Sample records for photoperiodic expression patterns

  1. The expression patterns of the clock genes period and timeless are affected by photoperiod in the Mediterranean corn stalk borer, Sesamia nonagrioides.

    PubMed

    Kontogiannatos, Dimitrios; Gkouvitsas, Theodoros; Kourti, Anna

    2017-01-01

    To obtain clues to the link between the molecular mechanism of circadian and photoperiod clocks, we cloned two circadian clock genes, period (per) and timeless (tim) from the moth Sesamia nonagrioides, which undergoes facultative diapause controlled by photoperiod. Sequence analysis revealed a high degree of conservation among the compared insects fοr both genes. We also investigated the expression patterns of per and tim in brains of larvae growing under 16L:8D (long days), constant darkness (DD) and 10L:14D (short days) conditions by qPCR assays. The results showed that mRNA accumulations encoding both genes exhibited diel oscillations under different photoperiods. The oscillation of per and tim mRNA, under short-day photoperiod differed from long-day. The difference between long-day and short-day conditions in the pattern of mRNA levels of per and tim appears to distinguish photoperiodic conditions clearly and both genes were influenced by photoperiod in different ways. We infer that not all photoperiodic clocks of insects interact with circadian clocks in the same fashion. Our results suggest that transcriptional regulations of the both clock genes act in the diapause programing in S. nonagrioides. The expression patterns of these genes are affected by photoperiod but runs with 24 h by entrainment to daily environmental cues. © 2016 Wiley Periodicals, Inc.

  2. The expression of the clock gene cycle has rhythmic pattern and is affected by photoperiod in the moth Sesamia nonagrioides.

    PubMed

    Kontogiannatos, Dimitrios; Gkouvitsas, Theodoros; Kourti, Anna

    2017-06-01

    To obtain clues to the link between the molecular mechanism of circadian and photoperiod clocks, we have cloned the circadian clock gene cycle (Sncyc) in the corn stalk borer, Sesamia nonagrioides, which undergoes facultative diapause controlled by photoperiod. Sequence analysis revealed a high degree of conservation among insects for this gene. SnCYC consists of 667 amino acids and structural analysis showed that it contains a BCTR domain in its C-terminal in addition to the common domains found in Drosophila CYC, i.e. bHLH, PAS-A, PAS-B domains. The results revealed that the sequence of Sncyc showed a similarity to that of its mammalian orthologue, Bmal1. We also investigated the expression patterns of Sncyc in the brain of larvae growing under long-day 16L: 8D (LD), constant darkness (DD) and short-day 10L: 14D (SD) conditions using qRT-PCR assays. The mRNAs of Sncyc expression was rhythmic in LD, DD and SD cycles. Also, it is remarkable that the photoperiodic conditions affect the expression patterns and/or amplitudes of circadian clock gene Sncyc. This gene is associated with diapause in S. nonagrioides, because under SD (diapause conditions) the photoperiodic signal altered mRNA accumulation. Sequence and expression analysis of cyc in S. nonagrioides shows interesting differences compared to Drosophila where this gene does not oscillate or change in expression patterns in response to photoperiod, suggesting that this species is an interesting new model to study the molecular control of insect circadian and photoperiodic clocks. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Skin transcriptome reveals the intrinsic molecular mechanisms underlying hair follicle cycling in Cashmere goats under natural and shortened photoperiod conditions.

    PubMed

    Yang, Min; Song, Shen; Dong, Kunzhe; Chen, XiaoFei; Liu, Xuexue; Rouzi, Marhaba; Zhao, Qianjun; He, Xiaohong; Pu, Yabin; Guan, Weijun; Ma, Yuehui; Jiang, Lin

    2017-10-18

    The growth of cashmere exhibits a seasonal pattern arising from photoperiod change. However, the underlying molecular mechanism remains unclear. We profiled the skin transcriptome of six goats at seven time points during hair follicle cycling via RNA-seq. The six goats comprised three goats exposed to a natural photoperiod and three exposed to a shortened photoperiod. During hair cycle transition, 1713 genes showed differential expression, and 332 genes showed a pattern of periodic expression. Moreover, a short photoperiod induced the hair follicle to enter anagen early, and 246 genes overlapped with the periodic genes. Among these key genes, cold-shock domain containing C2 (CSDC2) was highly expressed in the epidermis and dermis of Cashmere goat skin, although its function in hair-follicle development remains unknown. CSDC2 silencing in mouse fibroblasts resulted in the decreased mRNA expression of two key hair-follicle factors, leading to reduced cell numbers and a lower cell density. Cashmere growth or molting might be controlled by a set of periodic regulatory genes. The appropriate management of short light exposure can induce hair follicles to enter full anagen early through the activation of these regulators. The CSDC2 gene is a potentially important transcription factor in the hair growth cycle.

  4. DNA methylation pattern of Photoperiod-B1 is associated with photoperiod insensitivity in wheat (Triticum aestivum).

    PubMed

    Sun, Han; Guo, Zhiai; Gao, Lifeng; Zhao, Guangyao; Zhang, Wenping; Zhou, Ronghua; Wu, Yongzhen; Wang, Haiyang; An, Hailong; Jia, Jizeng

    2014-11-01

    As one of the three key components of the 'Green Revolution', photoperiod insensitivity is vital for improved adaptation of wheat (Triticum aestivum) cultivars to a wider geographical range. Photoperiod-B1a (Ppd-B1a) is one of the major genes that confers photoperiod insensitivity in 'Green Revolution' varieties, and has made a significant contribution to wheat yield improvement. In this study, we investigated the mechanisms underlying the photoperiod insensitivity of Ppd-B1a alleles from an epigenetic perspective using a combination of bisulfite genomic sequencing, orthologous comparative analysis, association analysis, linkage analysis and gene expression analysis. Based on the study of a large collection of wheat germplasm, we report two methylation haplotypes of Ppd-B1 and demonstrate that the higher methylation haplotype (haplotype a) was associated with increased copy numbers and higher expression levels of the Ppd-B1 gene, earlier heading and photoperiod insensitivity. Furthermore, assessment of the distribution frequency of the different methylation haplotypes suggested that the methylation patterns have undergone selection during the wheat breeding process. Our study suggests that DNA methylation in the regulatory region of the Ppd-B1 alleles, which is closely related to copy number variation, plays a significant role in wheat breeding, to confer photoperiod insensitivity and better adaptation to a wider geographical range. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  5. Existence of a photoinducible phase for ovarian development and photoperiod-related alteration of clock gene expression in a damselfish.

    PubMed

    Takeuchi, Yuki; Hada, Noriko; Imamura, Satoshi; Hur, Sung-Pyo; Bouchekioua, Selma; Takemura, Akihiro

    2015-10-01

    The sapphire devil, Chrysiptera cyanea, is a reef-associated damselfish and their ovarian development can be induced by a long photoperiod. In this study, we demonstrated the existence of a photoinducible phase for the photoperiodic ovarian development in the sapphire devil. Induction of ovarian development under night-interruption light schedules and Nanda-Hamner cycles revealed that the photoinducible phase appeared in a circadian manner between ZT12 and ZT13. To characterize the effect of photoperiod on clock gene expression in the brain of this species, we determined the expression levels of the sdPer1, sdPer2, sdCry1, and sdCry2 clock genes under constant light and dark conditions (LL and DD) and photoperiodic (short and long photoperiods). The expression of sdPer1 exhibited clear circadian oscillation under both LL and DD conditions, while sdPer2 and sdCry1 expression levels were lower under DD than under LL conditions and sdCry2 expression was lower under LL than under DD conditions. These results suggest a key role for sdPer1 in circadian clock cycling and that sdPer2, sdCry1, and sdCry2 are light-responsive clock genes in the sapphire devil. After 1 week under a long photoperiod, we observed photoperiod-related changes in sdPer1, sdPer2, and sdCry2 expression, but not in sdCry1 expression. These results suggest that the expression patterns of some clock genes exhibit seasonal variation according to seasonal changes in day length and that such seasonal alteration of clock gene expression may contribute to seasonal recognition by the sapphire devil. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. A Microarray-Based Analysis Reveals that a Short Photoperiod Promotes Hair Growth in the Arbas Cashmere Goat.

    PubMed

    Liu, Bin; Gao, Fengqin; Guo, Jun; Wu, Dubala; Hao, Bayasihuliang; Li, Yurong; Zhao, Cunfa

    2016-01-01

    Many animals exhibit different behaviors in different seasons. The photoperiod can have effects on migration, breeding, fur growth, and other processes. The cyclic growth of the fur and feathers of some species of mammals and birds, respectively, is stimulated by the photoperiod as a result of hormone-dependent regulation of the nervous system. To further examine this phenomenon, we evaluated the Arbas Cashmere goat (Capra hircus), a species that is often used in this type of research. The goats were exposed to an experimentally controlled short photoperiod to study the regulation of cyclic cashmere growth. Exposure to a short photoperiod extended the anagen phase of the Cashmere goat hair follicle to increase cashmere production. Assessments of tissue sections indicated that the short photoperiod significantly induced cashmere growth. This conclusion was supported by a comparison of the differences in gene expression between the short photoperiod and natural conditions using gene chip technology. Using the gene chip data, we identified genes that showed altered expression under the short photoperiod compared to natural conditions, and these genes were found to be involved in the biological processes of hair follicle growth, structural composition of the hair follicle, and the morphogenesis of the surrounding skin appendages. Knowledge about differences in the expression of these genes as well as their functions and periodic regulation patterns increases our understanding of Cashmere goat hair follicle growth. This study also provides preliminary data that may be useful for the development of an artificial method to improve cashmere production by controlling the light cycle, which has practical significance for livestock breeding.

  7. A Microarray-Based Analysis Reveals that a Short Photoperiod Promotes Hair Growth in the Arbas Cashmere Goat

    PubMed Central

    Guo, Jun; Wu, Dubala; Hao, Bayasihuliang; Li, Yurong; Zhao, Cunfa

    2016-01-01

    Many animals exhibit different behaviors in different seasons. The photoperiod can have effects on migration, breeding, fur growth, and other processes. The cyclic growth of the fur and feathers of some species of mammals and birds, respectively, is stimulated by the photoperiod as a result of hormone-dependent regulation of the nervous system. To further examine this phenomenon, we evaluated the Arbas Cashmere goat (Capra hircus), a species that is often used in this type of research. The goats were exposed to an experimentally controlled short photoperiod to study the regulation of cyclic cashmere growth. Exposure to a short photoperiod extended the anagen phase of the Cashmere goat hair follicle to increase cashmere production. Assessments of tissue sections indicated that the short photoperiod significantly induced cashmere growth. This conclusion was supported by a comparison of the differences in gene expression between the short photoperiod and natural conditions using gene chip technology. Using the gene chip data, we identified genes that showed altered expression under the short photoperiod compared to natural conditions, and these genes were found to be involved in the biological processes of hair follicle growth, structural composition of the hair follicle, and the morphogenesis of the surrounding skin appendages. Knowledge about differences in the expression of these genes as well as their functions and periodic regulation patterns increases our understanding of Cashmere goat hair follicle growth. This study also provides preliminary data that may be useful for the development of an artificial method to improve cashmere production by controlling the light cycle, which has practical significance for livestock breeding. PMID:26814503

  8. Gene expression changes during short day induced terminal bud formation in Norway spruce.

    PubMed

    Asante, Daniel K A; Yakovlev, Igor A; Fossdal, Carl Gunnar; Holefors, Anna; Opseth, Lars; Olsen, Jorunn E; Junttila, Olavi; Johnsen, Øystein

    2011-02-01

    The molecular basis for terminal bud formation in autumn is not well understood in conifers. By combining suppression subtractive hybridization and monitoring of gene expression by qRT-PCR analysis, we aimed to identify genes involved in photoperiodic control of growth cessation and bud set in Norway spruce. Close to 1400 ESTs were generated and their functional distribution differed between short day (SD-12 h photoperiod) and long day (LD-24 h photoperiod) libraries. Many genes with putative roles in protection against stress appeared differentially regulated under SD and LD, and also differed in transcript levels between 6 and 20 SDs. Of these, PaTFL1(TERMINAL FLOWER LIKE 1) showed strongly increased transcript levels at 6 SDs. PaCCCH(CCCH-TYPE ZINC FINGER) and PaCBF2&3(C-REPEAT BINDING FACTOR 2&3) showed a later response at 20 SDs, with increased and decreased transcript levels, respectively. For rhythmically expressed genes such as CBFs, such differences might represent a phase shift in peak expression, but might also suggest a putative role in response to SD. Multivariate analyses revealed strong differences in gene expression between LD, 6 SD and 20 SD. The robustness of the gene expression patterns was verified in 6 families differing in bud-set timing under natural light with gradually decreasing photoperiod. © 2010 Blackwell Publishing Ltd.

  9. Possible Involvement of Photoperiodic Regulation in Reproductive Endocrine System of Female Olive Flounder Paralichthys olivaceus.

    PubMed

    Kim, Hyun Chul; Lee, Chi Hoon; Hur, Sung Pyu; Kim, Byeong Hoon; Park, Jun Young; Lee, Young Don

    2015-03-01

    This study investigated possible involvement of photoperiodic regulation in reproductive endocrine system of female olive flounder. To investigate the influence on brain-pituitary axis in endocrine system by regulating photoperiod, compared expression level of Kisspeptin and sbGnRH mRNA in brain and FSH-β, LH-β and GH mRNA in pituitary before and after spawning. Photoperiod was treated natural photoperiod and long photoperiod (15L:9D) conditions from Aug. 2013 to Jun. 2014. Continuous long photoperiod treatment from Aug. (post-spawning phase) was inhibited gonadal development of female olive flounder. In natural photoperiod group, the Kiss2 expression level a significant declined in Mar. (spawning period). And also, FSH-β, LH-β and GH mRNA expression levels were increasing at this period. However, in long photoperiod group, hypothalamic Kiss2, FSH-β, LH-β and GH mRNA expression levels did not show any significant fluctuation. These results suggest that expression of hypothalamic Kiss2, GtH and GH in the pituitary would change in response to photoperiod and their possible involvement of photoperiodic regulation in reproductive endocrine system of the BPG axis.

  10. Photoperiod regulates multiple gene expression in the suprachiasmatic nuclei and pars tuberalis of the Siberian hamster (Phodopus sungorus).

    PubMed

    Johnston, Jonathan D; Ebling, Francis J P; Hazlerigg, David G

    2005-06-01

    Photoperiod regulates the seasonal physiology of many mammals living in temperate latitudes. Photoperiodic information is decoded by the master circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus and then transduced via pineal melatonin secretion. This neurochemical signal is interpreted by tissues expressing melatonin receptors (e.g. the pituitary pars tuberalis, PT) to drive physiological changes. In this study we analysed the photoperiodic regulation of the circadian clockwork in the SCN and PT of the Siberian hamster. Female hamsters were exposed to either long or short photoperiod for 8 weeks and sampled at 2-h intervals across the 24-h cycle. In the SCN, rhythmic expression of the clock genes Per1, Per2, Cry1, Rev-erbalpha, and the clock-controlled genes arginine vasopressin (AVP) and d-element binding protein (DBP) was modulated by photoperiod. All of these E-box-containing genes tracked dawn, with earlier peak mRNA expression in long, compared to short, photoperiod. This response occurred irrespective of the presence of additional regulatory cis-elements, suggesting photoperiodic regulation of SCN gene expression through a common E-box-related mechanism. In long photoperiod, expression of Cry1 and Per1 in the PT tracked the onset and offset of melatonin secretion, respectively. However, whereas Cry1 tracked melatonin onset in short period, Per1 expression was not detectably rhythmic. We therefore propose that, in the SCN, photoperiodic regulation of clock gene expression primarily occurs via E-boxes, whereas melatonin-driven signal transduction drives the phasing of a subset of clock genes in the PT, independently of the E-box.

  11. Defining global neuroendocrine gene expression patterns associated with reproductive seasonality in fish.

    PubMed

    Zhang, Dapeng; Xiong, Huiling; Mennigen, Jan A; Popesku, Jason T; Marlatt, Vicki L; Martyniuk, Christopher J; Crump, Kate; Cossins, Andrew R; Xia, Xuhua; Trudeau, Vance L

    2009-06-05

    Many vertebrates, including the goldfish, exhibit seasonal reproductive rhythms, which are a result of interactions between external environmental stimuli and internal endocrine systems in the hypothalamo-pituitary-gonadal axis. While it is long believed that differential expression of neuroendocrine genes contributes to establishing seasonal reproductive rhythms, no systems-level investigation has yet been conducted. In the present study, by analyzing multiple female goldfish brain microarray datasets, we have characterized global gene expression patterns for a seasonal cycle. A core set of genes (873 genes) in the hypothalamus were identified to be differentially expressed between May, August and December, which correspond to physiologically distinct stages that are sexually mature (prespawning), sexual regression, and early gonadal redevelopment, respectively. Expression changes of these genes are also shared by another brain region, the telencephalon, as revealed by multivariate analysis. More importantly, by examining one dataset obtained from fish in October who were kept under long-daylength photoperiod (16 h) typical of the springtime breeding season (May), we observed that the expression of identified genes appears regulated by photoperiod, a major factor controlling vertebrate reproductive cyclicity. Gene ontology analysis revealed that hormone genes and genes functionally involved in G-protein coupled receptor signaling pathway and transmission of nerve impulses are significantly enriched in an expression pattern, whose transition is located between prespawning and sexually regressed stages. The existence of seasonal expression patterns was verified for several genes including isotocin, ependymin II, GABA(A) gamma2 receptor, calmodulin, and aromatase b by independent samplings of goldfish brains from six seasonal time points and real-time PCR assays. Using both theoretical and experimental strategies, we report for the first time global gene expression patterns throughout a breeding season which may account for dynamic neuroendocrine regulation of seasonal reproductive development.

  12. Defining Global Neuroendocrine Gene Expression Patterns Associated with Reproductive Seasonality in Fish

    PubMed Central

    Mennigen, Jan A.; Popesku, Jason T.; Marlatt, Vicki L.; Martyniuk, Christopher J.; Crump, Kate; Cossins, Andrew R.; Xia, Xuhua; Trudeau, Vance L.

    2009-01-01

    Background Many vertebrates, including the goldfish, exhibit seasonal reproductive rhythms, which are a result of interactions between external environmental stimuli and internal endocrine systems in the hypothalamo-pituitary-gonadal axis. While it is long believed that differential expression of neuroendocrine genes contributes to establishing seasonal reproductive rhythms, no systems-level investigation has yet been conducted. Methodology/Principal Findings In the present study, by analyzing multiple female goldfish brain microarray datasets, we have characterized global gene expression patterns for a seasonal cycle. A core set of genes (873 genes) in the hypothalamus were identified to be differentially expressed between May, August and December, which correspond to physiologically distinct stages that are sexually mature (prespawning), sexual regression, and early gonadal redevelopment, respectively. Expression changes of these genes are also shared by another brain region, the telencephalon, as revealed by multivariate analysis. More importantly, by examining one dataset obtained from fish in October who were kept under long-daylength photoperiod (16 h) typical of the springtime breeding season (May), we observed that the expression of identified genes appears regulated by photoperiod, a major factor controlling vertebrate reproductive cyclicity. Gene ontology analysis revealed that hormone genes and genes functionally involved in G-protein coupled receptor signaling pathway and transmission of nerve impulses are significantly enriched in an expression pattern, whose transition is located between prespawning and sexually regressed stages. The existence of seasonal expression patterns was verified for several genes including isotocin, ependymin II, GABAA gamma2 receptor, calmodulin, and aromatase b by independent samplings of goldfish brains from six seasonal time points and real-time PCR assays. Conclusions/Significance Using both theoretical and experimental strategies, we report for the first time global gene expression patterns throughout a breeding season which may account for dynamic neuroendocrine regulation of seasonal reproductive development. PMID:19503831

  13. The pea GIGAS gene is a FLOWERING LOCUS T homolog necessary for graft-transmissible specification of flowering but not for responsiveness to photoperiod.

    PubMed

    Hecht, Valérie; Laurie, Rebecca E; Vander Schoor, Jacqueline K; Ridge, Stephen; Knowles, Claire L; Liew, Lim Chee; Sussmilch, Frances C; Murfet, Ian C; Macknight, Richard C; Weller, James L

    2011-01-01

    Garden pea (Pisum sativum) was prominent in early studies investigating the genetic control of flowering and the role of mobile flowering signals. In view of recent evidence that genes in the FLOWERING LOCUS T (FT) family play an important role in generating mobile flowering signals, we isolated the FT gene family in pea and examined the regulation and function of its members. Comparison with Medicago truncatula and soybean (Glycine max) provides evidence of three ancient subclades (FTa, FTb, and FTc) likely to be common to most crop and model legumes. Pea FT genes show distinctly different expression patterns with respect to developmental timing, tissue specificity, and response to photoperiod and differ in their activity in transgenic Arabidopsis thaliana, suggesting they may have different functions. We show that the pea FTa1 gene corresponds to the GIGAS locus, which is essential for flowering under long-day conditions and promotes flowering under short-day conditions but is not required for photoperiod responsiveness. Grafting, expression, and double mutant analyses show that GIGAS/FTa1 regulates a mobile flowering stimulus but also provide clear evidence for a second mobile flowering stimulus that is correlated with expression of FTb2 in leaf tissue. These results suggest that induction of flowering by photoperiod in pea results from interactions among several members of a diversified FT family.

  14. Changes in photoperiod alter Glut4 expression in skeletal muscle of C57BL/6J mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tashiro, Ayako; Shibata, Satomi; Takai, Yusuke

    Seasonal changes in photoperiod influence body weight and metabolism in mice. Here, we examined the effect of changes in photoperiod on the expression of glucose transporter genes in the skeletal muscle and adipose tissue of C57BL/6J mice. Glut4 expression was lower in the gastrocnemius muscle of mice exposed to a short-duration day (SD) than those to a long-duration day (LD), with accompanying changes in GLUT4 protein levels. Although Glut4 expression in the mouse soleus muscle was higher under SD than under LD, GLUT4 protein levels remained unchanged. To confirm the functional significance of photoperiod-induced changes in Glut4 expression, we checkedmore » for variations in insulin sensitivity. Blood glucose levels after insulin injection remained high under SD, suggesting that the mice exposed to SD showed lower sensitivity to insulin than those exposed to LD. We also attempted to clarify the relationship between Glut4 expression and physical activity in the mice following changes in photoperiod. Locomotor activity, as detected via infrared beam sensor, was lower under SD than under LD. However, when we facilitated voluntary activity by using running wheels, the rotation of wheels was similar for both groups of mice. Although physical activity levels were enhanced due to running wheels, Glut4 expression in the gastrocnemius muscle remained unchanged. Thus, variations in photoperiod altered Glut4 expression in the mouse skeletal muscle, with subsequent changes in GLUT4 protein levels and insulin sensitivity; these effects might be independent of physical activity. - Highlights: • Glut4 expression in the gastrocnemius muscle was lowered under short photoperiod. • Insulin sensitivity was lowered under short photoperiod. • Access to running wheels did not alter Glut4 expression in the gastrocnemius muscle. • Photoperiodic changes in Glut4 expression may be independent of physical activity.« less

  15. GmFT2a, a soybean homolog of FLOWERING LOCUS T, is involved in flowering transition and maintenance.

    PubMed

    Sun, Hongbo; Jia, Zhen; Cao, Dong; Jiang, Bingjun; Wu, Cunxiang; Hou, Wensheng; Liu, Yike; Fei, Zhihong; Zhao, Dazhong; Han, Tianfu

    2011-01-01

    Flowering reversion can be induced in soybean (Glycine max L. Merr.), a typical short-day (SD) dicot, by switching from SD to long-day (LD) photoperiods. This process may involve florigen, putatively encoded by FLOWERING LOCUS T (FT) in Arabidopsis thaliana. However, little is known about the potential function of soybean FT homologs in flowering reversion. A photoperiod-responsive FT homologue GmFT (renamed as GmFT2a hereafter) was cloned from the photoperiod-sensitive cultivar Zigongdongdou. GmFT2a gene expression under different photoperiods was analyzed by real-time quantitative PCR. In situ hybridization showed direct evidence for its expression during flowering-related processes. GmFT2a was shown to promote flowering using transgenic studies in Arabidopsis and soybean. The effects of photoperiod and temperature on GmFT2a expression were also analyzed in two cultivars with different photoperiod-sensitivities. GmFT2a expression is regulated by photoperiod. Analyses of GmFT2a transcripts revealed a strong correlation between GmFT2a expression and flowering maintenance. GmFT2a transcripts were observed continuously within the vascular tissue up to the shoot apex during flowering. By contrast, transcripts decreased to undetectable levels during flowering reversion. In grafting experiments, the early-flowering, photoperiod-insensitive stock Heihe27 promotes the appearance of GmFT2a transcripts in the shoot apex of scion Zigongdongdou under noninductive LD conditions. The photothermal effects of GmFT2a expression diversity in cultivars with different photoperiod-sensitivities and a hypothesis is proposed. GmFT2a expression is associated with flowering induction and maintenance. Therefore, GmFT2a is a potential target gene for soybean breeding, with the aim of increasing geographic adaptation of this crop.

  16. Comprehensive analysis of the flowering genes in Chinese cabbage and examination of evolutionary pattern of CO-like genes in plant kingdom

    NASA Astrophysics Data System (ADS)

    Song, Xiaoming; Duan, Weike; Huang, Zhinan; Liu, Gaofeng; Wu, Peng; Liu, Tongkun; Li, Ying; Hou, Xilin

    2015-09-01

    In plants, flowering is the most important transition from vegetative to reproductive growth. The flowering patterns of monocots and eudicots are distinctly different, but few studies have described the evolutionary patterns of the flowering genes in them. In this study, we analysed the evolutionary pattern, duplication and expression level of these genes. The main results were as follows: (i) characterization of flowering genes in monocots and eudicots, including the identification of family-specific, orthologous and collinear genes; (ii) full characterization of CONSTANS-like genes in Brassica rapa (BraCOL genes), the key flowering genes; (iii) exploration of the evolution of COL genes in plant kingdom and construction of the evolutionary pattern of COL genes; (iv) comparative analysis of CO and FT genes between Brassicaceae and Grass, which identified several family-specific amino acids, and revealed that CO and FT protein structures were similar in B. rapa and Arabidopsis but different in rice; and (v) expression analysis of photoperiod pathway-related genes in B. rapa under different photoperiod treatments by RT-qPCR. This analysis will provide resources for understanding the flowering mechanisms and evolutionary pattern of COL genes. In addition, this genome-wide comparative study of COL genes may also provide clues for evolution of other flowering genes.

  17. Photoperiodic regulation of glycogen metabolism, glycolysis, and glutamine synthesis in tanycytes of the Siberian hamster suggests novel roles of tanycytes in hypothalamic function.

    PubMed

    Nilaweera, Kanishka; Herwig, Annika; Bolborea, Matei; Campbell, Gill; Mayer, Claus D; Morgan, Peter J; Ebling, Francis J P; Barrett, Perry

    2011-11-01

    The objective of this study is to investigate the impact of photoperiod on the temporal and spatial expression of genes involved in glucose metabolism in the brain of the seasonal mammal Phodopus sungorus (Siberian hamster). In situ hybridization was performed on brain sections obtained from male hamsters held in long photoperiod (high body weight and developed testes) or short photoperiod (reduced body weight with testicular regression). This analysis revealed upregulation in expression of genes involved in glycogen and glucose metabolism in short photoperiod and localized to the tanycyte layer of the third ventricle. On the basis of these data and a previously identified photoperiod-dependent increase in activity of neighboring hypothalamic neurons, we hypothesized that the observed expression changes may reflect alteration in either metabolic fuel or precursor neurotransmitter supply to surrounding neurons. Gene expression analysis was performed for genes involved in lactate and glutamate transport. This analysis showed that the gene for the lactate transporter MCT2 and glutamate transporter GLAST was decreased in the tanycyte layer in short photoperiod. Expression of mRNA for glutamine synthetase, the final enzyme in the synthesis of the neuronal neurotransmitter precursor, glutamine, was also decreased in short photoperiod. These data suggest a role for tanycytes in modulating glutamate concentrations and neurotransmitter supply in the hypothalamic environment. Copyright © 2011 Wiley-Liss, Inc.

  18. Dual control of seasonal time keeping in male and female juvenile European hamsters.

    PubMed

    Monecke, Stefanie; Amann, Birgit; Lemuth, Karin; Wollnik, Franziska

    2014-05-10

    In contrast to photoperiodic rodent species, adult circannual European hamsters (Cricetus cricetus) do not rely on melatonin as transducer of the photoperiodic message. Instead, seasonal entrainment involves a special circadian organisation which characterizes a photoperiod-sensitive phase. When days shorten a precise activity pattern ("summer pattern") switches to a weak or arrhythmic "winter pattern". At the very same day gonadal regression is initiated and the circannual clock is reset. In contrast to this difference in photoperiodic time measurement, the broad time span in which offspring are born and the birth-season dependent timing of puberty is similar to photoperiodic rodents. We investigated how juvenile European hamsters measure photoperiod to situate themselves at the proper position in the annual cycle. Activity and 6-sulphatoxymelatonin (aMT6s) excretion were recorded in pups of five litters born at different seasons. Pups of all litters showed an activity pattern identical with the adults' summer pattern until postnatal day 78, suggesting that the pathway known to reset the circannual clock in adults is functional. The synchronous start of reproduction in yearlings supports this. However, since puberty and gonadal regression occurred before the switch in the activity pattern, the timing of reproduction in the birth year must be controlled by other means. As in photoperiodic species melatonin might be involved, since the aMT6s excretion showed daily and seasonal rhythms from early life on. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Characterization and Functional Analysis of PEBP Family Genes in Upland Cotton (Gossypium hirsutum L.).

    PubMed

    Zhang, Xiaohong; Wang, Congcong; Pang, Chaoyou; Wei, Hengling; Wang, Hantao; Song, Meizhen; Fan, Shuli; Yu, Shuxun

    2016-01-01

    Upland cotton (Gossypium hirsutum L.) is a naturally occurring photoperiod-sensitive perennial plant species. However, sensitivity to the day length was lost during domestication. The phosphatidylethanolamine-binding protein (PEBP) gene family, of which three subclades have been identified in angiosperms, functions to promote and suppress flowering in photoperiod pathway. Recent evidence indicates that PEBP family genes play an important role in generating mobile flowering signals. We isolated homologues of the PEBP gene family in upland cotton and examined their regulation and function. Nine PEBP-like genes were cloned and phylogenetic analysis indicated the genes belonged to four subclades (FT, MFT, TFL1 and PEBP). Cotton PEBP-like genes showed distinct expression patterns in relation to different cotton genotypes, photoperiod responsive and cultivar maturity. The GhFT gene expression of a semi-wild race of upland cotton were strongly induced under short day condition, whereas the GhPEBP2 gene expression was induced under long days. We also elucidated that GhFT but not GhPEBP2 interacted with FD-like bZIP transcription factor GhFD and promote flowering under both long- and short-day conditions. The present result indicated that GhPEBP-like genes may perform different functions. This work corroborates the involvement of PEBP-like genes in photoperiod response and regulation of flowering time in different cotton genotypes, and contributes to an improved understanding of the function of PEBP-like genes in cotton.

  20. Characterization and Functional Analysis of PEBP Family Genes in Upland Cotton (Gossypium hirsutum L.)

    PubMed Central

    Wang, Congcong; Pang, Chaoyou; Wei, Hengling; Wang, Hantao; Song, Meizhen; Fan, Shuli; Yu, Shuxun

    2016-01-01

    Upland cotton (Gossypium hirsutum L.) is a naturally occurring photoperiod-sensitive perennial plant species. However, sensitivity to the day length was lost during domestication. The phosphatidylethanolamine-binding protein (PEBP) gene family, of which three subclades have been identified in angiosperms, functions to promote and suppress flowering in photoperiod pathway. Recent evidence indicates that PEBP family genes play an important role in generating mobile flowering signals. We isolated homologues of the PEBP gene family in upland cotton and examined their regulation and function. Nine PEBP-like genes were cloned and phylogenetic analysis indicated the genes belonged to four subclades (FT, MFT, TFL1 and PEBP). Cotton PEBP-like genes showed distinct expression patterns in relation to different cotton genotypes, photoperiod responsive and cultivar maturity. The GhFT gene expression of a semi-wild race of upland cotton were strongly induced under short day condition, whereas the GhPEBP2 gene expression was induced under long days. We also elucidated that GhFT but not GhPEBP2 interacted with FD-like bZIP transcription factor GhFD and promote flowering under both long- and short-day conditions. The present result indicated that GhPEBP-like genes may perform different functions. This work corroborates the involvement of PEBP-like genes in photoperiod response and regulation of flowering time in different cotton genotypes, and contributes to an improved understanding of the function of PEBP-like genes in cotton. PMID:27552108

  1. A Norway spruce FLOWERING LOCUS T homolog is implicated in control of growth rhythm in conifers.

    PubMed

    Gyllenstrand, Niclas; Clapham, David; Källman, Thomas; Lagercrantz, Ulf

    2007-05-01

    Growth in perennial plants possesses an annual cycle of active growth and dormancy that is controlled by environmental factors, mainly photoperiod and temperature. In conifers and other nonangiosperm species, the molecular mechanisms behind these responses are currently unknown. In Norway spruce (Picea abies L. Karst.) seedlings, growth cessation and bud set are induced by short days and plants from southern latitudes require at least 7 to 10 h of darkness, whereas plants from northern latitudes need only 2 to 3 h of darkness. Bud burst, on the other hand, is almost exclusively controlled by temperature. To test the possible role of Norway spruce FLOWERING LOCUS T (FT)-like genes in growth rhythm, we have studied expression patterns of four Norway spruce FT family genes in two populations with a divergent bud set response under various photoperiodic conditions. Our data show a significant and tight correlation between growth rhythm (both bud set and bud burst), and expression pattern of one of the four Norway spruce phosphatidylethanolamine-binding protein gene family members (PaFT4) over a variety of experimental conditions. This study strongly suggests that one Norway spruce homolog to the FT gene, which controls flowering in angiosperms, is also a key integrator of photoperiodic and thermal signals in the control of growth rhythms in gymnosperms. The data also indicate that the divergent adaptive bud set responses of northern and southern Norway spruce populations, both to photoperiod and light quality, are mediated through PaFT4. These results provide a major advance in our understanding of the molecular control of a major adaptive trait in conifers and a tool for further molecular studies of adaptive variation in plants.

  2. A Norway Spruce FLOWERING LOCUS T Homolog Is Implicated in Control of Growth Rhythm in Conifers1[OA

    PubMed Central

    Gyllenstrand, Niclas; Clapham, David; Källman, Thomas; Lagercrantz, Ulf

    2007-01-01

    Growth in perennial plants possesses an annual cycle of active growth and dormancy that is controlled by environmental factors, mainly photoperiod and temperature. In conifers and other nonangiosperm species, the molecular mechanisms behind these responses are currently unknown. In Norway spruce (Picea abies L. Karst.) seedlings, growth cessation and bud set are induced by short days and plants from southern latitudes require at least 7 to 10 h of darkness, whereas plants from northern latitudes need only 2 to 3 h of darkness. Bud burst, on the other hand, is almost exclusively controlled by temperature. To test the possible role of Norway spruce FLOWERING LOCUS T (FT)-like genes in growth rhythm, we have studied expression patterns of four Norway spruce FT family genes in two populations with a divergent bud set response under various photoperiodic conditions. Our data show a significant and tight correlation between growth rhythm (both bud set and bud burst), and expression pattern of one of the four Norway spruce phosphatidylethanolamine-binding protein gene family members (PaFT4) over a variety of experimental conditions. This study strongly suggests that one Norway spruce homolog to the FT gene, which controls flowering in angiosperms, is also a key integrator of photoperiodic and thermal signals in the control of growth rhythms in gymnosperms. The data also indicate that the divergent adaptive bud set responses of northern and southern Norway spruce populations, both to photoperiod and light quality, are mediated through PaFT4. These results provide a major advance in our understanding of the molecular control of a major adaptive trait in conifers and a tool for further molecular studies of adaptive variation in plants. PMID:17369429

  3. Dim light at night disrupts the short-day response in Siberian hamsters.

    PubMed

    Ikeno, Tomoko; Weil, Zachary M; Nelson, Randy J

    2014-02-01

    Photoperiodic regulation of physiology, morphology, and behavior is crucial for many animals to survive seasonally variable conditions unfavorable for reproduction and survival. The photoperiodic response in mammals is mediated by nocturnal secretion of melatonin under the control of a circadian clock. However, artificial light at night caused by recent urbanization may disrupt the circadian clock, as well as the photoperiodic response by blunting melatonin secretion. Here we examined the effect of dim light at night (dLAN) (5lux of light during the dark phase) on locomotor activity rhythms and short-day regulation of reproduction, body mass, pelage properties, and immune responses of male Siberian hamsters. Short-day animals reduced gonadal and body mass, decreased spermatid nuclei and sperm numbers, molted to a whiter pelage, and increased pelage density compared to long-day animals. However, animals that experienced short days with dLAN did not show these short-day responses. Moreover, short-day specific immune responses were altered in dLAN conditions. The nocturnal activity pattern was blunted in dLAN hamsters, consistent with the observation that dLAN changed expression of the circadian clock gene, Period1. In addition, we demonstrated that expression levels of genes implicated in the photoperiodic response, Mel-1a melatonin receptor, Eyes absent 3, thyroid stimulating hormone receptor, gonadotropin-releasing hormone, and gonadotropin-inhibitory hormone, were higher in dLAN animals than those in short-day animals. These results suggest that dLAN disturbs the circadian clock function and affects the molecular mechanisms of the photoperiodic response. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Expression conservation within the circadian clock of a monocot: natural variation at barley Ppd-H1 affects circadian expression of flowering time genes, but not clock orthologs.

    PubMed

    Campoli, Chiara; Shtaya, Munqez; Davis, Seth J; von Korff, Maria

    2012-06-21

    The circadian clock is an endogenous mechanism that coordinates biological processes with daily changes in the environment. In plants, circadian rhythms contribute to both agricultural productivity and evolutionary fitness. In barley, the photoperiod response regulator and flowering-time gene Ppd-H1 is orthologous to the Arabidopsis core-clock gene PRR7. However, relatively little is known about the role of Ppd-H1 and other components of the circadian clock in temperate crop species. In this study, we identified barley clock orthologs and tested the effects of natural genetic variation at Ppd-H1 on diurnal and circadian expression of clock and output genes from the photoperiod-response pathway. Barley clock orthologs HvCCA1, HvGI, HvPRR1, HvPRR37 (Ppd-H1), HvPRR73, HvPRR59 and HvPRR95 showed a high level of sequence similarity and conservation of diurnal and circadian expression patterns, when compared to Arabidopsis. The natural mutation at Ppd-H1 did not affect diurnal or circadian cycling of barley clock genes. However, the Ppd-H1 mutant was found to be arrhythmic under free-running conditions for the photoperiod-response genes HvCO1, HvCO2, and the MADS-box transcription factor and vernalization responsive gene Vrn-H1. We suggest that the described eudicot clock is largely conserved in the monocot barley. However, genetic differentiation within gene families and differences in the function of Ppd-H1 suggest evolutionary modification in the angiosperm clock. Our data indicates that natural variation at Ppd-H1 does not affect the expression level of clock genes, but controls photoperiodic output genes. Circadian control of Vrn-H1 in barley suggests that this vernalization responsive gene is also controlled by the photoperiod-response pathway. Structural and functional characterization of the barley circadian clock will set the basis for future studies of the adaptive significance of the circadian clock in Triticeae species.

  5. Changes in growth conditions alter the male strobilus gene expression pattern in Cryptomeria japonica.

    PubMed

    Fukui, Mitsue

    2003-11-01

    Two-year old saplings grown from cuttings of Cryptomeria japonica D. Don initiate strobilus development following treatment with gibberellic acid under long-day photoperiods. At 25 degrees C with a 14-h photoperiod in a phytotron, male strobili initiated normally; however, they remained green and fell from the saplings prematurely. To examine the change in male strobilus development at the molecular level, three genes expressed specifically in male strobili were analyzed. Two were MADS box genes homologous to the B-function genes in angiosperms, CjMADS1 and CjMADS2, and the third was Cry j I, which encodes an allergen protein, and this gene is expressed mainly in microspores. Under phytotron growing conditions, the homeotic genes were expressed constantly, which reflected the extended early developmental stage of male strobili. On the other hand, Cry j I expression was detected after a long delay just before strobilus development ceased. These results indicate that the expression of the genes related to male reproductive development in C. japonica is regulated by a factor(s) that is sensitive to environmental signals.

  6. Effect of Ppd-1 on the expression of flowering-time genes in vegetative and reproductive growth stages of wheat.

    PubMed

    Kitagawa, Satoshi; Shimada, Sanae; Murai, Koji

    2012-01-01

    The photoperiod sensitivity gene Ppd-1 influences the timing of flowering in temperate cereals such as wheat and barley. The effect of Ppd-1 on the expression of flowering-time genes was assessed by examining the expression levels of the vernalization genes VRN1 and VRN3/WFT and of two CONSTANS-like genes, WCO1 and TaHd1, during vegetative and reproductive growth stages. Two near-isogenic lines (NILs) were used: the first carried a photoperiod-insensitive allele of Ppd-1 (Ppd-1a-NIL), the other, a photoperiod-sensitive allele (Ppd-1b-NIL). We found that the expression pattern of VRN1 was similar in Ppd-1a-NIL and Ppd-1b-NIL plants, suggesting that VRN1 is not regulated by Ppd-1. Under long day conditions, VRN3/WFT showed similar expression patterns in Ppd-1a-NIL and Ppd-1b-NIL plants. However, expression differed greatly under short day conditions: VRN3/WFT expression was detected in Ppd-1a-NIL plants at the 5-leaf stage when they transited from vegetative to reproductive growth; very low expression was present in Ppd-1b-NIL throughout all growth stages. Thus, the Ppd-1b allele acts to down-regulate VRN3/WFT under short day conditions. WCO1 showed high levels of expression at the vegetative stage, which decreased during the phase transition and reproductive growth stages in both Ppd-1a-NIL and Ppd-1b-NIL plants under short day conditions. By contrast to WCO1, TaHd1 was up-regulated during the reproductive stage. The level of TaHd1 expression was much higher in Ppd-1a-NIL than the Ppd-1b-NIL plants, suggesting that the Ppd-1b allele down-regulates TaHd1 under short day conditions. The present study indicates that down-regulation of VRN3/WFT together with TaHd1 is the cause of late flowering in the Ppd-1b-NIL plants under short day conditions.

  7. CONSTANS-like 9 (COL9) delays the flowering time in Oryza sativa by repressing the Ehd1 pathway.

    PubMed

    Liu, Hao; Gu, Fengwei; Dong, Shuangyu; Liu, Wei; Wang, Hui; Chen, Zhiqiang; Wang, Jiafeng

    2016-10-14

    Flowering or heading is one of most important agronomic traits in rice. It has been characterized that CONSTANS (CO) and CONSTANS-like (COL) proteins are critical flowering regulators in response to photoperiodic stress in plants. We have previously identified that the COL family member OsCOL9 can positively enhance the rice blast resistance. In the present study, we aimed to explore the functional role of OsCOL9 in modulating the photoperiodic flowering. Our data showed that overexpression of OsCOL9 delayed the flowering time under both short-day (SD) and long-day (LD) conditions, leading to suppressed expressions of EHd1, RFT and Hd3a at the mRNA Level. OsCOL9 expression exhibited two types of circadian patterns under different daylight conditions, and it could delay the heading date by suppressing the Ehd1 photoperiodic flowering pathway. In contrast, the expressions of previously reported flowering regulators were not significantly changed in OsCOL9 transgenic plants, indicating that OsCOL9 functioned independently of other flowering pathways. In addition, OsCOL9 served as a potential yield gene, and its deficiency reduced the grain number of main panicle in plants. Furthermore, yeast two-hybrid assay indicated that OsCOL9 physically interacted with Receptor for Activated C-kinase 1 (OsRACK1). Rhythmic pattern analysis suggested that OsRACK1 responded to the change of daylight, which was regulated by the circadian clock. Taken together, our results revealed that OsCOL9 could delay the flowering time in rice by repressing the Ehd1 pathway. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Concurrent hypothalamic gene expression under acute and chronic long days: Implications for initiation and maintenance of photoperiodic response in migratory songbirds.

