 s). This simple approach is based on standard off-the-shelf fibre components and can therefore be readily used in various comb applications that require ultra-stable microwave frequency and attosecond optical timing.

  16. All-fibre photonic signal generator for attosecond timing and ultralow-noise microwave

    PubMed Central

    Jung, Kwangyun; Kim, Jungwon

    2015-01-01

    High-impact frequency comb applications that are critically dependent on precise pulse timing (i.e., repetition rate) have recently emerged and include the synchronization of X-ray free-electron lasers, photonic analogue-to-digital conversion and photonic radar systems. These applications have used attosecond-level timing jitter of free-running mode-locked lasers on a fast time scale within ~100 μs. Maintaining attosecond-level absolute jitter over a significantly longer time scale can dramatically improve many high-precision comb applications. To date, ultrahigh quality-factor (Q) optical resonators have been used to achieve the highest-level repetition-rate stabilization of mode-locked lasers. However, ultrahigh-Q optical-resonator-based methods are often fragile, alignment sensitive and complex, which limits their widespread use. Here we demonstrate a fibre-delay line-based repetition-rate stabilization method that enables the all-fibre photonic generation of optical pulse trains with 980-as (20-fs) absolute r.m.s. timing jitter accumulated over 0.01 s (1 s). This simple approach is based on standard off-the-shelf fibre components and can therefore be readily used in various comb applications that require ultra-stable microwave frequency and attosecond optical timing. PMID:26531777

  17. All-fibre photonic signal generator for attosecond timing and ultralow-noise microwave.

    PubMed

    Jung, Kwangyun; Kim, Jungwon

    2015-11-04

    High-impact frequency comb applications that are critically dependent on precise pulse timing (i.e., repetition rate) have recently emerged and include the synchronization of X-ray free-electron lasers, photonic analogue-to-digital conversion and photonic radar systems. These applications have used attosecond-level timing jitter of free-running mode-locked lasers on a fast time scale within ~100 μs. Maintaining attosecond-level absolute jitter over a significantly longer time scale can dramatically improve many high-precision comb applications. To date, ultrahigh quality-factor (Q) optical resonators have been used to achieve the highest-level repetition-rate stabilization of mode-locked lasers. However, ultrahigh-Q optical-resonator-based methods are often fragile, alignment sensitive and complex, which limits their widespread use. Here we demonstrate a fibre-delay line-based repetition-rate stabilization method that enables the all-fibre photonic generation of optical pulse trains with 980-as (20-fs) absolute r.m.s. timing jitter accumulated over 0.01 s (1 s). This simple approach is based on standard off-the-shelf fibre components and can therefore be readily used in various comb applications that require ultra-stable microwave frequency and attosecond optical timing.

  18. Flexible photonic crystals for strain sensing

    NASA Astrophysics Data System (ADS)

    Fortes, Luís M.; Gonçalves, M. Clara; Almeida, Rui M.

    2011-01-01

    Three-dimensional (3-D) photonic crystals (PCs) have been studied as possible strain sensing materials, based on strain-induced stop band frequency shifting. Self-assembly of polystyrene microspheres, achieved by sedimentation over a flexible polyimide tape substrate whose surface hydrophilicity was optimized in order to achieve maximum wettability, led to an organized 3-D direct opal template. This was infiltrated with a silica sol-gel solution by dip-coating or by chemical vapour deposition and an inverse opal structure was ultimately obtained by chemical dissolution of the polymer template. The structural and optical properties of these PCs have been studied by scanning electron microscopy (FE-SEM) and UV/visible spectroscopy under variable degrees of strain. FE-SEM showed the presence of ordered domains up to ∼30 μm2. A mechano-optical effect was evidenced by strain-induced shifting of the photonic stop band peak wavelength of the direct, infiltrated and inverse opals up to 50 nm in transmission mode, due to changes in interplanar spacing upon bending the flexible PCs. Optical response strain cycles were studied, suggesting the possible use of these structures in reversible photonic strain sensors integrated in sensor/actuator devices.

  19. Gallium Nitride Based Logpile Photonic Crystal

    SciTech Connect

    Subramania, Ganapathi; Li, Qiming; Lee, Yun-Ju; Figiel, Jeffrey J.; Wang, George T.; Fischer, Arthur J.

    2011-11-09

    A nine-layer logpile three-dimensional photonic crystal (3DPC) is demonstrated composed of single crystalline gallium nitride (GaN) nanorods, ~ 100 nm in size with lattice constants of 260, 280, and 300 nm with photonic band gap in the visible region. This unique GaN structure is created through a combined approach of a layer-by-layer template fabrication technique and selective metal organic chemical vapor deposition (MOCVD). These GaN 3DPC exhibit a stacking direction band gap characterized by strong optical reflectance between 380 and 500 nm. By introducing a ''line-defect'' cavity in the fifth (middle) layer of the 3DPC, a localized transmission mode with a quality factor of 25–30 is also observed within the photonic band gap. The realization of a group III nitride 3DPC with uniform features and a band gap at wavelengths in the visible region is an important step toward realizing complete control of the electromagnetic environment for group III nitride-based optoelectronic devices.

  20. Gallium nitride based logpile photonic crystals.

    PubMed

    Subramania, Ganapathi; Li, Qiming; Lee, Yun-Ju; Figiel, Jeffrey J; Wang, George T; Fischer, Arthur J

    2011-11-09

    We demonstrate a nine-layer logpile three-dimensional photonic crystal (3DPC) composed of single crystalline gallium nitride (GaN) nanorods, ∼100 nm in size with lattice constants of 260, 280, and 300 nm with photonic band gap in the visible region. This unique GaN structure is created through a combined approach of a layer-by-layer template fabrication technique and selective metal organic chemical vapor deposition (MOCVD). These GaN 3DPC exhibit a stacking direction band gap characterized by strong optical reflectance between 380 and 500 nm. By introducing a "line-defect" cavity in the fifth (middle) layer of the 3DPC, a localized transmission mode with a quality factor of 25-30 is also observed within the photonic band gap. The realization of a group III nitride 3DPC with uniform features and a band gap at wavelengths in the visible region is an important step toward realizing complete control of the electromagnetic environment for group III nitride based optoelectronic devices.

  1. Manipulation of photons at the surface of three-dimensional photonic crystals.

    PubMed

    Ishizaki, Kenji; Noda, Susumu

    2009-07-16

    In three-dimensional (3D) photonic crystals, refractive-index variations with a periodicity comparable to the wavelength of the light passing through the crystal give rise to so-called photonic bandgaps, which are analogous to electronic bandgaps for electrons moving in the periodic electrostatic potential of a material's crystal structure. Such 3D photonic bandgap crystals are envisioned to become fundamental building blocks for the control and manipulation of photons in optical circuits. So far, such schemes have been pursued by embedding artificial defects and light emitters inside the crystals, making use of 3D bandgap directional effects. Here we show experimentally that photons can be controlled and manipulated even at the 'surface' of 3D photonic crystals, where 3D periodicity is terminated, establishing a new and versatile route for photon manipulation. By making use of an evanescent-mode coupling technique, we demonstrate that 3D photonic crystals possess two-dimensional surface states, and we map their band structure. We show that photons can be confined and propagate through these two-dimensional surface states, and we realize their localization at arbitrary surface points by designing artificial surface-defect structures through the formation of a surface-mode gap. Surprisingly, the quality factors of the surface-defect mode are the largest reported for 3D photonic crystal nanocavities (Q up to approximately 9,000). In addition to providing a new approach for photon manipulation by photonic crystals, our findings are relevant for the generation and control of plasmon-polaritons in metals and the related surface photon physics. The absorption-free nature of the 3D photonic crystal surface may enable new sensing applications and provide routes for the realization of efficient light-matter interactions.

  2. Extended-Range Ultrarefractive 1D Photonic Crystal Prisms

    NASA Technical Reports Server (NTRS)

    Ting, David Z.

    2007-01-01

    A proposal has been made to exploit the special wavelength-dispersive characteristics of devices of the type described in One-Dimensional Photonic Crystal Superprisms (NPO-30232) NASA Tech Briefs, Vol. 29, No. 4 (April 2005), page 10a. A photonic crystal is an optical component that has a periodic structure comprising two dielectric materials with high dielectric contrast (e.g., a semiconductor and air), with geometrical feature sizes comparable to or smaller than light wavelengths of interest. Experimental superprisms have been realized as photonic crystals having three-dimensional (3D) structures comprising regions of amorphous Si alternating with regions of SiO2, fabricated in a complex process that included sputtering. A photonic crystal of the type to be exploited according to the present proposal is said to be one-dimensional (1D) because its contrasting dielectric materials would be stacked in parallel planar layers; in other words, there would be spatial periodicity in one dimension only. The processes of designing and fabricating 1D photonic crystal superprisms would be simpler and, hence, would cost less than do those for 3D photonic crystal superprisms. As in 3D structures, 1D photonic crystals may be used in applications such as wavelength-division multiplexing. In the extended-range configuration, it is also suitable for spectrometry applications. As an engineered structure or artificially engineered material, a photonic crystal can exhibit optical properties not commonly found in natural substances. Prior research had revealed several classes of photonic crystal structures for which the propagation of electromagnetic radiation is forbidden in certain frequency ranges, denoted photonic bandgaps. It had also been found that in narrow frequency bands just outside the photonic bandgaps, the angular wavelength dispersion of electromagnetic waves propagating in photonic crystal superprisms is much stronger than is the angular wavelength dispersion obtained

  3. Recent advances in liquid-crystal fiber optics and photonics

    NASA Astrophysics Data System (ADS)

    Woliński, T. R.; Siarkowska, A.; Budaszewski, D.; Chychłowski, M.; Czapla, A.; Ertman, S.; Lesiak, P.; Rutkowska, K. A.; Orzechowski, K.; Sala-Tefelska, M.; Sierakowski, M.; DÄ browski, R.; Bartosewicz, B.; Jankiewicz, B.; Nowinowski-Kruszelnicki, E.; Mergo, P.

    2017-02-01

    Liquid crystals over the last two decades have been successfully used to infiltrate fiber-optic and photonic structures initially including hollow-core fibers and recently micro-structured photonic crystal fibers (PCFs). As a result photonic liquid crystal fibers (PLCFs) have been created as a new type of micro-structured fibers that benefit from a merge of "passive" PCF host structures with "active" LC guest materials and are responsible for diversity of new and uncommon spectral, propagation, and polarization properties. This combination has simultaneously boosted research activities in both fields of Liquid Crystals Photonics and Fiber Optics by demonstrating that optical fibers can be more "special" than previously thought. Simultaneously, photonic liquid crystal fibers create a new class of fiber-optic devices that utilize unique properties of the photonic crystal fibers and tunable properties of LCs. Compared to "classical" photonic crystal fibers, PLCFs can demonstrate greatly improved control over their optical properties. The paper discusses the latest advances in this field comprising PLCFs that are based on nanoparticles-doped LCs. Doping of LCs with nanoparticles has recently become a common method of improving their optical, magnetic, electrical, and physical properties. Such a combination of nanoparticles-based liquid crystals and photonic crystal fibers can be considered as a next milestone in developing a new class of fiber-based optofluidic systems.

  4. Thermoluminescent sensitivity of single clad neodymium doped SiO2 optical fibres measured with 6 MeV photons

    NASA Astrophysics Data System (ADS)

    Saeed, M. A.; Hossain, I.; Hida, N.; Wagiran, H.

    2013-10-01

    This study investigates the thermoluminescent sensitivity of neodymium doped SiO2 optical fibre with various dose ranges from 0.5 Gy to 4.0 Gy by 6 MeV photon irradiations. The TL responses of the neodymium doped silica fibres are compared with available TLD-100 dosimeter in order to determine the suitability as a TL material. We found that the TLD-100 and neodymium doped silica fibre have a significant linear signal to dose relationship. Neodymium doped fibres sensitivity is approximately 11% of TLD-100.

  5. Slow light enhanced correlated photon pair generation in photonic-crystal coupled-resonator optical waveguides.

    PubMed

    Matsuda, Nobuyuki; Takesue, Hiroki; Shimizu, Kaoru; Tokura, Yasuhiro; Kuramochi, Eiichi; Notomi, Masaya

    2013-04-08

    We demonstrate the generation of quantum-correlated photon pairs from a Si photonic-crystal coupled-resonator optical waveguide. A slow-light supermode realized by the collective resonance of high-Q and small-mode-volume photonic-crystal cavities successfully enhanced the efficiency of the spontaneous four-wave mixing process. The generation rate of photon pairs was improved by two orders of magnitude compared with that of a photonic-crystal line defect waveguide without a slow-light effect.

  6. A 1-D dusty plasma photonic crystal

    SciTech Connect

    Mitu, M. L.; Ticoş, C. M.; Toader, D.; Banu, N.; Scurtu, A.

    2013-09-21

    It is demonstrated numerically that a 1-D plasma crystal made of micron size cylindrical dust particles can, in principle, work as a photonic crystal for terahertz waves. The dust rods are parallel to each other and arranged in a linear string forming a periodic structure of dielectric-plasma regions. The dispersion equation is found by solving the waves equation with the boundary conditions at the dust-plasma interface and taking into account the dielectric permittivity of the dust material and plasma. The wavelength of the electromagnetic waves is in the range of a few hundred microns, close to the interparticle separation distance. The band gaps of the 1-D plasma crystal are numerically found for different types of dust materials, separation distances between the dust rods and rod diameters. The distance between levitated dust rods forming a string in rf plasma is shown experimentally to vary over a relatively wide range, from 650 μm to about 1350 μm, depending on the rf power fed into the discharge.

  7. Interface electromagnetic waves between Kronig-Penney photonic crystals

    NASA Astrophysics Data System (ADS)

    Mehrany, Khashayar; Momeni, Babak; Khorasani, Sina; Rashidian, Bizhan

    2003-02-01

    The electromagnetic interface states formed in a heterostructure composed of two semi-infinite Kronig-Penny photonic crystals have been studied. Modified transfer matrices have been used for study of Kronig-Penny photonic crystals (heterostructures with conducting interfaces) to show strong similarity between solid-state physics and electromagnetics. Our calculations are limited to TE polarization.

  8. Waveguide circuits in three-dimensional photonic crystals

    SciTech Connect

    Biswas, Rana; Christensen, C.; Muehlmeier, J.; Tuttle, G.; Ho, K.-M.

    2008-04-07

    Waveguide circuits in three-dimensional photonic crystals with complete photonic band gaps are simulated with finite difference time domain (FDTD) simulations, and compared with measurements on microwave scale photonic crystals. The transmission through waveguide bends critically depends on the photonic crystal architecture in the bend region. We have found experimentally and theoretically, a new waveguide bend configuration consisting of overlapping rods in the bend region, that performs better than the simple waveguide bend of terminated rods, especially in the higher frequency portion of the band. Efficient beam splitters with this junction geometry are also simulated.

  9. Heteroplasmon hybridization in stacked complementary plasmo-photonic crystals.

    PubMed

    Iwanaga, Masanobu; Choi, Bongseok

    2015-03-11

    We constructed plasmo-photonic crystals in which efficient light-trapping, plasmonic resonances couple with photonic guided resonances of large density of states and high-quality factor. We have numerically and experimentally shown that heteroplasmon hybrid modes emerge in stacked complementary (SC) plasmo-photonic crystals. The resonant electromagnetic-field distributions evidence that the two hybrid modes originate from two different heteroplasmons, exhibiting a large energy splitting of 300 meV. We further revealed a series of plasmo-photonic modes in the SC crystals.

  10. Strongly-Refractive One-Dimensional Photonic Crystal Prisms

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor)

    2004-01-01

    One-dimensional (1D) photonic crystal prisms can separate a beam of polychromatic electromagnetic waves into constituent wavelength components and can utilize unconventional refraction properties for wavelength dispersion over significant portions of an entire photonic band rather than just near the band edges outside the photonic band gaps. Using a ID photonic crystal simplifies the design and fabrication process and allows the use of larger feature sizes. The prism geometry broadens the useful wavelength range, enables better optical transmission, and exhibits angular dependence on wavelength with reduced non-linearity. The properties of the 1 D photonic crystal prism can be tuned by varying design parameters such as incidence angle, exit surface angle, and layer widths. The ID photonic crystal prism can be fabricated in a planar process, and can be used as optical integrated circuit elements.

  11. Fano resonance in anodic aluminum oxide based photonic crystals.

    PubMed

    Shang, Guo Liang; Fei, Guang Tao; Zhang, Yao; Yan, Peng; Xu, Shao Hui; Ouyang, Hao Miao; Zhang, Li De

    2014-01-08

    Anodic aluminum oxide based photonic crystals with periodic porous structure have been prepared using voltage compensation method. The as-prepared sample showed an ultra-narrow photonic bandgap. Asymmetric line-shape profiles of the photonic bandgaps have been observed, which is attributed to Fano resonance between the photonic bandgap state of photonic crystal and continuum scattering state of porous structure. And the exhibited Fano resonance shows more clearly when the sample is saturated ethanol gas than air-filled. Further theoretical analysis by transfer matrix method verified these results. These findings provide a better understanding on the nature of photonic bandgaps of photonic crystals made up of porous materials, in which the porous structures not only exist as layers of effective-refractive-index material providing Bragg scattering, but also provide a continuum light scattering state to interact with Bragg scattering state to show an asymmetric line-shape profile.

  12. Inexpensive photonic crystal spectrometer for colorimetric sensing applications.

    PubMed

    Bryan, Kurt M; Jia, Zhang; Pervez, Nadia K; Cox, Marshall P; Gazes, Michael J; Kymissis, Ioannis

    2013-02-25

    Photonic crystal spectrometers possess significant size and cost advantages over traditional grating-based spectrometers. In a previous work [Pervez, et al, Opt. Express 18, 8277 (2010)] we demonstrated a proof of this concept by implementing a 9-element array photonic crystal spectrometer with a resolution of 20 nm. Here we demonstrate a photonic crystal spectrometer with improved performance. The dependence of the spectral recovery resolution on the number of photonic crystal arrays and the width of the response function from each photonic crystal is investigated. A mathematical treatment, regularization based on known information of the spectrum, is utilized in order to stabilize the spectral estimation inverse problem and achieve improved spectral recovery. Colorimetry applications, the measurement of CIE 1931 chromaticities and the color rendering index, are demonstrated with the improved spectrometer.

  13. Silicon-based photonic crystal waveguides and couplers

    NASA Astrophysics Data System (ADS)

    Farrell, Stephen G.

    2008-10-01

    Most commercial photonics-related research and development efforts currently fall into one or both of the following technological sectors: silicon photonics and photonic integrated circuits. Silicon photonics [18] is the field concerned with assimilating photonic elements into the well-established CMOS VLSI architecture and IC manufacturing. The convergence of these technologies would be mutually advantageous: photonic devices could increase bus speeds and greatly improve chip-to-chip and board-to-board data rates, whereas photonics, as a field, would benefit from mature silicon manufacturing and economies of scale. On the other hand, those in the photonic integrated circuit sector seek to continue the miniaturization of photonic devices in an effort to obtain an appreciable share of the great windfall of profits that occur when manufacturing, packaging, and testing costs are substantially reduced by shrinking photonic elements to chip-scale dimensions. Integrated photonics companies may [12] or may not [34] incorporate silicon as the platform. In this thesis, we seek to further develop a technology that has the potential to facilitate the forging of silicon photonics and photonic integrated circuits: photonic crystals on silicon-on-insulator substrates. We will first present a brief overview of photonic crystals and their physical properties. We will then detail a finely-tuned procedure for fabricating two-dimensional photonic crystal in the silicon-on-insulator material system. We will then examine transmission properties of our fabricated devices including propagation loss, group index dispersion, and coupling efficiency of directional couplers. Finally, we will present a description of a system for adiabatically tapering optical fibers and the results of using tapered fibers for efficiently coupling light into photonic crystal devices.

  14. Weyl Points and Line Nodes in Gyroid Photonic Crystals

    DTIC Science & Technology

    2013-04-01

    2013 Macmillan Publishers Limited. All rights reserved. Weyl points and line nodes in gyroid photonic crystals Ling Lu*, Liang Fu, John D...are predicted to be topologically non-trivial. However, Weyl points are yet to be discovered in nature. Here, we report photonic crystals based on...2D periodic systems. For example, most of the remarkable properties of graphene are tied to the Dirac points at its Fermi level1,2. In photonics , 2D

  15. Tuning light focusing with liquid crystal infiltrated graded index photonic crystals

    NASA Astrophysics Data System (ADS)

    Rezaei, B.; Giden, I. H.; Kurt, H.

    2017-01-01

    We perform numerical analyses of tunable graded index photonic crystals based on liquid crystals. Light manipulation with such a photonic medium is explored and a new approach for active tuning of the focal distance is proposed. The graded index photonic crystal is realized using the symmetry reduced unit element in two-dimensional photonic crystals without modifying the dielectric filling fraction or cell size dimensions. By applying an external static electric field to liquid crystals, their refractive indices and thus, the effective refractive index of the whole graded index photonic crystal will be changed. Setting the lattice constant to a=400 nm yields a tuning of 680 nm for focal point position. This property can be used for designing an electro-optic graded index photonic crystal-based flat lens with a tunable focal point. Future optical systems may have benefit from such tunable graded index lenses.

  16. Photonic crystal cavities with metallic Schottky contacts

    SciTech Connect

    Quiring, W.; Al-Hmoud, M.; Reuter, D.; Zrenner, A.; Rai, A.; Wieck, A. D.

    2015-07-27

    We report about the fabrication and analysis of high Q photonic crystal cavities with metallic Schottky-contacts. The structures are based on GaAs n-i membranes with an InGaAs quantum well in the i-region and nanostructured low ohmic metal top-gates. They are designed for photocurrent readout within the cavity and fast electric manipulations. The cavity structures are characterized by photoluminescence and photocurrent spectroscopy under resonant excitation. We find strong cavity resonances in the photocurrent spectra and surprisingly high Q-factors up to 6500. Temperature dependent photocurrent measurements in the region between 4.5 K and 310 K show an exponential enhancement of the photocurrent signal and an external quantum efficiency up to 0.26.

  17. Enhanced photoacoustic detection using photonic crystal substrate

    SciTech Connect

    Zhao, Yunfei; Liu, Kaiyang; McClelland, John; Lu, Meng

    2014-04-21

    This paper demonstrates the enhanced photoacoustic sensing of surface-bound light absorbing molecules and metal nanoparticles using a one-dimensional photonic crystal (PC) substrate. The PC structure functions as an optical resonator at the wavelength where the analyte absorption is strong. The optical resonance of the PC sensor provides an intensified evanescent field with respect to the excitation light source and results in enhanced optical absorption by surface-immobilized samples. For the analysis of a light absorbing dye deposited on the PC surface, the intensity of photoacoustic signal was enhanced by more than 10-fold in comparison to an un-patterned acrylic substrate. The technique was also applied to detect gold nanorods and exhibited more than 40 times stronger photoacoustic signals. The demonstrated approach represents a potential path towards single molecule absorption spectroscopy with greater performance and inexpensive instrumentation.

  18. Photonic crystal surface waves for optical biosensors.

    PubMed

    Konopsky, Valery N; Alieva, Elena V

    2007-06-15

    We present a new optical biosensor technique based on registration of dual optical s-polarized modes on a photonic crystal surface. The simultaneous registration of two optical surface waves with different evanescent depths from the same surface spot permits the segregation of the volume and the surface contributions from an analyte, while the absence of metal damping permits an increase in the propagation length of the optical surface waves and the sensitivity of the biosensor. Our technique was tested with the binding of biotin molecules to a streptavidin monolayer that has been detected with signal/noise ratio of approximately 15 at 1-s signal accumulation time. The detection limit is approximately 20 fg of the analyte on the probed spot of the surface.

  19. Photonic crystal nanostructures for optical biosensing applications.

    PubMed

    Dorfner, D; Zabel, T; Hürlimann, T; Hauke, N; Frandsen, L; Rant, U; Abstreiter, G; Finley, J

    2009-08-15

    We present the design, fabrication and optical investigation of photonic crystal (PhC) nanocavity drop filters for use as optical biosensors. The resonant cavity mode wavelength and Q-factor are studied as a function of the ambient refractive index and as a function of adsorbed proteins (bovine serum albumin) on the sensor surface. Experiments were performed by evanescent excitation of the cavity mode via a PhC waveguide. This in turn is coupled to a ridge waveguide that allows the introduction of a fluid flow cell on a chip. A response of partial delta lambda/delta c=(4.54+/-0.66)x10(5)nm/M is measured leading to a measured detection limit as good as Delta m=4.0+/-0.6 fg or Delta m/Delta A=(4.9+/-0.7)x10(2)pg/mm(2)in the sensitive area.

  20. Bio-inspired photonic crystals with superwettability.

    PubMed

    Kuang, Minxuan; Wang, Jingxia; Jiang, Lei

    2016-12-21

    Photonic crystals (PCs) have attracted enormous research interest due to their unique light manipulation and potential applications in sensing, catalysts, detection, displays, solar cells and other fields. In particular, many novel applications of PCs are derived from their surface wettability. Generally, the wettability of PCs is determined by a combination of its surface geometrical structures and surface chemical compositions. This review focuses on the recent developments in the mechanism, fabrication and application of bio-inspired PCs with superwettability. It includes information on constructing superwetting PCs based on designing the topographical structure and regulating the surface chemical composition, and information on extending the practical applications of superwetting PCs in humidity/oil/solvent sensing, actuating, anti-fouling and liquid-impermeable surface, chemical detection, etc.

  1. Polarization modulation instability in photonic crystal fibers.

    PubMed

    Kruhlak, R J; Wong, G K; Chen, J S; Murdoch, S G; Leonhardt, R; Harvey, J D; Joly, N Y; Knight, J C

    2006-05-15

    Polarization modulation instability (PMI) in birefringent photonic crystal fibers has been observed in the normal dispersion regime with a frequency shift of 64 THz between the generated frequencies and the pump frequency. The generated sidebands are orthogonally polarized to the pump. From the observed PMI frequency shift and the measured dispersion, we determined the phase birefringence to be 5.3 x 10(-5) at a pump wavelength of 647.1 nm. This birefringence was used to estimate the PMI gain as a function of pump wavelength. Four-wave mixing experiments in both the normal and the anomalous dispersion regimes generated PMI frequency shifts that show good agreement with the predicted values over a 70 THz range. These results could lead to amplifiers and oscillators based on PMI.

  2. Semicrystalline woodpile photonic crystals without complicated alignment via soft lithography

    SciTech Connect

    Lee, Jae-Hwang; Kuang, Ping; Leung, Wai; Kim, Yong-Sung; Park, Joong-Mok; Kang, Henry; Constant, Kristen; Ho, Kai-Ming

    2010-05-13

    We report the fabrication and characterization of woodpile photonic crystals with up to 12 layers through titania nanoparticle infiltration of a polymer template made by soft lithography. Because the complicated alignment in the conventional layer-by-layer fabrication associated with diamondlike symmetry is replaced by a simple 90{sup o} alignment, the fabricated photonic crystal has semicrystalline phase. However, the crystal performs similarly to a perfectly aligned crystal for the light propagation integrated from the surface normal to 30{sup o} at the main photonic band gap.

  3. Photonic crystal based polarization insensitive flat lens

    NASA Astrophysics Data System (ADS)

    Turduev, M.; Bor, E.; Kurt, H.

    2017-07-01

    The paper proposes a new design of an inhomogeneous artificially created photonic crystal lens structure consisting of annular dielectric rods to efficiently focus both transverse electric and transverse magnetic polarizations of light into the same focal point. The locations of each individual cell that contains the annular dielectric rods are determined according to a nonlinear distribution function. The inner and outer radii of the annular photonic dielectric rods are optimized with respect to the polarization insensitive frequency response of the transmission spectrum of the lens structure. The physical background of the polarization insensitive focusing mechanism is investigated in both spatial and frequency domains. Moreover, polarization independent wavefront transformation/focusing has been explored in detail by investigating the dispersion relation of the structure. Corresponding phase index distribution of the lens is attained for polarization insensitive normalized frequency range of a/λ  =  0.280 and a/λ  =  0.300, where a denotes the lattice constant of the designed structure and λ denotes the wavelength of the incident light. We show the wave transformation performance and focal point movement dynamics for both polarizations of the lens structure by specially adjusting the length of the structure. The 3D finite-difference time domain numerical analysis is also performed to verifiy that the proposed design is able to focus the wave regardless of polarization into approximately the same focal point (difference between focal distances of both polarizations stays below 0.25λ) with an operating bandwidth of 4.30% between 1476 nm and 1541 nm at telecom wavelengths. The main superiorities of the proposed lens structure are being all dielectric and compact, and having flat front and back surfaces, rendering the proposed lens design more practical in the photonic integration process in various applications such as optical switch

  4. Automated optimization of photonic crystal slab cavities

    NASA Astrophysics Data System (ADS)

    Minkov, Momchil; Savona, Vincenzo

    2014-05-01

    Thanks to their high quality factor, combined to the smallest modal volume, defect-cavities in photonic crystal slabs represent a promising, versatile tool for fundamental studies and applications in photonics. In paricular, the L3, H0, and H1 defects are the most popular and widespread cavity designs, due to their compactness, simplicity, and small mode volume. For these cavities, the current best optimal designs still result in Q-values of a few times 105 only, namely one order of magnitude below the bound set by fabrication imperfections and material absorption in silicon. Here, we use a genetic algorithm to find a global maximum of the quality factor of these designs, by varying the positions of few neighbouring holes. We consistently find Q-values above one million - one order of magnitude higher than previous designs. Furthermore, we study the effect of disorder on the optimal designs and conclude that a similar improvement is also expected experimentally in state-of-the-art systems.

  5. Photonic crystal light-emitting sources

    NASA Astrophysics Data System (ADS)

    David, Aurélien; Benisty, Henri; Weisbuch, Claude

    2012-12-01

    Photonic crystals (PhCs) are periodically structured optical media offering the opportunity for spontaneous emission (SpE) to be strongly controlled in spatial terms (directions) or in absolute terms (rates). We discuss the application of this concept for practical light-emitting sources, summarizing the principles and actual merits of various approaches based on two- and three-dimensional PhCs. We take into consideration the numerous constraints on real-world light-emitting structures and materials. The various mechanisms through which modified photonic bands and band gaps can be used are first revisited in view of their use in light sources. We then present an in-depth discussion of planar emitters and enhanced extraction of light thanks to grating diffraction. Applications to conventional III-V semiconductors and to III-nitrides are reviewed. Comparison with random surface roughening reveals some common physical limitations. Some advanced approaches with complex structures or etched active structures are also discussed. Finally, the most promising mechanism to enhance the SpE rate, the Purcell effect, is considered. Its implementation, including through plasmonic effects, is shown to be effective only for very specific sources. We conclude by outlining the mix of physics and material parameters needed to grasp the relevant issues.

