Science.gov

Sample records for photonuclear reaction yields

  1. Systematization of the yields of products of photonuclear reactions on enriched-tin targets at the bremsstrahlung-photon endpoint energy of 4.5 GeV

    SciTech Connect

    Balabekyan, A. R.

    2008-11-15

    Yields of photonuclear-reaction products formed in targets from separated tin isotopes under the effect of beams of bremsstrahlung photons whose endpoint energy is 4.5 GeV were investigated. The systematization performed on this basis revealed an isoscaling character of the behavior of the production yields for various regions of reaction-product masses.

  2. Photonuclear reactions on titanium isotopes

    SciTech Connect

    Belyshev, S. S.; Dzhilavyan, L. Z.; Ishkhanov, B. S.; Kapitonov, I. M.; Kuznetsov, A. A. Orlin, V. N.; Stopani, K. A.

    2015-03-15

    The photodisintegration of titanium isotopes in the giant-dipole-resonance energy region is studied by the photon-activation method. Bremsstrahlung photons whose spectrum has the endpoint energy of 55 MeV is used. The yields and integrated cross sections are determined for photoproton reactions on the titanium isotopes {sup 47,48,49,50}Ti. The respective experimental results are compared with their counterparts calculated on the basis of the TALYS code and a combined photonucleon-reaction model. The TALYS code disregards the isospin structure of the giant dipole resonance and is therefore unable to describe the yield of photoproton reactions on the heavy titanium isotopes {sup 49,50}Ti.

  3. Calculation of two-neutron multiplicity in photonuclear reactions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Townsend, Lawrence W.

    1989-01-01

    The most important particle emission processes for electromagnetic excitations in nucleus-nucleus collisions are the ejection of single neutrons and protons and also pairs of neutrons and protons. Methods are presented for calculating two-neutron emission cross sections in photonuclear reactions. The results are in a form suitable for application to nucleus-nucleus reactions.

  4. Photonuclear reaction to test cluster structure of Lithium

    SciTech Connect

    Akkurt, Iskender

    2008-11-11

    The lithium can be pictured as an {alpha} particle with 2 extra nucleon surrounding it. A photonuclear reaction experiment has been performed to test this structure at Maxlab in Lund-Sweden. The cross-section of the {sup 6}Li({gamma},n) reaction have been measured using TOF methods and the results were compared with results of {sup 6}Li({gamma},p) and also {sup 4}He({gamma},n) reaction.

  5. Development of the Experimental Photo-Nuclear Reaction Database in Hokkaido University

    NASA Astrophysics Data System (ADS)

    Makinaga, A.

    2015-10-01

    Nuclear databases are important tools to apply nuclear phenomena to various fields of nuclear engineering. It is now recognized that the databases must be further developed for photo-nuclear reaction data for nuclear security, safety and nonproliferation applications. Hokkaido University Nuclear Reaction Data Centre (JCPRG) has contributed to the Experimental Nuclear Reaction Data Library (EXFOR) which is developed by the International Network of Nuclear Reaction Data Centres under coordination by IAEA. We report here on the recent compilation of the nuclear data files for the photonuclear reaction.

  6. The ``light-est'' of all Projectiles: Nuclear Structure Studies Using Photonuclear Reactions

    NASA Astrophysics Data System (ADS)

    Pietralla, Norbert

    2014-03-01

    Nuclear reactions induced by photons have had and continue to have a large impact on the course of nuclear physics. Photons interact purely electromagnetically with the atomic nucleus and induce minimal momentum transfer at given excitation energy. Photonuclear reaction processes can be expanded in terms of QED and photonuclear excitations are by far dominated by one-step processes. They allow for a model independent measurement of nuclear observables and, hence, for a clean characterization of effective nuclear forces. Apart from the pioneering photonuclear reactions by Bothe and Gentner in the 1930s, bremsstrahlung has been used most widely as an intense source of gamma-rays for photonuclear reactions from the 1940s until today. The nuclear dipole strength distribution has largely been mapped out at bremsstrahlung facilities. While the continuous-energy distribution of bremsstrahlung photons offers a complete view of the spectrum of photonuclear excitations, it suffers from a poor sensitivity to specific energy intervals. Intense, energy-tunable, quasi-monochromatic gamma-ray beams from laser-Compton backscattering processes have revolutionized the field of photonuclear reactions for the last ten years. A set of new techniques is under development and new information on fundamental nuclear modes, such as the IVGDR, IVGQR, Pygmy Dipole Resonance, and the Scissors Mode, has recently been obtained. We will attempt to give a brief overview of the state of the art and dare an outlook at the research opportunities at the next generation of gamma-ray facilities under construction in the U.S. and Europe. Supported by the DFG under grant No. SFB634.

  7. [Use of photonuclear reactions for studying the biological action of slow heavy ions].

    PubMed

    Kapchigashev, S P

    1984-01-01

    Since ranges of low-energy heavy ions are too little the study of their action on cells is only possible using indirect irradiation, for instance, with neurons which form low--energy heavy ions uniformly inside a cell. In our studies we used photonuclear reactions which occur upon irradiation of a bio-object with high energy bremsstrahlung. The advantage of this method over the method based on the usage of neutrons has been demonstrated. The data are submitted obtained after exposure of yeast cells to photonuclear products. PMID:6324271

  8. Photonuclear reaction data and γ-ray sources for astrophysics

    NASA Astrophysics Data System (ADS)

    Utsunomiya, H.; Goko, S.; Toyokawa, H.; Ohgaki, H.; Soutome, K.; Yonehara, H.; Goriely, S.; Mohr, P.; Fülöp, Zs.

    2006-03-01

    Direct determination of photoneutron cross sections of astrophysical importance has recently become possible with use of quasi-monochromatic γ beams produced in laser Compton backscattering (LCS) from relativistic electrons at AIST. The astrophysics to be discussed with the photodisintegration cross section are both stellar and big bang nucleosyntheses regarding the production of p-process and s-process nuclei as well as light elements. Synchrotron radiations from a 10 tesla superconducting wiggler (SCW) at SPring-8 serve as an ideal photon source to determine photoreaction rates. This paper covers the latest cross section measurements with the LCS photon beams and a feasibility study of determining (γ, x) (x = n, p,α) reaction rates with the SCW radiation.

  9. Photonuclear reactions studied with the time-dependent density-functional theory

    NASA Astrophysics Data System (ADS)

    Nakatsukasa, Takashi

    2009-10-01

    Photonuclear reaction cross sections are known to be of fundamental importance in nuclear structure as well as a variety of applications, such as nucleosynthesis and nuclear power. Especially, it is highly desired to improve reliability of E1 strength distribution in unstable nuclei which are not experimentally reachable. We are performing systematic calculations of nuclear photoabsorption cross sections using the time-dependent density-functional theory. For this purpose, we have developed a new numerical approach to the linear response problems, ``Finite Amplitude Method'' (FAM). In this talk, we present recent results of our microscopic calculations with the FAM applied to the Skyrme functionals and discuss properties of nuclear E1 strength distribution in light- and medium-mass nuclei.

  10. High energy electrons, positrons and photonuclear reactions in petawatt laser-solid experiments

    SciTech Connect

    Cowan, T E; Hunt, A W; Johnson, J; Perry, M D; Fountain, W; Hatchett, S; Key, M H; Kuehl, T; Parnell, T; Pennington, D M; Phillips, T W; Roth, M; Takahashi, Y; Wilks, S C

    1999-09-09

    The Petawatt laser at LLNL has opened a new regime of high-energy laser-matter interactions in which the quiver motion of plasma electrons is fully relativistic with energies extending well above the threshold for nuclear processes. We have observed that, in addition to the large flux of several MeV electrons ponderomotively expelled from the ultra-intense laser focus, there is a high energy component of electrons extending to -100 MeV, apparently from relativistic self-focusing and plasma acceleration in the underdense pre-formed plasma. The generation of hard bremsstrahlung cascade as these electrons traverse the solid target material, and the resulting photo-nuclear reactions, nuclear fission, and positron-electron pair production are described.

  11. Formation of medical radioisotopes {sup 111}In, {sup 117m}Sn, {sup 124}Sb, and {sup 177}Lu in photonuclear reactions

    SciTech Connect

    Danagulyan, A. S.; Hovhannisyan, G. H. Bakhshiyan, T. M.; Avagyan, R. H.; Avetisyan, A. E.; Kerobyan, I. A.; Dallakyan, R. K.

    2015-06-15

    The possibility of the photonuclear production of radioisotopes {sup 111}In, {sup 117m}Sn, {sup 124}Sb, and {sup 177}Lu is discussed. Reaction yields were measured by the gamma-activation method. The enriched tin isotopes {sup 112,} {sup 118}Sn and Te and HfO{sub 2} of natural isotopic composition were used as targets. The targets were irradiated at the linear electron accelerator of Alikhanian National Science Laboratory (Yerevan) at the energy of 40 MeV. The experimental results obtained in this way reveal that the yield and purity of radioisotopes {sup 111}In and {sup 117}mSn are acceptable for their production via photonuclear reactions. Reactions proceeding on targets from Te and HfO{sub 2} of natural isotopic composition and leading to the formation of {sup 124}Sb and {sup 177}Lu have small yields and are hardly appropriate for the photoproduction of these radioisotopes even in the case of enriched targets.

  12. Energy level and half-life determinations from photonuclear reaction on Ga target

    NASA Astrophysics Data System (ADS)

    Akkoyun, Serkan; Bayram, Tuncay; Dulger, Fatih; Đapo, Haris; Boztosun, Ismail

    2016-06-01

    Photonuclear reactions are important tools in the understanding of the nucleus. These reactions are also interesting for realizing the element creation processes in stellar environment. The use of bremsstrahlung photons generated from clinic linear accelerator is practical for performing these type of reactions. In this study, the bremsstrahlung photons with endpoint energy of 18MeV have been used for activating gallium target material. After irradiation, the transition energies and half-lives associated with the decay of 68Ga, 70Ga and 72Ga isotopes have been determined The values obtained for half-life of 68Ga, 70Ga and 72Ga isotopes are 67.5±0.9min, 21.1±0.9min and 13.8±0.4h, respectively. It has been seen that the values are consistent with the present literature values. In addition, the new measurements of gamma-ray energies for transition energies have been obtained comparable to the literature values with good uncertainties.

  13. Photonuclear absorption cross sections

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1989-01-01

    Neutron multiplicity in photonuclear reactions; invariance of classical electromagnetism; momentum transfer models in ion collisions; cosmic ray electromagnetic interactions; quadrupole excitations in nucleus-nucleus collisons and Y-89 interactions with relativistic nuclei; and the Weizsacker-Williams theory for nucleon emission via electromagnetic excitations in nucleus-nucleus collisions are discussed.

  14. Using a clinical linac to determine the energy levels of (92m)Nb via the photonuclear reaction.

    PubMed

    Aygun, M; Cesur, A; Dogru, M; Boztosun, I; Dapo, H; Kanarya, M; Kuluozturk, M F; Bal, S S; Karatepe, S

    2016-09-01

    The bremsstrahlung photons of 18MeV end-point energy produced by a clinical linear accelerator were used to irradiate (93)Nb, producing (92m)Nb via the photonuclear reaction. The gamma-ray spectrum emitted by the excited nucleus was measured with high purity germanium detector. For analysis of the energy transitions, both gf3 and ROOT spectrum analysis programs were applied. The results were shown to be comparable with the literature values, demonstrating the ability to use a clinical liner accelerator in nuclear physics measurements. PMID:27344005

  15. Development of dose delivery verification by PET imaging of photonuclear reactions following high energy photon therapy

    NASA Astrophysics Data System (ADS)

    Janek, S.; Svensson, R.; Jonsson, C.; Brahme, A.

    2006-11-01

    A method for dose delivery monitoring after high energy photon therapy has been investigated based on positron emission tomography (PET). The technique is based on the activation of body tissues by high energy bremsstrahlung beams, preferably with energies well above 20 MeV, resulting primarily in 11C and 15O but also 13N, all positron-emitting radionuclides produced by photoneutron reactions in the nuclei of 12C, 16O and 14N. A PMMA phantom and animal tissue, a frozen hind leg of a pig, were irradiated to 10 Gy and the induced positron activity distributions were measured off-line in a PET camera a couple of minutes after irradiation. The accelerator used was a Racetrack Microtron at the Karolinska University Hospital using 50 MV scanned photon beams. From photonuclear cross-section data integrated over the 50 MV photon fluence spectrum the predicted PET signal was calculated and compared with experimental measurements. Since measured PET images change with time post irradiation, as a result of the different decay times of the radionuclides, the signals from activated 12C, 16O and 14N within the irradiated volume could be separated from each other. Most information is obtained from the carbon and oxygen radionuclides which are the most abundant elements in soft tissue. The predicted and measured overall positron activities are almost equal (-3%) while the predicted activity originating from nitrogen is overestimated by almost a factor of two, possibly due to experimental noise. Based on the results obtained in this first feasibility study the great value of a combined radiotherapy-PET-CT unit is indicated in order to fully exploit the high activity signal from oxygen immediately after treatment and to avoid patient repositioning. With an RT-PET-CT unit a high signal could be collected even at a dose level of 2 Gy and the acquisition time for the PET could be reduced considerably. Real patient dose delivery verification by means of PET imaging seems to be

  16. Yields of photoneutron reactions on {sup 197}Au nuclei in the giant-dipole-resonance region

    SciTech Connect

    Belyshev, S. S.; Ermakov, A. N.; Ishkhanov, B. S.; Kuznetsov, A. A.; Kurilik, A. S.; Stopani, K. A.; Troschiev, S. Yu.

    2011-11-15

    Yields of photonuclear reactions on 197Au nuclei were measured in a beam of bremsstrahlung photons, the endpoint energy of the bremsstrahlung spectrum being 29.1 MeV. These measurements were performed by means of the gamma-activation procedure. The results obtained in this way were compared with the results of earlier experiments and theoretical calculations.

  17. Production of medical radioisotopes with high specific activity in photonuclear reactions with γ-beams of high intensity and large brilliance

    NASA Astrophysics Data System (ADS)

    Habs, D.; Köster, U.

    2011-05-01

    We study the production of radioisotopes for nuclear medicine in ( γ, xn+ yp) photonuclear reactions or ( γ, γ') photoexcitation reactions with high-flux [(1013-1015) γ/s], small diameter ˜(100 μm)2 and small bandwidth (Δ E/ E≈10-3-10-4) γ beams produced by Compton back-scattering of laser light from relativistic brilliant electron beams. We compare them to (ion, xn+ yp) reactions with (ion = p,d, α) from particle accelerators like cyclotrons and (n, γ) or (n,f) reactions from nuclear reactors. For photonuclear reactions with a narrow γ-beam the energy deposition in the target can be managed by using a stack of thin target foils or wires, hence avoiding direct stopping of the Compton and pair electrons (positrons). However, for ions with a strong atomic stopping only a fraction of less than 10-2 leads to nuclear reactions resulting in a target heating, which is at least 105 times larger per produced radioactive ion and often limits the achievable activity. In photonuclear reactions the well defined initial excitation energy of the compound nucleus leads to a small number of reaction channels and enables new combinations of target isotope and final radioisotope. The narrow bandwidth γ excitation may make use of the fine structure of the Pygmy Dipole Resonance (PDR) or fluctuations in γ-width leading to increased cross sections. Within a rather short period compared to the isotopic half-life, a target area of the order of (100 μm)2 can be highly transmuted, resulting in a very high specific activity. ( γ, γ') isomer production via specially selected γ cascades allows to produce high specific activity in multiple excitations, where no back-pumping of the isomer to the ground state occurs. We discuss in detail many specific radioisotopes for diagnostics and therapy applications. Photonuclear reactions with γ-beams allow to produce certain radioisotopes, e.g. 47Sc, 44Ti, 67Cu, 103Pd, 117 m Sn, 169Er, 195 m Pt or 225Ac, with higher specific activity

  18. Photonuclear Reaction Studies at HIγS: Developing the Science of Remote Detection of Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Howell, C. R.

    2015-10-01

    Development of gamma-ray beam interrogation technologies for remote detection of special nuclear materials and isotope analysis requires comprehensive databases of nuclear structure information and gamma-ray induced nuclear reaction observables. Relevant nuclear structure details include the energy, spin and parity of excited states that have significant probability for electromagnetic transition from the ground state, i.e, the angular momentum transferred in the reaction is Δl ≤ 2. This talk will report recent Nuclear Resonance Fluorescence (NRF) measurements to identify and characterize new low-spin states in actinide nuclei at energies from 1 to 4 MeV, which is the energy range most important for remote analysis methods. These measurements are carried out using the nearly mono-energetic linearly polarized gamma-ray beam at the High Intensity Gamma-ray Source (HIγS) at the Triangle Universities Nuclear Laboratory. Also, studies of the (γ, n) reaction on a variety of nuclei with linearly polarized beams at HIγS indicate that this reaction might be used to discern between fissile and non-fissile materials. This work will be described. In addition, an overview will be given of a concept for a next generation laser Compton-backing scattering gamma-ray source to be implemented as an upgrade to increase the beam intensity at HIγS by more than an order of magnitude.

  19. Simplest photonuclear reactions accompanied by the excitation of isovector giant dipole and quadrupole resonances: Semimicroscopic description

    SciTech Connect

    Tulupov, B. A.; Urin, M. H.

    2012-09-15

    A semimicroscopic approach based on the continuum version of the random-phase approximation (CRPA) and on a semiphenomenological inclusion of the fragmentation effect is applied to describing cross sections for photoabsorption and direct plus semidirect and inverse reactions accompanied by the excitation of isovector giant dipole and quadrupole resonances. In addition to the spinless part of the Landau-Migdal interaction and a partly self-consistent phenomenological mean field of the nucleus, that version of the approach which is used here takes into account isovector separable velocity-dependent forces, as well as the effect of the fragmentation shift of the giant-resonance energy. The results obtained by calculating various features of the aforementioned cross sections for a number of magic and semimagic medium-mass nuclei are compared with respective experimental data.

  20. Vision of nuclear physics with photo-nuclear reactions by laser-driven γ beams

    NASA Astrophysics Data System (ADS)

    Habs, D.; Tajima, T.; Schreiber, J.; Barty, C. P. J.; Fujiwara, M.; Thirolf, P. G.

    2009-11-01

    A laser-accelerated dense electron sheet with an energy E=tilde{γ} mc^2 can be used as a relativistic mirror to coherently reflect a second laser with photon energy ħω, thus generating by the Doppler boost [A. Einstein, Annalen der Physik 17, 891 (1905); D. Habs et al., Appl. Phys. B 93, 349 (2008)] brilliant high-energy photon beams with hbarω^'=4tilde{γ}^2hbarω and short duration for many new nuclear physics experiments. While the shortest-lived atomic levels are in the atto-second range, nuclear levels can have lifetimes down to zeptoseconds. We discuss how the modulation of electron energies in phase-locked laser fields used for as-measurements [E. Goulielmakis et al., Science 317, 769 (2007)] can be carried over to the new direct measurement of fs-zs nuclear lifetimes by modulating the energies of accompanying conversion electrons or emitted protons. In the field of nuclear spectroscopy we discuss the new perspective as a function of increasing photon energy. In nuclear systems a much higher sensitivity is predicted to the time variation of fundamental constants compared to atomic systems [V. Flambaum, arXiv:nucl-th/0801.1994v1 (2008)]. For energies up to 50 keV Mössbauer-like recoilless absorption allows to produce nuclear bosonic ensembles with many delocalized coherent polaritons [G.V. Smirnov et al., Phys. Rev. A 71, 023804 (2005)] for the first time. Using the ( γ, n) reaction to produce cold, polarized neutrons with a focusing ellipsoidal device [P. Böni, Nucl. Instrum. Meth. A 586, 1 (2008); Ch. Schanzer et al., Nucl. Instrum. Meth. 529, 63 (2004)], brilliant cold polarized micro-neutron beams become available. The compact and relatively cheap laser-generated γ beams may serve for extended studies at university-based facilities.

  1. Photonuclear reaction based high-energy x-ray spectrometer to cover from 2 MeV to 20 MeV.

    PubMed

    Sakata, S; Arikawa, Y; Kojima, S; Ikenouchi, T; Nagai, T; Abe, Y; Inoue, H; Morace, A; Utsugi, M; Kato, R; Nishimura, H; Nakai, M; Shiraga, H; Fujioka, S; Azechi, H

    2014-11-01

    A photonuclear-reaction-based hard x-ray spectrometer is developed to measure the number and energy spectrum of fast electrons generated by interactions between plasma and intense laser light. In this spectrometer, x-rays are converted to neutrons through photonuclear reactions, and the neutrons are counted with a bubble detector that is insensitive to x-rays. The spectrometer consists of a bundle of hard x-ray detectors that respond to different photon-energy ranges. Proof-of-principle experiment was performed on a linear accelerator facility. A quasi-monoenergetic electron bunch (Ne = 1.0 × 10(-6) C, Ee = 16 ± 0.32 MeV) was injected into a 5-mm-thick lead plate. Bremsstrahlung x-rays, which emanate from the lead plate, were measured with the spectrometer. The measured spectral shape and intensity agree fairly well with those computed with a Monte Carlo simulation code. The result shows that high-energy x-rays can be measured absolutely with a photon-counting accuracy of 50%-70% in the energy range from 2 MeV to 20 MeV with a spectral resolution (Δhν/hν) of about 15%. Quantum efficiency of this spectrometer was designed to be 10(-7), 10(-4), 10(-5), respectively, for 2-10, 11-15, and 15-25 MeV of photon energy ranges.

  2. Photonuclear reaction based high-energy x-ray spectrometer to cover from 2 MeV to 20 MeV

    SciTech Connect

    Sakata, S. Arikawa, Y.; Kojima, S.; Ikenouchi, T.; Nagai, T.; Abe, Y.; Inoue, H.; Morace, A.; Utsugi, M.; Nishimura, H.; Nakai, M.; Shiraga, H.; Fujioka, S.; Azechi, H.; Kato, R.

    2014-11-15

    A photonuclear-reaction-based hard x-ray spectrometer is developed to measure the number and energy spectrum of fast electrons generated by interactions between plasma and intense laser light. In this spectrometer, x-rays are converted to neutrons through photonuclear reactions, and the neutrons are counted with a bubble detector that is insensitive to x-rays. The spectrometer consists of a bundle of hard x-ray detectors that respond to different photon-energy ranges. Proof-of-principle experiment was performed on a linear accelerator facility. A quasi-monoenergetic electron bunch (N{sub e} = 1.0 × 10{sup −6} C, E{sub e} = 16 ± 0.32 MeV) was injected into a 5-mm-thick lead plate. Bremsstrahlung x-rays, which emanate from the lead plate, were measured with the spectrometer. The measured spectral shape and intensity agree fairly well with those computed with a Monte Carlo simulation code. The result shows that high-energy x-rays can be measured absolutely with a photon-counting accuracy of 50%–70% in the energy range from 2 MeV to 20 MeV with a spectral resolution (Δhν/hν) of about 15%. Quantum efficiency of this spectrometer was designed to be 10{sup −7}, 10{sup −4}, 10{sup −5}, respectively, for 2–10, 11–15, and 15–25 MeV of photon energy ranges.

  3. Stellar 30-keV neutron capture in 94, 96Zr and the 90Zr (γ , n)89Zr photonuclear reaction with a high-power liquid-lithium target

    NASA Astrophysics Data System (ADS)

    Tessler, M.; Paul, M.; Arenshtam, A.; Feinberg, G.; Friedman, M.; Halfon, S.; Kijel, D.; Weissman, L.; Aviv, O.; Berkovits, D.; Eisen, Y.; Eliyahu, I.; Haquin, G.; Kreisel, A.; Mardor, I.; Shimel, G.; Shor, A.; Silverman, I.; Yungrais, Z.

    2015-12-01

    A high-power Liquid-Lithium Target (LiLiT) was used for the first time for neutron production via the thick-target 7Li (p , n)7Be reaction and quantitative determination of neutron capture cross sections. Bombarded with a 1-2 mA proton beam at 1.92 MeV from the Soreq Applied Research Accelerator Facility (SARAF), the setup yields a 30-keV quasi-Maxwellian neutron spectrum with an intensity of 3- 5 ×1010 n /s, more than one order of magnitude larger than present near-threshold 7Li (p , n) neutron sources. The setup was used here to determine the 30-keV Maxwellian averaged cross section (MACS) of 94Zr and 96Zr as 28.0 ± 0.6 mb and 12.4 ± 0.5 mb respectively, based on activation measurements. The precision of the cross section determinations results both from the high neutron yield and from detailed simulations of the entire experimental setup. We plan to extend our experimental studies to low-abundance and radioactive targets. In addition, we show here that the setup yields intense high-energy (17.6 and 14.6 MeV) prompt capture γ rays from the 7Li (p , γ)8Be reaction with yields of ∼ 3 ×108 γs-1mA-1 and ∼ 4 ×108 γs-1mA-1, respectively, evidenced by the 90Zr (γ , n)89Zr photonuclear reaction.

  4. SU-E-T-26: A Study On the Influence of Photonuclear Reactions On the Biological Effectiveness of Therapeutic High Energy X-Ray Beam

    SciTech Connect

    Wakita, A; Matsufuji, N; Kohno, T; Kodaira, S; Yokoyama, K; Suzuki, Y; Itami, J

    2014-06-01

    Purpose: Photons from a modern high-energy therapeutic linear accelerator used in X-ray radiotherapy causes photonuclear reactions in an accelerator or patient's body. The aim of this study is to evaluate the biological effectiveness including these particles by Microdosimetric Kinetic Model (MKM) based on microdosimetry. Methods: A linear accelerator operating at 15 MV was used. CR-39 was used to obtain LET spectra of secondary ions selectively, as CR-39 is regarded insensitive to photons. CR-39 was put on the central axis of the X-ray beam at depths of 0, 5 and 10 cm in plastic phantom at a source to detector distance of 100 cm. Pits formed by the traversal of ions were etched then analyzed to obtain restricted LET distribution. Frequency-mean and dose-mean lineal energy was evaluated from the relationship between the restricted LET and the lineal energy required to evaluate the biological effectiveness by MKM. The relationship was calculated by Monte Carlo simulations with GEANT4. Results: Restricted LET distributions of secondary particles showed broad distributions that decreases exponentially with increasing LET. Frequency-mean and dose-mean lineal energy were determined uniquely within the scope of the energies of secondary particles generated from photons of 15 MeV. The frequency-mean lineal energies at the depth of 0, 5 and 10 cm were 15.1, 16.0 and 19.7 keV/μm respectively, and the dose-mean lineal energies were 18.6, 20.5 and 19.6 keV/μm, respectively. RBE of secondary particles for HSG cell evaluated by MKM was about 2.0 at all depths, and RBE of all particles including photons was evaluated 1.0. Conclusion: We investigated the biological effectiveness of secondary particles by photonuclear reactions. The method to evaluate RBE by MKM was established with measurements and simulations. However, the influence of these secondary ions on RBE was found negligible in the entire biological effectiveness of the high-energy X-ray. This study has been supported

  5. Optimization of commercial scale photonuclear production of radioisotopes

    NASA Astrophysics Data System (ADS)

    Bindu, K. C.; Harmon, Frank; Starovoitova, Valeriia N.; Stoner, Jon; Wells, Douglas P.

    2013-04-01

    Photonuclear production of radioisotopes driven by bremsstrahlung photons using a linear electron accelerator in the suitable energy range is a promising method for producing radioisotopes. The photonuclear production method is capable of making radioisotopes more conveniently, cheaply and with much less radioactive waste compared to existing methods. Historically, photo-nuclear reactions have not been exploited for isotope production because of the low specific activity that is generally associated with this production process, although the technique is well-known to be capable of producing large quantities of certain radioisotopes. We describe an optimization technique for a set of parameters to maximize specific activity of the final product. This set includes the electron beam energy and current, the end station design (an integrated converter and target as well as cooling system), the purity of materials used, and the activation time. These parameters are mutually dependent and thus their optimization is not trivial. 67Cu photonuclear production via 68Zn(γp)67Cu reaction was used as an example of such an optimization process.

  6. Photonuclear activation of pure isotopic mediums.

    SciTech Connect

    Grohman, Mark A.; Lukosi, Eric Daniel

    2010-06-01

    This work simulated the response of idealized isotopic U-235, U-238, Th-232, and Pu-239 mediums to photonuclear activation with various photon energies. These simulations were conducted using MCNPX version 2.6.0. It was found that photon energies between 14-16 MeV produce the highest response with respect to neutron production rates from all photonuclear reactions. In all cases, Pu-239 responds the highest, followed by U-238. Th-232 produces more overall neutrons at lower photon energies then U-235 when material thickness is above 3.943 centimeters. The time it takes each isotopic material to reach stable neutron production rates in time is directly proportional to the material thickness and stopping power of the medium, where thicker mediums take longer to reach stable neutron production rates and thinner media display a neutron production plateau effect, due to the lack of significant attenuation of the activating photons in the isotopic mediums. At this time, no neutron sensor system has time resolutions capable of verifying these simulations, but various indirect methods are possible and should be explored for verification of these results.

  7. On amplifications of photonuclear neutron flux in thunderstorm atmosphere and possibility of detecting them

    NASA Astrophysics Data System (ADS)

    Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.; Zalyalov, A. N.

    2013-05-01

    The reliability of communications reporting observations of neutron flux enhancements in thunderstorm atmosphere is analyzed. The analysis is motivated by the fact that the employed gas-discharge counters on the basis of reactions 3He( n, p)3H and 10B( n; 4He, γ)7Li detect not only neutrons but any penetrating radiations. Photonuclear reactions are capable of accounting for the possible amplifications of neutron flux in thunder-storm atmosphere since in correlation with thunderstorms γ-ray flashes were repeatedly observed with spectra extending high above the threshold of photonuclear reactions in air. By numerical simulations, it was demonstrated that γ-ray pulses detected in thunderstorm atmosphere are capable of generating photonuclear neutrons in numbers sufficient to be detected even at sea level.

  8. Photonuclear channel of {sup 7}Be production in the Earth's atmosphere

    SciTech Connect

    Bezuglov, M. V.; Malyshevsky, V. S.; Malykhina, T. V.; Torgovkin, A. V.; Fomin, G. V.; Shramenko, B. I.

    2012-04-15

    Measurements of average values of cross sections for the A({gamma},X){sup 7}Be photonuclear reactions on nitrogen, oxygen, and carbon of natural isotopic composition were performed in the energy range from the threshold to 90 MeV. On the basis of the measured cross sections for {sup 7}Be photoproduction and on the basis of the results obtained by simulating the nuclear-electromagnetic cascade in the Earth's atmosphere, the contribution of the photonuclear mechanism to the production of the cosmogenic radioisotope {sup 7}Be in the atmosphere and its latitude dependence were investigated for the first time. It is shown that the contribution of the photonuclear mechanism is commensurate with the contribution of the proton and neutron mechanisms of 7Be production in the atmosphere and that the inclusion of this mechanism is mandatory in analyzing the accumulation and transfer of {sup 7}Be in the planetary boundary layer.

  9. Photonuclear data index, 1973-1981, supplement 2 to NBS (National Bureau of Standards) special publication 380

    NASA Astrophysics Data System (ADS)

    Fuller, E. G.; Gerstenberg, H.

    1983-08-01

    This index, a supplement to NBS Special Publication 380, Photonuclear Reaction Data, 1973, primarily covers data published in the period from January 1973 through December 1981. It supersedes the first supplement to Special Publication 380 issued in August 1978. Organized by element and isotope, each entry in the index is for a specific reaction reported in a given reference. Information is given on the type of measurement, excitation energies studied, source type and energies, detector type and angular ranges covered in the measurement. Also included is an index to the more than 1200 data sets currently available in the Photonuclear Data Group's digital data library.

  10. [Fission product yields of 60 fissioning reactions]. Final report

    SciTech Connect

    Rider, B.F.

    1995-05-01

    In keeping with the statement of work, I have examined the fission product yields of 60 fissioning reactions. In co-authorship with the UTR (University Technical Representative) Talmadge R. England ``Evaluation and Compilation of Fission Product Yields 1993,`` LA-UR-94-3106(ENDF-349) October, (1994) was published. This is an evaluated set of fission product Yields for use in calculation of decay heat curves with improved accuracy has been prepared. These evaluated yields are based on all known experimental data through 1992. Unmeasured fission product yields are calculated from charge distribution, pairing effects, and isomeric state models developed at Los Alamos National Laboratory. The current evaluation has been distributed as the ENDF/B-VI fission product yield data set.

  11. Updated Photonuclear Data Library and Database for Photon Strength Functions

    NASA Astrophysics Data System (ADS)

    Dimitriou, Paraskevi; Firestone, Richard B.; Siem, Sunniva; Bečvár, František; Krtička, Milan; Varlamov, Vladimir V.; Wiedeking, Mathis

    2015-05-01

    Photonuclear cross sections and gamma-ray data used to extract Photon Strength Functions are important for a large range of applications including basic sciences. The recommendations of an IAEA Consultant's Meeting to update the IAEA Photonuclear Data Library and create a Reference Database for Photon Strength Functions are presented.

  12. Advanced scheme for high-yield laser driven nuclear reactions

    NASA Astrophysics Data System (ADS)

    Margarone, D.; Picciotto, A.; Velyhan, A.; Krasa, J.; Kucharik, M.; Mangione, A.; Szydlowsky, A.; Malinowska, A.; Bertuccio, G.; Shi, Y.; Crivellari, M.; Ullschmied, J.; Bellutti, P.; Korn, G.

    2015-01-01

    The use of a low contrast nanosecond laser pulse with a relatively low intensity (3  ×  1016 W cm-2) allowed the enhancing of the yield of induced nuclear reactions in advanced solid targets. In particular the ‘ultraclean’ proton-boron fusion reaction, producing energetic alpha particles without neutron generation, was chosen. A spatially well-defined layer of boron dopants in a hydrogen-enriched silicon substrate was used as a target. A combination of the specific target composition and the laser pulse temporal shape allowed the enhancing of the yield of alpha particles up to 109 per steradian. This result can be ascribed to the interaction of the long-laser pre-pulse with the target and to the optimal target geometry and composition.

  13. Photonuclear Production of Medical Isotopes

    NASA Astrophysics Data System (ADS)

    Weinandt, Nick

    2011-10-01

    Every year, more than 20 million people in the United States receive a nuclear medicine procedure. Many of the isotopes needed for these procedures are under-produced. Suppliers of the isotopes are usually located outside the United States, which presents a problem when the desired isotopes have short half-lives. Linear accelerators were investigated as a possible method of meeting isotope demand. Linear accelerators are cheaper, safer, and have lower decommissioning costs compared to nuclear reactors. By using (γ,p) reactions, the desired isotope can be separated from the target material due to the different chemical nature of each isotope. Isotopes investigated were Cu-67, In-111, and Lu-111. Using the results the photon flux Monte Carlo simulations, the expected activity of isotopes can be calculated. After samples were irradiated, a high purity germanium detector and signal processing apparatus were used to count the samples. The activity at the time of irradiation stop was then calculated. The uses of medical isotopes will also be presented. Thanks to Idaho State University, the Idaho Accelerator Center, and the National Science Foundation for supporting the research.

  14. Pulsed Photonuclear Assessment (PPA) Technology Enhancement Study

    SciTech Connect

    Not Available

    2006-04-01

    The Idaho National Laboratory (INL) along with the Los Alamos National Laboratory (LANL) and Idaho State University’s Idaho Accelerator Center (IAC) has designed and tested a nominal 10-MeV prototype Pulsed Photonuclear Assessment (PPA) inspection system to detect shielded nuclear material. This report highlights two specific areas that will provide further PPA technology enhancements, namely, an optimal gamma-ray detection system and the off axis radiation detection sensitivity. Detection of low-atomic number (Z) shielded nuclear material had been initially addressed by the inclusion of dedicated Geiger-Müller (GM) detectors co-located above each of the Photonuclear Neutron Detectors (PNDs). Several different radiation detectors were investigated to assess if this type of gamma-ray detector was optimal. The LND 719 GM detector was shown to have the best photon sensitivity and demonstrated an optimal ability to detect low-Z shielded nuclear material. Beyond the technical performance of this detector, its low cost and availability makes it a logical choice for a field-deployable system. In terms of off-axis detection sensitivity, simulation and benchmarking experiments have indicated that the PPA inspection system can successfully detect nuclear material (within 120 seconds) in various shielding configurations even when it is located at a distance of as much as 30 cm off the interrogating beam axis (the exact sensitivity to off-axis interrogations will be largely dependent on the actual shielding material). As a general rule, high-Z shielding will allow detection at larger off-axis distances than low-Z materials.

  15. Aerosol formation yields from the reaction of catechol with ozone

    NASA Astrophysics Data System (ADS)

    Coeur-Tourneur, Cécile; Tomas, Alexandre; Guilloteau, Angélique; Henry, Françoise; Ledoux, Frédéric; Visez, Nicolas; Riffault, Véronique; Wenger, John C.; Bedjanian, Yuri

    The formation of secondary organic aerosol from the gas-phase reaction of catechol (1,2-dihydroxybenzene) with ozone has been studied in two smog chambers. Aerosol production was monitored using a scanning mobility particle sizer and loss of the precursor was determined by gas chromatography and infrared spectroscopy, whilst ozone concentrations were measured using a UV photometric analyzer. The overall organic aerosol yield ( Y) was determined as the ratio of the suspended aerosol mass corrected for wall losses ( Mo) to the total reacted catechol concentrations, assuming a particle density of 1.4 g cm -3. Analysis of the data clearly shows that Y is a strong function of Mo and that secondary organic aerosol formation can be expressed by a one-product gas-particle partitioning absorption model. The aerosol formation is affected by the initial catechol concentration, which leads to aerosol yields ranging from 17% to 86%. The results of this work are compared to similar studies reported in the literature.

  16. MARLEY: Model of Argon Reaction Low Energy Yields

    NASA Astrophysics Data System (ADS)

    Gardiner, Steven; Bilton, Kyle; Grant, Christopher; Pantic, Emilija; Svoboda, Robert

    2015-10-01

    Core-collapse supernovae are sources of tremendous numbers of neutrinos with energies of up to about 50 MeV. In recent years, there has been growing interest in building detectors that are sensitive to supernova neutrinos. Such detectors can provide information about the initial stages of stellar collapse, early warning signals for light emission from supernovae, and opportunities to study neutrino oscillation physics over astronomical distances. In an effort to enable supernova neutrino detection in next-generation experiments like DUNE, the CAPTAIN collaboration plans to make the first direct measurement of cross sections for neutrino interactions on argon in the supernova energy regime. To help predict neutrino event signatures in the CAPTAIN liquid argon time projection chamber (LArTPC), we have developed a first-of-its-kind Monte Carlo event generator called MARLEY (Model of Argon Reaction Low Energy Yields). This generator attempts to model the complicated nuclear structure dependence of low-energy neutrino-nucleus reactions in sufficient detail for use in LArTPC simulations. In this talk we present some preliminary results calculated using MARLEY and discuss how the current version of the generator may be improved and expanded.

  17. Some limitations of detailed balance for inverse reaction calculations in the astrophysical p-process

    SciTech Connect

    Gardner, D.G.; Gardner, M.A.

    1990-12-05

    p-Process modeling of some rare but stable proton-rich nuclei requires knowledge of a variety of neutron, charged particle, and photonuclear reaction rates at temperatures of 2 to 3 {times} 10{sup 9} {degrees}K. Detailed balance is usually invoked to obtain the stellar photonuclear rates, in spite of a number of well-known constraints. In this work we attempt to calculate directly the stellar rates for ({gamma},n) and ({gamma},{alpha}) reactions on {sup 151}Eu. These are compared with stellar rates obtained from detailed balance, using the same input parameters for the stellar (n,{gamma}) and ({alpha},{gamma}) reactions on {sup 150}Eu and {sup 147}Pm, respectively. The two methods yielded somewhat different results, which will be discussed along with some sensitivity studies. 16 refs., 7 figs.

  18. Theoretical characterization of the reaction NH2 + O yields products

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1993-01-01

    The potential energy surface for NH2+O has been characterized using complete active space self-consistent field (CASSCF)/derivative calculations to determine stationary point geometries and frequencies followed by internally contracted configuration interaction (ICCI) calculations to determine the energetics. The calculations predict a NO bond strength of 85.8 kcal/mol for NH2O. The barrier for isomerization of NH2O to trans-HNOH is predicted to be 48.0 kcal/mol and the barriers for H+HNO forming NH2O and NHOH are predicted to be 2.1 and 8.3 kcal/mol, respectively (all corrected for zero-point energy). The computed heats of formation for NH2O and cis- and trans-HNOH are in good agreement with the present results. The barrier for H + HNO yields H2 + NO is computed to be about 0.3 kcal/mol.

  19. Quantum Yield Determination Based on Photon Number Measurement, Protocols for Firefly Bioluminescence Reactions.

    PubMed

    Niwa, Kazuki

    2016-01-01

    Quantum yield (QY), which is defined as the probability of photon production by a single bio/chemiluminescence reaction, is an important factor to characterize luminescence light intensity emitted diffusively from the reaction solution mixture. Here, methods to measure number of photons to determine QY according to the techniques of national radiometry standards are described. As an example, experiments using firefly bioluminescence reactions are introduced. PMID:27424895

  20. Quantum Yield Determination Based on Photon Number Measurement, Protocols for Firefly Bioluminescence Reactions.

    PubMed

    Niwa, Kazuki

    2016-01-01

    Quantum yield (QY), which is defined as the probability of photon production by a single bio/chemiluminescence reaction, is an important factor to characterize luminescence light intensity emitted diffusively from the reaction solution mixture. Here, methods to measure number of photons to determine QY according to the techniques of national radiometry standards are described. As an example, experiments using firefly bioluminescence reactions are introduced.

  1. Understanding the domino reaction between 3-chloroindoles and methyl coumalate yielding carbazoles. A DFT study.

    PubMed

    Domingo, Luis R; Sáez, José A; Emamian, Saeed R

    2015-02-21

    The molecular mechanism of the reaction between N-methyl-3-chloroindole and methyl coumalate yielding carbazole has been studied using DFT methods at the MPWB1K/6-311G(d,p) level in toluene. This reaction is a domino process that comprises three consecutive reactions: (i) a polar Diels-Alder (P-DA) reaction between indole and methyl coumalate yielding two stereoisomeric [2 + 4] cycloadducts (CAs); (ii) the elimination of HCl from these CAs affording two stereoisomeric intermediates; and (iii) the extrusion of CO2 in these intermediates, finally yielding the carbazole. This P-DA reaction proceeds in a completely regioselective and slightly exo selective fashion. In spite of the highly polar character of this P-DA reaction, it presents a high activation enthalpy of 21.8 kcal mol(-1) due to the loss of the aromatic character of the indole during the C-C bond formation. Thermodynamic calculations suggest that the P-DA reaction is the rate-determining step of this domino reaction; in addition, the initial HCl elimination in the formal [2 + 4] CAs is kinetically favoured over the extrusion of CO2. Although the P-DA reaction is kinetically and thermodynamically very unfavourable, the easier HCl and CO2 elimination from the [2 + 4] CAs together with the strong exergonic character of the CO2 extrusion makes the P-DA reaction irreversible. An ELF topological analysis of the bonding changes along the P-DA reaction supports a two-stage one-step mechanism. An analysis of the global DFT reactivity indices at the ground state of the reagents confirms the highly polar character of this P-DA reaction. Finally, the complete regioselectivity of the studied reactions can be explained using the Parr functions. PMID:25520216

  2. Understanding the domino reaction between 3-chloroindoles and methyl coumalate yielding carbazoles. A DFT study.

    PubMed

    Domingo, Luis R; Sáez, José A; Emamian, Saeed R

    2015-02-21

    The molecular mechanism of the reaction between N-methyl-3-chloroindole and methyl coumalate yielding carbazole has been studied using DFT methods at the MPWB1K/6-311G(d,p) level in toluene. This reaction is a domino process that comprises three consecutive reactions: (i) a polar Diels-Alder (P-DA) reaction between indole and methyl coumalate yielding two stereoisomeric [2 + 4] cycloadducts (CAs); (ii) the elimination of HCl from these CAs affording two stereoisomeric intermediates; and (iii) the extrusion of CO2 in these intermediates, finally yielding the carbazole. This P-DA reaction proceeds in a completely regioselective and slightly exo selective fashion. In spite of the highly polar character of this P-DA reaction, it presents a high activation enthalpy of 21.8 kcal mol(-1) due to the loss of the aromatic character of the indole during the C-C bond formation. Thermodynamic calculations suggest that the P-DA reaction is the rate-determining step of this domino reaction; in addition, the initial HCl elimination in the formal [2 + 4] CAs is kinetically favoured over the extrusion of CO2. Although the P-DA reaction is kinetically and thermodynamically very unfavourable, the easier HCl and CO2 elimination from the [2 + 4] CAs together with the strong exergonic character of the CO2 extrusion makes the P-DA reaction irreversible. An ELF topological analysis of the bonding changes along the P-DA reaction supports a two-stage one-step mechanism. An analysis of the global DFT reactivity indices at the ground state of the reagents confirms the highly polar character of this P-DA reaction. Finally, the complete regioselectivity of the studied reactions can be explained using the Parr functions.

  3. Differential cross sections for the reactions {gamma}p{yields}p{eta} and {gamma}p{yields}p{eta}{sup '}

    SciTech Connect

    Williams, M.; Krahn, Z.; Applegate, D.; Bellis, M.; Meyer, C. A.; Dey, B.; Dickson, R.; McCracken, M. E.; Moriya, K.; Schumacher, R. A.; Adhikari, K. P.; Careccia, S. L.; Dodge, G. E.; Guler, N.; Klein, A.; Mayer, M.; Nepali, C. S.; Niroula, M. R.; Seraydaryan, H.; Tkachenko, S.

    2009-10-15

    High-statistics differential cross sections for the reactions {gamma}p{yields}p{eta} and {gamma}p{yields}p{eta}{sup '} have been measured using the CEBAF large acceptance spectrometer (CLAS) at Jefferson Lab for center-of-mass energies from near threshold up to 2.84 GeV. The {eta}{sup '} results are the most precise to date and provide the largest energy and angular coverage. The {eta} measurements extend the energy range of the world's large-angle results by approximately 300 MeV. These new data, in particular the {eta}{sup '} measurements, are likely to help constrain the analyses being performed to search for new baryon resonance states.

  4. Search for supernarrow dibaryons via the pd{yields}ppX and pd{yields}pdX reactions

    SciTech Connect

    Kuboki, H.; Hatano, M.; Saito, T.; Sakai, H.; Sasano, M.; Yako, K.; Tamii, A.; Fujita, K.; Hatanaka, K.; Sakemi, Y.; Shimizu, Y.; Tameshige, Y.; Kamiya, J.; Kudoh, T.; Sagara, K.; Shimomoto, S.; Shiota, M.; Wakasa, T.; Maeda, Y.; Uesaka, T.

    2006-09-15

    Supernarrow dibaryons (SNDs) have been searched for by the pd{yields}ppX and pd{yields}pdX reactions at E{sub p}=295 MeV over a mass range of 1898 to 1953 MeV, where three candidates of SNDs were found at the Moscow Meson Factory. The experiment was carried out at the Research Center for Nuclear Physics using a two-arm magnetic spectrometer system and a liquid deuterium target. A good mass resolution of 1 MeV and a low background condition were achieved. No resonance structure was observed in the missing mass spectra. Upper limits of the SND production cross section were determined.

  5. Status of the Prototype Pulsed Photonuclear Assessment (PPA) Inspection System

    SciTech Connect

    Prototype Photonuclear Inspection Technoloby - An

    2007-08-01

    Prototype Photonuclear Inspection Technology – An Integrated Systems Approach* James L. Jonesa, Daren R. Normana, Kevin J. Haskella, James W. Sterbentza, Woo Y. Yoona, Scott M. Watsona, James T. Johnsona, John M. Zabriskiea, Calvin E. Mossb, Frank Harmonc a – Idaho National Laboratory, P.O. Box 1625-2802, Idaho Falls, Idaho 83415-2802 b – Los Alamos National Laboratory, P.O. Box 1663, MS B228, Los Alamos, New Mexico, 87585 c – Idaho State University, 1500 Alvin Ricken Dr., Pocatello, Idaho 83201 Active interrogation technologies are being pursued in order to address many of today’s challenging inspection requirements related to both nuclear and non-nuclear material detection. The Idaho National Laboratory, along with the Los Alamos National Laboratory and the Idaho State University’s Idaho Accelerator Center, continue to develop electron accelerator-based, photonuclear inspection technologies for the detection of shielded nuclear material within air-, rail-, and especially, maritime-cargo containers. This paper presents an overview and status of the prototype Pulsed Photonuclear Assessment (PPA) inspection system and its ability to detect shielded nuclear material by focusing on the integration of three major detection system components: delayed neutron measurement, delayed gamma-ray measurements, and a transmission, gray-scale mapping for shield material detection. Areas of future development and advancement within each detection component will be presented. *Supported in part by the Department of Homeland Security under DOE-ID Contract Number DE-AC07-99ID13727. POC: James L. Jones, 208-526-1730

  6. Limonene ozonolysis in the presence of nitric oxide: Gas-phase reaction products and yields

    PubMed Central

    Ham, Jason E.; Harrison, Joel C.; Jackson, Stephen R.; Wells, J.R.

    2016-01-01

    The reaction products from limonene ozonolysis were investigated using the new carbonyl derivatization agent, O-tert-butylhydroxylamine hydrochloride (TBOX). With ozone (O3) as the limiting reagent, five carbonyl compounds were detected. The yields of the carbonyl compounds are discussed with and without the presence of a hydroxyl radical (OH•) scavenger, giving insight into the influence secondary OH radicals have on limonene ozonolysis products. The observed reaction product yields for limonaketone (LimaKet), 7-hydroxyl-6-oxo-3-(prop-1-en-2-yl)heptanal (7H6O), and 2-acetyl-5-oxohexanal (2A5O) were unchanged suggesting OH• generated by the limonene + O3 reaction does not contribute to their formation. The molar yields of 3-isopropenyl-6-oxo-heptanal (IPOH) and 3-acetyl-6-oxoheptanal (3A6O) decreased by 68% and >95%; respectively, when OH• was removed. This suggests that OH• radicals significantly impact the formation of these products. Nitric oxide (NO) did not significantly affect the molar yields of limonaketone or IPOH. However, NO (20 ppb) considerably decreased the molar reaction product yields of 7H6O (62%), 2A5O (63%), and 3A6O (47%), suggesting NO reacted with peroxyl intermediates, generated during limonene ozonolysis, to form other carbonyls (not detected) or organic nitrates. These studies give insight into the transformation of limonene and its reaction products that can lead to indoor exposures. PMID:27346977

  7. Limonene ozonolysis in the presence of nitric oxide: Gas-phase reaction products and yields

    NASA Astrophysics Data System (ADS)

    Ham, Jason E.; Harrison, Joel C.; Jackson, Stephen R.; Wells, J. R.

    2016-05-01

    The reaction products from limonene ozonolysis were investigated using the new carbonyl derivatization agent, O-tert-butylhydroxylamine hydrochloride (TBOX). With ozone (O3) as the limiting reagent, five carbonyl compounds were detected. The yields of the carbonyl compounds are discussed with and without the presence of a hydroxyl radical (OHrad) scavenger, giving insight into the influence secondary OH radicals have on limonene ozonolysis products. The observed reaction product yields for limonaketone (LimaKet), 7-hydroxyl-6-oxo-3-(prop-1-en-2-yl)heptanal (7H6O), and 2-acetyl-5-oxohexanal (2A5O) were unchanged suggesting OHrad generated by the limonene + O3 reaction does not contribute to their formation. The molar yields of 3-isopropenyl-6-oxo-heptanal (IPOH) and 3-acetyl-6-oxoheptanal (3A6O) decreased by 68% and >95%; respectively, when OHrad was removed. This suggests that OHrad radicals significantly impact the formation of these products. Nitric oxide (NO) did not significantly affect the molar yields of limonaketone or IPOH. However, NO (20 ppb) considerably decreased the molar reaction product yields of 7H6O (62%), 2A5O (63%), and 3A6O (47%), suggesting NO reacted with peroxyl intermediates, generated during limonene ozonolysis, to form other carbonyls (not detected) or organic nitrates. These studies give insight into the transformation of limonene and its reaction products that can lead to indoor exposures.

  8. Evaluation of nanoparticle-immobilized cellulase for improved ethanol yield in simultaneous saccharification and fermentation reactions

    SciTech Connect

    Lupoi, Jason; Smith, Emily

    2011-12-01

    Ethanol yields were 2.1 (P = 0.06) to 2.3 (P = 0.01) times higher in simultaneous saccharification and fermentation (SSF) reactions of microcrystalline cellulose when cellulase was physisorbed on silica nanoparticles compared to enzyme in solution. In SSF reactions, cellulose is hydrolyzed to glucose by cellulase while yeast simultaneously ferments glucose to ethanol. The 35 C temperature and the presence of ethanol in SSF reactions are not optimal conditions for cellulase. Immobilization onto solid supports can stabilize the enzyme and promote activity at non-optimum reaction conditions. Mock SSF reactions that did not contain yeast were used to measure saccharification products and identify the mechanism for the improved ethanol yield using immobilized cellulase. Cellulase adsorbed to 40 nm silica nanoparticles produced 1.6 times (P = 0.01) more glucose than cellulase in solution in 96 h at pH 4.8 and 35 C. There was no significant accumulation (<250 {mu}g) of soluble cellooligomers in either the solution or immobilized enzyme reactions. This suggests that the mechanism for the immobilized enzyme's improved glucose yield compared to solution enzyme is the increased conversion of insoluble cellulose hydrolysis products to soluble cellooligomers at 35 C and in the presence of ethanol. The results show that silica-immobilized cellulase can be used to produce increased ethanol yields in the conversion of lignocellulosic materials by SSF.

  9. Threshold and spin factors in the yield of bremsstrahlung-induced reactions

    SciTech Connect

    Karamian, S. A.

    2013-12-15

    Relative yields of photon-induced reactions are systematized in a function of the threshold parameter for moderately heavy targets at the bremsstrahlung end-point energy lower than 30 MeV. Regular dependence is established for the group of (γ, n), (γ, p), and (γ, d) reactions, while the yields of (γ, 2n) and (γ,α) reactions deviate from the regularity. Physical conclusions are discussed and possible application of this systematic for data processing is proposed. In particular, the constituent threshold and spin factors in the isomer-to-ground-state ratio could be isolated separately. For spin dependence of the yields, a new regularization parameter is introduced and previously hidden peculiarities are concluded.

  10. Pulsed Photonuclear Assessment (PPA) Technique: CY-05 Project Summary Report

    SciTech Connect

    J.L. Jones; B.D. Bennett; K.J. Haskell; J.T. Johnson; D.R. Norman; J.W. Sterbentz; R.W. Watson; S.M. Watson; W.Y. Yoon; J.M. Zabriskie; C.E. Moss; K.L. Folkman; C.C. O'Neil; A.W. Hunt; R.J. Spaulding

    2005-12-01

    Idaho National Laboratory, along with Idaho State University’s Idaho Accelerator Center and Los Alamos National Laboratory, is developing an electron accelerator-based, photonuclear inspection technology, called the Pulsed Photonuclear Assessment (PPA) system, for the detection of nuclear material concealed within air-, rail-, and, primarily, maritime-cargo transportation containers. This report summarizes the advances and progress of the system’s development in 2005. The contents of this report include an overview of the prototype inspection system, selected Receiver-Operator-Characteristic curves for system detection performance characterization, a description of the approach used to integrate the three major detection components of the PPA inspection system, highlights of the gray-scale density mapping technique being used for significant shield material detection, and higher electron beam energy detection results to support an evaluation for an optimal interrogating beam energy. This project is supported by the Department of Homeland Security Office of Research and Development and, more recently, the Domestic Nuclear Detection Office.

  11. Unconventional application of the Mitsunobu reaction: Selective flavonolignan dehydration yielding hydnocarpins

    PubMed Central

    Huang, Guozheng; Schramm, Simon; Heilmann, Jörg; Biedermann, David; Křen, Vladimír

    2016-01-01

    Summary Various Mitsunobu conditions were investigated for a series of flavonolignans (silybin A, silybin B, isosilybin A, and silychristin A) to achieve either selective esterification in position C-23 or dehydration in a one-pot reaction yielding the biologically important enantiomers of hydnocarpin D, hydnocarpin and isohydnocarpin, respectively. This represents the only one-pot semi-synthetic method to access these flavonolignans in high yields. PMID:27340458

  12. Unconventional application of the Mitsunobu reaction: Selective flavonolignan dehydration yielding hydnocarpins.

    PubMed

    Huang, Guozheng; Schramm, Simon; Heilmann, Jörg; Biedermann, David; Křen, Vladimír; Decker, Michael

    2016-01-01

    Various Mitsunobu conditions were investigated for a series of flavonolignans (silybin A, silybin B, isosilybin A, and silychristin A) to achieve either selective esterification in position C-23 or dehydration in a one-pot reaction yielding the biologically important enantiomers of hydnocarpin D, hydnocarpin and isohydnocarpin, respectively. This represents the only one-pot semi-synthetic method to access these flavonolignans in high yields. PMID:27340458

  13. Pressure-sensitive reaction yield of the TePixD blue-light sensor protein.

    PubMed

    Kuroi, Kunisato; Okajima, Koji; Ikeuchi, Masahiko; Tokutomi, Satoru; Kamiyama, Tadashi; Terazima, Masahide

    2015-02-19

    The effect of pressure on the dissociation reaction of the TePixD decamer was investigated by high-pressure transient grating (TG). The TG signal intensity representing the dissociation reaction of the TePixD decamer significantly decreased by applying a relatively small pressure. On the other hand, the reaction rate increased with increasing pressure. The equilibrium between the pentamer and the decamer was investigated by high-pressure dynamic light scattering. The results indicated that the fraction of the decamer slightly increased in the high-pressure region. From these measurements, it was concluded that the pressure-dependent signal intensity originated from the decrease of the quantum yield of the dissociation reaction of the decamer, indicating that this reaction efficiency is very sensitive to pressure. Using densimetry at high pressures, the compressibility was found to be pressure dependent even in a relatively low pressure range. We attributed the origin of the pressure-sensitive reaction yield to the decrease of compressibility at high pressure. Because the compressibility is related to the volume fluctuation, this observation suggests that the driving force for this reaction is fluctuation of the protein. The relationship between the cavities at the interfaces of the monomer units and the reactivity is also discussed.

  14. Spin dependence of the reaction {rvec n}p {yields} pp{pi}{sup {minus}}

    SciTech Connect

    Lacker, H.

    2000-12-31

    The reaction {rvec n}p {yields} pp{pi}{sup {minus}} was investigated with a large-acceptance time-of-flight spectrometer from threshold up to 570 MeV. The experiment was performed with the polarized neutron beam at PSI using a liquid hydrogen target. Preliminary results of invariant mass spectra, angular distributions, and asymmetries are presented.

  15. Development and Implementation of Photonuclear Cross-Section Data for Mutually Coupled Neutron-Photon Transport Calculations in the Monte Carlo N-Particle (MCNP) Radiation Transport Code

    SciTech Connect

    Morgan C. White

    2000-07-01

    The fundamental motivation for the research presented in this dissertation was the need to development a more accurate prediction method for characterization of mixed radiation fields around medical electron accelerators (MEAs). Specifically, a model is developed for simulation of neutron and other particle production from photonuclear reactions and incorporated in the Monte Carlo N-Particle (MCNP) radiation transport code. This extension of the capability within the MCNP code provides for the more accurate assessment of the mixed radiation fields. The Nuclear Theory and Applications group of the Los Alamos National Laboratory has recently provided first-of-a-kind evaluated photonuclear data for a select group of isotopes. These data provide the reaction probabilities as functions of incident photon energy with angular and energy distribution information for all reaction products. The availability of these data is the cornerstone of the new methodology for state-of-the-art mutually coupled photon-neutron transport simulations. The dissertation includes details of the model development and implementation necessary to use the new photonuclear data within MCNP simulations. A new data format has been developed to include tabular photonuclear data. Data are processed from the Evaluated Nuclear Data Format (ENDF) to the new class ''u'' A Compact ENDF (ACE) format using a standalone processing code. MCNP modifications have been completed to enable Monte Carlo sampling of photonuclear reactions. Note that both neutron and gamma production are included in the present model. The new capability has been subjected to extensive verification and validation (V&V) testing. Verification testing has established the expected basic functionality. Two validation projects were undertaken. First, comparisons were made to benchmark data from literature. These calculations demonstrate the accuracy of the new data and transport routines to better than 25 percent. Second, the ability to

  16. Theoretical modeling of yields for proton-induced reactions on natural and enriched molybdenum targets.

    PubMed

    Celler, A; Hou, X; Bénard, F; Ruth, T

    2011-09-01

    Recent acute shortage of medical radioisotopes prompted investigations into alternative methods of production and the use of a cyclotron and ¹⁰⁰Mo(p,2n)(99m)Tc reaction has been considered. In this context, the production yields of (99m)Tc and various other radioactive and stable isotopes which will be created in the process have to be investigated, as these may affect the diagnostic outcome and radiation dosimetry in human studies. Reaction conditions (beam and target characteristics, and irradiation and cooling times) need to be optimized in order to maximize the amount of (99m)Tc and minimize impurities. Although ultimately careful experimental verification of these conditions must be performed, theoretical calculations can provide the initial guidance allowing for extensive investigations at little cost. We report the results of theoretically determined reaction yields for (99m)Tc and other radioactive isotopes created when natural and enriched molybdenum targets are irradiated by protons. The cross-section calculations were performed using a computer program EMPIRE for the proton energy range 6-30 MeV. A computer graphical user interface for automatic calculation of production yields taking into account various reaction channels leading to the same final product has been created. The proposed approach allows us to theoretically estimate the amount of (99m)Tc and its ratio relative to (99g)Tc and other radioisotopes which must be considered reaction contaminants, potentially contributing to additional patient dose in diagnostic studies.

  17. Rate constant for the reaction Cl + HO2NO2 yielding products. [in stratospheric chemistry

    NASA Technical Reports Server (NTRS)

    Simonaitis, R.; Leu, M. T.

    1985-01-01

    The rates for the reaction of Cl atoms iwth HO2NO2 were calculated from data obtained by the use of the discharge flow/resonance fluorescence (DF/RF) and the discharge flow/mass spectrometric (DF/MS) techniques. The total rate constant, k1, for the overall reaction: 1a (Cl + HO2NO2 yielding HCl + NO2 +O2), 1b (yielding HO2 + ClNO2), and the two possible additional channels was found to be less than 1.0 x 10 to the -13th cu cm/s at 296 K. The value of (k1a + k1b) was found to be 3.4 + or - 1.4) x 10 to the -14th cu cm/s. Thus, the reaction of Cl with peroxynitric acid is too slow, by a factor of 100, to contribute significantly to the hydrogen abstraction by Cl in the stratosphere.

  18. Kinetics and Product Yields of the Gas-Phase Reactions of Isoprene Hydroxynitrates and Isoprene Carbonynitrates

    NASA Astrophysics Data System (ADS)

    Abdelhamid, A.; Addala, R.; Vizenor, N.; Scruggs, A.; Tyndall, G. S.; Orlando, J. J.; Le, T.; Cardenas, E.; Maitra, S.; Hasson, A. S.

    2013-12-01

    Isoprene nitrates are formed in the troposphere from the reactions of isoprene with OH in the presence of NOx during the day and with NO3 during the night. Depending on their subsequent reactions, these compounds may be reservoirs or sinks for NOx, and may contribute to secondary organic aerosol formation. In this work, two isoprene hydroxynitrates (CH2=CHC(ONO2)(CH3)CH2OH, 1,2-IHN and CH2OHCH(ONO2)C(CH3)=CH2, 4,3-IHN ) and one isoprene carbonyl nitrate (CH2=CHC(ONO2)(CH3)CHO, ICN)) were synthesized. The kinetics and product yields from their reaction with O3, OH, NO3 and Cl were then investigated in a photochemical reactor using a combination of long-path Fourier transform infra-red spectroscopy, proton transfer reaction mass spectrometry and gas chromatography with flame ionization detection. Measured rate coefficients are consistent with reaction with OH and NO3 as the major chemical sinks for these compounds. Measured product yields imply that NOx is not released from these compounds in their reactions with atmospheric oxidants.

  19. Simulation for thick-target yields of transmutation reactions on radioactive targets, based on inverse kinematics

    NASA Astrophysics Data System (ADS)

    Ebata, Shuichiro; Aikawa, Masayuki; Imai, Shotaro

    2016-06-01

    To dispose of long-lived fission products (LLFP) ejected from nuclear reactor plants is one of the most important tasks on nuclear physics and engineering. The experiments with the radiative target are limited, due to the high radioactivity and chemical property of the target. In consequence, the nuclear reaction data for LLFP are insufficient. In this work, we propose a feasible method to obtain the data for radiative targets using inverse kinematics and simulate specific systems to evaluate the thick-target yields of the nuclear transmutation reactions for LLFP.

  20. Reaction {gamma}p {sup {yields}} {eta}' (958) p and polarization of recoil protons

    SciTech Connect

    Tryasuchev, V. A.

    2006-02-15

    On the basis of the isobar model extended by including the t-channel, the cross sections for and single-polarization features of the reaction {gamma}p {sup {yields}} {eta}'p are calculated for incident-photon energies up to 5 GeV, two poorly studied resonances, S{sub 11}(1978) and P{sub 13}(2080), being taken into account in this calculation. In order to reduce the ambiguities in the choice of resonances and their parameters that make it possible to reproduce the experimental differential cross sections, it is proposed to measure the polarization of recoil protons in the reaction being considered.

  1. Advanced scheme for high-yield laser driven proton-boron fusion reaction

    NASA Astrophysics Data System (ADS)

    Margarone, D.; Picciotto, A.; Velyhan, A.; Krasa, J.; Kucharik, M.; Morrissey, M.; Mangione, A.; Szydlowsky, A.; Malinowska, A.; Bertuccio, G.; Shi, Y.; Crivellari, M.; Ullschmied, J.; Bellutti, P.; Korn, G.

    2015-02-01

    A low contrast nanosecond laser pulse with relatively low intensity (3 × 1016 W cm-2) was used to enhance the yield of induced nuclear reactions in advanced solid targets. In particular the "ultraclean" proton-boron fusion reaction, producing energetic alpha-particles without neutron generation, was chosen. A spatially well-defined layer of boron dopants in a hydrogen-enriched silicon substrate was used as target. The combination of the specific target geometry and the laser pulse temporal shape allowed enhancing the yield of alpha-particles up to 109 per steradian, i.e 100 times higher than previous experimental achievements. Moreover the alpha particle stream presented a clearly peaked angular and energy distribution, which make this secondary source attractive for potential applications. This result can be ascribed to the interaction of the long laser pre-pulse with the target and to the optimal target geometry and composition.

  2. Proposal for studying N* resonances with the pp{yields}pn{pi}{sup +} reaction

    SciTech Connect

    Wu Jiajun; Zou, B. S.; Ouyang Zhen

    2009-10-15

    A theoretical study of the pp{yields}pn{pi}{sup +} reaction for antiproton beam energy from 1 to 4 GeV is made by including contributions from various known N* and {delta}* resonances. It is found that for the beam energy around 1.5 GeV, the contribution of the Roper resonance N{sub (1440)}* produced by the t-channel {sigma} exchange dominates over all other contributions. Since such a reaction can be studied in the forthcoming PANDA experiment at the GSI Facility of Antiproton and Ion Research (FAIR), the reaction will be realistically the cleanest place for studying the properties of the Roper resonance and the best place for looking for other ''missing''N* resonances with large coupling to N{sigma}.

