Sample records for photonic information processing

  1. Control of coherent information via on-chip photonic-phononic emitter-receivers.

    PubMed

    Shin, Heedeuk; Cox, Jonathan A; Jarecki, Robert; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T

    2015-03-05

    Rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon-phonon transduction, which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics--which supports GHz frequencies--we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes.

  2. Joining the quantum state of two photons into one

    NASA Astrophysics Data System (ADS)

    Vitelli, Chiara; Spagnolo, Nicolò; Aparo, Lorenzo; Sciarrino, Fabio; Santamato, Enrico; Marrucci, Lorenzo

    2013-07-01

    Photons are the ideal carriers of quantum information for communication. Each photon can have a single or multiple qubits encoded in its internal quantum state, as defined by optical degrees of freedom such as polarization, wavelength, transverse modes and so on. However, as photons do not interact, multiplexing and demultiplexing the quantum information across photons has not been possible hitherto. Here, we introduce and demonstrate experimentally a physical process, named `quantum joining', in which the two-dimensional quantum states (qubits) of two input photons are combined into a single output photon, within a four-dimensional Hilbert space. The inverse process is also proposed, in which the four-dimensional quantum state of a single photon is split into two photons, each carrying a qubit. Both processes can be iterated, and hence provide a flexible quantum interconnect to bridge multiparticle protocols of quantum information with multidegree-of-freedom ones, with possible applications in future quantum networking.

  3. National Photonics Skills Standard for Technicians.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This document defines "photonics" as the generation, manipulation, transport, detection, and use of light information and energy whose quantum unit is the photon. The range of applications of photonics extends from energy generation to detection to communication and information processing. Photonics is at the heart of today's…

  4. Neuromorphic photonic networks using silicon photonic weight banks.

    PubMed

    Tait, Alexander N; de Lima, Thomas Ferreira; Zhou, Ellen; Wu, Allie X; Nahmias, Mitchell A; Shastri, Bhavin J; Prucnal, Paul R

    2017-08-07

    Photonic systems for high-performance information processing have attracted renewed interest. Neuromorphic silicon photonics has the potential to integrate processing functions that vastly exceed the capabilities of electronics. We report first observations of a recurrent silicon photonic neural network, in which connections are configured by microring weight banks. A mathematical isomorphism between the silicon photonic circuit and a continuous neural network model is demonstrated through dynamical bifurcation analysis. Exploiting this isomorphism, a simulated 24-node silicon photonic neural network is programmed using "neural compiler" to solve a differential system emulation task. A 294-fold acceleration against a conventional benchmark is predicted. We also propose and derive power consumption analysis for modulator-class neurons that, as opposed to laser-class neurons, are compatible with silicon photonic platforms. At increased scale, Neuromorphic silicon photonics could access new regimes of ultrafast information processing for radio, control, and scientific computing.

  5. Pure sources and efficient detectors for optical quantum information processing

    NASA Astrophysics Data System (ADS)

    Zielnicki, Kevin

    Over the last sixty years, classical information theory has revolutionized the understanding of the nature of information, and how it can be quantified and manipulated. Quantum information processing extends these lessons to quantum systems, where the properties of intrinsic uncertainty and entanglement fundamentally defy classical explanation. This growing field has many potential applications, including computing, cryptography, communication, and metrology. As inherently mobile quantum particles, photons are likely to play an important role in any mature large-scale quantum information processing system. However, the available methods for producing and detecting complex multi-photon states place practical limits on the feasibility of sophisticated optical quantum information processing experiments. In a typical quantum information protocol, a source first produces an interesting or useful quantum state (or set of states), perhaps involving superposition or entanglement. Then, some manipulations are performed on this state, perhaps involving quantum logic gates which further manipulate or entangle the intial state. Finally, the state must be detected, obtaining some desired measurement result, e.g., for secure communication or computationally efficient factoring. The work presented here concerns the first and last stages of this process as they relate to photons: sources and detectors. Our work on sources is based on the need for optimized non-classical states of light delivered at high rates, particularly of single photons in a pure quantum state. We seek to better understand the properties of spontaneous parameteric downconversion (SPDC) sources of photon pairs, and in doing so, produce such an optimized source. We report an SPDC source which produces pure heralded single photons with little or no spectral filtering, allowing a significant rate enhancement. Our work on detectors is based on the need to reliably measure single-photon states. We have focused on optimizing the detection efficiency of visible light photon counters (VLPCs), a single-photon detection technology that is also capable of resolving photon number states. We report a record-breaking quantum efficiency of 91 +/- 3% observed with our detection system. Both sources and detectors are independently interesting physical systems worthy of study, but together they promise to enable entire new classes and applications of information based on quantum mechanics.

  6. Synchronization of optical photons for quantum information processing.

    PubMed

    Makino, Kenzo; Hashimoto, Yosuke; Yoshikawa, Jun-Ichi; Ohdan, Hideaki; Toyama, Takeshi; van Loock, Peter; Furusawa, Akira

    2016-05-01

    A fundamental element of quantum information processing with photonic qubits is the nonclassical quantum interference between two photons when they bunch together via the Hong-Ou-Mandel (HOM) effect. Ultimately, many such photons must be processed in complex interferometric networks. For this purpose, it is essential to synchronize the arrival times of the flying photons and to keep their purities high. On the basis of the recent experimental success of single-photon storage with high purity, we demonstrate for the first time the HOM interference of two heralded, nearly pure optical photons synchronized through two independent quantum memories. Controlled storage times of up to 1.8 μs for about 90 events per second were achieved with purities that were sufficiently high for a negative Wigner function confirmed with homodyne measurements.

  7. Synchronization of optical photons for quantum information processing

    PubMed Central

    Makino, Kenzo; Hashimoto, Yosuke; Yoshikawa, Jun-ichi; Ohdan, Hideaki; Toyama, Takeshi; van Loock, Peter; Furusawa, Akira

    2016-01-01

    A fundamental element of quantum information processing with photonic qubits is the nonclassical quantum interference between two photons when they bunch together via the Hong-Ou-Mandel (HOM) effect. Ultimately, many such photons must be processed in complex interferometric networks. For this purpose, it is essential to synchronize the arrival times of the flying photons and to keep their purities high. On the basis of the recent experimental success of single-photon storage with high purity, we demonstrate for the first time the HOM interference of two heralded, nearly pure optical photons synchronized through two independent quantum memories. Controlled storage times of up to 1.8 μs for about 90 events per second were achieved with purities that were sufficiently high for a negative Wigner function confirmed with homodyne measurements. PMID:27386536

  8. An on-chip coupled resonator optical waveguide single-photon buffer

    PubMed Central

    Takesue, Hiroki; Matsuda, Nobuyuki; Kuramochi, Eiichi; Munro, William J.; Notomi, Masaya

    2013-01-01

    Integrated quantum optical circuits are now seen as one of the most promising approaches with which to realize single-photon quantum information processing. Many of the core elements for such circuits have been realized, including sources, gates and detectors. However, a significant missing function necessary for photonic quantum information processing on-chip is a buffer, where single photons are stored for a short period of time to facilitate circuit synchronization. Here we report an on-chip single-photon buffer based on coupled resonator optical waveguides (CROW) consisting of 400 high-Q photonic crystal line-defect nanocavities. By using the CROW, a pulsed single photon is successfully buffered for 150 ps with 50-ps tunability while maintaining its non-classical properties. Furthermore, we show that our buffer preserves entanglement by storing and retrieving one photon from a time-bin entangled state. This is a significant step towards an all-optical integrated quantum information processor. PMID:24217422

  9. Temporal interference with frequency-controllable long photons from independent cold atomic sources

    NASA Astrophysics Data System (ADS)

    Qian, Peng; Gu, Zhenjie; Wen, Rong; Zhang, Weiping; Chen, J. F.

    2018-01-01

    The interference of single photons from independent sources is an essential tool in quantum information processing. However, the interfering of photons with long temporal states in a time-resolved manner has rarely been studied. This is because without transmitting spectral filters or coupling to a cavity mode single photons generated in traditional nonlinear crystals suffer from a short temporal profile below 1 ns. With spectral correlation maintained in the biphotons generated from spontaneous four-wave mixing process in cold atom clouds, here we demonstrate the temporal interference of two frequency-tunable long photons from two independent cold atomic sources. We observe and analyze the interference of frequency-mismatched photons, where the phenomenon of the quantum beat at megahertz separation is displayed. Our paper provides more details for the quantum beat of two independent narrow-band single photons, which may find potential application in frequency-encoded photonic qubits in quantum information processing.

  10. Control of coherent information via on-chip photonic–phononic emitter–receivers

    DOE PAGES

    Shin, Heedeuk; Cox, Jonathan A.; Jarecki, Robert; ...

    2015-03-05

    We report that rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon–phonon transduction,more » which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics—which supports GHz frequencies—we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes.« less

  11. Control of coherent information via on-chip photonic–phononic emitter–receivers

    PubMed Central

    Shin, Heedeuk; Cox, Jonathan A.; Jarecki, Robert; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T.

    2015-01-01

    Rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon–phonon transduction, which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics—which supports GHz frequencies—we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes. PMID:25740405

  12. Progress in neuromorphic photonics

    NASA Astrophysics Data System (ADS)

    Ferreira de Lima, Thomas; Shastri, Bhavin J.; Tait, Alexander N.; Nahmias, Mitchell A.; Prucnal, Paul R.

    2017-03-01

    As society's appetite for information continues to grow, so does our need to process this information with increasing speed and versatility. Many believe that the one-size-fits-all solution of digital electronics is becoming a limiting factor in certain areas such as data links, cognitive radio, and ultrafast control. Analog photonic devices have found relatively simple signal processing niches where electronics can no longer provide sufficient speed and reconfigurability. Recently, the landscape for commercially manufacturable photonic chips has been changing rapidly and now promises to achieve economies of scale previously enjoyed solely by microelectronics. By bridging the mathematical prowess of artificial neural networks to the underlying physics of optoelectronic devices, neuromorphic photonics could breach new domains of information processing demanding significant complexity, low cost, and unmatched speed. In this article, we review the progress in neuromorphic photonics, focusing on photonic integrated devices. The challenges and design rules for optoelectronic instantiation of artificial neurons are presented. The proposed photonic architecture revolves around the processing network node composed of two parts: a nonlinear element and a network interface. We then survey excitable lasers in the recent literature as candidates for the nonlinear node and microring-resonator weight banks as the network interface. Finally, we compare metrics between neuromorphic electronics and neuromorphic photonics and discuss potential applications.

  13. Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip.

    PubMed

    Schuck, C; Guo, X; Fan, L; Ma, X; Poot, M; Tang, H X

    2016-01-21

    Quantum information processing holds great promise for communicating and computing data efficiently. However, scaling current photonic implementation approaches to larger system size remains an outstanding challenge for realizing disruptive quantum technology. Two main ingredients of quantum information processors are quantum interference and single-photon detectors. Here we develop a hybrid superconducting-photonic circuit system to show how these elements can be combined in a scalable fashion on a silicon chip. We demonstrate the suitability of this approach for integrated quantum optics by interfering and detecting photon pairs directly on the chip with waveguide-coupled single-photon detectors. Using a directional coupler implemented with silicon nitride nanophotonic waveguides, we observe 97% interference visibility when measuring photon statistics with two monolithically integrated superconducting single-photon detectors. The photonic circuit and detector fabrication processes are compatible with standard semiconductor thin-film technology, making it possible to implement more complex and larger scale quantum photonic circuits on silicon chips.

  14. Microwave photonics with superconducting quantum circuits

    NASA Astrophysics Data System (ADS)

    Gu, Xiu; Kockum, Anton Frisk; Miranowicz, Adam; Liu, Yu-xi; Nori, Franco

    2017-11-01

    In the past 20 years, impressive progress has been made both experimentally and theoretically in superconducting quantum circuits, which provide a platform for manipulating microwave photons. This emerging field of superconducting quantum microwave circuits has been driven by many new interesting phenomena in microwave photonics and quantum information processing. For instance, the interaction between superconducting quantum circuits and single microwave photons can reach the regimes of strong, ultra-strong, and even deep-strong coupling. Many higher-order effects, unusual and less familiar in traditional cavity quantum electrodynamics with natural atoms, have been experimentally observed, e.g., giant Kerr effects, multi-photon processes, and single-atom induced bistability of microwave photons. These developments may lead to improved understanding of the counterintuitive properties of quantum mechanics, and speed up applications ranging from microwave photonics to superconducting quantum information processing. In this article, we review experimental and theoretical progress in microwave photonics with superconducting quantum circuits. We hope that this global review can provide a useful roadmap for this rapidly developing field.

  15. Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip

    PubMed Central

    Schuck, C.; Guo, X.; Fan, L.; Ma, X.; Poot, M.; Tang, H. X.

    2016-01-01

    Quantum information processing holds great promise for communicating and computing data efficiently. However, scaling current photonic implementation approaches to larger system size remains an outstanding challenge for realizing disruptive quantum technology. Two main ingredients of quantum information processors are quantum interference and single-photon detectors. Here we develop a hybrid superconducting-photonic circuit system to show how these elements can be combined in a scalable fashion on a silicon chip. We demonstrate the suitability of this approach for integrated quantum optics by interfering and detecting photon pairs directly on the chip with waveguide-coupled single-photon detectors. Using a directional coupler implemented with silicon nitride nanophotonic waveguides, we observe 97% interference visibility when measuring photon statistics with two monolithically integrated superconducting single-photon detectors. The photonic circuit and detector fabrication processes are compatible with standard semiconductor thin-film technology, making it possible to implement more complex and larger scale quantum photonic circuits on silicon chips. PMID:26792424

  16. On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom

    PubMed Central

    Feng, Lan-Tian; Zhang, Ming; Zhou, Zhi-Yuan; Li, Ming; Xiong, Xiao; Yu, Le; Shi, Bao-Sen; Guo, Guo-Ping; Dai, Dao-Xin; Ren, Xi-Feng; Guo, Guang-Can

    2016-01-01

    In the quantum world, a single particle can have various degrees of freedom to encode quantum information. Controlling multiple degrees of freedom simultaneously is necessary to describe a particle fully and, therefore, to use it more efficiently. Here we introduce the transverse waveguide-mode degree of freedom to quantum photonic integrated circuits, and demonstrate the coherent conversion of a photonic quantum state between path, polarization and transverse waveguide-mode degrees of freedom on a single chip. The preservation of quantum coherence in these conversion processes is proven by single-photon and two-photon quantum interference using a fibre beam splitter or on-chip beam splitters. These results provide us with the ability to control and convert multiple degrees of freedom of photons for quantum photonic integrated circuit-based quantum information process. PMID:27321821

  17. On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom.

    PubMed

    Feng, Lan-Tian; Zhang, Ming; Zhou, Zhi-Yuan; Li, Ming; Xiong, Xiao; Yu, Le; Shi, Bao-Sen; Guo, Guo-Ping; Dai, Dao-Xin; Ren, Xi-Feng; Guo, Guang-Can

    2016-06-20

    In the quantum world, a single particle can have various degrees of freedom to encode quantum information. Controlling multiple degrees of freedom simultaneously is necessary to describe a particle fully and, therefore, to use it more efficiently. Here we introduce the transverse waveguide-mode degree of freedom to quantum photonic integrated circuits, and demonstrate the coherent conversion of a photonic quantum state between path, polarization and transverse waveguide-mode degrees of freedom on a single chip. The preservation of quantum coherence in these conversion processes is proven by single-photon and two-photon quantum interference using a fibre beam splitter or on-chip beam splitters. These results provide us with the ability to control and convert multiple degrees of freedom of photons for quantum photonic integrated circuit-based quantum information process.

  18. Single-photon three-qubit quantum logic using spatial light modulators.

    PubMed

    Kagalwala, Kumel H; Di Giuseppe, Giovanni; Abouraddy, Ayman F; Saleh, Bahaa E A

    2017-09-29

    The information-carrying capacity of a single photon can be vastly expanded by exploiting its multiple degrees of freedom: spatial, temporal, and polarization. Although multiple qubits can be encoded per photon, to date only two-qubit single-photon quantum operations have been realized. Here, we report an experimental demonstration of three-qubit single-photon, linear, deterministic quantum gates that exploit photon polarization and the two-dimensional spatial-parity-symmetry of the transverse single-photon field. These gates are implemented using a polarization-sensitive spatial light modulator that provides a robust, non-interferometric, versatile platform for implementing controlled unitary gates. Polarization here represents the control qubit for either separable or entangling unitary operations on the two spatial-parity target qubits. Such gates help generate maximally entangled three-qubit Greenberger-Horne-Zeilinger and W states, which is confirmed by tomographical reconstruction of single-photon density matrices. This strategy provides access to a wide range of three-qubit states and operations for use in few-qubit quantum information processing protocols.Photons are essential for quantum information processing, but to date only two-qubit single-photon operations have been realized. Here the authors demonstrate experimentally a three-qubit single-photon linear deterministic quantum gate by exploiting polarization along with spatial-parity symmetry.

  19. Silicon photonics for neuromorphic information processing

    NASA Astrophysics Data System (ADS)

    Bienstman, Peter; Dambre, Joni; Katumba, Andrew; Freiberger, Matthias; Laporte, Floris; Lugnan, Alessio

    2018-02-01

    We present our latest results on silicon photonics neuromorphic information processing based a.o. on techniques like reservoir computing. We will discuss aspects like scalability, novel architectures for enhanced power efficiency, as well as all-optical readout. Additionally, we will touch upon new machine learning techniques to operate these integrated readouts. Finally, we will show how these systems can be used for high-speed low-power information processing for applications like recognition of biological cells.

  20. Parallel photonic information processing at gigabyte per second data rates using transient states

    NASA Astrophysics Data System (ADS)

    Brunner, Daniel; Soriano, Miguel C.; Mirasso, Claudio R.; Fischer, Ingo

    2013-01-01

    The increasing demands on information processing require novel computational concepts and true parallelism. Nevertheless, hardware realizations of unconventional computing approaches never exceeded a marginal existence. While the application of optics in super-computing receives reawakened interest, new concepts, partly neuro-inspired, are being considered and developed. Here we experimentally demonstrate the potential of a simple photonic architecture to process information at unprecedented data rates, implementing a learning-based approach. A semiconductor laser subject to delayed self-feedback and optical data injection is employed to solve computationally hard tasks. We demonstrate simultaneous spoken digit and speaker recognition and chaotic time-series prediction at data rates beyond 1Gbyte/s. We identify all digits with very low classification errors and perform chaotic time-series prediction with 10% error. Our approach bridges the areas of photonic information processing, cognitive and information science.

  1. Experimental Greenberger-Horne-Zeilinger-Type Six-Photon Quantum Nonlocality.

    PubMed

    Zhang, Chao; Huang, Yun-Feng; Wang, Zhao; Liu, Bi-Heng; Li, Chuan-Feng; Guo, Guang-Can

    2015-12-31

    Quantum nonlocality gives us deeper insight into quantum physics. In addition, quantum nonlocality has been further recognized as an essential resource for device-independent quantum information processing in recent years. Most experiments of nonlocality are performed using a photonic system. However, until now, photonic experiments of nonlocality have involved at most four photons. Here, for the first time, we experimentally demonstrate the six-photon quantum nonlocality in an all-versus-nothing manner based on a high-fidelity (88.4%) six-photon Greenberger-Horne-Zeilinger state. Our experiment pushes multiphoton nonlocality studies forward to the six-photon region and might provide a larger photonic system for device-independent quantum information protocols.

  2. Reversal of photon-scattering errors in atomic qubits.

    PubMed

    Akerman, N; Kotler, S; Glickman, Y; Ozeri, R

    2012-09-07

    Spontaneous photon scattering by an atomic qubit is a notable example of environment-induced error and is a fundamental limit to the fidelity of quantum operations. In the scattering process, the qubit loses its distinctive and coherent character owing to its entanglement with the photon. Using a single trapped ion, we show that by utilizing the information carried by the photon, we are able to coherently reverse this process and correct for the scattering error. We further used quantum process tomography to characterize the photon-scattering error and its correction scheme and demonstrate a correction fidelity greater than 85% whenever a photon was measured.

  3. Deterministic reshaping of single-photon spectra using cross-phase modulation.

    PubMed

    Matsuda, Nobuyuki

    2016-03-01

    The frequency conversion of light has proved to be a crucial technology for communication, spectroscopy, imaging, and signal processing. In the quantum regime, it also offers great potential for realizing quantum networks incorporating disparate physical systems and quantum-enhanced information processing over a large computational space. The frequency conversion of quantum light, such as single photons, has been extensively investigated for the last two decades using all-optical frequency mixing, with the ultimate goal of realizing lossless and noiseless conversion. I demonstrate another route to this target using frequency conversion induced by cross-phase modulation in a dispersion-managed photonic crystal fiber. Owing to the deterministic and all-optical nature of the process, the lossless and low-noise spectral reshaping of a single-photon wave packet in the telecommunication band has been readily achieved with a modulation bandwidth as large as 0.4 THz. I further demonstrate that the scheme is applicable to manipulations of a nonclassical frequency correlation, wave packet interference, and entanglement between two photons. This approach presents a new coherent frequency interface for photons for quantum information processing.

  4. Deterministic reshaping of single-photon spectra using cross-phase modulation

    PubMed Central

    Matsuda, Nobuyuki

    2016-01-01

    The frequency conversion of light has proved to be a crucial technology for communication, spectroscopy, imaging, and signal processing. In the quantum regime, it also offers great potential for realizing quantum networks incorporating disparate physical systems and quantum-enhanced information processing over a large computational space. The frequency conversion of quantum light, such as single photons, has been extensively investigated for the last two decades using all-optical frequency mixing, with the ultimate goal of realizing lossless and noiseless conversion. I demonstrate another route to this target using frequency conversion induced by cross-phase modulation in a dispersion-managed photonic crystal fiber. Owing to the deterministic and all-optical nature of the process, the lossless and low-noise spectral reshaping of a single-photon wave packet in the telecommunication band has been readily achieved with a modulation bandwidth as large as 0.4 THz. I further demonstrate that the scheme is applicable to manipulations of a nonclassical frequency correlation, wave packet interference, and entanglement between two photons. This approach presents a new coherent frequency interface for photons for quantum information processing. PMID:27051862

  5. Room temperature single photon source using fiber-integrated hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Vogl, Tobias; Lu, Yuerui; Lam, Ping Koy

    2017-07-01

    Single photons are a key resource for quantum optics and optical quantum information processing. The integration of scalable room temperature quantum emitters into photonic circuits remains to be a technical challenge. Here we utilize a defect center in hexagonal boron nitride (hBN) attached by Van der Waals force onto a multimode fiber as a single photon source. We perform an optical characterization of the source in terms of spectrum, state lifetime, power saturation and photostability. A special feature of our source is that it allows for easy switching between fiber-coupled and free space single photon generation modes. In order to prove the quantum nature of the emission we measure the second-order correlation function {{g}(2)}≤ft(τ \\right) . For both fiber-coupled and free space emission, the {{g}(2)}≤ft(τ \\right) dips below 0.5 indicating operation in the single photon regime. The results so far demonstrate the feasibility of 2D material single photon sources for scalable photonic quantum information processing.

  6. A photon-photon quantum gate based on a single atom in an optical resonator.

    PubMed

    Hacker, Bastian; Welte, Stephan; Rempe, Gerhard; Ritter, Stephan

    2016-08-11

    That two photons pass each other undisturbed in free space is ideal for the faithful transmission of information, but prohibits an interaction between the photons. Such an interaction is, however, required for a plethora of applications in optical quantum information processing. The long-standing challenge here is to realize a deterministic photon-photon gate, that is, a mutually controlled logic operation on the quantum states of the photons. This requires an interaction so strong that each of the two photons can shift the other's phase by π radians. For polarization qubits, this amounts to the conditional flipping of one photon's polarization to an orthogonal state. So far, only probabilistic gates based on linear optics and photon detectors have been realized, because "no known or foreseen material has an optical nonlinearity strong enough to implement this conditional phase shift''. Meanwhile, tremendous progress in the development of quantum-nonlinear systems has opened up new possibilities for single-photon experiments. Platforms range from Rydberg blockade in atomic ensembles to single-atom cavity quantum electrodynamics. Applications such as single-photon switches and transistors, two-photon gateways, nondestructive photon detectors, photon routers and nonlinear phase shifters have been demonstrated, but none of them with the ideal information carriers: optical qubits in discriminable modes. Here we use the strong light-matter coupling provided by a single atom in a high-finesse optical resonator to realize the Duan-Kimble protocol of a universal controlled phase flip (π phase shift) photon-photon quantum gate. We achieve an average gate fidelity of (76.2 ± 3.6) per cent and specifically demonstrate the capability of conditional polarization flipping as well as entanglement generation between independent input photons. This photon-photon quantum gate is a universal quantum logic element, and therefore could perform most existing two-photon operations. The demonstrated feasibility of deterministic protocols for the optical processing of quantum information could lead to new applications in which photons are essential, especially long-distance quantum communication and scalable quantum computing.

  7. Photonic qubits for remote quantum information processing

    NASA Astrophysics Data System (ADS)

    Maunz, P.; Olmschenk, S.; Hayes, D.; Matsukevich, D. N.; Duan, L.-M.; Monroe, C.

    2009-05-01

    Quantum information processing between remote quantum memories relies on a fast and faithful quantum channel. Recent experiments employed both, the photonic polarization and frequency qubits, in order to entangle remote atoms [1, 2], to teleport quantum information [3] and to operate a quantum gate between distant atoms. Here, we compare the dierent schemes used in these experiments and analyze the advantages of the dierent choices of atomic and photonic qubits and their coherence properties. [4pt] [1] D. L. Moehring et al. Nature 449, 68 (2007).[0pt] [2] D. N. Matsukevich et al. Phys. Rev. Lett. 100, 150404 2008).[0pt] [3] S. Olmschenk et al. Science, 323, 486 (2009).

  8. Efficient quantum computing using coherent photon conversion.

    PubMed

    Langford, N K; Ramelow, S; Prevedel, R; Munro, W J; Milburn, G J; Zeilinger, A

    2011-10-12

    Single photons are excellent quantum information carriers: they were used in the earliest demonstrations of entanglement and in the production of the highest-quality entanglement reported so far. However, current schemes for preparing, processing and measuring them are inefficient. For example, down-conversion provides heralded, but randomly timed, single photons, and linear optics gates are inherently probabilistic. Here we introduce a deterministic process--coherent photon conversion (CPC)--that provides a new way to generate and process complex, multiquanta states for photonic quantum information applications. The technique uses classically pumped nonlinearities to induce coherent oscillations between orthogonal states of multiple quantum excitations. One example of CPC, based on a pumped four-wave-mixing interaction, is shown to yield a single, versatile process that provides a full set of photonic quantum processing tools. This set satisfies the DiVincenzo criteria for a scalable quantum computing architecture, including deterministic multiqubit entanglement gates (based on a novel form of photon-photon interaction), high-quality heralded single- and multiphoton states free from higher-order imperfections, and robust, high-efficiency detection. It can also be used to produce heralded multiphoton entanglement, create optically switchable quantum circuits and implement an improved form of down-conversion with reduced higher-order effects. Such tools are valuable building blocks for many quantum-enabled technologies. Finally, using photonic crystal fibres we experimentally demonstrate quantum correlations arising from a four-colour nonlinear process suitable for CPC and use these measurements to study the feasibility of reaching the deterministic regime with current technology. Our scheme, which is based on interacting bosonic fields, is not restricted to optical systems but could also be implemented in optomechanical, electromechanical and superconducting systems with extremely strong intrinsic nonlinearities. Furthermore, exploiting higher-order nonlinearities with multiple pump fields yields a mechanism for multiparty mediation of the complex, coherent dynamics.

  9. Integrated nonlinear photonics. Emerging applications and ongoing challenges - A mini review

    DOE PAGES

    Hendrickson, Scott M.; Foster, Amy C.; Camacho, Ryan M.; ...

    2014-11-26

    In this paper, we provide a review of recent progress in integrated nonlinear photonics with a focus on emerging applications in all-optical signal processing, ultra-low-power all-optical switching, and quantum information processing.

  10. PREFACE: I International Scientific School Methods of Digital Image Processing in Optics and Photonics

    NASA Astrophysics Data System (ADS)

    Gurov, I. P.; Kozlov, S. A.

    2014-09-01

    The first international scientific school "Methods of Digital Image Processing in Optics and Photonics" was held with a view to develop cooperation between world-class experts, young scientists, students and post-graduate students, and to exchange information on the current status and directions of research in the field of digital image processing in optics and photonics. The International Scientific School was managed by: Saint Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University) - Saint Petersburg (Russia) Chernyshevsky Saratov State University - Saratov (Russia) National research nuclear University "MEPHI" (NRNU MEPhI) - Moscow (Russia) The school was held with the participation of the local chapters of Optical Society of America (OSA), the Society of Photo-Optical Instrumentation Engineers (SPIE) and IEEE Photonics Society. Further details, including topics, committees and conference photos are available in the PDF

  11. A photonic quantum information interface.

    PubMed

    Tanzilli, S; Tittel, W; Halder, M; Alibart, O; Baldi, P; Gisin, N; Zbinden, H

    2005-09-01

    Quantum communication requires the transfer of quantum states, or quantum bits of information (qubits), from one place to another. From a fundamental perspective, this allows the distribution of entanglement and the demonstration of quantum non-locality over significant distances. Within the context of applications, quantum cryptography offers a provably secure way to establish a confidential key between distant partners. Photons represent the natural flying qubit carriers for quantum communication, and the presence of telecommunications optical fibres makes the wavelengths of 1,310 nm and 1,550 nm particularly suitable for distribution over long distances. However, qubits encoded into alkaline atoms that absorb and emit at wavelengths around 800 nm have been considered for the storage and processing of quantum information. Hence, future quantum information networks made of telecommunications channels and alkaline memories will require interfaces that enable qubit transfers between these useful wavelengths, while preserving quantum coherence and entanglement. Here we report a demonstration of qubit transfer between photons of wavelength 1,310 nm and 710 nm. The mechanism is a nonlinear up-conversion process, with a success probability of greater than 5 per cent. In the event of a successful qubit transfer, we observe strong two-photon interference between the 710 nm photon and a third photon at 1,550 nm, initially entangled with the 1,310 nm photon, although they never directly interacted. The corresponding fidelity is higher than 98 per cent.

  12. Quantum optics. All-optical routing of single photons by a one-atom switch controlled by a single photon.

    PubMed

    Shomroni, Itay; Rosenblum, Serge; Lovsky, Yulia; Bechler, Orel; Guendelman, Gabriel; Dayan, Barak

    2014-08-22

    The prospect of quantum networks, in which quantum information is carried by single photons in photonic circuits, has long been the driving force behind the effort to achieve all-optical routing of single photons. We realized a single-photon-activated switch capable of routing a photon from any of its two inputs to any of its two outputs. Our device is based on a single atom coupled to a fiber-coupled, chip-based microresonator. A single reflected control photon toggles the switch from high reflection (R ~ 65%) to high transmission (T ~ 90%), with an average of ~1.5 control photons per switching event (~3, including linear losses). No additional control fields are required. The control and target photons are both in-fiber and practically identical, making this scheme compatible with scalable architectures for quantum information processing. Copyright © 2014, American Association for the Advancement of Science.

  13. Photonic Programmable Tele-Cloning Network.

    PubMed

    Li, Wei; Chen, Ming-Cheng

    2016-06-29

    The concept of quantum teleportation allows an unknown quantum states to be broadcasted and processed in a distributed quantum network. The quantum information injected into the network can be diluted to distant multi-copies by quantum cloning and processed by arbitrary quantum logic gates which were programed in advance in the network quantum state. A quantum network combines simultaneously these fundamental quantum functions could lead to new intriguing applications. Here we propose a photonic programmable telecloning network based on a four-photon interferometer. The photonic network serves as quantum gate, quantum cloning and quantum teleportation and features experimental advantage of high brightness by photon recycling.

  14. Demultiplexing of photonic temporal modes by a linear system

    NASA Astrophysics Data System (ADS)

    Xu, Shuang; Shen, H. Z.; Yi, X. X.

    2018-03-01

    Temporally and spatially overlapping but field-orthogonal photonic temporal modes (TMs) that intrinsically span a high-dimensional Hilbert space are recently suggested as a promising means of encoding information on photons. Presently, the realization of photonic TM technology, particularly to retrieve the information it carries, i.e., demultiplexing of photonic TMs, is mostly dependent on nonlinear medium and frequency conversion. Meanwhile, its miniaturization, simplification, and optimization remain the focus of research. In this paper, we propose a scheme of TM demultiplexing using linear systems consisting of resonators with linear couplings. Specifically, we examine a unidirectional array of identical resonators with short environment correlations. For both situations with and without tunable couplers, propagation formulas are derived to demonstrate photonic TM demultiplexing capabilities. The proposed scheme, being entirely feasible with current technologies, might find potential applications in quantum information processing.

  15. Photonic transistor and router using a single quantum-dot-confined spin in a single-sided optical microcavity

    NASA Astrophysics Data System (ADS)

    Hu, C. Y.

    2017-03-01

    The future Internet is very likely the mixture of all-optical Internet with low power consumption and quantum Internet with absolute security guaranteed by the laws of quantum mechanics. Photons would be used for processing, routing and com-munication of data, and photonic transistor using a weak light to control a strong light is the core component as an optical analogue to the electronic transistor that forms the basis of modern electronics. In sharp contrast to previous all-optical tran-sistors which are all based on optical nonlinearities, here I introduce a novel design for a high-gain and high-speed (up to terahertz) photonic transistor and its counterpart in the quantum limit, i.e., single-photon transistor based on a linear optical effect: giant Faraday rotation induced by a single electronic spin in a single-sided optical microcavity. A single-photon or classical optical pulse as the gate sets the spin state via projective measurement and controls the polarization of a strong light to open/block the photonic channel. Due to the duality as quantum gate for quantum information processing and transistor for optical information processing, this versatile spin-cavity quantum transistor provides a solid-state platform ideal for all-optical networks and quantum networks.

  16. Photonic transistor and router using a single quantum-dot-confined spin in a single-sided optical microcavity

    PubMed Central

    Hu, C. Y.

    2017-01-01

    The future Internet is very likely the mixture of all-optical Internet with low power consumption and quantum Internet with absolute security guaranteed by the laws of quantum mechanics. Photons would be used for processing, routing and com-munication of data, and photonic transistor using a weak light to control a strong light is the core component as an optical analogue to the electronic transistor that forms the basis of modern electronics. In sharp contrast to previous all-optical tran-sistors which are all based on optical nonlinearities, here I introduce a novel design for a high-gain and high-speed (up to terahertz) photonic transistor and its counterpart in the quantum limit, i.e., single-photon transistor based on a linear optical effect: giant Faraday rotation induced by a single electronic spin in a single-sided optical microcavity. A single-photon or classical optical pulse as the gate sets the spin state via projective measurement and controls the polarization of a strong light to open/block the photonic channel. Due to the duality as quantum gate for quantum information processing and transistor for optical information processing, this versatile spin-cavity quantum transistor provides a solid-state platform ideal for all-optical networks and quantum networks. PMID:28349960

  17. Realization of a Cascaded Quantum System: Heralded Absorption of a Single Photon Qubit by a Single-Electron Charged Quantum Dot.

    PubMed

    Delteil, Aymeric; Sun, Zhe; Fält, Stefan; Imamoğlu, Atac

    2017-04-28

    Photonic losses pose a major limitation for the implementation of a quantum state transfer between nodes of a quantum network. A measurement that heralds a successful transfer without revealing any information about the qubit may alleviate this limitation. Here, we demonstrate the heralded absorption of a single photonic qubit, generated by a single neutral quantum dot, by a single-electron charged quantum dot that is located 5 m away. The transfer of quantum information to the spin degree of freedom takes place upon the emission of a photon; for a properly chosen or prepared quantum dot, the detection of this photon yields no information about the qubit. We show that this process can be combined with local operations optically performed on the destination node by measuring classical correlations between the absorbed photon color and the final state of the electron spin. Our work suggests alternative avenues for the realization of quantum information protocols based on cascaded quantum systems.

  18. Recent advances in organic one-dimensional composite materials: design, construction, and photonic elements for information processing.

    PubMed

    Yan, Yongli; Zhang, Chuang; Yao, Jiannian; Zhao, Yong Sheng

    2013-07-19

    Many recent activities in the use of one-dimensional nanostructures as photonic elements for optical information processing are explained by huge advantages that photonic circuits possess over traditional silicon-based electronic ones in bandwidth, heat dissipation, and resistance to electromagnetic wave interference. Organic materials are a promising candidate to support these optical-related applications, as they combine the properties of plastics with broad spectral tunability, high optical cross-section, easy fabrication, as well as low cost. Their outstanding compatibility allows organic composite structures which are made of two or more kinds of materials combined together, showing great superiority to single-component materials due to the introduced interactions among multiple constituents, such as energy transfer, electron transfer, exciton coupling, etc. The easy processability of organic 1D crystalline heterostructures enables a fine topological control of both composition and geometry, which offsets the intrinsic deficiencies of individual material. At the same time, the strong exciton-photon coupling and exciton-exciton interaction impart the excellent confinement of photons in organic microstructures, thus light can be manipulated according to our intention to realize specific functions. These collective properties indicate a potential utility of organic heterogeneous material for miniaturized photonic circuitry. Herein, focus is given on recent advances of 1D organic crystalline heterostructures, with special emphasis on the novel design, controllable construction, diverse performance, as well as wide applications in isolated photonic elements for integration. It is proposed that the highly coupled, hybrid optical networks would be an important material basis towards the creation of on-chip optical information processing. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Scalable Quantum Information Processing and Applications

    DTIC Science & Technology

    2008-01-19

    qubit logic gates, and finally emitting an entangled photon from the single- photon emitter. For the program, we proposed to demonstrate the...coherent, single photon transmitter/receiver system. These requirements included careful tailoring of the g factor for conduction band electrons in...physics required for the realization of a spin-coherent, single photon transmitter/receiver system. These requirements included careful tailoring of

  20. Photonic Programmable Tele-Cloning Network

    PubMed Central

    Li, Wei; Chen, Ming-Cheng

    2016-01-01

    The concept of quantum teleportation allows an unknown quantum states to be broadcasted and processed in a distributed quantum network. The quantum information injected into the network can be diluted to distant multi-copies by quantum cloning and processed by arbitrary quantum logic gates which were programed in advance in the network quantum state. A quantum network combines simultaneously these fundamental quantum functions could lead to new intriguing applications. Here we propose a photonic programmable telecloning network based on a four-photon interferometer. The photonic network serves as quantum gate, quantum cloning and quantum teleportation and features experimental advantage of high brightness by photon recycling. PMID:27353838

  1. Analysis of single-molecule fluorescence spectroscopic data with a Markov-modulated Poisson process.

    PubMed

    Jäger, Mark; Kiel, Alexander; Herten, Dirk-Peter; Hamprecht, Fred A

    2009-10-05

    We present a photon-by-photon analysis framework for the evaluation of data from single-molecule fluorescence spectroscopy (SMFS) experiments using a Markov-modulated Poisson process (MMPP). A MMPP combines a discrete (and hidden) Markov process with an additional Poisson process reflecting the observation of individual photons. The algorithmic framework is used to automatically analyze the dynamics of the complex formation and dissociation of Cu2+ ions with the bidentate ligand 2,2'-bipyridine-4,4'dicarboxylic acid in aqueous media. The process of association and dissociation of Cu2+ ions is monitored with SMFS. The dcbpy-DNA conjugate can exist in two or more distinct states which influence the photon emission rates. The advantage of a photon-by-photon analysis is that no information is lost in preprocessing steps. Different model complexities are investigated in order to best describe the recorded data and to determine transition rates on a photon-by-photon basis. The main strength of the method is that it allows to detect intermittent phenomena which are masked by binning and that are difficult to find using correlation techniques when they are short-lived.

  2. Maximum likelihood-based analysis of single-molecule photon arrival trajectories

    NASA Astrophysics Data System (ADS)

    Hajdziona, Marta; Molski, Andrzej

    2011-02-01

    In this work we explore the statistical properties of the maximum likelihood-based analysis of one-color photon arrival trajectories. This approach does not involve binning and, therefore, all of the information contained in an observed photon strajectory is used. We study the accuracy and precision of parameter estimates and the efficiency of the Akaike information criterion and the Bayesian information criterion (BIC) in selecting the true kinetic model. We focus on the low excitation regime where photon trajectories can be modeled as realizations of Markov modulated Poisson processes. The number of observed photons is the key parameter in determining model selection and parameter estimation. For example, the BIC can select the true three-state model from competing two-, three-, and four-state kinetic models even for relatively short trajectories made up of 2 × 103 photons. When the intensity levels are well-separated and 104 photons are observed, the two-state model parameters can be estimated with about 10% precision and those for a three-state model with about 20% precision.

  3. Two-photon interference of weak coherent laser pulses recalled from separate solid-state quantum memories

    NASA Astrophysics Data System (ADS)

    Jin, Jeongwan; Slater, Joshua A.; Saglamyurek, Erhan; Sinclair, Neil; George, Mathew; Ricken, Raimund; Oblak, Daniel; Sohler, Wolfgang; Tittel, Wolfgang

    2013-08-01

    Quantum memories allowing reversible transfer of quantum states between light and matter are central to quantum repeaters, quantum networks and linear optics quantum computing. Significant progress regarding the faithful transfer of quantum information has been reported in recent years. However, none of these demonstrations confirm that the re-emitted photons remain suitable for two-photon interference measurements, such as C-NOT gates and Bell-state measurements, which constitute another key ingredient for all aforementioned applications. Here, using pairs of laser pulses at the single-photon level, we demonstrate two-photon interference and Bell-state measurements after either none, one or both pulses have been reversibly mapped to separate thulium-doped lithium niobate waveguides. As the interference is always near the theoretical maximum, we conclude that our solid-state quantum memories, in addition to faithfully mapping quantum information, also preserve the entire photonic wavefunction. Hence, our memories are generally suitable for future applications of quantum information processing that require two-photon interference.

  4. Two-photon interference of weak coherent laser pulses recalled from separate solid-state quantum memories.

    PubMed

    Jin, Jeongwan; Slater, Joshua A; Saglamyurek, Erhan; Sinclair, Neil; George, Mathew; Ricken, Raimund; Oblak, Daniel; Sohler, Wolfgang; Tittel, Wolfgang

    2013-01-01

    Quantum memories allowing reversible transfer of quantum states between light and matter are central to quantum repeaters, quantum networks and linear optics quantum computing. Significant progress regarding the faithful transfer of quantum information has been reported in recent years. However, none of these demonstrations confirm that the re-emitted photons remain suitable for two-photon interference measurements, such as C-NOT gates and Bell-state measurements, which constitute another key ingredient for all aforementioned applications. Here, using pairs of laser pulses at the single-photon level, we demonstrate two-photon interference and Bell-state measurements after either none, one or both pulses have been reversibly mapped to separate thulium-doped lithium niobate waveguides. As the interference is always near the theoretical maximum, we conclude that our solid-state quantum memories, in addition to faithfully mapping quantum information, also preserve the entire photonic wavefunction. Hence, our memories are generally suitable for future applications of quantum information processing that require two-photon interference.

  5. Towards Scalable Entangled Photon Sources with Self-Assembled InAs /GaAs Quantum Dots

    NASA Astrophysics Data System (ADS)

    Wang, Jianping; Gong, Ming; Guo, G.-C.; He, Lixin

    2015-08-01

    The biexciton cascade process in self-assembled quantum dots (QDs) provides an ideal system for realizing deterministic entangled photon-pair sources, which are essential to quantum information science. The entangled photon pairs have recently been generated in experiments after eliminating the fine-structure splitting (FSS) of excitons using a number of different methods. Thus far, however, QD-based sources of entangled photons have not been scalable because the wavelengths of QDs differ from dot to dot. Here, we propose a wavelength-tunable entangled photon emitter mounted on a three-dimensional stressor, in which the FSS and exciton energy can be tuned independently, thereby enabling photon entanglement between dissimilar QDs. We confirm these results via atomistic pseudopotential calculations. This provides a first step towards future realization of scalable entangled photon generators for quantum information applications.

  6. Dynamically protected cat-qubits: a new paradigm for universal quantum computation

    NASA Astrophysics Data System (ADS)

    Mirrahimi, Mazyar; Leghtas, Zaki; Albert, Victor V.; Touzard, Steven; Schoelkopf, Robert J.; Jiang, Liang; Devoret, Michel H.

    2014-04-01

    We present a new hardware-efficient paradigm for universal quantum computation which is based on encoding, protecting and manipulating quantum information in a quantum harmonic oscillator. This proposal exploits multi-photon driven dissipative processes to encode quantum information in logical bases composed of Schrödinger cat states. More precisely, we consider two schemes. In a first scheme, a two-photon driven dissipative process is used to stabilize a logical qubit basis of two-component Schrödinger cat states. While such a scheme ensures a protection of the logical qubit against the photon dephasing errors, the prominent error channel of single-photon loss induces bit-flip type errors that cannot be corrected. Therefore, we consider a second scheme based on a four-photon driven dissipative process which leads to the choice of four-component Schrödinger cat states as the logical qubit. Such a logical qubit can be protected against single-photon loss by continuous photon number parity measurements. Next, applying some specific Hamiltonians, we provide a set of universal quantum gates on the encoded qubits of each of the two schemes. In particular, we illustrate how these operations can be rendered fault-tolerant with respect to various decoherence channels of participating quantum systems. Finally, we also propose experimental schemes based on quantum superconducting circuits and inspired by methods used in Josephson parametric amplification, which should allow one to achieve these driven dissipative processes along with the Hamiltonians ensuring the universal operations in an efficient manner.

  7. Frequency-encoded photonic qubits for scalable quantum information processing

    DOE PAGES

    Lukens, Joseph M.; Lougovski, Pavel

    2016-12-21

    Among the objectives for large-scale quantum computation is the quantum interconnect: a device that uses photons to interface qubits that otherwise could not interact. However, the current approaches require photons indistinguishable in frequency—a major challenge for systems experiencing different local environments or of different physical compositions altogether. Here, we develop an entirely new platform that actually exploits such frequency mismatch for processing quantum information. Labeled “spectral linear optical quantum computation” (spectral LOQC), our protocol offers favorable linear scaling of optical resources and enjoys an unprecedented degree of parallelism, as an arbitrary Ν-qubit quantum gate may be performed in parallel onmore » multiple Ν-qubit sets in the same linear optical device. Here, not only does spectral LOQC offer new potential for optical interconnects, but it also brings the ubiquitous technology of high-speed fiber optics to bear on photonic quantum information, making wavelength-configurable and robust optical quantum systems within reach.« less

  8. Frequency-encoded photonic qubits for scalable quantum information processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukens, Joseph M.; Lougovski, Pavel

    Among the objectives for large-scale quantum computation is the quantum interconnect: a device that uses photons to interface qubits that otherwise could not interact. However, the current approaches require photons indistinguishable in frequency—a major challenge for systems experiencing different local environments or of different physical compositions altogether. Here, we develop an entirely new platform that actually exploits such frequency mismatch for processing quantum information. Labeled “spectral linear optical quantum computation” (spectral LOQC), our protocol offers favorable linear scaling of optical resources and enjoys an unprecedented degree of parallelism, as an arbitrary Ν-qubit quantum gate may be performed in parallel onmore » multiple Ν-qubit sets in the same linear optical device. Here, not only does spectral LOQC offer new potential for optical interconnects, but it also brings the ubiquitous technology of high-speed fiber optics to bear on photonic quantum information, making wavelength-configurable and robust optical quantum systems within reach.« less

  9. Realization of a Knill-Laflamme-Milburn controlled-NOT photonic quantum circuit combining effective optical nonlinearities

    PubMed Central

    Okamoto, Ryo; O’Brien, Jeremy L.; Hofmann, Holger F.; Takeuchi, Shigeki

    2011-01-01

    Quantum information science addresses how uniquely quantum mechanical phenomena such as superposition and entanglement can enhance communication, information processing, and precision measurement. Photons are appealing for their low-noise, light-speed transmission and ease of manipulation using conventional optical components. However, the lack of highly efficient optical Kerr nonlinearities at the single photon level was a major obstacle. In a breakthrough, Knill, Laflamme, and Milburn (KLM) showed that such an efficient nonlinearity can be achieved using only linear optical elements, auxiliary photons, and measurement [Knill E, Laflamme R, Milburn GJ (2001) Nature 409:46–52]. KLM proposed a heralded controlled-NOT (CNOT) gate for scalable quantum computation using a photonic quantum circuit to combine two such nonlinear elements. Here we experimentally demonstrate a KLM CNOT gate. We developed a stable architecture to realize the required four-photon network of nested multiple interferometers based on a displaced-Sagnac interferometer and several partially polarizing beamsplitters. This result confirms the first step in the original KLM “recipe” for all-optical quantum computation, and should be useful for on-demand entanglement generation and purification. Optical quantum circuits combining giant optical nonlinearities may find wide applications in quantum information processing, communication, and sensing. PMID:21646543

  10. III-V quantum light source and cavity-QED on silicon.

    PubMed

    Luxmoore, I J; Toro, R; Del Pozo-Zamudio, O; Wasley, N A; Chekhovich, E A; Sanchez, A M; Beanland, R; Fox, A M; Skolnick, M S; Liu, H Y; Tartakovskii, A I

    2013-01-01

    Non-classical light sources offer a myriad of possibilities in both fundamental science and commercial applications. Single photons are the most robust carriers of quantum information and can be exploited for linear optics quantum information processing. Scale-up requires miniaturisation of the waveguide circuit and multiple single photon sources. Silicon photonics, driven by the incentive of optical interconnects is a highly promising platform for the passive optical components, but integrated light sources are limited by silicon's indirect band-gap. III-V semiconductor quantum-dots, on the other hand, are proven quantum emitters. Here we demonstrate single-photon emission from quantum-dots coupled to photonic crystal nanocavities fabricated from III-V material grown directly on silicon substrates. The high quality of the III-V material and photonic structures is emphasized by observation of the strong-coupling regime. This work opens-up the advantages of silicon photonics to the integration and scale-up of solid-state quantum optical systems.

  11. Experimental protocol for high-fidelity heralded photon-to-atom quantum state transfer.

    PubMed

    Kurz, Christoph; Schug, Michael; Eich, Pascal; Huwer, Jan; Müller, Philipp; Eschner, Jürgen

    2014-11-21

    A quantum network combines the benefits of quantum systems regarding secure information transmission and calculational speed-up by employing quantum coherence and entanglement to store, transmit and process information. A promising platform for implementing such a network are atom-based quantum memories and processors, interconnected by photonic quantum channels. A crucial building block in this scenario is the conversion of quantum states between single photons and single atoms through controlled emission and absorption. Here we present an experimental protocol for photon-to-atom quantum state conversion, whereby the polarization state of an absorbed photon is mapped onto the spin state of a single absorbing atom with >95% fidelity, while successful conversion is heralded by a single emitted photon. Heralded high-fidelity conversion without affecting the converted state is a main experimental challenge, in order to make the transferred information reliably available for further operations. We record >80 s(-1) successful state transfer events out of 18,000 s(-1) repetitions.

  12. Time reversal of arbitrary photonic temporal modes via nonlinear optical frequency conversion

    NASA Astrophysics Data System (ADS)

    Raymer, Michael G.; Reddy, Dileep V.; van Enk, Steven J.; McKinstrie, Colin J.

    2018-05-01

    Single-photon wave packets can carry quantum information between nodes of a quantum network. An important general operation in photon-based quantum information systems is ‘blind’ reversal of a photon’s temporal wave packet envelope, that is, the ability to reverse an envelope without knowing the temporal state of the photon. We present an all-optical means for doing so, using nonlinear-optical frequency conversion driven by a short pump pulse. The process used may be sum-frequency generation or four-wave Bragg scattering. This scheme allows for quantum operations such as a temporal-mode parity sorter. We also verify that the scheme works for arbitrary states (not only single-photon ones) of an unknown wave packet.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lima Bernardo, Bertúlio de, E-mail: bertulio.fisica@gmail.com

    We describe a novel quantum information protocol, which probabilistically entangles two distant photons that have never interacted. Different from the entanglement swapping protocol, which requires two pairs of maximally entangled photons as the input states, as well as a Bell-state measurement (BSM), the present scheme only requires three photons: two to be entangled and another to mediate the correlation, and no BSM, in a process that we call “entanglement mediation”. Furthermore, in analyzing the paths of the photons in our arrangement, we conclude that one of them, the mediator, exchanges information with the two others simultaneously, which seems to bemore » a new quantum-mechanical feature.« less

  14. Photoelectrochemical information storage using an azobenzene derivative

    NASA Astrophysics Data System (ADS)

    Liu, Z. F.; Hashimoto, K.; Fujishima, A.

    1990-10-01

    HIGH-DENSITY information storage is becoming an increasingly important technological objective. The 'heat-mode' storage techniques (in which only the thermal energy of laser light is used in the recording process and hence information usually stored as a physical change of the storage media) that are used in current optical memories are limited by the diffraction properties of light1, and the alternative 'photon-mode' (in which information is stored as a photon-induced chemical change of the storage media) has attracted attention recently for high-density storage. The most promising candidates for realizing this mode seem to be photochro-ism and photochemical hole burning; but these have some intrinsic drawbacks1,2. Here we present a novel 'photon-mode' technique that uses the photoelectrochemical properties of a Langmuir-Blodgett film of an azobenzene derivative. The system can be interconverted photochemically or electrochemically between three chemical states, and this three-state system is shown to provide a potential storage process that allows for ultra-high storage density, multi-function memory and non-destructive information readout.

  15. Maximum likelihood-based analysis of single-molecule photon arrival trajectories.

    PubMed

    Hajdziona, Marta; Molski, Andrzej

    2011-02-07

    In this work we explore the statistical properties of the maximum likelihood-based analysis of one-color photon arrival trajectories. This approach does not involve binning and, therefore, all of the information contained in an observed photon strajectory is used. We study the accuracy and precision of parameter estimates and the efficiency of the Akaike information criterion and the Bayesian information criterion (BIC) in selecting the true kinetic model. We focus on the low excitation regime where photon trajectories can be modeled as realizations of Markov modulated Poisson processes. The number of observed photons is the key parameter in determining model selection and parameter estimation. For example, the BIC can select the true three-state model from competing two-, three-, and four-state kinetic models even for relatively short trajectories made up of 2 × 10(3) photons. When the intensity levels are well-separated and 10(4) photons are observed, the two-state model parameters can be estimated with about 10% precision and those for a three-state model with about 20% precision.

  16. Single photon laser altimeter data processing, analysis and experimental validation

    NASA Astrophysics Data System (ADS)

    Vacek, Michael; Peca, Marek; Michalek, Vojtech; Prochazka, Ivan

    2015-10-01

    Spaceborne laser altimeters are common instruments on-board the rendezvous spacecraft. This manuscript deals with the altimeters using a single photon approach, which belongs to the family of time-of-flight range measurements. Moreover, the single photon receiver part of the altimeter may be utilized as an Earth-to-spacecraft link enabling one-way ranging, time transfer and data transfer. The single photon altimeters evaluate actual altitude through the repetitive detections of single photons of the reflected laser pulses. We propose the single photon altimeter signal processing and data mining algorithm based on the Poisson statistic filter (histogram method) and the modified Kalman filter, providing all common altimetry products (altitude, slope, background photon flux and albedo). The Kalman filter is extended for the background noise filtering, the varying slope adaptation and the non-causal extension for an abrupt slope change. Moreover, the algorithm partially removes the major drawback of a single photon altitude reading, namely that the photon detection measurement statistics must be gathered. The developed algorithm deduces the actual altitude on the basis of a single photon detection; thus, being optimal in the sense that each detected signal photon carrying altitude information is tracked and no altitude information is lost. The algorithm was tested on the simulated datasets and partially cross-probed with the experimental data collected using the developed single photon altimeter breadboard based on the microchip laser with the pulse energy on the order of microjoule and the repetition rate of several kilohertz. We demonstrated that such an altimeter configuration may be utilized for landing or hovering a small body (asteroid, comet).

  17. Analysis of angular momentum properties of photons emitted in fundamental atomic processes

    NASA Astrophysics Data System (ADS)

    Zaytsev, V. A.; Surzhykov, A. S.; Shabaev, V. M.; Stöhlker, Th.

    2018-04-01

    Many atomic processes result in the emission of photons. Analysis of the properties of emitted photons, such as energy and angular distribution as well as polarization, is regarded as a powerful tool for gaining more insight into the physics of corresponding processes. Another characteristic of light is the projection of its angular momentum upon propagation direction. This property has attracted a special attention over the past decades due to studies of twisted (or vortex) light beams. Measurements being sensitive to this projection may provide valuable information about the role of angular momentum in the fundamental atomic processes. Here we describe a simple theoretical method for determination of the angular momentum properties of the photons emitted in various atomic processes. This method is based on the evaluation of expectation value of the total angular momentum projection operator. To illustrate the method, we apply it to the textbook examples of plane-wave, spherical-wave, and Bessel light. Moreover, we investigate the projection of angular momentum for the photons emitted in the process of the radiative recombination with ionic targets. It is found that the recombination photons do carry a nonzero projection of the orbital angular momentum.

  18. A 14 × 14 μm2 footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide

    PubMed Central

    Wang, S. M.; Cheng, Q. Q.; Gong, Y. X.; Xu, P.; Sun, C.; Li, L.; Li, T.; Zhu, S. N.

    2016-01-01

    Photonic quantum information processing system has been widely used in communication, metrology and lithography. The recent emphasis on the miniaturized photonic platform is thus motivated by the urgent need for realizing large-scale information processing and computing. Although the integrated quantum logic gates and quantum algorithms based on path encoding have been successfully demonstrated, the technology for handling another commonly used polarization-encoded qubits has yet to be fully developed. Here, we show the implementation of a polarization-dependent beam-splitter in the hybrid waveguide system. With precisely design, the polarization-encoded controlled-NOT gate can be implemented using only single such polarization-dependent beam-splitter with the significant size reduction of the overall device footprint to 14 × 14 μm2. The experimental demonstration of the highly integrated controlled-NOT gate sets the stage to develop large-scale quantum information processing system. Our hybrid design also establishes the new capabilities in controlling the polarization modes in integrated photonic circuits. PMID:27142992

  19. A 14 × 14 μm(2) footprint polarization-encoded quantum controlled-NOT gate based on hybrid waveguide.

    PubMed

    Wang, S M; Cheng, Q Q; Gong, Y X; Xu, P; Sun, C; Li, L; Li, T; Zhu, S N

    2016-05-04

    Photonic quantum information processing system has been widely used in communication, metrology and lithography. The recent emphasis on the miniaturized photonic platform is thus motivated by the urgent need for realizing large-scale information processing and computing. Although the integrated quantum logic gates and quantum algorithms based on path encoding have been successfully demonstrated, the technology for handling another commonly used polarization-encoded qubits has yet to be fully developed. Here, we show the implementation of a polarization-dependent beam-splitter in the hybrid waveguide system. With precisely design, the polarization-encoded controlled-NOT gate can be implemented using only single such polarization-dependent beam-splitter with the significant size reduction of the overall device footprint to 14 × 14 μm(2). The experimental demonstration of the highly integrated controlled-NOT gate sets the stage to develop large-scale quantum information processing system. Our hybrid design also establishes the new capabilities in controlling the polarization modes in integrated photonic circuits.

  20. Photonics: Technology project summary

    NASA Technical Reports Server (NTRS)

    Depaula, Ramon P.

    1991-01-01

    Photonics involves the use of light (photons) in conjunction with electronics for applications in communications, computing, control, and sensing. Components used in photonic systems include lasers, optical detectors, optical wave guide devices, fiber optics, and traditional electronic devices. The goal of this program is to develop hybrid optoelectronic devices and systems for sensing, information processing, communications, and control. It is hoped that these new devices will yield at least an order of magnitude improvement in performance over existing technology. The objective of the program is to conduct research and development in the following areas: (1) materials and devices; (2) networking and computing; (3) optical processing/advanced pattern recognition; and (4) sensing.

  1. On-demand generation of background-free single photons from a solid-state source

    NASA Astrophysics Data System (ADS)

    Schweickert, Lucas; Jöns, Klaus D.; Zeuner, Katharina D.; Covre da Silva, Saimon Filipe; Huang, Huiying; Lettner, Thomas; Reindl, Marcus; Zichi, Julien; Trotta, Rinaldo; Rastelli, Armando; Zwiller, Val

    2018-02-01

    True on-demand high-repetition-rate single-photon sources are highly sought after for quantum information processing applications. However, any coherently driven two-level quantum system suffers from a finite re-excitation probability under pulsed excitation, causing undesirable multi-photon emission. Here, we present a solid-state source of on-demand single photons yielding a raw second-order coherence of g(2 )(0 )=(7.5 ±1.6 )×10-5 without any background subtraction or data processing. To this date, this is the lowest value of g(2 )(0 ) reported for any single-photon source even compared to the previously reported best background subtracted values. We achieve this result on GaAs/AlGaAs quantum dots embedded in a low-Q planar cavity by employing (i) a two-photon excitation process and (ii) a filtering and detection setup featuring two superconducting single-photon detectors with ultralow dark-count rates of (0.0056 ±0.0007 ) s-1 and (0.017 ±0.001 ) s-1, respectively. Re-excitation processes are dramatically suppressed by (i), while (ii) removes false coincidences resulting in a negligibly low noise floor.

  2. Quantum Dot-Photonic Crystal Cavity QED Based Quantum Information Processing

    DTIC Science & Technology

    2012-08-14

    Majumdar, A. Faraon, M . Toishi, N. Stolz, P. Petroff, J. Vuckovic. Resonant Excitation of a Quantum Dot Strongly Coupled to a Photonic Crystal...11 J. O’Brien, A. Furusawa , J. Vuckovic. Photonic Quantum Technologies, Nature Photonics, (12 2009): . doi: 2010/08/30 15:11:17 10 D. Englund, A...devices via micron-scale electrical heaters, Applied Physics Letters, ( 2009): . doi: 2009/08/19 13:18:36 7 M . Toishi, D. Englund, A. Faraon, J

  3. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grosso, Gabriele; Moon, Hyowon; Lienhard, Benjamin

    Two-dimensional van der Waals materials have emerged as promising platforms for solid-state quantum information processing devices with unusual potential for heterogeneous assembly. Recently, bright and photostable single photon emitters were reported from atomic defects in layered hexagonal boron nitride (hBN), but controlling inhomogeneous spectral distribution and reducing multi-photon emission presented open challenges. Here, we demonstrate that strain control allows spectral tunability of hBN single photon emitters over 6 meV, and material processing sharply improves the single photon purity. We observe high single photon count rates exceeding 7 × 10 6 counts per second at saturation, after correcting for uncorrelated photonmore » background. Furthermore, these emitters are stable to material transfer to other substrates. High-purity and photostable single photon emission at room temperature, together with spectral tunability and transferability, opens the door to scalable integration of high-quality quantum emitters in photonic quantum technologies.« less

  4. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride

    DOE PAGES

    Grosso, Gabriele; Moon, Hyowon; Lienhard, Benjamin; ...

    2017-09-26

    Two-dimensional van der Waals materials have emerged as promising platforms for solid-state quantum information processing devices with unusual potential for heterogeneous assembly. Recently, bright and photostable single photon emitters were reported from atomic defects in layered hexagonal boron nitride (hBN), but controlling inhomogeneous spectral distribution and reducing multi-photon emission presented open challenges. Here, we demonstrate that strain control allows spectral tunability of hBN single photon emitters over 6 meV, and material processing sharply improves the single photon purity. We observe high single photon count rates exceeding 7 × 10 6 counts per second at saturation, after correcting for uncorrelated photonmore » background. Furthermore, these emitters are stable to material transfer to other substrates. High-purity and photostable single photon emission at room temperature, together with spectral tunability and transferability, opens the door to scalable integration of high-quality quantum emitters in photonic quantum technologies.« less

  5. Real-time spectral characterization of a photon pair source using a chirped supercontinuum seed.

    PubMed

    Erskine, Jennifer; England, Duncan; Kupchak, Connor; Sussman, Benjamin

    2018-02-15

    Photon pair sources have wide ranging applications in a variety of quantum photonic experiments and protocols. Many of these protocols require well controlled spectral correlations between the two output photons. However, due to low cross-sections, measuring the joint spectral properties of photon pair sources has historically been a challenging and time-consuming task. Here, we present an approach for the real-time measurement of the joint spectral properties of a fiber-based four wave mixing source. We seed the four wave mixing process using a broadband chirped pulse, studying the stimulated process to extract information regarding the spontaneous process. In addition, we compare stimulated emission measurements with the spontaneous process to confirm the technique's validity. Joint spectral measurements have taken many hours historically and several minutes with recent techniques. Here, measurements have been demonstrated in 5-30 s depending on resolution, offering substantial improvement. Additional benefits of this approach include flexible resolution, large measurement bandwidth, and reduced experimental overhead.

  6. Consistent simulation of direct-photon production in hadron collisions including associated two-jet production

    NASA Astrophysics Data System (ADS)

    Odaka, Shigeru; Kurihara, Yoshimasa

    2016-05-01

    We have developed an event generator for direct-photon production in hadron collisions, including associated 2-jet production in the framework of the GR@PPA event generator. The event generator consistently combines γ + 2-jet production processes with the lowest-order γ + jet and photon-radiation (fragmentation) processes from quantum chromodynamics (QCD) 2-jet production using a subtraction method. The generated events can be fed to general-purpose event generators to facilitate the addition of hadronization and decay simulations. Using the obtained event information, we can simulate photon isolation and hadron-jet reconstruction at the particle (hadron) level. The simulation reasonably reproduces measurement data obtained at the large hadron collider (LHC) concerning not only the inclusive photon spectrum, but also the correlation between the photon and jet. The simulation implies that the contribution of the γ + 2-jet is very large, especially in low photon-pT ( ≲ 50 GeV) regions. Discrepancies observed at low pT, although marginal, may indicate the necessity for the consideration of further higher-order processes. Unambiguous particle-level definition of the photon-isolation condition for the signal events is desired to be given explicitly in future measurements.