  6. Optical limiter based on two-dimensional nonlinear photonic crystals

    NASA Astrophysics Data System (ADS)

    Belabbas, Amirouche; Lazoul, Mohamed

    2016-04-01

    The aim behind this work is to investigate the capabilities of nonlinear photonic crystals to achieve ultra-fast optical limiters based on third order nonlinear effects. The purpose is to combine the actions of nonlinear effects with the properties of photonic crystals in order to activate the photonic band according to the magnitude of the nonlinear effects, themselves a function of incident laser power. We are interested in designing an optical limiter based nonlinear photonic crystal operating around 1064 nm and its second harmonic at 532 nm. Indeed, a very powerful solid-state laser that can blind or destroy optical sensors and is widely available and easy to handle. In this work, we perform design and optimization by numerical simulations to determine the better structure for the nonlinear photonic crystal to achieve compact and efficient integrated optical limiter. The approach consists to analyze the band structures in Kerr-nonlinear two-dimensional photonic crystals as a function of the optical intensity. We confirm that these bands are dynamically red-shifted with regard to the bands observed in linear photonic crystals or in the case of weak nonlinear effects. The implemented approach will help to understand such phenomena as intensitydriven optical limiting with Kerr-nonlinear photonic crystals.

  7. Structural Color Patterns by Electrohydrodynamic Jet Printed Photonic Crystals.

    PubMed

    Ding, Haibo; Zhu, Cun; Tian, Lei; Liu, Cihui; Fu, Guangbin; Shang, Luoran; Gu, Zhongze

    2017-02-09

    In this work, we demonstrate the fabrication of photonic crystal patterns with controllable morphologies and structural colors utilizing electrohydrodynamic jet (E-jet) printing with colloidal crystal inks. The final shape of photonic crystal units is controlled by the applied voltage signal and wettability of the substrate. Optical properties of the structural color patterns are tuned by the self-assembly of the silica nanoparticle building blocks. Using this direct printing technique, it is feasible to print customized functional patterns composed of photonic crystal dots or photonic crystal lines according to relevant printing mode and predesigned tracks. This is the first report for E-jet printing with colloidal crystal inks. Our results exhibit promising applications in displays, biosensors, and other functional devices.

  8. Transient Plasma Photonic Crystals for High-Power Lasers.

    PubMed

    Lehmann, G; Spatschek, K H

    2016-06-03

    A new type of transient photonic crystals for high-power lasers is presented. The crystal is produced by counterpropagating laser beams in plasma. Trapped electrons and electrically forced ions generate a strong density grating. The lifetime of the transient photonic crystal is determined by the ballistic motion of ions. The robustness of the photonic crystal allows one to manipulate high-intensity laser pulses. The scheme of the crystal is analyzed here by 1D Vlasov simulations. Reflection or transmission of high-power laser pulses are predicted by particle-in-cell simulations. It is shown that a transient plasma photonic crystal may act as a tunable mirror for intense laser pulses. Generalizations to 2D and 3D configurations are possible.

  9. Thermally Driven Photonic Actuator Based on Silica Opal Photonic Crystal with Liquid Crystal Elastomer.

    PubMed

    Xing, Huihui; Li, Jun; Shi, Yang; Guo, Jinbao; Wei, Jie

    2016-04-13

    We have developed a novel thermoresponsive photonic actuator based on three-dimensional SiO2 opal photonic crystals (PCs) together with liquid crystal elastomers (LCEs). In the process of fabrication of such a photonic actuator, the LCE precursor is infiltrated into the SiO2 opal PC followed by UV light-induced photopolymerization, thereby forming the SiO2 opal PC/LCE composite film with a bilayer structure. We find that this bilayer composite film simultaneously exhibits actuation behavior as well as the photonic band gap (PBG) response to external temperature variation. When the SiO2 opal PC/LCE composite film is heated, it exhibits a considerable bending deformation, and its PBG shifts to a shorter wavelength at the same time. In addition, this actuation is quite fast, reversible, and highly repeatable. The thermoresponsive behavior of the SiO2 opal PC/LCE composite films mainly derives from the thermal-driven change of nematic order of the LCE layer which leads to the asymmetric shrinkage/expansion of the bilayer structure. These results will be of interest in designing optical actuator systems for environment-temperature detection.

  10. Saturation and stability of nonlinear photonic crystals.

    PubMed

    Franco-Ortiz, M; Corella-Madueño, A; Rosas-Burgos, R A; Adrian Reyes, J; Avendaño, Carlos G

    2017-03-29

    We consider a one-dimensional photonic crystal made by an infinite set of nonlinear nematic films immersed in a linear dielectric medium. The thickness of each equidistant film is negligible and its refraction index depends continuously on the electric field intensity, giving rise to all the involved nonlinear terms, which joints from a starting linear index for negligible amplitudes to a final saturation index for extremely large field intensities. We show that the nonlinear exact solutions of this system form an intensity-dependent band structure which we calculate and analyze. Next, we ponder a finite version of this system; that is, we take a finite array of linear dielectric stacks of the same size separated by the same nonlinear extremely thin nematic slabs and find the reflection coefficients for this arrangement and obtain the dependence on the wave number and intensity of the incident wave. As a final step we analyze the stability of the analytical solutions of the nonlinear crystal by following the evolution of an additive amplitude to the analytical nonlinear solution we have found here. We discuss our results and state our conclusions.

  11. Saturation and stability of nonlinear photonic crystals

    NASA Astrophysics Data System (ADS)

    Franco-Ortiz, M.; Corella-Madueño, A.; Rosas-Burgos, R. A.; Reyes, J. Adrian; Avendaño, Carlos G.

    2017-03-01

    We consider a one-dimensional photonic crystal made by an infinite set of nonlinear nematic films immersed in a linear dielectric medium. The thickness of each equidistant film is negligible and its refraction index depends continuously on the electric field intensity, giving rise to all the involved nonlinear terms, which joints from a starting linear index for negligible amplitudes to a final saturation index for extremely large field intensities. We show that the nonlinear exact solutions of this system form an intensity-dependent band structure which we calculate and analyze. Next, we ponder a finite version of this system; that is, we take a finite array of linear dielectric stacks of the same size separated by the same nonlinear extremely thin nematic slabs and find the reflection coefficients for this arrangement and obtain the dependence on the wave number and intensity of the incident wave. As a final step we analyze the stability of the analytical solutions of the nonlinear crystal by following the evolution of an additive amplitude to the analytical nonlinear solution we have found here. We discuss our results and state our conclusions.

  12. Spectroscopy of photonic band gaps in mesoporous one-dimensional photonic crystals based on aluminum oxide

    NASA Astrophysics Data System (ADS)

    Gorelik, V. S.; Voinov, Yu. P.; Shchavlev, V. V.; Bi, Dongxue; Shang, Guo Liang; Fei, Guang Tao

    2016-12-01

    Mesoporous one-dimensional photonic crystals based on aluminum oxide have been synthesized by electrochemical etching method. Reflection spectra of the obtained mesoporous samples in a wide spectral range that covers several band gaps are presented. Microscopic parameters of photonic crystals are calculated and corresponding reflection spectra for the first six band gaps are presented.

  13. Dual exposure, two-photon, conformal phasemask lithography for three dimensional silicon inverse woodpile photonic crystals

    SciTech Connect

    Shir, Daniel J.; Nelson, Erik C.; Chanda, Debashis; Brzezinski, Andrew; Braun, Paul V.; Rogers, John A.; Wiltzius, Pierre

    2010-01-01

    The authors describe the fabrication and characterization of three dimensional silicon inverse woodpile photonic crystals. A dual exposure, two-photon, conformal phasemask technique is used to create high quality polymer woodpile structures over large areas with geometries that quantitatively match expectations based on optical simulations. Depositing silicon into these templates followed by the removal of the polymer results in silicon inverse woodpile photonic crystals for which calculations indicate a wide, complete photonic bandgap over a range of structural fill fractions. Spectroscopic measurements of normal incidence reflection from both the polymer and siliconphotonic crystals reveal good optical properties.

  14. High extinction ratio bandgap of photonic crystals in LNOI wafer

    NASA Astrophysics Data System (ADS)

    Zhang, Shao-Mei; Cai, Lu-Tong; Jiang, Yun-Peng; Jiao, Yang

    2017-02-01

    A high-extinction-ratio bandgap of air-bridge photonic crystal slab, in the near infrared, is reported. These structures were patterned in single-crystalline LiNbO3 film bonded to SiO2/LiNbO3 substrate by focused ion beam. To improve the vertical confinement of light, the SiO2 layer was removed by 3.6% HF acid. Compared with photonic crystals sandwiched between SiO2 and air, the structures suspending in air own a robust photonic bandgap and high transmission efficiency at valence band region. The measured results are in good agreement with numerically computed transmission spectra by finite-difference time-domain method. The air-bridge photonic crystal waveguides were formed by removing one line holes. We reveal experimentally the guiding characteristics and calculate the theoretical results for photonic crystal waveguides in LiNbO3 film.

  15. Optical extinction due to intrinsic structural variations of photonic crystals

    NASA Astrophysics Data System (ADS)

    Koenderink, A. Femius; Lagendijk, Ad; Vos, Willem L.

    2005-10-01

    Unavoidable variations in size and position of the building blocks of photonic crystals cause light scattering and extinction of coherent beams. We present a model for both two- and three-dimensional photonic crystals that relates the extinction length to the magnitude of the variations. The predicted lengths agree well with our experiments on high-quality opals and inverse opals, and with literature data analyzed by us. As a result, control over photons is limited to distances up to 50 lattice parameters (˜15 μm) in state-of-the-art structures, thereby impeding applications that require large photonic crystals, such as proposed optical integrated circuits. Conversely, scattering in photonic crystals may lead to different physics such as Anderson localization and nonclassical diffusion.

  16. Coupling light in photonic crystal waveguides: A review

    NASA Astrophysics Data System (ADS)

    Dutta, Hemant Sankar; Goyal, Amit Kumar; Srivastava, Varun; Pal, Suchandan

    2016-07-01

    Submicron scale structures with high index contrast are key to compact structures for realizing photonic integrated structures. Ultra-compact optical devices in silicon-on-insulator (SOI) substrates serve compatibility with semiconductor fabrication technology leading to reduction of cost and mass production. Photonic crystal structures possess immense potential for realizing various compact optical devices. However, coupling light to photonic crystal waveguide structures is crucial in order to achieve strong transmission and wider bandwidth of signal. Widening of bandwidth will increase potential for various applications and high transmission will make easy signal detection at the output. In this paper, the techniques reported so far for coupling light in photonic crystal waveguides have been reviewed and analyzed so that a comprehensive guide for an efficient coupling to photonic crystal waveguides can be made possible.

  17. Photonic-crystal slab for terahertz-wave technology platform

    NASA Astrophysics Data System (ADS)

    Fujita, Masayuki

    2016-03-01

    Photonic crystals manipulate photons in a manner analogous to solid-state crystals, and are composed of a dielectric material with a periodic refractive index distribution. In particular, two-dimensional photonic-crystal slabs with high index contrasts (semiconductor/air) are promising for practical applications, owing to the strong optical confinement in simple, thin planar structures. This paper presents the recent progress on a silicon photonic-crystal slab as a technology platform in the terahertz-wave region, which is located between the radio and light wave regions (0.1-10 THz). Extremely low-loss (<0.1 dB/cm) terahertz waveguides based on the photonic-bandgap effect as well as dynamic control and modulation of a terahertz-wave transmission in a photonic-crystal slab by the effective interaction between photoexcited carriers and the terahertz-wave trapping due to the photonic band-edge effect are demonstrated. Terahertz photonic-crystal slabs hold the potential for developing ultralow-loss, compact terahertz components and integrated devices used in applications including wireless communication, spectroscopic sensing, and imaging.

  18. Valley photonic crystals for control of spin and topology

    NASA Astrophysics Data System (ADS)

    Dong, Jian-Wen; Chen, Xiao-Dong; Zhu, Hanyu; Wang, Yuan; Zhang, Xiang

    2016-11-01

    Photonic crystals offer unprecedented opportunity for light manipulation and applications in optical communication and sensing. Exploration of topology in photonic crystals and metamaterials with non-zero gauge field has inspired a number of intriguing optical phenomena such as one-way transport and Weyl points. Recently, a new degree of freedom, valley, has been demonstrated in two-dimensional materials. Here, we propose a concept of valley photonic crystals with electromagnetic duality symmetry but broken inversion symmetry. We observe photonic valley Hall effect originating from valley-dependent spin-split bulk bands, even in topologically trivial photonic crystals. Valley-spin locking behaviour results in selective net spin flow inside bulk valley photonic crystals. We also show the independent control of valley and topology in a single system that has been long pursued in electronic systems, resulting in topologically-protected flat edge states. Valley photonic crystals not only offer a route towards the observation of non-trivial states, but also open the way for device applications in integrated photonics and information processing using spin-dependent transportation.

  19. Application of photonic crystal enhanced fluorescence to a cytokine immunoassay.

    PubMed

    Mathias, Patrick C; Ganesh, Nikhil; Cunningham, Brian T

    2008-12-01

    Photonic crystal surfaces are demonstrated as a means for enhancing the detection sensitivity and resolution for assays that use a fluorescent tag to quantify the concentration of an analyte protein molecule in a liquid test sample. Computer modeling of the spatial distribution of resonantly coupled electromagnetic fields on the photonic crystal surface are used to estimate the magnitude of enhancement factor compared to performing the same fluorescent assay on a plain glass surface, and the photonic crystal structure is fabricated and tested to experimentally verify the performance using a sandwich immunoassay for the protein tumor necrosis factor-alpha (TNFalpha). The demonstrated photonic crystal fabrication method utilizes a nanoreplica molding technique that allows for large-area inexpensive fabrication of the structure in a format that is compatible with confocal microarray laser scanners. The signal-to-noise ratio for fluorescent spots on the photonic crystal is increased by at least 5-fold relative to the glass slide, allowing a TNF-alpha concentration of 1.6 pg/mL to be distinguished from noise on a photonic crystal surface. In addition, the minimum quantitative limit of detection on the photonic crystal surface is one-third the limit on the glass slide--a decrease from 18 to 6 pg/mL. The increased performance of the immunoassay allows for more accurate quantitation of physiologically relevant concentrations of TNF-alpha in a protein microarray format that can be expanded to multiple cytokines.

  20. Photonic crystal alloys: a new twist in controlling photonic band structure properties.

    PubMed

    Kim, Hee Jin; Kim, Dong-Uk; Roh, Young-Geun; Yu, Jaejun; Jeon, Heonsu; Park, Q-Han

    2008-04-28

    We identified new photonic structures and phenomenon that are analogous to alloy crystals and the associated electronic bandgap engineering. From a set of diamond-lattice microwave photonic crystals of randomly mixed silica and alumina spheres but with a well defined mixing composition, we observed that both bandedges of the L-point bandgap monotonically shifted with very little bowing as the composition was varied. The observed results were in excellent agreement with the virtual crystal approximation theory originally developed for electronic properties of alloy crystals. This result signifies the similarity and correspondence between photonics and electronics.

  1. Method of construction of composite one-dimensional photonic crystal with extended photonic band gaps.

    PubMed

    Tolmachev, V; Perova, T; Moore, R

    2005-10-17

    A method of photonic band gap extension using mixing of periodic structures with two or more consecutively placed photonic crystals with different lattice constants is proposed. For the design of the structures with maximal photonic band gap extension the gap map imposition method is utilised. Optimal structures have been established and the gap map of photonic band gaps has been calculated at normal incidence of light for both small and large optical contrast and at oblique incidence of light for small optical contrast.

  2. Three dimensional reflectance properties of superconductor-dielectric photonic crystal

    SciTech Connect

    Pandey, G. N. Sancheti, Bhagyashree; Pandey, J. P.; Pandey, U. K.; Ojha, S. P.

    2016-05-06

    In this present communication, we have studied the optical properties of Photonics Crystals with super conducting constituent using the TMM method for a stratified medium. We also studied the three dimensional reflectance property of superconductor-dielectric photonic crystal at different temperature and thickness. From above study we show that the superconductor-dielectric photonic crystal may be used as broad band reflector and omnidirectional reflector at low temperature below to the critical temperature. Such property may be applied to make of the reflector which can be used in low temperature region.

  3. Configurable Dirac-like conical dispersions in complex photonic crystals

    NASA Astrophysics Data System (ADS)

    Xu, Changqing; Lai, Yun

    2017-01-01

    We investigate Dirac-like conical dispersions in photonic crystals with complex unit cells. Comparing with photonic crystals with simple unit cells, the complex-unit-cell design can provide extra degrees of freedom to engineer the frequency of the Dirac-like point in a broad frequency regime. Interestingly, we find that many functionalities of double zero media associated with the Dirac-like point are well preserved in such complex photonic crystals, such as wave tunneling, cloaking, wave front control, etc. Different transmission behaviors, e.g., total reflection and negative refraction, can be achieved by shifting the frequency of the Dirac-like point.

  4. Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms.

    PubMed

    Momeni, Babak; Huang, Jiandong; Soltani, Mohammad; Askari, Murtaza; Mohammadi, Saeed; Rakhshandehroo, Mohammad; Adibi, Ali

    2006-03-20

    Here, we demonstrate a compact photonic crystal wavelength demultiplexing device based on a diffraction compensation scheme with two orders of magnitude performance improvement over the conventional superprism structures reported to date. We show that the main problems of the conventional superprism-based wavelength demultiplexing devices can be overcome by combining the superprism effect with two other main properties of photonic crystals, i.e., negative diffraction and negative refraction. Here, a 4-channel optical demultiplexer with a channel spacing of 8 nm and cross-talk level of better than -6.5 dB is experimentally demonstrated using a 4500 microm(2) photonic crystal region.

  5. Two-dimensionally confined topological edge states in photonic crystals

    NASA Astrophysics Data System (ADS)

    Barik, Sabyasachi; Miyake, Hirokazu; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad

    2016-11-01

    We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three-dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters.

  6. Study on a Photonic Crystal Hydrogel Material for Chemical Sensing

    NASA Astrophysics Data System (ADS)

    Xu, Jia-Yu; Yan, Chun-Xiao; Hu, Xiao-Chun; Liu, Chao; Tang, Hua-Min; Zhou, Chao-Hua; Xue, Fei

    2014-01-01

    There is intense interest in the applications of photonic crystal hydrogel materials for the detection of glucose, metal ions, organophosphates and so on. In this paper, monodisperse polystyrene spheres with diameters between 100 440 nm were synthesized by emulsion polymerization. Highly charged polystyrene spheres readily self-assembled into crystalline colloidal array because of electrostatic interactions. Photonic crystal hydrogel materials were formed by polymerization of acrylamide hydrogel around the crystalline colloidal arrays of polystyrene spheres. After chemical modification of hydrogel backbone with carboxyl groups, our photonic crystals hydrogel materials are demonstrated to be excellent in response to pH and ionic strength changes.

  7. Crystal Structure of the Fibre Head Domain of the Atadenovirus Snake Adenovirus 1

    PubMed Central

    Singh, Abhimanyu K.; Menéndez-Conejero, Rosa; San Martín, Carmen; van Raaij, Mark J.

    2014-01-01

    Adenoviruses are non-enveloped icosahedral viruses with trimeric fibre proteins protruding from their vertices. There are five known genera, from which only Mastadenoviruses have been widely studied. Apart from studying adenovirus as a biological model system and with a view to prevent or combat viral infection, there is a major interest in using adenovirus for vaccination, cancer therapy and gene therapy purposes. Adenoviruses from the Atadenovirus genus have been isolated from squamate reptile hosts, ruminants and birds and have a characteristic gene organization and capsid morphology. The carboxy-terminal virus-distal fibre head domains are likely responsible for primary receptor recognition. We determined the high-resolution crystal structure of the Snake Adenovirus 1 (SnAdV-1) fibre head using the multi-wavelength anomalous dispersion (MAD) method. Despite the absence of significant sequence homology, this Atadenovirus fibre head has the same beta-sandwich propeller topology as other adenovirus fibre heads. However, it is about half the size, mainly due to much shorter loops connecting the beta-strands. The detailed structure of the SnAdV-1 fibre head and other animal adenovirus fibre heads, together with the future identification of their natural receptors, may lead to the development of new strategies to target adenovirus vectors to cells of interest. PMID:25486282

  8. Crystal structure of the fibre head domain of the Atadenovirus Snake Adenovirus 1.

    PubMed

    Singh, Abhimanyu K; Menéndez-Conejero, Rosa; San Martín, Carmen; van Raaij, Mark J

    2014-01-01

    Adenoviruses are non-enveloped icosahedral viruses with trimeric fibre proteins protruding from their vertices. There are five known genera, from which only Mastadenoviruses have been widely studied. Apart from studying adenovirus as a biological model system and with a view to prevent or combat viral infection, there is a major interest in using adenovirus for vaccination, cancer therapy and gene therapy purposes. Adenoviruses from the Atadenovirus genus have been isolated from squamate reptile hosts, ruminants and birds and have a characteristic gene organization and capsid morphology. The carboxy-terminal virus-distal fibre head domains are likely responsible for primary receptor recognition. We determined the high-resolution crystal structure of the Snake Adenovirus 1 (SnAdV-1) fibre head using the multi-wavelength anomalous dispersion (MAD) method. Despite the absence of significant sequence homology, this Atadenovirus fibre head has the same beta-sandwich propeller topology as other adenovirus fibre heads. However, it is about half the size, mainly due to much shorter loops connecting the beta-strands. The detailed structure of the SnAdV-1 fibre head and other animal adenovirus fibre heads, together with the future identification of their natural receptors, may lead to the development of new strategies to target adenovirus vectors to cells of interest.

  9. Mid-IR luminescence of Cr{sup 2+} : II - VI crystals in chalcogenide glass fibres

    SciTech Connect

    Mironov, Roman A; Zabezhailov, A O; Dianov, Evgenii M; Karaksina, E V; Shapashnikov, R M; Churbanov, M F

    2010-11-13

    Optical fibres have been fabricated for the first time from As{sub 2}S{sub 3} glass containing chromium-doped ZnS and ZnSe crystals, and their optical loss and luminescence spectra have been measured in the mid-IR. In the spectral range 2 - 3 {mu}m, the optical loss in the fibres is 2 - 4 dB m{sup -1}. The fibres have a broad luminescence band in the range 1.8 - 3 {mu}m, with a maximum near 1.9 {mu}m, which is due to Cr{sup 2+} {sup 5}E - {sup 5}T{sub 2} intracentre transitions in the II - VI host. (fibre optics)

  10. High-Q photonic crystal cavities in all-semiconductor photonic crystal heterostructures

    NASA Astrophysics Data System (ADS)

    Bushell, Z. L.; Florescu, M.; Sweeney, S. J.

    2017-06-01

    Photonic crystal cavities enable the realization of high Q-factor and low mode-volume resonators, with typical architectures consisting of a thin suspended periodically patterned layer to maximize confinement of light by strong index guiding. We investigate a heterostructure-based approach comprising a high refractive index core and lower refractive index cladding layers. While confinement typically decreases with decreasing index contrast between the core and cladding layers, we show that, counterintuitively, due to the confinement provided by the photonic band structure in the cladding layers, it becomes possible to achieve Q factors >104 with only a small refractive index contrast. This opens up opportunities for implementing high-Q factor cavities in conventional semiconductor heterostructures, with direct applications to the design of electrically pumped nanocavity lasers using conventional fabrication approaches.

  11. Gold Nanoparticles in Photonic Crystals Applications: A Review

    PubMed Central

    Venditti, Iole

    2017-01-01

    This review concerns the recently emerged class of composite colloidal photonic crystals (PCs), in which gold nanoparticles (AuNPs) are included in the photonic structure. The use of composites allows achieving a strong modification of the optical properties of photonic crystals by involving the light scattering with electronic excitations of the gold component (surface plasmon resonance, SPR) realizing a combination of absorption bands with the diffraction resonances occurring in the body of the photonic crystals. Considering different preparations of composite plasmonic-photonic crystals, based on 3D-PCs in presence of AuNPs, different resonance phenomena determine the optical response of hybrid crystals leading to a broadly tunable functionality of these crystals. Several chemical methods for fabrication of opals and inverse opals are presented together with preparations of composites plasmonic-photonic crystals: the influence of SPR on the optical properties of PCs is also discussed. Main applications of this new class of composite materials are illustrated with the aim to offer the reader an overview of the recent advances in this field. PMID:28772458

  12. Gold Nanoparticles in Photonic Crystals Applications: A Review.

    PubMed

    Venditti, Iole

    2017-01-24

    This review concerns the recently emerged class of composite colloidal photonic crystals (PCs), in which gold nanoparticles (AuNPs) are included in the photonic structure. The use of composites allows achieving a strong modification of the optical properties of photonic crystals by involving the light scattering with electronic excitations of the gold component (surface plasmon resonance, SPR) realizing a combination of absorption bands with the diffraction resonances occurring in the body of the photonic crystals. Considering different preparations of composite plasmonic-photonic crystals, based on 3D-PCs in presence of AuNPs, different resonance phenomena determine the optical response of hybrid crystals leading to a broadly tunable functionality of these crystals. Several chemical methods for fabrication of opals and inverse opals are presented together with preparations of composites plasmonic-photonic crystals: the influence of SPR on the optical properties of PCs is also discussed. Main applications of this new class of composite materials are illustrated with the aim to offer the reader an overview of the recent advances in this field.

  13. Two-pattern compound photonic crystals with a large complete photonic band gap

    SciTech Connect

    Jia Lin; Thomas, Edwin L.

    2011-09-15

    We present a set of two-dimensional aperiodic structures with a large complete photonic band gap (PBG), which are named two-pattern photonic crystals. By superposing two substructures without regard to registration, we designed six new aperiodic PBG structures having a complete PBG larger than 15% for {epsilon}{sub 2}/{epsilon}{sub 1} = 11.4. The rod-honeycomb two-pattern photonic crystal provides the largest complete PBG to date. An aperiodic structure becomes the champion structure with the largest PBG. Surprisingly, the TM and TE gaps of a two-pattern photonic crystal are much less interdependent than the PBGs of conventional photonic crystals proposed before, affording interesting capabilities for us to tune the TM and TE PBGs separately. By altering the respective substructures, optical devices for different polarizations (TE, TM, or both) can readily be designed.

  14. Nanoplasmonic photonic crystal diatoms and phytoliths

    NASA Astrophysics Data System (ADS)

    Andrews, Mark P.; Hajiaboli, Ahmadreza; Hiltz, Jonathan; Gonzalez, Timothy; Singh, Gursimranbir; Lennox, R. Bruce

    2011-03-01

    Evidence is emerging that silica-containing plant cells (phytoliths) and single cell micro-organisms (diatoms) exhibit optical properties reminiscent of photonic crystals. In the latter biosilicates, these properties appear to arise from light interactions with the intricate periodic patterns of micro- and nano-pores called foramina that are distributed over the frustule (outer silica shell). In this report, we show that Nitzschia Closterium pennate diatom frustules can be used to template arrays of nanoplasmonic particles to confer more complex physical properties, as shown by simulation and experiment. Selective templating of silver and gold nanoparticles in and around the array of pores was achieved by topochemical functionalization with nanoparticles deposited from solution, or by differential wetting/dewetting of evaporated gold films. The nanoplasmonic diatom frustules exhibit surface enhanced Raman scattering from chemisorbed 4-aminothiophenol. Thermally induced dewetting of gold films deposited on a frustule produces two classes of faceted gold nanoparticles. Larger particles of irregular shape are distributed with some degree of uniaxial anisotropy on the surface of the frustule. Smaller particles of more uniform size are deposited in a periodic manner in the frustule pores. It is thought that surface curvature and defects drive the hydrodynamic dewetting events that give rise to the different classes of nanoparticles. Finite difference time domain calculations on an idealized nanoplasmonic frustule suggest a complex electromagnetic field response due to coupling between localized surface plasmon modes of the nanoparticles in the foramina and an overlayer gold film.

  15. Square spiral photonic crystal with visible bandgap

    NASA Astrophysics Data System (ADS)

    Krabbe, Joshua D.; Leontyev, Viktor; Taschuk, Michael T.; Kovalenko, Andriy; Brett, Michael J.

    2012-03-01

    Nanoimprint lithography was combined with glancing angle deposition (GLAD) of titanium dioxide to fabricate a square spiral columnar film with a bandgap in the visible spectral range. Nanoimprint stamps were fabricated with seed spacing ranging from 80 to 400 nm, and four periods of square spiral film were deposited on top of the 320 nm array of seeds. The ratio of lattice spacing, vertical pitch and spiral arm swing was chosen as a : P : A = 1 : 1.35 : 0.7 and the deposition angle was fixed at 86° to maximize the square spiral film's bandgap. Reflectivity measurements show that the fabricated structure exhibit a pseudo-gap centered at around 600 nm wavelength, in good agreement with finite difference electromagnetic simulations. The absence of a full 3D bandgap is due the deviation of GLAD columns' cross-section from the optimal one, which has to be highly elongated in the deposition plane. However, simulations show that a geometry close to the fabricated one will produce a full 3D bandgap, if the structure is inverted. The material refractive index in such an inverted photonic crystal can be as low as n = 2.15.

  16. Photonic crystal cavities and integrated optical devices

    NASA Astrophysics Data System (ADS)

    Gan, Lin; Li, ZhiYuan

    2015-11-01

    This paper gives a brief introduction to our recent works on photonic crystal (PhC) cavities and related integrated optical structures and devices. Theoretical background and numerical methods for simulation of PhC cavities are first presented. Based on the theoretical basis, two relevant quantities, the cavity mode volume and the quality factor are discussed. Then the methods of fabrication and characterization of silicon PhC slab cavities are introduced. Several types of PhC cavities are presented, such as the usual L3 missing-hole cavity, the new concept waveguide-like parallel-hetero cavity, and the low-index nanobeam cavity. The advantages and disadvantages of each type of cavity are discussed. This will help the readers to decide which type of PhC cavities to use in particular applications. Furthermore, several integrated optical devices based on PhC cavities, such as optical filters, channel-drop filters, optical switches, and optical logic gates are described in both the working principle and operation characteristics. These devices designed and realized in our group demonstrate the wide range of applications of PhC cavities and offer possible solutions to some integrated optical problems.

  17. Optics in Microstructured and Photonic Crystal Fibers

    NASA Astrophysics Data System (ADS)

    Knight, J. C.

    2008-10-01

    The development of optical fibers with two-dimensional patterns of air holes running down their length has reinvigorated research in the field of fiber optics. It has greatly—and fundamentally—broadened the range of specialty optical fibers, by demonstrating that optical fibers can be more "special" than previously thought. Fibers with air cores have made it possible to deliver energetic femtosecond-scale optical pulses, transform limited, as solitons, using single-mode fiber. Other fibers with anomalous dispersion at visible wavelengths have spawned a new generation of single-mode optical supercontinuum sources, spanning visible and near-infrared wavelengths and based on compact pump sources. A third example is in the field of fiber lasers, where the use of photonic crystal fiber concepts has led to a new hybrid laser technology, in which the very high numerical aperture available sing air holes have enabled fibers so short they are more naturally held straight than bent. This paper describes some of the basic physics and technology behind these developments, illustrated with some of the impressive demonstrations of the past 18 months.