  3. Kinetics and Product Yields in the Heterogeneous Reactions of HOBr with Reactive Halide Surfaces

    NASA Astrophysics Data System (ADS)

    Huff, A. K.; Huff, A. K.; Abbatt, J. P.

    2001-12-01

    Routine episodes of ozone destruction in the springtime Arctic boundary layer have been well documented in recent years. After polar sunrise, field researchers working in Alaska and northern Canada report the almost complete loss of ozone from stable air masses in coastal regions. Ozone destruction is very fast, developing on a time scale from hours to days. Low ozone levels are correlated with elevated filterable bromine concentrations, suggesting that high levels of active bromine compounds are present in the atmosphere during ozone loss events. Based on these and other observations, a number of heterogeneous mechanisms involving bromine radicals have been proposed to explain the ozone-depleting chemistry. The central reactions in many of these theories are the interactions of gaseous HOBr with sea salt components in marine aerosols, snow crystals, or sea ice. Recent modeling studies suggest that tropospheric ozone destruction can not be simulated in agreement with field observations unless heterogeneous reactions with HOBr are included. The interactions of HOBr with sea salt halides also drive a proposed autocatalytic mechanism that explains many aspects of the rapid and nearly wholesale loss of ozone in the Arctic troposphere. Motivated by the central role of HOBr in these modeling studies, we have investigated its heterogeneous reactions with reactive halide-ice surfaces using a coated wall, low-pressure flow tube coupled to a quadrupole mass spectrometer. Gas-surface reaction probabilities and product yields are presented for two different temperatures and a range of halide and hydrogen ion concentrations in ice. Compared to results for similar experiments with HOCl that have been conducted previously, HOBr reaction probability values are smaller than expected, but still significant. The relative yields of gas-phase products Br2 and BrCl depend on the temperature, composition, and acidity of the reactive halide-ice surfaces. Overall, our data suggest that the

  4. Dynamical coupled-channels study of {pi}N{yields}{pi}{pi}N reactions

    SciTech Connect

    Kamano, H.; Julia-Diaz, B.; Lee, T.-S. H.; Matsuyama, A.; Sato, T.

    2009-02-15

    As a step toward performing a complete coupled-channels analysis of the world data of {pi}N,{gamma}*N{yields}{pi}N,{eta}N,{pi}{pi}N reactions, the {pi}N{yields}{pi}{pi}N reactions are investigated starting with the dynamical coupled-channels model developed in Phys. Rev. C 76, 065201 (2007). The channels included are {pi}N,{eta}N, and {pi}{pi}N which has {pi}{delta},{rho}N, and {sigma}N resonant components. The nonresonant amplitudes are generated from solving a set of coupled-channels equations with the meson-baryon potentials defined by effective Lagrangians. The resonant amplitudes are generated from 16 bare excited nucleon (N*) states that are dressed by the nonresonant interactions as constrained by the unitarity condition. The data of total cross sections and {pi}N and {pi}{pi} invariant mass distributions of {pi}{sup +}p{yields}{pi}{sup +}{pi}{sup +}n,{pi}{sup +}{pi}{sup 0}p and {pi}{sup -}p{yields}{pi}{sup +}{pi}{sup -}n,{pi}{sup -}{pi}{sup 0}p,{pi}{sup 0}{pi}{sup 0}n reactions from threshold to the invariant mass W=2 GeV can be described to a very large extent. We show the importance of the coupled-channels effects and the strong interference among the contributions from the {pi}{delta},{sigma}N, and {rho}N channels. The large interference between the resonant and nonresonant amplitudes is also demonstrated. Possible future developments are discussed.

  5. Rate constant for the reaction SO + BrO yields SO2 + Br

    NASA Technical Reports Server (NTRS)

    Brunning, J.; Stief, L.

    1986-01-01

    The rate of the radical-radical reaction SO + BrO yields SO2 + Br has been determined at 298 K in a discharge flow system near 1 torr pressure with detection of SO and BrO via collision-free sampling mass spectrometry. The rate constant was determined using two different methods: measuring the decay of SO radicals in the presence of an excess of BrO and measuring the decay of BrO radicals in excess SO. The results from the two methods are in reasonable agreement and the simple mean of the two values gives the recommended rate constant at 298 K, k = (5.7 + or - 2.0) x 10 to the -11th cu cm/s. This represents the first determination of this rate constant and it is consistent with a previously derived lower limit based on SO2 formation. Comparison is made with other radical-radical reactions involving SO or BrO. The reaction SO + BrO yields SO2 + Br is of interest for models of the upper atmosphere of the earth and provides a potential coupling between atmospheric sulfur and bromine chemistry.

  6. Reaction {pi}N {yields} {pi}{pi}N near threshold

    SciTech Connect

    Frlez, E.

    1993-11-01

    The LAMPF E1179 experiment used the {pi}{sup 0} spectrometer and an array of charged particle range counters to detect and record {pi}{sup +}{pi}{sup 0}, {pi}{sup 0}p, and {pi}{sup +}{pi}{sup 0}p coincidences following the reaction {pi}{sup +}p {yields} {pi}{sup 0}{pi}{sup +}p near threshold. The total cross sections for single pion production were measured at the incident pion kinetic energies 190, 200, 220, 240, and 260 MeV. Absolute normalizations were fixed by measuring {pi}{sup +}p elastic scattering at 260 MeV. A detailed analysis of the {pi}{sup 0} detection efficiency was performed using cosmic ray calibrations and pion single charge exchange measurements with a 30 MeV {pi}{sup {minus}} beam. All published data on {pi}N {yields} {pi}{pi}N, including our results, are simultaneously fitted to yield a common chiral symmetry breaking parameter {xi} ={minus}0.25{plus_minus}0.10. The threshold matrix element {vert_bar}{alpha}{sub 0}({pi}{sup 0}{pi}{sup +}p){vert_bar} determined by linear extrapolation yields the value of the s-wave isospin-2 {pi}{pi} scattering length {alpha}{sub 0}{sup 2}({pi}{pi}) = {minus}0.041{plus_minus}0.003 m{sub {pi}}{sup {minus}1}, within the framework of soft-pion theory.

  7. Low-Pressure Photolysis of 2,3-Pentanedione in Air: Quantum Yields and Reaction Mechanism.

    PubMed

    Bouzidi, Hichem; Djehiche, Mokhtar; Gierczak, Tomasz; Morajkar, Pranay; Fittschen, Christa; Coddeville, Patrice; Tomas, Alexandre

    2015-12-24

    Dicarbonyls in the atmosphere mainly arise from secondary sources as reaction products in the degradation of a large number of volatile organic compounds (VOC). Because of their sensitivity to solar radiation, photodissociation of dicarbonyls can dominate the fate of these VOC and impact the atmospheric radical budget. The photolysis of 2,3-pentanedione (PTD) has been investigated for the first time as a function of pressure in a static reactor equipped with continuous wave cavity ring-down spectroscopy to measure the HO2 radical photostationary concentrations along with stable species. We showed that (i) Stern-Volmer plots are consistent with low OH-radical formation yields in RCO + O2 reactions, (ii) the decrease of the photodissociation rate due to pressure increase from 26 to 1000 mbar is of about 30%, (iii) similarly to other dicarbonyls, the Stern-Volmer analysis shows a curvature at the lower pressure investigated, which may be assigned to the existence of excited singlet and triplet PTD states, (iv) PTD photolysis at 66 mbar leads to CO2, CH2O and CO with yields of (1.16 ± 0.04), (0.33 ± 0.02) and (0.070 ± 0.005), respectively, with CH2O yield independent of pressure up to 132 mbar and CO yield in agreement with that obtained at atmospheric pressure by Bouzidi et al. (2014), and (v) the PTD photolysis mechanism remains unchanged between atmospheric pressure and 66 mbar. As a part of this work, the O2 broadening coefficient for the absorption line of HO2 radicals at 6638.21 cm(-1) has been determined (γO2 = 0.0289 cm(-1) atm(-1)). PMID:26608471

  8. Off-shell effects for the reaction pp{yields}{pi}d at high energies

    SciTech Connect

    Lee, T.S.H.; Locher, M.P.; Lu, Y.

    1995-08-01

    The reaction pp {yields} {pi}d is studied in a relativistic meson rescattering model. For 1.3 < T{sub p} < 2.4 GeV, the differential cross section and the asymmetry are calculated and compared to experiment. The model introduces simple form factors for the leading {pi}N partial waves, which depend on the virtuality of the exchanged {pi} and {rho} mesons. All remaining input is derived from experimental constraints. The data can be described by energy-independent form factors. The asymmetries are sensitive to pp distortion factors and further details of the model. A paper describing our results was published.

  9. Proton source size measurements in the eA {yields} e{prime}ppX reaction

    SciTech Connect

    Aleksey Stavinskiy; Konstantin Mikhaylov; R. Lednicky; Alexander Vlassov; Et. Al.

    2004-06-01

    Two-proton correlations at small relative momentum q were studied in the eA({sup 3}He, {sup 4}He, C, Fe) {yields} e{prime}ppX reaction at E{sub 0} = 4.46 GeV using the CLAS detector at Jefferson Lab. The enhancement of the correlation function at small q was found to be in accordance with theoretical expectation. Emission region sizes were extracted and proved to be dependent on A and proton momentum. The size of the two-proton emission region on the lightest possible nucleus, He, was measured for the first time.

  10. Kinetics of the reaction HO2 + NO2 + M yields HO2NO2 + M

    NASA Technical Reports Server (NTRS)

    Sander, S. P.; Peterson, M. E.

    1984-01-01

    The flash photolysis/ultraviolet absorption technique was used to measure the rate constants for the reaction HO2 + NO2 + M yields HO2NO2 + M over the pressure range 50-700 torr and temperature range 229-362 K using He, O2, and N2 as diluent gases. The data were fit to the expression derived by Troe (1979) and co-workers for describing the pressure and temperature dependence of reactions in the falloff region. By combining these data with recent measurements of the rate constant for HO2NO2 thermal decomposition values of 73.8 + or - 2 eu for the standard entropy and -12.6 + or - kcal/mol for the standard enthalpy of formation of HO2NO2 were obtained. A significant enhancement in the rate constant was observed when water vapor was added to the system.

  11. Kinetic and Product Yields of the Gas-Phase Reactions of Isoprene Hydroperoxides with Atmospheric Oxidants

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Lozano, E. I.; Maitra, S.; Manning, D. M.; Cervantes, R.; Hasson, A. S.

    2015-12-01

    Isoprene is a volatile organic compound (VOC) that is emitted into the atmosphere by plants and trees. It has the largest emission rate of any non-methane VOC and is very reactive, and therefore has a major impact on the chemical composition of the atmosphere. Isoprene Hydroperoxides (IHP) are formed in the atmosphere from the chemical degradation of isoprene. These compounds can then potentially react in the atmosphere with atmospheric oxidants (ozone, OH, NO3) to produce secondary products. This chemistry is potentially important as it may contribute to particle growth and to mediation of ozone concentrations. In this work, the kinetics and mechanisms of the reactions of two IHPs with ozone were investigated. IHPs were synthesized and purified, and were characterized by NMR and HPLC. The gas phase chemistry of these compounds was then studied in chamber experiments using PTRMS as the primary analytical tool. The rate coefficients for reaction with ozone were measured at room temperature and 1 atmosphere using the relative rate technique, and yields of major gas phase reaction products were measured. Implications of these results will be discussed.

  12. Detailed photonuclear cross-section calculations and astrophysical applications

    SciTech Connect

    Gardner, D.G.; Gardner, M.A.; Hoff, R.W.

    1989-06-15

    We have investigated the role of an isomeric state and its coupling to the ground state (g.s.) via photons and neutron inelastic scattering in a stellar environment by making detailed photonuclear and neutron cross-section calculations for /sup 176/Lu and /sup 210/Bi. In the case of /sup 176/Lu, the g.s. would function as an excellent galactic slow- (s-) process chronometer were it not for the 3.7-h isomer at 123 keV. Our calculations predicted much larger photon cross sections for production of the isomer, as well as a lower threshold, than had been assumed based on earlier measurements. These two factors combine to indicate that an enormous correction, a factor of 10/sup 7/, must be applied to shorten the current estimate of the half-life against photoexcitation of /sup 176/Lu as a function of temperature. This severely limits the use of /sup 176/Lu as a stellar chronometer and indicates a significantly lower temperature at which the two states reach thermal equilibrium. For /sup 210/Bi, our preliminary calculations of the production and destruction of the 3 /times/ 10/sup 6/ y isomeric state by neutrons and photons suggest that the /sup 210/Bi isomer may not be destroyed by photons as rapidly as assumed in certain stellar environments. This leads to an alternate production path of /sup 207/Pb and significantly affects presently interpreted lead isotopic abundances. We have been able to make such detailed nuclear cross-section calculations using: modern statistical-model codes of the Hauser-Feshbach type, with complete conservation of angular momentum and parity; reliable systematics of the input parameters required by these codes, including knowledge of the absolute gamma-ray strength-functions for E1, M1, and E2 transitions; and codes developed to compute large, discrete, nuclear level sets, their associated gamma-ray branchings, and the presence and location of isomeric states. 7 refs., 2 figs.

  13. Kinetics of the reaction OH (v equals 0) plus O3 yields HO2 plus O2

    NASA Technical Reports Server (NTRS)

    Anderson, J. G.; Kaufman, F.

    1973-01-01

    The rate constant (kl) of the reaction OH(v=o) + O3 yields HO2 + O2 measured over the temperature range 220 to 450 K at total pressures between 2 and 5 torr using ultraviolet fluorescent scattering for the detection of OH radicals. An Arrhenius expression was obtained, and the rate constant for the reaction HO2 + O3 yields OH + 2O2 was inferred to be less than 0.1 kl over the entire temperature interval.

  14. Measured bremsstrahlung photonuclear production of 99Mo ((99m)Tc) with 34 MeV to 1.7 GeV electrons.

    PubMed

    Roberts, A D; Geddes, C G R; Matlis, N; Nakamura, K; O'Neil, J P; Shaw, B H; Steinke, S; van Tilborg, J; Leemans, W P

    2015-02-01

    (99)Mo photonuclear yield was measured using high-energy electrons from Laser Plasma Accelerators and natural molybdenum. Spectroscopically resolved electron beams allow comparisons to Monte Carlo calculations using known (100)Mo(γ,n)(99)Mo cross sections. Yields are consistent with published low-energy data, and higher energy data are well predicted from the calculations. The measured yield is (15±2)×10(-5) atoms/electron (0.92±0.11 GBq/μA) for 25 mm targets at 33.7 MeV, rising to (1391±20)×10(-5) atoms/electron (87±2 GBq/μA) for 54 mm/ 1.7 GeV, with peak power-normalized yield at 150 MeV.

  15. Kinetics and yields of bacteriochlorophyll fluorescence: redox and conformation changes in reaction center of Rhodobacter sphaeroides.

    PubMed

    Maróti, Péter

    2008-09-01

    Induction of the bacteriochlorophyll fluorescence under rectangular shape of intense laser diode illumination (1 W cm(-2), 808 nm) was measured over wide time range from 10 microseconds to 4 s in whole cells, chromatophore and isolated reaction center protein of wild type and carotenoid-less mutant (R-26.1) of purple photosynthetic bacterium Rhodobacter sphaeroides. While the antenna-containing species showed large and positive variable fluorescence (Fv) to initial fluorescence (F0) (Fv/F0 approximately 4.5 in whole cells), the isolated RC had negative change (Fv/F0 approximately -0.6) during photochemistry. In chromatophore from R-26.1, only seven times higher rate was measured than in isolated reaction center under identical experimental conditions. The enhancement effect of large antenna on the rate of photochemistry in chromatophore was partially compensated by the favorable pigment absorption properties in isolated RC. The transition from membrane bound to isolated form of the reaction center was probed by titration of zwitterionic detergent LDAO in chromatophore, and at 0.03% LDAO concentration, sharp change of the variable fluorescence was observed. The sudden drop was explained by the formation of LDAO micelles. After the photochemical phase, additional change of fluorescence yield could be observed in isolated RC considered as manifestation of long-living conformations of the trapped redox states of the protein characterized by non-exponential kinetics. Strong support was provided for use of the fluorescence induction to track structural and conformation changes at their earliest phases in chromatophores and isolated reaction centers.

  16. Calculated potential surfaces for the reactions: O + N2 yields NO + N and N + O2 yields NO + O

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Jaffe, Richard J.

    1986-01-01

    Complete Active Space SCF/Contracted CI (CASSCF/CCI) calculations, using large Gaussian basis sets, are presented for selected portions of the potential surfaces for the reactions in the Zeldovich mechanism for the conversion of N2 to NO. The N + O2 reaction is exoergic by 32 kcal/mole and is computed to have an early barrier of 10.2 kcal/mole for the (sup 2)A(sup prime) surface and 18.0 kcal/mole for the (sup 4)A(sup prime) surface. The O + N2 reaction is endoergic by 75 kcal/mole. The (sup 3)A(sup double prime) surface is calculated to have a late barrier of 0.5 kcal/mole, while the (sup 3)A(sup prime) surface is calculated to have a late barrier of 14.4 kcal/mole.

  17. THE GAS PHASE REACTION OF OZONE WITH 1,3-BUTADIENE: FORMATION YIELDS OF SOME TOXIC PRODUCTS. (R826236)

    EPA Science Inventory

    The formation yields of acrolein, 1,2-epoxy-3-butene and OH radicals have been measured from reaction of ozone with 1,3-butadiene at room temperature and atmosphere pressure. 1,3,5-Trimethyl benzene was added to scavenge OH radicals in measurements of product yields. In separa...

  18. Impulse approximation in the np{yields}d{pi}{sup 0} reaction reexamined

    SciTech Connect

    Bolton, Daniel R.; Miller, Gerald A.

    2010-08-15

    The impulse approximation (one-body operator) in the np{yields}d{pi}{sup 0} reaction is reexamined with emphasis on the issues of reducibility and recoil corrections. An inconsistency when one-pion exchange is included in the production operator is demonstrated and then resolved via the introduction of 'wave function corrections' which nearly vanish for static nucleon propagators. Inclusion of the recoil corrections to the nucleon propagators is found to change the magnitude and sign of the impulse production amplitude, worsening agreement with the experimental cross section by {approx}30%. A cutoff is used to account for the phenomenological nature of the external wave functions and is found to have a significant impact for {Lambda} < or approx. 2.5 GeV.

  19. Probing a chemical compass: novel variants of low-frequency reaction yield detected magnetic resonance.

    PubMed

    Maeda, Kiminori; Storey, Jonathan G; Liddell, Paul A; Gust, Devens; Hore, P J; Wedge, C J; Timmel, Christiane R

    2015-02-01

    We present a study of a carotenoid-porphyrin-fullerene triad previously shown to function as a chemical compass: the photogenerated carotenoid-fullerene radical pair recombines at a rate sensitive to the orientation of an applied magnetic field. To characterize the system we develop a time-resolved Low-Frequency Reaction Yield Detected Magnetic Resonance (tr-LF-RYDMR) technique; the effect of varying the relative orientation of applied static and 36 MHz oscillating magnetic fields is shown to be strongly dependent on the strength of the oscillating magnetic field. RYDMR is a diagnostic test for involvement of the radical pair mechanism in the magnetic field sensitivity of reaction rates or yields, and has previously been applied in animal behavioural experiments to verify the involvement of radical-pair-based intermediates in the magnetic compass sense of migratory birds. The spectroscopic selection rules governing RYDMR are well understood at microwave frequencies for which the so-called 'high-field approximation' is valid, but at lower frequencies different models are required. For example, the breakdown of the rotating frame approximation has recently been investigated, but less attention has so far been given to orientation effects. Here we gain physical insights into the interplay of the different magnetic interactions affecting low-frequency RYDMR experiments performed in the challenging regime in which static and oscillating applied magnetic fields as well as internal electron-nuclear hyperfine interactions are of comparable magnitude. Our observations aid the interpretation of existing RYDMR-based animal behavioural studies and will inform future applications of the technique to verify and characterize further the biological receptors involved in avian magnetoreception. PMID:25537133

  20. Probing a chemical compass: novel variants of low-frequency reaction yield detected magnetic resonance.

    PubMed

    Maeda, Kiminori; Storey, Jonathan G; Liddell, Paul A; Gust, Devens; Hore, P J; Wedge, C J; Timmel, Christiane R

    2015-02-01

    We present a study of a carotenoid-porphyrin-fullerene triad previously shown to function as a chemical compass: the photogenerated carotenoid-fullerene radical pair recombines at a rate sensitive to the orientation of an applied magnetic field. To characterize the system we develop a time-resolved Low-Frequency Reaction Yield Detected Magnetic Resonance (tr-LF-RYDMR) technique; the effect of varying the relative orientation of applied static and 36 MHz oscillating magnetic fields is shown to be strongly dependent on the strength of the oscillating magnetic field. RYDMR is a diagnostic test for involvement of the radical pair mechanism in the magnetic field sensitivity of reaction rates or yields, and has previously been applied in animal behavioural experiments to verify the involvement of radical-pair-based intermediates in the magnetic compass sense of migratory birds. The spectroscopic selection rules governing RYDMR are well understood at microwave frequencies for which the so-called 'high-field approximation' is valid, but at lower frequencies different models are required. For example, the breakdown of the rotating frame approximation has recently been investigated, but less attention has so far been given to orientation effects. Here we gain physical insights into the interplay of the different magnetic interactions affecting low-frequency RYDMR experiments performed in the challenging regime in which static and oscillating applied magnetic fields as well as internal electron-nuclear hyperfine interactions are of comparable magnitude. Our observations aid the interpretation of existing RYDMR-based animal behavioural studies and will inform future applications of the technique to verify and characterize further the biological receptors involved in avian magnetoreception.

  1. Data on photoneutron reactions from various experiments for 133Cs, 138Ba and 209Bi nuclei

    NASA Astrophysics Data System (ADS)

    Varlamov, V. V.; Ishkhanov, B. S.; Orlin, V. N.; Peskov, N. N.

    2016-07-01

    Basic methods for determining cross sections for photoneutron partial reactions are examined. They are obtained directly in experiments with quasimonoeneregetic annihilation photons or from the cross section for the ( γ, xn) = ( γ, 1 n) + 2( γ, 2 n) + 3( γ, 3 n) +... neutron-yield reaction in experiments with bremsstrahlung photons by introducing corrections based on statistical nuclear-reaction theory. The difference in the conditions of these experiments, which leads to discrepancies between their results because of sizable systematic errors, is analyzed. Physical criteria are used to study the reliability of data on the photodisintegration of 133Cs, 138Ba, and 209Bi nuclei. The cross sections for partial and total reactions satisfying the reliability criteria are evaluated within the experimental-theoretical method ( σ eval( γ, in) = F i theor × σ expt( γ, xn)) on the basis of the experimental cross sections σ expt( γ, xn) and the results of the calculations within the combined model of photonuclear reactions.

  2. Origin and yields of acetic acid in pentose-based Maillard reaction systems.

    PubMed

    Davidek, Tomas; Gouézec, Elisabeth; Devaud, Stéphanie; Blank, Imre

    2008-04-01

    The formation of acetic acid from pentoses was studied in aqueous buffered systems (90-120 degrees C, pH 6.0-8.0) containing equimolar concentrations of 13C-labeled xylose and glycine. Acetic acid was quantified by gas chromatography-mass spectroscopy using an isotope dilution assay. Acetic acid was mainly formed from the C-1/C-2 carbon atoms of xylose (77-87%), while small amounts were also formed from the C-4/C-5 atoms of the pentose sugar (9-15%). Temperature and pH had only a small effect on the relative contribution of the sugar carbon atoms to acetic acid. These results support beta-dicarbonyl cleavage of 1-deoxypento-2,4-diulose as a major pathway leading to acetic acid in pentose-based Maillard reaction systems under food processing conditions. Acetic acid was confirmed as a major degradation product of pentoses at the early stage of the Maillard reaction, yielding 16 mol% and 28 mol% at pH 6.0 and pH 8.0, respectively. PMID:18448822

  3. Two-pion-exchange and other higher-order contributions to the pp{yields}pp{pi}{sup 0} reaction

    SciTech Connect

    Kim, Y.; Sato, T.; Myhrer, F.; Kubodera, K.

    2009-07-15

    Much effort has been invested on effective-field-theoretical studies of the near-threshold NN{yields}NN{pi} reactions and, in order to deal with the somewhat large three-momentum transfers involved, the momentum counting scheme (MCS) was proposed as an alternative to the usual Weinberg counting scheme. Given the fact that a quantitative explanation of the existing high-precision NN{yields}NN{pi} data requires a careful examination of higher chiral order contributions to the transition operator, we make a detailed numerical investigation of the convergence property of MCS for a pilot case of the pp{yields}pp{pi}{sup 0} reaction. Our study indicates that MCS is superior to the Weinberg scheme in identifying dominant higher order contributions to the NN{yields}NN{pi} reactions.

  4. Observables for the pd {yields} {sup 3}H{pi}{sup +} and pd {yields} {sup 3}He{pi}{sup 0} Reactions in a pp {yields} d{pi}{sup +} Model

    SciTech Connect

    Falk, W.R.

    2000-12-31

    Differential cross sections and spin observables A{sub y}, iT{sub 11}, T{sub 20}, and T{sub 22} are calculated for the pd {yields} {sup 3}H{pi}{sup +} reaction in a pp {yields} d{pi}{sup +} model at energies near threshold. The results are compared with experimental data for the reactions {rvec p}d {yields} {sup 3}He{pi}{sup 0} and {rvec d}p {yields} {sup 3}He{pi}{sup 0}. Good agreement of these predictions with the data for the proton analyzing power is obtained, and for most of the other observables satisfactory agreement is found. Effects of various assumptions in the model are investigated and discussed.

  5. A Time-Dependent Quantum Dynamics Study of the H2 + CH3 yields H + CH4 Reaction

    NASA Technical Reports Server (NTRS)

    Wang, Dunyou; Kwak, Dochan (Technical Monitor)

    2002-01-01

    We present a time-dependent wave-packet propagation calculation for the H2 + CH3 yields H + CH4 reaction in six degrees of freedom and for zero total angular momentum. Initial state selected reaction probability for different initial rotational-vibrational states are presented in this study. The cumulative reaction probability (CRP) is obtained by summing over initial-state-selected reaction probability. The energy-shift approximation to account for the contribution of degrees of freedom missing in the 6D calculation is employed to obtain an approximate full-dimensional CRP. Thermal rate constant is compared with different experiment results.

  6. Novel photocatalytic reactor for the destruction of airborne pollutants reaction kinetics and quantum yields

    SciTech Connect

    Ibrahim, H.; Lasa, H. de

    1999-09-01

    Photocatalytic conversion of a model pollutant (toluene) is studied in a newly designed batch photoreactor, called Photo-CREC-Air. In this unit TiO{sub 2} is supported on a filter mesh with good contact with near UV light, TiO{sub 2}, and air. Photo-CREC-Air is designed with special features including a Venturi section and a heated perforated plate. The heated perforated plate minimizes water adsorption on the mesh and consequently water effects on the reaction rate. The system performance is examined for different toluene concentrations and two humidity levels. After assessing the insignificant toluene adsorption observed under the selected operating conditions, a pseudohomogeneous model is postulated for kinetics modeling. Initial photodegradation rates of toluene at 100 C in Photo-CREC-Air, in the range of model pollutant concentrations and humidity level studied, were 0.005--0.05 {mu}mol/(gcat s). Apparent quantum yields were estimated to be in many cases greater than 100% and as high as 450%.

  7. Effects of domain connection and disconnection on the yields of in-plane bimolecular reactions in membranes.

    PubMed Central

    Melo, E C; Lourtie, I M; Sankaram, M B; Thompson, T E; Vaz, W L

    1992-01-01

    It has recently been shown (Vaz, W.L.C., E.C.C. Melo, and T.E. Thompson. 1989. Biophys. J. 56:869-875; 1990. Biophys. J. 58:273-275) that in lipid bilayer membranes in which ordered and disordered phases coexist, the ordered phase can form a two-dimensional reticular structure that subdivides the coexisting disordered phase into a disconnected domain structure. Here we consider theoretically the yields of bimolecular reactions between membrane-localized reactants, when both the reactants and products are confined to the disordered phase. It is shown that compartmentalization of reactants in disconnected domains can lead to significant reductions in reaction yields. The reduction in yield was calculated for classical bimolecular processes and for enzyme-catalyzed reactions. These ideas can be used to explain certain experimental observations. PMID:1489909

  8. Reaction rates for O3 + HCl yielding O + O2 + HCl, Cl + O3 yielding ClO + O2, and HCl + O yielding OH + Cl at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Park, C.

    1977-01-01

    Ozone and a much greater quantity of hydrogen chloride, slightly diluted by oxygen and argon, were heated by a shock wave process to temperatures in the range 480-1300 K at pressures from four to eight atmospheres. From variations in ozone concentration, determined by the attentuation of 2537-A radiation, the rate coefficient for the reaction O3 + HCl yielding O + O2 + HCl was determined to be k1 = (4.0 plus or minus 1.5) x 10 to the minus 10 exp(-10,408/T)cm3/s for temperatures of 480-720 K. From the concentration of ClO remaining at the end of ozone decomposition the rate coefficients for the reactions Cl + O3 yielding ClO + O2 and HCl + O yielding OH + Cl were also deduced for a temperature of about 1100 K.

  9. Evaluating rates and yields of second-order, photoinitiated reactions under conditons of Gaussian-profile excitation

    SciTech Connect

    Cambron, R.T.; Zhu, X.R.; Harris, J.M.

    1994-09-01

    Under conditions of Gaussian radial profile excitation, a mixed-order kinetic model is used to interpret the rates and yields of photoinitiated reactions. This model is used to determine the triplet-triplet annihilation rate constant for benzophenone in acetonitrile and anthracene at room temperature. 34 refs., 9 figs.

  10. Assessing future drought impacts on yields based on historical irrigation reaction to drought for four major crops in Kansas.

    PubMed

    Zhang, Tianyi; Lin, Xiaomao

    2016-04-15

    Evaluation of how historical irrigation reactions can adapt to future drought is indispensable to irrigation policy, however, such reactions are poorly quantified. In this paper, county-level irrigation data for maize, soybean, grain sorghum, and wheat crops in Kansas were compiled. Statistical models were developed to quantify changes of irrigation and yields in response to drought for each crop. These were then used to evaluate the ability of current irrigation to cope with future drought impacts on each crop based on an ensemble Palmer Drought Severity Index (PDSI) prediction under the Representative Concentration Pathways 4.5 scenario. Results indicate that irrigation in response to drought varies by crop; approximately 10 to 13% additional irrigation was applied when PDSI was reduced by one unit for maize, soybean, and grain sorghum. However, the irrigation reaction for wheat exhibits a large uncertainty, indicating a weaker irrigation reaction. Analysis of future climate conditions indicates that maize, soybean, and grain sorghum yields would decrease 2.2-12.4% at the state level despite additional irrigation application induced by drought (which was expected to increase 5.1-19.0%), suggesting that future drought will exceed the range that historical irrigation reactions can adapt to. In contrast, a lower reduction (-0.99 to -0.63%) was estimated for wheat yields because wetter climate was projected in the central section of the study area. Expanding wheat areas may be helpful in avoiding future drought risks for Kansas agriculture.

  11. Temperature dependent product yields for the spin forbidden singlet channel of the C(3P) + C2H2 reaction

    NASA Astrophysics Data System (ADS)

    Hickson, Kevin M.; Loison, Jean-Christophe; Wakelam, Valentine

    2016-08-01

    The atomic hydrogen formation channels of the C + C2H2 reaction have been investigated using a continuous supersonic flow reactor over the 52-296 K temperature range. H-atoms were detected directly at 121.567 nm by vacuum ultraviolet laser induced fluorescence. Absolute H-atom yields were determined by comparison with the H-atom signal generated by the C + C2H4 reaction. The product yields agree with earlier crossed beam experiments employing universal detection methods. Incorporating these branching ratios in a gas-grain model of dense interstellar clouds increases the c-C3H abundance. This reaction is a minor source of C3-containing molecules in the present simulations.

  12. Shock tube study of the reaction H plus O2 plus Ar yields HO2 plus Ar

    NASA Technical Reports Server (NTRS)

    Jachimowski, C. J.; Houghton, W. M.

    1972-01-01

    Rate coefficient data for the recombination reaction H + 02 + Ar yields H02 + Ar have been determined from studies of lean hydrogen-oxygen mixtures behind incident shock waves over the temperature range of 948 to 1125 K. Hydroxyl radical concentration profiles were measured by ultraviolet absorption spectroscopy, and rate data were obtained through analysis of induction time and exponential growth parameter data. Analysis of the data yielded a rate coefficient which was generally lower than most of the more recent values obtained from shock tube studies. The effect of boundary layer formation on the conditions behind the shock was also examined and found to be negligible.

  13. Pressure-dependent OH yields in alkene + HO2 reactions: a theoretical study.

    PubMed

    Zádor, Judit; Klippenstein, Stephen J; Miller, James A

    2011-09-15

    The major bimolecular product of alkyl + O(2) reactions is alkene + hydroperoxyl radical (HO(2)), but in the reverse direction, the reactants are reformed to a very limited extent only. The most important products of the alkene + HO(2) reactions are alkylperoxy radical (ROO(•)), hydroxyl radical (OH) + cyclic ether, and the corresponding hydroperoxyalkyl ((•)QOOH) species. Moreover, abstraction of allylic hydrogens can compete with the addition, further complicating the possible outcome of this reaction type and its effect on low-temperature combustion chemistry. In this paper, six alkene + HO(2) reactions and the reaction between an unsaturated oxygenate and HO(2) are studied based on previously established potential energy surfaces. The studied unsaturated compounds are ethene, propene, 1-butene, trans-2-butene, isobutene, cyclohexene, and vinyl alcohol. Using multiwell master equations, temperature- (300-1200 K) and pressure-dependent rate coefficients and branching fractions are calculated for these reactions. The importance of this reaction type for the combustion of unsaturated compounds is also assessed, and we show that, to get reliable results, it is important to include the pressure-dependence of the rate coefficients in the calculations. PMID:21819062

  14. Rate constant measurements for the reaction Cl + CH2O yields HCl + CHO Implications regarding the removal of stratospheric chlorine

    NASA Technical Reports Server (NTRS)

    Anderson, P. C.; Kurylo, M. J.

    1979-01-01

    The flash photolysis resonance fluorescence technique was employed to investigate the rate constant for the reaction Cl + CH2O yields HCl + CHO from 223 to 323 K. An Arrhenius fit of the data gives a rate constant equal to (1.09 + or - 0.40) x 10 to the -10th exp/-(131 + or - 98)/T/ in units of cu cm/molecule per sec. The results are compared to two very recent kinetic studies and are assessed in view of the reaction's role in disrupting the Cl-ClO stratospheric ozone depletion chain.

  15. A Modified activation method for reaction total cross section and yield measurements at low astrophysically relevant energies

    NASA Astrophysics Data System (ADS)

    Artemov, S. V.; Igamov, S. B.; Karakhodjaev, A. A.; Radyuk, G. A.; Tojiboyev, O. R.; Salikhbaev, U. S.; Ergashev, F. Kh.; Nam, I. V.; Aliev, M. K.; Kholbaev, I.; Rumi, R. F.; Khalikov, R. I.; Eshkobilov, Sh. Kh.; Muminov, T. M.

    2016-07-01

    The activation method is proposed for collection of the sufficient statistics during the investigation of the nuclear astrophysical reactions at low energies with the short-living residual nuclei formation. The main feature is a multiple cyclical irradiation of a target by an ion beam and measurement of the radioactivity decay curve. The method was tested by the yield measurement of the 12C(p,γ)13N reaction with detecting the annihilation γγ- coincidences from 13N(β+ν)13C decay at the two-arm scintillation spectrometer.

  16. Kinetics of the reaction OH + H2O2 yields HO2 + H2O

    NASA Technical Reports Server (NTRS)

    Sridharan, U. C.; Reimann, B.; Kaufman, F.

    1980-01-01

    The paper describes an experimental study of the title reaction that uses the discharge-flow technique, laser-induced-fluorescence detection of OH and simultaneous monitoring of O and H atoms in the 250-459 K range. The reaction is normal and free from surface effect interference in Teflon or halocarbon wax-coated tube, but not in clean Pyrex. OH radicals are generated in three ways and at low concentrations to eliminate side reactions. The rate constants were determined at 298 K and over the 250-459 K range, with a factor of two higher at 298 K and factors of 3 to 5 higher at 10 to 30 km altitude in the terrestrial atmosphere than previous studies have indicated. The effect of the higher rate constant on atmospheric processes and on recent laboratory measurements of other reactions is also discussed.

  17. Miniature high-throughput chemosensing of yield, ee, and absolute configuration from crude reaction mixtures

    PubMed Central

    Bentley, Keith W.; Zhang, Peng; Wolf, Christian

    2016-01-01

    High-throughput experimentation (HTE) has emerged as a widely used technology that accelerates discovery and optimization processes with parallel small-scale reaction setups. A high-throughput screening (HTS) method capable of comprehensive analysis of crude asymmetric reaction mixtures (eliminating product derivatization or isolation) would provide transformative impact by matching the pace of HTE. We report how spontaneous in situ construction of stereodynamic metal probes from readily available, inexpensive starting materials can be applied to chiroptical chemosensing of the total amount, enantiomeric excess (ee), and absolute configuration of a wide variety of amines, diamines, amino alcohols, amino acids, carboxylic acids, α-hydroxy acids, and diols. This advance and HTS potential are highlighted with the analysis of 1 mg of crude reaction mixtures of a catalytic asymmetric reaction. This operationally simple assay uses a robust mix-and-measure protocol, is amenable to microscale platforms and automation, and provides critical time efficiency and sustainability advantages over traditional serial methods. PMID:26933684

  18. Evidence for a scalar meson resonance in the {pi}{sup -}p{yields}n{omega}{phi} reaction

    SciTech Connect

    Ivashin, A.; Ekimov, A.; Gouz, Yu.; Kachaev, I.; Karyukhin, A.; Konstantinov, V.; Makouski, M.; Matveev, V.; Myagkov, A.; Polyakov, B.; Ryabchikov, D.; Shalanda, N.; Soldatov, M.; Solodkov, A. A.; Solodkov, A. V.; Solovianov, O.; Sugonyaev, V.; Salomatin, Yu.; Volkov, E.; Khokhlov, Yu.

    2010-08-05

    The charge-exchange reaction {pi}{sup -}p{yields}n{omega}(780){phi}(1020) is studied with the VES setup. The ({omega}{phi}) system is observed at relatively low background. Its invariant mass distribution peaks near threshold. The two-particles partial wave analyses shows that the J{sup pc} = 0{sup ++} state dominates. This wave is compared with 0{sup ++} component in the ({omega}{omega}) system at the comparable mass, which was measured earlier.

  19. Yields of beta-hydroxynitrates, dihydroxynitrates, and trihydroxynitrates formed from OH radical-initiated reactions of 2-methyl-1-alkenes.

    PubMed

    Matsunaga, Aiko; Ziemann, Paul J

    2010-04-13

    Yields of beta-hydroxynitrates, dihydroxynitrates, and trihydroxynitrates, in particles formed from OH radical-initiated reactions of C(9)-C(15) 2-methyl-1-alkenes in the presence of NO(x) were measured by using a thermal desorption particle beam mass spectrometer coupled to a high-performance liquid chromatograph with a UV-visible (UV-vis) detector. Yields of beta-hydroxynitrates and dihydroxynitrates increased with carbon number primarily due to enhanced gas-to-particle partitioning before reaching plateaus at approximately C(14)-C(15), where the compounds were essentially entirely in the particle phase. Plateau yields of beta-hydroxynitrates, dihydroxynitrates, and trihydroxynitrates were 0.183 +/- 0.005, 0.045 +/- 0.005, and 0.034 +/- 0.005, and, after normalization for OH radical addition to the C = C double bond, were 0.225 +/- 0.007, 0.055 +/- 0.006, and 0.042 +/- 0.006. The fractions of 1-hydroxy and 2-hydroxy beta-hydroxynitrate isomers were 0.90/0.10. Yields measured here and in our previous study of reactions of linear internal alkenes and linear 1-alkenes indicate that, for these alkene classes, the relative branching ratios for forming tertiary, secondary, and primary beta-hydroxyalkyl radicals by OH radical addition to the C=C double bond are 4.3/1.9/1.0, and the branching ratios for forming beta-hydroxynitrates from reactions of tertiary, secondary, and primary beta-hydroxyperoxy radicals with NO are 0.25, 0.15, and 0.12. The effects of H(2)O vapor and NH(3) on yields were also explored.

  20. Gas-phase reaction products and yields of terpinolene with ozone and nitric oxide using a new derivatization agent

    NASA Astrophysics Data System (ADS)

    Ham, Jason E.; Jackson, Stephen R.; Harrison, Joel C.; Wells, J. R.

    2015-12-01

    The new derivatization agent, O-tert-butylhydroxylamine hydrochloride (TBOX) was used to investigate the carbonyl reaction products from terpinolene ozonolysis. With ozone (O3) as the limiting reagent, four carbonyl compounds were detected: methylglyoxal (MG), 4-methylcyclohex-3-en-1-one, (4MCH), 6-oxo-3-(propan-2-ylidene) heptanal (6OPH), and 3,6-dioxoheptanal (36DOH). The tricarbonyl 36DOH has not been previously observed. Using cyclohexane as a hydroxyl radical (OHrad) scavenger, the yields of 6OPH and 36DOH were reduced indicating the influence secondary OHrad radicals have on terpinolene ozonolysis products. However, the MG yield increased and the 4MCH yield was unchanged when OHrad radicals were scavenged suggesting they are only made by the terpinolene + O3 reaction. The detection of 36DOH using TBOX highlights the advantages of a smaller molecular weight derivatization agent for the detection of multi-carbonyl compounds. The product yields from terpinolene ozonolysis experiments conducted in the presence of 20 ppb nitric oxide (NO) remained unchanged except for MG which decreased. However, in experiments where O3 was kept constant at 50 ppb and NO was varied (20, 50, 100 ppb) MG, 6OPH, 36DOH decreased with increasing NO while 4MCH increased with increasing NO. The use of TBOX derivatization if combined with other derivatization agents may address a recurring need to simply and accurately detect multi-functional oxygenated species in air.

  1. Vibrational state-resolved differential cross sections for the D + H sub 2 yields DH + H reaction

    SciTech Connect

    Continetti, R.E.

    1989-11-01

    In this thesis, crossed-molecular-beams studies of the reaction D + H{sub 2} {yields} DH + H at collision energies of 0.53 and 1.01 eV are reported. Chapter 1 provides a survey of important experimental and theoretical studies on the dynamics of the hydrogen exchange reaction. Chapter 2 discusses the development of the excimer-laser photolysis D atom beam source that was used in these studies and preliminary experiments on the D + H{sub 2} reaction. In Chapter 3, the differential cross section measurements are presented and compared to recent theoretical predictions. The measured differential cross sections for rotationally excited DH products showed significant deviations from recent quantum scattering calculations, in the first detailed comparison of experimental and theoretical differential cross sections. These results indicate that further work on the H{sub 3} potential energy surface, particularly the bending potential, is in order.

  2. Evaluation of Mungbean Genotypes Based on Yield Stability and Reaction to Mungbean Yellow Mosaic Virus Disease

    PubMed Central

    Alam, AKM Mahbubul; Somta, Prakit; Jompuk, Choosak; Chatwachirawong, Prasert; Srinives, Peerasak

    2014-01-01

    This work was conducted to identify mungbean genotypes showing yield stability and resistance to mungbean yellow mosaic virus (MYMV) disease. Sixteen genotypes were evaluated in a randomized complete block design with two replications for two years (2011 and 2012) at three locations (Gazipur, Ishurdi and Madaripur) of the Bangladesh Agricultural Research Institute. An analysis of variance exhibited significant effects of genotype (G), environment (E), and genotype × environment (G×E) on grain yield. Among eight agronomic characters, the principal component 1 (PC1) was always higher than the PC2. Considering G×E interaction, BM6 was the best genotype at all three locations in both years. Based on grain yield and stability performance, BM6 ranked first while the worst performing genotypes were BM1 and G10. Based on discrimination and representation, Gazipur was identified as an ideal environment for these mungbeans. Relationship between soil-plant analysis developments (SPAD) value was positive with yield but negative with MYMV severity. BM6, G1 and G2 were considered as promising sources of resistance for low disease score and stable response across the environments. The environment proved to have an influence on MYMV infection under natural infestation. A positive correlation was observed between disease score and the temperature under natural growing condition. PMID:25289012

  3. 1,3-Dipolar Cycloaddition Reactions of Azomethine Ylides with Carbonyl Dipolarophiles Yielding Oxazolidine Derivatives.

    PubMed

    Meyer, Adam G; Ryan, John H

    2016-01-01

    We provide a comprehensive account of the 1,3-dipolar cycloaddition reactions of azomethine ylides with carbonyl dipolarophiles. Many different azomethine ylides have been studied, including stabilized and non-stabilized ylides. Of the carbonyl dipolarophiles, aldehydes including formaldehyde are the most studied, although there are now examples of cycloadditions with ketones, ketenes and carboxyl systems, in particular isatoic anhydrides and phthalic anhydrides. Intramolecular cycloadditions with esters can also occur under certain circumstances. The oxazolidine cycloadducts undergo a range of reactions triggered by the ring-opening of the oxazolidine ring system. PMID:27455230

  4. The reaction proton deuteron yields triton pion at 470 and 590 MeV

    NASA Technical Reports Server (NTRS)

    Dollhopf, W.; Lunke, C.; Perdrisat, C. F.; Roberts, W. K.; Kitching, P.; Olsen, W. C.; Priest, J. R.

    1973-01-01

    The preliminary results from a study of the deuteron (proton, positive pion)triton reaction are reported. The differential cross section for this reaction was measured for a number of center of mass angles from 37 deg to 160 deg at incident proton energies of 470 and 590 MeV. The cross sections measured at 590 MeV agree with predictions made considering a two-nucleon process. The 470 MeV data shows a peak in the backward direction which is not predicted by this mechanism.

  5. APPLICATIONS OF THE PHOTONUCLEAR FRAGMENTATION MODEL TO RADIATION PROTECTION PROBLEMS

    SciTech Connect

    Pavel Degtiarenko

    1996-01-01

    In order to provide radiation protection systems for high energy electron accelerators it is necessary to define the yields of hadrons produced when the electron beam interacts with a fixed target. In practical terms this will occur when any beam or fraction of the beam is lost from the accelerator orbit or when any fraction of the beam is intercepted by a target inserted in the path of the beam or when the beam is totally absorbed by a beam dump. The electron and gamma yields from these interactions are well characterized and amenable to calculation utilizing Monte Carlo shower codes. However, the yield of hadrons has been less well defined. Neutron production has received most attention because of its importance to radiation shielding. Production mechanisms such as the giant dipole and the quasi-deuteron resonances have provided valuable information for total neutron yields for electron beams at energies less than about 400 MeV. For electron beams at energies extending to 10 GeV it is necessary to include the higher energy resonance structures and the various intranuclear production channels that are available for the production of higher energy neutrons. The production model described in this paper permits the calculation of laboratory angle and energy of all hadrons produced when an electron beam of energy between 100 MeV and 10 GeV interacts with a fixed target. This model can be used as an event generator for Monte Carlo codes used for many radiation protection purposes including calculation of radiation shielding.

  6. An investigation of the role of water on retrograde/condensation reactions and enhanced liquefaction yields

    SciTech Connect

    Miknis, F.P.

    1992-10-01

    Changes in coal structure that occur during coal drying and steam pretreatments will be measured in order to determine what effect water has on retrograde/condensation reactions, and to determine how water enhances coal reactivity toward liquefaction. Coal drying experiments were begun using thermal, microwave, and chemical methods; NMR data were collected. A stirred microautoclave reactor system was acquired.

  7. Process for chemical reaction of amino acids and amides yielding selective conversion products

    DOEpatents

    Holladay, Jonathan E.

    2006-05-23

    The invention relates to processes for converting amino acids and amides to desirable conversion products including pyrrolidines, pyrrolidinones, and other N-substituted products. L-glutamic acid and L-pyroglutamic acid provide general reaction pathways to numerous and valuable selective conversion products with varied potential industrial uses.

  8. Reduction of lunar basalt 70035: Oxygen yield and reaction product analysis

    NASA Technical Reports Server (NTRS)

    Gibson, Michael A.; Knudsen, Christian W.; Bruenemen, David J.; Allen, Carlton C.; Kanamori, Hiroshi; Mckay, David S.

    1994-01-01

    Oxygen production from a lunar rock has been experimentally demonstrated for the first time. A 10 g sample of high-Ti basalt 70035 was reduced with hydrogen in seven experiments at temperatures of 900-1050 C and pressures of 14.7-150 psia. In all experiments, water evolution began almost immediately and was essentially complete in tens of minutes. Oxygen yields ranged from 2.93 to 4.61% of the starting sample weight, and showed weak dependence on temperature and pressure. Analysis of the solid samples demonstrated total reduction of Fe(2+) in ilmenite and small degrees of reduction in olivine and pyroxene. Ti O2 was also partially reduced to one or more suboxides. Data from these experiments provide a basis for predicting the yield of oxygen from lunar basalt as well as new constraints on natural reduction in the lunar regolith.

  9. Mass and Isotopic Yields for the Reaction 245Cm(nTH,f) Measured at Lohengrin

    NASA Astrophysics Data System (ADS)

    Rochman, D.; Faust, H.; Tsekhanovich, I.; Oberstedt, S.; Sokolov, V.; Gönnenwein, F.; Storrer, F.; Haas, F.

    2002-12-01

    The fission fragment mass, charge, and kinetic energy distributions for the thermal neutron induced fission of 245Cm were measured using the LOHENGRIN mass separator at ILL Grenoble associated with a big ionization chamber (Z-identification) with a split anode (energy loss-remaining energy simultaneously measured, ΔE - ER technique). The ionization chamber was combined with a passive absorber (Stack of Parylene C foils) to further improve the Z-resolution for heavier products (A > 96) up to 4 nuclear charges per mass. Considering the available experimental data prior to this work, the range of measured mass yields was extended from A = 76-132 to A = 67-167, and isotopic yields from A = 76-96 to A = 67-119, i.e. for corresponding nuclear charges ranging from Z = 26 to 48. A comparison of these new data with the existing evaluations of fission product yields (JEF2.2 and ENDF/B-VI) and systematics (by Wahl) was also performed. A study of the global odd-even effect for protons was done and the results were compared with the data for the fission of other transuranium elements. The global δZ value of proton odd-even effect calculated is 10.5 ± 0.5 %, which fits well to the known systematics for the δZ as a function of the fissility.

  10. Measurements of Sub-Barrier Transfer Yields in SULFUR-32 + NIOBIUM-93, MOLYBDENUM(98,100) Reactions at 180 Degrees

    NASA Astrophysics Data System (ADS)

    Roberts, Roland Blaine

    1994-01-01

    The Rochester RMS was used to measure excitation functions for 180^circ sub -barrier one- and two-neutron pickup reactions for E _{rm lab} <= 106 MeV in ^{32}S + ^{93}Nb, ^ {98,100}Mo systems by detecting target -like recoils at 0^circ. The measured yields are for quasi-elastic transfer; final states were not identified. The RMS technique was chosen for its self-normalizing property which makes obtaining absolute cross sections straightforward. The distorted-wave Born-approximation (DWBA) computer code scPTOLEMY was used to obtain quantal predictions of the one-neutron pickup yields. The calculations were performed for several final states and summed (using the appropriate spectroscopic factors) to estimate the total quasi-elastic transfer yield. P scTOLEMY over-predicted the yield in each system by a factor of 2-3. Since DWBA calculations for heavy-ion reactions are known to have difficulty reproducing experimentally measured yields within a factor of two, this discrepancy is not surprising. Although the absolute yields were not reproduced by the calculations, the shape of the excitation function is well reproduced. No calculations were performed for two-neutron transfer due to the lack of reliable spectroscopic factors. The transfer probabilities are obtained directly from these measurements. Distances of closest approach were calculated using a proximity potential. The slopes of transfer probability vs distance of closest approach are in good agreement with the predictions obtained from semi-classical theory using binding energies, indicating the absence of a "slope anomaly." This is consistent with the prediction that diffractive effects, which may distort the measured slope, are minimized at backward angles and sub-barrier energies--the precise conditions under which these measurements were performed. Angle-integrated transfer cross sections were derived from the measured transfer probabilities by assuming the ions follow Rutherford trajectories. These derived

  11. Laboratory measurement of secondary pollutant yields from ozone reaction with HVAC filters.

    SciTech Connect

    Destaillats, Hugo; Chen, Wenhao; Apte, Michael; Li, Nuan; Spears, Michael; Almosni, Jérémie; Zhang, Jianshun; Fisk, William J.

    2009-09-09

    We used Proton Transfer Reaction - Mass Spectrometry (PTR-MS) and conventional sampling methods to monitor and identify trace level organic pollutants formed in heterogeneous reactions between ozone and HVAC filters in real time. Experiments were carried out using a bench-scale flow tube reactor operating with dry air and humidified air (50% RH), at realistically high ozone concentrations (150 ppbv). We explored different filter media (i.e., fiberglass and cotton/polyester blends) and different particle loadings (i.e., clean filter and filters loaded with particles for 3 months at the Lawrence Berkeley National Laboratory and the Port of Oakland, CA). Detailed emission dynamics of very low levels of certain organic pollutants from filter media upon ozone exposure in the presence of moisture have been obtained and analyzed.

  12. [Yield of pigment cation-radicals in the reaction of quinone photooxidation of chlorophyll].

    PubMed

    Kostikov, A P; Sadovnikova, N A; Evstigneev, V B

    1976-01-01

    Photoinduced transfer of electrons in alkohol solutions of chlorophyll and its deuterated analog, deuterochlorophyll containing the quinoses: p-benzoquinone, chloranyl, duroquinone, 1,4-naftoquinone and ubiquinone (coenzyme Q6) is studied. It is shown that pigment cation-radical and quinone anion-radical are the primary products of photoreaction. A relationship between stationary concentrations of deuterochlorophyll and p-benzoquinone radicals and quinone concentration in solution is obtained. The reaction mechanism and causes of other authors' (G. Tollin et al.) failure in finding pigment cation-radicals which are formed in the reaction of the latter with quinoses are discussed. It is shown that optimal conditions for accumulating photoinduced cation-radicals of the pigment in pigment solutions of chlorophyll with quinones are lowered temperature, high viscosity of the solvent, low pH of the solution, careful purification of the quinone from hydroquinone admixture.

  13. Determination of the Rate Coefficients of the SO2 plus O plus M yields SO3 plus M Reaction

    NASA Technical Reports Server (NTRS)

    Hwang, S. M.; Cooke, J. A.; De Witt, K. J.; Rabinowitz, M. J.

    2010-01-01

    Rate coefficients of the title reaction R(sub 31) (SO2 +O+M yields SO3 +M) and R(sub 56) (SO2 + HO2 yields SO3 +OH), important in the conversion of S(IV) to S(VI),were obtained at T =970-1150 K and rho (sub ave) = 16.2 micro mol/cubic cm behind reflected shock waves by a perturbation method. Shock-heated H2/ O2/Ar mixtures were perturbed by adding small amounts of SO2 (1%, 2%, and 3%) and the OH temporal profiles were then measured using laser absorption spectroscopy. Reaction rate coefficients were elucidated by matching the characteristic reaction times acquired from the individual experimental absorption profiles via simultaneous optimization of k(sub 31) and k(sub 56) values in the reaction modeling (for satisfactory matches to the observed characteristic times, it was necessary to take into account R(sub 56)). In the experimental conditions of this study, R(sub 31) is in the low-pressure limit. The rate coefficient expressions fitted using the combined data of this study and the previous experimental results are k(sub 31,0)/[Ar] = 2.9 10(exp 35) T(exp ?6.0) exp(?4780 K/T ) + 6.1 10(exp 24) T(exp ?3.0) exp(?1980 K/T ) cm(sup 6) mol(exp ?2)/ s at T = 300-2500 K; k(sub 56) = 1.36 10(exp 11) exp(?3420 K/T ) cm(exp 3)/mol/s at T = 970-1150 K. Computer simulations of typical aircraft engine environments, using the reaction mechanism with the above k(sub 31,0) and k(sub 56) expressions, gave the maximum S(IV) to S(VI) conversion yield of ca. 3.5% and 2.5% for the constant density and constant pressure flow condition, respectively. Moreover, maximum conversions occur at rather higher temperatures (?1200 K) than that where the maximum k(sub 31,0) value is located (approximately 800 K). This is because the conversion yield is dependent upon not only the k(sup 31,0) and k(sup 56) values (production flux) but also the availability of H, O, and HO2 in the system (consumption flux).

  14. Neutron Energy Spectra and Yields from the 7Li(p,n) Reaction for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Tessler, M.; Friedman, M.; Schmidt, S.; Shor, A.; Berkovits, D.; Cohen, D.; Feinberg, G.; Fiebiger, S.; Krása, A.; Paul, M.; Plag, R.; Plompen, A.; Reifarth, R.

    2016-01-01

    Neutrons produced by the 7Li(p, n)7Be reaction close to threshold are widely used to measure the cross section of s-process nucleosynthesis reactions. While experiments have been performed so far with Van de Graaff accelerators, the use of RF accelerators with higher intensities is planned to enable investigations on radioactive isotopes. In parallel, high-power Li targets for the production of high-intensity neutrons at stellar energies are developed at Goethe University (Frankfurt, Germany) and SARAF (Soreq NRC, Israel). However, such setups pose severe challenges for the measurement of the proton beam intensity or the neutron fluence. In order to develop appropriate methods, we studied in detail the neutron energy distribution and intensity produced by the thick-target 7Li(p,n)7Be reaction and compared them to state-of- the-art simulation codes. Measurements were performed with the bunched and chopped proton beam at the Van de Graaff facility of the Institute for Reference Materials and Measurements (IRMM) using the time-of-flight (TOF) technique with thin (1/8") and thick (1") detectors. The importance of detailed simulations of the detector structure and geometry for the conversion of TOF to a neutron energy is stressed. The measured neutron spectra are consistent with those previously reported and agree well with Monte Carlo simulations that include experimentally determined 7Li(p,n) cross sections, two-body kinematics and proton energy loss in the Li-target.

  15. A Study of the Nuclear Resonance Fluorescence Reaction Yield Dependence on the Target Thickness of 208PB

    NASA Astrophysics Data System (ADS)

    Negm, Hani; Daito, Izuru; Zen, Heishun; Kii, Toshiteru; Masuda, Kai; Hori, Toshitada; Ohgaki, Hideaki; Hajima, Ryoichi; Shizuma, Toshiyuki; Hayakawa, Takehito; Kikuzawa, Nobuhiro; Toyokawa, Hiroyuki

    2015-10-01

    We have been developing an active, non-destructive detection system based on nuclear resonance fluorescence (NRF) for inspecting special nuclear materials (SNMs) such as 235U in a container at a seaport. The study of the NRF yield dependence on the target thickness of SNMs is required to evaluate the performance of the inspection system. To this end, an NRF experiment has been performed using a laser Compton backscattering γ-ray beam line at New SUBARU in 208Pb. Cylindrical shaped natural lead targets with a 0.5 cm radius and varying thicknesses of 1.0, 1.44, and 3.05 cm were irradiated at a resonance energy of 7.332 MeV. The NRF yield was detected using two HPG detectors with relative efficiencies of 120% and 100% positioned at scattering angles of 90° and 130°, respectively, relative to the incident γ-ray beam. As a result, the NRF yield exhibited a saturation behavior for the thick lead target. An analytic treatment and Monte Carlo simulation using GEANT4 was performed to interpret the reaction yield (RY) of the NRF interaction. The simulation result is in good agreement with the experimental data for the target thickness dependence. The analytic treatment, the NRF RY model, is also in reasonable agreement.

  16. Full CI studies of the collinear transition state for the reaction F + H2 yields HF + H

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Taylor, Peter R.

    1987-01-01

    Full CI calculations on the collinear transition state for the reaction F + H2 yields HF + H are reported. The full CI results are compared with those obtained from single-reference and multireference CI calculations and from single-reference CPF calculations. In general, only those methods which attempt to account for the effects of higher excitations, such as CPF or CI plus the Davidson correction, yield a transition-state location and barrier height in good agreement with the full CI. In an extended basis, the effect of higher excitations is estimated to lower the barrier by as much as 1.5 kcal/mol; such an effect would essentially eliminate the present discrepancy between theory and experiment.

  17. The T{sub z} = -1{yields}T{sub z} =0 beta decays and comparison with Charge Exchange reactions

    SciTech Connect

    Molina, F.; Rubio, B.; Fujita, Y.; Gelletly, W.; Collaboration: Santiago Collaboration

    2011-11-30

    Gamow-Teller (GT) transitions can be studied in both {beta} decay and charge exchange (CE) reactions. If isospin is a good quantum number, then the Tz = -1{yields}0 and Tz = +1{yields}0GT mirror transitions, are identical. Therefore, a comparison of the results from studies of {beta} decay and CE should shed light on this assumption. Accordingly we have studied the {beta} decay of the Tz = -1 fp-shell nuclei, {sup 54}Ni, {sup 50}Fe, {sup 46}Cr, and {sup 42}Ti, produced in fragmentation and we have compared our results with the spectra from ({sup 3}He, t) measurements on the mirror Tz = +1 target nuclei studied in high resolution at RCNP, Osaka. The {beta} decay experiments were performed as part of the STOPPED beam RISING campaign at GSI.

  18. Upper limits for the rate constant for the reaction Br + H2O2 yields HB2 + HO2

    NASA Technical Reports Server (NTRS)

    Leu, M.-T.

    1980-01-01

    Upper limits for the rate constant for the reaction Br + H2O2 yields HBr + HO2 have been measured over the temperature range 298 to 417 K in a discharge flow system using a mass spectrometer as a detector. Results are k sub 1 less than 1.5 x 10 to the -15th power cu cm/s at 298 K and k sub 1 less than 3.0 x 10 to the -15th power cu cm/s at 417 K, respectively. The implication to stratospheric chemistry is discussed.

  19. Kinetics and product yields of the acetyl peroxy + HO2 radical reaction studied by photoionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Dodson, L. G.; Shen, L.; Savee, J. D.; Eddingsaas, N. C.; Welz, O.; Taatjes, C. A.; Osborn, D. L.; Sander, S. P.; Okumura, M.

    2013-12-01

    The acetyl peroxy radical (CH3C(O)O2) is a key intermediate in the oxidation of carbonyl-containing hydrocarbons in the troposphere. Reaction of acetyl peroxy radicals with HO2 has been suggested as a source of OH radicals in low-NOx environments. Previous work on this reaction observed only two product channels forming (1) peracetic acid and (2) acetic acid. Recent experiments have shown that there is a third channel that generates the radicals OH and acetoxy: CH3C(O)O2 + HO2 → (1) CH3C(O)OOH + O2 (2) CH3C(O)OH + O3 (3) CH3C(O)O + O2 + OH This last pathway to OH formation would then contribute to the apparent isoprene OH recycling suggested by discrepancies between atmospheric models and field observations of OH. There have, however, been significant disagreements among experiments on the yield of OH from reaction of acetyl peroxy radicals with HO2. We report our preliminary studies of acetyl peroxy self-reaction and its reaction with HO2 at 298 K and 8 Torr. Experiments were conducted at the Advanced Light Source synchrotron at the Lawerence Berkeley National Laboratory using tunable VUV ionizing radiation coupled to the Sandia National Laboratory pulsed-laser-photolysis multiplexed photoionization mass spectrometer to detect the time- and isomer-resolved formation of radical intermediates and products. From these results, we report new branching fractions of the three product channels in the acetyl peroxy + HO2 radical reaction.

  20. Kinetics of the reaction OH + HO2 yields H2O + O2 at 296 K

    NASA Technical Reports Server (NTRS)

    Sridharan, U. C.; Kaufman, F.; Qiu, L. X.

    1981-01-01

    The rate constant of the title reaction was measured in a discharge-flow reactor by addition of excess HO2 from a movable double injector to a gas stream containing small concentrations of OH. The concentration of OH was measured by laser-induced fluorescence, HO2 by conversion to OH, and H and O by vacuum-UV resonance fluorescence. Five sets of experiments, each with different excess concentration of HO2, gave an average rate constant of (7.5 + or - 1.2) x 10 to the -11th cu cm/s where the error limits (single sigma) include uncertainties of all experimental parameters. This result is compared with other findings and is discussed in terms of its importance in stratospheric chemistry and in rate theory.

  1. Effect of Coatings on the Uptake Rate and HONO Yield in Heterogeneous Reaction of Soot with NO2

    NASA Astrophysics Data System (ADS)

    Cruz-Quiñones, M.; Khalizov, A. F.; Zhang, R.

    2009-12-01

    Heterogeneous reaction of nitrogen dioxide on carbon soot aerosols has been suggested as a possible source of nighttime nitrous acid (HONO) in atmosphere boundary layer. Available laboratory data show significant variability in the measured reaction probabilities and HONO yields, making it difficult to asses the atmospheric significance of this process. Moreover, little is known of how aging of soot aerosol through internal mixing with other atmospheric trace constituents will affect the heterogeneous reactivity and HONO production. In this work, the heterogeneous reaction of NO2 on fresh and aged soot films leading to HONO formation was studied through a series of kinetic uptake experiments and HONO yield measurements. Soot samples were prepared by incomplete combustion of propane and kerosene fuels under lean and rich flame conditions. Experiments were performed in a low-pressure, fast-flow reactor coupled to a chemical ionization mass spectrometer (CIMS), using atmospheric-level NO2 concentrations. Heterogeneous uptake coefficients, γ(geom) and γ(BET), were calculated using geometric and internal BET soot surface areas, respectively. The uptake coefficient and the HONO yield depend on the type of fuel and combustion regime and are the highest for soot samples prepared using rich kerosene flame. Although, the internal surface area of soot measured by BET method is a factor of 50 to 500 larger than the geometric surface area, only the top soot layers are involved in heterogeneous reaction with NO2 as follows from the observed weak dependence of γ(geom) and decrease in γ(BET) with increasing sample mass. Heating the soot samples before exposure to NO2 increases the BET surface area, the HONO yield, and the NO2 uptake coefficient due to the removal of the organic fraction from the soot backbone that unblocks active sites and makes them accessible for physical adsorption and chemical reactions. Our results support the oxidation-reduction mechanism involving

  2. Pulsed Photonuclear Assessment (PPA) Technique: CY 04 Year-end Progress Report

    SciTech Connect

    J.L. Jones; W.Y. Yoon; K.J. Haskell; D.R. Norman; J.M. Zabriskie; J.W. Sterbentz; S.M. Watson; J.T. Johnson; B.D. Bennett; R.W. Watson; K. L. Folkman

    2005-05-01

    Idaho National Laboratory (INL), along with Los Alamos National Laboratory (LANL) and Idaho State University’s Idaho Accelerator Center (IAC), are developing an electron accelerator-based, photonuclear inspection technology for the detection of smuggled nuclear material within air-, rail-, and especially, maritime-cargo transportation containers. This CY04 report describes the latest developments and progress with the development of the Pulsed, Photonuclear Assessment (PPA) nuclear material inspection ystem, such as: (1) the identification of an optimal range of electron beam energies for interrogation applications, (2) the development of a new “cabinet safe” electron accelerator (i.e., Varitron II) to assess “cabinet safe-type” operations, (3) the numerical and experimental validation responses of nuclear materials placed within selected cargo configurations, 4) the fabrication and utilization of Calibration Pallets for inspection technology performance verification, 5) the initial technology integration of basic radiographic “imaging/mapping” with induced neutron and gamma-ray detection, 6) the characterization of electron beam-generated photon sources for optimal performance, 7) the development of experimentallydetermined Receiver-Operator-Characterization curves, and 8) several other system component assessments. This project is supported by the Department of Homeland Security and is a technology component of the Science & Technology Active Interrogation Portfolio entitled “Photofission-based Nuclear Material Detection and Characterization.”