  7. Single-photon imager based on a superconducting nanowire delay line

    NASA Astrophysics Data System (ADS)

    Zhao, Qing-Yuan; Zhu, Di; Calandri, Niccolò; Dane, Andrew E.; McCaughan, Adam N.; Bellei, Francesco; Wang, Hao-Zhu; Santavicca, Daniel F.; Berggren, Karl K.

    2017-03-01

    Detecting spatial and temporal information of individual photons is critical to applications in spectroscopy, communication, biological imaging, astronomical observation and quantum-information processing. Here we demonstrate a scalable single-photon imager using a single continuous superconducting nanowire that is not only a single-photon detector but also functions as an efficient microwave delay line. In this context, photon-detection pulses are guided in the nanowire and enable the readout of the position and time of photon-absorption events from the arrival times of the detection pulses at the nanowire's two ends. Experimentally, we slowed down the velocity of pulse propagation to ∼2% of the speed of light in free space. In a 19.7 mm long nanowire that meandered across an area of 286 × 193 μm2, we were able to resolve ∼590 effective pixels with a temporal resolution of 50 ps (full width at half maximum). The nanowire imager presents a scalable approach for high-resolution photon imaging in space and time.

  8. III–V quantum light source and cavity-QED on Silicon

    PubMed Central

    Luxmoore, I. J.; Toro, R.; Pozo-Zamudio, O. Del; Wasley, N. A.; Chekhovich, E. A.; Sanchez, A. M.; Beanland, R.; Fox, A. M.; Skolnick, M. S.; Liu, H. Y.; Tartakovskii, A. I.

    2013-01-01

    Non-classical light sources offer a myriad of possibilities in both fundamental science and commercial applications. Single photons are the most robust carriers of quantum information and can be exploited for linear optics quantum information processing. Scale-up requires miniaturisation of the waveguide circuit and multiple single photon sources. Silicon photonics, driven by the incentive of optical interconnects is a highly promising platform for the passive optical components, but integrated light sources are limited by silicon's indirect band-gap. III–V semiconductor quantum-dots, on the other hand, are proven quantum emitters. Here we demonstrate single-photon emission from quantum-dots coupled to photonic crystal nanocavities fabricated from III–V material grown directly on silicon substrates. The high quality of the III–V material and photonic structures is emphasized by observation of the strong-coupling regime. This work opens-up the advantages of silicon photonics to the integration and scale-up of solid-state quantum optical systems. PMID:23393621

  9. Zero-phonon-line emission of single molecules for applications in quantum information processing

    NASA Astrophysics Data System (ADS)

    Kiraz, Alper; Ehrl, M.; Mustecaplioglu, O. E.; Hellerer, T.; Brauchle, C.; Zumbusch, A.

    2005-07-01

    A single photon source which generates transform limited single photons is highly desirable for applications in quantum optics. Transform limited emission guarantees the indistinguishability of the emitted single photons. This, in turn brings groundbreaking applications in linear optics quantum information processing within an experimental reach. Recently, self-assembled InAs quantum dots and trapped atoms have successfully been demonstrated as such sources for highly indistinguishable single photons. Here, we demonstrate that nearly transform limited zero-phonon-line (ZPL) emission from single molecules can be obtained by using vibronic excitation. Furthermore we report the results of coincidence detection experiments at the output of a Michelson-type interferometer. These experiments reveal Hong-Ou-Mandel correlations as a proof of the indistinguishability of the single photons emitted consecutively from a single molecule. Therefore, single molecules constitute an attractive alternative to single InAs quantum dots and trapped atoms for applications in linear optics quantum information processing. Experiments were performed with a home-built confocal microscope keeping the sample in a superfluid liquid Helium bath at 1.4K. We investigated terrylenediimide (TDI) molecules highly diluted in hexadecane (Shpol'skii matrix). A continuous wave single mode dye laser was used for excitation of vibronic transitions of individual molecules. From the integral fluorescence, the ZPL of single molecules was selected with a spectrally narrow interference filter. The ZPL emission was then sent to a scanning Fabry-Perot interferometer for linewidth measurements or a Michelson-type interferometer for coincidence detection.

  10. Downsampling Photodetector Array with Windowing

    NASA Technical Reports Server (NTRS)

    Patawaran, Ferze D.; Farr, William H.; Nguyen, Danh H.; Quirk, Kevin J.; Sahasrabudhe, Adit

    2012-01-01

    In a photon counting detector array, each pixel in the array produces an electrical pulse when an incident photon on that pixel is detected. Detection and demodulation of an optical communication signal that modulated the intensity of the optical signal requires counting the number of photon arrivals over a given interval. As the size of photon counting photodetector arrays increases, parallel processing of all the pixels exceeds the resources available in current application-specific integrated circuit (ASIC) and gate array (GA) technology; the desire for a high fill factor in avalanche photodiode (APD) detector arrays also precludes this. Through the use of downsampling and windowing portions of the detector array, the processing is distributed between the ASIC and GA. This allows demodulation of the optical communication signal incident on a large photon counting detector array, as well as providing architecture amenable to algorithmic changes. The detector array readout ASIC functions as a parallel-to-serial converter, serializing the photodetector array output for subsequent processing. Additional downsampling functionality for each pixel is added to this ASIC. Due to the large number of pixels in the array, the readout time of the entire photodetector is greater than the time between photon arrivals; therefore, a downsampling pre-processing step is done in order to increase the time allowed for the readout to occur. Each pixel drives a small counter that is incremented at every detected photon arrival or, equivalently, the charge in a storage capacitor is incremented. At the end of a user-configurable counting period (calculated independently from the ASIC), the counters are sampled and cleared. This downsampled photon count information is then sent one counter word at a time to the GA. For a large array, processing even the downsampled pixel counts exceeds the capabilities of the GA. Windowing of the array, whereby several subsets of pixels are designated for processing, is used to further reduce the computational requirements. The grouping of the designated pixel frame as the photon count information is sent one word at a time to the GA, the aggregation of the pixels in a window can be achieved by selecting only the designated pixel counts from the serial stream of photon counts, thereby obviating the need to store the entire frame of pixel count in the gate array. The pixel count se quence from each window can then be processed, forming lower-rate pixel statistics for each window. By having this processing occur in the GA rather than in the ASIC, future changes to the processing algorithm can be readily implemented. The high-bandwidth requirements of a photon counting array combined with the properties of the optical modulation being detected by the array present a unique problem that has not been addressed by current CCD or CMOS sensor array solutions.

  11. Direct imaging of isofrequency contours in photonic structures

    DOE PAGES

    Regan, E. C.; Igarashi, Y.; Zhen, B.; ...

    2016-11-25

    The isofrequency contours of a photonic crystal are important for predicting and understanding exotic optical phenomena that are not apparent from high-symmetry band structure visualizations. We demonstrate a method to directly visualize the isofrequency contours of high-quality photonic crystal slabs that show quantitatively good agreement with numerical results throughout the visible spectrum. Our technique relies on resonance-enhanced photon scattering from generic fabrication disorder and surface roughness, so it can be applied to general photonic and plasmonic crystals or even quasi-crystals. We also present an analytical model of the scattering process, which explains the observation of isofrequency contours in our technique.more » Furthermore, the isofrequency contours provide information about the characteristics of the disorder and therefore serve as a feedback tool to improve fabrication processes.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franson, J.D.

    We previously suggested that photon exchange interactions could be used to produce nonlinear effects at the two-photon level, and similar effects have been experimentally observed by Resch et al. (e-print quant-ph/0306198). Here we note that photon exchange interactions are not useful for quantum information processing because they require the presence of substantial photon loss. This dependence on loss is somewhat analogous to the postselection required in the linear optics approach to quantum computing suggested by Knill, Laflamme, and Milburn [Nature (London) 409, 46 (2001)].

  13. Wavevector multiplexed atomic quantum memory via spatially-resolved single-photon detection.

    PubMed

    Parniak, Michał; Dąbrowski, Michał; Mazelanik, Mateusz; Leszczyński, Adam; Lipka, Michał; Wasilewski, Wojciech

    2017-12-15

    Parallelized quantum information processing requires tailored quantum memories to simultaneously handle multiple photons. The spatial degree of freedom is a promising candidate to facilitate such photonic multiplexing. Using a single-photon resolving camera, we demonstrate a wavevector multiplexed quantum memory based on a cold atomic ensemble. Observation of nonclassical correlations between Raman scattered photons is confirmed by an average value of the second-order correlation function [Formula: see text] in 665 separated modes simultaneously. The proposed protocol utilizing the multimode memory along with the camera will facilitate generation of multi-photon states, which are a necessity in quantum-enhanced sensing technologies and as an input to photonic quantum circuits.

  14. AIM Photonics: Tomorrow’s Technology at the Speed of Light

    DTIC Science & Technology

    2016-09-01

    design automation companies AIM Photonics Tomorrow’s Technology at the Speed of Light Michael Liehr Defense AT&L: September-October 2010 386...in speed and complexity will increase cost, power consumption and heat too much to allow further, practical miniaturization. Light propagates...Integrated microwave photonic circuits (using light to transmit and process optical signals encoded with ana- log information at frequencies in the

  15. Polymer Waveguides for Quantum Information

    DTIC Science & Technology

    2005-01-01

    a single photon or a very small amount of light plays a critical role in establishing the quantum nature of the process. These materials offer...realizations of Mach-Zehnder interferometers for use in single- photon quantum communication systems. The Scope of the research for this grant: This...to the waveguide we make. We also intend to investigate the transmission of highly attenuated signals mimicking the single photon , which in turn

  16. Processing multiphoton states through operation on a single photon: Methods and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin Qing; He Bing; Bergou, Janos A.

    2009-10-15

    Multiphoton states are widely applied in quantum information technology. By the methods presented in this paper, the structure of a multiphoton state in the form of multiple single-photon qubit products can be mapped to a single-photon qudit, which could also be in a separable product with other photons. This makes possible the manipulation of such multiphoton states by processing single-photon states. The optical realization of unknown qubit discrimination [B. He, J. A. Bergou, and Y.-H. Ren, Phys. Rev. A 76, 032301 (2007)] is simplified with the transformation methods. Another application is the construction of quantum logic gates, where the inversemore » transformations back to the input state spaces are also necessary. We especially show that the modified setups to implement the transformations can realize the deterministic multicontrol gates (including Toffoli gate) operating directly on the products of single-photon qubits.« less

  17. Indistinguishable near-infrared single photons from an individual organic molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trebbia, Jean-Baptiste; Tamarat, Philippe; Lounis, Brahim

    2010-12-15

    By using the zero-phonon line emission of an individual organic molecule, we realized a source of indistinguishable single photons in the near infrared. A Hong-Ou-Mandel interference experiment is performed and a two-photon coalescence probability higher than 50% at 2 K is obtained. The contribution of the temperature-dependent dephasing processes to the two-photon interference contrast is studied. We show that the molecule delivers nearly ideal indistinguishable single photons at the lowest temperatures when the dephasing is nearly lifetime limited. This source is used to generate postselected polarization-entangled photon pairs as a test bench for applications in quantum information.

  18. Coherent optical pulse sequencer for quantum applications.

    PubMed

    Hosseini, Mahdi; Sparkes, Ben M; Hétet, Gabriel; Longdell, Jevon J; Lam, Ping Koy; Buchler, Ben C

    2009-09-10

    The bandwidth and versatility of optical devices have revolutionized information technology systems and communication networks. Precise and arbitrary control of an optical field that preserves optical coherence is an important requisite for many proposed photonic technologies. For quantum information applications, a device that allows storage and on-demand retrieval of arbitrary quantum states of light would form an ideal quantum optical memory. Recently, significant progress has been made in implementing atomic quantum memories using electromagnetically induced transparency, photon echo spectroscopy, off-resonance Raman spectroscopy and other atom-light interaction processes. Single-photon and bright-optical-field storage with quantum states have both been successfully demonstrated. Here we present a coherent optical memory based on photon echoes induced through controlled reversible inhomogeneous broadening. Our scheme allows storage of multiple pulses of light within a chosen frequency bandwidth, and stored pulses can be recalled in arbitrary order with any chosen delay between each recalled pulse. Furthermore, pulses can be time-compressed, time-stretched or split into multiple smaller pulses and recalled in several pieces at chosen times. Although our experimental results are so far limited to classical light pulses, our technique should enable the construction of an optical random-access memory for time-bin quantum information, and have potential applications in quantum information processing.

  19. On-chip photonic memory elements employing phase-change materials.

    PubMed

    Rios, Carlos; Hosseini, Peiman; Wright, C David; Bhaskaran, Harish; Pernice, Wolfram H P

    2014-03-05

    Phase-change materials integrated into nanophotonic circuits provide a flexible way to realize tunable optical components. Relying on the enormous refractive-index contrast between the amorphous and crystalline states, such materials are promising candidates for on-chip photonic memories. Nonvolatile memory operation employing arrays of microring resonators is demonstrated as a route toward all-photonic chipscale information processing. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerrits, Thomas; Lita, Adriana E.; Calkins, Brice

    Integration is currently the only feasible route toward scalable photonic quantum processing devices that are sufficiently complex to be genuinely useful in computing, metrology, and simulation. Embedded on-chip detection will be critical to such devices. We demonstrate an integrated photon-number-resolving detector, operating in the telecom band at 1550 nm, employing an evanescently coupled design that allows it to be placed at arbitrary locations within a planar circuit. Up to five photons are resolved in the guided optical mode via absorption from the evanescent field into a tungsten transition-edge sensor. The detection efficiency is 7.2{+-}0.5 %. The polarization sensitivity of themore » detector is also demonstrated. Detailed modeling of device designs shows a clear and feasible route to reaching high detection efficiencies.« less

  1. Teleportation of entangled states without Bell-state measurement via a two-photon process

    NASA Astrophysics Data System (ADS)

    dSouza, A. D.; Cardoso, W. B.; Avelar, A. T.; Baseia, B.

    2011-02-01

    In this letter we propose a scheme using a two-photon process to teleport an entangled field state of a bimodal cavity to another one without Bell-state measurement. The quantum information is stored in a zero- and two-photon entangled state. This scheme requires two three-level atoms in a ladder configuration, two bimodal cavities, and selective atomic detectors. The fidelity and success probability do not depend on the coefficients of the state to be teleported. For convenient choices of interaction times, the teleportation occurs with fidelity close to the unity.

  2. Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms.

    PubMed

    Lee, Jong-Chan; Park, Kwang-Kyoon; Zhao, Tian-Ming; Kim, Yoon-Ho

    2016-12-16

    Einstein-Podolsky-Rosen (EPR) entanglement introduced in 1935 deals with two particles that are entangled in their positions and momenta. Here we report the first experimental demonstration of EPR position-momentum entanglement of narrow-band photon pairs generated from cold atoms. By using two-photon quantum ghost imaging and ghost interference, we demonstrate explicitly that the narrow-band photon pairs violate the separability criterion, confirming EPR entanglement. We further demonstrate continuous variable EPR steering for positions and momenta of the two photons. Our new source of EPR-entangled narrow-band photons is expected to play an essential role in spatially multiplexed quantum information processing, such as, storage of quantum correlated images, quantum interface involving hyperentangled photons, etc.

  3. Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Chan; Park, Kwang-Kyoon; Zhao, Tian-Ming; Kim, Yoon-Ho

    2016-12-01

    Einstein-Podolsky-Rosen (EPR) entanglement introduced in 1935 deals with two particles that are entangled in their positions and momenta. Here we report the first experimental demonstration of EPR position-momentum entanglement of narrow-band photon pairs generated from cold atoms. By using two-photon quantum ghost imaging and ghost interference, we demonstrate explicitly that the narrow-band photon pairs violate the separability criterion, confirming EPR entanglement. We further demonstrate continuous variable EPR steering for positions and momenta of the two photons. Our new source of EPR-entangled narrow-band photons is expected to play an essential role in spatially multiplexed quantum information processing, such as, storage of quantum correlated images, quantum interface involving hyperentangled photons, etc.

  4. Quantum Sensing and Communications Being Developed for Nanotechnology

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Seibert, Marc A.

    2003-01-01

    An interdisciplinary quantum communications and sensing research effort has been underway at the NASA Glenn Research Center since the summer of 2000. Researchers in the Communications Technology, Instrumentation and Controls, and Propulsion and Turbomachinery Divisions have been working together to study and develop techniques that use the principle of quantum entanglement (QE). This work is supported principally by the Nanotechnology Base R&T program at Glenn. As applied to communications and sensing, QE is an emerging technology that holds promise as a new and innovative way to communicate faster and farther, and to sense, measure, and image environmental properties in ways that are not possible with existing technology. Quantum entangled photons are "inseparable" as described by a wave function formalism. For two entangled photons, the term "inseparable" means that one cannot describe one photon without completely describing the other. This inseparability gives rise to what appears as "spooky," or nonintuitive, behavior because of the quantum nature of the process. For example, two entangled photons of lower energy can be created simultaneously from a single photon of higher energy in a process called spontaneous parametric down-conversion. Our research is focused on the use of polarization-entangled photons generated by passing a high-energy (blue) photon through a nonlinear beta barium borate crystal to generate two red photons that have orthogonal, but entangled, polarization states. Although the actual polarization state of any one photon is not known until it is measured, the act of measuring the polarization of one photon completely determines the polarization state of its twin because of entanglement. This unique relationship between the photons provides extra information about the system. For example, entanglement makes it easy to distinguish entangled photons from other photons impinging on a detector. For many other applications, ranging from quantum computation and information to quantum sensing, the entanglement property is critical.

  5. Optical π phase shift created with a single-photon pulse.

    PubMed

    Tiarks, Daniel; Schmidt, Steffen; Rempe, Gerhard; Dürr, Stephan

    2016-04-01

    A deterministic photon-photon quantum logic gate is a long-standing goal. Building such a gate becomes possible if a light pulse containing only one photon imprints a phase shift of π onto another light field. We experimentally demonstrate the generation of such a π phase shift with a single-photon pulse. A first light pulse containing less than one photon on average is stored in an atomic gas. Rydberg blockade combined with electromagnetically induced transparency creates a phase shift for a second light pulse, which propagates through the medium. We measure the π phase shift of the second pulse when we postselect the data upon the detection of a retrieved photon from the first pulse. This demonstrates a crucial step toward a photon-photon gate and offers a variety of applications in the field of quantum information processing.

  6. Heralded noiseless amplification for single-photon entangled state with polarization feature

    NASA Astrophysics Data System (ADS)

    Wang, Dan-Dan; Jin, Yu-Yu; Qin, Sheng-Xian; Zu, Hao; Zhou, Lan; Zhong, Wei; Sheng, Yu-Bo

    2018-03-01

    Heralded noiseless amplification is a promising method to overcome the transmission photon loss in practical noisy quantum channel and can effectively lengthen the quantum communication distance. Single-photon entanglement is an important resource in current quantum communications. Here, we construct two single-photon-assisted heralded noiseless amplification protocols for the single-photon two-mode entangled state and single-photon three-mode W state, respectively, where the single-photon qubit has an arbitrary unknown polarization feature. After the amplification, the fidelity of the single-photon entangled state can be increased, while the polarization feature of the single-photon qubit can be well remained. Both the two protocols only require the linear optical elements, so that they can be realized under current experimental condition. Our protocols may be useful in current and future quantum information processing.

  7. Photonic reservoir computing: a new approach to optical information processing

    NASA Astrophysics Data System (ADS)

    Vandoorne, Kristof; Fiers, Martin; Verstraeten, David; Schrauwen, Benjamin; Dambre, Joni; Bienstman, Peter

    2010-06-01

    Despite ever increasing computational power, recognition and classification problems remain challenging to solve. Recently, advances have been made by the introduction of the new concept of reservoir computing. This is a methodology coming from the field of machine learning and neural networks that has been successfully used in several pattern classification problems, like speech and image recognition. Thus far, most implementations have been in software, limiting their speed and power efficiency. Photonics could be an excellent platform for a hardware implementation of this concept because of its inherent parallelism and unique nonlinear behaviour. Moreover, a photonic implementation offers the promise of massively parallel information processing with low power and high speed. We propose using a network of coupled Semiconductor Optical Amplifiers (SOA) and show in simulation that it could be used as a reservoir by comparing it to conventional software implementations using a benchmark speech recognition task. In spite of the differences with classical reservoir models, the performance of our photonic reservoir is comparable to that of conventional implementations and sometimes slightly better. As our implementation uses coherent light for information processing, we find that phase tuning is crucial to obtain high performance. In parallel we investigate the use of a network of photonic crystal cavities. The coupled mode theory (CMT) is used to investigate these resonators. A new framework is designed to model networks of resonators and SOAs. The same network topologies are used, but feedback is added to control the internal dynamics of the system. By adjusting the readout weights of the network in a controlled manner, we can generate arbitrary periodic patterns.

  8. Silica-on-silicon waveguide quantum circuits.

    PubMed

    Politi, Alberto; Cryan, Martin J; Rarity, John G; Yu, Siyuan; O'Brien, Jeremy L

    2008-05-02

    Quantum technologies based on photons will likely require an integrated optics architecture for improved performance, miniaturization, and scalability. We demonstrate high-fidelity silica-on-silicon integrated optical realizations of key quantum photonic circuits, including two-photon quantum interference with a visibility of 94.8 +/- 0.5%; a controlled-NOT gate with an average logical basis fidelity of 94.3 +/- 0.2%; and a path-entangled state of two photons with fidelity of >92%. These results show that it is possible to directly "write" sophisticated photonic quantum circuits onto a silicon chip, which will be of benefit to future quantum technologies based on photons, including information processing, communication, metrology, and lithography, as well as the fundamental science of quantum optics.

  9. Power-efficient production of photon pairs in a tapered chalcogenide microwire

    NASA Astrophysics Data System (ADS)

    Meyer-Scott, Evan; Dot, Audrey; Ahmad, Raja; Li, Lizhu; Rochette, Martin; Jennewein, Thomas

    2015-02-01

    Using tapered fibers of As2Se3 chalcogenide glass, we produce photon pairs at telecommunication wavelengths with low pump powers. We found maximum coincidences-to-accidentals ratios of 2.13 ± 0.07 for degenerate pumping with 3.2 μW average power, and 1.33 ± 0.03 for non-degenerate pumping with 1.0 μW and 1.5 μW average power of the two pumps. Our results show that the ultrahigh nonlinearity in these microwires could allow single-photon pumping to produce photon pairs, enabling the production of large entangled states, heralding of single photons after lossy transmission, and photonic quantum information processing with nonlinear optics.

  10. Interpreting angular momentum transfer between electromagnetic multipoles using vector spherical harmonics.

    PubMed

    Grinter, Roger; Jones, Garth A

    2018-02-01

    The transfer of angular momentum between a quadrupole emitter and a dipole acceptor is investigated theoretically. Vector spherical harmonics are used to describe the angular part of the field of the mediating photon. Analytical results are presented for predicting angular momentum transfer between the emitter and absorber within a quantum electrodynamical framework. We interpret the allowability of such a process, which appears to violate conservation of angular momentum, in terms of the breakdown of the isotropy of space at the point of photon absorption (detection). That is, collapse of the wavefunction results in loss of all angular momentum information. This is consistent with Noether's Theorem and demystifies some common misconceptions about the nature of the photon. The results have implications for interpreting the detection of photons from multipole sources and offers insight into limits on information that can be extracted from quantum measurements in photonic systems.

  11. Precise control of coupling strength in photonic molecules over a wide range using nanoelectromechanical systems

    PubMed Central

    Du, Han; Zhang, Xingwang; Chen, Guoqiang; Deng, Jie; Chau, Fook Siong; Zhou, Guangya

    2016-01-01

    Photonic molecules have a range of promising applications including quantum information processing, where precise control of coupling strength is critical. Here, by laterally shifting the center-to-center offset of coupled photonic crystal nanobeam cavities, we demonstrate a method to precisely and dynamically control the coupling strength of photonic molecules through integrated nanoelectromechanical systems with a precision of a few GHz over a range of several THz without modifying the nature of their constituent resonators. Furthermore, the coupling strength can be tuned continuously from negative (strong coupling regime) to zero (weak coupling regime) and further to positive (strong coupling regime) and vice versa. Our work opens a door to the optimization of the coupling strength of photonic molecules in situ for the study of cavity quantum electrodynamics and the development of efficient quantum information devices. PMID:27097883

  12. The electrophotonic silicon biosensor

    NASA Astrophysics Data System (ADS)

    Juan-Colás, José; Parkin, Alison; Dunn, Katherine E.; Scullion, Mark G.; Krauss, Thomas F.; Johnson, Steven D.

    2016-09-01

    The emergence of personalized and stratified medicine requires label-free, low-cost diagnostic technology capable of monitoring multiple disease biomarkers in parallel. Silicon photonic biosensors combine high-sensitivity analysis with scalable, low-cost manufacturing, but they tend to measure only a single biomarker and provide no information about their (bio)chemical activity. Here we introduce an electrochemical silicon photonic sensor capable of highly sensitive and multiparameter profiling of biomarkers. Our electrophotonic technology consists of microring resonators optimally n-doped to support high Q resonances alongside electrochemical processes in situ. The inclusion of electrochemical control enables site-selective immobilization of different biomolecules on individual microrings within a sensor array. The combination of photonic and electrochemical characterization also provides additional quantitative information and unique insight into chemical reactivity that is unavailable with photonic detection alone. By exploiting both the photonic and the electrical properties of silicon, the sensor opens new modalities for sensing on the microscale.

  13. Photon extraction and conversion for scalable ion-trap quantum computing

    NASA Astrophysics Data System (ADS)

    Clark, Susan; Benito, Francisco; McGuinness, Hayden; Stick, Daniel

    2014-03-01

    Trapped ions represent one of the most mature and promising systems for quantum information processing. They have high-fidelity one- and two-qubit gates, long coherence times, and their qubit states can be reliably prepared and detected. Taking advantage of these inherent qualities in a system with many ions requires a means of entangling spatially separated ion qubits. One architecture achieves this entanglement through the use of emitted photons to distribute quantum information - a favorable strategy if photon extraction can be made efficient and reliable. Here I present results for photon extraction from an ion in a cavity formed by integrated optics on a surface trap, as well as results in frequency converting extracted photons for long distance transmission or interfering with photons from other types of optically active qubits. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. Multipurpose silicon photonics signal processor core.

    PubMed

    Pérez, Daniel; Gasulla, Ivana; Crudgington, Lee; Thomson, David J; Khokhar, Ali Z; Li, Ke; Cao, Wei; Mashanovich, Goran Z; Capmany, José

    2017-09-21

    Integrated photonics changes the scaling laws of information and communication systems offering architectural choices that combine photonics with electronics to optimize performance, power, footprint, and cost. Application-specific photonic integrated circuits, where particular circuits/chips are designed to optimally perform particular functionalities, require a considerable number of design and fabrication iterations leading to long development times. A different approach inspired by electronic Field Programmable Gate Arrays is the programmable photonic processor, where a common hardware implemented by a two-dimensional photonic waveguide mesh realizes different functionalities through programming. Here, we report the demonstration of such reconfigurable waveguide mesh in silicon. We demonstrate over 20 different functionalities with a simple seven hexagonal cell structure, which can be applied to different fields including communications, chemical and biomedical sensing, signal processing, multiprocessor networks, and quantum information systems. Our work is an important step toward this paradigm.Integrated optical circuits today are typically designed for a few special functionalities and require complex design and development procedures. Here, the authors demonstrate a reconfigurable but simple silicon waveguide mesh with different functionalities.

  15. Experimental generation of an eight-photon Greenberger-Horne-Zeilinger state.

    PubMed

    Huang, Yun-Feng; Liu, Bi-Heng; Peng, Liang; Li, Yu-Hu; Li, Li; Li, Chuan-Feng; Guo, Guang-Can

    2011-11-22

    Multi-partite entangled states are important for developing studies of quantum networking and quantum computation. To date, the largest number of particles that have been successfully manipulated is 14 trapped ions. Yet in quantum information science, photons have particular advantages over other systems. In particular, they are more easily transportable qubits and are more robust against decoherence. Thus far, the largest number of photons to have been successfully manipulated in an experiment is six. Here we demonstrate, for the first time, an eight-photon Greenberger-Horne-Zeilinger state with a measured fidelity of 0.59±0.02, which proved the presence of genuine eight-partite entanglement. This is achieved by improving the photon detection efficiency to 25% with a 300-mW pump laser. With this state, we also demonstrate an eight-party quantum communication complexity scenario. This eight-photon entangled-state source may be useful in one-way quantum computation, quantum networks and other quantum information processing tasks.

  16. Implementation of a quantum controlled-SWAP gate with photonic circuits

    NASA Astrophysics Data System (ADS)

    Ono, Takafumi; Okamoto, Ryo; Tanida, Masato; Hofmann, Holger F.; Takeuchi, Shigeki

    2017-03-01

    Quantum information science addresses how the processing and transmission of information are affected by uniquely quantum mechanical phenomena. Combination of two-qubit gates has been used to realize quantum circuits, however, scalability is becoming a critical problem. The use of three-qubit gates may simplify the structure of quantum circuits dramatically. Among them, the controlled-SWAP (Fredkin) gates are essential since they can be directly applied to important protocols, e.g., error correction, fingerprinting, and optimal cloning. Here we report a realization of the Fredkin gate for photonic qubits. We achieve a fidelity of 0.85 in the computational basis and an output state fidelity of 0.81 for a 3-photon Greenberger-Horne-Zeilinger state. The estimated process fidelity of 0.77 indicates that our Fredkin gate can be applied to various quantum tasks.

  17. SPECIAL ISSUE ON OPTICAL PROCESSING OF INFORMATION: Associative properties of a multichannel photon echo and optical memory

    NASA Astrophysics Data System (ADS)

    Bikbov, I. S.; Zuikov, V. A.; Popov, I. I.; Popova, G. L.; Samartsev, V. V.

    1995-10-01

    An analysis is made of the results of an investigation of the physical principles underlying the operation of an associative optical memory and of processors utilising the photon (optical) echo phenomenon. The feasibility of constructing such optical memories is considered.

  18. Preface to Special Topic: Emerging materials for photonics

    NASA Astrophysics Data System (ADS)

    Vitiello, Miriam S.; Razeghi, Manijeh

    2017-03-01

    Photonics plays a major role in all aspects of human life. It revolutionized science by addressing fundamental scientific questions and by enabling key functions in many interdisciplinary fields spanning from quantum technologies to information and communication science, and from biomedical research to industrial process monitoring and life entertainment.

  19. Hybrid Toffoli gate on photons and quantum spins

    PubMed Central

    Luo, Ming-Xing; Ma, Song-Ya; Chen, Xiu-Bo; Wang, Xiaojun

    2015-01-01

    Quantum computation offers potential advantages in solving a number of interesting and difficult problems. Several controlled logic gates, the elemental building blocks of quantum computer, have been realized with various physical systems. A general technique was recently proposed that significantly reduces the realization complexity of multiple-control logic gates by harnessing multi-level information carriers. We present implementations of a key quantum circuit: the three-qubit Toffoli gate. By exploring the optical selection rules of one-sided optical microcavities, a Toffoli gate may be realized on all combinations of photon and quantum spins in the QD-cavity. The three general controlled-NOT gates are involved using an auxiliary photon with two degrees of freedom. Our results show that photons and quantum spins may be used alternatively in quantum information processing. PMID:26568078

  20. Hybrid Toffoli gate on photons and quantum spins.

    PubMed

    Luo, Ming-Xing; Ma, Song-Ya; Chen, Xiu-Bo; Wang, Xiaojun

    2015-11-16

    Quantum computation offers potential advantages in solving a number of interesting and difficult problems. Several controlled logic gates, the elemental building blocks of quantum computer, have been realized with various physical systems. A general technique was recently proposed that significantly reduces the realization complexity of multiple-control logic gates by harnessing multi-level information carriers. We present implementations of a key quantum circuit: the three-qubit Toffoli gate. By exploring the optical selection rules of one-sided optical microcavities, a Toffoli gate may be realized on all combinations of photon and quantum spins in the QD-cavity. The three general controlled-NOT gates are involved using an auxiliary photon with two degrees of freedom. Our results show that photons and quantum spins may be used alternatively in quantum information processing.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendrickson, Scott M.; Foster, Amy C.; Camacho, Ryan M.

    In this paper, we provide a review of recent progress in integrated nonlinear photonics with a focus on emerging applications in all-optical signal processing, ultra-low-power all-optical switching, and quantum information processing.

  2. Broadband photon pair generation in green fluorescent proteins through spontaneous four-wave mixing

    PubMed Central

    Shi, Siyuan; Thomas, Abu; Corzo, Neil V.; Kumar, Prem; Huang, Yuping; Lee, Kim Fook

    2016-01-01

    Recent studies in quantum biology suggest that quantum mechanics help us to explore quantum processes in biological system. Here, we demonstrate generation of photon pairs through spontaneous four-wave mixing process in naturally occurring fluorescent proteins. We develop a general empirical method for analyzing the relative strength of nonlinear optical interaction processes in five different organic fluorophores. Our results indicate that the generation of photon pairs in green fluorescent proteins is subject to less background noises than in other fluorophores, leading to a coincidence-to-accidental ratio ~145. As such proteins can be genetically engineered and fused to many biological cells, our experiment enables a new platform for quantum information processing in a biological environment such as biomimetic quantum networks and quantum sensors. PMID:27076032

  3. Simulation of multi-photon emission isotopes using time-resolved SimSET multiple photon history generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, Chih-Chieh; Lin, Hsin-Hon; Lin, Chang-Shiun

    Abstract-Multiple-photon emitters, such as In-111 or Se-75, have enormous potential in the field of nuclear medicine imaging. For example, Se-75 can be used to investigate the bile acid malabsorption and measure the bile acid pool loss. The simulation system for emission tomography (SimSET) is a well-known Monte Carlo simulation (MCS) code in nuclear medicine for its high computational efficiency. However, current SimSET cannot simulate these isotopes due to the lack of modeling of complex decay scheme and the time-dependent decay process. To extend the versatility of SimSET for simulation of those multi-photon emission isotopes, a time-resolved multiple photon history generatormore » based on SimSET codes is developed in present study. For developing the time-resolved SimSET (trSimSET) with radionuclide decay process, the new MCS model introduce new features, including decay time information and photon time-of-flight information, into this new code. The half-life of energy states were tabulated from the Evaluated Nuclear Structure Data File (ENSDF) database. The MCS results indicate that the overall percent difference is less than 8.5% for all simulation trials as compared to GATE. To sum up, we demonstrated that time-resolved SimSET multiple photon history generator can have comparable accuracy with GATE and keeping better computational efficiency. The new MCS code is very useful to study the multi-photon imaging of novel isotopes that needs the simulation of lifetime and the time-of-fight measurements. (authors)« less

  4. Electrically driven polarized single-photon emission from an InGaN quantum dot in a GaN nanowire.

    PubMed

    Deshpande, Saniya; Heo, Junseok; Das, Ayan; Bhattacharya, Pallab

    2013-01-01

    In a classical light source, such as a laser, the photon number follows a Poissonian distribution. For quantum information processing and metrology applications, a non-classical emitter of single photons is required. A single quantum dot is an ideal source of single photons and such single-photon sources in the visible spectral range have been demonstrated with III-nitride and II-VI-based single quantum dots. It has been suggested that short-wavelength blue single-photon emitters would be useful for free-space quantum cryptography, with the availability of high-speed single-photon detectors in this spectral region. Here we demonstrate blue single-photon emission with electrical injection from an In0.25Ga0.75N quantum dot in a single nanowire. The emitted single photons are linearly polarized along the c axis of the nanowire with a degree of linear polarization of ~70%.

  5. Temporal and spectral manipulations of correlated photons using a time lens

    NASA Astrophysics Data System (ADS)

    Mittal, Sunil; Orre, Venkata Vikram; Restelli, Alessandro; Salem, Reza; Goldschmidt, Elizabeth A.; Hafezi, Mohammad

    2017-10-01

    A common challenge in quantum information processing with photons is the limited ability to manipulate and measure correlated states. An example is the inability to measure picosecond-scale temporal correlations of a multiphoton state, given state-of-the-art detectors have a temporal resolution of about 100 ps. Here, we demonstrate temporal magnification of time-bin-entangled two-photon states using a time lens and measure their temporal correlation function, which is otherwise not accessible because of the limited temporal resolution of single-photon detectors. Furthermore, we show that the time lens maps temporal correlations of photons to frequency correlations and could be used to manipulate frequency-bin-entangled photons. This demonstration opens a new avenue to manipulate and analyze spectral and temporal wave functions of many-photon states.

  6. Asymmetric photon transport in organic semiconductor nanowires through electrically controlled exciton diffusion

    PubMed Central

    Cui, Qiu Hong; Peng, Qian; Luo, Yi; Jiang, Yuqian; Yan, Yongli; Wei, Cong; Shuai, Zhigang; Sun, Cheng; Yao, Jiannian; Zhao, Yong Sheng

    2018-01-01

    The ability to steer the flow of light toward desired propagation directions is critically important for the realization of key functionalities in optical communication and information processing. Although various schemes have been proposed for this purpose, the lack of capability to incorporate an external electric field to effectively tune the light propagation has severely limited the on-chip integration of photonics and electronics. Because of the noninteractive nature of photons, it is only possible to electrically control the flow of light by modifying the refractive index of materials through the electro-optic effect. However, the weak optical effects need to be strongly amplified for practical applications in high-density photonic integrations. We show a new strategy that takes advantage of the strong exciton-photon coupling in active waveguides to effectively manipulate photon transport by controlling the interaction between excitons and the external electric field. Single-crystal organic semiconductor nanowires were used to generate highly stable Frenkel exciton polaritons with strong binding and diffusion abilities. By making use of directional exciton diffusion in an external electric field, we have realized an electrically driven asymmetric photon transport and thus directional light propagation in a single nanowire. With this new concept, we constructed a dual-output single wire–based device to build an electrically controlled single-pole double-throw optical switch with fast temporal response and high switching frequency. Our findings may lead to the innovation of concepts and device architectures for optical information processing. PMID:29556529

  7. UV photoprocessing of CO2 ice: a complete quantification of photochemistry and photon-induced desorption processes

    NASA Astrophysics Data System (ADS)

    Martín-Doménech, R.; Manzano-Santamaría, J.; Muñoz Caro, G. M.; Cruz-Díaz, G. A.; Chen, Y.-J.; Herrero, V. J.; Tanarro, I.

    2015-12-01

    Context. Ice mantles that formed on top of dust grains are photoprocessed by the secondary ultraviolet (UV) field in cold and dense molecular clouds. UV photons induce photochemistry and desorption of ice molecules. Experimental simulations dedicated to ice analogs under astrophysically relevant conditions are needed to understand these processes. Aims: We present UV-irradiation experiments of a pure CO2 ice analog. Calibration of the quadrupole mass spectrometer allowed us to quantify the photodesorption of molecules to the gas phase. This information was added to the data provided by the Fourier transform infrared spectrometer on the solid phase to obtain a complete quantitative study of the UV photoprocessing of an ice analog. Methods: Experimental simulations were performed in an ultra-high vacuum chamber. Ice samples were deposited onto an infrared transparent window at 8K and were subsequently irradiated with a microwave-discharged hydrogen flow lamp. After irradiation, ice samples were warmed up until complete sublimation was attained. Results: Photolysis of CO2 molecules initiates a network of photon-induced chemical reactions leading to the formation of CO, CO3, O2, and O3. During irradiation, photon-induced desorption of CO and, to a lesser extent, O2 and CO2 took place through a process called indirect desorption induced by electronic transitions, with maximum photodesorption yields (Ypd) of ~1.2 × 10-2 molecules incident photon-1, ~9.3 × 10-4 molecules incident photon-1, and ~1.1 × 10-4 molecules incident photon-1, respectively. Conclusions: Calibration of mass spectrometers allows a direct quantification of photodesorption yields instead of the indirect values that were obtained from infrared spectra in most previous works. Supplementary information provided by infrared spectroscopy leads to a complete quantification, and therefore a better understanding, of the processes taking place in UV-irradiated ice mantles. Appendix A is available in electronic form at http://www.aanda.org

  8. Universal Linear Optics: An implementation of Boson Sampling on a Fully Reconfigurable Circuit

    NASA Astrophysics Data System (ADS)

    Harrold, Christopher; Carolan, Jacques; Sparrow, Chris; Russell, Nicholas J.; Silverstone, Joshua W.; Marshall, Graham D.; Thompson, Mark G.; Matthews, Jonathan C. F.; O'Brien, Jeremy L.; Laing, Anthony; Martín-López, Enrique; Shadbolt, Peter J.; Matsuda, Nobuyuki; Oguma, Manabu; Itoh, Mikitaka; Hashimoto, Toshikazu

    Linear optics has paved the way for fundamental tests in quantum mechanics and has gone on to enable a broad range of quantum information processing applications for quantum technologies. We demonstrate an integrated photonics processor that is universal for linear optics. The device is a silica-on-silicon planar waveguide circuit (PLC) comprising a cascade of 15 Mach Zehnder interferometers, with 30 directional couplers and 30 tunable thermo-optic phase shifters which are electrically interfaced for the arbitrary setting of a phase. We input ensembles of up to six photons, and monitor the output with a 12-single-photon detector system. The calibrated device is capable of implementing any linear optical protocol. This enables the implementation of new quantum information processing tasks in seconds, which would have previously taken months to realise. We demonstrate 100 instances of the boson sampling problem with verification tests, and six-dimensional complex Hadamards. Also Imperial College London.

  9. Parametrically driven hybrid qubit-photon systems: Dissipation-induced quantum entanglement and photon production from vacuum

    NASA Astrophysics Data System (ADS)

    Remizov, S. V.; Zhukov, A. A.; Shapiro, D. S.; Pogosov, W. V.; Lozovik, Yu. E.

    2017-10-01

    We consider a dissipative evolution of a parametrically driven qubit-cavity system under the periodic modulation of coupling energy between two subsystems, which leads to the amplification of counter-rotating processes. We reveal a very rich dynamical behavior of this hybrid system. In particular, we find that the energy dissipation in one of the subsystems can enhance quantum effects in another subsystem. For instance, optimal cavity decay assists the stabilization of entanglement and quantum correlations between qubits even in the steady state and the compensation of finite qubit relaxation. On the contrary, energy dissipation in qubit subsystems results in enhanced photon production from vacuum for strong modulation but destroys both quantum concurrence and quantum mutual information between qubits. Our results provide deeper insights to nonstationary cavity quantum electrodynamics in the context of quantum information processing and might be of importance for dissipative quantum state engineering.

  10. Programmable Quantum Photonic Processor Using Silicon Photonics

    DTIC Science & Technology

    2017-04-01

    quantum information processing and quantum sensing, ranging from linear optics quantum computing and quantum simulation to quantum ...transformers have driven experimental and theoretical advances in quantum simulation, cluster-state quantum computing , all-optical quantum repeaters...neuromorphic computing , and other applications. In addition, we developed new schemes for ballistic quantum computation , new methods for

  11. Collective phenomena in photonic, plasmonic and hybrid structures.

    PubMed

    Boriskina, Svetlana V; Povinelli, Michelle; Astratov, Vasily N; Zayats, Anatoly V; Podolskiy, Viktor A

    2011-10-24

    Preface to a focus issue of invited articles that review recent progress in studying the fundamental physics of collective phenomena associated with coupling of confined photonic, plasmonic, electronic and phononic states and in exploiting these phenomena to engineer novel devices for light generation, optical sensing, and information processing. © 2011 Optical Society of America

  12. Prompt photon-jet angular correlations at central rapidities in p +A collisions

    NASA Astrophysics Data System (ADS)

    Benić, Sanjin; Dumitru, Adrian

    2018-01-01

    Photon-jet azimuthal correlations in proton-nucleus collisions are a promising tool for gaining information on the gluon distribution of the nucleus in the regime of nonlinear color fields. We compute such correlations from the process g →q q ¯ γ in the rapidity regime where both the projectile and target light-cone momentum fractions are small. By integrating over the phase space of the quark which emits the photon, subject to the restriction that the photon picks up most of the transverse momentum (to pass an isolation cut), we effectively obtain a g +A →q γ process. For nearly back-to-back photon-jet configurations we find that it dominates over the leading-order process q +A →q γ by two less powers of Q⊥/QS, where Q⊥ and QS denote the net photon-jet pair momentum and the saturation scale of the nucleus, respectively. We determine the transverse-momentum-dependent gluon distributions involved in g +A →q γ and the scale where they are evaluated. Finally, we provide analytic expressions for ⟨cos n ϕ ⟩ moments, where ϕ is the angle between Q⊥ and the average photon-jet transverse momentum P˜ ⊥ , and first qualitative estimates of their transverse momentum dependence.

  13. Implementation and characterization of active feed-forward for deterministic linear optics quantum computing

    NASA Astrophysics Data System (ADS)

    Böhi, P.; Prevedel, R.; Jennewein, T.; Stefanov, A.; Tiefenbacher, F.; Zeilinger, A.

    2007-12-01

    In general, quantum computer architectures which are based on the dynamical evolution of quantum states, also require the processing of classical information, obtained by measurements of the actual qubits that make up the computer. This classical processing involves fast, active adaptation of subsequent measurements and real-time error correction (feed-forward), so that quantum gates and algorithms can be executed in a deterministic and hence error-free fashion. This is also true in the linear optical regime, where the quantum information is stored in the polarization state of photons. The adaptation of the photon’s polarization can be achieved in a very fast manner by employing electro-optical modulators, which change the polarization of a trespassing photon upon appliance of a high voltage. In this paper we discuss techniques for implementing fast, active feed-forward at the single photon level and we present their application in the context of photonic quantum computing. This includes the working principles and the characterization of the EOMs as well as a description of the switching logics, both of which allow quantum computation at an unprecedented speed.

  14. An innovative nanophotonic information processing concept implementing cogent micro/nanosensors for space robotics

    NASA Astrophysics Data System (ADS)

    Santoli, Salvatore

    2013-02-01

    Cogent sensors, defined as sensors that are capable of performing the transformation of raw data into information, are shown to be of the essence for realization of the long sought-after autonomous robots for space applications. A strongly miniaturized integration of sensing and information processing systems is needed for cogent sensors designed for autonomous sensing—information processing (IP)—actuating behavior. It is shown that the recently developed field of quantum holography (QH), stemming from geometric quantization of any holographic processes through the Heisenberg Group (G) and deeply different, as stressed in detail, from other meanings of "quantum holography" in the literature, supplies the nanophotonic tools for designing and assembling an associative memory (AM) as the brain implementing such strong cogency. An AM is designed through a free-space interconnected large planar multilayer architecture of quantum well-based two-port neurons implementing a shift register on the manifold of G, and whose input consists of photonic holograms from high frequency pulsed microlasers in the infrared band of em or em-transduced outside signals. The optoelectronics as relative, integrated into a hybrid chip involving photonic detectors, microlasers and electronic components for the clock control system, would allow cycle times as short as 30 ns with the large spatial bandwidth available in photonics. IP through QH concerns the encoding and decoding of holographic interference patterns, not of mere binary digital logical (syntactic) information. Accordingly, QH defines on the G's manifold an IP paradigm where information as experimental knowledge is processed; i.e., IP concerns both syntax and semantics. It is shown that such QH-neural brain would cogently deal with spurious signals as random noise that would be caused to die out on the way to the intended target through parallel massive and real-time IP.

  15. Thermooptic two-mode interference device for reconfigurable quantum optic circuits

    NASA Astrophysics Data System (ADS)

    Sahu, Partha Pratim

    2018-06-01

    Reconfigurable large-scale integrated quantum optic circuits require compact component having capability of accurate manipulation of quantum entanglement for quantum communication and information processing applications. Here, a thermooptic two-mode interference coupler has been introduced as a compact component for generation of reconfigurable complex multi-photons quantum interference. Both theoretical and experimental approaches are used for the demonstration of two-photon and four-photon quantum entanglement manipulated with thermooptic phase change in TMI region. Our results demonstrate complex multi-photon quantum interference with high fabrication tolerance and quantum fidelity in smaller dimension than previous thermooptic Mach-Zehnder implementations.

  16. Quantum computing with incoherent resources and quantum jumps.

    PubMed

    Santos, M F; Cunha, M Terra; Chaves, R; Carvalho, A R R

    2012-04-27

    Spontaneous emission and the inelastic scattering of photons are two natural processes usually associated with decoherence and the reduction in the capacity to process quantum information. Here we show that, when suitably detected, these photons are sufficient to build all the fundamental blocks needed to perform quantum computation in the emitting qubits while protecting them from deleterious dissipative effects. We exemplify this by showing how to efficiently prepare graph states for the implementation of measurement-based quantum computation.

  17. Experimental extraction of an entangled photon pair from two identically decohered pairs.

    PubMed

    Yamamoto, Takashi; Koashi, Masato; Ozdemir, Sahin Kaya; Imoto, Nobuyuki

    2003-01-23

    Entanglement is considered to be one of the most important resources in quantum information processing schemes, including teleportation, dense coding and entanglement-based quantum key distribution. Because entanglement cannot be generated by classical communication between distant parties, distribution of entangled particles between them is necessary. During the distribution process, entanglement between the particles is degraded by the decoherence and dissipation processes that result from unavoidable coupling with the environment. Entanglement distillation and concentration schemes are therefore needed to extract pairs with a higher degree of entanglement from these less-entangled pairs; this is accomplished using local operations and classical communication. Here we report an experimental demonstration of extraction of a polarization-entangled photon pair from two decohered photon pairs. Two polarization-entangled photon pairs are generated by spontaneous parametric down-conversion and then distributed through a channel that induces identical phase fluctuations to both pairs; this ensures that no entanglement is available as long as each pair is manipulated individually. Then, through collective local operations and classical communication we extract from the two decohered pairs a photon pair that is observed to be polarization-entangled.

  18. Double ionization in R -matrix theory using a two-electron outer region

    NASA Astrophysics Data System (ADS)

    Wragg, Jack; Parker, J. S.; van der Hart, H. W.

    2015-08-01

    We have developed a two-electron outer region for use within R -matrix theory to describe double ionization processes. The capability of this method is demonstrated for single-photon double ionization of He in the photon energy region between 80 and 180 eV. The cross sections are in agreement with established data. The extended R -matrix with time dependence method also provides information on higher-order processes, as demonstrated by the identification of signatures for sequential double ionization processes involving an intermediate He+ state with n =2 .

  19. Multi-photon ionization of atoms in intense short-wavelength radiation fields

    NASA Astrophysics Data System (ADS)

    Meyer, Michael

    2015-05-01

    The unprecedented characteristics of XUV and X-ray Free Electron Lasers (FELs) have stimulated numerous investigations focusing on the detailed understanding of fundamental photon-matter interactions in atoms and molecules. In particular, the high intensities (up to 106 W/cm2) giving rise to non-linear phenomena in the short wavelength regime. The basic phenomenology involves the production of highly charged ions via electron emission to which both sequential and direct multi-photon absorption processes contribute. The detailed investigation of the role and relative weight of these processes under different conditions (wavelength, pulse duration, intensity) is the key element for a comprehensive understanding of the ionization dynamics. Here the results of recent investigations are presented, performed at the FELs in Hamburg (FLASH) and Trieste (FERMI) on atomic systems with electronic structures of increasing complexity (Ar, Ne and Xe). Mainly, electron spectroscopy is used to obtain quantitative information about the relevance of various multi-photon ionization processes. For the case of Ar, a variety of processes including above threshold ionization (ATI) from 3p and 3s valence shells, direct 2p two-photon ionization and resonant 2p-4p two-photon excitations were observed and their role was quantitatively determined comparing the experimental ionization yields to ab-initio calculations of the cross sections for the multi-photon processes. Using Ar as a benchmark to prove the reliability of the combined experimental and theoretical approach, the more complex and intriguing case of Xe was studied. Especially, the analysis of the two-photon ATI from the Xe 4d shell reveals new insight into the character of the 4d giant resonance, which was unresolved in the linear one-photon regime. Finally, the influence of intense XUV radiation to the relaxation dynamics of the Ne 2s-3p resonance was investigated by angle-resolved electron spectroscopy, especially be observing the intensity dependent variation of the angular distribution patterns for the sequential ionization process.

  20. Synthetic-lattice enabled all-optical devices based on orbital angular momentum of light.

    PubMed

    Luo, Xi-Wang; Zhou, Xingxiang; Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can; Zhang, Chuanwei; Zhou, Zheng-Wei

    2017-07-14

    All-optical photonic devices are crucial for many important photonic technologies and applications, ranging from optical communication to quantum information processing. Conventional design of all-optical devices is based on photon propagation and interference in real space, which may rely on large numbers of optical elements, and the requirement of precise control makes this approach challenging. Here we propose an unconventional route for engineering all-optical devices using the photon's internal degrees of freedom, which form photonic crystals in such synthetic dimensions for photon propagation and interference. We demonstrate this design concept by showing how important optical devices such as quantum memory and optical filters can be realized using synthetic orbital angular momentum (OAM) lattices in degenerate cavities. The design route utilizing synthetic photonic lattices may significantly reduce the requirement for numerous optical elements and their fine tuning in conventional design, paving the way for realistic all-optical photonic devices with novel functionalities.

  1. Experimental preparation and characterization of four-dimensional quantum states using polarization and time-bin modes of a single photon

    NASA Astrophysics Data System (ADS)

    Yoo, Jinwon; Choi, Yujun; Cho, Young-Wook; Han, Sang-Wook; Lee, Sang-Yun; Moon, Sung; Oh, Kyunghwan; Kim, Yong-Su

    2018-07-01

    We present a detailed method to prepare and characterize four-dimensional pure quantum states or ququarts using polarization and time-bin modes of a single-photon. In particular, we provide a simple method to generate an arbitrary pure ququart and fully characterize the state with quantum state tomography. We also verify the reliability of the recipe by showing experimental preparation and characterization of 20 ququart states in mutually unbiased bases. As qudits provide superior properties over qubits in many fundamental tests of quantum physics and applications in quantum information processing, the presented method will be useful for photonic quantum information science.

  2. Long-Distance Single Photon Transmission from a Trapped Ion via Quantum Frequency Conversion

    NASA Astrophysics Data System (ADS)

    Walker, Thomas; Miyanishi, Koichiro; Ikuta, Rikizo; Takahashi, Hiroki; Vartabi Kashanian, Samir; Tsujimoto, Yoshiaki; Hayasaka, Kazuhiro; Yamamoto, Takashi; Imoto, Nobuyuki; Keller, Matthias

    2018-05-01

    Trapped atomic ions are ideal single photon emitters with long-lived internal states which can be entangled with emitted photons. Coupling the ion to an optical cavity enables the efficient emission of single photons into a single spatial mode and grants control over their temporal shape. These features are key for quantum information processing and quantum communication. However, the photons emitted by these systems are unsuitable for long-distance transmission due to their wavelengths. Here we report the transmission of single photons from a single 40Ca+ ion coupled to an optical cavity over a 10 km optical fiber via frequency conversion from 866 nm to the telecom C band at 1530 nm. We observe nonclassical photon statistics of the direct cavity emission, the converted photons, and the 10 km transmitted photons, as well as the preservation of the photons' temporal shape throughout. This telecommunication-ready system can be a key component for long-distance quantum communication as well as future cloud quantum computation.

  3. Review of Fusion Systems and Contributing Technologies for SIHS-TD (Examen des Systemes de Fusion et des Technologies d’Appui pour la DT SIHS)

    DTIC Science & Technology

    2007-03-31

    Unlimited, Nivisys, Insight technology, Elcan, FLIR Systems, Stanford photonics Hardware Sensor fusion processors Video processing boards Image, video...Engineering The SPIE Digital Library is a resource for optics and photonics information. It contains more than 70,000 full-text papers from SPIE...conditions Top row: Stanford Photonics XR-Mega-10 Extreme 1400 x 1024 pixels ICCD detector, 33 msec exposure, no binning. Middle row: Andor EEV iXon

  4. Direct counterfactual transmission of a quantum state

    NASA Astrophysics Data System (ADS)

    Li, Zheng-Hong; Al-Amri, M.; Zubairy, M. Suhail

    2015-11-01

    We show that an unknown quantum state can be transferred with neither quantum nor classical particle traveling in the transmission channel. Our protocol does not require prearranged entangled photon pairs and Bell measurements. By utilizing quantum Zeno effect and counterfactuality, we can entangle and disentangle a photon and an atom by nonlocal interaction. It is shown that quantum information is completely transferred from an atom to photon due to controllable disentanglement processes. There is no need to cross-check the result via classical channels.

  5. Photonic and Phononic Entanglement with Hybrid Species Ion Chains

    NASA Astrophysics Data System (ADS)

    Crocker, Clayton; Lichtman, Martin; Sosnova, Ksenia; Nguyen, Tuan; Carter, Allison; Inlek, Volkan; Ruth, Hanna; Monroe, Christopher

    2017-04-01

    Trapped atomic ions represent a leading platform for quantum information networks due to their long coherence times and diverse set of entangling operations. External fields can drive strong local entangling interactions via phonons, and remote qubits can be entangled via emitted photons. Unfortunately, resonant light from the photonic entanglement process can disrupt nearby memory qubits. We resolve this crosstalk by introducing a separate atomic species to the trap for use as a photonic entanglement qubit. We report successful demonstration of both entangling gates between the mixed species qubit pair through their collective motion, and entanglement between our remote entanglement qubit and emitted visible photons. We additionally report our progress on a new trapping apparatus that was implemented to improve these operations to a level required for scaling up the system size. This work is supported by the ARO with funding from the IARPA LogiQ program, the AFOSR, the ARO MURI on Modular Quantum Circuits, the AFOSR MURI on Quantum Transduction, and the ARL Center for Distributed Quantum Information.

  6. Technical Assessment: Integrated Photonics

    DTIC Science & Technology

    2015-10-01

    in global internet protocol traffic as a function of time by local access technology. Photonics continues to play a critical role in enabling this...communication networks. This has enabled services like the internet , high performance computing, and power-efficient large-scale data centers. The...signal processing, quantum information science, and optics for free space applications. However major obstacles challenge the implementation of

  7. Observation of quantum entanglement between a photon and a single electron spin confined to an InAs quantum dot

    NASA Astrophysics Data System (ADS)

    Schaibley, John; Burgers, Alex; McCracken, Greg; Duan, Luming; Berman, Paul; Steel, Duncan; Bracker, Allan; Gammon, Daniel; Sham, Lu

    2013-03-01

    A single electron spin confined to a single InAs quantum dot (QD) can serve as a qubit for quantum information processing. By utilizing the QD's optically excited trion states in the presence of an externally applied magnetic field, the QD spin can be rapidly initialized, manipulated and read out. A key resource for quantum information is the ability to entangle distinct QD spins. One approach relies on intermediate spin-photon entanglement to mediate the entanglement between distant QD spin qubits. We report a demonstration of quantum entanglement between a photon's polarization state and the spin state of a single electron confined to a single QD. Here, the photon is spontaneously emitted from one of the QD's trion states. The emitted photon's polarization along the detection axis is entangled with the resulting spin state of the QD. By performing projective measurements on the photon's polarization state and correlating these measurements with the state of the QD spin in two different bases, we obtain a lower bound on the entanglement fidelity of 0.59 (after background correction). The fidelity bound is limited almost entirely by the timing resolution of our single photon detector. The spin-photon entanglement generation rate is 3 ×103 s-1. Supported by: NSF, MURI, AFOSR, DARPA, ARO.

  8. A semiconductor photon-sorter

    NASA Astrophysics Data System (ADS)

    Bennett, A. J.; Lee, J. P.; Ellis, D. J. P.; Farrer, I.; Ritchie, D. A.; Shields, A. J.

    2016-10-01

    Obtaining substantial nonlinear effects at the single-photon level is a considerable challenge that holds great potential for quantum optical measurements and information processing. Of the progress that has been made in recent years one of the most promising methods is to scatter coherent light from quantum emitters, imprinting quantum correlations onto the photons. We report effective interactions between photons, controlled by a single semiconductor quantum dot that is weakly coupled to a monolithic cavity. We show that the nonlinearity of a transition modifies the counting statistics of a Poissonian beam, sorting the photons in number. This is used to create strong correlations between detection events and to create polarization-correlated photons from an uncorrelated stream using a single spin. These results pave the way for semiconductor optical switches operated by single quanta of light.

  9. Broadband enhancement of single photon emission and polarization dependent coupling in silicon nitride waveguides.

    PubMed

    Bisschop, Suzanne; Guille, Antoine; Van Thourhout, Dries; Hens, Zeger; Brainis, Edouard

    2015-06-01

    Single-photon (SP) sources are important for a number of optical quantum information processing applications. We study the possibility to integrate triggered solid-state SP emitters directly on a photonic chip. A major challenge consists in efficiently extracting their emission into a single guided mode. Using 3D finite-difference time-domain simulations, we investigate the SP emission from dipole-like nanometer-sized inclusions embedded into different silicon nitride (SiNx) photonic nanowire waveguide designs. We elucidate the effect of the geometry on the emission lifetime and the polarization of the emitted SP. The results show that highly efficient and polarized SP sources can be realized using suspended SiNx slot-waveguides. Combining this with the well-established CMOS-compatible processing technology, fully integrated and complex optical circuits for quantum optics experiments can be developed.

  10. Measurement of Quantum Interference in a Silicon Ring Resonator Photon Source.

    PubMed

    Steidle, Jeffrey A; Fanto, Michael L; Preble, Stefan F; Tison, Christopher C; Howland, Gregory A; Wang, Zihao; Alsing, Paul M

    2017-04-04

    Silicon photonic chips have the potential to realize complex integrated quantum information processing circuits, including photon sources, qubit manipulation, and integrated single-photon detectors. Here, we present the key aspects of preparing and testing a silicon photonic quantum chip with an integrated photon source and two-photon interferometer. The most important aspect of an integrated quantum circuit is minimizing loss so that all of the generated photons are detected with the highest possible fidelity. Here, we describe how to perform low-loss edge coupling by using an ultra-high numerical aperture fiber to closely match the mode of the silicon waveguides. By using an optimized fusion splicing recipe, the UHNA fiber is seamlessly interfaced with a standard single-mode fiber. This low-loss coupling allows the measurement of high-fidelity photon production in an integrated silicon ring resonator and the subsequent two-photon interference of the produced photons in a closely integrated Mach-Zehnder interferometer. This paper describes the essential procedures for the preparation and characterization of high-performance and scalable silicon quantum photonic circuits.

  11. High-Speed Photonic Reservoir Computing Using a Time-Delay-Based Architecture: Million Words per Second Classification

    NASA Astrophysics Data System (ADS)

    Larger, Laurent; Baylón-Fuentes, Antonio; Martinenghi, Romain; Udaltsov, Vladimir S.; Chembo, Yanne K.; Jacquot, Maxime

    2017-01-01

    Reservoir computing, originally referred to as an echo state network or a liquid state machine, is a brain-inspired paradigm for processing temporal information. It involves learning a "read-out" interpretation for nonlinear transients developed by high-dimensional dynamics when the latter is excited by the information signal to be processed. This novel computational paradigm is derived from recurrent neural network and machine learning techniques. It has recently been implemented in photonic hardware for a dynamical system, which opens the path to ultrafast brain-inspired computing. We report on a novel implementation involving an electro-optic phase-delay dynamics designed with off-the-shelf optoelectronic telecom devices, thus providing the targeted wide bandwidth. Computational efficiency is demonstrated experimentally with speech-recognition tasks. State-of-the-art speed performances reach one million words per second, with very low word error rate. Additionally, to record speed processing, our investigations have revealed computing-efficiency improvements through yet-unexplored temporal-information-processing techniques, such as simultaneous multisample injection and pitched sampling at the read-out compared to information "write-in".

  12. Implementation of single-photon quantum routing and decoupling using a nitrogen-vacancy center and a whispering-gallery-mode resonator-waveguide system.

    PubMed

    Cao, Cong; Duan, Yu-Wen; Chen, Xi; Zhang, Ru; Wang, Tie-Jun; Wang, Chuan

    2017-07-24

    Quantum router is a key element needed for the construction of future complex quantum networks. However, quantum routing with photons, and its inverse, quantum decoupling, are difficult to implement as photons do not interact, or interact very weakly in nonlinear media. In this paper, we investigate the possibility of implementing photonic quantum routing based on effects in cavity quantum electrodynamics, and present a scheme for single-photon quantum routing controlled by the other photon using a hybrid system consisting of a single nitrogen-vacancy (NV) center coupled with a whispering-gallery-mode resonator-waveguide structure. Different from the cases in which classical information is used to control the path of quantum signals, both the control and signal photons are quantum in our implementation. Compared with the probabilistic quantum routing protocols based on linear optics, our scheme is deterministic and also scalable to multiple photons. We also present a scheme for single-photon quantum decoupling from an initial state with polarization and spatial-mode encoding, which can implement an inverse operation to the quantum routing. We discuss the feasibility of our schemes by considering current or near-future techniques, and show that both the schemes can operate effectively in the bad-cavity regime. We believe that the schemes could be key building blocks for future complex quantum networks and large-scale quantum information processing.

  13. Quantum information processing by weaving quantum Talbot carpets

    NASA Astrophysics Data System (ADS)

    Farías, Osvaldo Jiménez; de Melo, Fernando; Milman, Pérola; Walborn, Stephen P.

    2015-06-01

    Single-photon interference due to passage through a periodic grating is considered in a novel proposal for processing D -dimensional quantum systems (quDits) encoded in the spatial degrees of freedom of light. We show that free-space propagation naturally implements basic single-quDit gates by means of the Talbot effect: an intricate time-space carpet of light in the near-field diffraction regime. By adding a diagonal phase gate, we show that a complete set of single-quDit gates can be implemented. We then introduce a spatially dependent beam splitter that allows for projective measurements in the computational basis and can be used for the implementation of controlled operations between two quDits. Universal quantum information processing can then be implemented with linear optics and ancilla photons via postselection and feed-forward following the original proposal of Knill-Laflamme and Milburn. Although we consider photons, our scheme should be directly applicable to a number of other physical systems. Interpretation of the Talbot effect as a quantum logic operation provides a beautiful and interesting way to visualize quantum computation through wave propagation and interference.