  18. Photochemistry in photonic crystal fiber nanoreactors.

    PubMed

    Chen, Jocelyn S Y; Euser, Tijmen G; Farrer, Nicola J; Sadler, Peter J; Scharrer, Michael; Russell, Philip St J

    2010-05-17

    We report the use of a liquid-filled hollow-core photonic crystal fiber (PCF) as a highly controlled photochemical reactor. Hollow-core PCFs have several major advantages over conventional sample cells: the sample volume per optical path length is very small (2.8 nL cm(-1) in the fiber used), long optical path lengths are possible as a result of very low intrinsic waveguide loss, and furthermore the light travels in a diffractionless single mode with a constant transverse intensity profile. As a proof of principle, the (very low) quantum yield of the photochemical conversion of vitamin B(12), cyanocobalamin (CNCbl) to hydroxocobalamin ([H(2)OCbl](+)) in aqueous solution was measured for several pH values from 2.5 to 7.5. The dynamics of the actively induced reaction were monitored in real-time by broadband absorption spectroscopy. The PCF nanoreactor required ten thousand times less sample volume compared to conventional techniques. Furthermore, the enhanced sensitivity and optical pump intensity implied that even systems with very small quantum yields can be measured very quickly--in our experiments one thousand times faster than in a conventional cuvette.

  19. Challenges in characterization of photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Borzycki, Krzysztof; Kobelke, Jens; Mergo, Pawel; Schuster, Kay

    2011-05-01

    We present experience with photonic crystal fiber (PCF) characterization during COST Action 299, focusing on phenomena causing errors and ways to mitigate them. PCFs developed at IPHT Jena (Germany; UMCS Lublin, Poland), designed for single mode operation were coupled to test instruments by fusion splicing to intermediate lengths of telecom single mode fibers (SMF). PCF samples were short (0.5-100 m), with 20-70 dB/km attenuation at 1310 nm and 1550 nm. Optical Time Domain Reflectometer (OTDR) was best for measuring loss as most PCFs produced strong backscattering, while variable splice losses and difficulties with PCF cleaving for optical power measurements made cutback and insertion loss measurements inaccurate. Experience with PCF handling and cleaving is also reviewed. Quality of splices to fiber under test was critical. Excitation of higher order modes produced strong "noise" during measurements of polarization parameters like PMD or PDL. Multimode propagation and vibration-induced interference precluded testing of fine dependence of PMD on temperature or strain, causing random variations comparable to true changes of PMD. OTDR measurements were not affected, but testing of short fiber sections with very different backscattering intensities puts special demands on instrument performance. Temperature testing of liquid-infiltrated PCF was time-consuming, as settling of parameters after temperature change took up to 40 minutes. PCFs were fragile, breaking below 2% linear expansion, sometimes in unusual way when twisted.

  20. Functional photonic crystal fiber sensing devices

    NASA Astrophysics Data System (ADS)

    Villatoro, Joel; Finazzi, Vittoria; Pruneri, Valerio

    2011-12-01

    We report on a functional, highly reproducible and cost effective sensing platform based on photonic crystal fibers (PCFs). The platform consists of a centimeter-length segment of an index-guiding PCF fusion spliced to standard single mode fibers (SMFs). The voids of the PCF are intentionally sealed over an adequate length in the PCF-SMF interfaces. A microscopic collapsed region in the PCF induces a mode field mismatch which combined with the axial symmetry of the structure allow the efficient excitation and recombination or overlapping of azimuthal symmetric modes in the PCF. The transmission or reflection spectrum of the devices exhibits a high-visibility interference pattern or a single, profound and narrow notch. The interference pattern or the notch position shifts when the length of the PCF experiences microelongations or when liquids or coatings are present on the PCF surface. Thus, the platform here proposed can be useful for sensing diverse parameters such as strain, vibration, pressure, humidity, refractive index, gases, etc. Unlike other PCF-based sensing platforms the multiplexing of the devices here proposed is simple for which it is possible to implement PCF-based sensor arrays or networks.

  1. Slow-light-enhanced gain in active photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Ek, Sara; Lunnemann, Per; Chen, Yaohui; Semenova, Elizaveta; Yvind, Kresten; Mork, Jesper

    2014-09-01

    Passive photonic crystals have been shown to exhibit a multitude of interesting phenomena, including slow-light propagation in line-defect waveguides. It was suggested that by incorporating an active material in the waveguide, slow light could be used to enhance the effective gain of the material, which would have interesting application prospects, for example enabling ultra-compact optical amplifiers for integration in photonic chips. Here we experimentally investigate the gain of a photonic crystal membrane structure with embedded quantum wells. We find that by solely changing the photonic crystal structural parameters, the maximum value of the gain coefficient can be increased compared with a ridge waveguide structure and at the same time the spectral position of the peak gain be controlled. The experimental results are in qualitative agreement with theory and show that gain values similar to those realized in state-of-the-art semiconductor optical amplifiers should be attainable in compact photonic integrated amplifiers.

  2. Photonic crystals for improving light absorption in organic solar cells

    SciTech Connect

    Duché, D. Le Rouzo, J.; Masclaux, C.; Gourgon, C.

    2015-02-07

    We theoretically and experimentally study the structuration of organic solar cells in the shape of photonic crystal slabs. By taking advantage of the optical properties of photonic crystals slabs, we show the possibility to couple Bloch modes with very low group velocities in the active layer of the cells. These Bloch modes, also called slow Bloch modes (SBMs), allow increasing the lifetime of photons within the active layer. Finally, we present experimental demonstration performed by using nanoimprint to directly pattern the standard poly-3-hexylthiophène:[6,6]-phenyl-C61-butiryc acid methyl ester organic semiconductor blend in thin film form in the shape of a photonic crystal able to couple SBMs. In agreement with the model, optical characterizations will demonstrate significant photonic absorption gains.

  3. Slow-light-enhanced gain in active photonic crystal waveguides.

    PubMed

    Ek, Sara; Lunnemann, Per; Chen, Yaohui; Semenova, Elizaveta; Yvind, Kresten; Mork, Jesper

    2014-09-30

    Passive photonic crystals have been shown to exhibit a multitude of interesting phenomena, including slow-light propagation in line-defect waveguides. It was suggested that by incorporating an active material in the waveguide, slow light could be used to enhance the effective gain of the material, which would have interesting application prospects, for example enabling ultra-compact optical amplifiers for integration in photonic chips. Here we experimentally investigate the gain of a photonic crystal membrane structure with embedded quantum wells. We find that by solely changing the photonic crystal structural parameters, the maximum value of the gain coefficient can be increased compared with a ridge waveguide structure and at the same time the spectral position of the peak gain be controlled. The experimental results are in qualitative agreement with theory and show that gain values similar to those realized in state-of-the-art semiconductor optical amplifiers should be attainable in compact photonic integrated amplifiers.

  4. Metallic dielectric photonic crystals and methods of fabrication

    SciTech Connect

    Chou, Jeffrey Brian; Kim, Sang-Gook

    2016-12-20

    A metallic-dielectric photonic crystal is formed with a periodic structure defining a plurality of resonant cavities to selectively absorb incident radiation. A metal layer is deposited on the inner surfaces of the resonant cavities and a dielectric material fills inside the resonant cavities. This photonic crystal can be used to selectively absorb broadband solar radiation and then reemit absorbed radiation in a wavelength band that matches the absorption band of a photovoltaic cell. The photonic crystal can be fabricated by patterning a sacrificial layer with a plurality of holes, into which is deposited a supporting material. Removing the rest of the sacrificial layer creates a supporting structure, on which a layer of metal is deposited to define resonant cavities. A dielectric material then fills the cavities to form the photonic crystal.

  5. Birefringence property of asymmetric structure photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Liu, Mingsheng; Yue, Yingjuan; Li, Yan

    2010-12-01

    The random offset of hole-position or random variation of hole-diameter always occur during the actual manufacture process of asymmetric structure photonic crystal fibers. Birefringence of asymmetric photonic crystal fibers with circular air holes and photonic crystal fibers with elliptical air holes are studied numerically based on the finite element method under the perturbation circumstance. The results indicate that when the intrinsic-birefringence of asymmetric photonic crystal fiber is smaller, the random offset of hole-position has larger influence than the variation of hole-diameter. Birefringence resulted from perturbation is less sensitive to asymmetric structures with large pitch or small air-hole. Moreover, the desired birefringence can be obtained by controlling the relative size of the two air holes or the ellipticity of the elliptical-hole.

  6. The research on a photonic-crystal fiber sensor

    NASA Astrophysics Data System (ADS)

    Peng, Yong; Cheng, Yi

    2009-07-01

    To study the photonic-crystal fiber applied in the chemical sensor, the photonic-crystal fiber was used as transmission medium. With Sol-Gel method, we selective coated thin film containing fluorescent probe in the photonic-crystal fiber core, then attained an excellent photonic-crystal fiber acetylcholinesterase sensor. The sensor could be applied in biological / chemical research, clinical medicine, environmental protection, food inspection, biochemical preventive war field and so on. In organophosphorus pesticide residue testing, the experimental results indicated that the linear measurement range could arrive to 1×10-9~ 1×10-3 mol/L, moreover the detection limit is 1×10-10 mol/L.

  7. Narrow linewidth operation of buried-heterostructure photonic crystal nanolaser.

    PubMed

    Kim, Jimyung; Shinya, Akihiko; Nozaki, Kengo; Taniyama, Hideaki; Chen, Chin-Hui; Sato, Tomonari; Matsuo, Shinji; Notomi, Masaya

    2012-05-21

    We investigate the spectral linewidth of a monolithic photonic crystal nanocavity laser. The nanocavity laser is based on a buried heterostructure cavity in which an ultra-small InGaAsP active region is embedded in an InP photonic crystal. Although it was difficult to achieve narrow linewidth operation in previously reported photonic crystal nanocavity lasers, we have successfully demonstrated a linewidth of 143.5 MHz, which is far narrower than the cold cavity linewidth and the narrowest value yet reported for nanolasers and photonic crystal lasers. The narrow linewidth is accompanied by a low power consumption and an ultrasmall footprint, thus making this particular laser especially suitable for use as an integrated multi-purpose sensor.

  8. All-optical gates based on photonic crystal resonators

    NASA Astrophysics Data System (ADS)

    Moille, Grégory; De Rossi, Alfredo; Combrié, Sylvain

    2016-04-01

    We briefly review the technology of advanced nonlinear resonators for all-optical gating with a specific focus on the application of high-performance signal sampling and on the properties of III-V semiconductor photonic crystals

  9. Imaging of Protein Crystals with Two-Photon Microscopy

    SciTech Connect

    Padayatti, Pius; Palczewska, Grazyna; Sun, Wenyu; Palczewski, Krzysztof; Salom, David

    2012-05-02

    Second-order nonlinear optical imaging of chiral crystals (SONICC), which portrays second-harmonic generation (SHG) by noncentrosymmetric crystals, is emerging as a powerful imaging technique for protein crystals in media opaque to visible light because of its high signal-to-noise ratio. Here we report the incorporation of both SONICC and two-photon excited fluorescence (TPEF) into one imaging system that allows visualization of crystals as small as 10 {mu}m in their longest dimension. Using this system, we then documented an inverse correlation between the level of symmetry in examined crystals and the intensity of their SHG. Moreover, because of blue-green TPEF exhibited by most tested protein crystals, we also could identify and image SHG-silent protein crystals. Our experimental data suggest that the TPEF in protein crystals is mainly caused by the oxidation of tryptophan residues. Additionally, we found that unspecific fluorescent dyes are able to bind to lysozyme crystals and enhance their detection by TPEF. We finally confirmed that the observed fluorescence was generated by a two-photon rather than a three-photon process. The capability for imaging small protein crystals in turbid or opaque media with nondamaging infrared light in a single system makes the combination of SHG and intrinsic visible TPEF a powerful tool for nondestructive protein crystal identification and characterization during crystallization trials.

  10. Imaging of protein crystals with two–photon microscopy†

    PubMed Central

    Padayatti, Pius; Palczewska, Grazyna; Sun, Wenyu; Palczewski, Krzysztof; Salom, David

    2012-01-01

    Second–order non–linear optical imaging of chiral crystals (SONICC), that portrays second harmonic generation (SHG) by non–centrosymmetric crystals, is emerging as a powerful imaging technique for protein crystals in media opaque to visible light because of its high signal–to–noise ratio. Here we report the incorporation of both SONICC and two–photon excited fluorescence (TPEF) into one imaging system that allows visualization of crystals as small as ~10 μm in their longest dimension. Using this system, we then documented an inverse correlation between the level of symmetry in examined crystals and the intensity of their SHG. Moreover, because of blue-green TPEF exhibited by most tested protein crystals, we also could identify and image SHG–silent protein crystals. Our experimental data suggests that the TPEF in protein crystals is mainly caused by the oxidation of tryptophan residues. Additionally, we found that unspecific fluorescent dyes are able to bind to lysozyme crystals and enhance their detection by TPFE. We finally confirmed that the observed fluorescence was generated by a two-photon rather than a three-photon process. The capability for imaging small protein crystals in turbid or opaque media with non–damaging infrared light in a single system, makes the combination of SHG and intrinsic visible TPEF a powerful tool for non–destructive protein crystal identification and characterization during crystallization trials. PMID:22324807

  11. Reconfigurable and tunable flat graphene photonic crystal circuits.

    PubMed

    Chen, Zan Hui; Tan, Qi Long; Lao, Jieer; Liang, Yao; Huang, Xu Guang

    2015-07-07

    Photonic crystal waveguides and circuits are one of the basic modules for integrated photonic devices. They mainly rely on photonic bandgaps to achieve light confinement and manipulation. Herein, we propose a novel general principle or method to achieve reconfigurable and tunable flat graphene photonic crystals (FG-PCs) by selectively electrostatic gating a layer of graphene with periodic gold electrodes. The tunable flat photonic bandgap structure of the FG-PCs as a function of the Fermi level is investigated. Reconfigurable FG-PC defect waveguides and cavities created by external patterned-gate-voltage control are also proposed and discussed. The features of reconfigurable/tunable FG-PCs will add more flexibility and capabilities for the single chip integration of graphene-based integrated photonic devices.

  12. Scattering Forces within a Left-Handed Photonic Crystal

    NASA Astrophysics Data System (ADS)

    Ang, Angeleene S.; Sukhov, Sergey V.; Dogariu, Aristide; Shalin, Alexander S.

    2017-01-01

    Electromagnetic waves are known to exert optical forces on particles through radiation pressure. It was hypothesized previously that electromagnetic waves inside left-handed metamaterials produce negative radiation pressure. Here we numerically examine optical forces inside left-handed photonic crystals demonstrating negative refraction and reversed phase propagation. We demonstrate that even though the direction of force might not follow the flow of energy, the positive radiation pressure is maintained inside photonic crystals.

  13. Subcritical patterns and dissipative solitons due to intracavity photonic crystals

    SciTech Connect

    Gomila, Damia; Oppo, Gian-Luca

    2007-10-15

    Manipulation of the bifurcation structure of nonlinear optical systems via intracavity photonic crystals is demonstrated. In particular, subcritical regions between spatially periodic states are stabilized by modulations of the material's refractive index. An family of dissipative solitons within this bistability range due to the intracavity photonic crystal is identified and characterized in both one and two transverse dimensions. Nontrivial snaking of the modulated-cavity soliton solutions is also presented.

  14. Scattering Forces within a Left-Handed Photonic Crystal

    PubMed Central

    Ang, Angeleene S.; Sukhov, Sergey V.; Dogariu, Aristide; Shalin, Alexander S.

    2017-01-01

    Electromagnetic waves are known to exert optical forces on particles through radiation pressure. It was hypothesized previously that electromagnetic waves inside left-handed metamaterials produce negative radiation pressure. Here we numerically examine optical forces inside left-handed photonic crystals demonstrating negative refraction and reversed phase propagation. We demonstrate that even though the direction of force might not follow the flow of energy, the positive radiation pressure is maintained inside photonic crystals. PMID:28112217

  15. Scattering Forces within a Left-Handed Photonic Crystal.

    PubMed

    Ang, Angeleene S; Sukhov, Sergey V; Dogariu, Aristide; Shalin, Alexander S

    2017-01-23

    Electromagnetic waves are known to exert optical forces on particles through radiation pressure. It was hypothesized previously that electromagnetic waves inside left-handed metamaterials produce negative radiation pressure. Here we numerically examine optical forces inside left-handed photonic crystals demonstrating negative refraction and reversed phase propagation. We demonstrate that even though the direction of force might not follow the flow of energy, the positive radiation pressure is maintained inside photonic crystals.

  16. Use of a photonic crystal for optical amplifier gain control

    DOEpatents

    Lin, Shawn-Yu; Fleming, James G.; El-Kady, Ihab

    2006-07-18

    An optical amplifier having a uniform gain profile uses a photonic crystal to tune the density-of-states of a gain medium so as to modify the light emission rate between atomic states. The density-of-states of the gain medium is tuned by selecting the size, shape, dielectric constant, and spacing of a plurality of microcavity defects in the photonic crystal. The optical amplifier is particularly useful for the regeneration of DWDM signals in long optical fibers.

  17. Higher-order photon correlations in pulsed photonic crystal nanolasers

    SciTech Connect

    Elvira, D.; Hachair, X.; Braive, R.; Beaudoin, G.; Robert-Philip, I.; Sagnes, I.; Abram, I.; Beveratos, A.; Verma, V. B.; Baek, B.; Nam, S. W.; Stevens, M. J.; Dauler, E. A.

    2011-12-15

    We report on the higher-order photon correlations of a high-{beta} nanolaser under pulsed excitation at room temperature. Using a multiplexed four-element superconducting single-photon detector we measured g{sup (n)}(0-vector) with n=2,3,4. All orders of correlation display partially chaotic statistics, even at four times the threshold excitation power. We show that this departure from coherence and Poisson statistics is due to the quantum fluctuations associated with the small number of photons at the lasing threshold.

  18. Magnetoresponsive discoidal photonic crystals toward active color pigments.

    PubMed

    Lee, Hye Soo; Kim, Ju Hyeon; Lee, Joon-Seok; Sim, Jae Young; Seo, Jung Yoon; Oh, You-Kwan; Yang, Seung-Man; Kim, Shin-Hyun

    2014-09-03

    Photonic microdisks with a multilayered structure are designed from photocurable suspensions by step-by-step photolithography. In each step of photolithography, either a colloidal photonic crystal or a magnetic-particle-laden layer is stacked over the windows of a photomask. Sequential photolithography enables the creation of multilayered photonic microdisks that have brilliant structural colors that can be switched by an external magnetic field. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Enhanced Ultrafast Nonlinear Optics With Microstructure Fibers And Photonic Crystals

    DTIC Science & Technology

    2004-07-01

    NANOHOLES FREQUENCY-TUNABLE ANTI-STOKES LINE EMISSION BY EIGENMODES OF A BIREFRINGENT MICROSTRUCTURE FIBER GENERATION OF FEMTOSECOND ANTI-STOKES PULSES...laser technologies, and ultrafast photonics. ANTI-STOKES GENERATION IN GUIDED MODES OF PHOTONIC-CRYSTAL FIBERS MODIFIED WITH AN ARRAY OF NANOHOLES

  20. Local tuning of photonic crystal cavities using chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Faraon, Andrei; Englund, Dirk; Bulla, Douglas; Luther-Davies, Barry; Eggleton, Benjamin J.; Stoltz, Nick; Petroff, Pierre; Vučković, Jelena

    2008-01-01

    We demonstrate a method to locally change the refractive index in planar optical devices by photodarkening of a thin chalcogenide glass layer deposited on top of the device. The method is used to tune the resonance of GaAs-based photonic crystal cavities by up to 3nm at 940nm. The method has broad applications for postproduction tuning of photonic devices.

  1. Hybrid plasmonic-photonic crystal formed on gel-immobilized colloidal crystal via solvent substitution

    NASA Astrophysics Data System (ADS)

    Kawakami, Sho; Mori, Atsushi; Nagashima, Ken; Haraguchi, Masanobu; Okamoto, Toshihiro

    2017-06-01

    Gel-immobilized colloidal crystals were prepared to obtain hybrid plasmonic-photonic crystals, in which electric field enhancement to a greater extent than that due to localized surface plasmons (LSP) alone was expected due to coupling between LSP and the photonic band. Polystyrene colloidal crystals immobilized by the N-(hydroxymethyl)acrylamide gel were immersed in an aqueous dispersion of gold nanoparticles (AuNPs). Then, the gel-immobilized colloidal crystals were picked out and immersed in an ionic liquid mixture. The surfaces of the gel-immobilized colloidal crystals immersed in the AuNP dispersion were observed via scanning electron microscopy after this solvent substitution. The lattice spacing of the colloidal crystal varied as the composition of the ionic liquid mixture was changed. The composition was determined so that the photonic band gap wavelength coincided with the LSP wavelength. Further, the reflection spectra were measured. Thus, we successfully prepared a hybrid plasmonic-photonic crystal.

  2. Polarisation singularities in photonic crystals for an on-chip spin-photon interface

    NASA Astrophysics Data System (ADS)

    Beggs, Daryl M.; Young, Andrew B.; Thijssen, Arthur C. T.; Oulton, Ruth

    2015-03-01

    Integrated quantum photonic chips are a leading contender for future quantum technologies, which aim to use the entanglement and superposition properties of quantum physics to speed up the manipulation of data. Quantum information may be stored and transmitted in photons, which make excellent flying qubits. Photons suffer little from decoherence, and single qubit gates performed by changing photon phase, are straightforward. Less straightforward is the ability to create two qubit gates, where one photon is used to switch another's state; inherently difficult due to the extremely small interaction cross-section between photons. The required deterministic two-qubit interactions will likely need a hybrid scheme with the ``flying'' photonic qubit interacting with a ``static'' matter qubit. Here we present the design of a photonic crystal waveguide structure that can couple electron-spin to photon path, thus providing an interface between a static and a flying qubit. We will show that the complex polarization properties inherent in the photonic crystal eigenmodes supports polarization singularities - positions in the electric field vector where one of the parameters describing the local polarization ellipse is singular - and that these singularities are ideal for a range of quantum information applications. In particular, we will show that by placing a quantum dot at one of these singularities, the electron-spin becomes correlated with the photon emission direction, creating an in-plane spin-photon interface that can transfer quantum information from static to flying qubits.

  3. On-chip steering of entangled photons in nonlinear photonic crystals.

    PubMed

    Leng, H Y; Yu, X Q; Gong, Y X; Xu, P; Xie, Z D; Jin, H; Zhang, C; Zhu, S N

    2011-08-16

    One promising technique for working toward practical photonic quantum technologies is to implement multiple operations on a monolithic chip, thereby improving stability, scalability and miniaturization. The on-chip spatial control of entangled photons will certainly benefit numerous applications, including quantum imaging, quantum lithography, quantum metrology and quantum computation. However, external optical elements are usually required to spatially control the entangled photons. Here we present the first experimental demonstration of on-chip spatial control of entangled photons, based on a domain-engineered nonlinear photonic crystal. We manipulate the entangled photons using the inherent properties of the crystal during the parametric downconversion, demonstrating two-photon focusing and beam-splitting from a periodically poled lithium tantalate crystal with a parabolic phase profile. These experimental results indicate that versatile and precise spatial control of entangled photons is achievable. Because they may be operated independent of any bulk optical elements, domain-engineered nonlinear photonic crystals may prove to be a valuable ingredient in on-chip integrated quantum optics.

  4. Heralded single-photon source in a III-V photonic crystal.

    PubMed

    Clark, Alex S; Husko, Chad; Collins, Matthew J; Lehoucq, Gaelle; Xavier, Stéphane; De Rossi, Alfredo; Combrié, Sylvain; Xiong, Chunle; Eggleton, Benjamin J

    2013-03-01

    In this Letter we demonstrate heralded single-photon generation in a III-V semiconductor photonic crystal platform through spontaneous four-wave mixing. We achieve a high brightness of 3.4×10(7) pairs·s(-1) nm(-1) W(-1) facilitated through dispersion engineering and the suppression of two-photon absorption in the gallium indium phosphide material. Photon pairs are generated with a coincidence-to-accidental ratio over 60 and a low g(2) (0) of 0.06 proving nonclassical operation in the single photon regime.

  5. High resolution reversible color images on photonic crystal substrates.

    PubMed

    Kang, Pilgyu; Ogunbo, Samuel O; Erickson, David

    2011-08-16

    When light is incident on a crystalline structure with appropriate periodicity, some colors will be preferentially reflected (Joannopoulos, J. D.; Meade, R. D.; Winn, J. N. Photonic crystals: molding the flow of light; Princeton University Press: Princeton, NJ, 1995; p ix, 137 pp). These photonic crystals and the structural color they generate represent an interesting method for creating reflective displays and drawing devices, since they can achieve a continuous color response and do not require back lighting (Joannopoulos, J. D.; Villeneuve, P. R.; Fan, S. H. Photonic crystals: Putting a new twist on light. Nature 1997, 386, 143-149; Graham-Rowe, D. Tunable structural colour. Nat. Photonics 2009, 3, 551-553.; Arsenault, A. C.; Puzzo, D. P.; Manners, I.; Ozin, G. A. Photonic-crystal full-colour displays. Nat. Photonics 2007, 1, 468-472; Walish, J. J.; Kang, Y.; Mickiewicz, R. A.; Thomas, E. L. Bioinspired Electrochemically Tunable Block Copolymer Full Color Pixels. Adv. Mater.2009, 21, 3078). Here we demonstrate a technique for creating erasable, high-resolution, color images using otherwise transparent inks on self-assembled photonic crystal substrates (Fudouzi, H.; Xia, Y. N. Colloidal crystals with tunable colors and their use as photonic papers. Langmuir 2003, 19, 9653-9660). Using inkjet printing, we show the ability to infuse fine droplets of silicone oils into the crystal, locally swelling it and changing the reflected color (Sirringhaus, H.; Kawase, T.; Friend, R. H.; Shimoda, T.; Inbasekaran, M.; Wu, W.; Woo, E. P. High-resolution inkjet printing of all-polymer transistor circuits. Science 2000, 290, 2123-2126). Multicolor images with resolutions as high as 200 μm are obtained from oils of different molecular weights with the lighter oils being able to penetrate deeper, yielding larger red shifts. Erasing of images is done simply by adding a low vapor pressure oil which dissolves the image, returning the substrate to its original state.

  6. Ultra-flattened negative dispersion for residual dispersion compensation using soft glass equiangular spiral photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Imran Hasan, Md.; Mahmud, R. R.; Morshed, Monir; Rabiul Hasan, Md.

    2016-09-01

    We present a numerical investigation of an equiangular spiral photonic crystal fibre (ES-PCF) in soft glass for negative flattened dispersion and ultra-high birefringence. An accurate numerical approach based on finite element method is used for the simulation of the proposed structure. It is demonstrated that it is possible to obtain average negative dispersion of -526.99 ps/nm/km over 1.05-1.70 μm wavelength range with dispersion variation of 3.7 ps/nm/km. The proposed ES-PCF also offers high birefringence of 0.0226 at the excitation wavelength of 1.55 μm. The results here show that the idea of using the proposed fibre can be potential means of effectively directing for residual dispersion compensation, fibre sensor design, long distance data transmission system and so forth.

  7. Multicore photonic crystal fiber force meters

    NASA Astrophysics Data System (ADS)

    Reimlinger, M.; Colalillo, A.; Coompson, J.; Wynne, R.

    2011-04-01

    A silica based three core photonic crystal fiber (PCF) force meter with fast response times (<30μs) for low wind speed detection is presented. Results are provided for PCF structures containing cores with varied lattice spacing. Force meters with high spatial resolution (sample regions <10cm) specially outfitted for extreme environmental conditions are of interest to both industry and basic research institutions. The featured PCF force meter exhibited sensitivities that agreed with theoretical predictions that are useful for the detection of minimum displacements for wind speeds <30m/s. The results of this investigation are relevant to civil engineering applications including urban sensing technologies that involve air quality monitoring. The deflection of the PCF detection interface was measured as a function of the fiber deflection or the applied force (e.g. wind speed). The three core PCF has a core diameter of 3.9μm, outer diameter of 132.5μm and 7.56μm core-core spacing. A 4cm length of the PCF is attached to the surface of a thin metal beam. One end of the PCF section is fusion spliced to a single mode fiber (SMF) at the fiber input. The remaining fiber end is coupled to a CCD camera with a lens at the PCF output. The applied force deflects the supported PCF such that the intensity distribution of the optical field for the multiple cores changes as a function of displacement. Experimental results from static deflection measurements are in agreement with coupled-mode theory and simple beam deflection theory models.

  8. Nonreciprocal Electromagnetic Devices in Gyromagnetic Photonic Crystals

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Yuan; Liu, Rong-Juan; Gan, Lin; Fu, Jin-Xin; Lian, Jin

    2014-01-01

    Gyromagnetic photonic crystal (GPC) offers a promising way to realize robust transport of electromagnetic waves against backscattering from various disorders, perturbations and obstacles due to existence of unique topological electromagnetic states. The dc magnetic field exerting upon the GPC brings about the time-reversal symmetry breaking, splits the band degeneracy and opens band gaps where the topological chiral edge states (CESs) arise. The band gap can originate either from long-range Bragg-scattering effect or from short-range localized magnetic surface plasmon resonance (MSP). These topological edge states can be explored to construct backscattering-immune one-way waveguide and other nonreciprocal electromagnetic devices. In this paper we review our recent theoretical and experimental studies of the unique electromagnetic properties of nonreciprocal devices built in GPCs. We will discuss various basic issues like experimental instrumental setup, sample preparations, numerical simulation methods, tunable properties against magnetic field, band degeneracy breaking and band gap opening and creation of topological CESs. We will investigate the unidirectional transport properties of one-way waveguide under the influence of waveguide geometries, interface morphologies, intruding obstacles, impedance mismatch, lattice disorders, and material dissipation loss. We will discuss the unique coupling properties between one-wave waveguide and resonant cavities and their application as novel one-way bandstop filter and one-way channel-drop filter. We will also compare the CESs created in the Bragg-scattering band gap and the MSP band gap under the influence of lattice disorders. These results can be helpful for designing and exploring novel nonreciprocal electromagnetic devices for optical integration and information processing.

  9. Determination of blood types using a chirped photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Malinin, A. V.; Zanishevskaja, A. A.; Skibina, Yu. S.; Silokhin, I. Yu.; Tuchin, V. V.; Dubrovskiy, V. A.; Dolmashkin, A. A.

    2011-03-01

    A new type of photonic crystal fibers (PCFs) that can be used as sensitive elements of chemical and biological sensors is presented. Hollow core photonic crystal fibers refer to a type of optical waveguides, showing unique optical properties such as photonic band gap formation and high sensitivity for refraction index, absorption and scattering coefficient of a medium within a hollow core. A significant influence of internal medium scattering coefficient on a PCF's guiding properties becomes basis for design of blood typing automatization technique specifically. Recently obtained experimental results, regarding PCF's sensitivity for internal medium optical properties changing, are presented as well.

  10. Observation of extraordinary optical activity in planar chiral photonic crystals.

    PubMed

    Konishi, Kuniaki; Bai, Benfeng; Meng, Xiangfeng; Karvinen, Petri; Turunen, Jari; Svirko, Yuri P; Kuwata-Gonokami, Makoto

    2008-05-12

    Control of light polarization is a key technology in modern photonics including application to optical manipulation of quantum information. The requisite is to obtain large rotation in isotropic media with small loss. We report on extraordinary optical activity in a planar dielectric on-waveguide photonic crystal structure, which has no in-plane birefringence and shows polarization rotation of more than 25 degrees for transmitted light. We demonstrate that in the planar chiral photonic crystal, the coupling of the normally incident light wave with low-loss waveguide and Fabry-Pérot resonance modes results in a dramatic enhancement of the optical activity.