  3. An investigation of the role of water on retrograde/condensation reactions and enhanced liquefaction yields

    SciTech Connect

    Miknis, F.P.

    1993-01-01

    The overall objectives of this work are to conduct research that will provide the basis for an improved liquefaction process, and to facilitate our understanding of those processes that occur when coals are initially dissolved. Changes in coal structure that occur during coal drying and steam pretreatments will be measured in order to determine what effect water has on retrograde/condensation reactions, and to determine the mechanism by which water enhances coal reactivity toward liquefaction. Different methods for coal drying wig be investigated to determine if drying can be accomplished without destroying coal reactivity toward liquefaction, thereby making coal drying a relatively economical and efficient method for coal pretreatment. Coal drying methods will include conventional thermal drying, microwave drying, and chemical drying at low temperature. State-of-the-art solid-state nuclear magnetic resonance (NMR) techniques using combined rotation and multiple pulse spectroscopy (CRAMPS) and cross polarization with magic-angle spinning (CP/MAS) will be employed: (1) to measures changes in coal structure brought about by the different methods of drying and by low temperature oxidation, and (2) to obtain direct measurements of changes in the aromatic hydrogen-to-carbon ratio of the solid/semisolid material formed or remaining during pretreatment and the initial stages of liquefaction.

  4. Faster Synthesis of Beta-Diketonate Ternary Europium Complexes: Elapsed Times & Reaction Yields.

    PubMed

    Lima, Nathalia B D; Silva, Anderson I S; Gerson, P C; Gonçalves, Simone M C; Simas, Alfredo M

    2015-01-01

    β-diketonates are customary bidentate ligands in highly luminescent ternary europium complexes, such as Eu(β-diketonate)3(L)2, where L stands for a nonionic ligand. Usually, the syntheses of these complexes start by adding, to an europium salt such as EuCl3(H2O)6, three equivalents of β-diketonate ligands to form the complexes Eu(β-diketonate)3(H2O)2. The nonionic ligands are subsequently added to form the target complexes Eu(β-diketonate)3(L)2. However, the Eu(β-diketonate)3(H2O)2 intermediates are frequently both difficult and slow to purify by recrystallization, a step which usually takes a long time, varying from days to several weeks, depending on the chosen β-diketonate. In this article, we advance a novel synthetic technique which does not use Eu(β-diketonate)3(H2O)2 as an intermediate. Instead, we start by adding 4 equivalents of a monodentate nonionic ligand L straight to EuCl3(H2O)6 to form a new intermediate: EuCl3(L)4(H2O)n, with n being either 3 or 4. The advantage is that these intermediates can now be easily, quickly, and efficiently purified. The β-diketonates are then carefully added to this intermediate to form the target complexes Eu(β-diketonate)3(L)2. For the cases studied, the 20-day average elapsed time reduced to 10 days for the faster synthesis, together with an improvement in the overall yield from 42% to 69%.

  5. Faster Synthesis of Beta-Diketonate Ternary Europium Complexes: Elapsed Times & Reaction Yields

    PubMed Central

    Lima, Nathalia B. D.; Silva, Anderson I. S.; Gerson, P. C.; Gonçalves, Simone M. C.; Simas, Alfredo M.

    2015-01-01

    β-diketonates are customary bidentate ligands in highly luminescent ternary europium complexes, such as Eu(β-diketonate)3(L)2, where L stands for a nonionic ligand. Usually, the syntheses of these complexes start by adding, to an europium salt such as EuCl3(H2O)6, three equivalents of β-diketonate ligands to form the complexes Eu(β-diketonate)3(H2O)2. The nonionic ligands are subsequently added to form the target complexes Eu(β-diketonate)3(L)2. However, the Eu(β-diketonate)3(H2O)2 intermediates are frequently both difficult and slow to purify by recrystallization, a step which usually takes a long time, varying from days to several weeks, depending on the chosen β-diketonate. In this article, we advance a novel synthetic technique which does not use Eu(β-diketonate)3(H2O)2 as an intermediate. Instead, we start by adding 4 equivalents of a monodentate nonionic ligand L straight to EuCl3(H2O)6 to form a new intermediate: EuCl3(L)4(H2O)n, with n being either 3 or 4. The advantage is that these intermediates can now be easily, quickly, and efficiently purified. The β-diketonates are then carefully added to this intermediate to form the target complexes Eu(β-diketonate)3(L)2. For the cases studied, the 20-day average elapsed time reduced to 10 days for the faster synthesis, together with an improvement in the overall yield from 42% to 69%. PMID:26710103

  6. Faster Synthesis of Beta-Diketonate Ternary Europium Complexes: Elapsed Times & Reaction Yields.

    PubMed

    Lima, Nathalia B D; Silva, Anderson I S; Gerson, P C; Gonçalves, Simone M C; Simas, Alfredo M

    2015-01-01

    β-diketonates are customary bidentate ligands in highly luminescent ternary europium complexes, such as Eu(β-diketonate)3(L)2, where L stands for a nonionic ligand. Usually, the syntheses of these complexes start by adding, to an europium salt such as EuCl3(H2O)6, three equivalents of β-diketonate ligands to form the complexes Eu(β-diketonate)3(H2O)2. The nonionic ligands are subsequently added to form the target complexes Eu(β-diketonate)3(L)2. However, the Eu(β-diketonate)3(H2O)2 intermediates are frequently both difficult and slow to purify by recrystallization, a step which usually takes a long time, varying from days to several weeks, depending on the chosen β-diketonate. In this article, we advance a novel synthetic technique which does not use Eu(β-diketonate)3(H2O)2 as an intermediate. Instead, we start by adding 4 equivalents of a monodentate nonionic ligand L straight to EuCl3(H2O)6 to form a new intermediate: EuCl3(L)4(H2O)n, with n being either 3 or 4. The advantage is that these intermediates can now be easily, quickly, and efficiently purified. The β-diketonates are then carefully added to this intermediate to form the target complexes Eu(β-diketonate)3(L)2. For the cases studied, the 20-day average elapsed time reduced to 10 days for the faster synthesis, together with an improvement in the overall yield from 42% to 69%. PMID:26710103

  7. Pressure and temperature dependence of the reaction NO2 + NO3 + M yields N2O5 + M

    NASA Technical Reports Server (NTRS)

    Kircher, C. C.; Margitan, J. J.; Sander, S. P.

    1984-01-01

    The pressure and temperature dependences of the reaction NO2 + NO3 + M which yields N2O5 + M are investigated by using the flash photolysis/visible absorption technique in which the pseudo-first-order decay of NO3 is monitored as a function of total pressure (20-700 torr), diluent gas (M = He and N2), and temperature (236-358 K). The reaction is found to be in the falloff region in the 20-700 torr pressure range with collision efficiencies increasing in the order He less than N2. Falloff parameters are obtained by fitting the experimental data to the falloff equation of Troe and co-workers. The expression for k1(N2 concentration, T) is obtained and compared with the evaluations presented in the NASA (DeMore, 1983) and CODATA (Baulch et al., 1982) reviews of kinetic data for atmospheric chemistry. Both evaluations are based on N2O5 thermal decomposition data coupled with estimates of the equilibrium constant. The significance of the reactions for atmospheric chemistry rests not only on their rates but on the extent to which they result in a permanent sink for NOX.

  8. Direct measurements of OH and other product yields from the HO2 + CH3C(O)O2 reaction

    NASA Astrophysics Data System (ADS)

    Winiberg, F. A. F.; Dillon, T. J.; Orr, S. C.; Groß, C. B. M.; Bejan, I.; Brumby, C. A.; Evans, M. J.; Smith, S. C.; Heard, D. E.; Seakins, P. W.

    2015-10-01

    The reaction CH3C(O)O2 + HO2 → CH3C(O)OOH + O2 (Reaction R5a), CH3C(O)OH + O3 (Reaction R5b), CH3 + CO2 + OH + O2 (Reaction R5c) was studied in a series of experiments conducted at 1000 mbar and (293 ± 2) K in the HIRAC simulation chamber. For the first time, products, (CH3C(O)OOH, CH3C(O)OH, O3 and OH) from all three branching pathways of the reaction have been detected directly and simultaneously. Measurements of radical precursors (CH3OH, CH3CHO), HO2 and some secondary products HCHO and HCOOH further constrained the system. Fitting a comprehensive model to the experimental data, obtained over a range of conditions, determined the branching ratios α(R5a) = 0.37 ± 0.10, α(R5b) = 0.12 ± 0.04 and α(R5c) = 0.51 ± 0.12 (errors at 2σ level). Improved measurement/model agreement was achieved using k(R5) = (2.4 ± 0.4) × 10-11 cm3 molecule-1 s-1, which is within the large uncertainty of the current IUPAC and JPL recommended rate coefficients for the title reaction. The rate coefficient and branching ratios are in good agreement with a recent study performed by Groß et al. (2014b); taken together, these two studies show that the rate of OH regeneration through Reaction (R5) is more rapid than previously thought. GEOS-Chem has been used to assess the implications of the revised rate coefficients and branching ratios; the modelling shows an enhancement of up to 5 % in OH concentrations in tropical rainforest areas and increases of up to 10 % at altitudes of 6-8 km above the equator, compared to calculations based on the IUPAC recommended rate coefficient and yield. The enhanced rate of acetylperoxy consumption significantly reduces PAN in remote regions (up to 30 %) with commensurate reductions in background NOx.

  9. Direct measurements of OH and other product yields from the HO2 + CH3C(O)O2 reaction

    NASA Astrophysics Data System (ADS)

    Winiberg, Frank A. F.; Dillon, Terry J.; Orr, Stephanie C.; Groß, Christoph B. M.; Bejan, Iustinian; Brumby, Charlotte A.; Evans, Matthew J.; Smith, Shona C.; Heard, Dwayne E.; Seakins, Paul W.

    2016-03-01

    The reaction CH3C(O)O2 + HO2 → CH3C(O)OOH + O2 (Reaction R5a), CH3C(O)OH + O3 (Reaction R5b), CH3 + CO2 + OH + O2 (Reaction R5c) was studied in a series of experiments conducted at 1000 mbar and (293 ± 2) K in the HIRAC simulation chamber. For the first time, products, (CH3C(O)OOH, CH3C(O)OH, O3 and OH) from all three branching pathways of the reaction have been detected directly and simultaneously. Measurements of radical precursors (CH3OH, CH3CHO), HO2 and some secondary products HCHO and HCOOH further constrained the system. Fitting a comprehensive model to the experimental data, obtained over a range of conditions, determined the branching ratios α(R5a) = 0.37 ± 0.10, α(R5b) = 0.12 ± 0.04 and α(R5c) = 0.51 ± 0.12 (errors at 2σ level). Improved measurement/model agreement was achieved using k(R5) = (2.4 ± 0.4) × 10-11 cm3 molecule-1 s-1, which is within the large uncertainty of the current IUPAC and JPL recommended rate coefficients for the title reaction. The rate coefficient and branching ratios are in good agreement with a recent study performed by Groß et al. (2014b); taken together, these two studies show that the rate of OH regeneration through Reaction (R5) is more rapid than previously thought. GEOS-Chem has been used to assess the implications of the revised rate coefficients and branching ratios; the modelling shows an enhancement of up to 5 % in OH concentrations in tropical rainforest areas and increases of up to 10 % at altitudes of 6-8 km above the equator, compared to calculations based on the IUPAC recommended rate coefficient and yield. The enhanced rate of acetylperoxy consumption significantly reduces PAN in remote regions (up to 30 %) with commensurate reductions in background NOx.

  10. Possibilities for the production of radioisotopes for nuclear-medicine problems by means of photonuclear reactions

    SciTech Connect

    Dzhilavyan, L. Z.; Karev, A. I.; Raevsky, V. G.

    2011-12-15

    For electrons of energy about 55 MeV that create an average current of about 40 Micro-Sign A, it is shown that the production of many of the radioisotopes important for nuclear medicine is possible in significant amounts.

  11. Role of Conformational Structures and Torsional Anharmonicity in Controlling Chemical Reaction Rates and Relative Yields. Butanal + HO2 Reactions

    SciTech Connect

    Zheng, Jingjing; Seal, Prasenjit; Truhlar, Donald G.

    2012-09-24

    Aldehyde–radical reactions are important in atmospheric and combustion chemistry, and the reactions studied here also serve more generally to illustrate a fundamental aspect of chemical kinetics that has been relatively unexplored from a quantitative point of view, in particular the roles of multiple structures and torsional anharmonicity in determining the rate constants and branching ratios (product yields). We consider hydrogen abstraction from four carbon sites of butanal (carbonyl-C, a-C, b-C and g-C) by hydroperoxyl radical. We employed multi-structural variational transition state theory for studying the first three channels; this uses a multi-faceted dividing surface and allows us to include the contributions of multiple structures of both reacting species and transition states. Multiconfigurational Shepard interpolation (MCSI) was used to obtain the geometries and energies of the potential energy surface along the minimum-energy paths, with gradients and Hessians calculated by the M08-HX/maug-cc-pVTZ method. We find the numbers of structures obtained for the transition states are 46, 60, 72 and 76respectively for the H abstraction at the carbonyl C, the a position, the b position and the g position. Our results show that neglecting the factors arising from multiple structures and torsional anharmonicity would lead to errors at 300, 1000 and 2400 K of factors of 8, 11 and 10 for abstraction at the carbonyl-O, 2, 11 and 25 at the a-C position, 2, 23 and 47 at the b-C position, and 0.6, 8 and 18 at the g-C position. The errors would be even larger at high temperature for the reverse of the H abstraction at the b-C. Relative yields are changed as much as a factor of 7.0 at 200 K, a factor of 5.0 at 298 K, and a factor of 3.7 in the other direction at 2400 K. The strong dependence of the product ratios on the multi-structural anharmonicity factors shows that such factors play an important role in controlling branching ratios in reaction mechanism networks.

  12. Differential cross sections and spin density matrix elements for the reaction {gamma}p{yields}p{omega}

    SciTech Connect

    Williams, M.; Applegate, D.; Bellis, M.; Meyer, C. A.; Dey, B.; Dickson, R.; Krahn, Z.; McCracken, M. E.; Moriya, K.; Schumacher, R. A.; Adhikari, K. P.; Careccia, S. L.; Dodge, G. E.; Klein, A.; Mayer, M.; Nepali, C. S.; Niroula, M. R.; Seraydaryan, H.; Tkachenko, S.; Weinstein, L. B.

    2009-12-15

    High-statistics differential cross sections and spin-density matrix elements for the reaction {gamma}p{yields}p{omega} have been measured using the CEBAF large acceptance spectrometer (CLAS) at Jefferson Lab for center-of-mass (c.m.) energies from threshold up to 2.84 GeV. Results are reported in 112 10-MeV wide c.m. energy bins, each subdivided into cos{theta}{sub c.m.}{sup {omega}} bins of width 0.1. These are the most precise and extensive {omega} photoproduction measurements to date. A number of prominent structures are clearly present in the data. Many of these have not previously been observed due to limited statistics in earlier measurements.

  13. Analyzing powers in the dd{yields}{sup 3}Hen({sup 3}Hp) reactions at intermediate energies

    SciTech Connect

    Ladygin, V. P.; Kiselev, A. S.; Kurilkin, A. K.; Vasiliev, T. A.; Isupov, A. Yu.; Ladygina, N. B.; Malakhov, A. I.; Reznikov, S. G.; Uesaka, T.; Saito, T.; Hatano, M.; Kato, H.; Sakoda, S.; Uchigashima, N.; Yako, K.; Janek, M.; Maeda, Y.; Nishikawa, J.; Ohnishi, T.; Sakamoto, N.

    2008-04-29

    Data for the deuteron analyzing powers in the dd{yields}{sup 3}Hen({sup 3}Hp) reactions obtained at 140-270 MeV are discussed. The observed negative sign of the tensor analyzing powers A{sub yy}, A{sub xx} and A{sub xz} at small angles clearly demonstrate the sensitivity to the ratio of the D and S state components of the {sup 3}He wave function. The behavior of the tensor analyzing powers at backward angles is sensitive to the short-range spin structure of the deuteron. However, the one-nucleon exchange calculations using standard {sup 3}He and deuteron wave functions fail to reproduce the strong variation of the tensor analyzing powers as a function of angle in the cms. Sensitivity to relativistic effects is also discussed.

  14. Analysis of polarization observables and radiative effects for the reaction p-bar+p{yields}e{sup +}+e{sup -}

    SciTech Connect

    Gakh, G. I.; Merenkov, N. P.; Tomasi-Gustafsson, E.

    2011-04-15

    The expressions for the differential cross section and polarization observables for the reaction p-bar+p{yields}e{sup +}+e{sup -} are given in terms of the nucleon electromagnetic form factors in the laboratory system, assuming the one-photon exchange. Radiative corrections due to the emission of virtual and real soft photons from the leptons are also calculated. Unlike in the center-of-mass system, they depend on the scattering angle. Polarization effects are derived in the case when the antiproton beam, the target, and the electron in the final state are polarized. Numerical estimations have been done for all observables, using models for the nucleon electromagnetic form factors in the time-like region. The radiative corrections to the differential cross section are calculated as functions of the beam energy and electron angle.

  15. Partial wave analysis of the reaction {gamma}p{yields}p{omega} and the search for nucleon resonances

    SciTech Connect

    Williams, M.; Applegate, D.; Bellis, M.; Meyer, C. A.; Dey, B; Dickson, R.; Krahn, Z.; McCracken, M. E.; Moriya, K.; Schumacher, R. A.; Adhikari, K. P.; Careccia, S. L.; Dodge, G. E.; Guler, N.; Klein, A.; Mayer, M.; Nepali, C. S.; Niroula, M. R.; Seraydaryan, H.; Tkachenko, S.

    2009-12-15

    An event-based partial wave analysis (PWA) of the reaction {gamma}p{yields}p{omega} has been performed on a high-statistics dataset obtained using the CLAS at Jefferson Lab for center-of-mass energies from threshold up to 2.4 GeV. This analysis benefits from access to the world's first high-precision spin-density matrix element measurements, available to the event-based PWA through the decay distribution of {omega}{yields}{pi}{sup +}{pi}{sup -}{pi}{sup 0}. The data confirm the dominance of the t-channel {pi}{sup 0} exchange amplitude in the forward direction. The dominant resonance contributions are consistent with the previously identified states F{sub 15}(1680) and D{sub 13}(1700) near threshold, as well as the G{sub 17}(2190) at higher energies. Suggestive evidence for the presence of a J{sup P}=5/2{sup +} state around 2 GeV, a ''missing'' state, has also been found. Evidence for other states is inconclusive.

  16. Neutron, Proton, and Photonuclear Cross Sections for Radiation Therapy and Radiation Protection

    SciTech Connect

    Chadwick, M.B.

    1998-09-10

    The authors review recent work at Los Alamos to evaluate neutron, proton, and photonuclear cross section up to 150 MeV (to 250 MeV for protons), based on experimental data and nuclear model calculations. These data are represented in the ENDF format and can be used in computer codes to simulate radiation transport. They permit calculations of absorbed dose in the body from therapy beams, and through use of kerma coefficients allow absorbed dose to be estimated for a given neutron energy distribution. For radiation protection, these data can be used to determine shielding requirements in accelerator environments, and to calculate neutron, proton, gamma-ray, and radionuclide production. Illustrative comparisons of the evaluated cross section and kerma coefficient data with measurements are given.

  17. Calculation of total free energy yield as an alternative approach for predicting the importance of potential chemolithotrophic reactions in geothermal springs.

    PubMed

    Dodsworth, Jeremy A; McDonald, Austin I; Hedlund, Brian P

    2012-08-01

    To inform hypotheses regarding the relative importance of chemolithotrophic metabolisms in geothermal environments, we calculated free energy yields of 26 chemical reactions potentially supporting chemolithotrophy in two US Great Basin hot springs, taking into account the effects of changing reactant and product activities on the Gibbs free energy as each reaction progressed. Results ranged from 1.2 × 10(-5) to 3.6 J kg(-1) spring water, or 3.7 × 10(-5) to 11.5 J s(-1) based on measured flow rates, with aerobic oxidation of CH(4) or NH4 + giving the highest average yields. Energy yields calculated without constraining pH were similar to those at constant pH except for reactions where H(+) was consumed, which often had significantly lower yields when pH was unconstrained. In contrast to the commonly used normalization of reaction chemical affinities per mole of electrons transferred, reaction energy yields for a given oxidant varied by several orders of magnitude and were more sensitive to differences in the activities of products and reactants. The high energy yield of aerobic ammonia oxidation is consistent with previous observations of significant ammonia oxidation rates and abundant ammonia-oxidizing archaea in sediments of these springs. This approach offers an additional lens through which to view the thermodynamic landscape of geothermal springs.

  18. Calculation of total free energy yield as an alternative approach for predicting the importance of potential chemolithotrophic reactions in geothermal springs.

    PubMed

    Dodsworth, Jeremy A; McDonald, Austin I; Hedlund, Brian P

    2012-08-01

    To inform hypotheses regarding the relative importance of chemolithotrophic metabolisms in geothermal environments, we calculated free energy yields of 26 chemical reactions potentially supporting chemolithotrophy in two US Great Basin hot springs, taking into account the effects of changing reactant and product activities on the Gibbs free energy as each reaction progressed. Results ranged from 1.2 × 10(-5) to 3.6 J kg(-1) spring water, or 3.7 × 10(-5) to 11.5 J s(-1) based on measured flow rates, with aerobic oxidation of CH(4) or NH4 + giving the highest average yields. Energy yields calculated without constraining pH were similar to those at constant pH except for reactions where H(+) was consumed, which often had significantly lower yields when pH was unconstrained. In contrast to the commonly used normalization of reaction chemical affinities per mole of electrons transferred, reaction energy yields for a given oxidant varied by several orders of magnitude and were more sensitive to differences in the activities of products and reactants. The high energy yield of aerobic ammonia oxidation is consistent with previous observations of significant ammonia oxidation rates and abundant ammonia-oxidizing archaea in sediments of these springs. This approach offers an additional lens through which to view the thermodynamic landscape of geothermal springs. PMID:22443686

  19. Near Threshold Two Meson Production with the pd {yields} {sup 3}He{pi}{sup +}{pi}{sup {minus}} and pd {yields} {sup 3}HeK{sup +}K{sup {minus}} Reactions

    SciTech Connect

    COSY-MOMO Collaboration

    2000-12-31

    Near-threshold two-meson production via the reactions pd {yields} {sup 3}He{pi}{sup +}{pi}{sup {minus}} and pd {yields} {sup 3}HeK{sup +}K{sup {minus}} was measured kinematically complete with the MOMO experiment at COSY. The obtained two-pion variant mass spectra and angular distributions depict a remarkable deviation from phase space. The two-kaon data are consistent with phase space topped by a clear signal of the {phi} meson.

  20. The rate coefficient for the reaction NO2 + NO3 yielding NO + NO2 + O2 from 273 to 313 K

    NASA Technical Reports Server (NTRS)

    Cantrell, Chris A.; Shetter, Richard E.; Mcdaniel, Anthony H.; Calvert, Jack G.

    1990-01-01

    The ratio of rate constants for the reaction NO3 + NO yielding 2 NO2 (k3) and the reaction NO2 + NO3 yielding NO + NO2 + O2 (k4) were determined by measuring of NO and NO2 concentrations of NO and NO2 in an N2O5/NO2/N2 mixture over the temperature range 273-313 K. The measured ratio was found to be expressed by the equation k3/k4 = 387 exp(-1375/T). The results are consistent with those of Hammer et al. (1986).

  1. Effect of the Keto Group on Yields and Composition of Organic Aerosol Formed from OH Radical-Initiated Reactions of Ketones in the Presence of NOx.

    PubMed

    Algrim, Lucas B; Ziemann, Paul J

    2016-09-01

    Yields of secondary organic aerosol (SOA) were measured for OH radical-initiated reactions of the 2- through 6-dodecanone positional isomers and also n-dodecane and n-tetradecane in the presence of NOx. Yields decreased in the order n-tetradecane > dodecanone isomer average > n-dodecane, and the dodecanone isomer yields decreased as the keto group moved toward the center of the molecule, with 6-dodecanone being an exception. Trends in the yields can be explained by the effect of carbon number and keto group presence and position on product vapor pressures, and by the isomer-specific effects of the keto group on branching ratios for keto alkoxy radical isomerization, decomposition, and reaction with O2. Most importantly, results indicate that isomerization of keto alkoxy radicals via 1,5- and 1,6-H shifts are significantly hindered by the presence of a keto group whereas decomposition is enhanced. Analysis of particle composition indicates that the SOA products are similar for all isomers, and that compared to those formed from the corresponding reactions of alkanes the presence of a pre-existing keto group opens up additional heterogeneous/multiphase reaction pathways that can lead to the formation of new products. The results demonstrate that the presence of a keto group alters gas and particle phase chemistry and provide new insights into the potential effects of molecular structure on the products of the atmospheric oxidation of volatile organic compounds and subsequent formation of SOA.

  2. Effect of the Keto Group on Yields and Composition of Organic Aerosol Formed from OH Radical-Initiated Reactions of Ketones in the Presence of NOx.

    PubMed

    Algrim, Lucas B; Ziemann, Paul J

    2016-09-01

    Yields of secondary organic aerosol (SOA) were measured for OH radical-initiated reactions of the 2- through 6-dodecanone positional isomers and also n-dodecane and n-tetradecane in the presence of NOx. Yields decreased in the order n-tetradecane > dodecanone isomer average > n-dodecane, and the dodecanone isomer yields decreased as the keto group moved toward the center of the molecule, with 6-dodecanone being an exception. Trends in the yields can be explained by the effect of carbon number and keto group presence and position on product vapor pressures, and by the isomer-specific effects of the keto group on branching ratios for keto alkoxy radical isomerization, decomposition, and reaction with O2. Most importantly, results indicate that isomerization of keto alkoxy radicals via 1,5- and 1,6-H shifts are significantly hindered by the presence of a keto group whereas decomposition is enhanced. Analysis of particle composition indicates that the SOA products are similar for all isomers, and that compared to those formed from the corresponding reactions of alkanes the presence of a pre-existing keto group opens up additional heterogeneous/multiphase reaction pathways that can lead to the formation of new products. The results demonstrate that the presence of a keto group alters gas and particle phase chemistry and provide new insights into the potential effects of molecular structure on the products of the atmospheric oxidation of volatile organic compounds and subsequent formation of SOA. PMID:27508315

  3. Helicity-dependent reaction {gamma}-vectord-vector{yields}{pi}NN and its contribution to the Gerasimov-Drell-Hearn sum rule for the deuteron

    SciTech Connect

    Levchuk, M. I.

    2010-10-15

    Helicity-dependent incoherent pion photoproduction in the reaction {gamma}-vectord-vector{yields}{pi}NN is studied in the framework of the diagrammatic approach. Contributions to the reaction amplitude from diagrams corresponding to impulse approximation as well as NN and {pi}N interactions in the final state have been evaluated. The elementary {gamma}N{yields}{pi}N operator is taken from the MAID and SAID models. A detailed comparison of the predictions with recent experimental data by the GDH and A2 collaborations at energies below 500 MeV is presented. Reasonable agreement with the data on the yields and cross sections for the polarized beam and polarized target has been achieved in all channels. The unpolarized data of the GDH and A2 collaborations have also been analyzed within the approach. A strong overestimation for the neutral channel has been found. At the same time, the model provides a quite satisfactory description of the unpolarized data for the charged channels. The sensitivity of the obtained results to the choice of the elementary {gamma}N{yields}{pi}N operator is discussed in detail. The contribution of the {gamma}d{yields}{pi}NN reaction to the GDH sum rule for the deuteron up to a photon energy of 1.65 GeV has been evaluated with the result of 235{+-}25 {mu}b.

  4. Pressure and temperature dependence kinetics study of the NO + BrO yielding NO2 + Br reaction - Implications for stratospheric bromine photochemistry

    NASA Technical Reports Server (NTRS)

    Watson, R. T.; Sander, S. P.; Yung, Y. L.

    1979-01-01

    The reactivity of NO with BrO radicals over a wide range of pressure (100-700 torr) and temperature (224-398 K) is investigated using the flash photolysis-ultraviolet absorption technique. The flash photolysis system consists of a high-pressure xenon arc light source, a reaction cell/gas filter/flash lamp combination, and a 216.5 half-meter monochromator/polychromator/spectrography for wavelength selectivity. The details of the reaction and its corresponding Arrhenius expression are identified. The results are compared with previous measurements, and atmospheric implications of the reaction are discussed. The NO + BrO yielding NO2 + Br reaction is shown to be important in controlling the concentration ratios of BrO/Br and BrO/HBr in the stratosphere, but this reaction does not affect the catalytic efficiency of BrOx in ozone destruction.

  5. Pulsed, Photonuclear-induced, Neutron Measurements of Nuclear Materials with Composite Shielding

    SciTech Connect

    James Jones; Kevin Haskell; Rich Waston; William Geist; Jonathan Thron; Corey Freeman; Martyn Swinhoe; Seth McConchie; Eric Sword; Lee Montierth; John Zabriskie

    2011-07-01

    Active measurements were performed using a 10-MeV electron accelerator with inspection objects containing various nuclear and nonnuclear materials available at the Idaho National Laboratory’s Zero Power Physics Reactor (ZPPR) facility. The inspection objects were assembled from ZPPR reactor plate materials to evaluate the measurement technologies for the characterization of plutonium, depleted uranium or highly enriched uranium shielded by both nuclear and non-nuclear materials. A series of pulsed photonuclear, time-correlated measurements were performed with unshielded calibration materials and then compared with the more complex composite shield configurations. The measurements used multiple 3He detectors that are designed to detect fission neutrons between pulses of an electron linear accelerator. The accelerator produced 10-MeV bremsstrahlung X-rays at a repetition rate of 125 Hz (8 ms between pulses) with a 4-us pulse width. All inspected objects were positioned on beam centerline and 100 cm from the X-ray source. The time-correlated data was collected in parallel using both a Los Alamos National Laboratory-designed list-mode acquisition system and a commercial multichannel scaler analyzer. A combination of different measurement configurations and data analysis methods enabled the identification of each object. This paper describes the experimental configuration, the ZPPR inspection objects used, and the various measurement and analysis results for each inspected object.

  6. Formation mechanisms and yields of small imidazoles from reactions of glyoxal with NH4(+) in water at neutral pH.

    PubMed

    Maxut, A; Nozière, B; Fenet, B; Mechakra, H

    2015-08-21

    Imidazoles have numerous applications in pharmacology, chemistry, optics and electronics, making the development of their environmentally-friendly synthetic procedures worthwhile. In this work, the formation of imidazole, imidazole-2-carboxaldehyde, and 2,2-bis-1H-imidazole was investigated in the self-reaction of glyoxal and its cross-reactions with each of these compounds in aqueous solutions of inorganic ammonium salts at pH =7. Such conditions are relevant both as cheap and environmentally-friendly synthetic procedures and for the chemistry of natural environments where NH4(+) is abundant, such as in atmospheric aerosols. These reactions were investigated both by (1)H-NMR and UV-Vis absorption spectroscopy at room temperature with the objective to determine the formation pathways of the three imidazoles and the parameters affecting their yields, to identify the optimal conditions for their synthesis. The results show that only the simplest imidazole is produced by the self-reaction of glyoxal and that imidazole-2-carboxaldehyde and 2,2-bis-1H-imidazole are produced by cross-reactions of glyoxal with imidazole and imidazole-2-carboxaldehyde, respectively. The yields of imidazole-2-carboxaldehyde and 2,2-bis-1H-imidazole formed by the cross-reactions were close to unity, but the yield of imidazole formed by the self-reaction of glyoxal, YIm, was small and varied inversely with the initial glyoxal concentration, [G]0: YIm > 10% only for [G]0 < 0.1 M. The latter result was attributed to the kinetic competition between the imidazole-forming condensation pathway and the acetal/oligomer formation pathway of the glyoxal self-reaction and constitutes a bottleneck for the formation of higher imidazoles. Other parameters such as pH and the NH4(+) concentration did not affect the yields. Thus, by maintaining small glyoxal concentrations, high imidazole yields can be achieved in environmentally-friendly aqueous ammonium solutions at neutral pH. Under the same conditions

  7. Aqueous Suzuki Coupling Reactions of Basic Nitrogen-Containing Substrates in the Absence of Added Base and Ligand: Observation of High Yields under Acidic Conditions.

    PubMed

    Li, Zhao; Gelbaum, Carol; Fisk, Jason S; Holden, Bruce; Jaganathan, Arvind; Whiteker, Gregory T; Pollet, Pamela; Liotta, Charles L

    2016-09-16

    A series of aqueous heterogeneous Suzuki coupling reactions of substrates containing basic nitrogen centers with phenylboronic acid in the absence of added base and ligand is presented. High yields of products were obtained by employing aryl bromides containing aliphatic 1°, 2°, and 3° amine substituents, and good to high yields were obtained by employing a variety of substituted bromopyridines. In the former series, the pH of the aqueous phase changed from basic to acidic during the course of the reaction, while in the latter series the aqueous phase was on the acidic side of the pH scale throughout the entire course of reaction. A mechanistic interpretation for these observations, which generally preserves the oxo palladium catalytic cycle widely accepted in the literature, is presented. PMID:27559749

  8. Aqueous Suzuki Coupling Reactions of Basic Nitrogen-Containing Substrates in the Absence of Added Base and Ligand: Observation of High Yields under Acidic Conditions.

    PubMed

    Li, Zhao; Gelbaum, Carol; Fisk, Jason S; Holden, Bruce; Jaganathan, Arvind; Whiteker, Gregory T; Pollet, Pamela; Liotta, Charles L

    2016-09-16

    A series of aqueous heterogeneous Suzuki coupling reactions of substrates containing basic nitrogen centers with phenylboronic acid in the absence of added base and ligand is presented. High yields of products were obtained by employing aryl bromides containing aliphatic 1°, 2°, and 3° amine substituents, and good to high yields were obtained by employing a variety of substituted bromopyridines. In the former series, the pH of the aqueous phase changed from basic to acidic during the course of the reaction, while in the latter series the aqueous phase was on the acidic side of the pH scale throughout the entire course of reaction. A mechanistic interpretation for these observations, which generally preserves the oxo palladium catalytic cycle widely accepted in the literature, is presented.

  9. Reaction rate sensitivity of 44Ti production in massive stars and implications of a thick target yield measurement of 40Ca(alpha,gamma)44Ti

    SciTech Connect

    Hoffman, R D; Sheets, S A; Burke, J T; Scielzo, N D; Rauscher, T; Norman, E B; Tumey, S; Brown, T A; Grant, P G; Hurst, A M; Phair, L; Stoyer, M A; Wooddy, T; Fisker, J L; Bleuel, D

    2010-02-16

    We evaluate two dominant nuclear reaction rates and their uncertainties that affect {sup 44}Ti production in explosive nucleosynthesis. Experimentally we develop thick-target yields for the {sup 40}Ca({alpha},{gamma}){sup 44}Ti reaction at E{sub {alpha}} = 4.13, 4.54, and 5.36 MeV using {gamma}-ray spectroscopy. At the highest beam energy, we also performed an activation measurement which agrees with the thick target result. From the measured yields a stellar reaction rate was developed that is smaller than current statistical-model calculations and recent experimental results, which would suggest lower {sup 44}Ti production in scenarios for the {alpha}-rich freeze out. Special attention has been paid to assessing realistic uncertainties of stellar reaction rates produced from a combination of experimental and theoretical cross sections. With such methods, we also develop a re-evaluation of the {sup 44}Ti({alpha},p){sup 47}V reaction rate. Using these two rates we carry out a sensitivity survey of {sup 44}Ti synthesis in eight expansions representing peak temperature and density conditions drawn from a suite of recent supernova explosion models. Our results suggest that the current uncertainty in these two reaction rates could lead to as large an uncertainty in {sup 44}Ti synthesis as that produced by different treatments of stellar physics.

  10. Study of the yield of D-D, D-3He fusion reactions produced by the interaction of intense ultrafast laser pulses with molecular clusters

    NASA Astrophysics Data System (ADS)

    Barbui, Marina; Bang, Woosuk; Bonasera, Aldo; Hagel, Kris; Schmidt, Katarzyna; Natowitz, Joseph; Giuliani, Gianluca; Barbarino, Matteo; Dyer, Gilliss; Quevedo, Hernan; Gaul, Erhard; Borger, Ted; Bernstein, Aaron; Martinez, Mikael; Donovan, Michael; Ditmire, Todd; Kimura, Sachie; Mazzocco, Marco; Consoli, Fabrizio; De Angelis, Riccardo; Andreoli, Pierluigi

    2013-03-01

    The interaction of intense ultrafast laser pulses with molecular clusters produces a Coulomb explosion of the clusters. In this process, the positive ions from the clusters might gain enough kinetic energy to drive nuclear reactions. An experiment to measure the yield of D-D and D-3He fusion reactions was performed at University of Texas Center for High Intensity Laser Science. Laser pulses of energy ranging from 100 to 180 J and duration 150fs were delivered by the Petawatt laser. The temperature of the energetic deuterium ions was measured using a Faraday cup, whereas the yields of the D-D reactions were measured by detecting the characteristic 2.45 MeV neutrons and 3.02 MeV protons. In order to allow the simultaneous measurement of 3He(D,p)4He and D-D reactions, different concentrations of D2 and 3He or CD4 and 3He were mixed in the gas jet target. The 2.45 MeV neutrons from the D(D,n)3He reaction were detecteded as well as the 14.7 MeV protons from the 3He(D,p)4He reaction. The preliminary results will be shown.

  11. New data on ({gamma}, n), ({gamma}, 2n), and ({gamma}, 3n) partial photoneutron reactions

    SciTech Connect

    Varlamov, V. V. Ishkhanov, B. S.; Orlin, V. N.; Peskov, N. N.; Stepanov, M. E.

    2013-11-15

    Systematic discrepancies between the results of various experiments devoted to determining cross sections for total and partial photoneutron reactions are analyzed by using objective criteria of reliability of data in terms of the transitional photoneutron-multiplicity function F{sub i} = {sigma}({gamma}, in)/{sigma}({gamma}, xn), whose values for i = 1, 2, 3, ... cannot exceed by definition 1.00, 0.50, 0.33, ..., respectively. It was found that the majority of experimental data on the cross sections obtained for ({gamma}, n), ({gamma}, 2n), and ({gamma}, 3n) reactions with the aid of methods of photoneutron multiplicity sorting do not meet objective criteria (in particular, F{sub 2} > 0.50 for a vast body of data). New data on the cross sections for partial reactions on {sup 181}Ta and {sup 208}Pb nuclei were obtained within a new experimental-theoretical method that was proposed for the evaluation of cross sections for partial reactions and in which the experimental neutron yield cross section {sigma}{sup expt}({gamma}, xn) = {sigma}({gamma}, n) + 2{sigma}({gamma}, 2n) + 3{sigma}({gamma}, 3n) + ..., which is free from problems associated with determining neutron multiplicities, is used simultaneously with the functions F{sub i}{sup theor} calculated within a combined model of photonuclear reactions.

  12. Heterogeneous reactions of HNO3(g) + NaCl(s) yields HCl(g) + NaNO3(s) and N2O5(g) + NaCl(s) yields ClNO2(g) + NaNO3(s)

    NASA Technical Reports Server (NTRS)

    Leu, Ming-Taun; Timonen, Raimo S.; Keyser, Leon F.; Yung, Yuk L.

    1995-01-01

    The heterogeneous reactions of HNO3(g) + NaCl(s) yields HCl(g) + NaNO3(s) (eq 1) and N2O5(g) + NaCl(s) yields ClNO2(g) + NaNO3(S) (eq 2) were investigated over the temperature range 223-296 K in a flow-tube reactor coupled to a quadrupole mass spectrometer. Either a chemical ionization mass spectrometer (CIMS) or an electron-impact ionization mass spectrometer (EIMS) was used to provide suitable detection sensitivity and selectivity. In order to mimic atmospheric conditions, partial pressures of HNO3 and N2O5 in the range 6 x 10(exp -8) - 2 x 10(exp -6) Torr were used. Granule sizes and surface roughness of the solid NaCl substrates were determined by using a scanning electron microscope. For dry NaCl substrates, decay rates of HNO3 were used to obtain gamma(1) = 0.013 +/- 0.004 (1sigma) at 296 K and > 0.008 at 223 K, respectively. The error quoted is the statistical error. After all corrections were made, the overall error, including systematic error, was estimated to be about a factor of 2. HCl was found to be the sole gas-phase product of reaction 1. The mechanism changed from heterogeneous reaction to predominantly physical adsorption when the reactor was cooled from 296 to 223 K. For reaction 2 using dry salts, gamma(2) was found to be less than 1.0 x 10(exp -4) at both 223 and 296 K. The gas-phase reaction product was identified as ClNO2 in previous studies using an infrared spectrometer. An enhancement in reaction probability was observed if water was not completely removed from salt surfaces, probably due to the reaction of N2O5(g) + H2O(s) yields 2HNO3(g). Our results are compared with previous literature values obtained using different experimental techniques and conditions. The implications of the present results for the enhancement of the hydrogen chloride column density in the lower stratosphere after the El Chichon volcanic eruption and for the chemistry of HCl and HNO3 in the marine troposphere are discussed.

  13. Polarization effects in the N-bar+N{yields}{pi}+l{sup +}+l{sup -} reaction: General analysis and numerical estimations

    SciTech Connect

    Gakh, G. I.; Rekalo, A. P.; Tomasi-Gustafsson, E.; Boucher, J.; Gakh, A. G.

    2011-02-15

    A general formalism is developed to calculate the cross section and the polarization observables for the reaction N-bar+N{yields}{pi}+l{sup +}+l{sup -}. The matrix element and the observables are expressed in terms of six scalar amplitudes (complex functions of three kinematical variables) that determine the reaction dynamics. The numerical predictions are given in the frame of a particular model in the kinematical range accessible in the antiproton annihilation at Darmstadt (PANDA) experiment at the Facility for Antiproton and Ion Research (FAIR).

  14. A laser flash photolysis kinetics study of the reaction OH + H2O2 yields HO2 + H2O

    NASA Technical Reports Server (NTRS)

    Wine, P. H.; Semmes, D. H.; Ravishankara, A. R.

    1981-01-01

    Absolute rate constants for the reaction are reported as a function of temperature over the range 273-410 K. OH radicals are produced by 266 nm laser photolysis of H2O2 and detected by resonance fluorescence. H2O2 concentrations are determined in situ in the slow flow system by UV photometry. The results confirm the findings of two recent discharge flow-resonance fluorescence studies that the title reaction is considerably faster, particularly at temperatures below 300 K, than all earlier studies had indicated. A table giving kinetic data from the reaction is included.

  15. Bremsstrahlung versus Monoenergetic Photon Dose and Photonuclear Stimulation Comparisons At Long Standoff Distances

    SciTech Connect

    J. L. Jones; J.W. Sterbentz; W.Y. Yoon

    2009-06-01

    Energetic photon sources with energies greater than 6 MeV continue to be recognized as viable source for various types of inspection applications, especially those related to nuclear and/or explosive material detection. These energetic photons can be produced as a continuum of energies (i.e., bremsstrahlung distribution) or as a set of one or more discrete photon energies (i.e., monoenergetic distribution). This paper will provide a follow-on extension of the photon dose comparison presented at the 9th International Conference on Applications of Nuclear Techniques (June 2008). The latter paper showed the comparative advantages and disadvantages of the photon doses provided by these two energetic interrogation sources and highlighted the higher energy advantage of the bremsstrahlung source, especially at long standoff distances (i.e., distance from source to the inspected object). Specifically, this paper will pursue this higher energy photon inspection advantage (up to 100 MeV) by providing dose and stimulated photonuclear interaction predictions for air and an infinitely dilute interrogated material (used for comparative interaction rate assessments since it excludes material self-shielding) as the interrogation object positioned forward on the inspection beam axis at increasing standoff distances. In addition to the direct energetic photon-induced stimulation, the predictions will identify the importance of any secondary downscattered/attenuated source-term effects arising from the photon transport in the intervening atmosphere. *Supported in part by the Defense Threat Reduction Agency and Department of Energy (DOE) Idaho Operations Office under Contract Number DE-AC07-05ID14517.

  16. High-yield cell-free synthesis of human EGFR by IRES-mediated protein translation in a continuous exchange cell-free reaction format.

    PubMed

    Quast, Robert B; Sonnabend, Andrei; Stech, Marlitt; Wüstenhagen, Doreen A; Kubick, Stefan

    2016-01-01

    Cell-free protein synthesis systems derived from eukaryotic sources often provide comparatively low amounts of several μg per ml of de novo synthesized membrane protein. In order to overcome this, we herein demonstrate the high-yield cell-free synthesis of the human EGFR in a microsome-containing system derived from cultured Sf21 cells. Yields were increased more than 100-fold to more than 285 μg/ml by combination of IRES-mediated protein translation with a continuous exchange cell-free reaction format that allowed for prolonged reaction lifetimes exceeding 24 hours. In addition, an orthogonal cell-free translation system is presented that enabled the site-directed incorporation of p-Azido-L-phenylalanine by amber suppression. Functionality of cell-free synthesized receptor molecules is demonstrated by investigation of autophosphorylation activity in the absence of ligand and interaction with the cell-free synthesized adapter molecule Grb2. PMID:27456041

  17. High-yield cell-free synthesis of human EGFR by IRES-mediated protein translation in a continuous exchange cell-free reaction format

    PubMed Central

    Quast, Robert B.; Sonnabend, Andrei; Stech, Marlitt; Wüstenhagen, Doreen A.; Kubick, Stefan

    2016-01-01

    Cell-free protein synthesis systems derived from eukaryotic sources often provide comparatively low amounts of several μg per ml of de novo synthesized membrane protein. In order to overcome this, we herein demonstrate the high-yield cell-free synthesis of the human EGFR in a microsome-containing system derived from cultured Sf21 cells. Yields were increased more than 100-fold to more than 285 μg/ml by combination of IRES-mediated protein translation with a continuous exchange cell-free reaction format that allowed for prolonged reaction lifetimes exceeding 24 hours. In addition, an orthogonal cell-free translation system is presented that enabled the site-directed incorporation of p-Azido-L-phenylalanine by amber suppression. Functionality of cell-free synthesized receptor molecules is demonstrated by investigation of autophosphorylation activity in the absence of ligand and interaction with the cell-free synthesized adapter molecule Grb2. PMID:27456041

  18. Results of an attempt to measure increased rates of the reaction D-2 + D-2 yields He-3 + n in a nonelectrochemical cold fusion experiment

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.; Decker, Arthur J.; Blue, James W.

    1989-01-01

    An experiment was performed to look for evidence of deuterium fusion in palladium. The experiment, which involved introducing deuterium into the palladium filter of a hydrogen purifier, was designed to detect neutrons produced in the reaction D-2 + D-2 yields He-3 + n as well as heat production. The neutron counts for deuterium did not differ significantly from background or from the counts for a hydrogen control. Heat production was detected when deuterium, but not hydrogen, was pumped from the purifier.

  19. Project for measuring the neutron electromagnetic form factor in the reaction e{sup +}e{sup -} {yields} nn-bar at the VEPP-2000 collider

    SciTech Connect

    Golubev, V. B.; Serednyakov, S. I.; Skovpen, K. Yu. Usov, Yu. V.

    2009-04-15

    A project aimed at measuring the neutron electromagnetic form factor in the reaction e{sup +}e{sup -} {yields} nn-bar with the SND detector at the VEPP-2000 e{sup +}e{sup -} collider is presented. The results obtained for the time resolution of the NaI(Tl) counter using flash-ADC are reported along with estimates of the efficiency of separation of neutron-antineutron events.

  20. The carbon dioxide chaperon efficiency for the reaction H + O2 + M yields HO2 + M from ignition delay times behind reflected shock waves

    NASA Technical Reports Server (NTRS)

    Brabbs, Theodore A.; Robertson, Thomas F.

    1987-01-01

    Ignition delay times for stoichiometric hydrogen-oxygen in argon with and without carbon dioxide were measured behind reflected shock waves. A 20-reaction kinetic mechanism models the measured hydrogen-oxygen delay times over the temperature range 950 to 1300 K. The chaperon efficiency for carbon dioxide determined for the hydrogen-oxygen carbon dioxide mixture was 7.0. This value is in agreement with literature values but much less than a recent value obtained from flow tube experiments. Delay times measured behind a reflected shock wave were about 20% longer than those measured behind incident shock waves. The kinetic mechanism successfully modeled the high-pressure data of Skinner and the hydrogen-air data of Stack. It is suggested that the lowest temperature points for the hydrogen-air data of Slack are unreliable and that the 0.27-atm data may illustrate a case where vibrational relaxation of nitrogen is important. The reaction pathway HO2 yields H2O2 yields OH yields H was required to model the high-pressure data of Skinner. The successful modeling of the stoichiometric hydrogen-air data demonstrates the appropriateness of deriving kinetic models from data for gas mixtures highly diluted with argon. The technique of reducing a detailed kinetic mechanism to only the important reactions for a limited range of experimental data may render the mechanism useless for other test conditions.

  1. Theoretical characterization of the potential energy surface for the reversible reaction H + O2 yields HO2(asterisk) yields OH + O. III - Computed points to define a global potential energy surface

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Duchovic, Ronald J.

    1991-01-01

    Computed energies and geometries are reported which, combined with previously published calculations, permit a global representation of the potential energy surface for the reaction H + O2 yields HO2(asterisk) yields OH + O. These new calculations characterize the potential energy surface (PES) for all H atom angles of approach to O2 and for the region of the inner repulsive wall. The region of the T-shaped H-O2 exchange saddle point is connected with the constrained energy minimum (CEM) path, and a new collinear H-O2 exchange saddle point is characterized which lies only 9 kcal/mol above the H + O2 asymptote. A vibrational analysis which utilizes local cubic and quartic polynomial representations of the PES along the CEM path has been carried out. Optimal geometries, energies, and harmonic frequencies are reported along with anharmonic analyses for the O2 and OH asymptotes and for the HO2 minimum region of the PES.

  2. Determination of O2(a1Delta g) and O2(b1Sigma + g) yields in the reaction O + ClO yields Cl + O2 - Implications for photochemistry in the atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Leu, Ming-Taun; Yung, Yuk L.

    1987-01-01

    A discharge flow apparatus with a chemiluminescence detector was used to investigate the reaction O + ClO yields Cl + O2(asterisk), where O2(asterisk) = O2(a1Delta g) or O2(b1Sigma + g). It is found that the observed O2(a1Delta g) airglow of Venus cannot be explained in the framework of standard photochemistry using the experimental results obtained here and those reported in the recent literature. The possibility of an alternative source of O atoms derived from SO2 photolysis in the Venus mesosphere is suggested.

  3. Direct kinetic study of radical transformation reaction Me sub 2 COH + Ph sub 2 CO yields Me sub 2 CO + Ph sub 2 COH

    SciTech Connect

    Demeter, A.; Berces, T. )

    1991-02-07

    Reaction Me{sub 2}COH + Ph{sub 2}CO {yields} Me{sub 2}CO + Ph{sub 2}COH (5) was studied by laser flash photolysis under such experimental conditions where the changes in the concentrations of ketyl radicals with reaction time were controlled by this radical transformation process. Diphenylketyl radical concentration profiles were obtained by monitoring transient absorption at 540 nm and the rate coefficient k{sub 5} was extracted from that part of the concentration trajectory which was determined solely by reaction 5. Thus, k{sub 5} = (3.6 {plus minus} 0.6) {times} 10{sup 5} dm{sup 3} mol{sup {minus}1} s{sup {minus}1} was determined at 298 K in acetonitrile, which is higher than the two recently reported values derived from quantum yields measured under steady-state conditions. A reaction mechanism for the radical transformation process (5) is proposed in which hydrogen-bonded species formed from ketyl radical and benzophenone participate.

  4. Reaction rates of the 113In(γ,n)112mIn and 115In(γ,n)114mIn

    NASA Astrophysics Data System (ADS)

    Skakun, Ye; Semisalov, I.; Kasilov, V.; Popov, V.; Kochetov, S.; Maslyuk, V.; Mazur, V.; Parlag, O.; Gajnish, I.

    2016-01-01

    The integral yields of the 113In(γ,n)112mIn (Jπ=9/2+→Jπ=4+) and 115In(γ,n)114mIn (Jπ=9/2+→Jπ=5+) photonuclear reactions were measured in the bremsstrahlung end-point energy range from the respective thresholds up to 14 MeV by a conventional activation/decay technique using the 197Au(γ,n)196Au reaction cross sections as the standard for the absolute photon intensity determination. The metallic indium samples of the natural and enriched compositions were irradiated by the bremsstrahlung beams from thin tantalum converters of the electron linear accelerator of NSC KIPT (Kharkiv) and the microtron of IEP (Ughhorod). The integral reaction yields were determined from the activities of the nuclei-products measured by the high resolution γ-ray spectrometry technique with Ge(Li)- and HPGe-detectors. The reaction rates for the Planck spectrum of a thermal photon bath were derived for the ground state target nuclei and compared to the predictions of the statistical model of nuclear reactions.

  5. Rate constant and secondary organic aerosol yields for the gas-phase reaction of hydroxyl radicals with syringol (2,6-dimethoxyphenol)

    NASA Astrophysics Data System (ADS)

    Lauraguais, Amélie; Coeur-Tourneur, Cécile; Cassez, Andy; Seydi, Abdoulaie

    2012-08-01

    Syringol (2,6-dimethoxyphenol) is a potential marker compound for wood smoke emissions in the atmosphere. To investigate the atmospheric reactivity of this compound, the rate constant for its reaction with hydroxyl radicals (OH) has been determined in a simulation chamber (8 m3) at 294 ± 2 K, atmospheric pressure and low relative humidity (2-4%) using the relative rate method. The syringol and reference compound concentrations were followed by GC/FID (Gas chromatography/Flame Ionization Detection). The determined rate constant (in units of cm3 molecule-1 s-1) is ksyringol = (9.66 ± 1.11) × 10-11. The calculated atmospheric lifetime for syringol is 1.8 h, indicating that it is too reactive to be used as a tracer for wood smoke emissions. Secondary Organic Aerosol (SOA) formation from the OH reaction with syringol was also investigated. The initial mixing ratios for syringol were in the range 495-3557 μg m-3. The aerosol production was monitored using a SMPS (Scanning Mobility Particle Sizer). The SOA yields (Y) were determined as the ratio of the suspended aerosol mass corrected for wall losses (M0) to the total reacted syringol concentration assuming a particle density of 1.4 g cm-3. The aerosol formation yield increases as the initial syringol concentration increases, and leads to aerosol yields ranging from 0.10 to 0.36. Y is a strong function of M0 and the organic aerosol formation can be expressed by a one-product gas/particle partitioning absorption model. To our knowledge, this work represents the first investigation of the rate constant and SOA formation for the reaction of syringol with OH radicals. The atmospheric implications of this reaction are also discussed.

  6. A laser flash photolysis-resonance fluorescence kinetics study of the reaction Cl/2P/ + CH4 yields CH3 + HCl

    NASA Technical Reports Server (NTRS)

    Ravishankara, A. R.; Wine, P. H.

    1980-01-01

    The technique of laser flash photolysis-resonance fluorescence is employed to study the kinetics of the reaction Cl(2P) + CH4 yields CH3 + HCl over the temperature range 221-375 K. At temperatures less than or equal to 241 K the apparent bimolecular rate constant is found to be dependent upon the identity of the chemically inert gases in the reaction mixture. For Cl2/CH4/He reaction mixtures (total pressure = 50 torr) different bimolecular rate constants are measured at low and high methane concentrations. For Cl2/CH4/CCl/He and Cl2/CH4/Ar reaction mixtures, the bimolecular rate constant is independent of methane concentration, being approximately equal to the rate constant measured at low methane concentrations for Cl2/CH4/He mixtures. These rate constants are in good agreement with previous results obtained using the discharge flow-resonance fluorescence and competitive chlorination techniques. At 298 K the measured bimolecular rate constant is independent of the identity of the chemically inert gases in the reaction mixture and in good agreement with all previous investigations. The low-temperature results obtained in this investigation and all previous investigations can be rationalized in terms of a model which assumes that the Cl(2P 1/2) state reacts with CH4 much faster than the Cl(2P 3/2) state. Extrapolation of this model to higher temperatures, however, is not straightforward.

  7. Predicted neutron yield and radioactivity for laser-induced (p,n) reactions in LiF

    SciTech Connect

    Swift, D C; McNaney, J M

    2009-01-30

    Design calculations are presented for a pulsed neutron source comprising polychromatic protons accelerated from a metal foil by a short-pulse laser, and a LiF converter in which (p,n) reactions occur. Although the proton pulse is directional, neutrons are predicted to be emitted relatively isotropically. The neutron spectrum was predicted to be similar to the proton spectrum, but with more neutrons of low energy in the opposite direction to the incident protons. The angular dependence of spectrum and intensity was predicted. The (p,n) reactions generate unstable nuclei which decay predominantly by positron emission to the original {sup 7}Li and {sup 19}F isotopes. For the initial planned experiments using a converter 1mm thick, we predict that 0.1% of the protons will undergo a (p,n) reaction, producing 10{sup 9} neutrons. Ignoring the unreacted protons, neutrons, and prompt gamma emission as excited nuclear states decay, residual positron radioactivity (and production of pairs of 511 keV annihilation photons) is initially 4.2MBq decaying with a half-life of 17.22 s for 6 mins ({sup 19}Ne decays), then 135Bq decaying with a half-life of 53.22 days ({sup 7}Be decays).

  8. Rate constants for the reaction, O + H sub 2 O yields OH + OH, over the temperature range, 1500--2400 K, by the flash photolysis-shock tube technique: A further consideration of the back reaction

    SciTech Connect

    Lifshitz, A.; Michael, J.V.

    1990-01-01

    Rate constants for the reaction, O + H{sub 2}O {yields} OH + OH, have been measured by the Flash Photolysis-Shock Tube (FP-ST) technique over the temperature range, 1500--2400 K. This technique combines stock heating with flash photolysis in the reflected shock wave regime, and the transient species, O-atoms in this case, are monitored by atomic resonance absorption spectroscopy (aras). Additional experiments were performed with N{sub 2}O as a thermal source of O-atoms, and the formation and depletion of (O) were followed by the aras technique. These results require that the decomposition rate behavior of N{sub 2}O be known. The results obtained by this technique are compared to those obtained by the FP-ST technique and are found to be corroborative. Hence, the combined results are used to describe the rate constants for the title reaction. The experimental results are compared to earlier work, and rate constants for the title reaction are additionally calculated from published results for the reverse reaction, OH + OH, and the well known equilibrium constant. All results are combined, and the rate behavior for the title reaction is evaluated. Lastly, the results for both forward and reverse reactions are compared to the theoretical calculations presented recently by Harding and Wagner. It is concluded that theory and experiment are in agreement within experimental error.

  9. Genome shuffling of Saccharomyces cerevisiae for enhanced glutathione yield and relative gene expression analysis using fluorescent quantitation reverse transcription polymerase chain reaction.

    PubMed

    Yin, Hua; Ma, Yanlin; Deng, Yang; Xu, Zhenbo; Liu, Junyan; Zhao, Junfeng; Dong, Jianjun; Yu, Junhong; Chang, Zongming

    2016-08-01

    Genome shuffling is an efficient and promising approach for the rapid improvement of microbial phenotypes. In this study, genome shuffling was applied to enhance the yield of glutathione produced by Saccharomyces cerevisiae YS86. Six isolates with subtle improvements in glutathione yield were obtained from populations generated by ultraviolet (UV) irradiation and nitrosoguanidine (NTG) mutagenesis. These yeast strains were then subjected to recursive pool-wise protoplast fusion. A strain library that was likely to yield positive colonies was created by fusing the lethal protoplasts obtained from both UV irradiation and heat treatments. After two rounds of genome shuffling, a high-yield recombinant YSF2-19 strain that exhibited 3.2- and 3.3-fold increases in glutathione production in shake flask and fermenter respectively was obtained. Comparative analysis of synthetase gene expression was conducted between the initial and shuffled strains using FQ (fluorescent quantitation) RT-PCR (reverse transcription polymerase chain reaction). Delta CT (threshold cycle) relative quantitation analysis revealed that glutathione synthetase gene (GSH-I) expression at the transcriptional level in the YSF2-19 strain was 9.9-fold greater than in the initial YS86. The shuffled yeast strain has a potential application in brewing, other food, and pharmaceutical industries. Simultaneously, the analysis of improved phenotypes will provide more valuable data for inverse metabolic engineering. PMID:27302037

  10. Unitary model for the {gamma}p {yields} {gamma}{pi}{sup 0}p reaction and the magnetic dipole moment of the {Delta}{sup +}(1232)

    SciTech Connect

    W.T. Chiang; Marc Vanderhaeghen; S.N. Yang; D. Drechsel

    2004-09-01

    Radiative pion photoproduction in the {Delta}(1232) resonance region is studied with the aim to access the {Delta}{sup +}(1232) magnetic dipole moment. We present a unitary model of the {gamma}p {yields} {gamma}{pi}N ({pi}N) = ({pi}{sup 0}p, {pi}{sup +}n) reactions, where the {pi}N rescattering is included in an on-shell approximation. In this model, the low energy theorem which couples the {gamma}p {yields} {gamma}{pi}N process in the limit of a soft final photon to the {gamma}p {yields} {pi}N process is exactly satisfied. We study the sensitivity of the {gamma}p {yields} {gamma}{pi}{sup 0}p process at higher values of the final photon energy to the {Delta}{sup +}(1232) magnetic dipole moment. We compare our results with existing data and give predictions for forthcoming measurements of angular and energy distributions. It is found that the photon asymmetry and a helicity cross section are particularly sensitive to the {Delta}{sup +} magnetic dipole moment.

  11. Absolute rate constant and O(3P) yield for the O(1D)+N2O reaction in the temperature range 227 K to 719 K

    NASA Astrophysics Data System (ADS)

    Vranckx, S.; Peeters, J.; Carl, S. A.

    2008-10-01

    The absolute rate constant for the reaction that is the major source of stratospheric NOx, O(1D)+N2O → products, has been determined in the temperature range 227 K to 719 K, and, in the temperature range 248 K to 600 K, the fraction of the reaction that yields O(3P). Both the rate constants and product yields were determined using a recently-developed chemiluminescence technique for monitoring O(1D) that allows for higher precision determinations for both rate constants, and, particularly, O(3P) yields, than do other methods. We found the rate constant, kR1, to be essentially independent of temperature between 400 K and 227 K, having a value of (1.37±0.11)×10-10 cm3 s-1, and for temperatures greater than 450 K a marked decrease in rate constant was observed, with a rate constant of only (0.94±0.11)×10-10 cm3 s-1 at 719 K. The rate constants determined over the 227 K 400 K range show very low scatter and are significantly greater, by 20% at room temperature and 15% at 227 K, than the current recommended values. The fraction of O(3P) produced in this reaction was determined to be 0.002±0.002 at 250 K rising steadily to 0.010±0.004 at 600 K, thus the channel producing O(3P) can be entirely neglected in atmospheric kinetic modeling calculations. A further result of this study is an expression of the relative quantum yields as a function of temperature for the chemiluminescence reactions (kCL1)C2H + O(1D) → CH(A) + CO and (kCL2)C2H + O(3P) → CH(A) + CO, both followed by CH(A) → CH(X) + hν, as kCL1(T)/kCL2(T)=(32.8T-3050)/(6.29T+398).

  12. Investigation of the p+N {yields} [{Sigma}{sup 0}K{sup +}]+N reaction at the proton energy E{sub p} = 70 GeV

    SciTech Connect

    1994-08-01

    The p+N {yields} [{Sigma}{sup 0}K{sup +}]+N reaction was studied in experiments using the SPHINX detector placed in the 70-GeV proton beam of the IHEP accelerator. In the effective mass spectrum of the M({Sigma}{sup 0}K{sup +}) system produced in the coherent diffractive transition, a clear peak with mass M = 1999 {+-} 7 MeV and width {Gamma} = 91 {+-} 17 MeV was observed in addition to the near-threshold structure with mass M {approx_equal} 1800 MeV. 7 refs., 3 figs.

  13. Experimental study of the p+{sup 6}Li{yields}{eta}+{sup 7}Be reaction 11.3 MeV above threshold

    SciTech Connect

    Budzanowski, A.; Kliczewski, S.; Siudak, R.; Chatterjee, A.; Jha, V.; Roy, B. J.; Hawranek, P.; Magiera, A.; Jahn, R.; Kilian, K.; Maier, R.; Protic, D.; Ritman, J.; Rossen, P. von; Kirillov, Da.; Machner, H.; Kirillov, Di.; Piskunov, N.; Sitnik, I.; Kolev, D.

    2010-10-15

    The cross section for the reaction p+{sup 6}Li{yields}{eta}+{sup 7}Be was measured at an excess energy of 11.28 MeV above threshold by detecting the recoiling {sup 7}Be nuclei. A dedicated set of focal plane detectors was built for the magnetic spectrograph Big Karl and was used for identification and four-momentum measurement of {sup 7}Be. A differential cross section of nb/(d{sigma}/d{Omega})=[0.69{+-}0.20(stat.){+-}0.20(syst.)] sr for the ground state plus 1/2{sup -} was measured. The result is compared to model calculations.

  14. Absolute rate constant and O(3P) yield for the O(1D)+N2O reaction in the temperature range 227 K to 719 K

    NASA Astrophysics Data System (ADS)

    Vranckx, S.; Peeters, J.; Carl, S. A.

    2008-05-01

    We have determined, in the temperature range 227 K to 719 K, the absolute rate constant for the reaction O(1D)+N2O → products and, in the temperature range 248 K to 600 K, the fraction of the reaction that yields O(3P). Both the rate constants and product yields were determined using a recently-developed chemiluminescence technique for monitoring O(1D) that allows for higher precision determinations for both rate constants, and, particularly, O(3P) yields, than do other methods. We found the rate constant, kR1, to be essentially independent of temperature between 400 K and 227 K, having a value of (1.37±0.09)×10-10 cm3 s-1. For temperatures greater than 450 K a marked decrease in value was observed, with a rate constant of only (0.94±0.11)×10-10 cm3 s-1 at 719 K. The rate constants determined over the 227 K-400 K range show very low scatter and are significantly greater, by 20% at room temperature and by 15% at 227 K, than the current recommended values. The fraction of O(3P) produced in this reaction was determined to be 0.002±0.002 at 250 K rising steadily to 0.010±0.004 at 600 K, thus the channel producing O(3P) can be entirely neglected in atmospheric kinetic modeling calculations. A further result of this study is an expression of the relative quantum yields as a function of temperature for the chemiluminescence reactions (kCL1) C2H+O(1D) → CH(A)+CO and (kCL2) C2H+O(3P) → CH(A)+CO, both followed by CH(A) → CH(X)+hν, as kCL1(T)/kCL2(T)=(32.8T-3050)/(6.29T+398).

  15. Yields of beta-hydroxynitrates and dihydroxynitrates in aerosol formed from OH radical-initiated reactions of linear alkenes in the presence of NO(x).