    PubMed

    Mishra, Ila; Bhardwaj, Sanjay K; Malik, Shalie; Kumar, Vinod

    2017-01-05

    Hypothalamic expression of the thyroid hormone (TH) responsive gonadostimulatory (eya3, cga, tshβ, dio2, dio3, gnrh, gnih) and neurosteroid pathway genes (androgen receptor [ar], aromatase [cyp19], estrogen receptor [er] α and β) was examined in photosensitive redheaded buntings exposed to 2 (acute, experiment 1) or 12 (chronic, experiment 2) long days (16L:8D). Experiment 2 also included a photorefractory group. Acute long days caused a significant increase in eya3, cga, tshβ, dio2 and gnrh and decrease in dio3 mRNA levels. eya3, cga and tshβ expressions were unchanged after the chronic long days. We also found increased cyp19, erα and erβ mRNA levels after acute, and increased cyp19 and decreased erβ levels after the chronic long-day exposure. Photorefractory buntings showed expression patterns similar to that in the photosensitive state, except for high gnrh and gnih and low dio3 mRNA levels. Consistent with gene expression patterns, there were changes in fat deposition, body mass, testis size, and plasma levels of testosterone, tri-iodothyronine and thyroxine. These results show concurrent photostimulation of the TH-signalling and neurosteroid pathways, and extend the idea, based on differences in gene expression, that transitions in seasonal photoperiodic states are accomplished at the transcriptional levels in absolute photorefractory species. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Rapid Induction of Hypothalamic Iodothyronine Deiodinase Expression by Photoperiod and Melatonin in Juvenile Siberian Hamsters (Phodopus sungorus)

    PubMed Central

    Prendergast, Brian J.; Pyter, Leah M.; Kampf-Lassin, August; Patel, Priyesh N.

    2013-01-01

    Production of T3 in the mediobasal hypothalamus is critical for regulation of seasonal reproductive physiology. Type 2 iodothyronine deiodinase (DIO2) and DIO3 enzymes catalyze the prohormone T4 into biologically-active T3 and biologically-inactive rT3, respectively. In several seasonally-breeding vertebrates, DIO2 and DIO3 expression is implicated in photoperiod signal transduction in adulthood. These experiments tested the hypothesis that juvenile Siberian hamsters, which are highly responsive to photoperiod at weaning (postnatal day [PND]18), exhibit rapid and sustained changes in hypothalamic dio3 mRNA expression during photoperiod-induced and photoperiod-inhibited puberty. Hypothalamic dio2 and dio3 expression was measured via quantitative PCR in hamsters born and reared in a long-day photoperiod (15L:9D) and weaned on PND18 into short-day photoperiods (9L:15D). In SD males, hypothalamic dio3 mRNA was elevated 2.5-fold within 3 days (PND21) and continued to increase (>20-fold) through PND32; changes in dio3 mRNA preceded inhibition of gonadotropin (FSH) secretion and gonadal regression in SD. Females exhibited comparable dio3 responses to SD. In LD males, dio3 remained low and invariant from PND18–PND32. In contrast, dio2 mRNA rose conspicuously on PND21, independent of photoperiod, returning to basal levels thereafter. In LD, a single afternoon melatonin (MEL) injection on PND18 or PND20 was sufficient to increase hypothalamic dio3 mRNA, and dio3 increased in proportion to the number of successive days of MEL treatment. SD photoperiods and MEL exert rapid, sustained, and additive effects on hypothalamic dio3 mRNA, which may play a central role in inhibiting maturation of the peripubertal hypothalamo-pituitary-gonadal axis. PMID:23295738

  10. Circadian expression of clock and putative clock-controlled genes in skeletal muscle of the zebrafish.

    PubMed

    Amaral, Ian P G; Johnston, Ian A

    2012-01-01

    To identify circadian patterns of gene expression in skeletal muscle, adult male zebrafish were acclimated for 2 wk to a 12:12-h light-dark photoperiod and then exposed to continuous darkness for 86 h with ad libitum feeding. The increase in gut food content associated with the subjective light period was much diminished by the third cycle, enabling feeding and circadian rhythms to be distinguished. Expression of zebrafish paralogs of mammalian transcriptional activators of the circadian mechanism (bmal1, clock1, and rora) followed a rhythmic pattern with a ∼24-h periodicity. Peak expression of rora paralogs occurred at the beginning of the subjective light period [Zeitgeber time (ZT)07 and ZT02 for roraa and rorab], whereas the highest expression of bmal1 and clock paralogs occurred 12 h later (ZT13-15 and ZT16 for bmal and clock paralogs). Expression of the transcriptional repressors cry1a, per1a/1b, per2, per3, nr1d2a/2b, and nr1d1 also followed a circadian pattern with peak expression at ZT0-02. Expression of the two paralogs of cry2 occurred in phase with clock1a/1b. Duplicated genes had a high correlation of expression except for paralogs of clock1, nr1d2, and per1, with cry1b showing no circadian pattern. The highest expression difference was 9.2-fold for the activator bmal1b and 51.7-fold for the repressor per1a. Out of 32 candidate clock-controlled genes, only myf6, igfbp3, igfbp5b, and hsf2 showed circadian expression patterns. Igfbp3, igfbp5b, and myf6 were expressed in phase with clock1a/1b and had an average of twofold change in expression from peak to trough, whereas hsf2 transcripts were expressed in phase with cry1a and had a 7.2-fold-change in expression. The changes in expression of clock and clock-controlled genes observed during continuous darkness were also observed at similar ZTs in fish exposed to a normal photoperiod in a separate control experiment. The role of circadian clocks in regulating muscle maintenance and growth are discussed.

  11. Adaptation of oxidative phosphorylation to photoperiod-induced seasonal metabolic states in migratory songbirds.

    PubMed

    Trivedi, Amit Kumar; Malik, Shalie; Rani, Sangeeta; Kumar, Vinod

    2015-06-01

    Eukaryotic cells produce chemical energy in the form of ATP by oxidative phosphorylation of metabolic fuels via a series of enzyme mediated biochemical reactions. We propose that the rates of these reactions are altered, as per energy needs of the seasonal metabolic states in avian migrants. To investigate this, blackheaded buntings were photoperiodically induced with non-migratory, premigratory, migratory and post-migratory phenotypes. High plasma levels of free fatty acids, citrate (an intermediate that begins the TCA cycle) and malate dehydrogenase (mdh, an enzyme involved at the end of the TCA cycle) confirmed increased availability of metabolic reserves and substrates to the TCA cycle during the premigratory and migratory states, respectively. Further, daily expression pattern of genes coding for enzymes involved in the oxidative decarboxylation of pyruvate to acetyl-CoA (pdc and pdk) and oxidative phosphorylation in the TCA cycle (cs, odgh, sdhd and mdh) was monitored in the hypothalamus and liver. Reciprocal relationship between pdc and pdk expressions conformed with the altered requirements of acetyl-CoA for the TCA cycle in different metabolic states. Except for pdk, all genes had a daily expression pattern, with high mRNA expression during the day in the premigratory/migratory phenotypes, and at night (cs, odhg, sdhd and mdh) in the nonmigratory phenotype. Differences in mRNA expression patterns of pdc, sdhd and mdh, but not of pdk, cs and odgh, between the hypothalamus and liver indicated a tissue dependent metabolism in buntings. These results suggest the adaptation of oxidative phosphorylation pathway(s) at gene levels to the seasonal alternations in metabolism in migratory songbirds. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Circadian and circannual rhythms in the metabolism and ventilation of red-eared sliders (Trachemys scripta elegans).

    PubMed

    Reyes, Catalina; Milsom, William K

    2010-01-01

    Endogenous circadian and circannual rhythms may exist in the metabolism, ventilation, and breathing pattern of turtles that could further prolong dive times during daily and seasonal periods of reduced activity. To test this hypothesis, turtles were held under seasonal or constant environmental conditions over a 1-yr period, and in each season, V(O)(2) and respiratory variables were measured in all animals under both the prevailing seasonal conditions and the constant conditions for 24 h. Endogenous circadian and circannual rhythms in metabolism and ventilation occurred independent of ambient temperature, photoperiod, and activity, although long-term entrainment to daily and seasonal changes in temperature and photoperiod were required for them to be expressed. Metabolism and ventilation were always higher during the photophase, and the day-night difference was greater at any given temperature when the photoperiod was provided. When corrected for temperature, turtles had elevated metabolic and ventilation rates in the fall and spring (corresponding to the reproductive seasons) and suppressed metabolism and ventilation during winter. The strength of the circadian rhythm varied seasonally, with proportionately larger day-night differences in colder seasons. Daily and seasonal cycles in ventilation largely followed metabolism, although daily and seasonal changes did occur in the breathing pattern independent of levels of total ventilation. These endogenous circadian and circannual changes in metabolism, ventilation, and breathing pattern prolonged dive times at night and in winter and may serve to reduce the costs of breathing and transport and risk of predation.

  13. Reproductive responses to photoperiod persist in olfactory bulbectomized Siberian hamsters (Phodopus sungorus).

    PubMed

    Prendergast, Brian J; Pyter, Leah M; Galang, Jerome; Kay, Leslie M

    2009-03-02

    In reproductively photoperiodic Syrian hamsters, removal of the olfactory bulbs (OBx) leads to a marked and sustained increase in gonadotrophin secretion which prevents normal testicular regression in short photoperiods. In contrast, among reproductively nonphotoperiodic laboratory strains of rats and mice, bulbectomy unmasks reproductive responses to photoperiod. The role of the olfactory bulbs has been proposed to have opposite effects on responsiveness to photoperiod, depending on the photoperiodicity of the reproductive system; however, Syrian hamsters are the only reproductively photoperiodic rodent species for which the role of the olfactory bulb in reproductive endocrinology has been assessed. This experiment evaluated the role of the olfactory bulbs in the photoperiodic control of reproduction in Siberian hamsters (Phodopus sungorus), an established model species for the study of neural substrates mediating seasonality. Relative to control hamsters housed in long days (15 h light/day), exposure of adult male hamsters to short days (9h light/day) for 8 weeks led to a temporal expansion of the pattern of nocturnal locomotor activity, testicular regression, decreases in testosterone (T) production, and undetectable levels of plasma follicle-stimulating hormone (FSH). Bilateral olfactory bulbectomy failed to affect any of these responses to short days. The patterns of entrainment to long and short days suggests that pre-pineal mechanisms involved in photoperiodic timekeeping are functioning normally in OBx hamsters. The absence of increases in FSH following bulbectomy in long days is incompatible with the hypothesis that the olfactory bulbs provide tonic inhibition of the HPG axis in this species. In marked contrast to Syrian hamsters, the olfactory bulbs of Siberian hamsters play essentially no role in the modulation of tonic gonadotrophin production or gonadotrophin responses to photoperiod.

  14. Genetic correlations and the evolution of photoperiodic time measurement within a local population of the pitcher-plant mosquito, Wyeomyia smithii

    PubMed Central

    Bradshaw, W E; Emerson, K J; Holzapfel, C M

    2012-01-01

    The genetic relationship between the daily circadian clock and the seasonal photoperiodic timer remains a subject of intense controversy. In Wyeomyia smithii, the critical photoperiod (an overt expression of the photoperiodic timer) evolves independently of the rhythmic response to the Nanda–Hamner protocol (an overt expression of the daily circadian clock) over a wide geographical range in North America. Herein, we focus on these two processes within a single local population in which there is a negative genetic correlation between them. We show that antagonistic selection against this genetic correlation rapidly breaks it down and, in fact, reverses its sign, showing that the genetic correlation is due primarily to linkage and not to pleiotropy. This rapid reversal of the genetic correlation within a small, single population means that it is difficult to argue that circadian rhythmicity forms the necessary, causal basis for the adaptive divergence of photoperiodic time measurement within populations or for the evolution of photoperiodic time measurement among populations over a broad geographical gradient of seasonal selection. PMID:22072069

  15. Cloning and Functional Characterization of a β-Pinene Synthase from Artemisia annua That Shows a Circadian Pattern of Expression1

    PubMed Central

    Lu, Shan; Xu, Ran; Jia, Jun-Wei; Pang, Jihai; Matsuda, Seiichi P.T.; Chen, Xiao-Ya

    2002-01-01

    Artemisia annua plants produce a broad range of volatile compounds, including monoterpenes, which contribute to the characteristic fragrance of this medicinal species. A cDNA clone, QH6, contained an open reading frame encoding a 582-amino acid protein that showed high sequence identity to plant monoterpene synthases. The prokaryotically expressed QH6 fusion protein converted geranyl diphosphate to (−)-β-pinene and (−)-α-pinene in a 94:6 ratio. QH6 was predominantly expressed in juvenile leaves 2 weeks postsprouting. QH6 transcript levels were transiently reduced following mechanical wounding or fungal elicitor treatment, suggesting that this gene is not directly involved in defense reaction induced by either of these treatments. Under a photoperiod of 12 h/12 h (light/dark), the abundance of QH6 transcripts fluctuated in a diurnal pattern that ebbed around 3 h before daybreak (9th h in the dark phase) and peaked after 9 h in light (9th h in the light phase). The contents of (−)-β-pinene in juvenile leaves and in emitted volatiles also varied in a diurnal rhythm, correlating strongly with mRNA accumulation. When A. annua was entrained by constant light or constant dark conditions, QH6 transcript accumulation continued to fluctuate with circadian rhythms. Under constant light, advanced cycles of fluctuation of QH6 transcript levels were observed, and under constant dark, the cycle was delayed. However, the original diurnal pattern could be regained when the plants were returned to the normal light/dark (12 h/12 h) photoperiod. This is the first report that monoterpene biosynthesis is transcriptionally regulated in a circadian pattern. PMID:12226526

  16. The role of the pineal gland in the photoperiodic control of bird song frequency and repertoire in the house sparrow, Passer domesticus.

    PubMed

    Wang, Gang; Harpole, Clifford E; Paulose, Jiffin; Cassone, Vincent M

    2014-04-01

    Temperate zone birds are highly seasonal in many aspects of their physiology. In mammals, but not in birds, the pineal gland is an important component regulating seasonal patterns of primary gonadal functions. Pineal melatonin in birds instead affects seasonal changes in brain song control structures, suggesting the pineal gland regulates seasonal song behavior. The present study tests the hypothesis that the pineal gland transduces photoperiodic information to the control of seasonal song behavior to synchronize this important behavior to the appropriate phenology. House sparrows, Passer domesticus, expressed a rich array of vocalizations ranging from calls to multisyllabic songs and motifs of songs that varied under a regimen of different photoperiodic conditions that were simulated at different times of year. Control (SHAM) birds exhibited increases in song behavior when they were experimentally transferred from short days, simulating winter, to equinoctial and long days, simulating summer, and decreased vocalization when they were transferred back to short days. When maintained in long days for longer periods, the birds became reproductively photorefractory as measured by the yellowing of the birds' bills; however, song behavior persisted in the SHAM birds, suggesting a dissociation of reproduction from the song functions. Pinealectomized (PINX) birds expressed larger, more rapid increases in daily vocal rate and song repertoire size than did the SHAM birds during the long summer days. These increases gradually declined upon the extension of the long days and did not respond to the transfer to short days as was observed in the SHAM birds, suggesting that the pineal gland conveys photoperiodic information to the vocal control system, which in turn regulates song behavior. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Functional characterisation of HvCO1, the barley (Hordeum vulgare) flowering time ortholog of CONSTANS.

    PubMed

    Campoli, Chiara; Drosse, Benedikt; Searle, Iain; Coupland, George; von Korff, Maria

    2012-03-01

    Variation in photoperiod response is a major factor determining plant development and the agronomic performance of crops. The genetic control of photoperiodic flowering has been elucidated in the model plant Arabidopsis, and many of the identified genes are structurally conserved in the grasses. In this study, HvCO1, the closest barley ortholog of the key photoperiod response gene CONSTANS in Arabidopsis, was over-expressed in the spring barley Golden Promise. Over-expression of HvCO1 accelerated time to flowering in long- and short-day conditions and caused up-regulation of HvFT1 mRNA under long-day conditions. However, the transgenic plants retained a response to photoperiod, suggesting the presence of photoperiod response factors acting downstream of HvCO1 transcription. Analysis of a population segregating for HvCO1 over-expression and natural genetic variation at Ppd-H1 demonstrated that Ppd-H1 acts downstream of HvCO1 transcription on HvFT1 expression and flowering. Furthermore, variation at Ppd-H1 did not affect diurnal expression of HvCO1 or HvCO2. Over-expression of HvCO1 increased transcription of the spring allele of Vrn-H1 in long- and short-day conditions, while genetic variation at Ppd-H1 did not affect Vrn-H1 expression. Over-expression of HvCO1 and natural genetic variation at Ppd-H1 accelerated inflorescence development and stem elongation. Thus, HvCO1 probably induces flowering by activating HvFT1 whilst Ppd-H1 regulates HvFT1 independently of HvCO1 mRNA, and all three genes also appear to have a strong effect in promoting inflorescence development. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  18. Sleep deprivation attenuates endotoxin-induced cytokine gene expression independent of day length and circulating cortisol in male Siberian hamsters (Phodopus sungorus).

    PubMed

    Ashley, Noah T; Walton, James C; Haim, Achikam; Zhang, Ning; Prince, Laura A; Fruchey, Allison M; Lieberman, Rebecca A; Weil, Zachary M; Magalang, Ulysses J; Nelson, Randy J

    2013-07-15

    Sleep is restorative, whereas reduced sleep leads to negative health outcomes, such as increased susceptibility to disease. Sleep deprivation tends to attenuate inflammatory responses triggered by infection or exposure to endotoxin, such as bacterial lipopolysaccharide (LPS). Previous studies have demonstrated that Siberian hamsters (Phodopus sungorus), photoperiodic rodents, attenuate LPS-induced fever, sickness behavior and upstream pro-inflammatory gene expression when adapted to short day lengths. Here, we tested whether manipulation of photoperiod alters the suppressive effects of sleep deprivation upon cytokine gene expression after LPS challenge. Male Siberian hamsters were adapted to long (16 h:8 h light:dark) or short (8 h:16 h light:dark) photoperiods for >10 weeks, and were deprived of sleep for 24 h using the multiple platform method or remained in their home cage. Hamsters received an intraperitoneal injection of LPS or saline (control) 18 h after starting the protocol, and were killed 6 h later. LPS increased liver and hypothalamic interleukin-1 (IL-1) and tumor necrosis factor-alpha (TNF) gene expression compared with vehicle. Among LPS-challenged hamsters, sleep deprivation reduced IL-1 mRNA levels in liver and hypothalamus, but not TNF. IL-1 attenuation was independent of circulating baseline cortisol, which did not increase after sleep deprivation. Conversely, photoperiod altered baseline cortisol, but not pro-inflammatory gene expression in sleep-deprived hamsters. These results suggest that neither photoperiod nor glucocorticoids influence the suppressive effect of sleep deprivation upon LPS-induced inflammation.

  19. Season-dependent effects of photoperiod and temperature on circadian rhythm of arylalkylamine N-acetyltransferase2 gene expression in pineal organ of an air-breathing catfish, Clarias gariepinus.

    PubMed

    Singh, Kshetrimayum Manisana; Saha, Saurav; Gupta, Braj Bansh Prasad

    2017-08-01

    Arylalkylamine N-acetyltransferase (AANAT) activity, aanat gene expression and melatonin production have been reported to exhibit prominent circadian rhythm in the pineal organ of most species of fish. Three types of aanat genes are expressed in fish, but the fish pineal organ predominantly expresses aanat2 gene. Increase and decrease in daylength is invariably associated with increase and decrease in temperature, respectively. But so far no attempt has been made to delineate the role of photoperiod and temperature in regulation of the circadian rhythm of aanat2 gene expression in the pineal organ of any fish with special reference to seasons. Therefore, we studied effects of various lighting regimes (12L-12D, 16L-8D, 8L-16D, LL and DD) at a constant temperature (25°C) and effects of different temperatures (15°, 25° and 35°C) under a common photoperiod 12L-12D on circadian rhythm of aanat2 gene expression in the pineal organ of Clarias gariepinus during summer and winter seasons. Aanat2 gene expression in fish pineal organ was studied by measuring aanat2 mRNA levels using Real-Time PCR. Our findings indicate that the pineal organ of C. gariepinus exhibits a prominent circadian rhythm of aanat2 gene expression irrespective of photoperiods, temperatures and seasons, and the circadian rhythm of aanat2 gene expression responds differently to different photoperiods and temperatures in a season-dependent manner. Existence of circadian rhythm of aanat2 gene expression in pineal organs maintained in vitro under 12L-12D and DD conditions as well as a free running rhythm of the gene expression in pineal organ of the fish maintained under LL and DD conditions suggest that the fish pineal organ possesses an endogenous circadian oscillator, which is entrained by light-dark cycle. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. An Evolutionarily Conserved DOF-CONSTANS Module Controls Plant Photoperiodic Signaling1[OPEN

    PubMed Central

    2015-01-01

    The response to daylength is a crucial process that evolved very early in plant evolution, entitling the early green eukaryote to predict seasonal variability and attune its physiological responses to the environment. The photoperiod responses evolved into the complex signaling pathways that govern the angiosperm floral transition today. The Chlamydomonas reinhardtii DNA-Binding with One Finger (CrDOF) gene controls transcription in a photoperiod-dependent manner, and its misexpression influences algal growth and viability. In short days, CrDOF enhances CrCO expression, a homolog of plant CONSTANS (CO), by direct binding to its promoter, while it reduces the expression of cell division genes in long days independently of CrCO. In Arabidopsis (Arabidopsis thaliana), transgenic plants overexpressing CrDOF show floral delay and reduced expression of the photoperiodic genes CO and FLOWERING LOCUS T. The conservation of the DOF-CO module during plant evolution could be an important clue to understanding diversification by the inheritance of conserved gene toolkits in key developmental programs. PMID:25897001

  1. Photoperiodic regulation of cellular retinol binding protein, CRBP1 [corrected] and nestin in tanycytes of the third ventricle ependymal layer of the Siberian hamster.

    PubMed

    Barrett, Perry; Ivanova, Elena; Graham, E Scott; Ross, Alexander W; Wilson, Dana; Plé, Helene; Mercer, Julian G; Ebling, Francis J; Schuhler, Sandrine; Dupré, Sandrine M; Loudon, Andrew; Morgan, Peter J

    2006-12-01

    Tanycytes in the ependymal layer of the third ventricle act both as a barrier and a communication gateway between the cerebrospinal fluid, brain and portal blood supply to the pituitary gland. However, the range, importance and mechanisms involved in the function of tanycytes remain to be explored. In this study, we have utilized a photoperiodic animal to examine the expression of three unrelated gene sequences in relation to photoperiod-induced changes in seasonal physiology and behaviour. We demonstrate that cellular retinol binding protein [corrected] (CRBP1), a retinoic acid transport protein, GPR50, an orphan G-protein-coupled receptor and nestin, an intermediate filament protein, are down-regulated in short-day photoperiods. The distribution of the three sequences is very similar, with expression located in cells with tanycyte morphology in the region of the ependymal layer where tanycytes are located. Furthermore, CRBP1 expression in the ependymal layer is shown to be independent of a circadian clock and altered testosterone levels associated with testicular regression in short photo-period. Pinealectomy of Siberian hamsters demonstrates CRBP1 expression is likely to be dependent on melatonin output from the pineal gland. This provides evidence that tanycytes are seasonally responsive cells and are likely to be an important part of the mechanism to facilitate seasonal physiology and behaviour in the Siberian hamster.

  2. Photoperiod affects daily torpor and tissue fatty acid composition in deer mice

    NASA Astrophysics Data System (ADS)

    Geiser, Fritz; McAllan, B. M.; Kenagy, G. J.; Hiebert, Sara M.

    2007-04-01

    Photoperiod and dietary lipids both influence thermal physiology and the pattern of torpor of heterothermic mammals. The aim of the present study was to test the hypothesis that photoperiod-induced physiological changes are linked to differences in tissue fatty acid composition of deer mice, Peromyscus maniculatus (˜18-g body mass). Deer mice were acclimated for >8 weeks to one of three photoperiods (LD, light/dark): LD 8:16 (short photoperiod), LD 12:12 (equinox photoperiod), and LD 16:8 (long photoperiod). Deer mice under short and equinox photoperiods showed a greater occurrence of torpor than those under long photoperiods (71, 70, and 14%, respectively). The duration of torpor bouts was longest in deer mice under short photoperiod (9.3 ± 2.6 h), intermediate under equinox photoperiod (5.1 ± 0.3 h), and shortest under long photoperiod (3.7 ± 0.6 h). Physiological differences in torpor use were associated with significant alterations of fatty acid composition in ˜50% of the major fatty acids from leg muscle total lipids, whereas white adipose tissue fatty acid composition showed fewer changes. Our results provide the first evidence that physiological changes due to photoperiod exposure do result in changes in lipid composition in the muscle tissue of deer mice and suggest that these may play a role in survival of low body temperature and metabolic rate during torpor, thus, enhancing favourable energy balance over the course of the winter.

  3. Endotoxin-induced inflammation disturbs melatonin secretion in ewe

    PubMed Central

    Herman, Andrzej Przemysław; Wojtulewicz, Karolina; Bochenek, Joanna; Krawczyńska, Agata; Antushevich, Hanna; Pawlina, Bartosz; Zielińska-Górska, Marlena; Herman, Anna; Romanowicz, Katarzyna; Tomaszewska-Zaremba, Dorota

    2017-01-01

    Objective The study examined the effect of intravenous administration of bacterial endotoxin—lipopolysaccharide (LPS) —on the nocturnal secretion of melatonin and on the expression of enzymes of the melatonin biosynthetic pathway in the pineal gland of ewes, taking into account two different photoperiodic conditions: short-night (SN; n = 12) and long-night (LN; n = 12). Methods In both experiments, animals (n = 12) were randomly divided into two groups: control (n = 6) and LPS-treated (n = 6) one. Two hours after sunset, animals received an injection of LPS or saline. Blood samples were collected starting one hour after sunset and continuing for 3 hours after the treatment. The ewes were euthanized 3 hours after LPS/saline treatment. The concentration of hormones in plasma was assayed by radioimmunoassay. In the pineal gland, the content of serotonin and its metabolite was determined by HPLC; whereas the expression of examined genes and protein was assayed using real-time polymerase chain reaction and Western Blot, respectively. Results Endotoxin administration lowered (p<0.05) levels of circulating melatonin in animals from LN photoperiod only during the first hour after treatment, while in ewes from SN photoperiod only in the third hour after the injection. Inflammation more substantially suppressed biosynthesis of melatonin in ewes from SN photoperiod, which were also characterised by lower (p<0.05) cortisol concentrations after LPS treatment compared with animals from LN photoperiod. In the pineal gland of ewes subjected to SN photoperiod, LPS reduced (p<0.05) serotonin content and the expression of melatonin biosynthetic pathway enzymes, such as tryptophan hydroxylase and arylalkylamine-N-acetyltransferase. Pineal activity may be disturbed by circulating LPS and proinflammatory cytokines because the expression of mRNAs encoding their corresponding receptors was determined in this gland. Conclusion The present study showed that peripheral inflammation reduces the secretion of melatonin, but this effect may be influenced by the photoperiod. PMID:28728370

  4. The effect of latitude on photoperiodic control of gonadal maturation, regression and molt in birds.

    PubMed

    Dawson, Alistair

    2013-09-01

    Photoperiod is the major cue used by birds to time breeding seasons and molt. However, the annual cycle in photoperiod changes with latitude. Within species, for temperate and high latitude species, gonadal maturation and breeding start earlier at lower latitudes but regression and molt both occur at similar times at different latitudes. Earlier gonadal maturation can be explained simply by the fact that considerable maturation occurs before the equinox when photoperiod is longer at lower latitudes - genetic differences between populations are not necessary to explain earlier breeding at lower latitudes. Gonadal regression is caused either by absolute photorefractoriness or, in some species with long breeding seasons, relative photorefractoriness. In either case, the timing of regression and molt cannot be explained by absolute prevailing photoperiod or rate of change in photoperiod - birds appear to be using more subtle cues from the pattern of change in photoperiod. However, there may be no difference between absolute and relative photorefractory species in how they utilise the annual cycle in photoperiod to time regression. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Central Interleukin-1β Suppresses the Nocturnal Secretion of Melatonin

    PubMed Central

    Herman, A. P.; Bochenek, J.; Król, K.; Krawczyńska, A.; Antushevich, H.; Pawlina, B.; Herman, A.; Romanowicz, K.; Tomaszewska-Zaremba, D.

    2016-01-01

    In vertebrates, numerous processes occur in a rhythmic manner. The hormonal signal reliably reflecting the environmental light conditions is melatonin. Nocturnal melatonin secretion patterns could be disturbed in pathophysiological states, including inflammation, Alzheimer's disease, and depression. All of these states share common elements in their aetiology, including the overexpression of interleukin- (IL-) 1β in the central nervous system. Therefore, the present study was designed to determine the effect of the central injection of exogenous IL-1β on melatonin release and on the expression of the enzymes of the melatonin biosynthetic pathway in the pineal gland of ewe. It was found that intracerebroventricular injections of IL-1β (50 µg/animal) suppressed (P < 0.05) nocturnal melatonin secretion in sheep regardless of the photoperiod. This may have resulted from decreased (P < 0.05) synthesis of the melatonin intermediate serotonin, which may have resulted, at least partially, from a reduced expression of tryptophan hydroxylase. IL-1β also inhibited (P < 0.05) the expression of the melatonin rhythm enzyme arylalkylamine-N-acetyltransferase and hydroxyindole-O-methyltransferase. However, the ability of IL-1β to affect the expression of these enzymes was dependent upon the photoperiod. Our study may shed new light on the role of central IL-1β in the aetiology of disruptions in melatonin secretion. PMID:27212805

  6. The effect of day-neutral mutations in barley and wheat on the interaction between photoperiod and vernalization.

    PubMed

    Turner, Adrian S; Faure, Sébastien; Zhang, Yang; Laurie, David A

    2013-09-01

    Vernalization-2 (Vrn-2) is the major flowering repressor in temperate cereals. It is only expressed under long days in wild-type plants. We used two day-neutral (photoperiod insensitive) mutations that allow rapid flowering in short or long days to investigate the day length control of Vrn-2. The barley (Hordeum vulgare) early maturity8 (eam8) mutation affects the barley ELF3 gene. eam8 mutants disrupt the circadian clock resulting in elevated expression of Ppd-H1 and the floral activator HvFT1 under short or long days. When eam8 was crossed into a genetic background with a vernalization requirement Vrn-2 was expressed under all photoperiods and the early flowering phenotype was partially repressed in unvernalized (UV) plants, likely due to competition between the constitutively active photoperiod pathway and the repressing effect of Vrn-2. We also investigated the wheat (Triticum aestivum) Ppd-D1a mutation. This differs from eam8 in causing elevated levels of Ppd-1 and TaFT1 expression without affecting the circadian clock. We used genotypes that differed in "short-day vernalization". Short days were effective in promoting flowering in individuals wild type at Ppd-D1, but not in individuals that carry the Ppd-D1a mutation. The latter showed Vrn-2 expression in short days. In summary, eam8 and Ppd-D1a mimic long days in terms of photoperiod response, causing Vrn-2 to become aberrantly expressed (in short days). As Ppd-D1a does not affect the circadian clock, this also shows that clock regulation of Vrn-2 operates indirectly through one or more downstream genes, one of which may be Ppd-1.

  7. The impact of photoperiod insensitive Ppd-1a mutations on the photoperiod pathway across the three genomes of hexaploid wheat (Triticum aestivum).

    PubMed

    Shaw, Lindsay M; Turner, Adrian S; Laurie, David A

    2012-07-01

    Flowering time is a trait that has been extensively altered during wheat domestication, enabling it to be highly productive in diverse environments and providing a rich source of variation for studying adaptation mechanisms. Hexaploid wheat is ancestrally a long-day plant, but many environments require varieties with photoperiod insensitivity (PI) that can flower in short days. PI results from mutations in the Ppd-1 gene on the A, B or D genomes, with individual mutations conferring different degrees of earliness. The basis of this is poorly understood. Using a common genetic background, the effects of A, B and D genome PI mutations on genes of the circadian clock and photoperiod pathway were studied using genome-specific expression assays. Ppd-1 PI mutations did not affect the clock or immediate clock outputs, but affected TaCO1 and TaFT1, with a reduction in TaCO1 expression as TaFT1 expression increased. Therefore, although Ppd-1 is related to PRR genes of the Arabidopsis circadian clock, Ppd-1 affects flowering by an alternative route, most likely by upregulating TaFT1 with a feedback effect that reduces TaCO1 expression. Individual genes in the circadian clock and photoperiod pathway were predominantly expressed from one genome, and there was no genome specificity in Ppd-1 action. Lines combining PI mutations on two or three genomes had enhanced earliness with higher levels, but not earlier induction, of TaFT1, showing that there is a direct quantitative relationship between Ppd-1 mutations, TaFT1 expression and flowering. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  8. Distinct gene networks modulate floral induction of autonomous maize and photoperiod-dependent teosinte.

    PubMed

    Minow, Mark A A; Ávila, Luis M; Turner, Katie; Ponzoni, Elena; Mascheretti, Iride; Dussault, Forest M; Lukens, Lewis; Rossi, Vincenzo; Colasanti, Joseph

    2018-05-25

    Temperate maize was domesticated from its tropical ancestor, teosinte. Whereas temperate maize is an autonomous day-neutral plant, teosinte is an obligate short-day plant that requires uninterrupted long nights to induce flowering. Leaf-derived florigenic signals trigger reproductive growth in both teosinte and temperate maize. To study the genetic mechanisms underlying floral inductive pathways in maize and teosinte, mRNA and small RNA genome-wide expression analyses were conducted on leaf tissue from plants that were induced or not induced to flower. Transcriptome profiles reveal common differentially expressed genes during floral induction, but a comparison of candidate flowering time genes indicates that photoperiod and autonomous pathways act independently. Expression differences in teosinte are consistent with the current paradigm for photoperiod-induced flowering, where changes in circadian clock output trigger florigen production. Conversely, differentially expressed genes in temperate maize link carbon partitioning and flowering, but also show altered expression of circadian clock genes that are distinct from those altered upon photoperiodic induction in teosinte. Altered miRNA399 levels in both teosinte and maize suggest a novel common connection between flowering and phosphorus perception. These findings provide insights into the molecular mechanisms underlying a strengthened autonomous pathway that enabled maize growth throughout temperate regions.

  9. An Evolutionarily Conserved DOF-CONSTANS Module Controls Plant Photoperiodic Signaling.

    PubMed

    Lucas-Reina, Eva; Romero-Campero, Francisco J; Romero, José M; Valverde, Federico

    2015-06-01

    The response to daylength is a crucial process that evolved very early in plant evolution, entitling the early green eukaryote to predict seasonal variability and attune its physiological responses to the environment. The photoperiod responses evolved into the complex signaling pathways that govern the angiosperm floral transition today. The Chlamydomonas reinhardtii DNA-Binding with One Finger (CrDOF) gene controls transcription in a photoperiod-dependent manner, and its misexpression influences algal growth and viability. In short days, CrDOF enhances CrCO expression, a homolog of plant CONSTANS (CO), by direct binding to its promoter, while it reduces the expression of cell division genes in long days independently of CrCO. In Arabidopsis (Arabidopsis thaliana), transgenic plants overexpressing CrDOF show floral delay and reduced expression of the photoperiodic genes CO and FLOWERING LOCUS T. The conservation of the DOF-CO module during plant evolution could be an important clue to understanding diversification by the inheritance of conserved gene toolkits in key developmental programs. © 2015 American Society of Plant Biologists. All Rights Reserved.

  10. Photoperiodic Modulation of Circadian Clock and Reproductive Axis Gene Expression in the Pre-Pubertal European Sea Bass Brain

    PubMed Central

    Martins, Rute S. T.; Gomez, Ana; Zanuy, Silvia; Carrillo, Manuel; Canário, Adelino V. M.

    2015-01-01

    The acquisition of reproductive competence requires the activation of the brain-pituitary-gonad (BPG) axis, which in most vertebrates, including fishes, is initiated by changes in photoperiod. In the European sea bass long-term exposure to continuous light (LL) alters the rhythm of reproductive hormones, delays spermatogenesis and reduces the incidence of precocious males. In contrast, an early shift from long to short photoperiod (AP) accelerates spermatogenesis. However, how photoperiod affects key genes in the brain to trigger the onset of puberty is still largely unknown. Here, we investigated if the integration of the light stimulus by clock proteins is sufficient to activate key genes that trigger the BPG axis in the European sea bass. We found that the clock genes clock, npas2, bmal1 and the BPG genes gnrh, kiss and kissr share conserved transcription factor frameworks in their promoters, suggesting co-regulation. Other gene promoters of the BGP axis were also predicted to be co-regulated by the same frameworks. Co-regulation was confirmed through gene expression analysis of brains from males exposed to LL or AP photoperiod compared to natural conditions: LL fish had suppressed gnrh1, kiss2, galr1b and esr1, while AP fish had stimulated npas2, gnrh1, gnrh2, kiss2, kiss1rb and galr1b compared to NP. It is concluded that fish exposed to different photoperiods present significant expression differences in some clock and reproductive axis related genes well before the first detectable endocrine and morphological responses of the BPG axis. PMID:26641263

  11. Lunar Phase-Dependent Expression of Cryptochrome and a Photoperiodic Mechanism for Lunar Phase-Recognition in a Reef Fish, Goldlined Spinefoot

    PubMed Central

    Fukushiro, Masato; Takeuchi, Takahiro; Takeuchi, Yuki; Hur, Sung-Pyo; Sugama, Nozomi; Takemura, Akihiro; Kubo, Yoko; Okano, Keiko; Okano, Toshiyuki

    2011-01-01

    Lunar cycle-associated physiology has been found in a wide variety of organisms. Recent study has revealed that mRNA levels of Cryptochrome (Cry), one of the circadian clock genes, were significantly higher on a full moon night than on a new moon night in coral, implying the involvement of a photoreception system in the lunar-synchronized spawning. To better establish the generalities surrounding such a mechanism and explore the underlying molecular mechanism, we focused on the relationship between lunar phase, Cry gene expression, and the spawning behavior in a lunar-synchronized spawner, the goldlined spinefoot (Siganus guttatus), and we identified two kinds of Cry genes in this animal. Their mRNA levels showed lunar cycle-dependent expression in the medial part of the brain (mesencephalon and diencephalon) peaking at the first quarter moon. Since this lunar phase coincided with the reproductive phase of the goldlined spinefoot, Cry gene expression was considered a state variable in the lunar phase recognition system. Based on the expression profiles of SgCrys together with the moonlight's pattern of timing and duration during its nightly lunar cycle, we have further speculated on a model of lunar phase recognition for reproductive control in the goldlined spinefoot, which integrates both moonlight and circadian signals in a manner similar to photoperiodic response. PMID:22163321

  12. Lunar phase-dependent expression of cryptochrome and a photoperiodic mechanism for lunar phase-recognition in a reef fish, goldlined spinefoot.

    PubMed

    Fukushiro, Masato; Takeuchi, Takahiro; Takeuchi, Yuki; Hur, Sung-Pyo; Sugama, Nozomi; Takemura, Akihiro; Kubo, Yoko; Okano, Keiko; Okano, Toshiyuki

    2011-01-01

    Lunar cycle-associated physiology has been found in a wide variety of organisms. Recent study has revealed that mRNA levels of Cryptochrome (Cry), one of the circadian clock genes, were significantly higher on a full moon night than on a new moon night in coral, implying the involvement of a photoreception system in the lunar-synchronized spawning. To better establish the generalities surrounding such a mechanism and explore the underlying molecular mechanism, we focused on the relationship between lunar phase, Cry gene expression, and the spawning behavior in a lunar-synchronized spawner, the goldlined spinefoot (Siganus guttatus), and we identified two kinds of Cry genes in this animal. Their mRNA levels showed lunar cycle-dependent expression in the medial part of the brain (mesencephalon and diencephalon) peaking at the first quarter moon. Since this lunar phase coincided with the reproductive phase of the goldlined spinefoot, Cry gene expression was considered a state variable in the lunar phase recognition system. Based on the expression profiles of SgCrys together with the moonlight's pattern of timing and duration during its nightly lunar cycle, we have further speculated on a model of lunar phase recognition for reproductive control in the goldlined spinefoot, which integrates both moonlight and circadian signals in a manner similar to photoperiodic response.

  13. Determination of Photoperiod-Sensitive Phase in Chickpea (Cicer arietinum L.)

    PubMed Central

    Daba, Ketema; Warkentin, Thomas D.; Bueckert, Rosalind; Todd, Christopher D.; Tar’an, Bunyamin

    2016-01-01

    Photoperiod is one of the major environmental factors determining time to flower initiation and first flower appearance in plants. In chickpea, photoperiod sensitivity, expressed as delayed to flower under short days (SD) as compared to long days (LD), may change with the growth stage of the crop. Photoperiod-sensitive and -insensitive phases were identified by experiments in which individual plants were reciprocally transferred in a time series from LD to SD and vice versa in growth chambers. Eight chickpea accessions with differing degrees of photoperiod sensitivity were grown in two separate chambers, one of which was adjusted to LD (16 h light/8 h dark) and the other adjusted to SD (10 h light/14 h dark), with temperatures of 22/16°C (12 h light/12 h dark) in both chambers. The accessions included day-neutral (ICCV 96029 and FLIP 98-142C), intermediate (ICC 15294, ICC 8621, ILC 1687, and ICC 8855), and photoperiod-sensitive (CDC Corinne and CDC Frontier) responses. Control plants were grown continuously under the respective photoperiods. Reciprocal transfers of plants between the SD and LD photoperiod treatments were made at seven time points after sowing, customized for each accession based on previous data. Photoperiod sensitivity was detected in intermediate and photoperiod-sensitive accessions. For the day-neutral accession, ICCV 96029, there was no significant difference in the number of days to flowering of the plants grown under SD and LD as well as subsequent transfers. In photoperiod-sensitive accessions, three different phenological phases were identified: a photoperiod-insensitive pre-inductive phase, a photoperiod-sensitive inductive phase, and a photoperiod-insensitive post-inductive phase. The photoperiod-sensitive phase extends after flower initiation to full flower development. Results from this research will help to develop cultivars with shorter pre-inductive photoperiod-insensitive and photoperiod-sensitive phases to fit to regions with short growing seasons. PMID:27148306

  14. Effect of photoperiod change on chronobiology of cercarial emergence of Schistosoma japonicum derived from hilly and marshy regions of China.

    PubMed

    Wang, Su-Rong; Zhu, Yuan-Jian; Ge, Qing-Peng; Yang, Meng-Jia; Huang, Ji-Lei; Huang, Wen-Qiao; Zhuge, Hong-Xiang; Lu, Da-Bing

    2015-12-01

    The chronobiology of cercarial emergence appeared to be a genetically controlled behavior, adapted to definitive host species, for schistosome. However, a few physiological and ecological factors, for example the change of photoperiod, were reported to affect the rhythmic emergence of cercariae. Therefore, the effect of photoperiod change on cercarial emergence of two Schistosoma japonicum isolates, the hilly and the marshland, was investigated. Four shedding experiments each under a different photoperiod were conducted. Under a natural photoperiod, two distinct shedding modes, one from the hilly region and one from the marshland, were observed. Under a reversed photoperiod, the regular pattern (i.e. under a natural photoperiod) of S. japonicum cercarial emergence was reversed for the marshland isolate and disappeared for the hilly isolate. With an input of a 2 h darkness from 7am to 9am, the cercarial emergence peak were delayed for the two isolates; whereas with an input of a 2 h darkness from 5pm to 7pm, neither effect on the cercarial emergence rhythm was observed. The total cercariae emerged for both parasite isolates varied with a different photoperiod. The results indicate that the change of photoperiod could affect the chronobiology of S japonicum cercarial emergence. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Low temperatures are required to induce the development of fertile flowers in transgenic male and female early flowering poplar (Populus tremula L.)