  11. 2D photonic crystal and its angular reflective azimuthal spectrum

    NASA Astrophysics Data System (ADS)

    Senderakova, Dagmar; Drzik, Milan; Tomekova, Juliana

    2016-12-01

    Contemporary, attention is paid to photonic crystals, which can strongly modify light propagation through them and enable a controllable light manipulation. The contribution is focused on a sub-wavelength 2D structure formed by Al2O3 layer on silicon substrate, patterned with periodic hexagonal lattice of deep air holes. Using various laser sources of light at single wavelength, azimuthal angle dependence of the mirror-like reflected light intensity was recorded photo-electrically. The results obtained can be used to sample the band-structure of leaky modes of the photonic crystal more reliably and help us to map the photonic dispersion diagram.

  12. Light-emitting biological photonic crystals: the bioengineering of metamaterials

    NASA Astrophysics Data System (ADS)

    Kucki, Melanie; Landwehr, Stefan; Rühling, Harald; Maniak, Markus; Fuhrmann-Lieker, Thomas

    2006-04-01

    Diatoms can be regarded as self-reproducing photonic crystal slab waveguides due to their silica cell walls that exhibit periodic pore patterns. The algae thus offer possibilities for biotechnological production of photonic crystals. Two techniques for incorporating organic laser dyes into the structures are demonstrated. First, Rhodamine B was covalently attached to the silica by an aminoalkylsilane linker. Second, highly fluorescent Rhodamine derivatives added to the culture medium were successfully taken up by the diatoms and deposited into the shell. By this techniques, it is possible to cultivate dye functionalized diatoms with emission behaviour adapted to photonic resonances.

  13. Photonic crystals, light manipulation, and imaging in complex nematic structures

    NASA Astrophysics Data System (ADS)

    Ravnik, Miha; Å timulak, Mitja; Mur, Urban; Čančula, Miha; Čopar, Simon; Žumer, Slobodan

    2016-03-01

    Three selected approaches for manipulation of light by complex nematic colloidal and non-colloidal structures are presented using different own custom developed theoretical and modelling approaches. Photonic crystals bands of distorted cholesteric liquid crystal helix and of nematic colloidal opals are presented, also revealing distinct photonic modes and density of states. Light propagation along half-integer nematic disclinations is shown with changes in the light polarization of various winding numbers. As third, simulated light transmission polarization micrographs of nematic torons are shown, offering a new insight into the complex structure characterization. Finally, this work is a contribution towards using complex soft matter in optics and photonics for advanced light manipulation.

  14. Alignment of crystal orientations of the multi-domain photonic crystals in Parides sesostris wing scales.

    PubMed

    Yoshioka, S; Fujita, H; Kinoshita, S; Matsuhana, B

    2014-03-06

    It is known that the wing scales of the emerald-patched cattleheart butterfly, Parides sesostris, contain gyroid-type photonic crystals, which produce a green structural colour. However, the photonic crystal is not a single crystal that spreads over the entire scale, but it is separated into many small domains with different crystal orientations. As a photonic crystal generally has band gaps at different frequencies depending on the direction of light propagation, it seems mysterious that the scale is observed to be uniformly green under an optical microscope despite the multi-domain structure. In this study, we have carefully investigated the structure of the wing scale and discovered that the crystal orientations of different domains are not perfectly random, but there is a preferred crystal orientation that is aligned along the surface normal of the scale. This finding suggests that there is an additional factor during the developmental process of the microstructure that regulates the crystal orientation.

  15. Alignment of crystal orientations of the multi-domain photonic crystals in Parides sesostris wing scales

    PubMed Central

    Yoshioka, S.; Fujita, H.; Kinoshita, S.; Matsuhana, B.

    2014-01-01

    It is known that the wing scales of the emerald-patched cattleheart butterfly, Parides sesostris, contain gyroid-type photonic crystals, which produce a green structural colour. However, the photonic crystal is not a single crystal that spreads over the entire scale, but it is separated into many small domains with different crystal orientations. As a photonic crystal generally has band gaps at different frequencies depending on the direction of light propagation, it seems mysterious that the scale is observed to be uniformly green under an optical microscope despite the multi-domain structure. In this study, we have carefully investigated the structure of the wing scale and discovered that the crystal orientations of different domains are not perfectly random, but there is a preferred crystal orientation that is aligned along the surface normal of the scale. This finding suggests that there is an additional factor during the developmental process of the microstructure that regulates the crystal orientation. PMID:24352678

  16. Formation of collimated beams behind the woodpile photonic crystal

    SciTech Connect

    Trull, J.; Maigyte, L.; Cojocaru, C.; Mizeikis, V.; Malinauskas, M.; Rutkauskas, M.; Peckus, M.; Sirutkaitis, V.; Juodkazis, S.; Staliunas, K.

    2011-09-15

    We experimentally observe formation of narrow laser beams behind the woodpile photonic crystal, when the beam remains well collimated in free propagation behind the crystal. We show that the collimation depends on the input laser beam's focusing conditions, and we interpret theoretically the observed effect by calculating the spatial dispersion of propagation eigenmodes and by numerical simulation of paraxial propagation model.

  17. Acousto-optics studied in polaritonic photonic crystals

    NASA Astrophysics Data System (ADS)

    Singh, Mahi R.; Racknor, C.

    2010-10-01

    We have studied the acousto-optic effect on the photon transmission and the spontaneous emission in polaritonic photonic crystal. We have considered that photonic crystals are fabricated from polaritonic materials such as GaP, MgO, LiNbO3 , and LiTaO3 . A two-level quantum dot is doped in a polaritonic crystal to study the decay rate of the spontaneous emission. The decay rate of quantum dots, band structure, and photon transmission coefficient have been calculated. It is found that band-gap width and the decay rate of quantum dots depends strongly on the high-frequency dielectric constant of the polaritonic crystals while the photonic band edges vary inversely by the ratio of longitudinal- to transverse-optical phonon energies. The spontaneous decay rate of the quantum dot can be controlled by the external strain field. This finding is significant because it is well known that the spontaneous emission is source of undesirable noise in different types of electronic and optical devices. Finally, we have also found the system can be switched from transmitting state to reflecting state by applying an external strain field. These are distinct and interesting results and can be used to fabricate new types of photonic couplers and fibers which in turn can be used to fabricate all photonic switches.

  18. Huge group-velocity dispersion in a photonic crystal

    NASA Astrophysics Data System (ADS)

    Ouyang, Zhengbiao; Cai, Yanyan; Meng, Qingsheng; Lu, Yali; Sun, Yiling; Zhang, Dengguo; Ruan, Shuangchen; Li, Jingzhen

    2005-11-01

    We investigated the group-velocity dispersion of a one dimensional uniform photonic crystal by the optical transmission method. For application in optical communications, the wavelength should be near one of the two edges of a photonic bandgap. Four kinds of dispersion-compensation may be obtained with a photonic crystal. Huge negative and positive group-velocity-dispersion (GVD) about a zero-dispersion-point as large as 5.1 Tera- ps/nm/km by a photonic crystal of 100 periods can be realized. Such a value is about 50 Giga times the GVD of conventional dispersion-compensation fibers. The GVD reaches a maximum when the optical length ratio of the high refractive index material to the low refractive index material is 1.2 for given operating parameters. When we keep the optical length of each layer being constant, the GVD is found to increase rapidly with the refractive index ration of the high refractive index material to the low one and even more rapidly with the number of periods of a photonic crystal. Under quite common operating parameters, a thin piece of photonic crystal of 100 periods may play the role of an ordinary dispersion-compensation fiber with a length over 158 kilo-meters.

  19. Design, fabrication and transmitted properties of terahertz paper photonic crystals.

    PubMed

    Zhang, Wentao; Lin, Xian; Jin, Zuanming; Ma, Guohong; Zhong, Minjian

    2013-11-18

    The terahertz paper photonic crystals, including one-dimensional stacks, two-dimensional square and hexagonal lattices as well as three-dimensional body-centered cubic lattice, are designed and fabricated. Femtosecond laser direct writing is employed to process paper layers. The transmission properties of these photonic crystals in THz range are characterized using time-domain THz spectroscopy. The experimental results are in good agreement with the numerical simulations and well explained by the photonic band-structure calculated by the plane wave expansion method. Our results demonstrate that paper photonic crystals have a good performance on molding the flow of THz radiation. From another point of view, the fabrication method proposed in this work can be widely extended to manufacture different micro-structures on various materials.

  20. Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases.

    PubMed

    Chen, Chun-Wei; Hou, Chien-Tsung; Li, Cheng-Chang; Jau, Hung-Chang; Wang, Chun-Ta; Hong, Ching-Lang; Guo, Duan-Yi; Wang, Cheng-Yu; Chiang, Sheng-Ping; Bunning, Timothy J; Khoo, Iam-Choon; Lin, Tsung-Hsien

    2017-09-28

    Although there have been intense efforts to fabricate large three-dimensional photonic crystals in order to realize their full potential, the technologies developed so far are still beset with various material processing and cost issues. Conventional top-down fabrications are costly and time-consuming, whereas natural self-assembly and bottom-up fabrications often result in high defect density and limited dimensions. Here we report the fabrication of extraordinarily large monocrystalline photonic crystals by controlling the self-assembly processes which occur in unique phases of liquid crystals that exhibit three-dimensional photonic-crystalline properties called liquid-crystal blue phases. In particular, we have developed a gradient-temperature technique that enables three-dimensional photonic crystals to grow to lateral dimensions of ~1 cm (~30,000 of unit cells) and thickness of ~100 μm (~ 300 unit cells). These giant single crystals exhibit extraordinarily sharp photonic bandgaps with high reflectivity, long-range periodicity in all dimensions and well-defined lattice orientation.Conventional fabrication approaches for large-size three-dimensional photonic crystals are problematic. By properly controlling the self-assembly processes, the authors report the fabrication of monocrystalline blue phase liquid crystals that exhibit three-dimensional photonic-crystalline properties.

  1. Passive Temperature Stabilization of Silicon Photonic Devices Using Liquid Crystals

    PubMed Central

    Ptasinski, Joanna; Khoo, Iam-Choon; Fainman, Yeshaiahu

    2014-01-01

    In this work we explore the negative thermo-optic properties of liquid crystal claddings for passive temperature stabilization of silicon photonic integrated circuits. Photonic circuits are playing an increasing role in communications and computing, but they suffer from temperature dependent performance variation. Most existing techniques aimed at compensation of thermal effects rely on power hungry Joule heating. We show that integrating a liquid crystal cladding helps to minimize the effects of a temperature dependent drift. The advantage of liquid crystals lies in their high negative thermo-optic coefficients in addition to low absorption at the infrared wavelengths. PMID:28788565

  2. Manipulating light propagation and emission using photonic crystals

    SciTech Connect

    Nair, Rajesh V.; Jagatap, B. N.

    2014-03-31

    We discuss the synthesis and characterization of self-assembled photonic crystals using polymer colloids having sub-micron diameters. The angle resolved optical reflectivity measurements indicate the hybridization between stop gaps in the multiple Bragg diffraction regimes. Each diffraction resonances in the multiple Bragg diffraction regimes are assigned to respective crystal planes. We also discuss laser-induced studies of spontaneous emission in self-assembled photonic crystals having Rhodamine-B dye doped colloids. Our experimental results reveal more than 51% inhibition in emission intensity within the stop gap as compared to a proper reference sample.

  3. Controllable light diffraction in woodpile photonic crystals filled with liquid crystal

    SciTech Connect

    Ho, Chih-Hua; Zeng, Hao; Wiersma, Diederik S.; Cheng, Yu-Chieh; Maigyte, Lina; Trull, Jose; Cojocaru, Crina; Staliunas, Kestutis

    2015-01-12

    An approach to switching between different patterns of light beams transmitted through the woodpile photonic crystals filled with liquid crystals is proposed. The phase transition between the nematic and isotropic liquid crystal states leads to an observable variation of the spatial pattern transmitted through the photonic structure. The transmission profiles in the nematic phase also show polarization sensibility due to refractive index dependence on the field polarization. The experimental results are consistent with a numerical calculation by Finite Difference Time Domain method.

  4. Dynamic Photonic Materials Based on Liquid Crystals (Postprint)

    DTIC Science & Technology

    2013-09-01

    AFRL-RX-WP-JA-2015-0059 DYNAMIC PHOTONIC MATERIALS BASED ON LIQUID CRYSTALS (POSTPRINT) Luciano De Sio and Cesare Umeton University...ON LIQUID CRYSTALS (POSTPRINT) 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) (see back...10.1016/B978-0-444-62644-8.00001-7. 14. ABSTRACT Liquid crystals, combining optical non-linearity and self-organizing properties with fluidity, and being

  5. Research on interferometric photonic crystal fiber hydrophone

    NASA Astrophysics Data System (ADS)

    Luo, Hong; Zhang, Zhen-hui; Wang, Fu-yin; Xiong, Shui-dong

    2013-08-01

    Current research on photonic crystal fiber (PCF) for acoustic sensing was focused on the PCF's pressure sensitivity enhancement. However, whether the enhancement of the PCF's pressure sensitivity can be actually realized is still controversial. Practical hydrophone, utilizing PCFs, to manifest its superior sensitivity to normal single mode fibers (SMFs) for acoustic sensing, should be made. Account to this point of view, actual hydrophone was fabricated. Index guiding PCF was used, the fiber core is solid silicon dioxide (SiO2), and the cladding is SiO2 filled with lots of periodical transverse circular air hollows. The PCF, mounted on an air-backed mandrel for structural sensitivity enhancement, was used as a sensing arm of the fiber Michelson interferometer. The other arm, so called reference arm, was made of SMF. Faraday rotator mirrors (FRM) were spliced in the end of each interferometric arm account for polarization induced phase fading, which is a common scheme in fiber interferometric sensing systems. A similar hydrophone, with all the same structure except that the PCF was exchanged into SMF, was also fabrication to make the contrast. The narrowlinewidth and frequency-tunable optical fiber laser was used to achieve high accuracy optical interferometric measurement. Meanwhile, the phase generated carrier (PGC) modulation-demodulation scheme was adopted to interrogate the measurand signal. Experiment was done by using acoustic standing-wave test apparatus. Linearity characteristics of the two hydrophones were measured at frequency 100Hz, 500Hz, and 1000Hz, experimental results showed that the maximum error of the linearity was 10%, a little larger than the theoretical results. Pressure sensitivities of the PCF hydrophone and the SMF hydrophone were measured using a reference standard PZT hydrophone in the frequency range from 20 Hz to 1600 Hz, the measurement data showed that the sensitivity of the PCF hydrophone was about -162.8 dB re. rad/μPa, with a

  6. 3D holographic polymer photonic crystal for superprism application

    NASA Astrophysics Data System (ADS)

    Chen, Jiaqi; Jiang, Wei; Chen, Xiaonan; Wang, Li; Zhang, Sasa; Chen, Ray T.

    2007-02-01

    Photonic crystal based superprism offers a new way to design new optical components for beam steering and DWDM application. 3D photonic crystals are especially attractive as they could offer more control of the light beam based on the needs. A polygonal prism based holographic fabrication method has been demonstrated for a three-dimensional face-centered-cubic (FCC)-type submicron polymer photonic crystal using SU8 as the photo-sensitive material. Therefore antivibration equipment and complicated optical alignment system are not needed and the requirement for the coherence of the laser source is relaxed compared with the traditional holographic setup. By changing the top-cut prism structure, the polarization of the laser beam, the exposure and development conditions we can achieve different kinds of triclinic or orthorhombic photonic crystals on demand. Special fabrication treatments have been introduced to ensure the survivability of the fabricated large area (cm2) nano-structures. Scanning electron microscopy and diffraction results proved the good uniformity of the fabricated structures. With the proper design of the refraction prism we have achieved a partial bandgap for S+C band (1460-1565nm) in the [111] direction. The transmission and reflection spectra obtained by Fourier transform infrared spectroscopy (FTIR) are in good agreement with simulated band structure. The superprism effects around 1550nm wavelength for the fabricated 3D polymer photonic crystal have been theoretically calculated and such effects can be used for beam steering purpose.

  7. Thermally tunable ferroelectric thin film photonic crystals.

    SciTech Connect

    Lin, P. T.; Wessels, B. W.; Imre, A.; Ocola, L. E.; Northwestern Univ.

    2008-01-01

    Thermally tunable PhCs are fabricated from ferroelectric thin films. Photonic band structure and temperature dependent diffraction are calculated by FDTD. 50% intensity modulation is demonstrated experimentally. This device has potential in active ultra-compact optical circuits.

  8. Exceptional enhancement of Raman scattering on silver chlorobromide nanocube photonic crystals: chemical and photonic contributions

    SciTech Connect

    Li, Zheng; Gosztola, David J.; Sun, Cheng-Jun; Heald, Steve M.; Sun, Yugang

    2015-02-02

    Photonic crystals made from self-assembly of mono-dispersed AgClxBr1-x nanocubes, which are not plasmonically active, have been discovered to exceptionally enhance Raman scattering of molecules chemically adsorbed on their surfaces. Comprehensive control measurements and X-ray absorption near-edge structure spectroscopy indicate that the Raman enhancement on the AgClxBr1-x nanocube photonic crystals is primarily ascribed to the chemical enhancement mechanism associated with the chemical interactions between adsorbing molecules and the AgClxBr1-x surfaces. In addition, the ordering of the AgClxBr1-x nanocubes in the photonic crystals can selectively reflect Raman scattering back to the detector at the bandgap position of the photonic crystals to provide additional enhancement, i.e., photonic mode enhancement. The thiophenol molecules adsorbed on the AgCl0.44Br0.56 nanocube photonic crystals exhibit astonishingly strong Raman signals that are on the same order of magnitude as those recorded from the thiophenol molecules adsorbed on the assembled Ag nanocubes.

  9. Exceptional enhancement of Raman scattering on silver chlorobromide nanocube photonic crystals: chemical and photonic contributions

    DOE PAGES

    Li, Zheng; Gosztola, David J.; Sun, Cheng-Jun; ...

    2015-02-02

    Photonic crystals made from self-assembly of mono-dispersed AgClxBr1-x nanocubes, which are not plasmonically active, have been discovered to exceptionally enhance Raman scattering of molecules chemically adsorbed on their surfaces. Comprehensive control measurements and X-ray absorption near-edge structure spectroscopy indicate that the Raman enhancement on the AgClxBr1-x nanocube photonic crystals is primarily ascribed to the chemical enhancement mechanism associated with the chemical interactions between adsorbing molecules and the AgClxBr1-x surfaces. In addition, the ordering of the AgClxBr1-x nanocubes in the photonic crystals can selectively reflect Raman scattering back to the detector at the bandgap position of the photonic crystals to providemore » additional enhancement, i.e., photonic mode enhancement. The thiophenol molecules adsorbed on the AgCl0.44Br0.56 nanocube photonic crystals exhibit astonishingly strong Raman signals that are on the same order of magnitude as those recorded from the thiophenol molecules adsorbed on the assembled Ag nanocubes.« less

  10. Crystal structure of the fibre head domain of bovine adenovirus 4, a ruminant atadenovirus.

    PubMed

    Nguyen, Thanh H; Vidovszky, Márton Z; Ballmann, Mónika Z; Sanz-Gaitero, Marta; Singh, Abhimanyu K; Harrach, Balázs; Benkő, Mária; van Raaij, Mark J

    2015-05-22

    In adenoviruses, primary host cell recognition is generally performed by the head domains of their homo-trimeric fibre proteins. This first interaction is reversible. A secondary, irreversible interaction subsequently takes place via other adenovirus capsid proteins and leads to a productive infection. Although many fibre head structures are known for human mastadenoviruses, not many animal adenovirus fibre head structures have been determined, especially not from those belonging to adenovirus genera other than Mastadenovirus. We constructed an expression vector for the fibre head domain from a ruminant atadenovirus, bovine adenovirus 4 (BAdV-4), consisting of amino acids 414-535, expressed the protein in Escherichia coli, purified it by metal affinity and cation exchange chromatography and crystallized it. The structure was solved using single isomorphous replacement plus anomalous dispersion of a mercury derivative and refined against native data that extended to 1.2 Å resolution. Like in other adenoviruses, the BAdV-4 fibre head monomer contains a beta-sandwich consisting of ABCJ and GHID sheets. The topology is identical to the fibre head of the other studied atadenovirus, snake adenovirus 1 (SnAdV-1), including the alpha-helix in the DG-loop, despite of them having a sequence identity of only 15 %. There are also differences which may have implications for ligand binding. Beta-strands G and H are longer and differences in several surface-loops and surface charge are observed. Chimeric adenovirus fibres have been used to retarget adenovirus-based anti-cancer and gene therapy vectors. Ovine adenovirus 7 (OAdV-7), another ruminant atadenovirus, is intensively tested as a basis for such a vector. Here, we present the high-resolution atomic structure of the BAdV-4 fibre head domain, the second atadenovirus fibre head structure known and the first of an atadenovirus that infects a mammalian host. Future research should focus on the receptor-binding properties of

  11. Phenomenological study of binding in optically trapped photonic crystals

    NASA Astrophysics Data System (ADS)

    Maystre, D.; Vincent, P.

    2007-08-01

    We describe a phenomenological theory of the phenomenon of binding observed both experimentally and numerically when particles are trapped by an interference system in order to make a structure close to a photonic crystal. This theory leads to a very simple conclusion, which links the binding phenomenon to the bottom of the lowest bandgap of the trapped crystal in a given direction. The phenomenological theory allows one to calculate the period of the trapped crystal by using numerical tools on dispersion diagrams of photonic crystals. It emerges that the agreement of our theory with our rigorous numerical results given in a previous paper [J. Opt A8, 1059 (2006)] is better than 2% on the crystal period. Furthermore, it is shown that in two-dimensional problems and s polarization, all the optical forces derive from a scalar potential.

  12. Laser radiation frequency doubling in a single-crystal fibre based on a stoichiometric LiNbO{sub 3} crystal

    SciTech Connect

    Kashin, V V; Nikolaev, D A; Rusanov, S Ya; Tsvetkov, V B

    2015-01-31

    We demonstrate the employment of single-crystal optical fibres based on lithium niobate for doubling the laser radiation frequency. The measured characteristics of the fibre confirm its high quality and spatial homogeneity. Parameters of the frequency doublers for neodymium laser radiation (λ = 1 mm) based on fibre and bulk single crystals are compared. Single crystals are grown by the method of laser-heated pedestal growing with heating by radiation of a CO{sub 2} laser (LHPG-method). (nonlinear optical phenomena)

  13. Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide.

    PubMed

    Xiong, C; Monat, Christelle; Clark, Alex S; Grillet, Christian; Marshall, Graham D; Steel, M J; Li, Juntao; O'Faolain, Liam; Krauss, Thomas F; Rarity, John G; Eggleton, Benjamin J

    2011-09-01

    We report the generation of correlated photon pairs in the telecom C-band at room temperature from a dispersion-engineered silicon photonic crystal waveguide. The spontaneous four-wave mixing process producing the photon pairs is enhanced by slow-light propagation enabling an active device length of less than 100 μm. With a coincidence to accidental ratio of 12.8 at a pair generation rate of 0.006 per pulse, this ultracompact photon pair source paves the way toward scalable quantum information processing realized on-chip.

  14. Photonic crystal enhancement of auger-suppressed infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Djurić, Zoran; Jakšić, Zoran; Ehrfeld, Wolfgang; Schmidt, Andreas; Matić, Milan; Popović, Mirjana

    2001-04-01

    We examine theoretically and experimentally the possibilities to reach room-temperature background-limited operation of narrow-bandgap compound semiconductor photodetectors in (3-14) micrometer infrared wavelength range. To this purpose we consider the combination of non-equilibrium Auger suppression with photonic crystal enhancement (PCE). This means that Auger generation-recombination processes are suppressed utilizing exclusion, extraction or magnetoconcentration effects or their combination. The residual radiative recombination is removed by immersing the detector active area into a photonic crystal and using the benefits of re-absorption (photon recycling) to effectively increase the radiative lifetime. In this manner the total generation-recombination noise is strongly quenched in sufficiently defect-free device materials. It is concluded that the operation of thus enhanced photonic detectors could even approach signal fluctuation limit.

  15. Dynamic photonic crystals dimensionality tuning by laser beams polarization changing

    NASA Astrophysics Data System (ADS)

    Golinskaya, Anastasia D.; Stebakova, Yulia V.; Valchuk, Yana V.; Smirnov, Aleksandr M.; Mantsevich, Vladimir N.

    2017-05-01

    A simple way to create dynamic photonic crystals with different lattice symmetry by interference of non-coplanar laser beams in colloidal solution of quantum dots was demonstrated. With the proposed technique we have made micro-periodic dynamic semiconductor structure with strong nonlinear changing of refraction and absorption and analyzed the self-diffraction processes of two, three and four non-coplanar laser beams at the dynamic photonic crystal (diffraction grating) with hexagonal lattice structure. To reach the best uniform contrast of the structure and for better understanding of the problems, specially raised by the interference of multiple laser beams theoretical calculation of the periodic intensity field in the QDs solution were performed. It was demonstrated that dynamic photonic crystal structure and even it's dimension can be easily tuned with a high speed by the laser beams polarization variation without changing the experimental setup geometry.

  16. Excitation enhancement and extraction enhancement with photonic crystals

    SciTech Connect

    Shapira, Ofer; Soljacic, Marin; Zhen, Bo; Chua, Song-Liang; Lee, Jeongwon; Joannopoulos, John

    2015-03-03

    Disclosed herein is a system for stimulating emission from at least one an emitter, such as a quantum dot or organic molecule, on the surface of a photonic crystal comprising a patterned dielectric substrate. Embodiments of this system include a laser or other source that illuminates the emitter and the photonic crystal, which is characterized by an energy band structure exhibiting a Fano resonance, from a first angle so as to stimulate the emission from the emitter at a second angle. The coupling between the photonic crystal and the emitter may result in spectral and angular enhancement of the emission through excitation and extraction enhancement. These enhancement mechanisms also reduce the emitter's lasing threshold. For instance, these enhancement mechanisms enable lasing of a 100 nm thick layer of diluted organic molecules solution with reduced threshold intensity. This reduction in lasing threshold enables more efficient organic light emitting devices and more sensitive molecular sensing.

  17. Co-molding of nanoscale photonic crystals and microfluidic channel

    NASA Astrophysics Data System (ADS)

    Snyder, Chloe E.; Kadiyala, Anand; Srungarapu, Maurya; Liu, Yuxin; Dawson, Jeremy M.

    2014-03-01

    Photonic crystals are nanofabricated structures that enhance light as it is passed through the constructed design. These structures are normally fabricated out of silicon but have shown to be an improvement if fabricated from a more cost effective material. Photonic crystals have uses within biosensing as they may be used to analyze DNA and other analytes. Microfluidic channels are used to transport different analytes and other samples from one end to another. Microfluidics are used in biosensing as a means of transport and are typically fabricated from biocompatible polymers. Integrated together, the photonic crystals and microfluidic channels would be able to achieve better sensing capabilities and cost effective methods for large scale production. Results will be shown from the co-molding.

  18. Integrated photonic crystals and quantum well infrared photodetector

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Tsui, D. C.; Choi, K. K.

    2004-03-01

    GaAs/AlGaAs based quantum well infrared photodetectors (QWIP) are becoming very reliable technologies that are widely used to detect mid-infrared light. Photonic crystals, on the other hand, are very powerful tools to manipulate light and thus are very crucial elements in future optical integration circuits. have fabricated a series of devices that incorporate QWIP and 2d photonic crystals together on a single GaAs based chip. These devices work at the 7-13 μ m range. Compared with the conventional photonic crystals designed for fiber communication, these devices have the advantage that they only require photolithography instead of e-beam lithography. The fabrication of such devices is thus far less costly and time-consuming.

  19. Preparation, structural, and calorimetric characterization of bicomponent metallic photonic crystals

    NASA Astrophysics Data System (ADS)

    Kozlov, M. E.; Murthy, N. S.; Udod, I.; Khayrullin, I. I.; Baughman, R. H.; Zakhidov, A. A.

    2007-03-01

    We report preparation and characterization of novel bicomponent metal-based photonic crystals having submicron three-dimensional (3D) periodicity. Fabricated photonic crystals include SiO2 sphere lattices infiltrated interstitially with metals, carbon inverse lattices filled with metal or metal alloy spheres, Sb inverse lattices, and Sb inverse lattices filled with Bi spheres. Starting from a face centered SiO2 lattice template, these materials were obtained by sequences of either templating and template extraction or templating, template extraction, and retemplating. Surprising high fidelity was obtained for all templating and template extraction steps. Scanning electron microscopy (SEM), small angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) were used to characterize the structure and the effects of the structure on calorimetric properties. To the best of our knowledge, SAXS data on metallic photonic crystals were collected for first time.

  20. Logically combined photonic crystal - A Fabry Perot optical cavity

    NASA Astrophysics Data System (ADS)

    Alagappan, G.; Png, C. E.

    2016-11-01

    We address the logical combination, as opposed to the linear superposition, of two one - dimensional photonic crystals of slightly different periodicities. The original short range translational symmetry is destroyed in these quasi - periodic system. This induces a strong coupling between Bloch modes of different translational wavevectors, and results in a large number of slow modes in such logically combined photonic crystal. In this article, we show by exploiting the beating feature characteristics of the topology of our system, that these slow modes can be effectively described as modes of a Fabry Perot optical cavity made of a homogenous metamaterial with a dispersive refractive index. The homogenized refractive index of the equivalent metamaterial can be obtained from the band structure calculations, using an extended zone scheme. The density of the slow modes in the logically combined photonic crystal is inversely proportional to the group index of the equivalent metamaterial.

  1. Compact Couplers for Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect

    Cowan, Benjamin; Lin, M.C.; Schwartz, Brian; Byer, Robert; McGuinness, Christopher; Colby, Eric; England, Robert; Noble, Robert; Spencer, James; /SLAC

    2012-07-02

    Photonic crystal waveguides are promising candidates for laser-driven accelerator structures because of their ability to confine a speed-of-light mode in an all-dielectric structure. Because of the difference between the group velocity of the waveguide mode and the particle bunch velocity, fields must be coupled into the accelerating waveguide at frequent intervals. Therefore efficient, compact couplers are critical to overall accelerator efficiency. We present designs and simulations of high-efficiency coupling to the accelerating mode in a three-dimensional photonic crystal waveguide from a waveguide adjoining it at 90{sup o}. We discuss details of the computation and the resulting transmission. We include some background on the accelerator structure and photonic crystal-based optical acceleration in general.

  2. Photonic crystal slow light waveguides in a kagome lattice.

    PubMed

    Schulz, Sebastian A; Upham, Jeremy; O'Faolain, Liam; Boyd, Robert W

    2017-08-15

    Slow light photonic crystal waveguides tightly compress propagating light and increase interaction times, showing immense potential for all-optical delay and enhanced light-matter interactions. Yet, their practical application has largely been limited to moderate group index values (<100), due to a lack of waveguides that reliably demonstrate slower light. This limitation persists because nearly all such research has focused on a single photonic crystal lattice type: the triangular lattice. Here, we present waveguides based on the kagome lattice that demonstrate an intrinsically high group index and exhibit slow and stopped light. We experimentally demonstrate group index values of >150, limited by our measurement resolution. The kagome-lattice waveguides are an excellent starting point for further slow light engineering in photonic crystal waveguides.