    PubMed

    Matsunaga, Aiko; Ziemann, Paul J

    2009-01-22

    Yields of beta-hydroxynitrates and dihydroxynitrates in aerosol formed from OH radical-initiated reactions of linear C(8)-C(17) 1-alkenes and C(14)-C(17) internal alkenes in the presence of NO(x) were measured using a thermal desorption particle beam mass spectrometer coupled to a high-performance liquid chromatograph (HPLC) with UV-vis detector for identification and quantification. For 1-alkenes, total yields of beta-hydroxynitrates normalized for OH radical addition to the CC double bond increased with carbon number, primarily because of enhanced gas-to-particle partitioning, to a plateau of 0.140 +/- 0.009 in the C(14)-C(17) range, with 1-hydroxy/2-hydroxy isomer fractions of 0.7:0.3. When combined with yields measured by O'Brien et al. ( O'Brien , J. M. , Czuba , E. , Hastie , D. R. , Francisco , J. S. , and Shepson , P. S. J. Phys. Chem. A 1998 , 102 , 8903 ) for reactions of smaller alkenes, the results for both 1-alkenes and internal alkenes indicate that the branching ratios for the formation of beta-hydroxynitrates from the reactions of NO with beta-hydroxyperoxy radicals (averaged over both isomers) increase from 0.009 for C(2) up to 0.13-0.15 for C(14) and larger and are approximately half the values determined by Arey et al. ( Arey , J. , Aschmann , S. M. , Kwok , E. S. C. , and Atkinson , R. J. Phys. Chem. A 2001 , 105 , 1020 ) for the corresponding alkyl peroxy radicals. The range of branching ratios may be higher for individual isomers, but this could not be determined. It is estimated that for 1-alkenes, approximately 60-70% of OH radical addition occurred at the terminal carbon atom. Average yields of dihydroxynitrates normalized for OH radical addition were 0.039 +/- 0.006 and 0.006 +/- 0.002 for 1-alkenes and internal alkenes, with differences reflecting enhanced decomposition of beta-hydroxyalkoxy radicals formed from internal alkenes. The addition of NH(3) reduced yields significantly, apparently by altering hydrogen bonding between hydroxy

  16. Calculated rate constants for the reaction ClO + O yields Cl + O2 between 220 and 1000 deg K. [molecular trajectories and stratospheric ozone

    NASA Technical Reports Server (NTRS)

    Jaffee, R. L.

    1978-01-01

    Classical trajectory calculations are presented for the reaction ClO + O yields Cl + O2, a reaction which is an important step in the chlorine-catalyzed destruction of ozone which is thought to occur in the 220 and 1000 K. The calculated rate constant is 4.36 x 10 to the minus 11th power exp (-191/T)cu cm molecule (-1)s(-1) and its value at 300 K is 2.3 plus or minus 10 to the 11th power cu cm molecule (-1)s(-1), about a factor of 2 lower than recent experimental data. The empirical potential energy surface used in the calculations was constructed to fit experimental data for ClO, O2 and ClOO molecules. Other important features of this potential surface, such as the barrier to reaction, were varied systematically and calculations were performed for a range of conditions to determine the best theoretical rate constants. Results demonstrate the utility of classical trajectory methods for determining activation energies and other kinetic data for important atmospheric reactions.

  17. Extended active space CASSCF/MRSD CI calculations of the barrier height for the reaction: O + H2 yields OH + H

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1986-01-01

    The convergence of the barrier height for the O + H2 yields OH + H reaction was studied as a function of the size of the active space and basis set completeness. The barrier height is rapidly convergent with respect to expansion of the active space. Addition of 2p yields 2p' correlation terms to the active space lowers the barrier to the O + H2 reaction by about 2.0 kcal/mole, but addition of 3d and other terms has little additional effect. Multireference singles and doubles contracted CI plus Davidson's correction calculations using a (5s5p3d2f1g/4s3p2d1f) basis set with a 5 sigma 2 pi active space lead to a barrier height of 12.7 kcal/mole. Including an estimate of the CI contraction error and basis set superposition error leads to 12.4 kcal/mole as the best estimate of the barrier height.

  18. An investigation of the role of water on retrograde/condensation reactions and enhanced liquefaction yields. Final report

    SciTech Connect

    Miknis, F.P.; Netzel, D.A.; Wallace, J.C. Jr.; Butcher, C.H.; Mitzel, J.M.; Turner, T.F.

    1995-02-01

    While great strides have been made in developing the technology of coal liquefaction processes in recent years, many unsolved problems still remain before a viable and economical process can be achieved. The technological problems that still exist can be solved through a more fundamental understanding of the chemistry associated with each stage of the coal liquefaction process, starting with any pretreatment steps that may be carried out on the coal itself. Western Research Institute, under the a contract from the US Department of Energy, has conducted a study of different methods of coal drying as pretreatment steps before liquefaction. The results of that study are the subject of this report. Coals that were dried or partially dried thermally and with microwaves had lower liquefaction conversions than coals containing equilibrium moisture contents. However, chemically dried coals had conversions equal to or greater than the premoisturized coals. The conversion behavior is consistent with changes in the physical structure and cross linking reactions because of drying. Thermal and microwave drying appear to cause a collapse in the pore structure, thus preventing donor solvents such as tetralin from contacting reactive sites inside the coals. Chemical dehydration does not appear to collapse the pore structure. From the study of the kinetics of the chemical dehydration of coals, it was possible to quantify the amount of water on the surface, the amount readily accessible in pores, and the amount more strongly bonded in the internal structure of the coals. The results indicate that high-rank coals have proportionally less surface and easily accessible water than the lower rank coals.

  19. Four-dimensional quantum study on exothermic complex-forming reactions: Cl{sup -}+CH{sub 3}Br{yields}ClCH{sub 3}+Br{sup -}

    SciTech Connect

    Hennig, Carsten; Schmatz, Stefan

    2005-06-15

    The exothermic gas-phase bimolecular nucleophilic substitution (S{sub N}2) reaction Cl{sup -}+CH{sub 3}Br ({upsilon}{sub 1}{sup '},{upsilon}{sub 2}{sup '},{upsilon}{sub 3}{sup '}){yields}ClCH{sub 3} ({upsilon}{sub 1},{upsilon}{sub 2},{upsilon}{sub 3})+Br{sup -} and the corresponding endothermic reverse reaction have been studied by time-independent quantum scattering calculations in hyperspherical coordinates on a coupled-cluster potential-energy surface. The dimensionality-reduced model takes four degrees of freedom into account [Cl-C and C-Br stretching modes (quantum numbers {upsilon}{sub 3}{sup '} and {upsilon}{sub 3}); totally symmetric modes of the methyl group, i.e., C-H stretching ({upsilon}{sub 1}{sup '} and {upsilon}{sub 1}) and umbrella bending vibrations ({upsilon}{sub 2}{sup '} and {upsilon}{sub 2})]. Diagonalization of the Hamiltonian was performed employing the Lanczos algorithm with a variation of partial reorthogonalization. A narrow grid in the total energy was employed so that long-living resonance states could be resolved and extracted. While excitation of the reactant umbrella bending mode already leads to a considerable enhancement of the reaction probability, its combination with vibrational excitation of the broken C-Br bond, (0, 1, 1), results in a strong synergic effect that can be rationalized by the similarity with the classical transitional normal mode. Exciting the C-H stretch has a non-negligible effect on the reaction probability, while for larger translational energies this mode follows the expected spectatorlike behavior. Combination of C-Br stretch and symmetric C-H, (1,0,1), stretch does not show a cooperative effect. Contrary to the spectator mode concept, energy originally stored in the C-H stretching mode is by no means conserved, but almost completely released in other modes of the reaction products. Products are most likely formed in states with a high degree of excitation in the new C-Cl bond, while the internal modes of

  20. Modulation of the fluorescence yield in heliobacterial cells by induction of charge recombination in the photosynthetic reaction center.

    PubMed

    Redding, Kevin E; Sarrou, Iosifina; Rappaport, Fabrice; Santabarbara, Stefano; Lin, Su; Reifschneider, Kiera T

    2014-05-01

    Heliobacteria contain a very simple photosynthetic apparatus, consisting of a homodimeric type I reaction center (RC) without a peripheral antenna system and using the unique pigment bacteriochlorophyll (BChl) g. They are thought to use a light-driven cyclic electron transport pathway to pump protons, and thereby phosphorylate ADP, although some of the details of this cycle are yet to be worked out. We previously reported that the fluorescence emission from the heliobacterial RC in vivo was increased by exposure to actinic light, although this variable fluorescence phenomenon exhibited very different characteristics to that in oxygenic phototrophs (Collins et al. 2010). Here, we describe the underlying mechanism behind the variable fluorescence in heliobacterial cells. We find that the ability to stably photobleach P800, the primary donor of the RC, using brief flashes is inversely correlated to the variable fluorescence. Using pump-probe spectroscopy in the nanosecond timescale, we found that illumination of cells with bright light for a few seconds put them in a state in which a significant fraction of the RCs underwent charge recombination from P800 (+)A0 (-) with a time constant of ~20 ns. The fraction of RCs in the rapidly back-reacting state correlated very well with the variable fluorescence, indicating that nearly all of the increase in fluorescence could be explained by charge recombination of P800 (+)A0 (-), some of which regenerated the singlet excited state. This hypothesis was tested directly by time-resolved fluorescence studies in the ps and ns timescales. The major decay component in whole cells had a 20-ps decay time, representing trapping by the RC. Treatment of cells with dithionite resulted in the appearance of a ~18-ns decay component, which accounted for ~0.6 % of the decay, but was almost undetectable in the untreated cells. We conclude that strong illumination of heliobacterial cells can result in saturation of the electron acceptor pool

  1. Modulation of the fluorescence yield in heliobacterial cells by induction of charge recombination in the photosynthetic reaction center.

    PubMed

    Redding, Kevin E; Sarrou, Iosifina; Rappaport, Fabrice; Santabarbara, Stefano; Lin, Su; Reifschneider, Kiera T

    2014-05-01

    Heliobacteria contain a very simple photosynthetic apparatus, consisting of a homodimeric type I reaction center (RC) without a peripheral antenna system and using the unique pigment bacteriochlorophyll (BChl) g. They are thought to use a light-driven cyclic electron transport pathway to pump protons, and thereby phosphorylate ADP, although some of the details of this cycle are yet to be worked out. We previously reported that the fluorescence emission from the heliobacterial RC in vivo was increased by exposure to actinic light, although this variable fluorescence phenomenon exhibited very different characteristics to that in oxygenic phototrophs (Collins et al. 2010). Here, we describe the underlying mechanism behind the variable fluorescence in heliobacterial cells. We find that the ability to stably photobleach P800, the primary donor of the RC, using brief flashes is inversely correlated to the variable fluorescence. Using pump-probe spectroscopy in the nanosecond timescale, we found that illumination of cells with bright light for a few seconds put them in a state in which a significant fraction of the RCs underwent charge recombination from P800 (+)A0 (-) with a time constant of ~20 ns. The fraction of RCs in the rapidly back-reacting state correlated very well with the variable fluorescence, indicating that nearly all of the increase in fluorescence could be explained by charge recombination of P800 (+)A0 (-), some of which regenerated the singlet excited state. This hypothesis was tested directly by time-resolved fluorescence studies in the ps and ns timescales. The major decay component in whole cells had a 20-ps decay time, representing trapping by the RC. Treatment of cells with dithionite resulted in the appearance of a ~18-ns decay component, which accounted for ~0.6 % of the decay, but was almost undetectable in the untreated cells. We conclude that strong illumination of heliobacterial cells can result in saturation of the electron acceptor pool

  2. Increasing cDNA Yields from Single-cell Quantities of mRNA in Standard Laboratory Reverse Transcriptase Reactions using Acoustic Microstreaming

    PubMed Central

    Boon, Wah Chin; Petkovic-Duran, Karolina; Zhu, Yonggang; Manasseh, Richard; Horne, Malcolm K.; Aumann, Tim D.

    2011-01-01

    Correlating gene expression with cell behavior is ideally done at the single-cell level. However, this is not easily achieved because the small amount of labile mRNA present in a single cell (1-5% of 1-50pg total RNA, or 0.01-2.5pg mRNA, per cell 1) mostly degrades before it can be reverse transcribed into a stable cDNA copy. For example, using standard laboratory reagents and hardware, only a small number of genes can be qualitatively assessed per cell 2. One way to increase the efficiency of standard laboratory reverse transcriptase (RT) reactions (i.e. standard reagents in microliter volumes) comprising single-cell amounts of mRNA would be to more rapidly mix the reagents so the mRNA can be converted to cDNA before it degrades. However this is not trivial because at microliter scales liquid flow is laminar, i.e. currently available methods of mixing (i.e. shaking, vortexing and trituration) fail to produce sufficient chaotic motion to effectively mix reagents. To solve this problem, micro-scale mixing techniques have to be used 3,4. A number of microfluidic-based mixing technologies have been developed which successfully increase RT reaction yields 5-8. However, microfluidics technologies require specialized hardware that is relatively expensive and not yet widely available. A cheaper, more convenient solution is desirable. The main objective of this study is to demonstrate how application of a novel "micromixing" technique to standard laboratory RT reactions comprising single-cell quantities of mRNA significantly increases their cDNA yields. We find cDNA yields increase by approximately 10-100-fold, which enables: (1) greater numbers of genes to be analyzed per cell; (2) more quantitative analysis of gene expression; and (3) better detection of low-abundance genes in single cells. The micromixing is based on acoustic microstreaming 9-12, a phenomenon where sound waves propagating around a small obstacle create a mean flow near the obstacle. We have developed an

  3. Extended active space CASSCF/MRSD CI calculations of the barrier height for the reaction O + H2 yields OH + H

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1987-01-01

    The convergence of the barrier height for the O + H2 yields OH + H reaction is studied as a function of the size of the active space in the CASSCF calculation and the size of the basis set. The basis set employed in this study is described. The sources of the differences between the POL-CI and MRSD-CI calculations for barrier height are examined. It is observed that the barrier height is rapidly convergent with respect to the expansion of the active space. The effects of adding active orbitals on the barrier height are investigated. The barrier height estimated from corrected MRSD-CI data is 12.4 kcal/mol.

  4. State-to-state rates for the D + H2(v = 1, j = 1) yield HD(v-prime, j-prime) + H reaction - Predictions and measurements

    NASA Technical Reports Server (NTRS)

    Neuhauser, Daniel; Judson, Richard S.; Kouri, Donald J.; Adelman, David E.; Shafer, Neil E.; Kliner, Dahv A. V.; Zare, Richard N.

    1992-01-01

    A fully quantal wavepacket approach to reactive scattering in which the best available H3 potential energy surface was used enabled a comparison with experimentally determined rates for the D + H2(v = 1, j = 1) yield HD(v-prime = 0, 1, 2; j-prime) + H reaction at significantly higher total energies (1.4 to 2.25 electron volts) than previously possible. The theoretical results are obtained over a sufficient range of conditions that a detailed simulation of the experiment was possible, thus making this a definitive comparison of experiment and theory. Good to excellent agreement is found for the vibrational branching ratios and for the rotational distributions within each product vibrational level. However, the calculated rotational distributions are slightly hotter than the experimentally measured ones.

  5. The nature and role of quantized transition states in the accurate quantum dynamics of the reaction O + H2 yields OH + H

    NASA Technical Reports Server (NTRS)

    Chatfield, David C.; Friedman, Ronald S.; Lynch, Gillian C.; Truhlar, Donald G.; Schwenke, David W.

    1993-01-01

    Accurate quantum mechanical dynamics calculations are reported for the reaction probabilities of O(3P) + H2 yields OH + H with zero total angular momentum on a single potential energy surface. The results show that the reactive flux is gated by quantized transition states up to the highest energy studied, which corresponds to a total energy of 1.90 eV. The quantized transition states are assigned and compared to vibrationally adiabatic barrier maxima; their widths and transmission coefficients are determined; and they are classified as variational, supernumerary of the first kind, and supernumerary of the second kind. Their effects on state-selected and state-to-state reactivity are discussed in detail.

  6. Study of the {gamma}d {yields} K{sup +}K{sup -}np reaction and an alternative explanation for the ''{Theta}{sup +}'' peak

    SciTech Connect

    Oset, E.; Torres, A. Martinez

    2011-10-24

    We look for an explanation of the peak in the K{sup +}n invariant mass distribution of the {gamma}d {yields} K{sup +}K{sup -}n p reaction that was associated to the {Theta}{sup +}(1540) pentaquark at LEPS. For this we develop a theoretical model adapted to the experiment. The study shows that the method used in the experiment to associate momenta to the undetected proton and neutron, together with the chosen cuts, necessarily creates an artificial broad peak in the assumed K{sup +}n invariant mass in the region of the claimed {Theta}{sup +}(1540), such that the remaining strength seen for the experimental peak is compatible with a fluctuation of 2{sigma} significance.

  7. Hermes III endpoint energy calculation from photonuclear activation of 197Au and 58Ni foils

    SciTech Connect

    Parzyck, Christopher Thomas

    2014-09-01

    A new process has been developed to characterize the endpoint energy of HERMES III on a shot-to-shot basis using standard dosimetry tools from the Sandia Radiation Measurements Laboratory. Photonuclear activation readings from nickel and gold foils are used in conjunction with calcium fluoride thermoluminescent dosimeters to derive estimated electron endpoint energies for a series of HERMES shots. The results are reasonably consistent with the expected endpoint voltages on those shots.

  8. The dependence of rate coefficients and product yields upon fluence, intensity, and time in unimolecular reactions induced by monochromatic infrared radiation

    NASA Astrophysics Data System (ADS)

    Quack, M.; Humbert, P.; van den Bergh, H.

    1980-07-01

    The influence of the three parameters (with two degrees of freedom) fluence, intensity, and time on rate coefficients and product yields in collisionless Unimolecular Reactions Induced by Monochromatic Infrared Radiation (URIMIR) is discussed in some detail in terms of the recently proposed logarithmic reactant fluence plots. Model calculations for several archetypes of such plots are presented, based on solutions of the Pauli master equation and solutions of the quantum mechanical equations of motion for spectra involving many states at each level of excitation. Linear diagrams, turnups, and turnovers are found and are discussed systematically. Experimental examples re-evaluated from the literature and new measurements on the laser induced decomposition of CF2HCl are reported which nicely illustrate the various theoretical possibilities. Steady state rate coefficients for six molecules are evaluated and summarized. In some situations the intrinsic nonlinear intensity dependence of the steady state rate coefficients and deviations from simple fluence dependence of the product yields both before and at steady state are shown to be important theoretically and experimentally. The role of the reducibility of the rate coefficient matrix is discussed in connection with turnovers and with the strong influence of initial temperature that is found in the laser induced decomposition of CF2HCl.

  9. Investigation of near-threshold eta-meson production in the reaction {pi}{sup -}p{yields} {eta}n

    SciTech Connect

    Bayadilov, D. E.; Beloglazov, Yu. A.; Gridnev, A. B.; Kozlenko, N. G.; Kruglov, S. P.; Kulbardis, A. A.; Lopatin, I. V.; Novinskiy, D. V.; Radkov, A. K.; Sumachev, V. V.; Filimonov, E. A.; Shvedchikov, A. V.

    2012-08-15

    Differential and total cross sections for eta-meson production in the reaction {pi}{sup -}p {yields} {eta}n were measured within the experimental program eta-meson physics implemented in the pion channel of the synchrocyclotron of the Petersburg Nuclear Physics Institute (PNPI, Gatchina). These measurements were performed at incident-pion momenta (700, 710, 720, and 730 MeV/c) in the vicinity of the threshold for the process under study by using the neutral-meson spectrometer designed and created at the Meson Physics Laboratory of PNPI. It is shown that, in the immediate vicinity of the threshold (685 MeV/c), the process of eta-meson production proceeds predominantly via S{sub 11}(1535)-resonance formation followed by the decay S{sub 11}(1535) {yields} {eta}n (the respective branching fraction is Br Almost-Equal-To 60%), but that, as the momentum of incident pions increases, the role of the D wave becomes ever more important. A detailed analysis of this effect indicates that it is due to the increasing contribution of the D{sub 13}(1520) resonance. Although the branching fraction of the decay of this resonance through the {eta}n channel is assumed to be very small (BR Almost-Equal-To 0.24%), the effect is enhanced owing to the interference between the D wave and the dominant resonance S{sub 11}(1535).

  10. Measurement of Quantum Yield, Quantum Requirement, and Energetic Efficiency of the O2-Evolving System of Photosynthesis by a Simple Dye Reaction

    NASA Astrophysics Data System (ADS)

    Ros Barcelò, A.; Zapata, J. M.

    1996-11-01

    Photosynthesis is the conversion of absorbed radiant energy from sunlight into various forms of chemical energy by the chloroplasts of higher green plants. The overall process of photosynthesis consists of the oxidation of water (with the release of O2 as a product) and the reduction of CO2 to form carbohydrates. In the test tube electrons produced by the photolytic cleavage of H2) may be deviated from their true acceptor by inserting a suitable dye in the electron chain; i.e.; 2,6-dichlorophenol indophenol (DCPIP) (E'o = + 0.217 V), which is blue in the oxidized quinone form and which becomes colorless when reduced to the phenolic form. This dye-electrom acceptor also has the advantage that it accepts electroms directly from the quinone (Qa) electron-acceptor of the photosystem II< the reaction center associated with the O2-evolving (or water-slplitting) system. Based in the bleaching of DCPIP by illuminated spinach leaf chloroplasts, a classroom laboratory protocol has been developed to determine the quantum yield (QY = micromol O2 s-1 / micromol photons s-1, the quantum requirement (1/QY) and the energetic efficiency (f = chemical energy stored / light energy supplied) of the O2-evolving system of photosynthesis. Although values for the quantum yield, the quantum requirement and the energetic efficiency calculated in the classroom laboratory differ widely from those expected theoretically, these calculations are useful for illustrating the transformation of light energy into chemical energy by the chloroplasts of green plants.

  11. Nonadiabatic dynamics in the CH{sub 3}+HCl{yields}CH{sub 4}+Cl({sup 2}P{sub J}) reaction

    SciTech Connect

    Retail, Bertrand; Pearce, Julie K.; Murray, Craig; Orr-Ewing, Andrew J.

    2005-03-08

    Nonadiabatic dynamics in the title reaction have been investigated by 2+1 REMPI detection of the Cl({sup 2}P{sub 3/2}) and Cl{sup *}({sup 2}P{sub 1/2}) products. Reaction was initiated by photodissociation of CH{sub 3}I at 266 nm within a single expansion of a dilute mixture of CH{sub 3}I and HCl in argon, giving a mean collision energy of 7800 cm{sup -1} in the center-of-mass frame. Significant production of Cl* was observed, with careful checks made to ensure that no additional photochemical or inelastic scattering sources of Cl* perturbed the measurements. The fraction of the total yield of Cl({sup 2}P{sub J}) atoms formed in the J=(1/2) level at this collision energy was 0.150{+-}0.024, and must arise from nonadiabatic dynamics because the ground potential energy surface correlates to CH{sub 4}+Cl({sup 2}P{sub 3/2}) products.

  12. CH3CO + O2 + M (M = He, N2) Reaction Rate Coefficient Measurements and Implications for the OH Radical Product Yield.

    PubMed

    Papadimitriou, Vassileios C; Karafas, Emmanuel S; Gierczak, Tomasz; Burkholder, James B

    2015-07-16

    The gas-phase CH3CO + O2 reaction is known to proceed via a chemical activation mechanism leading to the formation of OH and CH3C(O)OO radicals via bimolecular and termolecular reactive channels, respectively. In this work, rate coefficients, k, for the CH3CO + O2 reaction were measured over a range of temperature (241-373 K) and pressure (0.009-600 Torr) with He and N2 as the bath gas and used to characterize the bi- and ter-molecular reaction channels. Three independent experimental methods (pulsed laser photolysis-laser-induced fluorescence (PLP-LIF), pulsed laser photolysis-cavity ring-down spectroscopy (PLP-CRDS), and a very low-pressure reactor (VLPR)) were used to characterize k(T,M). PLP-LIF was the primary method used to measure k(T,M) in the high-pressure regime under pseudo-first-order conditions. CH3CO was produced by PLP, and LIF was used to monitor the OH radical bimolecular channel reaction product. CRDS, a complementary high-pressure method, measured k(295 K,M) over the pressure range 25-600 Torr (He) by monitoring the temporal CH3CO radical absorption following its production via PLP in the presence of excess O2. The VLPR technique was used in a relative rate mode to measure k(296 K,M) in the low-pressure regime (9-32 mTorr) with CH3CO + Cl2 used as the reference reaction. A kinetic mechanism analysis of the combined kinetic data set yielded a zero pressure limit rate coefficient, kint(T), of (6.4 ± 4) × 10(-14) exp((820 ± 150)/T) cm(3) molecule(-1) s(-1) (with kint(296 K) measured to be (9.94 ± 1.3) × 10(-13) cm(3) molecule(-1) s(-1)), k0(T) = (7.39 ± 0.3) × 10(-30) (T/300)(-2.2±0.3) cm(6) molecule(-2) s(-1), and k∞(T) = (4.88 ± 0.05) × 10(-12) (T/300)(-0.85±0.07) cm(3) molecule(-1) s(-1) with Fc = 0.8 and M = N2. A He/N2 collision efficiency ratio of 0.60 ± 0.05 was determined. The phenomenological kinetic results were used to define the pressure and temperature dependence of the OH radical yield in the CH3CO + O2 reaction. The

  13. Storage conditions of blood samples and primer selection affect the yield of cDNA polymerase chain reaction products of hepatitis C virus.

    PubMed Central

    Cuypers, H T; Bresters, D; Winkel, I N; Reesink, H W; Weiner, A J; Houghton, M; van der Poel, C L; Lelie, P N

    1992-01-01

    We have noticed that suboptimal specimen processing and storage conditions may cause false-negative results in the detection of hepatitis C virus (HCV) RNA in plasma or serum. To establish the influence of specimen handling in a serological laboratory on the rate of detection of HCV RNA by the cDNA polymerase chain reaction (cDNA-PCR), we tested routine serum samples and fresh-frozen plasma samples from the same bleeding from confirmed anti-HCV-positive blood donors. When primers from the NS3/NS4 region were used, HCV RNA was detected in fresh-frozen plasma from 67% of the donors, whereas positive results were obtained with only 50% of the serum samples that had been subjected to routine serological procedures. Analysis of the same samples with primers from the highly conserved 5'-terminal region (5'-TR) revealed an HCV RNA detection rate of 92% for both the routine and the fresh-frozen samples. However, the yield of the amplification product in routine samples was strongly reduced compared with that in fresh-frozen plasma. Comparison of both primer sets for cDNA-PCR showed that the 5'-TR primer set was 10- to 100-fold more effective in detecting HCV RNA. We also analyzed the effect of storage of whole EDTA-blood and serum at room temperature and at 4 degrees C on the yield of the amplification product. A rapid decline in detectable HCV RNA of 3 to 4 log units was observed within 14 days when whole blood and serum were stored at room temperature. By contrast, no perceptible reduction in the cDNA-PCR signal was found in freshly prepared serum stored at 4 degrees C. Images PMID:1333489

  14. Benchmark validation comparisons of measured and calculated delayed neutron detector responses for a pulsed photonuclear assessment technique

    SciTech Connect

    J. W. Sterbentz; J. L. Jones; W. Y. Yoon; D. R. Norman; K. J. Haskell

    2007-08-01

    An MCNPX-based calculational methodology has been developed to numerically simulate the complex electron–photon–neutron transport problem for the active interrogation system known as the pulsed photonuclear assessment (PPA) technique. The PPA technique uses a pulsed electron accelerator to generate bremsstrahlung photons in order to fission nuclear materials. Delayed neutron radiation is then detected with helium-3 neutron detectors as evidence of the nuclear material presence. Two experimental tests were designed, setup and run to generate experimental data for benchmarking purposes. The first test irradiated depleted uranium in air, and the second test, depleted uranium in a simulated cargo container (plywood pallet), using 10 MeV electron pulses. Time-integrated, post-flash, delayed neutron counts were measured and compared to calculated count predictions in order to benchmark the calculational methodology and computer models. Comparisons between the experimental measurements and numerical predictions of the delayed neutron detector responses resulted in reasonable experiment/calculated ratios of 1.42 and 1.06 for the two tests. High-enriched uranium (HEU) predictions were also made with the benchmarked models.

  15. Benchmark validation comparisons of measured and calculated delayed neutron detector responses for a pulsed photonuclear assessment technique

    NASA Astrophysics Data System (ADS)

    Sterbentz, J. W.; Jones, J. L.; Yoon, W. Y.; Norman, D. R.; Haskell, K. J.

    2007-08-01

    An MCNPX-based calculational methodology has been developed to numerically simulate the complex electron-photon-neutron transport problem for the active interrogation system known as the pulsed photonuclear assessment (PPA) technique. The PPA technique uses a pulsed electron accelerator to generate bremsstrahlung photons in order to fission nuclear materials. Delayed neutron radiation is then detected with helium-3 neutron detectors as evidence of the nuclear material presence. Two experimental tests were designed, setup and run to generate experimental data for benchmarking purposes. The first test irradiated depleted uranium in air, and the second test, depleted uranium in a simulated cargo container (plywood pallet), using 10 MeV electron pulses. Time-integrated, post-flash, delayed neutron counts were measured and compared to calculated count predictions in order to benchmark the calculational methodology and computer models. Comparisons between the experimental measurements and numerical predictions of the delayed neutron detector responses resulted in reasonable experiment/calculated ratios of 1.42 and 1.06 for the two tests. High-enriched uranium (HEU) predictions were also made with the benchmarked models.

  16. Measurements of yields of fission products in the reaction of {sup 238}U with high-energy p, d and n beams

    SciTech Connect

    Nolen, J.A.; Ahmad, I.; Back, B.B.

    1995-08-01

    An experiment was performed at the Michigan State University cyclotron to determine the yields of neutron-rich fission products in the reaction of {sup 238}U with 100-MeV neutrons, 200-MeV deuterons and 200-MeV protons. Several 1-mm-thick {sup 238}U foils were irradiated for 100-second intervals sequentially for each configuration and the ten spectra were added for higher statistics. The three successive spectra, each for a 40 s period, were accumulated for each sample. Ten foils were irradiated. Successive spectra allowed us to determine approximate half-lives of the gamma peaks. Several arrangements, which were similar to the setup we plan to use in our radioactive beam proposal, were used for the production of fission products. For the high-energy neutron irradiation, U foils were placed after a 5-inch-long, 1-inch-diameter Be cylinder which stopped the 200-MeV deuteron beam generating 100-MeV neutrons. Arrangements for deuteron irradiation included direct irradiation of U foils, placing U foils after different lengths of (0.5 inch, 1.0 inch and 1.5 inch) 2-inch diameter U cylinder. Since the deuteron range in uranium is 17 mm, some of the irradiations were due to the secondary neutrons from the deuteron-induced fission of U. Similar arrangements were also used for the 200-MeV proton irradiation of the {sup 238}U foils. In all cases, several neutron-rich fission products were identified and their yields determined. In particular, we were able to observe Sn in all the runs and determine its yield. The data show that with our proposed radioactive device we will be able to produce more than 10{sup 12} {sup 132}Sn atoms per second in the target. Assuming an overall efficiency of 1 %, we will be able to deliver one particle nanoampere of {sup 132}Sn beam at a target location. Detailed analysis of the {gamma}-ray spectra is in progress.

  17. Conservation of angular momentum in polyatomic photochemical reactions: H2CO(v,J,Ka,Kc)yields+HCO(N,Ka,Kc,J)

    NASA Astrophysics Data System (ADS)

    Waugh, Siobhan E.; Terentis, Andrew C.; Metha, Gregory F.; Kable, Scott H.

    1998-05-01

    The photodissociation dynamics of the reaction H2CO + hv yields H + HCO have been investigated just above the reaction threshold. Formaldehyde was excited into specific J, Ka, Kc rotational states of three vibrational levels in the A(1A2) state. Molecules in these states undergo internal conversion back to the X (1A1) ground state on which the radical fragments are formed. The ensuring distribution of rotational energy in the HCO fragment was measured as a function of the N, Ka, Kc and J equals N +/- S quantum numbers of the fragment, and also the initial v, J, Ka, Kc quantum numbers of the parent. In a previous publication we investigated the dynamics of this reaction at low available energy and concluded that when only the N and Ka quantum numbers of both formaldehyde and the formyl radical are considered, the distributions are modeled well by phase space theory (PST). This is consistent with statistical dynamics on a bound, barrier less surface. Within approximately equals 10 cm-1 of the energetic threshold, a centrifugal barrier affected the populations by inhibiting product states that require large orbital angular momentum. Resolution of Kc in the parent and product gave large deviations from the PST model, however little data were available to quantify this observation. In this work we have extended then umber of initially excited H2CO levels to explore this 'Kc effect' further. We find that in the HCO Kc state or the lower energy state. This preference is consistent over all N for any particular initial H2CO state but may very for different initial states. Over the seven initial states probed here, four favored Kc and the other three Kc. A correlation between this Kc preference and the initial state was observed: odd Kc formaldehyde states produce Kc preference in HCO and vice versa for initially even Kc states. A comparison with one previous observation of this effect is presented, however no concrete explanation can be offered at this stage.

  18. Electrochemical titration of the cytochrome hemes in the Rhodopseudomonas viridis reaction center. Cyclic equilibrium titrations yield midpoint potentials without evidence for heme cooperativity.

    PubMed

    Fritz, F; Moss, D A; Mäntele, W

    1992-02-01

    The redox and spectral characteristics of the 4-heme cytochrome c unit of the photochemical reaction center from Rhodopseudomonas viridis were studied by a combination of protein electrochemistry and spectroscopy using an ultra thin-layer spectroelectrochemical cell. Quantitative and reversible reduction of the high-potential and the low-potential hemes was performed in cyclic titrations to record the optical difference spectra in the alpha-band region. The titration of the absorbance from the high-potential hemes can be approximated with a sum of 2 Nernst functions with Em = 0.113 V and Em = 0.175 V. The corresponding titration of the absorbance from the low-potential hemes yielded Em = -0.257 V and Em = -0.175 V (all potentials quoted vs. Ag/AgC1/3 M KCl; add 0.208 V for potentials vs. standard hydrogen electrode). The high-potential hemes equilibrate rapidly and titrate identically for oxidative and reductive titrations. Under identical conditions, the low-potential hemes exhibit a hysteresis, thus indicating much slower equilibration with the applied potential. Cyclic titrations with increasing equilibration periods, however, indicate the disappearance of the hysteresis for equilibration periods approximately twice as long as for the high-potential hemes. We take this as evidence for a slower internal equilibration, but against a cooperativity of the low-potential hemes as observed for other multi-heme cytochromes.

  19. Crystal chemistry and photomechanical behavior of 3,4-dimethoxycinnamic acid: correlation between maximum yield in the solid-state topochemical reaction and cooperative molecular motion

    PubMed Central

    Mishra, Manish Kumar; Mukherjee, Arijit; Ramamurty, Upadrasta; Desiraju, Gautam R.

    2015-01-01

    A new monoclinic polymorph, form II (P21/c, Z = 4), has been isolated for 3,4-dimethoxycinnamic acid (DMCA). Its solid-state 2 + 2 photoreaction to the corresponding α-truxillic acid is different from that of the first polymorph, the triclinic form I (, Z = 4) that was reported in 1984. The crystal structures of the two forms are rather different. The two polymorphs also exhibit different photomechanical properties. Form I exhibits photosalient behavior but this effect is absent in form II. These properties can be explained on the basis of the crystal packing in the two forms. The nanoindentation technique is used to shed further insights into these structure−property relationships. A faster photoreaction in form I and a higher yield in form II are rationalized on the basis of the mechanical properties of the individual crystal forms. It is suggested that both Schmidt-type and Kaupp-type topochemistry are applicable for the solid-state trans-cinnamic acid photodimerization reaction. Form I of DMCA is more plastic and seems to react under Kaupp-type conditions with maximum molecular movements. Form II is more brittle, and its interlocked structure seems to favor Schmidt-type topochemistry with minimum molecular movement. PMID:26594373

  20. Microwave irradiation as a versatile tool for increasing reaction rates and yields in synthesis of optically active polyamides containing flexible L-leucine amino acid.

    PubMed

    Mallakpour, Shadpour; Zadehnazari, Amin

    2010-05-01

    In this investigation, a series of thermally stable and optically active polyamides (PA)s containing bulky pendant chiral functionality from polymerization of a diacid monomer containing rigid phthalimide and flexible L-leucine groups, (2S)-5-[4-(4-methyl-2-phthalimidylpentanoylamino)benzoylamino]isophthalic acid with several aromatic and aliphatic diisocyanates such as 4,4'-methylenebis(phenyl isocyanate), toluylene-2,4-diisocyanate, isophorone diisocyanate, and hexamethylene diisocyanate under gradual heating method were prepared and compared with microwave-assisted polycondensation method. The polymerization reactions occurred rapidly under microwave irradiation and produced a series of PAs with good yields and moderate inherent viscosities of 0.26-0.68 dL/g. All of the new PAs showed good solubility and were readily dissolved in aprotic organic solvents. The resulting polymers were characterized by FT-IR, (1)H NMR spectroscopy, and elemental analysis technique. Thermal stability and thermal properties of PAs were evaluated by thermogravimetric analysis and differential scanning calorimetry. The interpretation of kinetic parameters (E, Delta H, Delta S, and Delta G) of thermal decomposition stages have been evaluated using Coats-Redfern equations. PMID:19756941

  1. Forward-Angle Yields Of {sup 6,8}He and {sup 9}Li Isotopes in {sup 11}B(33 AMeV)+{sup 9}Be Reaction

    SciTech Connect

    Artukh, A. G.; Klygin, S. A.; Kononenko, G. A.; Teterev, Yu. G.; Sereda, Yu. M.; Vorontsov, A. N.; Erdemchimeg, B.; Kaminski, G.; Vishnevski, I. N.; Ostashko, V. V.; Pavlenko, Yu. N.; Kovtun, V. E.; Koshchiy, E. I.; Foshchan, A. G.

    2010-04-30

    Using fragment-separator COMBAS [1] in forward-angle measurements the velocity, isotopic and element distributions of products with Z<7 in {sup 11}B(33 AMeV)+{sup 9}Be reaction have been studied. The yields of {sup 6,8}He and {sup 9}Li isotopes on the {sup 9}Be thick target (332.6 mg/cm{sup 2}) as a function of momentum acceptance of fragment -separator COMBAS have been measured. The production rates per 1pmuA of the primary beam of exotic nuclei of {sup 6}He(6.9centre dot10{sup 5} pps), {sup 8}He(2centre dot10{sup 4} pps) and {sup 9}Li(4.3centre dot10 {sup 5}pps) which can be used as secondary radioactive beams of halo -like nuclei have been determined. The two-neutron halo nuclei {sup 6,8}He and {sup 9}Li are of great current interest both as very neutron-rich nuclei with a significant neutron skin and in understanding the interactions of very neutron-rich nuclei. The {sup 9}Li beam may be helpful in understanding of sub barrier fusion enhancement independent of the presence of the halo nucleons in used neutron--rich projectiles.

  2. Measurements of the reaction e/+/e/-/ yielding gamma-gamma at center-of-mass energies in the range 6.2-7.4 GeV

    NASA Technical Reports Server (NTRS)

    Hilger, E.; Beron, B. L.; Carrington, R. L.; Ford, R. L.; Hill, W. T.; Hofstadter, R.; Hughes, E. B.; Liberman, A. D.; Martin, T. W.; Oneill, L. H.

    1977-01-01

    The cross section for the pair-annihilation reaction e(+)e(-) yields gamma-gamma were measured at center-of-mass energies in the range 6.2-7.4 GeV and at production angles close to 90 deg. The experimental apparatus consisted of two identical spectrometers which were set to view the luminous region at SPEAR-II from opposite directions at an azimuthal angle of 45 deg. In each spectrometer there was a NaI(TI) crystal 20 radiation lengths thick and 30 in. in diameter to measure the gamma-ray energies. Annihilation events were detected by an electronic trigger which required only the observation in coincidence of more than 0.2 GeV in each NaI(TI) crystal within + or - 15 nsec of the crossing beams. The observed rates of pair-annihilation events were found to be in agreement with those expected from quantum electrodynamics (QED) at all the center-of-mass energies used.

  3. New approach to analyzing and evaluating cross sections for partial photoneutron reactions

    SciTech Connect

    Varlamov, V. V. Ishkhanov, B. S.; Orlin, V. N.

    2012-11-15

    The presence of substantial systematic discrepancies between the results of different experiments devoted to determining cross sections for partial photoneutron reactions-first of all, ({gamma}, n), ({gamma}, 2n), and ({gamma}, 3n) reactions-is a strong motivation for studying the reliability and authenticity of these data and for developing methods for taking into account and removing the discrepancies in question. In order to solve the first problem, we introduce objective absolute criteria involving transitional photoneutron-multiplicity functions F{sub 1}, F{sub 2}, F{sub 3}, Horizontal-Ellipsis ; by definition, their values cannot exceed 1.0, 0.5, 0.33, Horizontal-Ellipsis , respectively. With the aim of solving the second problem, we propose a new experimental-theoretical approach. In this approach, reaction cross sections are evaluated by simultaneously employing experimental data on the cross section for the total photoneutron yield, {sigma}{sup expt}({gamma}, xn) = {sigma}{sup expt}({gamma}, n) + 2{sigma}{sup expt}({gamma}, 2n) + 3{sigma}{sup expt}({gamma}, 3n) + Horizontal-Ellipsis , which are free from drawbacks plaguing experimental methods for sorting neutrons in multiplicity, and the results obtained by calculating the functions F{sub theor}{sup 1}, F{sub theor}{sup 2}, F{sub theor}{sup 3}, Horizontal-Ellipsis on the basis of the modern model of photonuclear reactions. The reliability and authenticity of data on the cross sections for ({gamma}, n), ({gamma}, 2n), and ({gamma}, 3n) partial reactions-{sigma}{sup eval}({gamma}, in) = F{sub i}{sup theor}{sigma}{sup expt}({gamma}, xn)-were evaluated for the {sup 90}Zr, {sup 115}In, {sup 112,114,116,117,118,119,120,122,124}Sn, {sup 159}Tb, and {sup 197}Au nuclei.

  4. Photodissociation dynamics of the reaction H{sub 2}CO{yields}H+HCO via the singlet (S{sub 0}) and triplet (T{sub 1}) surfaces

    SciTech Connect

    Yin, Hong-Ming; Rowling, Steven J.; Buell, Alexander; Kable, Scott H.

    2007-08-14

    We have explored the photodissociation dynamics of the reaction H{sub 2}CO+h{nu}{yields}H+HCO in the range of 810-2600 cm{sup -1} above the reaction threshold. Supersonically cooled formaldehyde was excited into selected J{sub Ka,Kc} rotational states of six vibrational levels (1{sup 1}4{sup 1}, 5{sup 1}, 2{sup 2}6{sup 1}, 2{sup 2}4{sup 3}, 2{sup 3}4{sup 1}, and 2{sup 4}4{sup 1}) in the A(tilde sign)({sup 1}A{sub 2}) state. The laser induced fluorescence spectra of the nascent HCO fragment provided detailed product state distributions. When formaldehyde was excited into the low-lying levels 1{sup 1}4{sup 1}, 5{sup 1}, and 2{sup 2}6{sup 1}, at E{sub avail}<1120 cm{sup -1}, the product state distribution can be modeled qualitatively by phase space theory. These dynamics are interpreted as arising from a reaction path on the barrierless S{sub 0} surface. When the initial states 2{sup 2}4{sup 3} and 2{sup 3}4{sup 1} were excited (E{sub avail}=1120-1500 cm{sup -1}), a second type of product state distribution appeared. This second distribution peaked sharply at low N, K{sub a} and was severely truncated in comparison with those obtained from the lower lying states. At the even higher energy of 2{sup 4}4{sup 1} (E{sub avail}{approx_equal}2600 cm{sup -1}) the sharply peaked distribution appears to be dominant. We attribute this change in dynamics to the opening up of the triplet channel to produce HCO. The theoretical height of the barrier on the T{sub 1} surface lies between 1700 and 2100 cm{sup -1} and so we consider the triplet reaction to proceed via tunneling at the intermediate energies and proceed over the barrier at the higher energies. Considerable population was observed in the excited (0,0,1) state for all initial H{sub 2}CO states that lie above the appearance energy. Rotational populations in the (0,0,1) state dropped more rapidly with (N,K{sub a}) than did the equivalent populations in (0,0,0). This indicates that, although individual rotational states are

  5. The photonuclear neutron and gamma-ray backgrounds in the fast ignition experiment

    SciTech Connect

    Arikawa, Y.; Nagai, T.; Hosoda, H.; Abe, Y.; Kojima, S.; Fujioka, S.; Sarukura, N.; Nakai, M.; Shiraga, H.; Azechi, H.; Ozaki, T.

    2012-10-15

    In the fast-ignition scheme, very hard x-rays (hereinafter referred to as {gamma}-rays) are generated by Bremsstrahlung radiation from fast electrons. Significant backgrounds were observed around the deuterium-deuterium fusion neutron signals in the experiment in 2010. In this paper the backgrounds were studied in detail, based on Monte Carlo simulations, and they were confirmed to be {gamma}-rays from the target, scattered {gamma}-rays from the experimental bay walls ({gamma}{sup Prime }-rays), and neutrons generated by ({gamma}, n) reactions in either the target vacuum chamber or the diagnostic instruments ({gamma}-n neutrons).

  6. Time-dependent wave-packet quantum scattering study of the reactions D{sup -}+H{sub 2}{yields}H{sup -}+HD and H{sup -}+D{sub 2}{yields}D{sup -}+HD

    SciTech Connect

    Yao Li; Ju Liping; Han Keli; Chu Tianshu

    2006-12-15

    The cross sections of the title reactions were calculated as functions of collision energy in the range 0.2-2.4 eV on a potential energy surface of Panda and Sathyamurthy [J. Chem. Phys. 121, 9343 (2004)]. The calculated results with the Coriolis coupled method were found to be more consistent with the experimental ones than the centrifugal sudden approximation, thus suggesting that Coriolis coupling plays an important role in those reactions. A pronounced isotopic effect was also revealed and attributed to the significant difference of the effective potential barrier height in both reactions.

  7. Photo-nuclear astrophysics in NewSUBARU {gamma}-ray source

    SciTech Connect

    Hayakawa, Takehito

    2010-08-12

    A laser Compton scattering (LCS){gamma}-ray source has been installed at an electron storage ring NewSUBARU at SPring-8. We have studied the nuclear physics using this LCS g-ray source. The half-lives of unstable isotopes, {sup 184}Re and {sup 164}Ho{sup m}, produced by photo-induced reactions have been measured. These half-lives are shorter than previous recommended values by 7% and 3%, respectively. These changes of the half-lives affects to evaluation of cross-sections using the activation method. We have discussed a problem of the residual ratio of an isomer in {sup 180}Ta in supernova explosions. The unstable ground state and the metastable isomer are linked by ({gamma}, {gamma}') reactions. We have developed a new time-dependent model to calculate the isomer ratio in supernovae. The solar abundance of {sup 180}Ta is reproduced by the supernova neutrino process with the present calculated isomer ratio.

  8. Cross sections of the O{sup +}+H{sub 2}{yields}OH{sup +}+H ion-molecule reaction and isotopic variants (D{sub 2}, HD): Quasiclassical trajectory study and comparison with experiments

    SciTech Connect

    Martinez, Rodrigo; Sierra, Jose Daniel; Gonzalez, Miguel

    2005-11-01

    A dynamics study [cross section and microscopic mechanism versus collision energy (E{sub T})] of the reaction O{sup +}+H{sub 2}{yields}OH{sup +}+H, which plays an important role in Earth's ionosphere and interstellar chemistry, was conducted using the quasiclassical trajectory method, employing an analytical potential energy surface (PES) recently derived by our group [R. Martinez et al., J. Chem. Phys. 120, 4705 (2004)]. Experimental excitation functions for the title reaction, as well as its isotopic variants with D{sub 2} and HD, were near-quantitatively reproduced in the calculations in the very broad collision energy range explored (E{sub T}=0.01-6.0 eV). Intramolecular and intermolecular isotopic effects were also examined, yielding data in good agreement with experimental results. The reaction occurs via two microscopic mechanisms (direct and nondirect abstraction). The results were satisfactorily interpreted based on the reaction probability and the maximum impact parameter dependences with E{sub T}, and considering the influence of the collinear [OHH]{sup +} absolute minimum of the PES on the evolution from reactants to products. The agreement between theory and experiment suggests that the reaction mainly occurs through the lowest energy PES and nonadiabatic processes are not very important in the wide collision energy range analyzed. Hence, the PES used to describe this reaction is suitable for both kinetics and dynamics studies.

  9. Measurement of flux-weighted average cross-sections and isomeric yield ratios for 103Rh(γ,xn) reactions in the bremsstrahlung end-point energies of 55 and 60 MeV

    NASA Astrophysics Data System (ADS)

    Shakilur Rahman, Md.; Kim, Kwangsoo; Kim, Guinyun; Naik, Haladhara; Nadeem, Muhammad; Thi Hien, Nguyen; Shahid, Muhammad; Yang, Sung-Chul; Cho, Young-Sik; Lee, Young-Ouk; Shin, Sung-Gyun; Cho, Moo-Hyun; Woo Lee, Man; Kang, Yeong-Rok; Yang, Gwang-Mo; Ro, Tae-Ik

    2016-07-01

    We measured the flux-weighted average cross-sections and the isomeric yield ratios of 99m, g, 100m, g, 101m, g, 102m, gRh in the 103Rh( γ, xn) reactions with the bremsstrahlung end-point energies of 55 and 60MeV by the activation and the off-line γ-ray spectrometric technique, using the 100MeV electron linac at the Pohang Accelerator Laboratory (PAL), Korea. The flux-weighted average cross-sections were calculated by using the computer code TALYS 1.6 based on mono-energetic photons, and compared with the present experimental data. The flux-weighted average cross-sections of 103Rh( γ, xn) reactions in intermediate bremsstrahlung energies are the first time measurement and are found to increase from their threshold value to a particular value, where the other reaction channels open up. Thereafter, it decreases with bremsstrahlung energy due to its partition in different reaction channels. The isomeric yield ratios (IR) of 99m, g, 100m, g, 101m, g, 102m, gRh in the 103Rh( γ, xn) reactions from the present work were compared with the literature data in the 103Rh(d, x), 102-99Ru(p, x) , 103Rh( α, αn) , 103Rh( α, 2p3n) , 102Ru(3He, x), and 103Rh( γ, xn) reactions. It was found that the IR values of 102, 101, 100, 99Rh in all these reactions increase with the projectile energy, which indicates the role of excitation energy. At the same excitation energy, the IR values of 102, 101, 100, 99Rh are higher in the charged particle-induced reactions than in the photon-induced reaction, which indicates the role of input angular momentum.

  10. Energy dependence of state-to-state reaction probabilities forH{sub 2} + OH {yields} H + H{sub 2}O in six dimensions

    SciTech Connect

    Dai, J.; Zhu, W.; Zhang, J.Z.H.

    1996-08-15

    We report benchmark time-dependent quantum calculation ofstate-to-state reaction probabilities for the title reaction in fulldimensions (6D) using the widely used Schatz-Elgersma potential energysurface (PES). The time-dependent wave function is propagated using thediatom-diatom Jacobi coordinates and the energy-specific state-to-statereaction probabilities are obtained by using the correlation functionmethod. All results reported here are for reaction resulting from theground state of H{sub 2} + OH to various product states H + H{sub 2}Ofor total angular momentum J = 0. The present calculation shows thatalthough the total reaction probability is a smooth function of energy,the final state-specific reaction probabilities show oscillatorystructures as a function of collision energy for the title reaction. 19refs., 4 figs.

  11. Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linacs.

    PubMed

    Chibani, Omar; Ma, Chang-Ming Charlie

    2003-08-01

    primary electron energy shift. A Siemens 18 MV beam with 15 MeV (instead of 14 MeV) primary electrons would increase by 40% the neutron DER and by 210% the proton + alpha DER. Comparisons with measurements (neutron yields from different materials and neutron dose equivalent) are also presented. Using the NCRP risk assessment method, we found that the dose equivalent from leakage neutrons (at 50-cm off-axis distance) represent 1.1, 1.1, and 2.0% likelihood of fatal secondary cancer for a 70 Gy treatment delivered by the Siemens 18 MV, Varian 15 MV, and Varian 18 MV beams, respectively. PMID:12945965

  12. Search for the {theta}{sup +} via the K{sup +}p{yields}{pi}{sup +}X reaction with a 1.2 GeV/c K{sup +} beam

    SciTech Connect

    Miwa, K.; Dairaku, S.; Fujimura, H.; Funahashi, H.; Hayata, M.; Imai, K.; Kamigaito, S.; Miyabe, M.; Niiyama, M.; Saito, N.; Seki, Y.; Senzaka, K.; Shoji, K.; Nakajima, D.; Fujioka, H.; Maruta, T.; Takahashi, T. N.; Ajimura, S.; Arvieux, J.; Fukuda, T.

    2008-04-15

    The {theta}{sup +} was searched for via the K{sup +}p{yields}{pi}{sup +}X reaction using the 1.2 GeV/c K{sup +} beam at the K6 beam line of the KEK-PS 12 GeV Proton Synchrotron. In the missing mass spectrum of the K{sup +}p{yields}{pi}{sup +}X reaction, no clear peak structure was observed. Therefore a 90% C.L. upper limit of 3.5 {mu}b/sr was derived for the differential cross section averaged over 2 deg. to 22 deg. in the laboratory frame of the K{sup +}p{yields}{pi}{sup +}{theta}{sup +} reaction. This upper limit is much smaller than the theoretical calculation for the t-channel process where a K{sup 0}* is exchanged. From the present result, either the t-channel process is excluded or the coupling constant of g{sub K*N{theta}} is quite small.

  13. Photoneutron reactions in astrophysics

    SciTech Connect

    Varlamov, V. V. Ishkhanov, B. S.; Orlin, V. N.; Peskov, N. N.; Stopani, K. A.

    2014-12-15

    Among key problems in nuclear astrophysics, that of obtaining deeper insight into the mechanism of synthesis of chemical elements is of paramount importance. The majority of heavy elements existing in nature are produced in stars via radiative neutron capture in so-called s- and r processes, which are, respectively, slow and fast, in relation to competing β{sup −}-decay processes. At the same time, we know 35 neutron-deficient so-called bypassed p-nuclei that lie between {sup 74}Se and {sup 196}Hg and which cannot originate from the aforementioned s- and r-processes. Their production is possible in (γ, n), (γ, p), or (γ, α) photonuclear reactions. In view of this, data on photoneutron reactions play an important role in predicting and describing processes leading to the production of p-nuclei. Interest in determining cross sections for photoneutron reactions in the threshold energy region, which is of particular importance for astrophysics, has grown substantially in recent years. The use of modern sources of quasimonoenergetic photons obtained in processes of inverse Compton laser-radiation scattering on relativistic electronsmakes it possible to reveal rather interesting special features of respective cross sections, manifestations of pygmy E1 and M1 resonances, or the production of nuclei in isomeric states, on one hand, and to revisit the problem of systematic discrepancies between data on reaction cross sections from experiments of different types, on the other hand. Data obtained on the basis of our new experimental-theoretical approach to evaluating cross sections for partial photoneutron reactions are invoked in considering these problems.

  14. Upper bound and probable value of the rate constant of the reaction OH + HO2 yields H2O + O2

    NASA Technical Reports Server (NTRS)

    Chang, J. S.; Kaufman, F.

    1978-01-01

    Discharge-flow experiments at 295 K of the OH + HO2 reaction are described in which excess O3 is added to OH through a movable injector; OH concentration is measured downstream by resonance fluorescence with and without addition of excess NO just upstream of the detector so that both OH concentration and OH concentration + HO2 concentration are determined independently. The data are compared with a computer model involving 12 reaction steps. A simple sensitivity analysis is carried out to establish how errors in the other 'known' rate constants affect the data fit. Best agreement is obtained between computer calculations and experiments when k1 for the OH + HO2 reaction is in the range 2-3 x 10 to the -11th cu cm/s. Values above about 5 x 10 to the -11th are very unlikely whereas those below about 1 x 10 to the -11th are less strongly excluded.

  15. Measurements of the mass and isotopic yields of the {sup 233}U(n{sub th},f) reaction at the Lohengrin spectrometer

    SciTech Connect

    Martin, F.; Sage, C.; Kessedjian, G.; Doligez, X.; Letourneau, A.; Materna, T.; Meplan, O.

    2011-07-01

    Over the last 10 years, a vast campaign of measurements has been initiated to improve the precision of neutron data for the involved key nuclei ({sup 232}Th, {sup 233}Pa and {sup 233}U) of the innovative Th -{sup 233}U cycle. This latter might indeed provide cleaner nuclear energy than the present U-Pu one. New measurements of charge and mass distributions of the fission products have been achieved at the Lohengrin spectrometer of the Inst. Laue-Langevin (ILL) during fall 2010 to complete the experimental data of {sup 233}U(n,f) that exist mainly for light fission fragments. That is why we performed measurements of mass and isotopic yields with a special focus on the heavy fission fragment part. Mass yields were measured by ion counting with an ionization chamber after separation by the Lohengrin spectrometer. Isotopic yields were derived from gamma spectrometry of mass-separated beams using HPGe clover detectors. This paper will present the results of these fission yield measurements along with details on the experimental set-up and the chosen analysis method. (authors)

  16. Effect of in-medium parameters of ρ meson in its photoproduction reactions on nuclei

    SciTech Connect

    Das, Swapan

    2015-03-15

    There exist model calculations showing the modification of the hadronic parameters of ρ meson in the nuclear environment. From these parameters, we extract the ρ-meson-nucleus optical potential and show the medium effect due to this potential on the ρ-meson mass distribution spectra in the photonuclear reactions. The calculated results reproduced reasonably the measured e{sup +}e{sup −} invariant mass, i.e., ρ-meson mass, distribution spectra in γ, ρ{sup 0} → e{sup +}e{sup −} reactions on nuclei.

  17. Predicted yields of new neutron-rich isotopes of nuclei with Z=64-80 in the multinucleon transfer reaction {sup 48}Ca+{sup 238}U

    SciTech Connect

    Adamian, G. G.; Antonenko, N. V.; Sargsyan, V. V.; Scheid, W.

    2010-05-15

    The production cross sections of new neutron-rich isotopes of nuclei with charge numbers Z=64-80 are estimated for future experiments in the multinucleon transfer reaction {sup 48}Ca+{sup 238}U at bombarding energy E{sub c.m.}=189 MeV close to the Coulomb barrier.

  18. An investigation of the role of water on retrograde/condensation reactions and enhanced liquefaction yields. Quarterly progress report, July 1, 1992--September 30, 1992

    SciTech Connect

    Miknis, F.P.

    1992-10-01

    Changes in coal structure that occur during coal drying and steam pretreatments will be measured in order to determine what effect water has on retrograde/condensation reactions, and to determine how water enhances coal reactivity toward liquefaction. Coal drying experiments were begun using thermal, microwave, and chemical methods; NMR data were collected. A stirred microautoclave reactor system was acquired.

  19. High yielding synthesis of carboranes under mild reaction conditions using a homogeneous silver(I) catalyst: direct evidence of a bimetallic intermediate.

    PubMed

    El-Zaria, Mohamed E; Keskar, Kunal; Genady, Afaf R; Ioppolo, Joseph A; McNulty, James; Valliant, John F

    2014-05-12

    Methods used to prepare functionalized carboranes generally require heating to high temperatures, and thus limits the range of derivatives which can be prepared directly from alkynes. We show here that by using a homogeneous silver(I) catalyst it is now possible to prepare carboranes in good to excellent yield at temperatures below 40 °C, including at room temperature. The process is general and provides an important new synthetic strategy for the preparation of functionalized boron clusters.

  20. Estimating Reaction Cross Sections from Measured (Gamma)-Ray Yields: The 238U(n,2n) and 239Pu(n,2n) Cross Sections

    SciTech Connect

    Younes, W

    2002-11-18

    A procedure is presented to deduce the reaction-channel cross section from measured partial {gamma}-ray cross sections. In its simplest form, the procedure consists in adding complementary measured and calculated contributions to produce the channel cross section. A matrix formalism is introduced to provide a rigorous framework for this approach. The formalism is illustrated using a fictitious product nucleus with a simple level scheme, and a general algorithm is presented to process any level scheme. In order to circumvent the cumbersome algebra that can arise in the matrix formalism, a more intuitive graphical procedure is introduced to obtain the same reaction cross-section estimate. The features and limitations of the method are discussed, and the technique is applied to extract the {sup 235}U (n,2n) and {sup 239}Pu(n,2n) cross sections from experimental partial {gamma}-ray cross sections, coupled with (enhanced) Hauser-Feshbach calculations.

  1. Effect of the substrate concentration and water activity on the yield and rate of the transfer reaction of β-galactosidase from Bacillus circulans.

    PubMed

    Gosling, Aaron; Stevens, Geoff W; Barber, Andrew R; Kentish, Sandra E; Gras, Sally L

    2011-04-13

    Prebiotic galactosyl oligosaccharides (GOS) are produced from lactose by the enzyme β-galactosidase. It is widely reported that the highest GOS levels are achieved when the initial lactose concentration is as high as possible; however, little evidence has been presented to explain this phenomenon. Using a system composed of the commercial β-galactosidase derived from Bacillus circulans known as Biolacta FN5, lactose and sucrose, the relative contribution of water activity, and substrate availability were assessed. Oligosaccharide levels did not appear to be affected by changes in water activity between 1.0 and 0.77 at a constant lactose concentration. The maximum oligosaccharide concentration increased at higher initial concentrations of lactose and sucrose, while initial reaction rates for transfer increased but remained constant for hydrolysis. This suggests that the high oligosaccharide levels achieved at the raised initial saccharide concentration are due to increases in reactions that form oligosaccharides rather than decreases in concurrent reactions, which degrade oligosaccharides. There were different effects from changing the initial concentration of lactose compared to sucrose, suggesting that the ability of lactose to act as a donor saccharide may be more important for increasing maximum oligosaccharide concentrations than the combined ability of both saccharides to act as galactosyl acceptors.

  2. Enantioselective, continuous (R)- and (S)-2-butanol synthesis: achieving high space-time yields with recombinant E. coli cells in a micro-aqueous, solvent-free reaction system.

    PubMed

    Erdmann, Vanessa; Mackfeld, Ursula; Rother, Dörte; Jakoblinnert, Andre

    2014-12-10

    The stereoselective production of (R)- or (S)-2-butanol is highly challenging. A potent synthesis strategy is the biocatalytic asymmetric reduction of 2-butanone applying alcohol dehydrogenases. However, due to a time-dependent racemisation process, high stereoselectivity is only obtained at incomplete conversion after short reaction times. Here, we present a solution to this problem: by using a continuous process, high biocatalytic selectivity can be achieved while racemisation is suppressed successfully. Furthermore, high conversion was achieved by applying recombinant, lyophilised E. coli cells hosting Lactobacillus brevis alcohol dehydrogenase in a micro-aqueous solvent-free continuous reaction system. The optimisation of residence time (τ) and 2-butanone concentration boosted both conversion (>99%) and enantiomeric excess (ee) of (R)-2-butanol (>96%). When a residence time of only τ=3.1 min was applied, productivity was extraordinary with a space-time yield of 2278±29g/(L×d), thus exceeding the highest values reported to date by a factor of more than eight. The use of E. coli cells overexpressing an ADH of complementary stereoselectivity yielded a synthesis strategy for (S)-2-butanol with an excellent ee (>98%). Although conversion was only moderate (up to 46%), excellent space-time yields of up to 461g/(L×d) were achieved. The investigated concept represents a synthesis strategy that can also be applied to other biocatalytic processes where racemisation poses a challenge.

  3. HCl yield and chemical kinetics study of the reaction of Cl atoms with CH3I at the 298 K temperature using the infra-red tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Sharma, R. C.; Blitz, M.; Wada, R.; Seakins, P. W.

    2014-07-01

    Pulsed ArF excimer laser (193 nm) - CW infrared(IR) tunable diode laser Herriott type absorption spectroscopic technique has been made for the detection of product hydrochloric acid HCl. Absorption spectroscopic technique is used in the reaction chlorine atoms with methyl iodide (Cl + CH3I) to the study of kinetics on reaction Cl + CH3I and the yield of (HCl). The reaction of Cl + CH3I has been studied with the support of the reaction Cl + C4H10 (100% HCl) at temperature 298 K. In the reaction Cl + CH3I, the total pressure of He between 20 and 125 Torr at the constant concentration of [CH3I] 7.0 × 1014 molecule cm-3. In the present work, we estimated adduct formation is very important in the reaction Cl + CH3I and reversible processes as well and CH3I molecule photo-dissociated in the methyl [CH3] radical. The secondary chemistry has been studied as CH3 + CH3ICl = product, and CH3I + CH3ICl = product2. The system has been modeled theoretically for secondary chemistry in the present work. The calculated and experimentally HCl yield nearly 65% at the concentration 1.00 × 1014 molecule cm-3 of [CH3I] and 24% at the concentration 4.0 × 1015 molecule cm-3 of [CH3I], at constant concentration 4.85 × 1012 molecule cm-3 of [CH3], and at 7.3 × 1012 molecule cm-3 of [Cl]. The pressure dependent also studied product of HCl at the constant [CH3], [Cl] and [CH3I]. The experimental results are also very good matching with the modelling work at the reaction CH3 + CH3ICl = product (k = (2.75 ± 0.35) × 10-10 s-1) and CH3I + CH3ICl = product2 (k = 1.90 ± 0.15) × 10-12 s-1. The rate coefficients of the reaction CH3 + CH3ICl and CH3I + CH3ICl has been made in the present work. The experimental results has been studied by two method (1) phase locked and (2) burst mode.

  4. HCl yield and chemical kinetics study of the reaction of Cl atoms with CH3I at the 298K temperature using the infra-red tunable diode laser absorption spectroscopy.

    PubMed

    Sharma, R C; Blitz, M; Wada, R; Seakins, P W

    2014-07-15

    Pulsed ArF excimer laser (193 nm)-CW infrared (IR) tunable diode laser Herriott type absorption spectroscopic technique has been made for the detection of product hydrochloric acid HCl. Absorption spectroscopic technique is used in the reaction chlorine atoms with methyl iodide (Cl+CH3I) to the study of kinetics on reaction Cl+CH3I and the yield of (HCl). The reaction of Cl+CH3I has been studied with the support of the reaction Cl+C4H10 (100% HCl) at temperature 298 K. In the reaction Cl+CH3I, the total pressure of He between 20 and 125 Torr at the constant concentration of [CH3I] 7.0×10(14) molecule cm(-3). In the present work, we estimated adduct formation is very important in the reaction Cl+CH3I and reversible processes as well and CH3I molecule photo-dissociated in the methyl [CH3] radical. The secondary chemistry has been studied as CH3+CH3ICl = product, and CH3I+CH3ICl = product2. The system has been modeled theoretically for secondary chemistry in the present work. The calculated and experimentally HCl yield nearly 65% at the concentration 1.00×10(14) molecule cm(-3) of [CH3I] and 24% at the concentration 4.0×10(15) molecule cm(-3) of [CH3I], at constant concentration 4.85×10(12) molecule cm(-3) of [CH3], and at 7.3×10(12) molecule cm(-3) of [Cl]. The pressure dependent also studied product of HCl at the constant [CH3], [Cl] and [CH3I]. The experimental results are also very good matching with the modelling work at the reaction CH3+CH3ICl = product (k = (2.75±0.35)×10(-10) s(-1)) and CH3I+CH3ICl = product2 (k = 1.90±0.15)×10(-12) s(-1). The rate coefficients of the reaction CH3+CH3ICl and CH3I+CH3ICl has been made in the present work. The experimental results has been studied by two method (1) phase locked and (2) burst mode.