    PubMed Central

    Hoenicka, Hans; Lehnhardt, Denise; Briones, Valentina; Nilsson, Ove; Fladung, Matthias

    2016-01-01

    Until now, artificial early flowering poplar systems have mostly led to the development of sterile flowers. In this study, several strategies aimed at inducting fertile flowers in pHSP::AtFT transgenic poplar were evaluated, in particular the influence of temperature and photoperiod. Our results provide evidence that temperature, and not photoperiod, is the key factor required for the development of fertile flowers in early flowering poplar. Fertile flowers were only obtained when a cold treatment phase of several weeks was used after the heat treatment phase. Heat treatments induced AtFT gene activity through activation of the heat-shock promoter (pHSP). Photoperiod did not show a similar influence on flower fertility as pollen grains were obtained under both long- and short-day conditions. Fertility was confirmed in flowers of both male and female plants. For the first time, crosses were successfully performed with transgenic female early flowering poplar. All mature flowers obtained after 8 weeks of inductive treatments were fertile. Gene expression studies also confirmed that cold temperatures influenced expression of poplar genes homologous to ‘pollen development genes’ from Arabidopsis thaliana (L.) Heynh. Homology and expression patterns suggested a role for PtTDF1, PtBAM1, PtSERK1/2 and PtMS1 on anther and pollen development in poplar flowers. The system developed in this study allows a fast and very reliable induction of fertile poplar flowers in a very short period of time. The non-reproductive phase, usually 7–10 years, can now be shortened to 6–10 months, and fertile flowers can be obtained independently of the season. This system is a reliable tool for breeding purposes (high-speed breeding technology), genomics and biosafety research. PMID:27052434

  16. EARLY FLOWERING3 Regulates Flowering in Spring Barley by Mediating Gibberellin Production and FLOWERING LOCUS T Expression[C][W

    PubMed Central

    Boden, Scott A.; Weiss, David; Ross, John J.; Davies, Noel W.; Trevaskis, Ben; Chandler, Peter M.; Swain, Steve M.

    2014-01-01

    EARLY FLOWERING3 (ELF3) is a circadian clock gene that contributes to photoperiod-dependent flowering in plants, with loss-of-function mutants in barley (Hordeum vulgare), legumes, and Arabidopsis thaliana flowering early under noninductive short-day (SD) photoperiods. The barley elf3 mutant displays increased expression of FLOWERING LOCUS T1 (FT1); however, it remains unclear whether this is the only factor responsible for the early flowering phenotype. We show that the early flowering and vegetative growth phenotypes of the barley elf3 mutant are strongly dependent on gibberellin (GA) biosynthesis. Expression of the central GA biosynthesis gene, GA20oxidase2, and production of the bioactive GA, GA1, were significantly increased in elf3 leaves under SDs, relative to the wild type. Inhibition of GA biosynthesis suppressed the early flowering of elf3 under SDs independently of FT1 and was associated with altered expression of floral identity genes at the developing apex. GA is also required for normal flowering of spring barley under inductive photoperiods, with chemical and genetic attenuation of the GA biosynthesis and signaling pathways suppressing inflorescence development under long-day conditions. These findings illustrate that GA is an important floral promoting signal in barley and that ELF3 suppresses flowering under noninductive photoperiods by blocking GA production and FT1 expression. PMID:24781117

  17. Fragaria vesca CONSTANS controls photoperiodic flowering and vegetative development.

    PubMed

    Kurokura, Takeshi; Samad, Samia; Koskela, Elli; Mouhu, Katriina; Hytönen, Timo

    2017-10-13

    According to the external coincidence model, photoperiodic flowering occurs when CONSTANS (CO) mRNA expression coincides with light in the afternoon of long days (LDs), leading to the activation of FLOWERING LOCUS T (FT). CO has evolved in Brassicaceae from other Group Ia CO-like (COL) proteins which do not control photoperiodic flowering in Arabidopsis. COLs in other species have evolved different functions as floral activators or even as repressors. To understand photoperiodic development in the perennial rosaceous model species woodland strawberry, we functionally characterized FvCO, the only Group Ia COL in its genome. We demonstrate that FvCO has a major role in the photoperiodic control of flowering and vegetative reproduction through runners. FvCO is needed to generate a bimodal rhythm of FvFT1 which encodes a floral activator in the LD accession Hawaii-4: a sharp FvCO expression peak at dawn is followed by the FvFT1 morning peak in LDs indicating possible direct regulation, but additional factors that may include FvGI and FvFKF1 are probably needed to schedule the second FvFT1 peak around dusk. These results demonstrate that although FvCO and FvFT1 play major roles in photoperiodic development, the CO-based external coincidence around dusk is not fully applicable to the woodland strawberry. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Light Inhibition of Shoot Regeneration Is Regulated by Endogenous Abscisic Acid Level in Calli Derived from Immature Barley Embryos

    PubMed Central

    Rikiishi, Kazuhide; Matsuura, Takakazu; Ikeda, Yoko; Maekawa, Masahiko

    2015-01-01

    Shoot regeneration in calli derived from immature barley embryos is regulated by light conditions during the callus-induction period. Barley cultivars Kanto Nijo-5 (KN5) and K-3 (K3) showed lower efficiency of shoot regeneration in a 16-h photoperiod during callus-induction than those in continuous darkness, whereas shoot regeneration was enhanced in cultures under a 16-h photoperiod in Golden Promise (GP) and Lenins (LN). These cultivars were classified as photo-inhibition type (KN5 and K3) or photo-induction type (GP and LN) according to their response to light. Contents of endogenous plant hormones were determined in calli cultured under a 16-h photoperiod and continuous darkness. In photo-inhibition type, higher accumulation of abscisic acid (ABA) was detected in calli cultured under a 16-h photoperiod, whereas calli showed lower levels of endogenous ABA in continuous darkness. However, cultivars of photo-induction type showed lower levels of ABA in calli cultured under both light conditions, similarly to photo-inhibition type in continuous darkness. Exogenous ABA inhibited the callus growth and shoot regeneration independent of light conditions in all cultivars. In photo-inhibition type, lower levels of endogenous ABA induced by ABA biosynthesis inhibitor, fluridone, reduced the photo-inhibition of shoot regeneration. Expression of ABA biosynthesis gene, HvNCED1, in calli was regulated by the light conditions. Higher expression was observed in calli cultured under a 16-h photoperiod. These results indicate that ABA biosynthesis could be activated through the higher expression of HvNCED1 in a 16-h photoperiod and that the higher accumulations of ABA inhibit shoot regeneration in the photo-inhibition type cultivars. PMID:26670930

  19. Circadian perinatal photoperiod has enduring effects on retinal dopamine and visual function.

    PubMed

    Jackson, Chad R; Capozzi, Megan; Dai, Heng; McMahon, Douglas G

    2014-03-26

    Visual system development depends on neural activity, driven by intrinsic and light-sensitive mechanisms. Here, we examined the effects on retinal function due to exposure to summer- and winter-like circadian light cycles during development and adulthood. Retinal light responses, visual behaviors, dopamine content, retinal morphology, and gene expression were assessed in mice reared in seasonal photoperiods consisting of light/dark cycles of 8:16, 16:8, and 12:12 h, respectively. Mice exposed to short, winter-like, light cycles showed enduring deficits in photopic retinal light responses and visual contrast sensitivity, but only transient changes were observed for scotopic measures. Dopamine levels were significantly lower in short photoperiod mice, and dopaminergic agonist treatment rescued the photopic light response deficits. Tyrosine hydroxylase and Early Growth Response factor-1 mRNA expression were reduced in short photoperiod retinas. Therefore, seasonal light cycles experienced during retinal development and maturation have lasting influence on retinal and visual function, likely through developmental programming of retinal dopamine.

  20. A circannual clock drives expression of genes central for seasonal reproduction.

    PubMed

    Sáenz de Miera, Cristina; Monecke, Stefanie; Bartzen-Sprauer, Julien; Laran-Chich, Marie-Pierre; Pévet, Paul; Hazlerigg, David G; Simonneaux, Valérie

    2014-07-07

    Animals living in temperate zones anticipate seasonal environmental changes to adapt their biological functions, especially reproduction and metabolism. Two main physiological mechanisms have evolved for this adaptation: intrinsic long-term timing mechanisms with an oscillating period of approximately 1 year, driven by a circannual clock [1], and synchronization of biological rhythms to the sidereal year using day length (photoperiod) [2]. In mammals, the pineal hormone melatonin relays photoperiodic information to the hypothalamus to control seasonal physiology through well-defined mechanisms [3-6]. In contrast, little is known about how the circannual clock drives endogenous changes in seasonal functions. The aim of this study was to determine whether genes involved in photoperiodic time measurement (TSHβ and Dio2) and central control of reproduction (Rfrp and Kiss1) display circannual rhythms in expression under constant conditions. Male European hamsters, deprived of seasonal time cues by pinealectomy and maintenance in constant photoperiod, were selected when expressing a subjective summer or subjective winter state in their circannual cycle of body weight, temperature, and testicular size. TSHβ expression in the pars tuberalis (PT) displayed a robust circannual variation with highest level in the subjective summer state, which was positively correlated with hypothalamic Dio2 and Rfrp expression. The negative sex steroid feedback was found to act specifically on arcuate Kiss1 expression. Our findings reveal TSH as a circannual output of the PT, which in turn regulates hypothalamic neurons controlling reproductive activity. Therefore, both the circannual and the melatonin signals converge on PT TSHβ expression to synchronize seasonal biological activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Identification of genetically diverse genotypes for photoperiod insensitivity in soybean using RAPD markers.

    PubMed

    Singh, R K; Bhatia, V S; Yadav, Sanjeev; Athale, Rashmi; Lakshmi, N; Guruprasad, K N; Chauhan, G S

    2008-10-01

    Most of the Indian soybean varieties were found to be highly sensitive to photoperiod, which limits their cultivation in only localized area. Identification of genetically diverse source of photoperiod insensitive would help to broaden the genetic base for this trait. Present study was undertaken with RAPD markers for genetic diversity estimation in 44 accessions of soybean differing in response to photoperiod sensitivity. The selected twenty-five RAPD primers produced a total of 199 amplicons, which generated 89.9 % polymorphism. The number of amplification products ranged from 2 to 13 for different primers. The polymorphism information content ranged from 0.0 for monomorphic loci to 0.5 with an average of 0.289. Genetic diversity between pairs of genotypes was 37.7% with a range of 3.9 to 71.6%. UPGMA cluster analysis placed all the accessions of soybean into four major clusters. No discernable geographical patterns were observed in clustering however; the smaller groups corresponded well with pedigree. Mantel's test (r = 0.915) indicates very good fit for clustering pattern. Two genotypes, MACS 330 and 111/2/1939 made a very divergent group from other accessions of soybean and highly photoperiod insensitive that may be potential source for broadening the genetic base of soybean for this trait.

  2. Photoperiod-dependent modulation of anti-Müllerian hormone in female Siberian hamsters, Phodopus sungorus.

    PubMed

    Kabithe, Esther W; Place, Ned J

    2008-03-01

    Fertility and fecundity decline with advancing age in female mammals, but reproductive aging was decelerated in Siberian hamsters (Phodopus sungorus) raised in a short-day (SD) photoperiod. Litter success was significantly improved in older hamsters when reared in SD and the number of primordial follicles was twice that of females held in long days (LD). Because anti-Müllerian hormone (AMH) appears to inhibit the recruitment of primordial follicles in mice, we sought to determine whether the expression patterns of AMH differ in the ovaries and serum of hamsters raised in SD versus LD. Ovaries of SD female hamsters are characterized by a paucity of follicular development beyond the secondary stage and are endowed with an abundance of large eosinophilic cells, which may derive from granulosa cells of oocyte-depleted follicles. In ovaries from 10-week-old SD hamsters, we found that the so-called 'hypertrophied granulosa cells' were immunoreactive for AMH, as were granulosa cells within healthy-appearing primary and secondary follicles. Conversely, ovaries from age-matched LD animals lack the highly eosinophilic cells present in SD ovaries. Therefore, AMH staining in LD was limited to primary and secondary follicles that are comparable in number to those found in SD ovaries. The substantially greater AMH expression in SD ovaries probably reflects the abundance of hypertrophied granulosa cells in SD ovaries and their relative absence in LD ovaries. The modulation of ovarian AMH by day length is a strong mechanistic candidate for the preservation of primordial follicles in female hamsters raised in a SD photoperiod.

  3. Effects of lighting pattern and photoperiod on egg production and egg quality of a native chicken under free-range condition.

    PubMed

    Geng, A L; Zhang, Y; Zhang, J; Wang, H H; Chu, Q; Liu, H G

    2018-04-14

    The paper aimed to study the effects of lighting pattern and photoperiod alone and in combination on egg production, egg quality in Beijing You Chicken (BYC). A total of 630 19-wk-old BYC laying hens were randomly allocated to 6 groups with 105 birds each, 3 replicates per group, reared in individually lit floor pens with separate outdoor areas. A 2 × 3 factorial experiment (2 lighting patterns: continuous and intermittent lighting; 3 photoperiods: 16, 14, 12 h) was arranged, including 16L:8D (6:00 to 22:00) for group 1; 12L:2D:4L:6D (6:00 to 18:00, 20:00 to 24:00) for group 2; 14L:10D (6:00 to 20:00) for group 3; 10L:2D:4L:8D (6:00 to 16:00, 18:00 to 22:00) for group 4; 12L:12D (6:00 to 18:00) for group 5, and 8L:4D:4L:8D (6:00 to 14:00, 18:00 to 22:00) for group 6, respectively. Egg production parameters were calculated for 22 to 43, 44 to 57, and 22 to 57 wk, and egg quality parameters were measured at the end of 37 and 57 wk. The results showed that the egg production of BYC was not significantly affected by lighting pattern, photoperiod alone, or in combination during 22 to 43 and 22 to 57 wk (P > 0.05), but average feed intake in 12 h groups was significantly higher than those in 14 and 16 h groups during 22 to 43 and 22 to 57 wk (P < 0.05). Egg mass and feed egg ratio were significantly affected by lighting pattern, photoperiod alone, and in combination during 44 to 57 wk (P < 0.05). Egg mass was significantly higher (P = 0.05) and feed egg ratio was significantly lower (P = 0.03) in continuous groups than in intermittent groups. There were significant effects for eggshell thickness, albumen height, haugh unit, and egg grade by lighting pattern alone (P < 0.05) at 37 wk. The study suggested that 1) the egg production was not significantly affected by lighting pattern alone during 22 to 57 wk (P > 0.05), but the photoperiod significantly affected average feed intake (P < 0.05); 2) continuous lighting is better for the egg production during 44 to 57 wk, and intermittent lighting is better for egg quality of the native bird at 37 wk; 3) 12 h lighting is enough for meeting the requirement of the native chicken during the laying period; (4) no change in photoperiod from the rearing to the production phase (12 to 12 L) will have long-lasting effects on egg production or egg quality under the present condition.

  4. The NUCLEAR FACTOR-CONSTANS complex antagonizes Polycomb repression to de-repress FLOWERING LOCUS T expression in response to inductive long days in Arabidopsis.

    PubMed

    Luo, Xiao; Gao, Zheng; Wang, Yizhong; Chen, Zhijuan; Zhang, Wenju; Huang, Jirong; Yu, Hao; He, Yuehui

    2018-07-01

    Many plants sense the seasonal cues, day length or photoperiod changes, to align the timing of the developmental transition to flowering with changing seasons for reproductive success. Inductive day lengths through the photoperiod pathway induce the expression of FLOWERING LOCUS T (FT) or FT relatives that encode a major mobile florigen to promote flowering. In Arabidopsis thaliana, under inductive long days the photoperiod pathway output CONSTANS (CO) accumulates toward the end of the day, and associates with the B and C subunits of Nuclear Factor Y (NF-Y) to form the NF-CO complex that acts to promote FT expression near dusk, whereas Polycomb group (PcG) proteins function to silence FT expression. How NF-CO acts to antagonize the function of PcG proteins to regulate FT expression remains unclear. Here, we show that the NF-CO complex bound to the proximal FT promoter, through chromatin looping, acts in concert with an NF-Y complex bound to a distal enhancer to reduce the levels of PcG proteins, including both Polycomb repressive complex 1 (PRC1) and PRC2 at the FT promoter, leading to a relieving of Polycomb silencing and thus FT de-repression near dusk. Thus, our study provides molecular insights on how the 'active' photoperiod pathway and the 'repressive' Polycomb silencing system interact to control temporal FT expression, conferring the long-day induction of flowering in Arabidopsis. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  5. Pineal melatonin synthesis in Syrian hamsters: A summary

    NASA Astrophysics Data System (ADS)

    Rollag, M. D.

    1982-12-01

    During the past decade there has been ample documentation of the proposition that the pineal gland mediates photoperiodic influences upon reproductive behavior of hamsters. It is commonly hypothesized that the pineal gland expresses its activity by transformation of photoperiodic information into an hormonal output, that hormone being melatonin. If this hypothesis is correct, there must be some essential diffrence in melatonin's output when hamsters are exposed to different photoperiodic environments. The experiments summarized in this communication analyze pineal melatonin contents in Syrian hamsters maintained in a variety of photoperiodic conditions during different physiological states. The results demonstrate that adult hamsters have a daily surge in pineal melatonin content throughout their lifetime when exposed to simulated annual photoperiodic cycles. There is some fluctuation in the amount of pineal melatonin produced during different physiological states and photoperiodic environments, but these fluctuations seem small when compared to those normally found for other regulatory hormones. When hamsters are exposed to different photoperiodic regimens, the daily melatonin surge maintains a relatively constant phase relationship with respect to the onset of daily activity. There is a concomitant change in its phase relationship with respect to light-dark transitions.

  6. Maize miRNA and target regulation in response to hormone depletion and light exposure during somatic embryogenesis

    PubMed Central

    Chávez-Hernández, Elva C.; Alejandri-Ramírez, Naholi D.; Juárez-González, Vasti T.; Dinkova, Tzvetanka D.

    2015-01-01

    Maize somatic embryogenesis (SE) is induced from the immature zygotic embryo in darkness and under the appropriate hormones' levels. Small RNA expression is reprogrammed and certain miRNAs become particularly enriched during induction while others, characteristic to the zygotic embryo, decrease. To explore the impact of different environmental cues on miRNA regulation in maize SE, we tested specific miRNA abundance and their target gene expression in response to photoperiod and hormone depletion for two different maize cultivars (VS-535 and H-565). The expression levels of miR156, miR159, miR164, miR168, miR397, miR398, miR408, miR528, and some predicted targets (SBP23, GA-MYB, CUC2, AGO1c, LAC2, SOD9, GR1, SOD1A, PLC) were examined upon staged hormone depletion in the presence of light photoperiod or darkness. Almost all examined miRNA, except miR159, increased upon hormone depletion, regardless photoperiod absence/presence. miR528, miR408, and miR398 changed the most. On the other hand, expression of miRNA target genes was strongly regulated by the photoperiod exposure. Stress-related miRNA targets showed greater differences between cultivars than development-related targets. miRNA/target inverse relationship was more frequently observed in darkness than light. Interestingly, miR528, but not miR159, miR168 or miR398, was located on polyribosome fractions suggesting a role for this miRNA at the level of translation. Overall our results demonstrate that hormone depletion exerts a great influence on specific miRNA expression during plant regeneration independently of light. However, their targets are additionally influenced by the presence of photoperiod. The reproducibility or differences observed for particular miRNA-target regulation between two different highly embryogenic genotypes provide clues for conserved miRNA roles within the SE process. PMID:26257760

  7. PCH1 integrates circadian and light-signaling pathways to control photoperiod-responsive growth in Arabidopsis

    PubMed Central

    Huang, He; Yoo, Chan Yul; Bindbeutel, Rebecca; Goldsworthy, Jessica; Tielking, Allison; Alvarez, Sophie; Naldrett, Michael J; Evans, Bradley S; Chen, Meng; Nusinow, Dmitri A

    2016-01-01

    Plants react to seasonal change in day length through altering physiology and development. Factors that function to harmonize growth with photoperiod are poorly understood. Here we characterize a new protein that associates with both circadian clock and photoreceptor components, named PHOTOPERIODIC CONTROL OF HYPOCOTYL1 (PCH1). pch1 seedlings have overly elongated hypocotyls specifically under short days while constitutive expression of PCH1 shortens hypocotyls independent of day length. PCH1 peaks at dusk, binds phytochrome B (phyB) in a red light-dependent manner, and co-localizes with phyB into photobodies. PCH1 is necessary and sufficient to promote the biogenesis of large photobodies to maintain an active phyB pool after light exposure, potentiating red-light signaling and prolonging memory of prior illumination. Manipulating PCH1 alters PHYTOCHROME INTERACTING FACTOR 4 levels and regulates light-responsive gene expression. Thus, PCH1 is a new factor that regulates photoperiod-responsive growth by integrating the clock with light perception pathways through modulating daily phyB-signaling. DOI: http://dx.doi.org/10.7554/eLife.13292.001 PMID:26839287

  8. A photoperiod-responsive protein compendium and conceptual proteome roadmap outline in maize grown in growth chambers with controlled conditions

    PubMed Central

    Li, You-Zhi; Fan, Xian-Wei; Chen, Qiang; Zhong, Hao

    2017-01-01

    Maize (Zea mays L.) is one of the major staple food crops of the world. However, high photoperiod sensitivity, especially for tropical germplasms, impedes attempts to improve maize agronomical traits by integration of tropical and temperate maize germplasms. Physiological and phenotypic responses of maize to photoperiod have widely been investigated based on multi-site field observations; however, proteome-based responsive mechanisms under controlled photoperiod regimes, nutrient and moisture soils are not yet well understood. In the present study, we sequenced and analyzed six proteomes of tropically-adapted and photoperiod-sensitive M9 inbred line at the vegetative 3 stage and proteomes from tropically-adapted and photoperiod-sensitive Shuang M9 (SM9) inbred line at the vegetative-tasseling stage. All plants were grown in growth chambers with controlled soil and temperature and three photoperiod regimes, a short photoperiod (SP) of 10 h light/14 h dark, a control neutral photoperiod (NP) of 12 h light/12 h dark, and a long photoperiod (LP) of 16 h light/8 h dark for a daily cycle. We identified 4,395 proteins of which 401 and 425 differentially-expressed proteins (DPs) were found in abundance in M9 leaves and in SM9 leaves as per SP/LP vs. NP, respectively. Some DPs showed responses to both SP and LP while some only responded to either SP or LP, depending on M9 or SM9. Our study showed that the photoperiodic response pathway, circadian clock rhythm, and high light density/intensity crosstalk with each other, but apparently differ from dark signaling routes. Photoperiod response involves light-responsive or dark-responsive proteins or both. The DPs positioned on the signaling routes from photoperiod changes to RNA/DNA responses involve the mago nashi homolog and glycine-rich RNA-binding proteins. Moreover, the cell-to-cell movement of ZCN14 through plasmodesmata is likely blocked under a 16-h-light LP. Here, we propose a photoperiodic model based on our findings and those from previous studies. PMID:28399169

  9. Photoperiod cues and patterns of genetic variation limit phenological responses to climate change in warm parts of species' range: Modeling diameter-growth cessation in coast Douglas-fir.

    PubMed

    Ford, Kevin R; Harrington, Constance A; St Clair, J Bradley

    2017-08-01

    The phenology of diameter-growth cessation in trees will likely play a key role in mediating species and ecosystem responses to climate change. A common expectation is that warming will delay cessation, but the environmental and genetic influences on this process are poorly understood. We modeled the effects of temperature, photoperiod, and seed-source climate on diameter-growth-cessation timing in coast Douglas-fir (an ecologically and economically vital tree) using high-frequency growth measurements across broad environmental gradients for a range of genotypes from different seed sources. Our model suggests that cool temperatures or short photoperiods can induce cessation in autumn. At cool locations (high latitude and elevation), cessation seems to be induced primarily by low temperatures in early autumn (under relatively long photoperiods), so warming will likely delay cessation and extend the growing season. But at warm locations (low latitude or elevation), cessation seems to be induced primarily by short photoperiods later in autumn, so warming will likely lead to only slight extensions of the growing season, reflecting photoperiod limitations on phenological shifts. Trees from seed sources experiencing frequent frosts in autumn or early winter tended to cease growth earlier in the autumn, potentially as an adaptation to avoid frost. Thus, gene flow into populations in warm locations with little frost will likely have limited potential to delay mean cessation dates because these populations already cease growth relatively late. In addition, data from an abnormal heat wave suggested that very high temperatures during long photoperiods in early summer might also induce cessation. Climate change could make these conditions more common in warm locations, leading to much earlier cessation. Thus, photoperiod cues, patterns of genetic variation, and summer heat waves could limit the capacity of coast Douglas-fir to extend its growing season in response to climate change in the warm parts of its range. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  10. Red jungle fowl (Gallus gallus) as a model for studying the molecular mechanism of seasonal reproduction.

    PubMed

    Ono, Hiroko; Nakao, Nobuhiro; Yamamura, Takashi; Kinoshita, Keiji; Mizutani, Makoto; Namikawa, Takao; Iigo, Masayuki; Ebihara, Shizufumi; Yoshimura, Takashi

    2009-06-01

    Photoperiodism is an adaptation mechanism that enables animals to predict seasonal changes in the environment. Japanese quail is the best model organism for studying photoperiodism. Although the recent availability of chicken genome sequences has permitted the expansion from single gene to genome-wide transcriptional analysis in this organism, the photoperiodic response of the domestic chicken is less robust than that of the quail. Therefore, in the present study, we examined the photoperiodic response of the red jungle fowl (Gallus gallus), a predecessor of the domestic chicken, to test whether this animal could be developed as an ideal model for studying the molecular mechanisms of seasonal reproduction. When red jungle fowls were transferred from short-day- to long-day conditions, gonadal development and an increase in plasma LH concentration were observed. Furthermore, rapid induction of thyrotropin beta subunit, a master regulator of photoperiodism, was observed at 16 h after dawn on the first long day. In addition, the long-day condition induced the expression of type 2 deiodinase, the key output gene of photoperiodism. These results were consistent with the results obtained in quail and suggest that the red jungle fowl could be an ideal model animal for the genome-wide transcriptional analysis of photoperiodism.

  11. Low temperatures are required to induce the development of fertile flowers in transgenic male and female early flowering poplar (Populus tremula L.).

    PubMed

    Hoenicka, Hans; Lehnhardt, Denise; Briones, Valentina; Nilsson, Ove; Fladung, Matthias

    2016-05-01

    Until now, artificial early flowering poplar systems have mostly led to the development of sterile flowers. In this study, several strategies aimed at inducting fertile flowers in pHSP::AtFT transgenic poplar were evaluated, in particular the influence of temperature and photoperiod. Our results provide evidence that temperature, and not photoperiod, is the key factor required for the development of fertile flowers in early flowering poplar. Fertile flowers were only obtained when a cold treatment phase of several weeks was used after the heat treatment phase. Heat treatments induced AtFT gene activity through activation of the heat-shock promoter (pHSP). Photoperiod did not show a similar influence on flower fertility as pollen grains were obtained under both long- and short-day conditions. Fertility was confirmed in flowers of both male and female plants. For the first time, crosses were successfully performed with transgenic female early flowering poplar. All mature flowers obtained after 8 weeks of inductive treatments were fertile. Gene expression studies also confirmed that cold temperatures influenced expression of poplar genes homologous to 'pollen development genes' from Arabidopsis thaliana (L.) Heynh. Homology and expression patterns suggested a role for PtTDF1, PtBAM1, PtSERK1/2 and PtMS1 on anther and pollen development in poplar flowers. The system developed in this study allows a fast and very reliable induction of fertile poplar flowers in a very short period of time. The non-reproductive phase, usually 7-10 years, can now be shortened to 6-10 months, and fertile flowers can be obtained independently of the season. This system is a reliable tool for breeding purposes (high-speed breeding technology), genomics and biosafety research. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Gibberellins and stem growth in Arabidopsis thaliana. Effects of photoperiod on expression of the GA4 and GA5 loci.

    PubMed

    Xu, Y L; Gage, D A; Zeevaart, J A

    1997-08-01

    Arabidopsis thaliana (L.) Heynh. is a quantitative long-day (LD) rosette plant in which stem growth is mediated by gibberellins (CAs). Application of GAs to plants in short-day (SD) conditions resulted in rapid stem elongation and flower formation, with GA4 and GA9 being equally effective, and GA1 showing lower activity. The effects of photoperiod on the levels of endogenous GAs were measured by combined gas chromatography-mass spectrometry with selected ion monitoring. When plants were transferred from SD to LD conditions there was a slight decrease in the level of GA53 and an increase in the levels of C19-GAs, GA9, GA20, GA1, and GA8, indicating that GA 20-oxidase activity is stimulated in LD conditions. Expression of GA5, which encodes GA 20-oxidase, was highest in elongating stems and was correlated with the rate of stem elongation. By contrast, GA4, which encodes 3 beta-hydroxylase, showed low expression in stems and its expression was not correlated with the rate of stem elongation. We conclude that stem elongation in LD conditions is at least in part due to increased expression of GA5, whereas expression of GA4 is not under photoperiodic control.

  13. Thyroid Hormone and Seasonal Rhythmicity

    PubMed Central

    Dardente, Hugues; Hazlerigg, David G.; Ebling, Francis J. P.

    2014-01-01

    Living organisms show seasonality in a wide array of functions such as reproduction, fattening, hibernation, and migration. At temperate latitudes, changes in photoperiod maintain the alignment of annual rhythms with predictable changes in the environment. The appropriate physiological response to changing photoperiod in mammals requires retinal detection of light and pineal secretion of melatonin, but extraretinal detection of light occurs in birds. A common mechanism across all vertebrates is that these photoperiod-regulated systems alter hypothalamic thyroid hormone (TH) conversion. Here, we review the evidence that a circadian clock within the pars tuberalis of the adenohypophysis links photoperiod decoding to local changes of TH signaling within the medio-basal hypothalamus (MBH) through a conserved thyrotropin/deiodinase axis. We also focus on recent findings which indicate that, beyond the photoperiodic control of its conversion, TH might also be involved in longer-term timing processes of seasonal programs. Finally, we examine the potential implication of kisspeptin and RFRP3, two RF-amide peptides expressed within the MBH, in seasonal rhythmicity. PMID:24616714

  14. Hypothalamic Ventricular Ependymal Thyroid Hormone Deiodinases Are an Important Element of Circannual Timing in the Siberian Hamster (Phodopus sungorus)

    PubMed Central

    Bolborea, Matei; Wilson, Dana; Mercer, Julian G.; Ebling, Francis J. P.; Morgan, Peter J.; Barrett, Perry

    2013-01-01

    Exposure to short days (SD) induces profound changes in the physiology and behaviour of Siberian hamsters, including gonadal regression and up to 30% loss in body weight. In a continuous SD environment after approximately 20 weeks, Siberian hamsters spontaneously revert to a long day (LD) phenotype, a phenomenon referred to as the photorefractory response. Previously we have identified a number of genes that are regulated by short photoperiod in the neuropil and ventricular ependymal (VE) cells of the hypothalamus, although their importance and contribution to photoperiod induced physiology is unclear. In this refractory model we hypothesised that the return to LD physiology involves reversal of SD expression levels of key hypothalamic genes to their LD values and thereby implicate genes required for LD physiology. Male Siberian hamsters were kept in either LD or SD for up to 39 weeks during which time SD hamster body weight decreased before increasing, after more than 20 weeks, back to LD values. Brain tissue was collected between 14 and 39 weeks for in situ hybridization to determine hypothalamic gene expression. In VE cells lining the third ventricle, expression of nestin, vimentin, Crbp1 and Gpr50 were down-regulated at 18 weeks in SD photoperiod, but expression was not restored to the LD level in photorefractory hamsters. Dio2, Mct8 and Tsh-r expression were altered by SD photoperiod and were fully restored, or even exceeded values found in LD hamsters in the refractory state. In hypothalamic nuclei, expression of Srif and Mc3r mRNAs was altered at 18 weeks in SD, but were similar to LD expression values in photorefractory hamsters. We conclude that in refractory hamsters not all VE cell functions are required to establish LD physiology. However, thyroid hormone signalling from ependymal cells and reversal of neuronal gene expression appear to be essential for the SD refractory response. PMID:23637944

  15. Genetic variation for farrowing rate in pigs in response to change in photoperiod and ambient temperature.

    PubMed

    Sevillano, C A; Mulder, H A; Rashidi, H; Mathur, P K; Knol, E F

    2016-08-01

    Seasonal infertility is often observed as anestrus and a lower conception rate resulting in a reduced farrowing rate (FR) during late summer and early autumn. This is often regarded as an effect of heat stress; however, we observed a reduction in the FR of sows even after correcting for ambient temperature in our data. Therefore, we added change in photoperiod in the analysis of FR considering its effect on sow fertility. Change in photoperiod was modeled using the cosine of the day of first insemination within a year. On an average, the FR decreased by 2% during early autumn with decreasing daily photoperiod compared with early summer with almost no change in daily photoperiod. It declined 0.2% per degree Celsius of ambient temperature above 19.2°C. This result is a step forward in disentangling the 2 environmental components responsible for seasonal infertility. Our next aim was to estimate the magnitude of genetic variation in FR in response to change in photoperiod and ambient temperature to explore opportunities for selecting pigs to have a constant FR throughout the year. We used reaction norm models to estimate additive genetic variation in response to change in photoperiod and ambient temperature. The results revealed a larger genetic variation at stressful environments when daily photoperiod decreased and ambient temperatures increased above 19.2°C compared with neutral environments. Genetic correlations between stressful environments and nonstressful environments ranged from 0.90 (±0.03) to 0.46 (±0.13) depending on the severity of the stress, indicating changes in expression of FR depending on the environment. The genetic correlation between responses of pigs to changes in photoperiod and to those in ambient temperature were positive, indicating that pigs tolerant to decreasing daily photoperiod are also tolerant to high ambient temperatures. Therefore, selection for tolerance to decreasing daily photoperiod should also increase tolerance to high ambient temperatures or vice versa.

  16. N-acetyltransferase (nat) is a critical conjunct of photoperiodism between the circadian system and endocrine axis in Antheraea pernyi.

    PubMed

    Mohamed, Ahmed A M; Wang, Qiushi; Bembenek, Jadwiga; Ichihara, Naoyuki; Hiragaki, Susumu; Suzuki, Takeshi; Takeda, Makio

    2014-01-01

    Since its discovery in 1923, the biology of photoperiodism remains a mystery in many ways. We sought the link connecting the circadian system to an endocrine switch, using Antheraea pernyi. PER-, CLK- and CYC-ir were co-expressed in two pairs of dorsolateral neurons of the protocerebrum, suggesting that these are the circadian neurons that also express melatonin-, NAT- and HIOMT-ir. The results suggest that a melatonin pathway is present in the circadian neurons. Melatonin receptor (MT2 or MEL-1B-R)-ir in PTTH-ir neurons juxtaposing clock neurons suggests that melatonin gates PTTH release. RIA showed a melatonin rhythm with a peak four hours after lights off in adult brain both under LD16:8 (LD) and LD12:12 (SD), and both the peak and the baseline levels were higher under LD than SD, suggesting a photoperiodic influence. When pupae in diapause were exposed to 10 cycles of LD, or stored at 4 °C for 4 months under constant darkness, an increase of NAT activity was observed when PTTH released ecdysone. DNA sequence upstream of nat contained E-boxes to which CYC/CLK could bind, and nat transcription was turned off by clk or cyc dsRNA. dsRNA(NAT) caused dysfunction of photoperiodism. dsRNA(PER) upregulated nat transcription as anticipated, based on findings in the Drosophila melanogaster circadian system. Transcription of nat, cyc and clk peaked at ZT12. RIA showed that dsRNA(NAT) decreased melatonin while dsRNA(PER) increased melatonin. Thus nat, a clock controlled gene, is the critical link between the circadian clock and endocrine switch. MT-binding may release PTTH, resulting in termination of diapause. This study thus examined all of the basic functional units from the clock: a photoperiodic counter as an accumulator of mRNA(NAT), to endocrine switch for photoperiodism in A. pernyi showing this system is self-complete without additional device especially for photoperiodism.

  17. N-acetyltransferase (nat) Is a Critical Conjunct of Photoperiodism between the Circadian System and Endocrine Axis in Antheraea pernyi

    PubMed Central

    Bembenek, Jadwiga; Hiragaki, Susumu; Suzuki, Takeshi; Takeda, Makio

    2014-01-01

    Since its discovery in 1923, the biology of photoperiodism remains a mystery in many ways. We sought the link connecting the circadian system to an endocrine switch, using Antheraea pernyi. PER-, CLK- and CYC-ir were co-expressed in two pairs of dorsolateral neurons of the protocerebrum, suggesting that these are the circadian neurons that also express melatonin-, NAT- and HIOMT-ir. The results suggest that a melatonin pathway is present in the circadian neurons. Melatonin receptor (MT2 or MEL-1B-R)-ir in PTTH-ir neurons juxtaposing clock neurons suggests that melatonin gates PTTH release. RIA showed a melatonin rhythm with a peak four hours after lights off in adult brain both under LD16∶8 (LD) and LD12∶12 (SD), and both the peak and the baseline levels were higher under LD than SD, suggesting a photoperiodic influence. When pupae in diapause were exposed to 10 cycles of LD, or stored at 4°C for 4 months under constant darkness, an increase of NAT activity was observed when PTTH released ecdysone. DNA sequence upstream of nat contained E-boxes to which CYC/CLK could bind, and nat transcription was turned off by clk or cyc dsRNA. dsRNANAT caused dysfunction of photoperiodism. dsRNAPER upregulated nat transcription as anticipated, based on findings in the Drosophila melanogaster circadian system. Transcription of nat, cyc and clk peaked at ZT12. RIA showed that dsRNANAT decreased melatonin while dsRNAPER increased melatonin. Thus nat, a clock controlled gene, is the critical link between the circadian clock and endocrine switch. MT-binding may release PTTH, resulting in termination of diapause. This study thus examined all of the basic functional units from the clock: a photoperiodic counter as an accumulator of mRNANAT, to endocrine switch for photoperiodism in A. pernyi showing this system is self-complete without additional device especially for photoperiodism. PMID:24667367

  18. Kisspeptin mediates the photoperiodic control of reproduction in hamsters.

    PubMed

    Revel, Florent G; Saboureau, Michel; Masson-Pévet, Mireille; Pévet, Paul; Mikkelsen, Jens D; Simonneaux, Valérie

    2006-09-05

    The KiSS-1 gene encodes kisspeptin, the endogenous ligand of the G-protein-coupled receptor GPR54. Recent data indicate that the KiSS-1/GPR54 system is critical for the regulation of reproduction and is required for puberty onset. In seasonal breeders, reproduction is tightly controlled by photoperiod (i.e., day length). The Syrian hamster is a seasonal model in which reproductive activity is promoted by long summer days (LD) and inhibited by short winter days (SD). Using in situ hybridization and immunohistochemistry, we show that KiSS-1 is expressed in the arcuate nucleus of LD hamsters. Importantly, the KiSS-1 mRNA level was lower in SD animals but not in SD-refractory animals, which spontaneously reactivated their sexual activity after several months in SD. These changes of expression are not secondary to the photoperiodic variations of gonadal steroids. In contrast, melatonin appears to be necessary for these seasonal changes because pineal-gland ablation prevented the SD-induced downregulation of KiSS-1 expression. Remarkably, a chronic administration of kisspeptin-10 restored the testicular activity of SD hamsters despite persisting photoinhibitory conditions. Overall, these findings are consistent with a role of KiSS-1/GPR54 in the seasonal control of reproduction. We propose that photoperiod, via melatonin, modulates KiSS-1 signaling to drive the reproductive axis.

  19. Photoperiod constraints on tree phenology, performance and migration in a warming world.

    PubMed

    Way, Danielle A; Montgomery, Rebecca A

    2015-09-01

    Increasing temperatures should facilitate the poleward movement of species distributions through a variety of processes, including increasing the growing season length. However, in temperate and boreal latitudes, temperature is not the only cue used by trees to determine seasonality, as changes in photoperiod provide a more consistent, reliable annual signal of seasonality than temperature. Here, we discuss how day length may limit the ability of tree species to respond to climate warming in situ, focusing on the implications of photoperiodic sensing for extending the growing season and affecting plant phenology and growth, as well as the potential role of photoperiod in controlling carbon uptake and water fluxes in forests. We also review whether there are patterns across plant functional types (based on successional strategy, xylem anatomy and leaf morphology) in their sensitivity to photoperiod that we can use to predict which species or groups might be more successful in migrating as the climate warms, or may be more successfully used for forestry and agriculture through assisted migration schemes. © 2014 John Wiley & Sons Ltd.

  20. A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.).

    PubMed

    Beales, James; Turner, Adrian; Griffiths, Simon; Snape, John W; Laurie, David A

    2007-09-01

    Ppd-D1 on chromosome 2D is the major photoperiod response locus in hexaploid wheat (Triticum aestivum). A semi-dominant mutation widely used in the "green revolution" converts wheat from a long day (LD) to a photoperiod insensitive (day neutral) plant, providing adaptation to a broad range of environments. Comparative mapping shows Ppd-D1 to be colinear with the Ppd-H1 gene of barley (Hordeum vulgare) which is a member of the pseudo-response regulator (PRR) gene family. To investigate the relationship between wheat and barley photoperiod genes we isolated homologues of Ppd-H1 from a 'Chinese Spring' wheat BAC library and compared them to sequences from other wheat varieties with known Ppd alleles. Varieties with the photoperiod insensitive Ppd-D1a allele which causes early flowering in short (SD) or LDs had a 2 kb deletion upstream of the coding region. This was associated with misexpression of the 2D PRR gene and expression of the key floral regulator FT in SDs, showing that photoperiod insensitivity is due to activation of a known photoperiod pathway irrespective of day length. Five Ppd-D1 alleles were found but only the 2 kb deletion was associated with photoperiod insensitivity. Photoperiod insensitivity can also be conferred by mutation at a homoeologous locus on chromosome 2B (Ppd-B1). No candidate mutation was found in the 2B PRR gene but polymorphism within the 2B PRR gene cosegregated with the Ppd-B1 locus in a doubled haploid population, suggesting that insensitivity on 2B is due to a mutation outside the sequenced region or to a closely linked gene.

  1. Characterisation, analysis of expression and localisation of circadian clock genes from the perspective of photoperiodism in the aphid Acyrthosiphon pisum.

    PubMed

    Barberà, Miquel; Collantes-Alegre, Jorge Mariano; Martínez-Torres, David

    2017-04-01

    Aphids are typical photoperiodic insects that switch from viviparous parthenogenetic reproduction typical of long day seasons to oviparous sexual reproduction triggered by the shortening of photoperiod in autumn yielding an overwintering egg in which an embryonic diapause takes place. While the involvement of the circadian clock genes in photoperiodism in mammals is well established, there is still some controversy on their participation in insects. The availability of the genome of the pea aphid Acyrthosiphon pisum places this species as an excellent model to investigate the involvement of the circadian system in the aphid seasonal response. In the present report, we have advanced in the characterisation of the circadian clock genes and showed that these genes display extensive alternative splicing. Moreover, the expression of circadian clock genes, analysed at different moments of the day, showed a robust cycling of central clock genes period and timeless. Furthermore, the rhythmic expression of these genes was shown to be rapidly dampened under DD (continuous darkness conditions), thus supporting the model of a seasonal response based on a heavily dampened circadian oscillator. Additionally, increased expression of some of the circadian clock genes under short-day conditions suggest their involvement in the induction of the aphid seasonal response. Finally, in situ localisation of transcripts of genes period and timeless in the aphid brain revealed the site of clock neurons for the first time in aphids. Two groups of clock cells were identified: the Dorsal Neurons (DN) and the Lateral Neurons (LN), both in the protocerebrum. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Exploring avian deep-brain photoreceptors and their role in activating the neuroendocrine regulation of gonadal development.