  14. Trinary Encoder, Decoder, Multiplexer and Demultiplexer Using Savart Plate and Spatial Light Modulator

    NASA Astrophysics Data System (ADS)

    Ghosh, Amal K.; Singha Roy, Souradip; Mandal, Sudipta; Basuray, Amitabha

    Optoelectronic processors have already been developed with the strong potentiality of optics in information and data processing. Encoder, Decoder, Multiplexers and Demultiplexers are the most important components in modern system designs and in communications. We have implemented the same using trinary logic gates with signed magnitude defined as Modified Trinary Number (MTN). The Spatial Light Modulator (SLM) based optoelectronic circuit is suitable for high speed data processing and communications using photon as carrier. We also presented here a possible method of implementing the same using light with photon as carrier of information. The importance of the method is that all the basic gates needed may be fabricated based on basic building block.

  15. Valley photonic crystals for control of spin and topology

    NASA Astrophysics Data System (ADS)

    Dong, Jian-Wen; Chen, Xiao-Dong; Zhu, Hanyu; Wang, Yuan; Zhang, Xiang

    2017-03-01

    Photonic crystals offer unprecedented opportunity for light manipulation and applications in optical communication and sensing. Exploration of topology in photonic crystals and metamaterials with non-zero gauge field has inspired a number of intriguing optical phenomena such as one-way transport and Weyl points. Recently, a new degree of freedom, valley, has been demonstrated in two-dimensional materials. Here, we propose a concept of valley photonic crystals with electromagnetic duality symmetry but broken inversion symmetry. We observe photonic valley Hall effect originating from valley-dependent spin-split bulk bands, even in topologically trivial photonic crystals. Valley-spin locking behaviour results in selective net spin flow inside bulk valley photonic crystals. We also show the independent control of valley and topology in a single system that has been long pursued in electronic systems, resulting in topologically-protected flat edge states. Valley photonic crystals not only offer a route towards the observation of non-trivial states, but also open the way for device applications in integrated photonics and information processing using spin-dependent transportation.

  16. Valley photonic crystals for control of spin and topology.

    PubMed

    Dong, Jian-Wen; Chen, Xiao-Dong; Zhu, Hanyu; Wang, Yuan; Zhang, Xiang

    2017-03-01

    Photonic crystals offer unprecedented opportunity for light manipulation and applications in optical communication and sensing. Exploration of topology in photonic crystals and metamaterials with non-zero gauge field has inspired a number of intriguing optical phenomena such as one-way transport and Weyl points. Recently, a new degree of freedom, valley, has been demonstrated in two-dimensional materials. Here, we propose a concept of valley photonic crystals with electromagnetic duality symmetry but broken inversion symmetry. We observe photonic valley Hall effect originating from valley-dependent spin-split bulk bands, even in topologically trivial photonic crystals. Valley-spin locking behaviour results in selective net spin flow inside bulk valley photonic crystals. We also show the independent control of valley and topology in a single system that has been long pursued in electronic systems, resulting in topologically-protected flat edge states. Valley photonic crystals not only offer a route towards the observation of non-trivial states, but also open the way for device applications in integrated photonics and information processing using spin-dependent transportation.

  17. RADIANCE AND PHOTON NOISE: Imaging in geometrical optics, physical optics, quantum optics and radiology.

    PubMed

    Barrett, Harrison H; Myers, Kyle J; Caucci, Luca

    2014-08-17

    A fundamental way of describing a photon-limited imaging system is in terms of a Poisson random process in spatial, angular and wavelength variables. The mean of this random process is the spectral radiance. The principle of conservation of radiance then allows a full characterization of the noise in the image (conditional on viewing a specified object). To elucidate these connections, we first review the definitions and basic properties of radiance as defined in terms of geometrical optics, radiology, physical optics and quantum optics. The propagation and conservation laws for radiance in each of these domains are reviewed. Then we distinguish four categories of imaging detectors that all respond in some way to the incident radiance, including the new category of photon-processing detectors. The relation between the radiance and the statistical properties of the detector output is discussed and related to task-based measures of image quality and the information content of a single detected photon.

  18. RADIANCE AND PHOTON NOISE: Imaging in geometrical optics, physical optics, quantum optics and radiology

    PubMed Central

    Barrett, Harrison H.; Myers, Kyle J.; Caucci, Luca

    2016-01-01

    A fundamental way of describing a photon-limited imaging system is in terms of a Poisson random process in spatial, angular and wavelength variables. The mean of this random process is the spectral radiance. The principle of conservation of radiance then allows a full characterization of the noise in the image (conditional on viewing a specified object). To elucidate these connections, we first review the definitions and basic properties of radiance as defined in terms of geometrical optics, radiology, physical optics and quantum optics. The propagation and conservation laws for radiance in each of these domains are reviewed. Then we distinguish four categories of imaging detectors that all respond in some way to the incident radiance, including the new category of photon-processing detectors. The relation between the radiance and the statistical properties of the detector output is discussed and related to task-based measures of image quality and the information content of a single detected photon. PMID:27478293

  19. Graphene-Based Josephson-Junction Single-Photon Detector

    NASA Astrophysics Data System (ADS)

    Walsh, Evan D.; Efetov, Dmitri K.; Lee, Gil-Ho; Heuck, Mikkel; Crossno, Jesse; Ohki, Thomas A.; Kim, Philip; Englund, Dirk; Fong, Kin Chung

    2017-08-01

    We propose to use graphene-based Josephson junctions (GJJs) to detect single photons in a wide electromagnetic spectrum from visible to radio frequencies. Our approach takes advantage of the exceptionally low electronic heat capacity of monolayer graphene and its constricted thermal conductance to its phonon degrees of freedom. Such a system could provide high-sensitivity photon detection required for research areas including quantum information processing and radio astronomy. As an example, we present our device concepts for GJJ single-photon detectors in both the microwave and infrared regimes. The dark count rate and intrinsic quantum efficiency are computed based on parameters from a measured GJJ, demonstrating feasibility within existing technologies.

  20. Emitters of N-photon bundles

    PubMed Central

    Muñoz, C. Sánchez; del Valle, E.; Tudela, A. González; Müller, K.; Lichtmannecker, S.; Kaniber, M.; Tejedor, C.; Finley, J.J.; Laussy, F.P.

    2014-01-01

    Controlling the ouput of a light emitter is one of the basic tasks of photonics, with landmarks such as the laser and single-photon sources. The development of quantum applications makes it increasingly important to diversify the available quantum sources. Here, we propose a cavity QED scheme to realize emitters that release their energy in groups, or “bundles” of N photons, for integer N. Close to 100% of two-photon emission and 90% of three-photon emission is shown to be within reach of state of the art samples. The emission can be tuned with system parameters so that the device behaves as a laser or as a N-photon gun. The theoretical formalism to characterize such emitters is developed, with the bundle statistics arising as an extension of the fundamental correlation functions of quantum optics. These emitters will be useful for quantum information processing and for medical applications. PMID:25013456

  1. Frequency-domain Hong-Ou-Mandel interference with linear optics.

    PubMed

    Imany, Poolad; Odele, Ogaga D; Alshaykh, Mohammed S; Lu, Hsuan-Hao; Leaird, Daniel E; Weiner, Andrew M

    2018-06-15

    The Hong-Ou-Mandel (HOM) interference is one of the most fundamental quantum-mechanical effects that reveal a nonclassical behavior of single photons. Two identical photons that are incident on the input ports of an unbiased beam splitter always exit the beam splitter together from the same output port, an effect referred to as photon bunching. In this Letter, we utilize a single electro-optic phase modulator as a probabilistic frequency beam splitter, which we exploit to observe HOM interference between two photons that are in different spectral modes, yet are identical in other characteristics. Our approach enables linear optical quantum information processing protocols using the frequency degree of freedom in photons such as quantum computing techniques with linear optics.

  2. Quantum entanglement distillation with metamaterials.

    PubMed

    al Farooqui, Md Abdullah; Breeland, Justin; Aslam, Muhammad I; Sadatgol, Mehdi; Özdemir, Şahin K; Tame, Mark; Yang, Lan; Güney, Durdu Ö

    2015-07-13

    We propose a scheme for the distillation of partially entangled two-photon Bell and three-photon W states using metamaterials. The distillation of partially entangled Bell states is achieved by using two metamaterials with polarization dependence, one of which is rotated by π/2 around the direction of propagation of the photons. On the other hand, the distillation of three-photon W states is achieved by using one polarization dependent metamaterial and two polarization independent metamaterials. Upon transmission of the photons of the partially entangled states through the metamaterials the entanglement of the states increases and they become distilled. This work opens up new directions in quantum optical state engineering by showing how metamaterials can be used to carry out a quantum information processing task.

  3. Solid-state single-photon emitters

    NASA Astrophysics Data System (ADS)

    Aharonovich, Igor; Englund, Dirk; Toth, Milos

    2016-10-01

    Single-photon emitters play an important role in many leading quantum technologies. There is still no 'ideal' on-demand single-photon emitter, but a plethora of promising material systems have been developed, and several have transitioned from proof-of-concept to engineering efforts with steadily improving performance. Here, we review recent progress in the race towards true single-photon emitters required for a range of quantum information processing applications. We focus on solid-state systems including quantum dots, defects in solids, two-dimensional hosts and carbon nanotubes, as these are well positioned to benefit from recent breakthroughs in nanofabrication and materials growth techniques. We consider the main challenges and key advantages of each platform, with a focus on scalable on-chip integration and fabrication of identical sources on photonic circuits.

  4. Design and construction of a high-energy photon polarimeter

    NASA Astrophysics Data System (ADS)

    Dugger, M.; Ritchie, B. G.; Sparks, N.; Moriya, K.; Tucker, R. J.; Lee, R. J.; Thorpe, B. N.; Hodges, T.; Barbosa, F. J.; Sandoval, N.; Jones, R. T.

    2017-09-01

    We report on the design and construction of a high-energy photon polarimeter for measuring the degree of polarization of a linearly-polarized photon beam. The photon polarimeter uses the process of pair production on an atomic electron (triplet production). The azimuthal distribution of scattered atomic electrons following triplet production yields information regarding the degree of linear polarization of the incident photon beam. The polarimeter, operated in conjunction with a pair spectrometer, uses a silicon strip detector to measure the recoil electron distribution resulting from triplet photoproduction in a beryllium target foil. The analyzing power ΣA for the device using a 75 μm beryllium converter foil is about 0.2, with a relative systematic uncertainty in ΣA of 1.5%.

  5. Generating higher-order quantum dissipation from lower-order parametric processes

    NASA Astrophysics Data System (ADS)

    Mundhada, S. O.; Grimm, A.; Touzard, S.; Vool, U.; Shankar, S.; Devoret, M. H.; Mirrahimi, M.

    2017-06-01

    The stabilisation of quantum manifolds is at the heart of error-protected quantum information storage and manipulation. Nonlinear driven-dissipative processes achieve such stabilisation in a hardware efficient manner. Josephson circuits with parametric pump drives implement these nonlinear interactions. In this article, we propose a scheme to engineer a four-photon drive and dissipation on a harmonic oscillator by cascading experimentally demonstrated two-photon processes. This would stabilise a four-dimensional degenerate manifold in a superconducting resonator. We analyse the performance of the scheme using numerical simulations of a realisable system with experimentally achievable parameters.

  6. Enhanced photon-phonon cross-Kerr nonlinearity with two-photon driving.

    PubMed

    Yin, Tai-Shuang; Lü, Xin-You; Wan, Liang-Liang; Bin, Shang-Wu; Wu, Ying

    2018-05-01

    We propose a scheme to significantly enhance the cross-Kerr (CK) nonlinearity between photons and phonons in a quadratically coupled optomechanical system (OMS) with two-photon driving. This CK nonlinear enhancement originates from the parametric-driving-induced squeezing and the underlying nonlinear optomechanical interaction. Moreover, the noise of the squeezed mode can be suppressed completely by introducing a squeezed vacuum reservoir. As a result of this dramatic nonlinear enhancement and the suppressed noise, we demonstrate the feasibility of the quantum nondemolition measurement of the phonon number in an originally weak coupled OMS. In addition, the photon-phonon blockade phenomenon is also investigated in this regime, which allows for performing manipulations between photons and phonons. This Letter offers a promising route towards the potential application for the OMS in quantum information processing and quantum networks.

  7. Inherent polarization entanglement generated from a monolithic semiconductor chip

    PubMed Central

    Horn, Rolf T.; Kolenderski, Piotr; Kang, Dongpeng; Abolghasem, Payam; Scarcella, Carmelo; Frera, Adriano Della; Tosi, Alberto; Helt, Lukas G.; Zhukovsky, Sergei V.; Sipe, J. E.; Weihs, Gregor; Helmy, Amr S.; Jennewein, Thomas

    2013-01-01

    Creating miniature chip scale implementations of optical quantum information protocols is a dream for many in the quantum optics community. This is largely because of the promise of stability and scalability. Here we present a monolithically integratable chip architecture upon which is built a photonic device primitive called a Bragg reflection waveguide (BRW). Implemented in gallium arsenide, we show that, via the process of spontaneous parametric down conversion, the BRW is capable of directly producing polarization entangled photons without additional path difference compensation, spectral filtering or post-selection. After splitting the twin-photons immediately after they emerge from the chip, we perform a variety of correlation tests on the photon pairs and show non-classical behaviour in their polarization. Combined with the BRW's versatile architecture our results signify the BRW design as a serious contender on which to build large scale implementations of optical quantum processing devices. PMID:23896982

  8. FPGA-based gating and logic for multichannel single photon counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pooser, Raphael C; Earl, Dennis Duncan; Evans, Philip G

    2012-01-01

    We present results characterizing multichannel InGaAs single photon detectors utilizing gated passive quenching circuits (GPQC), self-differencing techniques, and field programmable gate array (FPGA)-based logic for both diode gating and coincidence counting. Utilizing FPGAs for the diode gating frontend and the logic counting backend has the advantage of low cost compared to custom built logic circuits and current off-the-shelf detector technology. Further, FPGA logic counters have been shown to work well in quantum key distribution (QKD) test beds. Our setup combines multiple independent detector channels in a reconfigurable manner via an FPGA backend and post processing in order to perform coincidencemore » measurements between any two or more detector channels simultaneously. Using this method, states from a multi-photon polarization entangled source are detected and characterized via coincidence counting on the FPGA. Photons detection events are also processed by the quantum information toolkit for application testing (QITKAT)« less

  9. Measurements on a full-field digital mammography system with a photon counting crystalline silicon detector

    NASA Astrophysics Data System (ADS)

    Lundqvist, Mats; Danielsson, Mats; Cederstroem, Bjoern; Chmill, Valery; Chuntonov, Alexander; Aslund, Magnus

    2003-06-01

    Sectra Microdose is the first single photon counting mammography detector. An edge-on crystalline silicon detector is connected to application specific integrated circuits that individually process each photon. The detector is scanned across the breast and the rejection of scattered radiation exceeds 97% without the use of a Bucky. Processing of each x-rays individually enables an optimization of the information transfer from the x-rays to the image in a way previously not possible. Combined with an almost absence of noise from scattered radiation and from electronics we foresee a possibility to reduce the radiation dose and/or increase the image quality. We will discuss fundamental features of the new direct photon counting technique in terms of dose efficiency and present preliminary measurements for a prototype on physical parameters such as Noise Power Spectra (NPS), MTF and DQE.

  10. Deterministic photon-emitter coupling in chiral photonic circuits.

    PubMed

    Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter

    2015-09-01

    Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.

  11. Deterministic photon-emitter coupling in chiral photonic circuits

    NASA Astrophysics Data System (ADS)

    Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter

    2015-09-01

    Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.

  12. Performance of InGaAs short wave infrared avalanche photodetector for low flux imaging

    NASA Astrophysics Data System (ADS)

    Singh, Anand; Pal, Ravinder

    2017-11-01

    Opto-electronic performance of the InGaAs/i-InGaAs/InP short wavelength infrared focal plane array suitable for high resolution imaging under low flux conditions and ranging is presented. More than 85% quantum efficiency is achieved in the optimized detector structure. Isotropic nature of the wet etching process poses a challenge in maintaining the required control in the small pitch high density detector array. Etching process is developed to achieve low dark current density of 1 nA/cm2 in the detector array with 25 µm pitch at 298 K. Noise equivalent photon performance less than one is achievable showing single photon detection capability. The reported photodiode with low photon flux is suitable for active cum passive imaging, optical information processing and quantum computing applications.

  13. A Ratiometric Two-Photon Fluorescent Probe for Tracking the Lysosomal ATP Level: Direct in cellulo Observation of Lysosomal Membrane Fusion Processes.

    PubMed

    Jun, Yong Woong; Wang, Taejun; Hwang, Sekyu; Kim, Dokyoung; Ma, Donghee; Kim, Ki Hean; Kim, Sungjee; Jung, Junyang; Ahn, Kyo Han

    2018-06-05

    Vesicles exchange its contents through membrane fusion processes-kiss-and-run and full-collapse fusion. Indirect observation of these fusion processes using artificial vesicles enhanced our understanding on the molecular mechanisms involved. Direct observation of the fusion processes in a real biological system, however, remains a challenge owing to many technical obstacles. We disclose a ratiometric two-photon probe offering real-time tracking of lysosomal ATP with quantitative information for the first time. By applying the probe to two-photon live-cell imaging technique, lysosomal membrane fusion process in cells has been directly observed along with the concentration of its content-lysosomal ATP. Results show that the kiss-and-run process between lysosomes proceeds through repeating transient interactions with gradual content mixing, whereas the full-fusion process occurs at once. Furthermore, it is confirmed that both the fusion processes proceed with conservation of the content. Such a small-molecule probe exerts minimal disturbance and hence has potential for studying various biological processes associated with lysosomal ATP. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Angular analysis of B → J/ψK1: Towards a model independent determination of the photon polarization with B → K1γ

    NASA Astrophysics Data System (ADS)

    Kou, E.; Le Yaouanc, A.; Tayduganov, A.

    2016-12-01

    We propose a model independent extraction of the hadronic information needed to determine the photon polarization of the b → sγ process by the method utilizing the B →K1 γ → Kππγ angular distribution. We show that exactly the same hadronic information can be obtained by using the B → J / ψK1 → J / ψKππ channel, which leads to a much higher precision.

  15. Remote preparation of an atomic quantum memory.

    PubMed

    Rosenfeld, Wenjamin; Berner, Stefan; Volz, Jürgen; Weber, Markus; Weinfurter, Harald

    2007-02-02

    Storage and distribution of quantum information are key elements of quantum information processing and future quantum communication networks. Here, using atom-photon entanglement as the main physical resource, we experimentally demonstrate the preparation of a distant atomic quantum memory. Applying a quantum teleportation protocol on a locally prepared state of a photonic qubit, we realized this so-called remote state preparation on a single, optically trapped 87Rb atom. We evaluated the performance of this scheme by the full tomography of the prepared atomic state, reaching an average fidelity of 82%.

  16. Deterministic Remote Entanglement of Superconducting Circuits through Microwave Two-Photon Transitions

    NASA Astrophysics Data System (ADS)

    Campagne-Ibarcq, P.; Zalys-Geller, E.; Narla, A.; Shankar, S.; Reinhold, P.; Burkhart, L.; Axline, C.; Pfaff, W.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H.

    2018-05-01

    Large-scale quantum information processing networks will most probably require the entanglement of distant systems that do not interact directly. This can be done by performing entangling gates between standing information carriers, used as memories or local computational resources, and flying ones, acting as quantum buses. We report the deterministic entanglement of two remote transmon qubits by Raman stimulated emission and absorption of a traveling photon wave packet. We achieve a Bell state fidelity of 73%, well explained by losses in the transmission line and decoherence of each qubit.

  17. Deterministic Remote Entanglement of Superconducting Circuits through Microwave Two-Photon Transitions.

    PubMed

    Campagne-Ibarcq, P; Zalys-Geller, E; Narla, A; Shankar, S; Reinhold, P; Burkhart, L; Axline, C; Pfaff, W; Frunzio, L; Schoelkopf, R J; Devoret, M H

    2018-05-18

    Large-scale quantum information processing networks will most probably require the entanglement of distant systems that do not interact directly. This can be done by performing entangling gates between standing information carriers, used as memories or local computational resources, and flying ones, acting as quantum buses. We report the deterministic entanglement of two remote transmon qubits by Raman stimulated emission and absorption of a traveling photon wave packet. We achieve a Bell state fidelity of 73%, well explained by losses in the transmission line and decoherence of each qubit.

  18. Controllably releasing long-lived quantum memory for photonic polarization qubit into multiple spatially-separate photonic channels.

    PubMed

    Chen, Lirong; Xu, Zhongxiao; Zeng, Weiqing; Wen, Yafei; Li, Shujing; Wang, Hai

    2016-09-26

    We report an experiment in which long-lived quantum memories for photonic polarization qubits (PPQs) are controllably released into any one of multiple spatially-separate channels. The PPQs are implemented with an arbitrarily-polarized coherent signal light pulses at the single-photon level and are stored in cold atoms by means of electromagnetic-induced-transparency scheme. Reading laser pulses propagating along the direction at a small angle relative to quantum axis are applied to release the stored PPQs into an output channel. By changing the propagating directions of the read laser beam, we controllably release the retrieved PPQs into 7 different photonic output channels, respectively. At a storage time of δt = 5 μs, the least quantum-process fidelity in 7 different output channels is ~89%. At one of the output channels, the measured maximum quantum-process fidelity for the PPQs is 94.2% at storage time of δt = 0.85 ms. At storage time of 6 ms, the quantum-process fidelity is still beyond the bound of 78% to violate the Bell's inequality. The demonstrated controllable release of the stored PPQs may extend the capabilities of the quantum information storage technique.

  19. FIBRE AND INTEGRATED OPTICS. OPTICAL PROCESSING OF INFORMATION: Method for optical data processing based on a two-pulse photon echo

    NASA Astrophysics Data System (ADS)

    Zakharov, S. M.; Manykin, Eduard A.

    1995-02-01

    The principles of optical processing based on dynamic spatial—temporal properties of two-pulse photon echo signals are considered. The properties of a resonant medium as an on-line filter of temporal and spatial frequencies are discussed. These properties are due to the sensitivity of such a medium to the Fourier spectrum of the second exiting pulse. Degeneracy of quantum resonant systems, demonstrated by the coherent response dependence on the square of the amplitude of the second pulse, can be used for 'simultaneous' correlation processing of optical 'signals'. Various methods for the processing of the Fourier optical image are discussed.

  20. Security of quantum key distribution with multiphoton components

    PubMed Central

    Yin, Hua-Lei; Fu, Yao; Mao, Yingqiu; Chen, Zeng-Bing

    2016-01-01

    Most qubit-based quantum key distribution (QKD) protocols extract the secure key merely from single-photon component of the attenuated lasers. However, with the Scarani-Acin-Ribordy-Gisin 2004 (SARG04) QKD protocol, the unconditionally secure key can be extracted from the two-photon component by modifying the classical post-processing procedure in the BB84 protocol. Employing the merits of SARG04 QKD protocol and six-state preparation, one can extract secure key from the components of single photon up to four photons. In this paper, we provide the exact relations between the secure key rate and the bit error rate in a six-state SARG04 protocol with single-photon, two-photon, three-photon, and four-photon sources. By restricting the mutual information between the phase error and bit error, we obtain a higher secure bit error rate threshold of the multiphoton components than previous works. Besides, we compare the performances of the six-state SARG04 with other prepare-and-measure QKD protocols using decoy states. PMID:27383014

  1. Solar cell and photonics outreach for middle school students and teachers

    NASA Astrophysics Data System (ADS)

    Gilchrist, Pamela O.; Alexander, Alonzo B.

    2017-08-01

    This paper will describe the curriculum development process employed to develop a solar cell and photonics curriculum unit for students underrepresented in science, technology, engineering and mathematics fields. Information will explain how the curriculum unit was piloted with middle and high school teachers from public schools in North Carolina, high school students from underrepresented groups in an informal science program, and workshop settings. Measures used to develop the curriculum materials for middle school students will be presented along with program findings documenting students' urban versus rural interest in STEM, career aspirations, and 21st century learning skills in informal learning settings.

  2. On the theory of quantum measurement

    NASA Technical Reports Server (NTRS)

    Haus, Hermann A.; Kaertner, Franz X.

    1994-01-01

    Many so called paradoxes of quantum mechanics are clarified when the measurement equipment is treated as a quantized system. Every measurement involves nonlinear processes. Self consistent formulations of nonlinear quantum optics are relatively simple. Hence optical measurements, such as the quantum nondemolition (QND) measurement of photon number, are particularly well suited for such a treatment. It shows that the so called 'collapse of the wave function' is not needed for the interpretation of the measurement process. Coherence of the density matrix of the signal is progressively reduced with increasing accuracy of the photon number determination. If the QND measurement is incorporated into the double slit experiment, the contrast ratio of the fringes is found to decrease with increasing information on the photon number in one of the two paths.

  3. Atom detection and photon production in a scalable, open, optical microcavity.

    PubMed

    Trupke, M; Goldwin, J; Darquié, B; Dutier, G; Eriksson, S; Ashmore, J; Hinds, E A

    2007-08-10

    A microfabricated Fabry-Perot optical resonator has been used for atom detection and photon production with less than 1 atom on average in the cavity mode. Our cavity design combines the intrinsic scalability of microfabrication processes with direct coupling of the cavity field to single-mode optical waveguides or fibers. The presence of the atom is seen through changes in both the intensity and the noise characteristics of probe light reflected from the cavity input mirror. An excitation laser passing transversely through the cavity triggers photon emission into the cavity mode and hence into the single-mode fiber. These are first steps toward building an optical microcavity network on an atom chip for applications in quantum information processing.

  4. Fabrication of 3-D Photonic Band Gap Crystals Via Colloidal Self-Assembly

    NASA Technical Reports Server (NTRS)

    Subramaniam, Girija; Blank, Shannon

    2005-01-01

    The behavior of photons in a Photonic Crystals, PCs, is like that of electrons in a semiconductor in that, it prohibits light propagation over a band of frequencies, called Photonic Band Gap, PBG. Photons cannot exist in these band gaps like the forbidden bands of electrons. Thus, PCs lend themselves as potential candidates for devices based on the gap phenomenon. The popular research on PCs stem from their ability to confine light with minimal losses. Large scale 3-D PCs with a PBG in the visible or near infra red region will make optical transistors and sharp bent optical fibers. Efforts are directed to use PCs for information processing and it is not long before we can have optical integrated circuits in the place of electronic ones.

  5. Design and construction of a high-energy photon polarimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dugger, M.; Ritchie, B. G.; Sparks, N.

    Here, we report on the design and construction of a high-energy photon polarimeter for measuring the degree of polarization of a linearly-polarized photon beam. The photon polarimeter uses the process of pair production on an atomic electron (triplet production). The azimuthal distribution of scattered atomic electrons following triplet production yields information regarding the degree of linear polarization of the incident photon beam. Furthermore, the polarimeter, operated in conjunction with a pair spectrometer, uses a silicon strip detector to measure the recoil electron distribution resulting from triplet photoproduction in a beryllium target foil. The analyzing power Σ A for the devicemore » using a 75 μm beryllium converter foil is about 0.2, with a relative systematic uncertainty in Σ A of 1.5%.« less

  6. Design and construction of a high-energy photon polarimeter

    DOE PAGES

    Dugger, M.; Ritchie, B. G.; Sparks, N.; ...

    2017-06-12

    Here, we report on the design and construction of a high-energy photon polarimeter for measuring the degree of polarization of a linearly-polarized photon beam. The photon polarimeter uses the process of pair production on an atomic electron (triplet production). The azimuthal distribution of scattered atomic electrons following triplet production yields information regarding the degree of linear polarization of the incident photon beam. Furthermore, the polarimeter, operated in conjunction with a pair spectrometer, uses a silicon strip detector to measure the recoil electron distribution resulting from triplet photoproduction in a beryllium target foil. The analyzing power Σ A for the devicemore » using a 75 μm beryllium converter foil is about 0.2, with a relative systematic uncertainty in Σ A of 1.5%.« less

  7. Integrated Nano Optoplasmonics (NBIT Phase 2)

    DTIC Science & Technology

    2013-12-16

    of-principle realization demonstrates the potential of integrated plasmonic devices in quantum information processing and cryptography ...photonic/plasmonic devices that are made of nanoscale photonic/plasmonic cavities coupled to quantum emitters, and (2) fabrication of electrically...publications in leading journals (one in Phys. Rev. Lett.,1 one in IEEE J. Sel. Topics Quantum Electron.2 and three publications in Nano Lett.3,4,5) and one

  8. Generation and transfer of single photons on a photonic crystal chip.

    PubMed

    Englund, Dirk; Faraon, Andrei; Zhang, Bingyang; Yamamoto, Yoshihisa; Vucković, Jelena

    2007-04-30

    We present a basic building block of a quantum network consisting of a quantum dot coupled to a source cavity, which in turn is coupled to a target cavity via a waveguide. The single photon emission from the high-Q/V source cavity is characterized by twelve-fold spontaneous emission (SE) rate enhancement, SE coupling efficiency beta ~ 0.98 into the source cavity mode, and mean wavepacket indistinguishability of ~67%. Single photons are efficiently transferred into the target cavity via the waveguide, with a target/source field intensity ratio of 0.12 +/- 0.01. This system shows great promise as a building block of future on-chip quantum information processing systems.

  9. National photonics skills standards for technicians

    NASA Astrophysics Data System (ADS)

    Hull, Darrell M.

    1995-10-01

    Photonics is defined as the generation, manipulation, transport, detection, and use of light information and energy whose quantum unit is the photon. The range of applications of phonics extends from energy generation to detection to communication and information processing. Photonics is at the heart of today's communication systems, from the laser that generates the digital information transported along a fiber- optic cable to the detector that decodes the information. Whether the transmitted information is a phone call from across the street or across the globe, photonics brings it to you. Where your health is concerned, photonics allows physicians to do minimally invasive surgery using fiber-optic endoscopes and lasers. Researches using spectroscopy and microscopy are pushing the frontiers of biotechnology in activities as widespread as diagnosing disease and probing the mysteries of the genetic code. Advanced sensing and imaging techniques monitor the environment, gathering data on crops and forests, analyzing the ocean's currents and contents, and probing the atmosphere of pollutants. Transportation needs are being impacted by photonic sensors and laser rangefinders that will soon monitor and control the traffic on our nation's highways. In our factories, photonics provides machine vision systems that give a level of quality control human inspectors could never achieve. In manufacturing, lasers are replacing a variety of cutting, welding, and marking techniques, while imaging systems teamed with neural networks are producing intelligent robots. In short, photonics is paving our way into the new millennium. The skill standard is intended to define the knowledge and capabilities - the skills - that workers in the phonics industry need. Phonics will be one of the primary battlefields of the world economic conflict, and it is imperative that U.S. photonics technicians be skilled enough to allow the United States to remain competitive in a global marketplace. The focus of this standard is on the skills necessary for employment as a phonics technician and is not intended to be an analysis of those skills that are important for workers in all occupational areas. A comprehensive treatment of the skills necessary for all workers has been the subject of a number of studies, most notably, the work of the Secretary's Commission on the Achievement of Necessary Skills (SCANS). It is our hope at CORD that the work presented in the standard lends more detail and rational for the accomplishment of the broader skills that should be obtained by all students.

  10. Retrieving transient conformational molecular structure information from inner-shell photoionization of laser-aligned molecules

    PubMed Central

    Wang, Xu; Le, Anh-Thu; Yu, Chao; Lucchese, R. R.; Lin, C. D.

    2016-01-01

    We discuss a scheme to retrieve transient conformational molecular structure information using photoelectron angular distributions (PADs) that have averaged over partial alignments of isolated molecules. The photoelectron is pulled out from a localized inner-shell molecular orbital by an X-ray photon. We show that a transient change in the atomic positions from their equilibrium will lead to a sensitive change in the alignment-averaged PADs, which can be measured and used to retrieve the former. Exploiting the experimental convenience of changing the photon polarization direction, we show that it is advantageous to use PADs obtained from multiple photon polarization directions. A simple single-scattering model is proposed and benchmarked to describe the photoionization process and to do the retrieval using a multiple-parameter fitting method. PMID:27025410

  11. Retrieving transient conformational molecular structure information from inner-shell photoionization of laser-aligned molecules

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Le, Anh-Thu; Yu, Chao; Lucchese, R. R.; Lin, C. D.

    2016-03-01

    We discuss a scheme to retrieve transient conformational molecular structure information using photoelectron angular distributions (PADs) that have averaged over partial alignments of isolated molecules. The photoelectron is pulled out from a localized inner-shell molecular orbital by an X-ray photon. We show that a transient change in the atomic positions from their equilibrium will lead to a sensitive change in the alignment-averaged PADs, which can be measured and used to retrieve the former. Exploiting the experimental convenience of changing the photon polarization direction, we show that it is advantageous to use PADs obtained from multiple photon polarization directions. A simple single-scattering model is proposed and benchmarked to describe the photoionization process and to do the retrieval using a multiple-parameter fitting method.

  12. Enhancing the brightness of electrically driven single-photon sources using color centers in silicon carbide

    NASA Astrophysics Data System (ADS)

    Khramtsov, Igor A.; Vyshnevyy, Andrey A.; Fedyanin, Dmitry Yu.

    2018-03-01

    Practical applications of quantum information technologies exploiting the quantum nature of light require efficient and bright true single-photon sources which operate under ambient conditions. Currently, point defects in the crystal lattice of diamond known as color centers have taken the lead in the race for the most promising quantum system for practical non-classical light sources. This work is focused on a different quantum optoelectronic material, namely a color center in silicon carbide, and reveals the physics behind the process of single-photon emission from color centers in SiC under electrical pumping. We show that color centers in silicon carbide can be far superior to any other quantum light emitter under electrical control at room temperature. Using a comprehensive theoretical approach and rigorous numerical simulations, we demonstrate that at room temperature, the photon emission rate from a p-i-n silicon carbide single-photon emitting diode can exceed 5 Gcounts/s, which is higher than what can be achieved with electrically driven color centers in diamond or epitaxial quantum dots. These findings lay the foundation for the development of practical photonic quantum devices which can be produced in a well-developed CMOS compatible process flow.

  13. Chiral quantum optics.

    PubMed

    Lodahl, Peter; Mahmoodian, Sahand; Stobbe, Søren; Rauschenbeutel, Arno; Schneeweiss, Philipp; Volz, Jürgen; Pichler, Hannes; Zoller, Peter

    2017-01-25

    Advanced photonic nanostructures are currently revolutionizing the optics and photonics that underpin applications ranging from light technology to quantum-information processing. The strong light confinement in these structures can lock the local polarization of the light to its propagation direction, leading to propagation-direction-dependent emission, scattering and absorption of photons by quantum emitters. The possibility of such a propagation-direction-dependent, or chiral, light-matter interaction is not accounted for in standard quantum optics and its recent discovery brought about the research field of chiral quantum optics. The latter offers fundamentally new functionalities and applications: it enables the assembly of non-reciprocal single-photon devices that can be operated in a quantum superposition of two or more of their operational states and the realization of deterministic spin-photon interfaces. Moreover, engineered directional photonic reservoirs could lead to the development of complex quantum networks that, for example, could simulate novel classes of quantum many-body systems.

  14. Practical photon number detection with electric field-modulated silicon avalanche photodiodes.

    PubMed

    Thomas, O; Yuan, Z L; Shields, A J

    2012-01-24

    Low-noise single-photon detection is a prerequisite for quantum information processing using photonic qubits. In particular, detectors that are able to accurately resolve the number of photons in an incident light pulse will find application in functions such as quantum teleportation and linear optics quantum computing. More generally, such a detector will allow the advantages of quantum light detection to be extended to stronger optical signals, permitting optical measurements limited only by fluctuations in the photon number of the source. Here we demonstrate a practical high-speed device, which allows the signals arising from multiple photon-induced avalanches to be precisely discriminated. We use a type of silicon avalanche photodiode in which the lateral electric field profile is strongly modulated in order to realize a spatially multiplexed detector. Clearly discerned multiphoton signals are obtained by applying sub-nanosecond voltage gates in order to restrict the detector current.

  15. Topological photonic orbital-angular-momentum switch

    NASA Astrophysics Data System (ADS)

    Luo, Xi-Wang; Zhang, Chuanwei; Guo, Guang-Can; Zhou, Zheng-Wei

    2018-04-01

    The large number of available orbital-angular-momentum (OAM) states of photons provides a unique resource for many important applications in quantum information and optical communications. However, conventional OAM switching devices usually rely on precise parameter control and are limited by slow switching rate and low efficiency. Here we propose a robust, fast, and efficient photonic OAM switch device based on a topological process, where photons are adiabatically pumped to a target OAM state on demand. Such topological OAM pumping can be realized through manipulating photons in a few degenerate main cavities and involves only a limited number of optical elements. A large change of OAM at ˜10q can be realized with only q degenerate main cavities and at most 5 q pumping cycles. The topological photonic OAM switch may become a powerful device for broad applications in many different fields and motivate a topological design of conventional optical devices.

  16. Quantum technologies with hybrid systems

    PubMed Central

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-01-01

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field. PMID:25737558

  17. Quantum technologies with hybrid systems.

    PubMed

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-03-31

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.

  18. Quantum technologies with hybrid systems

    NASA Astrophysics Data System (ADS)

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-03-01

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.

  19. Photonic Quantum Networks formed from NV− centers

    PubMed Central

    Nemoto, Kae; Trupke, Michael; Devitt, Simon J.; Scharfenberger, Burkhard; Buczak, Kathrin; Schmiedmayer, Jörg; Munro, William J.

    2016-01-01

    In this article we present a simple repeater scheme based on the negatively-charged nitrogen vacancy centre in diamond. Each repeater node is built from modules comprising an optical cavity containing a single NV−, with one nuclear spin from 15N as quantum memory. The module uses only deterministic processes and interactions to achieve high fidelity operations (>99%), and modules are connected by optical fiber. In the repeater node architecture, the processes between modules by photons can be in principle deterministic, however current limitations on optical components lead the processes to be probabilistic but heralded. Our resource-modest repeater architecture contains two modules at each node, and the repeater nodes are then connected by entangled photon pairs. We discuss the performance of such a quantum repeater network with modest resources and then incorporate more resource-intense strategies step by step. Our architecture should allow large-scale quantum information networks with existing or near future technology. PMID:27215433

  20. Photonic Quantum Networks formed from NV(-) centers.

    PubMed

    Nemoto, Kae; Trupke, Michael; Devitt, Simon J; Scharfenberger, Burkhard; Buczak, Kathrin; Schmiedmayer, Jörg; Munro, William J

    2016-05-24

    In this article we present a simple repeater scheme based on the negatively-charged nitrogen vacancy centre in diamond. Each repeater node is built from modules comprising an optical cavity containing a single NV(-), with one nuclear spin from (15)N as quantum memory. The module uses only deterministic processes and interactions to achieve high fidelity operations (>99%), and modules are connected by optical fiber. In the repeater node architecture, the processes between modules by photons can be in principle deterministic, however current limitations on optical components lead the processes to be probabilistic but heralded. Our resource-modest repeater architecture contains two modules at each node, and the repeater nodes are then connected by entangled photon pairs. We discuss the performance of such a quantum repeater network with modest resources and then incorporate more resource-intense strategies step by step. Our architecture should allow large-scale quantum information networks with existing or near future technology.

  1. Living in a digital world: features and applications of FPGA in photon detection

    NASA Astrophysics Data System (ADS)

    Arnesano, Cosimo

    Optical spectroscopy and imaging outcomes rely upon many factors; one of the most critical is the photon acquisition and processing method employed. For some types of measurements it may be crucial to acquire every single photon quickly with temporal resolution, but in other cases it is important to acquire as many photons as possible, regardless of the time information about each of them. Fluorescence Lifetime Imaging Microscopy belongs to the first case, where the information of the time of arrival of every single photon in every single pixel is fundamental in obtaining the desired information. Spectral tissue imaging belongs to the second case, where high photon density is needed in order to calculate the optical parameters necessary to build the spectral image. In both cases, the current instrumentation suffers from limitations in terms of acquisition time, duty cycle, cost, and radio-frequency interference and emission. We developed the Digital Frequency-Domain approach for photon acquisition and processing purpose using new digital technology. This approach is based on the use of photon detectors in photon counting mode, and the digital heterodyning method to acquire data which is analyzed in the frequency domain to provide the information of the time of arrival of the photons . In conjunction with the use of pulsed laser sources, this method allows the determination of the time of arrival of the photons using the harmonic content of the frequency domain analysis. The parallel digital FD design is a powerful approach that others the possibility to implement a variety of different applications in fluorescence spectroscopy and microscopy. It can be applied to fluorometry, Fluorescence Lifetime Imaging (FLIM), and Fluorescence Correlation Spectroscopy (FCS), as well as multi frequency and multi wavelength tissue imaging in compact portable medical devices. It dramatically reduces the acquisition time from the several minutes scale to the seconds scale, performs signal processing in a digital fashion avoiding RF emission and it is extremely inexpensive. This development is the result of a systematic study carried on a previous design known as the FLIMBox developed as part of a thesis of another graduate student. The extensive work done in maximizing the performance of the original FLIMBox led us to develop a new hardware solution with exciting and promising results and potential that were not possible in the previous hardware realization, where the signal harmonic content was limited by the FPGA technology. The new design permits acquisition of a much larger harmonic content of the sample response when it is excited with a pulsed light source in one single measurement using the digital mixing principle that was developed in the original design. Furthermore, we used the parallel digital FD principle to perform tissue imaging through Diffuse Optical Spectroscopy (DOS) measurements. We integrated the FLIMBox in a new system that uses a supercontinuum white laser with high brightness as a single light source and photomultipliers with large detection area, both allowing a high penetration depth with extremely low power at the sample. The parallel acquisition, achieved by using the FlimBox, decreases the time required for standard serial systems that scan through all modulation frequencies. Furthermore, the all-digital acquisition avoids analog noise, removes the analog mixer of the conventional frequency domain approach, and it does not generate radio-frequencies, normally present in current analog systems. We are able to obtain a very sensitive acquisition due to the high signal to noise ratio (S/N). The successful results obtained by utilizing digital technology in photon acquisition and processing, prompted us to extend the use of FPGA to other applications, such as phosphorescence detection. Using the FPGA concept we proposed possible solutions to outstanding problems with the current technology. In this thesis I discuss new possible scenarios where new FPGA chips are applied to spectral tissue imaging.

  2. Continuous-variable quantum computation with spatial degrees of freedom of photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tasca, D. S.; Gomes, R. M.; Toscano, F.

    2011-05-15

    We discuss the use of the transverse spatial degrees of freedom of photons propagating in the paraxial approximation for continuous-variable information processing. Given the wide variety of linear optical devices available, a diverse range of operations can be performed on the spatial degrees of freedom of single photons. Here we show how to implement a set of continuous quantum logic gates which allow for universal quantum computation. In contrast with the usual quadratures of the electromagnetic field, the entire set of single-photon gates for spatial degrees of freedom does not require optical nonlinearity and, in principle, can be performed withmore » a single device: the spatial light modulator. Nevertheless, nonlinear optical processes, such as four-wave mixing, are needed in the implementation of two-photon gates. The efficiency of these gates is at present very low; however, small-scale investigations of continuous-variable quantum computation are within the reach of current technology. In this regard, we show how novel cluster states for one-way quantum computing can be produced using spontaneous parametric down-conversion.« less

  3. Photonic quantum information: science and technology.

    PubMed

    Takeuchi, Shigeki

    2016-01-01

    Recent technological progress in the generation, manipulation and detection of individual single photons has opened a new scientific field of photonic quantum information. This progress includes the realization of single photon switches, photonic quantum circuits with specific functions, and the application of novel photonic states to novel optical metrology beyond the limits of standard optics. In this review article, the recent developments and current status of photonic quantum information technology are overviewed based on the author's past and recent works.

  4. Deterministic realization of collective measurements via photonic quantum walks.

    PubMed

    Hou, Zhibo; Tang, Jun-Feng; Shang, Jiangwei; Zhu, Huangjun; Li, Jian; Yuan, Yuan; Wu, Kang-Da; Xiang, Guo-Yong; Li, Chuan-Feng; Guo, Guang-Can

    2018-04-12

    Collective measurements on identically prepared quantum systems can extract more information than local measurements, thereby enhancing information-processing efficiency. Although this nonclassical phenomenon has been known for two decades, it has remained a challenging task to demonstrate the advantage of collective measurements in experiments. Here, we introduce a general recipe for performing deterministic collective measurements on two identically prepared qubits based on quantum walks. Using photonic quantum walks, we realize experimentally an optimized collective measurement with fidelity 0.9946 without post selection. As an application, we achieve the highest tomographic efficiency in qubit state tomography to date. Our work offers an effective recipe for beating the precision limit of local measurements in quantum state tomography and metrology. In addition, our study opens an avenue for harvesting the power of collective measurements in quantum information-processing and for exploring the intriguing physics behind this power.

  5. Synthetic-lattice enabled all-optical devices based on orbital angular momentum of light

    PubMed Central

    Luo, Xi-Wang; Zhou, Xingxiang; Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can; Zhang, Chuanwei; Zhou, Zheng-Wei

    2017-01-01

    All-optical photonic devices are crucial for many important photonic technologies and applications, ranging from optical communication to quantum information processing. Conventional design of all-optical devices is based on photon propagation and interference in real space, which may rely on large numbers of optical elements, and the requirement of precise control makes this approach challenging. Here we propose an unconventional route for engineering all-optical devices using the photon’s internal degrees of freedom, which form photonic crystals in such synthetic dimensions for photon propagation and interference. We demonstrate this design concept by showing how important optical devices such as quantum memory and optical filters can be realized using synthetic orbital angular momentum (OAM) lattices in degenerate cavities. The design route utilizing synthetic photonic lattices may significantly reduce the requirement for numerous optical elements and their fine tuning in conventional design, paving the way for realistic all-optical photonic devices with novel functionalities. PMID:28706215

  6. Multiplexed single-mode wavelength-to-time mapping of multimode light

    PubMed Central

    Chandrasekharan, Harikumar K; Izdebski, Frauke; Gris-Sánchez, Itandehui; Krstajić, Nikola; Walker, Richard; Bridle, Helen L.; Dalgarno, Paul A.; MacPherson, William N.; Henderson, Robert K.; Birks, Tim A.; Thomson, Robert R.

    2017-01-01

    When an optical pulse propagates along an optical fibre, different wavelengths travel at different group velocities. As a result, wavelength information is converted into arrival-time information, a process known as wavelength-to-time mapping. This phenomenon is most cleanly observed using a single-mode fibre transmission line, where spatial mode dispersion is not present, but the use of such fibres restricts possible applications. Here we demonstrate that photonic lanterns based on tapered single-mode multicore fibres provide an efficient way to couple multimode light to an array of single-photon avalanche detectors, each of which has its own time-to-digital converter for time-correlated single-photon counting. Exploiting this capability, we demonstrate the multiplexed single-mode wavelength-to-time mapping of multimode light using a multicore fibre photonic lantern with 121 single-mode cores, coupled to 121 detectors on a 32 × 32 detector array. This work paves the way to efficient multimode wavelength-to-time mapping systems with the spectral performance of single-mode systems. PMID:28120822

  7. Photonics: Maintaining competitiveness in the information era

    NASA Astrophysics Data System (ADS)

    Photonics concerns the use of photons to work with or to replace electrons in certain communications, computer, or control applications traditionally carried out by electronics. It is a key high-technology area, well established in long-distance fiber-optic telecommunications and rapidly growing in other areas of great importance to society. This report concentrates on technical areas where the overall worldwide market for equipment approaches $400 billion per year, i.e., Telecommunications; Information processing; Optical storage and display; Optical sensors; and Policy Issues. It is essential to increase our industrial competitiveness in product development, manufacturing skills, and marketing; There must be continuing industrial effort in long-range research and innovation; The photonics industry should consider the advantages of an industry association that could help organize consortia to conduct cooperative research and address technical problems and policy issues beyond the scope of any one organization; and Government contractors who receive a percentage of sales for their independent research should devote a sizable fraction to projects with a life span of 5 to 10 years.

  8. Telecom-Wavelength Atomic Quantum Memory in Optical Fiber for Heralded Polarization Qubits.

    PubMed

    Jin, Jeongwan; Saglamyurek, Erhan; Puigibert, Marcel lí Grimau; Verma, Varun; Marsili, Francesco; Nam, Sae Woo; Oblak, Daniel; Tittel, Wolfgang

    2015-10-02

    Polarization-encoded photons at telecommunication wavelengths provide a compelling platform for practical realizations of photonic quantum information technologies due to the ease of performing single qubit manipulations, the availability of polarization-entangled photon-pair sources, and the possibility of leveraging existing fiber-optic links for distributing qubits over long distances. An optical quantum memory compatible with this platform could serve as a building block for these technologies. Here we present the first experimental demonstration of an atomic quantum memory that directly allows for reversible mapping of quantum states encoded in the polarization degree of freedom of a telecom-wavelength photon. We show that heralded polarization qubits at a telecom wavelength are stored and retrieved with near-unity fidelity by implementing the atomic frequency comb protocol in an ensemble of erbium atoms doped into an optical fiber. Despite remaining limitations in our proof-of-principle demonstration such as small storage efficiency and storage time, our broadband light-matter interface reveals the potential for use in future quantum information processing.

  9. Investigation of the influence of the proximity effect and randomness on a photolithographically fabricated photonic crystal nanobeam cavity

    NASA Astrophysics Data System (ADS)

    Tetsumoto, Tomohiro; Kumazaki, Hajime; Ishida, Rammaru; Tanabe, Takasumi

    2018-01-01

    Recent progress on the fabrication techniques used in silicon photonics foundries has enabled us to fabricate photonic crystal (PhC) nanocavities using a complementary metal-oxide-semiconductor (CMOS) compatible process. A high Q two-dimensional PhC nanocavity and a one-dimensional nanobeam PhC cavity with a Q exceeding 100 thousand have been fabricated using ArF excimer laser immersion lithography. These are important steps toward the fusion of silicon photonics devices and PhC devices. Although the fabrication must be reproducible for industrial applications, the properties of PhC nanocavities are sensitively affected by the proximity effect and randomness. In this study, we quantitatively investigated the influence of the proximity effect and randomness on a silicon nanobeam PhC cavity. First, we discussed the optical properties of cavities defined with one- and two-step exposure methods, which revealed the necessity of a multi-stage exposure process for our structure. Then, we investigated the impact of block structures placed next to the cavities. The presence of the blocks modified the resonant wavelength of the cavities by about 10 nm. The highest Q we obtained was over 100 thousand. We also discussed the influence of photomask misalignment, which is also a possible cause of disorders in the photolithographic fabrication process. This study will provide useful information for fabricating integrated photonic circuits with PhC nanocavities using a photolithographic process.

  10. Cavity-based quantum networks with single atoms and optical photons

    NASA Astrophysics Data System (ADS)

    Reiserer, Andreas; Rempe, Gerhard

    2015-10-01

    Distributed quantum networks will allow users to perform tasks and to interact in ways which are not possible with present-day technology. Their implementation is a key challenge for quantum science and requires the development of stationary quantum nodes that can send and receive as well as store and process quantum information locally. The nodes are connected by quantum channels for flying information carriers, i.e., photons. These channels serve both to directly exchange quantum information between nodes and to distribute entanglement over the whole network. In order to scale such networks to many particles and long distances, an efficient interface between the nodes and the channels is required. This article describes the cavity-based approach to this goal, with an emphasis on experimental systems in which single atoms are trapped in and coupled to optical resonators. Besides being conceptually appealing, this approach is promising for quantum networks on larger scales, as it gives access to long qubit coherence times and high light-matter coupling efficiencies. Thus, it allows one to generate entangled photons on the push of a button, to reversibly map the quantum state of a photon onto an atom, to transfer and teleport quantum states between remote atoms, to entangle distant atoms, to detect optical photons nondestructively, to perform entangling quantum gates between an atom and one or several photons, and even provides a route toward efficient heralded quantum memories for future repeaters. The presented general protocols and the identification of key parameters are applicable to other experimental systems.

  11. Underlying Information Technology Tailored Quantum Error Correction

    DTIC Science & Technology

    2006-07-28

    typically constructed by using an optical beam splitter . • We used a decoherence-free-subspace encoding to reduce the sensitivity of an optical Deutsch...simplification of design constraints in solid state QC (incl. quantum dots and superconducting qubits), hybrid quantum error correction and prevention methods...process tomography on one- and two-photon polarisation states, from full and partial data "• Accomplished complete two-photon QPT. "• Discovered surprising

  12. A high-speed tunable beam splitter for feed-forward photonic quantum information processing.

    PubMed

    Ma, Xiao-Song; Zotter, Stefan; Tetik, Nuray; Qarry, Angie; Jennewein, Thomas; Zeilinger, Anton

    2011-11-07

    We realize quantum gates for path qubits with a high-speed, polarization-independent and tunable beam splitter. Two electro-optical modulators act in a Mach-Zehnder interferometer as high-speed phase shifters and rapidly tune its splitting ratio. We test its performance with heralded single photons, observing a polarization-independent interference contrast above 95%. The switching time is about 5.6 ns, and a maximal repetition rate is 2.5 MHz. We demonstrate tunable feed-forward operations of a single-qubit gate of path-encoded qubits and a two-qubit gate via measurement-induced interaction between two photons.

  13. Experimental vizualization of 2D photonic crystal equi-frequency contours

    NASA Astrophysics Data System (ADS)

    Senderakova, Dagmar; Drzik, Milan; Pisarcik, Matej

    2017-12-01

    Photonic crystals have been extensively studied for their unique optical properties that promise interesting novel devices. Our contribution is focused on a 2D photonic crystal structure formed by Al2O3 layer on silicon substrate, patterned with periodic hexagonal lattice of deep air holes. Azimuthal angle dependences of the specular light reflection were recorded photo-electrically at various angles of icidence and wavelengths. Data obtained were processed via mapping in reciprocal k-space. The method promises a possibility to visualize the equi-frequency contours and get more detailed information about the properties of the sample used.

  14. Coherent spin control of a nanocavity-enhanced qubit in diamond

    DOE PAGES

    Li, Luozhou; Lu, Ming; Schroder, Tim; ...

    2015-01-28

    A central aim of quantum information processing is the efficient entanglement of multiple stationary quantum memories via photons. Among solid-state systems, the nitrogen-vacancy centre in diamond has emerged as an excellent optically addressable memory with second-scale electron spin coherence times. Recently, quantum entanglement and teleportation have been shown between two nitrogen-vacancy memories, but scaling to larger networks requires more efficient spin-photon interfaces such as optical resonators. Here we report such nitrogen-vacancy nanocavity systems in strong Purcell regime with optical quality factors approaching 10,000 and electron spin coherence times exceeding 200 µs using a silicon hard-mask fabrication process. This spin-photon interfacemore » is integrated with on-chip microwave striplines for coherent spin control, providing an efficient quantum memory for quantum networks.« less

  15. Photonic quantum information: science and technology

    PubMed Central

    TAKEUCHI, Shigeki

    2016-01-01

    Recent technological progress in the generation, manipulation and detection of individual single photons has opened a new scientific field of photonic quantum information. This progress includes the realization of single photon switches, photonic quantum circuits with specific functions, and the application of novel photonic states to novel optical metrology beyond the limits of standard optics. In this review article, the recent developments and current status of photonic quantum information technology are overviewed based on the author’s past and recent works. PMID:26755398

  16. Quantum entanglement beyond Gaussian criteria

    PubMed Central

    Gomes, R. M.; Salles, A.; Toscano, F.; Souto Ribeiro, P. H.; Walborn, S. P.

    2009-01-01

    Most of the attention given to continuous variable systems for quantum information processing has traditionally been focused on Gaussian states. However, non-Gaussianity is an essential requirement for universal quantum computation and entanglement distillation, and can improve the efficiency of other quantum information tasks. Here we report the experimental observation of genuine non-Gaussian entanglement using spatially entangled photon pairs. The quantum correlations are invisible to all second-order tests, which identify only Gaussian entanglement, and are revealed only under application of a higher-order entanglement criterion. Thus, the photons exhibit a variety of entanglement that cannot be reproduced by Gaussian states. PMID:19995963

  17. Quantum entanglement beyond Gaussian criteria.

    PubMed

    Gomes, R M; Salles, A; Toscano, F; Souto Ribeiro, P H; Walborn, S P

    2009-12-22

    Most of the attention given to continuous variable systems for quantum information processing has traditionally been focused on Gaussian states. However, non-Gaussianity is an essential requirement for universal quantum computation and entanglement distillation, and can improve the efficiency of other quantum information tasks. Here we report the experimental observation of genuine non-Gaussian entanglement using spatially entangled photon pairs. The quantum correlations are invisible to all second-order tests, which identify only Gaussian entanglement, and are revealed only under application of a higher-order entanglement criterion. Thus, the photons exhibit a variety of entanglement that cannot be reproduced by Gaussian states.

  18. A fast low-power optical memory based on coupled micro-ring lasers

    NASA Astrophysics Data System (ADS)

    Hill, Martin T.; Dorren, Harmen J. S.; de Vries, Tjibbe; Leijtens, Xaveer J. M.; den Besten, Jan Hendrik; Smalbrugge, Barry; Oei, Yok-Siang; Binsma, Hans; Khoe, Giok-Djan; Smit, Meint K.

    2004-11-01

    The increasing speed of fibre-optic-based telecommunications has focused attention on high-speed optical processing of digital information. Complex optical processing requires a high-density, high-speed, low-power optical memory that can be integrated with planar semiconductor technology for buffering of decisions and telecommunication data. Recently, ring lasers with extremely small size and low operating power have been made, and we demonstrate here a memory element constructed by interconnecting these microscopic lasers. Our device occupies an area of 18 × 40µm2 on an InP/InGaAsP photonic integrated circuit, and switches within 20ps with 5.5fJ optical switching energy. Simulations show that the element has the potential for much smaller dimensions and switching times. Large numbers of such memory elements can be densely integrated and interconnected on a photonic integrated circuit: fast digital optical information processing systems employing large-scale integration should now be viable.

  19. Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide

    PubMed Central

    DAVEAU, RAPHAËL S.; BALRAM, KRISHNA C.; PREGNOLATO, TOMMASO; LIU, JIN; LEE, EUN H.; SONG, JIN D.; VERMA, VARUN; MIRIN, RICHARD; NAM, SAE WOO; MIDOLO, LEONARDO; STOBBE, SØREN; SRINIVASAN, KARTIK; LODAHL, PETER

    2017-01-01

    Many photonic quantum information processing applications would benefit from a high brightness, fiber-coupled source of triggered single photons. Here, we present a fiber-coupled photonic-crystal waveguide single-photon source relying on evanescent coupling of the light field from a tapered out-coupler to an optical fiber. A two-step approach is taken where the performance of the tapered out-coupler is recorded first on an independent device containing an on-chip reflector. Reflection measurements establish that the chip-to-fiber coupling efficiency exceeds 80 %. The detailed characterization of a high-efficiency photonic-crystal waveguide extended with a tapered out-coupling section is then performed. The corresponding overall single-photon source efficiency is 10.9 % ± 2.3 %, which quantifies the success probability to prepare an exciton in the quantum dot, couple it out as a photon in the waveguide, and subsequently transfer it to the fiber. The applied out-coupling method is robust, stable over time, and broadband over several tens of nanometers, which makes it a highly promising pathway to increase the efficiency and reliability of planar chip-based single-photon sources. PMID:28584859

  20. The Lunar Regolith as a Remote Sensing Target for the Lunar Reconnaissance Orbiter (LRO)

    NASA Technical Reports Server (NTRS)

    Mendell, Wendell W.

    2009-01-01

    Of the 6 instruments and one technology demonstration aboard the LRO, only CRaTER does not measure some kind of interaction of particles with the lunar regolith. LEND detects neutron fluence that contains information about the number density of protons in the upper regolith. To infer the presence of protons, the PI must assume a model that characterizes the surface as a collection of atoms. Thus, LEND does not sense the regolith as a structure. LROC, LOLA, and LAMP sense reflected photons whose wavelength is much shorter than the median particle size in the regolith. The photons interact with electrons, either in atomic shells or in chemical bonds. These interactions occur within a nanometer or so of the surface of a particle. Thus, the particles are macroscopic objects and models of the reflection process invoke ray-tracing optics. DIVINER senses photons that have been emitted by surface particles through thermal phonon processes. The wavelengths detected by the instrument are of the same order as the median particle size, and the photons contain information on particle dimensions as well as the molecular bonds in the constituent compounds. The Mini-RF synthetic aperture radar generates and detects photons of a few centimeters wavelength that interact with the regolith as a dielectric, the dielectric properties of the particulate component being described through effective medium theory. However, the interaction with rocks (macroscopic objects of interest to geologists) can be characterized using Fresnel or Mie models of electromagnetic properties.

  1. Controllably releasing long-lived quantum memory for photonic polarization qubit into multiple spatially-separate photonic channels

    PubMed Central

    Chen, Lirong; Xu, Zhongxiao; Zeng, Weiqing; Wen, Yafei; Li, Shujing; Wang, Hai

    2016-01-01

    We report an experiment in which long-lived quantum memories for photonic polarization qubits (PPQs) are controllably released into any one of multiple spatially-separate channels. The PPQs are implemented with an arbitrarily-polarized coherent signal light pulses at the single-photon level and are stored in cold atoms by means of electromagnetic-induced-transparency scheme. Reading laser pulses propagating along the direction at a small angle relative to quantum axis are applied to release the stored PPQs into an output channel. By changing the propagating directions of the read laser beam, we controllably release the retrieved PPQs into 7 different photonic output channels, respectively. At a storage time of δt = 5 μs, the least quantum-process fidelity in 7 different output channels is ~89%. At one of the output channels, the measured maximum quantum-process fidelity for the PPQs is 94.2% at storage time of δt = 0.85 ms. At storage time of 6 ms, the quantum-process fidelity is still beyond the bound of 78% to violate the Bell’s inequality. The demonstrated controllable release of the stored PPQs may extend the capabilities of the quantum information storage technique. PMID:27667262

  2. Coherent and dynamic beam splitting based on light storage in cold atoms

    PubMed Central

    Park, Kwang-Kyoon; Zhao, Tian-Ming; Lee, Jong-Chan; Chough, Young-Tak; Kim, Yoon-Ho

    2016-01-01

    We demonstrate a coherent and dynamic beam splitter based on light storage in cold atoms. An input weak laser pulse is first stored in a cold atom ensemble via electromagnetically-induced transparency (EIT). A set of counter-propagating control fields, applied at a later time, retrieves the stored pulse into two output spatial modes. The high visibility interference between the two output pulses clearly demonstrates that the beam splitting process is coherent. Furthermore, by manipulating the control lasers, it is possible to dynamically control the storage time, the power splitting ratio, the relative phase, and the optical frequencies of the output pulses. With further improvements, the active beam splitter demonstrated in this work might have applications in photonic photonic quantum information and in all-optical information processing. PMID:27677457

  3. Bandgap engineering of InGaAsP/InP laser structure by photo-absorption-induced point defects

    NASA Astrophysics Data System (ADS)

    Kaleem, Mohammad; Nazir, Sajid; Saqib, Nazar Abbas

    2016-03-01

    Integration of photonic components on the same photonic wafer permits future optical communication systems to be dense and advanced performance. This enables very fast information handling between photonic active components interconnected through passive optical low loss channels. We demonstrate the UV-Laser based Quantum Well Intermixing (QWI) procedure to engineer the band-gap of compressively strained InGaAsP/InP Quantum Well (QW) laser material. We achieved around 135nm of blue-shift by simply applying excimer laser (λ= 248nm). The under observation laser processed material also exhibits higher photoluminescence (PL) intensity. Encouraging experimental results indicate that this simple technique has the potential to produce photonic integrated devices and circuits.

  4. Protecting single-photon entanglement with practical entanglement source

    NASA Astrophysics Data System (ADS)

    Zhou, Lan; Ou-Yang, Yang; Wang, Lei; Sheng, Yu-Bo

    2017-06-01

    Single-photon entanglement (SPE) is important for quantum communication and quantum information processing. However, SPE is sensitive to photon loss. In this paper, we discuss a linear optical amplification protocol for protecting SPE. Different from the previous protocols, we exploit the practical spontaneous parametric down-conversion (SPDC) source to realize the amplification, for the ideal entanglement source is unavailable in current quantum technology. Moreover, we prove that the amplification using the entanglement generated from SPDC source as auxiliary is better than the amplification assisted with single photons. The reason is that the vacuum state from SPDC source will not affect the amplification, so that it can be eliminated automatically. This protocol may be useful in future long-distance quantum communications.

  5. Entanglement concentration and purification of two-mode squeezed microwave photons in circuit QED

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Alsaedi, Ahmed; Hayat, Tasawar; Deng, Fu-Guo

    2018-04-01

    We present a theoretical proposal for a physical implementation of entanglement concentration and purification protocols for two-mode squeezed microwave photons in circuit quantum electrodynamics (QED). First, we give the description of the cross-Kerr effect induced between two resonators in circuit QED. Then we use the cross-Kerr media to design the effective quantum nondemolition (QND) measurement on microwave-photon number. By using the QND measurement, the parties in quantum communication can accomplish the entanglement concentration and purification of nonlocal two-mode squeezed microwave photons. We discuss the feasibility of our schemes by giving the detailed parameters which can be realized with current experimental technology. Our work can improve some practical applications in continuous-variable microwave-based quantum information processing.

  6. Retrieving transient conformational molecular structure information from inner-shell photoionization of laser-aligned molecules

    DOE PAGES

    Wang, Xu; Le, Anh -Thu; Yu, Chao; ...

    2016-03-30

    We discuss a scheme to retrieve transient conformational molecular structure information using photoelectron angular distributions (PADs) that have averaged over partial alignments of isolated molecules. The photoelectron is pulled out from a localized inner-shell molecular orbital by an X-ray photon. We show that a transient change in the atomic positions from their equilibrium will lead to a sensitive change in the alignment-averaged PADs, which can be measured and used to retrieve the former. Exploiting the experimental convenience of changing the photon polarization direction, we show that it is advantageous to use PADs obtained from multiple photon polarization directions. Lastly, amore » simple single-scattering model is proposed and benchmarked to describe the photoionization process and to do the retrieval using a multiple-parameter fitting method.« less

  7. A three-dimensional optical photonic crystal with designed point defects

    NASA Astrophysics Data System (ADS)

    Qi, Minghao; Lidorikis, Elefterios; Rakich, Peter T.; Johnson, Steven G.; Joannopoulos, J. D.; Ippen, Erich P.; Smith, Henry I.