  5. Expression of a higher plant psbA gene in Synechocystis 6803 yields a functional hybrid photosystem II reaction center complex.

    PubMed Central

    Nixon, P J; Rögner, M; Diner, B A

    1991-01-01

    The psbA gene codes for the D1 polypeptide of the photosystem II reaction center complex and is found in all photosynthetic organisms that carry out oxygenic photosynthesis. Here we describe the construction and characterization of a strain of the cyanobacterium Synechocystis sp PCC 6803 in which the three endogenous psbA genes are replaced by a single psbA gene from the chloroplast genome of the higher plant Poa annua. The resulting chimeric strain, KWPAS, grows photoautotrophically with a doubling time of 26 hours compared with 20 hours for wild-type Synechocystis 6803. The mutant oxidizes water to oxygen at light-saturated rates comparable with wild type, despite differences in 15% of the primary structure of D1 between these species. RNA gel blot analysis indicates the presence in KWPAS of a psbA transcript of approximately 1.25 kilobases, consistent with the chloroplast promoter also acting as a promoter in Synechocystis. By using antibodies specific for the carboxyl-terminal extension of the D1 polypeptide of higher plants, we showed that the D1 polypeptide synthesized by KWPAS is post-translationally modified at the carboxyl terminus, probably through processing. A detailed biophysical analysis of the chimeric photosystem II complex indicated that the rates of forward electron transfer are similar to wild type. The rates of charge recombination between the donor and acceptor sides of the reaction center are, however, accelerated by as much as a factor of nine (QA- to S2) and are the most likely explanation for the lower rate of photoautotrophic growth in the mutant. We conclude that the psbA gene from a higher plant can be expressed in cyanobacteria and its product processed and assembled into a functional chimeric photosystem II reaction center. PMID:1840918

  6. The reactions of Cr(CO)6, Fe(CO)5, and Ni(CO)4 with O2 yield viable oxo-metal carbonyls.

    PubMed

    Sun, Zhi; Schaefer, Henry F; Xie, Yaoming; Liu, Yongdong; Zhong, Rugang

    2014-05-15

    Transition metal complexes with terminal oxo and dioxygen ligands exist in metal oxidation reactions, and many are key intermediates in various catalytic and biological processes. The prototypical oxo-metal [(OC)5Cr-O, (OC)4Fe-O, and (OC)3 Ni-O] and dioxygen-metal carbonyls [(OC)5Cr-OO, (OC)4Fe-OO, and (OC)3Ni-OO] are studied theoretically. All three oxo-metal carbonyls were found to have triplet ground states, with metal-oxo bond dissociation energies of 77 (Cr-O), 74 (Fe-O), and 51 (Ni-O) kcal/mol. Natural bond orbital and quantum theory of atoms in molecules analyses predict metal-oxo bond orders around 1.3. Their featured ν(MO, M = metal) vibrational frequencies all reflect very low IR intensities, suggesting Raman spectroscopy for experimental identification. The metal interactions with O2 are much weaker [dissociation energies 13 (Cr-OO), 21 (Fe-OO), and 4 (Ni-OO) kcal/mol] for the dioxygen-metal carbonyls. The classic parent compounds Cr(CO)6, Fe(CO)5, and Ni(CO)4 all exhibit thermodynamic instability in the presence of O2 , driven to displacement of CO to form CO2. The latter reactions are exothermic by 47 [Cr(CO)6], 46 [Fe(CO)5], and 35 [Ni(CO)4] kcal/mol. However, the barrier heights for the three reactions are very large, 51 (Cr), 39 (Fe), and 40 (Ni) kcal/mol. Thus, the parent metal carbonyls should be kinetically stable in the presence of oxygen.

  7. Threshold energies for the reactions Oh- + Ch3X yields Ch30H + X- (X = Cl, Br) measured by tandem mass spectrometry: Deprotonation energies (acidities) of Ch3Cl and Ch3Br. (Reannouncement with new availability information)

    SciTech Connect

    Hierl, P.M.; Henchman, M.J.; Paulson, J.F.

    1992-12-31

    In a tandem mass spectrometer, a beam of OH{sup {minus}} ions was reacted with methyl chloride and methyl bromide at collision energies in the range 0.2 < ET < 5 eV. For both of the methyl halides, excitation functions, sigma (ET), were measured for the two competing channels, endoergic proton transfer and exoergic nucleophilic displacement: OH{sup {minus}} + CH3X yields H20 + CH2X yields CH3OH + X{sup {minus}}. The threshold energies estimated for the proton transfer reactions are used to derive energies of deprotonation for CH3Cl and CH3Br of 1672 + or - 10 and 1660 + or - lO kJmol{sup {minus}1} respectively.

  8. Measurements of the neutron yields from 7Li(p,n)7Be reaction (thick target) with incident energies from 1.885 to 2.0 MeV.

    PubMed

    Yu, W; Yue, G; Han, X; Chen, J; Tian, B

    1998-07-01

    Accelerator-based neutron source have been considered to be practical for boron neutron capture therapy (BNCT). Based on experience with a parameters of the Brookhaven National Laboratory BMRR reactor neutron source, which has been used in treatment experiments, the future accelerator-based neutron source for BNCT should have the properties of low energy distribution (< 100 keV) and high flux (about 10(9) neutrons per second per square centimeter) in the patient zone. Using protons to bombard thick 7Li targets, generating neutrons via the 7Li(p,n)7Be reaction, is one of the optimal choices for this kind of neutron source. Neutron yield data versus incident energy are necessary in order to select the proper incident energy and for estimating how high the incident proton current should be. The required proton beam current intensity is one of the key parameters for an accelerator useful for BNCT. In the present work, neutron yields of the 7Li(p,n)7Be reaction with a thick lithium target and incident energies of 1.885 and 1.9 MeV were measured at 0 degree with respect to the incident beam direction. The results are (3.08 +/- 0.17) x 10(12) and (5.71 +/- 0.32) x 10(12) neutrons/C sr, respectively. Neutron yield angular distribution measurements at 2 MeV incident energy were also performed. The proton beams were generated by the Peking University 4.5 MV electrostatic accelerator. The emitted neutrons from these reactions have the advantages of low energy distribution and forward angular distribution, which are requirements for a BNCT neutron source. The data obtained in this work can be used as a reference to study the accelerator-based neutron sources for BNCT.

  9. Analysis of the kinetics and yields of OH radical production from the CH3OCH2 + O2 reaction in the temperature range 195-650 K: an experimental and computational study.

    PubMed

    Eskola, A J; Carr, S A; Shannon, R J; Wang, B; Blitz, M A; Pilling, M J; Seakins, P W; Robertson, S H

    2014-08-28

    The methoxymethyl radical, CH3OCH2, is an important intermediate in the low temperature combustion of dimethyl ether. The kinetics and yields of OH from the reaction of the methoxymethyl radical with O2 have been measured over the temperature and pressure ranges of 195-650 K and 5-500 Torr by detecting the hydroxyl radical using laser-induced fluorescence following the excimer laser photolysis (248 nm) of CH3OCH2Br. The reaction proceeds via the formation of an energized CH3OCH2O2 adduct, which either dissociates to OH + 2 H2CO or is collisionally stabilized by the buffer gas. At temperatures above 550 K, a secondary source of OH was observed consistent with thermal decomposition of stabilized CH3OCH2O2 radicals. In order to quantify OH production from the CH3OCH2 + O2 reaction, extensive relative and absolute OH yield measurements were performed over the same (T, P) conditions as the kinetic experiments. The reaction was studied at sufficiently low radical concentrations (∼10(11) cm(-3)) that secondary (radical + radical) reactions were unimportant and the rate coefficients could be extracted from simple bi- or triexponential analysis. Ab initio (CBS-GB3)/master equation calculations (using the program MESMER) of the CH3OCH2 + O2 system were also performed to better understand this combustion-related reaction as well as be able to extrapolate experimental results to higher temperatures and pressures. To obtain agreement with experimental results (both kinetics and yield data), energies of the key transition states were substantially reduced (by 20-40 kJ mol(-1)) from their ab initio values and the effect of hindered rotations in the CH3OCH2 and CH3OCH2OO intermediates were taken into account. The optimized master equation model was used to generate a set of pressure and temperature dependent rate coefficients for the component nine phenomenological reactions that describe the CH3OCH2 + O2 system, including four well-skipping reactions. The rate coefficients were

  10. Alkyl nitrate formation from the reactions of C8-C14 n-alkanes with OH radicals in the presence of NO(x): measured yields with essential corrections for gas-wall partitioning.

    PubMed

    Yeh, Geoffrey K; Ziemann, Paul J

    2014-09-18

    In this study, C8-C14 n-alkanes were reacted with OH radicals in the presence of NO(x) in a Teflon film environmental chamber and isomer-specific yields of alkyl nitrates were determined using gas chromatography. Because results indicated significant losses of alkyl nitrates to chamber walls, gas-wall partitioning was investigated by monitoring the concentrations of a suite of synthesized alkyl nitrates added to the chamber. Gas-to-wall partitioning increased with increasing carbon number and with proximity of the nitrooxy group to the terminal carbon, with losses as high as 86%. The results were used to develop a structure-activity model to predict the effects of carbon number and isomer structure on gas-wall partitioning, which was used to correct the measured yields of alkyl nitrate isomers formed in chamber reactions. The resulting branching ratios for formation of secondary alkyl nitrates were similar for all isomers of a particular carbon number, and average values, which were almost identical to alkyl nitrate yields, were 0.219, 0.206, 0.254, 0.291, and 0.315 for reactions of n-octane, n-decane, n-dodecane, n-tridecane, and n-tetradecane, respectively. The increase in average branching ratios and alkyl nitrate yields with increasing carbon number to a plateau value of ∼0.30 at about C13-C14 is consistent with predictions of a previously developed model, indicating that the model is valid for alkane carbon numbers ≥C3.

  11. Alkyl nitrate formation from the reactions of C8-C14 n-alkanes with OH radicals in the presence of NO(x): measured yields with essential corrections for gas-wall partitioning.

    PubMed

    Yeh, Geoffrey K; Ziemann, Paul J

    2014-09-18

    In this study, C8-C14 n-alkanes were reacted with OH radicals in the presence of NO(x) in a Teflon film environmental chamber and isomer-specific yields of alkyl nitrates were determined using gas chromatography. Because results indicated significant losses of alkyl nitrates to chamber walls, gas-wall partitioning was investigated by monitoring the concentrations of a suite of synthesized alkyl nitrates added to the chamber. Gas-to-wall partitioning increased with increasing carbon number and with proximity of the nitrooxy group to the terminal carbon, with losses as high as 86%. The results were used to develop a structure-activity model to predict the effects of carbon number and isomer structure on gas-wall partitioning, which was used to correct the measured yields of alkyl nitrate isomers formed in chamber reactions. The resulting branching ratios for formation of secondary alkyl nitrates were similar for all isomers of a particular carbon number, and average values, which were almost identical to alkyl nitrate yields, were 0.219, 0.206, 0.254, 0.291, and 0.315 for reactions of n-octane, n-decane, n-dodecane, n-tridecane, and n-tetradecane, respectively. The increase in average branching ratios and alkyl nitrate yields with increasing carbon number to a plateau value of ∼0.30 at about C13-C14 is consistent with predictions of a previously developed model, indicating that the model is valid for alkane carbon numbers ≥C3. PMID:24654572

  12. Determination of O2(a1 delta g) and O2(b1 sigma+ g) yields in the reaction O + ClO --> Cl + O2: implications for photochemistry in the atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Leu, M. T.; Yung, Y. L.

    1987-01-01

    A discharge flow apparatus with chemiluminescence detector has been used to study the reaction O + ClO --> Cl + O2, where O2 = O2(a1 delta g) or O2(b1 sigma+ g). The measured quantum yields for producing O2(a1 delta g) and O2(b1 sigma+ g) in the above reaction are less than 2.5 x 10(-2) and equal to (4.4 +/- 1.1) x 10(-4), respectively. The observed O2(a1 delta g) airglow of Venus cannot be explained in the context of standard photochemistry using our experimental results and those reported in recent literature. The possibility of an alternative source of O atoms derived from SO2 photolysis in the mesosphere of Venus is suggested.

  13. Effects of the rotational excitation of D{sub 2} and of the potential energy surface on the H{sup +}+D{sub 2}{yields}HD+D{sup +} reaction

    SciTech Connect

    Gonzalez-Lezana, T.; Honvault, P.; Jambrina, P. G.; Aoiz, F. J.; Launay, J.-M.

    2009-07-28

    The H{sup +}+D{sub 2}{yields}HD+D{sup +} reaction has been theoretically investigated by means of an exact quantum mechanical approach, a quasiclassical trajectory method, and two statistical methods based in the propagation of either wave functions or trajectories. The study addresses the possible changes on the overall dynamics of the title reaction when the D{sub 2} diatom is rotationally excited to its v=0, j=1 state. In addition, the reactivity for the ground rotational state on two different potential energy surfaces (PESs), namely, the surface by Aguado et al. [J. Chem. Phys. 112, 1240 (2000)] and the PES by Kamisaka et al. [J. Chem. Phys. 116, 654 (2002)], is examined. Reaction probabilities and cross sections at 0.524 and 0.1 eV collision energies are calculated. The major differences with respect to the reaction initiated with D{sub 2} in its ground rovibrational state are observed for the lowest collision energy E{sub c}=0.1 eV. Differential cross sections have been found to depend to some extend on the PES employed. In addition, at E{sub c}=0.1 eV further discrepancies in the total and rotational cross sections are noticeable.

  14. Evaporation Residue Yields in Reactions of Heavy Neutron-Rich Radioactive Ion Beams with 64Ni and 96Zr Targets

    SciTech Connect

    Shapira, Dan; Liang, J Felix; Gross, Carl J; Varner Jr, Robert L; Beene, James R; Stracener, Daniel W; Mueller, Paul Edward; Kolata, Jim J; Roberts, Amy; Loveland, Walter; Vinodkumar, A. M.; Prisbrey, Landon; Sprunger, Peter H; Grzywacz-Jones, Kate L; Caraley, Anne L

    2009-01-01

    As hindrance sets in for the fusion of heavier systems, the effect of large neutron excess in the colliding nuclei on their probability to fuse is still an open question. The detection of evaporation residues (ERs), however, provides indisputable evidence for the fusion (complete and incomplete) in the reaction. We therefore devised a system with which we could measure ERs using low intensity neutron-rich radioactive ion beams with an efficiency close to 100%. We report on measurements of the production of ERs in collisions of {sup 132,134}Sn, {sup 134}Te and {sup 134}Sb ion beams with medium mass, neutron-rich targets. The data taken with {sup 132,134}Sn bombarding a {sup 64}Ni target are compared to available data (ERs and fusion) taken with stable Sn isotopes. Preliminary data on the fusion of {sup 132}Sn with {sup 96}Zr target are also presented.

  15. Absolute rate constant of the reaction OH + H2O2 yields HO2 + H2O from 245 to 423 K

    NASA Technical Reports Server (NTRS)

    Keyser, L. F.

    1980-01-01

    The absolute rate constant of the reaction between the hydroxyl radical and hydrogen peroxide was measured by using the discharge-flow resonance fluorescence technique at total pressure between 1 and 4 torr. At 298 K the result is (1.64 + or - 0.32) x 10 to the -12th cu cm/molecule s. The observed rate constant is independent of pressure, surface-to-volume ratio, the addition of vibrational quenchers, and the source of OH. The temperature dependence has also been determined between 245 and 423 K; the resulting Arrhenius expression is k cu cm/molecule s is equal to (2.51 + or - 0.6) x 10 to the -12th exp(-126 + or - 76/T).

  16. NADPH-cytochrome P450 reductase-mediated denitration reaction of 2,4,6-trinitrotoluene to yield nitrite in mammals.

    PubMed

    Shinkai, Yasuhiro; Nishihara, Yuya; Amamiya, Masahiro; Wakayama, Toshihiko; Li, Song; Kikuchi, Tomohiro; Nakai, Yumi; Shimojo, Nobuhiro; Kumagai, Yoshito

    2016-02-01

    While the biodegradation of 2,4,6-trinitrotoluene (TNT) via the release of nitrite is well established, mechanistic details of the reaction in mammals are unknown. To address this issue, we attempted to identify the enzyme from rat liver responsible for the production of nitrite from TNT. A NADPH-cytochrome P450 reductase (P450R) was isolated and identified from rat liver microsomes as the enzyme responsible for not only the release of nitrite from TNT but also formation of superoxide and 4-hydroxyamino-2,6-dinitrotoluene (4-HADNT) under aerobic conditions. In this context, reactive oxygen species generated during P450R-catalyzed TNT reduction were found to be, at least in part, a mediator for the production of 4-HADNT from TNT via formation of 4-nitroso-2,6-dinitrotoluene. P450R did not catalyze the formation of the hydride-Meisenheimer complex (H(-)-TNT) that is thought to be an intermediate for nitrite release from TNT. Furthermore, in a time-course experiment, 4-HADNT formation reached a plateau level and then declined during the reaction between TNT and P450R with NADPH, while the release of nitrite was subjected to a lag period. Notably, the produced 4-HADNT can react with the parent compound TNT to produce nitrite and dimerized products via formation of a Janovsky complex. Our results demonstrate for the first time that P450R-mediated release of nitrite from TNT results from the process of chemical interaction of TNT and its 4-electron reduction metabolite 4-HADNT.

  17. Atmospheric chemistry of CF3CF═CH2 and (Z)-CF3CF═CHF: Cl and NO3 rate coefficients, Cl reaction product yields, and thermochemical calculations.

    PubMed

    Papadimitriou, Vassileios C; Lazarou, Yannis G; Talukdar, Ranajit K; Burkholder, James B

    2011-01-20

    Rate coefficients, k, for the gas-phase reactions of Cl atoms and NO(3) radicals with 2,3,3,3-tetrafluoropropene, CF(3)CF═CH(2) (HFO-1234yf), and 1,2,3,3,3-pentafluoropropene, (Z)-CF(3)CF═CHF (HFO-1225ye), are reported. Cl-atom rate coefficients were measured in the fall-off region as a function of temperature (220-380 K) and pressure (50-630 Torr; N(2), O(2), and synthetic air) using a relative rate method. The measured rate coefficients are well represented by the fall-off parameters k(0)(T) = 6.5 × 10(-28) (T/300)(-6.9) cm(6) molecule(-2) s(-1) and k(∞)(T) = 7.7 × 10(-11) (T/300)(-0.65) cm(3) molecule(-1) s(-1) for CF(3)CF═CH(2) and k(0)(T) = 3 × 10(-27) (T/300)(-6.5) cm(6) molecule(-2) s(-1) and k(∞)(T) = 4.15 × 10(-11) (T/300)(-0.5) cm(3) molecule(-1) s(-1) for (Z)-CF(3)C═CHF with F(c) = 0.6. Reaction product yields were measured in the presence of O(2) to be (98 ± 7)% for CF(3)C(O)F and (61 ± 4)% for HC(O)Cl in the CF(3)CF═CH(2) reaction and (108 ± 8)% for CF(3)C(O)F and (112 ± 8)% for HC(O)F in the (Z)-CF(3)CF═CHF reaction, where the quoted uncertainties are 2σ (95% confidence level) and include estimated systematic errors. NO(3) reaction rate coefficients were determined using absolute and relative rate methods. Absolute measurements yielded upper limits for both reactions between 233 and 353 K, while the relative rate measurements yielded k(3)(295 K) = (2.6 ± 0.25) × 10(-17) cm(3) molecule(-1) s(-1) and k(4)(295 K) = (4.2 ± 0.5) × 10(-18) cm(3) molecule(-1) s(-1) for CF(3)CF═CH(2) and (Z)-CF(3)CF═CHF, respectively. The Cl-atom reaction with CF(3)CF═CH(2) and (Z)-CF(3)CF═CHF leads to decreases in their atmospheric lifetimes and global warming potentials and formation of a chlorine-containing product, HC(O)Cl, for CF(3)CF═CH(2). The NO(3) reaction has been shown to have a negligible impact on the atmospheric lifetimes of CF(3)CF═CH(2) and (Z)-CF(3)CF═CHF. The energetics for the reaction of Cl, NO(3), and OH with CF

  18. Search for the {theta}{sup +} Pentaquark in the Reaction {gamma}d{yields}pK{sup 0}K{sup -}(p) with CLAS

    SciTech Connect

    Baltzell, Nathan A.

    2007-10-26

    A search for photo-production of the {theta}{sup +}(1540) pentaquark and its decay to pK{sup 0} was performed with the CLAS detector system at Jefferson Lab. In the exclusive channel {gamma}d{yields}pK{sup 0}{sub s}K{sup -}(p), about twenty-thousand events with a slow missing proton, {pi}{sup +}{pi}{sup -} decay of the neutral kaon, and photon energy between 1.6 and 3.6 GeV are fully reconstructed. Included are numerous hyperon and meson resonances, with their decays to pK{sup -} and K{sup 0}K{sup -} respectively. To understand the possibility of a pentaquark signal amidst the backgrounds, a phenomenological isobar-inspired model of complex Breit-Wigner amplitudes and decay angular distributions for the resonances is fit to the data with a maximum likelihood method. No pentaquark signal is found above the background. The upper limit on the total production cross section is measured to be consistent with other channels published by the collaboration, but systematic studies are still in progress.

  19. High-dynamic-range neutron time-of-flight detector used to infer the D(t,n)4He and D(d,n)3He reaction yield and ion temperature on OMEGA

    NASA Astrophysics Data System (ADS)

    Forrest, C. J.; Glebov, V. Yu.; Goncharov, V. N.; Knauer, J. P.; Radha, P. B.; Regan, S. P.; Romanofsky, M. H.; Sangster, T. C.; Shoup, M. J.; Stoeckl, C.

    2016-11-01

    Upgraded microchannel-plate-based photomultiplier tubes (MCP-PMT's) with increased stability to signal-shape linearity have been implemented on the 13.4-m neutron time-of-flight (nTOF) detector at the Omega Laser Facility. This diagnostic uses oxygenated xylene doped with diphenyloxazole C15H11NO + p-bis-(o-methylstyryl)-benzene (PPO + bis-MSB) wavelength shifting dyes and is coupled through four viewing ports to fast-gating MCP-PMT's, each with a different gain to allow one to measure the light output over a dynamic range of 1 × 106. With these enhancements, the 13.4-m nTOF can measure the D(t,n)4He and D(d,n)3He reaction yields and average ion temperatures in a single line of sight. Once calibrated for absolute neutron sensitivity, the nTOF detectors can be used to measure the neutron yield from 1 × 109 to 1 × 1014 and the ion temperature with an accuracy approaching 5% for both the D(t,n)4He and D(d,n)3He reactions.

  20. An investigation of the role of water on retrograde/condensation reactions and enhanced liquefaction yields. Quarterly progress report, October 1, 1992--December 31, 1992

    SciTech Connect

    Miknis, F.P.

    1993-01-01

    The overall objectives of this work are to conduct research that will provide the basis for an improved liquefaction process, and to facilitate our understanding of those processes that occur when coals are initially dissolved. Changes in coal structure that occur during coal drying and steam pretreatments will be measured in order to determine what effect water has on retrograde/condensation reactions, and to determine the mechanism by which water enhances coal reactivity toward liquefaction. Different methods for coal drying wig be investigated to determine if drying can be accomplished without destroying coal reactivity toward liquefaction, thereby making coal drying a relatively economical and efficient method for coal pretreatment. Coal drying methods will include conventional thermal drying, microwave drying, and chemical drying at low temperature. State-of-the-art solid-state nuclear magnetic resonance (NMR) techniques using combined rotation and multiple pulse spectroscopy (CRAMPS) and cross polarization with magic-angle spinning (CP/MAS) will be employed: (1) to measures changes in coal structure brought about by the different methods of drying and by low temperature oxidation, and (2) to obtain direct measurements of changes in the aromatic hydrogen-to-carbon ratio of the solid/semisolid material formed or remaining during pretreatment and the initial stages of liquefaction.

  1. The total yields of K*(892){sup +}, {sigma}{sup +}(1385), and {sigma}{sup 0} in neutrino-induced reactions at {approx} 10 GeV

    SciTech Connect

    Agababyan, N. M.; Ammosov, V. V.; Atayan, M.; Grigoryan, N.; Gulkanyan, H.; Ivanilov, A. A. Karamyan, Zh.; Korotkov, V. A.

    2007-10-15

    Using the data obtained with the SKAT bubble chamber, the total yields of K*(892){sup +}, {sigma}{sup +}(1385), and {sigma}{sup 0} are estimated for the first time in neutrino-induced reactions at moderate energy = 10.4 GeV. It is shown that the recently observed enhancement of the K{sup 0} and {lambda} yields in vA interactions as compared to vN interactions is contributed only slightly by the K*(892){sup +} and {sigma}{sup +}(1385) production. The contribution of resonances to the K{sup 0} and {lambda} yields is found to be in qualitative agreement with higher energy ( {>=} 40 GeV) data. It is shown that the energy dependence of the K*(892){sup +} mean multiplicity in vN interactions is approximately linear in the range of {approx} 10-60 GeV, while that for {sigma}{sup 0} in vA interactions (A = 20-21) is approximately logarithmic in the range of {approx} = 10-150 GeV.

  2. An investigation of the role of water on retrograde/condensation reactions and enhanced liquefaction yields. Quarterly progress report, January 1, 1994--March 31, 1994

    SciTech Connect

    Miknis, F.P.; Netzel, D.A.

    1994-04-01

    The results of coal swelling measurements using 1,4-dioxane as the swelling reagent for premoisturized coals (raw) and coal dried thermally, chemically, and with microwave radiation are presented. An increase in the swelling ratio relative to raw coal indicates a decrease in the amount of cross-linking in the coal. Conversely, a decrease in the ratio indicates an increase in cross-linking. The extent of cross-linking (as measured by 1,4-dioxane) for Texas, Black Thunder, and Eagle Butte Coals are about the same. Illinois {number_sign}6 coal appears to have less cross-linking relative to the other three coals. These results are expected on the basis of coal rank. The increase in cross linking is most pronounced for coals dried thermally and with microwave radiation. A decrease in the swelling ratios for all four coals suggests that cross-linking had occurred possibly due to partial devolatilization process. However, low temperature, chemical dehydration of the coals causes only a small or no change in the internal structure for Texas and Illinois {number_sign}6 coals whereas a significant decrease in the cross-linking structure for the Black Thunder and Eagle Butte coals is observed. It is possible that the solvent (CH{sub 3}OH) and products resulting from the chemical dehydrating (acetone and methanol) occupy the surface sites that water had before the reaction and thus preventing cross-linking to occur. These reagents can also promote swelling of coals and may account for some of the decrease in the cross-linking of the coal structure observed for the chemically dried coals.

  3. Time-dependent quantum wave packet study of the Ar+H{sub 2}{sup +}{yields}ArH{sup +}+H reaction on a new ab initio potential energy surface for the ground electronic state (1{sup 2}A Prime )

    SciTech Connect

    Hu Mei; Liu Xinguo; Tan Ruishan; Li Hongzheng; Xu Wenwu

    2013-05-07

    A new global potential energy surface for the ground electronic state (1{sup 2}A Prime ) of the Ar+H{sub 2}{sup +}{yields}ArH{sup +}+H reaction has been constructed by multi-reference configuration interaction method with Davidson correction and a basis set of aug-cc-pVQZ. Using 6080 ab initio single-point energies of all the regions for the dynamics, a many-body expansion function form has been used to fit these points. The quantum reactive scattering dynamics calculations taking into account the Coriolis coupling (CC) were carried out on the new potential energy surface over a range of collision energies (0.03-1.0 eV). The reaction probabilities and integral cross sections for the title reaction were calculated. The significance of including the CC quantum scattering calculation has been revealed by the comparison between the CC and the centrifugal sudden approximation calculation. The calculated cross section is in agreement with the experimental result at collision energy 1.0 eV.

  4. Temperature-Dependent Kinetics Studies of the Reactions Br((sup 2)P3/2) + H2S yields SH + HBr and Br((sup 2)P3/2) + CH3SH yields CH3S + HBr. Heats of Formation of SH and CH3S Radicals

    NASA Technical Reports Server (NTRS)

    Nicovich, J. M.; Kreutter, K. D.; vanDijk, C. A.; Wine, P. H.

    1997-01-01

    Time resolved resonance fluorescence detection of Br(sup 2)P3/2) atom disappearance or appearance following 266-nm laser flash photolysis of CF2Br2/H2S/H2/N2, CF2Br2/CH3SH/H2/N2, Cl2CO/H2S/HBr/N2, and CH3SSCH3/HBr/H2/N2 mixtures has been employed to study the kinetics of the reactions Br((sup 2)P3/2) + H2S = SH + HBr (1,-1) and Br((sup2)P3/2) + CH3SH = CH3S + HBr (2, -2) as a function of temperature over the range 273-431K. Arrhenius expressions in units of 10(exp -12) cu cm/molecule/s which describe the results are k1 = (14.2 +/- 3.4) exp[(-2752 +/- 90)/T],(k-1) = (4.40 +/- 0.92) exp[(-971 +/- 73)/T],k(2) = (9.24 +/- 1.15) exp[(-386 +/- 41)/T], and k(-2) = (1.46 +/-0.21) exp[(-399 +/-41)/T; errors are 2 sigma and represent precision only. By examining Br((sup 2)P3/2) equilibrium kinetics following 355nm laser flash photolysis of Br2/CH3SH/H2/N2 mixtures, a 298 K rate coefficient of (1.7 +/- 0.5) x 10(exp -10) cu cm/molecule/s has been obtained for the reaction CH3S + Br2 yields CH3SBr + Br. To our knowledge, these are the first kinetic data reported for each of the reactions studied. Measured rate coefficients, along with known rate coefficients for similar radical + H2S, CH3SH, HBr,Br2 reactions are considered in terms of possible correlations of reactivity with reaction thermochemistry and with IP - EA, the difference between the ionization potential of the electron donor and the electron affinity of the electron acceptor. Both thermochemical and charge-transfer effects appear to be important in controlling observed reactivities. Second and third law analyses of the equilibrium data for reactions 1 and 2 have been employed to obtain the following enthalpies of reaction in units of kcal/mol: for reaction 1, Delta-H(298) = 3.64 +/- 0.43 and Delta-H(0) = 3.26 +/-0.45; for reaction 2, Delta-H(298) = -0.14 +/- 0.28 and Delta-H(0) = -0.65 +/- 0.36. Combining the above enthalpies of reaction with the well-known heats of formation of Br, HBr, H2S, and CH3SH gives the

  5. Dimension reduction for extracting geometrical structure of multidimensional phase space: Application to fast energy exchange in the reaction O({sup 1}D)+N{sub 2}O{yields}NO+NO

    SciTech Connect

    Kawai, Shinnosuke; Fujimura, Yo; Kajimoto, Okitsugu; Yamashita, Takefumi; Li, Chun-Biu; Komatsuzaki, Tamiki; Toda, Mikito

    2007-02-15

    One of the most fundamental problems in studying general Hamiltonian systems with many degrees of freedom is to extract a low-dimensional subsystem including the essential dynamics. In this paper, a new partial normal form (PNF) method is developed to reduce the number of coupling terms in the Hamiltonian and to simplify the dynamics analyses. The PNF method allows one to decouple many unimportant bath modes as well as the reactive mode from the system by assessing the significance of the coupling terms. The method is applied to the chemical reaction O({sup 1}D)+N{sub 2}O{yields}NO+NO, which was found to exhibit efficient energy exchange between the two NO stretching modes despite the short lifetime of the reaction intermediate [S. Kawai et al., J. Chem. Phys. 124, 184315 (2006)]. Through the analysis of the two-dimensional PNF Hamiltonian subsystem, it is found that the motion of the subsystem preserves the 'normal mode picture' of the symmetric and antisymmetric NO stretching modes despite its high energy. Then the vibrational energy, initially localized in the newly formed NO bond, is transferred to the reactants' NO bond through the beating between the symmetric and antisymmetric stretching modes. The preservation of the normal mode picture and the short period of the beating explain the fast energy exchange between the two NO bonds. This successful application proves that the PNF method can extract the essential small subspace from many-degrees-of-freedom Hamiltonian systems.

  6. New measurements of the astrophysical S factor for {sup 12}C(p,{gamma}){sup 13}N reaction at low energies and the asymptotic normalization coefficient (nuclear vertex constant) for the p+{sup 12}C{yields}{sup 13}N reaction

    SciTech Connect

    Burtebaev, N.; Zazulin, D. M.; Igamov, S. B.; Yarmukhamedov, R.; Peterson, R. J.

    2008-09-15

    New measurements of differential and total cross sections for the {sup 12}C(p,{gamma}){sup 13}N reaction have been made at beam energies of E{sub p}=354,390,460,463,565,750, and 1061 keV. Analysis of the astrophysical S factor S(E) for the {sup 12}C(p,{gamma}){sup 13}N reaction at low energies and of the reaction rates has been carried out within the R-matrix approach by using the previously measured nuclear vertex constant (or the respective asymptotic normalization coefficient) for the virtual decay {sup 13}N{yields}p+{sup 12}C to fix the direct capture part of the amplitude in S(E). It is demonstrated that the R-matrix approach, using the measured asymptotic normalization coefficient, can be employed as an ideal tool, minimizing the uncertainties associated with a calculation of the direct capture cross section of the {sup 12}C(p,{gamma}){sup 13}N reaction at extremely low energies. New information on the proton and {gamma} width for the first excited state of {sup 13}N is obtained.

  7. Neutrino nuclear responses for double beta decays and astro neutrinos by charge exchange reactions

    NASA Astrophysics Data System (ADS)

    Ejiri, Hiroyasu

    2014-09-01

    Neutrino nuclear responses are crucial for neutrino studies in nuclei. Charge exchange reactions (CER) are shown to be used to study charged current neutrino nuclear responses associated with double beta decays(DBD)and astro neutrino interactions. CERs to be used are high energy-resolution (He3 ,t) reactions at RCNP, photonuclear reactions via IAR at NewSUBARU and muon capture reactions at MUSIC RCNP and MLF J-PARC. The Gamow Teller (GT) strengths studied by CERs reproduce the observed 2 neutrino DBD matrix elements. The GT and spin dipole (SD) matrix elements are found to be reduced much due to the nucleon spin isospin correlations and the non-nucleonic (delta isobar) nuclear medium effects. Impacts of the reductions on the DBD matrix elements and astro neutrino interactions are discussed.

  8. Quantification of Fusarium graminearum in harvested grain by real-time polymerase chain reaction to assess efficacies of fungicides on fusarium head blight, deoxynivalenol contamination, and yield of winter wheat.

    PubMed

    Zhang, Y J; Fan, P S; Zhang, X; Chen, C J; Zhou, M G

    2009-01-01

    We used a real time polymerase chain reaction-based assay and visual disease assessment to evaluate the efficacies of Js399-19, tebuconazole, a mixture of tebuconazole and thiram, azoxystrobin, carbendazim, and thiram on the development of Fusarium head blight (FHB) and deoxynivalenol (DON) contamination and on the yield of winter wheat (cv. Nannong no. 9918) after artificial inoculation under field conditions with Fusarium graminearum. The incidence of infected spikelets (IIS), amount of F. graminearum DNA (Tri5 DNA), total DON (containing DON, 3-acetyl-deoxynivalenol, and 15-acetyl-deoxynivalenol) concentration, and 1,000-grain weight (TGW) were quantified in 2006 and 2007. A strong positive correlation was found between IIS or Log10Tri5 DNA and total DON concentration in the harvested grain. The Js399-19, tebuconazole, and the mixture of tebuconazole and thiram significantly reduced IIS of FHB, amount of Tri5 DNA, and total DON within the grain and increased TGW. Although azoxystrobin, carbendazim, and thiram can increase TGW, they had no effect on the occurrence of F. graminearum compared with those of the untreated controls. Surprisingly, azoxystrobin and carbendazim significantly increased the total DON content in the harvested grain because they might have stimulated the amount of total DON production per Tri5 DNA. The fungicides Js399-19, tebuconazole, and the mixture of tebuconazole and thiram were the most effective in controlling FHB and reducing DON contamination of the wheat.

  9. Fission yield measurements at IGISOL

    NASA Astrophysics Data System (ADS)

    Lantz, M.; Al-Adili, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Mattera, A.; Moore, I.; Penttilä, H.; Pomp, S.; Prokofiev, A. V.; Rakopoulos, V.; Rinta-Antila, S.; Simutkin, V.; Solders, A.

    2016-06-01

    The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL) technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f) and Th(p,f) have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn) reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  10. Off-shell test of the Moscow potential of nucleon-nucleon interaction on the basis of data on the reaction {gamma}d {sup {yields}} np in the photon-energy region around E{sub {gamma}} {approx_equal} 2 GeV, where this reaction is sensitive to quark effects

    SciTech Connect

    Knyr, V. A.; Neudatchin, V. G.; Khokhlov, N. A.

    2007-05-15

    Various pieces of evidence in favor of the Moscow potential of nucleon-nucleon interaction are discussed. The formalism of a relativistic potential model as applied to deuteron photodintegration is expounded. The differential cross section calculated for the reaction {gamma}d {sup {yields}} np on the basis of the Moscow potential at incident-photon energies E{sub {gamma}} between 1.5 and 2.5 GeV are quite in accord with present-day experimental data, which are also described well in the literature on the basis of the model of quark-gluon strings. Further steps in testing the Moscow potential and microscopically substantiating it on the basis of quark models are indicated.

  11. Microscopic calculations to predict the temperature dependence of the electron transfer rate in the outer sphere reaction Fe/sup 3+/ yields Fe/sup 2+/ at a gold electrode

    SciTech Connect

    Halley, J.W.; Hautman, J.; Rahman, A.; Curtiss, L.

    1987-01-01

    The study of electron transfer processes has always been known to be central to the understanding of electrochemical processes. This work develops a model to calculate the temperature dependence of a well known electron transfer reaction from first principles. The reaction is the ferrous-ferric electron transfer reaction in HClO/sub 4/ at a gold electrode. In this reaction, the iron is aquo-coordinated, which simplifies the modeling problem.

  12. Measurement of the single-spin asymmetry in the reaction {pi}{sup -}d{sub {up_arrow}} {sup {yields} {pi}0}X in the beam-fragmentation region at 40 GeV and p{sub T} of up to 2 GeV/c

    SciTech Connect

    Mochalov, V. V. Belikov, N. I.; Borisov, N. S.; Vasiliev, A. N.; Derevschikov, A. A.; Matulenko, Yu. A.; Meschanin, A. P.; Minaev, N. G.; Neganov, A. B.; Nurushev, S. B.; Prudkoglyad, A. F.; Soloviev, L. F.; Usov, Yu. A.; Fedorov, A. N.; Schevelev, O. N.

    2010-12-15

    The single-spin asymmetry A{sub N} in the reaction {pi}{sup -} + d{sub {up_arrow}} {sup {yields} {pi}0} + X in the beam-fragmentation region at the energy of 40 GeV was investigated by using the PROZA setup installed at the U-70 accelerator of the Institute for High Energy Physics (IHEP, Protvino). It was measured to be A{sub N} = (13.6 {+-} 2.6(stat.) {+-} 2.0(syst.))% in the intervals 0.7 < x{sub F} < 1.0 and 1.0 < p{sub T} < 1.8 GeV/c. The results agree with the asymmetry of {pi}{sup 0} mesons in the charge-exchange reaction {pi}{sup -} + p{sub {up_arrow}} {sup {yields} {pi}0} + n at the same values of the transverse momentum and beam energy. The asymmetry in the reaction K{sup -} + d{sub {up_arrow}} {sup {yields} {pi}0} + X was simultaneously measured and found to be A{sub N} = (11 {+-} 14)% for p{sub T} > 1.2 GeV/c.

  13. Investigation of temperature dependence of neutron yield and electron screening potential for the d(d, n){sup 3}He reaction proceeding in deuterides ZrD{sub 2} and TiD{sub 2}

    SciTech Connect

    Bystritsky, V. M.; Bystritskii, Vit. M.; Dudkin, G. N.; Filipowicz, M.; Gazi, S.; Huran, J.; Kobzev, A. P.; Mesyats, G. A.; Nechaev, B. A.; Padalko, V. N.; Parzhitskii, S. S.; Pen'kov, F. M.; Philippov, A. V.; Kaminskii, V. L.; Tuleushev, Yu. Zh.; Wozniak, J.

    2012-08-15

    The temperature dependence of the enhancement factor for the dd reaction proceeding in TiD{sub 2} and ZrD{sub 2} is investigated. The experiments were carried out at the Hall pulsed ion accelerator (INP, Polytechnic University, Tomsk, Russia) in the deuteron energy interval 7.0-12.0 keV and at temperatures ranging from 20 to 200 Degree-Sign C. The values obtained for the electron screening potentials indicate that the dd reaction enhancement factor does not depend on the target temperature in the range 20-200 Degree-Sign C. This result contradicts the conclusions drawn by the LUNA Collaboration from their work.

  14. The CCONE Code System and its Application to Nuclear Data Evaluation for Fission and Other Reactions

    NASA Astrophysics Data System (ADS)

    Iwamoto, O.; Iwamoto, N.; Kunieda, S.; Minato, F.; Shibata, K.

    2016-01-01

    A computer code system, CCONE, was developed for nuclear data evaluation within the JENDL project. The CCONE code system integrates various nuclear reaction models needed to describe nucleon, light charged nuclei up to alpha-particle and photon induced reactions. The code is written in the C++ programming language using an object-oriented technology. At first, it was applied to neutron-induced reaction data on actinides, which were compiled into JENDL Actinide File 2008 and JENDL-4.0. It has been extensively used in various nuclear data evaluations for both actinide and non-actinide nuclei. The CCONE code has been upgraded to nuclear data evaluation at higher incident energies for neutron-, proton-, and photon-induced reactions. It was also used for estimating β-delayed neutron emission. This paper describes the CCONE code system indicating the concept and design of coding and inputs. Details of the formulation for modelings of the direct, pre-equilibrium and compound reactions are presented. Applications to the nuclear data evaluations such as neutron-induced reactions on actinides and medium-heavy nuclei, high-energy nucleon-induced reactions, photonuclear reaction and β-delayed neutron emission are mentioned.

  15. Momentum distributions in breakup reactions

    SciTech Connect

    Esbensen, H.

    1996-02-01

    Measurements of the breakup reactions: {sup 11}Be {yields} {sup 10}Be+n and{sup 8} {yields} {sup 7}Be+p are analyzed in a single-particle description. The signature of various structure properties associated with the valence nucleon axe discussed, as well as the significance of the different reaction mechanisms, namely Coulomb dissociation, stripping and nuclear induced diffraction.

  16. Isomeric and ground state energy level measurements of natural tellurium isotopes via (γ,n) reaction

    NASA Astrophysics Data System (ADS)

    Tamkas, M.; Akcali, O.; Durusoy, A.

    2015-04-01

    We have planned to measure isomeric and ground state energy levels in 120Te(γ,n)119m,gTe, 122Te(γ,n)121m,gTe, 128Te(γ,n)127m,gTe, 130Te(γ,n)129m,gTe photonuclear reactions of natural tellurium induced by bremsstrahlung photons with end-point energy at 18 MeV. The sample was irradiated in the clinical linear electron accelerator (Philips SLi-25) at Akdeniz University Hospital. The gamma spectrum of the tellurium sample was measured using HP(Ge) semiconductor detector (ORTEC) and multi channel analyzer. We used both MAESTRO (ORTEC) and home made root based gui program (Theia) for data analyzing. The obtained experimental data values are compared with NUDAT energy values.

  17. Free radical hydrogen atom abstraction from saturated hydrocarbons: A crossed-molecular-beams study of the reaction Cl + C{sub 3}H{sub 8} {yields} HCl + C{sub 3}H{sub 7}

    SciTech Connect

    Blank, D.A.; Hemmi, N.; Suits, A.G.; Lee, Y.T.

    1997-04-01

    The abstraction of hydrogen atoms from saturated hydrocarbons are reactions of fundamental importance in combustion as well as often being the rate limiting step in free radical substitution reactions. The authors have begun studying these reactions under single collision conditions using the crossed molecular beam technique on beamline 9.0.2.1, utilizing VUV undulator radiation to selectively ionize the scattered hydrocarbon free radical products (C{sub x}H{sub 2x+1}). The crossed molecular beam technique involves two reactant molecular beams fixed at 90{degrees}. The molecular beam sources are rotatable in the plane defined by the two beams. The scattered neutral products travel 12.0 cm where they are photoionized using the VUV undulator radiation, mass selected, and counted as a function of time. In the authors initial investigations they are using halogen atoms as protypical free radicals to abstract hydrogen atoms from small alkanes. Their first study has been looking at the reaction of Cl + propane {r_arrow} HCl + propyl radical. In their preliminary efforts the authors have measured the laboratory scattering angular distribution and time of flight spectra for the propyl radical products at collision energies of 9.6 kcal/mol and 14.9 kcal/mol.

  18. Efficient prediction of (p,n) yields

    SciTech Connect

    Swift, D C; McNaney, J M; Higginson, D P; Beg, F

    2009-09-09

    In the continuous deceleration approximation, charged particles decelerate without any spread in energy as they traverse matter. This approximation simplifies the calculation of the yield of nuclear reactions, for which the cross-section depends on the particle energy. We calculated (p,n) yields for a LiF target, using the Bethe-Bloch relation for proton deceleration, and predicted that the maximum yield would be around 0.25% neutrons per incident proton, for an initial proton energy of 70 MeV or higher. Yield-energy relations calculated in this way can readily be used to optimize source and (p,n) converter characteristics.

  19. Comparison of secondary organic aerosol formed with an aerosol flow reactor and environmental reaction chambers: effect of oxidant concentration, exposure time and seed particles on chemical composition and yield

    DOE PAGES

    Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.; Brune, W. H.; Hunter, J. F.; Kroll, J. H.; Cummings, M. J.; Brogan, J. F.; Parmar, Y.; Worsnop, D. R.; et al

    2014-12-02

    We performed a systematic intercomparison study of the chemistry and yields of SOA generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0×108 to 2.2×1010 molec cm-3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2×106 to 2×107 molec cm-3 over exposure times of several hours. The OH concentration in the chamber experiments is close to that found in the atmosphere, butmore » the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. A linear correlation analysis of the mass spectra (m=0.91–0.92, r2=0.93–0.94) and carbon oxidation state (m=1.1, r2=0.58) of SOA produced in the flow reactor and environmental chambers for OH exposures of approximately 1011 molec cm-3 s suggests that the composition of SOA produced in the flow reactor and chambers is the same within experimental accuracy as measured with an aerosol mass spectrometer. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors, rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are

  20. More on Chemical Reaction Balancing.

    ERIC Educational Resources Information Center

    Swinehart, D. F.

    1985-01-01

    A previous article stated that only the matrix method was powerful enough to balance a particular chemical equation. Shows how this equation can be balanced without using the matrix method. The approach taken involves writing partial mathematical reactions and redox half-reactions, and combining them to yield the final balanced reaction. (JN)

  1. The reaction NH2 + PH3 yields NH3 + PH2: Absolute rate constant measurement and implication for NH3 and PH3 photochemistry in the atmosphere of Jupiter

    NASA Technical Reports Server (NTRS)

    Bosco, S. R.; Brobst, W. D.; Nava, D. F.; Stief, L. J.

    1983-01-01

    The rate constant is measured over the temperature interval 218-456 K using the technique of flash photolysis-laser-induced fluorescence. NH2 radicals are produced by the flash photolysis of ammonia highly diluted in argon, and the decay of fluorescent NH2 photons is measured by multiscaling techniques. For each of the five temperatures employed in the study, the results are shown to be independent of variations in PH3 concentration, total pressure (argon), and flash intensity. It is found that the rate constant results are best represented for T between 218 and 456 K by the expression k = (1.52 + or - 0.16) x 10 to the -12th exp(-928 + or - 56/T) cu cm per molecule per sec; the error quoted is 1 standard deviation. This is the first determination of the rate constant for the reaction NH2 + PH3. The data are compared with an estimate made in order to explain results of the radiolysis of NH3-PH3 mixtures. The Arrhenius parameters determined here for NH2 + PH3 are then constrasted with those for the corresponding reactions of H and OH with PH3.

  2. Exact quantum dynamics study of the O{sup +}+H{sub 2}(v=0,j=0){yields}OH{sup +}+H ion-molecule reaction and comparison with quasiclassical trajectory calculations

    SciTech Connect

    Martinez, Rodrigo; Lucas, Josep M.; Gimenez, Xavier; Aguilar, Antonio; Gonzalez, Miguel

    2006-04-14

    The close-coupling hyperspherical (CCH) exact quantum method was used to study the title barrierless reaction up to a collision energy (E{sub T}) of 0.75 eV, and the results compared with quasiclassical trajectory (QCT) calculations to determine the importance of quantum effects. The CCH integral cross section decreased with E{sub T} and, although the QCT results were in general quite similar to the CCH ones, they presented a significant deviation from the CCH data within the 0.2-0.6 eV collision energy range, where the QCT method did not correctly describe the reaction probability. A very good accord between both methods was obtained for the OH{sup +} vibrational distribution, where no inversion of population was found. For the OH{sup +} rotational distributions, the agreement between the CCH and QCT results was not as good as in the vibrational case, but it was satisfactory in many conditions. The kk{sup '} angular distribution showed a preferential forward character, and the CCH method produced higher forward peaks than the QCT one. All the results were interpreted considering the potential energy surface and plots of a representative sampling of reactive trajectories.

  3. The reaction NH2 + PH3 yields NH3 + PH2 - Absolute rate constant measurement and implication for NH3 and PH3 photochemistry in the atmosphere of Jupiter

    NASA Technical Reports Server (NTRS)

    Bosco, S. R.; Brobst, W. D.; Nava, D. F.; Stief, L. J.

    1983-01-01

    The rate constant is measured over the temperature interval 218-456 K using the technique of flash photolysis-laser-induced fluorescence. NH2 radicals are produced by the flash photolysis of ammonia highly diluted in argon, and the decay of fluorescent NH2 photons is measured by multiscaling techniques. For each of the five temperatures employed in the study, the results are shown to be indepenent of variations in PH3 concentration, total pressure (argon), and flash intensity. It is found that the rate constant results are best represented for T between 218 and 456 K by the expression k = (1.52 + or - 0.16) x 10 to the -12th exp(-928 + or - 56/T) cu cm per molecule per sec; the error quoted is 1 standard deviation. This is the first determination of the rate constant for the reaction NH2 + PH3. The data are compared with an estimate made in order to explain results of the radiolysis of NH3-PH3 mixtures. The Arrhenius parameters determined here for NH2 + PH3 are then contrasted with those for the corresponding reactions of H and OH with PH3.

  4. The absolute yield, angular distribution and resonance widths of the 6.13, 6.92 and 7.12 MeV photons from the 340.5 keV resonance of the 19F(p,αγ) 16O reaction

    NASA Astrophysics Data System (ADS)

    Croft, S.

    1991-10-01

    Although the low lying resonances in the 19F(p,αγ) 16O reaction have been studied by many investigators in the past, only a few absolute determinations of the gamma-ray yield and branching ratios have been made. This is somewhat surprising in view of the widespread use of this reaction for the quantitative microanalysis of fluorine concentration profiles in the near surface regions of materials and for the calibration of gamma-ray detectors. In this work we report an absolute measurement of the yield, angular distribution and resonance widths of the 6.13, 6.92 and 7.12 MeV photons from the 340.5 keV resonance of the 19F(p,αγ) 16O reaction. Photons were produced by bombarding a semithick target of CaF 2 with protons from the Harwell 6 MV Van de Graaff accelerator. A 113 cm 3 HPGe spectrometer, with an energy resolution of 6.8 keV at 6129 keV, was used as the photon detector. This detector had previously been calibrated absolutely using a combination of radionuclide and thermal neutron capture gamma-ray sources at the neutron facility Badger, adjacent to the Harwell reactor DIDO. Measurements were made at seven angles in the range 0° - 150° permitting both differential and integral cross-sections to be derived. Geometrical correction factors were calculated using the Monte Carlo code EGS-4. A value for the reaction width was determined from the excitation curve. With conventional notation the principal results are as follows: γ1 : γ2 : γ3 = 0.9701:0.0033:0.0266; ΓCM = (2.08±0.13) keV; and Y( γ1) = (8.72±0.37)×10 4 6129 keV γμC -1as.

  5. Rate Constant for the Reaction CH3 + CH3 Yields C2H6 at T = 155 K and Model Calculation of the CH3 Abundance in the Atmospheres of Saturn and Neptune

    NASA Technical Reports Server (NTRS)

    Cody, Regina J.; Romani, Paul N.; Nesbitt, Fred L.; Iannone, Mark A.; Tardy, Dwight C.; Stief, Louis J.

    2003-01-01

    The column abundances of CH3 observed by the Infrared Space Observatory (ISO) satellite on Saturn and Neptune were lower than predicted by atmospheric photochemical models, especially for Saturn. It has been suggested that the models underestimated the loss of CH3 due to poor knowledge of the rate constant k of the CH3 + CH3 self-reaction at the low temperatures and pressures of these atmospheres. Motivated by this suggestion, we undertook a combined experimental and photochemical modeling study of the CH3 + CH3 reaction and its role in determining planetary CH3 abundances. In a discharge flow-mass spectrometer system, k was measured at T = 155 K and three pressures of He. The results in units of cu cm/molecule/s are k(0.6 Torr) = 6.82 x 10(exp -11), k(1.0 Torr) = 6.98 x 10(exp -11), and k(1.5 Torr) = 6.91 x 10(exp -11). Analytical expressions for k were derived that (1) are consistent with the present laboratory data at T = 155 K, our previous data at T = 202 K and 298 K, and those of other studies in He at T = 296-298 K and (2) have some theoretical basis to provide justification for extrapolation. The derived analytical expressions were then used in atmospheric photochemical models for both Saturn and Neptune. These model results reduced the disparity with observations of Saturn, but not with observations of Neptune. However, the disparity for Neptune is much smaller. The solution to the remaining excess CH3 prediction in the models relative to the ISO observations lies, to a large extent, elsewhere in the CH3 photochemistry or transport, not in the CH3 + CH3 rate.

  6. Dynamical cluster-decay model for hot and rotating light-mass nuclear systems applied to the low-energy {sup 32}S+{sup 24}Mg{yields}{sup 56}Ni{sup *} reaction

    SciTech Connect

    Gupta, Raj K.; Kumar, Rajesh; Singh, Dalip; Balasubramaniam, M.; Beck, C.

    2005-01-01

    The dynamical cluster-decay model (DCM) is developed further for the decay of hot and rotating compound nuclei (China) formed in light heavy-ion reactions. The model is worked out in terms of only one parameter, namely the neck-length parameter, which is related to the total kinetic energy TKE(T) or effective Q value Q{sub eff}(T) at temperature T of the hot CN and is defined in terms of the CN binding energy and ground-state binding energies of the emitted fragments. The emission of both the light particles (LP), with A{<=}4,Z{<=}2, as well as the complex intermediate mass fragments (IMF), with 42, is considered as the dynamical collective mass motion of preformed clusters through the barrier. Within the same dynamical model treatment, the LPs are shown to have different characteristics compared to those of the IMFs. The systematic variations of the LP emission cross section {sigma}{sub LP} and IMF emission cross section {sigma}{sub IMF} calculated from the present DCM match exactly the statistical fission model predictions. A nonstatistical dynamical description is developed for the first time for emission of light particles from hot and rotating CN. The model is applied to the decay of {sup 56}Ni* formed in the {sup 32}S+{sup 24}Mg reaction at two incident energies E{sub c.m.}=51.6 and 60.5 MeV. Both the IMFs and average TKE{sup lowbar} spectra are found to compare resonably well with the experimental data, favoring asymmetric mass distributions. The LPs' emission cross section is shown to depend strongly on the type of emitted particles and their multiplicities.

  7. Yield Improvement in Steel Casting (Yield II)

    SciTech Connect

    Richard A. Hardin; Christoph Beckermann; Tim Hays

    2002-02-18

    This report presents work conducted on the following main projects tasks undertaken in the Yield Improvement in Steel Casting research program: Improvement of Conventional Feeding and Risering Methods, Use of Unconventional Yield Improvement Techniques, and Case Studies in Yield Improvement. Casting trials were conducted and then simulated using the precise casting conditions as recorded by the participating SFSA foundries. These results present a statistically meaningful set of experimental data on soundness versus feeding length. Comparisons between these casting trials and casting trials performed more than forty years ago by Pellini and the SFSA are quite good and appear reasonable. Comparisons between the current SFSA feeding rules and feeding rules based on the minimum Niyama criterion reveal that the Niyama-based rules are generally less conservative. The niyama-based rules also agree better with both the trials presented here, and the casting trails performed by Pellini an d the SFSA years ago. Furthermore, the use of the Niyama criterion to predict centerline shrinkage for horizontally fed plate sections has a theoretical basis according to the casting literature reviewed here. These results strongly support the use of improved feeding rules for horizontal plate sections based on the Niyama criterion, which can be tailored to the casting conditions for a given alloy and to a desired level of soundness. The reliability and repeatability of ASTM shrinkage x-ray ratings was investigated in a statistical study performed on 128 x-rays, each of which were rated seven different times. A manual ''Feeding and Risering Guidelines for Steel Castings' is given in this final report. Results of casting trials performed to test unconventional techniques for improving casting yield are presented. These use a stacked arrangement of castings and riser pressurization to increase the casting yield. Riser pressurization was demonstrated to feed a casting up to four time s the

  8. Atmospheric Nitrogen Fluorescence Yield

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Christl, M. J.; Fountain, W. F.; Gregory, J. C.; Martens, K. U.; Sokolsky, Pierre; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Several existing and planned experiments estimate the energies of ultra-high energy cosmic rays from air showers using the atmospheric nitrogen fluorescence. The nitrogen fluorescence yield from air shower electrons depends on the atmospheric composition. We will discuss the uncertainties in the fluorescence yield form electrons in the real atmosphere and describe a concept for a small balloon payload to measure the atmospheric fluorescence yield as a function of attitude.

  9. A flash photolysis-shock tube kinetic study of the H atom reaction with O sub 2 : H + O sub 2 rightleftharpoons OH + O (962 K le T le 1705 K) and H + O sub 2 + Ar yields HO sub 2 + Ar (746 K le T le 987 K)

    SciTech Connect

    Pirraglia, A.N.; Michael, J.V.; Sutherland, J.W.; Klemm, R.B. )

    1989-01-12

    Rate constants for the reactions H + O{sub 2} {yields} OH + O (1) and H + O{sub 2} + M {yields} HO{sub 2} + M (2) were measured under pseudo-first-order conditions by the flash photolysis-shock tube technique that employs the atomic resonance absorption detection method to monitor (H){sub t}. Rate data for reaction 1 were obtained over the temperature range from 962 to 1705 K, and the results are well represented by the Arrhenius expression k{sub 1}(T) = (2.79 {plus minus} 0.32) {times} 10{sup {minus}10} exp(-16132 {plus minus} 276 cal mol{sup {minus}1}/RT) cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}. The mean deviation of the experimentally measured rate constants from those calculated by using this expression is {plus minus}16% over the stated temperature range. The recent shock tube data of Frank and Just (1693-2577 K) were combined with the present results for k{sub 1}(T) to obtain the following Arrhenius expression for the overall temperature span (962-2577 K); k{sub 1}(T) = (3.18 {plus minus} 0.24) {times} 10{sup {minus}10} exp(-16439 {plus minus} 186 cal mol{sup {minus}1}/RT) cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}. The mean deviation of the experimentally measured rate constants from this expression is {plus minus}15% over the entire temperature range. Values for the rate constant for the reverse of reaction 1 were calculated from each of the experimentally measured K{sub 1}(T) values with expressions for the equilibrium constant derived by using the latest JANAF thermochemical data. These k{sub {minus}1}(T) values were also combined with similarly derived values from the Frank and Just data.

  10. Low-Yield Cigarettes

    MedlinePlus

    ... Secondhand Smoke Smokeless Products Youth Tobacco Prevention Tobacco Industry and Products Federal Tax Increase Tobacco Ingredient Reporting ... be used. 3 In the past, the tobacco industry categorized low-yield cigarettes using measurements of tar ...

  11. Argentina soybean yield model

    NASA Technical Reports Server (NTRS)

    Callis, S. L.; Sakamoto, C.

    1984-01-01

    A model based on multiple regression was developed to estimate soybean yields for the country of Argentina. A meteorological data set was obtained for the country by averaging data for stations within the soybean growing area. Predictor variables for the model were derived from monthly total precipitation and monthly average temperature. A trend variable was included for the years 1969 to 1978 since an increasing trend in yields due to technology was observed between these years.

  12. Argentina corn yield model

    NASA Technical Reports Server (NTRS)

    Callis, S. L.; Sakamoto, C.

    1984-01-01

    A model based on multiple regression was developed to estimate corn yields for the country of Argentina. A meteorological data set was obtained for the country by averaging data for stations within the corn-growing area. Predictor variables for the model were derived from monthly total precipitation, average monthly mean temperature, and average monthly maximum temperature. A trend variable was included for the years 1965 to 1980 since an increasing trend in yields due to technology was observed between these years.

  13. Dynamic Reaction Figures: An Integrative Vehicle for Understanding Chemical Reactions

    ERIC Educational Resources Information Center

    Schultz, Emeric

    2008-01-01

    A highly flexible learning tool, referred to as a dynamic reaction figure, is described. Application of these figures can (i) yield the correct chemical equation by simply following a set of menu driven directions; (ii) present the underlying "mechanism" in chemical reactions; and (iii) help to solve quantitative problems in a number of different…

  14. Yield gaps and yield relationships in US soybean production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The magnitude of yield gaps (YG) (potential yield – farmer yield) provides some indication of the prospects for increasing crop yield to meet the food demands of future populations. Quantile regression analysis was applied to county soybean [Glycine max (L.) Merrill] yields (1971 – 2011) from Kentuc...

  15. Drug Reactions

    MedlinePlus

    ... or diabetes. But medicines can also cause unwanted reactions. One problem is interactions, which may occur between ... more serious. Drug allergies are another type of reaction. They can be mild or life-threatening. Skin ...

  16. Atmospheric Fluorescence Yield

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Christl, M. J.; Fountain, W. F.; Gregory, J. C.; Martens, K.; Sokolsky, P.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Several existing and planned experiments estimate the energies of ultra-high energy cosmic rays from air showers using the atmospheric fluorescence from these showers. Accurate knowledge of the conversion from atmospheric fluorescence to energy loss by ionizing particles in the atmosphere is key to this technique. In this paper we discuss a small balloon-borne instrument to make the first in situ measurements versus altitude of the atmospheric fluorescence yield. The instrument can also be used in the lab to investigate the dependence of the fluorescence yield in air on temperature, pressure and the concentrations of other gases that present in the atmosphere. The results can be used to explore environmental effects on and improve the accuracy of cosmic ray energy measurements for existing ground-based experiments and future space-based experiments.

  17. Alternative perspective on photosynthetic yield and enhancement

    PubMed Central

    Warner, J. W.; Berry, R. Stephen

    1987-01-01

    In the traditional Z scheme of photosynthesis the Emerson effects of red drop (decline in yield of photosynthesis in far-red light) and enhancement (of far-red yield by supplementary short-wavelength light) are taken to be evidence for the coupling in series of two photosystems that absorb unsymmetrically in the far-red region of the spectrum. An alternative explanation for red drop and enhancement is proposed here that does not invoke the series-coupling hypothesis. It is suggested that the Emerson effects may be due to the drop in intensity of radiation from sample absorption, which causes a photochemical loss when the reaction shuts off at depth in the medium. The effects of oxygen, carbon dioxide, and temperature on the yield may also be interpreted in terms of this model. PMID:16593850

  18. Modified triglyceride oil through reactions with phenyltriazolinedione

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The synthesis of a modified triglyceride oil was achieved through the reactions with 4-phenyl-1,2-4-triazoline-3,5-dione (PTAD). 1H NMR was used for structure determination and to monitor the reactions. Several reaction products were produced, and their relative yields depended on the stoichiometry ...

  19. Reaction Order Ambiguity in Integrated Rate Plots

    ERIC Educational Resources Information Center

    Lee, Joe

    2008-01-01

    Integrated rate plots are frequently used in reaction kinetics to determine orders of reactions. It is often emphasised, when using this methodology in practice, that it is necessary to monitor the reaction to a substantial fraction of completion for these plots to yield unambiguous orders. The present article gives a theoretical and statistical…

  20. Drilling ban yields verdict

    SciTech Connect

    Nation, L.M.

    1992-01-01

    This paper briefly reviews a lawsuit which is under appeal by the State of Michigan regarding a takings claim filed over a petroleum exploration site. The dispute arose as a result of a 1987 decision by the Michigan Department of Natural Resources forbidding the property owners from developing the mineral rights leased to Miller Brothers in the Huron/Manistee National Forest. This area is bisected by a trend of Silurian Niagaran reef complexes which has a known production history throughout the State. The dunes area of the national forest has been deemed a wilderness area. As a result of the State's decision, the courts have awarded a sum of 71 million dollars to the developer to cover damages and lost resources. The reserve estimates were taken from adjacent areas which showed that the Niagaran reefs are relatively consistent in their yield.

  1. {lambda}(1520) {yields} {lambda}{gamma} Radiative-Decay Width

    SciTech Connect

    Vavilov, D.V.; Antipov, Yu.M.; Artamonov, A.V.; Batarin, V.A.; Victorov, V.A.; Golovkin, S.V.; Gorin, Yu.P.; Eroshin, O.V.; Kozhevnikov, A.P.; Konstantinov, A.S.; Kubarovsky, V.P.; Kurshetsov, V.F.; Landsberg, L.G.; Leontiev, V.M.; Molchanov, V.V.; Mukhin, V.A.; Patalakha, D.I.; Petrenko, S.V.; Petrukhin, A.I.; Kolganov, V.Z.

    2005-03-01

    The radiative decay {lambda}(1520) {yields} {lambda}{gamma} was recorded in the exclusive reaction p + N {yields} {lambda}(1520)K{sup +} + N at the SPHINX facility. The branching ratio for this decay and the corresponding partial width were found to be, respectively, Br[{lambda}(1520) {yields} {lambda}{gamma}] = (1.02 {+-} 0.21) x 10{sup -2} and {gamma}[{lambda}(1520) {yields} {lambda}{gamma}] = 159 {+-} 35 keV (the quoted errors are purely statistical, the systematic errors being within 15%)

  2. Yield enhancement with DFM

    NASA Astrophysics Data System (ADS)

    Paek, Seung Weon; Kang, Jae Hyun; Ha, Naya; Kim, Byung-Moo; Jang, Dae-Hyun; Jeon, Junsu; Kim, DaeWook; Chung, Kun Young; Yu, Sung-eun; Park, Joo Hyun; Bae, SangMin; Song, DongSup; Noh, WooYoung; Kim, YoungDuck; Song, HyunSeok; Choi, HungBok; Kim, Kee Sup; Choi, Kyu-Myung; Choi, Woonhyuk; Jeon, JoongWon; Lee, JinWoo; Kim, Ki-Su; Park, SeongHo; Chung, No-Young; Lee, KangDuck; Hong, YoungKi; Kim, BongSeok

    2012-03-01

    A set of design for manufacturing (DFM) techniques have been developed and applied to 45nm, 32nm and 28nm logic process technologies. A noble technology combined a number of potential confliction of DFM techniques into a comprehensive solution. These techniques work in three phases for design optimization and one phase for silicon diagnostics. In the DFM prevention phase, foundation IP such as standard cells, IO, and memory and P&R tech file are optimized. In the DFM solution phase, which happens during ECO step, auto fixing of process weak patterns and advanced RC extraction are performed. In the DFM polishing phase, post-layout tuning is done to improve manufacturability. DFM analysis enables prioritization of random and systematic failures. The DFM technique presented in this paper has been silicon-proven with three successful tape-outs in Samsung 32nm processes; about 5% improvement in yield was achieved without any notable side effects. Visual inspection of silicon also confirmed the positive effect of the DFM techniques.