  3. Tuning and Freezing Disorder in Photonic Crystals using Percolation Lithography

    PubMed Central

    Burgess, Ian B.; Abedzadeh, Navid; Kay, Theresa M.; Shneidman, Anna V.; Cranshaw, Derek J.; Lončar, Marko; Aizenberg, Joanna

    2016-01-01

    Although common in biological systems, synthetic self-assembly routes to complex 3D photonic structures with tailored degrees of disorder remain elusive. Here we show how liquids can be used to finely control disorder in porous 3D photonic crystals, leading to complex and hierarchical geometries. In these optofluidic crystals, dynamically tunable disorder is superimposed onto the periodic optical structure through partial wetting or evaporation. In both cases, macroscopic symmetry breaking is driven by subtle sub-wavelength variations in the pore geometry. These variations direct site-selective infiltration of liquids through capillary interactions. Incorporating cross-linkable resins into our liquids, we developed methods to freeze in place the filling patterns at arbitrary degrees of partial wetting and intermediate stages of drying. These percolation lithography techniques produced permanent photonic structures with adjustable disorder. By coupling strong changes in optical properties to subtle differences in fluid behavior, optofluidic crystals may also prove useful in rapid analysis of liquids. PMID:26790372

  4. Photonic crystal fiber long-period gratings for biochemical sensing.

    PubMed

    Rindorf, Lars; Jensen, Jesper B; Dufva, Martin; Pedersen, Lars Hagsholm; Høiby, Poul Erik; Bang, Ole

    2006-09-04

    We present experimental results showing that long-period gratings in photonic crystal fibers can be used as sensitive biochemical sensors. A layer of biomolecules was immobilized on the sides of the holes of the photonic crystal fiber and by observing the shift in the resonant wavelength of a long-period grating it was possible to measure the thickness of the layer. The long-period gratings were inscribed in a large-mode area silica photonic crystal fiber with a CO2 laser. The thicknesses of a monolayer of poly-L-lysine and double-stranded DNA was measured using the device. We find that the grating has a sensitivity of approximately 1.4nm/1nm in terms of the shift in resonance wavelength in nm per nm thickness of biomolecule layer.

  5. Parametric Simulations of Slanted 1D Photonic Crystal Sensors.

    PubMed

    Breuer-Weil, Aaron; Almasoud, Naif Nasser; Abbasi, Badaruddin; Yetisen, Ali K; Yun, Seok-Hyun; Butt, Haider

    2016-12-01

    Photonic crystals and band gap materials act as manipulators of light and have a plethora of applications. They are made up of stacks of alternating dielectric constants. This article shows the simulations of an inclined, one dimensional and tuneble photonic crystal, using numerical finite element methods. The photonic crystal was made up of silver nanoparticles embedded in a hydrogel matrix and it has the ability to change and recover its periodicity. A series of factors concerning the geometry of the lattice were tested in order to analyze the efficiency, performance and optimize the properties of the optical sensor. These factors range from the size of the nanoparticles and their density within the stacks, to observing the effect of diffraction angle in readouts.

  6. Self-assembled photonic crystals for a chemical sensing

    NASA Astrophysics Data System (ADS)

    Bourdillon, C.; Gam Derouich, S.; Daney de Marcillac, W.; Coolen, L.; Maître, A.; Mangeney, C.; Schwob, C.

    2016-03-01

    As they allow the control of light propagation, photonic crystals find many fields of application. Among them, self-assembled 3D-photonic crystals are ordered at the nanometric scale over centrimetric areas. Furthermore, self-assembly allows the design of complexes structures leading, for example, to the controlled disruption of the crystal periodicity (called defect) and the appearance of permitted optical frequency bands within the photonic bandgap. Light frequencies included in the corresponding passband are then localized in the defect allowing manipulation of nano-emitters fluorescence. We present the fabrication and the optical characterization of a heterostructure composed of a sputtered silica layer sandwiched between two silica opals. We show by photoluminescence measurements than this structure strongly modifies the transmitted fluorescence of nanocrystals.

  7. Delay of a microwave pulse in a photonic crystal

    NASA Astrophysics Data System (ADS)

    Babitski, V. S.; Baryshevsky, V. G.; Gurinovich, A. A.; Gurnevich, E. A.; Molchanov, P. V.; Simonchik, L. V.; Usachonak, M. S.; Zuyeuski, R. F.

    2017-08-01

    Propagation of a nanosecond microwave pulse through a photonic crystal placed into an X-band waveguide is investigated. The nanosecond pulse is produced via shortening of the microsecond microwave pulse by the plasma electromagnetic band gap structure, which is formed in the waveguide by microwave breakdown ignited discharges inside three neon-filled glass tubes. Measured delay time for nanosecond microwave pulse propagation through the photonic crystal is about 23 ns that is in good agreement with the value obtained by numerical simulation. This time delay value corresponds to the group velocity of microwave pulses in the photonic crystal vgr ≈ 0.11c, where c is the speed of light in vacuum.

  8. Tuning and Freezing Disorder in Photonic Crystals using Percolation Lithography.

    PubMed

    Burgess, Ian B; Abedzadeh, Navid; Kay, Theresa M; Shneidman, Anna V; Cranshaw, Derek J; Lončar, Marko; Aizenberg, Joanna

    2016-01-21

    Although common in biological systems, synthetic self-assembly routes to complex 3D photonic structures with tailored degrees of disorder remain elusive. Here we show how liquids can be used to finely control disorder in porous 3D photonic crystals, leading to complex and hierarchical geometries. In these optofluidic crystals, dynamically tunable disorder is superimposed onto the periodic optical structure through partial wetting or evaporation. In both cases, macroscopic symmetry breaking is driven by subtle sub-wavelength variations in the pore geometry. These variations direct site-selective infiltration of liquids through capillary interactions. Incorporating cross-linkable resins into our liquids, we developed methods to freeze in place the filling patterns at arbitrary degrees of partial wetting and intermediate stages of drying. These percolation lithography techniques produced permanent photonic structures with adjustable disorder. By coupling strong changes in optical properties to subtle differences in fluid behavior, optofluidic crystals may also prove useful in rapid analysis of liquids.

  9. Parametric Simulations of Slanted 1D Photonic Crystal Sensors

    NASA Astrophysics Data System (ADS)

    Breuer-Weil, Aaron; Almasoud, Naif Nasser; Abbasi, Badaruddin; Yetisen, Ali K.; Yun, Seok-Hyun; Butt, Haider

    2016-03-01

    Photonic crystals and band gap materials act as manipulators of light and have a plethora of applications. They are made up of stacks of alternating dielectric constants. This article shows the simulations of an inclined, one dimensional and tuneble photonic crystal, using numerical finite element methods. The photonic crystal was made up of silver nanoparticles embedded in a hydrogel matrix and it has the ability to change and recover its periodicity. A series of factors concerning the geometry of the lattice were tested in order to analyze the efficiency, performance and optimize the properties of the optical sensor. These factors range from the size of the nanoparticles and their density within the stacks, to observing the effect of diffraction angle in readouts.

  10. Liquid crystal claddings for passive temperature stabilization of silicon photonics

    NASA Astrophysics Data System (ADS)

    Ptasinski, Joanna N.; Khoo, Iam-Choon; Fainman, Yeshaiahu

    2014-10-01

    Silicon photonics allows for high density component integration on a single chip and it brings promise for low-loss, high-bandwidth data processing in modern computing systems. Owing to silicon's high positive thermo-optic coefficient, temperature fluctuations tend to degrade the device performance. This work explores passive thermal stabilization of silicon photonic devices using nematic liquid crystal (NLC) claddings, as they possess large negative thermo-optic coefficients in addition to low absorption at the telecommunication wavelengths.

  11. Tuning and Freezing Disorder in Photonic Crystals using Percolation Lithography

    DTIC Science & Technology

    2016-01-21

    chemistry and physics under controlled conditions to make and break symmetries in tailored ways30. Inspired by these biological exam- ples, we studied how...simple capillary phenomena driven by interfacial physics can be used to create complex and hierarchical 3D photonic structures with a tunable degree...149 (1997). 3. Inoue, K. & Ohtaka, K. (Eds) Photonic Crystals: Physics , Fabrication and Applications (Springer, 2004). 4. Johnson, S. G. & Joannopoulos

  12. Phase-sensitive amplification in silicon photonic crystal waveguides.

    PubMed

    Zhang, Yanbing; Husko, Chad; Schröder, Jochen; Lefrancois, Simon; Rey, Isabella H; Krauss, Thomas F; Eggleton, Benjamin J

    2014-01-15

    We experimentally demonstrate phase-sensitive amplification in a silicon photonic crystal waveguide based on pump-degenerate four-wave mixing. An 11 dB phase-extinction ratio is obtained in a record compact 196 μm nanophotonic device due to broadband slow light, in spite of the presence of two-photon absorption and free carriers. Numerical calculations show good agreement with the experimental results.

  13. Coupled-cavity QED using planar photonic crystals.

    PubMed

    Hughes, S

    2007-02-23

    We introduce a technique for controlling cavity QED by indirectly coupling two planar-photonic-crystal nanocavities through an integrated waveguide. Guided by an explicit analytical expression for the photon Green function, the resulting optical response of a single quantum dot, embedded in one of the cavities, is shown to be profoundly influenced by the distant cavity. The regimes of cavity QED, e.g., vacuum Rabi splitting, are made significantly easier and richer than with one cavity alone.

  14. Crystallization of the C-terminal domain of the bacteriophage T5 L-shaped fibre.

    PubMed

    Garcia-Doval, Carmela; Luque, Daniel; Castón, José R; Boulanger, Pascale; van Raaij, Mark J

    2013-12-01

    Tails of bacteriophage T5 (a member of the Siphoviridae family) were studied by electron microscopy. For the distal parts of the L-shaped tail fibres, which are involved in host cell receptor binding, a low-resolution volume was calculated. Several C-terminal fragments of the fibre were expressed and purified. Crystals of two of them were obtained that belonged to space groups P63 and R32 and diffracted synchrotron radiation to 2.3 and 2.9 Å resolution, respectively. A single-wavelength anomalous dispersion data set to 2.5 Å resolution was also collected from a selenomethionine-derivatized crystal of one of the fragments, which belonged to space group C2.

  15. Enhanced live cell imaging via photonic crystal enhanced fluorescence microscopy.

    PubMed

    Chen, Weili; Long, Kenneth D; Yu, Hojeong; Tan, Yafang; Choi, Ji Sun; Harley, Brendan A; Cunningham, Brian T

    2014-11-21

    We demonstrate photonic crystal enhanced fluorescence (PCEF) microscopy as a surface-specific fluorescence imaging technique to study the adhesion of live cells by visualizing variations in cell-substrate gap distance. This approach utilizes a photonic crystal surface incorporated into a standard microscope slide as the substrate for cell adhesion, and a microscope integrated with a custom illumination source as the detection instrument. When illuminated with a monochromatic light source, angle-specific optical resonances supported by the photonic crystal enable efficient excitation of surface-confined and amplified electromagnetic fields when excited at an on-resonance condition, while no field enhancement occurs when the same photonic crystal is illuminated in an off-resonance state. By mapping the fluorescence enhancement factor for fluorophore-tagged cellular components between on- and off-resonance states and comparing the results to numerical calculations, the vertical distance of labelled cellular components from the photonic crystal substrate can be estimated, providing critical and quantitative information regarding the spatial distribution of the specific components of cells attaching to a surface. As an initial demonstration of the concept, 3T3 fibroblast cells were grown on fibronectin-coated photonic crystals with fluorophore-labelled plasma membrane or nucleus. We demonstrate that PCEF microscopy is capable of providing information about the spatial distribution of cell-surface interactions at the single-cell level that is not available from other existing forms of microscopy, and that the approach is amenable to large fields of view, without the need for coupling prisms, coupling fluids, or special microscope objectives.

  16. Enhanced live cell imaging via photonic crystal enhanced fluorescence microscopy†

    PubMed Central

    Chen, Weili; Long, Kenneth D.; Yu, Hojeong; Tan, Yafang; Choi, Ji Sun; Harley, Brendan A.; Cunningham, Brian T.

    2014-01-01

    We demonstrate photonic crystal enhanced fluorescence (PCEF) microscopy as a surface-specific fluorescence imaging technique to study the adhesion of live cells by visualizing variations in cell-substrate gap distance. This approach utilizes a photonic crystal surface incorporated into a standard microscope slide as the substrate for cell adhesion, and a microscope integrated with a custom illumination source as the detection instrument. When illuminated with a monochromatic light source, angle-specific optical resonances supported by the photonic crystal enable efficient excitation of surface-confined and amplified electromagnetic fields when excited at an on-resonance condition, while no field enhancement occurs when the same photonic crystal is illuminated in an off-resonance state. By mapping the fluorescence enhancement factor for fluorophore-tagged cellular components between on- and off-resonance states and comparing the results to numerical calculations, the vertical distance of labelled cellular components from the photonic crystal substrate can be estimated, providing critical and quantitative information regarding the spatial distribution of the specific components of cells attaching to a surface. As an initial demonstration of the concept, 3T3 fibroblast cells were grown on fibronectin-coated photonic crystals with fluorophore-labelled plasma membrane or nucleus. We demonstrate that PCEF microscopy is capable of providing information about the spatial distribution of cell-surface interactions at the single-cell level that is not available from other existing forms of microscopy, and that the approach is amenable to large fields of view, without the need for coupling prisms, coupling fluids, or special microscope objectives. PMID:25265458

  17. Direct fiber-coupled single photon source based on a photonic crystal waveguide

    SciTech Connect

    Ahn, Byeong-Hyeon Lee, Chang-Min; Lim, Hee-Jin; Schlereth, Thomas W.; Kamp, Martin; Höfling, Sven; Lee, Yong-Hee

    2015-08-24

    A single photon source plays a key role in quantum applications such as quantum computers and quantum communications. Epitaxially grown quantum dots are one of the promising platforms to implement a good single photon source. However, it is challenging to realize an efficient single photon source based on semiconductor materials due to their high refractive index. Here we demonstrate a direct fiber coupled single photon source with high collection efficiency by employing a photonic crystal (PhC) waveguide and a tapered micro-fiber. To confirm the single photon nature, the second-order correlation function g{sup (2)}(τ) is measured with a Hanbury Brown-Twiss setup. The measured g{sup (2)}(0) value is 0.15, and we can estimate 24% direct collection efficiency from a quantum dot to the fiber.

  18. Degenerate photon-pair generation in an ultracompact silicon photonic crystal waveguide.

    PubMed

    He, Jiakun; Clark, Alex S; Collins, Matthew J; Li, Juntao; Krauss, Thomas F; Eggleton, Benjamin J; Xiong, Chunle

    2014-06-15

    We demonstrate degenerate, correlated photon-pair generation via slow-light-enhanced spontaneous four-wave mixing in a 96 μm long silicon photonic crystal waveguide. Our device represents a more than 50 times smaller footprint than silicon nanowires. We have achieved a coincidence-to-accidental ratio as high as 47 at a photon generation rate of 0.001 pairs per pulse and 14 at a photon generation rate of 0.023 pairs per pulse, which are both higher than the useful level of 10. This demonstration provides a path to generate indistinguishable photons in an ultracompact platform for future quantum photonic technologies.

  19. Absorption and emission properties of photonic crystals and metamaterials

    SciTech Connect

    Peng, Lili

    2007-01-01

    We study the emission and absorption properties of photonic crystals and metamaterials using Comsol Multiphysics and Ansoft HFSS as simulation tools. We calculate the emission properties of metallic designs using drude model and the results illustrate that an appropriate termination of the surface of the metallic structure can significantly increase the absorption and therefore the thermal emissivity. We investigate the spontaneous emission rate modifications that occur for emitters inside two-dimensional photonic crystals and find the isotropic and directional emissions with respect to different frequencies as we have expected.

  20. Polarized quantum dot emission in electrohydrodynamic jet printed photonic crystals

    SciTech Connect

    See, Gloria G.; Xu, Lu; Nuzzo, Ralph G.; Sutanto, Erick; Alleyne, Andrew G.; Cunningham, Brian T.

    2015-08-03

    Tailored optical output, such as color purity and efficient optical intensity, are critical considerations for displays, particularly in mobile applications. To this end, we demonstrate a replica molded photonic crystal structure with embedded quantum dots. Electrohydrodynamic jet printing is used to control the position of the quantum dots within the device structure. This results in significantly less waste of the quantum dot material than application through drop-casting or spin coating. In addition, the targeted placement of the quantum dots minimizes any emission outside of the resonant enhancement field, which enables an 8× output enhancement and highly polarized emission from the photonic crystal structure.

  1. An integrated microcombustor and photonic crystal emitter for thermophotovoltaics

    NASA Astrophysics Data System (ADS)

    Chan, Walker R.; Stelmakh, Veronika; Allmon, William R.; Waits, Christopher M.; Soljacic, Marin; Joannopoulos, John D.; Celanovic, Ivan

    2016-11-01

    Thermophotovoltaic (TPV) energy conversion is appealing for portable millimeter- scale generators because of its simplicity, but it relies on a high temperatures. The performance and reliability of the high-temperature components, a microcombustor and a photonic crystal emitter, has proven challenging because they are subjected to 1000-1200°C and stresses arising from thermal expansion mismatches. In this paper, we adopt the industrial process of diffusion brazing to fabricate an integrated microcombustor and photonic crystal by bonding stacked metal layers. Diffusion brazing is simpler and faster than previous approaches of silicon MEMS and welded metal, and the end result is more robust.

  2. A metallic photonic crystal high power microwave mode converter

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Qin, Fen; Xu, Sha; Shi, Meiyou

    2013-06-01

    A compact metallic photonic crystal mode converter that converts TEM to TE11 mode for a high power transmission system is presented. Metallic photonic crystal is partially filled along azimuthal direction in the device to divide a single coaxial transmission line into two different partitions with different phase propagation constants for phase-shifting. A three row structure is designed and simulated by commercial software cst microwave studio. Simulation results show that it has high conversion efficiency and the bandwidth is 4.1%. Far-field measurement experiment is carried out and get a typical TE11 mode pattern. The result confirms the validity of the design.

  3. Surface platinum metal plasma resonance photonic crystal fiber sensor

    NASA Astrophysics Data System (ADS)

    Cui, Deyu; Chen, Heming; Bai, Xiuli

    2016-01-01

    A two rings, triangular lattice photonic crystal fiber sensor element using surface plasma resonance phenomenon is proposed. The performance of the sensor is analyzed by finite element (FEM) analysis software Multiphysics COMSOL. The influence of structural parameters on the performance of the sensor is discussed. The results show that the maximum sensitivity is 6000nm/RIU, when refractive index is in the range of 1.31 to 1.38. The sensor can be directly placed in the liquid and platinum layer is placed outer surface of the photonic crystal fiber, which can simplify the manufacturing process and the measurement process , has important practical value.

  4. Photonic crystal hydrogel sensor for detection of nerve agent

    NASA Astrophysics Data System (ADS)

    Xu, Jiayu; Yan, Chunxiao; Liu, Chao; Zhou, Chaohua; Hu, Xiaochun; Qi, Fenglian

    2017-01-01

    Nowadays the photonic crystal hydrogel materials have shown great promise in the detection of different chemical analytes, including creatinine, glucose, metal ions and so on. In this paper, we developed a novel three-dimensional photonic crystal hydrogel, which was hydrolyzed by sodium hydroxide (NaOH) and immobilized with butyrylcholinesterase (BuChE) by 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride(EDC). They are demonstrated to be excellent in response to sarin and a limit of detection(LOD) of 1×10-9 mg mL-1 was achieved.

  5. Polarized quantum dot emission in electrohydrodynamic jet printed photonic crystals

    NASA Astrophysics Data System (ADS)

    See, Gloria G.; Xu, Lu; Sutanto, Erick; Alleyne, Andrew G.; Nuzzo, Ralph G.; Cunningham, Brian T.

    2015-08-01

    Tailored optical output, such as color purity and efficient optical intensity, are critical considerations for displays, particularly in mobile applications. To this end, we demonstrate a replica molded photonic crystal structure with embedded quantum dots. Electrohydrodynamic jet printing is used to control the position of the quantum dots within the device structure. This results in significantly less waste of the quantum dot material than application through drop-casting or spin coating. In addition, the targeted placement of the quantum dots minimizes any emission outside of the resonant enhancement field, which enables an 8× output enhancement and highly polarized emission from the photonic crystal structure.

  6. Reconfigurable photonic crystal using self-initiated gas breakdown

    NASA Astrophysics Data System (ADS)

    Gregório, José; Parsons, Stephen; Hopwood, Jeffrey

    2017-02-01

    We present a resonant photonic crystal for which transmission is time-modulated by a self-initiated gaseous plasma. A resonant cavity in the photonic crystal is used to amplify an incoming microwave field to intensities where gas breakdown is possible. The presence of the plasma in the resonant cavity alters the transmission spectrum of the device. We investigate both transient and steady-state operation with computational simulations using a time-domain model that couples Maxwell’s equations and plasma fluid equations. The predicted plasma ignition and stability are then experimentally verified.

  7. Rigorous vector diffraction of electromagnetic waves by bidimensional photonic crystals.

    PubMed

    Centeno, E; Felbacq, D

    2000-02-01

    We present a numerical study of bidimensional photonic crystals with an emphasis on the behavior of the gaps versus the polarization and the conicity of the incident plane wave. We use a rigorous modal theory of diffraction at oblique incidence by a set of arbitrarily shaped parallel fibers. This theory allows the study of the refractive properties of bidimensional photonic crystals. We develop a heuristic method of homogenization that allows us to predict the position of the gaps and their behavior with respect to the polarization and the conicity angle. With this homogenization scheme, we also present some important elements for obtaining full gaps.

  8. Ballistic transport in one-dimensional random dimer photonic crystals

    NASA Astrophysics Data System (ADS)

    Cherid, Samira; Bentata, Samir; Zitouni, Ali; Djelti, Radouan; Aziz, Zoubir

    2014-04-01

    Using the transfer-matrix technique and the Kronig Penney model, we numerically and analytically investigate the effect of short-range correlated disorder in Random Dimer Model (RDM) on transmission properties of the light in one dimensional photonic crystals made of three different materials. Such systems consist of two different structures randomly distributed along the growth direction, with the additional constraint that one kind of these layers always appear in pairs. It is shown that the one dimensional random dimer photonic crystals support two types of extended modes. By shifting of the dimer resonance toward the host fundamental stationary resonance state, we demonstrate the existence of the ballistic response in these systems.

  9. Photonic crystal microring resonator for label-free biosensing.

    PubMed

    Lo, Stanley M; Hu, Shuren; Gaur, Girija; Kostoulas, Yiorgos; Weiss, Sharon M; Fauchet, Philippe M

    2017-03-20

    A label-free optical biosensor based on a one-dimensional photonic crystal microring resonator with enhanced light-matter interaction is demonstrated. More than a 2-fold improvement in volumetric and surface sensing sensitivity is achieved compared to conventional microring sensors. The experimental bulk detection sensitivity is ~248nm/RIU and label-free detection of DNA and proteins is reported at the nanomolar scale. With a minimum feature size greater than 100nm, the photonic crystal microring resonator biosensor can be fabricated with the same standard lithographic techniques used to mass fabricate conventional microring resonators.

  10. Optical fiber tips functionalized with semiconductor photonic crystal cavities

    NASA Astrophysics Data System (ADS)

    Shambat, Gary; Provine, J.; Rivoire, Kelley; Sarmiento, Tomas; Harris, James; Vučković, Jelena

    2011-11-01

    We demonstrate a simple and rapid epoxy-based method for transferring photonic crystal (PC) cavities to the facets of optical fibers. Passive Si cavities were measured via fiber taper coupling as well as direct transmission from the fiber facet. Active quantum dot containing GaAs cavities showed photoluminescence that was collected both in free space and back through the original fiber. Cavities maintain a high quality factor (2000-4000) in both material systems. This design architecture provides a practical mechanically stable platform for the integration of photonic crystal cavities with macroscale optics and opens the door for innovative research on fiber-coupled cavity devices.

  11. Scalable photonic crystal chips for high sensitivity protein detection.

    PubMed

    Liang, Feng; Clarke, Nigel; Patel, Parth; Loncar, Marko; Quan, Qimin

    2013-12-30

    Scalable microfabrication technology has enabled semiconductor and microelectronics industries, among other fields. Meanwhile, rapid and sensitive bio-molecule detection is increasingly important for drug discovery and biomedical diagnostics. In this work, we designed and demonstrated that photonic crystal sensor chips have high sensitivity for protein detection and can be mass-produced with scalable deep-UV lithography. We demonstrated label-free detection of carcinoembryonic antigen from pg/mL to μg/mL, with high quality factor photonic crystal nanobeam cavities.

  12. Polarization-independent waveguiding with annular photonic crystals.

    PubMed

    Cicek, Ahmet; Ulug, Bulent

    2009-09-28

    A linear waveguide in an annular photonic crystal composed of a square array of annular dielectric rods in air is demonstrated to guide transverse electric and transverse magnetic modes simultaneously. Overlapping of the guided bands in the full band gap of the photonic crystal is shown to be achieved through an appropriate set of geometric parameters. Results of Finite-Difference Time-Domain simulations to demonstrate polarization-independent waveguiding with low loss and wavelength-order confinement are presented. Transmission through a 90 degrees bend is also demonstrated.

  13. Diamond Opal-Replica Photonic Crystals and Graphitic Metallic Photonic Band Gap Structures: Fabrication and Properties

    NASA Astrophysics Data System (ADS)

    Zakhidov, A. A.; Baughman, R. H.; Iqbal, Z.; Khayrullin, I. I.; Ralchenko, V. G.

    1998-03-01

    We demonstrate a new method for the formation of photonic bandgap crystals that operate at optical wavelengths. This method involves the templating of a self-assempled SiO2 lattice with diamond, graphite, or amorphous forms of carbon, followed by the removal of the original SiO2 lattice matrix by chemical means. Such carbon opal replicas are the "air type" of photonic crystal (where air replaces silica spheres) that are most favourable for photonic bandgap formation. Surprisingly, the structure of the original opal lattice having a typical cubic lattice dimension of 250 nm) is reliably replicated down to the nanometer scale using either a diamond, graphite, or amorphous carbon templated material. The optical properties of these photonic bandgap crystals are reported and compared with both theory and experimental results on other types of opal-derived lattices that we have investigated. The graphitic reverse opal is the first example of a network type metallic photonic crystal for the optical domain, for which a large photonic bandgap have been predicted.

  14. Dispersion engineering in soft glass photonic crystal fibers infiltrated with liquids

    NASA Astrophysics Data System (ADS)

    Stefaniuk, Tomasz; Le Van, Hieu; Pniewski, Jacek; Cao Long, Van; Ramaniuk, Aleksandr; Grajewski, Karol; Chu Van, Lanh; Karpierz, Mirosław; Trippenbach, Marek; Buczynski, Ryszard

    2015-12-01

    We present a numerical study of the dispersion characteristic modification in a nonlinear photonic crystal fibre (PCF) infiltrated with organic solvents. The PCF is made of PBG08 glass and was developed in the stack-and-draw process. The PBG08 glass has a high refractive index (n < 2.0), high nonlinear refractive index (n2 = 4.3×10-19 m2/W) and good rheological properties that allow for thermal processing of the glass without crystallization. In the numerical study 18 different solvents were used. The dispersion, mode area, and losses characteristics were calculated. The zero dispersion wavelength (ZDW) of the fibre can be shifted towards longer wavelengths by approx. 150 nm by using Nitrobenzene as infiltrating liquid and by a smaller value using other liquids. At the same time the mode area of the fundamental mode increases by approx. 5 to 15% depending on the wavelength considered. The confinement losses increase significantly for six analysed liquids by a few orders of magnitude up to 102 dB/m. Our approach allows to combine high nonlinearities of the soft glass with the possibility to tune zero dispersion wavelength to the desired value.

  15. Tm-Doped Fibre Laser Pumped Cr2+:ZnSe Poly-Crystal Laser

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Tang, Yu-Long; Xu, Jian-Qiu; Hang, Yin

    2008-01-01

    Demonstrations of cw lasing in Cr2+:ZnSe poly-crystal are reported. The laser consists of a 1.7-mm-thick Cr2+:ZnSe poly-crystal disc pumped by a Tm-silica double-clad fibre laser at 2050nm. Using a concave high-reflection mirror with a radius of curvature of 500mm as the rear mirror, the laser delivers up to 1030mW of radiation around 2.367 μm.

  16. Crystallization of the C-terminal globular domain of avian reovirus fibre

    PubMed Central

    van Raaij, Mark J.; Hermo Parrado, X. Lois; Guardado Calvo, Pablo; Fox, Gavin C.; Llamas-Saiz, Antonio L.; Costas, Celina; Martínez-Costas, José; Benavente, Javier

    2005-01-01

    Avian reovirus fibre, a homotrimer of the σC protein, is responsible for primary host-cell attachment. Using the protease trypsin, a C-terminal σC fragment containing amino acids 156–326 has been generated which was subsequently purified and crystallized. Two different crystal forms were obtained, one grown in the absence of divalent cations and belonging to space group P6322 (unit-cell parameters a = 75.6, c = 243.1 Å) and one grown in the presence of either zinc or cadmium sulfate and belonging to space group P321 (unit-cell parameters a = 74.7, c = 74.5 Å and a = 73.1, c = 69.9 Å for the ZnII- and CdII-grown crystals, respectively). The first crystal form diffracted synchrotron radiation to 3.0 Å resolution and the second form to 2.2–2.3 Å. Its closest related structure, the C-­terminal fragment of mammalian reovirus fibre, has only 18% sequence identity and molecular-replacement attempts were unsuccessful. Therefore, a search is under way for suitable heavy-atom derivatives and attempts are being made to grow protein crystals containing selenomethionine instead of methionine. PMID:16511119

  17. Radiation damping in atomic photonic crystals.

    PubMed

    Horsley, S A R; Artoni, M; La Rocca, G C

    2011-07-22

    The force exerted on a material by an incident beam of light is dependent upon the material's velocity in the laboratory frame of reference. This velocity dependence is known to be difficult to measure, as it is proportional to the incident optical power multiplied by the ratio of the material velocity to the speed of light. Here we show that this typically tiny effect is greatly amplified in multilayer systems composed of resonantly absorbing atoms exhibiting ultranarrow photonic band gaps. The amplification effect for optically trapped 87Rb is shown to be as much as 3 orders of magnitude greater than for conventional photonic-band-gap materials. For a specific pulsed regime, damping remains observable without destroying the system and significant for material velocities of a few ms(-1).

  18. Dual concentric crystal low energy photon detector

    DOEpatents

    Guilmette, R.A.

    A photon detector for biological samples includes a block of NaI(T1) having a hole containing a thin walled cylinder of CsI(T1). At least three photo multiplier tubes are evenly spaced around the parameter of the block. Biological samples are placed within the hole, and emissions which are sensed by at least two of the photo multipliers from only the NaI(T1) detector are counted.