    PubMed

    Kuenzel, Wayne J; Kang, Seong W; Zhou, Z Jimmy

    2015-04-01

    In the eyes of mammals, specialized photoreceptors called intrinsically photosensitive retinal ganglion cells (ipRGC) have been identified that sense photoperiodic or daylight exposure, providing them over time with seasonal information. Detectors of photoperiods are critical in vertebrates, particularly for timing the onset of reproduction each year. In birds, the eyes do not appear to monitor photoperiodic information; rather, neurons within at least 4 different brain structures have been proposed to function in this capacity. Specialized neurons, called deep brain photoreceptors (DBP), have been found in the septum and 3 hypothalamic areas. Within each of the 4 brain loci, one or more of 3 unique photopigments, including melanopsin, neuropsin, and vertebrate ancient opsin, have been identified. An experiment was designed to characterize electrophysiological responses of neurons proposed to be avian DBP following light stimulation. A second study used immature chicks raised under short-day photoperiods and transferred to long day lengths. Gene expression of photopigments was then determined in 3 septal-hypothalamic regions. Preliminary electrophysiological data obtained from patch-clamping neurons in brain slices have shown that bipolar neurons in the lateral septal organ responded to photostimulation comparable with mammalian ipRGC, particularly by showing depolarization and a delayed, slow response to directed light stimulation. Utilizing real-time reverse-transcription PCR, it was found that all 3 photopigments showed significantly increased gene expression in the septal-hypothalamic regions in chicks on the third day after being transferred to long-day photoperiods. Each dissected region contained structures previously proposed to have DBP. The highly significant increased gene expression for all 3 photopigments on the third, long-day photoperiod in brain regions proposed to contain 4 structures with DBP suggests that all 3 types of DBP (melanopsin, neuropsin, and vertebrate ancient opsin) in more than one neural site in the septal-hypothalamic area are involved in reproductive function. The neural response to light of at least 2 of the proposed DBP in the septal/hypothalamic region resembles the primitive, functional, sensory ipRGC well characterized in mammals. ©2015 Poultry Science Association Inc.

  3. The Preoptic Area and the RFamide-Related Peptide Neuronal System Gate Seasonal Changes in Chemosensory Processing.

    PubMed

    Jennings, Kimberly J; Chasles, Manon; Cho, Hweyryoung; Mikkelsen, Jens; Bentley, George; Keller, Matthieu; Kriegsfeld, Lance J

    2017-11-01

    Males of many species rely on chemosensory information for social communication. In male Syrian hamsters (Mesocricetus auratus), as in many species, female chemosignals potently stimulate sexual behavior and a concurrent, rapid increase in circulating luteinizing hormone (LH) and testosterone (T). However, under winter-like, short-day (SD) photoperiods, when Syrian hamsters are reproductively quiescent, these same female chemosignals fail to elicit behavioral or hormonal responses, even after T replacement. It is currently unknown where in the brain chemosensory processing is gated in a seasonally dependent manner such that reproductive responses are only displayed during the appropriate breeding season. The goal of the present study was to determine where this gating occurred by identifying neural loci that respond differentially to female chemosignals across photoperiods, independent of circulating T concentrations. Adult male Syrian hamsters were housed under either long-day (LD) (reproductively active) or SD (reproductively inactive) photoperiods with half of the SD animals receiving T replacement. Animals were exposed to either female hamster vaginal secretions (FHVSs) diluted in mineral oil or to vehicle, and the activational state of chemosensory processing centers and elements of the neuroendocrine reproductive axis were examined. Components of the chemosensory pathway upstream of hypothalamic centers increased expression of FOS, an indirect marker of neuronal activation, similarly across photoperiods. In contrast, the preoptic area (POA) of the hypothalamus responded to FHVS only in LD animals, consistent with its role in promoting expression of male sexual behavior. Within the neuroendocrine axis, the RF-amide related peptide (RFRP), but not the kisspeptin neuronal system responded to FHVS only in LD animals. Neither response within the POA or the RFRP neuronal system was rescued by T replacement in SD animals, mirroring photoperiodic regulation of reproductive responses. Considering the POA and the RFRP neuronal system promote reproductive behavior and function in male Syrian hamsters, differential activation of these systems represents a potential means by which photoperiod limits expression of reproduction to the appropriate environmental context. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  4. EARLY FLOWERING3 Redundancy Fine-Tunes Photoperiod Sensitivity1[OPEN

    PubMed Central

    Rubenach, Andrew J.S.; Vander Schoor, Jacqueline K.; Aubert, Gregoire; Burstin, Judith

    2017-01-01

    Three pea (Pisum sativum) loci controlling photoperiod sensitivity, HIGH RESPONSE (HR), DIE NEUTRALIS (DNE), and STERILE NODES (SN), have recently been shown to correspond to orthologs of Arabidopsis (Arabidopsis thaliana) circadian clock genes EARLY FLOWERING3 (ELF3), ELF4, and LUX ARRHYTHMO, respectively. A fourth pea locus, PHOTOPERIOD (PPD), also contributes to the photoperiod response in a similar manner to SN and DNE, and recessive ppd mutants on a spring-flowering hr mutant background show early, photoperiod-insensitive flowering. However, the molecular identity of PPD has so far remained elusive. Here, we show that the PPD locus also has a role in maintenance of diurnal and circadian gene expression rhythms and identify PPD as an ELF3 co-ortholog, termed ELF3b. Genetic interactions between pea ELF3 genes suggest that loss of PPD function does not affect flowering time in the presence of functional HR, whereas PPD can compensate only partially for the lack of HR. These results provide an illustration of how gene duplication and divergence can generate potential for the emergence of more subtle variations in phenotype that may be adaptively significant. PMID:28202598

  5. Photoperiod-Dependent Effects of 4-tert-Octylphenol on Adherens and Gap Junction Proteins in Bank Vole Seminiferous Tubules

    PubMed Central

    Kuras, Paulina; Lydka-Zarzycka, Marta; Bilinska, Barbara

    2013-01-01

    In the present study we evaluated in vivo and in vitro effects of 4-tert-octylphenol (OP) on the expression and distribution of adherens and gap junction proteins, N-cadherin, β-catenin, and connexin 43 (Cx43), in testes of seasonally breeding rodents, bank voles. We found that in bank vole testes expression and distribution of N-cadherin, β-catenin, and Cx43 were photoperiod dependent. Long-term treatment with OP (200 mg/kg b.w.) resulted in the reduction of junction proteins expressions (P < 0.05, P < 0.01) and their delocalization in the testes of males kept in long photoperiod, whereas in short-day animals slight increase of Cx43 (P < 0.05), N-cadherin, and β-catenin (statistically nonsignificant) levels was observed. Effects of OP appeared to be independent of FSH and were maintained during in vitro organ culture, indicating that OP acts directly on adherens and gap junction proteins in the testes. An experiment performed using an antiestrogen ICI 182,780 demonstrated that the biological effects of OP on β-catenin and Cx43 involve an estrogen receptor-mediated response. Taken together, in bank vole organization of adherens and gap junctions and their susceptibility to OP are related to the length of photoperiod. Alterations in cadherin/catenin and Cx43-based junction may partially result from activation of estrogen receptor α and/or β signaling pathway. PMID:23737770

  6. Controls on seasonal patterns of maximum ecosystem carbon uptake and canopy-scale photosynthetic light response: contributions from both temperature and photoperiod.

    PubMed

    Stoy, Paul C; Trowbridge, Amy M; Bauerle, William L

    2014-02-01

    Most models of photosynthetic activity assume that temperature is the dominant control over physiological processes. Recent studies have found, however, that photoperiod is a better descriptor than temperature of the seasonal variability of photosynthetic physiology at the leaf scale. Incorporating photoperiodic control into global models consequently improves their representation of the seasonality and magnitude of atmospheric CO2 concentration. The role of photoperiod versus that of temperature in controlling the seasonal variability of photosynthetic function at the canopy scale remains unexplored. We quantified the seasonal variability of ecosystem-level light response curves using nearly 400 site years of eddy covariance data from over eighty Free Fair-Use sites in the FLUXNET database. Model parameters describing maximum canopy CO2 uptake and the initial slope of the light response curve peaked after peak temperature in about 2/3 of site years examined, emphasizing the important role of temperature in controlling seasonal photosynthetic function. Akaike's Information Criterion analyses indicated that photoperiod should be included in models of seasonal parameter variability in over 90% of the site years investigated here, demonstrating that photoperiod also plays an important role in controlling seasonal photosynthetic function. We also performed a Granger causality analysis on both gross ecosystem productivity (GEP) and GEP normalized by photosynthetic photon flux density (GEP n ). While photoperiod Granger-caused GEP and GEP n in 99 and 92% of all site years, respectively, air temperature Granger-caused GEP in a mere 32% of site years but Granger-caused GEP n in 81% of all site years. Results demonstrate that incorporating photoperiod may be a logical step toward improving models of ecosystem carbon uptake, but not at the expense of including enzyme kinetic-based temperature constraints on canopy-scale photosynthesis.

  7. Intraovarian expression of GnRH-1 and gonadotropin mRNA and protein levels in Siberian hamsters during the estrus cycle and photoperiod induced regression/recrudescence

    PubMed Central

    Shahed, Asha; Young, Kelly A.

    2010-01-01

    The hypothalamic-pituitary-gonadal (HPG) axis is the key reproductive regulator in vertebrates. While gonadotropin releasing hormone (GnRH), follicle stimulating (FSH), and luteinizing (LH) hormones are primarily produced in the hypothalamus and pituitary, they can be synthesized in the gonads, suggesting an intraovarian GnRH-gonadotropin axis. Because these hormones are critical for follicle maturation and steroidogenesis, we hypothesized that this intraovarian axis may be important in photoperiod-induced ovarian regression/recrudescence in seasonal breeders. Thus, we investigated GnRH-1 and gonadotropin mRNA and protein expression in Siberian hamster ovaries during (1) the estrous cycle; where ovaries from cycling long day hamsters (LD;16L:8D) were collected at proestrus, estrus, diestrus I, and diestrus II and (2) during photoperiod induced regression/ recrudescence; where ovaries were collected from hamsters exposed to 14wks of LD, short days (SD;8L:16D), or 8wks post-transfer to LD after 14wks SD (PT). GnRH-1, LHβ, FSHβ, and common α subunit mRNA expression was observed in cycling ovaries. GnRH-1 expression peaked at diestrus I compared to other stages (p<0.05). FSHβ and LHβ mRNA levels peaked at proestrus and diestrus I (p<0.05), with no change in the α subunit across the cycle (p>0.05). SD exposure decreased ovarian mass and plasma estradiol concentrations (p<0.05) and increased GnRH-1, LHβ, FSHβ, and α subunit mRNA expression as compared to LD and, except for LH, compared to PT (p<0.05). GnRH and gonadotropin protein was also dynamically expressed across the estrous cycle and photoperiod exposure. The presence of cycling intraovarian GnRH-1 and gonadotropin mRNA suggests that these hormones may be locally involved in ovarian maintenance during SD regression and/or could potentially serve to prime ovaries for rapid recrudescence. PMID:20955709

  8. Photoperiod cues and patterns of genetic variation limit phenological responses to climate change in warm parts of species’ range: Modeling diameter-growth cessation in coast Douglas-fir

    Treesearch

    Kevin R. Ford; Constance A. Harrington; J. Bradley St. Clair

    2017-01-01

    The phenology of diameter-growth cessation in trees will likely play a key role in mediating species and ecosystem responses to climate change. A common expectation is that warming will delay cessation, but the environmental and genetic influences on this process are poorly understood. We modeled the effects of temperature, photoperiod, and seed-source climate on...

  9. Transcriptional Analysis of Flowering Time in Switchgrass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tornqvist, Carl-Erik; Vaillancourt, Brieanne; Kim, Jeongwoon

    Over the past two decades, switchgrass (Panicum virgatum) has emerged as a priority biofuel feedstock. The bulk of switchgrass biomass is in the vegetative portion of the plant; therefore, increasing the length of vegetative growth will lead to an increase in overall biomass yield. The goal of this study was to gain insight into the control of flowering time in switchgrass that would assist in development of cultivars with longer vegetative phases through delayed flowering. RNA sequencing was used to assess genome-wide expression profiles across a developmental series between switchgrass genotypes belonging to the two main ecotypes: upland, typically earlymore » flowering, and lowland, typically late flowering. Leaf blades and tissues enriched for the shoot apical meristem (SAM) were collected in a developmental series from emergence through anthesis for RNA extraction. RNA from samples that flanked the SAM transition stage was sequenced for expression analyses. The analyses revealed differential expression patterns between early- and late-flowering genotypes for known flowering time orthologs. Namely, genes shown to play roles in photoperiod response and the circadian clock in other species were identified as potential candidates for regulating flowering time in the switchgrass genotypes analyzed. Based on their expression patterns, many of the differentially expressed genes could also be classified as putative promoters or repressors of flowering. The candidate genes presented here may be used to guide switchgrass improvement through marker-assisted breeding and/or transgenic or gene editing approaches.Over the past two decades, switchgrass (Panicum virgatum) has emerged as a priority biofuel feedstock. The bulk of switchgrass biomass is in the vegetative portion of the plant; therefore, increasing the length of vegetative growth will lead to an increase in overall biomass yield. The goal of this study was to gain insight into the control of flowering time in switchgrass that would assist in development of cultivars with longer vegetative phases through delayed flowering. RNA sequencing was used to assess genome-wide expression profiles across a developmental series between switchgrass genotypes belonging to the two main ecotypes: upland, typically early flowering, and lowland, typically late flowering. Leaf blades and tissues enriched for the shoot apical meristem (SAM) were collected in a developmental series from emergence through anthesis for RNA extraction. RNA from samples that flanked the SAM transition stage was sequenced for expression analyses. The analyses revealed differential expression patterns between early- and late-flowering genotypes for known flowering time orthologs. Namely, genes shown to play roles in photoperiod response and the circadian clock in other species were identified as potential candidates for regulating flowering time in the switchgrass genotypes analyzed. Based on their expression patterns, many of the differentially expressed genes could also be classified as putative promoters or repressors of flowering. The candidate genes presented here may then be used to guide switchgrass improvement through marker-assisted breeding and/or transgenic or gene editing approaches.« less

  10. Transcriptional Analysis of Flowering Time in Switchgrass

    DOE PAGES

    Tornqvist, Carl-Erik; Vaillancourt, Brieanne; Kim, Jeongwoon; ...

    2017-04-27

    Over the past two decades, switchgrass (Panicum virgatum) has emerged as a priority biofuel feedstock. The bulk of switchgrass biomass is in the vegetative portion of the plant; therefore, increasing the length of vegetative growth will lead to an increase in overall biomass yield. The goal of this study was to gain insight into the control of flowering time in switchgrass that would assist in development of cultivars with longer vegetative phases through delayed flowering. RNA sequencing was used to assess genome-wide expression profiles across a developmental series between switchgrass genotypes belonging to the two main ecotypes: upland, typically earlymore » flowering, and lowland, typically late flowering. Leaf blades and tissues enriched for the shoot apical meristem (SAM) were collected in a developmental series from emergence through anthesis for RNA extraction. RNA from samples that flanked the SAM transition stage was sequenced for expression analyses. The analyses revealed differential expression patterns between early- and late-flowering genotypes for known flowering time orthologs. Namely, genes shown to play roles in photoperiod response and the circadian clock in other species were identified as potential candidates for regulating flowering time in the switchgrass genotypes analyzed. Based on their expression patterns, many of the differentially expressed genes could also be classified as putative promoters or repressors of flowering. The candidate genes presented here may be used to guide switchgrass improvement through marker-assisted breeding and/or transgenic or gene editing approaches.Over the past two decades, switchgrass (Panicum virgatum) has emerged as a priority biofuel feedstock. The bulk of switchgrass biomass is in the vegetative portion of the plant; therefore, increasing the length of vegetative growth will lead to an increase in overall biomass yield. The goal of this study was to gain insight into the control of flowering time in switchgrass that would assist in development of cultivars with longer vegetative phases through delayed flowering. RNA sequencing was used to assess genome-wide expression profiles across a developmental series between switchgrass genotypes belonging to the two main ecotypes: upland, typically early flowering, and lowland, typically late flowering. Leaf blades and tissues enriched for the shoot apical meristem (SAM) were collected in a developmental series from emergence through anthesis for RNA extraction. RNA from samples that flanked the SAM transition stage was sequenced for expression analyses. The analyses revealed differential expression patterns between early- and late-flowering genotypes for known flowering time orthologs. Namely, genes shown to play roles in photoperiod response and the circadian clock in other species were identified as potential candidates for regulating flowering time in the switchgrass genotypes analyzed. Based on their expression patterns, many of the differentially expressed genes could also be classified as putative promoters or repressors of flowering. The candidate genes presented here may then be used to guide switchgrass improvement through marker-assisted breeding and/or transgenic or gene editing approaches.« less

  11. Distribution of photoperiod-insensitive allele Ppd-A1a and its effect on heading time in Japanese wheat cultivars.

    PubMed

    Seki, Masako; Chono, Makiko; Nishimura, Tsutomu; Sato, Mikako; Yoshimura, Yasuhiro; Matsunaka, Hitoshi; Fujita, Masaya; Oda, Shunsuke; Kubo, Katashi; Kiribuchi-Otobe, Chikako; Kojima, Hisayo; Nishida, Hidetaka; Kato, Kenji

    2013-09-01

    The Ppd-A1 genotype of 240 Japanese wheat cultivars and 40 foreign cultivars was determined using a PCR-based method. Among Japanese cultivars, only 12 cultivars, all of which were Hokkaido winter wheat, carried the Ppd-A1a allele, while this allele was not found in Hokkaido spring wheat cultivars or Tohoku-Kyushu cultivars. Cultivars with a photoperiod-insensitive allele headed 6.9-9.8 days earlier in Kanto and 2.5 days earlier in Hokkaido than photoperiod-sensitive cultivars. The lower effect of photoperiod-insensitive alleles observed in Hokkaido could be due to the longer day-length at the spike formation stage compared with that in Kanto. Pedigree analysis showed that 'Purple Straw' and 'Tohoku 118' were donors of Ppd-A1a and Ppd-D1a in Hokkaido wheat cultivars, respectively. Wheat cultivars recently developed in Hokkaido carry photoperiod-insensitive alleles at a high frequency. For efficient utilization of Ppd-1 alleles in the Hokkaido wheat-breeding program, the effect of Ppd-1 on growth pattern and grain yield should be investigated. Ppd-A1a may be useful as a unique gene source for fine tuning the heading time in the Tohoku-Kyushu region since the effect of Ppd-A1a on photoperiod insensitivity appears to differ from the effect of Ppd-B1a and Ppd-D1a.

  12. [The genetic determination and function of RR-proteins--the regulators of photoperiodic reaction and circadian rhythms in plants].

    PubMed

    Tots'kyĭ, V M; D'iachenko, L F; Muterko, O F; Balashova, I A; Toptikov, V A

    2012-01-01

    The present review devoted to the analysis of recent literature on genetic determination and the domain organization of the newly discovered two-component signaling systems in pro- and eukaryotes. These structures are involved in the regulation of numerous morphological and physiological processes in plants. RR-proteins, it the key elements of signaling systems, they launch a cascade of phosphotransferase reactions and directly or indirectly regulate the transcription and activity other proteins, including enzymes, in response to hormones or environmental factors. Modern views on the molecular and genetic mechanisms of photoperiodic response, circadian rhythms and anti-stress responses in plants are set out in these positions. The relationship between gene expression and photoreceptor sensitivity of plants to photoperiod traced. We present our own data obtained on the isogenic lines of wheat, where been showed dependence expression of structural genes of enzymes on the allelic composition of individual PRR-loci and the duration action of low temperature.

  13. Effects of an advanced temperature cycle on smolt development and endocrinology indicate that temperature is not a zeitgeber for smolting in Atlantic salmon

    USGS Publications Warehouse

    McCormick, S.D.; Shrimpton, J.M.; Moriyama, S.; Bjornsson, Bjorn Thrandur

    2002-01-01

    Atlantic salmon (Salmo salar) juveniles were reared under simulated conditions of normal photoperiod (LDN) or short days (LD 9:15) and ambient temperature (AMB: normal temperature increases in April) or an advanced temperature cycle (ADV: temperature increases in February). Under both photoperiod conditions, the timing of increased and peak levels of gill Na+,K+-ATPase activity were not altered by temperature, although the rate of increase was initially greater under ADV. ADV/LD 9:15 resulted in peak gill Na+,K+-ATPase activity that was half of that seen under normal photoperiod and temperature conditions. Plasma growth hormone (GH) levels increased threefold in late March under ADV/LDN, but not under ADV/LD 9:15, indicating that there is a photoperiod-dependent effect of temperature on levels of this hormone. Plasma insulin-like growth factor I (IGF-I) increased in spring in all groups, with increases occurring significantly earlier in the ADV/LDN group. In each photoperiod condition, the advanced temperature cycle resulted in large decreases in plasma thyroxine (T4) levels in March, which subsequently recovered, whereas plasma 3,5,3???-triiodo-L-thyronine (T3) levels were not substantially affected by either photoperiod or temperature. There was no consistent pattern of change in plasma cortisol levels. The results do not provide support for the role of temperature as a zeitgeber, but do indicate that temperature has a role in the timing of smolting by affecting the rate of development and interacting with the photoperiod.

  14. Photoperiod Modulates Fast Delayed Rectifier Potassium Currents in the Mammalian Circadian Clock.

    PubMed

    Farajnia, Sahar; Meijer, Johanna H; Michel, Stephan

    2016-10-01

    One feature of the mammalian circadian clock, situated in the suprachiasmatic nucleus (SCN), is its ability to measure day length and thereby contribute to the seasonal adaptation of physiology and behavior. The timing signal from the SCN, namely the 24 hr pattern of electrical activity, is adjusted according to the photoperiod being broader in long days and narrower in short days. Vasoactive intestinal peptide and gamma-aminobutyric acid play a crucial role in intercellular communication within the SCN and contribute to the seasonal changes in phase distribution. However, little is known about the underlying ionic mechanisms of synchronization. The present study was aimed to identify cellular mechanisms involved in seasonal encoding by the SCN. Mice were adapted to long-day (light-dark 16:8) and short-day (light-dark 8:16) photoperiods and membrane properties as well as K + currents activity of SCN neurons were measured using patch-clamp recordings in acute slices. Remarkably, we found evidence for a photoperiodic effect on the fast delayed rectifier K + current, that is, the circadian modulation of this ion channel's activation reversed in long days resulting in 50% higher peak values during the night compared with the unaltered day values. Consistent with fast delayed rectifier enhancement, duration of action potentials during the night was shortened and afterhyperpolarization potentials increased in amplitude and duration. The slow delayed rectifier, transient K + currents, and membrane excitability were not affected by photoperiod. We conclude that photoperiod can change intrinsic ion channel properties of the SCN neurons, which may influence cellular communication and contribute to photoperiodic phase adjustment. © The Author(s) 2016.

  15. WEREWOLF, a Regulator of Root Hair Pattern Formation, Controls Flowering Time through the Regulation of FT mRNA Stability1[C][W][OA

    PubMed Central

    Seo, Eunjoo; Yu, Jihyeon; Ryu, Kook Hui; Lee, Myeong Min; Lee, Ilha

    2011-01-01

    A key floral activator, FT, integrates stimuli from long-day, vernalization, and autonomous pathways and triggers flowering by directly regulating floral meristem identity genes in Arabidopsis (Arabidopsis thaliana). Since a small amount of FT transcript is sufficient for flowering, the FT level is strictly regulated by diverse genes. In this study, we show that WEREWOLF (WER), a MYB transcription factor regulating root hair pattern, is another regulator of FT. The mutant wer flowers late in long days but normal in short days and shows a weak sensitivity to vernalization, which indicates that WER controls flowering time through the photoperiod pathway. The expression and double mutant analyses showed that WER modulates FT transcript level independent of CONSTANS and FLOWERING LOCUS C. The histological analysis of WER shows that it is expressed in the epidermis of leaves, where FT is not expressed. Consistently, WER regulates not the transcription but the stability of FT mRNA. Our results reveal a novel regulatory mechanism of FT that is non cell autonomous. PMID:21653190

  16. WEREWOLF, a regulator of root hair pattern formation, controls flowering time through the regulation of FT mRNA stability.

    PubMed

    Seo, Eunjoo; Yu, Jihyeon; Ryu, Kook Hui; Lee, Myeong Min; Lee, Ilha

    2011-08-01

    A key floral activator, FT, integrates stimuli from long-day, vernalization, and autonomous pathways and triggers flowering by directly regulating floral meristem identity genes in Arabidopsis (Arabidopsis thaliana). Since a small amount of FT transcript is sufficient for flowering, the FT level is strictly regulated by diverse genes. In this study, we show that WEREWOLF (WER), a MYB transcription factor regulating root hair pattern, is another regulator of FT. The mutant wer flowers late in long days but normal in short days and shows a weak sensitivity to vernalization, which indicates that WER controls flowering time through the photoperiod pathway. The expression and double mutant analyses showed that WER modulates FT transcript level independent of CONSTANS and FLOWERING LOCUS C. The histological analysis of WER shows that it is expressed in the epidermis of leaves, where FT is not expressed. Consistently, WER regulates not the transcription but the stability of FT mRNA. Our results reveal a novel regulatory mechanism of FT that is non cell autonomous.

  17. Transcriptome responses to temperature, water availability and photoperiod are conserved among mature trees of two divergent Douglas-fir provenances from a coastal and an interior habitat.

    PubMed

    Hess, Moritz; Wildhagen, Henning; Junker, Laura Verena; Ensminger, Ingo

    2016-08-26

    Local adaptation and phenotypic plasticity are important components of plant responses to variations in environmental conditions. While local adaptation has been widely studied in trees, little is known about plasticity of gene expression in adult trees in response to ever changing environmental conditions in natural habitats. Here we investigate plasticity of gene expression in needle tissue between two Douglas-fir provenances represented by 25 adult trees using deep RNA sequencing (RNA-Seq). Using linear mixed models we investigated the effect of temperature, soil water availability and photoperiod on the abundance of 59189 detected transcripts. Expression of more than 80 % of all identified transcripts revealed a response to variations in environmental conditions in the field. GO term overrepresentation analysis revealed gene expression responses to temperature, soil water availability and photoperiod that are highly conserved among many plant taxa. However, expression differences between the two Douglas-fir provenances were rather small compared to the expression differences observed between individual trees. Although the effect of environment on global transcript expression was high, the observed genotype by environment (GxE) interaction of gene expression was surprisingly low, since only 21 of all detected transcripts showed a GxE interaction. The majority of the transcriptome responses in plant leaf tissue is driven by variations in environmental conditions. The small variation between individuals and populations suggests strong conservation of this response within Douglas-fir. Therefore we conclude that plastic transcriptome responses to variations in environmental conditions are only weakly affected by local adaptation in Douglas-fir.

  18. Effects of fasting, temperature, and photoperiod on preproghrelin mRNA expression in Chinese perch.

    PubMed

    Song, Yi; Zhao, Cheng; Liang, Xu-Fang; He, Shan; Tian, Changxu; Cheng, Xiaoyan; Yuan, Xiaochen; Lv, Liyuan; Guo, Wenjie; Xue, Min; Tao, Ya-Xiong

    2017-06-01

    Preproghrelin, a gut/brain peptide, plays an important role in the regulation of food intake and energy homeostasis in teleost and mammals. In the present study, we obtained the full-length preproghrelin cDNA in Chinese perch. The preproghrelin messenger RNA (mRNA) tissue expression showed that level was much higher in stomach and pituitary than in other tissues. The fasting study showed, after gastric emptying (3-6 h), short-term fasting (6-12 h) increased preproghrelin expression in the stomach. While in the pituitary, fasting reduced preproghrelin expression at 1, 3, 12, and 48 h, presenting state fluctuation of self-adjustment. The temperature study showed that the mRNA expression of preproghrelin was the highest in the brain at 26 °C and highest in the stomach at 32 °C, respectively, with different optimum temperature in these two tissues, reflecting spatiotemporal differences of regulation by central nervous system and peripheral organs. The photoperiod study showed that normal light (11 h of lightness and 13 h of darkness) led to highest preproghrelin expression, both in the brain and in the stomach, than continuous light or continuous dark, proving food intake is adapted to natural photoperiod or normal light in this study. These results all indicated that tissue-specific preproghrelin expression of Chinese perch could be significantly affected by environmental factors. Short-term fasting of 6 h after gastric emptying, 26 °C, and normal light led to higher preproghrelin expression, which indicated potential appetite increase in Chinese perch.

  19. Simulating the onset of spring vegetation growth across the Northern Hemisphere.

    PubMed

    Liu, Qiang; Fu, Yongshuo H; Liu, Yongwen; Janssens, Ivan A; Piao, Shilong

    2018-03-01

    Changes in the spring onset of vegetation growth in response to climate change can profoundly impact climate-biosphere interactions. Thus, robust simulation of spring onset is essential to accurately predict ecosystem responses and feedback to ongoing climate change. To date, the ability of vegetation phenology models to reproduce spatiotemporal patterns of spring onset at larger scales has not been thoroughly investigated. In this study, we took advantage of phenology observations via remote sensing to calibrate and evaluated six models, including both one-phase (considering only forcing temperatures) and two-phase (involving forcing, chilling, and photoperiod) models across the Northern Hemisphere between 1982 and 2012. Overall, we found that the model that integrated the photoperiod effect performed best at capturing spatiotemporal patterns of spring phenology in boreal and temperate forests. By contrast, all of the models performed poorly in simulating the onset of growth in grasslands. These results suggest that the photoperiod plays a role in controlling the onset of growth in most Northern Hemisphere forests, whereas other environmental factors (e.g., precipitation) should be considered when simulating the onset of growth in grasslands. We also found that the one-phase model performed as well as the two-phase models in boreal forests, which implies that the chilling requirement is probably fulfilled across most of the boreal zone. Conversely, two-phase models performed better in temperate forests than the one-phase model, suggesting that photoperiod and chilling play important roles in these temperate forests. Our results highlight the significance of including chilling and photoperiod effects in models of the spring onset of forest growth at large scales, and indicate that the consideration of additional drivers may be required for grasslands. © 2017 John Wiley & Sons Ltd.

  20. Comprehensive transcriptome analysis reveals distinct regulatory programs during vernalization and floral bud development of orchardgrass (Dactylis glomerata L.).

    PubMed

    Feng, Guangyan; Huang, Linkai; Li, Ji; Wang, Jianping; Xu, Lei; Pan, Ling; Zhao, Xinxin; Wang, Xia; Huang, Ting; Zhang, Xinquan

    2017-11-22

    Vernalization and the transition from vegetative to reproductive growth involve multiple pathways, vital for controlling floral organ formation and flowering time. However, little transcription information is available about the mechanisms behind environmental adaption and growth regulation. Here, we used high-throughput sequencing to analyze the comprehensive transcriptome of Dactylis glomerata L. during six different growth periods. During vernalization, 4689 differentially expressed genes (DEGs) significantly increased in abundance, while 3841 decreased. Furthermore, 12,967 DEGs were identified during booting stage and flowering stage, including 7750 up-regulated and 5219 down-regulated DEGs. Pathway analysis indicated that transcripts related to circadian rhythm, photoperiod, photosynthesis, flavonoid biosynthesis, starch, and sucrose metabolism changed significantly at different stages. Coexpression and weighted correlation network analysis (WGCNA) analysis linked different stages to transcriptional changes and provided evidence of inner relation modules associated with signal transduction, stress responses, cell division, and hormonal transport. We found enrichment in transcription factors (TFs) related to WRKY, NAC, AP2/EREBP, AUX/IAA, MADS-BOX, ABI3/VP1, bHLH, and the CCAAT family during vernalization and floral bud development. TFs expression patterns revealed intricate temporal variations, suggesting relatively separate regulatory programs of TF modules. Further study will unlock insights into the ability of the circadian rhythm and photoperiod to regulate vernalization and flowering time in perennial grass.

  1. Photoperiod- and Triiodothyronine-dependent Regulation of Reproductive Neuropeptides, Proinflammatory Cytokines, and Peripheral Physiology in Siberian Hamsters (Phodopus sungorus).

    PubMed

    Banks, Ruth; Delibegovic, Mirela; Stevenson, Tyler J

    2016-06-01

    Seasonal trade-offs in reproduction and immunity are ubiquitous in nature. The mechanisms that govern transitions across seasonal physiological states appear to involve reciprocal switches in the local synthesis of thyroid hormone. In long-day (LD) summer-like conditions, increased hypothalamic triiodothyronine (T3) stimulates gonadal development. Alternatively, short-day (SD) winter-like conditions increase peripheral leukocytes and enhance multiple aspects of immune function. These data indicate that the localized effects of T3 in the hypothalamus and leukocytes are photoperiod dependent. We tested the hypothesis that increased peripheral T3 in SD conditions would increase aspects of reproductive physiology and inhibit immune function, whereas T3 injections in LD conditions would facilitate aspects of immune function (i.e., leukocytes). In addition, we also examined whether T3 regulates hypothalamic neuropeptide expression as well as hypothalamic and splenic proinflammatory cytokine expression. Adult male Siberian hamsters were maintained in LD (15L:9D) or transferred to SD (9L:15D) for 8 weeks. A subset of LD and SD hamsters was treated daily with 5 µg T3 for 2 weeks. LD and SD controls were injected with saline. Daily T3 administration in SD hamsters (SD+T3) resulted in a rapid and substantial decrease in peripheral leukocyte concentrations and stimulated gonadal development. T3 treatment in LD (LD+T3) had no effect on testicular volumes but significantly increased leukocyte concentrations. Molecular analyses revealed that T3 stimulated interleukin 1β messenger RNA (mRNA) expression in the spleen and inhibited RFamide Related Peptide-3 mRNA expression in the hypothalamus. Moreover, there was a photoperiod-dependent decrease in splenic tumor necrosis factor-α mRNA expression. These findings reveal that T3 has tissue-specific and photoperiod-dependent regulation of seasonal rhythms in reproduction and immune function. © 2016 The Author(s).

  2. OsNF-YC2 and OsNF-YC4 proteins inhibit flowering under long-day conditions in rice.

    PubMed

    Kim, Soon-Kap; Park, Hyo-Young; Jang, Yun Hee; Lee, Keh Chien; Chung, Young Soo; Lee, Jeong Hwan; Kim, Jeong-Kook

    2016-03-01

    OsNF-YC2 and OsNF-YC4 proteins regulate the photoperiodic flowering response through the modulation of three flowering-time genes ( Ehd1, Hd3a , and RFT1 ) in rice. Plant NUCLEAR FACTOR Y (NF-Y) transcription factors control numerous developmental processes by forming heterotrimeric complexes, but little is known about their roles in flowering in rice. In this study, it is shown that some subunits of OsNF-YB and OsNF-YC interact with each other, and among them, OsNF-YC2 and OsNF-YC4 proteins regulate the photoperiodic flowering response of rice. Protein interaction studies showed that the physical interactions occurred between the three OsNF-YC proteins (OsNF-YC2, OsNF-YC4 and OsNF-YC6) and three OsNF-YB proteins (OsNF-YB8, OsNF-YB10 and OsNF-YB11). Repression and overexpression of the OsNF-YC2 and OsNF-YC4 genes revealed that they act as inhibitors of flowering only under long-day (LD) conditions. Overexpression of OsNF-YC6, however, promoted flowering only under LD conditions, suggesting it could function as a flowering promoter. These phenotypes correlated with the changes in the expression of three rice flowering-time genes [Early heading date 1 (Ehd1), Heading date 3a (Hd3a) and RICE FLOWERING LOCUS T1 (RFT1)]. The diurnal and tissue-specific expression patterns of the subsets of OsNF-YB and OsNF-YC genes were similar to those of CCT domain encoding genes such as OsCO3, Heading date 1 (Hd1) and Ghd7. We propose that OsNF-YC2 and OsNF-YC4 proteins regulate the photoperiodic flowering response by interacting directly with OsNF-YB8, OsNF-YB10 or OsNF-YB11 proteins in rice.

  3. Flowering in Xanthium strumarium: INITIATION AND DEVELOPMENT OF FEMALE INFLORESCENCE AND SEX EXPRESSION.

    PubMed

    Leonard, M; Kinet, J M; Bodson, M; Havelange, A; Jacqmard, A; Bernier, G

    1981-06-01

    Vegetative plants of Xanthium strumarium L. grown in long days were induced to flower by exposure to one or several 16-hour dark periods. The distribution of male and female inflorescences on the flowering shoot was described, and a scoring system was designed to assess the development of the female inflorescences. The time of movement of the floral stimulus out of the induced leaf and the timing of action of high temperature were shown to be similar for both the apical male and lateral female inflorescences.Strong photoperiodic induction of the plants favored female sex expression, while maleness was enhanced by exogenous gibberellic acid. The problem of the control of sex expression in Xanthium is discussed in relation to the distribution pattern of male and female inflorescences on the flowering shoot and to the state of the meristem at the time of the arrival of the floral stimulus.

  4. Identification of genes associated with growth cessation and bud dormancy entrance using a dormancy-incapable tree mutant.

    PubMed

    Jiménez, Sergio; Li, Zhigang; Reighard, Gregory L; Bielenberg, Douglas G

    2010-02-09

    In many tree species the perception of short days (SD) can trigger growth cessation, dormancy entrance, and the establishment of a chilling requirement for bud break. The molecular mechanisms connecting photoperiod perception, growth cessation and dormancy entrance in perennials are not clearly understood. The peach [Prunus persica (L.) Batsch] evergrowing (evg) mutant fails to cease growth and therefore cannot enter dormancy under SD. We used the evg mutant to filter gene expression associated with growth cessation after exposure to SD. Wild-type and evg plants were grown under controlled conditions of long days (16 h/8 h) followed by transfer to SD (8 h/16 h) for eight weeks. Apical tissues were sampled at zero, one, two, four, and eight weeks of SD and suppression subtractive hybridization was performed between genotypes at the same time points. We identified 23 up-regulated genes in the wild-type with respect to the mutant during SD exposure. We used quantitative real-time PCR to verify the expression of the differentially expressed genes in wild-type tissues following the transition to SD treatment. Three general expression patterns were evident: one group of genes decreased at the time of growth cessation (after 2 weeks in SD), another that increased immediately after the SD exposure and then remained steady, and another that increased throughout SD exposure. The use of the dormancy-incapable mutant evg has allowed us to reduce the number of genes typically detected by differential display techniques for SD experiments. These genes are candidates for involvement in the signalling pathway leading from photoperiod perception to growth cessation and dormancy entrance and will be the target of future investigations.

  5. Mapping-by-Sequencing Identifies HvPHYTOCHROME C as a Candidate Gene for the early maturity 5 Locus Modulating the Circadian Clock and Photoperiodic Flowering in Barley

    PubMed Central

    Pankin, Artem; Campoli, Chiara; Dong, Xue; Kilian, Benjamin; Sharma, Rajiv; Himmelbach, Axel; Saini, Reena; Davis, Seth J; Stein, Nils; Schneeberger, Korbinian; von Korff, Maria

    2014-01-01

    Phytochromes play an important role in light signaling and photoperiodic control of flowering time in plants. Here we propose that the red/far-red light photoreceptor HvPHYTOCHROME C (HvPHYC), carrying a mutation in a conserved region of the GAF domain, is a candidate underlying the early maturity 5 locus in barley (Hordeum vulgare L.). We fine mapped the gene using a mapping-by-sequencing approach applied on the whole-exome capture data from bulked early flowering segregants derived from a backcross of the Bowman(eam5) introgression line. We demonstrate that eam5 disrupts circadian expression of clock genes. Moreover, it interacts with the major photoperiod response gene Ppd-H1 to accelerate flowering under noninductive short days. Our results suggest that HvPHYC participates in transmission of light signals to the circadian clock and thus modulates light-dependent processes such as photoperiodic regulation of flowering. PMID:24996910

  6. A proposed model for the flowering signaling pathway of sugarcane under photoperiodic control.

    PubMed

    Coelho, C P; Costa Netto, A P; Colasanti, J; Chalfun-Júnior, A

    2013-04-25

    Molecular analysis of floral induction in Arabidopsis has identified several flowering time genes related to 4 response networks defined by the autonomous, gibberellin, photoperiod, and vernalization pathways. Although grass flowering processes include ancestral functions shared by both mono- and dicots, they have developed their own mechanisms to transmit floral induction signals. Despite its high production capacity and its important role in biofuel production, almost no information is available about the flowering process in sugarcane. We searched the Sugarcane Expressed Sequence Tags database to look for elements of the flowering signaling pathway under photoperiodic control. Sequences showing significant similarity to flowering time genes of other species were clustered, annotated, and analyzed for conserved domains. Multiple alignments comparing the sequences found in the sugarcane database and those from other species were performed and their phylogenetic relationship assessed using the MEGA 4.0 software. Electronic Northerns were run with Cluster and TreeView programs, allowing us to identify putative members of the photoperiod-controlled flowering pathway of sugarcane.

  7. Distribution of photoperiod-insensitive allele Ppd-A1a and its effect on heading time in Japanese wheat cultivars

    PubMed Central

    Seki, Masako; Chono, Makiko; Nishimura, Tsutomu; Sato, Mikako; Yoshimura, Yasuhiro; Matsunaka, Hitoshi; Fujita, Masaya; Oda, Shunsuke; Kubo, Katashi; Kiribuchi-Otobe, Chikako; Kojima, Hisayo; Nishida, Hidetaka; Kato, Kenji

    2013-01-01

    The Ppd-A1 genotype of 240 Japanese wheat cultivars and 40 foreign cultivars was determined using a PCR-based method. Among Japanese cultivars, only 12 cultivars, all of which were Hokkaido winter wheat, carried the Ppd-A1a allele, while this allele was not found in Hokkaido spring wheat cultivars or Tohoku-Kyushu cultivars. Cultivars with a photoperiod-insensitive allele headed 6.9–9.8 days earlier in Kanto and 2.5 days earlier in Hokkaido than photoperiod-sensitive cultivars. The lower effect of photoperiod-insensitive alleles observed in Hokkaido could be due to the longer day-length at the spike formation stage compared with that in Kanto. Pedigree analysis showed that ‘Purple Straw’ and ‘Tohoku 118’ were donors of Ppd-A1a and Ppd-D1a in Hokkaido wheat cultivars, respectively. Wheat cultivars recently developed in Hokkaido carry photoperiod-insensitive alleles at a high frequency. For efficient utilization of Ppd-1 alleles in the Hokkaido wheat-breeding program, the effect of Ppd-1 on growth pattern and grain yield should be investigated. Ppd-A1a may be useful as a unique gene source for fine tuning the heading time in the Tohoku-Kyushu region since the effect of Ppd-A1a on photoperiod insensitivity appears to differ from the effect of Ppd-B1a and Ppd-D1a. PMID:24273426

  8. TCP4-dependent induction of CONSTANS transcription requires GIGANTEA in photoperiodic flowering in Arabidopsis

    PubMed Central

    Shim, Jae Sung; Song, Yong Hun; Laboy Cintrón, Dianne; Koyama, Tomotsugu; Ohme-Takagi, Masaru; Pruneda-Paz, Jose L.; Kay, Steve A.; MacCoss, Michael J.