  3. Secondary Electron Emission Yields

    NASA Technical Reports Server (NTRS)

    Krainsky, I.; Lundin, W.; Gordon, W. L.; Hoffman, R. W.

    1981-01-01

    The secondary electron emission (SEE) characteristics for a variety of spacecraft materials were determined under UHV conditions using a commercial double pass CMA which permits sequential Auger electron electron spectroscopic analysis of the surface. The transparent conductive coating indium tin oxide (ITO) was examined on Kapton and borosilicate glass and indium oxide on FED Teflon. The total SEE coefficient ranges from 2.5 to 2.6 on as-received surfaces and from 1.5 to 1.6 on Ar(+) sputtered surfaces with 5 nm removed. A cylindrical sample carousel provides normal incidence of the primary beam as well as a multiple Faraday cup measurement of the approximately nA beam currents. Total and true secondary yields are obtained from target current measurements with biasing of the carousel. A primary beam pulsed mode to reduce electron beam dosage and minimize charging of insulating coatings was applied to Mg/F2 coated solar cell covers. Electron beam effects on ITO were found quite important at the current densities necessary to do Auger studies.

  4. High-yield synthesis of bioactive ethyl cinnamate by enzymatic esterification of cinnamic acid.

    PubMed

    Wang, Yun; Zhang, Dong-Hao; Zhang, Jiang-Yan; Chen, Na; Zhi, Gao-Ying

    2016-01-01

    In this paper, Lipozyme TLIM-catalyzed synthesis of ethyl cinnamate through esterification of cinnamic acid with ethanol was studied. In order to increase the yield of ethyl cinnamate, several media, including acetone, isooctane, DMSO and solvent-free medium, were investigated in this reaction. The reaction showed a high yield by using isooctane as reaction medium, which was found to be much higher than the yields reported previously. Furthermore, several parameters such as shaking rate, water activity, reaction temperature, substrate molar ratio and enzyme loading had important influences on this reaction. For instance, when temperature increased from 10 to 50 °C, the initial reaction rate increased by 18 times and the yield of ethyl cinnamate increased by 6.2 times. Under the optimum conditions, lipase-catalyzed synthesis of ethyl cinnamate gave a maximum yield of 99%, which was of general interest for developing industrial processes for the preparation of ethyl cinnamate.

  5. Crop yield gaps in Cameroon.

    PubMed

    Yengoh, Genesis T; Ardö, Jonas

    2014-03-01

    Although food crop yields per hectare have generally been increasing in Cameroon since 1961, the food price crisis of 2008 and the ensuing social unrest and fatalities raised concerns about the country's ability to meet the food needs of its population. This study examines the country's potential for increasing crop yields and food production to meet this food security challenge. Fuzzy set theory is used to develop a biophysical spatial suitability model for different crops, which in turn is employed to ascertain whether crop production is carried out in biophysically suited areas. We use linear regression to examine the trend of yield development over the last half century. On the basis of yield data from experimental stations and farmers' fields we assess the yield gap for major food crops. We find that yields have generally been increasing over the last half century and that agricultural policies can have significant effects on them. To a large extent, food crops are cultivated in areas that are biophysically suited for their cultivation, meaning that the yield gap is not a problem of biophysical suitability. Notwithstanding, there are significantly large yield gaps between actual yields on farmers' farms and maximum attainable yields from research stations. We conclude that agronomy and policies are likely to be the reasons for these large yield gaps. A key challenge to be addressed in closing the yield gaps is that of replenishing and properly managing soil nutrients.

  6. Cross section for the reaction {sup 115}In(γ, γ′){sup 115m} In in the region of the E1 giant resonance

    SciTech Connect

    Dzhilavyan, L. Z.

    2015-07-15

    The cross section for the reaction {sup 115}In(γ, γ′){sub 115m}In was measured for photon energies in the range of E{sub γ} ≅ 4–46 MeV. The parameters of the peak in this cross section near the threshold for the reaction {sup 115}In(γ, n), (E{sub γ}){sub (γ,n)}{sup thr}, were refined. It is shown that, in the cross section for the reaction {sup 115}In(γ, γ′){sup 115m}In at Eγ ∼ 27 MeV, there is no second peak for which δ{sub II}{sup int} would exceed about 0.2δ{sub I}{sup int} for the peak at E{sub γ} ∼ (E{sub γ}){sub (γ,n)}{sup thr}. The possibility of employing this reaction both in studying photonuclear reaction physics and in monitoring bremsstrahlung photons in gamma-activation studies was examined.

  7. Grignard Reactions in "Wet" Ether

    NASA Astrophysics Data System (ADS)

    Smith, David H.

    1999-10-01

    A small laboratory ultrasonic bath can be used to initiate the Grignard reaction of alkyl or aryl bromides in regular laboratory-quality, undried, diethyl ether and in simple undried test tubes. The reaction typically starts within 30 to 45 seconds and is self-sustaining. Yields and products are the same as obtained with carefully dried ether and equipment. We normally run this reaction at the 1.5-gram scale, but the procedure can be scaled up to at least 10 g of the bromide.

  8. Mineral-water reactions in metamorphism and volcanism

    USGS Publications Warehouse

    Barnes, I.

    1985-01-01

    Low-temperature (120??C and less) metamorphism of graywacke, granite and andesite yields zeolites and precursor gels by reaction with fresh water but low-greenschist facies by reaction with salt (sea)water. ?? 1985.

  9. Fundamental reaction pathways during coprocessing

    SciTech Connect

    Stock, L.M.; Gatsis, J.G.

    1992-12-01

    The objective of this research was to investigate the fundamental reaction pathways in coal petroleum residuum coprocessing. Once the reaction pathways are defined, further efforts can be directed at improving those aspects of the chemistry of coprocessing that are responsible for the desired results such as high oil yields, low dihydrogen consumption, and mild reaction conditions. We decided to carry out this investigation by looking at four basic aspects of coprocessing: (1) the effect of fossil fuel materials on promoting reactions essential to coprocessing such as hydrogen atom transfer, carbon-carbon bond scission, and hydrodemethylation; (2) the effect of varied mild conditions on the coprocessing reactions; (3) determination of dihydrogen uptake and utilization under severe conditions as a function of the coal or petroleum residuum employed; and (4) the effect of varied dihydrogen pressure, temperature, and residence time on the uptake and utilization of dihydrogen and on the distribution of the coprocessed products. Accomplishments are described.

  10. Waste-free solid-state syntheses with quantitative yield.

    PubMed

    Kaupp, G; Schmeyers, J; Boy, J

    2001-04-01

    Unexpected organic solid-state reactions in the gas-solid and stoichiometric solid-solid versions are highly promising new tools for solvent-free sustainable synthesis and production if they occur with 100% yield. Costly workup is obsolete, no wastes are formed and resources and energy saved. More than 500 published 100%-yield, solid-state reactions in 25 reaction types cover virtually all fields of synthetic organic chemistry. Atomic force microscopy (AFM) reveals that solid-state reactions require long-range molecular movements and are strictly and sensibly guided by the crystal packing. Three steps govern the issue: phase rebuilding, phase transformation, and crystal disintegration (detachment). If one of these fails, or if liquid phases are not avoided, the reaction will usually not run to completion. Repeated creation of fresh contacts of crystallites is essential in solid-solid reactions. New, otherwise inaccessible and highly reactive products are most easily obtained. Cooling below eutectic temperatures, but also thermal activation above room temperature, may be necessary. Liquids may be solidified by cooling or inclusion complexation. Typical single-step, multi-step and cascade reactions have been performed with 100% yield using commonly available starting materials in various fields. Upscaling to the kilogram scale has been achieved under various conditions. Further upscaling to technical size productions seems possible.

  11. The aromatic ene reaction

    PubMed Central

    Niu, Dawen; Hoye, Thomas R.

    2014-01-01

    The ene reaction is a pericyclic process in which an alkene having an allylic hydrogen atom (the ene donor) reacts with a second unsaturated species (the enophile) to form a new product with a transposed π-bond. The aromatic ene reaction, in which the alkene component is embedded in an aromatic ring, has only been reported in a few (four) instances and has proceeded in low yield (≤6%). Here we show efficient aromatic ene reactions in which a thermally generated aryne engages a pendant m-alkylarene substituent to produce a dearomatized isotoluene, itself another versatile but rare reactive intermediate. Our experiments were guided by computational studies that revealed structural features conducive to the aromatic ene process. We proceeded to identify a cascade comprising three reactions: (i) hexadehydro-Diels-Alder (for aryne generation), (ii) intramolecular aromatic ene, and (iii) bimolecular Alder ene. The power of this cascade is evident from the structural complexity of the final products, the considerable scope, and the overall efficiency of these multi-stage, reagent- and byproduct-free, single-pot transformations. PMID:24345944

  12. Yield: it's now an entitlement

    NASA Astrophysics Data System (ADS)

    George, Bill

    1994-09-01

    Only a few years ago, the primary method of cost reduction and productivity improvement in the semiconductor industry was increasing manufacturing yields throughout the process. Many of the remarkable reliability improvements realized over the past decade have come about as a result of actions that were originally taken primarily to improve device yields. Obviously, the practice of productivity improvement through yield enhancement is limited to the attainment of 100% yield, at which point some other mechanism must be employed. Traditionally, new products have been introduced to manufacturing at a point of relative immaturity, and semiconductor producers have relied on the traditional `learning curve' method of yield improvement to attain profitable levels of manufacturing yield. Recently, results of a survey of several fabs by a group of University of California at Berkeley researchers in the Competitive Semiconductor Manufacturing Program indicate that most factories learn at about the same rate after startup, in terms of both line yield and defectivity. If this is indeed generally true, then the most competitive factor is the one that starts with the highest yield, and it is difficult to displace a leader once his lead has been established. The two observations made above carry enormous implications for the semiconductor development or manufacturing professional. First, one must achieve very high yields in order to even play the game. Second, the achievement of competitive yields over time in the life of a factory is determined even before the factory is opened, in the planning and development phase. Third, and perhaps most uncomfortable for those of us who have relied on yield improvement as a cost driver, the winners of the nineties will find new levers to drive costs down, having already gotten the benefit of very high yield. This paper looks at the question of how the winners will achieve the critical measures of success, high initial yield and utilization

  13. Fusion yield: Guderley model and Tsallis statistics

    NASA Astrophysics Data System (ADS)

    Haubold, H. J.; Kumar, D.

    2011-02-01

    The reaction rate probability integral is extended from Maxwell-Boltzmann approach to a more general approach by using the pathway model introduced by Mathai in 2005 (A pathway to matrix-variate gamma and normal densities. Linear Algebr. Appl. 396, 317-328). The extended thermonuclear reaction rate is obtained in the closed form via a Meijer's G-function and the so-obtained G-function is represented as a solution of a homogeneous linear differential equation. A physical model for the hydrodynamical process in a fusion plasma-compressed and laser-driven spherical shock wave is used for evaluating the fusion energy integral by integrating the extended thermonuclear reaction rate integral over the temperature. The result obtained is compared with the standard fusion yield obtained by Haubold and John in 1981 (Analytical representation of the thermonuclear reaction rate and fusion energy production in a spherical plasma shock wave. Plasma Phys. 23, 399-411). An interpretation for the pathway parameter is also given.

  14. Organic synthesis by quench reactions.

    PubMed

    Park, W K; Hochstim, A R

    1975-01-01

    The effects of chemical quench reactions on the formation of organic compounds at a water surface under simulated primordial earth conditions were investigated for the study of chemical evolution. A mixture of gaseous methane and ammonia over a water surface was exposed to an arc discharge between an electrode and the water surface. This discharge served as a source of dissociated, ionized and excited atomic and molecular species. Various organic molecules were formed in the gaseous, aqueous, and solid states by a subsequent quenching of these reactive species on the water surface. The effects of these water-surface quench reactions were assessed by comparing the amounts of synthesized molecules to the amounts which formed during the discharge of an arc above the water level. The results showed that: (1) the water-surface quench reaction permitted faster rates of formation of an insoluble solid and (2) the quench discharge yielded twice as much amino acids and 17 times more insoluble solids by weight than the other discharge. The highest yield of amino acids with the quench reaction was 9 x 10-7 molecules per erg of input energy. These observations indicate that quench reactions on the oceans, rain, and clouds that would have followed excitation by lightning and shock waves may have played an important role in the prebiotic milieu. Furthermore, the possibility exists that quench reactions can be exploited for the synthesis of organic compounds on a larger scale from simple starting materials.

  15. Intramolecular hydrogen transfer reaction: menthon from isopulegol.

    PubMed

    Schaub, Thomas; Rüdenauer, Stefan; Weis, Martine

    2014-05-16

    The flavor menthon (isomeric mixture of (-)-menthon and (+)-isomenthon) was obtained in good yields and selectivities by a solventless ruthenium catalyzed isomerization of the homoallylic alcohol (-)-isopulegol. In contrast to most previous assumptions on such "isomerization" reactions, this reaction follows an intermolecular pathway, with menthol and pulegon being the central intermediates in this transformation. PMID:24779450

  16. Quantitative analysis of microbial biomass yield in aerobic bioreactor.

    PubMed

    Watanabe, Osamu; Isoda, Satoru

    2013-12-01

    We have studied the integrated model of reaction rate equations with thermal energy balance in aerobic bioreactor for food waste decomposition and showed that the integrated model has the capability both of monitoring microbial activity in real time and of analyzing biodegradation kinetics and thermal-hydrodynamic properties. On the other hand, concerning microbial metabolism, it was known that balancing catabolic reactions with anabolic reactions in terms of energy and electron flow provides stoichiometric metabolic reactions and enables the estimation of microbial biomass yield (stoichiometric reaction model). We have studied a method for estimating real-time microbial biomass yield in the bioreactor during food waste decomposition by combining the integrated model with the stoichiometric reaction model. As a result, it was found that the time course of microbial biomass yield in the bioreactor during decomposition can be evaluated using the operational data of the bioreactor (weight of input food waste and bed temperature) by the combined model. The combined model can be applied to manage a food waste decomposition not only for controlling system operation to keep microbial activity stable, but also for producing value-added products such as compost on optimum condition. PMID:25078821

  17. Anomalous DD and TT yields relative to the DT yield in inertial-confinement-fusion implosions

    NASA Astrophysics Data System (ADS)

    Casey, Daniel T.

    2011-10-01

    Measurements of the D(d,p)T (DD), T(t,2n)4He (TT) and D(t,n)4He (DT) reactions have been conducted using deuterium-tritium gas-filled inertial confinement fusion (ICF) implosions. In these experiments, which were carried out at the OMEGA laser facility, absolute spectral measurements of the DD protons and TT neutrons were conducted and compared to neutron-time-of-flight measured DT-neutron yields. From these measurements, it is concluded that the DD yield is anomalously low and the TT yield is anomalously high relative to the DT yield, an effect that is enhanced with increasing ion temperature. These results can be explained by an enrichment of tritium in the core of an ICF implosion, which may be present in ignition experiments planned on the National Ignition Facility. In addition, the spectral measurements of the TT-neutron spectrum were conducted for the first time at reactant central-mass energies in the range of 15-30 keV. The results from these measurements indicate that the TT reaction proceeds primarily through the direct three-body reaction channel, producing a continuous TT-neutron spectrum in the range 0 - 9.5 MeV. This work was conducted in collaboration with J. A. Frenje, M. Gatu Johnson, M. J.-E. Manuel, H. G. Rinderknecht, N. Sinenian, F. H. Seguin, C. K. Li, R. D. Petrasso, P. B. Radha, J. A. Delettrez, V. Yu Glebov, D. D. Meyerhofer, T. C. Sangster, D. P. McNabb, P. A. Amendt, R. N. Boyd, J. R. Rygg, H. W. Herrmann, Y. H. Kim, G. P. Grim and A. D. Bacher. This work was supported in part by the U.S. Department of Energy (Grant No. DE-FG03-03SF22691), LLE (subcontract Grant No. 412160-001G), LLNL (subcontract Grant No. B504974).

  18. Brazil soybean yield covariance model

    NASA Technical Reports Server (NTRS)

    Callis, S. L.; Sakamoto, C.

    1984-01-01

    A model based on multiple regression was developed to estimate soybean yields for the seven soybean-growing states of Brazil. The meteorological data of these seven states were pooled and the years 1975 to 1980 were used to model since there was no technological trend in the yields during these years. Predictor variables were derived from monthly total precipitation and monthly average temperature.

  19. Incorporating phenology into yield models

    NASA Astrophysics Data System (ADS)

    Gray, J. M.; Friedl, M. A.

    2015-12-01

    Because the yields of many crops are sensitive to meteorological forcing during specific growth stages, phenological information has potential utility in yield mapping and forecasting exercises. However, most attempts to explain the spatiotemporal variability in crop yields with weather data have relied on growth stage definitions that do not change from year-to-year, even though planting, maturity, and harvesting dates show significant interannual variability. We tested the hypothesis that quantifying temperature exposures over dynamically determined growth stages would better explain observed spatiotemporal variability in crop yields than statically defined time periods. Specifically, we used National Agricultural and Statistics Service (NASS) crop progress data to identify the timing of the start of the maize reproductive growth stage ("silking"), and examined the correlation between county-scale yield anomalies and temperature exposures during either the annual or long-term average silking period. Consistent with our hypothesis and physical understanding, yield anomalies were more correlated with temperature exposures during the actual, rather than the long-term average, silking period. Nevertheless, temperature exposures alone explained a relatively low proportion of the yield variability, indicating that other factors and/or time periods are also important. We next investigated the potential of using remotely sensed land surface phenology instead of NASS progress data to retrieve crop growth stages, but encountered challenges related to crop type mapping and subpixel crop heterogeneity. Here, we discuss the potential of overcoming these challenges and the general utility of remotely sensed land surface phenology in crop yield mapping.

  20. Chemistry of heavy ion reactions

    SciTech Connect

    Hoffman, D.C.

    1988-10-01

    The use of heavy ions to induce nuclear reactions was reported as early as 1950. Since that time it has been one of the most active areas of nuclear research. Intense beams of ions as heavy as uranium with energies high enough to overcome the Coulomb barriers of even the heaviest elements are available. The wide variety of possible reactions gives rise to a multitude of products which have been studied by many ingenious chemical and physical techniques. Chemical techniques have been of special value for the separation and unequivocal identification of low yield species from the plethora of other nuclides present. Heavy ion reactions have been essential for the production of the trans-Md elements and a host of new isotopes. The systematics of compound nucleus reactions, transfer reactions, and deeply inelastic reactions have been elucidated using chemical techniques. A review of the variety of chemical procedures and techniques which have been developed for the study of heavy ion reactions and their products is given. Determination of the chemical properties of the trans-Md elements, which are very short-lived and can only be produced an ''atom-at-a-time'' via heavy ion reactions, is discussed. 53 refs., 19 figs.

  1. Cycloaddition reaction of 2-vinylazetidines with benzyne: a facile access to 1-benzazocine derivatives.

    PubMed

    Aoki, Takashi; Koya, Shunsuke; Yamasaki, Ryu; Saito, Shinichi

    2012-09-01

    The cycloaddition reaction of 2-vinylazetidines with benzyne proceeded smoothly without a catalyst, and various benzazocine derivatives were isolated in good to high yields. The scope of the reaction, as well as the reactions of other arynes, has been studied.

  2. Covariance Matrix Evaluations for Independent Mass Fission Yields

    SciTech Connect

    Terranova, N.; Serot, O.; Archier, P.; De Saint Jean, C.

    2015-01-15

    Recent needs for more accurate fission product yields include covariance information to allow improved uncertainty estimations of the parameters used by design codes. The aim of this work is to investigate the possibility to generate more reliable and complete uncertainty information on independent mass fission yields. Mass yields covariances are estimated through a convolution between the multi-Gaussian empirical model based on Brosa's fission modes, which describe the pre-neutron mass yields, and the average prompt neutron multiplicity curve. The covariance generation task has been approached using the Bayesian generalized least squared method through the CONRAD code. Preliminary results on mass yields variance-covariance matrix will be presented and discussed from physical grounds in the case of {sup 235}U(n{sub th}, f) and {sup 239}Pu(n{sub th}, f) reactions.

  3. Covariance Matrix Evaluations for Independent Mass Fission Yields

    NASA Astrophysics Data System (ADS)

    Terranova, N.; Serot, O.; Archier, P.; De Saint Jean, C.; Sumini, M.

    2015-01-01

    Recent needs for more accurate fission product yields include covariance information to allow improved uncertainty estimations of the parameters used by design codes. The aim of this work is to investigate the possibility to generate more reliable and complete uncertainty information on independent mass fission yields. Mass yields covariances are estimated through a convolution between the multi-Gaussian empirical model based on Brosa's fission modes, which describe the pre-neutron mass yields, and the average prompt neutron multiplicity curve. The covariance generation task has been approached using the Bayesian generalized least squared method through the CONRAD code. Preliminary results on mass yields variance-covariance matrix will be presented and discussed from physical grounds in the case of 235U(nth, f) and 239Pu(nth, f) reactions.

  4. Decomposing global crop yield variability

    NASA Astrophysics Data System (ADS)

    Ben-Ari, Tamara; Makowski, David

    2014-11-01

    Recent food crises have highlighted the need to better understand the between-year variability of agricultural production. Although increasing future production seems necessary, the globalization of commodity markets suggests that the food system would also benefit from enhanced supplies stability through a reduction in the year-to-year variability. Here, we develop an analytical expression decomposing global crop yield interannual variability into three informative components that quantify how evenly are croplands distributed in the world, the proportion of cultivated areas allocated to regions of above or below average variability and the covariation between yields in distinct world regions. This decomposition is used to identify drivers of interannual yield variations for four major crops (i.e., maize, rice, soybean and wheat) over the period 1961-2012. We show that maize production is fairly spread but marked by one prominent region with high levels of crop yield interannual variability (which encompasses the North American corn belt in the USA, and Canada). In contrast, global rice yields have a small variability because, although spatially concentrated, much of the production is located in regions of below-average variability (i.e., South, Eastern and South Eastern Asia). Because of these contrasted land use allocations, an even cultivated land distribution across regions would reduce global maize yield variance, but increase the variance of global yield rice. Intermediate results are obtained for soybean and wheat for which croplands are mainly located in regions with close-to-average variability. At the scale of large world regions, we find that covariances of regional yields have a negligible contribution to global yield variance. The proposed decomposition could be applied at any spatial and time scales, including the yearly time step. By addressing global crop production stability (or lack thereof) our results contribute to the understanding of a key

  5. Grapevine canopy reflectance and yield

    NASA Technical Reports Server (NTRS)

    Minden, K. A.; Philipson, W. R.

    1982-01-01

    Field spectroradiometric and airborne multispectral scanner data were applied in a study of Concord grapevines. Spectroradiometric measurements of 18 experimental vines were collected on three dates during one growing season. Spectral reflectance, determined at 30 intervals from 0.4 to 1.1 microns, was correlated with vine yield, pruning weight, clusters/vine, and nitrogen input. One date of airborne multispectral scanner data (11 channels) was collected over commercial vineyards, and the average radiance values for eight vineyard sections were correlated with the corresponding average yields. Although some correlations were significant, they were inadequate for developing a reliable yield prediction model.

  6. Integrated process for high conversion and high yield protein PEGylation.

    PubMed

    Pfister, David; Morbidelli, Massimo

    2016-08-01

    Over the past decades, PEGylation has become a powerful technique to increase the in vivo circulation half-life of therapeutic proteins while maintaining their activity. The development of new therapeutic proteins is likely to require further improvement of the PEGylation methods to reach even better selectivity and yield for reduced costs. The intensification of the PEGylation process was investigated through the integration of a chromatographic step in order to increase yield and conversion for the production of mono-PEGylated protein. Lysozyme was used as a model protein to demonstrate the feasibility of such approach. In the integrated reaction/separation process, chromatography was used as fractionation technique in order to isolate and recycle the unreacted protein from the PEGylated products. This allows operating the reactor with short reaction times so as to minimize the production of multi-PEGylated proteins (i.e., conjugated to more than one polymer). That is, the reaction is stopped before the desired product (i.e., the mono-PEGylated protein) can further react, thus leading to limited conversion but high yield. The recycling of the unreacted protein was then considered to drive the protein overall conversion to completion. This approach has great potential to improve processes whose yield is limited by the further reaction of the product leading to undesirable by-products. Biotechnol. Bioeng. 2016;113: 1711-1718. © 2016 Wiley Periodicals, Inc.

  7. Combustion kinetics and reaction pathways

    SciTech Connect

    Klemm, R.B.; Sutherland, J.W.

    1993-12-01

    This project is focused on the fundamental chemistry of combustion. The overall objectives are to determine rate constants for elementary reactions and to elucidate the pathways of multichannel reactions. A multitechnique approach that features three independent experiments provides unique capabilities in performing reliable kinetic measurements over an exceptionally wide range in temperature, 300 to 2500 K. Recent kinetic work has focused on experimental studies and theoretical calculations of the methane dissociation system (CH{sub 4} + Ar {yields} CH{sub 3} + H + Ar and H + CH{sub 4} {yields} CH{sub 3} + H{sub 2}). Additionally, a discharge flow-photoionization mass spectrometer (DF-PIMS) experiment is used to determine branching fractions for multichannel reactions and to measure ionization thresholds of free radicals. Thus, these photoionization experiments generate data that are relevant to both reaction pathways studies (reaction dynamics) and fundamental thermochemical research. Two distinct advantages of performing PIMS with high intensity, tunable vacuum ultraviolet light at the National Synchrotron Light Source are high detection sensitivity and exceptional selectivity in monitoring radical species.

  8. Brazil wheat yield covariance model

    NASA Technical Reports Server (NTRS)

    Callis, S. L.; Sakamoto, C.

    1984-01-01

    A model based on multiple regression was developed to estimate wheat yields for the wheat growing states of Rio Grande do Sul, Parana, and Santa Catarina in Brazil. The meteorological data of these three states were pooled and the years 1972 to 1979 were used to develop the model since there was no technological trend in the yields during these years. Predictor variables were derived from monthly total precipitation, average monthly mean temperature, and average monthly maximum temperature.

  9. Estimation of neutron-induced spallation yields of krypton isotopes

    NASA Astrophysics Data System (ADS)

    Karol, Paul J.; Tobin, Michael J.; Shibata, Seiichi

    1983-10-01

    A procedure is outlined for estimating cross sections for neutron-induced spallation products relative to those for proton-induced reactions. When combined with known proton spallation systematics, it is demonstrated that cumulative yields for cosmogenically-important stable 84Kr and 86Kr isotopes are ~1.4 and ~2.8 times greater, respectively, for incident neutrons compared to protons at 0.2<=E<=3.0 GeV for nearby medium mass targets. Yields for lighter kryptons are relatively insensitive to the identity of the incident nucleon. NUCLEAR REACTIONS (n, spallation), 0.2<=En<=3.0 GeV, stable Kr product yield estimates from proton spallation systematics.

  10. Acid soil infertility effects on peanut yields and yield components

    SciTech Connect

    Blamey, F.P.C.

    1983-01-01

    The interpretation of soil amelioration experiments with peanuts is made difficult by the unpredictibility of the crop and by the many factors altered when ameliorating acid soils. The present study was conducted to investigate the effects of lime and gypsum applications on peanut kernel yield via the three first order yield components, pods per ha, kernels per pod, and kernel mass. On an acid medium sandy loam soil (typic Plinthustult), liming resulted in a highly significant kernel yield increase of 117% whereas gypsum applications were of no significant benefit. As indicated by path coefficient analysis, an increase in the number of pods per ha was markedly more important in increasing yield than an increase in either the number of kernels per pod or kernel mass. Furthermore, exch. Al was found to be particularly detrimental to pod number. It was postulated that poor peanut yields resulting from acid soil infertility were mainly due to the depressive effect of exch. Al on pod number. Exch. Ca appeared to play a secondary role by ameliorating the adverse effects of exch. Al.

  11. An Iodine Fluorescence Quenching Clock Reaction

    NASA Astrophysics Data System (ADS)

    Weinberg, Richard B.

    2007-05-01

    A fluorescent clock reaction is described that is based on the principles of the Landolt iodine reaction but uses the potent fluorescence quenching properties of triiodide to abruptly extinguish the ultraviolet fluorescence of optical brighteners present in liquid laundry detergents. The reaction uses easily obtained household products. One variation illustrates the sequential steps and mechanisms of the reaction; other variations maximize the dramatic impact of the demonstration; and a variation that uses liquid detergent in the Briggs Rauscher reaction yields a striking oscillating luminescence. The iodine fluorescence quenching clock reaction can be used in the classroom to explore not only the principles of redox chemistry and reaction kinetics, but also the photophysics of fluorescent pH probes and optical quenching.

  12. A Lewis acid-promoted Pinner reaction

    PubMed Central

    Pfaff, Dominik; Nemecek, Gregor

    2013-01-01

    Summary Carbonitriles and alcohols react in a Lewis acid-promoted Pinner reaction to carboxylic esters. Best results are obtained with two equivalents of trimethylsilyl triflate as Lewis acid. Good yields are achieved with primary alcohols and aliphatic or benzylic carbonitriles, but the straightforward synthesis of acrylates and benzoates starting with acrylonitrile and benzonitrile, respectively, is similarly possible. Phenols are not acylated under these reaction conditions. The method has been used for the first total synthesis of the natural product monaspilosin. In the reaction of benzyl alcohols variable amounts of amides are formed in a Ritter-type side reaction. PMID:23946857

  13. A new route to improved glucose yields in cellulose hydrolysis

    SciTech Connect

    Zhao, Haibo; Holladay, John E.; Kwak, Ja Hun; Zhang, Z. Conrad

    2007-08-01

    An unusual inverse temperature-dependent pathway was discovered for cellulose decrystallization in trifluoroacetic acid (TFA). Cellulose was completely decrystallized by TFA at 0 °C in less than 2 hours, a result not achieved in 48 hours at 25°C in the same medium. The majority of TFA used in cellulose decrystallization was recycled via a vacuum process. The small remaining amount of TFA was diluted with water to make a 0.5% TFA solution and used as a catalyst in dilute acid hydrolysis. After one minute, under batch conditions at 185 °C, the glucose yield reached 63.5% without production of levulinic acid. In comparison, only 15.0% glucose yield was achieved in the hydrolysis of untreated cellulose by 0.5% H2SO4 under the same condition. Further improvement of glucose yield is possible by optimizing reaction conditions. Alternatively, the remaining TFA can be completely removed by water while keeping the regenerated cellulose in a highly amorphous state. This regenerated cellulose is much more reactive than untreated cellulose in hydrolysis reactions, but still less reactive than corn starch. The lower temperatures and shorter reaction times with this activated cellulose makes it possible to reduce operating costs and decrease byproduct yields such as HMF and levulinic acid.

  14. Evaluation of a cotton stripper yield monitor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this work was to evaluate the accuracy of a microwave sensor based yield monitor for measuring yield on a cotton stripper harvester and determine if the yield monitor can discriminate differences in yield to the same level as a reference scale system. A new yield monitor was instal...

  15. Effects of processing conditions on biocrude yields from fast hydrothermal liquefaction of microalgae.

    PubMed

    Faeth, Julia L; Savage, Phillip E

    2016-04-01

    This study investigated the effects of algae species, reaction time, and reactor loading on the biocrude yield from fast hydrothermal liquefaction (HTL) of microalgae. Fast HTL reaction times were always less than 2 min and employed rapid heating and nonisothermal conditions. The highest biocrude yield obtained was 67±5 wt.% (dry basis). With all other process variables fixed, increasing the reaction time in a 600 °C sand bath by 15 s increments led to a rapid increase in biocrude yield between 15 and 45 s. At longer times, the biocrude yield decreased. Low reactor loadings generally gave higher biocrude yields than did higher loadings. The low reactor loadings may facilitate biocrude production by facilitating cell rupture and/or increasing the effective concentration of algal cells in the hot, compressed water in the reactor. PMID:26879204

  16. Effects of processing conditions on biocrude yields from fast hydrothermal liquefaction of microalgae.

    PubMed

    Faeth, Julia L; Savage, Phillip E

    2016-04-01

    This study investigated the effects of algae species, reaction time, and reactor loading on the biocrude yield from fast hydrothermal liquefaction (HTL) of microalgae. Fast HTL reaction times were always less than 2 min and employed rapid heating and nonisothermal conditions. The highest biocrude yield obtained was 67±5 wt.% (dry basis). With all other process variables fixed, increasing the reaction time in a 600 °C sand bath by 15 s increments led to a rapid increase in biocrude yield between 15 and 45 s. At longer times, the biocrude yield decreased. Low reactor loadings generally gave higher biocrude yields than did higher loadings. The low reactor loadings may facilitate biocrude production by facilitating cell rupture and/or increasing the effective concentration of algal cells in the hot, compressed water in the reactor.

  17. Reaction rates for mesoscopic reaction-diffusion kinetics

    PubMed Central

    Hellander, Stefan; Hellander, Andreas; Petzold, Linda

    2016-01-01

    The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In this paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. We show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results. PMID:25768640

  18. Reaction rates for mesoscopic reaction-diffusion kinetics

    NASA Astrophysics Data System (ADS)

    Hellander, Stefan; Hellander, Andreas; Petzold, Linda

    2015-02-01

    The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In this paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. We show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results.

  19. Reaction rates for mesoscopic reaction-diffusion kinetics.

    PubMed

    Hellander, Stefan; Hellander, Andreas; Petzold, Linda

    2015-02-01

    The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In this paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. We show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results.

  20. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Levin, Eugene

    1993-01-01

    A new global potential energy surface (PES) is being generated for O(P-3) + H2 yields OH + H. This surface is being fit using the rotated Morse oscillator method, which was used to fit the previous POL-CI surface. The new surface is expected to be more accurate and also includes a much more complete sampling of bent geometries. A new study has been undertaken of the reaction N + O2 yields NO + O. The new studies have focused on the region of the surface near a possible minimum corresponding to the peroxy form of NOO. A large portion of the PES for this second reaction has been mapped out. Since state to state cross sections for the reaction are important in the chemistry of high temperature air, these studies will probably be extended to permit generation of a new global potential for reaction.

  1. A high-yield saponification of galactosylceramide I(3)-sulfate.

    PubMed

    Koshy, K M; Boggs, J M

    1982-12-01

    A method for the deacylation of galactosylceramide I(3)-sulphate using aqueous methanolic KOH is described. The combination of a relatively low concentration of the alkali (0.3 M) and a moderate reaction temperature (reflux point of 90% methanol) results in the formation of galactosylsphingosine I(3)-sulphate in consistently high yields (61%) with a minimum of side reactions. The product was purified by column chromatography and its identity established by thin layer chromatography, infrared spectroscopy, determination of galactose content and organic sulphate assay using established methods or their modifications.

  2. Nickel-Catalyzed Coupling Reactions of Alkenes

    PubMed Central

    Ng, Sze-Sze; Ho, Chun-Yu; Schleicher, Kristin D.; Jamison, Timothy F.

    2011-01-01

    Several reactions of simple, unactivated alkenes with electrophiles under nickel(0) catalysis are discussed. The coupling of olefins with aldehydes and silyl triflates provides allylic or homoallylic alcohol derivatives, depending on the supporting ligands and, to a lesser extent, the substrates employed. Reaction of alkenes with isocyanates yields N-alkyl acrylamides. In these methods, alkenes act as the functional equivalents of alkenyl- and allylmetal reagents. PMID:21814295

  3. What is a "DNA-Compatible" Reaction?

    PubMed

    Malone, Marie L; Paegel, Brian M

    2016-04-11

    DNA-encoded synthesis can generate vastly diverse screening libraries of arbitrarily complex molecules as long as chemical reaction conditions do not compromise DNA's informational integrity, a fundamental constraint that "DNA-compatible" reaction development does not presently address. We devised DNA-encoded reaction rehearsal, an integrated analysis of reaction yield and impact on DNA, to acquire these key missing data. Magnetic DNA-functionalized sensor beads quantitatively report the % DNA template molecules remaining viable for PCR amplification after exposure to test reaction conditions. Analysis of solid-phase bond forming (e.g., Suzuki-Miyaura cross-coupling, reductive amination) and deprotection reactions (e.g., allyl esters, silyl ethers) guided the definition and optimization of DNA-compatible reaction conditions (>90% yield, >30% viable DNA molecules), most notably in cases that involved known (H(+), Pd) and more obscure (Δ, DMF) hazards to DNA integrity. The data provide an empirical yet mechanistically consistent and predictive framework for designing successful DNA-encoded reaction sequences for combinatorial library synthesis. PMID:26971959

  4. Formation of oligopeptides in high yield under simple programmable conditions

    PubMed Central

    Rodriguez-Garcia, Marc; Surman, Andrew J.; Cooper, Geoffrey J.T.; Suárez-Marina, Irene; Hosni, Zied; Lee, Michael P.; Cronin, Leroy

    2015-01-01

    Many high-yielding reactions for forming peptide bonds have been developed but these are complex, requiring activated amino-acid precursors and heterogeneous supports. Herein we demonstrate the programmable one-pot dehydration–hydration condensation of amino acids forming oligopeptide chains in around 50% yield. A digital recursive reactor system was developed to investigate this process, performing these reactions with control over parameters such as temperature, number of cycles, cycle duration, initial monomer concentration and initial pH. Glycine oligopeptides up to 20 amino acids long were formed with very high monomer-to-oligomer conversion, and the majority of these products comprised three amino acid residues or more. Having established the formation of glycine homo-oligopeptides, we then demonstrated the co-condensation of glycine with eight other amino acids (Ala, Asp, Glu, His, Lys, Pro, Thr and Val), incorporating a range of side-chain functionality. PMID:26442968

  5. Variational transition-state theory with optimized orientation of the dividing surface and semiclassical tunneling calculations for deuterium and muonium kinetic isotope effects in the free radical association reaction H + C{sub 2}H{sub 4} {yields} C{sub 2}H{sub 5}

    SciTech Connect

    Villa, J. ||; Corchado, J.C. |; Gonzalez-Lafont, A.; Lluch, J.M.; Truhlar, D.G.

    1999-07-01

    The authors have used canonical variational transition-state theory with multidimensional tunneling contributions (CVT/MT) to calculate 21 kinetic isotope effects (KIE) for the addition of hydrogen atom to ethylene. The potential energies are obtained by variable scaling of external correlation (VSEC). The reorientation of the dividing surface (RODS) algorithm is employed so that the same reaction path can be used for every isotopic substitution. The results show the importance of the tunneling effect for explaining the trends in the KIEs in this almost barrierless reaction. The authors have predicted the regioselectivity for three different isotopically substituted substrates and have shown how the addition to the most substituted carbon is kinetically favored, especially at low temperature. However, their calculations show no cis/trans selectivity for the isotopically substituted ethylene substrate.

  6. Rotational dependence of the proton-transfer reaction HBr{sup +}+ CO{sub 2}{yields} HOCO{sup +}+ Br. II. Comparison of HBr{sup +} ({sup 2}{Pi}{sub 3/2}) and HBr{sup +} ({sup 2}{Pi}{sub 1/2})

    SciTech Connect

    Paetow, Lisa; Unger, Franziska; Beutel, Bernd; Weitzel, Karl-Michael

    2010-12-21

    The effects of reactant ion rotational excitation on the exothermic proton-transfer reactions of HBr{sup +}({sup 2}{Pi}{sub 1/2}) and DBr{sup +}({sup 2}{Pi}{sub 1/2}), respectively, with CO{sub 2} were studied in a guided ion beam apparatus. Cross sections are presented for collision energies in the center of mass system E{sub c.m.} in the range of 0.23 to 1.90 eV. The HBr{sup +}/DBr{sup +} ions were prepared in a state-selective manner by resonance enhanced multiphoton ionization. The mean rotational energy was varied from 3.4 to 46.8 meV for HBr{sup +}({sup 2}{Pi}{sub 1/2}) and from 1.8 to 40.9 meV for DBr{sup +}({sup 2}{Pi}{sub 1/2}). Both reactions studied are inhibited by collision energy, as expected for exothermic reactions. For all collision energies considered, the cross section decreases with increasing rotational energy of the ion, but the degree of the rotational dependence differs depending on the collision energy. For E{sub c.m.}= 0.31 eV, the cross sections of the deuteron transfer are significantly larger than those of the proton transfer. For higher E{sub c.m.} they differ very little. The current results for the exothermic proton transfer are systematically compared to previously published data for the endothermic proton transfer starting from HBr{sup +}({sup 2}{Pi}{sub 3/2}) [L. Paetow et al., J. Chem. Phys. 132, 174305 (2010)]. Additional new data regarding the latter reaction are presented to further confirm the conclusions. The dependences on rotational excitation found cannot be explained by the corresponding change in the total energy of the system. For both the endothermic and the exothermic reaction, the cross section is maximized for the smallest rotational energy, at least well above the threshold.

  7. Application of the organic on water reactions to prebiotic chemistry

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.

    2012-10-01

    The old view that prebiotic reactions in water are hampered by the low solubility of the organic compounds in water is now being revised due to the discoveries of the reactions "on water". These reactions occur in the heterogeneous system comprising of the organic compounds and water. Unexpectedly, such reactions are extremely efficient; they often give quantitative yields, and are accelerated in the presence of water as compared to the organic solvents. These "on water" reactions are not the same as the "in water" reactions, which occur in solution, and are thus homogenous. Examples of the "on water" reactions include Diels-Alder, Claisen, Passerini and Ugi reactions, among many others. Some of these reactions are multicomponent, but give a single product. We survey a selected number of the "on water" reactions, which have a potential prebiotic applications.

  8. Science Yield Modeling with EXOSIMS

    NASA Astrophysics Data System (ADS)

    Garrett, Daniel; Savransky, Dmitry

    2016-01-01

    Accurately modeling science yield of an exoplanet direct imaging mission to build confidence in the achievement of science goals can be almost as complicated as designing the mission itself. It is challenging to compare science simulation results and systematically test the effects of changing instrument or mission designs. EXOSIMS (Exoplanet Open-Source Imaging Mission Simulator) addresses this by generating ensembles of mission simulations for exoplanet direct imaging missions to estimate distributions of science yield. EXOSIMS consists of stand-alone modules written in Python which may be individually modified without requiring modifications to the code elsewhere. This structure allows for user driven systemic exploration of the effects of changing designs on the estimated science yield.The modules of EXOSIMS are classified as either input or simulation modules. Input modules contain specific mission design parameters and functions. These include Planet Population, Star Catalog, Optical System, Zodiacal Light, Planet Physical Model, Observatory, Time Keeping, and Post-Processing. Simulation modules perform tasks requiring input from one or more input modules as well as calling functions from other simulation modules. These include Completeness, Target List, Simulated Universe, Survey Simulation, and Survey Ensemble. The required parameters and functionality of each of these modules is defined in the documentation for EXOSIMS.EXOSIMS is available to the public at https://github.com/dsavransky/EXOSIMS. Included in the documentation is an interface control document which defines the required inputs and outputs to each input and simulation module. Future development of EXOSIMS is intended to be community-driven. Mission planners and instrument designers may quickly write their own modules, following the guidelines in the interface control document, and drop them directly into the code without making additional modifications elsewhere. It is expected that EXOSIMS

  9. Relative yields of radicals produced in deuterated methanol by irradiation

    NASA Astrophysics Data System (ADS)

    Nakagawa, Seiko

    2016-05-01

    The relative yields of radicals produced in four kinds of methanols; i.e., CH3OH, CH3OD, CD3OH and CD3OD, by γ-irradiation have been studied using ESR spin trapping with PBN. Both PBN-H and PBN-D were produced from CH3OD and CD3OH. This means that the proton transfer to the neutral methanol from the cationic one is one of the processes to produce both the methoxy and hydoxy-methyl radicals. The yield of the methoxy radical adduct relative to the hydroxy-methyl radical adduct decreased in the order CD3OH>CD3OD>CH3OH>CH3OD. The difference in the rates of the proton transfer and hydrogen abstraction reactions by substitution with deuterium is the reason for the variation in the relative radical yield.

  10. Catalysis of Photochemical Reactions.

    ERIC Educational Resources Information Center

    Albini, A.

    1986-01-01

    Offers a classification system of catalytic effects in photochemical reactions, contrasting characteristic properties of photochemical and thermal reactions. Discusses catalysis and sensitization, examples of catalyzed reactions of excepted states, complexing ground state substrates, and catalysis of primary photoproducts. (JM)

  11. Kinugasa reactions in water: from green chemistry to bioorthogonal labelling.

    PubMed

    Chigrinova, Mariya; MacKenzie, Douglas A; Sherratt, Allison R; Cheung, Lawrence L W; Pezacki, John Paul; Pezacki, Paul

    2015-01-01

    The Kinugasa reaction has become an efficient method for the direct synthesis of β-lactams from substituted nitrones and copper(I) acetylides. In recent years, the reaction scope has been expanded to include the use of water as the solvent, and with micelle-promoted [3+2] cycloadditions followed by rearrangement furnishing high yields of β-lactams. The high yields of stable products under aqueous conditions render the modified Kinugasa reaction amenable to metabolic labelling and bioorthogonal applications. Herein, the development of methods for use of the Kinugasa reaction in aqueous media is reviewed, with emphasis on its potential use as a bioorthogonal coupling strategy. PMID:25913933

  12. Kinugasa reactions in water: from green chemistry to bioorthogonal labelling.

    PubMed

    Chigrinova, Mariya; MacKenzie, Douglas A; Sherratt, Allison R; Cheung, Lawrence L W; Pezacki, John Paul; Pezacki, Paul

    2015-04-16

    The Kinugasa reaction has become an efficient method for the direct synthesis of β-lactams from substituted nitrones and copper(I) acetylides. In recent years, the reaction scope has been expanded to include the use of water as the solvent, and with micelle-promoted [3+2] cycloadditions followed by rearrangement furnishing high yields of β-lactams. The high yields of stable products under aqueous conditions render the modified Kinugasa reaction amenable to metabolic labelling and bioorthogonal applications. Herein, the development of methods for use of the Kinugasa reaction in aqueous media is reviewed, with emphasis on its potential use as a bioorthogonal coupling strategy.

  13. The Z {yields} cc-bar {yields} {gamma}{gamma}*, Z {yields} bb-bar {yields} {gamma}{gamma}* triangle diagrams and the Z {yields} {gamma}{psi}, Z {yields} {gamma}Y decays

    SciTech Connect

    Achasov, N. N.

    2011-03-15

    The approach to the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decay study is presented in detail, based on the sum rules for the Z {yields} cc-bar {yields} {gamma}{gamma}* and Z {yields} bb-bar {yields} {gamma}{gamma}* amplitudes and their derivatives. The branching ratios of the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are calculated for different hypotheses on saturation of the sum rules. The lower bounds of {Sigma}{sub {psi}} BR(Z {yields} {gamma}{psi}) = 1.95 Multiplication-Sign 10{sup -7} and {Sigma}{sub {upsilon}} BR(Z {yields} {gamma}Y) = 7.23 Multiplication-Sign 10{sup -7} are found. Deviations from the lower bounds are discussed, including the possibility of BR(Z {yields} {gamma}J/{psi}(1S)) {approx} BR(Z {yields} {gamma}Y(1S)) {approx} 10{sup -6}, that could be probably measured in LHC. The angular distributions in the Z {yields} {gamma}{psi} and Z {yields} {gamma}Y decays are also calculated.

  14. Measurement of the Helicity Difference in {gamma}{sup {yields}p{yields}{yields}p{pi}+{pi}-} with the CLAS Spectrometer at Jefferson Laboratory

    SciTech Connect

    Park, Sungkyun

    2010-08-05

    The study of the properties of baryon resonances can provide us with hints to help us understand the structure of non-perturbative QCD and the effect of a particular resonance on polarization observables. The investigation of double-pion photoproduction data is needed to discover higher-lying states and their properties at and above W {approx_equal} 1.8 GeV. Therefore, the analysis of the helicity difference in gp {gamma}p{yields}p{pi}{sup +{pi}-} will help us in our understanding of QCD.The CLAS g9a (FROST) experiment, as part of the N* spectroscopy program at Jefferson Laboratory, has accumulated photoproduction data using linearly and circularly polarized photons incident on a longitudinally-polarized butanol target in the photon energy range 0.3 to 2.4 GeV. The FROST experiment provides an important step toward a ''complete'' experiment for the reaction {gamma}N{yields}KY.In this contribution, the method to calculate the helicity difference for the reaction {gamma}p{yields}p{pi}{sup +{pi}-} will be described and preliminary results will be discussed.

  15. Low-energy proton capture reactions

    SciTech Connect

    Lipoglavsek, M.; Cvetinovic, A.; Gajevic, J.; Likar, A.; Vavpetic, P.; Petrovic, T.

    2014-05-09

    An overview of experimental problems in measuring the cross sections for (p,γ) and (p,n) reactions at low energies is given with a specific emphasis on electron screening in metallic targets. Thick target γ-ray and neutron yields are compared for Ni and NiO targets, V and VO{sub 2} targets and Mn and MnO targets. The {sup 1}H({sup 7}Li,α){sup 4}He reaction was studied in inverse kinematics with hydrogen loaded into Pd and PdAg alloy foils from gas phase. Based on these results, a new approach to electron screening in nuclear reactions is suggested.

  16. Crop Diversity for Yield Increase

    PubMed Central

    Li, Chengyun; He, Xiahong; Zhu, Shusheng; Zhou, Huiping; Wang, Yunyue; Li, Yan; Yang, Jing; Fan, Jinxiang; Yang, Jincheng; Wang, Guibin; Long, Yunfu; Xu, Jiayou; Tang, Yongsheng; Zhao, Gaohui; Yang, Jianrong; Liu, Lin; Sun, Yan; Xie, Yong; Wang, Haining; Zhu, Youyong

    2009-01-01

    Traditional farming practices suggest that cultivation of a mixture of crop species in the same field through temporal and spatial management may be advantageous in boosting yields and preventing disease, but evidence from large-scale field testing is limited. Increasing crop diversity through intercropping addresses the problem of increasing land utilization and crop productivity. In collaboration with farmers and extension personnel, we tested intercropping of tobacco, maize, sugarcane, potato, wheat and broad bean – either by relay cropping or by mixing crop species based on differences in their heights, and practiced these patterns on 15,302 hectares in ten counties in Yunnan Province, China. The results of observation plots within these areas showed that some combinations increased crop yields for the same season between 33.2 and 84.7% and reached a land equivalent ratio (LER) of between 1.31 and 1.84. This approach can be easily applied in developing countries, which is crucial in face of dwindling arable land and increasing food demand. PMID:19956624

  17. Achieving yield gains in wheat.

    PubMed

    Reynolds, Matthew; Foulkes, John; Furbank, Robert; Griffiths, Simon; King, Julie; Murchie, Erik; Parry, Martin; Slafer, Gustavo

    2012-10-01

    Wheat provides 20% of calories and protein consumed by humans. Recent genetic gains are <1% per annum (p.a.), insufficient to meet future demand. The Wheat Yield Consortium brings expertise in photosynthesis, crop adaptation and genetics to a common breeding platform. Theory suggest radiation use efficiency (RUE) of wheat could be increased ~50%; strategies include modifying specificity, catalytic rate and regulation of Rubisco, up-regulating Calvin cycle enzymes, introducing chloroplast CO(2) concentrating mechanisms, optimizing light and N distribution of canopies while minimizing photoinhibition, and increasing spike photosynthesis. Maximum yield expression will also require dynamic optimization of source: sink so that dry matter partitioning to reproductive structures is not at the cost of the roots, stems and leaves needed to maintain physiological and structural integrity. Crop development should favour spike fertility to maximize harvest index so phenology must be tailored to different photoperiods, and sensitivity to unpredictable weather must be modulated to reduce conservative responses that reduce harvest index. Strategic crossing of complementary physiological traits will be augmented with wide crossing, while genome-wide selection and high throughput phenotyping and genotyping will increase efficiency of progeny screening. To ensure investment in breeding achieves agronomic impact, sustainable crop management must also be promoted through crop improvement networks.

  18. Reaction of disubstituted aromatic compounds with styrene

    SciTech Connect

    Grushin, A.I.; Grigor'ev, V.V.; Prokof'ev, K.V.; Kozlova, N.M.

    1988-03-20

    Hydrocarbons of the 1,1-diphenylethane type were obtained by the reaction of styrene with various disubstituted derivatives of benzene in the presence of titanium tetrachloride. It was found that the yield of the desired compound depends on the strength of the electron-donating substituents and on steric factors in the aromatic ring.

  19. Reaction of benzyne with salicylaldehydes: general synthesis of xanthenes, xanthones, and xanthols.

    PubMed

    Okuma, Kentaro; Nojima, Akiko; Matsunaga, Nahoko; Shioji, Kosei

    2009-01-01

    The reaction of salicylaldehydes with benzyne prepared from o-trimethylsilyphenyl triflate and CsF gave xanthenes and xanthones. When the reaction was carried out under basic conditions, 9-hydroxyxanthenes (xanthols) were obtained in good yields.

  20. Effects of electron acceptors and radical scavengers on nonchain radical nucleophilic substitution reactions

    SciTech Connect

    Xianman Zhang; Dilun Yang; Youcheng Liu )

    1993-01-01

    The yields of reaction products from thermal nucleophilic substitution reactions in dimethyl sulfoxide (DMSO) of six o- and p-nitrohalobenzenes with the sodium salt of ethyl [alpha]-cyanoacetate carbanion [Na[sup +][sup [minus

  1. Albite [yields] jadeite + quartz transformation in rock: Mechanism and kinetics

    SciTech Connect

    Bohlen, S.R.; Kirby, S.H. ); Hacker, B.R.

    1992-01-01

    Recent work on the calcite [yields] aragonite transformation using fully dense marble revealed significant differences from earlier experiments on powders and single-crystals. The reaction rate is retarded by a factor of > 1,000 and reaction mechanisms and resultant textures are considerably more complex. Stimulated by this, the authors conducted a study of the albite [yields] jadeite + quartz/coesite transformation in a fully dense albitite. Again the results are in marked contrast with previous powder-based studies of this archetypal metamorphic reaction. Solid cores of albitite were held at temperatures of 500-1,200 C and at pressure oversteps of 500 MPa into the jadeite + quartz stability field for 1--8 days in piston-cylinder apparatus. Samples that were dried in vacuum transformed appreciably only at temperatures in excess of 1,000 C. At all grain boundaries there is subequal transformation to micron-scale intergrowths of jadeite + quartz. Samples that were vacuum-impregnated with 1 wt% water contain jadeite + quartz to temperatures as low as 600 C. In contrast to the dried samples, transformation is much less homogeneous. The jadeite + quartz intergrowths do not form rows of subparallel crystals on grain boundaries, but rather are flower-shaped clusters that radiate outward from single nucleation sites at 3-grain edges and 4-grain corners. Compared to powders, pressure oversteps a factor of 10 greater are necessary to induce equivalent reaction in albitite. The sluggishness of this reaction has important implications for the evolution of the lower continental crust and subducting oceanic crust in terms of their (1) seismic velocity profiles, (2) petrological evolution, and (3) buoyancy forces, stresses and vertical crustal movements connected with densification and dilatational reactions.

  2. Graphical user interface for yield and dose estimations for cyclotron-produced technetium.

    PubMed

    Hou, X; Vuckovic, M; Buckley, K; Bénard, F; Schaffer, P; Ruth, T; Celler, A

    2014-07-01

    The cyclotron-based (100)Mo(p,2n)(99m)Tc reaction has been proposed as an alternative method for solving the shortage of (99m)Tc. With this production method, however, even if highly enriched molybdenum is used, various radioactive and stable isotopes will be produced simultaneously with (99m)Tc. In order to optimize reaction parameters and estimate potential patient doses from radiotracers labeled with cyclotron produced (99m)Tc, the yields for all reaction products must be estimated. Such calculations, however, are extremely complex and time consuming. Therefore, the objective of this study was to design a graphical user interface (GUI) that would automate these calculations, facilitate analysis of the experimental data, and predict dosimetry. The resulting GUI, named Cyclotron production Yields and Dosimetry (CYD), is based on Matlab®. It has three parts providing (a) reaction yield calculations, (b) predictions of gamma emissions and (c) dosimetry estimations. The paper presents the outline of the GUI, lists the parameters that must be provided by the user, discusses the details of calculations and provides examples of the results. Our initial experience shows that the proposed GUI allows the user to very efficiently calculate the yields of reaction products and analyze gamma spectroscopy data. However, it is expected that the main advantage of this GUI will be at the later clinical stage when entering reaction parameters will allow the user to predict production yields and estimate radiation doses to patients for each particular cyclotron run.

  3. Graphical user interface for yield and dose estimations for cyclotron-produced technetium

    NASA Astrophysics Data System (ADS)

    Hou, X.; Vuckovic, M.; Buckley, K.; Bénard, F.; Schaffer, P.; Ruth, T.; Celler, A.

    2014-07-01

    The cyclotron-based 100Mo(p,2n)99mTc reaction has been proposed as an alternative method for solving the shortage of 99mTc. With this production method, however, even if highly enriched molybdenum is used, various radioactive and stable isotopes will be produced simultaneously with 99mTc. In order to optimize reaction parameters and estimate potential patient doses from radiotracers labeled with cyclotron produced 99mTc, the yields for all reaction products must be estimated. Such calculations, however, are extremely complex and time consuming. Therefore, the objective of this study was to design a graphical user interface (GUI) that would automate these calculations, facilitate analysis of the experimental data, and predict dosimetry. The resulting GUI, named Cyclotron production Yields and Dosimetry (CYD), is based on Matlab®. It has three parts providing (a) reaction yield calculations, (b) predictions of gamma emissions and (c) dosimetry estimations. The paper presents the outline of the GUI, lists the parameters that must be provided by the user, discusses the details of calculations and provides examples of the results. Our initial experience shows that the proposed GUI allows the user to very efficiently calculate the yields of reaction products and analyze gamma spectroscopy data. However, it is expected that the main advantage of this GUI will be at the later clinical stage when entering reaction parameters will allow the user to predict production yields and estimate radiation doses to patients for each particular cyclotron run.

  4. High Yielding Microbubble Production Method

    PubMed Central

    Fiabane, Joe; Prentice, Paul; Pancholi, Ketan

    2016-01-01

    Microfluidic approaches to microbubble production are generally disadvantaged by low yield and high susceptibility to (micro)channel blockages. This paper presents an alternative method of producing microbubbles of 2.6 μm mean diameter at concentrations in excess of 30 × 106 mL−1. In this method, the nitrogen gas flowing inside the liquid jet is disintegrated into spray of microbubble when air surrounding this coflowing nitrogen gas-liquid jet passes through a 100 μm orifice at high velocity. Resulting microbubble foam has the polydispersity index of 16%. Moreover, a ratio of mean microbubble diameter to channel width ratio was found to be less than 0.025, which substantially alleviates the occurrence of blockages during production. PMID:27034935

  5. Photoinduced charge transfer reaction at surfaces. III. (HF){sub 2}{center_dot}{center_dot}{center_dot}Na{sub n}/LiF(001)+h{nu}(640 nm){yields}HFF{sup -}Na{sub n}{sup +}/LiF(001)+H(g)

    SciTech Connect

    Dobrin, Sergey; Giorgi, Javier B.; Naumkin, Fedor Y.; Polanyi, John C.

    2005-01-01

    A sub-monolayer of atomic sodium was deposited on a LiF(001) surface at 40 K. The adsorbed sodium exists at the surface as single atoms and clusters. The surface was dosed with 1 L of HF, to form adsorbed (HF){sub 2}{center_dot}{center_dot}{center_dot}Na{sub n} (n=1,2,3,...) complexes, which were then irradiated by 640 nm laser light, to induce charge-transfer reaction. The reaction-product atomic H(g) was observed leaving the surface by two-color Rydberg-atom time-of-flight (TOF) spectroscopy. The TOF spectrum of the desorbed H atoms contained two components; a 'fast' component with a maximum at {approx_equal}0.85 eV, and a 'slow' component with a maximum at 0.45 eV. These two components were attributed to photoreaction on adsorbed single atoms and clusters of sodium, respectively. The fast component exhibited a structure (48{+-}17 meV spacing) near the high-energy end of spectrum. This structure was attributed to vibration of NaFHF photoproduct residing on the surface. The cross section of the harpooning event in the Na{center_dot}{center_dot}{center_dot}(HF){sub 2} adsorbed complex was determined as (9.1{+-}2.0)x10{sup -19} cm{sup 2}. To interpret the experimental vibrational structure and the relative energies of the fast and slow components of the TOF spectrum, high-level ab initio calculations were performed for reactants Na{sub n}{center_dot}{center_dot}{center_dot}(HF){sub m} (n,m=1,2) and reaction products Na{sub n}F{sub m}H{sub m-1}. The calculated NaF-HF and Na-Na(HF){sub 2} bond dissociation energies indicated that photoexcitation of the precursor complexes led not only to ejection of H atoms, but also to dissociation of the Na{sub n}{center_dot}{center_dot}{center_dot}(HF){sub 2} (n=1,2) species through cleavage of the NaF-HF and Na-Na(HF){sub 2} bonds.

  6. Copper-Catalyzed Divergent Addition Reactions of Enoldiazoacetamides with Nitrones.

    PubMed

    Cheng, Qing-Qing; Yedoyan, Julietta; Arman, Hadi; Doyle, Michael P

    2016-01-13

    Catalyst-controlled divergent addition reactions of enoldiazoacetamides with nitrones have been developed. By using copper(I) tetrafluoroborate/bisoxazoline complex as the catalyst, a [3+3]-cycloaddition reaction was achieved with excellent yield and enantioselectivity under exceptionally mild conditions, which represents the first highly enantioselective base-metal-catalyzed vinylcarbene transformation. When the catalyst was changed to copper(I) triflate, Mannich addition products were formed in high yields with near exclusivity under otherwise identical conditions.

  7. Copper-Catalyzed Divergent Addition Reactions of Enoldiazoacetamides with Nitrones.

    PubMed

    Cheng, Qing-Qing; Yedoyan, Julietta; Arman, Hadi; Doyle, Michael P

    2016-01-13

    Catalyst-controlled divergent addition reactions of enoldiazoacetamides with nitrones have been developed. By using copper(I) tetrafluoroborate/bisoxazoline complex as the catalyst, a [3+3]-cycloaddition reaction was achieved with excellent yield and enantioselectivity under exceptionally mild conditions, which represents the first highly enantioselective base-metal-catalyzed vinylcarbene transformation. When the catalyst was changed to copper(I) triflate, Mannich addition products were formed in high yields with near exclusivity under otherwise identical conditions. PMID:26699516

  8. Rate of reaction between molecular hydrogen and molecular oxygen

    NASA Technical Reports Server (NTRS)

    Brokaw, R. S.

    1973-01-01

    The shock tube data of Jachimowski and Houghton were rigorously analyzed to obtain rate constants for the candidate initiation reactions H2 + O2 yields H + HO2, H2 + O2 yields H2O + O, and H2 + O2 yields OH + OH. Reaction (01) is probably not the initiation process because the activation energy obtained is less than the endothermicity and because the derived rates greatly exceed values inferred in the literature from the reverse of reaction (01). Reactions (02) and (03) remain as possibilities, with reaction (02) slightly favored on the basis of steric and statistical considerations. The solution of the differential equations is presented in detail to show how the kinetics of other ignition systems may be solved.

  9. Chemical pathways in ultracold reactions of SrF molecules

    SciTech Connect

    Meyer, Edmund R.; Bohn, John L.

    2011-03-15

    We present a theoretical investigation of the chemical reaction SrF + SrF {yields} products, focusing on reactions at ultralow temperatures. We find that bond swapping SrF + SrF {yields} Sr{sub 2} + F{sub 2} is energetically forbidden at these temperatures. Rather, the only energetically allowed reaction is SrF + SrF {yields} SrF{sub 2} + Sr, and even then only singlet states of the SrF{sub 2} trimer can form. A calculation along a reduced reaction path demonstrates that this abstraction reaction is barrierless and proceeds by one SrF molecule ''handing off'' a fluorine atom to the other molecule.

  10. Access to 4-alkylaminopyridazine derivatives via nitrogen-assisted regioselective Pd-catalyzed reactions.

    PubMed

    Blaise, Emilie; Kümmerle, Arthur E; Hammoud, Hassan; de Araújo-Júnior, João Xavier; Bihel, Frédéric; Bourguignon, Jean-Jacques; Schmitt, Martine

    2014-11-01

    3-Substituted, 6-substituted, and unsymmetrical 3,6-disubstituted 4-alkylaminopyridazines were prepared from a sequence of three chemo- and regioselective reactions combining amination and palladium-catalyzed cross-coupling reactions, such as reductive dehalogenation and Suzuki-Miyaura reactions. Extension of the methodology to Sonogashira reaction yielded a novel class of 3-substituted pyrrolopyridazines. PMID:25310174

  11. Clinical Pearls: Leprosy Reactions.

    PubMed

    Wu, Jane; Boggild, Andrea K

    2016-09-01

    Leprosy reactions are acute inflammatory episodes that occur in the setting of Mycobacterium leprae infection. Precipitants of reactions can be pharmacologic and nonpharmacologic. Both type 1 and type 2 reactions typically occur before and during leprosy treatment but may also occur after treatment has been completed. Reactions cause morbidity due to nerve damage, and prompt corticosteroid therapy is warranted to minimize nerve damage due to reactions.

  12. Multicomponent reactions of cyclobutanones.

    PubMed

    Pirrung, Michael C; Wang, Jianmei

    2009-04-17

    Cyclobutanones are essentially unknown as reactants in isonitrile-based multicomponent reactions. Ugi reactions of cyclobutanone and Passerini reactions of tetramethylcyclobutane-1,3-dione have been performed in this work. These reactions are significantly enhanced by being conducted in water, a subject of recent interest whose basis is still in question but whose effects are beyond doubt. The Ugi reaction of cyclobutanone has been used in a brief synthesis of an aspartame analogue.

  13. Yield and yield gaps in central U.S. corn production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The magnitude of yield gaps (YG) (potential yield – farmer yield) provides some indication of the prospects for increasing crop yield. Quantile regression analysis was applied to county maize (Zea mays L.) yields (1972 – 2011) from Kentucky, Iowa and Nebraska (irrigated) (total of 115 counties) to e...

  14. Morita–Baylis–Hillman reaction of acrylamide with isatin derivatives

    PubMed Central

    Singh, Radhey Mohan; Tiwari, Dharmendra Kumar

    2014-01-01

    Summary The Morita–Baylis–Hillman reaction of acrylamide, as an activated alkene, has seen little development due to its low reactivity. We have developed the reaction using isatin derivatives with acrylamide, DABCO as a promoter and phenol as an additive in acetonitrile. The corresponding aza version with acrylate and acrylonitrile has also been developed resulting in high product yields. PMID:25550764

  15. Yield model development project implementation plan

    NASA Technical Reports Server (NTRS)

    Ambroziak, R. A.

    1982-01-01

    Tasks remaining to be completed are summarized for the following major project elements: (1) evaluation of crop yield models; (2) crop yield model research and development; (3) data acquisition processing, and storage; (4) related yield research: defining spectral and/or remote sensing data requirements; developing input for driving and testing crop growth/yield models; real time testing of wheat plant process models) and (5) project management and support.