    2004-06-01

    Photonic crystals offer unprecedented opportunities for miniaturization and integration of optical devices. They also exhibit a variety of new physical phenomena, including suppression or enhancement of spontaneous emission, low-threshold lasing, and quantum information processing. Various techniques for the fabrication of three-dimensional (3D) photonic crystals-such as silicon micromachining, wafer fusion bonding, holographic lithography, self-assembly, angled-etching, micromanipulation, glancing-angle deposition and auto-cloning-have been proposed and demonstrated with different levels of success. However, a critical step towards the fabrication of functional 3D devices, that is, the incorporation of microcavities or waveguides in a controllable way, has not been achieved at optical wavelengths. Here we present the fabrication of 3D photonic crystals that are particularly suited for optical device integration using a lithographic layer-by-layer approach. Point-defect microcavities are introduced during the fabrication process and optical measurements show they have resonant signatures around telecommunications wavelengths (1.3-1.5µm). Measurements of reflectance and transmittance at near-infrared are in good agreement with numerical simulations.

  8. A multiplexed light-matter interface for fibre-based quantum networks

    PubMed Central

    Saglamyurek, Erhan; Grimau Puigibert, Marcelli; Zhou, Qiang; Giner, Lambert; Marsili, Francesco; Verma, Varun B.; Woo Nam, Sae; Oesterling, Lee; Nippa, David; Oblak, Daniel; Tittel, Wolfgang

    2016-01-01

    Processing and distributing quantum information using photons through fibre-optic or free-space links are essential for building future quantum networks. The scalability needed for such networks can be achieved by employing photonic quantum states that are multiplexed into time and/or frequency, and light-matter interfaces that are able to store and process such states with large time-bandwidth product and multimode capacities. Despite important progress in developing such devices, the demonstration of these capabilities using non-classical light remains challenging. Here, employing the atomic frequency comb quantum memory protocol in a cryogenically cooled erbium-doped optical fibre, we report the quantum storage of heralded single photons at a telecom-wavelength (1.53 μm) with a time-bandwidth product approaching 800. Furthermore, we demonstrate frequency-multimode storage and memory-based spectral-temporal photon manipulation. Notably, our demonstrations rely on fully integrated quantum technologies operating at telecommunication wavelengths. With improved storage efficiency, our light-matter interface may become a useful tool in future quantum networks. PMID:27046076

  9. A multiplexed light-matter interface for fibre-based quantum networks.

    PubMed

    Saglamyurek, Erhan; Grimau Puigibert, Marcelli; Zhou, Qiang; Giner, Lambert; Marsili, Francesco; Verma, Varun B; Woo Nam, Sae; Oesterling, Lee; Nippa, David; Oblak, Daniel; Tittel, Wolfgang

    2016-04-05

    Processing and distributing quantum information using photons through fibre-optic or free-space links are essential for building future quantum networks. The scalability needed for such networks can be achieved by employing photonic quantum states that are multiplexed into time and/or frequency, and light-matter interfaces that are able to store and process such states with large time-bandwidth product and multimode capacities. Despite important progress in developing such devices, the demonstration of these capabilities using non-classical light remains challenging. Here, employing the atomic frequency comb quantum memory protocol in a cryogenically cooled erbium-doped optical fibre, we report the quantum storage of heralded single photons at a telecom-wavelength (1.53 μm) with a time-bandwidth product approaching 800. Furthermore, we demonstrate frequency-multimode storage and memory-based spectral-temporal photon manipulation. Notably, our demonstrations rely on fully integrated quantum technologies operating at telecommunication wavelengths. With improved storage efficiency, our light-matter interface may become a useful tool in future quantum networks.

  10. Analogy of transistor function with modulating photonic band gap in electromagnetically induced grating

    PubMed Central

    Wang, Zhiguo; Ullah, Zakir; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng

    2015-01-01

    Optical transistor is a device used to amplify and switch optical signals. Many researchers focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. Electronic transistor is the fundamental building block of modern electronic devices. To replace electronic components with optical ones, an equivalent optical transistor is required. Here we compare the behavior of an optical transistor with the reflection from a photonic band gap structure in an electromagnetically induced transparency medium. A control signal is used to modulate the photonic band gap structure. Power variation of the control signal is used to provide an analogy between the reflection behavior caused by modulating the photonic band gap structure and the shifting of Q-point (Operation point) as well as amplification function of optical transistor. By means of the control signal, the switching function of optical transistor has also been realized. Such experimental schemes could have potential applications in making optical diode and optical transistor used in quantum information processing. PMID:26349444

  11. Analogy of transistor function with modulating photonic band gap in electromagnetically induced grating

    NASA Astrophysics Data System (ADS)

    Wang, Zhiguo; Ullah, Zakir; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng

    2015-09-01

    Optical transistor is a device used to amplify and switch optical signals. Many researchers focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. Electronic transistor is the fundamental building block of modern electronic devices. To replace electronic components with optical ones, an equivalent optical transistor is required. Here we compare the behavior of an optical transistor with the reflection from a photonic band gap structure in an electromagnetically induced transparency medium. A control signal is used to modulate the photonic band gap structure. Power variation of the control signal is used to provide an analogy between the reflection behavior caused by modulating the photonic band gap structure and the shifting of Q-point (Operation point) as well as amplification function of optical transistor. By means of the control signal, the switching function of optical transistor has also been realized. Such experimental schemes could have potential applications in making optical diode and optical transistor used in quantum information processing.

  12. Orbital Angular Momentum-Entanglement Frequency Transducer.

    PubMed

    Zhou, Zhi-Yuan; Liu, Shi-Long; Li, Yan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Dong, Ming-Xin; Shi, Bao-Sen; Guo, Guang-Can

    2016-09-02

    Entanglement is a vital resource for realizing many tasks such as teleportation, secure key distribution, metrology, and quantum computations. To effectively build entanglement between different quantum systems and share information between them, a frequency transducer to convert between quantum states of different wavelengths while retaining its quantum features is indispensable. Information encoded in the photon's orbital angular momentum (OAM) degrees of freedom is preferred in harnessing the information-carrying capacity of a single photon because of its unlimited dimensions. A quantum transducer, which operates at wavelengths from 1558.3 to 525 nm for OAM qubits, OAM-polarization hybrid-entangled states, and OAM-entangled states, is reported for the first time. Nonclassical properties and entanglements are demonstrated following the conversion process by performing quantum tomography, interference, and Bell inequality measurements. Our results demonstrate the capability to create an entanglement link between different quantum systems operating in a photon's OAM degrees of freedom, which will be of great importance in building a high-capacity OAM quantum network.

  13. Modal and polarization qubits in Ti:LiNbO3 photonic circuits for a universal quantum logic gate.

    PubMed

    Saleh, Mohammed F; Di Giuseppe, Giovanni; Saleh, Bahaa E A; Teich, Malvin Carl

    2010-09-13

    Lithium niobate photonic circuits have the salutary property of permitting the generation, transmission, and processing of photons to be accommodated on a single chip. Compact photonic circuits such as these, with multiple components integrated on a single chip, are crucial for efficiently implementing quantum information processing schemes.We present a set of basic transformations that are useful for manipulating modal qubits in Ti:LiNbO(3) photonic quantum circuits. These include the mode analyzer, a device that separates the even and odd components of a state into two separate spatial paths; the mode rotator, which rotates the state by an angle in mode space; and modal Pauli spin operators that effect related operations. We also describe the design of a deterministic, two-qubit, single-photon, CNOT gate, a key element in certain sets of universal quantum logic gates. It is implemented as a Ti:LiNbO(3) photonic quantum circuit in which the polarization and mode number of a single photon serve as the control and target qubits, respectively. It is shown that the effects of dispersion in the CNOT circuit can be mitigated by augmenting it with an additional path. The performance of all of these components are confirmed by numerical simulations. The implementation of these transformations relies on selective and controllable power coupling among single- and two-mode waveguides, as well as the polarization sensitivity of the Pockels coefficients in LiNbO(3).

  14. Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength.

    PubMed

    De Greve, Kristiaan; Yu, Leo; McMahon, Peter L; Pelc, Jason S; Natarajan, Chandra M; Kim, Na Young; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Hadfield, Robert H; Forchel, Alfred; Fejer, M M; Yamamoto, Yoshihisa

    2012-11-15

    Long-distance quantum teleportation and quantum repeater technologies require entanglement between a single matter quantum bit (qubit) and a telecommunications (telecom)-wavelength photonic qubit. Electron spins in III-V semiconductor quantum dots are among the matter qubits that allow for the fastest spin manipulation and photon emission, but entanglement between a single quantum-dot spin qubit and a flying (propagating) photonic qubit has yet to be demonstrated. Moreover, many quantum dots emit single photons at visible to near-infrared wavelengths, where silica fibre losses are so high that long-distance quantum communication protocols become difficult to implement. Here we demonstrate entanglement between an InAs quantum-dot electron spin qubit and a photonic qubit, by frequency downconversion of a spontaneously emitted photon from a singly charged quantum dot to a wavelength of 1,560 nanometres. The use of sub-10-picosecond pulses at a wavelength of 2.2 micrometres in the frequency downconversion process provides the necessary quantum erasure to eliminate which-path information in the photon energy. Together with previously demonstrated indistinguishable single-photon emission at high repetition rates, the present technique advances the III-V semiconductor quantum-dot spin system as a promising platform for long-distance quantum communication.

  15. A stable wavelength-tunable triggered source of single photons and cascaded photon pairs at the telecom C-band

    NASA Astrophysics Data System (ADS)

    Zeuner, Katharina D.; Paul, Matthias; Lettner, Thomas; Reuterskiöld Hedlund, Carl; Schweickert, Lucas; Steinhauer, Stephan; Yang, Lily; Zichi, Julien; Hammar, Mattias; Jöns, Klaus D.; Zwiller, Val

    2018-04-01

    The implementation of fiber-based long-range quantum communication requires tunable sources of single photons at the telecom C-band. Stable and easy-to-implement wavelength-tunability of individual sources is crucial to (i) bring remote sources into resonance, (ii) define a wavelength standard, and (iii) ensure scalability to operate a quantum repeater. So far, the most promising sources for true, telecom single photons are semiconductor quantum dots, due to their ability to deterministically and reliably emit single and entangled photons. However, the required wavelength-tunability is hard to attain. Here, we show a stable wavelength-tunable quantum light source by integrating strain-released InAs quantum dots on piezoelectric substrates. We present triggered single-photon emission at 1.55 μm with a multi-photon emission probability as low as 0.097, as well as photon pair emission from the radiative biexciton-exciton cascade. We achieve a tuning range of 0.25 nm which will allow us to spectrally overlap remote quantum dots or tuning distant quantum dots into resonance with quantum memories. This opens up realistic avenues for the implementation of photonic quantum information processing applications at telecom wavelengths.

  16. Valley photonic crystals for control of spin and topology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Jian-Wen; Chen, Xiao-Dong; Zhu, Hanyu

    2016-11-28

    Photonic crystals offer unprecedented opportunity for light manipulation and applications in optical communication and sensing1,2,3,4. Exploration of topology in photonic crystals and metamaterials with non-zero gauge field has inspired a number of intriguing optical phenomena such as one-way transport and Weyl points5,6,7,8,9,10. Recently, a new degree of freedom, valley, has been demonstrated in two-dimensional materials11,12,13,14,15. Here, we propose a concept of valley photonic crystals with electromagnetic duality symmetry but broken inversion symmetry. We observe photonic valley Hall effect originating from valley-dependent spin-split bulk bands, even in topologically trivial photonic crystals. Valley–spin locking behaviour results in selective net spin flow insidemore » bulk valley photonic crystals. We also show the independent control of valley and topology in a single system that has been long pursued in electronic systems, resulting in topologically-protected flat edge states. Valley photonic crystals not only offer a route towards the observation of non-trivial states, but also open the way for device applications in integrated photonics and information processing using spin-dependent transportation.« less

  17. Time lens assisted photonic sampling extraction

    NASA Astrophysics Data System (ADS)

    Petrillo, Keith Gordon

    Telecommunication bandwidth demands have dramatically increased in recent years due to Internet based services like cloud computing and storage, large file sharing, and video streaming. Additionally, sensing systems such as wideband radar, magnetic imaging resonance systems, and complex modulation formats to handle large data transfer in telecommunications require high speed, high resolution analog-to-digital converters (ADCs) to interpret the data. Accurately processing and acquiring the information at next generation data rates from these systems has become challenging for electronic systems. The largest contributors to the electronic bottleneck are bandwidth and timing jitter which limit speed and reduce accuracy. Optical systems have shown to have at least three orders of magnitude increase in bandwidth capabilities and state of the art mode locked lasers have reduced timing jitters into thousands of attoseconds. Such features have encouraged processing signals without the use of electronics or using photonics to assist electronics. All optical signal processing has allowed the processing of telecommunication line rates up to 1.28 Tb/s and high resolution analog-to-digital converters in the 10s of gigahertz. The major drawback to these optical systems is the high cost of the components. The application of all optical processing techniques such as a time lens and chirped processing can greatly reduce bandwidth and cost requirements of optical serial to parallel converters and push photonically assisted ADCs into the 100s of gigahertz. In this dissertation, the building blocks to a high speed photonically assisted ADC are demonstrated, each providing benefits to its own respective application. A serial to parallel converter using a continuously operating time lens as an optical Fourier processor is demonstrated to fully convert a 160-Gb/s optical time division multiplexed signal to 16 10-Gb/s channels with error free operation. Using chirped processing, an optical sample and hold concept is demonstrated and analyzed as a resolution improvement to existing photonically assisted ADCs. Simulations indicate that the application of a continuously operating time lens to a photonically assisted sampling system can increase photonically sampled systems by an order of magnitude while acquiring properties similar to an optical sample and hold system.

  18. Fano-Agarwal couplings and non-rotating wave approximation in single-photon timed Dicke subradiance

    NASA Astrophysics Data System (ADS)

    Mirza, Imran M.; Begzjav, Tuguldur

    2016-04-01

    Recently a new class of single-photon timed Dicke (TD) subradiant states has been introduced with possible applications in single-photon-based quantum information storage and on demand ultrafast retrieval (Scully M. O., Phys. Rev. Lett., 115 (2015) 243602). However, the influence of any kind of virtual processes on the decay of these new kind of subradiant states has been left as an open question. In the present paper, we focus on this problem in detail. In particular, we investigate how pure Fano-Agarwal couplings and other virtual processes arising from non-rotating wave approximation impact the decay of otherwise sub- and superradiant states. In addition to the overall virtual couplings among all TD states, we also focus on the dominant role played by the couplings between specific TD states.

  19. Pion-photon reactions and chiral dynamics in Primakoff processes at COMPASS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedrich, Jan Michael

    2016-01-22

    With the COMPASS experiment at CERN, pion-photon reactions are investigated via the Primakoff effect, implying that high-energetic pions react with the quasi-real photon field surrounding the target nuclei. The production of a single hard photon in such a pion scattering at lowest momentum transfer to the nucleus is related to pion Compton scattering. From the measured cross-section shape, the pion polarisability is determined. The COMPASS measurement is in contradiction to the earlier dedicated measurements, and rather in agreement with the theoretical expectation from chiral perturbation theory. In the same data taking, reactions with neutral and charged pions in the finalmore » state are measured and analyzed. At low energy in the pion-photon centre-of-momentum system, these reactions are governed by chiral dynamics and contain information relevant for chiral perturbation theory. At higher energies, resonances are produced and their radiative coupling is investigated.« less

  20. Teleportation of a general two-photon state employing a polarization-entangled χ state with nondemolition parity analyses

    NASA Astrophysics Data System (ADS)

    Dong, Li; Wang, Jun-Xi; Li, Qing-Yang; Dong, Hai-Kuan; Xiu, Xiao-Ming; Gao, Ya-Jun

    2016-07-01

    Employing a polarization-entangled χ state, which is a four-photon genuine entangled state, we propose a protocol teleporting a general two-photon polarization state. Firstly, the sender needs to perform one Controlled-NOT gate, one Hadamard gate, and one Controlled-NOT gate on the state to be teleported in succession. Secondly, the sender performs local nondemolition parity analyses based on cross-Kerr nonlinearities and publicizes the achieved outcomes. Finally, conditioned on the sender's analysis outcomes, the receiver executes the single-photon unitary transformation operations on his own photons to obtain the state originally sit in the sender's location. Due to the employment of nondemolition parity analyses rather than four-qubit joint measurement, it can be realized more feasible with currently available technologies. Moreover, the resources of Bell states can be achieved because the nondestructive measurement is exploited, which facilitates other potential tasks of quantum information processing.

  1. Deterministic quantum state transfer and remote entanglement using microwave photons.

    PubMed

    Kurpiers, P; Magnard, P; Walter, T; Royer, B; Pechal, M; Heinsoo, J; Salathé, Y; Akin, A; Storz, S; Besse, J-C; Gasparinetti, S; Blais, A; Wallraff, A

    2018-06-01

    Sharing information coherently between nodes of a quantum network is fundamental to distributed quantum information processing. In this scheme, the computation is divided into subroutines and performed on several smaller quantum registers that are connected by classical and quantum channels 1 . A direct quantum channel, which connects nodes deterministically rather than probabilistically, achieves larger entanglement rates between nodes and is advantageous for distributed fault-tolerant quantum computation 2 . Here we implement deterministic state-transfer and entanglement protocols between two superconducting qubits fabricated on separate chips. Superconducting circuits 3 constitute a universal quantum node 4 that is capable of sending, receiving, storing and processing quantum information 5-8 . Our implementation is based on an all-microwave cavity-assisted Raman process 9 , which entangles or transfers the qubit state of a transmon-type artificial atom 10 with a time-symmetric itinerant single photon. We transfer qubit states by absorbing these itinerant photons at the receiving node, with a probability of 98.1 ± 0.1 per cent, achieving a transfer-process fidelity of 80.02 ± 0.07 per cent for a protocol duration of only 180 nanoseconds. We also prepare remote entanglement on demand with a fidelity as high as 78.9 ± 0.1 per cent at a rate of 50 kilohertz. Our results are in excellent agreement with numerical simulations based on a master-equation description of the system. This deterministic protocol has the potential to be used for quantum computing distributed across different nodes of a cryogenic network.

  2. High-order dispersion effects in two-photon interference

    NASA Astrophysics Data System (ADS)

    Mazzotta, Zeudi; Cialdi, Simone; Cipriani, Daniele; Olivares, Stefano; Paris, Matteo G. A.

    2016-12-01

    Two-photon interference and Hong-Ou-Mandel (HOM) effect are relevant tools for quantum metrology and quantum information processing. In optical coherence tomography, the HOM effect is exploited to achieve high-resolution measurements with the width of the HOM dip being the main parameter. On the other hand, applications like dense coding require high-visibility performance. Here we address high-order dispersion effects in two-photon interference and study, theoretically and experimentally, the dependence of the visibility and the width of the HOM dip on both the pump spectrum and the downconverted photon spectrum. In particular, a spatial light modulator is exploited to experimentally introduce and manipulate a custom phase function to simulate the high-order dispersion effects. Overall, we show that it is possible to effectively introduce high-order dispersion effects on the propagation of photons and also to compensate for such effect. Our results clarify the role of the different dispersion phenomena and pave the way for optimization procedures in quantum technological applications involving PDC photons and optical fibers.

  3. Joint spectral characterization of photon-pair sources

    NASA Astrophysics Data System (ADS)

    Zielnicki, Kevin; Garay-Palmett, Karina; Cruz-Delgado, Daniel; Cruz-Ramirez, Hector; O'Boyle, Michael F.; Fang, Bin; Lorenz, Virginia O.; U'Ren, Alfred B.; Kwiat, Paul G.

    2018-06-01

    The ability to determine the joint spectral properties of photon pairs produced by the processes of spontaneous parametric downconversion (SPDC) and spontaneous four-wave mixing (SFWM) is crucial for guaranteeing the usability of heralded single photons and polarization-entangled pairs for multi-photon protocols. In this paper, we compare six different techniques that yield either a characterization of the joint spectral intensity or of the closely related purity of heralded single photons. These six techniques include: (i) scanning monochromator measurements, (ii) a variant of Fourier transform spectroscopy designed to extract the desired information exploiting a resource-optimized technique, (iii) dispersive fibre spectroscopy, (iv) stimulated-emission-based measurement, (v) measurement of the second-order correlation function ? for one of the two photons, and (vi) two-source Hong-Ou-Mandel interferometry. We discuss the relative performance of these techniques for the specific cases of a SPDC source designed to be factorable and SFWM sources of varying purity, and compare the techniques' relative advantages and disadvantages.

  4. Periodically modulated single-photon transport in one-dimensional waveguide

    NASA Astrophysics Data System (ADS)

    Li, Xingmin; Wei, L. F.

    2018-03-01

    Single-photon transport along a one-dimension waveguide interacting with a quantum system (e.g., two-level atom) is a very useful and meaningful simplified model of the waveguide-based optical quantum devices. Thus, how to modulate the transport of the photons in the waveguide structures by adjusting certain external parameters should be particularly important. In this paper, we discuss how such a modulation could be implemented by periodically driving the energy splitting of the interacting atom and the atom-photon coupling strength. By generalizing the well developed time-independent full quantum mechanical theory in real space to the time-dependent one, we show that various sideband-transmission phenomena could be observed. This means that, with these modulations the photon has certain probabilities to transmit through the scattering atom in the other energy sidebands. Inversely, by controlling the sideband transmission the periodic modulations of the single photon waveguide devices could be designed for the future optical quantum information processing applications.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez-Arguello, Alejandro Marti

    The study of the inner structure of hadrons allows us to understand the nature of the interactions between partons, quarks and gluons, described by Quantum Chromodynamics. The elastic scattering reactions, which have been studied in order to measure the nucleon form factors, are included in this frame. The inelastic scattering reactions are also included in this frame, they allow us to obtain information about the nucleon structure thanks to the development of the parton distribution functions (PDFs). While through elastic scattering we can obtain information about the charge distribution of the nucleon, and hence, about the spatial distribution of themore » partons, through inelastic scattering we obtain information about the momentum distributions of partons, by employing the PDFs. However, we can study the exclusive inelastic scattering reactions, such as the Deeply Virtual Compton Scattering (DVCS), wich allow us to access to the spatial and momentum distributions simultaneously. This is possible thanks to the generalized parton distributions (GPDs), which allow us to correlate both types of distributions. The process known as DVCS is the easiest way to access the GPDs. This process can be expressed as the scattering of an electron by a proton by means of a virtual photon with the result of the scattered initial particles plus a real photon. We find a process competing with DVCS known as Bethe-Heitler (BH), in which the real photon is radiated by the lepton rather than the quark. Due to the small cross section of DVCS, of the order of nb, in order to conduct these kind of experiments it is necessary to make use of facilities capable of providing high beam intensities. One of these facilities is the Thomas Jefferson National Accelerator Facility , where the experiment JLab E07-007, "Complete Separation of Virtual Photon and π⁰ Electroproduction Observables of Unpolarized Protons", took place during the months of October to December of 2010. The main goal of this experiment is the isolation of the contribution from the term coming form the DVCS from the interference term, resulting from the BH contribution. This isolation is known as "Rosenbluth Separation". The work presented in this thesis focuses on the analysis of the data stored by the electromagnetic calorimeter, employed for the detection of real photons. There is also a a theoretical introduction to the study of the nucleon structure, reviewing the concepts of form factors and parton distributions through elastic and inelastic processes. The computation of the photon leptoproduction cross section is described in detail, as well as the goals of experiment E07-007. This thesis also describes the analysis of the data stored by the electromagnetic calorimeter, with the purpose of obtaining the kinematic variables of the real photons resulting from DVCS reactions. Finally, it describes the selection of events from stored data, the applied cuts to kinematical variables and the background subtraction. Also, the process of extraction of the necessary observables for computing the photon leptoproduction cross section is described, along with the main steps followed to perform the Monte Carlo simulation used in this computation. The resulting cross sections are shown at the end of this thesis.« less

  6. High-Dimensional Quantum Information Processing with Linear Optics

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Casey A.

    Quantum information processing (QIP) is an interdisciplinary field concerned with the development of computers and information processing systems that utilize quantum mechanical properties of nature to carry out their function. QIP systems have become vastly more practical since the turn of the century. Today, QIP applications span imaging, cryptographic security, computation, and simulation (quantum systems that mimic other quantum systems). Many important strategies improve quantum versions of classical information system hardware, such as single photon detectors and quantum repeaters. Another more abstract strategy engineers high-dimensional quantum state spaces, so that each successful event carries more information than traditional two-level systems allow. Photonic states in particular bring the added advantages of weak environmental coupling and data transmission near the speed of light, allowing for simpler control and lower system design complexity. In this dissertation, numerous novel, scalable designs for practical high-dimensional linear-optical QIP systems are presented. First, a correlated photon imaging scheme using orbital angular momentum (OAM) states to detect rotational symmetries in objects using measurements, as well as building images out of those interactions is reported. Then, a statistical detection method using chains of OAM superpositions distributed according to the Fibonacci sequence is established and expanded upon. It is shown that the approach gives rise to schemes for sorting, detecting, and generating the recursively defined high-dimensional states on which some quantum cryptographic protocols depend. Finally, an ongoing study based on a generalization of the standard optical multiport for applications in quantum computation and simulation is reported upon. The architecture allows photons to reverse momentum inside the device. This in turn enables realistic implementation of controllable linear-optical scattering vertices for carrying out quantum walks on arbitrary graph structures, a powerful tool for any quantum computer. It is shown that the novel architecture provides new, efficient capabilities for the optical quantum simulation of Hamiltonians and topologically protected states. Further, these simulations use exponentially fewer resources than feedforward techniques, scale linearly to higher-dimensional systems, and use only linear optics, thus offering a concrete experimentally achievable implementation of graphical models of discrete-time quantum systems.

  7. Appreciation of the nature of light demands enhancement over the prevailing scientific epistemology

    NASA Astrophysics Data System (ADS)

    Roychoudhuri, Chandrasekhar

    2011-09-01

    Based on attempts to resolve the problem of various self contradictory assumptions behind the prevailing belief on single photon interference, we have analyzed the process steps behind our experimental measurements and named the process as the Interaction Process Mapping Epistemology (IPM-E). This has helped us recognize that the quantum mechanical Measurement Problem has a much universal and deeper root in nature. Our scientific theorization process suffers from a Perpetual Information Challenge (PIC), which cannot be overcome by elegant and/or sophisticated mathematical theories alone. Iterative imaginative application of IPM-E needs to be used as a metaphorical analytical continuation to fill up the missing information gaps. IPM-E has also guided us to recognize the generic NIW-principle (Non-Interaction of Waves) in the linear domain, not explicitly recognized in current books and literature. Superposition effects become manifest through light-matter interactions. Detecting dipoles gets stimulated by multiple superposed beams; it sums the simultaneous multiple stimulations into a single resultant undulation, which then guides the resultant energy exchange. The consequent transformation in the detector corresponds to observed fringes. They neither represent interference of light; nor represent selective arrival or non-arrival of photons on the detector. Photons do not possess any force of mutual interaction to generate their redistribution. Implementation of IPM-E requires us to recognize our subjective interpretation propensity with which we are burdened due to our evolutionary successes.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Geyuan

    My research projects are focused on application of photonics, optics and micro- fabrication technology in energy related fields. Photonic crystal fabrication research has the potential to help us generate and use light more efficiently. In order to fabricate active 3D woodpile photonic structure devices, a woodpile template is needed to enable the crystal growth process. We developed a silica woodpile template fabrication process based on two polymer transfer molding technique. A silica woodpile template is demonstrated to work with temperature up to 900 C. It provides a more economical way to explore making better 3D active woodpile photonic devices likemore » 3D photonic light emitting diodes (LED). Optical research on solar cell testing has the potential to make our energy generation more e cient and greener. PL imaging and LBIC mapping are used to measure CdTe solar cells with different back contacts. A strong correlation between PL image defects and LBIC map defects is observed. This opens up potential application for PL imaging in fast solar cell inspection. 2D laser IV scan shows its usage in 2D parameter mapping. We show its ability to generate important information about solar cell performance locally around PL image defects.« less

  9. Integrated generation of complex optical quantum states and their coherent control

    NASA Astrophysics Data System (ADS)

    Roztocki, Piotr; Kues, Michael; Reimer, Christian; Romero Cortés, Luis; Sciara, Stefania; Wetzel, Benjamin; Zhang, Yanbing; Cino, Alfonso; Chu, Sai T.; Little, Brent E.; Moss, David J.; Caspani, Lucia; Azaña, José; Morandotti, Roberto

    2018-01-01

    Complex optical quantum states based on entangled photons are essential for investigations of fundamental physics and are the heart of applications in quantum information science. Recently, integrated photonics has become a leading platform for the compact, cost-efficient, and stable generation and processing of optical quantum states. However, onchip sources are currently limited to basic two-dimensional (qubit) two-photon states, whereas scaling the state complexity requires access to states composed of several (<2) photons and/or exhibiting high photon dimensionality. Here we show that the use of integrated frequency combs (on-chip light sources with a broad spectrum of evenly-spaced frequency modes) based on high-Q nonlinear microring resonators can provide solutions for such scalable complex quantum state sources. In particular, by using spontaneous four-wave mixing within the resonators, we demonstrate the generation of bi- and multi-photon entangled qubit states over a broad comb of channels spanning the S, C, and L telecommunications bands, and control these states coherently to perform quantum interference measurements and state tomography. Furthermore, we demonstrate the on-chip generation of entangled high-dimensional (quDit) states, where the photons are created in a coherent superposition of multiple pure frequency modes. Specifically, we confirm the realization of a quantum system with at least one hundred dimensions. Moreover, using off-the-shelf telecommunications components, we introduce a platform for the coherent manipulation and control of frequencyentangled quDit states. Our results suggest that microcavity-based entangled photon state generation and the coherent control of states using accessible telecommunications infrastructure introduce a powerful and scalable platform for quantum information science.

  10. Encoding quantum information in a stabilized manifold of a superconducting cavity

    NASA Astrophysics Data System (ADS)

    Touzard, S.; Leghtas, Z.; Mundhada, S. O.; Axline, C.; Reagor, M.; Chou, K.; Blumoff, J.; Sliwa, K. M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Mirrahimi, M.; Devoret, M. H.

    In a superconducting Josephson circuit architecture, we activate a multi-photon process between two modes by applying microwave drives at specific frequencies. This creates a pairwise exchange of photons between a high-Q cavity and the environment. The resulting open dynamical system develops a two-dimensional quasi-energy ground state manifold. Can we encode, protect and manipulate quantum information in this manifold? We experimentally investigate the convergence and escape rates in and out of this confined subspace. Finally, using quantum Zeno dynamics, we aim to perform gates which maintain the state in the protected manifold at all times. Work supported by: ARO, ONR, AFOSR and YINQE.

  11. Three-dimensional periodic dielectric structures having photonic Dirac points

    DOEpatents

    Bravo-Abad, Jorge; Joannopoulos, John D.; Soljacic, Marin

    2015-06-02

    The dielectric, three-dimensional photonic materials disclosed herein feature Dirac-like dispersion in quasi-two-dimensional systems. Embodiments include a face-centered cubic (fcc) structure formed by alternating layers of dielectric rods and dielectric slabs patterned with holes on respective triangular lattices. This fcc structure also includes a defect layer, which may comprise either dielectric rods or a dielectric slab with patterned with holes. This defect layer introduces Dirac cone dispersion into the fcc structure's photonic band structure. Examples of these fcc structures enable enhancement of the spontaneous emission coupling efficiency (the .beta.-factor) over large areas, contrary to the conventional wisdom that the .beta.-factor degrades as the system's size increases. These results enable large-area, low-threshold lasers; single-photon sources; quantum information processing devices; and energy harvesting systems.

  12. Scalable quantum information processing with atomic ensembles and flying photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei Feng; Yu Yafei; Feng Mang

    2009-10-15

    We present a scheme for scalable quantum information processing with atomic ensembles and flying photons. Using the Rydberg blockade, we encode the qubits in the collective atomic states, which could be manipulated fast and easily due to the enhanced interaction in comparison to the single-atom case. We demonstrate that our proposed gating could be applied to generation of two-dimensional cluster states for measurement-based quantum computation. Moreover, the atomic ensembles also function as quantum repeaters useful for long-distance quantum state transfer. We show the possibility of our scheme to work in bad cavity or in weak coupling regime, which could muchmore » relax the experimental requirement. The efficient coherent operations on the ensemble qubits enable our scheme to be switchable between quantum computation and quantum communication using atomic ensembles.« less

  13. Engineering non-linear resonator mode interactions in circuit QED by continuous driving: Introduction

    NASA Astrophysics Data System (ADS)

    Pfaff, Wolfgang; Reagor, Matthew; Heeres, Reinier; Ofek, Nissim; Chou, Kevin; Blumoff, Jacob; Leghtas, Zaki; Touzard, Steven; Sliwa, Katrina; Holland, Eric; Krastanov, Stefan; Frunzio, Luigi; Devoret, Michel; Jiang, Liang; Schoelkopf, Robert

    2015-03-01

    High-Q microwave resonators show great promise for storing and manipulating quantum states in circuit QED. Using resonator modes as such a resource in quantum information processing applications requires the ability to manipulate the state of a resonator efficiently. Further, one must engineer appropriate coupling channels without spoiling the coherence properties of the resonator. We present an architecture that combines millisecond lifetimes for photonic quantum states stored in a linear resonator with fast measurement provided by a low-Q readout resonator. We demonstrate experimentally how a continuous drive on a transmon can be utilized to generate highly non-classical photonic states inside the high-Q resonator via effective nonlinear resonator mode interactions. Our approach opens new avenues for using modes of long-lived linear resonators in the circuit QED platform for quantum information processing tasks.

  14. Poisson pre-processing of nonstationary photonic signals: Signals with equality between mean and variance.

    PubMed

    Poplová, Michaela; Sovka, Pavel; Cifra, Michal

    2017-01-01

    Photonic signals are broadly exploited in communication and sensing and they typically exhibit Poisson-like statistics. In a common scenario where the intensity of the photonic signals is low and one needs to remove a nonstationary trend of the signals for any further analysis, one faces an obstacle: due to the dependence between the mean and variance typical for a Poisson-like process, information about the trend remains in the variance even after the trend has been subtracted, possibly yielding artifactual results in further analyses. Commonly available detrending or normalizing methods cannot cope with this issue. To alleviate this issue we developed a suitable pre-processing method for the signals that originate from a Poisson-like process. In this paper, a Poisson pre-processing method for nonstationary time series with Poisson distribution is developed and tested on computer-generated model data and experimental data of chemiluminescence from human neutrophils and mung seeds. The presented method transforms a nonstationary Poisson signal into a stationary signal with a Poisson distribution while preserving the type of photocount distribution and phase-space structure of the signal. The importance of the suggested pre-processing method is shown in Fano factor and Hurst exponent analysis of both computer-generated model signals and experimental photonic signals. It is demonstrated that our pre-processing method is superior to standard detrending-based methods whenever further signal analysis is sensitive to variance of the signal.

  15. Poisson pre-processing of nonstationary photonic signals: Signals with equality between mean and variance

    PubMed Central

    Poplová, Michaela; Sovka, Pavel

    2017-01-01

    Photonic signals are broadly exploited in communication and sensing and they typically exhibit Poisson-like statistics. In a common scenario where the intensity of the photonic signals is low and one needs to remove a nonstationary trend of the signals for any further analysis, one faces an obstacle: due to the dependence between the mean and variance typical for a Poisson-like process, information about the trend remains in the variance even after the trend has been subtracted, possibly yielding artifactual results in further analyses. Commonly available detrending or normalizing methods cannot cope with this issue. To alleviate this issue we developed a suitable pre-processing method for the signals that originate from a Poisson-like process. In this paper, a Poisson pre-processing method for nonstationary time series with Poisson distribution is developed and tested on computer-generated model data and experimental data of chemiluminescence from human neutrophils and mung seeds. The presented method transforms a nonstationary Poisson signal into a stationary signal with a Poisson distribution while preserving the type of photocount distribution and phase-space structure of the signal. The importance of the suggested pre-processing method is shown in Fano factor and Hurst exponent analysis of both computer-generated model signals and experimental photonic signals. It is demonstrated that our pre-processing method is superior to standard detrending-based methods whenever further signal analysis is sensitive to variance of the signal. PMID:29216207

  16. Hybrid quantum gates between flying photon and diamond nitrogen-vacancy centers assisted by optical microcavities

    PubMed Central

    Wei, Hai-Rui; Lu Long, Gui

    2015-01-01

    Hybrid quantum gates hold great promise for quantum information processing since they preserve the advantages of different quantum systems. Here we present compact quantum circuits to deterministically implement controlled-NOT, Toffoli, and Fredkin gates between a flying photon qubit and diamond nitrogen-vacancy (NV) centers assisted by microcavities. The target qubits of these universal quantum gates are encoded on the spins of the electrons associated with the diamond NV centers and they have long coherence time for storing information, and the control qubit is encoded on the polarizations of the flying photon and can be easily manipulated. Our quantum circuits are compact, economic, and simple. Moreover, they do not require additional qubits. The complexity of our schemes for universal three-qubit gates is much reduced, compared to the synthesis with two-qubit entangling gates. These schemes have high fidelities and efficiencies, and they are feasible in experiment. PMID:26271899

  17. Quantum storage of heralded polarization qubits in birefringent and anisotropically absorbing materials.

    PubMed

    Clausen, Christoph; Bussières, Félix; Afzelius, Mikael; Gisin, Nicolas

    2012-05-11

    Storage of quantum information encoded into heralded single photons is an essential constituent of long-distance quantum communication based on quantum repeaters and of optical quantum information processing. The storage of photonic polarization qubits is, however, difficult because many materials are birefringent and have polarization-dependent absorption. Here we present a simple scheme that eliminates these polarization effects, and we demonstrate it by storing heralded polarization qubits into a solid-state quantum memory. The quantum memory is implemented with a biaxial yttrium orthosilicate (Y2SiO5) crystal doped with rare-earth ions. Heralded single photons generated from a filtered spontaneous parametric down-conversion source are stored, and quantum state tomography of the retrieved polarization state reveals an average fidelity of 97.5±0.4%, which is significantly higher than what is achievable with a measure-and-prepare strategy.

  18. Spontaneous ultraweak photon emission from biological systems and the endogenous light field.

    PubMed

    Schwabl, Herbert; Klima, Herbert

    2005-04-01

    Still one of the most astonishing biological electromagnetic phenomena is the ultraweak photon emission (UPE) from living systems. Organisms and tissues spontaneously emit measurable intensities of light, i.e. photons in the visible part of the electromagnetic spectrum (380-780 nm), in the range from 1 to 1,000 photons x s-1 x cm-2, depending on their condition and vitality. It is important not to confuse UPE from living systems with other biogenic light emitting processes such as bioluminescence or chemiluminescence. This article examines with basic considerations from physics on the quantum nature of photons the empirical phenomenon of UPE. This leads to the description of the non-thermal origin of this radiation. This is in good correspondence with the modern understanding of life phenomena as dissipative processes far from thermodynamic equilibrium. UPE also supports the understanding of life sustaining processes as basically driven by electromagnetic fields. The basic features of UPE, like intensity and spectral distribution, are known in principle for many experimental situations. The UPE of human leukocytes contributes to an endogenous light field of about 1011 photons x s-1 which can be influenced by certain factors. Further research is needed to reveal the statistical properties of UPE and in consequence to answer questions about the underlying mechanics of the biological system. In principle, statistical properties of UPE allow to reconstruct phase-space dynamics of the light emitting structures. Many open questions remain until a proper understanding of the electromagnetic interaction of the human organism can be achieved: which structures act as receptors and emitters for electromagnetic radiation? How is electromagnetic information received and processed within cells?

  19. Femtosecond two-photon Rabi oscillations in excited He driven by ultrashort intense laser fields

    NASA Astrophysics Data System (ADS)

    Fushitani, M.; Liu, C.-N.; Matsuda, A.; Endo, T.; Toida, Y.; Nagasono, M.; Togashi, T.; Yabashi, M.; Ishikawa, T.; Hikosaka, Y.; Morishita, T.; Hishikawa, A.

    2016-02-01

    Coherent light-matter interaction provides powerful methods for manipulating quantum systems. Rabi oscillation is one such process. As it enables complete population transfer to a target state, it is thus routinely exploited in a variety of applications in photonics, notably quantum information processing. The extension of coherent control techniques to the multiphoton regime offers wider applicability, and access to highly excited or dipole-forbidden transition states. However, the multiphoton Rabi process is often disrupted by other competing nonlinear effects such as the a.c. Stark shift, especially at the high laser-field intensities necessary to achieve ultrafast Rabi oscillations. Here we demonstrate a new route to drive two-photon Rabi oscillations on timescales as short as tens of femtoseconds, by utilizing the strong-field phenomenon known as Freeman resonance. The scenario is not specific to atomic helium as investigated in the present study, but broadly applicable to other systems, thus opening new prospects for the ultrafast manipulation of Rydberg states.

  20. Practical single-photon-assisted remote state preparation with non-maximally entanglement

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Huang, Ai-Jun; Sun, Wen-Yang; Shi, Jia-Dong; Ye, Liu

    2016-08-01

    Remote state preparation (RSP) and joint remote state preparation (JRSP) protocols for single-photon states are investigated via linear optical elements with partially entangled states. In our scheme, by choosing two-mode instances from a polarizing beam splitter, only the sender in the communication protocol needs to prepare an ancillary single-photon and operate the entanglement preparation process in order to retrieve an arbitrary single-photon state from a photon pair in partially entangled state. In the case of JRSP, i.e., a canonical model of RSP with multi-party, we consider that the information of the desired state is split into many subsets and in prior maintained by spatially separate parties. Specifically, with the assistance of a single-photon state and a three-photon entangled state, it turns out that an arbitrary single-photon state can be jointly and remotely prepared with certain probability, which is characterized by the coefficients of both the employed entangled state and the target state. Remarkably, our protocol is readily to extend to the case for RSP and JRSP of mixed states with the all optical means. Therefore, our protocol is promising for communicating among optics-based multi-node quantum networks.

  1. Observation of entanglement between a quantum dot spin and a single photon.

    PubMed

    Gao, W B; Fallahi, P; Togan, E; Miguel-Sanchez, J; Imamoglu, A

    2012-11-15

    Entanglement has a central role in fundamental tests of quantum mechanics as well as in the burgeoning field of quantum information processing. Particularly in the context of quantum networks and communication, a main challenge is the efficient generation of entanglement between stationary (spin) and propagating (photon) quantum bits. Here we report the observation of quantum entanglement between a semiconductor quantum dot spin and the colour of a propagating optical photon. The demonstration of entanglement relies on the use of fast, single-photon detection, which allows us to project the photon into a superposition of red and blue frequency components. Our results extend the previous demonstrations of single-spin/single-photon entanglement in trapped ions, neutral atoms and nitrogen-vacancy centres to the domain of artificial atoms in semiconductor nanostructures that allow for on-chip integration of electronic and photonic elements. As a result of its fast optical transitions and favourable selection rules, the scheme we implement could in principle generate nearly deterministic entangled spin-photon pairs at a rate determined ultimately by the high spontaneous emission rate. Our observation constitutes a first step towards implementation of a quantum network with nodes consisting of semiconductor spin quantum bits.

  2. Singular value decomposition for photon-processing nuclear imaging systems and applications for reconstruction and computing null functions.

    PubMed

    Jha, Abhinav K; Barrett, Harrison H; Frey, Eric C; Clarkson, Eric; Caucci, Luca; Kupinski, Matthew A

    2015-09-21

    Recent advances in technology are enabling a new class of nuclear imaging systems consisting of detectors that use real-time maximum-likelihood (ML) methods to estimate the interaction position, deposited energy, and other attributes of each photon-interaction event and store these attributes in a list format. This class of systems, which we refer to as photon-processing (PP) nuclear imaging systems, can be described by a fundamentally different mathematical imaging operator that allows processing of the continuous-valued photon attributes on a per-photon basis. Unlike conventional photon-counting (PC) systems that bin the data into images, PP systems do not have any binning-related information loss. Mathematically, while PC systems have an infinite-dimensional null space due to dimensionality considerations, PP systems do not necessarily suffer from this issue. Therefore, PP systems have the potential to provide improved performance in comparison to PC systems. To study these advantages, we propose a framework to perform the singular-value decomposition (SVD) of the PP imaging operator. We use this framework to perform the SVD of operators that describe a general two-dimensional (2D) planar linear shift-invariant (LSIV) PP system and a hypothetical continuously rotating 2D single-photon emission computed tomography (SPECT) PP system. We then discuss two applications of the SVD framework. The first application is to decompose the object being imaged by the PP imaging system into measurement and null components. We compare these components to the measurement and null components obtained with PC systems. In the process, we also present a procedure to compute the null functions for a PC system. The second application is designing analytical reconstruction algorithms for PP systems. The proposed analytical approach exploits the fact that PP systems acquire data in a continuous domain to estimate a continuous object function. The approach is parallelizable and implemented for graphics processing units (GPUs). Further, this approach leverages another important advantage of PP systems, namely the possibility to perform photon-by-photon real-time reconstruction. We demonstrate the application of the approach to perform reconstruction in a simulated 2D SPECT system. The results help to validate and demonstrate the utility of the proposed method and show that PP systems can help overcome the aliasing artifacts that are otherwise intrinsically present in PC systems.

  3. Singular value decomposition for photon-processing nuclear imaging systems and applications for reconstruction and computing null functions

    NASA Astrophysics Data System (ADS)

    Jha, Abhinav K.; Barrett, Harrison H.; Frey, Eric C.; Clarkson, Eric; Caucci, Luca; Kupinski, Matthew A.

    2015-09-01

    Recent advances in technology are enabling a new class of nuclear imaging systems consisting of detectors that use real-time maximum-likelihood (ML) methods to estimate the interaction position, deposited energy, and other attributes of each photon-interaction event and store these attributes in a list format. This class of systems, which we refer to as photon-processing (PP) nuclear imaging systems, can be described by a fundamentally different mathematical imaging operator that allows processing of the continuous-valued photon attributes on a per-photon basis. Unlike conventional photon-counting (PC) systems that bin the data into images, PP systems do not have any binning-related information loss. Mathematically, while PC systems have an infinite-dimensional null space due to dimensionality considerations, PP systems do not necessarily suffer from this issue. Therefore, PP systems have the potential to provide improved performance in comparison to PC systems. To study these advantages, we propose a framework to perform the singular-value decomposition (SVD) of the PP imaging operator. We use this framework to perform the SVD of operators that describe a general two-dimensional (2D) planar linear shift-invariant (LSIV) PP system and a hypothetical continuously rotating 2D single-photon emission computed tomography (SPECT) PP system. We then discuss two applications of the SVD framework. The first application is to decompose the object being imaged by the PP imaging system into measurement and null components. We compare these components to the measurement and null components obtained with PC systems. In the process, we also present a procedure to compute the null functions for a PC system. The second application is designing analytical reconstruction algorithms for PP systems. The proposed analytical approach exploits the fact that PP systems acquire data in a continuous domain to estimate a continuous object function. The approach is parallelizable and implemented for graphics processing units (GPUs). Further, this approach leverages another important advantage of PP systems, namely the possibility to perform photon-by-photon real-time reconstruction. We demonstrate the application of the approach to perform reconstruction in a simulated 2D SPECT system. The results help to validate and demonstrate the utility of the proposed method and show that PP systems can help overcome the aliasing artifacts that are otherwise intrinsically present in PC systems.

  4. Spatial intensity distribution of controlled-NOT gate carrying orbital angular momentum via photonic band gap structure

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Wang, Xiaorui; Zhe Zhang, Yun

    2018-07-01

    By employing the different topological charges of a Laguerre–Gaussian beam as a qubit, we experimentally demonstrate a controlled-NOT (CNOT) gate with light beams carrying orbital angular momentum via a photonic band gap structure in a hot atomic ensemble. Through a degenerate four-wave mixing process, the spatial distribution of the CNOT gate including splitting and spatial shift can be affected by the Kerr nonlinear effect in multilevel atomic systems. Moreover, the intensity variations of the CNOT gate can be controlled by the relative phase modulation. This research can be useful for applications in quantum information processing.

  5. Engineering high-order nonlinear dissipation for quantum superconducting circuits

    NASA Astrophysics Data System (ADS)

    Mundhada, S. O.; Grimm, A.; Touzard, S.; Shankar, S.; Minev, Z. K.; Vool, U.; Mirrahimi, M.; Devoret, M. H.

    Engineering nonlinear driven-dissipative processes is essential for quantum control. In the case of a harmonic oscillator, nonlinear dissipation can stabilize a decoherence-free manifold, leading to protected quantum information encoding. One possible approach to implement such nonlinear interactions is to combine the nonlinearities provided by Josephson circuits with parametric pump drives. However, it is usually hard to achieve strong nonlinearities while avoiding undesired couplings. Here we propose a scheme to engineer a four-photon drive and dissipation in a harmonic oscillator by cascading experimentally demonstrated two-photon processes. We also report experimental progress towards realization of such a scheme. Work supported by: ARO, ONR, AFOSR and YINQE.

  6. Holographic storage of biphoton entanglement.

    PubMed

    Dai, Han-Ning; Zhang, Han; Yang, Sheng-Jun; Zhao, Tian-Ming; Rui, Jun; Deng, You-Jin; Li, Li; Liu, Nai-Le; Chen, Shuai; Bao, Xiao-Hui; Jin, Xian-Min; Zhao, Bo; Pan, Jian-Wei

    2012-05-25

    Coherent and reversible storage of multiphoton entanglement with a multimode quantum memory is essential for scalable all-optical quantum information processing. Although a single photon has been successfully stored in different quantum systems, storage of multiphoton entanglement remains challenging because of the critical requirement for coherent control of the photonic entanglement source, multimode quantum memory, and quantum interface between them. Here we demonstrate a coherent and reversible storage of biphoton Bell-type entanglement with a holographic multimode atomic-ensemble-based quantum memory. The retrieved biphoton entanglement violates the Bell inequality for 1 μs storage time and a memory-process fidelity of 98% is demonstrated by quantum state tomography.

  7. Controlling the transmitted information of a multi-photon interacting with a single-Cooper pair box

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadry, Heba, E-mail: hkadry1@yahoo.com; Abdel-Aty, Abdel-Haleem, E-mail: hkadry1@yahoo.com; Zakaria, Nordin, E-mail: hkadry1@yahoo.com

    2014-10-24

    We study a model of a multi-photon interaction of a single Cooper pair box with a cavity field. The exchange of the information using this system is studied. We quantify the fidelity of the transmitted information. The effect of the system parameters (detuning parameter, field photons, state density and mean photon number) in the fidelity of the transmitted information is investigated. We found that the fidelity of the transmitted information can be controlled using the system parameters.

  8. A non-invasive online photoionization spectrometer for FLASH2.

    PubMed

    Braune, Markus; Brenner, Günter; Dziarzhytski, Siarhei; Juranić, Pavle; Sorokin, Andrey; Tiedtke, Kai

    2016-01-01

    The stochastic nature of the self-amplified spontaneous emission (SASE) process of free-electron lasers (FELs) effects pulse-to-pulse fluctuations of the radiation properties, such as the photon energy, which are determinative for processes of photon-matter interactions. Hence, SASE FEL sources pose a great challenge for scientific investigations, since experimenters need to obtain precise real-time feedback of these properties for each individual photon bunch for interpretation of the experimental data. Furthermore, any device developed to deliver the according information should not significantly interfere with or degrade the FEL beam. Regarding the spectral properties, a device for online monitoring of FEL wavelengths has been developed for FLASH2, which is based on photoionization of gaseous targets and the measurements of the corresponding electron and ion time-of-flight spectra. This paper presents experimental studies and cross-calibration measurements demonstrating the viability of this online photoionization spectrometer.

  9. Multisite two-photon imaging of neurons on multielectrode arrays

    NASA Astrophysics Data System (ADS)

    Potter, Steve M.; Lukina, Natalia; Longmuir, Kenneth J.; Wu, Yan

    2001-04-01

    We wish to understand how neural systems store, recall, and process information. We are using cultured networks of cortical neurons grown on microelectrode arrays as a model system for studying the emergent properties of ensembles of living neurons. We have developed a 2-way communication interface between the cultured network and a computer- generated animal, the Neurally Controlled Animat. Neural activity is used to control the behavior of the Animat, and 2- photon time-lapse imaging is carried out in order to observe the morphological changes that might underlie changes in neural processing. The 2-photon microscope is ideal for repeated imaging over hours or days, with submicron resolution and little photodamage. We have designed a computer-controlled microscope stage that allows imaging several locations in sequence, in order to collect more image data. For the latest progress, see: http://www.caltech.edu/~pinelab/PotterGroup.htm.

  10. Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated Quantum Frequency Combs

    NASA Astrophysics Data System (ADS)

    Caspani, Lucia; Reimer, Christian; Kues, Michael; Roztocki, Piotr; Clerici, Matteo; Wetzel, Benjamin; Jestin, Yoann; Ferrera, Marcello; Peccianti, Marco; Pasquazi, Alessia; Razzari, Luca; Little, Brent E.; Chu, Sai T.; Moss, David J.; Morandotti, Roberto

    2016-06-01

    Recent developments in quantum photonics have initiated the process of bringing photonic-quantumbased systems out-of-the-lab and into real-world applications. As an example, devices to enable the exchange of a cryptographic key secured by the laws of quantum mechanics are already commercially available. In order to further boost this process, the next step is to transfer the results achieved by means of bulky and expensive setups into miniaturized and affordable devices. Integrated quantum photonics is exactly addressing this issue. In this paper, we briefly review the most recent advancements in the generation of quantum states of light on-chip. In particular, we focus on optical microcavities, as they can offer a solution to the problem of low efficiency that is characteristic of the materials typically used in integrated platforms. In addition, we show that specifically designed microcavities can also offer further advantages, such as compatibility with telecom standards (for exploiting existing fibre networks) and quantum memories (necessary to extend the communication distance), as well as giving a longitudinal multimode character for larger information transfer and processing. This last property (i.e., the increased dimensionality of the photon quantum state) is achieved through the ability to generate multiple photon pairs on a frequency comb, corresponding to the microcavity resonances. Further achievements include the possibility of fully exploiting the polarization degree of freedom, even for integrated devices. These results pave the way for the generation of integrated quantum frequency combs that, in turn, may find important applications toward the realization of a compact quantum-computing platform.

  11. Non-Gaussian operations on bosonic modes of light: Photon-added Gaussian channels

    NASA Astrophysics Data System (ADS)

    Sabapathy, Krishna Kumar; Winter, Andreas

    2017-06-01

    We present a framework for studying bosonic non-Gaussian channels of continuous-variable systems. Our emphasis is on a class of channels that we call photon-added Gaussian channels, which are experimentally viable with current quantum-optical technologies. A strong motivation for considering these channels is the fact that it is compulsory to go beyond the Gaussian domain for numerous tasks in continuous-variable quantum information processing such as entanglement distillation from Gaussian states and universal quantum computation. The single-mode photon-added channels we consider are obtained by using two-mode beam splitters and squeezing operators with photon addition applied to the ancilla ports giving rise to families of non-Gaussian channels. For each such channel, we derive its operator-sum representation, indispensable in the present context. We observe that these channels are Fock preserving (coherence nongenerating). We then report two examples of activation using our scheme of photon addition, that of quantum-optical nonclassicality at outputs of channels that would otherwise output only classical states and of both the quantum and private communication capacities, hinting at far-reaching applications for quantum-optical communication. Further, we see that noisy Gaussian channels can be expressed as a convex mixture of these non-Gaussian channels. We also present other physical and information-theoretic properties of these channels.

  12. Testing quantum mechanics against macroscopic realism using the output of {chi}{sup (2)} nonlinearity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podoshvedov, Sergey A.; Kim, Jaewan

    2006-09-15

    We suggest an all-optical scheme to generate entangled superposition of a single photon with macroscopic entangled states for testing macroscopic realism. The scheme consists of source of single photons, a Mach-Zehnder interferometer in routes of which a system of coupled-down converters with type-I phase matching is inserted, and a beam splitter for the other auxiliary modes of the scheme. We use quantization of the pumping modes, depletion of the coherent states passing through the system, and interference effect in the pumping modes in the process of erasing which-path information of the single-photon on exit from the Mach-Zehnder interferometer. We showmore » the macroscopic fields of the output superposition are distinguishable states. This scheme generates macroscopic entangled state that violates Bell's inequality. Moreover, the detailed analysis concerning change of amplitudes of entangled superposition by means of repeating this process many times is accomplished. We show our scheme works without photon number resolving detection and it is robust to detector inefficiency.« less

  13. Processing method of images obtained during the TESIS/CORONAS-PHOTON experiment

    NASA Astrophysics Data System (ADS)

    Kuzin, S. V.; Shestov, S. V.; Bogachev, S. A.; Pertsov, A. A.; Ulyanov, A. S.; Reva, A. A.

    2011-04-01

    In January 2009, the CORONAS-PHOTON spacecraft was successfully launched. It includes a set of telescopes and spectroheliometers—TESIS—designed to image the solar corona in soft X-ray and EUV spectral ranges. Due to features of the reading system, to obtain physical information from these images, it is necessary to preprocess them, i.e., to remove the background, correct the white field, level, and clean. The paper discusses the algorithms and software developed and used for the preprocessing of images.

  14. Quantum State Tomography of a Fiber-Based Source of Polarization-Entangled Photon Pairs

    DTIC Science & Technology

    2007-12-20

    Processing 175−179 (IEEE, Bangalore, 1984). 4. A. K. Ekert, “ Quantum cryptography based on Bell’s theorem ,” Phys. Rev. Lett. 67, 661–663 (1991). 5...NUMBERS Quantum State Tomography of a Fiber- Based Source of MURI Center for Photonic Quantum Information Systems: AROIARDA Program Polarization...Computer Society Press, Los Alamitos, 1996). 7. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “ Quantum cryptography ,” Rev. Mod. Phys. 74, 145

  15. Optimizing microwave photodetection: input-output theory

    NASA Astrophysics Data System (ADS)

    Schöndorf, M.; Govia, L. C. G.; Vavilov, M. G.; McDermott, R.; Wilhelm, F. K.

    2018-04-01

    High fidelity microwave photon counting is an important tool for various areas from background radiation analysis in astronomy to the implementation of circuit quantum electrodynamic architectures for the realization of a scalable quantum information processor. In this work we describe a microwave photon counter coupled to a semi-infinite transmission line. We employ input-output theory to examine a continuously driven transmission line as well as traveling photon wave packets. Using analytic and numerical methods, we calculate the conditions on the system parameters necessary to optimize measurement and achieve high detection efficiency. With this we can derive a general matching condition depending on the different system rates, under which the measurement process is optimal.

  16. Reconfigurable optomechanical circulator and directional amplifier.

    PubMed

    Shen, Zhen; Zhang, Yan-Lei; Chen, Yuan; Sun, Fang-Wen; Zou, Xu-Bo; Guo, Guang-Can; Zou, Chang-Ling; Dong, Chun-Hua

    2018-05-04

    Non-reciprocal devices, which allow non-reciprocal signal routing, serve as fundamental elements in photonic and microwave circuits and are crucial in both classical and quantum information processing. The radiation-pressure-induced coupling between light and mechanical motion in travelling-wave resonators has been exploited to break the Lorentz reciprocity, enabling non-reciprocal devices without magnetic materials. Here, we experimentally demonstrate a reconfigurable non-reciprocal device with alternative functions as either a circulator or a directional amplifier via optomechanically induced coherent photon-phonon conversion or gain. The demonstrated device exhibits considerable flexibility and offers exciting opportunities for combining reconfigurability, non-reciprocity and active properties in single photonic devices, which can also be generalized to microwave and acoustic circuits.

  17. MURI Center for Photonic Quantum Information Systems

    DTIC Science & Technology

    2009-10-16

    conversion; solid- state quantum gates based on quantum dots in semiconductors and on NV centers in diamond; quantum memories using optical storage...of our high-speed quantum cryptography systems, and also by continuing to work on quantum information encoding into transverse spatial modes. 14...make use of cavity QED effects for quantum information processing, the quantum dot needs to be addressed coherently . We have probed the QD-cavity

  18. Electro-Optic Frequency Beam Splitters and Tritters for High-Fidelity Photonic Quantum Information Processing

    DOE PAGES

    Lu, Hsuan-Hao; Lukens, Joseph M.; Peters, Nicholas A.; ...

    2018-01-18

    In this paper, we report the experimental realization of high-fidelity photonic quantum gates for frequency-encoded qubits and qutrits based on electro-optic modulation and Fourier-transform pulse shaping. Our frequency version of the Hadamard gate offers near-unity fidelity (0.99998±0.00003), requires only a single microwave drive tone for near-ideal performance, functions across the entire C band (1530–1570 nm), and can operate concurrently on multiple qubits spaced as tightly as four frequency modes apart, with no observable degradation in the fidelity. For qutrits, we implement a 3×3 extension of the Hadamard gate: the balanced tritter. This tritter—the first ever demonstrated for frequency modes—attains fidelitymore » 0.9989±0.0004. Finally, these gates represent important building blocks toward scalable, high-fidelity quantum information processing based on frequency encoding.« less

  19. Electro-Optic Frequency Beam Splitters and Tritters for High-Fidelity Photonic Quantum Information Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Hsuan-Hao; Lukens, Joseph M.; Peters, Nicholas A.

    In this paper, we report the experimental realization of high-fidelity photonic quantum gates for frequency-encoded qubits and qutrits based on electro-optic modulation and Fourier-transform pulse shaping. Our frequency version of the Hadamard gate offers near-unity fidelity (0.99998±0.00003), requires only a single microwave drive tone for near-ideal performance, functions across the entire C band (1530–1570 nm), and can operate concurrently on multiple qubits spaced as tightly as four frequency modes apart, with no observable degradation in the fidelity. For qutrits, we implement a 3×3 extension of the Hadamard gate: the balanced tritter. This tritter—the first ever demonstrated for frequency modes—attains fidelitymore » 0.9989±0.0004. Finally, these gates represent important building blocks toward scalable, high-fidelity quantum information processing based on frequency encoding.« less

  20. Scalable ion-photon quantum interface based on integrated diffractive mirrors

    NASA Astrophysics Data System (ADS)

    Ghadimi, Moji; Blūms, Valdis; Norton, Benjamin G.; Fisher, Paul M.; Connell, Steven C.; Amini, Jason M.; Volin, Curtis; Hayden, Harley; Pai, Chien-Shing; Kielpinski, David; Lobino, Mirko; Streed, Erik W.

    2017-12-01

    Quantum networking links quantum processors through remote entanglement for distributed quantum information processing and secure long-range communication. Trapped ions are a leading quantum information processing platform, having demonstrated universal small-scale processors and roadmaps for large-scale implementation. Overall rates of ion-photon entanglement generation, essential for remote trapped ion entanglement, are limited by coupling efficiency into single mode fibers and scaling to many ions. Here, we show a microfabricated trap with integrated diffractive mirrors that couples 4.1(6)% of the fluorescence from a 174Yb+ ion into a single mode fiber, nearly triple the demonstrated bulk optics efficiency. The integrated optic collects 5.8(8)% of the π transition fluorescence, images the ion with sub-wavelength resolution, and couples 71(5)% of the collected light into the fiber. Our technology is suitable for entangling multiple ions in parallel and overcomes mode quality limitations of existing integrated optical interconnects.

  1. Fluorescence Resonance Energy Transfer-Based Photonic Circuits Using Single-Stranded Tile Self-Assembly and DNA Strand Displacement.

    PubMed

    Zhang, Xuncai; Ying, Niu; Shen, Chaonan; Cui, Guangzhao

    2017-02-01

    Structural DNA nanotechnology has great potential in the fabrication of complicated nanostructures and devices capable of bio-sensing and logic function. A variety of nanostructures with desired shapes have been created in the past few decades. But the application of nanostructures remains to be fully studied. Here, we present a novel biological information processing system constructed on a self-assembled, spatially addressable single-stranded tile (SST) nanostructure as DNA nano-manipulation platform that created by SST self-assembly technology. Utilizing DNA strand displacement technology, the fluorescent dye that is pre-assembled in the nano-manipulation platform is transferred from the original position to the destination, which can achieve photonic logic circuits by FRET signal cascades, including logic AND, OR, and NOT gates. And this transfer process is successfully validated by visual DSD software. The transfer process proposed in this study may provide a novel method to design complicated biological information processing system constructed on a SST nanostructure, and can be further used to develop intelligent delivery of drug molecules in vivo.

  2. EDITORIAL: Selected papers from Photon08 Selected papers from Photon08

    NASA Astrophysics Data System (ADS)

    Boardman, Allan D.; Harvey, Andrew; Jones, Julian C.

    2009-05-01

    Photon08 was the fifth in a biennial series of events that began in 2000 and has grown to become the largest optics research meeting in the UK. Two of the co-located constituent conferences of Photon08 were generated by the Institute of Physics. These were the Optics and Photonics Division conference plus QEP-18 organised by the Quantum Electronics and Photonics Group. In addition, Photon08 contained a major exhibition and an Industry Technology Programme. Photon08 was organised by the UK Consortium for Photonics and Optics (UKCPO), whose members comprise all organisations that represent the UK optics community, whether learned societies, professional institutions, trade associations, or regional special interest groups. In hosting the Photon series, it is the objective of the UKCPO to provide a single forum for UK optics. Photon08 was held at Heriot-Watt University, Edinburgh, 26-29 August 2008, and was attended by around 500 people. The international representation was very impressive and the range of topics was mapped onto a wide audience, which embraced every aspect of photonics from quantum information processing to biomedical imaging and technology transfer into the commercial domain. The purpose of this special issue is to present a characteristic selection of the research reported at Photon08. On behalf of the conference, we are very grateful to the editors of Journal of Optics A: Pure and Applied Optics for the opportunity to provide this archival record. The majority of the papers in this special issue follow the theme of measurement and instrumentation. This reflects one of the traditional strengths of the UK community that spans the interests of the Optical Group, the Optics and Photonics Division and the Instrument Science and Technology Group of the Institute of Physics, and the Fringe Analysis Special Interest Group. The other papers illustrate other UK strengths in quantum processing and nonlinear optics. There can be few areas of physics so diverse in application, and of such immediate value in the wider world, as photonics and this is evident from the content of this issue. It is a fascinating example of what Photon08 had to offer. As well as its intrinsic interest, we hope that it will inspire readers to attend Photon10, which will be held in Southampton at the end of August 2010.