    2017-01-01

    Photoperiod is one of the most reliable environmental cues for plants to regulate flowering timing. In Arabidopsis thaliana, CONSTANS (CO) transcription factor plays a central role in regulating photoperiodic flowering. In contrast to posttranslational regulation of CO protein, still little was known about CO transcriptional regulation. Here we show that the CINCINNATA (CIN) clade of class II TEOSINTE BRANCHED 1/ CYCLOIDEA/ PROLIFERATING CELL NUCLEAR ANTIGEN FACTOR (TCP) proteins act as CO activators. Our yeast one-hybrid analysis revealed that class II CIN-TCPs, including TCP4, bind to the CO promoter. TCP4 induces CO expression around dusk by directly associating with the CO promoter in vivo. In addition, TCP4 binds to another flowering regulator, GIGANTEA (GI), in the nucleus, and induces CO expression in a GI-dependent manner. The physical association of TCP4 with the CO promoter was reduced in the gi mutant, suggesting that GI may enhance the DNA-binding ability of TCP4. Our tandem affinity purification coupled with mass spectrometry (TAP-MS) analysis identified all class II CIN-TCPs as the components of the in vivo TCP4 complex, and the gi mutant did not alter the composition of the TCP4 complex. Taken together, our results demonstrate a novel function of CIN-TCPs as photoperiodic flowering regulators, which may contribute to coordinating plant development with flowering regulation. PMID:28628608

  9. TCP4-dependent induction of CONSTANS transcription requires GIGANTEA in photoperiodic flowering in Arabidopsis.

    PubMed

    Kubota, Akane; Ito, Shogo; Shim, Jae Sung; Johnson, Richard S; Song, Yong Hun; Breton, Ghislain; Goralogia, Greg S; Kwon, Michael S; Laboy Cintrón, Dianne; Koyama, Tomotsugu; Ohme-Takagi, Masaru; Pruneda-Paz, Jose L; Kay, Steve A; MacCoss, Michael J; Imaizumi, Takato

    2017-06-01

    Photoperiod is one of the most reliable environmental cues for plants to regulate flowering timing. In Arabidopsis thaliana, CONSTANS (CO) transcription factor plays a central role in regulating photoperiodic flowering. In contrast to posttranslational regulation of CO protein, still little was known about CO transcriptional regulation. Here we show that the CINCINNATA (CIN) clade of class II TEOSINTE BRANCHED 1/ CYCLOIDEA/ PROLIFERATING CELL NUCLEAR ANTIGEN FACTOR (TCP) proteins act as CO activators. Our yeast one-hybrid analysis revealed that class II CIN-TCPs, including TCP4, bind to the CO promoter. TCP4 induces CO expression around dusk by directly associating with the CO promoter in vivo. In addition, TCP4 binds to another flowering regulator, GIGANTEA (GI), in the nucleus, and induces CO expression in a GI-dependent manner. The physical association of TCP4 with the CO promoter was reduced in the gi mutant, suggesting that GI may enhance the DNA-binding ability of TCP4. Our tandem affinity purification coupled with mass spectrometry (TAP-MS) analysis identified all class II CIN-TCPs as the components of the in vivo TCP4 complex, and the gi mutant did not alter the composition of the TCP4 complex. Taken together, our results demonstrate a novel function of CIN-TCPs as photoperiodic flowering regulators, which may contribute to coordinating plant development with flowering regulation.

  10. Epigenomic and functional analyses reveal roles of epialleles in the loss of photoperiod sensitivity during domestication of allotetraploid cottons.

    PubMed

    Song, Qingxin; Zhang, Tianzhen; Stelly, David M; Chen, Z Jeffrey

    2017-05-31

    Polyploidy is a pervasive evolutionary feature of all flowering plants and some animals, leading to genetic and epigenetic changes that affect gene expression and morphology. DNA methylation changes can produce meiotically stable epialleles, which are transmissible through selection and breeding. However, the relationship between DNA methylation and polyploid plant domestication remains elusive. We report comprehensive epigenomic and functional analyses, including ~12 million differentially methylated cytosines in domesticated allotetraploid cottons and their tetraploid and diploid relatives. Methylated genes evolve faster than unmethylated genes; DNA methylation changes between homoeologous loci are associated with homoeolog-expression bias in the allotetraploids. Significantly, methylation changes induced in the interspecific hybrids are largely maintained in the allotetraploids. Among 519 differentially methylated genes identified between wild and cultivated cottons, some contribute to domestication traits, including flowering time and seed dormancy. CONSTANS (CO) and CO-LIKE (COL) genes regulate photoperiodicity in Arabidopsis. COL2 is an epiallele in allotetraploid cottons. COL2A is hypermethylated and silenced, while COL2D is repressed in wild cottons but highly expressed due to methylation loss in all domesticated cottons tested. Inhibiting DNA methylation activates COL2 expression, and repressing COL2 in cultivated cotton delays flowering. We uncover epigenomic signatures of domestication traits during cotton evolution. Demethylation of COL2 increases its expression, inducing photoperiodic flowering, which could have contributed to the suitability of cotton for cultivation worldwide. These resources should facilitate epigenetic engineering, breeding, and improvement of polyploid crops.

  11. Extensive Analysis of GmFTL and GmCOL Expression in Northern Soybean Cultivars in Field Conditions.

    PubMed

    Guo, Guangyu; Xu, Kun; Zhang, Xiaomei; Zhu, Jinlong; Lu, Mingyang; Chen, Fulu; Liu, Linpo; Xi, Zhang-Ying; Bachmair, Andreas; Chen, Qingshan; Fu, Yong-Fu

    2015-01-01

    The FLOWERING LOCUS T (FT) gene is a highly conserved florigen gene among flowering plants. Soybean genome encodes six homologs of FT, which display flowering activity in Arabidopsis thaliana. However, their contributions to flowering time in different soybean cultivars, especially in field conditions, are unclear. We employed six soybean cultivars with different maturities to extensively investigate expression patterns of GmFTLs (Glycine max FT-like) and GmCOLs (Glycine max CO-like) in the field conditions. The results show that GmFTL3 is an FT homolog with the highest transcript abundance in soybean, but other GmFTLs may also contribute to flower induction with different extents, because they have more or less similar expression patterns in developmental-, leaf-, and circadian-specific modes. And four GmCOL genes (GmCOL1/2/5/13) may confer to the expression of GmFTL genes. Artificial manipulation of GmFTL expression by transgenic strategy (overexpression and RNAi) results in a distinct change in soybean flowering time, indicating that GmFTLs not only impact on the control of flowering time, but have potential applications in the manipulation of photoperiodic adaptation in soybean. Additionally, transgenic plants show that GmFTLs play a role in formation of the first flowers and in vegetative growth.

  12. Extensive Analysis of GmFTL and GmCOL Expression in Northern Soybean Cultivars in Field Conditions

    PubMed Central

    Zhu, Jinlong; Lu, Mingyang; Chen, Fulu; Liu, Linpo; Xi, Zhang-Ying; Bachmair, Andreas; Chen, Qingshan; Fu, Yong-Fu

    2015-01-01

    The FLOWERING LOCUS T (FT) gene is a highly conserved florigen gene among flowering plants. Soybean genome encodes six homologs of FT, which display flowering activity in Arabidopsis thaliana. However, their contributions to flowering time in different soybean cultivars, especially in field conditions, are unclear. We employed six soybean cultivars with different maturities to extensively investigate expression patterns of GmFTLs (Glycine max FT-like) and GmCOLs (Glycine max CO-like) in the field conditions. The results show that GmFTL3 is an FT homolog with the highest transcript abundance in soybean, but other GmFTLs may also contribute to flower induction with different extents, because they have more or less similar expression patterns in developmental-, leaf-, and circadian-specific modes. And four GmCOL genes (GmCOL1/2/5/13) may confer to the expression of GmFTL genes. Artificial manipulation of GmFTL expression by transgenic strategy (overexpression and RNAi) results in a distinct change in soybean flowering time, indicating that GmFTLs not only impact on the control of flowering time, but have potential applications in the manipulation of photoperiodic adaptation in soybean. Additionally, transgenic plants show that GmFTLs play a role in formation of the first flowers and in vegetative growth. PMID:26371882

  13. A Theoretical Study on Seasonality

    PubMed Central

    Schmal, Christoph; Myung, Jihwan; Herzel, Hanspeter; Bordyugov, Grigory

    2015-01-01

    In addition to being endogenous, a circadian system must be able to communicate with the outside world and align its rhythmicity to the environment. As a result of such alignment, external Zeitgebers can entrain the circadian system. Entrainment expresses itself in coinciding periods of the circadian oscillator and the Zeitgeber and a stationary phase difference between them. The range of period mismatches between the circadian system and the Zeitgeber that Zeitgeber can overcome to entrain the oscillator is called an entrainment range. The width of the entrainment range usually increases with increasing Zeitgeber strength, resulting in a wedge-like Arnold tongue. This classical view of entrainment does not account for the effects of photoperiod on entrainment. Zeitgebers with extremely small or large photoperiods are intuitively closer to constant environments than equinoctial Zeitgebers and hence are expected to produce a narrower entrainment range. In this paper, we present theoretical results on entrainment under different photoperiods. We find that in the photoperiod-detuning parameter plane, the entrainment zone is shaped in the form of a skewed onion. The bottom and upper points of the onion are given by the free-running periods in DD and LL, respectively. The widest entrainment range is found near photoperiods of 50%. Within the onion, we calculated the entrainment phase that varies over a range of 12 h. The results of our theoretical study explain the experimentally observed behavior of the entrainment phase in dependence on the photoperiod. PMID:25999912

  14. Monosodium glutamate-induced arcuate nucleus damage affects both natural torpor and 2DG-induced torpor-like hypothermia in Siberian hamsters.

    PubMed

    Pelz, Kimberly M; Routman, David; Driscoll, Joseph R; Kriegsfeld, Lance J; Dark, John

    2008-01-01

    Siberian hamsters (Phodopus sungorus) have the ability to express daily torpor and decrease their body temperature to approximately 15 degrees C, providing a significant savings in energy expenditure. Daily torpor in hamsters is cued by winterlike photoperiods and occurs coincident with the annual nadirs in body fat reserves and chronic leptin concentrations. To better understand the neural mechanisms underlying torpor, Siberian hamster pups were postnatally treated with saline or MSG to ablate arcuate nucleus neurons that likely possess leptin receptors. Body temperature was studied telemetrically in cold-acclimated (10 degrees C) male and female hamsters moved to a winterlike photoperiod (10:14-h light-dark cycle) (experiments 1 and 2) or that remained in a summerlike photoperiod (14:10-h light-dark cycle) (experiment 3). In experiment 1, even though other photoperiodic responses persisted, MSG-induced arcuate nucleus ablations prevented the photoperiod-dependent torpor observed in saline-treated Siberian hamsters. MSG-treated hamsters tended to possess greater fat reserves. To determine whether reductions in body fat would increase frequency of photoperiod-induced torpor after MSG treatment, hamsters underwent 2 wk of food restriction (70% of ad libitum) in experiment 2. Although food restriction did increase the frequency of torpor in both MSG- and saline-treated hamsters, it failed to normalize the proportion of MSG-treated hamsters undergoing photoperiod-dependent torpor. In experiment 3, postnatal MSG treatments reduced the proportion of hamsters entering 2DG-induced torpor-like hypothermia by approximately 50% compared with saline-treated hamsters (38 vs. 72%). In those MSG-treated hamsters that did become hypothermic, their minimum temperature during hypothermia was significantly greater than comparable saline-treated hamsters. We conclude that 1) arcuate nucleus mechanisms mediate photoperiod-induced torpor, 2) food-restriction-induced torpor may also be reduced by MSG treatments, and 3) arcuate nucleus neurons make an important, albeit partial, contribution to 2DG-induced torpor-like hypothermia.

  15. ZCN8 encodes a potential orthologue of Arabidopsis FT florigen that integrates both endogenous and photoperiod flowering signals in maize

    PubMed Central

    Lazakis, Chloë M.; Coneva, Viktoriya; Colasanti, Joseph

    2011-01-01

    Higher plants use multiple perceptive measures to coordinate flowering time with environmental and endogenous cues. Physiological studies show that florigen is a mobile factor that transmits floral inductive signals from the leaf to the shoot apex. Arabidopsis FT protein is widely regarded as the archetype florigen found in diverse plant species, particularly in plants that use inductive photoperiods to flower. Recently, a large family of FT homologues in maize, the Zea CENTRORADIALIS (ZCN) genes, was described, suggesting that maize also contains FT-related proteins that act as a florigen. The product of one member of this large family, ZCN8, has several attributes that make it a good candidate as a maize florigen. Mechanisms underlying the floral transition in maize are less well understood than those of other species, partly because flowering in temperate maize is dependent largely on endogenous signals. The maize indeterminate1 (id1) gene is an important regulator of maize autonomous flowering that acts in leaves to mediate the transmission or production of florigenic signals. This study finds that id1 acts upstream of ZCN8 to control its expression, suggesting a possible new link to flowering in day-neutral maize. Moreover, in teosinte, a tropical progenitor of maize that requires short-day photoperiods to induce flowering, ZCN8 is highly up-regulated in leaves under inductive photoperiods. Finally, vascular-specific expression of ZCN8 in Arabidopsis complements the ft-1 mutation, demonstrating that leaf-specific expression of ZCN8 can induce flowering. These results suggest that ZCN8 may encode a florigen that integrates both endogenous and environmental signals in maize. PMID:21730358

  16. Deep-brain photoreceptors (DBPs) involved in the photoperiodic gonadal response in an avian species, Gallus gallus.

    PubMed

    Kang, Seong W; Kuenzel, Wayne J

    2015-01-15

    Three primitive photoreceptors [melanopsin (Opn4), neuropsin/opsin5 (Opn5) and vertebrate ancient opsin (VAOpn)] were reported as possible avian deep-brain photoreceptors (DBPs) involved in the perception of photoperiodic information affecting the onset and development of reproduction. The objective of this study was to determine the effect of long-day photostimulation and/or sulfamethazine treatment (SMZ, a compound known to advance light-induced testes development) on gene expression of DBPs and key hypothalamic and pituitary genes involved in avian reproductive function. Two-week old chicks were randomly selected into four experimental groups: short-day control (SC, LD8:16), short-day+SMZ (SS, LD8:16, 0.2% diet SMZ), long-day control (LC, LD16:8), and long-day+SMZ (LS, LD16:8, 0.2% diet SMZ). Birds were sampled on days 3, 7, and 28 after initiation of a long-day photoperiod and/or SMZ dietary treatments. Three brain regions [septal-preoptic, anterior hypothalamic (SepPre/Ant-Hypo) region, mid-hypothalamic (Mid-Hypo) region, posterior-hypothalamic (Post-Hypo) region], and anterior pituitary gland were dissected. Using quantitative real-time RT-PCR, we determined changes of expression levels of genes in distinct brain regions; Opn4 and Opn5 in SepPre/Ant-Hypo and Post-Hypo regions and, VAOpn in the Mid-Hypo region. Long-day treatment resulted in a significantly elevated testes weight on days 7 and 28 compared to controls, and SMZ augmented testes weight in both short- and long-day treatment after day 7 (P<0.05). Long-day photoperiodic treatment on the third day unexpectedly induced a large 8.4-fold increase of VAOpn expression in the Mid-Hypo region, a 15.4-fold increase of Opn4 and a 97.8-fold increase of Opn5 gene expression in the Post-Hypo region compared to SC birds (P<0.01). In contrast, on days 7 and 28, gene expression of the three DBPs was barely detectable. LC group showed a significant increase in GnRH-1 and TRH mRNA in the Mid-Hypo compared to SC on day 3. Pituitary LHβ and FSHβ mRNA were significantly elevated in LC and LS groups compared to SC on days 3 and 7 (P<0.05). On days 3 and 7, TSHβ mRNA level was significantly elevated by long-day treatment compared to the SC groups (P<0.05). Results suggest that long-day photoperiodic activation of DBPs is robust, transient, and temporally related with neuroendocrine genes involved in reproductive function. Additionally, results indicate that two subsets of GnRH-1 neurons exist based upon significantly different gene expression from long-day photostimulation and long-day plus SMZ administration. Taken together, the data indicate that within 3 days of a long-day photoperiod, an eminent activation of all three types of DBPs might be involved in priming the neuroendocrine system to activate reproductive function in birds. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Importance of photoperiods in determining temporal pattern of annual testicular events in rose-ringed parakeet (Psittacula krameri).

    PubMed

    Maitra, S K; Dey, M

    1992-01-01

    Male rose-ringed parakeets (Psittacula krameri) were transferred to a long photoperiod (LP; LD 16:8) or a short photoperiod (SP; LD 8:16) for 45 or 90 days on four dates corresponding to the beginnings of different reproductive phases in an annual testicular cycle, and testicular responsiveness was evaluated by comparison with the testicular volume, weight, seminiferous tubular diameter, and germ cell profiles of birds in a natural photoperiod (NP). Exposure of birds to LP during the progressive phase (November) led to precocious maturation of testes after 45 days, but induced regression at 90 days. After showing retarded gametogenic functions at 45 days, parallel (November) SP birds exhibited an accelerated rate of germ cell formation at day 90. During the prebreeding phase (January), there were no remarkable differences in any features of testes among NP. LP, and SP birds at 45 days, but gonadal involution in LP parakeets and active spermatogenesis in SP birds occurred after 90 days. The testes did not show any response to LP or SP for 45 and 90 days when the birds were transferred to altered photoperiods during the breeding (March) and preparatory (June) phases, indicating that the parakeets were photorefractory for at least 6 months (March through September). The results also suggest that initiation and termination of seasonal gametogenic activity in parakeets are possibly functions of endogenous rhythmicity or extraphotoperiodic environmental factors. Duration of light may have certain influences on the attainment of annual peak in spermatogenesis, but in all probability the species has a low photoperiod threshold for induction of testicular growth.

  18. Patterns of Nucleotide Diversity at Photoperiod Related Genes in Norway Spruce [Picea abies (L.) Karst.

    PubMed Central

    Källman, Thomas; De Mita, Stéphane; Larsson, Hanna; Gyllenstrand, Niclas; Heuertz, Myriam; Parducci, Laura; Suyama, Yoshihisa; Lagercrantz, Ulf; Lascoux, Martin

    2014-01-01

    The ability of plants to track seasonal changes is largely dependent on genes assigned to the photoperiod pathway, and variation in those genes is thereby important for adaptation to local day length conditions. Extensive physiological data in several temperate conifer species suggest that populations are adapted to local light conditions, but data on the genes underlying this adaptation are more limited. Here we present nucleotide diversity data from 19 genes putatively involved in photoperiodic response in Norway spruce (Picea abies). Based on similarity to model plants the genes were grouped into three categories according to their presumed position in the photoperiod pathway: photoreceptors, circadian clock genes, and downstream targets. An HKA (Hudson, Kreitman and Aquade) test showed a significant excess of diversity at photoreceptor genes, but no departure from neutrality at circadian genes and downstream targets. Departures from neutrality were also tested with Tajima's D and Fay and Wu's H statistics under three demographic scenarios: the standard neutral model, a population expansion model, and a more complex population split model. Only one gene, the circadian clock gene PaPRR3 with a highly positive Tajima's D value, deviates significantly from all tested demographic scenarios. As the PaPRR3 gene harbours multiple non-synonymous variants it appears as an excellent candidate gene for control of photoperiod response in Norway spruce. PMID:24810273

  19. Patterns of nucleotide diversity at photoperiod related genes in Norway spruce [Picea abies (L.) Karst].

    PubMed

    Källman, Thomas; De Mita, Stéphane; Larsson, Hanna; Gyllenstrand, Niclas; Heuertz, Myriam; Parducci, Laura; Suyama, Yoshihisa; Lagercrantz, Ulf; Lascoux, Martin

    2014-01-01

    The ability of plants to track seasonal changes is largely dependent on genes assigned to the photoperiod pathway, and variation in those genes is thereby important for adaptation to local day length conditions. Extensive physiological data in several temperate conifer species suggest that populations are adapted to local light conditions, but data on the genes underlying this adaptation are more limited. Here we present nucleotide diversity data from 19 genes putatively involved in photoperiodic response in Norway spruce (Picea abies). Based on similarity to model plants the genes were grouped into three categories according to their presumed position in the photoperiod pathway: photoreceptors, circadian clock genes, and downstream targets. An HKA (Hudson, Kreitman and Aquade) test showed a significant excess of diversity at photoreceptor genes, but no departure from neutrality at circadian genes and downstream targets. Departures from neutrality were also tested with Tajima's D and Fay and Wu's H statistics under three demographic scenarios: the standard neutral model, a population expansion model, and a more complex population split model. Only one gene, the circadian clock gene PaPRR3 with a highly positive Tajima's D value, deviates significantly from all tested demographic scenarios. As the PaPRR3 gene harbours multiple non-synonymous variants it appears as an excellent candidate gene for control of photoperiod response in Norway spruce.

  20. Molecular cloning and characterization of a gene regulating flowering time from Alfalfa (Medicago sativa L.).

    PubMed

    Zhang, Tiejun; Chao, Yuehui; Kang, Junmei; Ding, Wang; Yang, Qingchuan

    2013-07-01

    Genes that regulate flowering time play crucial roles in plant development and biomass formation. Based on the cDNA sequence of Medicago truncatula (accession no. AY690425), the LFY gene of alfalfa was cloned. Sequence similarity analysis revealed high homology with FLO/LFY family genes of other plants. When fused to the green fluorescent protein, MsLFY protein was localized in the nucleus of onion (Allium cepa L.) epidermal cells. The RT-qPCR analysis of MsLFY expression patterns showed that the expression of MsLFY gene was at a low level in roots, stems, leaves and pods, and the expression level in floral buds was the highest. The expression of MsLFY was induced by GA3 and long photoperiod. Plant expression vector was constructed and transformed into Arabidopsis by the agrobacterium-mediated methods. PCR amplification with the transgenic Arabidopsis genome DNA indicated that MsLFY gene had integrated in Arabidopsis genome. Overexpression of MsLFY specifically caused early flowering under long day conditions compared with non-transgenic plants. These results indicated MsLFY played roles in promoting flowering time.

  1. Expression and regulation of Icer mRNA in the Syrian hamster pineal gland.

    PubMed

    Diaz, Elena; Garidou, Marie-Laure; Dardente, Hugues; Salingre, Anthony; Pévet, Paul; Simonneaux, Valérie

    2003-04-10

    Inducible-cAMP early repressor (ICER) is a potent inhibitor of CRE (cAMP-related element)-driven gene transcription. In the rat pineal gland, it has been proposed to be part of the mechanisms involved in the shutting down of the transcription of the gene coding for arylalkylamine N-acetyltransferase (AA-NAT, the melatonin rhythm-generating enzyme). In this study, we report that ICER is expressed in the pineal gland of the photoperiodic rodent Syrian hamster although with some difference compared to the rat. In the Syrian hamster pineal, Icer mRNA levels, low at daytime, displayed a 20-fold increase during the night. Nighttime administration of a beta-adrenergic antagonist, propranolol, significantly reduced Icer mRNA levels although daytime administration of a beta-adrenergic agonist, isoproterenol, was unable to raise the low amount of Icer mRNA. These observations indicate that Icer mRNA expression is induced by the clock-driven norepinephrine release and further suggest that this stimulation is restricted to nighttime, as already observed for Aa-nat gene transcription. Furthermore, we found that the daily profile of Icer mRNA displayed photoperiodic variation with a lengthening of the nocturnal peak in short versus long photoperiod. These data indicate that ICER may be involved in both daily and seasonal regulation of melatonin synthesis in the Syrian hamster.

  2. Photoperiod- and temperature-mediated control of growth cessation and dormancy in trees: a molecular perspective.

    PubMed

    Maurya, Jay P; Bhalerao, Rishikesh P

    2017-09-01

    How plants adapt their developmental patterns to regular seasonal changes is an important question in biology. The annual growth cycle in perennial long-lived trees is yet another example of how plants can adapt to seasonal changes. The two main signals that plants rely on to respond to seasonal changes are photoperiod and temperature, and these signals have critical roles in the temporal regulation of the annual growth cycle of trees. This review presents the latest findings to provide insight into the molecular mechanisms that underlie how photoperiodic and temperature signals regulate seasonal growth in trees. The results point to a high level of conservation in the signalling pathways that mediate photoperiodic control of seasonal growth in trees and flowering in annual plants such as arabidopsis. Furthermore, the data indicate that symplastic communication may mediate certain aspects of seasonal growth. Although considerable insight into the control of phenology in model plants such as poplar and spruce has been obtained, the future challenge is extending these studies to other, non-model trees. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  3. Flowering in Xanthium strumarium

    PubMed Central

    Leonard, Maggy; Kinet, Jean-Marie; Bodson, Monique; Havelange, Andrée; Jacqmard, Annie; Bernier, Georges

    1981-01-01

    Vegetative plants of Xanthium strumarium L. grown in long days were induced to flower by exposure to one or several 16-hour dark periods. The distribution of male and female inflorescences on the flowering shoot was described, and a scoring system was designed to assess the development of the female inflorescences. The time of movement of the floral stimulus out of the induced leaf and the timing of action of high temperature were shown to be similar for both the apical male and lateral female inflorescences. Strong photoperiodic induction of the plants favored female sex expression, while maleness was enhanced by exogenous gibberellic acid. The problem of the control of sex expression in Xanthium is discussed in relation to the distribution pattern of male and female inflorescences on the flowering shoot and to the state of the meristem at the time of the arrival of the floral stimulus. Images PMID:16661844

  4. Redwood seedling responses to light patterns and intensities

    Treesearch

    Ronald W. Boldenow; Joe R. McBride

    2017-01-01

    Coast redwood (Sequoia sempervirens (D. Don) Endl.) seedlings were grown from seed in controlled environments with 16 hour photoperiods using three light patterns that mimicked full shade (constant light level), intermittent high light such as long duration sun flecks (low light with 15 minutes of intense light every 2 hours), and large...

  5. Adult Tea Green Leafhoppers, Empoasca onukii (Matsuda), Change Behaviors under Varying Light Conditions

    PubMed Central

    Shi, Longqing; Vasseur, Liette; Huang, Huoshui; Zeng, Zhaohua; Hu, Guiping; Liu, Xin; You, Minsheng

    2017-01-01

    Insect behaviors are often influenced by light conditions including photoperiod, light intensity, and wavelength. Understanding pest insect responses to changing light conditions may help with developing alternative strategies for pest control. Little is known about the behavioral responses of leafhoppers (Hemiptera: Cicadellidae) to light conditions. The behavior of the tea green leafhopper, Empoasca onukii Matsuda, was examined when exposed to different light photoperiods or wavelengths. Observations included the frequency of locomotion and cleaning activities, and the duration of time spent searching. The results suggested that under normal photoperiod both female and male adults were generally more active in darkness (i.e., at night) than in light. In continuous darkness (DD), the locomotion and cleaning events in Period 1 (7:00–19:00) were significantly increased, when compared to the leafhoppers under normal photoperiod (LD). Leafhoppers, especially females, changed their behavioral patterns to a two day cycle under DD. Under continuous illumination (continuous quartz lamp light, yellow light at night, and green light at night), the activities of locomotion, cleaning, and searching were significantly suppressed during the night (19:00–7:00) and locomotion activities of both females and males were significantly increased during the day (7:00–19:00), suggesting a shift in circadian rhythm. Our work suggests that changes in light conditions, including photoperiod and wavelength, can influence behavioral activities of leafhoppers, potentially affecting other life history traits such as reproduction and development, and may serve as a method for leafhopper behavioral control. PMID:28103237

  6. Adult Tea Green Leafhoppers, Empoasca onukii (Matsuda), Change Behaviors under Varying Light Conditions.

    PubMed

    Shi, Longqing; Vasseur, Liette; Huang, Huoshui; Zeng, Zhaohua; Hu, Guiping; Liu, Xin; You, Minsheng

    2017-01-01

    Insect behaviors are often influenced by light conditions including photoperiod, light intensity, and wavelength. Understanding pest insect responses to changing light conditions may help with developing alternative strategies for pest control. Little is known about the behavioral responses of leafhoppers (Hemiptera: Cicadellidae) to light conditions. The behavior of the tea green leafhopper, Empoasca onukii Matsuda, was examined when exposed to different light photoperiods or wavelengths. Observations included the frequency of locomotion and cleaning activities, and the duration of time spent searching. The results suggested that under normal photoperiod both female and male adults were generally more active in darkness (i.e., at night) than in light. In continuous darkness (DD), the locomotion and cleaning events in Period 1 (7:00-19:00) were significantly increased, when compared to the leafhoppers under normal photoperiod (LD). Leafhoppers, especially females, changed their behavioral patterns to a two day cycle under DD. Under continuous illumination (continuous quartz lamp light, yellow light at night, and green light at night), the activities of locomotion, cleaning, and searching were significantly suppressed during the night (19:00-7:00) and locomotion activities of both females and males were significantly increased during the day (7:00-19:00), suggesting a shift in circadian rhythm. Our work suggests that changes in light conditions, including photoperiod and wavelength, can influence behavioral activities of leafhoppers, potentially affecting other life history traits such as reproduction and development, and may serve as a method for leafhopper behavioral control.

  7. Phase Shifting Capacity of the Circadian Pacemaker Determined by the SCN Neuronal Network Organization

    PubMed Central

    vanderLeest, Henk Tjebbe; Rohling, Jos H. T.; Michel, Stephan; Meijer, Johanna H.

    2009-01-01

    Background In mammals, a major circadian pacemaker that drives daily rhythms is located in the suprachiasmatic nuclei (SCN), at the base of the hypothalamus. The SCN receive direct light input via the retino-hypothalamic tract. Light during the early night induces phase delays of circadian rhythms while during the late night it leads to phase advances. The effects of light on the circadian system are strongly dependent on the photoperiod to which animals are exposed. An explanation for this phenomenon is currently lacking. Methodology and Principal Findings We recorded running wheel activity in C57 mice and observed large amplitude phase shifts in short photoperiods and small shifts in long photoperiods. We investigated whether these different light responses under short and long days are expressed within the SCN by electrophysiological recordings of electrical impulse frequency in SCN slices. Application of N-methyl-D-aspartate (NMDA) induced sustained increments in electrical activity that were not significantly different in the slices from long and short photoperiods. These responses led to large phase shifts in slices from short days and small phase shifts in slices from long days. An analysis of neuronal subpopulation activity revealed that in short days the amplitude of the rhythm was larger than in long days. Conclusions The data indicate that the photoperiodic dependent phase responses are intrinsic to the SCN. In contrast to earlier predictions from limit cycle theory, we observed large phase shifting responses in high amplitude rhythms in slices from short days, and small shifts in low amplitude rhythms in slices from long days. We conclude that the photoperiodic dependent phase responses are determined by the SCN and propose that synchronization among SCN neurons enhances the phase shifting capacity of the circadian system. PMID:19305510

  8. Photoperiod- and Warming-driven Phenological Changes and Carbon and Nutrient Cycling. Remote Sensing Assessment

    NASA Astrophysics Data System (ADS)

    Penuelas, J.; Fu, Y.; Estiarte, M.; Gamon, J. A.; Filella, I.; Verger, A.; Jannssens, I.

    2017-12-01

    Ongoing spring warming allows the growing season to begin earlier in northern ecosystems, thus enhancing their carbon uptake. We will present data on atmospheric CO2 concentration measurements to show that this spring advancement of annual carbon intake in response to warming is decreasing. Reduced chilling during dormancy and the interactions between temperature and photoperiod in driving leaf-out may play a role. We will show that short photoperiod (in warm springs when leaf-out is early) significantly increases the heat requirement for leaf-out whereas long photoperiod (in cold springs when leaf-out is late) reduces the heat requirement for leaf-out. These two contrasting photoperiod effects illustrate a complicated temperature response of leaf-out phenology. We will also discuss how photoperiod exerts a strict control on leaf senescence at latitudes where winters are severe and temperature gains importance in the regulation as winters become less severe. On average, climatic warming will delay and drought will advance leaf senescence, but at varying degrees depending on the species. Warming and drought thus have opposite effects on the phenology of leaf senescence, and the impact of climate change will therefore depend on the relative importance of each factor in specific regions. We will then discuss the ecological effects of these phenological changes focusing, as an example, on the impacts of changes on the phenology of leaf senescence on carbon uptake and nutrient cycling. Finally, we will present recent advances on remote sensing monitoring of both the phenological changes and their ecological impacts. We will focus on advances derived from a close correspondence between seasonally changing foliar pigment levels, expressed as chlorophyll/carotenoid ratios, and evergreen photosynthetic activity.

  9. Changes in gonadotropin-releasing hormone and gonadotropin-releasing hormone receptor gene expression after an increase in carbon monoxide concentration in the cavernous sinus of male wild boar and pig crossbread.

    PubMed

    Romerowicz-Misielak, M; Tabecka-Lonczynska, A; Koziol, K; Gilun, P; Stefanczyk-Krzymowska, S; Och, W; Koziorowski, M

    2016-06-01

    Previous studies indicate that there are at least a few regulatory systems involved in photoperiodic synchronisation of reproductive activity, which starts with the retina and ends at the gonadotropin-releasing hormone (GnRH) pulse generator. Recently we have shown indicated that the amount of carbon monoxide (CO) released from the eye into the ophthalmic venous blood depends on the intensity of sunlight. The aim of this study was to test whether changes in the concentration of carbon monoxide in the ophthalmic venous blood may modulate reproductive activity, as measured by changes in GnRH and GnRH receptor gene expression. The animal model used was mature male swine crossbred from wild boars and domestic sows (n = 48). We conducted in vivo experiments to determine the effect of increased CO concentrations in the cavernous sinus of the mammalian perihypophyseal vascular complex on gene expression of GnRH and GnRH receptors as well as serum luteinizing hormone (LH) levels. The experiments were performed during long photoperiod days near the summer solstice (second half of June) and short photoperiod days near the winter solstice (second half of December). These crossbred swine demonstrated a seasonally-dependent marked variation in GnRH and GnRH receptor gene expression and systemic LH levels in response to changes in CO concentration in ophthalmic venous blood. These results seem to confirm the hypothesis of humoral phototransduction as a mechanism for some of bright light's effects in animal chronobiology and the effect of CO on GnRH and GnRH receptor gene expression.

  10. Expression of B-class MADS-box genes in response to variations in photoperiod is associated with chasmogamous and cleistogamous flower development in Viola philippica.

    PubMed

    Li, Qiaoxia; Huo, Qingdi; Wang, Juan; Zhao, Jing; Sun, Kun; He, Chaoying

    2016-07-07

    Some plants develop a breeding system that produces both chasmogamous (CH) and cleistogamous (CL) flowers. However, the underlying molecular mechanism remains elusive. In the present study, we observed that Viola philippica develops CH flowers with short daylight, whereas an extended photoperiod induces the formation of intermediate CL and CL flowers. In response to long daylight, the respective number and size of petals and stamens was lower and smaller than those of normally developed CH flowers, and a minimum of 14-h light induced complete CL flowers that had no petals but developed two stamens of reduced fertility. The floral ABC model indicates that B-class MADS-box genes largely influence the development of the affected two-whorl floral organs; therefore, we focused on characterizing these genes in V. philippica to understand this particular developmental transition. Three such genes were isolated and respectively designated as VpTM6-1, VpTM6-2, and VpPI. These were differentially expressed during floral development (particularly in petals and stamens) and the highest level of expression was observed in CH flowers; significantly low levels were detected in intermediate CL flowers, and the lowest level in CL flowers. The observed variations in the levels of expression after floral induction and organogenesis apparently occurred in response to variations in photoperiod. Therefore, inhibition of the development of petals and stamens might be due to the downregulation of B-class MADS-box gene expression by long daylight, thereby inducing the generation of CL flowers. Our work contributes to the understanding of the adaptive evolutionary formation of dimorphic flowers in plants.

  11. Photoperiodic Control of Carbon Distribution during the Floral Transition in Arabidopsis[C][W][OPEN

    PubMed Central

    Ortiz-Marchena, M. Isabel; Albi, Tomás; Lucas-Reina, Eva; Said, Fatima E.; Romero-Campero, Francisco J.; Cano, Beatriz; Ruiz, M. Teresa; Romero, José M.; Valverde, Federico

    2014-01-01

    Flowering is a crucial process that demands substantial resources. Carbon metabolism must be coordinated with development through a control mechanism that optimizes fitness for any physiological need and growth stage of the plant. However, how sugar allocation is controlled during the floral transition is unknown. Recently, the role of a CONSTANS (CO) ortholog (Cr-CO) in the control of the photoperiod response in the green alga Chlamydomonas reinhardtii and its influence on starch metabolism was demonstrated. In this work, we show that transitory starch accumulation and glycan composition during the floral transition in Arabidopsis thaliana are regulated by photoperiod. Employing a multidisciplinary approach, we demonstrate a role for CO in regulating the level and timing of expression of the GRANULE BOUND STARCH SYNTHASE (GBSS) gene. Furthermore, we provide a detailed characterization of a GBSS mutant involved in transitory starch synthesis and analyze its flowering time phenotype in relation to its altered capacity to synthesize amylose and to modify the plant free sugar content. Photoperiod modification of starch homeostasis by CO may be crucial for increasing the sugar mobilization demanded by the floral transition. This finding contributes to our understanding of the flowering process. PMID:24563199

  12. Chronobiology of crickets: a review.

    PubMed

    Tomioka, Kenji

    2014-10-01

    Crickets provide a good model for the study of mechanisms underlying circadian rhythms and photoperiodic responses. They show clear circadian rhythms in their overt behavior and the sensitivity of the visual system. Classical neurobiological studies revealed that a pair of optic lobes is the locus of the circadian clock controlling these rhythms and that the compound eye is the major photoreceptor necessary for synchronization to environmental light cycles. The two optic lobe clocks are mutually coupled through a neural pathway and the coupling regulates an output circadian waveform and a free-running period. Recent molecular studies revealed that the cricket's clock consists of cyclic expression of so-called clock genes and that the clock mechanism is featured by both Drosophila-like and mammalian-like traits. Molecular oscillation is also observed in some extra-optic lobe tissues and depends on the optic lobe clock in a tissue dependent manner. Interestingly, the clock is also involved in adaptation to seasonally changing environment. It fits its waveform to a given photoperiod and may be an indispensable part of a photoperiodic time-measurement mechanism. With adoption of modern molecular technologies, the cricket becomes a much more important and promising model animal for the study of circadian and photoperiodic biology.

  13. Molecular mechanisms of continuous light inhibition of Atlantic salmon parr-smolt transformation

    USGS Publications Warehouse

    Stefansson, S.O.; Nilsen, Tom O.; Ebbesson, Lars O.E.; Wargelius, A.; Madsen, Steffen S.; Bjornsson, B. Th; McCormick, S.D.

    2007-01-01

    Atlantic salmon (Salmo salar) rely on changes in photoperiod for the synchronization of the developmental events constituting the parr-smolt transformation. In the absence of photoperiod cues, parr-smolt transformation is incomplete, and such 'pseudo-smolts' normally fail to adapt to seawater. The present study addresses the endocrine and molecular mechanisms controlling the development of hypo-osmoregulatory ability and how artificial photoperiod can disrupt these changes. Juvenile Atlantic salmon reared under constant light (LL) from first feeding, were separated into two groups, and exposed to either LL or simulated natural photoperiod (LDN) from October, eight months prior to the expected completion of smoltification. Juveniles reared on LL grew well, but failed to show the smolt-related reduction in condition factor in spring. Gill mRNA levels of Na+, K+-ATPase (NKA) isoform ??1a decreased in LDN fish through completion of parr-smolt transformation, while levels remained unchanged in the LL group. In contrast, ??1b expression increased 6-fold in the LDN group between February and May, again with no change in the LL group. Further, Na+, K+, 2Cl- co-transporter (NKCC) showed a transient increase in expression in smolts on LDN between February and May, while no changes in mRNA levels were seen in juveniles under LL. Consequently, gill NKA activity and NKA ?? and NKCC protein abundance were significantly lower in juveniles on LL than in smolts on LDN. LL fish in spring had lower circulating levels of thyroid hormones (THs), growth hormone (GH) and cortisol. Gill GH-receptor mRNA levels, determined by quantitative PCR, were less than 50% of controls. In contrast, circulating levels of IGF-1 and gill IGF-1 receptor expression, were comparable to controls. Our findings show that continuous light prevents the completion of parr-smolt transformation at a very basic level, disrupting the natural up-regulation of key elements of the endocrine system involved in the regulation of the parr-smolt transformation, and consequently inhibiting the smoltification-related increase in expression, abundance and activity of gill ion transport proteins. ?? 2007 Elsevier B.V. All rights reserved.

  14. Behavioral Timing without Clockwork: Photoperiod-Dependent Trade-Off between Predation Hazard and Energy Balance in an Arctic Ungulate.

    PubMed

    Tyler, Nicholas J C; Gregorini, Pablo; Forchhammer, Mads C; Stokkan, Karl-Arne; van Oort, Bob E H; Hazlerigg, David G

    2016-10-01

    Occurrence of 24-h rhythms in species apparently lacking functional molecular clockwork indicates that strong circadian mechanisms are not essential prerequisites of robust timing, and that rhythmical patterns may arise instead as passive responses to periodically changing environmental stimuli. Thus, in a new synthesis of grazing in a ruminant (MINDY), crepuscular peaks of activity emerge from interactions between internal and external stimuli that influence motivation to feed, and the influence of the light/dark cycle is mediated through the effect of low nocturnal levels of food intake on gastric function. Drawing on risk allocation theory, we hypothesized that the timing of behavior in ruminants is influenced by the independent effects of light on motivation to feed and perceived risk of predation. We predicted that the antithetical relationship between these 2 drivers would vary with photoperiod, resulting in a systematic shift in the phase of activity relative to the solar cycle across the year. This prediction was formalized in a model in which phase of activity emerges from a photoperiod-dependent trade-off between food and safety. We tested this model using data on the temporal pattern of activity in reindeer/caribou Rangifer tarandus free-living at natural mountain pasture in sub-Arctic Norway. The resulting nonlinear relationship between the phasing of crepuscular activity and photoperiod, consistent with the model, suggests a mechanism for behavioral timing that is independent of the core circadian system. We anticipate that such timing depends on integration of metabolic feedback from the digestive system and the activity of the glucocorticoid axis which modulates the behavioral responses of the animal to environmental hazard. The hypothalamus is the obvious neural substrate to achieve this integration. © 2016 The Author(s).

  15. The Pea Photoperiod Response Gene STERILE NODES Is an Ortholog of LUX ARRHYTHMO1[W][OPEN

    PubMed Central

    Liew, Lim Chee; Hecht, Valérie; Sussmilch, Frances C.; Weller, James L.

    2014-01-01

    The STERILE NODES (SN) locus in pea (Pisum sativum) was one of the first photoperiod response genes to be described and provided early evidence for the genetic control of long-distance signaling in flowering-time regulation. Lines homozygous for recessive sn mutations are early flowering and photoperiod insensitive, with an increased ability to promote flowering across a graft union in short-day conditions. Here, we show that SN controls developmental regulation of genes in the FT family and rhythmic regulation of genes related to circadian clock function. Using a positional and functional candidate approach, we identify SN as the pea ortholog of LUX ARRHYTHMO, a GARP transcription factor from Arabidopsis (Arabidopsis thaliana) with an important role in circadian clock function. In addition to induced mutants, sequence analysis demonstrates the presence of at least three other independent, naturally occurring loss-of-function mutations among known sn cultivars. Examination of genetic and regulatory interactions between SN and two other circadian clock genes, HIGH RESPONSE TO PHOTOPERIOD (HR) and DIE NEUTRALIS (DNE), suggests a complex relationship in which HR regulates expression of SN and the role of DNE and HR in control of flowering is dependent on SN. These results extend previous work to show that pea orthologs of all three Arabidopsis evening complex genes regulate clock function and photoperiod-responsive flowering and suggest that the function of these genes may be widely conserved. PMID:24706549

  16. Functional Analysis of GmCPDs and Investigation of Their Roles in Flowering

    PubMed Central

    Wang, Miao; Xu, Xin; Zhang, Xinxin; Sun, Shi; Wu, Cunxiang; Hou, Wensheng; Wang, Qingyu; Han, Tianfu

    2015-01-01

    The onset of floral development is a pivotal switch in the life of soybean. Brassinosteroids (BRs), a group of steroidal phytohormones with essential roles in plant growth and development, are associated with flowering induction. Genes involved in BR biosynthesis have been studied to a great extent in Arabidopsis, but the study of these genes has been limited in soybean. In this study, four CPD homologs (GmCPDs) catalyzing BR synthesis were isolated from soybean. Transcripts were mainly confined to cotyledons and leaves and were down-regulated in response to exogenous BR. Bioinformatic analysis showed strong sequence and structure similarity between GmCPDs and AtCPD as well as CPDs of other species. Overexpression of GmCPDs in an Arabidopsis BR-deficient mutant rescued the phenotype by restoring the biosynthesis pathway, revealing the functional roles of each GmCPDs in. Except for the rescue of root development, leaf expansion and plant type architecture, GmCPDs in expression also complemented the late flowering phenotype of Arabidopsis mutants deficient in CPD. Further evidence in soybean plants is that the expression levels of GmCPDs in are under photoperiod control in Zigongdongdou, a photoperiod-sensitive variety, and show a sudden peak upon floral meristem initiation. Together with increased GmCPDs in expression in the leaves and cotyledons of photoperiod-insensitive early-maturity soybean, it is clear that GmCPDs in contribute to flowering development and are essential in the early stages of flowering regulation. PMID:25734273

  17. Functional characterization of duplicated Suppressor of Overexpression of Constans 1-like genes in petunia.

    PubMed

    Preston, Jill C; Jorgensen, Stacy A; Jha, Suryatapa G

    2014-01-01

    Flowering time is strictly controlled by a combination of internal and external signals that match seed set with favorable environmental conditions. In the model plant species Arabidopsis thaliana (Brassicaceae), many of the genes underlying development and evolution of flowering have been discovered. However, much remains unknown about how conserved the flowering gene networks are in plants with different growth habits, gene duplication histories, and distributions. Here we functionally characterize three homologs of the flowering gene Suppressor Of Overexpression of Constans 1 (SOC1) in the short-lived perennial Petunia hybrida (petunia, Solanaceae). Similar to A. thaliana soc1 mutants, co-silencing of duplicated petunia SOC1-like genes results in late flowering. This phenotype is most severe when all three SOC1-like genes are silenced. Furthermore, expression levels of the SOC1-like genes Unshaven (UNS) and Floral Binding Protein 21 (FBP21), but not FBP28, are positively correlated with developmental age. In contrast to A. thaliana, petunia SOC1-like gene expression did not increase with longer photoperiods, and FBP28 transcripts were actually more abundant under short days. Despite evidence of functional redundancy, differential spatio-temporal expression data suggest that SOC1-like genes might fine-tune petunia flowering in response to photoperiod and developmental stage. This likely resulted from modification of SOC1-like gene regulatory elements following recent duplication, and is a possible mechanism to ensure flowering under both inductive and non-inductive photoperiods.