  16. Reduced yield detonation characteristics in large failure diameter materials

    SciTech Connect

    Lambert, R R; Lee, E L; Maienschein, J L; Merill, C I; Nichols, III; Reaugh, J E

    1998-08-10

    We have made detailed measurements of the approach to steady, self-supported propagating shock waves at greatly reduced yield in composite propellants. Propa- gation velocities are less than one half the theoretical value expected for full reac- tion at the sonic plane. Previous experimental studies 1 have given evidence of similar behavior. Also, previous theoretical work 2 in an analytic form has shown the possibility of reduced yield detonations. We have developed a reaction model coupled with a hydrody- namic code that together provide a description of the coupling of the complex reac- tion behavior with shock propagation and expansion in energetic materials. The model results show clearly that if the dependence of reaction rate on pressure is of sufficiently low order and the mode of consumption is by "grain burning" the calcu- lated detonation behavior closely parallels the observed non-ideal results. We describe the experiments, the reaction model, and compare experimental and calculational results. We also extend the model to predict results in the unexplored regime of very large size charges.

  17. High temperature chemical kinetic study of the H2-CO-CO2-NO reaction system

    NASA Technical Reports Server (NTRS)

    Jachimowski, C. J.

    1975-01-01

    An experimental study of the kinetics of the H2-CO-CO2-NO reaction system was made behind incident shock waves at temperatures of 2460 and 2950 K. The overall rate of the reaction was measured by monitoring radiation from the CO + O yields CO2 + h upoilon reaction. Correlation of these data with a detailed reaction mechanism showed that the high-temperature rate of the reaction N + OH yields NO + H can be described by the low-temperature (320 K) rate coefficient. Catalytic dissociation of molecular hydrogen was an important reaction under the tests conditions.

  18. A characterization of the two-step reaction mechanism of phenol decomposition by a Fenton reaction

    NASA Astrophysics Data System (ADS)

    Valdés, Cristian; Alzate-Morales, Jans; Osorio, Edison; Villaseñor, Jorge; Navarro-Retamal, Carlos

    2015-11-01

    Phenol is one of the worst contaminants at date, and its degradation has been a crucial task over years. Here, the decomposition process of phenol, in a Fenton reaction, is described. Using scavengers, it was observed that decomposition of phenol was mainly influenced by production of hydroxyl radicals. Experimental and theoretical activation energies (Ea) for phenol oxidation intermediates were calculated. According to these Ea, phenol decomposition is a two-step reaction mechanism mediated predominantly by hydroxyl radicals, producing a decomposition yield order given as hydroquinone > catechol > resorcinol. Furthermore, traces of reaction derived acids were detected by HPLC and GS-MS.

  19. Reaction Selectivity in Heterogeneous Catalysis

    SciTech Connect

    Somorjai, Gabor A.; Kliewer, Christopher J.

    2009-02-02

    The understanding of selectivity in heterogeneous catalysis is of paramount importance to our society today. In this review we outline the current state of the art in research on selectivity in heterogeneous catalysis. Current in-situ surface science techniques have revealed several important features of catalytic selectivity. Sum frequency generation vibrational spectroscopy has shown us the importance of understanding the reaction intermediates and mechanism of a heterogeneous reaction, and can readily yield information as to the effect of temperature, pressure, catalyst geometry, surface promoters, and catalyst composition on the reaction mechanism. DFT calculations are quickly approaching the ability to assist in the interpretation of observed surface spectra, thereby making surface spectroscopy an even more powerful tool. HP-STM has revealed three vitally important parameters in heterogeneous selectivity: adsorbate mobility, catalyst mobility, and selective site-blocking. The development of size controlled nanoparticles from 0.8 to 10 nm, of controlled shape, and of controlled bimetallic composition has revealed several important variables for catalytic selectivity. Lastly, DFT calculations may be paving the way to guiding the composition choice for multi-metallic heterogeneous catalysis for the intelligent design of catalysts incorporating the many factors of selectivity we have learned.

  20. Microscale Thermite Reactions.

    ERIC Educational Resources Information Center

    Arnaiz, Francisco J.; Aguado, Rafael; Arnaiz, Susana

    1998-01-01

    Describes the adaptation of thermite (aluminum with metal oxides) reactions from whole-class demonstrations to student-run micro-reactions. Lists detailed directions and possible variations of the experiment. (WRM)

  1. Allergic reactions (image)

    MedlinePlus

    Allergic reaction can be provoked by skin contact with poison plants, chemicals and animal scratches, as well as by ... dust, nuts and shellfish, may also cause allergic reaction. Medications such as penicillin and other antibiotics are ...

  2. Allergic reactions (image)

    MedlinePlus

    Allergic reaction is a sensitivity to a specific substance, called an allergen, that is contacted through the skin, inhaled into the lungs, swallowed or injected. The body's reaction to an allergen can be mild, such as ...

  3. Microfluidic chemical reaction circuits

    DOEpatents

    Lee, Chung-cheng; Sui, Guodong; Elizarov, Arkadij; Kolb, Hartmuth C.; Huang, Jiang; Heath, James R.; Phelps, Michael E.; Quake, Stephen R.; Tseng, Hsian-rong; Wyatt, Paul; Daridon, Antoine

    2012-06-26

    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  4. Continuous detonation reaction engine

    NASA Technical Reports Server (NTRS)

    Lange, O. H.; Stein, R. J.; Tubbs, H. E.

    1968-01-01

    Reaction engine operates on the principles of a controlled condensed detonation rather than on the principles of gas expansion. The detonation results in reaction products that are expelled at a much higher velocity.

  5. Crystal blocking in heavy ion reactions

    SciTech Connect

    del Campo, J.G.

    1986-01-01

    The crystal blocking technique, used to measure very short lifetime (10/sup -18/ sec), was developed during the 1960's primarily in connection with the study of the channeling effect. Early blocking lifetime measurements involved light ion resonance reactions yielding typical lifetime values down to the order of 10/sup -17/ sec. Recently, studies of heavy-ion induced fission and fusion have extended the technique into the 10/sup -18/ to 10/sup -19/ sec scale. In this work measurements of fusion for /sup 16/O + Ge and deep inelastic reactions for /sup 28/Si + Ge are presented for bombarding energies around 8 nucleon. Also measurements of the projectile fragmenatation of 44 MeV/nucleon /sup 40/Ar + Ge are discussed. In all reactions studied the presence of particle evaporation is the dominant mechanism that determines the reaction times of about 10/sup -18/ sec extracted with the blocking technique. 16 refs., 9 figs.

  6. Linking Drought Information to Crop Yield

    NASA Astrophysics Data System (ADS)

    Madadgar, S.; Farahmand, A.; Li, L.; Aghakouchak, A.

    2015-12-01

    Droughts have detrimental impacts on agricultural yields all over the world every year. This study analyzes the relationship between three drought indicators including Standardized Precipitation Index (SPI); Standardized Soil Moisture Index (SSI), Multivariate Standardized Drought Index (MSDI) and the yields of five largest rain-fed crops in Australia (wheat, broad beans, canola, lupins and barley). Variation of the five chosen crop yields is overall in agreement with the three drought indicators SPI, SSI, and MSDI during the analysis period of 1980-2012. This study develops a bivariate copula model to investigate the statistical dependence of drought and crop yield. Copula functions are used to establish the existing connections between climate variables and crop yields during the Millennium drought in Australia. The proposed model estimates the likelihood of crop yields given the observed or predicted drought indicators SPI, SSI or MSDI. The results are also useful to estimate crop yields associated with different thresholds of precipitation or soil moisture.

  7. A Covariance Generation Methodology for Fission Product Yields

    NASA Astrophysics Data System (ADS)

    Terranova, N.; Serot, O.; Archier, P.; Vallet, V.; De Saint Jean, C.; Sumini, M.

    2016-03-01

    Recent safety and economical concerns for modern nuclear reactor applications have fed an outstanding interest in basic nuclear data evaluation improvement and completion. It has been immediately clear that the accuracy of our predictive simulation models was strongly affected by our knowledge on input data. Therefore strong efforts have been made to improve nuclear data and to generate complete and reliable uncertainty information able to yield proper uncertainty propagation on integral reactor parameters. Since in modern nuclear data banks (such as JEFF-3.1.1 and ENDF/BVII.1) no correlations for fission yields are given, in the present work we propose a covariance generation methodology for fission product yields. The main goal is to reproduce the existing European library and to add covariance information to allow proper uncertainty propagation in depletion and decay heat calculations. To do so, we adopted the Generalized Least Square Method (GLSM) implemented in CONRAD (COde for Nuclear Reaction Analysis and Data assimilation), developed at CEA-Cadarache. Theoretical values employed in the Bayesian parameter adjustment are delivered thanks to a convolution of different models, representing several quantities in fission yield calculations: the Brosa fission modes for pre-neutron mass distribution, a simplified Gaussian model for prompt neutron emission probability, theWahl systematics for charge distribution and the Madland-England model for the isomeric ratio. Some results will be presented for the thermal fission of U-235, Pu-239 and Pu-241.

  8. A high yield neutron target for cancer therapy

    NASA Technical Reports Server (NTRS)

    Alger, D. L.; Steinberg, R.

    1972-01-01

    A rotating target was developed that has the potential for providing an initial yield of 10 to the 13th power neutrons per second by the T(d,n)He-4 reaction, and a useable lifetime in excess of 600 hours. This yield and lifetime are indicated for a 300 Kv and 30 mA deuteron accelerator and a 30 microns thick titanium tritide film formed of the stoichiometric compound TiT2. The potential for extended lifetime is made possible by incorporating a sputtering electrode that permits use of titanium tritide thicknesses much greater than the deuteron range. The electrode is used to remove in situ depleted titanium layers to expose fresh tritide beneath. The utilization of the rotating target as a source of fast neutrons for cancer therapy is discussed.

  9. Catalytic diastereoselective petasis reactions.

    PubMed

    Muncipinto, Giovanni; Moquist, Philip N; Schreiber, Stuart L; Schaus, Scott E

    2011-08-22

    Multicomponent Petasis reactions: the first diastereoselective Petasis reaction catalyzed by chiral biphenols that enables the synthesis of syn and anti β-amino alcohols in pure form has been developed. The reaction exploits a multicomponent approach that involves boronates, α-hydroxy aldehydes, and amines. PMID:21751322

  10. Di-lepton yield from the decay of excited 28Si states

    NASA Astrophysics Data System (ADS)

    Bacelar, J. C.; Buda, A.; Bałanda, A.; Krasznahorkay, A.; van der Ploeg, H.; Sujkowski, Z.; van der Woude, A.

    1994-03-01

    The first dilepton yield measurements from excited nuclear states obtained with a new Positron-Electron Pair Spectroscopic Instrument (PEPSI) are reported. Nuclear states in 28Si, with an initial excitation energy E∗ = 50 MeV, were populated via the isospin T = 0 reaction 4He + 24Mg and the mixed-isospin 3He + 25Mg reaction. In both reactions the dilepton (e +e -) and photon decay yields were measured concurrently. An excess of counts in the e +e - spectrum, over the converted photon yield, is observed in the energy region above 15 MeV. An analyses is discussed whereby the observed excess counts are assumed to represent the isoscalar E0 strength in excited nuclear states.

  11. Asymmetric petasis reactions catalyzed by chiral biphenols.

    PubMed

    Lou, Sha; Schaus, Scott E

    2008-06-01

    Chiral biphenols catalyze the enantioselective Petasis reaction of alkenyl boronates, secondary amines, and ethyl glyoxylate. The reaction requires the use of 15 mol % of (S)-VAPOL as the catalyst, alkenyl boronates as nucleophiles, ethyl glyoxylate as the aldehyde component, and 3 A molecular sieves as an additive. The chiral alpha-amino ester products are obtained in good yields (71-92%) and high enantiomeric ratios (89:11-98:2). Mechanistic investigations indicate single ligand exchange of acyclic boronate with VAPOL and tetracoordinate boronate intermediates. PMID:18459782

  12. Reactions and structure of exotic nuclei

    SciTech Connect

    Esbensen, H.

    1993-08-01

    Radioactive beam experiments have made it possible to study the structure of light neutron rich nuclei. A characteristic feature is a large dipole strength near threshold. An excellent example is the loosely bound nucleus ``Li for which Coulomb dissociation plays a dominant role in breakup reactions on a high Z target. I will describe a three-body model and apply it to calculate the dipole response of {sup 11}Li and the momentum distributions for the three-body breakup reaction: {sup 11}Li {yields} {sup 9}Li+n+n, and comparisons will be made to recent three-body coincidence measurements.

  13. Soot Reaction Properties (Ground-Based Study)

    NASA Technical Reports Server (NTRS)

    Dai, Z.; El-Leathy, A. M.; Lin, K.-C.; Sunderland, P. B.; Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    Three major soot reaction processes are needed to predict soot properties in flame environments: soot growth, or the formation of soot on soot nuclei and soot particles; soot oxidation, or the reaction of soot with oxidizing species to yield the combustion products of soot oxidation; and soot nucleation, or the formation of soot nuclei from soot precursors having large molecular weights (generally thought to be large and particularly stable PAH molecules in flame environments, called stabilomers). These processes are addressed in the following, considering soot growth, oxidation and nucleation, in turn, by exploiting the soot and flame structure results for premixed and diffusion flames already discussed in Section 2.

  14. Distinguishing between yield advances and yield plateaus in historical crop production trends

    PubMed Central

    Grassini, Patricio; Eskridge, Kent M.; Cassman, Kenneth G.

    2013-01-01

    Food security and land required for food production largely depend on rate of yield gain of major cereal crops. Previous projections of food security are often more optimistic than what historical yield trends would support. Many econometric projections of future food production assume compound rates of yield gain, which are not consistent with historical yield trends. Here we provide a framework to characterize past yield trends and show that linear trajectories adequately describe past yield trends, which means the relative rate of gain decreases over time. Furthermore, there is evidence of yield plateaus or abrupt decreases in rate of yield gain, including rice in eastern Asia and wheat in northwest Europe, which account for 31% of total global rice, wheat and maize production. Estimating future food production capacity would benefit from an analysis of past crop yield trends based on a robust statistical analysis framework that evaluates historical yield trajectories and plateaus. PMID:24346131

  15. Quasifission and fusion-fission in reactions with massive nuclei: Comparison of reactions leading to the Z=120 element

    SciTech Connect

    Nasirov, A. K.; Giardina, G.; Mandaglio, G.; Manganaro, M.; Hanappe, F.; Heinz, S.; Hofmann, S.; Muminov, A. I.; Scheid, W.

    2009-02-15

    The yields of evaporation residues, fusion-fission, and quasifission fragments in the {sup 48}Ca+{sup 144,154}Sm and {sup 16}O+{sup 186}W reactions are analyzed in the framework of the combined theoretical method based on the dinuclear system concept and advanced statistical model. The measured yields of evaporation residues for the {sup 48}Ca+{sup 154}Sm reaction can be well reproduced. The measured yields of fission fragments are decomposed into contributions coming from fusion-fission, quasifission, and fast-fission. The decrease in the measured yield of quasifission fragments in {sup 48}Ca+{sup 154}Sm at the large collision energies and the lack of quasifission fragments in the {sup 48}Ca+{sup 144}Sm reaction are explained by the overlap in mass angle distributions of the quasifission and fusion-fission fragments. The investigation of the optimal conditions for the synthesis of the new element Z=120 (A=302) show that the {sup 54}Cr+{sup 248}Cm reaction is preferable in comparison with the {sup 58}Fe+{sup 244}Pu and {sup 64}Ni+{sup 238}U reactions because the excitation function of the evaporation residues of the former reaction is some orders of magnitude larger than that for the last two reactions.

  16. Yields of bedrock wells in Massachusetts

    USGS Publications Warehouse

    Hansen, B.P.; Simcox, A.C.

    1994-01-01

    Six to seven percent of the population of Massachusetts obtains its water from domestic bedrock wells. Additional public, commercial, industrial, and domestic supplies from bedrock will be needed in the future. Information about the factors that are related to large well yields is needed. The factors associated with well yields were identified by use of statistical analysis of reported data from 4,218 bedrock wells. The median reported yield of all bedrock wells was 7 gallons per minute, and the median depth was 170 feet. Wells in valleys and lowlands had the largest median yield--I0 gallons per minute. The median well yield on hilltops and slopes was 6 gallons per minute. In valleys and lowlands, significant increases in well yields corresponded to increasing thickness of overburden. On hilltops and slopes, only small increases in well yield corresponded to increases in overburden thickness. Increases in well diameter corresponded to significant increases in well yields for all well locations, depths, and use categories. The common assumptions that fractured crystalline rocks generally yield only small quantities of water to wells and that the fractures that yield water to wells pinch out or are closed because of lithostatic pressure at depths greater than 300 to 400 feet may be in error. Analysis of well data indicates that the median yield of all bedrock wells decreased as well depth increased to 400 feet and increased slightly with well depths greater than 600 feet. The median yield of bedrock wells located in valleys and lowlands reached 50 gallons per minute at depths of 600 to 700 feet. The median yield of wells located on hilltops and slopes reached 15 gallons per minute at depths of 600 to 700 feet. Carbonate bedrock, with a median well yield of 25 gallons per minute, seemed to be the most productive bedrock type. A reported yield of 1,700 gallons per minute from an industrial well completed in carbonate bedrock is the largest reported yield from a bedrock

  17. Photoelectron Quantum Yields of the Amino Acids

    PubMed Central

    Dam, Rudy J.; Burke, Charles A.; Griffith, O. Hayes

    1974-01-01

    The photoelectron quantum yields of 21 common amino acids and 15 polyamino acids were measured in the 180-240 nm wavelength region. On the average, the quantum yields of these two groups exhibit quite similar wavelength dependence. For λ > 220 nm all amino acid and polyamino acid quantum yields are ≤10-7 electrons/(incident) photon. The mean yields increase to about 5 × 10-7 electrons/photon at 200 nm and 5 × 10-6 electrons/photon at 180 nm. L-tryptophan, L-tyrosine, and poly-L-tryptophan exhibit above average yields between 180 and 200 nm. Comparison with the dye phthalocyanine indicates that the quantum yield of the dye is two orders of magnitude greater than that of the amino acids from 200 to 240 nm, suggesting the feasibility of photoelectron labeling studies of biological surfaces. PMID:4836100

  18. The yield of N/2D/ atoms in the dissociative recombination of NO/+/

    NASA Technical Reports Server (NTRS)

    Kley, D.; Lawrence, G. M.; Stone, E. J.

    1977-01-01

    The quantum yield or branching ratio of N(2D) atoms formed in the reaction e + NO(+) yields N + O was measured to be 76% plus or minus 6%. Photoionization of buffered nitric oxide by a flash lamp was studied using time-resolved atomic absorption. Atoms were produced both by direct photodissociation and by dissociative recombination, and these two effects were separated by means of SF6 as an electron scavenger.

  19. Measurement of fission products yields in the quasi-mono-energetic neutron-induced fission of 232Th

    NASA Astrophysics Data System (ADS)

    Naik, H.; Mukherji, Sadhana; Suryanarayana, S. V.; Jagadeesan, K. C.; Thakare, S. V.; Sharma, S. C.

    2016-08-01

    The cumulative yields of various fission products in the 232Th(n, f) reaction at average neutron energies of 5.42, 7.75, 9.35 and 12.53 MeV have been determined by using an off-line γ-ray spectrometric technique. The neutron beam was produced from the 7Li(p, n) reaction by using the proton energies of 7.8, 12, 16 and 20 MeV. The mass chain yields were obtained from the cumulative fission yields by using the charge distribution correction of medium energy fission. The fine structure in the mass yield distribution was interpreted from the point of nuclear structure effect. On the other hand, the higher yield around mass number 133-134 and 143-144 as well as their complementary products were explained based on the standard I and standard II asymmetric mode of fission. From the mass yield data, the average value of light mass (), heavy mass (), the average number of neutrons (< ν >) and the peak-to-valley (P / V) ratios at different neutron energies of present work and literature data were obtained in the 232Th(n, f) reaction. The different parameters of the mass yield distribution in the 232Th(n, f) reaction were compared with the similar data in the 232Th(γ, f) reaction at comparable excitation energy and a surprising difference was observed.

  20. Crop status evaluations and yield predictions

    NASA Technical Reports Server (NTRS)

    Haun, J. R.

    1976-01-01

    One phase of the large area crop inventory project is presented. Wheat yield models based on the input of environmental variables potentially obtainable through the use of space remote sensing were developed and demonstrated. By the use of a unique method for visually qualifying daily plant development and subsequent multifactor computer analyses, it was possible to develop practical models for predicting crop development and yield. Development of wheat yield prediction models was based on the discovery that morphological changes in plants are detected and quantified on a daily basis, and that this change during a portion of the season was proportional to yield.

  1. Wheat yield forecasts using LANDSAT data

    NASA Technical Reports Server (NTRS)

    Colwell, J. E.; Rice, D. P.; Nalepka, R. F.

    1977-01-01

    Several considerations of winter wheat yield prediction using LANDSAT data were discussed. In addition, a simple technique which permits direct early season forecasts of wheat production was described.

  2. Mass production of multi-wall carbon nanotubes by metal dusting process with high yield

    SciTech Connect

    Ghorbani, H.; Rashidi, A.M.; Rastegari, S.; Mirdamadi, S.; Alaei, M.

    2011-05-15

    Research highlights: {yields} Synthesis of carbon nanotubes over Fe-Ni nanoparticles supported alloy 304L. {yields} Production of carbon nanotubes with high yield (700-1000%) and low cost catalyst. {yields} Optimum growth condition is CO/H{sub 2} = 1/1, 100 cm{sup 3}/min, at 620 {sup o}C under long term repetitive thermal cycling. {yields} Possibility of the mass production by metal dusting process with low cost. -- Abstract: Carbon nanotube materials were synthesized over Fe-Ni nanoparticles generated during disintegration of the surface of alloy 304L under metal dusting environment. The metal dusting condition was simulated and optimized through exposing stainless steel samples during long term repetitive thermal cycling in CO/H{sub 2} = 1/1, total gas flow rate 100 cm{sup 3}/min, at 620 {sup o}C for 300 h. After reaction, surface morphology of the samples and also carbonaceous deposition which had grown on sample surfaces were examined by stereoscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results revealed that multi-wall carbon nanotubes could be formed over nanocatalyst generated on the alloy surface by exploiting metal dusting process. By optimization of reaction parameters the yields of carbon nanotube materials obtained were 700-1000%. Also it has been shown herein that the amount of carbon nanotube materials remarkably increases when the reaction time is extended up to 300 h, indicating a possibility of the mass production by this easy method.

  3. A regioselective double Stille coupling reaction of bicyclic stannolanes.

    PubMed

    Kamimura, Akio; Tanaka, Toshiyuki; So, Masahiro; Itaya, Tomoyuki; Matsuda, Kantaro; Kawamoto, Takuji

    2016-09-14

    A regioselective double Stille coupling reaction was explored using bicyclic stannolanes that were easily prepared from the radical cascade reaction of β-amino-α-methylene esters. Various 1-bromo-2-iodoarenes underwent the double coupling reaction to afford benzoisoindole derivatives in a regioselective manner, where the carbon attached to the iodine selectively coupled with the vinylic carbon, and then the carbon attached to bromine coupled with the alkyl carbon. The combination of intra- and intermolecular coupling reactions provided hexahydroindeno[1,2-b]pyrrole derivatives in good yields. The yields were further improved in the presence of excess amounts of CsF. An attempt to identify the reaction intermediate was made wherein the decomposition of the stannolanes with aqueous HCl and HBr afforded trigonal bipyramidal (TBP) pentacoordinated tin complexes, as confirmed by microanalyses and (119)Sn NMR. Using DCl for the decomposition selectively introduced a deuterium to the E-position of the exomethylene unit. The complexes smoothly underwent the intramolecular Stille coupling reaction in the presence of both a palladium catalyst and DABCO, affording hexahydroindeno[1,2-b]pyrroles in good yields. These results suggest that the double coupling reaction progresses through a TBP tin complex, promoting the second intramolecular coupling reaction between the aryl halide and Csp(3)-tin bond. PMID:27506959

  4. A regioselective double Stille coupling reaction of bicyclic stannolanes.

    PubMed

    Kamimura, Akio; Tanaka, Toshiyuki; So, Masahiro; Itaya, Tomoyuki; Matsuda, Kantaro; Kawamoto, Takuji

    2016-09-14

    A regioselective double Stille coupling reaction was explored using bicyclic stannolanes that were easily prepared from the radical cascade reaction of β-amino-α-methylene esters. Various 1-bromo-2-iodoarenes underwent the double coupling reaction to afford benzoisoindole derivatives in a regioselective manner, where the carbon attached to the iodine selectively coupled with the vinylic carbon, and then the carbon attached to bromine coupled with the alkyl carbon. The combination of intra- and intermolecular coupling reactions provided hexahydroindeno[1,2-b]pyrrole derivatives in good yields. The yields were further improved in the presence of excess amounts of CsF. An attempt to identify the reaction intermediate was made wherein the decomposition of the stannolanes with aqueous HCl and HBr afforded trigonal bipyramidal (TBP) pentacoordinated tin complexes, as confirmed by microanalyses and (119)Sn NMR. Using DCl for the decomposition selectively introduced a deuterium to the E-position of the exomethylene unit. The complexes smoothly underwent the intramolecular Stille coupling reaction in the presence of both a palladium catalyst and DABCO, affording hexahydroindeno[1,2-b]pyrroles in good yields. These results suggest that the double coupling reaction progresses through a TBP tin complex, promoting the second intramolecular coupling reaction between the aryl halide and Csp(3)-tin bond.

  5. The OH + HBr reaction revisited

    NASA Technical Reports Server (NTRS)

    Ravishankara, A. R.; Wine, P. H.; Wells, J. R.

    1985-01-01

    Variable-temperature measurements of the rate coefficient /k(1)/ for the reaction OH + HBr yield Br + H2O are presented. The measurements are verified by two techniques: one involved a 266-nm pulsed-laser photolysis of O3/H2O/HBr/He mixtures in conjunction with time-resolved resonance fluorescence detection of OH, the second comprised pulsed laser-induced fluorescence detection of OH following 248-nm pulsed-laser photolysis of H2O2/HBr/Ar mixtures. It is reported that k(1) = (11.9 + or -1.4 x 10 to the -12th (cu cm)/(molecule)(s) independent of temperature. The measurements are compared with other available results.

  6. Charge symmetry breaking in dd{yields}{alpha}{pi}{sup 0}

    SciTech Connect

    Podkopal, Pawel

    2007-11-07

    Charge Symmetry Breaking reactions are an excellent tool to study the symmetries of QCD in the non-perturbative regime. Following first high precision experiments at IUCF and TRIUMF and triggered by the ongoing theoretical analysis, it is proposed to measure the reaction dd{yields}{alpha}{pi}{sup 0} with WASA-at-COSY at beam momentum 1.2 GeV/c.

  7. (19)F(α,n) thick target yield from 3.5 to 10.0 MeV.

    PubMed

    Norman, E B; Chupp, T E; Lesko, K T; Grant, P J; Woodruff, G L

    2015-09-01

    Using a target of PbF2, the thick-target yield from the (19)F(α,n) reaction was measured from E(α)=3.5-10 MeV. From these results, we infer the thick-target neutron yields from targets of F2 and UF6 over this same alpha-particle energy range.

  8. Noncanonical reactions of flavoenzymes.

    PubMed

    Sobrado, Pablo

    2012-01-01

    Enzymes containing flavin cofactors are predominantly involved in redox reactions in numerous cellular processes where the protein environment modulates the chemical reactivity of the flavin to either transfer one or two electrons. Some flavoenzymes catalyze reactions with no net redox change. In these reactions, the protein environment modulates the reactivity of the flavin to perform novel chemistries. Recent mechanistic and structural data supporting novel flavin functionalities in reactions catalyzed by chorismate synthase, type II isopentenyl diphosphate isomerase, UDP-galactopyranose mutase, and alkyl-dihydroxyacetonephosphate synthase are presented in this review. In these enzymes, the flavin plays either a direct role in acid/base reactions or as a nucleophile or electrophile. In addition, the flavin cofactor is proposed to function as a "molecular scaffold" in the formation of UDP-galactofuranose and alkyl-dihydroxyacetonephosphate by forming a covalent adduct with reaction intermediates.

  9. Anaphylactic reactions to cinoxacin.

    PubMed Central

    Stricker, B. H.; Slagboom, G.; Demaeseneer, R.; Slootmaekers, V.; Thijs, I.; Olsson, S.

    1988-01-01

    During 1981 to mid-1988 three cases of anaphylactic shock after treatment with the quinolone derivative cinoxacin were reviewed by the Netherlands Centre for Monitoring of Adverse Reactions to Drugs and 17 cases of an anaphylactic type of reaction notified to the World Health Organisation Collaborating Centre for International Drug Monitoring. In five out of six patients for whom data were available the reaction began shortly after taking a single capsule of a second or next course of treatment. Cinoxacin is related to nalidixic acid, and one patient previously treated with that agent subsequently had an anaphylactoid reaction to cinoxacin and later developed a skin reaction to nalidixic acid. There were no deaths, and patients treated as an emergency with plasma expanders or with adrenaline and corticosteroids generally recovered promptly and uneventfully. In view of the potentially fatal consequences of anaphylactic reactions to cinoxacin and other quinolones doctors should take care when prescribing these drugs. PMID:3147004

  10. Reaction spreading on graphs

    NASA Astrophysics Data System (ADS)

    Burioni, Raffaella; Chibbaro, Sergio; Vergni, Davide; Vulpiani, Angelo

    2012-11-01

    We study reaction-diffusion processes on graphs through an extension of the standard reaction-diffusion equation starting from first principles. We focus on reaction spreading, i.e., on the time evolution of the reaction product M(t). At variance with pure diffusive processes, characterized by the spectral dimension ds, the important quantity for reaction spreading is found to be the connectivity dimension dl. Numerical data, in agreement with analytical estimates based on the features of n independent random walkers on the graph, show that M(t)˜tdl. In the case of Erdös-Renyi random graphs, the reaction product is characterized by an exponential growth M(t)˜eαt with α proportional to ln, where is the average degree of the graph.

  11. Detecting Temporal Change in Watershed Nutrient Yields

    NASA Astrophysics Data System (ADS)

    Wickham, James D.; Wade, Timothy G.; Riitters, Kurt H.

    2008-08-01

    Meta-analyses reveal that nutrient yields tend to be higher for watersheds dominated by anthropogenic uses (e.g., urban, agriculture) and lower for watersheds dominated by natural vegetation. One implication of this pattern is that loss of natural vegetation will produce increases in watershed nutrient yields. Yet, the same meta-analyses also reveal that, absent land-cover change, watershed nutrient yields vary from one year to the next due to many exogenous factors. The interacting effects of land cover and exogenous factors suggest nutrient yields should be treated as distributions, and the effect of land-cover change should be examined by looking for significant changes in the distributions. We compiled nutrient yield distributions from published data. The published data included watersheds with homogeneous land cover that typically reported two or more years of annual nutrient yields for the same watershed. These data were used to construct statistical models, and the models were used to estimate changes in the nutrient yield distributions as a result of land-cover change. Land-cover changes were derived from the National Land Cover Database (NLCD). Total nitrogen (TN) yield distributions increased significantly for 35 of 1550 watersheds and decreased significantly for 51. Total phosphorus (TP) yield distributions increased significantly for 142 watersheds and decreased significantly for 17. The amount of land-cover change required to produce significant shifts in nutrient yield distributions was not constant. Small land-cover changes led to significant shifts in nutrient yield distributions when watersheds were dominated by natural vegetation, whereas much larger land-cover changes were needed to produce significant shifts when watersheds were dominated by urban or agriculture. We discuss our results in the context of the Clean Water Act.

  12. Detecting temporal change in watershed nutrient yields.

    PubMed

    Wickham, James D; Wade, Timothy G; Riitters, Kurt H

    2008-08-01

    Meta-analyses reveal that nutrient yields tend to be higher for watersheds dominated by anthropogenic uses (e.g., urban, agriculture) and lower for watersheds dominated by natural vegetation. One implication of this pattern is that loss of natural vegetation will produce increases in watershed nutrient yields. Yet, the same meta-analyses also reveal that, absent land-cover change, watershed nutrient yields vary from one year to the next due to many exogenous factors. The interacting effects of land cover and exogenous factors suggest nutrient yields should be treated as distributions, and the effect of land-cover change should be examined by looking for significant changes in the distributions. We compiled nutrient yield distributions from published data. The published data included watersheds with homogeneous land cover that typically reported two or more years of annual nutrient yields for the same watershed. These data were used to construct statistical models, and the models were used to estimate changes in the nutrient yield distributions as a result of land-cover change. Land-cover changes were derived from the National Land Cover Database (NLCD). Total nitrogen (TN) yield distributions increased significantly for 35 of 1550 watersheds and decreased significantly for 51. Total phosphorus (TP) yield distributions increased significantly for 142 watersheds and decreased significantly for 17. The amount of land-cover change required to produce significant shifts in nutrient yield distributions was not constant. Small land-cover changes led to significant shifts in nutrient yield distributions when watersheds were dominated by natural vegetation, whereas much larger land-cover changes were needed to produce significant shifts when watersheds were dominated by urban or agriculture. We discuss our results in the context of the Clean Water Act. PMID:18446405

  13. Automatic NMR-based identification of chemical reaction types in mixtures of co-occurring reactions.

    PubMed

    Latino, Diogo A R S; Aires-de-Sousa, João

    2014-01-01

    The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the (1)H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the (1)H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of

  14. Intermolecular addition reactions of N-alkyl-N-chlorosulfonamides to unsaturated compounds.

    PubMed

    Heuger, Gerold; Göttlich, Richard

    2015-01-01

    N-Alkyl-N-chlorosulfonamides add to alkenes under copper(I) catalysis. In reactions of styrene derivatives with terminal double bonds the addition products were obtained in excellent yield and high regioselectivity. Lower yields are obtained in addition reactions to non-aromatic alkenes. The reaction most likely proceeds via a redox catalysis and amidyl radicals, a concerted mechanism has been ruled out and a polar mechanism via chloronium ions would lead to the opposite regiochemistry.

  15. Intermolecular addition reactions of N-alkyl-N-chlorosulfonamides to unsaturated compounds

    PubMed Central

    Heuger, Gerold

    2015-01-01

    Summary N-Alkyl-N-chlorosulfonamides add to alkenes under copper(I) catalysis. In reactions of styrene derivatives with terminal double bonds the addition products were obtained in excellent yield and high regioselectivity. Lower yields are obtained in addition reactions to non-aromatic alkenes. The reaction most likely proceeds via a redox catalysis and amidyl radicals, a concerted mechanism has been ruled out and a polar mechanism via chloronium ions would lead to the opposite regiochemistry. PMID:26425180

  16. Production of medical radioisotopes with linear accelerators.

    PubMed

    Starovoitova, Valeriia N; Tchelidze, Lali; Wells, Douglas P

    2014-02-01

    In this study, we discuss producing radioisotopes using linear electron accelerators and address production and separation issues of photoneutron (γ,n) and photoproton (γ,p) reactions. While (γ,n) reactions typically result in greater yields, separating product nuclides from the target is challenging since the chemical properties of both are the same. Yields of (γ,p) reactions are typically lower than (γ,n) ones, however they have the advantage that target and product nuclides belong to different chemical species so their separation is often not such an intricate problem. In this paper we consider two examples, (100)Mo(γ,n)(99)Mo and (68)Zn(γ,p)(67)Cu, of photonuclear reactions. Monte-Carlo simulations of the yields are benchmarked with experimental data obtained at the Idaho Accelerator Center using a 44MeV linear electron accelerator. We propose using a kinematic recoil method for photoneutron production. This technique requires (100)Mo target material to be in the form of nanoparticles coated with a catcher material. During irradiation, (99)Mo atoms recoil and get trapped in the coating layer. After irradiation, the coating is dissolved and (99)Mo is collected. At the same time, (100)Mo nanoparticles can be reused. For the photoproduction method, (67)Cu can be separated from the target nuclides, (68)Zn, using standard exchange chromatography methods. Monte-Carlo simulations were performed and the (99)Mo activity was predicted to be about 7MBq/(g(⁎)kW(⁎)h) while (67)Cu activity was predicted to be about 1MBq/(g(⁎)kW(⁎)h). Experimental data confirm the predicted activity for both cases which proves that photonuclear reactions can be used to produce radioisotopes. Lists of medical isotopes which might be obtained using photonuclear reactions have been compiled and are included as well. PMID:24374071

  17. Production of medical radioisotopes with linear accelerators.

    PubMed

    Starovoitova, Valeriia N; Tchelidze, Lali; Wells, Douglas P

    2014-02-01

    In this study, we discuss producing radioisotopes using linear electron accelerators and address production and separation issues of photoneutron (γ,n) and photoproton (γ,p) reactions. While (γ,n) reactions typically result in greater yields, separating product nuclides from the target is challenging since the chemical properties of both are the same. Yields of (γ,p) reactions are typically lower than (γ,n) ones, however they have the advantage that target and product nuclides belong to different chemical species so their separation is often not such an intricate problem. In this paper we consider two examples, (100)Mo(γ,n)(99)Mo and (68)Zn(γ,p)(67)Cu, of photonuclear reactions. Monte-Carlo simulations of the yields are benchmarked with experimental data obtained at the Idaho Accelerator Center using a 44MeV linear electron accelerator. We propose using a kinematic recoil method for photoneutron production. This technique requires (100)Mo target material to be in the form of nanoparticles coated with a catcher material. During irradiation, (99)Mo atoms recoil and get trapped in the coating layer. After irradiation, the coating is dissolved and (99)Mo is collected. At the same time, (100)Mo nanoparticles can be reused. For the photoproduction method, (67)Cu can be separated from the target nuclides, (68)Zn, using standard exchange chromatography methods. Monte-Carlo simulations were performed and the (99)Mo activity was predicted to be about 7MBq/(g(⁎)kW(⁎)h) while (67)Cu activity was predicted to be about 1MBq/(g(⁎)kW(⁎)h). Experimental data confirm the predicted activity for both cases which proves that photonuclear reactions can be used to produce radioisotopes. Lists of medical isotopes which might be obtained using photonuclear reactions have been compiled and are included as well.

  18. Nuclear reaction studies

    SciTech Connect

    Alexander, J.M.; Lacey, R.A.

    1994-11-01

    Research focused on the statistical and dynamical properties of ``hot`` nuclei formed in symmetric heavy-ion reactions. Theses included ``flow`` measurements and the mechanism for multifragment disassembly. Model calculations are being performed for the reactions C+C, Ne+Al, Ar+Sc, Kr+Nb, and Xe+La. It is planned to study {sup 40}Ar reactions from 27 to 115 MeV/nucleon. 2 figs., 41 refs.

  19. Immune reaction to propanidid.

    PubMed

    Christmas, D

    1984-05-01

    An adverse reaction to the intravenous anaesthetic agent propanidid is described in which the main features were hypotension, facial erythema, and abdominal pain. Changes in serum complement levels and differential white cell counts indicate that this was an immune reaction mediated by the classical complement pathway. The immune reaction apparently involved antibodies other than those of the IgE (reagin) class, and circumstantial evidence suggests that it was specific to propanidid rather than to the entire formulation or to Cremophor EL.

  20. Sleeve reaction chamber system

    DOEpatents

    Northrup, M. Allen; Beeman, Barton V.; Benett, William J.; Hadley, Dean R.; Landre, Phoebe; Lehew, Stacy L.; Krulevitch, Peter A.

    2009-08-25

    A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.

  1. 7 CFR 1437.102 - Yield determinations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... adjusted on an administrative county-wide basis for: (i) Yield variations due to different farming practices in the administrative county such as irrigated, non-irrigated, and organic practices; and (ii... missing crop years actual yield. (h) If producers add land in the farming operation and do not...

  2. 7 CFR 1437.102 - Yield determinations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... adjusted on an administrative county-wide basis for: (i) Yield variations due to different farming practices in the administrative county such as irrigated, non-irrigated, and organic practices; and (ii... missing crop years actual yield. (h) If producers add land in the farming operation and do not...

  3. 7 CFR 1437.102 - Yield determinations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... adjusted on an administrative county-wide basis for: (i) Yield variations due to different farming practices in the administrative county such as irrigated, non-irrigated, and organic practices; and (ii... missing crop years actual yield. (h) If producers add land in the farming operation and do not...

  4. Crop Yield Response to Increasing Biochar Rates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The benefit or detriment to crop yield from biochar application varies with biochar type/rate, soil, crop, or climate. The objective of this research was to identify yield response of cotton (Gossypium hirsutum L.), corn (Zea mayes L.), and peanut (Arachis hypogaea L.) to hardwood biochar applied at...

  5. Yield potential of pigeon pea cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yield potential of twelve vegetable pigeon pea (Cajanus cajun) cultivars was evaluated at two locations in eastern Kenya during 2012 and 2013 cropping years. Pigeon pea pod numbers, seeds per pod, seed mass, grain yield and shelling percentage were quantified in three replicated plots, arranged in a...

  6. Transverse flow reactor studies of the dynamics of radical reactions

    SciTech Connect

    Macdonald, R.G.

    1993-12-01

    Radical reactions are in important in combustion chemistry; however, little state-specific information is available for these reactions. A new apparatus has been constructed to measure the dynamics of radical reactions. The unique feature of this apparatus is a transverse flow reactor in which an atom or radical of known concentration will be produced by pulsed laser photolysis of an appropriate precursor molecule. The time dependence of individual quantum states or products and/or reactants will be followed by rapid infrared laser absorption spectroscopy. The reaction H + O{sub 2} {yields} OH + O will be studied.

  7. The Sugar Model: Autocatalytic Activity of the Triose Ammonia Reaction

    NASA Astrophysics Data System (ADS)

    Weber, Arthur L.

    2007-04-01

    Reaction of triose sugars with ammonia under anaerobic conditions yielded autocatalytic products. The autocatalytic behavior of the products was examined by measuring the effect of the crude triose ammonia reaction product on the kinetics of a second identical triose ammonia reaction. The reaction product showed autocatalytic activity by increasing both the rate of disappearance of triose and the rate of formation of pyruvaldehyde, the product of triose dehydration. This synthetic process is considered a reasonable model of origin-of-life chemistry because it uses plausible prebiotic substrates, and resembles modern biosynthesis by employing the energized carbon groups of sugars to drive the synthesis of autocatalytic molecules.

  8. Gas phase contributions to topochemical hydride reduction reactions

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yoji; Li, Zhaofei; Hirai, Kei; Tassel, Cédric; Loyer, François; Ichikawa, Noriya; Abe, Naoyuki; Yamamoto, Takafumi; Shimakawa, Yuichi; Yoshimura, Kazuyoshi; Takano, Mikio; Hernandez, Olivier J.; Kageyama, Hiroshi

    2013-11-01

    Alkali and alkali earth hydrides have been used as solid state reductants recently to yield many interesting new oxygen-deficient transition metal oxides. These reactions have tacitly been assumed to be a solid phase reaction between the reductant and parent oxide. We have conducted a number of experiments with physical separation between the reductant and oxides, and find that in some cases reduction proceeds even when the reagents are physically separated, implying reactions with in-situ generated H2 and, to a lesser extent, getter mechanisms. Our findings change our understanding of these topochemical reactions, and should enhance the synthesis of additional new oxides and nanostructures.

  9. Aqueous Oxidative Heck Reaction as a Protein-Labeling Strategy

    PubMed Central

    Ourailidou, Maria Eleni; van der Meer, Jan-Ytzen; Baas, Bert-Jan; Jeronimus-Stratingh, Margot; Gottumukkala, Aditya L; Poelarends, Gerrit J; Minnaard, Adriaan J; Dekker, Frank J

    2014-01-01

    An increasing number of chemical reactions are being employed for bio-orthogonal ligation of detection labels to protein-bound functional groups. Several of these strategies, however, are limited in their application to pure proteins and are ineffective in complex biological samples such as cell lysates. Here we present the palladium-catalyzed oxidative Heck reaction as a new and robust bio-orthogonal strategy for linking functionalized arylboronic acids to protein-bound alkenes in high yields and with excellent chemoselectivity even in the presence of complex protein mixtures from living cells. Advantageously, this reaction proceeds under aerobic conditions, whereas most other metal-catalyzed reactions require inert atmosphere. PMID:24376051

  10. Toward Direct Reaction-in-Flight Measurements

    NASA Astrophysics Data System (ADS)

    Wilhelmy, Jerry; Bredeweg, Todd; Fowler, Malcolm; Gooden, Matthew; Hayes, Anna; Rusev, Gencho; Caggiano, Joseph; Hatarik, Robert; Henry, Eugene; Tonchev, Anton; Yeaman, Charles; Bhike, Megha; Krishichayan, Krishi; Tornow, Werner

    2016-03-01

    At the National Ignition Facility (NIF) neutrons having energies greater than the equilibrium 14.1 MeV value can be produced via Reaction-in-Flight (RIF) interactions between plasma atoms and upscattered D or T ions. The yield and spectrum of these RIF produced neutrons carry information on the plasma properties as well as information on the stopping power of ions under plasma conditions. At NIF the yield of these RIF neutrons is predicted to be 4-7 orders of magnitude below the peak 14 MeV neutron yield. The current generation of neutron time of flight (nTOF) instrumentation has so far been incapable of detecting these low-yield neutrons primarily due to high photon backgrounds. To date, information on RIF neutrons has been obtained in integral activation experiments using reactions with high energy thresholds such as 169Tm(n,3n)167Tm and 209Bi(n,4n) 206Bi. Initial experiments to selectively suppress photon backgrounds have been performed at TUNL using pulsed monoenergetic neutron beams of 14.9, 18.5, 24.2, and 28.5 MeV impinging on a Bibenzyl scintillator. By placing 5 cm of Pb before the scintillator we were able to selectively suppress the photons from the flash occurring at the production target and enhance the n/_signal by ~6 times.

  11. Competing reaction channels in IR-laser-induced unimolecular reactions

    SciTech Connect

    Berman, M.R.

    1981-01-01

    The competing reaction channels in the unimolecular decomposition of two molecules, formaldehyde and tetralin were studied. A TEA CO/sub 2/ laser was used as the excitation source in all experiments. The dissociation of D/sub 2/CO was studied by infrared multiphoton dissociation (MPD) and the small-molecule nature of formaldehyde with regard to MPD was explored. The effect of collisions in MPD were probed by the pressure dependence of the MPD yield and ir fluorescence from multiphoton excited D/sub 2/CO. MPD yield shows a near cubic dependence in pure D/sub 2/CO which is reduced to a 1.7 power dependence when 15 torr of NO is added. The peak amplitude of 5 ..mu..m ir fluorescence from D/sub 2/CO is proportional to the square of the D/sub 2/CO pressure in pure D/sub 2/CO or in the presence of 50 torr of Ar. Results are explained in terms of bottlenecks to excitation at the v = 1 level which are overcome by a combination of vibrational energy transfer and rotational relaxation. The radical/molecule branching ratio in D/sub 2/CO MPD was 0.10 +- 0.02 at a fluence of 125 J/cm/sup 2/ at 946.0 cm/sup -1/. The barrier height to molecular dissociation was calculated to be 3.6 +- 2.0 kcal/mole below the radical threshold or 85.0 +- 3.0 kcal/mole above the ground state of D/sub 2/CO. In H/sub 2/CO, this corresponds to 2.5 +- 2.0 kcal/mole below the radical threshold or 83.8 +- 3.0 kcal/mole above the ground state. Comparison with uv data indicate that RRKM theory is an acceptable description of formaldehyde dissociation in the 5 to 10 torr pressure range. The unimolecular decomposition of tetralin was studied by MPD and SiF/sub 4/ - sensitized pyrolysis. Both techniques induce decomposition without the interference of catalytic surfaces. Ethylene loss is identified as the lowest energy reaction channel. Dehydrogenation is found to result from step-wise H atom loss. Isomerization via disproportionation is also identified as a primary reaction channel.

  12. A tandem reaction of benzyne with functionalized benzylidenephthalan to afford phenanthro[10,1-bc]furan.

    PubMed

    Siyang, Hai Xiao; Wu, Xu Rui; Liu, Hui Ling; Wu, Xin Yan; Liu, Pei Nian

    2014-02-01

    A tandem reaction of benzyne with functionalized benzylidenephthalan for the synthesis of a variety of phenanthro[10,1-bc]furans has been achieved for the first time in moderate to good yields. The reaction mechanism involves a Diels–Alder reaction and an intermolecular nucleophilic addition reaction as the key steps.

  13. Photo-transmutation of long-lived radionuclide 135Cs by laser–plasma driven electron source

    NASA Astrophysics Data System (ADS)

    Wang, X.-L.; Tan, Z.-Y.; Luo, W.; Zhu, Z.-C.; Wang, X.-D.; Song, Y.-M.

    2016-09-01

    Relativistic electrons, accelerated by the laser ponderomotive force, can be focused onto a high-Z convertor to generate high-brightness beams of gamma-rays, which in turn can be used to induce photonuclear reactions. In this work, the possibility of photo-transmutation of long-lived radionuclide Cs-135 by laser-plasma driven electron source has been demonstrated through Geant4 simulations. High energy electron generation, bremsstrahlung and photonuclear reaction have been observed at four different laser intensities of 10^{20} W/cm^2, 5 times 10^{20} W/cm^2, 10^{21} W/cm^2 and 5 times 10^{21} W/cm^2, respectively. It was shown that the laser intensity and the target geometry have strong effect on the transmutation reaction yield. At different laser intensities the recommended target sizes were found to obtain the maximum reaction yield. The remarkable feature of this work is to evaluate the optimal laser intensity to produce maximum reaction yield of 10^8 per Joule in laser pulse energy, which is 10^{21} W/cm^2. Our study suggests photo-transmutation driven by laser-based electron source as a promising approach for experimental research into transmutation reactions, with potential applications to nuclear waste management.

  14. Chemical reactions in perfume ageing.

    PubMed

    Blakeway, J M; Frey, M L; Lacroix, S; Salerno, M S

    1987-10-01

    Summary The interactions between a typical range of perfume materials, alcohol, water, air, elevated temperatures and daylight have been studied. The changes of composition, acidity, peroxide content and the formation of new molecules were followed. The stabilizing effects of UV absorbers, antioxidants and sequestering agents were examined; - the formation of acid reaction products was accelerated by air, temperature, daylight and the presence of natural products; - peroxide formation was accelerated by heat and light and the presence of air; as the acidity increased, the peroxides decomposed; - the acetalization of other aldehydes was accelerated by temperature and daylight and the presence of natural products up to 40% of certain aldehydes may be converted into acetals after 3 months at 37 degrees C; - many stereoisomerizations occur, e.g., transisoeugenol is converted up to 10% into the cis isomer after 3 months at 37 degrees C and 58% in daylight; - evaluation of antioxidants UV absorbers and sequestering agents showed a significant protection against deterioration only by EDTA dipotassium salt; - ethanol was converted into acetaldehyde and its diethylacetal by peroxides present and formed on ageing up to 0.08%. Natural products accelerated this formation; - the reaction between benzoyl peroxide and ethanol was shown to yield up to 63% of acetaldehyde+diethyl acetal whilst di-t-butyl peroxide gave only 23% under the same conditions. These results go some way to explaining odour changes in perfume ageing.

  15. Reactions of carbonyl compounds with Grignard reagents in the presence of cerium chloride

    SciTech Connect

    Imamoto, Tsuneo; Takiyama, Nobuyuki; Nakamura, Kimikazu; Hatajima, Toshihiko; Kamiya, Yasuo )

    1989-06-07

    The addition of Grignard reagents to ketones is significantly enhanced by cerium chloride with remarkable suppression of side reactions, particularly enolization. Some esters, which are prone to side reactions, also react readily with Grignard reagents in the presence of cerium chloride to give normal reaction products in reasonable to high yields.

  16. Microwave-Assisted Organic Synthesis in the Organic Teaching Lab: A Simple, Greener Wittig Reaction

    ERIC Educational Resources Information Center

    Martin, Eric; Kellen-Yuen, Cynthia

    2007-01-01

    A greener, microwave-assisted Wittig reaction has been developed for the second-semester organic teaching laboratory. Utilizing this microwave technique, a variety of styrene derivatives have been successfully synthesized from aromatic aldehydes in good yields (41-68%). The reaction not only occurs under neat reaction conditions, but also employs…

  17. Low Energy Nuclear Reactions: 2007 Update

    NASA Astrophysics Data System (ADS)

    Krivit, Steven B.

    2007-03-01

    This paper presents an overview of low energy nuclear reactions, a subset of the field of condensed matter nuclear science. Condensed matter nuclear science studies nuclear effects in and/or on condensed matter, including low energy nuclear reactions, an entirely new branch of science that gained widespread attention and notoriety beginning in 1989 with the announcement of a previously unrecognized source of energy by Martin Fleischmann and Stanley Pons that came to be known as cold fusion. Two branches of LENR are recognized. The first includes a set of reactions like those observed by Fleischmann and Pons that use palladium and deuterium and yield excess heat and helium-4. Numerous mechanisms have been proposed to explain these reactions, however there is no consensus for, or general acceptance of, any of the theories. The claim of fusion is still considered speculative and, as such, is not an ideal term for this work. The other branch is a wide assortment of nuclear reactions that may occur with either hydrogen or deuterium. Anomalous nuclear transmutations are reported that involve light as well as heavy elements. The significant questions that face this field of research are: 1) Are LENRs a genuine nuclear reaction? 2) If so, is there a release of excess energy? 3) If there is, is the energy release cost-effective?

  18. Climate Variability and Sugarcane Yield in Louisiana.

    NASA Astrophysics Data System (ADS)

    Greenland, David

    2005-11-01

    This paper seeks to understand the role that climate variability has on annual yield of sugarcane in Louisiana. Unique features of sugarcane growth in Louisiana and nonclimatic, yield-influencing factors make this goal an interesting and challenging one. Several methods of seeking and establishing the relations between yield and climate variables are employed. First, yield climate relations were investigated at a single research station where crop variety and growing conditions could be held constant and yield relations could be established between a predominant older crop variety and a newer one. Interviews with crop experts and a literature survey were used to identify potential climatic factors that control yield. A statistical analysis was performed using statewide yield data from the American Sugar Cane League from 1963 to 2002 and a climate database. Yield values for later years were adjusted downward to form an adjusted yield dataset. The climate database was principally constructed from daily and monthly values of maximum and minimum temperature and daily and monthly total precipitation for six cooperative weather-reporting stations representative of the area of sugarcane production. The influence of 74 different, though not independent, climate-related variables on sugarcane yield was investigated. The fact that a climate signal exists is demonstrated by comparing mean values of the climate variables corresponding to the upper and lower third of adjusted yield values. Most of these mean-value differences show an intuitively plausible difference between the high- and low-yield years. The difference between means of the climate variables for years corresponding to the upper and lower third of annual yield values for 13 of the variables is statistically significant at or above the 90% level. A correlation matrix was used to identify the variables that had the largest influence on annual yield. Four variables [called here critical climatic variables (CCV

  19. Theory of reactions at electrified interfaces.

    PubMed

    Lück, Jessica; Latz, Arnulf

    2016-07-21

    Interfacial reaction and transport processes are a decisive factor for the overall performance of electrochemical systems. However, existing models rely on phenomenological descriptions of charged interfaces, which yields no deeper insights. We present a generic theory to describe charge and electron transfer reactions at charged interfaces, which is applicable to different electrochemical systems, like fuel cells or batteries with liquid or solid electrolytes. In the present work, our general theory is adopted to the electrochemical double layer at the interface between a solid electrode and a liquid electrolyte. The model allows to describe the intercalation reaction in Li-ion insertion batteries as a two-step process, consisting of a first desolvation and adsorption and a second actual insertion step. It becomes apparent that a charging of the double layer acts as the necessary driving force for the charge transfer across the interface.

  20. Dual phase multiplex polymerase chain reaction

    DOEpatents

    Pemov, Alexander; Bavykin, Sergei

    2008-10-07

    Highly specific and sensitive methods were developed for multiplex amplification of nucleic acids on supports such as microarrays. Based on a specific primer design, methods include five types of amplification that proceed in a reaction chamber simultaneously. These relate to four types of multiplex amplification of a target DNA on a solid support, directed by forward and reverse complex primers immobilized to the support and a fifth type--pseudo-monoplex polymerase chain reaction (PCR) of multiple targets in solution, directed by a single pair of unbound universal primers. The addition of the universal primers in the reaction mixture increases the yield over the traditional "bridge" amplification on a solid support by approximately ten times. Methods that provide multitarget amplification and detection of as little as 0.45-4.5.times.10.sup.-12 g (equivalent to 10.sup.2-10.sup.3 genomes) of a bacterial genomic DNA are disclosed.

  1. Theory of reactions at electrified interfaces.

    PubMed

    Lück, Jessica; Latz, Arnulf

    2016-07-21

    Interfacial reaction and transport processes are a decisive factor for the overall performance of electrochemical systems. However, existing models rely on phenomenological descriptions of charged interfaces, which yields no deeper insights. We present a generic theory to describe charge and electron transfer reactions at charged interfaces, which is applicable to different electrochemical systems, like fuel cells or batteries with liquid or solid electrolytes. In the present work, our general theory is adopted to the electrochemical double layer at the interface between a solid electrode and a liquid electrolyte. The model allows to describe the intercalation reaction in Li-ion insertion batteries as a two-step process, consisting of a first desolvation and adsorption and a second actual insertion step. It becomes apparent that a charging of the double layer acts as the necessary driving force for the charge transfer across the interface. PMID:27215943

  2. Applications of Reaction Rate

    ERIC Educational Resources Information Center

    Cunningham, Kevin

    2007-01-01

    This article presents an assignment in which students are to research and report on a chemical reaction whose increased or decreased rate is of practical importance. Specifically, students are asked to represent the reaction they have chosen with an acceptable chemical equation, identify a factor that influences its rate and explain how and why it…

  3. Chemical Reaction Problem Solving.

    ERIC Educational Resources Information Center

    Veal, William

    1999-01-01

    Discusses the role of chemical-equation problem solving in helping students predict reaction products. Methods for helping students learn this process must be taught to students and future teachers by using pedagogical skills within the content of chemistry. Emphasizes that solving chemical reactions should involve creative cognition where…

  4. Oscillating Chemical Reactions

    ERIC Educational Resources Information Center

    Hawkins, M. D.; And Others

    1975-01-01

    Describes several oscillating chemical reactions which can be used in undergraduate chemistry laboratories. In one such reaction, ferroin oscillates from red (reducing solution) to blue (oxidizing solution) for about an hour at a frequency which can readily be shown to depend on such factors as the temperature, type of solvent, and concentration…

  5. REUSABLE REACTION VESSEL

    DOEpatents

    Soine, T.S.

    1963-02-26

    This patent shows a reusable reaction vessel for such high temperature reactions as the reduction of actinide metal chlorides by calcium metal. The vessel consists of an outer metal shell, an inner container of refractory material such as sintered magnesia, and between these, a bed of loose refractory material impregnated with thermally conductive inorganic salts. (AEC)

  6. Hydrogen evolution reaction catalyst

    DOEpatents

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  7. Clock Reaction: Outreach Attraction

    ERIC Educational Resources Information Center

    Carpenter, Yuen-ying; Phillips, Heather A.; Jakubinek, Michael B.

    2010-01-01

    Chemistry students are often introduced to the concept of reaction rates through demonstrations or laboratory activities involving the well-known iodine clock reaction. For example, a laboratory experiment involving thiosulfate as an iodine scavenger is part of the first-year general chemistry laboratory curriculum at Dalhousie University. With…

  8. Oscillating Reactions: Two Analogies

    ERIC Educational Resources Information Center

    Petruševski, Vladimir M.; Stojanovska, Marina I.; Šoptrajanov, Bojan T.

    2007-01-01

    Oscillating chemical reactions are truly spectacular phenomena, and demonstrations are always appreciated by the class. However, explaining such reactions to high school or first-year university students is problematic, because it may seem that no acceptable explanation is possible unless the students have profound knowledge of both physical…

  9. Nuclear Reaction Data Centers

    SciTech Connect

    McLane, V.; Nordborg, C.; Lemmel, H.D.; Manokhin, V.N.

    1988-01-01

    The cooperating Nuclear Reaction Data Centers are involved in the compilation and exchange of nuclear reaction data for incident neutrons, charged particles and photons. Individual centers may also have services in other areas, e.g., evaluated data, nuclear structure and decay data, reactor physics, nuclear safety; some of this information may also be exchanged between interested centers. 20 refs., 1 tab.

  10. Interfacing supercritical fluid reaction apparatus with on-line liquid chromatography: monitoring the progress of a synthetic organic reaction performed in supercritical fluid solution.

    PubMed

    Ramsey, Edward D; Li, Ben; Guo, Wei; Liu, Jing Y

    2015-04-01

    An interface has been developed that connects a supercritical fluid reaction (SFR) vessel directly on-line to a liquid chromatograph. The combined SFR-LC system has enabled the progress of the esterification reaction between phenol and benzoyl chloride to synthesize phenyl benzoate in supercritical fluid carbon dioxide solution to be dynamically monitored. This was achieved by the periodic SFR-LC analysis of samples directly withdrawn from the esterification reaction mixture. Using the series of SFR-LC analysis results obtained for individual esterification reactions, the reaction progress profile for each esterification reaction was obtained by expressing the measured yield of phenyl benzoate as a function of reaction time. With reaction temperature fixed at 75°C, four sets (n=3) of SFR-LC reaction progress profiles were obtained at four different SFR pressures ranging from 13.79 to 27.58 MPa. The maximum SFR yield obtained for phenyl benzoate using a standard set of reactant concentrations was 85.2% (R.S.D. 4.2%) when the reaction was performed at 13.79 MPa for 90 min. In comparison, a phenyl benzoate yield of less than 0.3% was obtained using the same standard reactant concentrations after 90 min reaction time at 75°C using either: heptane, ethyl acetate or acetonitrile as conventional organic reaction solvents.

  11. Reaction rate and products for the reaction O/3P/ + H2CO

    NASA Technical Reports Server (NTRS)

    Chang, J. S.; Barker, J. R.

    1979-01-01

    A study of reaction kinetics of O + H2CO in a discharge-flow system using mass spectrometric detection of reactants and products is presented. It was performed under both oxygen-atom-rich and formaldehyde-rich conditions over the 296 to 437 K range, showing that the global bimolecular rate constant is in agreement with other studies. This study differs from others in that the reaction products can be observed, and a substantial yield of a primary reaction product was measured with a mass spectral peak at m/e=44. This suggests that the global reaction rate probably consists of combination, as well as of simple abstraction. For the combination, one hypothesis is that triplet dioxymethylene is formed which polymerizes to triplet formic acid; the vibrationally excited triplet formic acid may decompose to form several sets of products, including HCO + OH and HCO2 + H.

  12. Fractal reaction kinetics.

    PubMed

    Kopelman, R

    1988-09-23

    Classical reaction kinetics has been found to be unsatisfactory when the reactants are spatially constrained on the microscopic level by either walls, phase boundaries, or force fields. Recently discovered theories of heterogeneous reaction kinetics have dramatic consequences, such as fractal orders for elementary reactions, self-ordering and self-unmixing of reactants, and rate coefficients with temporal "memories." The new theories were needed to explain the results of experiments and supercomputer simulations of reactions that were confined to low dimensions or fractal dimensions or both. Among the practical examples of "fractal-like kinetics" are chemical reactions in pores of membranes, excitation trapping in molecular aggregates, exciton fusion in composite materials, and charge recombination in colloids and clouds.

  13. Applications of Photonuclear Physics for International Safeguards and Security

    SciTech Connect

    Johnson, M S; Hall, J M; McNabb, D P; McFarland, J; Norman, E; Bertozzi, W; Korbly, S; Ledoux, R; Park, W

    2010-04-16

    Studies of nuclear resonance fluorescence based applications are presented. Important for these applications are data for isotopes such as {sup 239}Pu. Nuclear resonance fluorescence measurements of {sup 239}Pu were performed at the free electron laser facility at UC Santa Barbara using photons from a bremsstrahlung beam with an endpoint energies between 4.0 MeV and 5.5 MeV. Though no discrete states with significant confidence level were measured, we have excluded the region above 27(3) eV-barns, or 4-sigma, where we would expect only a small chance of false positives. Details of the measurements and the results are presented here.

  14. Elastic photonuclear cross sections for bremsstrahlung from relativistic ions

    NASA Astrophysics Data System (ADS)

    Mikkelsen, Rune E.; Sørensen, Allan H.; Uggerhøj, Ulrik I.

    2016-04-01

    In this paper, we provide a procedure to calculate the bremsstrahlung spectrum for virtually any relativistic bare ion with charge 6e or beyond, Z ⩾ 6 , in ultraperipheral collisions with target nuclei. We apply the Weizsäcker-Williams method of virtual quanta to model the effect of the distribution of nuclear constituents on the interaction of the ion with the radiation target. This leads to a bremsstrahlung spectrum peaking at 2 γ times the energy of the giant dipole resonance (γ is the projectile energy in units of its rest energy). A central ingredient in the calculation is the cross section for elastic scattering of photons on the ion. This is only available in the literature for a few selected nuclei and, usually, only in a rather restricted parameter range. Hence we develop a procedure applicable for all Z ⩾ 6 to estimate the elastic scattering. The elastic cross section is obtained at low to moderate photon energies, somewhat beyond the giant dipole resonance, by means of the optical theorem, a dispersion relation, and data on the total absorption cross section. The cross section is continued at higher energies by invoking depletion due to loss of coherence in the scattering. Our procedure is intended for any ion where absorption data is available and for moderate to high energies, γ ≳ 10 .

  15. Study of photonuclear muon interactions at Baksan underground scintillation telescope

    NASA Technical Reports Server (NTRS)

    Bakatanov, V. N.; Chudakov, A. E.; Dadykin, V. L.; Novoseltsev, Y. F.; Achkasov, V. M.; Semenov, A. M.; Stenkin, Y. V.

    1985-01-01

    The method of pion-muon-electron decays recording was used to distinguish between purely electron-photon and hadronic cascades, induced by high energy muons underground. At energy approx. 1 Tev a ratio of the number of hadronic to electromagnetic cascades was found equal 0.11 + or - .03 in agreement with expectation. But, at an energy approx. 4 Tev a sharp increase of this ratio was indicated though not statistically sound (0.52 + or - .13).