  3. Quantum information processing using quasiclassical electromagnetic interactions between qubits and electrical resonators

    NASA Astrophysics Data System (ADS)

    Kerman, Andrew

    2013-03-01

    Electrical resonators are widely used in quantum information processing with any qubits that are manipulated via electromagnetic interactions. In most cases they are engineered to interact with qubits via real or virtual exchange of (typically microwave) photons, and the resonator must therefore have both a high quality factor and strong quantum fluctuations, corresponding to the strong-coupling limit of cavity QED. Although great strides in the control of quantum information have been made using this so-called ``circuit QED'' architecture, it also comes with some important disadvantages. In this talk, we discuss a new paradigm for coupling qubits electromagnetically via resonators, in which the qubits do not exchange photons with the resonator, but instead exert quasi-classical, effective ``forces'' on it. We show how this type of interaction is similar to that induced between the internal state of a trapped atomic ion and its center-of-mass motion by the photon recoil momentum, and that the resulting entangling operations are insensitive both to the state of the resonator and to its quality factor. The methods we describe are applicable to a variety of qubit-resonator systems, including superconducting and semiconducting solid-state qubits, and trapped molecular ions. This work is sponsored by the ASDR&E under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, recommendations and conclusions are those of the authors and are not necessarily endorsed by the United States Government.

  4. Multi-photon absorption limits to heralded single photon sources

    PubMed Central

    Husko, Chad A.; Clark, Alex S.; Collins, Matthew J.; De Rossi, Alfredo; Combrié, Sylvain; Lehoucq, Gaëlle; Rey, Isabella H.; Krauss, Thomas F.; Xiong, Chunle; Eggleton, Benjamin J.

    2013-01-01

    Single photons are of paramount importance to future quantum technologies, including quantum communication and computation. Nonlinear photonic devices using parametric processes offer a straightforward route to generating photons, however additional nonlinear processes may come into play and interfere with these sources. Here we analyse spontaneous four-wave mixing (SFWM) sources in the presence of multi-photon processes. We conduct experiments in silicon and gallium indium phosphide photonic crystal waveguides which display inherently different nonlinear absorption processes, namely two-photon (TPA) and three-photon absorption (ThPA), respectively. We develop a novel model capturing these diverse effects which is in excellent quantitative agreement with measurements of brightness, coincidence-to-accidental ratio (CAR) and second-order correlation function g(2)(0), showing that TPA imposes an intrinsic limit on heralded single photon sources. We build on these observations to devise a new metric, the quantum utility (QMU), enabling further optimisation of single photon sources. PMID:24186400

  5. Time-resolved double-slit interference pattern measurement with entangled photons

    PubMed Central

    Kolenderski, Piotr; Scarcella, Carmelo; Johnsen, Kelsey D.; Hamel, Deny R.; Holloway, Catherine; Shalm, Lynden K.; Tisa, Simone; Tosi, Alberto; Resch, Kevin J.; Jennewein, Thomas

    2014-01-01

    The double-slit experiment strikingly demonstrates the wave-particle duality of quantum objects. In this famous experiment, particles pass one-by-one through a pair of slits and are detected on a distant screen. A distinct wave-like pattern emerges after many discrete particle impacts as if each particle is passing through both slits and interfering with itself. Here we present a temporally- and spatially-resolved measurement of the double-slit interference pattern using single photons. We send single photons through a birefringent double-slit apparatus and use a linear array of single-photon detectors to observe the developing interference pattern. The analysis of the buildup allows us to compare quantum mechanics and the corpuscular model, which aims to explain the mystery of single-particle interference. Finally, we send one photon from an entangled pair through our double-slit setup and show the dependence of the resulting interference pattern on the twin photon's measured state. Our results provide new insight into the dynamics of the buildup process in the double-slit experiment, and can be used as a valuable resource in quantum information applications. PMID:24770360

  6. Low-light-level image super-resolution reconstruction based on iterative projection photon localization algorithm

    NASA Astrophysics Data System (ADS)

    Ying, Changsheng; Zhao, Peng; Li, Ye

    2018-01-01

    The intensified charge-coupled device (ICCD) is widely used in the field of low-light-level (LLL) imaging. The LLL images captured by ICCD suffer from low spatial resolution and contrast, and the target details can hardly be recognized. Super-resolution (SR) reconstruction of LLL images captured by ICCDs is a challenging issue. The dispersion in the double-proximity-focused image intensifier is the main factor that leads to a reduction in image resolution and contrast. We divide the integration time into subintervals that are short enough to get photon images, so the overlapping effect and overstacking effect of dispersion can be eliminated. We propose an SR reconstruction algorithm based on iterative projection photon localization. In the iterative process, the photon image is sliced by projection planes, and photons are screened under the constraints of regularity. The accurate position information of the incident photons in the reconstructed SR image is obtained by the weighted centroids calculation. The experimental results show that the spatial resolution and contrast of our SR image are significantly improved.

  7. Multiple emitters in a waveguide: Nonreciprocity and correlated photons at perfect elastic transmission

    NASA Astrophysics Data System (ADS)

    Fang, Yao-Lung L.; Baranger, Harold U.

    2017-07-01

    We investigate interference and correlation effects when several detuned emitters are placed along a one-dimensional photonic waveguide. Such a setup allows multiple interactions between the photons and the strongly coupled emitters, and underlies proposed devices for quantum information processing. We show, first, that a pair of detuned two-level systems (2LS) separated by a half wavelength mimic a driven Λ -type three-level system (3LS) in both the single- and two-photon sectors. There is an interference-induced transparency peak at which the fluorescence is quenched, leaving the transmitted photons completely uncorrelated. Slightly away from this separation, we find that the inelastic scattering (fluorescence) is large, leading to nonlinear effects such as nonreciprocity (rectification). We connect this nonreciprocity to inelastic scattering caused by driving a dark pole and so derive a condition for maximum rectification. Finally, by placing a true 3LS midway between the two 2LS, we show that elastic scattering produces only transmission, but inelastic scattering nevertheless occurs (the fluorescence is not quenched) causing substantial photon correlations.

  8. UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature

    NASA Astrophysics Data System (ADS)

    Wollman, E. E.; Verma, V. B.; Beyer, A. D.; Briggs, R. M.; Korzh, B.; Allmaras, J. P.; Marsili, F.; Lita, A. E.; Mirin, R. P.; Nam, S. W.; Shaw, M. D.

    2017-10-01

    For photon-counting applications at ultraviolet wavelengths, there are currently no detectors that combine high efficiency (> 50%), sub-nanosecond timing resolution, and sub-Hz dark count rates. Superconducting nanowire single-photon detectors (SNSPDs) have seen success over the past decade for photon-counting applications in the near-infrared, but little work has been done to optimize SNSPDs for wavelengths below 400 nm. Here, we describe the design, fabrication, and characterization of UV SNSPDs operating at wavelengths between 250 and 370 nm. The detectors have active areas up to 56 ${\\mu}$m in diameter, 70 - 80% efficiency, timing resolution down to 60 ps FWHM, blindness to visible and infrared photons, and dark count rates of ~ 0.25 counts/hr for a 56 ${\\mu}$m diameter pixel. By using the amorphous superconductor MoSi, these UV SNSPDs are also able to operate at temperatures up to 4.2 K. These performance metrics make UV SNSPDs ideal for applications in trapped-ion quantum information processing, lidar studies of the upper atmosphere, UV fluorescent-lifetime imaging microscopy, and photon-starved UV astronomy.

  9. A novel imaging method for photonic crystal fiber fusion splicer

    NASA Astrophysics Data System (ADS)

    Bi, Weihong; Fu, Guangwei; Guo, Xuan

    2007-01-01

    Because the structure of Photonic Crystal Fiber (PCF) is very complex, and it is very difficult that traditional fiber fusion splice obtains optical axial information of PCF. Therefore, we must search for a bran-new optical imaging method to get section information of Photonic Crystal Fiber. Based on complex trait of PCF, a novel high-precision optics imaging system is presented in this article. The system uses a thinned electron-bombarded CCD (EBCCD) which is a kind of image sensor as imaging element, the thinned electron-bombarded CCD can offer low light level performance superior to conventional image intensifier coupled CCD approaches, this high-performance device can provide high contrast high resolution in low light level surveillance imaging; in order to realize precision focusing of image, we use a ultra-highprecision pace motor to adjust position of imaging lens. In this way, we can obtain legible section information of PCF. We may realize further concrete analysis for section information of PCF by digital image processing technology. Using this section information may distinguish different sorts of PCF, compute some parameters such as the size of PCF ventage, cladding structure of PCF and so on, and provide necessary analysis data for PCF fixation, adjustment, regulation, fusion and cutting system.

  10. Fisher information matrix for branching processes with application to electron-multiplying charge-coupled devices

    PubMed Central

    Chao, Jerry; Ward, E. Sally; Ober, Raimund J.

    2012-01-01

    The high quantum efficiency of the charge-coupled device (CCD) has rendered it the imaging technology of choice in diverse applications. However, under extremely low light conditions where few photons are detected from the imaged object, the CCD becomes unsuitable as its readout noise can easily overwhelm the weak signal. An intended solution to this problem is the electron-multiplying charge-coupled device (EMCCD), which stochastically amplifies the acquired signal to drown out the readout noise. Here, we develop the theory for calculating the Fisher information content of the amplified signal, which is modeled as the output of a branching process. Specifically, Fisher information expressions are obtained for a general and a geometric model of amplification, as well as for two approximations of the amplified signal. All expressions pertain to the important scenario of a Poisson-distributed initial signal, which is characteristic of physical processes such as photon detection. To facilitate the investigation of different data models, a “noise coefficient” is introduced which allows the analysis and comparison of Fisher information via a scalar quantity. We apply our results to the problem of estimating the location of a point source from its image, as observed through an optical microscope and detected by an EMCCD. PMID:23049166

  11. Localised excitation of a single photon source by a nanowaveguide.

    PubMed

    Geng, Wei; Manceau, Mathieu; Rahbany, Nancy; Sallet, Vincent; De Vittorio, Massimo; Carbone, Luigi; Glorieux, Quentin; Bramati, Alberto; Couteau, Christophe

    2016-01-29

    Nowadays, integrated photonics is a key technology in quantum information processing (QIP) but achieving all-optical buses for quantum networks with efficient integration of single photon emitters remains a challenge. Photonic crystals and cavities are good candidates but do not tackle how to effectively address a nanoscale emitter. Using a nanowire nanowaveguide, we realise an hybrid nanodevice which locally excites a single photon source (SPS). The nanowire acts as a passive or active sub-wavelength waveguide to excite the quantum emitter. Our results show that localised excitation of a SPS is possible and is compared with free-space excitation. Our proof of principle experiment presents an absolute addressing efficiency ηa ~ 10(-4) only ~50% lower than the one using free-space optics. This important step demonstrates that sufficient guided light in a nanowaveguide made of a semiconductor nanowire is achievable to excite a single photon source. We accomplish a hybrid system offering great potentials for electrically driven SPSs and efficient single photon collection and detection, opening the way for optimum absorption/emission of nanoscale emitters. We also discuss how to improve the addressing efficiency of a dipolar nanoscale emitter with our system.

  12. Localised excitation of a single photon source by a nanowaveguide

    PubMed Central

    Geng, Wei; Manceau, Mathieu; Rahbany, Nancy; Sallet, Vincent; De Vittorio, Massimo; Carbone, Luigi; Glorieux, Quentin; Bramati, Alberto; Couteau, Christophe

    2016-01-01

    Nowadays, integrated photonics is a key technology in quantum information processing (QIP) but achieving all-optical buses for quantum networks with efficient integration of single photon emitters remains a challenge. Photonic crystals and cavities are good candidates but do not tackle how to effectively address a nanoscale emitter. Using a nanowire nanowaveguide, we realise an hybrid nanodevice which locally excites a single photon source (SPS). The nanowire acts as a passive or active sub-wavelength waveguide to excite the quantum emitter. Our results show that localised excitation of a SPS is possible and is compared with free-space excitation. Our proof of principle experiment presents an absolute addressing efficiency ηa ~ 10−4 only ~50% lower than the one using free-space optics. This important step demonstrates that sufficient guided light in a nanowaveguide made of a semiconductor nanowire is achievable to excite a single photon source. We accomplish a hybrid system offering great potentials for electrically driven SPSs and efficient single photon collection and detection, opening the way for optimum absorption/emission of nanoscale emitters. We also discuss how to improve the addressing efficiency of a dipolar nanoscale emitter with our system. PMID:26822999

  13. Efficient Entanglement Concentration of Nonlocal Two-Photon Polarization-Time-Bin Hyperentangled States

    NASA Astrophysics Data System (ADS)

    Wang, Zi-Hang; Yu, Wen-Xuan; Wu, Xiao-Yuan; Gao, Cheng-Yan; Alzahrani, Faris; Hobiny, Aatef; Deng, Fu-Guo

    2018-03-01

    We present two different hyperentanglement concentration protocols (hyper-ECPs) for two-photon systems in nonlocal polarization-time-bin hyperentangled states with known parameters, including Bell-like and cluster-like states, resorting to the parameter splitting method. They require only one of two parties in quantum communication to operate her photon in the process of entanglement concentration, not two, and they have the maximal success probability. They work with linear optical elements and have good feasibility in experiment, especially in the case that there are a big number of quantum data exchanged as the parties can obtain the information about the parameters of the nonlocal hyperentangled states by sampling a subset of nonlocal hyperentangled two-photon systems and measuring them. As the quantum state of photons in the time-bin degree of freedom suffers from less noise in an optical-fiber channel, these hyper-ECPs may have good applications in practical long-distance quantum communication in the future.

  14. Separation of ballistic and diffusive fluorescence photons in confocal Light-Sheet Microscopy of Arabidopsis roots.

    PubMed

    Meinert, Tobias; Tietz, Olaf; Palme, Klaus J; Rohrbach, Alexander

    2016-08-24

    Image quality in light-sheet fluorescence microscopy is strongly affected by the shape of the illuminating laser beam inside embryos, plants or tissue. While the phase of Gaussian or Bessel beams propagating through thousands of cells can be partly controlled holographically, the propagation of fluorescence light to the detector is difficult to control. With each scatter process a fluorescence photon loses information necessary for the image generation. Using Arabidopsis root tips we demonstrate that ballistic and diffusive fluorescence photons can be separated by analyzing the image spectra in each plane without a priori knowledge. We introduce a theoretical model allowing to extract typical scattering parameters of the biological material. This allows to attenuate image contributions from diffusive photons and to amplify the relevant image contributions from ballistic photons through a depth dependent deconvolution. In consequence, image contrast and resolution are significantly increased and scattering artefacts are minimized especially for Bessel beams with confocal line detection.

  15. CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer.

    PubMed

    Li, Yan; Zhou, Zhi-Yuan; Ding, Dong-Sheng; Shi, Bao-Sen

    2015-11-02

    Polarization entangled photon pair source is widely used in many quantum information processing applications such as teleportation, quantum communications, quantum computation and high precision quantum metrology. We report on the generation of a continuous-wave pumped 1550 nm polarization entangled photon pair source at telecom wavelength using a type-II periodically poled KTiOPO(4) (PPKTP) crystal in a Sagnac interferometer. Hong-Ou-Mandel (HOM) interference measurement yields signal and idler photon bandwidth of 2.4 nm. High quality of entanglement is verified by various kinds of measurements, for example two-photon interference fringes, Bell inequality and quantum states tomography. The source can be tuned over a broad range against temperature or pump power without loss of visibilities. This source will be used in our future experiments such as generation of orbital angular momentum entangled source at telecom wavelength for quantum frequency up-conversion, entanglement based quantum key distributions and many other quantum optics experiments at telecom wavelengths.

  16. Separation of ballistic and diffusive fluorescence photons in confocal Light-Sheet Microscopy of Arabidopsis roots

    PubMed Central

    Meinert, Tobias; Tietz, Olaf; Palme, Klaus J.; Rohrbach, Alexander

    2016-01-01

    Image quality in light-sheet fluorescence microscopy is strongly affected by the shape of the illuminating laser beam inside embryos, plants or tissue. While the phase of Gaussian or Bessel beams propagating through thousands of cells can be partly controlled holographically, the propagation of fluorescence light to the detector is difficult to control. With each scatter process a fluorescence photon loses information necessary for the image generation. Using Arabidopsis root tips we demonstrate that ballistic and diffusive fluorescence photons can be separated by analyzing the image spectra in each plane without a priori knowledge. We introduce a theoretical model allowing to extract typical scattering parameters of the biological material. This allows to attenuate image contributions from diffusive photons and to amplify the relevant image contributions from ballistic photons through a depth dependent deconvolution. In consequence, image contrast and resolution are significantly increased and scattering artefacts are minimized especially for Bessel beams with confocal line detection. PMID:27553506

  17. Quantum Optics in Astrophysics: The Potential of a New Window

    NASA Astrophysics Data System (ADS)

    Solomos, Nikolaos H.

    2006-08-01

    The entire optical astronomy relies upon the detection of light. In this contribution, we put emphasis to the fact that a new window to the universe could be opened with the obvious idea of applying the ...Quantum Theory to describe incoming light Quanta (!). It is clearly the appropriate approach but, nevertheless, it never deemed necessary in main stream astrophysics: Customarily, traditional astronomy not only prefers time-averaged quantities, (although fluctuations in time of a measurement can be a source of information which is getting entirely lost in any time-averaged value) but misses much more information content by continuing to use old semi-classical approaches to treat photon detection processes. Thus, we fail to describe and appreciate in full very important properties of cosmic light, like spatiotemporal coherence. Nevertheless, 45 years of knowledge accumulation in Quantum Optics and technology can now result to the development of instruments capable to extract intimate quantum information scrambled in the incoming optical light fields from celestial sources, provided their ability to detect light emission alterations in the

  18. Photonic sources and detectors for quantum information protocols: A trilogy in eight parts

    NASA Astrophysics Data System (ADS)

    Rangarajan, Radhika

    Quantum information processing (QIP) promises to revolutionize existing methods of manipulating data, via truly unique paradigms based on fundamental nonclassical physical phenomenon. However, the eventual success of optical QIP depends critically on the available technologies. Currently, creating multiple-photon states is extremely inefficient because almost no source thus far has been well optimized. Additionally, high-efficiency single-photon detectors can drastically improve multi-photon QIP (typical efficiencies are ˜70%). In fact, it has been shown that scalable linear optical quantum computing is possible only if the product of the source and detector efficiencies exceeds ˜67%. The research presented here focuses on developing optimized source and detector technologies for enabling scalable QIP. The goal of our source research is to develop an ideal " indistinguishable" source of ultrabright polarization-entangled but spatially- and spectrally-unentangled photon pairs. We engineer such an ideal source by first designing spatio-spectrally unentangled photons using optimized and group-velocity matched spontaneous parametric down conversion (SPDC). Next, we generate polarization-entangled photons using the engineered SPDC. Here we present solutions to the various challenges encountered during the indistinguishable source development. We demonstrate high-fidelity ultrafast pulsed and cw-diode laser-pumped sources of polarization-entangled photons, as well as the first production of polarization-entanglement directly from the highly nonlinear biaxial crystal BiB3O6 (BiBO). We also discuss the first experimental confirmation of the emission-angle dependence of the downconversion polarization (the Migdall effect), and a novel scheme for polarization-dependent focusing. The goal of our single-photon detector research is to develop a very high-efficiency detection system that can also resolve incident photon number, a feature absent from the typical detectors employed for QIP. We discuss the various cryogenic, optical and electronic challenges encountered en route to detector development and present details on detector characterization, ultra-short electronics design and photon-number-resolution studies. The source and detector technologies developed here share a common goal: to enhance the efficiency of existing quantum protocols and pave the way for new ones. Here we discuss some of the possible benefits via a popular quantum protocol---teleportation---as well as a novel quantum communication technique---hyper-fingerprinting. Taken as a whole, this dissertation explores viable technological options for enhancing optical quantum information protocols, offers a perspective on the current status and limitations of existing technologies, and highlights the possibilities enabled by optimized photonic sources and detectors.

  19. Low-noise quantum frequency down-conversion of indistinguishable photons (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kambs, Benjamin; Kettler, Jan; Bock, Matthias; Becker, Jonas; Arend, Carsten; Jetter, Michael; Michler, Peter; Becher, Christoph

    2016-04-01

    Single-photon sources based on quantum dots have been shown to exhibit almost ideal properties such as high brightness and purity in terms of clear anti-bunching as well as high two-photon interference visibilities of the emitted photons, making them promising candidates for different quantum information applications such as quantum computing, quantum communication and quantum teleportation. However, as most single-photon sources also quantum dots typically emit light at wavelengths of electronic transitions within the visible or the near infrared range. In order to establish quantum networks with remote building blocks, low-loss single photons at telecom wavelengths are preferable, though. Despite recent progress on emitters of telecom-photons, the most efficient single-photon sources still work at shorter wavelengths. On that matter, quantum frequency down-conversion, being a nonlinear optical process, has been used in recent years to alter the wavelength of single photons to the telecom wavelength range while conserving their nonclassical properties. Characteristics such as lifetime, first-order coherence, anti-bunching and entanglement have been shown to be conserved or even improved due to background suppression during the conversion process, while the conservation of indistinguishability was yet to be shown. Here we present our experimental results on quantum frequency down-conversion of single photons emitted by an InAs/GaAs quantum dot at 903.6 nm following a pulsed excitation of a p-shell exciton at 884 nm. The emitted fluorescence photons are mixed with a strong pump-field at 2155 nm inside a periodically poled lithium niobate ridge waveguide and converted to 1557 nm. Common issues of a large background due to Raman-scattered pump-light photons spectrally overlapping with the converted single photons could largely be avoided, as the pump-wavelength was chosen to be fairly longer than the target wavelength. Additional narrowband spectral filtering at the telecom regime as a result of the small conversion bandwidth and using a high-performance fiber-Bragg-grating solely left the detector dark counts as the only noise source in our setup. Therefore, we could achieve conversion efficiencies of more than 20 %. In order to test the indistinguishability, sequentially emitted photons were fed into a Mach-Zehnder interferometer and spatially as well as temporally overlapped at the output beam splitter. Cross-correlation measurements between both output-ports of the beam splitter exhibit two-photon interference contrasts of more than 40 % prior to and after the down-conversion step. Accordingly, we demonstrate that the process of quantum frequency conversion preserves photon indistinguishability and can be used to establish a versatile source of indistinguishable single photons at the telecom C-Band. Furthermore our scheme allows for converting photons in a wavelength band from 900 nm to 910 nm to the same telecom target wavelength. This enables us to test indistinguishability of frequency-converted photons, originally stemming from different sources with dinstinguishable wavelengths.

  20. PREFACE: Quantum information processing

    NASA Astrophysics Data System (ADS)

    Briggs, Andrew; Ferry, David; Stoneham, Marshall

    2006-05-01

    Microelectronics and the classical information technologies transformed the physics of semiconductors. Photonics has given optical materials a new direction. Quantum information technologies, we believe, will have immense impact on condensed matter physics. The novel systems of quantum information processing need to be designed and made. Their behaviours must be manipulated in ways that are intrinsically quantal and generally nanoscale. Both in this special issue and in previous issues (see e.g., Spiller T P and Munro W J 2006 J. Phys.: Condens. Matter 18 V1-10) we see the emergence of new ideas that link the fundamentals of science to the pragmatism of market-led industry. We hope these papers will be followed by many others on quantum information processing in the Journal of Physics: Condensed Matter.

  1. Five-Photon Absorption and Selective Enhancement of Multiphoton Absorption Processes

    PubMed Central

    2015-01-01

    We study one-, two-, three-, four-, and five-photon absorption of three centrosymmetric molecules using density functional theory. These calculations are the first ab initio calculations of five-photon absorption. Even- and odd-order absorption processes show different trends in the absorption cross sections. The behavior of all even- and odd-photon absorption properties shows a semiquantitative similarity, which can be explained using few-state models. This analysis shows that odd-photon absorption processes are largely determined by the one-photon absorption strength, whereas all even-photon absorption strengths are largely dominated by the two-photon absorption strength, in both cases modulated by powers of the polarizability of the final excited state. We demonstrate how to selectively enhance a specific multiphoton absorption process. PMID:26120588

  2. Five-Photon Absorption and Selective Enhancement of Multiphoton Absorption Processes.

    PubMed

    Friese, Daniel H; Bast, Radovan; Ruud, Kenneth

    2015-05-20

    We study one-, two-, three-, four-, and five-photon absorption of three centrosymmetric molecules using density functional theory. These calculations are the first ab initio calculations of five-photon absorption. Even- and odd-order absorption processes show different trends in the absorption cross sections. The behavior of all even- and odd-photon absorption properties shows a semiquantitative similarity, which can be explained using few-state models. This analysis shows that odd-photon absorption processes are largely determined by the one-photon absorption strength, whereas all even-photon absorption strengths are largely dominated by the two-photon absorption strength, in both cases modulated by powers of the polarizability of the final excited state. We demonstrate how to selectively enhance a specific multiphoton absorption process.

  3. Engineering quantum communication systems

    NASA Astrophysics Data System (ADS)

    Pinto, Armando N.; Almeida, Álvaro J.; Silva, Nuno A.; Muga, Nelson J.; Martins, Luis M.

    2012-06-01

    Quantum communications can provide almost perfect security through the use of quantum laws to detect any possible leak of information. We discuss critical issues in the implementation of quantum communication systems over installed optical fibers. We use stimulated four-wave mixing to generate single photons inside optical fibers, and by tuning the separation between the pump and the signal we adjust the average number of photons per pulse. We report measurements of the source statistics and show that it goes from a thermal to Poisson distribution with the increase of the pump power. We generate entangled photons pairs through spontaneous four-wave mixing. We report results for different type of fibers to approach the maximum value of the Bell inequality. We model the impact of polarization rotation, attenuation and Raman scattering and present optimum configurations to increase the degree of entanglement. We encode information in the photons polarization and assess the use of wavelength and time division multiplexing based control systems to compensate for the random rotation of the polarization during transmission. We show that time division multiplexing systems provide a more robust solution considering the values of PMD of nowadays installed fibers. We evaluate the impact on the quantum channel of co-propagating classical channels, and present guidelines for adding quantum channels to installed WDM optical communication systems without strongly penalizing the performance of the quantum channel. We discuss the process of retrieving information from the photons polarization. We identify the major impairments that limit the speed and distance of the quantum channel. Finally, we model theoretically the QBER and present results of an experimental performance assessment of the system quality through QBER measurements.

  4. Quantum teleportation from a propagating photon to a solid-state spin qubit

    NASA Astrophysics Data System (ADS)

    Gao, W. B.; Fallahi, P.; Togan, E.; Delteil, A.; Chin, Y. S.; Miguel-Sanchez, J.; Imamoğlu, A.

    2013-11-01

    A quantum interface between a propagating photon used to transmit quantum information and a long-lived qubit used for storage is of central interest in quantum information science. A method for implementing such an interface between dissimilar qubits is quantum teleportation. Here we experimentally demonstrate transfer of quantum information carried by a photon to a semiconductor spin using quantum teleportation. In our experiment, a single photon in a superposition state is generated using resonant excitation of a neutral dot. To teleport this photonic qubit, we generate an entangled spin-photon state in a second dot located 5 m away and interfere the photons from the two dots in a Hong-Ou-Mandel set-up. Thanks to an unprecedented degree of photon-indistinguishability, a coincidence detection at the output of the interferometer heralds successful teleportation, which we verify by measuring the resulting spin state after prolonging its coherence time by optical spin-echo.

  5. Quantum teleportation from a propagating photon to a solid-state spin qubit.

    PubMed

    Gao, W B; Fallahi, P; Togan, E; Delteil, A; Chin, Y S; Miguel-Sanchez, J; Imamoğlu, A

    2013-01-01

    A quantum interface between a propagating photon used to transmit quantum information and a long-lived qubit used for storage is of central interest in quantum information science. A method for implementing such an interface between dissimilar qubits is quantum teleportation. Here we experimentally demonstrate transfer of quantum information carried by a photon to a semiconductor spin using quantum teleportation. In our experiment, a single photon in a superposition state is generated using resonant excitation of a neutral dot. To teleport this photonic qubit, we generate an entangled spin-photon state in a second dot located 5 m away and interfere the photons from the two dots in a Hong-Ou-Mandel set-up. Thanks to an unprecedented degree of photon-indistinguishability, a coincidence detection at the output of the interferometer heralds successful teleportation, which we verify by measuring the resulting spin state after prolonging its coherence time by optical spin-echo.

  6. Heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Guo-Zhu; Zhang, Mei; Ai, Qing

    We propose a heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides. We show the details by implementing nonlocal entanglement generation, entanglement swapping, and entanglement purification modules with atoms in waveguides, and discuss the feasibility of the repeater with currently achievable technology. In our scheme, the faulty events can be discarded by detecting the polarization of the photons. That is, our protocols are accomplished with a fidelity of 100% in principle, which is advantageous for implementing realistic long-distance quantum communication. Moreover, additional atomic qubits are not required, but only a single-photon medium. Our schememore » is scalable and attractive since it can be realized in solid-state quantum systems. With the great progress on controlling atom-waveguide systems, the repeater may be very useful in quantum information processing in the future.« less

  7. Heralded quantum repeater based on the scattering of photons off single emitters using parametric down-conversion source.

    PubMed

    Song, Guo-Zhu; Wu, Fang-Zhou; Zhang, Mei; Yang, Guo-Jian

    2016-06-28

    Quantum repeater is the key element in quantum communication and quantum information processing. Here, we investigate the possibility of achieving a heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides. We design the compact quantum circuits for nonlocal entanglement generation, entanglement swapping, and entanglement purification, and discuss the feasibility of our protocols with current experimental technology. In our scheme, we use a parametric down-conversion source instead of ideal single-photon sources to realize the heralded quantum repeater. Moreover, our protocols can turn faulty events into the detection of photon polarization, and the fidelity can reach 100% in principle. Our scheme is attractive and scalable, since it can be realized with artificial solid-state quantum systems. With developed experimental technique on controlling emitter-waveguide systems, the repeater may be very useful in long-distance quantum communication.

  8. Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre

    NASA Astrophysics Data System (ADS)

    Saglamyurek, Erhan; Jin, Jeongwan; Verma, Varun B.; Shaw, Matthew D.; Marsili, Francesco; Nam, Sae Woo; Oblak, Daniel; Tittel, Wolfgang

    2015-02-01

    The realization of a future quantum Internet requires the processing and storage of quantum information at local nodes and interconnecting distant nodes using free-space and fibre-optic links. Quantum memories for light are key elements of such quantum networks. However, to date, neither an atomic quantum memory for non-classical states of light operating at a wavelength compatible with standard telecom fibre infrastructure, nor a fibre-based implementation of a quantum memory, has been reported. Here, we demonstrate the storage and faithful recall of the state of a 1,532 nm wavelength photon entangled with a 795 nm photon, in an ensemble of cryogenically cooled erbium ions doped into a 20-m-long silica fibre, using a photon-echo quantum memory protocol. Despite its currently limited efficiency and storage time, our broadband light-matter interface brings fibre-based quantum networks one step closer to reality.

  9. Heralded quantum repeater based on the scattering of photons off single emitters using parametric down-conversion source

    PubMed Central

    Song, Guo-Zhu; Wu, Fang-Zhou; Zhang, Mei; Yang, Guo-Jian

    2016-01-01

    Quantum repeater is the key element in quantum communication and quantum information processing. Here, we investigate the possibility of achieving a heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides. We design the compact quantum circuits for nonlocal entanglement generation, entanglement swapping, and entanglement purification, and discuss the feasibility of our protocols with current experimental technology. In our scheme, we use a parametric down-conversion source instead of ideal single-photon sources to realize the heralded quantum repeater. Moreover, our protocols can turn faulty events into the detection of photon polarization, and the fidelity can reach 100% in principle. Our scheme is attractive and scalable, since it can be realized with artificial solid-state quantum systems. With developed experimental technique on controlling emitter-waveguide systems, the repeater may be very useful in long-distance quantum communication. PMID:27350159

  10. Highly localized distributed Brillouin scattering response in a photonic integrated circuit

    NASA Astrophysics Data System (ADS)

    Zarifi, Atiyeh; Stiller, Birgit; Merklein, Moritz; Li, Neuton; Vu, Khu; Choi, Duk-Yong; Ma, Pan; Madden, Stephen J.; Eggleton, Benjamin J.

    2018-03-01

    The interaction of optical and acoustic waves via stimulated Brillouin scattering (SBS) has recently reached on-chip platforms, which has opened new fields of applications ranging from integrated microwave photonics and on-chip narrow-linewidth lasers, to phonon-based optical delay and signal processing schemes. Since SBS is an effect that scales exponentially with interaction length, on-chip implementation on a short length scale is challenging, requiring carefully designed waveguides with optimized opto-acoustic overlap. In this work, we use the principle of Brillouin optical correlation domain analysis to locally measure the SBS spectrum with high spatial resolution of 800 μm and perform a distributed measurement of the Brillouin spectrum along a spiral waveguide in a photonic integrated circuit. This approach gives access to local opto-acoustic properties of the waveguides, including the Brillouin frequency shift and linewidth, essential information for the further development of high quality photonic-phononic waveguides for SBS applications.

  11. Annual-ring-type quasi-phase-matching crystal for generation of narrowband high-dimensional entanglement

    NASA Astrophysics Data System (ADS)

    Hua, Yi-Lin; Zhou, Zong-Quan; Liu, Xiao; Yang, Tian-Shu; Li, Zong-Feng; Li, Pei-Yun; Chen, Geng; Xu, Xiao-Ye; Tang, Jian-Shun; Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can

    2018-01-01

    A photon pair can be entangled in many degrees of freedom such as polarization, time bins, and orbital angular momentum (OAM). Among them, the OAM of photons can be entangled in an infinite-dimensional Hilbert space which enhances the channel capacity of sharing information in a network. Twisted photons generated by spontaneous parametric down-conversion offer an opportunity to create this high-dimensional entanglement, but a photon pair generated by this process is typically wideband, which makes it difficult to interface with the quantum memories in a network. Here we propose an annual-ring-type quasi-phase-matching (QPM) crystal for generation of the narrowband high-dimensional entanglement. The structure of the QPM crystal is designed by tracking the geometric divergences of the OAM modes that comprise the entangled state. The dimensionality and the quality of the entanglement can be greatly enhanced with the annual-ring-type QPM crystal.

  12. Scalable fabrication of coupled NV center - photonic crystal cavity systems by self-aligned N ion implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schröder, T.; Walsh, M.; Zheng, J.

    2017-04-06

    Towards building large-scale integrated photonic systems for quantum information processing, spatial and spectral alignment of single quantum systems to photonic nanocavities is required. In this paper, we demonstrate spatially targeted implantation of nitrogen vacancy (NV) centers into the mode maximum of 2-d diamond photonic crystal cavities with quality factors up to 8000, achieving an average of 1.1 ± 0.2 NVs per cavity. Nearly all NV-cavity systems have significant emission intensity enhancement, reaching a cavity-fed spectrally selective intensity enhancement, F int, of up to 93. Although spatial NV-cavity overlap is nearly guaranteed within about 40 nm, spectral tuning of the NV’smore » zero-phonon-line (ZPL) is still necessary after fabrication. To demonstrate spectral control, we temperature tune a cavity into an NV ZPL, yielding F ZPL int~5 at cryogenic temperatures.« less

  13. Multifunctional graphene optoelectronic devices capable of detecting and storing photonic signals.

    PubMed

    Jang, Sukjae; Hwang, Euyheon; Lee, Youngbin; Lee, Seungwoo; Cho, Jeong Ho

    2015-04-08

    The advantages of graphene photodetectors were utilized to design a new multifunctional graphene optoelectronic device. Organic semiconductors, gold nanoparticles (AuNPs), and graphene were combined to fabricate a photodetecting device with a nonvolatile memory function for storing photonic signals. A pentacene organic semiconductor acted as a light absorption layer in the device and provided a high hole photocurrent to the graphene channel. The AuNPs, positioned between the tunneling and blocking dielectric layers, acted as both a charge trap layer and a plasmonic light scatterer, which enable storing of the information about the incident light. The proposed pentacene-graphene-AuNP hybrid photodetector not only performed well as a photodetector in the visible light range, it also was able to store the photonic signal in the form of persistent current. The good photodetection performance resulted from the plasmonics-enabled enhancement of the optical absorption and from the photogating mechanisms in the pentacene. The device provided a photoresponse that depended on the wavelength of incident light; therefore, the signal information (both the wavelength and intensity) of the incident light was effectively committed to memory. The simple process of applying a negative pulse gate voltage could then erase the programmed information. The proposed photodetector with the capacity to store a photonic signal in memory represents a significant step toward the use of graphene in optoelectronic devices.

  14. Interferometric nanoporous anodic alumina photonic coatings for optical sensing

    NASA Astrophysics Data System (ADS)

    Chen, Yuting; Santos, Abel; Wang, Ye; Kumeria, Tushar; Wang, Changhai; Li, Junsheng; Losic, Dusan

    2015-04-01

    Herein, we present a systematic study on the development, optical optimization and sensing applicability of colored photonic coatings based on nanoporous anodic alumina films grown on aluminum substrates. These optical nanostructures, so-called distributed Bragg reflectors (NAA-DBRs), are fabricated by galvanostatic pulse anodization process, in which the current density is altered in a periodic manner in order to engineer the effective medium of the resulting photonic coatings. As-prepared NAA-DBR photonic coatings present brilliant interference colors on the surface of aluminum, which can be tuned at will within the UV-visible spectrum by means of the anodization profile. A broad library of NAA-DBR colors is produced by means of different anodization profiles. Then, the effective medium of these NAA-DBR photonic coatings is systematically assessed in terms of optical sensitivity, low limit of detection and linearity by reflectometric interference spectroscopy (RIfS) in order to optimize their nanoporous structure toward optical sensors with enhanced sensing performance. Finally, we demonstrate the applicability of these photonic nanostructures as optical platforms by selectively detecting gold(iii) ions in aqueous solutions. The obtained results reveal that optimized NAA-DBR photonic coatings can achieve an outstanding sensing performance for gold(iii) ions, with a sensitivity of 22.16 nm μM-1, a low limit of detection of 0.156 μM (i.e. 30.7 ppb) and excellent linearity within the working range (0.9983).Herein, we present a systematic study on the development, optical optimization and sensing applicability of colored photonic coatings based on nanoporous anodic alumina films grown on aluminum substrates. These optical nanostructures, so-called distributed Bragg reflectors (NAA-DBRs), are fabricated by galvanostatic pulse anodization process, in which the current density is altered in a periodic manner in order to engineer the effective medium of the resulting photonic coatings. As-prepared NAA-DBR photonic coatings present brilliant interference colors on the surface of aluminum, which can be tuned at will within the UV-visible spectrum by means of the anodization profile. A broad library of NAA-DBR colors is produced by means of different anodization profiles. Then, the effective medium of these NAA-DBR photonic coatings is systematically assessed in terms of optical sensitivity, low limit of detection and linearity by reflectometric interference spectroscopy (RIfS) in order to optimize their nanoporous structure toward optical sensors with enhanced sensing performance. Finally, we demonstrate the applicability of these photonic nanostructures as optical platforms by selectively detecting gold(iii) ions in aqueous solutions. The obtained results reveal that optimized NAA-DBR photonic coatings can achieve an outstanding sensing performance for gold(iii) ions, with a sensitivity of 22.16 nm μM-1, a low limit of detection of 0.156 μM (i.e. 30.7 ppb) and excellent linearity within the working range (0.9983). Electronic supplementary information (ESI) available: The Supporting Information file provides further information about real-time monitoring of ΔOTeff with changes in the refractive index of the medium filling the nanopores, demonstration of visual red shift in a NAA-DBR sample after infiltration with isopropanol and calculations of linearity (R2) for each NAA-DBR coating. See DOI: 10.1039/c5nr00369e

  15. Ground facility for information reception, processing, dissemination and scientific instruments management setup in the CORONAS-PHOTON space project

    NASA Astrophysics Data System (ADS)

    Buslov, A. S.; Kotov, Yu. D.; Yurov, V. N.; Bessonov, M. V.; Kalmykov, P. A.; Oreshnikov, E. M.; Alimov, A. M.; Tumanov, A. V.; Zhuchkova, E. A.

    2011-06-01

    This paper deals with the organizational structure of ground-based receiving, processing, and dissemination of scientific information created by the Astrophysics Institute of the Scientific Research Nuclear University, Moscow Engineering Physics Institute. Hardware structure and software features are described. The principles are given for forming sets of control commands for scientific equipment (SE) devices, and statistics data are presented on the operation of facility during flight tests of the spacecraft (SC) in the course of one year.

  16. Generation of heralded entanglement between distant quantum dot hole spins

    NASA Astrophysics Data System (ADS)

    Delteil, Aymeric

    Entanglement plays a central role in fundamental tests of quantum mechanics as well as in the burgeoning field of quantum information processing. Particularly in the context of quantum networks and communication, some of the major challenges are the efficient generation of entanglement between stationary (spin) and propagating (photon) qubits, the transfer of information from flying to stationary qubits, and the efficient generation of entanglement between distant stationary (spin) qubits. In this talk, I will present such experimental implementations achieved in our team with semiconductor self-assembled quantum dots.Not only are self-assembled quantum dots good single-photon emitters, but they can host an electron or a hole whose spin serves as a quantum memory, and then present spin-dependent optical selection rules leading to an efficient spin-photon quantum interface. Moreover InGaAs quantum dots grown on GaAs substrate can profit from the maturity of III-V semiconductor technology and can be embedded in semiconductor structures like photonic cavities and Schottky diodes.I will report on the realization of heralded quantum entanglement between two semiconductor quantum dot hole spins separated by more than five meters. The entanglement generation scheme relies on single photon interference of Raman scattered light from both dots. A single photon detection projects the system into a maximally entangled state. We developed a delayed two-photon interference scheme that allows for efficient verification of quantum correlations. Moreover the efficient spin-photon interface provided by self-assembled quantum dots allows us to reach an unprecedented rate of 2300 entangled spin pairs per second, which represents an improvement of four orders of magnitude as compared to prior experiments carried out in other systems.Our results extend previous demonstrations in single trapped ions or neutral atoms, in atom ensembles and nitrogen vacancy centers to the domain of artificial atoms in semiconductor nanostructures that allow for on-chip integration of electronic and photonic elements. This work lays the groundwork for the realization of quantum repeaters and quantum networks on a chip.

  17. Entanglement and Wigner Function Negativity of Multimode Non-Gaussian States

    NASA Astrophysics Data System (ADS)

    Walschaers, Mattia; Fabre, Claude; Parigi, Valentina; Treps, Nicolas

    2017-11-01

    Non-Gaussian operations are essential to exploit the quantum advantages in optical continuous variable quantum information protocols. We focus on mode-selective photon addition and subtraction as experimentally promising processes to create multimode non-Gaussian states. Our approach is based on correlation functions, as is common in quantum statistical mechanics and condensed matter physics, mixed with quantum optics tools. We formulate an analytical expression of the Wigner function after the subtraction or addition of a single photon, for arbitrarily many modes. It is used to demonstrate entanglement properties specific to non-Gaussian states and also leads to a practical and elegant condition for Wigner function negativity. Finally, we analyze the potential of photon addition and subtraction for an experimentally generated multimode Gaussian state.

  18. Entanglement and Wigner Function Negativity of Multimode Non-Gaussian States.

    PubMed

    Walschaers, Mattia; Fabre, Claude; Parigi, Valentina; Treps, Nicolas

    2017-11-03

    Non-Gaussian operations are essential to exploit the quantum advantages in optical continuous variable quantum information protocols. We focus on mode-selective photon addition and subtraction as experimentally promising processes to create multimode non-Gaussian states. Our approach is based on correlation functions, as is common in quantum statistical mechanics and condensed matter physics, mixed with quantum optics tools. We formulate an analytical expression of the Wigner function after the subtraction or addition of a single photon, for arbitrarily many modes. It is used to demonstrate entanglement properties specific to non-Gaussian states and also leads to a practical and elegant condition for Wigner function negativity. Finally, we analyze the potential of photon addition and subtraction for an experimentally generated multimode Gaussian state.

  19. Soft X-ray spectroscopy of transition metal compounds: a theoretical perspective

    NASA Astrophysics Data System (ADS)

    Bokarev, S. I.; Hilal, R.; Aziz, S. G.; Kühn, O.

    2017-01-01

    To date, X-ray spectroscopy has become a routine tool that can reveal highly local and element-specific information on the electronic structure of atoms in complex environments. Here, we report on the development of an efficient and versatile theoretical methodology for the treatment of soft X-ray spectra of transition metal compounds based on the multi-configurational self-consistent field electronic structure theory. A special focus is put on the L-edge photon-in/photon-out and photon-in/electron-out processes, i.e. X-ray absorption, resonant inelastic scattering, partial fluorescence yield, and photoelectron spectroscopy, all treated on the same theoretical footing. The investigated systems range from small prototypical coordination compounds and catalysts to aggregates of biomolecules.

  20. Generation of an arbitrary concatenated Greenberger-Horne-Zeilinger state with single photons

    NASA Astrophysics Data System (ADS)

    Chen, Shan-Shan; Zhou, Lan; Sheng, Yu-Bo

    2017-02-01

    The concatenated Greenberger-Horne-Zeilinger (C-GHZ) state is a new kind of logic-qubit entangled state, which may have extensive applications in future quantum communication. In this letter, we propose a protocol for constructing an arbitrary C-GHZ state with single photons. We exploit the cross-Kerr nonlinearity for this purpose. This protocol has some advantages over previous protocols. First, it only requires two kinds of cross-Kerr nonlinearities to generate single phase shifts  ±θ. Second, it is not necessary to use sophisticated m-photon Toffoli gates. Third, this protocol is deterministic and can be used to generate an arbitrary C-GHZ state. This protocol may be useful in future quantum information processing based on the C-GHZ state.

  1. A polynomial-chaos-expansion-based building block approach for stochastic analysis of photonic circuits

    NASA Astrophysics Data System (ADS)

    Waqas, Abi; Melati, Daniele; Manfredi, Paolo; Grassi, Flavia; Melloni, Andrea

    2018-02-01

    The Building Block (BB) approach has recently emerged in photonic as a suitable strategy for the analysis and design of complex circuits. Each BB can be foundry related and contains a mathematical macro-model of its functionality. As well known, statistical variations in fabrication processes can have a strong effect on their functionality and ultimately affect the yield. In order to predict the statistical behavior of the circuit, proper analysis of the uncertainties effects is crucial. This paper presents a method to build a novel class of Stochastic Process Design Kits for the analysis of photonic circuits. The proposed design kits directly store the information on the stochastic behavior of each building block in the form of a generalized-polynomial-chaos-based augmented macro-model obtained by properly exploiting stochastic collocation and Galerkin methods. Using this approach, we demonstrate that the augmented macro-models of the BBs can be calculated once and stored in a BB (foundry dependent) library and then used for the analysis of any desired circuit. The main advantage of this approach, shown here for the first time in photonics, is that the stochastic moments of an arbitrary photonic circuit can be evaluated by a single simulation only, without the need for repeated simulations. The accuracy and the significant speed-up with respect to the classical Monte Carlo analysis are verified by means of classical photonic circuit example with multiple uncertain variables.

  2. A chip-integrated coherent photonic-phononic memory.

    PubMed

    Merklein, Moritz; Stiller, Birgit; Vu, Khu; Madden, Stephen J; Eggleton, Benjamin J

    2017-09-18

    Controlling and manipulating quanta of coherent acoustic vibrations-phonons-in integrated circuits has recently drawn a lot of attention, since phonons can function as unique links between radiofrequency and optical signals, allow access to quantum regimes and offer advanced signal processing capabilities. Recent approaches based on optomechanical resonators have achieved impressive quality factors allowing for storage of optical signals. However, so far these techniques have been limited in bandwidth and are incompatible with multi-wavelength operation. In this work, we experimentally demonstrate a coherent buffer in an integrated planar optical waveguide by transferring the optical information coherently to an acoustic hypersound wave. Optical information is extracted using the reverse process. These hypersound phonons have similar wavelengths as the optical photons but travel at five orders of magnitude lower velocity. We demonstrate the storage of phase and amplitude of optical information with gigahertz bandwidth and show operation at separate wavelengths with negligible cross-talk.Optical storage implementations based on optomechanical resonator are limited to one wavelength. Here, exploiting stimulated Brillouin scattering, the authors demonstrate a coherent optical memory based on a planar integrated waveguide, which can operate at different wavelengths without cross-talk.

  3. Astrophysical relevance of the low-energy dipole strength of 206Pb

    NASA Astrophysics Data System (ADS)

    Tonchev, A. P.; Tsoneva, N.; Goriely, S.; Bhatia, C.; Arnold, C. W.; Hammond, S. L.; Kelley, J. H.; Kwan, E.; Lenske, H.; Piekarewicz, J.; Raut, R.; Rusev, G.; Shizuma, T.; Tornow, W.

    2018-05-01

    The dipole strength of 206Pb was studied below the neutron separation energy using photon scattering experiments at the HIGS facility. Utilizing the technique of nuclear resonance fluorescence with 100% linearly-polarized photon beams, the spins, parities, branching ratios and decay widths of excited states in 206Pb from 4.9 - 8.1 MeV have been measured. The new experimental information is used to reliably predict the neutron capture cross section of 205Pb, an important branch point nucleus along the s-process path of nucleosynthesis.

  4. Nanodiamonds with photostable, sub-gigahertz linewidth quantum emitters

    NASA Astrophysics Data System (ADS)

    Tran, Toan Trong; Kianinia, Mehran; Bray, Kerem; Kim, Sejeong; Xu, Zai-Quan; Gentle, Angus; Sontheimer, Bernd; Bradac, Carlo; Aharonovich, Igor

    2017-11-01

    Single-photon emitters with narrow linewidths are highly sought after for applications in quantum information processing and quantum communications. In this letter, we report on a bright, highly polarized near infrared single photon emitter embedded in diamond nanocrystals with a narrow, sub-GHz optical linewidth at 10 K. The observed zero-phonon line at ˜780 nm is optically stable under low power excitation and blue shifts as the excitation power increases. Our results highlight the prospect for using new near infrared color centers in nanodiamonds for quantum applications.

  5. Deterministic quantum splitter based on time-reversed Hong-Ou-Mandel interference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jun; Lee, Kim Fook; Kumar, Prem

    2007-09-15

    By utilizing a fiber-based indistinguishable photon-pair source in the 1.55 {mu}m telecommunications band [J. Chen et al., Opt. Lett. 31, 2798 (2006)], we present the first, to the best of our knowledge, deterministic quantum splitter based on the principle of time-reversed Hong-Ou-Mandel quantum interference. The deterministically separated identical photons' indistinguishability is then verified by using a conventional Hong-Ou-Mandel quantum interference, which exhibits a near-unity dip visibility of 94{+-}1%, making this quantum splitter useful for various quantum information processing applications.

  6. Optoelectronics in TESLA, LHC, and pi-of-the-sky experiments

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.; Pozniak, Krzysztof T.; Wrochna, Grzegorz; Simrock, Stefan

    2004-09-01

    Optical and optoelectronics technologies are more and more widely used in the biggest world experiments of high energy and nuclear physics, as well as in the astronomy. The paper is a kind of a broad digest describing the usage of optoelectronics is such experiments and information about some of the involved teams. The described experiments include: TESLA linear accelerator and FEL, Compact Muon Solenoid at LHC and recently started π-of-the-sky global gamma ray bursts (with asociated optical flashes) observation experiment. Optoelectornics and photonics offer several key features which are either extending the technical parameters of existing solutions or adding quite new practical application possibilities. Some of these favorable features of photonic systems are: high selectivity of optical sensors, immunity to some kinds of noise processes, extremely broad bandwidth exchangeable for either terabit rate transmission or ultrashort pulse generation, parallel image processing capability, etc. The following groups of photonic components and systems were described: (1) discrete components applications like: LED, PD, LD, CCD and CMOS cameras, active optical crystals and optical fibers in radiation dosimetry, astronomical image processing and for building of more complex photonic systems; (2) optical fiber networks serving as very stable phase distribution, clock signal distribution, distributed dosimeters, distributed gigabit transmission for control, diagnostics and data acquisition/processing; (3) fast and stable coherent femtosecond laser systems with active optical components for electro-optical sampling and photocathode excitation in the RF electron gun for linac; The parameters of some of these systems were quoted and discussed. A number of the debated solutions seems to be competitive against the classical ones. Several future fields seem to emerge involving direct coupling between the ultrafast photonic and the VLSI FPGA based technologies.

  7. Towards a Quantum Computer?

    NASA Astrophysics Data System (ADS)

    Bellac, Michel Le

    2014-11-01

    In everyday life, practically all the information which is processed, exchanged or stored is coded in the form of discrete entities called bits, which take two values only, by convention 0 and 1. With the present technology for computers and optical fibers, bits are carried by electrical currents and electromagnetic waves corresponding to macroscopic fluxes of electrons and photons, and they are stored in memories of various kinds, for example, magnetic memories. Although quantum physics is the basic physics which underlies the operation of a transistor (Chapter 6) or of a laser (Chapter 4), each exchanged or processed bit corresponds to a large number of elementary quantum systems, and its behavior can be described classically due to the strong interaction with the environment (Chapter 9). For about thirty years, physicists have learned to manipulate with great accuracy individual quantum systems: photons, electrons, neutrons, atoms, and so forth, which opens the way to using two-state quantum systems, such as the polarization states of a photon (Chapter 2) or the two energy levels of an atom or an ion (Chapter 4) in order to process, exchange or store information. In § 2.3.2, we used the two polarization states of a photon, vertical (V) and horizontal (H), to represent the values 0 and 1 of a bit and to exchange information. In what follows, it will be convenient to use Dirac's notation (see Appendix A.2.2 for more details), where a vertical polarization state is denoted by |V> or |0> and a horizontal one by |H> or |1>, while a state with arbitrary polarization will be denoted by |ψ>. The polarization states of a photon give one possible realization of a quantum bit, or for short a qubit. Thanks to the properties of quantum physics, quantum computers using qubits, if they ever exist, would outperform classical computers for some specific, but very important, problems. In Sections 8.1 and 8.2, we describe some typical quantum algorithms and, in order to do so, we shall not be able to avoid some technical developments. However, these two sections may be skipped in a first reading, as they are not necessary for understanding the more general considerations of Sections 8.3 and 8.4.

  8. Ultralow-light-level all-optical transistor in rubidium vapor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, Jietai, E-mail: jtjing@phy.ecnu.edu.cn; Zhou, Zhifan; Liu, Cunjin

    2014-04-14

    An all-optical transistor (AOT) is a device in which one light beam can efficiently manipulate another. It is the foundational component of an all-optical communication network. An AOT that can operate at ultralow light levels is especially attractive for its potential application in the quantum information field. Here, we demonstrate an AOT driven by a weak light beam with an energy density of 2.5 × 10{sup −5} photons/(λ{sup 2}/2π) (corresponding to 6  yJ/(λ{sup 2}/2π) and about 800 total photons) using the double-Λ four-wave mixing process in hot rubidium vapor. This makes it a promising candidate for ultralow-light-level optical communication and quantum information science.

  9. Linear and passive silicon diodes, isolators, and logic gates

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Yuan

    2013-12-01

    Silicon photonic integrated devices and circuits have offered a promising means to revolutionalize information processing and computing technologies. One important reason is that these devices are compatible with conventional complementary metal oxide semiconductor (CMOS) processing technology that overwhelms current microelectronics industry. Yet, the dream to build optical computers has yet to come without the breakthrough of several key elements including optical diodes, isolators, and logic gates with low power, high signal contrast, and large bandwidth. Photonic crystal has a great power to mold the flow of light in micrometer/nanometer scale and is a promising platform for optical integration. In this paper we present our recent efforts of design, fabrication, and characterization of ultracompact, linear, passive on-chip optical diodes, isolators and logic gates based on silicon two-dimensional photonic crystal slabs. Both simulation and experiment results show high performance of these novel designed devices. These linear and passive silicon devices have the unique properties of small fingerprint, low power request, large bandwidth, fast response speed, easy for fabrication, and being compatible with COMS technology. Further improving their performance would open up a road towards photonic logics and optical computing and help to construct nanophotonic on-chip processor architectures for future optical computers.

  10. InGaAsP/InP-air-aperture microcavities for single-photon sources at 1.55-μm telecommunication band

    NASA Astrophysics Data System (ADS)

    Guo, Sijie; Zheng, Yanzhen; Weng, Zhuo; Yao, Haicheng; Ju, Yuhao; Zhang, Lei; Ren, Zhilei; Gao, Ruoyao; Wang, Zhiming M.; Song, Hai-Zhi

    2016-11-01

    InGaAsP/InP-air-aperture micropillar cavities are proposed to serve as 1.55-μm single photon sources, which are indispensable in silica-fiber based quantum information processing. Owing to air-apertures introduced to InP layers, and adiabatically tapered distributed Bragg-reflector structures used in the central cavity layers, the pillar diameters can be less than 1 μm, achieving mode volume as small as (λ/n)3, and the quality factors are more than 104 - 105, sufficient to increase the quantum dot emission rate for 100 times and create strong coupling between the optical mode and the 1.55- μm InAs/InP quantum dot emitter. The mode wavelengths and quality factors are found weakly changing with the cavity size and the deviation from the ideal shape, indicating the robustness against the imperfection of the fabrication technique. The fabrication, simply epitaxial growth, dry and chemical etching, is a damage-free and monolithic process, which is advantageous over previous hybrid cavities. The above properties satisfy the requirements of efficient, photonindistinguishable and coherent 1.55-μm quantum dot single photon sources, so the proposed InGaAsP/InP-air-aperture micropillar cavities are prospective candidates for quantum information devices at telecommunication band.

  11. Quantum Storage of Three-Dimensional Orbital-Angular-Momentum Entanglement in a Crystal.

    PubMed

    Zhou, Zong-Quan; Hua, Yi-Lin; Liu, Xiao; Chen, Geng; Xu, Jin-Shi; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can

    2015-08-14

    Here we present the quantum storage of three-dimensional orbital-angular-momentum photonic entanglement in a rare-earth-ion-doped crystal. The properties of the entanglement and the storage process are confirmed by the violation of the Bell-type inequality generalized to three dimensions after storage (S=2.152±0.033). The fidelity of the memory process is 0.993±0.002, as determined through complete quantum process tomography in three dimensions. An assessment of the visibility of the stored weak coherent pulses in higher-dimensional spaces demonstrates that the memory is highly reliable for 51 spatial modes. These results pave the way towards the construction of high-dimensional and multiplexed quantum repeaters based on solid-state devices. The multimode capacity of rare-earth-based optical processors goes beyond the temporal and the spectral degree of freedom, which might provide a useful tool for photonic information processing.

  12. Systems level test and simulation for photonic processing systems

    NASA Astrophysics Data System (ADS)

    Erteza, I. A.; Stalker, K. T.

    1995-08-01

    Photonic technology is growing in importance throughout DOD. Programs have been underway in each of the Services to demonstrate the ability of photonics to enhance current electronic performance in several prototype systems, such as the Navy's SLQ-32 radar warning receiver, the Army's multi-role survivable radar and the phased array radar controller for the Airborne Warning and Control System (AWACS) upgrade. Little, though, is known about radiation effects; the component studies do not furnish the information needed to predict overall system performance in a radiation environment. To date, no comprehensive test and analysis program has been conducted to evaluate sensitivity of overall system performance to the radiation environment. The goal of this program is to relate component level effects to system level performance through modeling and testing of a selected optical processing system, and to help direct component testing to items which can directly and adversely affect overall system performance. This report gives a broad overview of the project, highlighting key results.

  13. Internal transmission coefficient in charges carrier generation layer of graphene/Si based solar cell device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosikhin, Ahmad, E-mail: a.rosikhin86@yahoo.co.id; Winata, Toto, E-mail: toto@fi.itb.ac.id

    2016-04-19

    Internal transmission profile in charges carrier generation layer of graphene/Si based solar cell has been explored theoretically. Photovoltaic device was constructed from graphene/Si heterojunction forming a multilayer stuck with Si as generation layer. The graphene/Si sheet was layered on ITO/glass wafer then coated by Al forming Ohmic contact with Si. Photon incident propagate from glass substrate to metal electrode and assumed that there is no transmission in Al layer. The wavelength range spectra used in this calculation was 200 – 1000 nm. It found that transmission intensity in the generation layer show non-linear behavior and partitioned by few areas which relatedmore » with excitation process. According to this information, it may to optimize the photons absorption to create more excitation process by inserting appropriate material to enhance optical properties in certain wavelength spectra because of the exciton generation is strongly influenced by photon absorption.« less

  14. Optical signal processing using photonic reservoir computing

    NASA Astrophysics Data System (ADS)

    Salehi, Mohammad Reza; Dehyadegari, Louiza

    2014-10-01

    As a new approach to recognition and classification problems, photonic reservoir computing has such advantages as parallel information processing, power efficient and high speed. In this paper, a photonic structure has been proposed for reservoir computing which is investigated using a simple, yet, non-partial noisy time series prediction task. This study includes the application of a suitable topology with self-feedbacks in a network of SOA's - which lends the system a strong memory - and leads to adjusting adequate parameters resulting in perfect recognition accuracy (100%) for noise-free time series, which shows a 3% improvement over previous results. For the classification of noisy time series, the rate of accuracy showed a 4% increase and amounted to 96%. Furthermore, an analytical approach was suggested to solve rate equations which led to a substantial decrease in the simulation time, which is an important parameter in classification of large signals such as speech recognition, and better results came up compared with previous works.

  15. Nanoporous hard data: optical encoding of information within nanoporous anodic alumina photonic crystals

    NASA Astrophysics Data System (ADS)

    Santos, Abel; Law, Cheryl Suwen; Pereira, Taj; Losic, Dusan

    2016-04-01

    Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for developing advanced nanophotonic tools for a wide range of applications, including sensing, photonic tagging, self-reporting drug releasing systems and secure encoding of information.Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for developing advanced nanophotonic tools for a wide range of applications, including sensing, photonic tagging, self-reporting drug releasing systems and secure encoding of information. Electronic supplementary information (ESI) available: Further details about anodisation profiles, SEM cross-section images, digital pictures, transmission spectra, photonic barcodes and ASCII codes of the different NAA photonic crystals fabricated and analysed in our study. See DOI: 10.1039/c6nr01068g

  16. EDITORIAL: Photonica 2011: 3rd International School and Conference on Photonics Photonica 2011: 3rd International School and Conference on Photonics

    NASA Astrophysics Data System (ADS)

    Petrović, Jovana; Stepić, Milutin; Hadžievski, Ljupčo

    2012-04-01

    Photonics is a rapidly growing discipline of physics that investigates properties of light and its interaction with matter and develops devices based on these properties. Due to both the fundamental and applied nature of photonics research, it pervades many branches of modern technology: quantum mechanics, material science, electronics, telecommunications, biology, medicine, material processing, etc. The borders between these subjects are being erased, generating new research areas such as silicon photonics, biophotonics and quantum photonics. Diverse branches of photonics are united in a common effort to further miniaturize photonic devices, integrate them with existing technologies and develop new technologies. The International School and Conference on Photonics—Photonica—is a biennial forum for the education of young scientists, exchanging new knowledge and ideas, and fostering collaboration between scientists working in photonic science and technology. Conference topics cover a broad range of research activities in optical materials, metamaterials and plasmonics, nonlinear optics, lasers, laser spectroscopy, biophotonics, optoelectronics, optocommunications, photonic crystals, holography, quantum optics and related topics in atomic physics. The aim of the organizers is to provide a platform for discussing new developments, concepts and future trends of various disciplines of photonics by bringing together researchers from academia, government and industrial laboratories. The educational element of Photonica—a series of tutorials and keynote talks—enables students and young researchers to better understand the fundamentals and their use on a route to applications, and informs both young and experienced scientists of new directions of research. The introductory lectures that are directly related to the state-of-the-art are followed by presentations and discussions on recent results during oral and vibrant poster presentations. This Topical Issue is dedicated to Photonica 2011 held on 29 August-2 September 2011 in Belgrade, Serbia. The conference was attended by 144 participants from 27 countries who gave 132 oral and poster presentations and 24 lectures. The accompanying papers were peer reviewed and 82 were selected for publication. We take this opportunity to gratefully acknowledge the contribution of the reviewers to the quality of this issue. The papers are grouped in accordance with the conference topics, each section opening with an invited paper. The issue begins with papers dedicated to ultra-cold atomic systems that display coherent behaviour analogous to that of light. These well-controlled atomic systems are indispensible workhorses for experiments in quantum optics, which is the topic of the next section. Holography as a concept, measurement tool and technique for fabrication of periodic photonic structures is placed accordingly between fundamental and applied photonics. It is followed by reports on various photonic devices, their modelling and nonlinear phenomena. The progress in constructing these devices largely depends on artificial (composites, metamaterials) and natural optical materials and their processing. This Topical Issue is an original snapshot of the current research in photonics and by no means an extensive survey of the field. While the making of the former has been a challenging task, the compilation of the latter would be indomitable due to the rapid advances in and diversification of photonics research. In accordance with the aims of the conference itself, we hope that the results reported in this Topical Issue of Physica Scripta will serve to inform and to spark the imagination of scientists and engineers exploring or using the principles and products of photonics.