  18. Functional Characterization of Duplicated SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1-Like Genes in Petunia

    PubMed Central

    Preston, Jill C.; Jorgensen, Stacy A.; Jha, Suryatapa G.

    2014-01-01

    Flowering time is strictly controlled by a combination of internal and external signals that match seed set with favorable environmental conditions. In the model plant species Arabidopsis thaliana (Brassicaceae), many of the genes underlying development and evolution of flowering have been discovered. However, much remains unknown about how conserved the flowering gene networks are in plants with different growth habits, gene duplication histories, and distributions. Here we functionally characterize three homologs of the flowering gene SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) in the short-lived perennial Petunia hybrida (petunia, Solanaceae). Similar to A. thaliana soc1 mutants, co-silencing of duplicated petunia SOC1-like genes results in late flowering. This phenotype is most severe when all three SOC1-like genes are silenced. Furthermore, expression levels of the SOC1-like genes UNSHAVEN (UNS) and FLORAL BINDING PROTEIN 21 (FBP21), but not FBP28, are positively correlated with developmental age. In contrast to A. thaliana, petunia SOC1-like gene expression did not increase with longer photoperiods, and FBP28 transcripts were actually more abundant under short days. Despite evidence of functional redundancy, differential spatio-temporal expression data suggest that SOC1-like genes might fine-tune petunia flowering in response to photoperiod and developmental stage. This likely resulted from modification of SOC1-like gene regulatory elements following recent duplication, and is a possible mechanism to ensure flowering under both inductive and non-inductive photoperiods. PMID:24787903

  19. Reproductive seasonality in captive wild ruminants: implications for biogeographical adaptation, photoperiodic control, and life history.

    PubMed

    Zerbe, Philipp; Clauss, Marcus; Codron, Daryl; Bingaman Lackey, Laurie; Rensch, Eberhard; Streich, Jürgen W; Hatt, Jean-Michel; Müller, Dennis W H

    2012-11-01

    Many ruminant species show seasonal patterns of reproduction. Causes for this are widely debated, and include adaptations to seasonal availability of resources (with cues either from body condition in more tropical, or from photoperiodism in higher latitude habitats) and/or defence strategies against predators. Conclusions so far are limited to datasets with less than 30 species. Here, we use a dataset on 110 wild ruminant species kept in captivity in temperate-zone zoos to describe their reproductive patterns quantitatively [determining the birth peak breadth (BPB) as the number of days in which 80% of all births occur]; then we link this pattern to various biological characteristics [latitude of origin, mother-young-relationship (hider/follower), proportion of grass in the natural diet (grazer/browser), sexual size dimorphism/mating system], and compare it with reports for free-ranging animals. When comparing taxonomic subgroups, variance in BPB is highly correlated to the minimum, but not the maximum BPB, suggesting that a high BPB (i.e. an aseasonal reproductive pattern) is the plesiomorphic character in ruminants. Globally, latitude of natural origin is highly correlated to the BPB observed in captivity, supporting an overruling impact of photoperiodism on ruminant reproduction. Feeding type has no additional influence; the hider/follower dichotomy, associated with the anti-predator strategy of 'swamping', has additional influence in the subset of African species only. Sexual size dimorphism and mating system are marginally associated with the BPB, potentially indicating a facilitation of polygamy under seasonal conditions. The difference in the calculated Julian date of conception between captive populations and that reported for free-ranging ones corresponds to the one expected if absolute day length was the main trigger in highly seasonal species: calculated day length at the time of conception between free-ranging and captive populations followed a y = x relationship. Only 11 species (all originating from lower latitudes) were considered to change their reproductive pattern distinctively between the wild and captivity, with 10 becoming less seasonal (but not aseasonal) in human care, indicating that seasonality observed in the wild was partly resource-associated. Only one species (Antidorcas marsupialis) became more seasonal in captivity, presumably because resource availability in the wild overrules the innate photoperiodic response. Reproductive seasonality explains additional variance in the body mass-gestation period relationship, with more seasonal species having shorter gestation periods for their body size. We conclude that photoperiodism, and in particular absolute day length, are genetically fixed triggers for reproduction that may be malleable to some extent by body condition, and that plasticity in gestation length is an important facilitator that may partly explain the success of ruminant radiation to high latitudes. Evidence for an anti-predator strategy involving seasonal reproduction is limited to African species. Reproductive seasonality following rainfall patterns may not be an adaptation to give birth in periods of high resource availability but an adaptation to allow conception only at times of good body condition. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.

  20. Light and temperature sensing and signaling in induction of bud dormancy in woody plants.

    PubMed

    Olsen, Jorunn E

    2010-05-01

    In woody species cycling between growth and dormancy must be precisely synchronized with the seasonal climatic variations. Cessation of apical growth, resulting from exposure to short photoperiod (SD) and altered light quality, is gating the chain of events resulting in bud dormancy and cold hardiness. The relative importance of these light parameters, sensed by phytochromes and possibly a blue light receptor, varies with latitude. Early in SD, changes in expression of light signaling components dominate. In Populus active shoot elongation is linked to high expression of FLOWERING LOCUS T (FT) resulting from coincidence of high levels of CONSTANS and light at the end of days longer than a critical one. In Picea, PaFT4 expression increases substantially in response to SD. Thus, in contrast to Populus-FT, PaFT4 appears to function in inhibition of shoot elongation or promotion of growth cessation. Accordingly, different FT-genes appear to have opposite effects in photoperiodic control of shoot elongation. Reduction in gibberellin under SD is involved in control of growth cessation and bud formation, but not further dormancy development. Coinciding with formation of a closed bud, abscisic acid activity increases and cell-proliferation genes are down-regulated. When dormancy is established very few changes in gene expression occur. Thus, maintenance of dormancy is not dependent on comprehensive transcriptional regulation. In some species low temperature induces growth cessation and dormancy, in others temperature affects photoperiod requirement. The temperature under SD affects both the rate of growth cessation, bud formation and depth of dormancy. As yet, information on the molecular basis of these responses to temperature is scarce.

  1. Light Regulation of Gibberellin Biosynthesis and Mode of Action.

    PubMed

    García-Martinez, José Luis; Gil, Joan

    2001-12-01

    Some phenotypic effects produced in plants by light are very similar to those induced by hormones. In this review, the light-gibberellin (GA) interaction in germination, de-etiolation, stem growth, and tuber formation (process regulated by GAs) are discussed. Germination of lettuce and Arabidopsis seeds depends on red irradiation (R), which enhances the expression of GA 3-oxidase genes (GA3ox) and leads to an increase in active GA content. De-etiolation of pea seedling alters the expression of GA20ox and GA3ox genes and induces a rapid decrease of GA1 content. Stem growth of green plants is also affected by diverse light irradiation characteristics. Low light intensity increases stem elongation and active GA content in pea and Brassica. Photoperiod controls active GA levels in long-day rosette (spinach and Silene) and in woody plants (Salix and hybrid aspen) by regulating different steps of GA biosynthesis, mainly through transcript levels of GA20ox and GA3ox genes. Light modulation of stem elongation in light-grown plants is controlled by phytochrome, which modifies GA biosynthesis and catabolism (tobacco, potato, cowpea, Arabidopsis) and GA-response (pea, cucumber, Arabidopsis). In Arabidopsis and tobacco, ATH1 (a gene encoding an homeotic transcription factor) is a positive mediator of a phyB-specific signal transduction cascade controlling GA levels by regulating the expression of GA20ox and GA3ox. Tuber formation in potato is controlled by photoperiod (through phyB) and GAs. Inductive short-day conditions alter the diurnal rhythm of GA20ox transcript abundance, and increases the expression of a new protein (PHOR1) that plays a role in the photoperiod-GA interaction.

  2. Effects of melatonin administration on embryo implantation and offspring growth in mice under different schedules of photoperiodic exposure.

    PubMed

    Zhang, Lu; Zhang, Zhenzhen; Wang, Feng; Tian, Xiuzhi; Ji, Pengyun; Liu, Guoshi

    2017-10-02

    Embryo implantation is crucial for animal reproduction. Unsuccessful embryo implantation leads to pregnancy failure, especially in human-assisted conception. Environmental factors have a profound impact on embryo implantation. Because people are being exposed to more light at night, the influence of long-term light exposure on embryo implantation should be explored. The effects of long photoperiodic exposure and melatonin on embryo implantation and offspring growth were examined. Long photoperiodic exposure (18:6 h light:dark) was selected to resemble light pollution. Melatonin (10 -2 , 10 -3 , 10 -4 , 10 -5  M) was added to the drinking water of mice starting at Day 1 (vaginal plugs) until delivery. Melatonin treatment (10 -4 ,10 -5  M) significantly increased litter sizes compared to untreated controls (12.9 ± 0.40 and 12.2 ± 1.01 vs. 11.5 ± 0.43; P < 0.05). The most effective concentration of melatonin (10 -4  M) was selected for further investigation. No remarkable differences were found between melatonin-treated mice and controls in terms of the pups' birth weights, weaning survival rates, and weaning weights. Long photoperiodic exposure significantly reduced the number of implantation sites in treated mice compared to controls (light/dark, 12/12 h), and melatonin rescued this negative effect. Mechanistic studies revealed that melatonin enhanced the serum 17β-estradiol (E 2 ) levels in the pregnant mice and upregulated the expression of the receptors MT1 and MT2 and p53 in uterine tissue. All of these factors may contribute to the beneficial effects of melatonin on embryo implantation in mice. Melatonin treatment was associated with beneficial effects in pregnant mice, especially those subjected to long photoperiodic exposure. This was achieved by enhanced embryo implantation. At the molecular level, melatonin administration probably increases the E 2 level during pregnancy and upregulates p53 expression by activating MT1/2 in the uterus. All of the changes may improve the microenvironment of the uterus and, thus, the outcomes of pregnancy.

  3. Diel pattern of corticosterone metabolites in Arctic barnacle goslings (Branta leucopsis) under continuous natural light

    PubMed Central

    de Jong, Margje E.; Komdeur, Jan; Pschernig, Elisabeth; Loonen, Maarten J. J. E.; Millesi, Eva; Weiß, Brigitte M.

    2017-01-01

    Here we describe the excretion pattern of corticosterone metabolites collected from droppings in barnacle goslings (Branta leucopsis) raised under 24 hours of continuous natural light in the Arctic. In lower latitudes, circulating corticosterone peaks around waking and shows a nadir between midnight and 4:00, whereas the peak and nadir are time-delayed slightly when measuring corticosterone metabolites from droppings. Photoperiod, along with other environmental factors, helps to entrain an animal’s endogenous rhythm to that of the natural world. North of the Arctic Circle, photoperiod may not be a reliable cue as light is continuously absent during the winter and continuously present during the summer. Here, for the first time, we used droppings to describe a 24-hour excretion pattern of corticosterone metabolites (CORTm). By applying circular statistics for dependent data, we found a diel rhythmic pattern even under continuous natural light. We discuss potential alternative ‘Zeitgeber’ that may function even in the polar regions, focusing on melatonin. We propose a line of research to measure melatonin non-invasively from droppings. We also provide a validation of the adopted enzyme immunoassay (EIA) that was originally developed for greylag geese. PMID:28787012

  4. Daily rhythms of digestive enzyme activity and gene expression in gilthead seabream (Sparus aurata) during ontogeny.

    PubMed

    Mata-Sotres, José Antonio; Moyano, Francisco Javier; Martínez-Rodríguez, Gonzalo; Yúfera, Manuel

    2016-07-01

    In order to identify daily changes in digestive physiology in developing gilthead seabream larvae, the enzyme activity (trypsin, lipases and α-amylase) and gene expression (trypsinogen-try, chymotrypsinogen-ctrb, bile salt-activated lipase-cel1b, phospholipase A2-pla2 and α-amylase-amy2a) were measured during a 24h cycle in larvae reared under a 12h light/12h dark photoperiod. Larvae were sampled at 10, 18, 30 and 60days post-hatch. In each sampling day, larvae were sampled every 3h during a complete 24h cycle. The enzyme activity and gene expression exhibited a marked dependent behavior to the light/darkness cycle in all tested ages. The patterns of activity and expression of all tested enzymes were compared to the feeding pattern found in the same larvae, which showed a rhythmic feeding pattern with a strong light synchronization. In the four tested ages, the activities of trypsin, and to a lesser extent lipases and amylase, were related to feeding activity. Molecular expression of the pancreatic enzymes tended to increase during the night, probably as an anticipation of the forthcoming ingestion of food that will take place during the next light period. It follows that the enzymatic activities are being regulated at translational and/or post-translational level. The potential variability of enzyme secretion along the whole day is an important factor to take into account in future studies. A particularly striking consequence of the present results is the reliability of studies based in only one daily sample taken at the same hour of the day, as those focused to assess ontogeny of digestive enzymes. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Photoperiod history differentially impacts reproduction and immune function in adult Siberian hamsters.

    PubMed

    Prendergast, Brian J; Pyter, Leah M

    2009-12-01

    Seasonal changes in numerous aspects of mammalian immune function arise as a result of the annual variation in environmental day length (photoperiod), but it is not known if absolute photoperiod or relative change in photoperiod drives these changes. This experiment tested the hypothesis that an individual's history of exposure to day length determines immune responses to ambiguous, intermediate-duration day lengths. Immunological (blood leukocytes, delayed-type hypersensitivity reactions [DTH]), reproductive, and adrenocortical responses were assessed in adult Siberian hamsters (Phodopus sungorus) that had been raised initially in categorically long (15-h light/day; 15L) or short (9L) photoperiods and were subsequently transferred to 1 of 7 cardinal experimental photoperiods between 9L and 15L, inclusive. Initial photoperiod history interacted with contemporary experimental photoperiods to determine reproductive responses: 11L, 12L, and 13L caused gonadal regression in hamsters previously exposed to 15L, but elicited growth in hamsters previously in 9L. In hamsters with a 15L photoperiod history, photoperiods < or = 11L elicited sustained enhancement of DTH responses, whereas in hamsters with a 9L photoperiod history, DTH responses were largely unaffected by increases in day length. Enhancement and suppression of blood leukocyte concentrations occurred at 13L in hamsters with photoperiod histories of 15L and 9L, respectively; however, prior exposure to 9L imparted marked hysteresis effects, which suppressed baseline leukocyte concentrations. Cortisol concentrations were only enhanced in 15L hamsters transferred to 9L and, in common with DTH, were unaffected by photoperiod treatments in hamsters with a 9L photoperiod history. Photoperiod history acquired in adulthood impacts immune responses to photoperiod, but manifests in a markedly dissimilar fashion as compared to the reproductive system. Prior photoperiod exposure has an enduring impact on the ability of the immune system to respond to subsequent changes in day length.

  6. [Analysis of photoperiod-sensitivity genes in Minghui63, an restorer line of indica rice(Oryza sativa L.)].

    PubMed

    Luo, Lin-Guang; Xu, Jun-Feng; Zhai, Hu-Qu; Wan, Jian-Min

    2003-09-01

    Hybrid rice is very important in agriculture production in China. Its selecting property makes it significant to study the genetic performance of F1's date to heading (DH). Minghui63, an indica rice restorer line, has been widdly applied to hybrid rice seed production in China, but the photoperiod-sensitivity gene of heading date in this restorer line is still unknown. This definitely limited the further use of this restorer line in breeding practice and re-production of hybrid seeds. To solve this problem, using heading time nearly isogenic lines EGO-EG7, ER-LR and two heading date QTL-isogenic lines, NIL (Hd1) and NIL (Hd4), with the genes of Nipponbare but Hd1 (Se-1) and Hd4 (E1) genes from Kasalath, respectively, we performed a genetic analysis of Minghui63 with special reference to photoperiod-sensitivity loci, using natural long days in Nanjing(32 degrees N) and natural short days in Linshui county, Hainan province (18 degrees 29'N), where the average day-length is about 14 h and 11.6 h during the course of rice growing, respectively. The F1 and F2 generations from the crosses "heading time nearly isogenic lines x Minghui63" were subjected to genetic analyses. Experimental results showed that Minghui63 carries photoperiod-sensitivity allele gene E1 and E3 in E1 and E3 loci, respectly, and a photoperiod insensitivity allele Se-1e in Se-1 locus, and it also carries a recessive inhibitor for photoperiod-sensitivity gene E1. Meanwhile, the photoperiod-sensitive genes, E1 and the photoperiod-insensitive genes, Se-1e, in Minghui63 were also identified by crossing with the nearly isogenic lines for heading time QTLs, NIL (Hd1) and NIL(Hd4). The results indicated that Minghui63's genotype of heading date was: E1E1e2e2E3E3Se-1eSe-1e. The result from this research indicated that Minghui63 carries a major dominant photoperiod-sensitive gene E1 in E1 locus, and our previous researches indicated that Zhenshan97A carried a major dominant photoperiod-sensitive gene Se-1n in Se-1 locus and a recessive inhibitor gene i-Se-1. The DH of the hybrid rice "Shanyou63" is 94.7 in Nanjing, lying between Zhenshan97A's and Minghui63's, but more nearer to late maturity parent Minghui63. It has been not expressed that E1 gene usually prolongs days to heading by about 20 days when coexisting with Se-1u or Se-1n. This is possibly made by that inhibitor genes exist in respective parents, which make DH transgression of "Shanyou63" not appear. This phenomenon indicated that the heading date of indica hybrid rice is resulted from the interaction among the photoperiod-sensitive genes and their inhibitor genes in the sterile and the restorer lines.

  7. The effect of photoperiod on life history and blood-feeding activity in Aedes albopictus and Aedes aegypti (Diptera: Culicidae).

    PubMed

    Costanzo, K S; Schelble, S; Jerz, K; Keenan, M

    2015-06-01

    Several studies have examined how climatic variables such as temperature and precipitation may affect life history traits in mosquitoes that are important to disease transmission. Despite its importance as a seasonal cue in nature, studies investigating the influence of photoperiod on such traits are relatively few. This study aims to investigate how photoperiod alters life history traits, survival, and blood-feeding activity in Aedes albopictus (Skuse) and Aedes aegypti (Linnaeus). We performed three experiments that tested the effects of day length on female survival, development time, adult size, fecundity, adult life span, and propensity to blood feed in Ae. albopictus and Ae. aegypti. Each experiment had three photoperiod treatments: 1) short-day (10L:14D), 2) control (12L:12D), and 3) long-day (14L:10D). Aedes albopictus adult females were consistently larger in size when reared in short-day conditions. Aedes aegypti adult females from short-day treatments lived longer and were more likely to take a blood meal compared to other treatments. We discuss how species-specific responses may reflect alternative strategies evolved to increase survival during unfavorable conditions. We review the potential impacts of these responses on seasonal transmission patterns, such as potentially increasing vectorial capacity of Ae. aegypti during periods of shorter day lengths. © 2015 The Society for Vector Ecology.

  8. Identification and characterization of CONSTANS-like (COL) gene family in upland cotton (Gossypium hirsutum L.).

    PubMed

    Cai, Darun; Liu, Hui; Sang, Na; Huang, Xianzhong

    2017-01-01

    The CONSTANS/FLOWERING LOCUS T (CO/FT) regulon plays a central role in the control of flowering time in photoperiod-sensitive plants. Flowering time in wild cotton (Gossypium spp.) has strict photoperiod sensitivity, but domesticated cotton is day-neutral. Information on the molecular characterization of the CO and CO-like (COL) genes in cotton is very limited. In this study, we identified 42 COL homologs (GhCOLs) in the G. hirsutum genome, and many of them were previously unreported. We studied their chromosome distribution, phylogenetic relationships, and structures of genes and proteins. Our results showed that GhCOLs were classified into three groups, and 14 COLs in group I showed conserved structure when compared with other plants. Two homoeologous pairs, GhCOL1-A and GhCOL1-D in Group I, showed the highest sequence similarity to Arabidopsis thaliana CO and rice CO homologous gene Heading date1 (Hd1). Tissue-specific expression showed that 42 GhCOL genes may function as tissue-specific regulators in different cells or organs. We cloned and sequenced the 14 GhCOL genes in Group I related to flowering induction to study their diurnal expression pattern, and found that their expression showed distinct circadian regulation. Most of them peaked at dawn and decreased rapidly to their minima at dusk, then started to accumulate until following dawn under long- or short-day conditions. Transgenic study in the Arabidopsis co-2 mutant demonstrated that GhCOL1-A and GhCOL1-D fully rescued the late-flowering phenotype, whereas GhCOL3-A, GhCOL3-D, GhCOL7-A, and GhCOL7-D partially rescued the late-flowering phenotype, and the other five homoeologous pairs in Group I did not promote flowering. These results indicate that GhCOL1-A and GhCOL1-D were potential flowering inducers, and are candidate genes for research in flowering regulation in cotton.

  9. Serotonin- and two putative serotonin receptors-like immunohistochemical reactivities in the ground crickets Dianemobius nigrofasciatus and Allonemobius allardi.

    PubMed

    Shao, Qi-Miao; Fouda, Maged Mohamed Ali; Takeda, Makio

    2010-11-01

    Serotonin (5-hydroxytryptamine; 5-HT)- and two putative serotonin receptors, 5-HT1A- and 5-HT1B-like, immunohistochemical reactivities were investigated in the cephalic ganglia of two ground crickets, Dianemobius nigrofasciatus and Allonemobius allardi. 5-HT-ir was strongly expressed in the central body, accessory medulla region of the optic lobe, frontal ganglion, posterior cortex of the protocerebrum, dorsolateral region of the protocerebrum, and the suboesphageal ganglion (SOG) in both crickets. However, 5-HT1A-ir and 5-HT1B-ir showed quite mutually distinct patterns that were also distinct from 5-HT-ir. 5-HT1A-ir was located in the pars intercerebralis, dorsolateral region of the protocerebrum, optic tract, optic lobe, and the midline of the SOG in both crickets. 5-HT1B-ir was located in the pars intercerebralis and dorsolateral region of the protocerebrum, and detected weakly in the optic lobe, tritocerebrum, and the midline of the SOG in both crickets. Interspecific differences were observed with 5-HT1A-ir. 5-HT1A-ir was expressed weakly in two neurons in the mandibular neuromere of the SOG in D. nigrofasciatus, while it was expressed strongly in the tritocerebrum, mandibular neuromere, and maxillary neuromere of the SOG in A. allardi and co-localized with CLOCK-ir (CLK-ir). 5HT-1B-ir was co-localized with CLK-ir in the tritocerebrum, mandibular neuromere, and maxillary neuromere of the SOG when double-labeling was conducted in both crickets. These results indicated that 5-HT and both types of 5-HT receptors may regulate circadian photo-entrainment or photoperiodism in A. allardi, while only 5-HT1B may be involved in circadian photo-entrainment or photoperiodism in D. nigrofasciatus. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Identification of the prothoracicotropic hormone (Ptth) coding gene and localization of its site of expression in the pea aphid Acyrthosiphon pisum.

    PubMed

    Barberà, M; Martínez-Torres, D

    2017-10-01

    Insect hormones control essential aspects of physiology, behaviour and development in insects. The majority of insect hormones are peptide hormones that perform a highly diverse catalogue of functions. Prothoracicotropic hormone (PTTH) is a brain neuropeptide hormone whose main function is to stimulate the secretion of ecdysone (the moulting hormone) by the prothoracic glands in insect larvae thus playing a key role in the control of moulting and metamorphosis. Moreover, both PTTH release or blockade have been reported to act as a switch to terminate or initiate larval and pupal diapauses. In insects, diapause is a prevalent response often regulated by the photoperiod. It has been shown that PTTH participates as an output of the circadian clock and a role in photoperiodic processes is suggested in some insect species. Aphids (Hemiptera: Aphididae) reproduce by cyclical parthenogenesis with a sexual phase, induced by short photoperiods, that leads to the production of diapausing eggs. With the availability of the pea aphid (Acyrthosiphon pisum) genome, efforts to identify and characterize genes relevant to essential aspects of aphid biology have multiplied. In spite of its relevance, several genomic and transcriptomic studies on aphid neuropeptides failed to detect aphid PTTH amongst them. Here we report on the first identification of the aphid PTTH coding gene and the neuroanatomical localization of its expression in the aphid brain. © 2017 The Royal Entomological Society.

  11. Utilization of potatoes for life support systems. II - The effects of temperature under 24-h and 12-h photoperiods

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.; Steffen, Kenneth L.; Tibbitts, Theodore W.; Palta, Jiwan P.

    1986-01-01

    The effects of temperature and the photoperiod length on the growth and tuberization of Norland potatoes were investigated for two photoperiods, 12-h and 24-hr at 400 micromol/sq m per sec PPF, and at temperatures of 12, 16, 20, 24, and 28 C. It was found that stem length increased with increasing temperature under both photoperiods. The highest tuber yield was obtained at 16 C under the 24-hr photoperiod and at 20 C under the 12-hr photoperiod (i.e., increasing the photoperiod from 12 to 24 hrs effectively decreases the optimal temperature for tuber formation). Little or no tuber formation occurred at 28 C under either photoperiod.

  12. Integrating Circadian Activity and Gene Expression Profiles to Predict Chronotoxicity of Drosophila suzukii Response to Insecticides

    PubMed Central

    Hamby, Kelly A.; Kwok, Rosanna S.; Zalom, Frank G.; Chiu, Joanna C.

    2013-01-01

    Native to Southeast Asia, Drosophila suzukii (Matsumura) is a recent invader that infests intact ripe and ripening fruit, leading to significant crop losses in the U.S., Canada, and Europe. Since current D. suzukii management strategies rely heavily on insecticide usage and insecticide detoxification gene expression is under circadian regulation in the closely related Drosophila melanogaster, we set out to determine if integrative analysis of daily activity patterns and detoxification gene expression can predict chronotoxicity of D. suzukii to insecticides. Locomotor assays were performed under conditions that approximate a typical summer or winter day in Watsonville, California, where D. suzukii was first detected in North America. As expected, daily activity patterns of D. suzukii appeared quite different between ‘summer’ and ‘winter’ conditions due to differences in photoperiod and temperature. In the ‘summer’, D. suzukii assumed a more bimodal activity pattern, with maximum activity occurring at dawn and dusk. In the ‘winter’, activity was unimodal and restricted to the warmest part of the circadian cycle. Expression analysis of six detoxification genes and acute contact bioassays were performed at multiple circadian times, but only in conditions approximating Watsonville summer, the cropping season, when most insecticide applications occur. Five of the genes tested exhibited rhythmic expression, with the majority showing peak expression at dawn (ZT0, 6am). We observed significant differences in the chronotoxicity of D. suzukii towards malathion, with highest susceptibility at ZT0 (6am), corresponding to peak expression of cytochrome P450s that may be involved in bioactivation of malathion. High activity levels were not found to correlate with high insecticide susceptibility as initially hypothesized. Chronobiology and chronotoxicity of D. suzukii provide valuable insights for monitoring and control efforts, because insect activity as well as insecticide timing and efficacy are crucial considerations for pest management. However, field research is necessary for extrapolation to agricultural settings. PMID:23861907

  13. Integrating circadian activity and gene expression profiles to predict chronotoxicity of Drosophila suzukii response to insecticides.

    PubMed

    Hamby, Kelly A; Kwok, Rosanna S; Zalom, Frank G; Chiu, Joanna C

    2013-01-01

    Native to Southeast Asia, Drosophila suzukii (Matsumura) is a recent invader that infests intact ripe and ripening fruit, leading to significant crop losses in the U.S., Canada, and Europe. Since current D. suzukii management strategies rely heavily on insecticide usage and insecticide detoxification gene expression is under circadian regulation in the closely related Drosophila melanogaster, we set out to determine if integrative analysis of daily activity patterns and detoxification gene expression can predict chronotoxicity of D. suzukii to insecticides. Locomotor assays were performed under conditions that approximate a typical summer or winter day in Watsonville, California, where D. suzukii was first detected in North America. As expected, daily activity patterns of D. suzukii appeared quite different between 'summer' and 'winter' conditions due to differences in photoperiod and temperature. In the 'summer', D. suzukii assumed a more bimodal activity pattern, with maximum activity occurring at dawn and dusk. In the 'winter', activity was unimodal and restricted to the warmest part of the circadian cycle. Expression analysis of six detoxification genes and acute contact bioassays were performed at multiple circadian times, but only in conditions approximating Watsonville summer, the cropping season, when most insecticide applications occur. Five of the genes tested exhibited rhythmic expression, with the majority showing peak expression at dawn (ZT0, 6am). We observed significant differences in the chronotoxicity of D. suzukii towards malathion, with highest susceptibility at ZT0 (6am), corresponding to peak expression of cytochrome P450s that may be involved in bioactivation of malathion. High activity levels were not found to correlate with high insecticide susceptibility as initially hypothesized. Chronobiology and chronotoxicity of D. suzukii provide valuable insights for monitoring and control efforts, because insect activity as well as insecticide timing and efficacy are crucial considerations for pest management. However, field research is necessary for extrapolation to agricultural settings.

  14. Differences in Number of Midbrain Dopamine Neurons Associated with Summer and Winter Photoperiods in Humans

    PubMed Central

    Aumann, Tim D.; Raabus, Mai; Tomas, Doris; Prijanto, Agustinus; Churilov, Leonid; Spitzer, Nicholas C.; Horne, Malcolm K.

    2016-01-01

    Recent evidence indicates the number of dopaminergic neurons in the adult rodent hypothalamus and midbrain is regulated by environmental cues, including photoperiod, and that this occurs via up- or down-regulation of expression of genes and proteins that are important for dopamine (DA) synthesis in extant neurons (‘DA neurotransmitter switching’). If the same occurs in humans, it may have implications for neurological symptoms associated with DA imbalances. Here we tested whether there are differences in the number of tyrosine hydroxylase (TH, the rate-limiting enzyme in DA synthesis) and DA transporter (DAT) immunoreactive neurons in the midbrain of people who died in summer (long-day photoperiod, n = 5) versus winter (short-day photoperiod, n = 5). TH and DAT immunoreactivity in neurons and their processes was qualitatively higher in summer compared with winter. The density of TH immunopositive (TH+) neurons was significantly (~6-fold) higher whereas the density of TH immunonegative (TH-) neurons was significantly (~2.5-fold) lower in summer compared with winter. The density of total neurons (TH+ and TH- combined) was not different. The density of DAT+ neurons was ~2-fold higher whereas the density of DAT- neurons was ~2-fold lower in summer compared with winter, although these differences were not statistically significant. In contrast, midbrain nuclear volume, the density of supposed glia (small TH- cells), and the amount of TUNEL staining were the same in summer compared with winter. This study provides the first evidence of an association between environmental stimuli (photoperiod) and the number of midbrain DA neurons in humans, and suggests DA neurotransmitter switching underlies this association. PMID:27428306

  15. Photosynthate partitioning to starch in Arabidopsis thaliana is insensitive to light intensity but sensitive to photoperiod due to a restriction on growth in the light in short photoperiods.

    PubMed

    Mengin, Virginie; Pyl, Eva-Theresa; Alexandre Moraes, Thiago; Sulpice, Ronan; Krohn, Nicole; Encke, Beatrice; Stitt, Mark

    2017-11-01

    Photoperiod duration can be predicted from previous days, but irradiance fluctuates in an unpredictable manner. To investigate how allocation to starch responds to changes in these two environmental variables, Arabidopsis Col-0 was grown in a 6 h and a 12 h photoperiod at three different irradiances. The absolute rate of starch accumulation increased when photoperiod duration was shortened and when irradiance was increased. The proportion of photosynthate allocated to starch increased strongly when photoperiod duration was decreased but only slightly when irradiance was decreased. There was a small increase in the daytime level of sucrose and twofold increases in glucose, fructose and glucose 6-phosphate at a given irradiance in short photoperiods compared to long photoperiods. The rate of starch accumulation correlated strongly with sucrose and glucose levels in the light, irrespective of whether these sugars were responding to a change in photoperiod or irradiance. Whole plant carbon budget modelling revealed a selective restriction of growth in the light period in short photoperiods. It is proposed that photoperiod sensing, possibly related to the duration of the night, restricts growth in the light period in short photoperiods, increasing allocation to starch and providing more carbon reserves to support metabolism and growth in the long night. © 2017 John Wiley & Sons Ltd.

  16. Role of photoperiod and melatonin in seasonal acclimatization of the djungarian hamster, Phodopus sungorus

    NASA Astrophysics Data System (ADS)

    Steinlechner, S.; Heldmaier, G.

    1982-12-01

    The Djungarian hamster, Phodopus sungorus, shows a clear annual cycle in some thermogenic parameters such as nonshivering thermogenesis (NST) and cold resistance. These seasonal changes were found to be basically controlled by natural changes in photoperiod. Further support for this view was obtained by exposing the hamsters to artificial long and short photoperiods. Implantation of melatonin during fall and winter results in an increased thermogenic capacity in both short and long day hamsters comparable to that shown by values of control hamsters exposed to short photoperiods during winter. This thermotropic action of melatonin and of short photoperiod could be found only in fall and winter whereas during spring and summer, melatonin, like photoperiod, had no influence on thermogenic capacities. These results show that the actions of melatonin and photoperiod vary with the season and that they depend upon the photoperiodic history of the hamsters. Our results further indicate that the pineal gland with its hormone melatonin is involved in mediation of photoperiodic control of seasonal acclimatization.

  17. Ontogeny of the daily profile of plasma melatonin in European starlings raised under long or short photoperiods.

    PubMed

    Dawson, Alistair; Van't, Hof Thomas J

    2002-06-01

    Photoperiodic manipulation of young European starlings suggests that their reproductive physiology is incapable of responding to a short photoperiod until they are fully grown. This study aimed to determine whether the lack of response to a short photoperiod is reflected in the daily profile of plasma melatonin concentrations. Five-day-old starlings taken from nest boxes showed a significant (p < 0.0001) rhythm in plasma melatonin concentrations, with high values during night. In nestlings hand-reared from 5 days of age on a long photoperiod (LD 16:8), equivalent to natural photoperiod at the time, the amplitude of the daily rhythm in melatonin increased significantly (p < 0.01) with age until birds were fully grown (20 days old). In nestlings reared on a short photoperiod (LD 8:16), the daily melatonin profile remained almost identical to that of long photoperiod birds until they were fully grown. However, after 20 days old, the duration of elevated nighttime melatonin began to extend to encompass the entire period of darkness. In contrast, fully grown starlings transferred from a long to a short photoperiod had partially adapted to the short photoperiod after 5 days; by 10 days, the daily melatonin profile was identical to that of birds held chronically on a short photoperiod. Thus, consistent with responses of reproductive physiology, the pineal of young birds appears to be incapable of perceiving, or adapting to, a short photoperiod.

  18. Molecular events of apical bud formation in white spruce, Picea glauca.

    PubMed

    El Kayal, Walid; Allen, Carmen C G; Ju, Chelsea J-T; Adams, Eri; King-Jones, Susanne; Zaharia, L Irina; Abrams, Suzanne R; Cooke, Janice E K

    2011-03-01

    Bud formation is an adaptive trait that temperate forest trees have acquired to facilitate seasonal synchronization. We have characterized transcriptome-level changes that occur during bud formation of white spruce [Picea glauca (Moench) Voss], a primarily determinate species in which preformed stem units contained within the apical bud constitute most of next season's growth. Microarray analysis identified 4460 differentially expressed sequences in shoot tips during short day-induced bud formation. Cluster analysis revealed distinct temporal patterns of expression, and functional classification of genes in these clusters implied molecular processes that coincide with anatomical changes occurring in the developing bud. Comparing expression profiles in developing buds under long day and short day conditions identified possible photoperiod-responsive genes that may not be essential for bud development. Several genes putatively associated with hormone signalling were identified, and hormone quantification revealed distinct profiles for abscisic acid (ABA), cytokinins, auxin and their metabolites that can be related to morphological changes to the bud. Comparison of gene expression profiles during bud formation in different tissues revealed 108 genes that are differentially expressed only in developing buds and show greater transcript abundance in developing buds than other tissues. These findings provide a temporal roadmap of bud formation in white spruce. © 2011 Blackwell Publishing Ltd.

  19. Effects of pinealectomy on the neuroendocrine reproductive system and locomotor activity in male European sea bass, Dicentrarchus labrax.

    PubMed

    Cowan, Mairi; Paullada-Salmerón, José A; López-Olmeda, José Fernando; Sánchez-Vázquez, Francisco Javier; Muñoz-Cueto, José A

    2017-05-01

    The seasonally changing photoperiod controls the timing of reproduction in most fish species, however, the transduction of this photoperiodic information to the reproductive axis is still unclear. This study explored the potential role of two candidate neuropeptide systems, gonadotropin-inhibitory hormone (Gnih) and kisspeptin, as mediators between the pineal organ (a principle transducer of photoperiodic information) and reproductive axis in male European sea bass, Dicentrarchus labrax. Two seven-day experiments of pinealectomy (Px) were performed, in March (end of reproductive season) and August (resting season). Effects of Px and season on the brain expression of gnih (sbgnih) and its receptor (sbgnihr), kisspeptins (kiss1, kiss2) and their receptors (kissr2, kissr3) and gonadotropin-releasing hormone (gnrh1, gnrh2, gnrh3) and the main brain receptor (gnrhr-II-2b) genes, plasma melatonin levels and locomotor activity rhythms were examined. Results showed that Px reduced night-time plasma melatonin levels. Gene expression analyses demonstrated a sensitivity of the Gnih system to Px in March, with a reduction in sbgnih in the mid-hindbrain, a region with bilateral connections to the pineal organ. In August, kiss2 levels increased in Px animals but not in controls. Significant differences in expression were observed for diencephalic sbgnih, sbgnihr, kissr3 and tegmental gnrh2 between seasons. Recordings of locomotor activity following surgery revealed a change from light-synchronised to free-running rhythmic behavior. Altogether, the Gnih and Kiss2 sensitivity to Px and seasonal differences observed for Gnih and its receptor, Gnrh2, and the receptor for Kiss2 (Kissr3), suggested they could be mediators involved in the relay between environment and seasonal reproduction. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Temperature and photoperiod as environmental cues affect body mass and thermoregulation in Chinese bulbuls, Pycnonotus sinensis.

    PubMed

    Hu, Shi-Nan; Zhu, Ying-Yang; Lin, Lin; Zheng, Wei-Hong; Liu, Jin-Song

    2017-03-01

    Seasonal changes in temperature and photoperiod are important environmental cues used by small birds to adjust their body mass ( M b ) and thermogenesis. However, the relative importance of these cues with respect to seasonal adjustments in M b and thermogenesis is difficult to distinguish. In particular, the effects of temperature and photoperiod on energy metabolism and thermoregulation are not well known in many passerines. To address this problem, we measured the effects of temperature and photoperiod on M b , energy intake, resting metabolic rate (RMR), organ mass and physiological and biochemical markers of metabolic activity in the Chinese bulbul ( Pycnonotus sinensis ). Groups of Chinese bulbuls were acclimated in a laboratory to the following conditions: (1) warm and long photoperiod, (2) warm and short photoperiod, (3) cold and long photoperiod, and (4) cold and short photoperiod, for 4 weeks. The results indicate that Chinese bulbuls exhibit adaptive physiological regulation when exposed to different temperatures and photoperiods. M b , RMR, gross energy intake and digestible energy intake were higher in cold-acclimated than in warm-acclimated bulbuls, and in the short photoperiod than in the long photoperiod. The resultant flexibility in energy intake and RMR allows Chinese bulbuls exposed to different temperatures and photoperiods to adjust their energy balance and thermogenesis accordingly. Cold-acclimated birds had heightened state-4 respiration and cytochrome c oxidase activity in their liver and muscle tissue compared with warm-acclimated birds indicating the cellular mechanisms underlying their adaptive thermogenesis. Temperature appears to be a primary cue for adjusting energy budget and thermogenic ability in Chinese bulbuls; photoperiod appears to intensify temperature-induced changes in energy metabolism and thermoregulation. © 2017. Published by The Company of Biologists Ltd.

  1. Social and photoperiod effects on reproduction in five species of Peromyscus.

    PubMed

    Trainor, Brian C; Martin, Lynn B; Greiwe, Kelly M; Kuhlman, Joshua R; Nelson, Randy J

    2006-09-01

    At temperate latitudes, mammals and birds use changes in day length to time their reproductive activities to coincide with seasonal fluctuations in the environment. Close to the equator, however, conditions permissive of breeding do not track changes in day length as well, so other cues may be more important than photoperiod. In a variety of vertebrates, social interactions regulate breeding condition. We hypothesized that individuals of different species of Peromyscus mice found closer to the equator would respond more strongly to housing with an opposite sex conspecific than they would to photoperiod. To test this hypothesis, we compared the effects of long and short day lengths versus 8 days of pair housing with a female on reproductive tissue weights and testosterone (T) concentrations in five species of Peromyscus (P. aztecus, P. eremicus, P. maniculatus, P. melanophrys, and P. polionotus). After 13 weeks of short days (8L:16D), P. maniculatus, P. melanophrys, and P. polionotus significantly reduced relative testes mass compared to long day (16L:8D) housed animals. Social housing, however, had no effect on tissue weights in any species. However, male P. polionotus paired with females for 8 days increased T concentrations compared to single-housed males, whereas paired P. maniculatus reduced T. These data suggest that mechanisms of photoperiodic and social regulation of reproductive function are mediated by different physiological mechanisms among closely-related species and that both phylogeny and environmental factors contribute to patterns of reproductive plasticity.