  16. Climate Change and Maize Yield in Iowa

    PubMed Central

    Xu, Hong; Twine, Tracy E.; Girvetz, Evan

    2016-01-01

    Climate is changing across the world, including the major maize-growing state of Iowa in the USA. To maintain crop yields, farmers will need a suite of adaptation strategies, and choice of strategy will depend on how the local to regional climate is expected to change. Here we predict how maize yield might change through the 21st century as compared with late 20th century yields across Iowa, USA, a region representing ideal climate and soils for maize production that contributes substantially to the global maize economy. To account for climate model uncertainty, we drive a dynamic ecosystem model with output from six climate models and two future climate forcing scenarios. Despite a wide range in the predicted amount of warming and change to summer precipitation, all simulations predict a decrease in maize yields from late 20th century to middle and late 21st century ranging from 15% to 50%. Linear regression of all models predicts a 6% state-averaged yield decrease for every 1°C increase in warm season average air temperature. When the influence of moisture stress on crop growth is removed from the model, yield decreases either remain the same or are reduced, depending on predicted changes in warm season precipitation. Our results suggest that even if maize were to receive all the water it needed, under the strongest climate forcing scenario yields will decline by 10–20% by the end of the 21st century. PMID:27219116

  17. Climate change and maize yield in Iowa

    DOE PAGES

    Xu, Hong; Twine, Tracy E.; Girvetz, Evan

    2016-05-24

    Climate is changing across the world, including the major maize-growing state of Iowa in the USA. To maintain crop yields, farmers will need a suite of adaptation strategies, and choice of strategy will depend on how the local to regional climate is expected to change. Here we predict how maize yield might change through the 21st century as compared with late 20th century yields across Iowa, USA, a region representing ideal climate and soils for maize production that contributes substantially to the global maize economy. To account for climate model uncertainty, we drive a dynamic ecosystem model with output frommore » six climate models and two future climate forcing scenarios. Despite a wide range in the predicted amount of warming and change to summer precipitation, all simulations predict a decrease in maize yields from late 20th century to middle and late 21st century ranging from 15% to 50%. Linear regression of all models predicts a 6% state-averaged yield decrease for every 1°C increase in warm season average air temperature. When the influence of moisture stress on crop growth is removed from the model, yield decreases either remain the same or are reduced, depending on predicted changes in warm season precipitation. Lastly, our results suggest that even if maize were to receive all the water it needed, under the strongest climate forcing scenario yields will decline by 10-20% by the end of the 21st century.« less

  18. Climate Change and Maize Yield in Iowa.

    PubMed

    Xu, Hong; Twine, Tracy E; Girvetz, Evan

    2016-01-01

    Climate is changing across the world, including the major maize-growing state of Iowa in the USA. To maintain crop yields, farmers will need a suite of adaptation strategies, and choice of strategy will depend on how the local to regional climate is expected to change. Here we predict how maize yield might change through the 21st century as compared with late 20th century yields across Iowa, USA, a region representing ideal climate and soils for maize production that contributes substantially to the global maize economy. To account for climate model uncertainty, we drive a dynamic ecosystem model with output from six climate models and two future climate forcing scenarios. Despite a wide range in the predicted amount of warming and change to summer precipitation, all simulations predict a decrease in maize yields from late 20th century to middle and late 21st century ranging from 15% to 50%. Linear regression of all models predicts a 6% state-averaged yield decrease for every 1°C increase in warm season average air temperature. When the influence of moisture stress on crop growth is removed from the model, yield decreases either remain the same or are reduced, depending on predicted changes in warm season precipitation. Our results suggest that even if maize were to receive all the water it needed, under the strongest climate forcing scenario yields will decline by 10-20% by the end of the 21st century.

  19. Regression Models For Saffron Yields in Iran

    NASA Astrophysics Data System (ADS)

    S. H, Sanaeinejad; S. N, Hosseini

    Saffron is an important crop in social and economical aspects in Khorassan Province (Northeast of Iran). In this research wetried to evaluate trends of saffron yield in recent years and to study the relationship between saffron yield and the climate change. A regression analysis was used to predict saffron yield based on 20 years of yield data in Birjand, Ghaen and Ferdows cities.Climatologically data for the same periods was provided by database of Khorassan Climatology Center. Climatologically data includedtemperature, rainfall, relative humidity and sunshine hours for ModelI, and temperature and rainfall for Model II. The results showed the coefficients of determination for Birjand, Ferdows and Ghaen for Model I were 0.69, 0.50 and 0.81 respectively. Also coefficients of determination for the same cities for model II were 0.53, 0.50 and 0.72 respectively. Multiple regression analysisindicated that among weather variables, temperature was the key parameter for variation ofsaffron yield. It was concluded that increasing temperature at spring was the main cause of declined saffron yield during recent years across the province. Finally, yield trend was predicted for the last 5 years using time series analysis.

  20. Mechanism of cis-prenyltransferase reaction probed by substrate analogues

    SciTech Connect

    Lu, Yen-Pin; Liu, Hon-Ge; Teng, Kuo-Hsun; Liang, Po-Huang

    2010-10-01

    Research highlights: {yields} The extremely slow trans-OPPS reaction using 2-Fluoro-FPP supports the sequential mechanism with the carbocation intermediate. {yields} The similar UPPS reaction rate under single turnover supports the concerted mechanism, without the carbocation intermediate. {yields} The secondary kinetic isotope effect also supports associate transition state for UPPS reaction, without the carbocation intermediate. -- Abstract: Undecaprenyl pyrophosphate synthase (UPPS) is a cis-type prenyltransferases which catalyzes condensation reactions of farnesyl diphosphate (FPP) with eight isopentenyl pyrophosphate (IPP) units to generate C{sub 55} product. In this study, we used two analogues of FPP, 2-fluoro-FPP and [1,1-{sup 2}H{sub 2}]FPP, to probe the reaction mechanism of Escherichia coli UPPS. The reaction rate of 2-fluoro-FPP with IPP under single-turnover condition is similar to that of FPP, consistent with the mechanism without forming a farnesyl carbocation intermediate. Moreover, the deuterium secondary KIE of 0.985 {+-} 0.022 measured for UPPS reaction using [1,1-{sup 2}H{sub 2}]FPP supports the associative transition state. Unlike the sequential mechanism used by trans-prenyltransferases, our data demonstrate E. coli UPPS utilizes the concerted mechanism.

  1. Optimizing rice yields while minimizing yield-scaled global warming potential.

    PubMed

    Pittelkow, Cameron M; Adviento-Borbe, Maria A; van Kessel, Chris; Hill, James E; Linquist, Bruce A

    2014-05-01

    To meet growing global food demand with limited land and reduced environmental impact, agricultural greenhouse gas (GHG) emissions are increasingly evaluated with respect to crop productivity, i.e., on a yield-scaled as opposed to area basis. Here, we compiled available field data on CH4 and N2 O emissions from rice production systems to test the hypothesis that in response to fertilizer nitrogen (N) addition, yield-scaled global warming potential (GWP) will be minimized at N rates that maximize yields. Within each study, yield N surplus was calculated to estimate deficit or excess N application rates with respect to the optimal N rate (defined as the N rate at which maximum yield was achieved). Relationships between yield N surplus and GHG emissions were assessed using linear and nonlinear mixed-effects models. Results indicate that yields increased in response to increasing N surplus when moving from deficit to optimal N rates. At N rates contributing to a yield N surplus, N2 O and yield-scaled N2 O emissions increased exponentially. In contrast, CH4 emissions were not impacted by N inputs. Accordingly, yield-scaled CH4 emissions decreased with N addition. Overall, yield-scaled GWP was minimized at optimal N rates, decreasing by 21% compared to treatments without N addition. These results are unique compared to aerobic cropping systems in which N2 O emissions are the primary contributor to GWP, meaning yield-scaled GWP may not necessarily decrease for aerobic crops when yields are optimized by N fertilizer addition. Balancing gains in agricultural productivity with climate change concerns, this work supports the concept that high rice yields can be achieved with minimal yield-scaled GWP through optimal N application rates. Moreover, additional improvements in N use efficiency may further reduce yield-scaled GWP, thereby strengthening the economic and environmental sustainability of rice systems. PMID:24115565

  2. Optimizing rice yields while minimizing yield-scaled global warming potential.

    PubMed

    Pittelkow, Cameron M; Adviento-Borbe, Maria A; van Kessel, Chris; Hill, James E; Linquist, Bruce A

    2014-05-01

    To meet growing global food demand with limited land and reduced environmental impact, agricultural greenhouse gas (GHG) emissions are increasingly evaluated with respect to crop productivity, i.e., on a yield-scaled as opposed to area basis. Here, we compiled available field data on CH4 and N2 O emissions from rice production systems to test the hypothesis that in response to fertilizer nitrogen (N) addition, yield-scaled global warming potential (GWP) will be minimized at N rates that maximize yields. Within each study, yield N surplus was calculated to estimate deficit or excess N application rates with respect to the optimal N rate (defined as the N rate at which maximum yield was achieved). Relationships between yield N surplus and GHG emissions were assessed using linear and nonlinear mixed-effects models. Results indicate that yields increased in response to increasing N surplus when moving from deficit to optimal N rates. At N rates contributing to a yield N surplus, N2 O and yield-scaled N2 O emissions increased exponentially. In contrast, CH4 emissions were not impacted by N inputs. Accordingly, yield-scaled CH4 emissions decreased with N addition. Overall, yield-scaled GWP was minimized at optimal N rates, decreasing by 21% compared to treatments without N addition. These results are unique compared to aerobic cropping systems in which N2 O emissions are the primary contributor to GWP, meaning yield-scaled GWP may not necessarily decrease for aerobic crops when yields are optimized by N fertilizer addition. Balancing gains in agricultural productivity with climate change concerns, this work supports the concept that high rice yields can be achieved with minimal yield-scaled GWP through optimal N application rates. Moreover, additional improvements in N use efficiency may further reduce yield-scaled GWP, thereby strengthening the economic and environmental sustainability of rice systems.

  3. Biochemical reaction engineering for redox reactions.

    PubMed

    Wandrey, Christian

    2004-01-01

    Redox reactions are still a challenge for biochemical engineers. A personal view for the development of this field is given. Cofactor regeneration was an obstacle for quite some time. The first technical breakthrough was achieved with the system formate/formate dehydrogenase for the regeneration of NADH2. In cases where the same enzyme could be used for chiral reduction as well as for cofactor regeneration, isopropanol as a hydrogen source proved to be beneficial. The coproduct (acetone) can be removed by pervaporation. Whole-cell reductions (often yeast reductions) can also be used. By proper biochemical reaction engineering, it is possible to apply these systems in a continuous way. By cloning a formate dehydrogenase and an oxidoreductase "designer bug" can be obtained where formate is used instead of glucose as the hydrogen source. Complex sequences of redox reactions can be established by pathway engineering with a focus on gene overexpression or with a focus on establishing non-natural pathways. The success of pathway engineering can be controlled by measuring cytosolic metabolite concentrations. The optimal exploitation of such systems calls for the integrated cooperation of classical and molecular biochemical engineering.

  4. The reaction of NH2 with NO2

    NASA Technical Reports Server (NTRS)

    Jayanty, R. K. M.; Simonaitis, R.; Heicklen, J.

    1976-01-01

    Ammonia (NH3) was photolyzed at 213.9 nm in the presence of NO2 at 25 C in order to study the reactions of NH2 with NO2. The products included NO, with a quantum yield of 1.0. The other measured products of the reaction were N2 and N2O with respective quantum yields of 0.94 plus or minus 0.10 and 0.3 in the presence of small amounts of He and 0.65 plus or minus 0.15 and 0.13 in the presence of a large excess of He. The quantum yield for NO2 consumption was 6.0 plus or minus 2.0 in the absence of He. These results are explained in terms of various reactions.

  5. Neutron yields for reactions induced by 120 GeV protons on thick copper target

    SciTech Connect

    Kajimoto, Tsuyoshi; Sanami, Toshiya; Iwamoto, Yosuke; Shigyo, Nobuhiro; Hagiwara, Masayuki; Saitoh, Kiwamu; Nakashima, Hiroshi; Ishibashi, Kenji; Lee, Hee-Seock; Ramberg, Eric; Coleman, Richard; /Fermilab

    2011-02-01

    We developed an experimental method to measure neutron energy spectrum for 120-GeV protons on a thick copper target at Fermilab Test Beam Facility (FTBF). The spectrum in the energy range from 16 to 1600 MeV was obtained for 60-cm long copper target by time-of-flight technique with an NE213 scintillator and 5.5-m flight path. Energy spectra of neutrons generated from an interaction with beam and materials are important to design shielding structure of high energy accelerators. Until now, the energy spectra for the incident energy up to 3 GeV have been measured by several groups, Ishibashi et al., Amian et al., and Leray et al. In the energy region above 3 GeV, few experimental data are available because of small number of facilities for neutron experiment. On the other hand, concerning simulation codes, theoretical models for particle generation and transportation are switched from intermediate to high energy one around this energy. The spectra calculated by the codes have not been examined using experimental data. In shielding experiments using 120 GeV hadron beam, experimental data shows systematic differences from calculations. Hagiwara et al. have measured leakage neutron spectra behind iron and concrete shield from 120 GeV proton on target at anti-proton target station in Fermilab by using Bonner Spheres with unfolding technique. In CERN, Nakao et al reported experimental results of neutron spectra behind iron and concrete wall from 120 GeV/c proton and pion mixed beam on copper by using NE213 liquid scintillators with unfolding technique. Both of the results reported systematic discrepancies between experimental and calculation results. Therefore, experimental data are highly required to verify neutron production part of calculations. In this study, we developed an experimental method to measure neutron energy spectrum for 120 GeV proton on target. The neutron energy was determined using time-of-flight technique. We used the Fermilab Test Beam Facility (FTBF) in Fermilab that provided 120 GeV proton beam with intensity of 2 x 10{sup 5}/4 sec in every minute. The point of this study was determination of experimental configuration to satisfy enough statistic and energy resolution of neutrons.

  6. An investigation of the role of water on retrograde/condensation reactions and enhanced liquefaction yields

    SciTech Connect

    Miknis, F.P.

    1993-04-01

    Changes in coal structure that may occur during coal drying will be measured in order to determine the effects of coal drying on its reactivity toward liquefaction. Different methods for coal drying will be investigated to determine if drying can be accomplished without destroying coal reactivity toward liquefaction, thereby making coal drying a relatively economical and efficient method for coal pretreatment. Coal drying methods will include conventional thermal drying, microwave drying and chemical drying at low temperature. State-of-the-art solid-state nuclear magnetic resonance (NMR) techniques using combined rotation and multiple pulse spectroscopy (CRAMPS) and cross polarization with magic-angle spinning (CP/MAS) will be employed: (1) to measures changes in coal structure brought about by the different methods of drying and by low temperature oxidation, and (2) to obtain direct measurements of changes in the aromatic hydrogen-to-carbon ratio of the solid/semisolid material formed or remaining during pretreatment and the initial stages of liquefaction. The objectives for this quarter were to begin coal drying experiments using thermal, microwave, and chemical methods, and to begin coal liquefaction experiments on the dried coals. Three additional coal samples have been acquired. These are a Black Thunder Mine coal acquired from Arco Coal Co, and a Texas subC and Illinois No. 6 hvC acquired from the DOE coal sample bank at Penn State. The samples are listed as DECS-1 and DECS-2, respectively in the PSU sample bank. The ultimate and proximate analyses for all the samples are given in Table 1. Work on each of the subtasks is described in separate paragraphs.

  7. Chemical insights, explicit chemistry and yields of secondary organic aerosol from methylglyoxal and glyoxal

    NASA Astrophysics Data System (ADS)

    Lim, Y. B.; Tan, Y.; Turpin, B. J.

    2013-02-01

    Atmospherically abundant, volatile water soluble organic compounds formed through gas phase chemistry (e.g., glyoxal (C2), methylglyoxal (C3) and acetic acid) have great potential to form secondary organic aerosol (SOA) via aqueous chemistry in clouds, fogs and wet aerosols. This paper (1) provides chemical insights into aqueous-phase OH radical-initiated reactions leading to SOA formation from methylglyoxal and (2) uses this and a previously published glyoxal mechanism (Lim et al., 2010) to provide SOA yields for use in chemical transport models. Detailed reaction mechanisms including peroxy radical chemistry and a full kinetic model for aqueous photochemistry of acetic acid and methylglyoxal are developed and validated by comparing simulations with the experimental results from previous studies (Tan et al., 2010, 2012). This new methylglyoxal model is then combined with the previous glyoxal model (Lim et al., 2010), and is used to simulate the profiles of products and to estimate SOA yields. At cloud relevant concentrations (∼ 10-6-∼ 10-3 M; Munger et al., 1995) of glyoxal and methylglyoxal, the major photooxidation products are oxalic acid and pyruvic acid, and simulated SOA yields (by mass) are ∼ 120% for glyoxal and ∼ 80% for methylglyoxal. Oligomerization of unreacted aldehydes during droplet evaporation could enhance yields. In wet aerosols, where total dissolved organics are present at much higher concentrations (∼ 10 M), the major products are oligomers formed via organic radical-radical reactions, and simulated SOA yields (by mass) are ∼ 90% for both glyoxal and methylglyoxal.

  8. Enhancing chemical reactions

    DOEpatents

    Morrey, John R.

    1978-01-01

    Methods of enhancing selected chemical reactions. The population of a selected high vibrational energy state of a reactant molecule is increased substantially above its population at thermal equilibrium by directing onto the molecule a beam of radiant energy from a laser having a combination of frequency and intensity selected to pump the selected energy state, and the reaction is carried out with the temperature, pressure, and concentrations of reactants maintained at a combination of values selected to optimize the reaction in preference to thermal degradation by transforming the absorbed energy into translational motion. The reaction temperature is selected to optimize the reaction. Typically a laser and a frequency doubler emit radiant energy at frequencies of .nu. and 2.nu. into an optical dye within an optical cavity capable of being tuned to a wanted frequency .delta. or a parametric oscillator comprising a non-centrosymmetric crystal having two indices of refraction, to emit radiant energy at the frequencies of .nu., 2.nu., and .delta. (and, with a parametric oscillator, also at 2.nu.-.delta.). Each unwanted frequency is filtered out, and each desired frequency is focused to the desired radiation flux within a reaction chamber and is reflected repeatedly through the chamber while reactants are fed into the chamber and reaction products are removed therefrom.

  9. User's appraisal of yield model evaluation criteria

    NASA Technical Reports Server (NTRS)

    Warren, F. B. (Principal Investigator)

    1982-01-01

    The five major potential USDA users of AgRISTAR crop yield forecast models rated the Yield Model Development (YMD) project Test and Evaluation Criteria by the importance placed on them. These users were agreed that the "TIMELINES" and "RELIABILITY" of the forecast yields would be of major importance in determining if a proposed yield model was worthy of adoption. Although there was considerable difference of opinion as to the relative importance of the other criteria, "COST", "OBJECTIVITY", "ADEQUACY", AND "MEASURES OF ACCURACY" generally were felt to be more important that "SIMPLICITY" and "CONSISTENCY WITH SCIENTIFIC KNOWLEDGE". However, some of the comments which accompanied the ratings did indicate that several of the definitions and descriptions of the criteria were confusing.

  10. Yields of US and Soviet nuclear tests

    SciTech Connect

    Evernden, J.F.; Marsh, G.E.

    1987-08-01

    Failure to account properly for geological and seismological differences between the US and Soviet test sites has led to overestimates of the yields of Soviet tests and to incorrect claims of Soviet cheating on the treaty limit of 150 kilotons.

  11. LACIE: Wheat yield models for the USSR

    NASA Technical Reports Server (NTRS)

    Sakamoto, C. M.; Leduc, S. K.

    1977-01-01

    A quantitative model determining the relationship between weather conditions and wheat yield in the U.S.S.R. was studied to provide early reliable forecasts on the size of the U.S.S.R. wheat harvest. Separate models are developed for spring wheat and for winter. Differences in yield potential and responses to stress conditions and cultural improvements necessitate models for each class.

  12. Acid hydrolysis of cellulose to yield glucose

    DOEpatents

    Tsao, George T.; Ladisch, Michael R.; Bose, Arindam

    1979-01-01

    A process to yield glucose from cellulose through acid hydrolysis. Cellulose is recovered from cellulosic materials, preferably by pretreating the cellulosic materials by dissolving the cellulosic materials in Cadoxen or a chelating metal caustic swelling solvent and then precipitating the cellulose therefrom. Hydrolysis is accomplished using an acid, preferably dilute sulfuric acid, and the glucose is yielded substantially without side products. Lignin may be removed either before or after hydrolysis.

  13. Reaction dynamics and photochemistry of divalent systems

    SciTech Connect

    Davis, H.F.

    1992-05-01

    Results are presented of molecular beam studies of bimolecular and unimolecular reactions of Ba. Chapter 1 discusses the reaction Ba + NO{sub 2}. Formation of the dominant BaO({sup 1}{Sigma}) + NO products resulted primarily from decay of long-lived Ba{sup +}NO{sub 2}{sup {minus}} collision complexes. Secondary mechanisms led to formation of forward scattered, internally excited BaO, and BaNO + O. D{sub o}(Ba-NO) = 65{plus_minus}20 kcal/mol. Reactions of ground state and electronically excited Ba with water and alcohols are examined in Chapter 2. Reaction of Ba({sup 1}S) + H{sup 2}O led to BaO + H{sub 2}, whereas excited state Ba({sup 1}D) + H{sub 2}O reacted to form BaOH + H. Collisions between Ba and CH{sub 3}OH led to BaOCH{sub 3} + H. Radical channels involve H-atom migration and are promoted by excitation of the incident Ba atom. In Chapter 3, reactions of Ba({sup 1}S) with ClO{sub 2}2 and O{sub 3} are discussed. Again, direct and complex mechanisms were observed. Formation of BaCl + O{sub 2} from decomposition of Ba{sup +}ClO{sub 2}{sup {minus}} accounted for 10% of total reaction crass section. Although Ba + O{sub 3} {yields} BaO + 0{sub 2} occurs primarily by direct reaction mechanisms, the secondary channel Ba + 0{sub 3} {yields} BaO{sub 2} + 0 involved decay of long lived Ba{sup +}O{sub 3}{sup {minus}} intermediates. D{sub o}(Ba{minus}O{sub 2}) = 120 {plus_minus}20 kcal/mol. Photodissociation dynamics of NO{sub 3} is explored in chapter 4. Visible excitation leads to formation of NO + 0{sub 2} and NO{sub 2} + O. Wavelength dependence of branching ratios is investigated. D{sub o}(O-NO{sub 2}) = 48.55 kcal/mole ;and calculate {Delta}H{sub f}(NO{sub 3}) = 17.75 kcal/mole (298K). Chapter 5 discusses the photodissociation of OClO in a molecular beam. Although ClO({sup 2}II) + O({sup 3}P) is dominant, Cl({sup 2}P) + O{sub 2} also forms, with a max yield of 3.9{plus_minus}0.8% near 404nm.

  14. NEUTRONIC REACTION SYSTEM

    DOEpatents

    Wigner, E.P.

    1963-09-01

    A nuclear reactor system is described for breeding fissionable material, including a heat-exchange tank, a high- and a low-pressure chamber therein, heat- exchange tubes connecting these chambers, a solution of U/sup 233/ in heavy water in a reaction container within the tank, a slurry of thorium dioxide in heavy water in a second container surrounding the first container, an inlet conduit including a pump connecting the low pressure chamber to the reaction container, an outlet conduit connecting the high pressure chamber to the reaction container, and means of removing gaseous fission products released in both chambers. (AEC)

  15. In vitro metabolic engineering of hydrogen production at theoretical yield from sucrose.

    PubMed

    Myung, Suwan; Rollin, Joseph; You, Chun; Sun, Fangfang; Chandrayan, Sanjeev; Adams, Michael W W; Zhang, Y-H Percival

    2014-07-01

    Hydrogen is one of the most important industrial chemicals and will be arguably the best fuel in the future. Hydrogen production from less costly renewable sugars can provide affordable hydrogen, decrease reliance on fossil fuels, and achieve nearly zero net greenhouse gas emissions, but current chemical and biological means suffer from low hydrogen yields and/or severe reaction conditions. An in vitro synthetic enzymatic pathway comprised of 15 enzymes was designed to split water powered by sucrose to hydrogen. Hydrogen and carbon dioxide were spontaneously generated from sucrose or glucose and water mediated by enzyme cocktails containing up to 15 enzymes under mild reaction conditions (i.e. 37°C and atm). In a batch reaction, the hydrogen yield was 23.2mol of dihydrogen per mole of sucrose, i.e., 96.7% of the theoretical yield (i.e., 12 dihydrogen per hexose). In a fed-batch reaction, increasing substrate concentration led to 3.3-fold enhancement in reaction rate to 9.74mmol of H2/L/h. These proof-of-concept results suggest that catabolic water splitting powered by sugars catalyzed by enzyme cocktails could be an appealing green hydrogen production approach.

  16. Oxidation of dithiocarbamates to yield N-nitrosamines by water disinfection oxidants.

    PubMed

    Padhye, Lokesh P; Kim, Jae-Hong; Huang, Ching-Hua

    2013-02-01

    Two most commonly used dithiocarbamate (DTC) pesticides, dimethyldithiocarbamate (DMDTC) and diethyldithiocarbamate (DEDTC), were examined in this study to evaluate their potential to form nitrosamines when in contact with various water disinfection oxidants. Results show that DTCs can serve as nitrosamine precursors, by release of secondary amines through hydrolysis or through reactions with oxidants. The reactions of DTCs with monochloramine and ozone were found to be particularly problematic in the risk of generating nitrosamines, though all four tested oxidants, including free chlorine and chlorine dioxide, formed nitrosamines. NDEA yield from DEDTC was lower, by different degrees, than NDMA yield from DMDTC for all four oxidants, which was attributed to the steric hindrance associated with bulkier reaction intermediate that are more difficult to be further oxidized to form nitrosamine. The yield of nitrosamines increased with the oxidant dosage for both monochloramination and ozonation of DTCs. Results for nitrosamine formation from DTCs at varying pH were found to be consistent with the pH trend of nitrosamine formation from ozonation and monochloramination of secondary amines. Kinetic study results and identification and quantification of reaction products suggest that the DTCs were not significant direct precursors of nitrosamines during monochloramination or ozonation, but rather nitrosamines formed were primarily from reaction of oxidants with the amine which may be generated either through hydrolysis or through oxidation of DTCs. PMID:23176828

  17. Low-energy {omega} ({yields}{pi}{sup 0}{gamma}) meson photoproduction in the nucleus

    SciTech Connect

    Das, Swapan

    2011-06-15

    The {pi}{sup 0{gamma}} invariant mass distribution spectra in the ({gamma},{pi}{sup 0{gamma}}) reaction were measured by the TAPS/ELSA Collaboration to look for the hadron parameters of the {omega} meson in the Nb nucleus. We study the mechanism for this reaction, where we consider that the elementary reaction in the Nb nucleus proceeds as {gamma}N{yields}{omega}N;{omega}{yields}{pi}{sup 0}{gamma}. The {omega}-meson photoproduction amplitude for this reaction is extracted from the measured four-momentum transfer distribution in the {gamma}p{yields}{omega}p reaction. The propagation of the {omega} meson and the distorted wave function for the {pi}{sup 0} meson in the final state are described by the eikonal form. The {omega} and {pi}{sup 0} mesons' nucleus optical potentials, appearing in the {omega} meson propagator and {pi}{sup 0} meson distorted wave function respectively, are estimated using the t{rho} approximation. The effects of pair correlation and color transparency are also studied. The calculated results do not show medium modification for the {omega} meson produced in the nucleus for momentum greater than 200 MeV. It occurs because the {omega} meson predominantly decays outside the nucleus. The dependence of the cross section on the final-state interaction is also investigated. The broadening of the {omega}-meson mass distribution spectra is shown to occur due to the large resolution width associated with the detector used in the experiment.

  18. Quantum yield for carbon monoxide production in the 248 nm photodissociation of carbonyl sulfide (OCS)

    NASA Technical Reports Server (NTRS)

    Zhao, Z.; Stickel, R. E.; Wine, P. H.

    1995-01-01

    Tunable diode laser absorption spectroscopy has been coupled with excimer laser flash photolysis to measure the quantum yield for CO production from 248 nm photodissociation of carbonyl sulfide (OCS) relative to the well-known quantum yield for CO production from 248 nm photolysis of phosgene (Cl2CO2). The temporal resolution of the experiments was sufficient to distinguish CO formed directly by photodissociation from that formed by subsequent S((sup 3)P(sub J)) reaction with OCS. Under the experimental conditions employed, CO formation via the fast S((sup 1)D(sub 2)) + OCS reaction was minimal. Measurements at 297K and total pressures from 4 to 100 Torr N2 + N2O show the CO yield to be greater than 0.95 and most likely unity. This result suggests that the contribution of OCS as a precursor to the lower stratospheric sulfate aerosol layer is somewhat larger than previously thought.

  19. Inclusive Sigma- photoproduction on the neutron via the reaction gamma n (p) ---> K+ Sigma- (p)

    SciTech Connect

    Jorn Langheinrich; Ana Lima; Barry Berman

    2006-06-01

    The analysis described here is part of a comprehensive survey of the elementary strangeness photoproduction cross sections on the nucleon. The six elementary strangeness reactions are {gamma}n {yields} K{sup 0}{Lambda} and {gamma}p {yields} K{sup +}{Lambda} {gamma}n {yields} K{sup 0}{Sigma}{sup 0} and {gamma}p {yields} K{sup +}{Sigma}{sup 0} {gamma}n {yields} K{sup +}{Sigma}{sup -} and {gamma}p {yields} K{sup 0}{Sigma}|{sup +}

  20. Characterization of hot hydrogen-atom reactions by kinetic spectrography.

    NASA Technical Reports Server (NTRS)

    Tomalesky, R. E.; Sturm, J. E.

    1971-01-01

    The flash photolysis of hydrogen iodide in the presence of nitrous oxide, carbon dioxide, and water has been investigated by kinetic spectroscopy. Although the fraction of hydrogen iodide dissociated was very large, the only observable intermediate was imidogen. It was demonstrated that the rapid removal of imidogen and the apparent absence of hydroxyl radicals in each case is a result of the following two reactions, respectively: (1) NH + HI yields NH2 + I; and (2) OH + HI yields H2O + I.

  1. Yield Stress Effects on Mucus Plug Rupture

    NASA Astrophysics Data System (ADS)

    Hu, Yingying; Bian, Shiyao; Grotberg, John C.; Takayama, Shuichi; Grotberg, James B.

    2012-11-01

    Mucus plugs can obstruct airways, resulting in lost gas exchange and inflammation. Yield stress, one of the significant rheological properties of mucus, plays a significant role in plug rupture. We use carbopol 940 gels as mucus simulants to study dynamics of mucus plug rupture in experiments. Yield stress increases with gel concentration increasing (0.1% ~0.3%). The yield stress of the 0.2% gel is about 530 dyn/cm2, which can simulate normal mucus. A 2D PDMS channel is used to simulate a collapsed airway of the 12th generation in a human lung. Plug rupture is driven by a pressure drop of 1.6 ×104 ~ 2.0 ×104 dyn/cm2. Initial plug length varies from half to two times the half channel width. A micro-PIV technique is used to acquire velocity fields during rupture, from which wall shear stress is derived. Plug shortening velocity increases with the pressure drop, but decreases with yield stress or the initial plug length. Wall shear stress increases with yield stress, which indicates more potential damage may occur to epithelial cells when pathologic mucus has a high yield stress. Near the rupture moment, a wall shear stress peak appears at the front of the film deposited by the plug during rupture. This work is supported by NIH: HL84370 and HL85156.

  2. Study of the {pi}(1800) resonance in diffractive reactions

    SciTech Connect

    Bernikov, E.B.; Bityukov, S.I.; Borisov, G.V.; Gouz, Yu.P.; Dorofeev, V.A.; Dzheladin, R.I.; Ekimov, A.V.; Ivanyushenkov, Yu.M.; Kachaev, I.A.; Karyukhin, A.N.

    1994-09-01

    The results of the VES experiment obtained in 1992 and 1993 are presented. The PWA has been performed for the reactions {pi}{sup {minus}}N {yields} {pi}{sup +}{pi}{sup {minus}}{pi}{sup {minus}}N and {pi}{sup {minus}}N {yields} K{sup +}K{sup {minus}}{pi}{sup {minus}}N. The resonance at m = 1.8 GeV with J{sup PC} = 0{sup {minus}+} is clearly seen in both reactions. 15 refs., 6 figs.

  3. Effect of odd hydrogen on ozone depletion by chlorine reactions

    NASA Technical Reports Server (NTRS)

    Donahue, T. M.; Cicerone, R. J.; Liu, S. C.; Chameides, W. L.

    1976-01-01

    The present paper discusses how the shape of the ozone layer changes under the influence of injected ClX for several choices of two key HOx reaction rates. The two HOx reactions are: OH + HO2 yields H2O + O2 and O + HO2 yields OH + O2. Results of calculations are presented which show that the two reaction rates determine the stratospheric concentrations of OH and HO2, and that these concentrations regulate the amount by which the stratospheric ozone column can be reduced due to injections of odd chlorine. It is concluded that the amount of ozone reduction by a given mixing ratio of ClX will remain very uncertain until the significance of several possible feedback effects involving HOx in a chlorine-polluted atmosphere are determined and measurements of the reaction rates and HOx concentrations are made at the relevant temperatures.

  4. Studies of multi-ion-fluid yield anomaly in shock-driven implosions

    NASA Astrophysics Data System (ADS)

    Rinderknecht, H. G.; Rosenberg, M. J.; Li, C. K.; Zylstra, A. B.; Sio, H.; Gatu Johnson, M.; Frenje, J. A.; Séguin, F. H.; Petrasso, R. D.; Amendt, P. A.; Bellei, C.; Wilks, S. C.; Zimmerman, G.; Hoffman, N. M.; Kagan, G.; Molvig, K.; Glebov, V. Yu.; Stoeckl, C.; Marshall, F. J.; Seka, W.; Delettrez, J. A.; Sangster, T. C.; Betti, R.; Goncharov, V. N.; Meyerhofer, D. D.

    2014-10-01

    A. NIKROO, GA - Anomalously reduced yields relative to hydrodynamically calculated values have been observed for mixtures of D:3He compared to pure D2 gas-filled implosions in a series of shock-driven implosions at OMEGA. An extensive suite of measurements including temporal and spatial measurements of both the DD- and D3He-fusion reactions were obtained to identify the origin and physics behind this anomalous yield reduction. Measured spectral linewidths of fusion products suggest that the D ions are not thermalized to 3He during the burn, contributing to the reduced yield. The hypothesis that ion-species separation due to diffusive processes contributes to the observed yield reduction is explored using hydrodynamic simulations incorporating ion diffusion. Recent observations by Rosenberg et al. of a yield reduction with increased ion-ion mean free path do not explain the observed anomalous yield trend. Future work that will directly probe species separation with high-precision relative fusion reaction rate measurements between DD-neutrons and D3He-protons using the DualPTD instrument is discussed. This work was supported in part by the U.S. DOE, NLUF, LLE, and LLNL.

  5. Reactor for exothermic reactions

    DOEpatents

    Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.

    1993-03-02

    A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  6. Autocatalysis in reaction networks.

    PubMed

    Deshpande, Abhishek; Gopalkrishnan, Manoj

    2014-10-01

    The persistence conjecture is a long-standing open problem in chemical reaction network theory. It concerns the behavior of solutions to coupled ODE systems that arise from applying mass-action kinetics to a network of chemical reactions. The idea is that if all reactions are reversible in a weak sense, then no species can go extinct. A notion that has been found useful in thinking about persistence is that of "critical siphon." We explore the combinatorics of critical siphons, with a view toward the persistence conjecture. We introduce the notions of "drainable" and "self-replicable" (or autocatalytic) siphons. We show that: Every minimal critical siphon is either drainable or self-replicable; reaction networks without drainable siphons are persistent; and nonautocatalytic weakly reversible networks are persistent. Our results clarify that the difficulties in proving the persistence conjecture are essentially due to competition between drainable and self-replicable siphons. PMID:25245394

  7. Contact reactions to food.

    PubMed

    Killig, Claudia; Werfel, Thomas

    2008-05-01

    Cutaneous adverse reactions to foods, spices, and food additives can occur both in occupational and nonoccupational settings in those who grow, handle, prepare, or cook food. Because spices are also utilized in cosmetics and perfumes, other exposures are encountered that can result in adverse cutaneous reactions. This article describes the reaction patterns that can occur upon contact with foods, including irritant contact dermatitis and allergic contact dermatitis. The ingestion of culprit foods by sensitized individuals can provoke a generalized eczematous rash, referred to as systemic contact dermatitis. Other contact reactions to food include contact urticaria and protein contact dermatitis provoked by high-molecular-weight food proteins often encountered in patients with atopic dermatitis. Phototoxic and photoallergic contact dermatitis are also considered.

  8. Reactor for exothermic reactions

    DOEpatents

    Smith, Jr., Lawrence A.; Hearn, Dennis; Jones, Jr., Edward M.

    1993-01-01

    A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120.degree. to 300.degree. F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  9. Autocatalysis in reaction networks.

    PubMed

    Deshpande, Abhishek; Gopalkrishnan, Manoj

    2014-10-01

    The persistence conjecture is a long-standing open problem in chemical reaction network theory. It concerns the behavior of solutions to coupled ODE systems that arise from applying mass-action kinetics to a network of chemical reactions. The idea is that if all reactions are reversible in a weak sense, then no species can go extinct. A notion that has been found useful in thinking about persistence is that of "critical siphon." We explore the combinatorics of critical siphons, with a view toward the persistence conjecture. We introduce the notions of "drainable" and "self-replicable" (or autocatalytic) siphons. We show that: Every minimal critical siphon is either drainable or self-replicable; reaction networks without drainable siphons are persistent; and nonautocatalytic weakly reversible networks are persistent. Our results clarify that the difficulties in proving the persistence conjecture are essentially due to competition between drainable and self-replicable siphons.

  10. An Illuminating Reaction.

    ERIC Educational Resources Information Center

    Matthews, Catherine E.

    1996-01-01

    Describes the use of carbide lights as an excellent mechanism for introducing or reviewing many basic chemistry concepts including elements and compounds, endothermic and exothermic reactions, physical and chemical changes, and balancing chemical equations. (JRH)

  11. Iodine Clock Reaction.

    ERIC Educational Resources Information Center

    Mitchell, Richard S.

    1996-01-01

    Describes a combination of solutions that can be used in the study of kinetics using the iodine clock reaction. The combination slows down degradation of the prepared solutions and can be used successfully for several weeks. (JRH)

  12. Response reactions: equilibrium coupling.

    PubMed

    Hoffmann, Eufrozina A; Nagypal, Istvan

    2006-06-01

    It is pointed out and illustrated in the present paper that if a homogeneous multiple equilibrium system containing k components and q species is composed of the reactants actually taken and their reactions contain only k + 1 species, then we have a unique representation with (q - k) stoichiometrically independent reactions (SIRs). We define these as coupling reactions. All the other possible combinations with k + 1 species are the coupled reactions that are in equilibrium when the (q - k) SIRs are in equilibrium. The response of the equilibrium state for perturbation is determined by the coupling and coupled equilibria. Depending on the circumstances and the actual thermodynamic data, the effect of coupled equilibria may overtake the effect of the coupling ones, leading to phenomena that are in apparent contradiction with Le Chatelier's principle. PMID:16722770

  13. Translated chemical reaction networks.

    PubMed

    Johnston, Matthew D

    2014-05-01

    Many biochemical and industrial applications involve complicated networks of simultaneously occurring chemical reactions. Under the assumption of mass action kinetics, the dynamics of these chemical reaction networks are governed by systems of polynomial ordinary differential equations. The steady states of these mass action systems have been analyzed via a variety of techniques, including stoichiometric network analysis, deficiency theory, and algebraic techniques (e.g., Gröbner bases). In this paper, we present a novel method for characterizing the steady states of mass action systems. Our method explicitly links a network's capacity to permit a particular class of steady states, called toric steady states, to topological properties of a generalized network called a translated chemical reaction network. These networks share their reaction vectors with their source network but are permitted to have different complex stoichiometries and different network topologies. We apply the results to examples drawn from the biochemical literature.

  14. Untoward penicillin reactions

    PubMed Central

    Guthe, T.; Idsöe, O.; Willcox, R. R.

    1958-01-01

    The literature on untoward reactions following the administration of penicillin is reviewed. These reactions, including a certain number of deaths which have been reported, are of particular interest to health administrations and to WHO in view of the large-scale programmes for controlling the treponematoses which are now under way—programmes affecting millions of people in many parts of the world. The most serious problems are anaphylactic sensitivity phenomena and superinfection or cross-infection with penicillin-resistant organisms, and the reactions involved range in intensity from the mildest to the fatal; the incidence of the latter is estimated at 0.1-0.3 per million injections. The authors point out that with increasing use of penicillin, more persons are likely to become sensitized and the number of reactions can therefore be expected to rise. The best prevention against such an increase is the restriction of the unnecessary use of penicillin. PMID:13596877

  15. Chemisorption And Precipitation Reactions

    EPA Science Inventory

    The transport and bioavailability of chemical components within soils is, in part, controlled by partitioning between solids and solution. General terms used to describe these partitioning reactions include chemisorption and precipitation. Chemisorption is inclusive of the suit...

  16. Oxygen evolution reaction catalysis

    DOEpatents

    Haber, Joel A.; Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Jones, Ryan J.; Guevarra, Dan W.; Shinde, Aniketa A.

    2016-09-06

    An Oxygen Evolution Reaction (OER) catalyst includes a metal oxide that includes oxygen, cerium, and one or more second metals. In some instances, the cerium is 10 to 80 molar % of the metals in the metal oxide and/or the catalyst includes two or more second metals. The OER catalyst can be included in or on an electrode. The electrode can be arranged in an oxygen evolution system such that the Oxygen Evolution Reaction occurs at the electrode.

  17. Benchmark calculations of thermal reaction rates. I - Quantal scattering theory

    NASA Technical Reports Server (NTRS)

    Chatfield, David C.; Truhlar, Donald G.; Schwenke, David W.

    1991-01-01

    The thermal rate coefficient for the prototype reaction H + H2 yields H2 + H with zero total angular momentum is calculated by summing, averaging, and numerically integrating state-to-state reaction probabilities calculated by time-independent quantum-mechanical scattering theory. The results are very carefully converged with respect to all numerical parameters in order to provide high-precision benchmark results for confirming the accuracy of new methods and testing their efficiency.

  18. Diagnosing ignition with DT reaction history

    SciTech Connect

    Wilson, D. C.; Bradley, P. A.; Herrmann, H. W.; Cerjan, C. J.; Salmonson, J. D.; Spears, B. K.; Hatchet, S. P. II; Glebov, V. Yu.

    2008-10-15

    A full range DT reaction history of an ignition capsule, from 10{sup 9} to 10{sup 20} neutrons/ns, offers the opportunity to diagnose fuel conditions hundreds of picoseconds before and during burn. The burn history begins with a sharp rise when the first shock reaches the center of the capsule. The level of this jump reflects the combined shock strength and the adiabat of DT fuel. Changes to the four laser pulses driving the capsule implosion which are large enough to degrade the yield make measurable changes to the reaction history. Low mode asymmetries grow during convergence but change the reaction history during the final {approx}100 ps. High mode asymmetry or turbulence mixing affects only the reaction history within {approx}50 ps of peak burn rate. A capsule with a tritium fuel layer containing a small amount of deuterium ({approx}1%) creates a reaction history similar to the ignition capsule, but without the final ignition burn. A combination of gas Cerenkov detectors and the neutron temporal diagnostic could be capable of diagnosing the full history of ignition and tritium rich capsules.

  19. Chemical reactions confined within carbon nanotubes.

    PubMed

    Miners, Scott A; Rance, Graham A; Khlobystov, Andrei N

    2016-08-22

    In this critical review, we survey the wide range of chemical reactions that have been confined within carbon nanotubes, particularly emphasising how the pairwise interactions between the catalysts, reactants, transition states and products of a particular molecular transformation with the host nanotube can be used to control the yields and distributions of products of chemical reactions. We demonstrate that nanoscale confinement within carbon nanotubes enables the control of catalyst activity, morphology and stability, influences the local concentration of reactants and products thus affecting equilibria, rates and selectivity, pre-arranges the reactants for desired reactions and alters the relative stability of isomeric products. We critically evaluate the relative advantages and disadvantages of the confinement of chemical reactions inside carbon nanotubes from a chemical perspective and describe how further developments in the controlled synthesis of carbon nanotubes and the incorporation of multifunctionality are essential for the development of this ever-expanding field, ultimately leading to the effective control of the pathways of chemical reactions through the rational design of multi-functional carbon nanoreactors.

  20. Cosmetic tattoo pigment reaction.

    PubMed

    Greywal, Tanya; Cohen, Philip R

    2016-01-01

    BackgroundCutaneous reactions to tattoos are most commonly granulomatous or lichenoid.PurposeWe describe a woman who developed a lymphocytic reaction following a cosmetic tattoo procedure with black dye. The reaction occurred not only at the site of the tattoos (eyebrows and eyelash lines), but also in non-tattooed skin (bilateral malar cheeks).Methods and MaterialsWe reviewed PubMed for the following terms: cosmetic, dye, granuloma, granulomatous, lichenoid, lymphocytic, perivascular, pigment, pseudolymphoma, reaction, and tattoo. We also reviewed papers containing these terms and their references.ResultsHistopathologic examination of the left eyebrow and left cheek punch biopsies showed predominantly a perivascular lymphocytic reaction secondary to exogenous tattoo pigment.ConclusionsPerivascular lymphocytic reaction is an uncommonly described complication of tattooing. Our patient had an atypical presentation since she had no prior tattoos, became symptomatic only a few days after the procedure, reacted to black dye, and involved skin both within and outside the confines of the tattoos. Her symptoms and lesions resolved after treatment with systemic and topical corticosteroids and oral antihistamines. PMID:27617722

  1. Yield strength of molybdenum at high pressures.

    PubMed

    Jing, Qiumin; Bi, Yan; Wu, Qiang; Jing, Fuqian; Wang, Zhigang; Xu, Jian; Jiang, Sheng

    2007-07-01

    In the diamond anvil cell technology, the pressure gradient approach is one of the three major methods in determining the yield strength for various materials at high pressures. In the present work, by in situ measuring the thickness of the sample foil, we have improved the traditional technique in this method. Based on this modification, the yield strength of molybdenum at pressures has been measured. Our main experimental conclusions are as follows: (1) The measured yield strength data for three samples with different initial thickness (100, 250, and 500 microm) are in good agreement above a peak pressure of 10 GPa. (2) The measured yield strength can be fitted into a linear formula Y=0.48(+/-0.19)+0.14(+/-0.01)P (Y and P denote the yield strength and local pressure, respectively, both of them are in gigapascals) in the local pressure range of 8-21 GPa. This result is in good agreement with both Y=0.46+0.13P determined in the pressure range of 5-24 GPa measured by the radial x-ray diffraction technique and the previous shock wave data below 10 GPa. (3) The zero-pressure yield strength of Mo is 0.5 GPa when we extrapolate our experimental data into the ambient pressure. It is close to the tensile strength of 0.7 GPa determined by Bridgman [Phys. Rev. 48, 825 (1934)] previously. The modified method described in this article therefore provides the confidence in determination of the yield strength at high pressures. PMID:17672772

  2. Role of Yield Stress in Magma Rheology

    NASA Astrophysics Data System (ADS)

    Kurokawa, A.; Di Giuseppe, E.; Davaille, A.; Kurita, K.

    2012-04-01

    Magmas are essentially multiphase material composed of solid crystals, gaseous bubbles and silicate liquids. They exhibit various types of drastic change in rheology with variation of mutual volumetric fractions of the components. The nature of this variable rheology is a key factor in controlling dynamics of flowing magma through a conduit. Particularly the existence of yield stress in flowing magma is expected to control the wall friction and formation of density waves. As the volumetric fraction of solid phase increases yield stress emerges above the critical fraction. Several previous studies have been conducted to clarify this critical value of magmatic fluid both in numerical simulations and laboratory experiments ([Lejeune and Pascal, 1995], [Saar and Manga 2001], [Ishibashi and Sato 2010]). The obtained values range from 13.3 to 40 vol%, which display wide variation and associated change in rheology has not been clarified well. In this presentation we report physical mechanism of emergence of yield stress in suspension as well as the associated change in the rheology based on laboratory experiments using analog material. We utilized thermogel aqueous suspension as an analog material of multiphase magma. Thermogel, which is a commercial name for poly(N-isopropyl acrylamide) (PNIPAM) undergoes volumetric phase change at the temperature around 35C:below this temperature the gel phase absorbs water and swells while below this it expels water and its volume shrinks. Because of this the volumetric fraction of gel phase systematically changes with temperature and the concentration of gel powder. The viscosity measured at lower stress drastically decreases across this phase change with increasing temperature while the viscosity at higher stress does not exhibit large change across the transition. We have performed a series of rheological measurements focusing on the emergence of yield stress on this aqueous suspension. Since the definition of yield stress is not

  3. Production of heavy actinides in incomplete fusion reactions

    NASA Astrophysics Data System (ADS)

    Antonenko, N. V.; Cherepanov, E. A.; Iljinov, A. S.; Mebel, M. V.

    1994-10-01

    We present preliminary results of calculations by the phenomenological model of the estimated yield of some heavy actinide isotopes. It is assumed that these isotopes are produced as a result of multinucleon transfers followed by neutrons and charged particle emission A.S. Iljinov and E.A. Cherepanov (1980). The yield P(sub Z, N)(E*) of primary excited actinides is found using the model of N.V. Antonenko and R.V. Jolos (1991). Absolute cross-sections for different binary reaction channels are obtained by summing the cross-sections for all subchannels with an appreciable yield according to J. Wilczynski et al. (1980).

  4. Genes that influence yield in tomato

    PubMed Central

    Ariizumi, Tohru; Shinozaki, Yoshihito; Ezura, Hiroshi

    2013-01-01

    Yield is the most important breeding trait of crops. For fruit-bearing plants such as Solanum lycopersicum (tomato), fruit formation directly affects yield. The final fruit size depends on the number and volume of cell layers in the pericarp of the fruit, which is determined by the degree of cell division and expansion in the fertilized ovaries. Thus, fruit yield in tomato is predominantly determined by the efficiency of fruit set and the final cell number and size of the fruits. Through domestication, tomato fruit yield has been markedly increased as a result of mutations associated with fruit size and genetic studies have identified the genes that influence the cell cycle, carpel number and fruit set. Additionally, several lines of evidence have demonstrated that plant hormones control fruit set and size through the delicate regulation of genes that trigger physiological responses associated with fruit expansion. In this review, we introduce the key genes involved in tomato breeding and describe how they affect the physiological processes that contribute to tomato yield. PMID:23641176

  5. Genes that influence yield in tomato.

    PubMed

    Ariizumi, Tohru; Shinozaki, Yoshihito; Ezura, Hiroshi

    2013-03-01

    Yield is the most important breeding trait of crops. For fruit-bearing plants such as Solanum lycopersicum (tomato), fruit formation directly affects yield. The final fruit size depends on the number and volume of cell layers in the pericarp of the fruit, which is determined by the degree of cell division and expansion in the fertilized ovaries. Thus, fruit yield in tomato is predominantly determined by the efficiency of fruit set and the final cell number and size of the fruits. Through domestication, tomato fruit yield has been markedly increased as a result of mutations associated with fruit size and genetic studies have identified the genes that influence the cell cycle, carpel number and fruit set. Additionally, several lines of evidence have demonstrated that plant hormones control fruit set and size through the delicate regulation of genes that trigger physiological responses associated with fruit expansion. In this review, we introduce the key genes involved in tomato breeding and describe how they affect the physiological processes that contribute to tomato yield. PMID:23641176

  6. Defect reduction methodologies: pellicle yield improvement

    NASA Astrophysics Data System (ADS)

    Daugherty, Susan V.

    1993-03-01

    The pelliclization process at Intel during the first half of 1991 was not in control. Weekly process yield was trending downward, and the range of the weekly yield during that time frame was greater than 40%. A focused effort in process yield improvement, that started in the second half of 1991 and continued through 1992, brought process yield up an average of 20%, and reduced the range of the process yield to 20 - 25%. This paper discusses the continuous process improvement guidelines that are being followed to reduce variations/defects in the pelliclization process. Teamwork tools, such as Pareto charts, fishbone diagrams, and simple experiments, prioritize efforts and help find the root cause of the defects. Best known methods (BKM), monitors, PMs, and excursion control aid in the elimination and prevention of defects. Monitoring progress and repeating the whole procedure are the final two guidelines. The benefits from the use of the continuous process improvement guidelines and tools can be seen in examples of the actions, impacts, and results for the last half of 1991 and the first half of 1992.

  7. Remarkable influence of microwave heating on Morita-baylis-Hillman reaction in PEG-200

    PubMed Central

    2012-01-01

    Background Morita Baylis Hillman (MBH) reaction is used to introduce carbon-carbon or carbon-heteroatom bond in a molecule. The major drawback of this reaction is the relatively low product yield and long reaction time. Though notable changes have been made to improve the reaction rate and yield of MBH adduct by various groups, a reliable synthetic procedure under ambient temperature in presence moisture and air is remain unsolved. Continuing the effort to improve the rate and yield, we report here an eco-friendly and cost-effective method to generate MBH adducts. Non-volatile polyethylene glycol-200 is used as reusable solvents and the reaction was carried out under the influence of microwave energy. Results Microwave irradiation have a remarkable influence on PEG suspended 4-Diazabicyclo [2.2.2] octane (DABCO) catalysed MBH reaction between aldehydes and ethyl acrylate. Molecular weight of the PEG is found to have a significant influence on the reaction yield. PEG-200 was the most efficient solvent and in combination with DABCO, the medium can be recycled upto three more runs. This reaction condition is successfully applied to obtain MBH adduct of five different aldehydes in very short time with excellent yield and the required catalyst concentration was very low compared to standard MBH reaction. Since the MBH adduct is an important reactive intermediates for many complex organic syntheses, this approach can be successfully utilised as an alternative to existing reaction conditions. Conclusion A new method was developed to improve the reaction rate and yield of MBH reaction The PEG 200-DABCO combination provides a sustainable, non-volatile, recyclable and environment friendly solvent medium to produce MBH adducts. This medium in combination with microwave energy proved to be very effective to introduce a new carbon-carbon or a carbon-heteroatom bond in a molecule. PMID:22494595

  8. Effect of modifying agents on the hydrophobicity and yield of zinc borate synthesized by zinc oxide

    NASA Astrophysics Data System (ADS)

    Acarali, Nil Baran; Bardakci, Melek; Tugrul, Nurcan; Derun, Emek Moroydor; Piskin, Sabriye

    2013-06-01

    The aim of this study was to synthesize zinc borate using zinc oxide, reference boric acid, and reference zinc borate (reference ZB) as the seed, and to investigate the effects of modifying agents and reaction parameters on the hydrophobicity and yield, respectively. The reaction parameters include reaction time (1-5 h), reactant ratio (H3BO3/ZnO by mass: 2-5), seed ratio (seed crystal/(H3BO3+ZnO) by mass: 0-2wt%), reaction temperature (50-120°C), cooling temperature (10-80°C), and stirring rate (400-700 r/min); the modifying agents involve propylene glycol (PG, 0-6wt%), kerosene (1wt%-6wt%), and oleic acid (OA, 1wt%-6wt%) with solvents (isopropyl alcohol (IPA), ethanol, and methanol). The results of reaction yield obtained from either magnetically or mechanically stirred systems were compared. Zinc borate produced was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and contact angle tests to identify the hydrophobicity. In conclusion, zinc borate is synthesized successfully under the optimized reaction conditions, and the different modifying agents with various solvents affect the hydrophobicity of zinc borate.

  9. Neutron yield enhancement in laser-induced deuterium-deuterium fusion using a novel shaped target.

    PubMed

    Zhao, J R; Zhang, X P; Yuan, D W; Chen, L M; Li, Y T; Fu, C B; Rhee, Y J; Li, F; Zhu, B J; Li, Yan F; Liao, G Q; Zhang, K; Han, B; Liu, C; Huang, K; Ma, Y; Li, Yi F; Xiong, J; Huang, X G; Fu, S Z; Zhu, J Q; Zhao, G; Zhang, J

    2015-06-01

    Neutron yields have direct correlation with the energy of incident deuterons in experiments of laser deuterated target interaction [Roth et al., Phys. Rev. Lett. 110, 044802 (2013) and Higginson et al., Phys. Plasmas 18, 100703 (2011)], while deuterated plasma density is also an important parameter. Experiments at the Shenguang II laser facility have produced neutrons with energy of 2.45 MeV using d (d, n) He reaction. Deuterated foil target and K-shaped target were employed to study the influence of plasma density on neutron yields. Neutron yield generated by K-shaped target (nearly 10(6)) was two times higher than by foil target because the K-shaped target results in higher density plasma. Interferometry and multi hydro-dynamics simulation confirmed the importance of plasma density for enhancement of neutron yields.

  10. Neutron yield enhancement in laser-induced deuterium-deuterium fusion using a novel shaped target

    SciTech Connect

    Zhao, J. R.; Chen, L. M. Li, Y. T.; Li, F.; Zhu, B. J.; Li, Yan. F.; Liao, G. Q.; Huang, K.; Ma, Y.; Li, Yi. F.; Zhang, X. P.; Fu, C. B.; Yuan, D. W.; Zhang, K.; Han, B.; Zhao, G.; Rhee, Y. J.; Liu, C.; Xiong, J.; Huang, X. G.; and others

    2015-06-15

    Neutron yields have direct correlation with the energy of incident deuterons in experiments of laser deuterated target interaction [Roth et al., Phys. Rev. Lett. 110, 044802 (2013) and Higginson et al., Phys. Plasmas 18, 100703 (2011)], while deuterated plasma density is also an important parameter. Experiments at the Shenguang II laser facility have produced neutrons with energy of 2.45 MeV using d (d, n) He reaction. Deuterated foil target and K-shaped target were employed to study the influence of plasma density on neutron yields. Neutron yield generated by K-shaped target (nearly 10{sup 6}) was two times higher than by foil target because the K-shaped target results in higher density plasma. Interferometry and multi hydro-dynamics simulation confirmed the importance of plasma density for enhancement of neutron yields.

  11. Primary quantum yields of ketyl radicals in photoreduction by amines. Abstraction of H from N

    SciTech Connect

    Inbar, S.; Linschitz, H.; Cohen, S.G.

    1980-02-13

    Results of laser flash photolysis studies of the primary reaction of benzophenone triplet with aliphatic amines in benzene solution are reported. Quantum yield of formation of benzophenone ketyl radical was 0.9 - 1.0. Quantum yields for reduction of ketone also were determined for various amines, and the effects of tert-butyl alcohol on radical formation was investigated. Data indicated that H is not abstracted from -CH/sub 3/ but is abstracted efficiently from -NH/sub 2/. The very high quantum yields observed with tertiary and secondary amines were thought to imply exciplex formation, but lower quantum yields with primary amines were conditionally attributed to higher ionization potentials. (BLM)

  12. Effective lactation yield: A measure to compare milk yield between cows with different dry period lengths.

    PubMed

    Kok, A; van Middelaar, C E; Engel, B; van Knegsel, A T M; Hogeveen, H; Kemp, B; de Boer, I J M

    2016-04-01

    To compare milk yields between cows or management strategies, lactations are traditionally standardized to 305-d yields. The 305-d yield, however, gives no insight into the combined effect of additional milk yield before calving, decreased milk yield after calving, and a possible shorter calving interval in the case of a shortened dry period. We aimed to develop a measure that would enable the comparison of milk yield between cows with different dry period (DP) lengths. We assessed the importance of accounting for additional milk yield before calving and for differences in calving interval. The 305-d yield was compared with a 365-d yield, which included additional milk yield in the 60 d before calving. Next, an effective lactation yield was computed, defined as the daily yield from 60d before calving to 60 d before the next calving, to account for additional milk yield before calving and for differences in calving interval. Test-day records and drying-off dates of 15 commercial farms were used to compute the 305-d, 365-d, and effective lactation yields for individual cows. We analyzed 817 second-parity lactations preceded by no DP, a short DP (20 to 40 d), or a conventional DP (49 to 90 d). Compared with cows with a conventional DP, the 305-d yield of cows with no DP was 7.0 kg of fat- and protein-corrected milk (FPCM) per day lower, and the 305-d yield of cows with a short DP was 2.3 kg of FPCM per day lower. Including additional milk yield before calving in the 365-d yield reduced this difference to 3.4 kg of FPCM per cow per day for cows with no DP and to 0.9 kg of FPCM per cow per day for cows with a short DP. Compared with cows with a conventional DP, median days open were reduced by 25d for cows with no DP and by 18d for cows with a short DP. Accounting for these differences in calving interval in the effective lactation yield further decreased yield reductions for cows with no DP or a short DP by 0.3 kg of FPCM per cow per day. At the herd level, estimated

  13. Yield Coefficient for Surface Penning Ionization

    NASA Astrophysics Data System (ADS)

    Rutherford, G. H.; Asbury, M. J.; Davis, R. A.; Ingram, L. A.; Shepard, G. G.; Zich, R.

    2000-06-01

    Surface Penning Ionization (SPI) occurs when a metastable atom strikes a surface. The yield coefficient γ is defined as the probability of electron ejection per collision with the surface. Knowledge of γ is important in modeling rare gas discharges, in which Penning ionization is an important source of charged particles, especially at the confining surfaces, which may be some distance from the active discharge. We present experimental data and Monte Carlo calculations to extract the yield coefficient for helium metastable atoms on chemically-cleaned copper. The experiment involves measuring the ejected electron current from a pair of fine copper meshes placed in the flowtube of a flowing afterglow apparatus. The downstream mesh is closely spaced and destroys all metastable atoms that reach it. The fraction of metastables surviving the upstream mesh is used in conjunction with Monte Carlo simulations, which give the average number of metastable/mesh collision, to yield a robust value of γ.

  14. Climate risks on potato yield in Europe

    NASA Astrophysics Data System (ADS)

    Sun, Xun; Lall, Upmanu

    2016-04-01

    The yield of potatoes is affected by water and temperature during the growing season. We study the impact of a suite of climate variables on potato yield at country level. More than ten climate variables related to the growth of potato are considered, including the seasonal rainfall and temperature, but also extreme conditions at different averaging periods from daily to monthly. A Bayesian hierarchical model is developed to jointly consider the risk of heat stress, cold stress, wet and drought. Future climate risks are investigated through the projection of future climate data. This study contributes to assess the risks of present and future climate risks on potatoes yield, especially the risks of extreme events, which could be used to guide better sourcing strategy and ensure food security in the future.

  15. Evaluation of trends in wheat yield models

    NASA Technical Reports Server (NTRS)

    Ferguson, M. C.

    1982-01-01

    Trend terms in models for wheat yield in the U.S. Great Plains for the years 1932 to 1976 are evaluated. The subset of meteorological variables yielding the largest adjusted R(2) is selected using the method of leaps and bounds. Latent root regression is used to eliminate multicollinearities, and generalized ridge regression is used to introduce bias to provide stability in the data matrix. The regression model used provides for two trends in each of two models: a dependent model in which the trend line is piece-wise continuous, and an independent model in which the trend line is discontinuous at the year of the slope change. It was found that the trend lines best describing the wheat yields consisted of combinations of increasing, decreasing, and constant trend: four combinations for the dependent model and seven for the independent model.

  16. Analyzing Landscape Effects on Corn and Soybean Yield and Yield Risk from a Large Yield Monitor Dataset

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop yield variability is due to a variety of factors including many manageable variables such as genetics, weeds and pests, drainage, irrigation, and nutrient supply, but many factors cannot be managed and/or they have un-manageable interactions with climate. Therefore climate and it’s interaction...

  17. Immediate reaction to clarithromycin.

    PubMed

    Gangemi, S; Ricciardi, L; Fedele, R; Isola, S; Purello-D'Ambrosio, F

    2001-01-01

    We present the case of bronchospastic reaction to clarithromycin had during a drug challenge test. Personal allergic history was negative for respiratory allergies and positive for adverse drug reactions to general and regional anesthesia and to ceftriaxone. After the administration of 1/4 of therapeutic dose of clarithromycin the patient showed dyspnea, cough and bronchospasm in all the lung fields. The positivity of the test was confirmed by the negativity to the administration of placebo. The quickness and the clinical characteristic of the adverse reaction suggest a pathogenic mechanism of immediate-type hypersensitivity. On reviewing the literature we have found no reports of bronchospastic reaction to clarithromycin. Macrolides are a class of antibiotics mainly used in the last years in place of beta-lactams because of a broad spectrum of action and a low allergic power. In fact, there are few reports on allergic reactions to these molecules. Clarithromycin is one of the latest macrolides, characterised by the presence of a 14-carbon-atom lactone ring as erythromycin, active on a wide spectrum of pathogens.

  18. Stereospecific Synthesis of Tri- and Tetrasubstituted α-Fluoroacrylates by Mizoroki-Heck Reaction.

    PubMed

    Rousée, Kevin; Bouillon, Jean-Philippe; Couve-Bonnaire, Samuel; Pannecoucke, Xavier

    2016-02-01

    Ligand-free, efficient, palladium-catalyzed Mizoroki-Heck reaction between methyl α-fluoroacrylate and arene or hetarene iodides is reported for the first time. The reaction is stereospecific and provides fair to quantitative yields of fluoroalkenes. The Mizoroki-Heck reaction starting from more hindered and usually reluctant trisubstituted acrylate, to access tetrasubstituted fluoroalkenes, is also reported. Finally, the use of a three-step synthesis sequence, including Mizoroki-Heck reaction, allows the synthesis of fluorinated analogues of therapeutic agents with high yield. PMID:26809942

  19. Comments on extracting the resonance strength parameter from yield data

    NASA Astrophysics Data System (ADS)

    Croft, Stephen; Favalli, Andrea

    2015-10-01

    The F(α,n) reaction is the focus of on-going research in part because it is an important source of neutrons in the nuclear fuel cycle which can be exploited to assay nuclear materials, especially uranium in the form of UF6 [1,2]. At the present time there remains some considerable uncertainty (of the order of ±20%) in the thick target integrated over angle (α,n) yield from 19F (100% natural abundance) and its compounds as discussed in [3,4]. An important thin target cross-section measurement is that of Wrean and Kavanagh [5] who explore the region from below threshold (2.36 MeV) to approximately 3.1 MeV with fine energy resolution. Integration of their cross-section data over the slowing down history of a stopping α-particle allows the thick target yield to be calculated for incident energies up to 3.1 MeV. This trend can then be combined with data from other sources to obtain a thick target yield curve over the wider range of interest to the fuel cycle (roughly threshold to 10 MeV to include all relevant α-emitters). To estimate the thickness of the CaF2 target they used, Wrean and Kavanagh separately measured the integrated yield of the 6.129 MeV γ-rays from the resonance at 340.5 keV (laboratory α-particle kinetic energy) in the 19F(p,αγ) reaction. To interpret the data they adopted a resonance strength parameter of (22.3±0.8) eV based on a determination by Becker et al [6]. The value and its uncertainty directly affects the thickness estimate and the extracted (α,n) cross-section values. In their citation to Becker et al's work, Wrean and Kavanagh comment that they did not make use of an alternative value of (23.7±1.0) eV reported by Croft [7] because they were unable to reproduce the value from the data given in that paper. The value they calculated for the resonance strength from the thick target yield given by Croft was 21.4 eV. The purpose of this communication is to revisit the paper by Croft published in this journal and specifically to

  20. Groundwater subsidies and penalties to corn yield

    NASA Astrophysics Data System (ADS)

    Zipper, S. C.; Booth, E.; Loheide, S. P.

    2013-12-01

    Proper water management is critical to closing yield gaps (observed yield below potential yield) as global populations continue to expand. However, the impacts of shallow groundwater on crop production and surface processes are poorly understood. The presence of groundwater within or just below the root zone has the potential to cause (via oxygen stress in poorly drained soils) or eliminate (via water supply in dry regions) yield gaps. The additional water use by a plant in the presence of shallow groundwater, compared to free drainage conditions, is called the groundwater subsidy; the depth at which the groundwater subsidy is greatest is the optimal depth to groundwater (DTGW). In wet years or under very shallow water table conditions, the groundwater subsidy is likely to be negative due to increased oxygen stress, and can be thought of as a groundwater penalty. Understanding the spatial dynamics of groundwater subsidies/penalties and how they interact with weather is critical to making sustainable agricultural and land-use decisions under a range of potential climates. Here, we examine patterns of groundwater subsidies and penalties in two commercial cornfields in the Yahara River Watershed, an urbanizing agricultural watershed in south-central Wisconsin. Water table levels are generally rising in the region due to a long-term trend of increasing precipitation over the last several decades. Biophysical indicators tracked throughout both the 2012 and 2013 growing seasons show a strong response to variable groundwater levels on a field scale. Sections of the field with optimal DTGW exhibit consistently higher stomatal conductance rates, taller canopies and higher leaf area index, higher ET rates, and higher pollination success rates. Patterns in these biophysical lines of evidence allow us to pinpoint specific periods within the growing season that plants were experiencing either oxygen or water stress. Most importantly, groundwater subsidies and penalties are