  17. Information theoretic approach for assessing image fidelity in photon-counting arrays.

    PubMed

    Narravula, Srikanth R; Hayat, Majeed M; Javidi, Bahram

    2010-02-01

    The method of photon-counting integral imaging has been introduced recently for three-dimensional object sensing, visualization, recognition and classification of scenes under photon-starved conditions. This paper presents an information-theoretic model for the photon-counting imaging (PCI) method, thereby providing a rigorous foundation for the merits of PCI in terms of image fidelity. This, in turn, can facilitate our understanding of the demonstrated success of photon-counting integral imaging in compressive imaging and classification. The mutual information between the source and photon-counted images is derived in a Markov random field setting and normalized by the source-image's entropy, yielding a fidelity metric that is between zero and unity, which respectively corresponds to complete loss of information and full preservation of information. Calculations suggest that the PCI fidelity metric increases with spatial correlation in source image, from which we infer that the PCI method is particularly effective for source images with high spatial correlation; the metric also increases with the reduction in photon-number uncertainty. As an application to the theory, an image-classification problem is considered showing a congruous relationship between the fidelity metric and classifier's performance.

  18. Image storage in coumarin-based copolymer thin films by photoinduced dimerization.

    PubMed

    Gindre, Denis; Iliopoulos, Konstantinos; Krupka, Oksana; Champigny, Emilie; Morille, Yohann; Sallé, Marc

    2013-11-15

    We report a technique to encode grayscale digital images in thin films composed of copolymers containing coumarins. A nonlinear microscopy setup was implemented and two nonlinear optical processes were used to store and read information. A third-order process (two-photon absorption) was used to photoinduce a controlled dimer-to-monomer ratio within a defined tiny volume in the material, which corresponds to each recorded bit of data. Moreover, a second-order process (second-harmonic generation) was used to read the stored information, which has been found to be highly dependent upon the monomer-to-dimer ratio.

  19. Testing helicity-dependent γγ → γγ scattering in the region of MeV

    NASA Astrophysics Data System (ADS)

    Homma, K.; Matsuura, K.; Nakajima, K.

    2016-01-01

    Light-by-light scatterings contain rich information on photon coupling to virtual and real particle states. In the context of quantum electrodynamics (QED), photons can couple to a virtual e^+e^- pair. Photons may also couple to known resonance states in the context of quantum chromodyanmics and electroweak dynamics in higher energy domains and possibly couple to unknown resonance states beyond the standard model. The perturbative QED calculations manifestly predict a maximized cross section at the MeV scale; however, no example of exact real-photon-real-photon scattering has yet been observed. Hence, we propose direct measurement with the maximized cross section at the center-of-mass system energy of 1-2 MeV to establish a firm footing at the MeV scale. Given current state of the art high power lasers, helicity-dependent elastic scattering may be observed at a reasonable rate, if a photon-photon collider exploiting γ -rays generated by the inverse nonlinear Compton process with electrons delivered from laser-plasma accelerators (LPA) are properly designed. We show that such verification is feasible in a table-top scale collider, which may be an unprecedented breakthrough in particle accelerators for basic physics research in contrast to energy frontier colliders.

  20. Initial steps toward the realization of large area arrays of single photon counting pixels based on polycrystalline silicon TFTs

    NASA Astrophysics Data System (ADS)

    Liang, Albert K.; Koniczek, Martin; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua; Jiang, Hao; Street, Robert A.; Lu, Jeng Ping

    2014-03-01

    The thin-film semiconductor processing methods that enabled creation of inexpensive liquid crystal displays based on amorphous silicon transistors for cell phones and televisions, as well as desktop, laptop and mobile computers, also facilitated the development of devices that have become ubiquitous in medical x-ray imaging environments. These devices, called active matrix flat-panel imagers (AMFPIs), measure the integrated signal generated by incident X rays and offer detection areas as large as ~43×43 cm2. In recent years, there has been growing interest in medical x-ray imagers that record information from X ray photons on an individual basis. However, such photon counting devices have generally been based on crystalline silicon, a material not inherently suited to the cost-effective manufacture of monolithic devices of a size comparable to that of AMFPIs. Motivated by these considerations, we have developed an initial set of small area prototype arrays using thin-film processing methods and polycrystalline silicon transistors. These prototypes were developed in the spirit of exploring the possibility of creating large area arrays offering single photon counting capabilities and, to our knowledge, are the first photon counting arrays fabricated using thin film techniques. In this paper, the architecture of the prototype pixels is presented and considerations that influenced the design of the pixel circuits, including amplifier noise, TFT performance variations, and minimum feature size, are discussed.

  1. Bright nanowire single photon source based on SiV centers in diamond

    DOE PAGES

    Marseglia, L.; Saha, K.; Ajoy, A.; ...

    2018-01-01

    The practical implementation of quantum technologies such as quantum commu- nication and quantum cryptography relies on the development of indistinguishable, robust, and bright single photon sources that works at room temperature. The silicon- vacancy (SiV -) center in diamond has emerged as a possible candidate for a single photon source with all these characteristics. Unfortunately, due to the high refraction index mismatch between diamond and air, color centers in diamond show low photon out-coupling. This drawback can be overcome by fabrication of photonic structures that improve the in-coupling of excitation laser to the diamond defect as well as the out-couplingmore » emission from the color centers. An additional shortcoming is due to the random localization of native defects in the diamond sample. Here we demonstrate deterministic implantation of Si ions with high conversion effciency to single SiV -, targeted to fabricated nanowires. The co-localization of single SiV - defects with the nanostructures yields a ten times higher light coupling effciency as compared to single SiV - in the bulk. This result, with its intrinsic scalability, enables a new class of devices for integrated photonics and quantum information processing.« less

  2. Dead-time optimized time-correlated photon counting instrument with synchronized, independent timing channels

    NASA Astrophysics Data System (ADS)

    Wahl, Michael; Rahn, Hans-Jürgen; Gregor, Ingo; Erdmann, Rainer; Enderlein, Jörg

    2007-03-01

    Time-correlated single photon counting is a powerful method for sensitive time-resolved fluorescence measurements down to the single molecule level. The method is based on the precisely timed registration of single photons of a fluorescence signal. Historically, its primary goal was the determination of fluorescence lifetimes upon optical excitation by a short light pulse. This goal is still important today and therefore has a strong influence on instrument design. However, modifications and extensions of the early designs allow for the recovery of much more information from the detected photons and enable entirely new applications. Here, we present a new instrument that captures single photon events on multiple synchronized channels with picosecond resolution and over virtually unlimited time spans. This is achieved by means of crystal-locked time digitizers with high resolution and very short dead time. Subsequent event processing in programmable logic permits classical histogramming as well as time tagging of individual photons and their streaming to the host computer. Through the latter, any algorithms and methods for the analysis of fluorescence dynamics can be implemented either in real time or offline. Instrument test results from single molecule applications will be presented.

  3. Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser.

    PubMed

    Jin, Rui-Bo; Shimizu, Ryosuke; Morohashi, Isao; Wakui, Kentaro; Takeoka, Masahiro; Izumi, Shuro; Sakamoto, Takahide; Fujiwara, Mikio; Yamashita, Taro; Miki, Shigehito; Terai, Hirotaka; Wang, Zhen; Sasaki, Masahide

    2014-12-19

    Efficient generation and detection of indistinguishable twin photons are at the core of quantum information and communications technology (Q-ICT). These photons are conventionally generated by spontaneous parametric down conversion (SPDC), which is a probabilistic process, and hence occurs at a limited rate, which restricts wider applications of Q-ICT. To increase the rate, one had to excite SPDC by higher pump power, while it inevitably produced more unwanted multi-photon components, harmfully degrading quantum interference visibility. Here we solve this problem by using recently developed 10 GHz repetition-rate-tunable comb laser, combined with a group-velocity-matched nonlinear crystal, and superconducting nanowire single photon detectors. They operate at telecom wavelengths more efficiently with less noises than conventional schemes, those typically operate at visible and near infrared wavelengths generated by a 76 MHz Ti Sapphire laser and detected by Si detectors. We could show high interference visibilities, which are free from the pump-power induced degradation. Our laser, nonlinear crystal, and detectors constitute a powerful tool box, which will pave a way to implementing quantum photonics circuits with variety of good and low-cost telecom components, and will eventually realize scalable Q-ICT in optical infra-structures.

  4. Nearly Blinking-Free, High-Purity Single-Photon Emission by Colloidal InP/ZnSe Quantum Dots.

    PubMed

    Chandrasekaran, Vigneshwaran; Tessier, Mickaël D; Dupont, Dorian; Geiregat, Pieter; Hens, Zeger; Brainis, Edouard

    2017-10-11

    Colloidal core/shell InP/ZnSe quantum dots (QDs), recently produced using an improved synthesis method, have a great potential in life-science applications as well as in integrated quantum photonics and quantum information processing as single-photon emitters. Single-particle spectroscopy of 10 nm QDs with 3.2 nm cores reveals strong photon antibunching attributed to fast (70 ps) Auger recombination of multiple excitons. The QDs exhibit very good photostability under strong optical excitation. We demonstrate that the antibunching is preserved when the QDs are excited above the saturation intensity of the fundamental-exciton transition. This result paves the way toward their usage as high-purity on-demand single-photon emitters at room temperature. Unconventionally, despite the strong Auger blockade mechanism, InP/ZnSe QDs also display very little luminescence intermittency ("blinking"), with a simple on/off blinking pattern. The analysis of single-particle luminescence statistics places these InP/ZnSe QDs in the class of nearly blinking-free QDs, with emission stability comparable to state-of-the-art thick-shell and alloyed-interface CdSe/CdS, but with improved single-photon purity.

  5. High-Performance Single-Photon Sources via Spatial Multiplexing

    DTIC Science & Technology

    2014-01-01

    ingredient for tasks such as quantum cryptography , quantum repeater, quantum teleportation, quantum computing, and truly-random number generation. Recently...SECURITY CLASSIFICATION OF: Single photons sources are desired for many potential quantum information applications. One common method to produce...photons sources are desired for many potential quantum information applications. One common method to produce single photons is based on a “heralding

  6. Quantum communication and information processing

    NASA Astrophysics Data System (ADS)

    Beals, Travis Roland

    Quantum computers enable dramatically more efficient algorithms for solving certain classes of computational problems, but, in doing so, they create new problems. In particular, Shor's Algorithm allows for efficient cryptanalysis of many public-key cryptosystems. As public key cryptography is a critical component of present-day electronic commerce, it is crucial that a working, secure replacement be found. Quantum key distribution (QKD), first developed by C.H. Bennett and G. Brassard, offers a partial solution, but many challenges remain, both in terms of hardware limitations and in designing cryptographic protocols for a viable large-scale quantum communication infrastructure. In Part I, I investigate optical lattice-based approaches to quantum information processing. I look at details of a proposal for an optical lattice-based quantum computer, which could potentially be used for both quantum communications and for more sophisticated quantum information processing. In Part III, I propose a method for converting and storing photonic quantum bits in the internal state of periodically-spaced neutral atoms by generating and manipulating a photonic band gap and associated defect states. In Part II, I present a cryptographic protocol which allows for the extension of present-day QKD networks over much longer distances without the development of new hardware. I also present a second, related protocol which effectively solves the authentication problem faced by a large QKD network, thus making QKD a viable, information-theoretic secure replacement for public key cryptosystems.

  7. Scalable quantum information processing with photons and atoms

    NASA Astrophysics Data System (ADS)

    Pan, Jian-Wei

    Over the past three decades, the promises of super-fast quantum computing and secure quantum cryptography have spurred a world-wide interest in quantum information, generating fascinating quantum technologies for coherent manipulation of individual quantum systems. However, the distance of fiber-based quantum communications is limited due to intrinsic fiber loss and decreasing of entanglement quality. Moreover, probabilistic single-photon source and entanglement source demand exponentially increased overheads for scalable quantum information processing. To overcome these problems, we are taking two paths in parallel: quantum repeaters and through satellite. We used the decoy-state QKD protocol to close the loophole of imperfect photon source, and used the measurement-device-independent QKD protocol to close the loophole of imperfect photon detectors--two main loopholes in quantum cryptograph. Based on these techniques, we are now building world's biggest quantum secure communication backbone, from Beijing to Shanghai, with a distance exceeding 2000 km. Meanwhile, we are developing practically useful quantum repeaters that combine entanglement swapping, entanglement purification, and quantum memory for the ultra-long distance quantum communication. The second line is satellite-based global quantum communication, taking advantage of the negligible photon loss and decoherence in the atmosphere. We realized teleportation and entanglement distribution over 100 km, and later on a rapidly moving platform. We are also making efforts toward the generation of multiphoton entanglement and its use in teleportation of multiple properties of a single quantum particle, topological error correction, quantum algorithms for solving systems of linear equations and machine learning. Finally, I will talk about our recent experiments on quantum simulations on ultracold atoms. On the one hand, by applying an optical Raman lattice technique, we realized a two-dimensional spin-obit (SO) coupling and topological bands with ultracold bosonic atoms. A controllable crossover between 2D and 1D SO couplings is studied, and the SO effects and nontrivial band topology are observe. On the other hand, utilizing a two-dimensional spin-dependent optical superlattice and a single layer of atom cloud, we directly observed the four-body ring-exchange coupling and the Anyonic fractional statistics.

  8. Encoding photonic angular momentum information onto surface plasmon polaritons with plasmonic lens.

    PubMed

    Liu, Aiping; Rui, Guanghao; Ren, Xifeng; Zhan, Qiwen; Guo, Guangcan; Guo, Guoping

    2012-10-22

    Both spin angular momentum (SAM) and orbital angular momentum (OAM) can be used to carry information in classical optics and quantum optics. In this paper, the encoding of angular momentum (AM) information of photons onto surface plasmon polaritons (SPPs) is demonstrated using a nano-ring plasmonic lens. Near-field energy distribution on the metal surface is measured using a near-field scanning optical microscope (NSOM) when the plasmonic lens is excited by photons with different combinations of SAM and OAM. It is found that both the SAM and OAM can influence the near field energy distribution of SPPs. More interestingly, numerical and experimental studies reveal that the energy distribution on the plasmonic lens surface is determined by the absolute value of the total AM. This gives direct evidences that SPPs can be encoded with the photonic SAM and OAM information simultaneously and the spin degeneracy of the photons can be removed using the interactions between photonic OAM and plasmonic lens. The findings are useful not only for the fundamental understanding of the photonic AM but also for the future design of plasmonic quantum optics devices and systems.

  9. Scientific instrument engineering at Japanese congresses devoted to high-speed imaging

    NASA Astrophysics Data System (ADS)

    Shchelev, Mikhail Ya

    2011-06-01

    The information about the congresses held in Japan and devoted to fast imaging processes and photonics is presented. Reports devoted to the technique and the results of applications of superhigh-speed recording instrumentation in different fields of science and technology are considered.

  10. Large-scale two-photon imaging revealed super-sparse population codes in the V1 superficial layer of awake monkeys.

    PubMed

    Tang, Shiming; Zhang, Yimeng; Li, Zhihao; Li, Ming; Liu, Fang; Jiang, Hongfei; Lee, Tai Sing

    2018-04-26

    One general principle of sensory information processing is that the brain must optimize efficiency by reducing the number of neurons that process the same information. The sparseness of the sensory representations in a population of neurons reflects the efficiency of the neural code. Here, we employ large-scale two-photon calcium imaging to examine the responses of a large population of neurons within the superficial layers of area V1 with single-cell resolution, while simultaneously presenting a large set of natural visual stimuli, to provide the first direct measure of the population sparseness in awake primates. The results show that only 0.5% of neurons respond strongly to any given natural image - indicating a ten-fold increase in the inferred sparseness over previous measurements. These population activities are nevertheless necessary and sufficient to discriminate visual stimuli with high accuracy, suggesting that the neural code in the primary visual cortex is both super-sparse and highly efficient. © 2018, Tang et al.

  11. Proposal and proof-of-principle demonstration of non-destructive detection of photonic qubits using a Tm:LiNbO3 waveguide

    PubMed Central

    Sinclair, N.; Heshami, K.; Deshmukh, C.; Oblak, D.; Simon, C.; Tittel, W.

    2016-01-01

    Non-destructive detection of photonic qubits is an enabling technology for quantum information processing and quantum communication. For practical applications, such as quantum repeaters and networks, it is desirable to implement such detection in a way that allows some form of multiplexing as well as easy integration with other components such as solid-state quantum memories. Here, we propose an approach to non-destructive photonic qubit detection that promises to have all the mentioned features. Mediated by an impurity-doped crystal, a signal photon in an arbitrary time-bin qubit state modulates the phase of an intense probe pulse that is stored during the interaction. Using a thulium-doped waveguide in LiNbO3, we perform a proof-of-principle experiment with macroscopic signal pulses, demonstrating the expected cross-phase modulation as well as the ability to preserve the coherence between temporal modes. Our findings open the path to a new key component of quantum photonics based on rare-earth-ion-doped crystals. PMID:27853153

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marseglia, L.; Saha, K.; Ajoy, A.

    The practical implementation of quantum technologies such as quantum commu- nication and quantum cryptography relies on the development of indistinguishable, robust, and bright single photon sources that works at room temperature. The silicon- vacancy (SiV -) center in diamond has emerged as a possible candidate for a single photon source with all these characteristics. Unfortunately, due to the high refraction index mismatch between diamond and air, color centers in diamond show low photon out-coupling. This drawback can be overcome by fabrication of photonic structures that improve the in-coupling of excitation laser to the diamond defect as well as the out-couplingmore » emission from the color centers. An additional shortcoming is due to the random localization of native defects in the diamond sample. Here we demonstrate deterministic implantation of Si ions with high conversion effciency to single SiV -, targeted to fabricated nanowires. The co-localization of single SiV - defects with the nanostructures yields a ten times higher light coupling effciency as compared to single SiV - in the bulk. This result, with its intrinsic scalability, enables a new class of devices for integrated photonics and quantum information processing.« less

  13. Few-Photon Nonlinearity with an Atomic Ensemble in an Optical Cavity

    NASA Astrophysics Data System (ADS)

    Tanji, Haruka

    2011-12-01

    This thesis investigates the effect of the cavity vacuum field on the dispersive properties of an atomic ensemble in a strongly coupled high-finesse cavity. In particular, we demonstrate vacuum-induced transparency (VIT). The light absorption by the ensemble is suppressed by up to 40% in the presence of a cavity vacuum field. The sharp transparency peak is accompanied by the reduction in the group velocity of a light pulse, measured to be as low as 1800 m/s. This observation is a large step towards the realization of photon number-state filters, recently proposed by Nikoghosyan et al. Furthermore, we demonstrate few-photon optical nonlinearity, where the transparency is increased from 40% to 80% with ˜12 photons in the cavity mode. The result may be viewed as all-optical switching, where the transmission of photons in one mode may be controlled by 12 photons in another. These studies point to the possibility of nonlinear interaction between photons in different free-space modes, a scheme that circumvents cavity-coupling losses that plague cavity-based quantum information processing. Potential applications include advanced quantum devices such as photonic quantum gates, photon-number resolving detectors, and single-photon transistors. In the efforts leading up to these results, we investigate the collective enhancement of atomic coupling to a single mode of a low-finesse cavity. With the strong collective coupling, we obtain exquisite control of quantum states in the atom-photon coupled system. In this system, we demonstrate a heralded single-photon source with 84% conditional efficiency, a quantum bus for deterministic entanglement of two remote ensembles, and heralded polarization-state quantum memory with fidelity above 90%.

  14. Quantum channel for the transmission of information

    DOEpatents

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-01-13

    Systems and methods are described for a quantum channel for the transmission of information. A method includes: down converting a beam of coherent energy to provide a beam of multi-color entangled photons; converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; changing a phase of at least a portion of the converged multi-color entangled photon beam to generate a first interferometric multi-color entangled photon beam; combining the first interferometric multi-color entangled photon beam with a second interferometric multi-color entangled photon beam within a single beam splitter; wherein combining includes erasing energy and momentum characteristics from both the first interferometric multi-color entangled photon beam and the second interferometric multi-color entangled photon beam; splitting the first interferometric multi-color entangled photon beam and the second interferometric multi-color entangled photon beam within the single beam splitter, wherein splitting yields a first output beam of multi-color entangled photons and a second output beam of multi-color entangled photons; and modulating the first output beam of multi-color entangled photons.

  15. 50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imany, Poolad; Jaramillo-Villegas, Jose A.; Odele, Ogaga D.

    Quantum frequency combs from chip-scale integrated sources are promising candidates for scalable and robust quantum information processing (QIP). However, to use these quantum combs for frequency domain QIP, demonstration of entanglement in the frequency basis, showing that the entangled photons are in a coherent superposition of multiple frequency bins, is required. We present a verification of qubit and qutrit frequency-bin entanglement using an on-chip quantum frequency comb with 40 mode pairs, through a two-photon interference measurement that is based on electro-optic phase modulation. Our demonstrations provide an important contribution in establishing integrated optical microresonators as a source for high-dimensional frequency-binmore » encoded quantum computing, as well as dense quantum key distribution.« less

  16. 50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator

    DOE PAGES

    Imany, Poolad; Jaramillo-Villegas, Jose A.; Odele, Ogaga D.; ...

    2018-01-18

    Quantum frequency combs from chip-scale integrated sources are promising candidates for scalable and robust quantum information processing (QIP). However, to use these quantum combs for frequency domain QIP, demonstration of entanglement in the frequency basis, showing that the entangled photons are in a coherent superposition of multiple frequency bins, is required. We present a verification of qubit and qutrit frequency-bin entanglement using an on-chip quantum frequency comb with 40 mode pairs, through a two-photon interference measurement that is based on electro-optic phase modulation. Our demonstrations provide an important contribution in establishing integrated optical microresonators as a source for high-dimensional frequency-binmore » encoded quantum computing, as well as dense quantum key distribution.« less

  17. Quantum optical circulator controlled by a single chirally coupled atom

    NASA Astrophysics Data System (ADS)

    Scheucher, Michael; Hilico, Adèle; Will, Elisa; Volz, Jürgen; Rauschenbeutel, Arno

    2016-12-01

    Integrated nonreciprocal optical components, which have an inherent asymmetry between their forward and backward propagation direction, are key for routing signals in photonic circuits. Here, we demonstrate a fiber-integrated quantum optical circulator operated by a single atom. Its nonreciprocal behavior arises from the chiral interaction between the atom and the transversally confined light. We demonstrate that the internal quantum state of the atom controls the operation direction of the circulator and that it features a strongly nonlinear response at the single-photon level. This enables, for example, photon number-dependent routing and novel quantum simulation protocols. Furthermore, such a circulator can in principle be prepared in a coherent superposition of its operational states and may become a key element for quantum information processing in scalable integrated optical circuits.

  18. Photon-number discrimination without a photon counter and its application to reconstructing non-Gaussian states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chrzanowski, H. M.; Bernu, J.; Sparkes, B. M.

    2011-11-15

    The nonlinearity of a conditional photon-counting measurement can be used to ''de-Gaussify'' a Gaussian state of light. Here we present and experimentally demonstrate a technique for photon-number resolution using only homodyne detection. We then apply this technique to inform a conditional measurement, unambiguously reconstructing the statistics of the non-Gaussian one- and two-photon-subtracted squeezed vacuum states. Although our photon-number measurement relies on ensemble averages and cannot be used to prepare non-Gaussian states of light, its high efficiency, photon-number-resolving capabilities, and compatibility with the telecommunications band make it suitable for quantum-information tasks relying on the outcomes of mean values.

  19. Single-photon-level quantum image memory based on cold atomic ensembles

    PubMed Central

    Ding, Dong-Sheng; Zhou, Zhi-Yuan; Shi, Bao-Sen; Guo, Guang-Can

    2013-01-01

    A quantum memory is a key component for quantum networks, which will enable the distribution of quantum information. Its successful development requires storage of single-photon light. Encoding photons with spatial shape through higher-dimensional states significantly increases their information-carrying capability and network capacity. However, constructing such quantum memories is challenging. Here we report the first experimental realization of a true single-photon-carrying orbital angular momentum stored via electromagnetically induced transparency in a cold atomic ensemble. Our experiments show that the non-classical pair correlation between trigger photon and retrieved photon is retained, and the spatial structure of input and retrieved photons exhibits strong similarity. More importantly, we demonstrate that single-photon coherence is preserved during storage. The ability to store spatial structure at the single-photon level opens the possibility for high-dimensional quantum memories. PMID:24084711

  20. Silicon photonics and challenges for fabrication

    NASA Astrophysics Data System (ADS)

    Feilchenfeld, N. B.; Nummy, K.; Barwicz, T.; Gill, D.; Kiewra, E.; Leidy, R.; Orcutt, J. S.; Rosenberg, J.; Stricker, A. D.; Whiting, C.; Ayala, J.; Cucci, B.; Dang, D.; Doan, T.; Ghosal, M.; Khater, M.; McLean, K.; Porth, B.; Sowinski, Z.; Willets, C.; Xiong, C.; Yu, C.; Yum, S.; Giewont, K.; Green, W. M. J.

    2017-03-01

    Silicon photonics is rapidly becoming the key enabler for meeting the future data speed and volume required by the Internet of Things. A stable manufacturing process is needed to deliver cost and yield expectations to the technology marketplace. We present the key challenges and technical results from both 200mm and 300mm facilities for a silicon photonics fabrication process which includes monolithic integration with CMOS. This includes waveguide patterning, optical proximity correction for photonic devices, silicon thickness uniformity and thick material patterning for passive fiber to waveguide alignment. The device and process metrics show that the transfer of the silicon photonics process from 200mm to 300mm will provide a stable high volume manufacturing platform for silicon photonics designs.

  1. Ultrafast optical control of individual quantum dot spin qubits.

    PubMed

    De Greve, Kristiaan; Press, David; McMahon, Peter L; Yamamoto, Yoshihisa

    2013-09-01

    Single spins in semiconductor quantum dots form a promising platform for solid-state quantum information processing. The spin-up and spin-down states of a single electron or hole, trapped inside a quantum dot, can represent a single qubit with a reasonably long decoherence time. The spin qubit can be optically coupled to excited (charged exciton) states that are also trapped in the quantum dot, which provides a mechanism to quickly initialize, manipulate and measure the spin state with optical pulses, and to interface between a stationary matter qubit and a 'flying' photonic qubit for quantum communication and distributed quantum information processing. The interaction of the spin qubit with light may be enhanced by placing the quantum dot inside a monolithic microcavity. An entire system, consisting of a two-dimensional array of quantum dots and a planar microcavity, may plausibly be constructed by modern semiconductor nano-fabrication technology and could offer a path toward chip-sized scalable quantum repeaters and quantum computers. This article reviews the recent experimental developments in optical control of single quantum dot spins for quantum information processing. We highlight demonstrations of a complete set of all-optical single-qubit operations on a single quantum dot spin: initialization, an arbitrary SU(2) gate, and measurement. We review the decoherence and dephasing mechanisms due to hyperfine interaction with the nuclear-spin bath, and show how the single-qubit operations can be combined to perform spin echo sequences that extend the qubit decoherence from a few nanoseconds to several microseconds, more than 5 orders of magnitude longer than the single-qubit gate time. Two-qubit coupling is discussed, both within a single chip by means of exchange coupling of nearby spins and optically induced geometric phases, as well as over longer-distances. Long-distance spin-spin entanglement can be generated if each spin can emit a photon that is entangled with the spin, and these photons are then interfered. We review recent work demonstrating entanglement between a stationary spin qubit and a flying photonic qubit. These experiments utilize the polarization- and frequency-dependent spontaneous emission from the lowest charged exciton state to single spin Zeeman sublevels.

  2. Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information.

    PubMed

    Fickler, Robert; Lapkiewicz, Radek; Huber, Marcus; Lavery, Martin P J; Padgett, Miles J; Zeilinger, Anton

    2014-07-30

    Photonics has become a mature field of quantum information science, where integrated optical circuits offer a way to scale the complexity of the set-up as well as the dimensionality of the quantum state. On photonic chips, paths are the natural way to encode information. To distribute those high-dimensional quantum states over large distances, transverse spatial modes, like orbital angular momentum possessing Laguerre Gauss modes, are favourable as flying information carriers. Here we demonstrate a quantum interface between these two vibrant photonic fields. We create three-dimensional path entanglement between two photons in a nonlinear crystal and use a mode sorter as the quantum interface to transfer the entanglement to the orbital angular momentum degree of freedom. Thus our results show a flexible way to create high-dimensional spatial mode entanglement. Moreover, they pave the way to implement broad complex quantum networks where high-dimensionally entangled states could be distributed over distant photonic chips.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sciarrino, Fabio; De Martini, Francesco

    In several quantum information (QI) phenomena of large technological importance the information is carried by the phase of the quantum superposition states, or qubits. The phase-covariant cloning machine (PQCM) addresses precisely the problem of optimally copying these qubits with the largest attainable 'fidelity'. We present a general scheme which realizes the 1{yields}3 phase covariant cloning process by a combination of three different QI processes: the universal cloning, the NOT gate, and the projection over the symmetric subspace of the output qubits. The experimental implementation of a PQCM for polarization encoded qubits, the first ever realized with photons, is reported.

  4. Topics in linear optical quantum computation

    NASA Astrophysics Data System (ADS)

    Glancy, Scott Charles

    This thesis covers several topics in optical quantum computation. A quantum computer is a computational device which is able to manipulate information by performing unitary operations on some physical system whose state can be described as a vector (or mixture of vectors) in a Hilbert space. The basic unit of information, called the qubit, is considered to be a system with two orthogonal states, which are assigned logical values of 0 and 1. Photons make excellent candidates to serve as qubits. They have little interactions with the environment. Many operations can be performed using very simple linear optical devices such as beam splitters and phase shifters. Photons can easily be processed through circuit-like networks. Operations can be performed in very short times. Photons are ideally suited for the long-distance communication of quantum information. The great difficulty in constructing an optical quantum computer is that photons naturally interact weakly with one another. This thesis first gives a brief review of two early approaches to optical quantum computation. It will describe how any discrete unitary operation can be performed using a single photon and a network of beam splitters, and how the Kerr effect can be used to construct a two photon logic gate. Second, this work provides a thorough introduction to the linear optical quantum computer developed by Knill, Laflamme, and Milburn. It then presents this author's results on the reliability of this scheme when implemented using imperfect photon detectors. This author finds that quantum computers of this sort cannot be built using current technology. Third, this dissertation describes a method for constructing a linear optical quantum computer using nearly orthogonal coherent states of light as the qubits. It shows how a universal set of logic operations can be performed, including calculations of the fidelity with which these operations may be accomplished. It discusses methods for reducing and correcting errors and recovering from failed operations. Lastly it describes an analysis of the long distance transmission of the coherent state qubits and shows how transmission errors can be corrected.

  5. Nonlinear optics quantum computing with circuit QED.

    PubMed

    Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M

    2013-02-08

    One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.

  6. Telecom-band degenerate-frequency photon pair generation in silicon microring cavities.

    PubMed

    Guo, Yuan; Zhang, Wei; Dong, Shuai; Huang, Yidong; Peng, Jiangde

    2014-04-15

    In this Letter, telecom-band degenerate-frequency photon pairs are generated in a specific mode of a silicon microring cavity by the nondegenerate spontaneous four-wave mixing (SFWM) process, under two continuous-wave pumps at resonance wavelength of two different cavity modes. The ratio of coincidence to accidental coincidence is up to 100 under a time bin width of 5 ns, showing their characteristics of quantum correlation. Their quantum interference in balanced and unbalanced Mach-Zehnder interferometers is investigated theoretically and experimentally, and the results show potential in quantum metrology and quantum information.

  7. Circuit QED with qutrits: Coupling three or more atoms via virtual-photon exchange

    NASA Astrophysics Data System (ADS)

    Zhao, Peng; Tan, Xinsheng; Yu, Haifeng; Zhu, Shi-Liang; Yu, Yang

    2017-10-01

    We present a model to describe a generic circuit QED system which consists of multiple artificial three-level atoms, namely, qutrits, strongly coupled to a cavity mode. When the state transition of the atoms disobeys the selection rules the process that does not conserve the number of excitations can happen determinatively. Therefore, we can realize coherent exchange interaction among three or more atoms mediated by the exchange of virtual photons. In addition, we generalize the one-cavity-mode mediated interactions to the multicavity situation, providing a method to entangle atoms located in different cavities. Using experimentally feasible parameters, we investigate the dynamics of the model including three cyclic-transition three-level atoms, for which the two lowest energy levels can be treated as qubits. Hence, we have found that two qubits can jointly exchange excitation with one qubit in a coherent and reversible way. In the whole process, the population in the third level of atoms is negligible and the cavity photon number is far smaller than 1. Our model provides a feasible scheme to couple multiple distant atoms together, which may find applications in quantum information processing.

  8. Applications of quantum measurement techniques: Counterfactual quantum computation, spin hall effect of light, and atomic-vapor-based photon detectors

    NASA Astrophysics Data System (ADS)

    Hosten, Onur

    This dissertation investigates several physical phenomena in atomic and optical physics, and quantum information science, by utilizing various types and techniques of quantum measurements. It is the deeper concepts of these measurements, and the way they are integrated into the seemingly unrelated topics investigated, which binds together the research presented here. The research comprises three different topics: Counterfactual quantum computation, the spin Hall effect of light, and ultra-high-efficiency photon detectors based on atomic vapors. Counterfactual computation entails obtaining answers from a quantum computer without actually running it, and is accomplished by preparing the computer as a whole into a superposition of being activated and not activated. The first experimental demonstration is presented, including the best performing implementation of Grover's quantum search algorithm to date. In addition, we develop new counterfactual computation protocols that enable unconditional and completely deterministic operation. These methods stimulated a debate in the literature, on the meaning of counterfactuality in quantum processes, which we also discuss. The spin Hall effect of light entails tiny spin-dependent displacements, unsuspected until 2004, of a beam of light when it changes propagation direction. The first experimental demonstration of the effect during refraction at an air-glass interface is presented, together with a novel enabling metrological tool relying on the concepts of quantum weak measurements. Extensions of the effect to smoothly varying media are also presented, along with utilization of a time-varying version of the weak measurement techniques. Our approach to ultra-high-efficiency photon detection develops and extends a recent novel non-solid-state scheme for photo-detection based on atomic vapors. This approach is in principle capable of resolving the number of photons in a pulse, can be extended to non-destructive detection of photons, and most importantly is proposed to operate with single-photon detection efficiencies exceeding 99%, ideally without dark counts. Such a detector would have tremendous implications, e.g., for optical quantum information processing. The feasibility of operation of this approach at the desired level is studied theoretically and several promising physical systems are investigated.

  9. Nonlinear photonic metasurfaces

    NASA Astrophysics Data System (ADS)

    Li, Guixin; Zhang, Shuang; Zentgraf, Thomas

    2017-03-01

    Compared with conventional optical elements, 2D photonic metasurfaces, consisting of arrays of antennas with subwavelength thickness (the 'meta-atoms'), enable the manipulation of light-matter interactions on more compact platforms. The use of metasurfaces with spatially varying arrangements of meta-atoms that have subwavelength lateral resolution allows control of the polarization, phase and amplitude of light. Many exotic phenomena have been successfully demonstrated in linear optics; however, to meet the growing demand for the integration of more functionalities into a single optoelectronic circuit, the tailorable nonlinear optical properties of metasurfaces will also need to be exploited. In this Review, we discuss the design of nonlinear photonic metasurfaces — in particular, the criteria for choosing the materials and symmetries of the meta-atoms — for the realization of nonlinear optical chirality, nonlinear geometric Berry phase and nonlinear wavefront engineering. Finally, we survey the application of nonlinear photonic metasurfaces in optical switching and modulation, and we conclude with an outlook on their use for terahertz nonlinear optics and quantum information processing.

  10. Repurposing Blu-ray movie discs as quasi-random nanoimprinting templates for photon management

    NASA Astrophysics Data System (ADS)

    Smith, Alexander J.; Wang, Chen; Guo, Dongning; Sun, Cheng; Huang, Jiaxing

    2014-11-01

    Quasi-random nanostructures have attracted significant interests for photon management purposes. To optimize such patterns, typically very expensive fabrication processes are needed to create the pre-designed, subwavelength nanostructures. While quasi-random photonic nanostructures are abundant in nature (for example, in structural coloration), interestingly, they also exist in Blu-ray movie discs, an already mass-produced consumer product. Here we uncover that Blu-ray disc patterns are surprisingly well suited for light-trapping applications. While the algorithms in the Blu-ray industrial standard were developed with the intention of optimizing data compression and error tolerance, they have also created quasi-random arrangement of islands and pits on the final media discs that are nearly optimized for photon management over the solar spectrum, regardless of the information stored on the discs. As a proof-of-concept, imprinting polymer solar cells with the Blu-ray patterns indeed increases their efficiencies. Simulation suggests that Blu-ray patterns could be broadly applied for solar cells made of other materials.

  11. A monolithically integrated polarization entangled photon pair source on a silicon chip

    PubMed Central

    Matsuda, Nobuyuki; Le Jeannic, Hanna; Fukuda, Hiroshi; Tsuchizawa, Tai; Munro, William John; Shimizu, Kaoru; Yamada, Koji; Tokura, Yasuhiro; Takesue, Hiroki

    2012-01-01

    Integrated photonic circuits are one of the most promising platforms for large-scale photonic quantum information systems due to their small physical size and stable interferometers with near-perfect lateral-mode overlaps. Since many quantum information protocols are based on qubits defined by the polarization of photons, we must develop integrated building blocks to generate, manipulate, and measure the polarization-encoded quantum state on a chip. The generation unit is particularly important. Here we show the first integrated polarization-entangled photon pair source on a chip. We have implemented the source as a simple and stable silicon-on-insulator photonic circuit that generates an entangled state with 91 ± 2% fidelity. The source is equipped with versatile interfaces for silica-on-silicon or other types of waveguide platforms that accommodate the polarization manipulation and projection devices as well as pump light sources. Therefore, we are ready for the full-scale implementation of photonic quantum information systems on a chip. PMID:23150781

  12. Qubits, qutrits, and ququads stored in single photons from an atom-cavity system

    NASA Astrophysics Data System (ADS)

    Holleczek, Annemarie; Barter, Oliver; Langfahl-Klabes, Gunnar; Kuhn, Axel

    2015-03-01

    One of today's challenge to realize computing based on quantum mechanics is to reliably and scalably encode information in quantum systems. Here, we present a photon source to on-demand deliver photonic quantum bits of information based on a strongly coupled atom-cavity system. It operates intermittently for periods of up to 100μs, with a single-photon repetition rate of 1MHz, and an intra-cavity production e!ciency of up to 85%. Due to the photons inherent coherence time of 500ns and our ability to arbitrarily shape their amplitude and phase profile we time-bin encode information within one photon. To do so, the spatio-temporal envelope of a single photon is sub-divided in d time bins which allows for the delivery of arbitrary qu-d-its. The latter is done with a fidelity of > 95% for qubits, and 94% for qutrits verified using a newly developed time-resolved quantum-homodyne technique.

  13. Chip-integrated optical power limiter based on an all-passive micro-ring resonator

    NASA Astrophysics Data System (ADS)

    Yan, Siqi; Dong, Jianji; Zheng, Aoling; Zhang, Xinliang

    2014-10-01

    Recent progress in silicon nanophotonics has dramatically advanced the possible realization of large-scale on-chip optical interconnects integration. Adopting photons as information carriers can break the performance bottleneck of electronic integrated circuit such as serious thermal losses and poor process rates. However, in integrated photonics circuits, few reported work can impose an upper limit of optical power therefore prevent the optical device from harm caused by high power. In this study, we experimentally demonstrate a feasible integrated scheme based on a single all-passive micro-ring resonator to realize the optical power limitation which has a similar function of current limiting circuit in electronics. Besides, we analyze the performance of optical power limiter at various signal bit rates. The results show that the proposed device can limit the signal power effectively at a bit rate up to 20 Gbit/s without deteriorating the signal. Meanwhile, this ultra-compact silicon device can be completely compatible with the electronic technology (typically complementary metal-oxide semiconductor technology), which may pave the way of very large scale integrated photonic circuits for all-optical information processors and artificial intelligence systems.

  14. High-dimensional Controlled-phase Gate Between a 2 N -dimensional Photon and N Three-level Artificial Atoms

    NASA Astrophysics Data System (ADS)

    Ma, Yun-Ming; Wang, Tie-Jun

    2017-10-01

    Higher-dimensional quantum system is of great interest owing to the outstanding features exhibited in the implementation of novel fundamental tests of nature and application in various quantum information tasks. High-dimensional quantum logic gate is a key element in scalable quantum computation and quantum communication. In this paper, we propose a scheme to implement a controlled-phase gate between a 2 N -dimensional photon and N three-level artificial atoms. This high-dimensional controlled-phase gate can serve as crucial components of the high-capacity, long-distance quantum communication. We use the high-dimensional Bell state analysis as an example to show the application of this device. Estimates on the system requirements indicate that our protocol is realizable with existing or near-further technologies. This scheme is ideally suited to solid-state integrated optical approaches to quantum information processing, and it can be applied to various system, such as superconducting qubits coupled to a resonator or nitrogen-vacancy centers coupled to a photonic-band-gap structures.

  15. Knowledge, as the Result of the Processed Information by Human's Sub-particles (substrings)/Mind in our Brain

    NASA Astrophysics Data System (ADS)

    Gholibeigian, Hassan

    In my vision, there are four animated sub-particles (mater, plant, animal and human sub-particles) as the origin of the life and creator of momentum in each fundamental particle (string). They communicate with dimension of information which is nested with space-time for getting a package of information in each Planck time. They are link-point between dimension of information and space-time. Sub-particle which identifies its fundamental particle, processes the package of information for finding its next step. Processed information carry always by fundamental particles as the history of the universe and enhance its entropy. My proposed formula for calculating number of packages is I =tP- 1 . τ , Planck time tP, and τ is fundamental particle's lifetime. For example a photon needs processes 1 . 8 ×1043 packages of information for finding its path in a second. Duration of each process is faster than light speed. In our bodies, human's sub-particles (substrings) communicate with dimension of information and get packages of information including standard ethics for process and finding their next step. The processed information transforms to knowledge in our mind. This knowledge is always carried by us. Knowledge, as the Result of the Processed Information by Human's Sub-particles (sub-strings)/Mind in our Brain.

  16. The S-Process Branching-Point at 205PB

    NASA Astrophysics Data System (ADS)

    Tonchev, Anton; Tsoneva, N.; Bhatia, C.; Arnold, C. W.; Goriely, S.; Hammond, S. L.; Kelley, J. H.; Kwan, E.; Lenske, H.; Piekarewicz, J.; Raut, R.; Rusev, G.; Shizuma, T.; Tornow, W.

    2017-09-01

    Accurate neutron-capture cross sections for radioactive nuclei near the line of beta stability are crucial for understanding s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. We consider photon scattering using monoenergetic and 100% linearly polarized photon beams to obtain the photoabsorption cross section on 206Pb below the neutron separation energy. This observable becomes an essential ingredient in the Hauser-Feshbach statistical model for calculations of capture cross sections on 205Pb. The newly obtained photoabsorption information is also used to estimate the Maxwellian-averaged radiative cross section of 205Pb(n,g)206Pb at 30 keV. The astrophysical impact of this measurement on s-process nucleosynthesis will be discussed. This work was performed under the auspices of US DOE by LLNL under Contract DE-AC52-07NA27344.

  17. Toward high fidelity spectral sensing and RF signal processing in silicon photonic and nano-opto-mechanical platforms

    NASA Astrophysics Data System (ADS)

    Siddiqui, Aleem; Reinke, Charles; Shin, Heedeuk; Jarecki, Robert L.; Starbuck, Andrew L.; Rakich, Peter

    2017-05-01

    The performance of electronic systems for radio-frequency (RF) spectrum analysis is critical for agile radar and communications systems, ISR (intelligence, surveillance, and reconnaissance) operations in challenging electromagnetic (EM) environments, and EM-environment situational awareness. While considerable progress has been made in size, weight, and power (SWaP) and performance metrics in conventional RF technology platforms, fundamental limits make continued improvements increasingly difficult. Alternatively, we propose employing cascaded transduction processes in a chip-scale nano-optomechanical system (NOMS) to achieve a spectral sensor with exceptional signal-linearity, high dynamic range, narrow spectral resolution and ultra-fast sweep times. By leveraging the optimal capabilities of photons and phonons, the system we pursue in this work has performance metrics scalable well beyond the fundamental limitations inherent to all electronic systems. In our device architecture, information processing is performed on wide-bandwidth RF-modulated optical signals by photon-mediated phononic transduction of the modulation to the acoustical-domain for narrow-band filtering, and then back to the optical-domain by phonon-mediated phase modulation (the reverse process). Here, we rely on photonics to efficiently distribute signals for parallel processing, and on phononics for effective and flexible RF-frequency manipulation. This technology is used to create RF-filters that are insensitive to the optical wavelength, with wide center frequency bandwidth selectivity (1-100GHz), ultra-narrow filter bandwidth (1-100MHz), and high dynamic range (70dB), which we will present. Additionally, using this filter as a building block, we will discuss current results and progress toward demonstrating a multichannel-filter with a bandwidth of < 10MHz per channel, while minimizing cumulative optical/acoustic/optical transduced insertion-loss to ideally < 10dB. These proposed metric represent significant improvements over RF-platforms.

  18. Photon-Limited Information in High Resolution Laser Ranging

    DTIC Science & Technology

    2014-05-28

    entangled photons generated by spontaneous parametric down-conversion of a chirped source to perform ranging measurements. Summary of the Most... Matlab program to collect the photon counts from the time to digital converter (TDC). This entailed setting up Matlab to talk to the TDC to get the...SECURITY CLASSIFICATION OF: This project is an effort under the Information in a Photon (InPho) program at DARPA\\DSO. Its purpose is to investigate

  19. Schrodinger's catapult II: entanglement between stationary and flying fields

    NASA Astrophysics Data System (ADS)

    Pfaff, W.; Axline, C.; Burkhart, L.; Vool, U.; Reinhold, P.; Frunzio, L.; Jiang, L.; Devoret, M.; Schoelkopf, R.

    Entanglement between nodes is an elementary resource in a quantum network. An important step towards its realization is entanglement between stationary and flying states. Here we experimentally demonstrate entanglement generation between a long-lived cavity memory and traveling mode in circuit QED. A large on/off ratio and fast control over a parametric mixing process allow us to realize conversion with tunable magnitude and duration between standing and flying mode. In the case of half-conversion, we observe correlations between the standing and flying state that confirm the generation of entangled states. We show this for both single-photon and multi-photon states, paving the way for error-correctable remote entanglement. Our system could serve as an essential component in a modular architecture for error-protected quantum information processing.

  20. ITMO Photonics: center of excellence

    NASA Astrophysics Data System (ADS)

    Voznesenskaya, Anna; Bougrov, Vladislav; Kozlov, Sergey; Vasilev, Vladimir

    2016-09-01

    ITMO University, the leading Russian center in photonics research and education, has the mission to train highlyqualified competitive professionals able to act in conditions of fast-changing world. This paradigm is implemented through creation of a strategic academic unit ITMO Photonics, the center of excellence concentrating organizational, scientific, educational, financial, laboratory and human resources. This Center has the following features: dissemination of breakthrough scientific results in photonics such as advanced photonic materials, ultrafast optical and quantum information, laser physics, engineering and technologies, into undergraduate and graduate educational programs through including special modules into the curricula and considerable student's research and internships; transformation of the educational process in accordance with the best international educational practices, presence in the global education market in the form of joint educational programs with leading universities, i.e. those being included in the network programs of international scientific cooperation, and international accreditation of educational programs; development of mechanisms for the commercialization of innovative products - results of scientific research; securing financial sustainability of research in the field of photonics of informationcommunication systems via funding increase and the diversification of funding sources. Along with focusing on the research promotion, the Center is involved in science popularization through such projects as career guidance for high school students; interaction between student's chapters of international optical societies; invited lectures of World-famous experts in photonics; short educational programs in optics, photonics and light engineering for international students; contests, Olympics and grants for talented young researchers; social events; interactive demonstrations.

  1. Integrated quantum photonic sensor based on Hong-Ou-Mandel interference.

    PubMed

    Basiri-Esfahani, Sahar; Myers, Casey R; Armin, Ardalan; Combes, Joshua; Milburn, Gerard J

    2015-06-15

    Photonic-crystal-based integrated optical systems have been used for a broad range of sensing applications with great success. This has been motivated by several advantages such as high sensitivity, miniaturization, remote sensing, selectivity and stability. Many photonic crystal sensors have been proposed with various fabrication designs that result in improved optical properties. In parallel, integrated optical systems are being pursued as a platform for photonic quantum information processing using linear optics and Fock states. Here we propose a novel integrated Fock state optical sensor architecture that can be used for force, refractive index and possibly local temperature detection. In this scheme, two coupled cavities behave as an "effective beam splitter". The sensor works based on fourth order interference (the Hong-Ou-Mandel effect) and requires a sequence of single photon pulses and consequently has low pulse power. Changes in the parameter to be measured induce variations in the effective beam splitter reflectivity and result in changes to the visibility of interference. We demonstrate this generic scheme in coupled L3 photonic crystal cavities as an example and find that this system, which only relies on photon coincidence detection and does not need any spectral resolution, can estimate forces as small as 10(-7) Newtons and can measure one part per million change in refractive index using a very low input power of 10(-10)W. Thus linear optical quantum photonic architectures can achieve comparable sensor performance to semiclassical devices.

  2. The analysis of photon pair source at telecom wavelength based on the BBO crystal (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gajewski, Andrzej; Kolenderski, Piotr L.

    2016-10-01

    There are several problems that must be solved in order to increase the distance of quantum communication protocols based on photons as an information carriers. One of them is the dispersion, whose effects can be minimized by engineering spectral properties of transmitted photons. In particular, it is expected that positively correlated photon pairs can be very useful. We present the full characterization of a source of single photon pairs at a telecom wavelength based on type II spontaneous parametric down conversion (SPDC) process in a beta-barium borate (BBO) crystal. In the type II process, a pump photon, which is polarized extraordinarily, splits in a nonlinear medium into signal and idler photons, which are polarized perpendicularly to each other. In order for the process to be efficient a phase matching condition must be fulfilled. These conditions originate from momentum and energy conservation rules and put severe restrictions on source parameters. Seemingly, these conditions force the photon pair to be negatively correlated in their spectral domain. However, it is possible to achieve positive correlation for pulsed pumping. The experimentally available degrees of freedom of a source are the width of the pumping beam, the collected modes' widths, the length of the nonlinear crystal and the duration of the pumping pulse. In our numerical model we use the following figures of merit: the pair production rate, the efficiency of photon coupling into a single mode fiber, the spectral correlation of the coupled photon pair. The last one is defined as the Pearson correlation parameter for a joint spectral distribution. The aim here is to find the largest positive spectral correlation and the highest coupling efficiency. By resorting to the numerical model Ref. [1] we showed in Ref. [2], that by careful adjustment of the pump's and the collected modes' characteristics, one can optimize any of the source's parameters. Our numerical outcomes conform to the experimental results presented in Refs [3,4]. Here we investigate typical, experimentally available source parameters: the widths of the pump beam and collected modes ranging from 20μm to 500m, the crystal length ranging from 1mm to 7.5mm while the pulse duration is set to 50fs, 100fs or 150fs. We achieve the correlation coefficient value as high as approximately 0.8, or - for different values of parameters - coupling efficiency equal to 0.76.

  3. Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser

    PubMed Central

    Jin, Rui-Bo; Shimizu, Ryosuke; Morohashi, Isao; Wakui, Kentaro; Takeoka, Masahiro; Izumi, Shuro; Sakamoto, Takahide; Fujiwara, Mikio; Yamashita, Taro; Miki, Shigehito; Terai, Hirotaka; Wang, Zhen; Sasaki, Masahide

    2014-01-01

    Efficient generation and detection of indistinguishable twin photons are at the core of quantum information and communications technology (Q-ICT). These photons are conventionally generated by spontaneous parametric down conversion (SPDC), which is a probabilistic process, and hence occurs at a limited rate, which restricts wider applications of Q-ICT. To increase the rate, one had to excite SPDC by higher pump power, while it inevitably produced more unwanted multi-photon components, harmfully degrading quantum interference visibility. Here we solve this problem by using recently developed 10 GHz repetition-rate-tunable comb laser, combined with a group-velocity-matched nonlinear crystal, and superconducting nanowire single photon detectors. They operate at telecom wavelengths more efficiently with less noises than conventional schemes, those typically operate at visible and near infrared wavelengths generated by a 76 MHz Ti Sapphire laser and detected by Si detectors. We could show high interference visibilities, which are free from the pump-power induced degradation. Our laser, nonlinear crystal, and detectors constitute a powerful tool box, which will pave a way to implementing quantum photonics circuits with variety of good and low-cost telecom components, and will eventually realize scalable Q-ICT in optical infra-structures. PMID:25524646

  4. Signatures of Hong-Ou-Mandel interference at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Woolley, M. J.; Lang, C.; Eichler, C.; Wallraff, A.; Blais, A.

    2013-10-01

    Two-photon quantum interference at a beam splitter, commonly known as Hong-Ou-Mandel interference, is a fundamental demonstration of the quantum mechanical nature of electromagnetic fields and a key component of various quantum information processing protocols. The phenomenon was recently demonstrated with microwave-frequency photons by Lang et al (2013 Nature Phys. 9 345-8). This experiment employed circuit QED systems as sources of microwave photons, and was based on the measurement of second-order cross-correlation and auto-correlation functions of the microwave fields at the outputs of the beam splitter using linear detectors. Here we present the calculation of these correlation functions for the cases of inputs corresponding to: (i) trains of pulsed Gaussian or Lorentzian single microwave photons and (ii) resonant fluorescent microwave fields from continuously driven circuit QED systems. In both cases, the signature of two-photon quantum interference is a suppression of the second-order cross-correlation function for small delays. The experiment described in Lang et al (2013) was performed with trains of Lorentzian single photons, and very good agreement with experimental data is obtained. The results are relevant not only to interference experiments using circuit QED systems, but any such setup with highly controllable sources and time-resolved detection.

  5. Label-free NIR reflectance imaging as a complimentary tool for two-photon fluorescence microscopy: multimodal investigation of stroke (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Allegra Mascaro, Anna Letizia; Costantini, Irene; Margoni, Emilia; Iannello, Giulio; Bria, Alessandro; Sacconi, Leonardo; Pavone, Francesco S.

    2016-03-01

    Two-photon imaging combined with targeted fluorescent indicators is extensively used for visualizing critical features of brain functionality and structural plasticity. Back-scattered photons from the NIR laser provide complimentary information without introducing any exogenous labelling. Here, we describe a versatile approach that, by collecting the reflected NIR light, provides structural details on the myelinated axons and blood vessels in the brain, both in fixed samples and in live animals. Indeed, by combining NIR reflectance and two-photon imaging of a slice of hippocampus from Thy1-GFPm mice, we show the presence of randomly oriented axons intermingled with sparsely fluorescent neuronal processes. The back-scattered photons guide the contextualization of the fluorescence structure within brain atlas thanks to the recognition of characteristic hippocampal structures. Label-free detection of axonal elongations over the layer 2/3 of mouse cortex under a cranial window was also possible in live brain. Finally, blood flow could be measured in vivo, thus validating label free NIR reflectance as a tool for monitoring hemodynamic fluctuations. The prospective versatility of this label-free technique complimentary to two-photon fluorescence microscopy is demonstrated in a mouse model of photothrombotic stroke in which the axonal degeneration and blood flow remodeling can be investigated simultaneously.

  6. A dynamic system with digital lock-in-photon-counting for pharmacokinetic diffuse fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Yin, Guoyan; Zhang, Limin; Zhang, Yanqi; Liu, Han; Du, Wenwen; Ma, Wenjuan; Zhao, Huijuan; Gao, Feng

    2018-02-01

    Pharmacokinetic diffuse fluorescence tomography (DFT) can describe the metabolic processes of fluorescent agents in biomedical tissue and provide helpful information for tumor differentiation. In this paper, a dynamic DFT system was developed by employing digital lock-in-photon-counting with square wave modulation, which predominates in ultra-high sensitivity and measurement parallelism. In this system, 16 frequency-encoded laser diodes (LDs) driven by self-designed light source system were distributed evenly in the imaging plane and irradiated simultaneously. Meanwhile, 16 detection fibers collected emission light in parallel by the digital lock-in-photon-counting module. The fundamental performances of the proposed system were assessed with phantom experiments in terms of stability, linearity, anti-crosstalk as well as images reconstruction. The results validated the availability of the proposed dynamic DFT system.

  7. Quantum optical signatures in strong-field laser physics: Infrared photon counting in high-order-harmonic generation.

    PubMed

    Gonoskov, I A; Tsatrafyllis, N; Kominis, I K; Tzallas, P

    2016-09-07

    We analytically describe the strong-field light-electron interaction using a quantized coherent laser state with arbitrary photon number. We obtain a light-electron wave function which is a closed-form solution of the time-dependent Schrödinger equation (TDSE). This wave function provides information about the quantum optical features of the interaction not accessible by semi-classical theories. With this approach we can reveal the quantum optical properties of high harmonic generation (HHG) process in gases by measuring the photon statistics of the transmitted infrared (IR) laser radiation. This work can lead to novel experiments in high-resolution spectroscopy in extreme-ultraviolet (XUV) and attosecond science without the need to measure the XUV light, while it can pave the way for the development of intense non-classical light sources.

  8. Low-photon-number optical switch and AND/OR logic gates based on quantum dot-bimodal cavity coupling system.

    PubMed

    Ma, Shen; Ye, Han; Yu, Zhong-Yuan; Zhang, Wen; Peng, Yi-Wei; Cheng, Xiang; Liu, Yu-Min

    2016-01-11

    We propose a new scheme based on quantum dot-bimodal cavity coupling system to realize all-optical switch and logic gates in low-photon-number regime. Suppression of mode transmission due to the destructive interference effect is theoretically demonstrated by driving the cavity with two orthogonally polarized pulsed lasers at certain pulse delay. The transmitted mode can be selected by designing laser pulse sequence. The optical switch with high on-off ratio emerges when considering one driving laser as the control. Moreover, the AND/OR logic gates based on photon polarization are achieved by cascading the coupling system. Both proposed optical switch and logic gates work well in ultra-low energy magnitude. Our work may enable various applications of all-optical computing and quantum information processing.

  9. Low-photon-number optical switch and AND/OR logic gates based on quantum dot-bimodal cavity coupling system

    PubMed Central

    Ma, Shen; Ye, Han; Yu, Zhong-Yuan; Zhang, Wen; Peng, Yi-Wei; Cheng, Xiang; Liu, Yu-Min

    2016-01-01

    We propose a new scheme based on quantum dot-bimodal cavity coupling system to realize all-optical switch and logic gates in low-photon-number regime. Suppression of mode transmission due to the destructive interference effect is theoretically demonstrated by driving the cavity with two orthogonally polarized pulsed lasers at certain pulse delay. The transmitted mode can be selected by designing laser pulse sequence. The optical switch with high on-off ratio emerges when considering one driving laser as the control. Moreover, the AND/OR logic gates based on photon polarization are achieved by cascading the coupling system. Both proposed optical switch and logic gates work well in ultra-low energy magnitude. Our work may enable various applications of all-optical computing and quantum information processing. PMID:26750557

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ide, Toshiki; Hofmann, Holger F.; JST-CREST, Graduate School of Advanced Sciences of Matter, Hiroshima University, Kagamiyama 1-3-1, Higashi Hiroshima 739-8530

    The information encoded in the polarization of a single photon can be transferred to a remote location by two-channel continuous-variable quantum teleportation. However, the finite entanglement used in the teleportation causes random changes in photon number. If more than one photon appears in the output, the continuous-variable teleportation accidentally produces clones of the original input photon. In this paper, we derive the polarization statistics of the N-photon output components and show that they can be decomposed into an optimal cloning term and completely unpolarized noise. We find that the accidental cloning of the input photon is nearly optimal at experimentallymore » feasible squeezing levels, indicating that the loss of polarization information is partially compensated by the availability of clones.« less

  11. CMOS-compatible photonic devices for single-photon generation

    NASA Astrophysics Data System (ADS)

    Xiong, Chunle; Bell, Bryn; Eggleton, Benjamin J.

    2016-09-01

    Sources of single photons are one of the key building blocks for quantum photonic technologies such as quantum secure communication and powerful quantum computing. To bring the proof-of-principle demonstration of these technologies from the laboratory to the real world, complementary metal-oxide-semiconductor (CMOS)-compatible photonic chips are highly desirable for photon generation, manipulation, processing and even detection because of their compactness, scalability, robustness, and the potential for integration with electronics. In this paper, we review the development of photonic devices made from materials (e.g., silicon) and processes that are compatible with CMOS fabrication facilities for the generation of single photons.

  12. Quantum-classical boundary for precision optical phase estimation

    NASA Astrophysics Data System (ADS)

    Birchall, Patrick M.; O'Brien, Jeremy L.; Matthews, Jonathan C. F.; Cable, Hugo

    2017-12-01

    Understanding the fundamental limits on the precision to which an optical phase can be estimated is of key interest for many investigative techniques utilized across science and technology. We study the estimation of a fixed optical phase shift due to a sample which has an associated optical loss, and compare phase estimation strategies using classical and nonclassical probe states. These comparisons are based on the attainable (quantum) Fisher information calculated per number of photons absorbed or scattered by the sample throughout the sensing process. We find that for a given number of incident photons upon the unknown phase, nonclassical techniques in principle provide less than a 20 % reduction in root-mean-square error (RMSE) in comparison with ideal classical techniques in multipass optical setups. Using classical techniques in a different optical setup that we analyze, which incorporates additional stages of interference during the sensing process, the achievable reduction in RMSE afforded by nonclassical techniques falls to only ≃4 % . We explain how these conclusions change when nonclassical techniques are compared to classical probe states in nonideal multipass optical setups, with additional photon losses due to the measurement apparatus.

  13. Entanglement of Ince-Gauss Modes of Photons

    NASA Astrophysics Data System (ADS)

    Krenn, Mario; Fickler, Robert; Plick, William; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton

    2012-02-01

    Ince-Gauss modes are solutions of the paraxial wave equation in elliptical coordinates [1]. They are natural generalizations both of Laguerre-Gauss and of Hermite-Gauss modes, which have been used extensively in quantum optics and quantum information processing over the last decade [2]. Ince-Gauss modes are described by one additional real parameter -- ellipticity. For each value of ellipticity, a discrete infinite-dimensional Hilbert space exists. This conceptually new degree of freedom could open up exciting possibilities for higher-dimensional quantum optical experiments. We present the first entanglement of non-trivial Ince-Gauss Modes. In our setup, we take advantage of a spontaneous parametric down-conversion process in a non-linear crystal to create entangled photon pairs. Spatial light modulators (SLMs) are used as analyzers. [1] Miguel A. Bandres and Julio C. Guti'errez-Vega ``Ince Gaussian beams", Optics Letters, Vol. 29, Issue 2, 144-146 (2004) [2] Adetunmise C. Dada, Jonathan Leach, Gerald S. Buller, Miles J. Padgett, and Erika Andersson, ``Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities", Nature Physics 7, 677-680 (2011)

  14. Total teleportation of a single-photon state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humble, Travis S; Bennink, Ryan S; Grice, Warren P

    2008-01-01

    Recent demonstrations of teleportation have transferred quantum information encoded into either polarization or field-quadrature degrees of freedom (DOFs), but an outstanding question is how to simultaneously teleport quantum information encoded into multiple DOFs. We describe how the transverse-spatial, spectral and polarization states of a single photon can be simultaneously teleported using a pair of multimode, polarization-entangled photons derived from spontaneous parametric down-conversion. Furthermore, when the initial photon pair is maximally entangled in the spatial, spectral, and polarization DOFs then the photon s full quantum state can be reliably teleported using a Bell-state measurement based on sum-frequency generation.

  15. Frequency-resolved Monte Carlo.

    PubMed

    López Carreño, Juan Camilo; Del Valle, Elena; Laussy, Fabrice P

    2018-05-03

    We adapt the Quantum Monte Carlo method to the cascaded formalism of quantum optics, allowing us to simulate the emission of photons of known energy. Statistical processing of the photon clicks thus collected agrees with the theory of frequency-resolved photon correlations, extending the range of applications based on correlations of photons of prescribed energy, in particular those of a photon-counting character. We apply the technique to autocorrelations of photon streams from a two-level system under coherent and incoherent pumping, including the Mollow triplet regime where we demonstrate the direct manifestation of leapfrog processes in producing an increased rate of two-photon emission events.

  16. Double Photon Emission Coincidence Imaging using GAGG-SiPM pixel detectors

    NASA Astrophysics Data System (ADS)

    Shimazoe, K.; Uenomachi, M.; Mizumachi, Y.; Takahashi, H.; Masao, Y.; Shoji, Y.; Kamada, K.; Yoshikawa, A.

    2017-12-01

    Single photon emission computed tomography(SPECT) is a useful medical imaging modality using single photon detection from radioactive tracers, such as 99Tc and 111In, however further development of increasing the contrast in the image is still under investigation. A novel method (Double Photon Emission CT / DPECT) using a coincidence detection of two cascade gamma-rays from 111In is proposed and characterized in this study. 111In, which is well-known and commonly used as a SPECT tracer, emits two cascade photons of 171 keV and 245 keV with a short delay of approximately 85 ns. The coincidence detection of two gamma-rays theoretically determines the position in a single point compared with a line in single photon detection and increases the signal to noise ratio drastically. A fabricated pixel detector for this purpose consists of 8 × 8 array of high-resolution type 1.5 mm thickness Ce:GAGG (3.9% @ 662 keV, 6.63g/cm3, C&A Co. Ce:Gd3Ga2.7Al2.3O12 2.5 × 2.5 × 1.5 mm3) crystals coupled a 3 mm pixel SiPM array (Hamamatsu MPPC S13361-2050NS-08). The signal from each pixel is processed and readout using time over threshold (TOT) based parallel processing circuit to extract the energy and timing information. The coincidence was detected by FPGA with the frequency of 400 MHz. Two pixel detectors coupled to parallel-hole collimators are located at the degree of 90 to determine the position and coincidence events (time window =1 μs) are detected and used for making back-projection image. The basic principle of DPECT is characterized including the detection efficiency and timing resolution.