  2. Expansion of Genes Encoding piRNA-Associated Argonaute Proteins in the Pea Aphid: Diversification of Expression Profiles in Different Plastic Morphs

    PubMed Central

    Lu, Hsiao-ling; Tanguy, Sylvie; Rispe, Claude; Gauthier, Jean-Pierre; Walsh, Tom; Gordon, Karl; Edwards, Owain; Tagu, Denis; Chang, Chun-che; Jaubert-Possamai, Stéphanie

    2011-01-01

    Piwi-interacting RNAs (piRNAs) are known to regulate transposon activity in germ cells of several animal models that propagate sexually. However, the role of piRNAs during asexual reproduction remains almost unknown. Aphids that can alternate sexual and asexual reproduction cycles in response to seasonal changes of photoperiod provide a unique opportunity to study piRNAs and the piRNA pathway in both reproductive modes. Taking advantage of the recently sequenced genome of the pea aphid Acyrthosiphon pisum, we found an unusually large lineage-specific expansion of genes encoding the Piwi sub-clade of Argonaute proteins. In situ hybridisation showed differential expressions between the duplicated piwi copies: while Api-piwi2 and Api-piwi6 are “specialised” in germ cells their most closely related copy, respectively Api-piwi5 and Api-piwi3, are expressed in the somatic cells. The differential expression was also identified in duplicated ago3: Api-ago3a in germ cells and Api-ago3b in somatic cells. Moreover, analyses of expression profiles of the expanded piwi and ago3 genes by semi-quantitative RT-PCR showed that expressions varied according to the reproductive types. These specific expression patterns suggest that expanded aphid piwi and ago3 genes have distinct roles in asexual and sexual reproduction. PMID:22162754

  3. Elevated Temperature and CO2 Stimulate Late-Season Photosynthesis But Impair Cold Hardening in Pine.

    PubMed

    Chang, Christine Y; Fréchette, Emmanuelle; Unda, Faride; Mansfield, Shawn D; Ensminger, Ingo

    2016-10-01

    Rising global temperature and CO 2 levels may sustain late-season net photosynthesis of evergreen conifers but could also impair the development of cold hardiness. Our study investigated how elevated temperature, and the combination of elevated temperature with elevated CO 2 , affected photosynthetic rates, leaf carbohydrates, freezing tolerance, and proteins involved in photosynthesis and cold hardening in Eastern white pine (Pinus strobus). We designed an experiment where control seedlings were acclimated to long photoperiod (day/night 14/10 h), warm temperature (22°C/15°C), and either ambient (400 μL L -1 ) or elevated (800 μmol mol -1 ) CO 2 , and then shifted seedlings to growth conditions with short photoperiod (8/16 h) and low temperature/ambient CO 2 (LTAC), elevated temperature/ambient CO 2 (ETAC), or elevated temperature/elevated CO 2 (ETEC). Exposure to LTAC induced down-regulation of photosynthesis, development of sustained nonphotochemical quenching, accumulation of soluble carbohydrates, expression of a 16-kD dehydrin absent under long photoperiod, and increased freezing tolerance. In ETAC seedlings, photosynthesis was not down-regulated, while accumulation of soluble carbohydrates, dehydrin expression, and freezing tolerance were impaired. ETEC seedlings revealed increased photosynthesis and improved water use efficiency but impaired dehydrin expression and freezing tolerance similar to ETAC seedlings. Sixteen-kilodalton dehydrin expression strongly correlated with increases in freezing tolerance, suggesting its involvement in the development of cold hardiness in P. strobus Our findings suggest that exposure to elevated temperature and CO 2 during autumn can delay down-regulation of photosynthesis and stimulate late-season net photosynthesis in P. strobus seedlings. However, this comes at the cost of impaired freezing tolerance. Elevated temperature and CO 2 also impaired freezing tolerance. However, unless the frequency and timing of extreme low-temperature events changes, this is unlikely to increase risk of freezing damage in P. strobus seedlings. © 2016 American Society of Plant Biologists. All Rights Reserved.

  4. Elevated Temperature and CO2 Stimulate Late-Season Photosynthesis But Impair Cold Hardening in Pine[OPEN

    PubMed Central

    2016-01-01

    Rising global temperature and CO2 levels may sustain late-season net photosynthesis of evergreen conifers but could also impair the development of cold hardiness. Our study investigated how elevated temperature, and the combination of elevated temperature with elevated CO2, affected photosynthetic rates, leaf carbohydrates, freezing tolerance, and proteins involved in photosynthesis and cold hardening in Eastern white pine (Pinus strobus). We designed an experiment where control seedlings were acclimated to long photoperiod (day/night 14/10 h), warm temperature (22°C/15°C), and either ambient (400 μL L−1) or elevated (800 μmol mol−1) CO2, and then shifted seedlings to growth conditions with short photoperiod (8/16 h) and low temperature/ambient CO2 (LTAC), elevated temperature/ambient CO2 (ETAC), or elevated temperature/elevated CO2 (ETEC). Exposure to LTAC induced down-regulation of photosynthesis, development of sustained nonphotochemical quenching, accumulation of soluble carbohydrates, expression of a 16-kD dehydrin absent under long photoperiod, and increased freezing tolerance. In ETAC seedlings, photosynthesis was not down-regulated, while accumulation of soluble carbohydrates, dehydrin expression, and freezing tolerance were impaired. ETEC seedlings revealed increased photosynthesis and improved water use efficiency but impaired dehydrin expression and freezing tolerance similar to ETAC seedlings. Sixteen-kilodalton dehydrin expression strongly correlated with increases in freezing tolerance, suggesting its involvement in the development of cold hardiness in P. strobus. Our findings suggest that exposure to elevated temperature and CO2 during autumn can delay down-regulation of photosynthesis and stimulate late-season net photosynthesis in P. strobus seedlings. However, this comes at the cost of impaired freezing tolerance. Elevated temperature and CO2 also impaired freezing tolerance. However, unless the frequency and timing of extreme low-temperature events changes, this is unlikely to increase risk of freezing damage in P. strobus seedlings. PMID:27591187

  5. Neuroendocrine mechanism of food intake and energy regulation in Japanese quail under differential simulated photoperiodic conditions: Involvement of hypothalamic neuropeptides, AMPK, insulin and adiponectin receptors.

    PubMed

    Banerjee, Somanshu; Chaturvedi, Chandra Mohini

    2018-05-26

    Neuroendocrine coordination between the reproductive and energy regulatory hypothalamic circuitries not only tightly regulates food intake and energy expenditure but also maintains the body weight and reproduction. The effect of different simulated photoperiodic conditions on food intake and neuroendocrine mechanism of energy homeostasis in Japanese quail is not investigated till date. Hence, our present study is designed to elucidate the effect of different simulated photoperiodic conditions on food consumption and neuroendocrine mechanism(s) of energy regulation in this poultry species. The alterations in hypothalamic energy balancing neuropeptides (NPY/AgRP/CART), polypeptide hormone precursor (POMC), protein kinase (AMPK-p-AMPK) as well as receptors of insulin and adiponectin [Insulin Receptor (IR), Adiponectin Receptor 1 & 2] have been investigated in photosensitive (PS), scotorefractory (SR),photorefractory (PR) and scotosensitive (SS) quail. Immunofluorescence and western blotting were used to quantify the expression of these peptides and proteins. Results showed increased food consumption and body weight gain, along with increased expression of NPY, AgRP, IR, adiponectin receptors and p-AMPK, decreased CART and POMC in the hypothalamus of photosensitive and scotorefractory quail. While, opposite findings were observed in photorefractory and scotosensitive quail. Hence, this study may suggest the hypothalamic energy channelization towards reproductive axis in photosensitive and scotorefractory quail to support the full breeding conditions, while hypothalamic energy deprivation in photorefractory and scotosensitive quail leads to reproductive quiescence. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Evolution of the miR5200-FLOWERING LOCUS T flowering time regulon in the temperate grass subfamily Pooideae.

    PubMed

    McKeown, Meghan; Schubert, Marian; Preston, Jill C; Fjellheim, Siri

    2017-09-01

    Flowering time is a carefully regulated trait controlled primarily through the action of the central genetic regulator, FLOWERING LOCUS T (FT). Recently it was demonstrated that a microRNA, miR5200, targets the end of the second exon of FT under short-day photoperiods in the grass subfamily Pooideae, thus preventing FT transcripts from reaching threshold levels under non-inductive conditions. Pooideae are an interesting group in that they rapidly diversified from the tropics into the northern temperate region during a major global cooling event spanning the Eocene-Oligocene transition. We hypothesize that miR5200 photoperiod-sensitive regulation of Pooideae flowering time networks assisted their transition into northern seasonal environments. Here, we test predictions derived from this hypothesis that miR5200, originally found in bread wheat and later identified in Brachypodium distachyon, (1) was present in the genome of the Pooideae common ancestor, (2) is transcriptionally regulated by photoperiod, and (3) is negatively correlated with FT transcript abundance, indicative of miR5200 regulating FT. Our results demonstrate that miR5200 did evolve at or around the base of Pooideae, but only acquired photoperiod-regulated transcription within the Brachypodium lineage. Based on expression profiles and previous data, we posit that the progenitor of miR5200 was co-regulated with FT by an unknown mechanism. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Photoperiodic Regulation of the Orexigenic Effects of Ghrelin in Siberian Hamsters

    PubMed Central

    Bradley, Sean P.; Pattullo, Lucia M.; Patel, Priyesh N.; Prendergast, Brian J.

    2010-01-01

    Animals living in temperate climates with predictable seasonal changes in food availability may use seasonal information to engage different metabolic strategies. Siberian hamsters decrease costs of thermoregulation during winter by reducing food intake and body mass in response to decreasing or short day lengths (SD). These experiments examined whether SD reductions in food intake in hamsters is driven, at least in part, by altered behavioral responses to ghrelin, a gut-derived orexigenic peptide which induces food intake via NPY-dependent mechanisms. Relative to hamsters housed in long day (LD) photoperiods, SD hamsters consumed less food in response to i.p. treatment with ghrelin across a range of doses from 0.03 to 3 mg/kg. To determine whether changes in photoperiod alter behavioral responses ghrelin-induced activation of NPY neurons, c-Fos and NPY expression were quantified in the arcuate nucleus (ARC) via double-label fluorescent immunocytochemistry following i.p. treatment with 0.3 mg/kg ghrelin or saline. Ghrelin induced c-Fos immunoreactivity (-ir) in a greater proportion of NPY-ir neurons of LD relative to SD hamsters. In addition, following ghrelin treatment, a greater proportion of ARC c-Fos-ir neurons were identifiable as NPY-ir in LD relative to SD hamsters. Changes in day length markedly alter the behavioral response to ghrelin. The data also identify photoperiod-induced changes in the ability of ghrelin to activate ARC NPY neurons as a possible mechanism by which changes in day length alter food intake. PMID:20600050

  8. Effects of "short" photoperiods on seedling growth of Pinus brutia.

    PubMed

    Iakovoglou, V; Radoglou, K; Kostopoulou, P; Dini-Papanastasi, O

    2012-03-01

    This study investigated how nurseries could benefit by inducing "short" photoperiods as low as 4 hr to produce "better" seedlings characterized by more vigorous roots; a substantial feature to overcome transplanting stress. The carryover effect of the photoperiod was also investigated on seedlings that grew for 30 days more underthe consistent 14 hr photoperiod. Seedlings of Pinus brutia were subjected to 4, 6, 8 and 14 hr photoperiod for 3 week. Fifteen seedlings were used to evaluate the leaf area, the root and shoot dry weight and their ratio. Six and sixteen seedlings were used to evaluate the shoot electrolyte leakage and the root growth potential, respectively. Based on the results, the 6 and 8 hr photoperiod indicated greater root allocation (4.8 and 4.9 mg, respectively) and chlorophyll content (3.7 and 4.4, respectively). They also indicated greater leaf area values (3.3 and 3.5 cm2, respectively) along with the 14 hr (3.4 cm2). The photoperiod effect continued even after seedlings were subjected at consistent photoperiod. Overall, "short" photoperiods could provide "better" P. brutia seedlings to accommodate immediate massive reforestation and afforestation needs.

  9. Daily rhythms of body temperature and heat production of sibling Mastomys species from different ecosystems--the response to photoperiod manipulations.

    PubMed

    Haim, Abraham; Zubidat, Abed Elsalam; van Aarde, Rudi J

    2008-12-01

    We compared body temperature (T(b)) and metabolic rates, measured as oxygen consumption (VO(2)), daily rhythms of two sibling species of the genus Mastomys. We also studied their responses to long day (16L: 8D, LD) and short day (8L: 16D, SD) photoperiod manipulations at a constant ambient temperature of 26+1 degrees C. We noted significant differences in T(b) and VO(2) daily rhythm patterns, under SD and LD-acclimation between the sibling species. These differences explain adaptation to the climatic conditions that prevail in the different ecosystems where these species live. To the best of our knowledge, this is the first time that physiological differences between the two siblings are measured by using chronobiological methods.

  10. Metabolic influences on circadian rhythmicity in Siberian and Syrian hamsters exposed to long photoperiods.

    PubMed

    Challet, E; Kolker, D E; Turek, F W

    2000-01-01

    Calorie restriction and other situations of reduced glucose availability in rodents alter the entraining effects of light on the circadian pacemaker located in the suprachiasmatic nuclei. Siberian and Syrian hamsters are photoperiodic species that are sexually active when exposed to long summer-like photoperiods, while both species show opposite changes in body mass when transferred from long to short or short to long days. Because metabolic cues may fine tune the photoperiodic responses via the suprachiasmatic nuclei, we tested whether timed calorie restriction can alter the photic synchronization of the light-entrainable pacemaker in these two hamster species exposed to long photoperiods. Siberian and Syrian hamsters were exposed to 16 h:8 h light:dark cycles and received daily hypocaloric (75% of daily food intake) or normocaloric diet (100% of daily food intake) 4 h after light onset. Four weeks later, hamsters were transferred to constant darkness and fed ad libitum. The onset of the nocturnal pattern of locomotor activity was phase advanced by 1.5 h in calorie-restricted Siberian hamsters, but not in Syrian hamsters. The lack of phase change in calorie-restricted Syrian hamsters was also observed in individuals exposed to 14 h:10 h dim light:dark cycles and fed with lower hypocaloric food (i.e. 60% of daily food intake) 2 h after light onset. Moreover, in hamsters housed in constant darkness and fed ad lib., light-induced phase shifts of the locomotor activity in Siberian hamsters, but not in Syrian hamsters were significantly reduced when glucose utilization was blocked by pretreatment with 500 mg/kg i.p. 2-deoxy-D-glucose. Taken together, these results show that the photic synchronization of the light-entrainable pacemaker can be modulated by metabolic cues in Siberian hamsters, but not in Syrian hamsters maintained on long days.

  11. Selection for population-specific adaptation shaped patterns of variation in the photoperiod pathway genes in Arabidopsis lyrata during post-glacial colonization.

    PubMed

    Mattila, Tiina M; Aalto, Esa A; Toivainen, Tuomas; Niittyvuopio, Anne; Piltonen, Susanna; Kuittinen, Helmi; Savolainen, Outi

    2016-01-01

    Spatially varying selection can lead to population-specific adaptation, which is often recognized at the phenotypic level; however, the genetic evidence is weaker in many groups of organisms. In plants, environmental shifts that occur due to colonization of a novel environment may require adaptive changes in the timing of growth and flowering, which are often governed by location-specific environmental cues such as day length. We studied locally varying selection in 19 flowering time loci in nine populations of the perennial herb Arabidopsis lyrata, which has a wide but patchy distribution in temperate and boreal regions of the northern hemisphere. The populations differ in their recent population demographic and colonization histories and current environmental conditions, especially in the growing season length. We searched for population-specific molecular signatures of directional selection by comparing a set of candidate flowering time loci with a genomic reference set within each population using multiple approaches and contrasted the patterns of different populations. The candidate loci possessed approximately 20% of the diversity of the reference loci. On average the flowering time loci had more rare alleles (a smaller Tajima's D) and an excess of highly differentiated sites relative to the reference, suggesting positive selection. The strongest signal of selection was detected in photoperiodic pathway loci in the colonizing populations of Northwestern Europe, whereas no evidence of positive selection was detected in the Central European populations. These findings emphasized the population-specific nature of selection and suggested that photoperiodic adaptation was important during postglacial colonization of the species. © 2015 John Wiley & Sons Ltd.

  12. Is Climate Simulation in Growth Chambers Necessary?

    Treesearch

    Z.M. Wang; K.H. Johnsen; M.J. Lechowicz

    1999-01-01

    In the expression of their genetic potential as phenotypes, trees respond to environmental cues such as photoperiod, temperature and soil and atmospheric water. However, growth chamber experiments often utilize simple and standard environmental conditions that might not provide these important environmental signals. We conducted a study to compare seedling growth in...

  13. Effects of extended photoperiod on sandhill crane reproduction

    USGS Publications Warehouse

    Gee, G.F.; Pendleton, G.W.; Wood, Don A.

    1992-01-01

    Photoperiod studies were conducted with greater sandhill cranes (Grus canadensis tabida) from 1969 to 1972 and from 1982 to 1987 at the Patuxent Wildlife Research Center, Maryland. When housed indoors and exposed to long photoperiods, males produced semen during winter. When exposed to artificially extended photoperiods during spring in outdoor pens, females apparently laid earlier in the year and laid more eggs than they would have without the added light. Cranes did not exhibit any signs of photorefractory response to extended photoperiods.

  14. Transcriptional Differences between Diapausing and Non-Diapausing D. montana Females Reared under the Same Photoperiod and Temperature

    PubMed Central

    Kankare, Maaria; Parker, Darren J.; Merisalo, Mikko; Salminen, Tiina S.; Hoikkala, Anneli

    2016-01-01

    Background A wide range of insects living at higher latitudes enter diapause at the end of the warm season, which increases their chances of survival through harsh winter conditions. In this study we used RNA sequencing to identify genes involved in adult reproductive diapause in a northern fly species, Drosophila montana. Both diapausing and non-diapausing flies were reared under a critical day length and temperature, where about half of the emerging females enter diapause enabling us to eliminate the effects of varying environmental conditions on gene expression patterns of the two types of female flies. Results RNA sequencing revealed large differences between gene expression patterns of diapausing and non-diapausing females, especially in genes involved with metabolism, fatty acid biosynthesis, and metal and nucleotide binding. Differently expressed genes included several gene groups, including myosin, actin and cytochromeP450 genes, which have been previously associated with diapause. This study also identified new candidate genes, including some involved in cuticular hydrocarbon synthesis or regulation (desat1 and desat2), and acyl-CoA Δ11-desaturase activity (CG9747), and few odorant-binding protein genes (e.g. Obp44A). Also, several transposable elements (TEs) showed differential expression between the two female groups motivating future research on their roles in diapause. Conclusions Our results demonstrate that the adult reproductive diapause in D. montana involves changes in the expression level of a variety of genes involved in key processes (e.g. metabolism and fatty acid biosynthesis) which help diapausing females to cope with overwintering. This is consistent with the view that diapause is a complex adaptive phenotype where not only sexual maturation is arrested, but also changes in adult physiology are required in order to survive over the winter. PMID:27571415

  15. Association of FLOWERING LOCUS T/TERMINAL FLOWER 1-like gene FTL2 expression with growth rhythm in Scots pine (Pinus sylvestris).

    PubMed

    Avia, Komlan; Kärkkäinen, Katri; Lagercrantz, Ulf; Savolainen, Outi

    2014-10-01

    Understanding the genetic basis of the timing of bud set, an important trait in conifers, is relevant for adaptation and forestry practice. In common garden experiments, both Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) show a latitudinal cline in the trait. We compared the regulation of their bud set biology by examining the expression of PsFTL2, a Pinus sylvestris homolog to PaFTL2, a FLOWERING LOCUS T/TERMINAL FLOWER 1 (FT/TFL1)-like gene, the expression levels of which have been found previously to be associated with the timing of bud set in Norway spruce. In a common garden study, we analyzed the relationship of bud phenology under natural and artificial photoperiods and the expression of PsFTL2 in a set of Scots pine populations from different latitudes. The expression of PsFTL2 increased in the needles preceding bud set and decreased during bud burst. In the northernmost population, even short night periods were efficient to trigger this expression, which also increased earlier under all photoperiodic regimes compared with the southern populations. Despite the different biology, with few limitations, the two conifers that diverged 140 million yr ago probably share an association of FTL2 with bud set, pointing to a common mechanism for the timing of growth cessation in conifers. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  16. Genome-wide survey of B-box proteins in potato (Solanum tuberosum)-Identification, characterization and expression patterns during diurnal cycle, etiolation and de-etiolation.

    PubMed

    Talar, Urszula; Kiełbowicz-Matuk, Agnieszka; Czarnecka, Jagoda; Rorat, Tadeusz

    2017-01-01

    Plant B-box domain proteins (BBX) mediate many light-influenced developmental processes including seedling photomorphogenesis, seed germination, shade avoidance and photoperiodic regulation of flowering. Despite the wide range of potential functions, the current knowledge regarding BBX proteins in major crop plants is scarce. In this study, we identify and characterize the StBBX gene family in potato, which is composed of 30 members, with regard to structural properties and expression profiles under diurnal cycle, etiolation and de-etiolations. Based on domain organization and phylogenetic relationships, StBBX genes have been classified into five groups. Using real-time quantitative PCR, we found that expression of most of them oscillates following a 24-h rhythm; however, large differences in expression profiles were observed between the genes regarding amplitude and position of the maximal and minimal expression levels in the day/night cycle. On the basis of the time-of-day/time-of-night, we distinguished three expression groups specifically expressed during the light and two during the dark phase. In addition, we showed that the expression of several StBBX genes is under the control of the circadian clock and that some others are specifically associated with the etiolation and de-etiolation conditions. Thus, we concluded that StBBX proteins are likely key players involved in the complex diurnal and circadian networks regulating plant development as a function of light conditions and day duration.

  17. Autumn photosynthetic decline and growth cessation in seedlings of white spruce are decoupled under warming and photoperiod manipulations.

    PubMed

    Stinziano, Joseph R; Way, Danielle A

    2017-08-01

    Climate warming is expected to increase the seasonal duration of photosynthetic carbon fixation and tree growth in high-latitude forests. However, photoperiod, a crucial cue for seasonality, will remain constant, which may constrain tree responses to warming. We investigated the effects of temperature and photoperiod on weekly changes in photosynthetic capacity, leaf biochemistry and growth in seedlings of a boreal evergreen conifer, white spruce [Picea glauca (Moench) Voss]. Warming delayed autumn declines in photosynthetic capacity, extending the period when seedlings had high carbon uptake. While photoperiod was correlated with photosynthetic capacity, short photoperiods did not constrain the maintenance of high photosynthetic capacity under warming. Rubisco concentration dynamics were affected by temperature but not photoperiod, while leaf pigment concentrations were unaffected by treatments. Respiration rates at 25 °C were stimulated by photoperiod, although respiration at the growth temperatures was increased in warming treatments. Seedling growth was stimulated by increased photoperiod and suppressed by warming. We demonstrate that temperature is a stronger control on the seasonal timing of photosynthetic down-regulation than is photoperiod. Thus, while warming can stimulate carbon uptake in boreal conifers, the extra carbon may be directed towards respiration rather than biomass, potentially limiting carbon sequestration under climate change. © 2017 John Wiley & Sons Ltd.

  18. Chronic photoperiod disruption does not increase vulnerability to focal cerebral ischemia in young normotensive rats.

    PubMed

    Ku Mohd Noor, Ku Mastura; Wyse, Cathy; Roy, Lisa A; Biello, Stephany M; McCabe, Christopher; Dewar, Deborah

    2017-11-01

    Photoperiod disruption, which occurs during shift work, is associated with changes in metabolism or physiology (e.g. hypertension and hyperglycaemia) that have the potential to adversely affect stroke outcome. We sought to investigate if photoperiod disruption affects vulnerability to stroke by determining the impact of photoperiod disruption on infarct size following permanent middle cerebral artery occlusion. Adult male Wistar rats (210-290 g) were housed singly under two different light/dark cycle conditions ( n = 12 each). Controls were maintained on a standard 12:12 light/dark cycle for nine weeks. For rats exposed to photoperiod disruption, every three days for nine weeks, the lights were switched on 6 h earlier than in the previous photoperiod. T 2 -weighted magnetic resonance imaging was performed at 48 h after middle cerebral artery occlusion. Disruption of photoperiod in young healthy rats for nine weeks did not alter key physiological variables that can impact on ischaemic damage, e.g. blood pressure and blood glucose immediately prior to middle cerebral artery occlusion. There was no effect of photoperiod disruption on infarct size after middle cerebral artery occlusion. We conclude that any potentially adverse effect of photoperiod disruption on stroke outcome may require additional factors such as high fat/high sugar diet or pre-existing co-morbidities.

  19. Effects of temperature and photoperiod on daily activity rhythms of Lutzomyia longipalpis (Diptera: Psychodidae).

    PubMed

    Rivas, Gustavo B S; de Souza, Nataly Araujo; Peixoto, Alexandre A; Bruno, Rafaela V

    2014-06-19

    Insect vectors have been established as models in Chronobiology for many decades, and recent studies have demonstrated a close relationship between the circadian clock machinery, daily rhythms of activity and vectorial capacity. Lutzomyia longipalpis, the primary vector of Leishmania (Leishmania) infantum in the New World, is reported to have crepuscular/nocturnal activity in the wild. However, most of these studies applied hourly CDC trap captures, which is a good indicative of L. longipalpis behaviour, but has limited accuracy due to the inability to record the daily activity of a single insect during consecutive days. In addition, very little is known about the activity pattern of L. longipalpis under seasonal variations of average temperature and day length in controlled laboratory conditions. We recorded the locomotor activity of L. longipalpis males under different artificial regimes of temperature and photoperiod. First, in order to test the effects of temperature on the activity, sandflies were submitted to regimes of light/dark cycles similar to the equinox photoperiod (LD 12:12) combined with different constant temperatures (20°C, 25°C and 30°C). In addition, we recorded sandfly locomotor activity under a mild constant temperature (25°C with different day length regimes: 8 hours, 12 hours and 16 hours). L. longipalpis exhibited more activity at night, initiating dusk-related activity (onset time) at higher rather than lower temperatures. In parallel, changes of photoperiod affected anticipation as well as all the patterns of activity (onset, peak and offset time). However, under LD 16:08, sandflies presented the earliest values of maximum peak and offset times, contrary to other regimes. Herein, we showed that light and temperature modulate L. longipalpis behaviour under controlled laboratory conditions, suggesting that sandflies might use environmental information to sustain their crepuscular/nocturnal activity, as well as other important aspects as mating and host-seeking at appropriate times in different seasons. Our results depict previously unappreciated aspects of the L. longipalpis daily rhythms of activity that might have important epidemiological implications.

  20. Effects of temperature and photoperiod on daily activity rhythms of Lutzomyia longipalpis (Diptera: Psychodidae)

    PubMed Central

    2014-01-01

    Background Insect vectors have been established as models in Chronobiology for many decades, and recent studies have demonstrated a close relationship between the circadian clock machinery, daily rhythms of activity and vectorial capacity. Lutzomyia longipalpis, the primary vector of Leishmania (Leishmania) infantum in the New World, is reported to have crepuscular/nocturnal activity in the wild. However, most of these studies applied hourly CDC trap captures, which is a good indicative of L. longipalpis behaviour, but has limited accuracy due to the inability to record the daily activity of a single insect during consecutive days. In addition, very little is known about the activity pattern of L. longipalpis under seasonal variations of average temperature and day length in controlled laboratory conditions. Methods We recorded the locomotor activity of L. longipalpis males under different artificial regimes of temperature and photoperiod. First, in order to test the effects of temperature on the activity, sandflies were submitted to regimes of light/dark cycles similar to the equinox photoperiod (LD 12:12) combined with different constant temperatures (20°C, 25°C and 30°C). In addition, we recorded sandfly locomotor activity under a mild constant temperature (25°C with different day length regimes: 8 hours, 12 hours and 16 hours). Results L. longipalpis exhibited more activity at night, initiating dusk-related activity (onset time) at higher rather than lower temperatures. In parallel, changes of photoperiod affected anticipation as well as all the patterns of activity (onset, peak and offset time). However, under LD 16:08, sandflies presented the earliest values of maximum peak and offset times, contrary to other regimes. Conclusions Herein, we showed that light and temperature modulate L. longipalpis behaviour under controlled laboratory conditions, suggesting that sandflies might use environmental information to sustain their crepuscular/nocturnal activity, as well as other important aspects as mating and host-seeking at appropriate times in different seasons. Our results depict previously unappreciated aspects of the L. longipalpis daily rhythms of activity that might have important epidemiological implications. PMID:24947114

  1. Extra-hypothalamic brain clocks in songbirds: Photoperiodic state dependent clock gene oscillations in night-migratory blackheaded buntings, Emberiza melanocephala.

    PubMed

    Singh, Devraj; Kumar, Vinod

    2017-04-01

    The avian circadian pacemaker system is comprised of independent clocks in the retina, pineal and hypothalamus, as shown by daily and circadian oscillations of core clock genes (Per2, Cry1, Bmal1 and Clock) in several birds including migratory blackheaded buntings (Emberiza melanocephala). This study investigated the extra-hypothalamic brain circadian clocks in blackheaded buntings, and measured Per2, Cry1, Cry2, Bmal1 and Clock mRNA expressions at 4h intervals over 24h beginning 1h after light-on in the left and right telencephalon, optic tectum and cerebellum, the brain regions involved in several physiological and cognitive functions. Because of seasonal alterations in the circadian clock dependent brain functions, we measured daily clock gene oscillations in buntings photoperiod-induced with the non-migratory state under short days (SDnM), and the pre-migratory (LDpM), migratory (LDM) and post-migratory (refractory, LDR) states under long days. Daily Per2 oscillations were not altered with changes in the photoperiodic states, except for about 2-3h phase difference in the optic tectum between the SDnM and LDpM states. However, there were about 3-5h differences in the phase and 2 to 4 fold change in the amplitude of daily Bmal1 and Cry1 mRNA oscillations between the photoperiod-induced states. Further, Cry2 and Clock genes lacked a significant oscillation, except in Cb (Cry2) and TeO and Rt (Clock) under LDR state. Overall, these results show the presence of circadian clocks in extra-hypothalamic brain regions of blackheaded buntings, and suggest tissue-dependent alterations in the waveforms of mRNA oscillations with transitions in the photoperiod-induced seasonal states in a long-day species. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Gibberellin mediates daylength-controlled differentiation of vegetative meristems in strawberry (Fragaria × ananassa Duch)

    PubMed Central

    Hytönen, Timo; Elomaa, Paula; Moritz, Thomas; Junttila, Olavi

    2009-01-01

    Background Differentiation of long and short shoots is an important developmental trait in several species of the Rosaceae family. However, the physiological mechanisms controlling this differentiation are largely unknown. We have studied the role of gibberellin (GA) in regulation of shoot differentiation in strawberry (Fragaria × ananassa Duch.) cv. Korona. In strawberry, differentiation of axillary buds to runners (long shoot) or to crown branches (short shoot) is promoted by long-day and short-day conditions, respectively. Formation of crown branches is a prerequisite for satisfactory flowering because inflorescences are formed from the apical meristems of the crown. Results We found that both prohexadione-calcium and short photoperiod inhibited runner initiation and consequently led to induction of crown branching. In both cases, this correlated with a similar decline in GA1 level. Exogenous GA3 completely reversed the effect of prohexadione-calcium in a long photoperiod, but was only marginally effective in short-day grown plants. However, transfer of GA3-treated plants from short days to long days restored the normal runner formation. This did not occur in plants that were not treated with GA3. We also studied GA signalling homeostasis and found that the expression levels of several GA biosynthetic, signalling and target genes were similarly affected by prohexadione-calcium and short photoperiod in runner tips and axillary buds, respectively. Conclusion GA is needed for runner initiation in strawberry, and the inhibition of GA biosynthesis leads to the formation of crown branches. Our findings of similar changes in GA levels and in GA signalling homeostasis after prohexadione-calcium and short-day treatments, and photoperiod-dependent responsiveness of the axillary buds to GA indicate that GA plays a role also in the photoperiod-regulated differentiation of axillary buds. We propose that tightly regulated GA activity may control induction of cell division in subapical tissues of axillary buds, being one of the signals determining bud fate. PMID:19210764

  3. Variations in the photoperiodic cloacal response of Japanese quail: association with testes weight and feather color

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oishi, T.; Konishi, T.

    1983-04-01

    The size of the cloacal gland was found to be a reliable indicator of testicular activity of Japanese quail. Six experiments were performed to examine the effects of alternating long and short photoperiod on the size of the cloacal gland of male Japanese quail. Three types of photoperiodic cloacal responses were distinguished. Type I birds became refractory to short photoperiods after they had experienced 5 weeks or more of short days. They maintained large cloacal glands under subsequent condition of alternating long and short photoperiod. Type II birds were intermediate types I and III birds did not become refractory tomore » short photoperiods after experiencing 5 weeks or more of short days. The cloacal glands responded to conditions of alternating long and short photoperiods with increases or decreases in size. Feather color on the throat was found to correspond to the type of cloacal response. Type I birds had brick-red throat feathers. Type II birds had white feathers intermingled with brick-red feathers. Type III had white throat feathers. The percentages of types I, II, and III observed in the experimental population was 67, 18, and 15%, respectively. Type III birds were used to study the effects of blinding on the cloacal response to short photoperiod. Five out of eight blinded type III birds did not lose the responsiveness to short photoperiod. These results are consistent with the view that extraocular photoreceptors participate in the photoperiodic gonadal response of Japanese quail.« less

  4. Effect of photoperiod and 6-methoxybenzoxazolinone (6-MBOA) on the reproduction of male Brandt's voles (Lasiopodomys brandtii).

    PubMed

    Dai, Xin; Shi, Jia; Han, Mei; Wang, Ai Qin; Wei, Wan Hong; Yang, Sheng Mei

    2017-05-15

    Plant secondary metabolite 6-methoxybenzoxazolinone (6-MBOA) has been suggested to stimulate animal reproduction. 6-MBOA is detected in Leymus chinensis, a main diet of Brandt's vole (Lasiopodomys brandtii). We have previously reported a stimulatory effect of 6-MBOA on reproduction of male Brandt's voles under a short-day photoperiod. The goal of this study was to investigate the effect of 6-MBOA on reproductive physiology of male Brandt's voles under a long-day photoperiod and examine if 6-MBOA under this photoperiodic regime altered the reproductive status of male Brandt's voles differently than the short-day photoperiod. Under the long-day photoperiod, a high dose of 6-MBOA decreased KiSS-1 mRNA in the arcuate nucleus (ARC), and we also saw a decrease in circulating levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone (T). Steroidogenic acute regulatory protein (StAR) and cytochrome P450 11a1 (CYP11a1) in the testes, and relative testis weight also decreased with 6-MBOA administration. Compared to the short-day photoperiod, animals under the long-day photoperiod exhibited increased body weight as well as all other reproductive parameters. Our results showed that 6-MBOA inhibited the reproduction of male Brandt's vole under a long-day photoperiod, a stark contrast from its stimulatory effects under a short-day photoperiod. The paradoxical effects of 6-MBOA suggest it may act as a partial agonist of melatonin. These results provide insight into the complex interactions between environmental factors such as photoperiod and diet in the control of Brandt's vole reproduction. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Patterns of expression and normalized levels of the five Arabidopsis phytochromes.

    PubMed

    Sharrock, Robert A; Clack, Ted

    2002-09-01

    Using monoclonal antibodies specific for each apoprotein and full-length purified apoprotein standards, the levels of the five Arabidopsis phytochromes and their patterns of expression in seedlings and mature plants and under different light conditions have been characterized. Phytochrome levels are normalized to the DNA content of the various tissue extracts to approximate normalization to the number of cells in the tissue. One phytochrome, phytochrome A, is highly light labile. The other four phytochromes are much more light stable, although among these, phytochromes B and C are reduced 4- to 5-fold in red- or white-light-grown seedlings compared with dark-grown seedlings. The total amount of extractable phytochrome is 23-fold lower in light-grown than dark-grown tissues, and the percent ratios of the five phytochromes, A:B:C:D:E, are measured as 85:10:2:1.5:1.5 in etiolated seedlings and 5:40:15:15:25 in seedlings grown in continuous white light. The four light-stable phytochromes are present at nearly unchanging levels throughout the course of development of mature rosette and reproductive-stage plants and are present in leaves, stems, roots, and flowers. Phytochrome protein expression patterns over the course of seed germination and under diurnal and circadian light cycles are also characterized. Little cycling in response to photoperiod is observed, and this very low amplitude cycling of some phytochrome proteins is out of phase with previously reported cycling of PHY mRNA levels. These studies indicate that, with the exception of phytochrome A, the family of phytochrome photoreceptors in Arabidopsis constitutes a quite stable and very broadly distributed array of sensory molecules.

  6. Seasonality in a temperate zone bird can be entrained by near equatorial photoperiods.

    PubMed

    Dawson, Alistair

    2007-03-07

    Birds use photoperiod to control the time of breeding and moult. However, it is unclear whether responses are dependent on absolute photoperiod, the direction and rate of change in photoperiod, or if photoperiod entrains a circannual clock. If starlings (Sturnus vulgaris) are kept on a constant photoperiod of 12h light:12h darkness per day (12L:12D), then they can show repeated cycles of gonadal maturation, regression and moult, which is evidence for a circannual clock. In this study, starlings kept on constant 11.5L:12.5D for 4 years or 12.5L:11.5D for 3 years showed no circannual cycles in gonadal maturation or moult. So, if there is a circannual clock, it is overridden by a modest deviation in photoperiod from 12L:12D. The responses to 11.5L:12.5D and 12.5L:11.5D were very different, the former perceived as a short photoperiod (birds were photosensitive for most of the time) and the latter as a long photoperiod (birds remained permanently photorefractory). Starlings were then kept on a schedule which ranged from 11.5L:12.5D in mid-winter to 12.5L:11.5D in mid-summer (simulating the annual cycle at 9 degrees N) for 3 years. These birds entrained precisely to calendar time and changes in testicular size and moult were similar to those of birds under a simulated cycle at 52 degrees N. These data show that birds are very sensitive to changes in photoperiod but that they do not simply respond to absolute photoperiod nor can they rely on a circannual clock. Instead, birds appear to respond to the shape of the annual change in photoperiod. This proximate control could operate from near equatorial latitudes and would account for similar seasonal timing in individuals of a species over a wide range of latitudes.

  7. Effect of photoperiod on flowering of cypress vine (Ipomea quamoclit L.)

    NASA Astrophysics Data System (ADS)

    Koike, Yasuhiko

    2013-05-01

    Plants of Ipomoea quamoclit L. were exposed to an 8-hour photoperiod under natural daylight, which was supplemented with 60 W incandescent lamps to give an 8- to 24-hour day. Under photoperiods of 12 hours or less, flower buds were initiated, while the period from bud formation to flowering was shortened in plants grown under a 12-hour photoperiod. Photoperiods of 12 hours or less had no effect on plant height and number of nodes. The present results suggest that Ipomoea quamoclit L. is a short-day plant.

  8. Functional and evolutionary characterization of the CONSTANS gene family in short-day photoperiodic flowering in soybean.

    PubMed

    Wu, Faqiang; Price, Brian William; Haider, Waseem; Seufferheld, Gabriela; Nelson, Randall; Hanzawa, Yoshie

    2014-01-01

    CONSTANS (CO) plays a central role in photoperiodic flowering control of plants. However, much remains unknown about the function of the CO gene family in soybean and the molecular mechanisms underlying short-day photoperiodic flowering of soybean. We identified 26 CO homologs (GmCOLs) in the soybean genome, many of them previously unreported. Phylogenic analysis classified GmCOLs into three clades conserved among flowering plants. Two homeologous pairs in Clade I, GmCOL1a/GmCOL1b and GmCOL2a/GmCOL2b, showed the highest sequence similarity to Arabidopsis CO. The mRNA abundance of GmCOL1a and GmCOL1b exhibited a strong diurnal rhythm under flowering-inductive short days and peaked at dawn, which coincided with the rise of GmFT5a expression. In contrast, the mRNA abundance of GmCOL2a and GmCOL2b was extremely low. Our transgenic study demonstrated that GmCOL1a, GmCOL1b, GmCOL2a and GmCOL2b fully complemented the late flowering effect of the co-1 mutant in Arabidopsis. Together, these results indicate that GmCOL1a and GmCOL1b are potential inducers of flowering in soybean. Our data also indicate rapid regulatory divergence between GmCOL1a/GmCOL1b and GmCOL2a/GmCOL2b but conservation of their protein function. Dynamic evolution of GmCOL regulatory mechanisms may underlie the evolution of photoperiodic signaling in soybean.

  9. Effects of photoperiod and food restriction on the reproductive physiology of female California mice

    PubMed Central

    Steinman, Michael Q.; Knight, Jennifer A.; Trainor, Brian C.

    2012-01-01

    Many temperate-zone animals use changes in photoperiod to time breeding. Shorter term cues, like food availability, are integrated with photoperiod to adjust reproductive timing under unexpected conditions. Many mice of the genus Peromyscus breed in the summer. California mice (Peromyscus californicus), however, can breed year round, but tend to begin breeding in the winter. Glial cells may be involved in transduction of environmental signals that regulate gonadotrophin releasing hormone (GnRH) activity. We examined the effects of diet and photoperiod on reproduction in female California mice. Mice placed on either short days (8L:16D) or long days (16L:8D) were food restricted (80% of normal intake) or fed ad libitum. Short day-food restricted mice showed significant regression of the reproductive system. GnRH-immunoreactivity was increased in the tuberal hypothalamus of long day-food restricted mice. This may be associated with the sparing effect long days have when mice are food restricted. The number of GFAP-immunoreactive fibers in proximity to GnRH nerve terminals correlated negatively with uterine size in ad libitum but not food restricted mice, suggesting diet may alter glial regulation of the reproductive axis. There was a trend towards food restriction increasing uterine expression of c-fos mRNA, an estrogen dependent gene. Similar to other seasonally breeding rodents, short days render the reproductive system of female California mice more susceptible to effects of food restriction. This may be vestigial, or it may have evolved to mitigate consequences of unexpectedly poor winter food supplies. PMID:22245263

  10. Morphological study of the prostate gland in viscacha (Lagostomus maximus maximus) during periods of maximal and minimal reproductive activity.

    PubMed

    Chaves, Maximiliano; Aguilera-Merlo, Claudia; Cruceño, Albana; Fogal, Teresa; Mohamed, Fabian

    2015-11-01

    The viscacha (Lagostomus maximus maximus) is a rodent with photoperiod-dependent seasonal reproduction. The aim of this work was to study the morphological variations of the prostate during periods of maximal (summer, long photoperiod) and minimal (winter, short photoperiod) reproductive activity. Prostates of adult male viscachas were studied by light and electron microscopy, immunohistochemistry for androgen receptor, and morphometric analysis. The prostate consisted of two regions: peripheral and central. The peripheral zone exhibited large adenomeres with a small number of folds and lined with a pseudostratified epithelium. The central zone had small adenomeres with pseudostratified epithelium and the mucosa showed numerous folds. The morphology of both zones showed variations during periods of maximal and minimal reproductive activity. The prostate weight, prostate-somatic index, luminal diameter of adenomeres, epithelial height and major nuclear diameter decreased during the period of minimal reproductive activity. Principal cells showed variations in their shape, size and ultrastructural characteristics during the period of minimal reproductive activity in comparison with the active period. The androgen receptor expression in epithelial and fibromuscular stromal cells was different between the studied periods. Our results suggest a reduced secretory activity of viscacha prostate during the period of minimal reproductive activity. Thus, the morphological variations observed in both the central and peripheral zones of the viscacha prostate agree with the results previously obtained in the gonads of this rodent of photoperiod-dependent reproduction. Additionally, the variations observed in the androgen receptors suggest a direct effect of the circulating testosterone on the gland. © 2015 Wiley Periodicals, Inc.

  11. Transfer from long to short photoperiods affects production efficiency of day-neutral rice

    NASA Technical Reports Server (NTRS)

    Goldman, K. R.; Mitchell, C. A.

    1999-01-01

    The day-neutral, semidwarf rice (Oryza sativa L.) cultivar Ai-Nan-Tsao was grown in a greenhouse under summer conditions using high-pressure sodium lamps to extend the natural photoperiod. After allowing 2 weeks for germination, stand establishment, and thinning to a consistent planting density of 212 plants/m2, stands were maintained under continuous lighting for 35 or 49 days before shifting to 8- or 12-h photoperiods until harvest 76 days after planting. Non-shifted control treatments consisting of 8-, 12-, or 24-h photoperiods also were maintained throughout production. Tiller number increased as duration of exposure to continuous light increased before shifting to shorter photoperiods. However, shoot harvest index and yield efficiency rate were lower for all plants receiving continuous light than for those under the 8- or 12-h photoperiods. Stands receiving 12-h photoperiods throughout production had the highest grain yield per plant and equaled the 8-h-photoperiod control plants for the lowest tiller number per plant. As long as stands were exposed to continuous light, tiller formation continued. Shifting to shorter photoperiods late in the cropping cycle resulted in newly formed tillers that were either sterile or unable to mature grain before harvest. Late-forming tillers also suppressed yield of grain in early-forming tillers, presumably by competing for photosynthate or for remobilized assimilate during senescence. Stands receiving 12-h photoperiods throughout production not only produced the highest grain yield at harvest but had the highest shoot harvest index, which is important for resource-recovery strategies in advanced life-support systems proposed for space.