  19. The thermoluminescence response of doped SiO2 optical fibres subjected to photon and electron irradiations.

    PubMed

    Hashim, S; Al-Ahbabi, S; Bradley, D A; Webb, M; Jeynes, C; Ramli, A T; Wagiran, H

    2009-03-01

    Modern linear accelerators, the predominant teletherapy machine in major radiotherapy centres worldwide, provide multiple electron and photon beam energies. To obtain reasonable treatment times, intense electron beam currents are achievable. In association with this capability, there is considerable demand to validate patient dose using systems of dosimetry offering characteristics that include good spatial resolution, high precision and accuracy. Present interest is in the thermoluminescence response and dosimetric utility of commercially available doped optical fibres. The important parameter for obtaining the highest TL yield during this study is to know the dopant concentration of the SiO2 fibre because during the production of the optical fibres, the dopants tend to diffuse. To achieve this aim, proton-induced X-ray emission (PIXE), which has no depth resolution but can unambiguously identify elements and analyse for trace elements with detection limits approaching microg/g, was used. For Al-doped fibres, the dopant concentration in the range 0.98-2.93 mol% have been estimated, with equivalent range for Ge-doped fibres being 0.53-0.71 mol%. In making central-axis irradiation measurements a solid water phantom was used. For 6-MV photons and electron energies in the range 6, 9 and 12 MeV, a source to surface distance of 100 cm was used, with a dose rate of 400 cGy/min for photons and electrons. The TL measurements show a linear dose-response over the delivered range of absorbed dose from 1 to 4 Gy. Fading was found to be minimal, less than 10% over five days subsequent to irradiation. The minimum detectable dose for 6-MV photons was found to be 4, 30 and 900 microGy for TLD-100 chips, Ge- and Al-doped fibres, respectively. For 6-, 9- and 12-MeV electron energies, the minimum detectable dose were in the range 3-5, 30-50 and 800-1400 microGy for TLD-100 chip, Ge-doped and Al-doped fibres, respectively.

  20. Silicon photonic crystal thermal emitter at near-infrared wavelengths.

    PubMed

    O'Regan, Bryan J; Wang, Yue; Krauss, Thomas F

    2015-08-21

    Controlling thermal emission with resonant photonic nanostructures has recently attracted much attention. Most of the work has concentrated on the mid-infrared wavelength range and/or was based on metallic nanostructures. Here, we demonstrate the experimental operation of a resonant thermal emitter operating in the near-infrared (≈1.5 μm) wavelength range. The emitter is based on a doped silicon photonic crystal consisting of a two dimensional square array of holes and using silicon-on-insulator technology with a device-layer thickness of 220 nm. The device is resistively heated by passing current through the photonic crystal membrane. At a temperature of ≈1100 K, we observe relatively sharp emission peaks with a Q factor around 18. A support structure system is implemented in order to achieve a large area suspended photonic crystal thermal emitter and electrical injection. The device demonstrates that weak absorption together with photonic resonances can be used as a wavelength-selection mechanism for thermal emitters, both for the enhancement and the suppression of emission.

  1. Photonic crystal surface-emitting lasers enabled by an accidental Dirac point

    SciTech Connect

    Chua, Song Liang; Lu, Ling; Soljacic, Marin

    2014-12-02

    A photonic-crystal surface-emitting laser (PCSEL) includes a gain medium electromagnetically coupled to a photonic crystal whose energy band structure exhibits a Dirac cone of linear dispersion at the center of the photonic crystal's Brillouin zone. This Dirac cone's vertex is called a Dirac point; because it is at the Brillouin zone center, it is called an accidental Dirac point. Tuning the photonic crystal's band structure (e.g., by changing the photonic crystal's dimensions or refractive index) to exhibit an accidental Dirac point increases the photonic crystal's mode spacing by orders of magnitudes and reduces or eliminates the photonic crystal's distributed in-plane feedback. Thus, the photonic crystal can act as a resonator that supports single-mode output from the PCSEL over a larger area than is possible with conventional PCSELs, which have quadratic band edge dispersion. Because output power generally scales with output area, this increase in output area results in higher possible output powers.

  2. Light trapping in thin film solar cells using textured photonic crystal

    DOEpatents

    Yi, Yasha; Kimerling, Lionel C.; Duan, Xiaoman; Zeng, Lirong

    2009-01-27

    A solar cell includes a photoactive region that receives light. A photonic crystal is coupled to the photoactive region, wherein the photonic crystal comprises a distributed Bragg reflector (DBR) for trapping the light.

  3. Ultra-refractive and extended-range one-dimensional photonic crystal superprisms

    NASA Technical Reports Server (NTRS)

    Ting, D. Z. Y.

    2003-01-01

    We describe theoretical analysis and design of one-dimensional photonic crystal prisms. We found that inside the photonic crystal, for frequencies near the band edges, light propagation direction is extremely sensitive to the variations in wavelength and incident angle.

  4. Fabrication of colloidal photonic crystal heterostructures free of interface imperfection based on solvent vapor annealing.

    PubMed

    Liu, Xiaomiao; Zhao, Duobiao; Geng, Chong; Zhang, Lijing; Tan, Tianya; Hu, Mingzhe; Yan, Qingfeng

    2014-11-15

    We describe the transformation of a colloidal photonic crystal into a photonic crystal heterostructure. It was achieved by annealing a polystyrene multilayer colloidal photonic crystal partially immersed in water using a solvent vapor. The floating polystyrene colloidal photonic crystal was divided into two parts by the liquid level, which can be manipulated by the addition of ethanol into the water. The top part protruding out of the water experienced a uniform lattice stretching upon exposure to the solvent vapor. The bottom part that stayed immersed in the water remained unaffected due to the protection by the water. The inconsistent behaviors of the two parts resulted in the formation of a colloidal photonic crystal heterostructure. Such a heterostructure was free of interface imperfection since it was a direct descendant of the original colloidal crystal. Meanwhile, optical measurements demonstrated the presence of a wider photonic band gap along the crystallographic [111] direction in these photonic crystal heterostructures compared with the original colloidal photonic crystals.

  5. Ultra-refractive and extended-range one-dimensional photonic crystal superprisms

    NASA Technical Reports Server (NTRS)

    Ting, D. Z. Y.

    2003-01-01

    We describe theoretical analysis and design of one-dimensional photonic crystal prisms. We found that inside the photonic crystal, for frequencies near the band edges, light propagation direction is extremely sensitive to the variations in wavelength and incident angle.

  6. Quantum-dot-tagged photonic crystal beads for multiplex detection of tumor markers.

    PubMed

    Li, Juan; Wang, Huan; Dong, Shujun; Zhu, Peizhi; Diao, Guowang; Yang, Zhanjun

    2014-12-04

    Novel quantum-dot-tagged photonic crystal beads were fabricated for multiplex detection of tumor markers via self-assembly of quantum dot-embedded polystyrene nanospheres into photonic crystal beads through a microfluidic device.

  7. REVIEW ARTICLE Blue extension of optical fibre supercontinuum generation

    NASA Astrophysics Data System (ADS)

    Travers, J. C.

    2010-11-01

    Supercontinuum generation in optical fibres pumped with high power pulse sources in the modulation instability regime is reviewed. The physical mechanisms and supercontinuum dynamics are described in detail. Routes to optimized output in terms of spectral flatness and particularly blue and ultraviolet spectral extent are presented, including the use of cascaded and tapered photonic crystal fibres.

  8. Enhanced trion emission from colloidal quantum dots with photonic crystals by two-photon excitation.

    PubMed

    Xu, Xingsheng

    2013-11-15

    For colloidal quantum dots, the ongoing biggest problem is their fluorescence blinking. Until now, there is no generally accepted model for this fluorescence blinking. Here, two-photon excited fluorescence from CdSe/ZnS nanocrystals on silicon nitride photonic crystals is studied using a femtosecond laser. From analysis of the spectra and decay processes, most of the relative trion efficiency is larger than 10%, and the largest relative trion efficiency reaches 46.7%. The photonic crystals enhance the trion emission of CdSe/ZnS nanocrystals, where the enhancement is due to the coupling of the trion emission to the leaky mode of the photonic crystal slab. Moreover, the photonic crystals enhance the Auger-assisted trapping efficiency of electrons/holes to surface states, and then enhance the efficiency of the generations of charge separation and DC electric field, which modifies the trion spectrum. Therefore, a model is present for explaining the mechanism of fluorescence blinking including the effect of the environment.

  9. Broadband frequency tripling in locally ordered nonlinear photonic crystal.

    PubMed

    Sheng, Yan; Krolikowski, Wieslaw

    2013-02-25

    We propose and fabricate a LiNbO₃-based nonlinear photonic crystal with locally ordered ferroelectric domains. The nonlinearity modulation provides sets of uniformly distributed reciprocal lattice vectors, ensuring broadband high frequency conversion efficiency. Frequency tripling via cascading is demonstrated in the range of 1400-1830 nm, with energy conversion efficiency up to ∼15%.

  10. Multicolor fluorescence enhancement from a photonics crystal surface

    NASA Astrophysics Data System (ADS)

    Pokhriyal, A.; Lu, M.; Huang, C. S.; Schulz, S.; Cunningham, B. T.

    2010-09-01

    A photonic crystal substrate exhibiting resonant enhancement of multiple fluorophores has been demonstrated. The device, fabricated uniformly from plastic materials over a ˜3×5 in.2 surface area by nanoreplica molding, utilizes two distinct resonant modes to enhance electric field stimulation of a dye excited by a λ =632.8 nm laser (cyanine-5) and a dye excited by a λ =532 nm laser (cyanine-3). Resonant coupling of the laser excitation to the photonic crystal surface is obtained for each wavelength at a distinct incident angle. Compared to detection of a dye-labeled protein on an ordinary glass surface, the photonic crystal surface exhibited a 32× increase in fluorescent signal intensity for cyanine-5 conjugated streptavidin labeling, while a 25× increase was obtained for cyanine-3 conjugated streptavidin labeling. The photonic crystal is capable of amplifying the output of any fluorescent dye with an excitation wavelength in the 532 nm<λ<633 nm range by selection of an appropriate incident angle. The device is designed for biological assays that utilize multiple fluorescent dyes within a single imaged area, such as gene expression microarrays.

  11. Three dimensional reflectance properties of plasma dielectric photonic crystal

    SciTech Connect

    Pandey, G. N.; Pandey, J. P.; Mishra, A. K.; Ojha, S. P.

    2016-05-06

    In this present communication, we study the three dimentionalomni-directional reflection bands in Plasma Photonic Crystals (PPC), having alternate regions of plasma-dielectric. We have calculated the reflectivity of the proposed structure at the various angles of incidence for both polarizations (TE - & TM) in three dimensions.

  12. Sub- and superdiffractive resonators with intracavity photonic crystals

    SciTech Connect

    Staliunas, K.; Peckus, M.; Sirutkaitis, V.

    2007-11-15

    We investigate experimentally and theoretically plane-mirror Fabry-Perot resonators filled by photonic crystals, i.e., with periodic intracavity refraction index modulation. We show that the diffraction properties of such resonators can be manipulated, resulting in sub- and superdiffractive dynamics of light in the resonator, and in hyperbolic angular transmission profiles.

  13. Hollow core photonic crystal fiber based viscometer with Raman spectroscopy.

    PubMed

    Horan, L E; Ruth, A A; Gunning, F C Garcia

    2012-12-14

    The velocity of a liquid flowing through the core of a hollow core photonic crystal fiber (driven by capillary forces) is used for the determination of a liquid's viscosity, using volumes of less than 10 nl. The simple optical technique used is based on the change in propagation characteristics of the fiber as it fills with the liquid of interest via capillary action, monitored by a laser source. Furthermore, the liquid filled hollow core photonic crystal fiber is then used as a vessel to collect Raman scattering from the sample to determine the molecular fingerprint of the liquid under study. This approach has a wide variety of indicative uses in cases where nano-liter samples are necessary. We use 10-12 cm lengths of hollow core photonic crystal fibers to determine the viscosity and Raman spectra of small volumes of two types of monosaccharides diluted in a phosphate buffer solution to demonstrate the principle. The observed Raman signal is strongest when only the core of the hollow core photonic crystal fiber is filled, and gradually decays as the rest of the fiber fills with the sample.

  14. Multicolor fluorescence enhancement from a photonics crystal surface

    PubMed Central

    Pokhriyal, A.; Lu, M.; Huang, C. S.; Schulz, S.; Cunningham, B. T.

    2010-01-01

    A photonic crystal substrate exhibiting resonant enhancement of multiple fluorophores has been demonstrated. The device, fabricated uniformly from plastic materials over a ∼3×5 in.2 surface area by nanoreplica molding, utilizes two distinct resonant modes to enhance electric field stimulation of a dye excited by a λ=632.8 nm laser (cyanine-5) and a dye excited by a λ=532 nm laser (cyanine-3). Resonant coupling of the laser excitation to the photonic crystal surface is obtained for each wavelength at a distinct incident angle. Compared to detection of a dye-labeled protein on an ordinary glass surface, the photonic crystal surface exhibited a 32× increase in fluorescent signal intensity for cyanine-5 conjugated streptavidin labeling, while a 25× increase was obtained for cyanine-3 conjugated streptavidin labeling. The photonic crystal is capable of amplifying the output of any fluorescent dye with an excitation wavelength in the 532 nm<λ<633 nm range by selection of an appropriate incident angle. The device is designed for biological assays that utilize multiple fluorescent dyes within a single imaged area, such as gene expression microarrays. PMID:20957067

  15. Second-harmonic superprism effect in photonic crystals.

    PubMed

    Centeno, Emmanuel

    2005-05-01

    By exploitation of the nonlinear optical properties of two-dimensional photonic crystals, a second-harmonic superprism effect is demonstrated. The anisotropy of the dispersion curves allows control of the propagation direction of the second-harmonic field. Smooth variations of the fundamental wavelength or the angle of incidence produce a drastic angular shift of the second-harmonic emission.

  16. Transverse magnetic field impact on waveguide modes of photonic crystals.

    PubMed

    Sylgacheva, Daria; Khokhlov, Nikolai; Kalish, Andrey; Dagesyan, Sarkis; Prokopov, Anatoly; Shaposhnikov, Alexandr; Berzhansky, Vladimir; Nur-E-Alam, Mohammad; Vasiliev, Mikhail; Alameh, Kamal; Belotelov, Vladimir

    2016-08-15

    This Letter presents a theoretical and experimental study of waveguide modes of one-dimensional magneto-photonic crystals magnetized in the in-plane direction. It is shown that the propagation constants of the TM waveguide modes are sensitive to the transverse magnetization and the spectrum of the transverse magneto-optical Kerr effect has resonant features at mode excitation frequencies. Two types of structures are considered: a non-magnetic photonic crystal with an additional magnetic layer on top and a magneto-photonic crystal with a magnetic layer within each period. We found that the magneto-optical non-reciprocity effect is greater in the first case: it has a magnitude of δ∼10-4, while the second structure type demonstrates δ∼10-5 only, due to the higher asymmetry of the claddings of the magnetic layer. Experimental observations show resonant features in the optical and magneto-optical Kerr effect spectra. The measured dispersion properties are in good agreement with the theoretical predictions. An amplitude of light intensity modulation of up to 2.5% was observed for waveguide mode excitation within the magnetic top layer of the non-magnetic photonic crystal structure. The presented theoretical approach may be utilized for the design of magneto-optical sensors and modulators requiring pre-determined spectral features.

  17. Photonic crystal Fano lasers: experiment and theory (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Mork, Jesper; Yu, Yi; Xue, Weiqi; Semenova, Elizaveta; Yvind, Kresten

    2016-09-01

    We present theoretical and experimental results for a novel laser structure where one of the mirrors is realized by a Fano resonance between the laser waveguide and a side-coupled nano cavity. The laser may be modulated via the mirror resonance, enabling ultrahigh modulatioon speeds and pulse generation. Experimental results for a photonic crystal structure with quantum dot active layers will be presented.

  18. Photonic crystal fiber sensor for magnetic field detection

    NASA Astrophysics Data System (ADS)

    Quintero, Sully M. M.; Martelli, Cicero; Kato, Carla C.; Valente, Luiz C. G.; Braga, Arthur M. B.

    2010-09-01

    A magnetic field sensor comprised of a high birefringence photonic crystal fiber coated by a Terfenol-D/Epoxy composite layer is proposed. Magnetic fields induce strains in the magnetostrictive composite that are transferred to the fiber interfering with light propagation. The sensitivity of the developed sensor with magnetic fields is measured to be 6 pm mT-1.

  19. Thermal properties photonic crystal fiber transducers with ferromagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Przybysz, N.; Marć, P.; Kisielewska, A.; Jaroszewicz, L. R.

    2015-12-01

    The main aim of the research is to design new types of fiber optic transducers based on filled photonic crystal fibers for sensor applications. In our research we propose to use as a filling material nanoparticles' ferrofluids (Fe3O4 NPs). Optical properties of such transducers are studied by measurements of spectral characteristics' changes when transducers are exposed to temperature and magnetic field changes. From synthesized ferrofluid several mixtures with different NPs' concentrations were prepared. Partially filled commercially available photonic crystal fiber LMA 10 (NKT Photonics) was used to design PCF transducers. Their thermo-optic properties were tested in a temperature chamber. Taking into account magnetic properties of synthetized NPs the patch cords based on a partially filled PM 1550 PCF were measured.

  20. Photonic crystals and optical mode engineering for thin film photovoltaics.

    PubMed

    Gomard, Guillaume; Peretti, Romain; Drouard, Emmanuel; Meng, Xianqin; Seassal, Christian

    2013-05-06

    In this paper, we present the design, analysis, and experimental results on the integration of 2D photonic crystals in thin film photovoltaic solar cells based on hydrogenated amorphous silicon. We introduce an analytical approach based on time domain coupled mode theory to investigate the impact of the photon lifetime and anisotropy of the optical resonances on the absorption efficiency. Specific design rules are derived from this analysis. We also show that, due to the specific properties of the photonic crystal resonances, the angular acceptance of such solar cells is particularly high. Rigorous Coupled Wave Analysis simulations show that the absorption in the a-Si:H active layers, integrated from 300 to 750 nm, is only decreased from 65.7% to 60% while the incidence angle is increased from 0 to 55°. Experimental results confirm the stability of the incident light absorption in the patterned stack, for angles of incidence up to 50°.

  1. Fabrication and characterization of chalcogenide glass photonic crystal waveguides.

    PubMed

    Suzuki, Keijiro; Hamachi, Yohei; Baba, Toshihiko

    2009-12-07

    We report on the fabrication of chalcogenide glass (Ag-As(2)Se(3)) photonic crystal waveguides and the first detailed characterization of the linear and nonlinear optical properties. The waveguides, fabricated by e-beam lithography and ICP etching exhibit typical transmission spectra of photonic crystal waveguides, and exhibit high optical nonlinearity. Nonlinear phase shift of 1.5pi through self-phase modulation is observed at 0.78 W input peak power in a 400 microm long device. The effective nonlinear parameter gamma(eff) estimated from this result reaches 2.6 x 10(4) W(-1)m(-1). Four-wave mixing is also observed in the waveguide, while two-photon absorption at optical communication wavelengths is sufficiently small and the corresponding figure of merit is larger than 11.

  2. Nano-photonic organic solar cell architecture for advanced light management utilizing dual photonic crystals

    NASA Astrophysics Data System (ADS)

    Peer, Akshit; Biswas, Rana

    2015-09-01

    Organic solar cells have rapidly increasing efficiencies, but typically absorb less than half of the incident solar spectrum. To increase broadband light absorption, we rigorously design experimentally realizable solar cell architectures based on dual photonic crystals. Our optimized architecture consists of a polymer microlens at the air-glass interface, coupled with a photonic-plasmonic crystal at the metal cathode. The microlens focuses light on the periodic nanostructure that generates strong light diffraction. Waveguiding modes and surface plasmon modes together enhance long wavelength absorption in P3HT-PCBM. The architecture has a period of 500 nm, with absorption and photocurrent enhancement of 49% and 58%, respectively.

  3. Photonic crystal nanocavity assisted rejection ratio tunable notch microwave photonic filter

    PubMed Central

    Long, Yun; Xia, Jinsong; Zhang, Yong; Dong, Jianji; Wang, Jian

    2017-01-01

    Driven by the increasing demand on handing microwave signals with compact device, low power consumption, high efficiency and high reliability, it is highly desired to generate, distribute, and process microwave signals using photonic integrated circuits. Silicon photonics offers a promising platform facilitating ultracompact microwave photonic signal processing assisted by silicon nanophotonic devices. In this paper, we propose, theoretically analyze and experimentally demonstrate a simple scheme to realize ultracompact rejection ratio tunable notch microwave photonic filter (MPF) based on a silicon photonic crystal (PhC) nanocavity with fixed extinction ratio. Using a conventional modulation scheme with only a single phase modulator (PM), the rejection ratio of the presented MPF can be tuned from about 10 dB to beyond 60 dB. Moreover, the central frequency tunable operation in the high rejection ratio region is also demonstrated in the experiment. PMID:28067332

  4. Photonic crystal nanocavity assisted rejection ratio tunable notch microwave photonic filter

    NASA Astrophysics Data System (ADS)

    Long, Yun; Xia, Jinsong; Zhang, Yong; Dong, Jianji; Wang, Jian

    2017-01-01

    Driven by the increasing demand on handing microwave signals with compact device, low power consumption, high efficiency and high reliability, it is highly desired to generate, distribute, and process microwave signals using photonic integrated circuits. Silicon photonics offers a promising platform facilitating ultracompact microwave photonic signal processing assisted by silicon nanophotonic devices. In this paper, we propose, theoretically analyze and experimentally demonstrate a simple scheme to realize ultracompact rejection ratio tunable notch microwave photonic filter (MPF) based on a silicon photonic crystal (PhC) nanocavity with fixed extinction ratio. Using a conventional modulation scheme with only a single phase modulator (PM), the rejection ratio of the presented MPF can be tuned from about 10 dB to beyond 60 dB. Moreover, the central frequency tunable operation in the high rejection ratio region is also demonstrated in the experiment.

  5. Photonic crystal nanocavity assisted rejection ratio tunable notch microwave photonic filter.

    PubMed

    Long, Yun; Xia, Jinsong; Zhang, Yong; Dong, Jianji; Wang, Jian

    2017-01-09

    Driven by the increasing demand on handing microwave signals with compact device, low power consumption, high efficiency and high reliability, it is highly desired to generate, distribute, and process microwave signals using photonic integrated circuits. Silicon photonics offers a promising platform facilitating ultracompact microwave photonic signal processing assisted by silicon nanophotonic devices. In this paper, we propose, theoretically analyze and experimentally demonstrate a simple scheme to realize ultracompact rejection ratio tunable notch microwave photonic filter (MPF) based on a silicon photonic crystal (PhC) nanocavity with fixed extinction ratio. Using a conventional modulation scheme with only a single phase modulator (PM), the rejection ratio of the presented MPF can be tuned from about 10 dB to beyond 60 dB. Moreover, the central frequency tunable operation in the high rejection ratio region is also demonstrated in the experiment.

  6. Spectral property of two-photon flux generated by four-photon scattering in photonic-crystal fibers

    NASA Astrophysics Data System (ADS)

    Sun, Hongbo; Liu, Xueming; Hu, Xiaohong; Li, Xiaohui

    2010-12-01

    Based on the scalar four-photon scattering process, the quantum state of a lightwave at the output of fiber is derived by solving the nonlinear Schrödinger equation with a perturbation theory. The joint spectral function of two photons is achieved from the derived quantum state. The dispersion operator involves the third-order dispersion term in the case that the pump wavelength is close to the zero dispersion wavelength. Simulation results show the first-order approximation of our joint spectral function is in excellent agreement with the complicated exact solution. By analyzing the spectral property of the two-photon flux generated by four-photon scattering in photonic-crystal fibers, it is found that the sign of dispersion has very little influence on the spectrum except the slight modulation instability in the anomalous dispersion domain.

  7. Transverse wave propagation in photonic crystal based on holographic polymer-dispersed liquid crystal.

    PubMed

    Fuh, Andy Ying-Guey; Li, Ming Shian; Wu, Shing Trong

    2011-07-04

    This study investigates the transversely propagating waves in a body-centered tetragonal photonic crystal based on a holographic polymer-dispersed liquid crystal film. Rotating the film reveals three different transverse propagating waves. Degeneracy of optical Bloch waves from reciprocal lattice vectors explains their symmetrical distribution.

  8. Molecular Photonics of Supra Nonlinear Liquid Crystals

    DTIC Science & Technology

    2003-05-11

    multifunctional optical devices have also been developed. Specifically, (i) the large optical nonlinearities of nematic liquid crystals in the optical ... communication wavelength regime (1 .55 microns) as well as the visible region have been quantitatively established. (ii) All-optical self-action processes such

  9. Measuring sub-picosecond optical propagation delay changes on optical fibre using photonics and radio frequency components

    NASA Astrophysics Data System (ADS)

    Julie, Roufurd P. M.; Abbott, Thomas

    2016-02-01

    To synchronise the elements of a radio interferometer array, a phase stable reference frequency from a central clock is disseminated to the different elements of array. The reference frequency is modulated onto an optical carrier and transported over optical fibre over a distance of up to 12 km. For radio interferometric efficiency, the propagation delay of the transferred reference frequency is required to be stable to less than 3 picoseconds (ps) over 20 minutes. To enable this, the optical fibre transmission line is thermally shielded to minimise length changes due to thermal expansion and contraction on the optical fibre. A test setup and procedure, that measures propagation delay changes to the required accuracy and precision, is required to verify the efficiency of the thermal shielding on the installed optical fibre. This paper describes a method using photonic and radio frequency (RF) components together with an RF vector network analyser (VNA) and post-processing to measure changes in propagation delay on the optical fibre link to sub-picosecond levels. The measurement system has been tested to a stability of < 200 femtoseconds (fs) and a resolution of < 10 fs.

  10. Plasmonic photonic crystals realized through DNA-programmable assembly

    PubMed Central

    Park, Daniel J.; Zhang, Chuan; Ku, Jessie C.; Zhou, Yu; Schatz, George C.; Mirkin, Chad A.

    2015-01-01

    Three-dimensional dielectric photonic crystals have well-established enhanced light–matter interactions via high Q factors. Their plasmonic counterparts based on arrays of nanoparticles, however, have not been experimentally well explored owing to a lack of available synthetic routes for preparing them. However, such structures should facilitate these interactions based on the small mode volumes associated with plasmonic polarization. Herein we report strong light-plasmon interactions within 3D plasmonic photonic crystals that have lattice constants and nanoparticle diameters that can be independently controlled in the deep subwavelength size regime by using a DNA-programmable assembly technique. The strong coupling within such crystals is probed with backscattering spectra, and the mode splitting (0.10 and 0.24 eV) is defined based on dispersion diagrams. Numerical simulations predict that the crystal photonic modes (Fabry–Perot modes) can be enhanced by coating the crystals with a silver layer, achieving moderate Q factors (∼102) over the visible and near-infrared spectrum. PMID:25548175

  11. Plasmonic photonic crystals realized through DNA-programmable assembly

    DOE PAGES

    Park, Daniel J.; Zhang, Chuan; Ku, Jessie C.; ...

    2014-12-29

    Three-dimensional dielectric photonic crystals have well-established enhanced light-matter interactions via high Q factors. Their plasmonic counterparts based on arrays of nanoparticles, however, have not been experimentally well explored owing to a lack of available synthetic routes for preparing them. However, such structures should facilitate these interactions based on the small mode volumes associated with plasmonic polarization. Herein we report strong light-plasmon interactions within 3D plasmonic photonic crystals that have lattice constants and nanoparticle diameters that can be independently controlled in the deep subwavelength size regime by using a DNA-programmable assembly technique. The strong coupling within such crystals is probed withmore » backscattering spectra, and the mode splitting (0.10 and 0.24 eV) is defined based on dispersion diagrams. Numerical simulations predict that the crystal photonic modes (Fabry-Perot modes) can be enhanced by coating the crystals with a silver layer, achieving moderate Q factors (~102) over the visible and near-infrared spectrum.« less

  12. Plasmonic photonic crystals realized through DNA-programmable assembly.

    PubMed

    Park, Daniel J; Zhang, Chuan; Ku, Jessie C; Zhou, Yu; Schatz, George C; Mirkin, Chad A

    2015-01-27

    Three-dimensional dielectric photonic crystals have well-established enhanced light-matter interactions via high Q factors. Their plasmonic counterparts based on arrays of nanoparticles, however, have not been experimentally well explored owing to a lack of available synthetic routes for preparing them. However, such structures should facilitate these interactions based on the small mode volumes associated with plasmonic polarization. Herein we report strong light-plasmon interactions within 3D plasmonic photonic crystals that have lattice constants and nanoparticle diameters that can be independently controlled in the deep subwavelength size regime by using a DNA-programmable assembly technique. The strong coupling within such crystals is probed with backscattering spectra, and the mode splitting (0.10 and 0.24 eV) is defined based on dispersion diagrams. Numerical simulations predict that the crystal photonic modes (Fabry-Perot modes) can be enhanced by coating the crystals with a silver layer, achieving moderate Q factors (∼10(2)) over the visible and near-infrared spectrum.

  13. Invited Review Article: Development of crystal lenses for energetic photons

    SciTech Connect

    Smither, Robert K.

    2014-08-15

    This paper follows the development of crystal diffraction lenses designed to focus energetic photons. It begins with the search for a solution to the astrophysics problem of how to detect weak astrophysics sources of gamma rays and x-rays. This led to the basic designs for a lens and to the understanding of basic limitations of lens design. The discussion of the development of crystal diffraction lenses is divided into two parts: lenses using crystals with mosaic structure, and lenses that use crystals with curved crystal planes. This second group divides into two sub-groups: (1) Curved crystals that are used to increase the acceptance angle of the diffraction of a monochromatic beam and to increase the energy bandwidth of the diffraction. (2) Curved crystals used to focus gamma ray beams. The paper describes how these two types of crystals affect the design of the corresponding crystal lenses in different fields: astrophysics, medical imaging, detection of weak, distant, gamma-ray sources, etc. The designs of crystal lenses for these applications are given in enough detail to allow the reader to design a lens for his own application.

  14. Photonic crystal waveguides based on wide-gap semiconductor alloys

    NASA Astrophysics Data System (ADS)

    Martin, Aude; Combrié, Sylvain; De Rossi, Alfredo

    2017-03-01

    This review is devoted to integrated photonic platforms based on large band-gap semiconductors, alternatives to silicon photonics. The large electronic band gap of the material employed is chosen to address the specific needs of nonlinear optics, and, in particular, lower nonlinear losses and the capability of handling larger optical power densities. Moreover, these new platforms offer broader transmission spectra, extending to the visible spectral region, which is also required for other applications, particularly sensing and bio-related photonics. The focus is on nanoscale patterned waveguiding structures, which, owing to the tight confinement of light, have demonstrated a large nonlinear response. The third-order nonlinear response and the related parametric interactions will be considered here, encompassing four-wave mixing, phase-sensitive amplification, wavelength conversion, and also nonlinear pulse propagation and soliton dynamics. The comparison between different materials and waveguide design highlights specific features of photonic crystal waveguides.