  17. Video-rate hyperspectral two-photon fluorescence microscopy for in vivo imaging

    NASA Astrophysics Data System (ADS)

    Deng, Fengyuan; Ding, Changqin; Martin, Jerald C.; Scarborough, Nicole M.; Song, Zhengtian; Eakins, Gregory S.; Simpson, Garth J.

    2018-02-01

    Fluorescence hyperspectral imaging is a powerful tool for in vivo biological studies. The ability to recover the full spectra of the fluorophores allows accurate classification of different structures and study of the dynamic behaviors during various biological processes. However, most existing methods require significant instrument modifications and/or suffer from image acquisition rates too low for compatibility with in vivo imaging. In the present work, a fast (up to 18 frames per second) hyperspectral two-photon fluorescence microscopy approach was demonstrated. Utilizing the beamscanning hardware inherent in conventional multi-photon microscopy, the angle dependence of the generated fluorescence signal as a function beam's position allowed the system to probe of a different potion of the spectrum at every single scanning line. An iterative algorithm to classify the fluorophores recovered spectra with up to 2,400 channels using a custom high-speed 16-channel photon multiplier tube array. Several dynamic samples including live fluorescent labeled C. elegans were imaged at video rate. Fluorescence spectra recovered using no a priori spectral information agreed well with those obtained by fluorimetry. This system required minimal changes to most existing beam-scanning multi-photon fluorescence microscopes, already accessible in many research facilities.

  18. Resource theory of non-Gaussian operations

    NASA Astrophysics Data System (ADS)

    Zhuang, Quntao; Shor, Peter W.; Shapiro, Jeffrey H.

    2018-05-01

    Non-Gaussian states and operations are crucial for various continuous-variable quantum information processing tasks. To quantitatively understand non-Gaussianity beyond states, we establish a resource theory for non-Gaussian operations. In our framework, we consider Gaussian operations as free operations, and non-Gaussian operations as resources. We define entanglement-assisted non-Gaussianity generating power and show that it is a monotone that is nonincreasing under the set of free superoperations, i.e., concatenation and tensoring with Gaussian channels. For conditional unitary maps, this monotone can be analytically calculated. As examples, we show that the non-Gaussianity of ideal photon-number subtraction and photon-number addition equal the non-Gaussianity of the single-photon Fock state. Based on our non-Gaussianity monotone, we divide non-Gaussian operations into two classes: (i) the finite non-Gaussianity class, e.g., photon-number subtraction, photon-number addition, and all Gaussian-dilatable non-Gaussian channels; and (ii) the diverging non-Gaussianity class, e.g., the binary phase-shift channel and the Kerr nonlinearity. This classification also implies that not all non-Gaussian channels are exactly Gaussian dilatable. Our resource theory enables a quantitative characterization and a first classification of non-Gaussian operations, paving the way towards the full understanding of non-Gaussianity.

  19. Ultra-weak photon emission as a non-invasive tool for monitoring of oxidative processes in the epidermal cells of human skin: comparative study on the dorsal and the palm side of the hand.

    PubMed

    Rastogi, Anshu; Pospísil, Pavel

    2010-08-01

    All living organisms emit spontaneous ultra-weak photon emission as a result of cellular metabolic processes. Exposure of living organisms to exogenous factors results in oxidative processes and enhancement in ultra-weak photon emission. Here, hydrogen peroxide (H(2)O(2)), as a strongly oxidizing molecule, was used to induce oxidative processes and enhance ultra-weak photon emission in human hand skin. The presented work intends to compare both spontaneous and peroxide-induced ultra-weak photon emission from the epidermal cells on the dorsal and the palm side of the hand. A highly sensitive photomultiplier tube and a charge-coupled device camera were used to detect ultra-weak photon emission from human hand skin. Spontaneous ultra-weak photon emission from the epidermal cells on the dorsal side of the hand was 4 counts/s. Topical application of 500 mM H(2)O(2) to the dorsal side of the hand caused enhancement in ultra-weak photon emission to 40 counts/s. Interestingly, both spontaneous and peroxide-induced ultra-weak photon emission from the epidermal cells on the palm side of the hand were observed to increase twice their values, i.e. 8 and 80 counts/s, respectively. Similarly, the two-dimensional image of ultra-weak photon emission observed after topical application of H(2)O(2) to human skin reveals that photon emission from the palm side exceeds the photon emission from the dorsal side of the hand. The results presented indicate that the ultra-weak photon emission originating from the epidermal cells on the dorsal and the palm side of the hand is related to the histological structure of the human hand skin. Ultra-weak photon emission is shown as a non-destructive technique for monitoring of oxidative processes in the epidermal cells of the human hand skin and as a diagnostic tool for skin diseases.

  20. Transition-matrix theory for two-photon ionization of rare-gas atoms and isoelectronic ions with application to argon

    NASA Astrophysics Data System (ADS)

    Starace, Anthony F.; Jiang, Tsin-Fu

    1987-08-01

    A transition-matrix theory for two-photon ionization processes in rare-gas atoms or isoelectronic ions is presented. Uncoupled ordinary differential equations are obtained for the radial functions needed to calculate the two-photon transition amplitude. The implications of these equations are discussed in detail. In particular, the role of correlations involving virtually excited electron pairs, which are known to be essential to the description of single-photon processes, is examined for multiphoton ionization processes. Additionally, electron scattering interactions between two electron-hole pairs are introduced into our transition amplitude in the boson approximation since these have been found important in two-photon ionization of xenon by L'Huillier and Wendin [J. Phys. B 20, L37 (1987)]. Application of our theory is made to two-photon ionization of the 3p subshell of argon below the one-photon ionization threshold. Our results are compared to previous calculations of McGuire [Phys. Rev. A 24, 835 (1981)], of Moccia, Rahman, and Rizzo [J. Phys. B 16, 2737 (1983)], and of Pindzola and Kelly [Phys. Rev. A 11, 1543 (1975)]. Results are presented for both circularly and linearly polarized photons. Among our findings are, firstly, that the electron scattering interactions, which have not been included in previous calculations for argon, produce a substantial reduction in the two-photon single-ionization cross section below the one-photon ionization threshold, which is in agreement with findings of L'Huillier and Wendin for xenon. Secondly, we find that de-excitation of virtually excited electron pairs by absorption of a photon is important for describing the interaction of the atom with the photon field, as in the case of single-photon ionization processes, but that further excitation of virtually excited electron pairs by the photon field has completely negligible effects, indicating a major simplification of the theory for higher-order absorption processes.

  1. Photonic sensing in highly concentrated biotechnical processes by photon density wave spectroscopy

    NASA Astrophysics Data System (ADS)

    Hass, Roland; Sandmann, Michael; Reich, Oliver

    2017-04-01

    Photon Density Wave (PDW) spectroscopy is introduced as a new approach for photonic sensing in highly concentrated biotechnical processes. It independently quantifies the absorption and reduced scattering coefficient calibration-free and as a function of time, thus describing the optical properties in the vis/NIR range of the biomaterial during their processing. As examples of industrial relevance, enzymatic milk coagulation, beer mashing, and algae cultivation in photo bioreactors are discussed.

  2. Quantum imaging with undetected photons.

    PubMed

    Lemos, Gabriela Barreto; Borish, Victoria; Cole, Garrett D; Ramelow, Sven; Lapkiewicz, Radek; Zeilinger, Anton

    2014-08-28

    Information is central to quantum mechanics. In particular, quantum interference occurs only if there exists no information to distinguish between the superposed states. The mere possibility of obtaining information that could distinguish between overlapping states inhibits quantum interference. Here we introduce and experimentally demonstrate a quantum imaging concept based on induced coherence without induced emission. Our experiment uses two separate down-conversion nonlinear crystals (numbered NL1 and NL2), each illuminated by the same pump laser, creating one pair of photons (denoted idler and signal). If the photon pair is created in NL1, one photon (the idler) passes through the object to be imaged and is overlapped with the idler amplitude created in NL2, its source thus being undefined. Interference of the signal amplitudes coming from the two crystals then reveals the image of the object. The photons that pass through the imaged object (idler photons from NL1) are never detected, while we obtain images exclusively with the signal photons (from NL1 and NL2), which do not interact with the object. Our experiment is fundamentally different from previous quantum imaging techniques, such as interaction-free imaging or ghost imaging, because now the photons used to illuminate the object do not have to be detected at all and no coincidence detection is necessary. This enables the probe wavelength to be chosen in a range for which suitable detectors are not available. To illustrate this, we show images of objects that are either opaque or invisible to the detected photons. Our experiment is a prototype in quantum information--knowledge can be extracted by, and about, a photon that is never detected.

  3. Integrated System Technologies for Modular Trapped Ion Quantum Information Processing

    NASA Astrophysics Data System (ADS)

    Crain, Stephen G.

    Although trapped ion technology is well-suited for quantum information science, scalability of the system remains one of the main challenges. One of the challenges associated with scaling the ion trap quantum computer is the ability to individually manipulate the increasing number of qubits. Using micro-mirrors fabricated with micro-electromechanical systems (MEMS) technology, laser beams are focused on individual ions in a linear chain and steer the focal point in two dimensions. Multiple single qubit gates are demonstrated on trapped 171Yb+ qubits and the gate performance is characterized using quantum state tomography. The system features negligible crosstalk to neighboring ions (< 3e-4), and switching speeds comparable to typical single qubit gate times (< 2 mus). In a separate experiment, photons scattered from the 171Yb+ ion are coupled into an optical fiber with 63% efficiency using a high numerical aperture lens (0.6 NA). The coupled photons are directed to superconducting nanowire single photon detectors (SNSPD), which provide a higher detector efficiency (69%) compared to traditional photomultiplier tubes (35%). The total system photon collection efficiency is increased from 2.2% to 3.4%, which allows for fast state detection of the qubit. For a detection beam intensity of 11 mW/cm 2, the average detection time is 23.7 mus with 99.885(7)% detection fidelity. The technologies demonstrated in this thesis can be integrated to form a single quantum register with all of the necessary resources to perform local gates as well as high fidelity readout and provide a photon link to other systems.

  4. Tuning single-photon sources for telecom multi-photon experiments.

    PubMed

    Greganti, Chiara; Schiansky, Peter; Calafell, Irati Alonso; Procopio, Lorenzo M; Rozema, Lee A; Walther, Philip

    2018-02-05

    Multi-photon state generation is of great interest for near-future quantum simulation and quantum computation experiments. To-date spontaneous parametric down-conversion is still the most promising process, even though two major impediments still exist: accidental photon noise (caused by the probabilistic non-linear process) and imperfect single-photon purity (arising from spectral entanglement between the photon pairs). In this work, we overcome both of these difficulties by (1) exploiting a passive temporal multiplexing scheme and (2) carefully optimizing the spectral properties of the down-converted photons using periodically-poled KTP crystals. We construct two down-conversion sources in the telecom wavelength regime, finding spectral purities of > 91%, while maintaining high four-photon count rates. We use single-photon grating spectrometers together with superconducting nanowire single-photon detectors to perform a detailed characterization of our multi-photon source. Our methods provide practical solutions to produce high-quality multi-photon states, which are in demand for many quantum photonics applications.

  5. Nanophotonic rare-earth quantum memory with optically controlled retrieval

    NASA Astrophysics Data System (ADS)

    Zhong, Tian; Kindem, Jonathan M.; Bartholomew, John G.; Rochman, Jake; Craiciu, Ioana; Miyazono, Evan; Bettinelli, Marco; Cavalli, Enrico; Verma, Varun; Nam, Sae Woo; Marsili, Francesco; Shaw, Matthew D.; Beyer, Andrew D.; Faraon, Andrei

    2017-09-01

    Optical quantum memories are essential elements in quantum networks for long-distance distribution of quantum entanglement. Scalable development of quantum network nodes requires on-chip qubit storage functionality with control of the readout time. We demonstrate a high-fidelity nanophotonic quantum memory based on a mesoscopic neodymium ensemble coupled to a photonic crystal cavity. The nanocavity enables >95% spin polarization for efficient initialization of the atomic frequency comb memory and time bin-selective readout through an enhanced optical Stark shift of the comb frequencies. Our solid-state memory is integrable with other chip-scale photon source and detector devices for multiplexed quantum and classical information processing at the network nodes.

  6. Quantum-key-distribution protocol with pseudorandom bases

    NASA Astrophysics Data System (ADS)

    Trushechkin, A. S.; Tregubov, P. A.; Kiktenko, E. O.; Kurochkin, Y. V.; Fedorov, A. K.

    2018-01-01

    Quantum key distribution (QKD) offers a way for establishing information-theoretical secure communications. An important part of QKD technology is a high-quality random number generator for the quantum-state preparation and for post-processing procedures. In this work, we consider a class of prepare-and-measure QKD protocols, utilizing additional pseudorandomness in the preparation of quantum states. We study one of such protocols and analyze its security against the intercept-resend attack. We demonstrate that, for single-photon sources, the considered protocol gives better secret key rates than the BB84 and the asymmetric BB84 protocols. However, the protocol strongly requires single-photon sources.

  7. Photonics

    NASA Astrophysics Data System (ADS)

    Roh, Won B.

    Photonic technologies-based computational systems are projected to be able to offer order-of-magnitude improvements in processing speed, due to their intrinsic architectural parallelism and ultrahigh switching speeds; these architectures also minimize connectors, thereby enhancing reliability, and preclude EMP vulnerability. The use of optoelectronic ICs would also extend weapons capabilities in such areas as automated target recognition, systems-state monitoring, and detection avoidance. Fiber-optics technologies have an information-carrying capacity fully five orders of magnitude greater than copper-wire-based systems; energy loss in transmission is two orders of magnitude lower, and error rates one order of magnitude lower. Attention is being given to ZrF glasses for optical fibers with unprecedentedly low scattering levels.

  8. Experimental entanglement of 25 individually accessible atomic quantum interfaces.

    PubMed

    Pu, Yunfei; Wu, Yukai; Jiang, Nan; Chang, Wei; Li, Chang; Zhang, Sheng; Duan, Luming

    2018-04-01

    A quantum interface links the stationary qubits in a quantum memory with flying photonic qubits in optical transmission channels and constitutes a critical element for the future quantum internet. Entanglement of quantum interfaces is an important step for the realization of quantum networks. Through heralded detection of photon interference, we generate multipartite entanglement between 25 (or 9) individually addressable quantum interfaces in a multiplexed atomic quantum memory array and confirm genuine 22-partite (or 9-partite) entanglement. This experimental entanglement of a record-high number of individually addressable quantum interfaces makes an important step toward the realization of quantum networks, long-distance quantum communication, and multipartite quantum information processing.

  9. Laser-Based Multiphoton Excitation Processes in Combustion Diagnostics

    DTIC Science & Technology

    1990-07-01

    Free Two- Photon Spectroscopy of Hydrogen 1S-2S*," Physical Review Letters, Vol. 34, No. 6, pp.307-309, February 1975. 22. R.C. Sausa, A.J. Alfano , and...Information Agency ATTN: E. Grant ATTN: T.W. Christian West Lafayette, IN 47906 Johns Hopkins Road Laurel, MD 20707 2 Purdue University School of

  10. Quantum interference between transverse spatial waveguide modes.

    PubMed

    Mohanty, Aseema; Zhang, Mian; Dutt, Avik; Ramelow, Sven; Nussenzveig, Paulo; Lipson, Michal

    2017-01-20

    Integrated quantum optics has the potential to markedly reduce the footprint and resource requirements of quantum information processing systems, but its practical implementation demands broader utilization of the available degrees of freedom within the optical field. To date, integrated photonic quantum systems have primarily relied on path encoding. However, in the classical regime, the transverse spatial modes of a multi-mode waveguide have been easily manipulated using the waveguide geometry to densely encode information. Here, we demonstrate quantum interference between the transverse spatial modes within a single multi-mode waveguide using quantum circuit-building blocks. This work shows that spatial modes can be controlled to an unprecedented level and have the potential to enable practical and robust quantum information processing.

  11. Nanoporous hard data: optical encoding of information within nanoporous anodic alumina photonic crystals.

    PubMed

    Santos, Abel; Law, Cheryl Suwen; Pereira, Taj; Losic, Dusan

    2016-04-21

    Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for developing advanced nanophotonic tools for a wide range of applications, including sensing, photonic tagging, self-reporting drug releasing systems and secure encoding of information.

  12. Studies on spatial modes and the correlation anisotropy of entangled photons generated from 2D quadratic nonlinear photonic crystals

    NASA Astrophysics Data System (ADS)

    Luo, X. W.; Xu, P.; Sun, C. W.; Jin, H.; Hou, R. J.; Leng, H. Y.; Zhu, S. N.

    2017-06-01

    Concurrent spontaneous parametric down-conversion (SPDC) processes have proved to be an appealing approach for engineering the path-entangled photonic state with designable and tunable spatial modes. In this work, we propose a general scheme to construct high-dimensional path entanglement and demonstrate the basic properties of concurrent SPDC processes from domain-engineered quadratic nonlinear photonic crystals, including the spatial modes and the photon flux, as well as the anisotropy of spatial correlation under noncollinear quasi-phase-matching geometry. The overall understanding about the performance of concurrent SPDC processes will give valuable references to the construction of compact path entanglement and the development of new types of photonic quantum technologies.

  13. A fully reconfigurable photonic integrated signal processor

    NASA Astrophysics Data System (ADS)

    Liu, Weilin; Li, Ming; Guzzon, Robert S.; Norberg, Erik J.; Parker, John S.; Lu, Mingzhi; Coldren, Larry A.; Yao, Jianping

    2016-03-01

    Photonic signal processing has been considered a solution to overcome the inherent electronic speed limitations. Over the past few years, an impressive range of photonic integrated signal processors have been proposed, but they usually offer limited reconfigurability, a feature highly needed for the implementation of large-scale general-purpose photonic signal processors. Here, we report and experimentally demonstrate a fully reconfigurable photonic integrated signal processor based on an InP-InGaAsP material system. The proposed photonic signal processor is capable of performing reconfigurable signal processing functions including temporal integration, temporal differentiation and Hilbert transformation. The reconfigurability is achieved by controlling the injection currents to the active components of the signal processor. Our demonstration suggests great potential for chip-scale fully programmable all-optical signal processing.

  14. SPADnet: a fully digital, scalable, and networked photonic component for time-of-flight PET applications

    NASA Astrophysics Data System (ADS)

    Bruschini, Claudio; Charbon, Edoardo; Veerappan, Chockalingam; Braga, Leo H. C.; Massari, Nicola; Perenzoni, Matteo; Gasparini, Leonardo; Stoppa, David; Walker, Richard; Erdogan, Ahmet; Henderson, Robert K.; East, Steve; Grant, Lindsay; Játékos, Balázs; Ujhelyi, Ferenc; Erdei, Gábor; Lörincz, Emöke; André, Luc; Maingault, Laurent; Jacolin, David; Verger, L.; Gros d'Aillon, Eric; Major, Peter; Papp, Zoltan; Nemeth, Gabor

    2014-05-01

    The SPADnet FP7 European project is aimed at a new generation of fully digital, scalable and networked photonic components to enable large area image sensors, with primary target gamma-ray and coincidence detection in (Time-of- Flight) Positron Emission Tomography (PET). SPADnet relies on standard CMOS technology, therefore allowing for MRI compatibility. SPADnet innovates in several areas of PET systems, from optical coupling to single-photon sensor architectures, from intelligent ring networks to reconstruction algorithms. It is built around a natively digital, intelligent SPAD (Single-Photon Avalanche Diode)-based sensor device which comprises an array of 8×16 pixels, each composed of 4 mini-SiPMs with in situ time-to-digital conversion, a multi-ring network to filter, carry, and process data produced by the sensors at 2Gbps, and a 130nm CMOS process enabling mass-production of photonic modules that are optically interfaced to scintillator crystals. A few tens of sensor devices are tightly abutted on a single PCB to form a so-called sensor tile, thanks to TSV (Through Silicon Via) connections to their backside (replacing conventional wire bonding). The sensor tile is in turn interfaced to an FPGA-based PCB on its back. The resulting photonic module acts as an autonomous sensing and computing unit, individually detecting gamma photons as well as thermal and Compton events. It determines in real time basic information for each scintillation event, such as exact time of arrival, position and energy, and communicates it to its peers in the field of view. Coincidence detection does therefore occur directly in the ring itself, in a differed and distributed manner to ensure scalability. The selected true coincidence events are then collected by a snooper module, from which they are transferred to an external reconstruction computer using Gigabit Ethernet.

  15. Preface to the special issue on "Integrated Microwave Photonic Signal Processing"

    NASA Astrophysics Data System (ADS)

    Azaña, José; Yao, Jianping

    2016-08-01

    As Guest Editors, we are pleased to introduce this special issue on ;Integrated Microwave Photonic Signal Processing; published by the Elsevier journal Optics Communications. Microwave photonics is a field of growing importance from both scientific and practical application perspectives. The field of microwave photonics is devoted to the study, development and application of optics-based techniques and technologies aimed to the generation, processing, control, characterization and/or distribution of microwave signals, including signals well into the millimeter-wave frequency range. The use of photonic technologies for these microwave applications translates into a number of key advantages, such as the possibility of dealing with high-frequency, wide bandwidth signals with minimal losses and reduced electromagnetic interferences, and the potential for enhanced reconfigurability. The central purpose of this special issue is to provide an overview of the state of the art of generation, processing and characterization technologies for high-frequency microwave signals. It is now widely accepted that the practical success of microwave photonics at a large scale will essentially depend on the realization of high-performance microwave-photonic signal-processing engines in compact and integrated formats, preferably on a chip. Thus, the focus of the issue is on techniques implemented using integrated photonic technologies, with the goal of providing an update of the most recent advances toward realization of this vision.

  16. Methods and apparatuses for detection of radiation with semiconductor image sensors

    DOEpatents

    Cogliati, Joshua Joseph

    2018-04-10

    A semiconductor image sensor is repeatedly exposed to high-energy photons while a visible light obstructer is in place to block visible light from impinging on the sensor to generate a set of images from the exposures. A composite image is generated from the set of images with common noise substantially removed so the composite image includes image information corresponding to radiated pixels that absorbed at least some energy from the high-energy photons. The composite image is processed to determine a set of bright points in the composite image, each bright point being above a first threshold. The set of bright points is processed to identify lines with two or more bright points that include pixels therebetween that are above a second threshold and identify a presence of the high-energy particles responsive to a number of lines.

  17. Imaging immune response of skin mast cells in vivo with two-photon microscopy

    NASA Astrophysics Data System (ADS)

    Li, Chunqiang; Pastila, Riikka K.; Lin, Charles P.

    2012-02-01

    Intravital multiphoton microscopy has provided insightful information of the dynamic process of immune cells in vivo. However, the use of exogenous labeling agents limits its applications. There is no method to perform functional imaging of mast cells, a population of innate tissue-resident immune cells. Mast cells are widely recognized as the effector cells in allergy. Recently their roles as immunoregulatory cells in certain innate and adaptive immune responses are being actively investigated. Here we report in vivo mouse skin mast cells imaging with two-photon microscopy using endogenous tryptophan as the fluorophore. We studied the following processes. 1) Mast cells degranulation, the first step in the mast cell activation process in which the granules are released into peripheral tissue to trigger downstream reactions. 2) Mast cell reconstitution, a procedure commonly used to study mast cells functioning by comparing the data from wild type mice, mast cell-deficient mice, and mast-cell deficient mice reconstituted with bone marrow-derived mast cells (BMMCs). Imaging the BMMCs engraftment in tissue reveals the mast cells development and the efficiency of BMMCs reconstitution. We observed the reconstitution process for 6 weeks in the ear skin of mast cell-deficient Kit wsh/ w-sh mice by two-photon imaging. Our finding is the first instance of imaging mast cells in vivo with endogenous contrast.

  18. Two-photon photoemission from a copper cathode in an Χ-band photoinjector

    DOE PAGES

    Li, H.; Limborg-Deprey, C.; Adolphsen, C.; ...

    2016-02-24

    This study presents two-photon photoemission from a copper cathode in an X-band photoinjector. We experimentally verified that the electron bunch charge from photoemission out of a copper cathode scales with laser intensity (I) square for 400 nm wavelength photons. We compare this two-photon photoemission process with the single photon process at 266 nm. Despite the high reflectivity (R) of the copper surface for 400 nm photons (R=0.48) and higher thermal energy of photoelectrons (two-photon at 200 nm) compared to 266 nm photoelectrons, the quantum efficiency of the two-photon photoemission process (400 nm) exceeds the single-photon process (266 nm) when themore » incident laser intensity is above 300 GW/cm 2. At the same laser pulse energy (E) and other experimental conditions, emitted charge scales inversely with the laser pulse duration. A thermal emittance of 2.7 mm-mrad per mm root mean square (rms) was measured on our cathode which exceeds by sixty percent larger compared to the theoretical predictions, but this discrepancy is similar to previous experimental thermal emittance on copper cathodes with 266 nm photons. The damage of the cathode surface of our first-generation X-band gun from both rf breakdowns and laser impacts mostly explains this result. Using a 400 nm laser can substantially simplify the photoinjector system, and make it an alternative solution for compact pulsed electron sources.« less

  19. Quantum information processing with trapped electrons and superconducting electronics (Open Access, Publisher’s Version)

    DTIC Science & Technology

    2013-07-05

    This content has been downloaded from IOPscience. Please scroll down to see the full text. Download details: IP Address: 198.81.129.186 This content...structures with a quadratic nonlinearity, i.e. electrodes with a quadrupolar potential. The pump for this parametric coupling process is a classical...approximation. The system operates as a parametric frequency converter, with the classical drive providing pump photons which allow coherent coupling between

  20. Brain single-photon emission CT physics principles.

    PubMed

    Accorsi, R

    2008-08-01

    The basic principles of scintigraphy are reviewed and extended to 3D imaging. Single-photon emission computed tomography (SPECT) is a sensitive and specific 3D technique to monitor in vivo functional processes in both clinical and preclinical studies. SPECT/CT systems are becoming increasingly common and can provide accurately registered anatomic information as well. In general, SPECT is affected by low photon-collection efficiency, but in brain imaging, not all of the large FOV of clinical gamma cameras is needed: The use of fan- and cone-beam collimation trades off the unused FOV for increased sensitivity and resolution. The design of dedicated cameras aims at increased angular coverage and resolution by minimizing the distance from the patient. The corrections needed for quantitative imaging are challenging but can take advantage of the relative spatial uniformity of attenuation and scatter. Preclinical systems can provide submillimeter resolution in small animal brain imaging with workable sensitivity.

  1. Detection of orbital angular momentum using a photonic integrated circuit.

    PubMed

    Rui, Guanghao; Gu, Bing; Cui, Yiping; Zhan, Qiwen

    2016-06-20

    Orbital angular momentum (OAM) state of photons offer an attractive additional degree of freedom that has found a variety of applications. Measurement of OAM state, which is a critical task of these applications, demands photonic integrated devices for improved fidelity, miniaturization, and reconfiguration. Here we report the design of a silicon-integrated OAM receiver that is capable of detecting distinct and variable OAM states. Furthermore, the reconfiguration capability of the detector is achieved by applying voltage to the GeSe film to form gratings with alternate states. The resonant wavelength for arbitrary OAM state is demonstrated to be tunable in a quasi-linear manner through adjusting the duty cycle of the gratings. This work provides a viable approach for the realization of a compact integrated OAM detection device with enhanced functionality that may find important applications in optical communications and information processing with OAM states.

  2. Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes.

    PubMed

    Kapitanova, Polina V; Ginzburg, Pavel; Rodríguez-Fortuño, Francisco J; Filonov, Dmitry S; Voroshilov, Pavel M; Belov, Pavel A; Poddubny, Alexander N; Kivshar, Yuri S; Wurtz, Gregory A; Zayats, Anatoly V

    2014-01-01

    The routing of light in a deep subwavelength regime enables a variety of important applications in photonics, quantum information technologies, imaging and biosensing. Here we describe and experimentally demonstrate the selective excitation of spatially confined, subwavelength electromagnetic modes in anisotropic metamaterials with hyperbolic dispersion. A localized, circularly polarized emitter placed at the boundary of a hyperbolic metamaterial is shown to excite extraordinary waves propagating in a prescribed direction controlled by the polarization handedness. Thus, a metamaterial slab acts as an extremely broadband, nearly ideal polarization beam splitter for circularly polarized light. We perform a proof of concept experiment with a uniaxial hyperbolic metamaterial at radio-frequencies revealing the directional routing effect and strong subwavelength λ/300 confinement. The proposed concept of metamaterial-based subwavelength interconnection and polarization-controlled signal routing is based on the photonic spin Hall effect and may serve as an ultimate platform for either conventional or quantum electromagnetic signal processing.

  3. Robust distant-entanglement generation using coherent multiphoton scattering

    NASA Astrophysics Data System (ADS)

    Chan, Ching-Kit; Sham, L. J.

    2013-03-01

    The generation and controllability of entanglement between distant quantum states have been the heart of quantum computation and quantum information processing. Existing schemes for solid state qubit entanglement are based on the single-photon spectroscopy that has the merit of a high fidelity entanglement creation, but with a very limited efficiency. This severely restricts the scalability for a qubit network system. Here, we describe a new distant entanglement protocol using coherent multiphoton scattering. The scheme makes use of the postselection of large and distinguishable photon signals, and has both a high success probability and a high entanglement fidelity. Our result shows that the entanglement generation is robust against photon fluctuations, and has an average entanglement duration within the decoherence time in various qubit systems, based on existing experimental parameters. This research was supported by the U.S. Army Research Office MURI award W911NF0910406 and by NSF grant PHY-1104446.

  4. Diamond photonics platform enabled by femtosecond laser writing

    PubMed Central

    Sotillo, Belén; Bharadwaj, Vibhav; Hadden, J. P.; Sakakura, Masaaki; Chiappini, Andrea; Fernandez, Toney Teddy; Longhi, Stefano; Jedrkiewicz, Ottavia; Shimotsuma, Yasuhiko; Criante, Luigino; Osellame, Roberto; Galzerano, Gianluca; Ferrari, Maurizio; Miura, Kiyotaka; Ramponi, Roberta; Barclay, Paul E.; Eaton, Shane Michael

    2016-01-01

    Diamond is a promising platform for sensing and quantum processing owing to the remarkable properties of the nitrogen-vacancy (NV) impurity. The electrons of the NV center, largely localized at the vacancy site, combine to form a spin triplet, which can be polarized with 532 nm laser light, even at room temperature. The NV’s states are isolated from environmental perturbations making their spin coherence comparable to trapped ions. An important breakthrough would be in connecting, using waveguides, multiple diamond NVs together optically. However, still lacking is an efficient photonic fabrication method for diamond akin to the photolithographic methods that have revolutionized silicon photonics. Here, we report the first demonstration of three dimensional buried optical waveguides in diamond, inscribed by focused femtosecond high repetition rate laser pulses. Within the waveguides, high quality NV properties are observed, making them promising for integrated magnetometer or quantum information systems on a diamond chip. PMID:27748428

  5. Multi-frequency entanglement router system

    NASA Astrophysics Data System (ADS)

    Erdmann, Reinhard; Hughes, David

    2017-05-01

    A high performance free-space Wavelength Division Multiplexed (WDM) transceiver system is assessed as to its viability for routing collinear entangled photons in place of the classical optical signals for which it was designed. Explicit calculations demonstrate that entanglement in the input state is retained through transit of the system without intrinsic loss. Introducing spatial degrees of freedom changed the entanglement so that it could be manifested at remote locations, as required in non-local Bell test measurements or Quantum Key Distribution (QKD) Protocols. It was also found that by adding proper components, the exit state could be changed from being frequency entangled to polarization entangled, with respect to the (remote) paths of the photons. Finally it was found possible to route a complete entangled state to either of the two remote users by proper selection of the discrete frequencies in the input state. Each entanglement in the photon states was maximal, hence suited for Quantum Information Processing (QIP) applications.

  6. Hyperentanglement concentration for polarization-spatial-time-bin hyperentangled photon systems with linear optics

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Ren, Bao-Cang; Alzahrani, Faris; Hobiny, Aatef; Deng, Fu-Guo

    2017-10-01

    Hyperentanglement has significant applications in quantum information processing. Here we present an efficient hyperentanglement concentration protocol (hyper-ECP) for partially hyperentangled Bell states simultaneously entangled in polarization, spatial-mode and time-bin degrees of freedom (DOFs) with the parameter-splitting method, where the parameters of the partially hyperentangled Bell states are known to the remote parties. In this hyper-ECP, only one remote party is required to perform some local operations on the three DOFs of a photon, only the linear optical elements are considered, and the success probability can achieve the maximal value. Our hyper-ECP can be easily generalized to concentrate the N-photon partially hyperentangled Greenberger-Horne-Zeilinger states with known parameters, where the multiple DOFs have largely improved the channel capacity of long-distance quantum communication. All of these make our hyper-ECP more practical and useful in high-capacity long-distance quantum communication.

  7. Active temporal multiplexing of indistinguishable heralded single photons

    PubMed Central

    Xiong, C.; Zhang, X.; Liu, Z.; Collins, M. J.; Mahendra, A.; Helt, L. G.; Steel, M. J.; Choi, D. -Y.; Chae, C. J.; Leong, P. H. W.; Eggleton, B. J.

    2016-01-01

    It is a fundamental challenge in quantum optics to deterministically generate indistinguishable single photons through non-deterministic nonlinear optical processes, due to the intrinsic coupling of single- and multi-photon-generation probabilities in these processes. Actively multiplexing photons generated in many temporal modes can decouple these probabilities, but key issues are to minimize resource requirements to allow scalability, and to ensure indistinguishability of the generated photons. Here we demonstrate the multiplexing of photons from four temporal modes solely using fibre-integrated optics and off-the-shelf electronic components. We show a 100% enhancement to the single-photon output probability without introducing additional multi-photon noise. Photon indistinguishability is confirmed by a fourfold Hong–Ou–Mandel quantum interference with a 91±16% visibility after subtracting multi-photon noise due to high pump power. Our demonstration paves the way for scalable multiplexing of many non-deterministic photon sources to a single near-deterministic source, which will be of benefit to future quantum photonic technologies. PMID:26996317

  8. Imaging and tuning of coupled photonic crystal cavities (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gurioli, Massimo

    2016-04-01

    Photonic microcavities (PMC) coupled through their evanescent field are used for a large variety of classical and quantum devices. In such systems, a molecular-like spatial delocalization of the coupled modes is achieved by an evanescent tunnelling. The tunnelling rate depends on the height and depth of the photonic barrier between two adjacent resonators and therefore it is sensitive to the fabrication-induced disorder present in the center of the molecule. In this contribution, we address the problem of developing a post fabrication control of the tunnelling rate in photonic crystal coupled PMCs. The value of the photonic coupling (proportional to the tunnelling rate) is directly measured by the molecular mode splitting at the anticrossing point. By exploiting a combination of tuning techniques such as local infiltration of water, micro-evaporation, and laser induced non thermal micro-oxidation, we are able to either increase or decrease the detuning and the photonic coupling, independently. Near field imaging is also used for mapping the modes and establish delocalization. By water micro-infiltration, we were able to increase the photon coupling by 28%. On the contrary, by laser induced non thermal oxidation, we got a reduction of g by 30%. The combination of the two methods would therefore give a complete control of g with excellent accuracy. This could make possible the realization of array of photonic cavities with on demand tunnelling rate between each pair of coupled resonators. We believe that this peculiar engineering of photonic crystal molecules would open the road to possible progress in the exploitation of coherent interference between coupled optical resonators both for quantum information processing and optical communication.

  9. Single-photon continuous-variable quantum key distribution based on the energy-time uncertainty relation.

    PubMed

    Qi, Bing

    2006-09-15

    We propose a new quantum key distribution protocol in which information is encoded on continuous variables of a single photon. In this protocol, Alice randomly encodes her information on either the central frequency of a narrowband single-photon pulse or the time delay of a broadband single-photon pulse, while Bob randomly chooses to do either frequency measurement or time measurement. The security of this protocol rests on the energy-time uncertainty relation, which prevents Eve from simultaneously determining both frequency and time information with arbitrarily high resolution. Since no interferometer is employed in this scheme, it is more robust against various channel noises, such as polarization and phase fluctuations.

  10. Soft X-Ray Photoionizing Organic Matter from Comet Wild 2: Evidence for the Production of Organic Matter by Impact Processes

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.; Wirick, S.; Flynn, G. J.; Jacobsen, C.; Na

    2011-01-01

    The Stardust mission collected both mineral and organic matter from Comet Wild 2 [1,2,3,4]. The organic matter discovered in Comet Wild 2 ranges from aromatic hydrocarbons to simple aliphatic chains and is as diverse and complex as organic matter found in carbonaceous chondrites and interplanetary dust particles.[3,5,6,7,8,9]. Compared to insoluble organic matter from carbonaceous chondrites the organic matter in Comet Wild 2 more closely resembles organic matter found in the IDPS both hydrous and anhydrous. Common processes for the formation of organic matter in space include: Fischer-Tropsch, included with this aqueous large body and moderate heating alterations; UV irradiation of ices; and; plasma formation and collisions. The Fischer-Tropsch could only occur on large bodies processes, and the production of organic matter by UV radiation is limited by the penetration depth of UV photons, on the order of a few microns or less for most organic matter, so once organic matter coats the ices it is formed from, the organic production process would stop. Also, the organic matter formed by UV irradiation would, by the nature of the process, be in-sensitive to photodissocation from UV light. The energy of soft X-rays, 280-300 eV occur within the range of extreme ultraviolet photons. During the preliminary examination period we found a particle that nearly completely photoionized when exposed to photons in the energy range 280-310eV. This particle experienced a long exposure time to the soft x-ray beam which caused almost complete mass loss so little chemical information was obtain. During the analysis of our second allocation we have discovered another particle that photoionized at these energies but the exposure time was limited and more chemical information was obtained.

  11. Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes [Invited].

    PubMed

    Stojanović, Vladimir; Ram, Rajeev J; Popović, Milos; Lin, Sen; Moazeni, Sajjad; Wade, Mark; Sun, Chen; Alloatti, Luca; Atabaki, Amir; Pavanello, Fabio; Mehta, Nandish; Bhargava, Pavan

    2018-05-14

    Integrating photonics with advanced electronics leverages transistor performance, process fidelity and package integration, to enable a new class of systems-on-a-chip for a variety of applications ranging from computing and communications to sensing and imaging. Monolithic silicon photonics is a promising solution to meet the energy efficiency, sensitivity, and cost requirements of these applications. In this review paper, we take a comprehensive view of the performance of the silicon-photonic technologies developed to date for photonic interconnect applications. We also present the latest performance and results of our "zero-change" silicon photonics platforms in 45 nm and 32 nm SOI CMOS. The results indicate that the 45 nm and 32 nm processes provide a "sweet-spot" for adding photonic capability and enhancing integrated system applications beyond the Moore-scaling, while being able to offload major communication tasks from more deeply-scaled compute and memory chips without complicated 3D integration approaches.

  12. Observation of Genuine Three-Photon Interference

    NASA Astrophysics Data System (ADS)

    Agne, Sascha; Kauten, Thomas; Jin, Jeongwan; Meyer-Scott, Evan; Salvail, Jeff Z.; Hamel, Deny R.; Resch, Kevin J.; Weihs, Gregor; Jennewein, Thomas

    2017-04-01

    Multiparticle quantum interference is critical for our understanding and exploitation of quantum information, and for fundamental tests of quantum mechanics. A remarkable example of multi-partite correlations is exhibited by the Greenberger-Horne-Zeilinger (GHZ) state. In a GHZ state, three particles are correlated while no pairwise correlation is found. The manifestation of these strong correlations in an interferometric setting has been studied theoretically since 1990 but no three-photon GHZ interferometer has been realized experimentally. Here we demonstrate three-photon interference that does not originate from two-photon or single photon interference. We observe phase-dependent variation of three-photon coincidences with (92.7 ±4.6 )% visibility in a generalized Franson interferometer using energy-time entangled photon triplets. The demonstration of these strong correlations in an interferometric setting provides new avenues for multiphoton interferometry, fundamental tests of quantum mechanics, and quantum information applications in higher dimensions.

  13. Qubit entanglement between ring-resonator photon-pair sources on a silicon chip

    PubMed Central

    Silverstone, J. W.; Santagati, R.; Bonneau, D.; Strain, M. J.; Sorel, M.; O'Brien, J. L.; Thompson, M. G.

    2015-01-01

    Entanglement—one of the most delicate phenomena in nature—is an essential resource for quantum information applications. Scalable photonic quantum devices must generate and control qubit entanglement on-chip, where quantum information is naturally encoded in photon path. Here we report a silicon photonic chip that uses resonant-enhanced photon-pair sources, spectral demultiplexers and reconfigurable optics to generate a path-entangled two-qubit state and analyse its entanglement. We show that ring-resonator-based spontaneous four-wave mixing photon-pair sources can be made highly indistinguishable and that their spectral correlations are small. We use on-chip frequency demultiplexers and reconfigurable optics to perform both quantum state tomography and the strict Bell-CHSH test, both of which confirm a high level of on-chip entanglement. This work demonstrates the integration of high-performance components that will be essential for building quantum devices and systems to harness photonic entanglement on the large scale. PMID:26245267

  14. Photon statistics as an interference phenomenon.

    PubMed

    Mehringer, Thomas; Mährlein, Simon; von Zanthier, Joachim; Agarwal, Girish S

    2018-05-15

    Interference of light fields, first postulated by Young, is one of the fundamental pillars of physics. Dirac extended this observation to the quantum world by stating that each photon interferes only with itself. A precondition for interference to occur is that no welcher-weg information labels the paths the photon takes; otherwise, the interference vanishes. This remains true, even if two-photon interference is considered, e.g., in the Hong-Ou-Mandel-experiment. Here, the two photons interfere only if they are indistinguishable, e.g., in frequency, momentum, polarization, and time. Less known is the fact that two-photon interference and photon indistinguishability also determine the photon statistics in the overlapping light fields of two independent sources. As a consequence, measuring the photon statistics in the far field of two independent sources reveals the degree of indistinguishability of the emitted photons. In this Letter, we prove this statement in theory using a quantum mechanical treatment. We also demonstrate the outcome experimentally with a simple setup consisting of two statistically independent thermal light sources with adjustable polarizations. We find that the photon statistics vary indeed as a function of the polarization settings, the latter determining the degree of welcher-weg information of the photons emanating from the two sources.

  15. Laser scanning stereomicroscopy for fast volumetric imaging with two-photon excitation and scanned Bessel beams

    NASA Astrophysics Data System (ADS)

    Yang, Yanlong; Zhou, Xing; Li, Runze; Van Horn, Mark; Peng, Tong; Lei, Ming; Wu, Di; Chen, Xun; Yao, Baoli; Ye, Tong

    2015-03-01

    Bessel beams have been used in many applications due to their unique optical properties of maintaining their intensity profiles unchanged during propagation. In imaging applications, Bessel beams have been successfully used to provide extended focuses for volumetric imaging and uniformed illumination plane in light-sheet microscopy. Coupled with two-photon excitation, Bessel beams have been successfully used in realizing fluorescence projected volumetric imaging. We demonstrated previously a stereoscopic solution-two-photon fluorescence stereomicroscopy (TPFSM)-for recovering the depth information in volumetric imaging with Bessel beams. In TPFSM, tilted Bessel beams were used to generate stereoscopic images on a laser scanning two-photon fluorescence microscope; upon post image processing we could successfully provide 3D perception of acquired volume images by wearing anaglyph 3D glasses. However, tilted Bessel beams were generated by shifting either an axicon or an objective laterally; the slow imaging speed and severe aberrations made it hard to use in real-time volume imaging. In this article, we report recent improvements of TPFSM with newly designed scanner and imaging software, which allows 3D stereoscopic imaging without moving any of the optical components on the setup. This improvement has dramatically improved focusing qualities and imaging speed so that the TPFSM can be performed potentially in real-time to provide 3D visualization in scattering media without post image processing.

  16. Setting a disordered password on a photonic memory

    NASA Astrophysics Data System (ADS)

    Su, Shih-Wei; Gou, Shih-Chuan; Chew, Lock Yue; Chang, Yu-Yen; Yu, Ite A.; Kalachev, Alexey; Liao, Wen-Te

    2017-06-01

    An all-optical method of setting a disordered password on different schemes of photonic memory is theoretically studied. While photons are regarded as ideal information carriers, it is imperative to implement such data protection on all-optical storage. However, we wish to address the intrinsic risk of data breaches in existing schemes of photonic memory. We theoretically demonstrate a protocol using spatially disordered laser fields to encrypt data stored on an optical memory, namely, encrypted photonic memory. To address the broadband storage, we also investigate a scheme of disordered echo memory with a high fidelity approaching unity. The proposed method increases the difficulty for the eavesdropper to retrieve the stored photon without the preset password even when the randomized and stored photon state is nearly perfectly cloned. Our results pave ways to significantly reduce the exposure of memories, required for long-distance communication, to eavesdropping and therefore restrict the optimal attack on communication protocols. The present scheme also increases the sensitivity of detecting any eavesdropper and so raises the security level of photonic information technology.

  17. Physical methods for investigating structural colours in biological systems

    PubMed Central

    Vukusic, P.; Stavenga, D.G.

    2009-01-01

    Many biological systems are known to use structural colour effects to generate aspects of their appearance and visibility. The study of these phenomena has informed an eclectic group of fields ranging, for example, from evolutionary processes in behavioural biology to micro-optical devices in technologically engineered systems. However, biological photonic systems are invariably structurally and often compositionally more elaborate than most synthetically fabricated photonic systems. For this reason, an appropriate gamut of physical methods and investigative techniques must be applied correctly so that the systems' photonic behaviour may be appropriately understood. Here, we survey a broad range of the most commonly implemented, successfully used and recently innovated physical methods. We discuss the costs and benefits of various spectrometric methods and instruments, namely scatterometers, microspectrophotometers, fibre-optic-connected photodiode array spectrometers and integrating spheres. We then discuss the role of the materials' refractive index and several of the more commonly used theoretical approaches. Finally, we describe the recent developments in the research field of photonic crystals and the implications for the further study of structural coloration in animals. PMID:19158009

  18. Breath-Taking Patterns: Discontinuous Hydrophilic Regions for Photonic Crystal Beads Assembly and Patterns Revisualization.

    PubMed

    Du, Xuemin; Wang, Juan; Cui, Huanqing; Zhao, Qilong; Chen, Hongxu; He, Le; Wang, Yunlong

    2017-11-01

    Surfaces patterned with hydrophilic and hydrophobic regions provide robust and versatile means for investigating the wetting behaviors of liquids, surface properties analysis, and producing patterned arrays. However, the fabrication of integral and uniform arrays onto these open systems remains a challenge, thus restricting them from being used in practical applications. Here, we present a simple yet powerful approach for the fabrication of water droplet arrays and the assembly of photonic crystal bead arrays based on hydrophilic-hydrophobic patterned substrates. Various integral arrays are simply prepared in a high-quality output with a low cost, large scale, and uniform size control. By simply taking a breath, which brings moisture to the substrate surface, complex hydrophilic-hydrophobic outlined images can be revisualized in the discontinuous hydrophilic regions. Integration of hydrogel photonic crystal bead arrays into the "breath-taking" process results in breath-responsive photonic crystal beads, which can change their colors upon a mild exhalation. This state-of-the-art technology not only provides an effective methodology for the preparation of patterned arrays but also demonstrates intriguing applications in information storage and biochemical sensors.

  19. Diamond-based single-photon emitters

    NASA Astrophysics Data System (ADS)

    Aharonovich, I.; Castelletto, S.; Simpson, D. A.; Su, C.-H.; Greentree, A. D.; Prawer, S.

    2011-07-01

    The exploitation of emerging quantum technologies requires efficient fabrication of key building blocks. Sources of single photons are extremely important across many applications as they can serve as vectors for quantum information—thereby allowing long-range (perhaps even global-scale) quantum states to be made and manipulated for tasks such as quantum communication or distributed quantum computation. At the single-emitter level, quantum sources also afford new possibilities in terms of nanoscopy and bio-marking. Color centers in diamond are prominent candidates to generate and manipulate quantum states of light, as they are a photostable solid-state source of single photons at room temperature. In this review, we discuss the state of the art of diamond-based single-photon emitters and highlight their fabrication methodologies. We present the experimental techniques used to characterize the quantum emitters and discuss their photophysical properties. We outline a number of applications including quantum key distribution, bio-marking and sub-diffraction imaging, where diamond-based single emitters are playing a crucial role. We conclude with a discussion of the main challenges and perspectives for employing diamond emitters in quantum information processing.

  20. Behavioural and physiological limits to vision in mammals

    PubMed Central

    Field, Greg D.

    2017-01-01

    Human vision is exquisitely sensitive—a dark-adapted observer is capable of reliably detecting the absorption of a few quanta of light. Such sensitivity requires that the sensory receptors of the retina, rod photoreceptors, generate a reliable signal when single photons are absorbed. In addition, the retina must be able to extract this information and relay it to higher visual centres under conditions where very few rods signal single-photon responses while the majority generate only noise. Critical to signal transmission are mechanistic optimizations within rods and their dedicated retinal circuits that enhance the discriminability of single-photon responses by mitigating photoreceptor and synaptic noise. We describe behavioural experiments over the past century that have led to the appreciation of high sensitivity near absolute visual threshold. We further consider mechanisms within rod photoreceptors and dedicated rod circuits that act to extract single-photon responses from cellular noise. We highlight how these studies have shaped our understanding of brain function and point out several unresolved questions in the processing of light near the visual threshold. This article is part of the themed issue ‘Vision in dim light’. PMID:28193817

  1. Chiral Templating of Self-Assembling Nanostructures by Circularly Polarized Light

    PubMed Central

    Yeom, Jihyeon; Yeom, Bongjun; Chan, Henry; Smith, Kyle W.; Dominguez-Medina, Sergio; Bahng, Joong Hwan; Zhao, Gongpu; Chang, Wei-Shun; Chang, Sung Jin; Chuvilin, Andrey; Melnikau, Dzmitry; Rogach, Andrey L.; Zhang, Peijun; Link, Stephan; Král, Petr; Kotov, Nicholas A.

    2015-01-01

    Chemical reactions affected by spin angular momenta of circularly polarized photons are rare and display low enantiomeric excess. High optical and chemical activity of nanoparticles (NPs) should facilitate the transfer of spin angular momenta of photons to nanoscale materials but such processes are unknown. Here we demonstrate that circularly polarized light (CPL) strongly affects self-assembly of racemic CdTe NPs. Illumination of NP dispersions with right- and left-handed CPL induces the formation of right- and left-handed twisted nanoribbons, respectively. Enantiomeric excess of such reactions exceeds 30% which is ~10 times higher than other CPL-induced reactions. Illumination with linearly polarized light and assembly in the dark led to straight nanoribbons. The mechanism of “templation” of NP assemblies by CPL is associated with selective photoactivation of chiral NPs and clusters followed by their photooxidation. Chiral anisotropy of interactions translates into chirality of the assembled ribbons. The ability of NPs to retain polarization information, or the “imprint” of incident photons opens new pathways for the synthesis of chiral photonic materials and allows for better understanding of the origins of biomolecular homochirality. PMID:25401922

  2. Photoluminescence from oxygen-doped single-walled carbon nanotubes modified by dielectric metasurfaces

    NASA Astrophysics Data System (ADS)

    Ma, Xuedan; Doorn, Stephen; Htoon, Han; Brener, Igal

    Oxygen dopants in single-walled carbon nanotubes (SWCNTs) have recently been discovered as a novel single photon source enabling single photon generation up to room temperature in the telecom wavelength range. While they are promising for quantum information processing, it is fundamentally important to be able to manipulate their photoluminescence (PL) properties. All-dielectric metasurfaces made from arrays of high index nanoparticles have emerged as an attractive alternative to plasmonic metasurfaces due to their support of both electric and magnetic modes. Their low intrinsic losses at optical frequencies compared to that of plasmonic nanostructures provide a novel setting for tailoring emission from quantum emitters. We couple PL from single oxygen dopants in SWCNTs to the magnetic mode of silicon metasurfaces. Aside from the observation of a PL enhancement due to the Purcell effect, more interestingly, we find that the presence of the silicon metasurfaces significantly modifies the PL polarization of the dopants, which we attribute to near-field polarization modification caused by the silicon metasurfaces. Our finding presents dielectric metasurfaces as potential building blocks of photonic circuits for controlling PL intensity and polarization of single photon sources.

  3. Entropy/information flux in Hawking radiation

    NASA Astrophysics Data System (ADS)

    Alonso-Serrano, Ana; Visser, Matt

    2018-01-01

    Blackbody radiation contains (on average) an entropy of 3.9 ± 2.5 bits per photon. If the emission process is unitary, then this entropy is exactly compensated by "hidden information" in the correlations. We extend this argument to the Hawking radiation from GR black holes, demonstrating that the assumption of unitarity leads to a perfectly reasonable entropy/information budget. The key technical aspect of our calculation is a variant of the "average subsystem" approach developed by Page, which we extend beyond bipartite pure systems, to a tripartite pure system that considers the influence of the environment.

  4. Accessing the dark exciton spin in deterministic quantum-dot microlenses

    NASA Astrophysics Data System (ADS)

    Heindel, Tobias; Thoma, Alexander; Schwartz, Ido; Schmidgall, Emma R.; Gantz, Liron; Cogan, Dan; Strauß, Max; Schnauber, Peter; Gschrey, Manuel; Schulze, Jan-Hindrik; Strittmatter, Andre; Rodt, Sven; Gershoni, David; Reitzenstein, Stephan

    2017-12-01

    The dark exciton state in semiconductor quantum dots (QDs) constitutes a long-lived solid-state qubit which has the potential to play an important role in implementations of solid-state-based quantum information architectures. In this work, we exploit deterministically fabricated QD microlenses which promise enhanced photon extraction, to optically prepare and read out the dark exciton spin and observe its coherent precession. The optical access to the dark exciton is provided via spin-blockaded metastable biexciton states acting as heralding states, which are identified by deploying polarization-sensitive spectroscopy as well as time-resolved photon cross-correlation experiments. Our experiments reveal a spin-precession period of the dark exciton of (0.82 ± 0.01) ns corresponding to a fine-structure splitting of (5.0 ± 0.7) μeV between its eigenstates |↑ ⇑ ±↓ ⇓ ⟩. By exploiting microlenses deterministically fabricated above pre-selected QDs, our work demonstrates the possibility to scale up implementations of quantum information processing schemes using the QD-confined dark exciton spin qubit, such as the generation of photonic cluster states or the realization of a solid-state-based quantum memory.

  5. Probing dynamical symmetry breaking using quantum-entangled photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hao; Piryatinski, Andrei; Jerke, Jonathan

    Here, we present an input/output analysis of photon-correlation experiments whereby a quantum mechanically entangled bi-photon state interacts with a material sample placed in one arm of a Hong–Ou–Mandel apparatus. We show that the output signal contains detailed information about subsequent entanglement with the microscopic quantum states in the sample. In particular, we apply the method to an ensemble of emitters interacting with a common photon mode within the open-system Dicke model. Our results indicate considerable dynamical information concerning spontaneous symmetry breaking can be revealed with such an experimental system.

  6. Probing dynamical symmetry breaking using quantum-entangled photons

    DOE PAGES

    Li, Hao; Piryatinski, Andrei; Jerke, Jonathan; ...

    2017-11-15

    Here, we present an input/output analysis of photon-correlation experiments whereby a quantum mechanically entangled bi-photon state interacts with a material sample placed in one arm of a Hong–Ou–Mandel apparatus. We show that the output signal contains detailed information about subsequent entanglement with the microscopic quantum states in the sample. In particular, we apply the method to an ensemble of emitters interacting with a common photon mode within the open-system Dicke model. Our results indicate considerable dynamical information concerning spontaneous symmetry breaking can be revealed with such an experimental system.

  7. Faithful One-way Trip Deterministic Secure Quantum Communication Scheme Against Collective Rotating Noise Based on Order Rearrangement of Photon Pairs

    NASA Astrophysics Data System (ADS)

    Yuan, Hao; Zhang, Qin; Hong, Liang; Yin, Wen-jie; Xu, Dong

    2014-08-01

    We present a novel scheme for deterministic secure quantum communication (DSQC) over collective rotating noisy channel. Four special two-qubit states are found can constitute a noise-free subspaces, and so are utilized as quantum information carriers. In this scheme, the information carriers transmite over the quantum channel only one time, which can effectively reduce the influence of other noise existing in quantum channel. The information receiver need only perform two single-photon collective measurements to decode the secret messages, which can make the present scheme more convenient in practical application. It will be showed that our scheme has a relatively high information capacity and intrisic efficiency. Foremostly, the decoy photon pair checking technique and the order rearrangement of photon pairs technique guarantee that the present scheme is unconditionally secure.

  8. Nonclassical properties and teleportation in the two-mode photon-added displaced squeezed states

    NASA Astrophysics Data System (ADS)

    Hoai, Nguyen Thi Xuan; Duc, Truong Minh

    2016-01-01

    In this paper, we study the nonclassical properties and find out the effect of photon addition on these properties as well as the process of teleportation in the two-mode photon-added displaced squeezed (TMPADS) states. We derive the analytic expressions of the Wigner function, the photon number distribution and the intermode photon antibunching for these states. We show that photon addition operation not only makes the Wigner function become negative but also leads to increase the degree of antibunching. The peak of the photon number distribution becomes flatter and shifts to the greater number of photons by adding photons to both modes simultaneously. Furthermore, it is proved that the degree of intermodal entanglement becomes bigger and bigger through increasing the number of photons added to both modes. As expected, when using these states as an entanglement resource to teleport a state, the average fidelity of teleportation process is also improved by increasing the number of added photons.

  9. Quantum technology and cryptology for information security

    NASA Astrophysics Data System (ADS)

    Naqvi, Syed; Riguidel, Michel

    2007-04-01

    Cryptology and information security are set to play a more prominent role in the near future. In this regard, quantum communication and cryptography offer new opportunities to tackle ICT security. Quantum Information Processing and Communication (QIPC) is a scientific field where new conceptual foundations and techniques are being developed. They promise to play an important role in the future of information Security. It is therefore essential to have a cross-fertilizing development between quantum technology and cryptology in order to address the security challenges of the emerging quantum era. In this article, we discuss the impact of quantum technology on the current as well as future crypto-techniques. We then analyse the assumptions on which quantum computers may operate. Then we present our vision for the distribution of security attributes using a novel form of trust based on Heisenberg's uncertainty; and, building highly secure quantum networks based on the clear transmission of single photons and/or bundles of photons able to withstand unauthorized reading as a result of secure protocols based on the observations of quantum mechanics. We argue how quantum cryptographic systems need to be developed that can take advantage of the laws of physics to provide long-term security based on solid assumptions. This requires a structured integration effort to deploy quantum technologies within the existing security infrastructure. Finally, we conclude that classical cryptographic techniques need to be redesigned and upgraded in view of the growing threat of cryptanalytic attacks posed by quantum information processing devices leading to the development of post-quantum cryptography.

  10. Photon transport in a dissipative chain of nonlinear cavities

    NASA Astrophysics Data System (ADS)

    Biella, Alberto; Mazza, Leonardo; Carusotto, Iacopo; Rossini, Davide; Fazio, Rosario

    2015-05-01

    By means of numerical simulations and the input-output formalism, we study photon transport through a chain of coupled nonlinear optical cavities subject to uniform dissipation. Photons are injected from one end of the chain by means of a coherent source. The propagation through the array of cavities is sensitive to the interplay between the photon hopping strength and the local nonlinearity in each cavity. We characterize photon transport by studying the populations and the photon correlations as a function of the cavity position. When complemented with input-output theory, these quantities provide direct information about photon transmission through the system. The position of single-photon and multiphoton resonances directly reflects the structure of the many-body energy levels. This shows how a study of transport along a coupled cavity array can provide rich information about the strongly correlated (many-body) states of light even in presence of dissipation. The numerical algorithm we use, based on the time-evolving block decimation scheme adapted to mixed states, allows us to simulate large arrays (up to 60 cavities). The scaling of photon transmission with the number of cavities does depend on the structure of the many-body photon states inside the array.

  11. Single-photon frequency conversion via cascaded quadratic nonlinear processes

    NASA Astrophysics Data System (ADS)

    Xiang, Tong; Sun, Qi-Chao; Li, Yuanhua; Zheng, Yuanlin; Chen, Xianfeng

    2018-06-01

    Frequency conversion of single photons is an important technology for quantum interface and quantum communication networks. Here, single-photon frequency conversion in the telecommunication band is experimentally demonstrated via cascaded quadratic nonlinear processes. Using cascaded quasi-phase-matched sum and difference frequency generation in a periodically poled lithium niobate waveguide, the signal photon of a photon pair from spontaneous down-conversion is precisely shifted to identically match its counterpart, i.e., the idler photon, in frequency to manifest a clear nonclassical dip in the Hong-Ou-Mandel interference. Moreover, quantum entanglement between the photon pair is maintained after the frequency conversion, as is proved in time-energy entanglement measurement. The scheme is used to switch single photons between dense wavelength-division multiplexing channels, which holds great promise in applications in realistic quantum networks.

  12. Energy discrimination for positron emission tomography using the time information of the first detected photons

    NASA Astrophysics Data System (ADS)

    Therrien, A. C.; Lemaire, W.; Lecoq, P.; Fontaine, R.; Pratte, J.-F.

    2018-01-01

    The advantages of Time-of-Flight positron emission tomography (TOF-PET) have pushed the development of detectors with better time resolution. In particular, Silicon Photomultipliers (SiPM) have evolved tremendously in the past decade and arrays with a fully digital readout are the next logical step (dSiPM). New multi-timestamp methods use the precise time information of multiple photons to estimate the time of a PET event with greater accuracy, resulting in excellent time resolution. We propose a method which uses the same timestamps as the time estimator to perform energy discrimination, thus using data obtained within 5 ns of the beginning of the event. Having collected all the necessary information, the dSiPM could then be disabled for the remaining scintillation while dedicated electronics process the collected data. This would reduce afterpulsing as the SPAD would be turned off for several hundred nanoseconds, emptying the majority of traps. The proposed method uses a strategy based on subtraction and minimal electronics to reject energy below a selected threshold. This method achieves an error rate of less than 3% for photopeak discrimination (threshold at 400 keV) for dark count rates up to 100 cps/μm2, time-to-digital converter resolution up to 50 ps and a photon detection efficiency ranging from 10 to 70%.

  13. Quantum Information Science

    DTIC Science & Technology

    2012-02-01

    group velocity matched temporal compensator crystal assembly to increase the usable range of entangled photon sources, and (vi) the development and...characterization of a new multipli- entangled photon source that increased the usable number of photon pairs by a factor of six. 15. SUBJECT TERMS...compensated crystal assembly ....................................................................................... 17 3.7 Entangled photon sources

  14. Absorption bleaching of squarylium dye J aggregates via a two-photon excitation process

    NASA Astrophysics Data System (ADS)

    Furuki, Makoto; Tian, Minquan; Sato, Yasuhiro; Pu, Lyong Sun; Tatsuura, Satoshi; Abe, Shuji

    2001-08-01

    Squarylium dye J aggregates exhibit ultrafast nonlinear optical response of absorption saturation at the resonant wavelength of 770 nm. We studied the two-photon excitation process of J aggregates. By fluorescence measurement, we found the two-photon absorption band at 1.3 μm, which was different from that of the dye solution at 1.2 μm. Absorption saturation at 770 nm via a two-photon excitation process was observed by two-photon resonant excitation at 1.3 μm and also by off-resonant excitation at 1.55 μm, suggesting the possibility of J aggregates for optical switching materials working at the wavelength used in optical communications.

  15. Piezo-phototronic Boolean logic and computation using photon and strain dual-gated nanowire transistors.

    PubMed

    Yu, Ruomeng; Wu, Wenzhuo; Pan, Caofeng; Wang, Zhaona; Ding, Yong; Wang, Zhong Lin

    2015-02-04

    Using polarization charges created at the metal-cadmium sulfide interface under strain to gate/modulate electrical transport and optoelectronic processes of charge carriers, the piezo-phototronic effect is applied to process mechanical and optical stimuli into electronic controlling signals. The cascade nanowire networks are demonstrated for achieving logic gates, binary computations, and gated D latches to store information carried by these stimuli. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Time-bin entangled photons from a quantum dot

    PubMed Central

    Jayakumar, Harishankar; Predojević, Ana; Kauten, Thomas; Huber, Tobias; Solomon, Glenn S.; Weihs, Gregor

    2014-01-01

    Long distance quantum communication is one of the prime goals in the field of quantum information science. With information encoded in the quantum state of photons, existing telecommunication fibre networks can be effectively used as a transport medium. To achieve this goal, a source of robust entangled single photon pairs is required. Here, we report the realization of a source of time-bin entangled photon pairs utilizing the biexciton-exciton cascade in a III/V self-assembled quantum dot. We analyse the generated photon pairs by an inherently phase-stable interferometry technique, facilitating uninterrupted long integration times. We confirm the entanglement by performing quantum state tomography of the emitted photons, which yields a fidelity of 0.69(3) and a concurrence of 0.41(6) for our realization of time-energy entanglement from a single quantum emitter. PMID:24968024

  17. Time-bin entangled photons from a quantum dot.

    PubMed

    Jayakumar, Harishankar; Predojević, Ana; Kauten, Thomas; Huber, Tobias; Solomon, Glenn S; Weihs, Gregor

    2014-06-26

    Long-distance quantum communication is one of the prime goals in the field of quantum information science. With information encoded in the quantum state of photons, existing telecommunication fibre networks can be effectively used as a transport medium. To achieve this goal, a source of robust entangled single-photon pairs is required. Here we report the realization of a source of time-bin entangled photon pairs utilizing the biexciton-exciton cascade in a III/V self-assembled quantum dot. We analyse the generated photon pairs by an inherently phase-stable interferometry technique, facilitating uninterrupted long integration times. We confirm the entanglement by performing quantum state tomography of the emitted photons, which yields a fidelity of 0.69(3) and a concurrence of 0.41(6) for our realization of time-energy entanglement from a single quantum emitter.

  18. AIE-doped poly(ionic liquid) photonic spheres: a single sphere-based customizable sensing platform for the discrimination of multi-analytes† †Electronic supplementary information (ESI) available: Synthesis and characterization of the AIE luminogen, experimental details, response profiles and results of the multivariate analysis. See DOI: 10.1039/c7sc02409f Click here for additional data file.

    PubMed Central

    Zhang, Wanlin; Gao, Ning; Cui, Jiecheng; Wang, Chen; Wang, Shiqiang; Zhang, Guanxin; Dong, Xiaobiao

    2017-01-01

    By simultaneously exploiting the unique properties of ionic liquids and aggregation-induced emission (AIE) luminogens, as well as photonic structures, a novel customizable sensing system for multi-analytes was developed based on a single AIE-doped poly(ionic liquid) photonic sphere. It was found that due to the extraordinary multiple intermolecular interactions involved in the ionic liquid units, one single sphere could differentially interact with broader classes of analytes, thus generating response patterns with remarkable diversity. Moreover, the optical properties of both the AIE luminogen and photonic structure integrated in the poly(ionic liquid) sphere provide multidimensional signal channels for transducing the involved recognition process in a complementary manner and the acquisition of abundant and sufficient sensing information could be easily achieved on only one sphere sensor element. More importantly, the sensing performance of our poly(ionic liquid) photonic sphere is designable and customizable through a simple ion-exchange reaction and target-oriented multi-analyte sensing can be conveniently realized using a selective receptor species, such as counterions, showing great flexibility and extendibility. The power of our single sphere-based customizable sensing system was exemplified by the successful on-demand detection and discrimination of four multi-analyte challenge systems: all 20 natural amino acids, nine important phosphate derivatives, ten metal ions and three pairs of enantiomers. To further demonstrate the potential of our spheres for real-life application, 20 amino acids in human urine and their 26 unprecedented complex mixtures were also discriminated between by the single sphere-based array. PMID:28989662

  19. Effect of vacuum-ultraviolet irradiation on the dielectric constant of low-k organosilicate dielectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, H.; Shohet, J. L.; Ryan, E. T.

    2014-11-17

    Vacuum ultraviolet (VUV) irradiation is generated during plasma processing in semiconductor fabrications, while the effect of VUV irradiation on the dielectric constant (k value) of low-k materials is still an open question. To clarify this problem, VUV photons with a range of energies were exposed on low-k organosilicate dielectrics (SiCOH) samples at room temperature. Photon energies equal to or larger than 6.0 eV were found to decrease the k value of SiCOH films. VUV photons with lower energies do not have this effect. This shows the need for thermal heating in traditional ultraviolet (UV) curing since UV light sources do notmore » have sufficient energy to change the dielectric constant of SiCOH and additional energy is required from thermal heating. In addition, 6.2 eV photon irradiation was found to be the most effective in decreasing the dielectric constant of low-k organosilicate films. Fourier Transform Infra-red Spectroscopy shows that these 6.2 eV VUV exposures removed organic porogens. This contributes to the decrease of the dielectric constant. This information provides the range of VUV photon energies that could decrease the dielectric constant of low-k materials most effectively.« less

  20. Photonics and web engineering in Poland, WILGA 2009

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2009-06-01

    The paper is a digest of work presented during a cyclic Ph.D. student symposium on Photonics and Web Engineering WILGA 2009. Symposium is organized by ISE PW in cooperation with professional organizations IEEE, SPIE, PSP and KEiT PAN. There are presented mainly Ph.D. and M.Sc. theses as well as achievements of young researchers. These papers, presented in such a big number, more than 250 in some years, are in certain sense a good digest of the condition of academic research capabilities in this branch of science and technology. The undertaken research subjects for Ph.D. theses in electronics is determined by the interest and research capacity (financial, laboratory and intellectual) of the young researchers and their tutors. Basically, the condition of academic electronics research depends on financing coming from applications areas. During Wilga 2009 there were organized, and thus the paper debates, the following topical sessions concerning applications of advanced electronics and photonics systems: merging of electronic systems and photonics, Internet engineering, distributed measurement systems, security in information technology, astronomy and cosmic technology, HEP experiments, environment protection, image processing and biometry. The paper contains also more general remarks concerning the workshops organized by and for the Ph.D. students in advanced photonics and electronics systems.

  1. An integrated low phase noise radiation-pressure-driven optomechanical oscillator chipset

    PubMed Central

    Luan, Xingsheng; Huang, Yongjun; Li, Ying; McMillan, James F.; Zheng, Jiangjun; Huang, Shu-Wei; Hsieh, Pin-Chun; Gu, Tingyi; Wang, Di; Hati, Archita; Howe, David A.; Wen, Guangjun; Yu, Mingbin; Lo, Guoqiang; Kwong, Dim-Lee; Wong, Chee Wei

    2014-01-01

    High-quality frequency references are the cornerstones in position, navigation and timing applications of both scientific and commercial domains. Optomechanical oscillators, with direct coupling to continuous-wave light and non-material-limited f × Q product, are long regarded as a potential platform for frequency reference in radio-frequency-photonic architectures. However, one major challenge is the compatibility with standard CMOS fabrication processes while maintaining optomechanical high quality performance. Here we demonstrate the monolithic integration of photonic crystal optomechanical oscillators and on-chip high speed Ge detectors based on the silicon CMOS platform. With the generation of both high harmonics (up to 59th order) and subharmonics (down to 1/4), our chipset provides multiple frequency tones for applications in both frequency multipliers and dividers. The phase noise is measured down to −125 dBc/Hz at 10 kHz offset at ~400 μW dropped-in powers, one of the lowest noise optomechanical oscillators to date and in room-temperature and atmospheric non-vacuum operating conditions. These characteristics enable optomechanical oscillators as a frequency reference platform for radio-frequency-photonic information processing. PMID:25354711

  2. Teleportation of atomic and photonic states in low-Q cavity QED

    NASA Astrophysics Data System (ADS)

    Peng, Zhao-Hui; Zou, Jian; Liu, Xiao-Juan; Kuang, Le-Man

    2012-11-01

    We propose two alternative teleportation protocols in low-Q cavity QED. Through the input-output process of photons, we can generate atom-photon entangled states as the quantum channel. Then we propose to teleport single-atom (two-atom entangled) state using coherent photonic states, and to teleport single photonic state with the assistance of three-level atom. The distinct feature of our protocols is that we can teleport both atomic and photonic states via the input-output process of photons in the low-Q cavity. Furthermore, as our protocols work in low-Q cavities and only involve virtual excitation of atoms, they are insensitive to both cavity decay and atomic spontaneous emission, and may be feasible with current technology.

  3. Two-Photon Emission of a Hydrogenlike Atom with Photon Polarization and Electron Spin States Taken into Account

    NASA Astrophysics Data System (ADS)

    Skobelev, V. V.

    2017-02-01

    The process of two-photon emission ( Ze)* → ( Ze) + 2 γ of a hydrogenlike atom is considered with spin states of the electron and polarization of the photons taken into account, which had not been done before. A general expression for the probability of the process per unit time has been obtained for different polarization states of the photons with a formulation of hard and soft selection rules for the quantum numbers m and l. It is shown that by virtue of the established specifics of the properties of the two-photon emission process (absence of a Zeeman effect and dependence of the probability on the polarization states of the photons), it can in principle be identified against the background of single-photon emission ( Ze)* → ( Ze) + γ, despite the presence of additional small factors: 1) α = e 2/ ћc ≈ 1/137 of the perturbation theory in e, and 2) the square of the atomic expansion parameter ( Zα)2 in the expression for the probability.

  4. SPAD array based TOF SoC design for unmanned vehicle

    NASA Astrophysics Data System (ADS)

    Pan, An; Xu, Yuan; Xie, Gang; Huang, Zhiyu; Zheng, Yanghao; Shi, Weiwei

    2018-03-01

    As for the requirement of unmanned-vehicle mobile Lidar system, this paper presents a SoC design based on pulsed TOF depth image sensor. This SoC has a detection range of 300m and detecting resolution of 1.5cm. Pixels are made of SPAD. Meanwhile, SoC adopts a structure of multi-pixel sharing TDC, which significantly reduces chip area and improve the fill factor of light-sensing surface area. SoC integrates a TCSPC module to achieve the functionality of receiving each photon, measuring photon flight time and processing depth information in one chip. The SOC is designed in the SMIC 0.13μm CIS CMOS technology

  5. Experimental entanglement of 25 individually accessible atomic quantum interfaces

    PubMed Central

    Jiang, Nan; Chang, Wei; Li, Chang; Zhang, Sheng

    2018-01-01

    A quantum interface links the stationary qubits in a quantum memory with flying photonic qubits in optical transmission channels and constitutes a critical element for the future quantum internet. Entanglement of quantum interfaces is an important step for the realization of quantum networks. Through heralded detection of photon interference, we generate multipartite entanglement between 25 (or 9) individually addressable quantum interfaces in a multiplexed atomic quantum memory array and confirm genuine 22-partite (or 9-partite) entanglement. This experimental entanglement of a record-high number of individually addressable quantum interfaces makes an important step toward the realization of quantum networks, long-distance quantum communication, and multipartite quantum information processing. PMID:29725621

  6. Quantum-entanglement storage and extraction in quantum network node

    NASA Astrophysics Data System (ADS)

    Shan, Zhuoyu; Zhang, Yong

    Quantum computing and quantum communication have become the most popular research topic. Nitrogen-vacancy (NV) centers in diamond have been shown the great advantage of implementing quantum information processing. The generation of entanglement between NV centers represents a fundamental prerequisite for all quantum information technologies. In this paper, we propose a scheme to realize the high-fidelity storage and extraction of quantum entanglement information based on the NV centers at room temperature. We store the entangled information of a pair of entangled photons in the Bell state into the nuclear spins of two NV centers, which can make these two NV centers entangled. And then we illuminate how to extract the entangled information from NV centers to prepare on-demand entangled states for optical quantum information processing. The strategy of engineering entanglement demonstrated here maybe pave the way towards a NV center-based quantum network.

  7. Optical studies of current-induced magnetization switching and photonic quantum states

    NASA Astrophysics Data System (ADS)

    Lorenz, Virginia

    2017-04-01

    The ever-decreasing size of electronic components is leading to a fundamental change in the way computers operate, as at the few-nanometer scale, resistive heating and quantum mechanics prohibit efficient and stable operation. One of the most promising next-generation computing paradigms is Spintronics, which uses the spin of the electron to manipulate and store information in the form of magnetic thin films. I will present our optical studies of the fundamental mechanisms by which we can efficiently manipulate magnetization using electrical current. Although electron spin is a quantum-mechanical property, Spintronics relies on macroscopic magnetization and thus does not take advantage of quantum mechanics in the algorithms used to encode and transmit information. For the second part of my talk, I will present our work under the umbrella of new computing and communication technologies based on the quantum mechanical properties of photons. Quantum technologies often require the carriers of information, or qubits, to have specific properties. Photonic quantum states are good information carriers because they travel fast and are robust to environmental fluctuations, but characterizing and controlling photonic sources so the photons have just the right properties is still a challenge. I will describe our work towards enabling quantum-physics-based secure long-distance communication using photons.

  8. Photonics for microwave systems and ultra-wideband signal processing

    NASA Astrophysics Data System (ADS)

    Ng, W.

    2016-08-01

    The advantages of using the broadband and low-loss distribution attributes of photonics to enhance the signal processing and sensing capabilities of microwave systems are well known. In this paper, we review the progress made in the topical areas of true-time-delay beamsteering, photonic-assisted analog-to-digital conversion, RF-photonic filtering and link performances. We also provide an outlook on the emerging field of integrated microwave photonics (MWP) that promise to reduce the cost of MWP subsystems and components, while providing significantly improved form-factors for system insertion.

  9. A non-invasive online photoionization spectrometer for FLASH2

    PubMed Central

    Braune, Markus; Brenner, Günter; Dziarzhytski, Siarhei; Juranić, Pavle; Sorokin, Andrey; Tiedtke, Kai

    2016-01-01

    The stochastic nature of the self-amplified spontaneous emission (SASE) process of free-electron lasers (FELs) effects pulse-to-pulse fluctuations of the radiation properties, such as the photon energy, which are determinative for processes of photon–matter interactions. Hence, SASE FEL sources pose a great challenge for scientific investigations, since experimenters need to obtain precise real-time feedback of these properties for each individual photon bunch for interpretation of the experimental data. Furthermore, any device developed to deliver the according information should not significantly interfere with or degrade the FEL beam. Regarding the spectral properties, a device for online monitoring of FEL wavelengths has been developed for FLASH2, which is based on photoionization of gaseous targets and the measurements of the corresponding electron and ion time-of-flight spectra. This paper presents experimental studies and cross-calibration measurements demonstrating the viability of this online photoionization spectrometer. PMID:26698040

  10. Ultraweak photon emission in the brain.

    PubMed

    Salari, V; Valian, H; Bassereh, H; Bókkon, I; Barkhordari, A

    2015-09-01

    Besides the low-frequency electromagnetic body-processes measurable through the electroencephalography (EEG), electrocardiography (ECG), etc. there are processes that do not need external excitation, emitting light within or close to the visible spectra. Such ultraweak photon emission (UPE), also named biophoton emission, reflects the cellular (and body) oxidative status. Recently, a growing body of evidence shows that UPE may play an important role in the basic functioning of living cells. Moreover, interesting evidences are beginning to emerge that UPE may well play an important role in neuronal functions. In fact, biophotons are byproducts in cellular metabolism and produce false signals (e.g., retinal discrete dark noise) but on the other side neurons contain many light sensitive molecules that makes it hard to imagine how they might not be influenced by UPE, and thus UPE may carry informational contents. Here, we investigate UPE in the brain from different points of view such as experimental evidences, theoretical modeling, and physiological significance.

  11. Focused-ion-beam overlay-patterning of three-dimensional diamond structures for advanced single-photon properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Qianqing; Liu, Dongqi; Liu, Gangqin

    2014-07-28

    Sources of single photons are of fundamental importance in many applications as to provide quantum states for quantum communication and quantum information processing. Color centers in diamond are prominent candidates to generate and manipulate quantum states of light, even at room temperature. However, the efficiency of photon collection of the color centers in bulk diamond is greatly reduced by refraction at the diamond/air interface. To address this issue, diamond structuring has been investigated by various methods. Among them, focused-ion-beam (FIB) direct patterning has been recognized as the most favorable technique. But it has been noted that diamond tends to presentmore » significant challenges in FIB milling, e.g., the susceptibility of forming charging related artifacts and topographical features. In this work, periodically-positioned-rings and overlay patterning with stagger-superimposed-rings were proposed to alleviate some problems encountered in FIB milling of diamond, for improved surface morphology and shape control. Cross-scale network and uniform nanostructure arrays have been achieved in single crystalline diamond substrates. High quality diamond solid immersion lens and nanopillars were sculptured with a nitrogen-vacancy center buried at the desired position. Compared with the film counterpart, an enhancement of about ten folds in single photon collection efficiency was achieved with greatly improved signal to noise ratio. All these results indicate that FIB milling through over-lay patterning could be an effective approach to fabricate diamond structures, potentially for quantum information studies.« less

  12. Generalized free-space diffuse photon transport model based on the influence analysis of a camera lens diaphragm.

    PubMed

    Chen, Xueli; Gao, Xinbo; Qu, Xiaochao; Chen, Duofang; Ma, Xiaopeng; Liang, Jimin; Tian, Jie

    2010-10-10

    The camera lens diaphragm is an important component in a noncontact optical imaging system and has a crucial influence on the images registered on the CCD camera. However, this influence has not been taken into account in the existing free-space photon transport models. To model the photon transport process more accurately, a generalized free-space photon transport model is proposed. It combines Lambertian source theory with analysis of the influence of the camera lens diaphragm to simulate photon transport process in free space. In addition, the radiance theorem is also adopted to establish the energy relationship between the virtual detector and the CCD camera. The accuracy and feasibility of the proposed model is validated with a Monte-Carlo-based free-space photon transport model and physical phantom experiment. A comparison study with our previous hybrid radiosity-radiance theorem based model demonstrates the improvement performance and potential of the proposed model for simulating photon transport process in free space.

  13. Dual CARS and SHG image acquisition scheme that combines single central fiber and multimode fiber bundle to collect and differentiate backward and forward generated photons

    PubMed Central

    Weng, Sheng; Chen, Xu; Xu, Xiaoyun; Wong, Kelvin K.; Wong, Stephen T. C.

    2016-01-01

    In coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) imaging, backward and forward generated photons exhibit different image patterns and thus capture salient intrinsic information of tissues from different perspectives. However, they are often mixed in collection using traditional image acquisition methods and thus are hard to interpret. We developed a multimodal scheme using a single central fiber and multimode fiber bundle to simultaneously collect and differentiate images formed by these two types of photons and evaluated the scheme in an endomicroscopy prototype. The ratio of these photons collected was calculated for the characterization of tissue regions with strong or weak epi-photon generation while different image patterns of these photons at different tissue depths were revealed. This scheme provides a new approach to extract and integrate information captured by backward and forward generated photons in dual CARS/SHG imaging synergistically for biomedical applications. PMID:27375938

  14. Quantum entanglement of angular momentum states with quantum numbers up to 10,010

    PubMed Central

    Fickler, Robert; Campbell, Geoff; Buchler, Ben; Lam, Ping Koy; Zeilinger, Anton

    2016-01-01

    Photons with a twisted phase front carry a quantized amount of orbital angular momentum (OAM) and have become important in various fields of optics, such as quantum and classical information science or optical tweezers. Because no upper limit on the OAM content per photon is known, they are also interesting systems to experimentally challenge quantum mechanical prediction for high quantum numbers. Here, we take advantage of a recently developed technique to imprint unprecedented high values of OAM, namely spiral phase mirrors, to generate photons with more than 10,000 quanta of OAM. Moreover, we demonstrate quantum entanglement between these large OAM quanta of one photon and the polarization of its partner photon. To our knowledge, this corresponds to entanglement with the largest quantum number that has been demonstrated in an experiment. The results may also open novel ways to couple single photons to massive objects, enhance angular resolution, and highlight OAM as a promising way to increase the information capacity of a single photon. PMID:27856742

  15. Quantum entanglement of angular momentum states with quantum numbers up to 10,010

    NASA Astrophysics Data System (ADS)

    Fickler, Robert; Campbell, Geoff; Buchler, Ben; Lam, Ping Koy; Zeilinger, Anton

    2016-11-01

    Photons with a twisted phase front carry a quantized amount of orbital angular momentum (OAM) and have become important in various fields of optics, such as quantum and classical information science or optical tweezers. Because no upper limit on the OAM content per photon is known, they are also interesting systems to experimentally challenge quantum mechanical prediction for high quantum numbers. Here, we take advantage of a recently developed technique to imprint unprecedented high values of OAM, namely spiral phase mirrors, to generate photons with more than 10,000 quanta of OAM. Moreover, we demonstrate quantum entanglement between these large OAM quanta of one photon and the polarization of its partner photon. To our knowledge, this corresponds to entanglement with the largest quantum number that has been demonstrated in an experiment. The results may also open novel ways to couple single photons to massive objects, enhance angular resolution, and highlight OAM as a promising way to increase the information capacity of a single photon.

  16. Quantum entanglement of angular momentum states with quantum numbers up to 10,010.

    PubMed

    Fickler, Robert; Campbell, Geoff; Buchler, Ben; Lam, Ping Koy; Zeilinger, Anton

    2016-11-29

    Photons with a twisted phase front carry a quantized amount of orbital angular momentum (OAM) and have become important in various fields of optics, such as quantum and classical information science or optical tweezers. Because no upper limit on the OAM content per photon is known, they are also interesting systems to experimentally challenge quantum mechanical prediction for high quantum numbers. Here, we take advantage of a recently developed technique to imprint unprecedented high values of OAM, namely spiral phase mirrors, to generate photons with more than 10,000 quanta of OAM. Moreover, we demonstrate quantum entanglement between these large OAM quanta of one photon and the polarization of its partner photon. To our knowledge, this corresponds to entanglement with the largest quantum number that has been demonstrated in an experiment. The results may also open novel ways to couple single photons to massive objects, enhance angular resolution, and highlight OAM as a promising way to increase the information capacity of a single photon.

  17. Photoproduction of dileptons and photons in p -p collisions at the Large Hadron Collider energies

    NASA Astrophysics Data System (ADS)

    Ma, Zhi-Lei; Zhu, Jia-Qing

    2018-03-01

    The production of large pT dileptons and photons originating from photoproduction processes in p-p collisions at Large Hadron Collider energies is calculated. The comparisons between the exact treatment results and the ones of the equivalent photon approximation approach are expressed as the Q2 (the virtuality of photon) and pT distributions. The method developed by Martin and Ryskin is used for avoiding double counting when the coherent and incoherent contributions are considered simultaneously. The numerical results indicate that the equivalent photon approximation is only effective in small Q2 region and can be used for coherent photoproduction processes with proper choice of Qmax2 (the choices Qmax2˜s ^ or ∞ will cause obvious errors), but cannot be used for incoherent photoproduction processes. The exact treatment is needed to deal accurately with the photoproduction of large pT dileptons and photons.

  18. Entangled-photon coincidence fluorescence imaging

    PubMed Central

    Scarcelli, Giuliano; Yun, Seok H.

    2009-01-01

    We describe fluorescence imaging using the second-order correlation of entangled photon pairs. The proposed method is based on the principle that one photon of the pair carries information on where the other photon has been absorbed and has produced fluorescence in a sample. Because fluorescent molecules serve as “detectors” breaking the entanglement, multiply-scattered fluorescence photons within the sample do not cause image blur. We discuss experimental implementations. PMID:18825257

  19. Teleporting photonic qudits using multimode quantum scissors.

    PubMed

    Goyal, Sandeep K; Konrad, Thomas

    2013-12-19

    Teleportation plays an important role in the communication of quantum information between the nodes of a quantum network and is viewed as an essential ingredient for long-distance Quantum Cryptography. We describe a method to teleport the quantum information carried by a photon in a superposition of a number d of light modes (a "qudit") by the help of d additional photons based on transcription. A qudit encoded into a single excitation of d light modes (in our case Laguerre-Gauss modes which carry orbital angular momentum) is transcribed to d single-rail photonic qubits, which are spatially separated. Each single-rail qubit consists of a superposition of vacuum and a single photon in each one of the modes. After successful teleportation of each of the d single-rail qubits by means of "quantum scissors" they are converted back into a qudit carried by a single photon which completes the teleportation scheme.

  20. Teleporting photonic qudits using multimode quantum scissors

    NASA Astrophysics Data System (ADS)

    Goyal, Sandeep K.; Konrad, Thomas

    2013-12-01

    Teleportation plays an important role in the communication of quantum information between the nodes of a quantum network and is viewed as an essential ingredient for long-distance Quantum Cryptography. We describe a method to teleport the quantum information carried by a photon in a superposition of a number d of light modes (a ``qudit'') by the help of d additional photons based on transcription. A qudit encoded into a single excitation of d light modes (in our case Laguerre-Gauss modes which carry orbital angular momentum) is transcribed to d single-rail photonic qubits, which are spatially separated. Each single-rail qubit consists of a superposition of vacuum and a single photon in each one of the modes. After successful teleportation of each of the d single-rail qubits by means of ``quantum scissors'' they are converted back into a qudit carried by a single photon which completes the teleportation scheme.

  1. A solid state source of photon triplets based on quantum dot molecules

    PubMed Central

    Khoshnegar, Milad; Huber, Tobias; Predojević, Ana; Dalacu, Dan; Prilmüller, Maximilian; Lapointe, Jean; Wu, Xiaohua; Tamarat, Philippe; Lounis, Brahim; Poole, Philip; Weihs, Gregor; Majedi, Hamed

    2017-01-01

    Producing advanced quantum states of light is a priority in quantum information technologies. In this context, experimental realizations of multipartite photon states would enable improved tests of the foundations of quantum mechanics as well as implementations of complex quantum optical networks and protocols. It is favourable to directly generate these states using solid state systems, for simpler handling and the promise of reversible transfer of quantum information between stationary and flying qubits. Here we use the ground states of two optically active coupled quantum dots to directly produce photon triplets. The formation of a triexciton in these ground states leads to a triple cascade recombination and sequential emission of three photons with strong correlations. We record 65.62 photon triplets per minute under continuous-wave pumping, surpassing rates of earlier reported sources. Our structure and data pave the way towards implementing multipartite photon entanglement and multi-qubit readout schemes in solid state devices. PMID:28604705

  2. Strongly-Refractive One-Dimensional Photonic Crystal Prisms

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor)

    2004-01-01

    One-dimensional (1D) photonic crystal prisms can separate a beam of polychromatic electromagnetic waves into constituent wavelength components and can utilize unconventional refraction properties for wavelength dispersion over significant portions of an entire photonic band rather than just near the band edges outside the photonic band gaps. Using a ID photonic crystal simplifies the design and fabrication process and allows the use of larger feature sizes. The prism geometry broadens the useful wavelength range, enables better optical transmission, and exhibits angular dependence on wavelength with reduced non-linearity. The properties of the 1 D photonic crystal prism can be tuned by varying design parameters such as incidence angle, exit surface angle, and layer widths. The ID photonic crystal prism can be fabricated in a planar process, and can be used as optical integrated circuit elements.

  3. Experimental Overview of Direct Photon Results in Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Novitzky, Norbert

    2016-07-01

    Direct photons are color blind probes and thus they provide unique opportunities to study the colored medium created in heavy ion collisions. There are many different sources of direct photons each probing different physics processes as the system evolves. In basic 2 → 2 processes the prompt photons from primary hard scatterings offer the most precise measurements of the outgoing parton energy in the opposite direction. In heavy ion collisions the created medium emits photons as thermal radiation, whose rate and anisotropies provide a unique prospective on the properties and evolution of the system. Recent results on direct photons from the LHC and RHIC experiments are briefly summarized in this paper.

  4. Generation of Single Photons and Entangled Photon Pairs from a Quantum Dot

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Pelton, M.; Santori, C.; Solomon, G. S.

    2002-10-01

    Current quantum cryptography systems are limited by the Poissonian photon statistics of a standard light source: a security loophole is opened up by the possibility of multiple-photon pulses. By replacing the source with a single-photon emitter, transmission rates of secure information can be improved. A single photon source is also essential to implement a linear optics quantum computer. We have investigated the use of single self-assembled InAs/GaAs quantum dots as such single-photon sources, and have seen a hundred-fold reduction in the multi-photon probability as compared to Poissonian pulses. An extension of our experiment should also allow for the generation of triggered, polarizationentangled photon pairs.

  5. One Photon Can Simultaneously Excite Two or More Atoms.

    PubMed

    Garziano, Luigi; Macrì, Vincenzo; Stassi, Roberto; Di Stefano, Omar; Nori, Franco; Savasta, Salvatore

    2016-07-22

    We consider two separate atoms interacting with a single-mode optical or microwave resonator. When the frequency of the resonator field is twice the atomic transition frequency, we show that there exists a resonant coupling between one photon and two atoms, via intermediate virtual states connected by counterrotating processes. If the resonator is prepared in its one-photon state, the photon can be jointly absorbed by the two atoms in their ground state which will both reach their excited state with a probability close to one. Like ordinary quantum Rabi oscillations, this process is coherent and reversible, so that two atoms in their excited state will undergo a downward transition jointly emitting a single cavity photon. This joint absorption and emission process can also occur with three atoms. The parameters used to investigate this process correspond to experimentally demonstrated values in circuit quantum electrodynamics systems.

  6. Production, Manipulation, and Applications of Ultracold Polar Molecules

    DTIC Science & Technology

    2015-04-30

    molecules, cooling, trapping, photoassociation, feshbach resonances, quantum simulation , ultracold collisions, ultracold chemistry, optical lattices...been a multitude of less predictable outcomes: special quantum information processing schemes, uses of entanglement such a spin-squeezing for better...field seeing states to high-field-seeking states (and back) at key points in the magnetic field. The molecules spontaneously emit photons as they are

  7. Frequency conversion of structured light.

    PubMed

    Steinlechner, Fabian; Hermosa, Nathaniel; Pruneri, Valerio; Torres, Juan P

    2016-02-15

    Coherent frequency conversion of structured light, i.e. the ability to manipulate the carrier frequency of a wave front without distorting its spatial phase and intensity profile, provides the opportunity for numerous novel applications in photonic technology and fundamental science. In particular, frequency conversion of spatial modes carrying orbital angular momentum can be exploited in sub-wavelength resolution nano-optics and coherent imaging at a wavelength different from that used to illuminate an object. Moreover, coherent frequency conversion will be crucial for interfacing information stored in the high-dimensional spatial structure of single and entangled photons with various constituents of quantum networks. In this work, we demonstrate frequency conversion of structured light from the near infrared (803 nm) to the visible (527 nm). The conversion scheme is based on sum-frequency generation in a periodically poled lithium niobate crystal pumped with a 1540-nm Gaussian beam. We observe frequency-converted fields that exhibit a high degree of similarity with the input field and verify the coherence of the frequency-conversion process via mode projection measurements with a phase mask and a single-mode fiber. Our results demonstrate the suitability of exploiting the technique for applications in quantum information processing and coherent imaging.

  8. Concept for individualized patient allocation: ReCompare--remote comparison of particle and photon treatment plans.

    PubMed

    Lühr, Armin; Löck, Steffen; Roth, Klaus; Helmbrecht, Stephan; Jakobi, Annika; Petersen, Jørgen B; Just, Uwe; Krause, Mechthild; Enghardt, Wolfgang; Baumann, Michael

    2014-02-18

    Identifying those patients who have a higher chance to be cured with fewer side effects by particle beam therapy than by state-of-the-art photon therapy is essential to guarantee a fair and sufficient access to specialized radiotherapy. The individualized identification requires initiatives by particle as well as non-particle radiotherapy centers to form networks, to establish procedures for the decision process, and to implement means for the remote exchange of relevant patient information. In this work, we want to contribute a practical concept that addresses these requirements. We proposed a concept for individualized patient allocation to photon or particle beam therapy at a non-particle radiotherapy institution that bases on remote treatment plan comparison. We translated this concept into the web-based software tool ReCompare (REmote COMparison of PARticlE and photon treatment plans). We substantiated the feasibility of the proposed concept by demonstrating remote exchange of treatment plans between radiotherapy institutions and the direct comparison of photon and particle treatment plans in photon treatment planning systems. ReCompare worked with several tested standard treatment planning systems, ensured patient data protection, and integrated in the clinical workflow. Our concept supports non-particle radiotherapy institutions with the patient-specific treatment decision on the optimal irradiation modality by providing expertise from a particle therapy center. The software tool ReCompare may help to improve and standardize this personalized treatment decision. It will be available from our website when proton therapy is operational at our facility.

  9. Quantum-enhanced spectroscopy with entangled multiphoton states

    NASA Astrophysics Data System (ADS)

    Dinani, Hossein T.; Gupta, Manish K.; Dowling, Jonathan P.; Berry, Dominic W.

    2016-06-01

    Traditionally, spectroscopy is performed by examining the position of absorption lines. However, at frequencies near the transition frequency, additional information can be obtained from the phase shift. In this work we consider the information about the transition frequency obtained from both the absorption and the phase shift, as quantified by the Fisher information in an interferometric measurement. We examine the use of multiple single-photon states, NOON states, and numerically optimized states that are entangled and have multiple photons. We find the optimized states that improve over the standard quantum limit set by independent single photons for some atom number densities.

  10. Time-reversal-symmetric single-photon wave packets for free-space quantum communication.

    PubMed

    Trautmann, N; Alber, G; Agarwal, G S; Leuchs, G

    2015-05-01

    Readout and retrieval processes are proposed for efficient, high-fidelity quantum state transfer between a matter qubit, encoded in the level structure of a single atom or ion, and a photonic qubit, encoded in a time-reversal-symmetric single-photon wave packet. They are based on controlling spontaneous photon emission and absorption of a matter qubit on demand in free space by stimulated Raman adiabatic passage. As these processes do not involve mode selection by high-finesse cavities or photon transport through optical fibers, they offer interesting perspectives as basic building blocks for free-space quantum-communication protocols.

  11. Simultaneous Teleportation of the Spectral and Polarization States of a Photon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humble, Travis S; Bennink, Ryan S; Grice, Warren P

    2008-01-01

    We describe how spectrally multimode, polarization-entangled photons simultaneously teleport quantum information encoded into the spectral and polarization degrees of freedom of a single photon using sum frequency generation to implement a Bell-state measurement.

  12. High efficiency coherent optical memory with warm rubidium vapour

    PubMed Central

    Hosseini, M.; Sparkes, B.M.; Campbell, G.; Lam, P.K.; Buchler, B.C.

    2011-01-01

    By harnessing aspects of quantum mechanics, communication and information processing could be radically transformed. Promising forms of quantum information technology include optical quantum cryptographic systems and computing using photons for quantum logic operations. As with current information processing systems, some form of memory will be required. Quantum repeaters, which are required for long distance quantum key distribution, require quantum optical memory as do deterministic logic gates for optical quantum computing. Here, we present results from a coherent optical memory based on warm rubidium vapour and show 87% efficient recall of light pulses, the highest efficiency measured to date for any coherent optical memory suitable for quantum information applications. We also show storage and recall of up to 20 pulses from our system. These results show that simple warm atomic vapour systems have clear potential as a platform for quantum memory. PMID:21285952

  13. High efficiency coherent optical memory with warm rubidium vapour.

    PubMed

    Hosseini, M; Sparkes, B M; Campbell, G; Lam, P K; Buchler, B C

    2011-02-01

    By harnessing aspects of quantum mechanics, communication and information processing could be radically transformed. Promising forms of quantum information technology include optical quantum cryptographic systems and computing using photons for quantum logic operations. As with current information processing systems, some form of memory will be required. Quantum repeaters, which are required for long distance quantum key distribution, require quantum optical memory as do deterministic logic gates for optical quantum computing. Here, we present results from a coherent optical memory based on warm rubidium vapour and show 87% efficient recall of light pulses, the highest efficiency measured to date for any coherent optical memory suitable for quantum information applications. We also show storage and recall of up to 20 pulses from our system. These results show that simple warm atomic vapour systems have clear potential as a platform for quantum memory.

  14. On-chip photonic microsystem for optical signal processing based on silicon and silicon nitride platforms

    NASA Astrophysics Data System (ADS)

    Li, Yu; Li, Jiachen; Yu, Hongchen; Yu, Hai; Chen, Hongwei; Yang, Sigang; Chen, Minghua

    2018-04-01

    The explosive growth of data centers, cloud computing and various smart devices is limited by the current state of microelectronics, both in terms of speed and heat generation. Benefiting from the large bandwidth, promising low power consumption and passive calculation capability, experts believe that the integrated photonics-based signal processing and transmission technologies can break the bottleneck of microelectronics technology. In recent years, integrated photonics has become increasingly reliable and access to the advanced fabrication process has been offered by various foundries. In this paper, we review our recent works on the integrated optical signal processing system. We study three different kinds of on-chip signal processors and use these devices to build microsystems for the fields of microwave photonics, optical communications and spectrum sensing. The microwave photonics front receiver was demonstrated with a signal processing range of a full-band (L-band to W-band). A fully integrated microwave photonics transceiver without the on-chip laser was realized on silicon photonics covering the signal frequency of up 10 GHz. An all-optical orthogonal frequency division multiplexing (OFDM) de-multiplier was also demonstrated and used for an OFDM communication system with the rate of 64 Gbps. Finally, we show our work on the monolithic integrated spectrometer with a high resolution of about 20 pm at the central wavelength of 1550 nm. These proposed on-chip signal processing systems potential applications in the fields of radar, 5G wireless communication, wearable devices and optical access networks.

  15. Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases.

    PubMed

    Chen, Chun-Wei; Hou, Chien-Tsung; Li, Cheng-Chang; Jau, Hung-Chang; Wang, Chun-Ta; Hong, Ching-Lang; Guo, Duan-Yi; Wang, Cheng-Yu; Chiang, Sheng-Ping; Bunning, Timothy J; Khoo, Iam-Choon; Lin, Tsung-Hsien

    2017-09-28

    Although there have been intense efforts to fabricate large three-dimensional photonic crystals in order to realize their full potential, the technologies developed so far are still beset with various material processing and cost issues. Conventional top-down fabrications are costly and time-consuming, whereas natural self-assembly and bottom-up fabrications often result in high defect density and limited dimensions. Here we report the fabrication of extraordinarily large monocrystalline photonic crystals by controlling the self-assembly processes which occur in unique phases of liquid crystals that exhibit three-dimensional photonic-crystalline properties called liquid-crystal blue phases. In particular, we have developed a gradient-temperature technique that enables three-dimensional photonic crystals to grow to lateral dimensions of ~1 cm (~30,000 of unit cells) and thickness of ~100 μm (~ 300 unit cells). These giant single crystals exhibit extraordinarily sharp photonic bandgaps with high reflectivity, long-range periodicity in all dimensions and well-defined lattice orientation.Conventional fabrication approaches for large-size three-dimensional photonic crystals are problematic. By properly controlling the self-assembly processes, the authors report the fabrication of monocrystalline blue phase liquid crystals that exhibit three-dimensional photonic-crystalline properties.

  16. Breakdown of Bose-Einstein distribution in photonic crystals.

    PubMed

    Lo, Ping-Yuan; Xiong, Heng-Na; Zhang, Wei-Min

    2015-03-30

    In the last two decades, considerable advances have been made in the investigation of nano-photonics in photonic crystals. Previous theoretical investigations of photon dynamics were carried out at zero temperature. Here, we investigate micro/nano cavity photonics in photonic crystals at finite temperature. Due to photonic-band-gap-induced localized long-lived photon dynamics, we discover that cavity photons in photonic crystals do not obey Bose-Einstein statistical distribution. Within the photonic band gap and in the vicinity of the band edge, cavity photons combine the long-lived non-Markovain dynamics with thermal fluctuations together to form photon states that memorize the initial cavity state information. As a result, Bose-Einstein distribution is completely broken down in these regimes, even if the thermal energy is larger or much larger than the cavity detuning energy. In this investigation, a crossover phenomenon from equilibrium to nonequilibrium steady states is also revealed.

  17. Breakdown of Bose-Einstein Distribution in Photonic Crystals

    PubMed Central

    Lo, Ping-Yuan; Xiong, Heng-Na; Zhang, Wei-Min

    2015-01-01

    In the last two decades, considerable advances have been made in the investigation of nano-photonics in photonic crystals. Previous theoretical investigations of photon dynamics were carried out at zero temperature. Here, we investigate micro/nano cavity photonics in photonic crystals at finite temperature. Due to photonic-band-gap-induced localized long-lived photon dynamics, we discover that cavity photons in photonic crystals do not obey Bose-Einstein statistical distribution. Within the photonic band gap and in the vicinity of the band edge, cavity photons combine the long-lived non-Markovain dynamics with thermal fluctuations together to form photon states that memorize the initial cavity state information. As a result, Bose-Einstein distribution is completely broken down in these regimes, even if the thermal energy is larger or much larger than the cavity detuning energy. In this investigation, a crossover phenomenon from equilibrium to nonequilibrium steady states is also revealed. PMID:25822135

  18. Robust integration schemes for junction-based modulators in a 200mm CMOS compatible silicon photonic platform (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Szelag, Bertrand; Abraham, Alexis; Brision, Stéphane; Gindre, Paul; Blampey, Benjamin; Myko, André; Olivier, Segolene; Kopp, Christophe

    2017-05-01

    Silicon photonic is becoming a reality for next generation communication system addressing the increasing needs of HPC (High Performance Computing) systems and datacenters. CMOS compatible photonic platforms are developed in many foundries integrating passive and active devices. The use of existing and qualified microelectronics process guarantees cost efficient and mature photonic technologies. Meanwhile, photonic devices have their own fabrication constraints, not similar to those of cmos devices, which can affect their performances. In this paper, we are addressing the integration of PN junction Mach Zehnder modulator in a 200mm CMOS compatible photonic platform. Implantation based device characteristics are impacted by many process variations among which screening layer thickness, dopant diffusion, implantation mask overlay. CMOS devices are generally quite robust with respect to these processes thanks to dedicated design rules. For photonic devices, the situation is different since, most of the time, doped areas must be carefully located within waveguides and CMOS solutions like self-alignment to the gate cannot be applied. In this work, we present different robust integration solutions for junction-based modulators. A simulation setup has been built in order to optimize of the process conditions. It consist in a Mathlab interface coupling process and device electro-optic simulators in order to run many iterations. Illustrations of modulator characteristic variations with process parameters are done using this simulation setup. Parameters under study are, for instance, X and Y direction lithography shifts, screening oxide and slab thicknesses. A robust process and design approach leading to a pn junction Mach Zehnder modulator insensitive to lithography misalignment is then proposed. Simulation results are compared with experimental datas. Indeed, various modulators have been fabricated with different process conditions and integration schemes. Extensive electro-optic characterization of these components will be presented.

  19. Controllable optical modulation of blue/green up-conversion fluorescence from Tm3+ (Er3+) single-doped glass ceramics upon two-step excitation of two-wavelengths

    PubMed Central

    Chen, Zhi; Kang, Shiliang; Zhang, Hang; Wang, Ting; Lv, Shichao; Chen, Qiuqun; Dong, Guoping; Qiu, Jianrong

    2017-01-01

    Optical modulation is a crucial operation in photonics for network data processing with the aim to overcome information bottleneck in terms of speed, energy consumption, dispersion and cross-talking from conventional electronic interconnection approach. However, due to the weak interactions between photons, a facile physical approach is required to efficiently manipulate photon-photon interactions. Herein, we demonstrate that transparent glass ceramics containing LaF3: Tm3+ (Er3+) nanocrystals can enable fast-slow optical modulation of blue/green up-conversion fluorescence upon two-step excitation of two-wavelengths at telecom windows (0.8–1.8 μm). We show an optical modulation of more than 1500% (800%) of the green (blue) up-conversion fluorescence intensity, and fast response of 280 μs (367 μs) as well as slow response of 5.82 ms (618 μs) in the green (blue) up-conversion fluorescence signal, respectively. The success of manipulating laser at telecom windows for fast-slow optical modulation from rear-earth single-doped glass ceramics may find application in all-optical fiber telecommunication areas. PMID:28368041

  20. Chiral templating of self-assembling nanostructures by circularly polarized light

    DOE PAGES

    Yeom, Jihyeon; Yeom, Bongjun; Chan, Henry; ...

    2014-11-17

    Chemical reactions affected by spin angular momenta of circularly polarized photons are rare and display low enantiomeric excess. High optical and chemical activity of nanoparticles (NPs) should facilitate the transfer of spin angular momenta of photons to nanoscale materials but such processes are unknown. Here we demonstrate that circularly polarized light (CPL) strongly affects self-assembly of racemic CdTe NPs. Illumination of NP dispersions with right- and left-handed CPL induces the formation of right- and left-handed twisted nanoribbons, respectively. Enantiomeric excess of such reactions exceeds 30% which is ~10 times higher than other CPL-induced reactions. Illumination with linearly polarized light andmore » assembly in the dark led to straight nanoribbons. The mechanism of “templation” of NP assemblies by CPL is associated with selective photoactivation of chiral NPs and clusters followed by their photooxidation. Chiral anisotropy of interactions translates into chirality of the assembled ribbons. Lastly, the ability of NPs to retain polarization information, or the “imprint” of incident photons opens new pathways for the synthesis of chiral photonic materials and allows for better understanding of the origins of biomolecular homochirality.« less

  1. The X-Ray Polarization of the Accretion Disk Coronae of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Beheshtipour, Banafsheh; Krawczynski, Henric; Malzac, Julien

    2017-11-01

    Hard X-rays observed in Active Galactic Nuclei (AGNs) are thought to originate from the Comptonization of the optical/UV accretion disk photons in a hot corona. Polarization studies of these photons can help to constrain the corona geometry and the plasma properties. We have developed a ray-tracing code that simulates the Comptonization of accretion disk photons in coronae of arbitrary shapes, and use it here to study the polarization of the X-ray emission from wedge and spherical coronae. We study the predicted polarization signatures for the fully relativistic and various approximate treatments of the elemental Compton scattering processes. We furthermore use the code to evaluate the impact of nonthermal electrons and cyclo-synchrotron photons on the polarization properties. Finally, we model the NuSTAR observations of the Seyfert I galaxy Mrk 335 and predict the associated polarization signal. Our studies show that X-ray polarimetry missions such as NASA’s Imaging X-ray Polarimetry Explorer and the X-ray Imaging Polarimetry Explorer proposed to ESA will provide valuable new information about the physical properties of the plasma close to the event horizon of AGN black holes.

  2. Measurement-device-independent quantum key distribution with multiple crystal heralded source with post-selection

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Shang-Hong, Zhao; MengYi, Deng

    2018-03-01

    The multiple crystal heralded source with post-selection (MHPS), originally introduced to improve the single-photon character of the heralded source, has specific applications for quantum information protocols. In this paper, by combining decoy-state measurement-device-independent quantum key distribution (MDI-QKD) with spontaneous parametric downconversion process, we present a modified MDI-QKD scheme with MHPS where two architectures are proposed corresponding to symmetric scheme and asymmetric scheme. The symmetric scheme, which linked by photon switches in a log-tree structure, is adopted to overcome the limitation of the current low efficiency of m-to-1 optical switches. The asymmetric scheme, which shows a chained structure, is used to cope with the scalability issue with increase in the number of crystals suffered in symmetric scheme. The numerical simulations show that our modified scheme has apparent advances both in transmission distance and key generation rate compared to the original MDI-QKD with weak coherent source and traditional heralded source with post-selection. Furthermore, the recent advances in integrated photonics suggest that if built into a single chip, the MHPS might be a practical alternative source in quantum key distribution tasks requiring single photons to work.

  3. Photon spectroscopy by picoseconds differential Geiger-mode Si photomultiplier

    NASA Astrophysics Data System (ADS)

    Yamamoto, Masanobu; Hernandez, Keegan; Robinson, J. Paul

    2018-02-01

    The pixel array silicon photomultiplier (SiPM) is known as an excellent photon sensor with picoseconds avalanche process with the capacity for millions amplification of photoelectrons. In addition, a higher quantum efficiency(QE), small size, low bias voltage, light durability are attractive features for biological applications. The primary disadvantage is the limited dynamic range due to the 50ns recharge process and a high dark count which is an additional hurdle. We have developed a wide dynamic Si photon detection system applying ultra-fast differentiation signal processing, temperature control by thermoelectric device and Giga photon counter with 9 decimal digits dynamic range. The tested performance is six orders of magnitude with 600ps pulse width and sub-fW sensitivity. Combined with 405nm laser illumination and motored monochromator, Laser Induced Fluorescence Photon Spectrometry (LIPS) has been developed with a scan range from 200 900nm at maximum of 500nm/sec and 1nm FWHM. Based on the Planck equation E=hν, this photon counting spectrum provides a fundamental advance in spectral analysis by digital processing. Advantages include its ultimate sensitivity, theoretical linearity, as well as quantitative and logarithmic analysis without use of arbitrary units. Laser excitation is also useful for evaluation of photobleaching or oxidation in materials by higher energy illumination. Traditional typical photocurrent detection limit is about 1pW which includes millions of photons, however using our system it is possible to evaluate the photon spectrum and determine background noise and auto fluorescence(AFL) in optics in any cytometry or imaging system component. In addition, the photon-stream digital signal opens up a new approach for picosecond time-domain analysis. Photon spectroscopy is a powerful method for analysis of fluorescence and optical properties in biology.

  4. Arrangement Analysis of Leaves Optimized on Photon Flux Density or Photosynthetic Rate

    NASA Astrophysics Data System (ADS)

    Obara, Shin'ya; Tanno, Itaru

    By clarifying a plant evolutive process, useful information may be obtained on engineering. Consequently, an analysis algorithm that investigates the optimal arrangement of plant leaves was developed. In the developed algorithm, the Monte Carlo method is introduced and sunlight is simulated. Moreover, the arrangement optimization of leaves is analyzed using a Genetic Algorithm (GA). The number of light quanta (photon flux density) that reaches leaves, or the average photosynthetic rate of the same was set as the objective function, and leaf models of a dogwood and a ginkgo tree were analyzed. The number of leaf models was set between two to four, and the position of the leaf was expressed in terms of the angle of direction, elevation angle, rotation angle, and the representative length of the branch of a leaf. The chromosome model introduced into GA consists of information concerning the position of the leaf. Based on the analysis results, the characteristics of the leaf of an actual plant could be simulated by ensuring the algorithm had multiple constrained conditions. The optimal arrangement of leaves differs in maximization of the photon flux density, and that of the average value of a photosynthetic rate. Furthermore, the leaf form affecting the optimal arrangement of leave and also having a significant influence also on a photosynthetic rate was shown.

  5. Heralded entanglement between solid-state qubits separated by three metres.

    PubMed

    Bernien, H; Hensen, B; Pfaff, W; Koolstra, G; Blok, M S; Robledo, L; Taminiau, T H; Markham, M; Twitchen, D J; Childress, L; Hanson, R

    2013-05-02

    Quantum entanglement between spatially separated objects is one of the most intriguing phenomena in physics. The outcomes of independent measurements on entangled objects show correlations that cannot be explained by classical physics. As well as being of fundamental interest, entanglement is a unique resource for quantum information processing and communication. Entangled quantum bits (qubits) can be used to share private information or implement quantum logical gates. Such capabilities are particularly useful when the entangled qubits are spatially separated, providing the opportunity to create highly connected quantum networks or extend quantum cryptography to long distances. Here we report entanglement of two electron spin qubits in diamond with a spatial separation of three metres. We establish this entanglement using a robust protocol based on creation of spin-photon entanglement at each location and a subsequent joint measurement of the photons. Detection of the photons heralds the projection of the spin qubits onto an entangled state. We verify the resulting non-local quantum correlations by performing single-shot readout on the qubits in different bases. The long-distance entanglement reported here can be combined with recently achieved initialization, readout and entanglement operations on local long-lived nuclear spin registers, paving the way for deterministic long-distance teleportation, quantum repeaters and extended quantum networks.

  6. First observation of the quantized exciton-polariton field and effect of interactions on a single polariton

    PubMed Central

    Silva, Blanca; Fieramosca, Antonio; Tasco, Vittorianna; del Valle, Elena; Ballarini, Dario; Gigli, Giuseppe; Sanvitto, Daniele

    2018-01-01

    Polaritons are quasi-particles that originate from the coupling of light with matter and that demonstrate quantum phenomena at the many-particle mesoscopic level, such as Bose-Einstein condensation and superfluidity. A highly sought and long-time missing feature of polaritons is a genuine quantum manifestation of their dynamics at the single-particle level. Although they are conceptually perceived as entangled states and theoretical proposals abound for an explicit manifestation of their single-particle properties, so far their behavior has remained fully accounted for by classical and mean-field theories. We report the first experimental demonstration of a genuinely quantum state of the microcavity polariton field, by swapping a photon for a polariton in a two-photon entangled state generated by parametric downconversion. When bringing this single-polariton quantum state in contact with a polariton condensate, we observe a disentangling with the external photon. This manifestation of a polariton quantum state involving a single quantum unlocks new possibilities for quantum information processing with interacting bosons. PMID:29725616

  7. Interference of Single Photons Emitted by Entangled Atoms in Free Space

    NASA Astrophysics Data System (ADS)

    Araneda, G.; Higginbottom, D. B.; Slodička, L.; Colombe, Y.; Blatt, R.

    2018-05-01

    The generation and manipulation of entanglement between isolated particles has precipitated rapid progress in quantum information processing. Entanglement is also known to play an essential role in the optical properties of atomic ensembles, but fundamental effects in the controlled emission and absorption from small, well-defined numbers of entangled emitters in free space have remained unobserved. Here we present the control of the emission rate of a single photon from a pair of distant, entangled atoms into a free-space optical mode. Changing the length of the optical path connecting the atoms modulates the single-photon emission rate in the selected mode with a visibility V =0.27 ±0.03 determined by the degree of entanglement shared between the atoms, corresponding directly to the concurrence Cρ=0.31 ±0.10 of the prepared state. This scheme, together with population measurements, provides a fully optical determination of the amount of entanglement. Furthermore, large sensitivity of the interference phase evolution points to applications of the presented scheme in high-precision gradient sensing.

  8. First observation of the quantized exciton-polariton field and effect of interactions on a single polariton.

    PubMed

    Cuevas, Álvaro; López Carreño, Juan Camilo; Silva, Blanca; De Giorgi, Milena; Suárez-Forero, Daniel G; Sánchez Muñoz, Carlos; Fieramosca, Antonio; Cardano, Filippo; Marrucci, Lorenzo; Tasco, Vittorianna; Biasiol, Giorgio; Del Valle, Elena; Dominici, Lorenzo; Ballarini, Dario; Gigli, Giuseppe; Mataloni, Paolo; Laussy, Fabrice P; Sciarrino, Fabio; Sanvitto, Daniele

    2018-04-01

    Polaritons are quasi-particles that originate from the coupling of light with matter and that demonstrate quantum phenomena at the many-particle mesoscopic level, such as Bose-Einstein condensation and superfluidity. A highly sought and long-time missing feature of polaritons is a genuine quantum manifestation of their dynamics at the single-particle level. Although they are conceptually perceived as entangled states and theoretical proposals abound for an explicit manifestation of their single-particle properties, so far their behavior has remained fully accounted for by classical and mean-field theories. We report the first experimental demonstration of a genuinely quantum state of the microcavity polariton field, by swapping a photon for a polariton in a two-photon entangled state generated by parametric downconversion. When bringing this single-polariton quantum state in contact with a polariton condensate, we observe a disentangling with the external photon. This manifestation of a polariton quantum state involving a single quantum unlocks new possibilities for quantum information processing with interacting bosons.

  9. Schemes generating entangled states and entanglement swapping between photons and three-level atoms inside optical cavities for quantum communication

    NASA Astrophysics Data System (ADS)

    Heo, Jino; Kang, Min-Sung; Hong, Chang-Ho; Yang, Hyeon; Choi, Seong-Gon

    2017-01-01

    We propose quantum information processing schemes based on cavity quantum electrodynamics (QED) for quantum communication. First, to generate entangled states (Bell and Greenberger-Horne-Zeilinger [GHZ] states) between flying photons and three-level atoms inside optical cavities, we utilize a controlled phase flip (CPF) gate that can be implemented via cavity QED). Subsequently, we present an entanglement swapping scheme that can be realized using single-qubit measurements and CPF gates via optical cavities. These schemes can be directly applied to construct an entanglement channel for a communication system between two users. Consequently, it is possible for the trust center, having quantum nodes, to accomplish the linked channel (entanglement channel) between the two separate long-distance users via the distribution of Bell states and entanglement swapping. Furthermore, in our schemes, the main physical component is the CPF gate between the photons and the three-level atoms in cavity QED, which is feasible in practice. Thus, our schemes can be experimentally realized with current technology.

  10. In vivo two-photon imaging of macrophage activities in skeletal muscle regeneration

    NASA Astrophysics Data System (ADS)

    Qin, Zhongya; Long, Yanyang; Sun, Qiqi; He, Sicong; Li, Xuesong; Chen, Congping; Wu, Zhenguo; Qu, Jianan Y.

    2018-02-01

    Macrophages are essential for the regeneration of skeletal muscle after injury. It has been demonstrated that depletion of macrophages results in delay of necrotic fiber phagocytosis and decreased size of regenerated myofibers. In this work, we developed a multi-modal two-photon microscope system for in vivo study of macrophage activities in the regenerative and fibrotic healing process of injured skeletal muscles. The system is capable to image the muscles based on the second harmonic generation (SHG) and two-photon excited fluorescence (TPEF) signals simultaneously. The dynamic activities of macrophages and muscle satellite cells are recorded in different time windows post the muscle injury. Moreover, we found that infiltrating macrophages emitted strong autofluorescence in the injured skeletal muscle of mouse model, which has not been reported previously. The macrophage autofluorescence was characterized in both spectral and temporal domains. The information extracted from the autofluorescence signals may facilitate the understanding on the formation mechanisms and possible applications in biological research related to skeletal muscle regeneration.

  11. The spectrum of darkonium in the Sun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kouvaris, Chris; Langæble, Kasper; Nielsen, Niklas Grønlund

    Dark matter that gets captured in the Sun may form positronium-like bound states if it self-interacts via light dark photons. In this case, dark matter can either annihilate to dark photons or recombine in bound states which subsequently also decay to dark photons. The fraction of the dark photons that leave the Sun without decaying to Standard Model particles have a characteristic energy spectrum which is a mixture of the direct annihilation process, the decays of ortho- and para- bound states and the recombination process. The ultimate decay of these dark photons to positron-electron pairs (via kinetic mixing) outside themore » Sun creates a distinct signal that can either identify or set strict constraints on dark photon models.« less

  12. Entanglement with negative Wigner function of almost 3,000 atoms heralded by one photon.

    PubMed

    McConnell, Robert; Zhang, Hao; Hu, Jiazhong; Ćuk, Senka; Vuletić, Vladan

    2015-03-26

    Quantum-mechanically correlated (entangled) states of many particles are of interest in quantum information, quantum computing and quantum metrology. Metrologically useful entangled states of large atomic ensembles have been experimentally realized, but these states display Gaussian spin distribution functions with a non-negative Wigner quasiprobability distribution function. Non-Gaussian entangled states have been produced in small ensembles of ions, and very recently in large atomic ensembles. Here we generate entanglement in a large atomic ensemble via an interaction with a very weak laser pulse; remarkably, the detection of a single photon prepares several thousand atoms in an entangled state. We reconstruct a negative-valued Wigner function--an important hallmark of non-classicality--and verify an entanglement depth (the minimum number of mutually entangled atoms) of 2,910 ± 190 out of 3,100 atoms. Attaining such a negative Wigner function and the mutual entanglement of virtually all atoms is unprecedented for an ensemble containing more than a few particles. Although the achieved purity of the state is slightly below the threshold for entanglement-induced metrological gain, further technical improvement should allow the generation of states that surpass this threshold, and of more complex Schrödinger cat states for quantum metrology and information processing. More generally, our results demonstrate the power of heralded methods for entanglement generation, and illustrate how the information contained in a single photon can drastically alter the quantum state of a large system.

  13. Reduction of Photodiode Nonlinearities by Adaptive Biasing

    DTIC Science & Technology

    2016-10-14

    2016 Approved for public release; distribution is unlimited. Meredith N. hutchiNsoN Nicholas J. Frigo Photonics Technology Branch Optical Sciences...Unclassified Unlimited Unclassified Unlimited 19 Meredith N. Hutchinson (202) 767-9549 Fiber optics Analog photonics RF photonic links impress information...to nonlinearities. These spurious tones masquerade as signals and impair the performance of the photonic link. Earlier research has shown the

  14. Organic Micro/Nanoscale Lasers.

    PubMed

    Zhang, Wei; Yao, Jiannian; Zhao, Yong Sheng

    2016-09-20

    Micro/nanoscale lasers that can deliver intense coherent light signals at (sub)wavelength scale have recently captured broad research interest because of their potential applications ranging from on-chip information processing to high-throughput sensing. Organic molecular materials are a promising kind of ideal platform to construct high-performance microlasers, mainly because of their superiority in abundant excited-state processes with large active cross sections for high gain emissions and flexibly assembled structures for high-quality microcavities. In recent years, ever-increasing efforts have been dedicated to developing such organic microlasers toward low threshold, multicolor output, broadband tunability, and easy integration. Therefore, it is increasingly important to summarize this research field and give deep insight into the structure-property relationships of organic microlasers to accelerate the future development. In this Account, we will review the recent advances in organic miniaturized lasers, with an emphasis on tunable laser performances based on the tailorable microcavity structures and controlled excited-state gain processes of organic materials toward integrated photonic applications. Organic π-conjugated molecules with weak intermolecular interactions readily assemble into regular nanostructures that can serve as high-quality optical microcavities for the strong confinement of photons. On the basis of rational material design, a series of optical microcavities with different structures have been controllably synthesized. These microcavity nanostructures can be endowed with effective four-level dynamic gain processes, such as excited-state intramolecular charge transfer, excited-state intramolecular proton transfer, and excimer processes, that exhibit large dipole optical transitions for strongly active gain behaviors. By tailoring these excited-state processes with molecular/crystal engineering and external stimuli, people have effectively modulated the performances of organic micro/nanolasers. Furthermore, by means of controlled assembly and tunable laser performances, efficient outcoupling of microlasers has been successfully achieved in various organic hybrid microstructures, showing considerable potential for the integrated photonic applications. This Account starts by presenting an overview of the research evolution of organic microlasers in terms of microcavity resonators and energy-level gain. Then a series of strategies to tailor the microcavity structures and excited-state dynamics of organic nanomaterials for the modulation of lasing performances are highlighted. In the following part, we introduce the construction and advanced photonic functionalities of organic-microlaser-based hybrid structures and their applications in integrated nanophotonics. Finally, we provide our outlook on the current challenges as well as the future development of organic microlasers. It is anticipated that this Account will provide inspiration for the development of miniaturized lasers with desired performances by tailoring of excited-state processes and microcavity structures toward integrated photonic applications.

  15. Testing for entanglement with periodic coarse graining

    NASA Astrophysics Data System (ADS)

    Tasca, D. S.; Rudnicki, Łukasz; Aspden, R. S.; Padgett, M. J.; Souto Ribeiro, P. H.; Walborn, S. P.

    2018-04-01

    Continuous-variable systems find valuable applications in quantum information processing. To deal with an infinite-dimensional Hilbert space, one in general has to handle large numbers of discretized measurements in tasks such as entanglement detection. Here we employ the continuous transverse spatial variables of photon pairs to experimentally demonstrate entanglement criteria based on a periodic structure of coarse-grained measurements. The periodization of the measurements allows an efficient evaluation of entanglement using spatial masks acting as mode analyzers over the entire transverse field distribution of the photons and without the need to reconstruct the probability densities of the conjugate continuous variables. Our experimental results demonstrate the utility of the derived criteria with a success rate in entanglement detection of ˜60 % relative to 7344 studied cases.

  16. Multipulse addressing of a Raman quantum memory: configurable beam splitting and efficient readout.

    PubMed

    Reim, K F; Nunn, J; Jin, X-M; Michelberger, P S; Champion, T F M; England, D G; Lee, K C; Kolthammer, W S; Langford, N K; Walmsley, I A

    2012-06-29

    Quantum memories are vital to the scalability of photonic quantum information processing (PQIP), since the storage of photons enables repeat-until-success strategies. On the other hand, the key element of all PQIP architectures is the beam splitter, which allows us to coherently couple optical modes. Here, we show how to combine these crucial functionalities by addressing a Raman quantum memory with multiple control pulses. The result is a coherent optical storage device with an extremely large time bandwidth product, that functions as an array of dynamically configurable beam splitters, and that can be read out with arbitrarily high efficiency. Networks of such devices would allow fully scalable PQIP, with applications in quantum computation, long distance quantum communications and quantum metrology.

  17. Single colloidal quantum dots as sources of single photons for quantum cryptography

    NASA Astrophysics Data System (ADS)

    Pisanello, Ferruccio; Qualtieri, Antonio; Leménager, Godefroy; Martiradonna, Luigi; Stomeo, Tiziana; Cingolani, Roberto; Bramati, Alberto; De Vittorio, Massimo

    2011-02-01

    Colloidal nanocrystals, i.e. quantum dots synthesized trough wet-chemistry approaches, are promising nanoparticles for photonic applications and, remarkably, their quantum nature makes them very promising for single photon emission at room temperature. In this work we describe two approaches to engineer the emission properties of these nanoemitters in terms of radiative lifetime and photon polarization, drawing a viable strategy for their exploitation as room-temperature single photon sources for quantum information and quantum telecommunications.

  18. Photonic single nonlinear-delay dynamical node for information processing

    NASA Astrophysics Data System (ADS)

    Ortín, Silvia; San-Martín, Daniel; Pesquera, Luis; Gutiérrez, José Manuel

    2012-06-01

    An electro-optical system with a delay loop based on semiconductor lasers is investigated for information processing by performing numerical simulations. This system can replace a complex network of many nonlinear elements for the implementation of Reservoir Computing. We show that a single nonlinear-delay dynamical system has the basic properties to perform as reservoir: short-term memory and separation property. The computing performance of this system is evaluated for two prediction tasks: Lorenz chaotic time series and nonlinear auto-regressive moving average (NARMA) model. We sweep the parameters of the system to find the best performance. The results achieved for the Lorenz and the NARMA-10 tasks are comparable to those obtained by other machine learning methods.

  19. Tomography and Purification of the Temporal-Mode Structure of Quantum Light

    NASA Astrophysics Data System (ADS)

    Ansari, Vahid; Donohue, John M.; Allgaier, Markus; Sansoni, Linda; Brecht, Benjamin; Roslund, Jonathan; Treps, Nicolas; Harder, Georg; Silberhorn, Christine

    2018-05-01

    High-dimensional quantum information processing promises capabilities beyond the current state of the art, but addressing individual information-carrying modes presents a significant experimental challenge. Here we demonstrate effective high-dimensional operations in the time-frequency domain of nonclassical light. We generate heralded photons with tailored temporal-mode structures through the pulse shaping of a broadband parametric down-conversion pump. We then implement a quantum pulse gate, enabled by dispersion-engineered sum-frequency generation, to project onto programmable temporal modes, reconstructing the quantum state in seven dimensions. We also manipulate the time-frequency structure by selectively removing temporal modes, explicitly demonstrating the effectiveness of engineered nonlinear processes for the mode-selective manipulation of quantum states.

  20. Photon losses depending on polarization mixedness

    NASA Astrophysics Data System (ADS)

    Memarzadeh, L.; Mancini, S.

    2010-01-01

    We introduce a quantum channel describing photon losses depending on the degree of polarization mixedness. This can be regarded as a model of quantum channel with correlated errors between discrete and continuous degrees of freedom. We consider classical information over a continuous alphabet encoded on weak coherent states as well as classical information over a discrete alphabet encoded on single photons using dual rail representation. In both cases we study the one-shot capacity of the channel and its behaviour in terms of correlation between losses and polarization mixedness.

Top