  15. Density of photonic states in cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Dolganov, P. V.

    2015-04-01

    Density of photonic states ρ (ω ) , group vg, and phase vph velocity of light, and the dispersion relation between wave vector k , and frequency ω (k ) were determined in a cholesteric photonic crystal. A highly sensitive method (measurement of rotation of the plane of polarization of light) was used to determine ρ (ω ) in samples of different quality. In high-quality samples a drastic increase in ρ (ω ) near the boundaries of the stop band and oscillations related to Pendellösung beatings are observed. In low-quality samples photonic properties are strongly modified. The maximal value of ρ (ω ) is substantially smaller, and density of photonic states increases near the selective reflection band without oscillations in ρ (ω ) . Peculiarities of ρ (ω ) , vg, and ω (k ) are discussed. Comparison of the experimental results with theory was performed.

  16. Free-Standing Photonic Crystal Films with Gradient Structural Colors.

    PubMed

    Ding, Haibo; Liu, Cihui; Ye, Baofen; Fu, Fanfan; Wang, Huan; Zhao, Yuanjin; Gu, Zhongze

    2016-03-23

    Hydrogel colloidal crystal composite materials have a demonstrated value in responsive photonic crystals (PhCs) via controllable stimuli. Although they have been successfully exploited to generate a gradient of color distribution, the soft hydrogels have limitations in terms of stability and storage caused by dependence on environment. Here, we present a practical strategy to fabricate free-standing PhC films with a stable gradient of structural colors using binary polymer networks. A colloidal crystal hydrogel film was prepared for this purpose, with continuously varying photonic band gaps corresponding to the gradient of the press. Then, a second polymer network was used to lock the inside non-close-packed PhC structures and color distribution of the hydrogel film. It was demonstrated that our strategy could bring about a solution to the angle-dependent structural colors of the PhC films by coating the surface with special microstructures.

  17. Photonic crystals as topological high-Q resonators.

    PubMed

    Merlin, R; Young, S M

    2014-07-28

    It is well known that defects, such as holes, inside an infinite photonic crystal can sustain localized resonant modes whose frequencies fall within a forbidden band. Here we prove that finite, defect-free photonic crystals behave as mirrorless resonant cavities for frequencies within but near the edges of an allowed band, regardless of the shape of their outer boundary. The resonant modes are extended, surface-avoiding (nearly-Dirichlet) states that may lie inside or outside the light cone. Independent of the dimensionality, quality factors and finesses are on the order of, respectively, (L/λ)3 and L/λ, where λ is the vacuum wavelength and L > λ is a typical size of the crystal. Similar topological modes exist in conventional Fabry-Pérot resonators, and in plasmonic media at frequencies just above those at which the refractive index vanishes.

  18. The role of bending in influencing the transfer function of photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Tvarožek, Peter; Káčik, Daniel; Tatár, Peter

    2010-12-01

    We have measured the dependence of transfer function of endlessly single mode photonic crystal fiber on the bends radius. The results are confirmed by numerical simulations. New questions on bending insensitivity of the Photonic Crystal Fibers and effective refractive index approximation of the Photonic Crystal Fiber arise as result.

  19. Imaging and tuning of coupled photonic crystal cavities (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gurioli, Massimo

    2016-04-01

    Photonic microcavities (PMC) coupled through their evanescent field are used for a large variety of classical and quantum devices. In such systems, a molecular-like spatial delocalization of the coupled modes is achieved by an evanescent tunnelling. The tunnelling rate depends on the height and depth of the photonic barrier between two adjacent resonators and therefore it is sensitive to the fabrication-induced disorder present in the center of the molecule. In this contribution, we address the problem of developing a post fabrication control of the tunnelling rate in photonic crystal coupled PMCs. The value of the photonic coupling (proportional to the tunnelling rate) is directly measured by the molecular mode splitting at the anticrossing point. By exploiting a combination of tuning techniques such as local infiltration of water, micro-evaporation, and laser induced non thermal micro-oxidation, we are able to either increase or decrease the detuning and the photonic coupling, independently. Near field imaging is also used for mapping the modes and establish delocalization. By water micro-infiltration, we were able to increase the photon coupling by 28%. On the contrary, by laser induced non thermal oxidation, we got a reduction of g by 30%. The combination of the two methods would therefore give a complete control of g with excellent accuracy. This could make possible the realization of array of photonic cavities with on demand tunnelling rate between each pair of coupled resonators. We believe that this peculiar engineering of photonic crystal molecules would open the road to possible progress in the exploitation of coherent interference between coupled optical resonators both for quantum information processing and optical communication.

  20. Radiative coupling of quantum dots in photonic crystal structures

    NASA Astrophysics Data System (ADS)

    Minkov, Momchil; Savona, Vincenzo

    2013-03-01

    We derive a general formalism to model the polariton states resulting from the radiation-matter interaction between an arbitrary number of excitonic transitions in semiconductor quantum dots and photon modes in a photonic crystal structure in which the quantum dots are embedded. The Maxwell equations, including the linear nonlocal susceptibility of the exciton transitions in the quantum dots, are cast into an eigenvalue problem, which can be applied to any structure whose photon modes can be computed with reliable accuracy, and in addition naturally allows for disorder effects to be taken into account. We compute realistic photon modes using Bloch-mode expansion. As example systems, we study typical InGaAs quantum dots in a GaAs photonic crystal structures—an Ln cavity or a W1 waveguide. For a single dot, we reproduce known analytical results, while for the two-dot case we study the radiative excitation transfer mechanism and characterize its strength, the dependence on the detuning between quantum dot and photon modes, and the dependence on interdot distance. We find in particular that the interdot radiative coupling strength can reach 100μeV in a short cavity, and its decay with distance in longer cavities and waveguides is determined by the group velocity of the exchanged photons and their radiative lifetime. We also show that, for an Ln cavity of increasing length, the radiative excitation transfer mechanism is subject to a crossover from a regime where a single photon mode is dominating, to a multimode regime—occurring around n = 150 for the system under study.

  1. Crystallization of the C-terminal globular domain of avian reovirus fibre

    SciTech Connect

    Raaij, Mark J. van; Hermo Parrado, X. Lois; Guardado Calvo, Pablo; Fox, Gavin C.; Llamas-Saiz, Antonio L.; Costas, Celina; Martínez-Costas, José; Benavente, Javier

    2005-07-01

    Partial proteolysis of the avian reovirus cell-attachment protein σC yields a major homotrimeric C-terminal fragment that presumably contains the receptor-binding domain. This fragment has been crystallized in the presence and absence of zinc sulfate and cadmium sulfate. One of the crystal forms diffracts synchrotron X-rays to 2.2–2.3 Å. Avian reovirus fibre, a homotrimer of the σC protein, is responsible for primary host-cell attachment. Using the protease trypsin, a C-terminal σC fragment containing amino acids 156–326 has been generated which was subsequently purified and crystallized. Two different crystal forms were obtained, one grown in the absence of divalent cations and belonging to space group P6{sub 3}22 (unit-cell parameters a = 75.6, c = 243.1 Å) and one grown in the presence of either zinc or cadmium sulfate and belonging to space group P321 (unit-cell parameters a = 74.7, c = 74.5 Å and a = 73.1, c = 69.9 Å for the Zn{sup II}- and Cd{sup II}-grown crystals, respectively). The first crystal form diffracted synchrotron radiation to 3.0 Å resolution and the second form to 2.2–2.3 Å. Its closest related structure, the C-terminal fragment of mammalian reovirus fibre, has only 18% sequence identity and molecular-replacement attempts were unsuccessful. Therefore, a search is under way for suitable heavy-atom derivatives and attempts are being made to grow protein crystals containing selenomethionine instead of methionine.

  2. Slow light in photonic crystal cavity filled with nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Khan, Kaisar; Mnaymneh, Khaled; Awad, Hazem; Hasan, Imad; Hall, Trevor

    2013-10-01

    An innovative technique to tune the slow light propagated through photonic crystal cavity filled with E7 type nematic crystal has been simulated and presented. Observed propagating modes in the previously fabricated photonic crystal indicate that both slow and fast modes propagate in the waveguide. Design efforts were made to adjust the propagating modes as well as their group velocities. Numerical studies show that by inserting nematic liquid crystal, designer can achieve additional degree of freedom to tune the device by using external perturbation such as applying heat or electric field. Comparative studies have also been done to see the performance of the devices fabricated in two deferent material platforms (silicon and InP) with an objective to develop economic and efficient functional material systems for building robust integrated photonic devices that have the ability to slow, store, and process light pulses.

  3. Characteristics and stability of soliton crystals in optical fibres for the purpose of optical frequency comb generation

    NASA Astrophysics Data System (ADS)

    Zajnulina, M.; Böhm, M.; Bodenmüller, D.; Blow, K.; Boggio, J. M. Chavez; Rieznik, A. A.; Roth, M. M.

    2017-06-01

    We study the properties of a soliton crystal, a bound state of several optical pulses that propagate with a fixed temporal separation through the optical fibres of the proposed approach for generation of optical frequency combs (OFC) for astronomical spectrograph calibration. This approach - also being suitable for subpicosecond pulse generation for other applications - consists of a conventional single-mode fibre and a suitably pumped Erbium-doped fibre. Two continuous-wave lasers are used as light source. The soliton crystal arises out of the initial deeply modulated laser field at low input powers; for higher input powers, it dissolves into free solitons. We study the soliton crystal build-up in the first fibre stage with respect to different fibre parameters (group-velocity dispersion, nonlinearity, and optical losses) and to the light source characteristics (laser frequency separation and intensity difference). We show that the soliton crystal can be described by two quantities, its fundamental frequency and the laser power-threshold at which the crystal dissolves into free solitons. The soliton crystal exhibits features of a linear and nonlinear optical pattern at the same time and is insensitive to the initial laser power fluctuations. We perform our studies using the numerical technique called Soliton Radiation Beat Analysis.

  4. Enhanced transmission and beaming via a zero-index photonic crystal

    SciTech Connect

    Hajian, Hodjat; Ozbay, Ekmel; Caglayan, Humeyra

    2016-07-18

    Certain types of photonic crystals with Dirac cones at the Γ point of their band structure have a zero effective index of refraction at Dirac cone frequency. Here, by an appropriate design of the photonic structure, we obtain a strong coupling between modes around the Dirac cone frequency of an all-dielectric zero-index photonic crystal and the guided ones supported by a photonic crystal waveguide. Consequently, we experimentally demonstrate that the presence of the zero-index photonic crystal at the inner side of the photonic crystal waveguide leads to an enhancement in the transmission of some of the guided waves passing through this hybrid system. Moreover, those electromagnetic waves extracted from the structure with enhanced transmission exhibit high directional beaming due to the presence of the zero-index photonic crystal at the outer side of the photonic crystal waveguide.

  5. Assembly of Dimer-Based Photonic Crystals

    NASA Astrophysics Data System (ADS)

    Liddell Watson, Chekesha M.

    2011-03-01

    Recent advances in colloid synthesis to prepare monodisperse shape anisotropic particles provide the opportunity to address challenges related to structural diversity in ordered colloidal solids. In particular, computational simulations and mechanical models suggest that upon system densification nonspherical dimer colloids undergo disorder-order and order-order phase transitions to unconventional solid structures including, base-centered monoclinic crystals, degenerate aperiodic crystals, plastic crystal or rotator, etc. based on free energy minimization. The particle systems have notable analogy to molecular systems, where the shape of molecules and their packing density has been shown to critically influence structural phase behavior and lead to a rich variety of structures, both natural and synthetic. The materials engineering challenges have been in attaining sufficiently monodisperse (size uniformity) colloidal building blocks, as well as the lack of understanding and control of self-assembly processes for non-spherical colloids. This talk highlights our investigations of how particle shape programs the self-organization of colloidal structures. Methods including evaporation mediated assembly and confinement provide a platform to understand the formation of complex colloidal structures from non-spherical building blocks (silica-coated iron oxide, polystyrene, hollow silica shell). Optical property simulations for unconventional 2D and 3D structures with nonspherical particle bases will also be discussed.

  6. Body-monitoring with photonic textiles: a reflective heartbeat sensor based on polymer optical fibres.

    PubMed

    Quandt, Brit M; Braun, Fabian; Ferrario, Damien; Rossi, René M; Scheel-Sailer, Anke; Wolf, Martin; Bona, Gian-Luca; Hufenus, Rudolf; Scherer, Lukas J; Boesel, Luciano F

    2017-03-01

    Knowledge of an individual's skin condition is important for pressure ulcer prevention. Detecting early changes in skin through perfusion, oxygen saturation values, and pressure on tissue and subsequent therapeutic intervention could increase patients' quality of life drastically. However, most existing sensing options create additional risk of ulcer development due to further pressure on and chafing of the skin. Here, as a first component, we present a flexible, photonic textile-based sensor for the continuous monitoring of the heartbeat and blood flow. Polymer optical fibres (POFs) are melt-spun continuously and characterized optically and mechanically before being embroidered. The resulting sensor shows flexibility when embroidered into a moisture-wicking fabric, and withstands disinfection with hospital-type laundry cycles. Additionally, the new sensor textile shows a lower static coefficient of friction (COF) than conventionally used bedsheets in both dry and sweaty conditions versus a skin model. Finally, we demonstrate the functionality of our sensor by measuring the heartbeat at the forehead in reflection mode and comparing it with commercial finger photoplethysmography for several subjects. Our results will allow the development of flexible, individualized, and fully textile-integrated wearable sensors for sensitive skin conditions and general long-term monitoring of patients with risk for pressure ulcer. © 2017 The Author(s).

  7. [Polarization-sensitive characteristics of the transmission spectra in photonic crystal with nematic liquid crystal defects].

    PubMed

    Dai, Qin; Wu, Ri-na; Yan, Bin; Zhang, Rui-liang; Wang, Peng-chong; Quan, Wei; Xu, Song-ning

    2012-05-01

    The polarization-sensitive characteristics in the transmission spectra of TiO2/SiO2 optical multilayer films of one-dimensional photonic crystal (1D PC) with nematic liquid crystal defects were investigated in the present paper. The transmission spectra measurements and simulated results show that the polarization-sensitive feature was obvious when natural light was normal incident onto the parallelly aligned nematic liquid crystal. There were peaks of the extraordinary light (TE mode) with center wavelengths 1831 and 1800 nm and the ordinary light (TM mode) with center wavelengths 1452 and 1418 nm in the photonic forbidden band, respectively. With applied voltage increasing, the peaks of the extraordinary light was blue-shifted, and coincided with the peaks of O light gradually. Their tunable ranges were about 31 and 34 nm, respectively. For the random nematic liquid crystal, polarization sensitivity was not observed. Meanwhile, an individual extraordinary light peak with center wavelength 1801 nm and an individual ordinary light peak with center wavelength 1391 nm were obtained in the photonic forbidden band, respectively. The peaks were also found blue-shifted with applied voltage increasing, and their tunable ranges were about 64 and 15 nm, respectively. The polarization insensitive photonic crystal with nematic liquid crystal defects can be achieved by random liquid crystal molecules, which make the effective refractive index of the extraordinary light equal to that of the ordinary light.

  8. Photonic-magnonic crystals: Multifunctional periodic structures for magnonic and photonic applications

    SciTech Connect

    Kłos, J. W. Krawczyk, M.; Dadoenkova, Yu. S.; Dadoenkova, N. N.; Lyubchanskii, I. L.

    2014-05-07

    We investigate the properties of a photonic-magnonic crystal, a complex multifunctional one-dimensional structure with magnonic and photonic band gaps in the GHz and PHz frequency ranges for spin waves and light, respectively. The system consists of periodically distributed dielectric magnetic slabs of yttrium iron garnet and nonmagnetic spacers with an internal structure of alternating TiO{sub 2} and SiO{sub 2} layers which form finite-size dielectric photonic crystals. We show that the spin-wave coupling between the magnetic layers, and thus the formation of the magnonic band structure, necessitates a nonzero in-plane component of the spin-wave wave vector. A more complex structure perceived by light is evidenced by the photonic miniband structure and the transmission spectra in which we have observed transmission peaks related to the repetition of the magnetic slabs in the frequency ranges corresponding to the photonic band gaps of the TiO{sub 2}/SiO{sub 2} stack. Moreover, we show that these modes split to very high sharp (a few THz wide) subpeaks in the transmittance spectra. The proposed novel multifunctional artificial crystals can have interesting applications and be used for creating common resonant cavities for spin waves and light to enhance the mutual influence between them.

  9. Engineered atom-light interactions in 1D photonic crystals

    NASA Astrophysics Data System (ADS)

    Martin, Michael J.; Hung, Chen-Lung; Yu, Su-Peng; Goban, Akihisa; Muniz, Juan A.; Hood, Jonathan D.; Norte, Richard; McClung, Andrew C.; Meenehan, Sean M.; Cohen, Justin D.; Lee, Jae Hoon; Peng, Lucas; Painter, Oskar; Kimble, H. Jeff

    2014-05-01

    Nano- and microscale optical systems offer efficient and scalable quantum interfaces through enhanced atom-field coupling in both resonators and continuous waveguides. Beyond these conventional topologies, new opportunities emerge from the integration of ultracold atomic systems with nanoscale photonic crystals. One-dimensional photonic crystal waveguides can be engineered for both stable trapping configurations and strong atom-photon interactions, enabling novel cavity QED and quantum many-body systems, as well as distributed quantum networks. We present the experimental realization of such a nanophotonic quantum interface based on a nanoscale photonic crystal waveguide, demonstrating a fractional waveguide coupling of Γ1 D /Γ' of 0 . 32 +/- 0 . 08 , where Γ1 D (Γ') is the atomic emission rate into the guided (all other) mode(s). We also discuss progress towards intra-waveguide trapping of ultracold Cs. This work was supported by the IQIM, an NSF Physics Frontiers Center with support from the Moore Foundation, the DARPA ORCHID program, the AFOSR QuMPASS MURI, the DoD NSSEFF program, NSF, and the Kavli Nanoscience Institute (KNI) at Caltech.

  10. Recent Advances in Biosensing With Photonic Crystal Surfaces: A Review.

    PubMed

    Cunningham, B T; Zhang, M; Zhuo, Y; Kwon, L; Race, C

    2016-05-15

    Photonic crystal surfaces that are designed to function as wavelength-selective optical resonators have become a widely adopted platform for label-free biosensing, and for enhancement of the output of photon-emitting tags used throughout life science research and in vitro diagnostics. While some applications, such as analysis of drug-protein interactions, require extremely high resolution and the ability to accurately correct for measurement artifacts, others require sensitivity that is high enough for detection of disease biomarkers in serum with concentrations less than 1 pg/ml. As the analysis of cells becomes increasingly important for studying the behavior of stem cells, cancer cells, and biofilms under a variety of conditions, approaches that enable high resolution imaging of live cells without cytotoxic stains or photobleachable fluorescent dyes are providing new tools to biologists who seek to observe individual cells over extended time periods. This paper will review several recent advances in photonic crystal biosensor detection instrumentation and device structures that are being applied towards direct detection of small molecules in the context of high throughput drug screening, photonic crystal fluorescence enhancement as utilized for high sensitivity multiplexed cancer biomarker detection, and label-free high resolution imaging of cells and individual nanoparticles as a new tool for life science research and single-molecule diagnostics.

  11. Photosensitive and thermal nonlinear effects in chalcogenide photonic crystal cavities.

    PubMed

    Lee, Michael W; Grillet, Christian; Monat, Christelle; Mägi, Eric; Tomljenovic-Hanic, Snjezana; Gai, Xin; Madden, Steve; Choi, Duk-Yong; Bulla, Douglas; Luther-Davies, Barry; Eggleton, Benjamin J

    2010-12-06

    We investigate the photosensitive and thermo-optic nonlinear properties of chalcogenide glass photonic crystal (PhC) cavities at telecommunications wavelengths. We observe a photosensitive refractive index change in AMTIR-1 (Ge(33)As(12)Se(55)) material in the near-infrared, which is enhanced by light localization in the PhC cavity and manifests in a permanent blue-shift of the nanocavity resonance. Thermo-optic non-linear properties are thoroughly investigated by i) carrying out thermal bistable switching experiments, from which we determined thermal switching times of 63 μs and 93 μs for switch on and switch off respectively and ii) by studying heating of the cavity with a high peak power pulsed laser input, which shows that two-photon absorption is the dominant heating mechanism. Our measurements and analysis highlight the detrimental impact of near-infrared photosensitivity and two-photon absorption on cavity based nonlinear optical switching schemes. We conclude that glass compositions with lower two-photon absorption and more stable properties (reduced photosensitivity) are therefore required for nonlinear applications in chalcogenide photonic crystal cavities.

  12. Negative Refraction Angular Characterization in One-Dimensional Photonic Crystals

    PubMed Central

    Lugo, Jesus Eduardo; Doti, Rafael; Faubert, Jocelyn

    2011-01-01

    Background Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity developed here. We also analytically derived the negative refraction correctness condition that gives the angular region where negative refraction occurs. Methodology/Principal Findings By using standard photonic techniques we experimentally determined the relationship between incidence and negative refraction angles and found the negative refraction range by applying the correctness condition. In order to compare both theories with experimental results an output refraction correction was utilized. The correction uses Snell's law and an effective refractive index based on two effective dielectric constants. We found good agreement between experiment and both theories in the negative refraction zone. Conclusions/Significance Since both theories and the experimental observations agreed well in the negative refraction region, we can use both negative refraction theories plus the output correction to predict negative refraction angles. This can be very useful from a practical point of view for space filtering applications such as a photonic demultiplexer or for sensing applications. PMID:21494332

  13. Negative refraction angular characterization in one-dimensional photonic crystals.

    PubMed

    Lugo, Jesus Eduardo; Doti, Rafael; Faubert, Jocelyn

    2011-04-06

    Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity developed here. We also analytically derived the negative refraction correctness condition that gives the angular region where negative refraction occurs. By using standard photonic techniques we experimentally determined the relationship between incidence and negative refraction angles and found the negative refraction range by applying the correctness condition. In order to compare both theories with experimental results an output refraction correction was utilized. The correction uses Snell's law and an effective refractive index based on two effective dielectric constants. We found good agreement between experiment and both theories in the negative refraction zone. Since both theories and the experimental observations agreed well in the negative refraction region, we can use both negative refraction theories plus the output correction to predict negative refraction angles. This can be very useful from a practical point of view for space filtering applications such as a photonic demultiplexer or for sensing applications.

  14. Crystallization of the C-terminal domain of the bacteriophage T7 fibre protein gp17

    PubMed Central

    Garcia-Doval, Carmela; van Raaij, Mark J.

    2012-01-01

    Bacteriophage T7 attaches to its host using the C-terminal domains of its six fibres, which are trimers of the gp17 protein. A C-terminal fragment of gp17 consisting of amino acids 371–553 has been expressed, purified and crystallized. Crystals of two forms were obtained, belonging to space group P212121 (unit-cell parameters a = 61.2, b = 86.0, c = 118.4 Å) and space group C2221 (unit-cell parameters a = 68.3, b = 145.6, c = 172.1 Å). They diffracted to 1.9 and 2.0 Å resolution, respectively. Both crystals are expected to contain one trimer in the asymmetric unit. Multiwavelength anomalous dispersion phasing with a mercury derivative is in progress. PMID:22297990

  15. Crystallization of the C-terminal domain of the bacteriophage T7 fibre protein gp17.

    PubMed

    Garcia-Doval, Carmela; van Raaij, Mark J

    2012-02-01

    Bacteriophage T7 attaches to its host using the C-terminal domains of its six fibres, which are trimers of the gp17 protein. A C-terminal fragment of gp17 consisting of amino acids 371-553 has been expressed, purified and crystallized. Crystals of two forms were obtained, belonging to space group P2(1)2(1)2(1) (unit-cell parameters a = 61.2, b = 86.0, c = 118.4 Å) and space group C222(1) (unit-cell parameters a = 68.3, b = 145.6, c = 172.1 Å). They diffracted to 1.9 and 2.0 Å resolution, respectively. Both crystals are expected to contain one trimer in the asymmetric unit. Multiwavelength anomalous dispersion phasing with a mercury derivative is in progress.

  16. Crystallization of the head and galectin-like domains of porcine adenovirus isolate NADC-1 fibre

    PubMed Central

    Guardado-Calvo, Pablo; Llamas-Saiz, Antonio L.; Fox, Gavin C.; Glasgow, Joel N.; van Raaij, Mark J.

    2009-01-01

    The porcine adenovirus NADC-1 isolate, a strain of porcine adenovirus type 4, has a fibre with an atypical architecture. In addition to a classical virus-attachment region, shaft and head domains, it contains an additional galectin-like domain C-­terminal to the head domain and connected to the head domain by a long RGD-containing loop. The galectin-like domain contains two putative carbohydrate-recognition domains. The head and galectin-like domains have been independently crystallized. Diffraction data have been obtained to 3.2 Å resolution from crystals of the head domain and to 1.9 Å resolution from galectin-like domain crystals. PMID:19923738

  17. Electrothermally Driven Fluorescence Switching by Liquid Crystal Elastomers Based One Dimensional Photonic Crystals.

    PubMed

    Lin, Changxu; Jiang, Yin; Tao, Cheng-An; Yin, Xianpeng; Lan, Yue; Wang, Chen; Wang, Shiqiang; Liu, Xiang-Yang; Li, Guangtao

    2017-03-15

    In this article, an active organic-inorganic one-dimensional photonic crystals structure is fabricated to offer electrothermal fluorescence switching. The film is obtained by spin-coating of liquid crystal elastomers (LCEs) and TiO2 nanoparticles alternatively. By utilizing the property of LCEs that can change their size and shape reversibly under external thermal stimulations, the λmax of photonic band-gap of these films is tuned by voltage through electrothermal conversion. The shifted photonic band-gap further changes the matching degree between the photonic band-gap of the film and the emission spectrum of organic dye mounting on the film. With rhodamine B as an example, the enhancement factor of its fluorescence emission is controlled by variating the matching degree. Thus, the fluorescence intensity is actively switched by voltage applied on the system, in a fast, adjustable and reversible manner. The control chain of using the electrothermal stimulus to adjust fluorescence intensity via controlling the photonic band-gap is proved by the scanning electron microscope (SEM) and the UV-Vis reflectance. This mechanism is also corresponded to the results from the Finite-Difference Time-Domain (FDTD) simulation. The comprehensive usage of photonic crystals and liquid crystal elastomers opened a new possibility for active optical devices.

  18. Polarization Engineering in Photonic Crystal Waveguides for Spin-Photon Entanglers.

    PubMed

    Young, A B; Thijssen, A C T; Beggs, D M; Androvitsaneas, P; Kuipers, L; Rarity, J G; Hughes, S; Oulton, R

    2015-10-09

    By performing a full analysis of the projected local density of states (LDOS) in a photonic crystal waveguide, we show that phase plays a crucial role in the symmetry of the light-matter interaction. By considering a quantum dot (QD) spin coupled to a photonic crystal waveguide (PCW) mode, we demonstrate that the light-matter interaction can be asymmetric, leading to unidirectional emission and a deterministic entangled photon source. Further we show that understanding the phase associated with both the LDOS and the QD spin is essential for a range of devices that can be realized with a QD in a PCW. We also show how suppression of quantum interference prevents dipole induced reflection in the waveguide, and highlight a fundamental breakdown of the semiclassical dipole approximation for describing light-matter interactions in these spin dependent systems.

  19. High Quality Factor Metallodielectric Hybrid Plasmonic-Photonic Crystals

    SciTech Connect

    Yu, Xindi; Shi, Lei; Han, Dezhuan; Zi, Jian; Braun, Paul V.

    2010-05-11

    A 2D polystyrene colloidal crystal self-assembled on a flat gold surface supports multiple photonic and plasmonic propagating resonance modes. For both classes of modes, the quality factors can exceed 100, higher than the quality factor of surface plasmons (SP) at a polymer–gold interface. The spatial energy distribution of those resonance modes are carefully studied by measuring the optical response of the hybrid plasmonic–photonic crystal after coating with dielectric materials under different coating profiles. Computer simulations with results closely matching those of experiments provide a clear picture of the field distribution of each resonance mode. For the SP modes, there is strong confinement of electromagnetic energy near the metal surface, while for optical modes, the field is confined inside the spherical particles, far away from the metal. Coating of dielectric material on the crystal results in a large shift in optical features. A surface sensor based on the hybrid plasmonic–photonic crystal is proposed, and it is shown to have atomic layer sensitivity. An example of ethanol vapor sensing based on physisorption of ethanol onto the sensor surface is demonstrated.

  20. Photon assisted hopping conduction mechanism in Tl2SSe crystals

    NASA Astrophysics Data System (ADS)

    Qasrawi, A. F.; Ziqan, Abdelhalim M.; Jazzar, Suha Kh.; Gasanly, N. M.

    2015-02-01

    In this article, the powder X-ray diffraction data and the dark and the photo-excited electrical conduction parameters of Tl2SSe crystal are reported. The dark and photon excited electrical conduction in the tetragonal crystal are found to be dominated by thermionic emission assisted variable range hopping conduction (VRH). The dark Mott's VRH parameters representing by the degree of disorder (To), the density of localized states near the Fermi level (N (EF)), the average hopping range (R) and average hopping energy (W) exhibited wide tunability via incremental photon intensity. Particularly, while the dark values of T0 , W and R significantly decreased from 2.32 ×108 to 1.52 ×105 K, 114 to 18.25 meV and from 66.15 to 10.58 A°, respectively, the values of N (EF) increased from 7.23 ×1018 to 1.10 ×1022cm-3 /eV when the crystal was photo-excited with a 53.6 mW/cm2 light intensity. These variations in the hopping parameters via photon excitations are promisig for using the crystal in the fabrication of well controlled, widely tunable, low energy consuming and highly efficient electronic devices.

  1. High-efficiency beam bending using graded photonic crystals.

    PubMed

    Oner, B B; Turduev, M; Kurt, H

    2013-05-15

    We explore beam-bending properties of graded index (GRIN) waveguide with hyperbolic secant profile. The transmission efficiency and bandwidth features are extracted for GRIN photonic crystal (PC) media composed of dielectric rods. Light guiding performance of the GRIN PC medium is analyzed for 90° and 180° waveguide bends. The finite-difference time-domain method is deployed to investigate the performance of the designed GRIN waveguides. By the help of proposed photonic configuration, bending of light is achieved with a high efficiency within a broad bandwidth, which promotes the use of GRIN PC structures for efficient light-bending purposes.

  2. Spatial filtering of light by chirped photonic crystals

    SciTech Connect

    Staliunas, Kestutis; Sanchez-Morcillo, Victor J.

    2009-05-15

    We propose an efficient method for spatial filtering of light beams by propagating them through two-dimensional (also three dimensional) chirped photonic crystals, i.e., through the photonic structures with fixed transverse lattice period and with the longitudinal lattice period varying along the direction of the beam propagation. We prove the proposed idea by numerically solving the paraxial propagation equation in refraction-index-modulated media and we evaluate the efficiency of the process by harmonic-expansion analysis. The technique can be also applied for filtering (for cleaning) of the packages of atomic waves (Bose condensates), also to improve the directionality of acoustic and mechanical waves.

  3. Generation of higher odd harmonics in a defective photonic crystal

    SciTech Connect

    Ramanujam, N. R.; Wilson, K. S. Joseph

    2015-06-24

    A photonic crystal (AB){sup 2}(DB)(AB){sup 2} with high refractive index medium as silicon and low refractive medium as air is considered. Using the transfer matrix method, the transmission properties as a function of wavelength with photonic band gaps has been obtained. We are able to demonstrate the generation of third, fifth, seventh and ninth harmonics in the present work. We show that if the air medium is removed in the defect, the defect modes are generated but not harmonics. It can be designed to have a frequency conversion, and have a potential for becoming the basis for the next generation of optical devices.

  4. High-Q silicon carbide photonic-crystal cavities

    SciTech Connect

    Lee, Jonathan Y.; Lu, Xiyuan; Lin, Qiang

    2015-01-26

    We demonstrate one-dimensional photonic-crystal nanobeam cavities in amorphous silicon carbide. The fundamental mode exhibits intrinsic optical quality factor as high as 7.69 × 10{sup 4} with mode volume ∼0.60(λ/n){sup 3} at wavelength 1.5 μm. A corresponding Purcell factor value of ∼10{sup 4} is the highest reported to date in silicon carbide optical cavities. The device exhibits great potential for integrated nonlinear photonics and cavity nano-optomechanics.

  5. Stretchable photonic crystal cavity with wide frequency tunability.

    PubMed

    Yu, Chun L; Kim, Hyunwoo; de Leon, Nathalie; Frank, Ian W; Robinson, Jacob T; McCutcheon, Murray; Liu, Mingzhao; Lukin, Mikhail D; Loncar, Marko; Park, Hongkun

    2013-01-09

    We report a new approach for realizing a flexible photonic crystal (PC) cavity that enables wide-range tuning of its resonance frequency. Our PC cavity consists of a regular array of silicon nanowires embedded in a polydimethylsiloxane (PDMS) matrix and exhibits a cavity resonance in the telecommunication band that can be reversibly tuned over 60 nm via mechanical stretching-a record for two-dimensional (2D) PC structures. These mechanically reconfigurable devices could find potential applications in integrated photonics, sensing in biological systems, and smart materials.

  6. Photoscattering effect in supercontinuum-generating photonic crystal fiber

    PubMed Central

    Tu, H.; Marks, D. L.; Jiang, Z.; Boppart, S. A.

    2010-01-01

    A photosensitivity different from that responsible for fiber grating inscription is found in a supercontinuum-generating photonic crystal fiber transmitting intense 818 nm femtosecond pulses. This photosensitivity progressively generates a waveguide at the entrance of the fiber to scatter light of specific wavelengths and is termed as the photoscattering effect. This effect is linked to the ~800 nm photosensitivity in the microlithography of bulk silica glass. While the effect somewhat limits fiber-optic supercontinuum applications, it can be beneficial to produce new photonic devices. PMID:21350681

  7. Photonic crystal digital alloys and their band structure properties.

    PubMed

    Lee, Jeongkug; Kim, Dong-Uk; Jeon, Heonsu

    2011-09-26

    We investigated semi-disordered photonic crystals (PCs), digital alloys, and made thorough comparisons with their counterparts, random alloys. A set of diamond lattice PC digital alloys operating in a microwave regime were prepared by alternately stacking two kinds of sub-PC systems composed of alumina and silica spheres of the same size. Measured transmission spectra as well as calculated band structures revealed that when the digital alloy period is short, band-gaps of the digital alloys are practically the same as those of the random alloys. This study indicates that the concept of digital alloys holds for photons in PCs as well.

  8. Light-assisted templated self assembly using photonic crystal slabs.

    PubMed

    Mejia, Camilo A; Dutt, Avik; Povinelli, Michelle L

    2011-06-06

    We explore a technique which we term light-assisted templated self-assembly. We calculate the optical forces on colloidal particles over a photonic crystal slab. We show that exciting a guided resonance mode of the slab yields a resonantly-enhanced, attractive optical force. We calculate the lateral optical forces above the slab and predict that stably trapped periodic patterns of particles are dependent on wavelength and polarization. Tuning the wavelength or polarization of the light source may thus allow the formation and reconfiguration of patterns. We expect that this technique may be used to design all-optically reconfigurable photonic devices.

  9. Optomechanics of two- and three-dimensional soft photonic crystals

    NASA Astrophysics Data System (ADS)

    Krishnan, Dwarak

    Soft photonic crystals are a class of periodic dielectric structures that undergo highly nonlinear deformation due to strain or other external stimulus such as temperature, pH etc. This can in turn dramatically affect optical properties such as light transmittance. Moreover certain classes of lithographically fabricated structures undergo some structural distortion due to the effects of processing, eventually affecting the optical properties of the final photonic crystal. In this work, we study the deformation mechanics of soft photonic crystal structures using realistic physics-based models and leverage that understanding to explain the optomechanics of actual 2-D and 3-D soft photonic crystals undergoing similar symmetry breaking nonlinear deformations. We first study the optomechanics of two classes of 3-D soft photonic crystals: (1) hydrogel and (2) elastomer based material systems. The hydrogel based inverse face-centered-cubic structure undergoes swelling with change in pH of the surrounding fluid. The inverse structure is a network of bulky domains with thin ligament-like connections, and it undergoes a pattern transformation from FCC to L11 as a result of swelling. A continuum scale poroelasticity based coupled fluid-diffusion FEM model is developed to accurately predict this mechanical behavior. Light transmittance simulation results qualitatively explain the experimentally observed trends in the optical behavior with pH change. The elastomer based, lithographically fabricated material experiences shrinkage induced distortion upon processing. This behavior is modeled using FEM with the material represented by a neo-Hookean constitutive law. The light transmittance calculations for normal incidence are carried out using the transfer matrix method and a good comparison is obtained for the positions of first and second order reflectance peaks. A unit cell based approach is taken to compute the photonic bandstructure to estimate light propagation through the

  10. Holographic polymer-dispersed liquid crystal Bragg grating integrated inside a solid core photonic crystal fiber.

    PubMed

    Zito, Gianluigi; Pissadakis, Stavros

    2013-09-01

    A polymer/liquid crystal-based fiber Bragg grating (PLC-FBG) is fabricated with visible two-beam holography by photo-induced modulation of a prepolymer/liquid crystal solution infiltrated into the hollow channels of a solid core photonic crystal fiber (PCF). The fabrication process and effects related to the photonic bandgap guidance into the infiltrated PCF, and characterization of the PLC-FBG, are discussed. Experimental data presented here demonstrate that the liquid crystal inclusions of the PLC-FBG lead to high thermal and bending sensitivities. The microscopic behavior of the polymer/liquid crystal phase separation inside the PCF capillaries is examined using scanning electron microscopy, and is discussed further.

  11. Quasiperiodic one-dimensional photonic crystals with adjustable multiple photonic bandgaps.

    PubMed

    Vyunishev, Andrey M; Pankin, Pavel S; Svyakhovskiy, Sergey E; Timofeev, Ivan V; Vetrov, Stepan Ya

    2017-09-15

    We propose an elegant approach to produce photonic bandgap (PBG) structures with multiple photonic bandgaps by constructing quasiperiodic photonic crystals (QPPCs) composed of a superposition of photonic lattices with different periods. Generally, QPPC structures exhibit both aperiodicity and multiple PBGs due to their long-range order. They are described by a simple analytical expression, instead of quasiperiodic tiling approaches based on substitution rules. Here we describe the optical properties of QPPCs exhibiting two PBGs that can be tuned independently. PBG interband spacing and its depth can be varied by choosing appropriate reciprocal lattice vectors and their amplitudes. These effects are confirmed by the proof-of-concept measurements made for the porous silicon-based QPPC of the appropriate design.

  12. Electromagnetic Wave Propagation in Two-Dimensional Photonic Crystals

    SciTech Connect

    Foteinopoulou, Stavroula

    2003-01-01

    In this dissertation, they have undertaken the challenge to understand the unusual propagation properties of the photonic crystal (PC). The photonic crystal is a medium where the dielectric function is periodically modulated. These types of structures are characterized by bands and gaps. In other words, they are characterized by frequency regions where propagation is prohibited (gaps) and regions where propagation is allowed (bands). In this study they focus on two-dimensional photonic crystals, i.e., structures with periodic dielectric patterns on a plane and translational symmetry in the perpendicular direction. They start by studying a two-dimensional photonic crystal system for frequencies inside the band gap. The inclusion of a line defect introduces allowed states in the otherwise prohibited frequency spectrum. The dependence of the defect resonance state on different parameters such as size of the structure, profile of incoming source, etc., is investigated in detail. For this study, they used two popular computational methods in photonic crystal research, the Finite Difference Time Domain method (FDTD) and the Transfer Matrix Method (TMM). The results for the one-dimensional defect system are analyzed, and the two methods, FDTD and TMM, are compared. Then, they shift their attention only to periodic two-dimensional crystals, concentrate on their band properties, and study their unusual refractive behavior. Anomalous refractive phenomena in photonic crystals included cases where the beam refracts on the ''wrong'' side of the surface normal. The latter phenomenon, is known as negative refraction and was previously observed in materials where the wave vector, the electric field, and the magnetic field form a left-handed set of vectors. These materials are generally called left-handed materials (LHM) or negative index materials (NIM). They investigated the possibility that the photonic crystal behaves as a LHM, and how this behavior relates with the observed

  13. Structuring β-Ga2O3 photonic crystal photocatalyst for efficient degradation of organic pollutants.

    PubMed

    Li, Xiaofang; Zhen, Xiuzheng; Meng, Sugang; Xian, Jiangjun; Shao, Yu; Fu, Xianzhi; Li, Danzhen

    2013-09-03

    Coupling photocatalysts with photonic crystals structure is based on the unique property of photonic crystals in confining, controlling, and manipulating the incident photons. This combination enhances the light absorption in photocatalysts and thus greatly improves their photocatalytic performance. In this study, Ga2O3 photonic crystals with well-arranged skeleton structures were prepared via a dip-coating infiltration method. The positions of the electronic band absorption for Ga2O3 photonic crystals could be made to locate on the red edge, on the blue edge, and away from the edge of their photonic band gaps by changing the pore sizes of the samples, respectively. Particularly, the electronic band absorption of the Ga2O3 photonic crystal with a pore size of 135 nm was enhanced more than other samples by making it locate on the red edge of its photonic band gap, which was confirmed by the higher instantaneous photocurrent and photocatalytic activity for the degradation of various organic pollutants under ultraviolet light irradiation. Furthermore, the degradation mechanism over Ga2O3 photonic crystals was discussed. The design of Ga2O3 photonic crystals presents a prospective application of photonic crystals in photocatalysis to address light harvesting and quantum efficiency problems through manipulating photons or constructing photonic crystal structure as groundwork.

  14. Zak phase induced multiband waveguide by two-dimensional photonic crystals.

    PubMed

    Yang, Yuting; Xu, Tao; Xu, Yun Fei; Hang, Zhi Hong

    2017-08-15

    Interface states in photonic crystals provide efficient approaches to control the flow of light. Photonic Zak phase determines the bulk band properties of photonic crystals, and, by assembling two photonic crystals with different bulk band properties together, deterministic interface states can be realized. By translating each unit cell of a photonic crystal by half the lattice constant, another photonic crystal with identical common gaps but a different Zak phase at each photonic band can be created. By assembling these two photonic crystals together, multiband waveguide can thus be easily created and then experimentally characterized. Our experimental results have good agreement with numerical simulations, and the propagation properties of these measured interface states indicate that this new type of interface state will be a good candidate for future applications of optical communications.

  15. Magneto-optical properties of biogenic photonic crystals in algae

    SciTech Connect

    Iwasaka, M.; Mizukawa, Y.

    2014-05-07

    In the present study, the effects of strong static magnetic fields on the structural colors of the cell covering crystals on a microalgae, coccolithophore, were investigated. The coccolithophore, Emiliania huxleyi, generates a precise assembly of calcite crystals called coccoliths by biomineralization. The coccoliths attached to the cells exhibited structural colors under side light illumination, and the colors underwent dynamic transitions when the magnetic fields were changed between 0 T and 5 T, probably due to diamagnetically induced changes of their inclination under the magnetic fields. The specific light-scattering property of individual coccoliths separated from the cells was also observed. Light scattering from a condensed suspension of coccoliths drastically decreased when magnetic fields of more than 4 T were applied parallel to the direction of observation. The magnetically aligned cell-covering crystals of the coccolithophores exhibited the properties of both a photonic crystal and a minimum micromirror.

  16. Two-photon excited UV fluorescence for protein crystal detection

    SciTech Connect

    Madden, Jeremy T.; DeWalt, Emma L.; Simpson, Garth J.

    2011-10-01

    Complementary measurements using SONICC and TPE-UVF allow the sensitive and selective detection of protein crystals. Two-photon excited ultraviolet fluorescence (TPE-UVF) microscopy is explored for sensitive protein-crystal detection as a complement to second-order nonlinear optical imaging of chiral crystals (SONICC). Like conventional ultraviolet fluorescence (UVF), TPE-UVF generates image contrast based on the intrinsic fluorescence of aromatic residues, generally producing higher fluorescence emission within crystals than the mother liquor by nature of the higher local protein concentration. However, TPE-UVF has several advantages over conventional UVF, including (i) insensitivity to optical scattering, allowing imaging in turbid matrices, (ii) direct compatibility with conventional optical plates and windows by using visible light for excitation, (iii) elimination of potentially damaging out-of-plane UV excitation, (iv) improved signal to noise through background reduction from out-of-plane excitation and (v) relatively simple integration into instrumentation developed for SONICC.

  17. Fabrication of photonic crystal structures by tertiary-butyl arsine-based metal-organic vapor-phase epitaxy for photonic crystal lasers

    NASA Astrophysics Data System (ADS)

    Yoshida, Masahiro; Kawasaki, Masato; De Zoysa, Menaka; Ishizaki, Kenji; Hatsuda, Ranko; Noda, Susumu

    2016-06-01

    The fabrication of air/semiconductor two-dimensional photonic crystal structures by air-hole-retained crystal regrowth using tertiary-butyl arsine-based metal-organic vapor-phase epitaxy for GaAs-based photonic crystal lasers is investigated. Photonic crystal air holes with filling factors of 10-13%, depths of ˜280 nm, and widths of 120-150 nm are successfully embedded. The embedded air holes exhibit characteristic shapes due to the anisotropy of crystal growth. Furthermore, a low lasing threshold of ˜0.5 kA/cm2 is achieved with the fabricated structures.

  18. A composite hydrogels-based photonic crystal multi-sensor

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Zhu, Zhigang; Zhu, Xiangrong; Yu, Wei; Liu, Mingju; Ge, Qiaoqiao; Shih, Wei-Heng

    2015-04-01

    A facile route to prepare stimuli-sensitive poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) gelated crystalline colloidal array photonic crystal material was developed. PVA was physically gelated by utilizing an ethanol-assisted method, the resulting hydrogel/crystal composite film was then functionalized with PAA to form an interpenetrating hydrogel film. This sensor film is able to efficiently diffract the visible light and rapidly respond to various environmental stimuli such as solvent, pH and strain, and the accompanying structural color shift can be repeatedly changed and easily distinguished by naked eye.

  19. Photonic crystal heterostructures from self-assembled opals

    NASA Astrophysics Data System (ADS)

    Khokhar, Ali Z.; Rahman, Faiz; Johnson, Nigel P.

    2011-02-01

    This paper describes the fabrication of opal-based photonic crystal heterostructures. These heterostructures were created by using multilayer deposition of silica and polystyrene spheres. The fabricated structures involved both different lattice constants and different dielectric constants. Single and double heterostructures working in the visible region were fabricated by using techniques described here. The optical properties of these heterostructures were investigated experimentally and showed the superposition of the properties of each individual crystal region as well as optical signatures due to inter-layer defects.

  20. Large mode-volume, large beta, photonic crystal laser resonator

    SciTech Connect

    Dezfouli, Mohsen Kamandar; Dignam, Marc M.

    2014-12-15

    We propose an optical resonator formed from the coupling of 13, L2 defects in a triangular-lattice photonic crystal slab. Using a tight-binding formalism, we optimized the coupled-defect cavity design to obtain a resonator with predicted single-mode operation, a mode volume five times that of an L2-cavity mode and a beta factor of 0.39. The results are confirmed using finite-difference time domain simulations. This resonator is very promising for use as a single mode photonic crystal vertical-cavity surface-emitting laser with high saturation output power compared to a laser consisting of one of the single-defect cavities.

  1. Method to fabricate a tilted logpile photonic crystal

    DOEpatents

    Williams, John D.; Sweatt, William C.

    2010-10-26

    A method to fabricate a tilted logpile photonic crystal requires only two lithographic exposures and does not require mask repositioning between exposures. The mask and photoresist-coated substrate are spaced a fixed and constant distance apart using a spacer and the stack is clamped together. The stack is then tilted at a crystallographic symmetry angle (e.g., 45 degrees) relative to the X-ray beam and rotated about the surface normal until the mask is aligned with the X-ray beam. The stack is then rotated in plane by a small stitching angle and exposed to the X-ray beam to pattern the first half of the structure. The stack is then rotated by 180.degree. about the normal and a second exposure patterns the remaining half of the structure. The method can use commercially available DXRL scanner technology and LIGA processes to fabricate large-area, high-quality tilted logpile photonic crystals.

  2. Photonic crystal as a refractometric sensor operated in reflection mode

    NASA Astrophysics Data System (ADS)

    Taya, Sofyan A.; Shaheen, Somaia A.; Alkanoo, Anas A.

    2017-01-01

    In this work, one dimensional ternary photonic crystal is investigated as refractometric sensor. Using Chebyshev polynomials of the second kind, the transmission of an incident wave from a ternary photonic crystal is studied in details. The variation of the transmissivity with the angle of incidence and wavelength of incident light for different values of number of periods is investigated. Water and air are assumed to be analyte layers. It is found that for water as an analyte, the peak angular shift is Δθ = 1.6° and the peak wavelength shift is Δλ = 2.6 nm for a change in the index of refraction Δn = 0.02. Moreover, the peak angular shift can reach up to Δθ = 7.05° for specific values of the layer thicknesses.

  3. Enhanced electrophoretic DNA separation in photonic crystal fiber.

    PubMed

    Sun, Yi; Nguyen, Nam-Trung; Kwok, Yien Chian

    2009-07-01

    Joule heating generated by the electrical current in capillary electrophoresis leads to a temperature gradient along the separation channel and consequently affects the separation quality. We describe a method of reducing the Joule heating effect by incorporating photonic crystal fiber into a micro capillary electrophoresis chip. The photonic crystal fiber consists of a bundle of extremely narrow hollow channels, which ideally work as separation columns. Electrophoretic separation of DNA fragments was simultaneously but independently carried out in 54 narrow capillaries with a diameter of 3.7 microm each. The capillary bundle offers more efficient heat dissipation owing to the high surface-to-volume ratio. Under the same electrical field strength, notable improvement in resolution was obtained in the capillary bundle chip.

  4. Tunable photonic crystal based on capillary attraction and repulsion.

    PubMed

    Chan, Chia-Tsung; Yeh, J Andrew

    2010-09-27

    A tunable photonic crystal (PhC) based on the capillary action of liquid is demonstrated in this work. The porous silicon-based photonic crystal (PSiPhC) features periodic porosity and is fabricated by electrochemical etching on 6" silicon wafer followed by hydrophobic modification on the silicon surface. The capillary action is achieved by varying the mixture ratio of liquids with high and low surface tension, yielding either capillary attraction or capillary repulsion in the nanoscale voids of the PSiPhC. By delivering the liquid mixture into and out of the voids of the PSiPhC, the reflective color of the PSiPhC can be dynamically tuned.

  5. Electrically pumped photonic crystal laser constructed with organic semiconductors

    NASA Astrophysics Data System (ADS)

    Cai, Yuan-yuan; Chen, Xiao; Li, Ning; Li, Chang-wei; Wang, Yi-quan

    2017-03-01

    We experimentally demonstrate the lasing action of electrically pumped octagonal quasi-crystal microcavities formed in a layer of conjugated polymer poly[2-methoxy- 5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) sandwiched between two electrodes. Lasing from a point-defect microcavity is observed at a wavelength of 606 nm with a narrow linewidth of 0.5 nm, limited by the spectrometer resolution. Due to the properties of the photonic bandgap and localization in photonic crystals, the threshold current for lasing is low at 0.8 mA. The ion injection in the luminescent polymer layer by focused ion beam (FIB) etching technology also contributes to enhancement of the carrier density as well as the mobility, resulting in an increase of MEH-PPV conductivity and a decrease of turn-on voltage.

  6. Photonic Crystal Hydrogel Enhanced Plasmonic Staining for Multiplexed Protein Analysis.

    PubMed

    Mu, Zhongde; Zhao, Xiangwei; Huang, Yin; Lu, Meng; Gu, Zhongze

    2015-12-02

    Plasmonic nanoparticles are commonly used as optical transducers in sensing applications. The optical signals resulting from the interaction of analytes and plamsonic nanoparticles are influenced by surrounding physical structures where the nanoparticles are located. This paper proposes inverse opal photonic crystal hydrogel as 3D structure to improve Raman signals from plasmonic staining. By hybridization of the plasmonic nanoparticles and photonic crystal, surface-enhanced Raman spectroscopy (SERS) analysis of multiplexed protein is realized. It benefits the Raman analysis by providing high-density "hot spots" in 3D and extra enhancement of local electromagnetic field at the band edge of PhC with periodic refractive index distribution. The strong interaction of light and the hybrid 3D nanostructure offers new insights into plasmonic nanoparticle applications and biosensor design.

  7. Temperature sensitivity of photonic crystal fibers infiltrated with ethanol solutions

    NASA Astrophysics Data System (ADS)

    Chu Van, Lanh; Stefaniuk, Tomasz; Kasztelanic, Rafał; Cao Long, Van; Klimczak, Mariusz; Le Van, Hieu; Trippenbach, Marek; Buczyński, Ryszard

    2015-12-01

    In this paper we present a numerical study on the optimization of dispersion of a photonic crystal fiber infiltrated with water-ethanol mixtures. The advantage of such an approach stems from the fact that the dependence of the refractive index on temperature is larger in liquids than in solid materials. Here, we examine photonic crystal fibers with a regular, hexagonal lattice and with various geometrical and material parameters, such as different number of rings of holes, various lattice constants and the size of core and air-holes. Additionally, for the optimized structure with flat dispersion characteristics, we analyze the influence of temperature and concentration of the ethanol solution on the dispersion characteristic and the zero dispersion wavelength shift of the fundamental mode.

  8. Photonic crystal biosensor based on angular spectrum analysis.

    PubMed

    Hallynck, Elewout; Bienstman, Peter

    2010-08-16

    The need for cost effective and reliable biosensors in e.g. medical applications is an ever growing and everlasting one. Not only do we strive to increase sensitivity and detection limit of such sensors; ease of fabrication or implementation are equally important. In this work, we propose a novel, photonic crystal based biosensor that is able to operate at a single frequency, contrary to resonance based sensors. In a certain frequency range, guided photonic crystal modes can couple to free space modes resulting in a Lorentzian shape in the angular spectrum. This Lorentzian can shift due to refractive index changes and simulations have shown sensitivities of 65 degrees per refractive index unit and more.

  9. Asymmetric light propagation in chirped photonic crystal waveguides.

    PubMed

    Kurt, H; Yilmaz, D; Akosman, A E; Ozbay, E

    2012-08-27

    We report numerical and experimental investigations of asymmetric light propagation in a newly designed photonic structure that is formed by creating a chirped photonic crystal (PC) waveguide. The use of a non-symmetric distribution of unit cells of PC ensures the obtaining of asymmetric light propagation. Properly designing the spatial modulation of a PC waveguide inherently modifies the band structure. That in turn induces asymmetry for the light's followed path. The investigation of the transmission characteristics of this structure reveals optical diode like transmission behavior. The amount of power collected at the output of the waveguide centerline is different for the forward and backward propagation directions in the designed configuration. The advantageous properties of the proposed approach are the linear optic concept, compact configuration and compatibility with the integrated photonics. These features are expected to hold great potential for implementing practical optical rectifier-type devices.

  10. Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides.

    PubMed

    Suzuki, Keijiro; Baba, Toshihiko

    2010-12-06

    Optical nonlinearity can be enhanced by the combination of highly nonlinear chalcogenide glass and photonic crystal waveguides (PCWs) providing strong optical confinement and slow-light effects. In a Ag-As(2)Se(3) chalcogenide PCW, the effective nonlinear parameter γeff reaches 6.3 × 10(4) W(-1)m(-1), which is 200 times larger than that in Si photonic wire waveguides. In this paper, we report the detailed design, fabrication process, and the linear and nonlinear characteristics of this waveguide at silica fiber communication wavelengths. We show that the waveguide exhibits negligible two-photon absorption, and also high-efficiency self-phase modulation and four-wave mixing, which are assisted by low-dispersion slow light.

  11. Polarization beam splitting using a birefringent graded photonic crystal.

    PubMed

    Cassan, Eric; Van Do, Khanh; Dellinger, Jean; Le Roux, Xavier; de Fornel, Frédérique; Cluzel, Benoit

    2013-02-15

    The use of a birefringent graded photonic crystal (GPhC) is proposed for the realization of an efficient polarization beam splitter. This approach allows decoupling the two functions of efficient light injection for both polarizations and TE/TM beam splitting. A smooth light polarization splitting is naturally achieved due to the different curved trajectories followed within the graded medium by the TE and TM waves. A 160 nm operating bandwidth with insertion loss around 1 dB and interpolarization crosstalk below -15 dB is predicted by a finite difference time domain simulation. The unusually exploited electromagnetic phenomena are experimentally evidenced by scanning near-field optical measurements performed on samples fabricated using the silicon on insulator photonics technology. These experimental works open perspectives for the use of birefringent GPhCs to manage polarization diversity in silicon photonic circuits.

  12. Dispersion properties of transverse anisotropic liquid crystal core photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Karasawa, Naoki

    2016-04-01

    The dispersion properties of liquid crystal core photonic crystal fibers for different core diameters have been calculated by a full vectorial finite difference method. In calculations, air holes are assumed to be arranged in a regular hexagonal array in fused silica and a central hole is filled with liquid crystal to create a core. In this study, three types of transverse anisotropic configurations, where liquid crystal molecules are oriented in a transverse plane, and a planar configuration, where liquid crystal molecules are oriented in a propagation direction, are considered. The large changes of the dispersion properties are found when the orientation of the liquid crystal molecules is changed from a planar configuration to a uniform configuration, where all molecules are oriented in the same direction in a transverse plane. Since the orientation of liquid crystal molecules may be controlled by applying an electric field, it could be utilized for various applications including the spectral control of supercontinuum generation.

  13. Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation

    NASA Astrophysics Data System (ADS)

    Kanth Kumar, V. V. Ravi; George, A. K.; Reeves, W. H.; Knight, J. C.; Russell, P. St. J.; Omenetto, F. G.; Taylor, A. J.

    2002-12-01

    We report the fabrication and properties of soft glass photonic crystal fibers (PCF’s) for supercontinuum generation. The fibers have zero or anomalous group velocity dispersion at wavelengths around 1550 nm, and approximately an order of magnitude higher nonlinearity than attainable in comparable silica fibers. We demonstrate the generation of an ultrabroad supercontinuum spanning at least 350 nm to 2200 nm using a 1550 nm ultrafast pump source.

  14. Photonic crystal borax competitive binding carbohydrate sensing motif.

    PubMed

    Cui, Qingzhou; Ward Muscatello, Michelle M; Asher, Sanford A

    2009-05-01

    We developed a photonic crystal sensing method for diol containing species such as carbohydrates based on a poly(vinyl alcohol) (PVA) hydrogel containing an embedded crystalline colloidal array (CCA). The polymerized CCA (PCCA) diffracts visible light. We show that in the presence of borax the diffraction wavelength shifts as the concentration of glucose changes. The diffraction shifts result from the competitive binding of glucose to borate, which reduces the concentration of borate bound to the PVA diols.

  15. Photonic crystal borax competitive binding carbohydrate sensing motif†

    PubMed Central

    Cui, Qingzhou; Muscatello, Michelle M. Ward; Asher, Sanford A.

    2009-01-01

    We developed a photonic crystal sensing method for diol containing species such as carbohydrates based on a poly(vinyl alcohol) (PVA) hydrogel containing an embedded crystalline colloidal array (CCA). The polymerized CCA (PCCA) diffracts visible light. We show that in the presence of borax the diffraction wavelength shifts as the concentration of glucose changes. The diffraction shifts result from the competitive binding of glucose to borate, which reduces the concentration of borate bound to the PVA diols. PMID:19381378

  16. Dispersion Based Photonic-Crystal Structures for RF Applications

    DTIC Science & Technology

    2006-06-01

    localized coupled-cavities in three-dimensional photonic crystals," Phys. Rev. B 61, RI 1855-RI 1858 (2000). 15 U. Peschel, A. L. Reynolds, B. Arredondo , F...of the most rapidly advancing sectors in the electromagnetic arena. Herein, we demonstrated the applications of RF PhCs in improving the performance of...dielectric devices based on the unique dispersion properties of PhCs to achieve confinement, waveguiding, radiation, and filtering in the microwave to

  17. Cutoff frequency in metamaterials photonic crystals within Terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Aly, Arafa H.; Sabra, Walied; Elsayed, Hussein A.

    2017-06-01

    By employing the characteristics matrix method, we have investigated the transmission properties of one-dimensional dielectric-semiconductor metamaterial photonic crystals (PC) at Terahertz (THz) range theoretically. The numerical results show the appearance of cutoff frequency within THz range. Furthermore, the thicknesses of the constituents materials and the filling factor have a significant effect on the cutoff frequency. The proposed structure may be useful in many applications, particularly in THz frequency regions.

  18. Spatial solitons in chi(2) planar photonic crystals.

    PubMed

    Gallo, Katia; Assanto, Gaetano

    2007-11-01

    We analyze light self-confinement induced by multiple nonlinear resonances in a two-dimensional chi(2) photonic crystal. With reference to second-harmonic generation in a hexagonal lattice, we show that the system can not only support two-color (1+1)D solitary waves with enhanced confinement and steering capabilities but also enable novel features such as wavelength-dependent soliton routing.

  19. Multicolor filter all-garnet magneto-optical photonic crystals.

    PubMed

    Ansari, N; Khartsev, S I; Grishin, A M

    2012-09-01

    We demonstrate a multicolor optical filter and isolator based on a double-cavity magneto-optical (MO) photonic crystal. Being grown as a heteroepitaxial all-garnet multilayer, it compromises a strong MO response and high optical transmittance. Low-loss, high Faraday rotation passbands as well as strong light rejection within the stop band were achieved by optimization of distance between cavities and repetition number of distributed Bragg reflectors.

  20. Coherent and incoherent spectral broadening in a photonic crystal fiber.

    PubMed

    Gross, C; Best, Th; van Oosten, D; Bloch, I

    2007-07-01

    The coherence of the spectral broadening process is the key requisite for the application of supercontinua in frequency combs. We investigate the coherence of two subsequent supercontinuum pulses created in a photonic crystal fiber pumped by a femtosecond laser. We measure Young interference fringes from a Michelson-type interferometer at different wavelengths of the output spectrum and analyze their dependence on pump intensity and polarization. The visibility of these fringes is a direct measure of the coherence of the spectral broadening processes.