  12. Mapping QTL Associated with Photoperiod Sensitivity and Assessing the Importance of QTL×Environment Interaction for Flowering Time in Maize

    PubMed Central

    Wang, Cuiling; Chen, Yanhui; Ku, Lixia; Wang, Tiegu; Sun, Zhaohui; Cheng, Fangfang; Wu, Liancheng

    2010-01-01

    Background An understanding of the genetic determinism of photoperiod response of flowering is a prerequisite for the successful exchange of germplasm across different latitudes. In order to contribute to resolve the genetic basis of photoperiod sensitivity in maize, a set of 201 recombinant inbred lines (RIL), derived from a temperate and tropical inbred line cross were evaluated in 5 field trials spread in short- and long-day environments. Methodology/Principal Findings Firstly, QTL analyses for flowering time and photoperiod sensitivity in maize were conducted in individual photoperiod environments separately, and then, the total genetic effect was partitioned into additive effect (A) and additive-by-environment interaction effect (AE) by using a mixed-model-based composite interval mapping (MCIM) method. Conclusions/Significance Seven putative QTL were found associated with DPS thermal time based on the data estimated in individual environments. Nine putative QTL were found associated with DPS thermal time across environments and six of them showed significant QTL×enviroment (QE) interactions. Three QTL for photoperiod sensitivity were identified on chromosome 4, 9 and 10, which had the similar position to QTL for DPS thermal time in the two long-day environment. The major photoperiod sensitive loci qDPS10 responded to both short and long-day photoperiod environments and had opposite effects in different photoperiod environment. The QTL qDPS3, which had the greatest additive effect exclusively in the short-day environment, were photoperiod independent and should be classified in autonomous promotion pathway. PMID:21124912

  13. Short photoperiod increases energy intake, metabolic thermogenesis and organ mass in silky starlings Sturnus sericeus

    PubMed Central

    WANG, Jia-Qi; WANG, Jia-Jia; WU, Xu-Jian; ZHENG, Wei-Hong; LIU, Jin-Song

    2016-01-01

    Environmental cues play important roles in the regulation of an animal’s physiology and behavior. One such cue, photoperiod, plays an important role in the seasonal acclimatization of birds. It has been demonstrated that an animal’s body mass, basal metabolic rate (BMR), and energy intake, are all affected by photoperiod. The present study was designed to examine photoperiod induced changes in the body mass, metabolism and metabolic organs of the silky starling, Sturnus sericeus. Captive silky starlings increased their body mass and BMR during four weeks of acclimation to a short photoperiod. Birds acclimated to a short photoperiod also increased the mass of certain organs (liver, gizzard and small intestine), and both gross energy intake (GEI) and digestible energy intake (DEI), relative to those acclimated to a long photoperiod. Furthermore, BMR was positively correlated with body mass, liver mass, GEI and DEI. These results suggest that silky starlings increase metabolic thermogenesis when exposed to a short photoperiod by increasing their body and metabolic organ mass, and their GEI and DEI. These findings support the hypothesis that bird species from temperate climates typically display high phenotypic flexibility in thermogenic capacity. PMID:27029864

  14. Maintenance and constructive respiration, photosynthesis, and net assimilation rate in seedlings of pitch pine (Pinus rigida Mill.)

    Treesearch

    F. Thomas Ledig; A.P. Drew; J.G. Clark

    1976-01-01

    Pitch pine seedlins were grown at constant temperature and photoperiod. Net CO2-uptake h-1 g-1 leaves decreased stadily during ontogeny until leaf production ceased. Thereafter, there was no change or a slight increase. Though the 0ntogeneic pattern was the same in populations native to different...

  15. Ppd-1 is a key regulator of inflorescence architecture and paired spikelet development in wheat.

    PubMed

    Boden, Scott A; Cavanagh, Colin; Cullis, Brian R; Ramm, Kerrie; Greenwood, Julian; Jean Finnegan, E; Trevaskis, Ben; Swain, Steve M

    2015-01-26

    The domestication of cereal crops such as wheat, maize, rice and barley has included the modification of inflorescence architecture to improve grain yield and ease harvesting(1). Yield increases have often been achieved through modifying the number and arrangement of spikelets, which are specialized reproductive branches that form part of the inflorescence. Multiple genes that control spikelet development have been identified in maize, rice and barley(2-5). However, little is known about the genetic underpinnings of this process in wheat. Here, we describe a modified spikelet arrangement in wheat, termed paired spikelets. Combining comprehensive QTL and mutant analyses, we show that Photoperiod-1 (Ppd-1), a pseudo-response regulator gene that controls photoperiod-dependent floral induction, has a major inhibitory effect on paired spikelet formation by regulating the expression of FLOWERING LOCUS T (FT)(6,7). These findings show that modulated expression of the two important flowering genes, Ppd-1 and FT, can be used to form a wheat inflorescence with a more elaborate arrangement and increased number of grain producing spikelets.

  16. PHOTOPERIOD RESPONSE 1 (PHOR1)-like genes regulate shoot/root growth, starch accumulation, and wood formation in Populus.

    PubMed

    Zawaski, Christine; Ma, Cathleen; Strauss, Steven H; French, Darla; Meilan, Richard; Busov, Victor B

    2012-09-01

    This study describes functional characterization of two putative poplar PHOTOPERIOD RESPONSE 1 (PHOR1) orthologues. The expression and sequence analyses indicate that the two poplar genes diverged, at least partially, in function. PtPHOR1_1 is most highly expressed in roots and induced by short days, while PtPHOR1_2 is more uniformly expressed throughout plant tissues and is not responsive to short days. The two PHOR1 genes also had distinct effects on shoot and root growth when their expression was up- and downregulated transgenically. PtPHOR1_1 effects were restricted to roots while PtPHOR1_2 had similar effects on aerial and below-ground development. Nevertheless, both genes seemed to be upregulated in transgenic poplars that are gibberellin-deficient and gibberellin-insensitive, suggesting interplay with gibberellin signalling. PHOR1 suppression led to increased starch accumulation in both roots and stems. The effect of PHOR1 suppression on starch accumulation was coupled with growth-inhibiting effects in both roots and shoots, suggesting that PHOR1 is part of a mechanism that regulates the allocation of carbohydrate to growth or storage in poplar. PHOR1 downregulation led to significant reduction of xylem formation caused by smaller fibres and vessels suggesting that PHOR1 likely plays a role in the growth of xylem cells.

  17. PHOTOPERIOD RESPONSE 1 (PHOR1)-like Genes Regulate Shoot/root Growth, Starch Accumulation, and Wood Formation in Populus

    PubMed Central

    Busov, Victor B.

    2012-01-01

    This study describes functional characterization of two putative poplar PHOTOPERIOD RESPONSE 1 (PHOR1) orthologues. The expression and sequence analyses indicate that the two poplar genes diverged, at least partially, in function. PtPHOR1_1 is most highly expressed in roots and induced by short days, while PtPHOR1_2 is more uniformly expressed throughout plant tissues and is not responsive to short days. The two PHOR1 genes also had distinct effects on shoot and root growth when their expression was up- and downregulated transgenically. PtPHOR1_1 effects were restricted to roots while PtPHOR1_2 had similar effects on aerial and below-ground development. Nevertheless, both genes seemed to be upregulated in transgenic poplars that are gibberellin-deficient and gibberellin-insensitive, suggesting interplay with gibberellin signalling. PHOR1 suppression led to increased starch accumulation in both roots and stems. The effect of PHOR1 suppression on starch accumulation was coupled with growth-inhibiting effects in both roots and shoots, suggesting that PHOR1 is part of a mechanism that regulates the allocation of carbohydrate to growth or storage in poplar. PHOR1 downregulation led to significant reduction of xylem formation caused by smaller fibres and vessels suggesting that PHOR1 likely plays a role in the growth of xylem cells. PMID:22915748

  18. Seasonality in a temperate zone bird can be entrained by near equatorial photoperiods

    PubMed Central

    Dawson, Alistair

    2006-01-01

    Birds use photoperiod to control the time of breeding and moult. However, it is unclear whether responses are dependent on absolute photoperiod, the direction and rate of change in photoperiod, or if photoperiod entrains a circannual clock. If starlings (Sturnus vulgaris) are kept on a constant photoperiod of 12 h light : 12 h darkness per day (12 L : 12 D), then they can show repeated cycles of gonadal maturation, regression and moult, which is evidence for a circannual clock. In this study, starlings kept on constant 11.5 L : 12.5 D for 4 years or 12.5 L : 11.5 D for 3 years showed no circannual cycles in gonadal maturation or moult. So, if there is a circannual clock, it is overridden by a modest deviation in photoperiod from 12 L : 12 D. The responses to 11.5 L : 12.5 D and 12.5 L : 11.5 D were very different, the former perceived as a short photoperiod (birds were photosensitive for most of the time) and the latter as a long photoperiod (birds remained permanently photorefractory). Starlings were then kept on a schedule which ranged from 11.5 L : 12.5 D in mid-winter to 12.5 L : 11.5 D in mid-summer (simulating the annual cycle at 9 °N) for 3 years. These birds entrained precisely to calendar time and changes in testicular size and moult were similar to those of birds under a simulated cycle at 52 °N. These data show that birds are very sensitive to changes in photoperiod but that they do not simply respond to absolute photoperiod nor can they rely on a circannual clock. Instead, birds appear to respond to the shape of the annual change in photoperiod. This proximate control could operate from near equatorial latitudes and would account for similar seasonal timing in individuals of a species over a wide range of latitudes. PMID:17254997

  19. Overexpression of a GmGBP1 ortholog of soybean enhances the responses to flowering, stem elongation and heat tolerance in transgenic tobaccos.

    PubMed

    Zhao, Lin; Wang, Zhixin; Lu, Qingyao; Wang, Pengpeng; Li, Yongguang; Lv, Qingxue; Song, Xianping; Li, Dongmei; Gu, Yuejiao; Liu, Lixue; Li, Wenbin

    2013-06-01

    Soybean is a typical short-day crop, and its photoperiodic and gibberellin (GA) responses for the control of flowering are critical to seed yield. The GmGBP1 mRNA abundance in leaves was dramatically increased in short-days (SDs) compared to that in long-days in which it was consistently low at all time points from 0 to 6 days (days after transfer to SDs). GmGBP1 was highly expressed in leaves and exhibited a circadian rhythm in SDs. Ectopic overexpression of GmGBP1 in tobaccos caused photoperiod-insensitive early flowering by increasing NtCO mRNA levels. GmGBP1 mRNA abundance was also increased by GAs. Transgenic GmGBP1 overexpressing (-ox) tobacco plants exhibited increased GA signaling-related phenotypes including flowering and plant height promotion. Furthermore, the hypocotyl elongation, early-flowering and longer internode phenotypes were largely accelerated by GA3 application in the GmGBP1-ox tobacco seedlings. Being consistent, overexpression of GmGBP1 resulted in significantly enhanced GA signaling (evidenced suppressed expression of NtGA20ox) both with and without GA treatments. GmGBP1 was a positive regulator of both photoperiod and GA-mediated flowering responses. In addition, GmGBP1-ox tobaccos were hypersensitive to ABA, salt and osmotic stresses during seed germination. Heat-inducible GmGBP1 also enhanced thermotolerance in transgenic GmGBP1-ox tobaccos during seed germination and growth. GmGBP1 protein was localized in the nucleus. Analyses of a series of 5'-deletions of the GmGBP1 promoter suggested that several cis-acting elements, including P-BOX, TCA-motif and three HSE elements necessary to induce gene expression by GA, salicic acid and heat stress, were specifically localized in the GmGBP1 promoter region.

  20. A Drought-Inducible Transcription Factor Delays Reproductive Timing in Rice.

    PubMed

    Zhang, Chunyu; Liu, Jun; Zhao, Tao; Gomez, Adam; Li, Cong; Yu, Chunsheng; Li, Hongyu; Lin, Jianzhong; Yang, Yuanzhu; Liu, Bin; Lin, Chentao

    2016-05-01

    The molecular mechanisms underlying photoperiod or temperature control of flowering time have been recently elucidated, but how plants regulate flowering time in response to other external factors, such as water availability, remains poorly understood. Using a large-scale Hybrid Transcription Factor approach, we identified a bZIP transcriptional factor, O. sativa ABA responsive element binding factor 1 (OsABF1), which acts as a suppressor of floral transition in a photoperiod-independent manner. Simultaneous knockdown of both OsABF1 and its closest homologous gene, OsbZIP40, in rice (Oryza sativa) by RNA interference results in a significantly earlier flowering phenotype. Molecular and genetic analyses demonstrate that a drought regime enhances expression of the OsABF1 gene, which indirectly suppresses expression of the Early heading date 1 (Ehd1) gene that encodes a key activator of rice flowering. Furthermore, we identified a drought-inducible gene named OsWRKY104 that is under the direct regulation of OsABF1 Overexpression of OsWRKY104 can suppress Ehd1 expression and confers a later flowering phenotype in rice. Together, these findings reveal a novel pathway by which rice modulates heading date in response to the change of ambient water availability. © 2016 American Society of Plant Biologists. All Rights Reserved.

  1. FLC expression is down-regulated by cold treatment in Diplotaxis tenuifolia (wild rocket), but flowering time is unaffected.

    PubMed

    Taylor, Jemma L; Massiah, Andrea; Kennedy, Sue; Hong, Yiguo; Jackson, Stephen D

    2017-07-01

    Wild rocket (Diplotaxis tenuifolia) has become a very popular salad leaf due to its peppery taste. It is part of the Brassicaceae family and thus has a high level of homology at the DNA level to other Brassica species including Arabidopsis thaliana. The vernalization and photoperiodic requirements of wild rocket have not been reported to date. Photoperiodic experiments described here demonstrate that rocket is a facultative long day plant. To investigate the vernalization requirement, both seed and young plants were given vernalization treatments at 4°C for different lengths of time. A rocket homologue of FLOWERING LOCUS C (DtFLC) was isolated and shown to functionally complement the Arabidopsis FRI + flc3 null mutant. Whilst the expression of DtFLC was significantly reduced after just one week of cold treatment, cold treatments of two to eight weeks had no significant effect on bolting time of wild rocket indicating that rocket does not have a vernalization requirement. These findings illustrate that important fundamental differences can exist between model and crop plant species, such as in this case where down-regulation of DtFLC expression does not enable earlier flowering in wild rocket as it does in Arabidopsis and many other Brassica species. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. The response of a Kansas winter bird community to weather, photoperiod, and year

    USGS Publications Warehouse

    Stapanian, M.A.; Smith, C.C.; Finck, E.J.

    1999-01-01

    We conducted a bird census along the same route nearly each week for 14 winters (194 censuses), and compared the mean number of species per station and the total number of species recorded on the census with the length of photoperiod and weather variables. We found significant differences among winters for both indicators of species richness. This result is consistent with previous studies in which abundance of food was measured in the same general area. Both indicators of species richness were negatively associated with the number of days after 1 November. This result is consistent with the hypothesis that wintering species dependent on nonrenewed food resources lose individuals to mortality or emigration. Further, there was a positive relationship between photoperiod and both indicators of species richness. This result is consistent with the hypothesis that the detection of individuals in the early morning hours increases with the amount of daylight they have available for foraging and social behaviors. Wind speed and temperature had negative and positive relationships, respectively, to species richness. The number of species per station was greatest on days when the ground was covered with dew and least on days when snow depth was more than 15 cm. When the 'winters' were divided into four 30-day 'quarters', most of the 61 species were recorded with equal frequency in each quarter. Eight species were detected less frequently at the end of winter than in the beginning. Four species exhibited the reverse pattern. Two species were recorded more frequently at the beginning and at the end of the winter than during the middle. Temperature, wind, photoperiod, successive winter day, year, and species-specific evolutionary history all affect winter bird species richness.

  3. Conservation of the photoperiodic neuroendocrine axis among vertebrates: evidence from the teleost fish, Gasterosteus aculeatus

    PubMed Central

    O’Brien, Conor S.; Bourdo, Ryan; Bradshaw, William E.; Holzapfel, Christina M.; Cresko, William. A.

    2012-01-01

    Photoperiod, or length of day, has a predictable annual cycle, making it an important cue for the timing of seasonal behavior and development in many organisms. Photoperiod is widely used among temperate and polar animals to regulate the timing of sexual maturation. The proper sensing and interpretation of photoperiod can be tightly tied to an organism’s overall fitness. In photoperiodic mammals and birds the thyroid hormone pathway initiates sexual maturation, but the degree to which this pathway is conserved across other vertebrates is not well known. We use the threespine stickleback Gasterosteus aculeatus, as a representative teleost to quantify the photoperiodic response of key genes in the thyroid hormone pathway under controlled laboratory conditions. We find that the photoperiodic responses of the hormones are largely consistent amongst multiple populations, although differences suggest physiological adaptation to various climates. We conclude that the thyroid hormone pathway initiates sexual maturation in response to photoperiod in G. aculeatus, and our results show that more components of this pathway are conserved among mammals, birds, and teleost fish than was previously known. However, additional endocrinology, cell biology and molecular research will be required to define precisely which aspects of the pathway are conserved across vertebrates. PMID:22504272

  4. Conservation of the photoperiodic neuroendocrine axis among vertebrates: evidence from the teleost fish, Gasterosteus aculeatus.

    PubMed

    O'Brien, Conor S; Bourdo, Ryan; Bradshaw, William E; Holzapfel, Christina M; Cresko, William A

    2012-08-01

    Photoperiod, or length of day, has a predictable annual cycle, making it an important cue for the timing of seasonal behavior and development in many organisms. Photoperiod is widely used among temperate and polar animals to regulate the timing of sexual maturation. The proper sensing and interpretation of photoperiod can be tightly tied to an organism's overall fitness. In photoperiodic mammals and birds the thyroid hormone pathway initiates sexual maturation, but the degree to which this pathway is conserved across other vertebrates is not well known. We use the threespine stickleback Gasterosteus aculeatus, as a representative teleost to quantify the photoperiodic response of key genes in the thyroid hormone pathway under controlled laboratory conditions. We find that the photoperiodic responses of the hormones are largely consistent amongst multiple populations, although differences suggest physiological adaptation to various climates. We conclude that the thyroid hormone pathway initiates sexual maturation in response to photoperiod in G. aculeatus, and our results show that more components of this pathway are conserved among mammals, birds, and teleost fish than was previously known. However, additional endocrinology, cell biology and molecular research will be required to define precisely which aspects of the pathway are conserved across vertebrates. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. "Research to Improve the Efficacy of Captive Broodstock Programs and Advance Hatchery Reform Throughout the Columbia River Basin." [from the Abstract], 2007-2008 Annual Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berejikian, Barry A.

    This project was developed to conduct research to improve the efficacy of captive broodstock programs and advance hatchery reform throughout the Columbia river basin. The project has three objectives: (1) maintain adaptive life history characteristics in Chinook salmon, (2) improve imprinting in juvenile sockeye salmon, and (3) match wild phenotypes in Chinook and sockeye salmon reared in hatcheries. A summary of the results are as follows: Objective 1: Adult and jack Chinook salmon males were stocked into four replicate spawning channels at a constant density (N = 16 per breeding group), but different ratios, and were left to spawn naturallymore » with a fixed number of females (N = 6 per breeding group). Adult males obtained primary access to females and were first to enter the nest at the time of spawning. Jack male spawning occurred primarily by establishing satellite positions downstream of the courting pair, and 'sneaking' into the nest at the time of spawning. Male dominance hierarchies were fairly stable and strongly correlated with the order of nest entry at the time of spawning. Spawning participation by jack and adult males is consistent with a negative frequency dependent selection model, which means that selection during spawning favors the rarer life history form. Results of DNA parentage assignments will be analyzed to estimate adult-to-fry fitness of each male. Objective 2: To determine the critical period(s) for imprinting for sockeye salmon, juvenile salmon were exposed to known odorants at key developmental stages. Molecular assessments of imprinting-induced changes in odorant receptor gene expression indicated that regulation of odorant expression is influenced by developmental status and odor exposure history. The results suggest that sockeye salmon are capable of imprinting to homing cues during the developmental periods that correspond to several of current release strategies employed as part of the Captive Broodstock program (specifically, planting eyed eggs, fall and smolt releases into the lake) appear to be appropriate for successful homing of sockeye in Redfish Lake. Also, our findings indicated that sockeye salmon were capable of olfactory imprinting at multiple life stages and over varying exposure durations. Fish exposed to odors just prior to smolting showed the strongest attraction to the imprinting odor arginine and this period corresponds to the period of highest plasma thyroxine levels and increased BAAR receptor mRNA in juveniles. Objective 3: Spring Chinook salmon were exposed to three different photoperiods and three feed rations at the button-up stage of development. Both photoperiod at emergence and ration post-ponding affected the number of males maturing at age one. Nearly 70% of the males in the early emergence and satiation fed group matured after the first year of rearing, while none of the fish reared on late emergence photoperiod (equivalent to emergence on May 1) matured during this time irrespective of ration treatment. Within the early emergence groups, reducing growth using ration (low or high) appeared to reduce the number of males maturing at age one from 70% to 40-50%. Maturation rates of fish that emerged in a photoperiod equivalent to mid-February (middle emergence) ranged from 10-25%. Together these data indicate that the seasonal timing of fry emergence and growth after ponding can alter life history patterns in spring Chinook salmon. The results imply that hatchery rearing practices that alter seasonal timing of fry emergence can have drastic effects on life history patterns in juvenile Chinook salmon. All three objectives are on-going and will result in recommendations (at the end of the FY 2009 performance period) to advance hatchery reforms in conventional and captive broodstock programs.« less

  6. Temperature and photoperiod responses of soybean embryos cultured in vitro

    NASA Technical Reports Server (NTRS)

    Raper, C. D. Jr; Patterson, R. P.; Raper CD, J. r. (Principal Investigator)

    1986-01-01

    Temperature and photoperiod each have direct effects on growth rate of excised embryos of soybean (Glycine max (L.) Merrill). To determine if the effects of photoperiod are altered by temperature, embryos of 'Ransom II' were cultured in vitro at 18, 24, and 30 degrees C under photoperiod durations of 12 and 18 h at an irradiance of 9 W m-2 (700 to 850 nm) and a photosynthetic photon flux density of 58 micromoles m-2 s-1 (400 to 700 nm). Accumulation rates of fresh and dry weight were greater under 18-h than 12-h photoperiods over the entire range of temperature. Water content of the culture embryos was not affected by photoperiod but was greater at 18 and 30 than 24 degrees C. The accumulation rate of dry weight increased from 18 to 26 but declined at 30 degrees C.

  7. Soil Water and Temperature Explain Canopy Phenology and Onset of Spring in a Semiarid Steppe

    Treesearch

    Lynn M. Moore; William K. Lauenroth; David M. Bell; Daniel R. Schlaepfer

    2015-01-01

    It is well known that the timing of growth and development influences critical life stages of all organisms. „The seasonal dynamics of ecosystems are usually well explained by photoperiod and temperature. However, phenological patterns in water-limited ecosystems are rarely studied and insufficiently explained by these two variables. We tested how onset (i.e.,...

  8. Effects of temperature and photoperiod on the reproductive biology and diapause of oobius agrili (Hymenoptera: Encyrtidae), an egg parasitoid of emerald ash borer (Coleoptera: Buprestidae)

    USDA-ARS?s Scientific Manuscript database

    Oobius agrili Zhang and Huang is a solitary egg parasitoid of the invasive emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) and has been introduced to the United States for biological control. We characterized the weekly survivorship, fecundity, and diapause patterns of bo...

  9. Photoperiodic control of sugar release during the floral transition: What is the role of sugars in the florigenic signal?

    PubMed

    Ortiz-Marchena, M Isabel; Romero, José M; Valverde, Federico

    2015-01-01

    Florigen is a mobile signal released by the leaves that reaching the shoot apical meristem (SAM), changes its developmental program from vegetative to reproductive. The protein FLOWERING LOCUS T (FT) constitutes an important element of the florigen, but other components such as sugars, have been also proposed to be part of this signal. (1-5) We have studied the accumulation and composition of starch during the floral transition in Arabidopsis thaliana in order to understand the role of carbon mobilization in this process. In A. thaliana and Antirrhinum majus the gene coding for the Granule-Bound Starch Synthase (GBSS) is regulated by the circadian clock (6,7) while in the green alga Chlamydomonas reinhardtii the homolog gene CrGBSS is controlled by photoperiod and circadian signals. (8,9) In a recent paper(10) we described the role of the central photoperiodic factor CONSTANS (CO) in the regulation of GBSS expression in Arabidopsis. This regulation is in the basis of the change in the balance between starch and free sugars observed during the floral transition. We propose that this regulation may contribute to the florigenic signal and to the increase in sugar transport required during the flowering process.

  10. Promotion of flowering in azaleas by manipulating photoperiod and temperature induces epigenetic alterations during floral transition.

    PubMed

    Meijón, Mónica; Feito, Isabel; Valledor, Luis; Rodríguez, Roberto; Cañal, María Jesús

    2011-09-01

    The ability to control the timing of flowering is a key strategy for planning production in ornamental species such as the azalea; however, this requires a thorough understanding of floral induction pathways. DNA methylation is one of the main mechanisms involved in controlling the functional state of chromatin and gene expression in response to environmental and developmental signals. This work investigated the promotion of flowering in azaleas by the manipulation of environmental factors, using DNA methylation levels as a marker of floral bud development. The results showed that the change of long-day (LD) to short-day (SD) photoperiod is the primary factor responsible for floral induction in azaleas, whereas the existence of the previous cold period as well as the physiological memory are factors which improve floral production. Furthermore, for blooming to take place, 1300 units of growing degree days under an LD were necessary. The promotion of flowering in azaleas by alterations of photoperiod and temperature induced DNA methylation changes. The demethylation observed after the change from LD to SD is linked to a change in cell fate which is necessary for floral transition to take place and seems to be associated with the floral signal. Copyright © Physiologia Plantarum 2011.

  11. Life-history evolution when Lestes damselflies invaded vernal ponds.

    PubMed

    De Block, Marjan; McPeek, Mark A; Stoks, Robby

    2008-02-01

    We know little about the macroevolution of life-history traits along environmental gradients, especially with regard to the directionality compared to the ancestral states and the associated costs to other functions. Here we examine how age and size at maturity evolved when Lestes damselflies shifted from their ancestral temporary pond habitat (i.e., ponds that may dry once every decade or so) to extremely ephemeral vernal ponds (ponds that routinely dry completely each year). Larvae of three species were reared from eggs until emergence under different levels of photoperiod and transient starvation stress. Compared to the two temporary-pond Lestes, the phylogenetically derived vernal-pond Lestes dryas developed more rapidly across photoperiod treatments until the final instar, and only expressed plasticity in development time in the final instar under photoperiod levels that simulated a later hatching date. The documented change in development rate can be considered adaptive and underlies the success of the derived species in vernal ponds. Results suggest associated costs of faster development are lower mass at maturity and lower immune function after transient starvation stress. These costs may not only have impeded further evolution of the routine development rate to what is physiologically maximal, but also maintained some degree of plasticity to time constraints when the habitat shift occurred.

  12. Hydrological Controls on Floodplain Forest Phenology Assessed using Remotely Sensed Vegetation Indices

    NASA Astrophysics Data System (ADS)

    Lemon, M. G.; Keim, R.

    2017-12-01

    Although specific controls are not well understood, the phenology of temperate forests is generally thought to be controlled by photoperiod and temperature, although recent research suggests that soil moisture may also be important. The phenological controls of forested wetlands have not been thoroughly studied, and may be more controlled by site hydrology than other forests. For this study, remotely sensed vegetation indices were used to investigate hydrological controls on start-of-season timing, growing season length, and end-of-season timing at five floodplains in Louisiana, Arkansas, and Texas. A simple spring green-up model was used to determine the null spring start of season time for each site as a function of land surface temperature and photoperiod, or two remotely sensed indices: MODIS phenology data product and the MODIS Nadir Bidirectional Reflectance Distribution Function-Adjusted Reflectance (NBAR) product. Preliminary results indicate that topographically lower areas within the floodplain with higher flood frequency experience later start-of-season timing. In addition, start-of-season is delayed in wet years relative to predicted timing based solely on temperature and photoperiod. The consequences for these controls unclear, but results suggest hydrological controls on floodplain ecosystem structure and carbon budgets are likely at least partially expressed by variations in growing season length.

  13. Transcriptome-wide analysis of differential gene expression in response to light:dark cycles in a model cnidarian.

    PubMed

    Leach, W B; Macrander, J; Peres, R; Reitzel, A M

    2018-06-01

    Animals respond to diurnal shifts in their environment with a combination of behavioral, physiological, and molecular changes to synchronize with regularly-timed external cues. Reproduction, movement, and metabolism in cnidarians have all been shown to be regulated by diurnal lighting, but the molecular mechanisms that may be responsible for these phenotypes remain largely unknown. The starlet sea anemone, Nematostella vectensis, has oscillating patterns of locomotion and respiration, as well as the molecular components of a putative circadian clock that may provide a mechanism for these light-induced responses. Here, we compare transcriptomic responses of N. vectensis when cultured under a diurnal lighting condition (12 h light: 12 h dark) with sea anemones cultured under constant darkness for 20 days. More than 3,000 genes (~13% of transcripts) had significant differences in expression between light and dark, with most genes having higher expression in the photoperiod. Following removal of the light cue 678 genes lost differential expression, suggesting that light-entrained gene expression by the circadian clock has temporal limits. Grouping of genes differentially expressed in light:dark conditions showed that cell cycle and transcription maintained diel expression in the absence of light, while many of the genes related to metabolism, antioxidants, immunity, and signal transduction lost differential expression without a light cue. Our data highlight the importance of diel light cycles on circadian mechanisms in this species, prompting new hypotheses for the role of photoreception in major biological processes, e.g., metabolism, immunity. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Minimizing energy utilization for growing strawberries during long-duration space habitation

    NASA Astrophysics Data System (ADS)

    Massa, Gioia D.; Santini, Judith B.; Mitchell, Cary A.

    2010-09-01

    Strawberry is a candidate crop for space that is rich in protective antioxidants and could also have psychological benefits as a component of crew diets during long-duration space habitation. Energy for electric lighting is a major input to a controlled-environment crop-production system for space habitation. Day-neutral strawberry cultivars were evaluated at several different photoperiods to determine minimum lighting requirements without limiting yield or negatively impacting fruit quality. The cultivars 'Tribute', 'Seascape', and 'Fern' were grown at 14, 17, or 20 h of light per day, and fruit yield was evaluated over a 31-week production period. This amounted to a difference of 2418 kWh m -2 in energy usage between the longest and shortest photoperiods. All cultivars produced similar total fresh weight of fruit regardless of photoperiod. Volunteer tasters rated organoleptic characteristics including sweetness, tartness, texture, and overall appeal as measures of fruit quality. Generally, organoleptic attributes were not affected by photoperiod, but these attributes were somewhat dependent upon cultivar and harvest time. Cultivars under different photoperiods varied in their production of fruit over time. 'Seascape' was the most consistent producer, typically with the largest, most palatable fruit. 'Seascape' plants subsequently were grown at 10-, 12-, or 14-h photoperiods over a treatment period of 33 weeks. Photoperiod again had no significant effect on total fruit weight, although there were periodic flushes of productivity. Fruit under all photoperiods had acceptable approval ratings. A large-fruited, day-neutral strawberry cultivar such as 'Seascape' remains productive under shortened photoperiods, allowing reductions in energy and crew labor while maintaining flexibility for mixed-cropping scenarios in space.

  15. QTL mapping for flowering-time and photoperiod insensitivity of cotton Gossypium darwinii Watt.

    PubMed

    Kushanov, Fakhriddin N; Buriev, Zabardast T; Shermatov, Shukhrat E; Turaev, Ozod S; Norov, Tokhir M; Pepper, Alan E; Saha, Sukumar; Ulloa, Mauricio; Yu, John Z; Jenkins, Johnie N; Abdukarimov, Abdusattor; Abdurakhmonov, Ibrokhim Y

    2017-01-01

    Most wild and semi-wild species of the genus Gossypium are exhibit photoperiod-sensitive flowering. The wild germplasm cotton is a valuable source of genes for genetic improvement of modern cotton cultivars. A bi-parental cotton population segregating for photoperiodic flowering was developed by crossing a photoperiod insensitive irradiation mutant line with its pre-mutagenesis photoperiodic wild-type G. darwinii Watt genotype. Individuals from the F2 and F3 generations were grown with their parental lines and F1 hybrid progeny in the long day and short night summer condition (natural day-length) of Uzbekistan to evaluate photoperiod sensitivity, i.e., flowering-time during the seasons 2008-2009. Through genotyping the individuals of this bi-parental population segregating for flowering-time, linkage maps were constructed using 212 simple-sequence repeat (SSR) and three cleaved amplified polymorphic sequence (CAPS) markers. Six QTLs directly associated with flowering-time and photoperiodic flowering were discovered in the F2 population, whereas eight QTLs were identified in the F3 population. Two QTLs controlling photoperiodic flowering and duration of flowering were common in both populations. In silico annotations of the flanking DNA sequences of mapped SSRs from sequenced cotton (G. hirsutum L.) genome database has identified several potential 'candidate' genes that are known to be associated with regulation of flowering characteristics of plants. The outcome of this research will expand our understanding of the genetic and molecular mechanisms of photoperiodic flowering. Identified markers should be useful for marker-assisted selection in cotton breeding to improve early flowering characteristics.

  16. The Genetic Control of Reproductive Development under High Ambient Temperature.

    PubMed

    Ejaz, Mahwish; von Korff, Maria

    2017-01-01

    Ambient temperature has a large impact on reproductive development and grain yield in temperate cereals. However, little is known about the genetic control of development under different ambient temperatures. Here, we demonstrate that in barley (Hordeum vulgare), high ambient temperatures accelerate or delay reproductive development depending on the photoperiod response gene PHOTOPERIOD1 (Ppd-H1) and its upstream regulator EARLY FLOWERING3 (HvELF3). A natural mutation in Ppd-H1 prevalent in spring barley delayed floral development and reduced the number of florets and seeds per spike, while the wild-type Ppd-H1 or a mutant Hvelf3 allele accelerated floral development and maintained the seed number under high ambient temperatures. High ambient temperature delayed the expression phase and reduced the amplitude of clock genes and repressed the floral integrator gene FLOWERING LOCUS T1 independently of the genotype. Ppd-H1-dependent variation in flowering time under different ambient temperatures correlated with relative expression levels of the BARLEY MADS-box genes VERNALIZATION1 (HvVRN1), HvBM3, and HvBM8 in the leaf. Finally, we show that Ppd-H1 interacts with regulatory variation at HvVRN1. Ppd-H1 only accelerated floral development in the background of a spring HvVRN1 allele with a deletion in the regulatory intron. The full-length winter Hvvrn1 allele was strongly down-regulated, and flowering was delayed by high temperatures irrespective of Ppd-H1 Our findings demonstrate that the photoperiodic and vernalization pathways interact to control flowering time and floret fertility in response to ambient temperature in barley. © 2017 American Society of Plant Biologists. All Rights Reserved.

  17. The Genetic Control of Reproductive Development under High Ambient Temperature1[OPEN

    PubMed Central

    2017-01-01

    Ambient temperature has a large impact on reproductive development and grain yield in temperate cereals. However, little is known about the genetic control of development under different ambient temperatures. Here, we demonstrate that in barley (Hordeum vulgare), high ambient temperatures accelerate or delay reproductive development depending on the photoperiod response gene PHOTOPERIOD1 (Ppd-H1) and its upstream regulator EARLY FLOWERING3 (HvELF3). A natural mutation in Ppd-H1 prevalent in spring barley delayed floral development and reduced the number of florets and seeds per spike, while the wild-type Ppd-H1 or a mutant Hvelf3 allele accelerated floral development and maintained the seed number under high ambient temperatures. High ambient temperature delayed the expression phase and reduced the amplitude of clock genes and repressed the floral integrator gene FLOWERING LOCUS T1 independently of the genotype. Ppd-H1-dependent variation in flowering time under different ambient temperatures correlated with relative expression levels of the BARLEY MADS-box genes VERNALIZATION1 (HvVRN1), HvBM3, and HvBM8 in the leaf. Finally, we show that Ppd-H1 interacts with regulatory variation at HvVRN1. Ppd-H1 only accelerated floral development in the background of a spring HvVRN1 allele with a deletion in the regulatory intron. The full-length winter Hvvrn1 allele was strongly down-regulated, and flowering was delayed by high temperatures irrespective of Ppd-H1. Our findings demonstrate that the photoperiodic and vernalization pathways interact to control flowering time and floret fertility in response to ambient temperature in barley. PMID:28049855

  18. The Vaccinium corymbosum FLOWERING LOCUS T-like gene (VcFT): a flowering activator reverses photoperiodic and chilling requirements in blueberry.

    PubMed

    Song, Guo-qing; Walworth, Aaron; Zhao, Dongyan; Jiang, Ning; Hancock, James F

    2013-11-01

    The blueberry FLOWERING LOCUS T ( FT )-like gene ( VcFT ) cloned from the cDNA of a tetraploid, northern highbush blueberry ( Vaccinium corymbosum L.) is able to reverse the photoperiodic and chilling requirements and drive early and continuous flowering. Blueberry is a woody perennial bush with a longer juvenile period than annual crops, requiring vernalization to flower normally. Few studies have been reported on the molecular mechanism of flowering in blueberry or other woody plants. Because FLOWERING LOCUS T (FT) from Arabidopsis thaliana plays a multifaceted role in generating mobile molecular signals to regulate plant flowering time, isolation and functional analysis of the blueberry (Vaccinium corymbosum L.) FT-like gene (VcFT) will facilitate the elucidation of molecular mechanisms of flowering in woody plants. Based on EST sequences, a 525-bpVcFT was identified and cloned from the cDNA of a tetraploid, northern highbush blueberry cultivar, Bluecrop. Ectopic expression of 35S:VcFT in tobacco induced flowering an average of 28 days earlier than wild-type plants. Expression of the 35S:VcFT in the blueberry cultivar Aurora resulted in an extremely early flowering phenotype, which flowered not only during in vitro culture, a growth stage when nontransgenic shoots had not yet flowered, but also in 6-10-week old, soil-grown transgenic plants, in contrast to the fact that at least 1 year and 800 chilling hours are required for the appearance of the first flower of both nontransgenic 'Aurora' and transgenic controls with the gusA. These results demonstrate that the VcFT is a functional floral activator and overexpression of the VcFT is able to reverse the photoperiodic and chilling requirements and drive early and continuous flowering.

  19. Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana.

    PubMed

    Lee, Chin-Mei; Thomashow, Michael F

    2012-09-11

    The CBF (C-repeat binding factor) pathway has a major role in plant cold acclimation, the process whereby certain plants increase in freezing tolerance in response to low nonfreezing temperatures. In Arabidopsis thaliana, the pathway is characterized by rapid cold induction of CBF1, CBF2, and CBF3, which encode transcriptional activators, followed by induction of CBF-targeted genes that impart freezing tolerance. At warm temperatures, CBF transcript levels are low, but oscillate due to circadian regulation with peak expression occurring at 8 h after dawn (zeitgeber time 8; ZT8). Here, we establish that the CBF pathway is also regulated by photoperiod at warm temperatures. At ZT8, CBF transcript levels in short-day (SD; 8-h photoperiod) plants were three- to fivefold higher than in long-day plants (LD; 16-h photoperiod). Moreover, the freezing tolerance of SD plants was greater than that of LD plants. Genetic analysis indicated that phytochrome B (PHYB) and two phytochrome-interacting factors, PIF4 and PIF7, act to down-regulate the CBF pathway and freezing tolerance under LD conditions. Down-regulation of the CBF pathway in LD plants correlated with higher PIF4 and PIF7 transcript levels and greater stability of the PIF4 and PIF7 proteins under LD conditions. Our results indicate that during the warm LD growing season, the CBF pathway is actively repressed by PHYB, PIF4, and PIF7, thus mitigating allocation of energy and nutrient resources toward unneeded frost protection. This repression is relieved by shortening day length resulting in up-regulation of the CBF pathway and increased freezing tolerance in preparation for coming cold temperatures.

  20. Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana

    PubMed Central

    Lee, Chin-Mei; Thomashow, Michael F.

    2012-01-01

    The CBF (C-repeat binding factor) pathway has a major role in plant cold acclimation, the process whereby certain plants increase in freezing tolerance in response to low nonfreezing temperatures. In Arabidopsis thaliana, the pathway is characterized by rapid cold induction of CBF1, CBF2, and CBF3, which encode transcriptional activators, followed by induction of CBF-targeted genes that impart freezing tolerance. At warm temperatures, CBF transcript levels are low, but oscillate due to circadian regulation with peak expression occurring at 8 h after dawn (zeitgeber time 8; ZT8). Here, we establish that the CBF pathway is also regulated by photoperiod at warm temperatures. At ZT8, CBF transcript levels in short-day (SD; 8-h photoperiod) plants were three- to fivefold higher than in long-day plants (LD; 16-h photoperiod). Moreover, the freezing tolerance of SD plants was greater than that of LD plants. Genetic analysis indicated that phytochrome B (PHYB) and two phytochrome-interacting factors, PIF4 and PIF7, act to down-regulate the CBF pathway and freezing tolerance under LD conditions. Down-regulation of the CBF pathway in LD plants correlated with higher PIF4 and PIF7 transcript levels and greater stability of the PIF4 and PIF7 proteins under LD conditions. Our results indicate that during the warm LD growing season, the CBF pathway is actively repressed by PHYB, PIF4, and PIF7, thus mitigating allocation of energy and nutrient resources toward unneeded frost protection. This repression is relieved by shortening day length resulting in up-regulation of the CBF pathway and increased freezing tolerance in preparation for coming cold temperatures. PMID:22927419

  1. Arabidopsis Glutaredoxin S17 and Its Partner, the Nuclear Factor Y Subunit C11/Negative Cofactor 2α, Contribute to Maintenance of the Shoot Apical Meristem under Long-Day Photoperiod1

    PubMed Central

    Knuesting, Johannes; Riondet, Christophe; Kruse, Inga; Bécuwe, Noëlle; König, Nicolas; Berndt, Carsten; Tourrette, Sébastien; Guilleminot-Montoya, Jocelyne; Herrero, Enrique; Gaymard, Frédéric; Balk, Janneke; Belli, Gemma; Reichheld, Jean-Philippe; Rouhier, Nicolas; Rey, Pascal

    2015-01-01

    Glutaredoxins (GRXs) catalyze the reduction of protein disulfide bonds using glutathione as a reductant. Certain GRXs are able to transfer iron-sulfur clusters to other proteins. To investigate the function of Arabidopsis (Arabidopsis thaliana) GRXS17, we applied a strategy combining biochemical, genetic, and physiological approaches. GRXS17 was localized in the nucleus and cytosol, and its expression was elevated in the shoot meristems and reproductive tissues. Recombinant GRXS17 bound Fe2S2 clusters, a property likely contributing to its ability to complement the defects of a Baker’s yeast (Saccharomyces cerevisiae) strain lacking the mitochondrial GRX5. However, a grxs17 knockout Arabidopsis mutant exhibited only a minor decrease in the activities of iron-sulfur enzymes, suggesting that its primary function is as a disulfide oxidoreductase. The grxS17 plants were sensitive to high temperatures and long-day photoperiods, resulting in elongated leaves, compromised shoot apical meristem, and delayed bolting. Both environmental conditions applied simultaneously led to a growth arrest. Using affinity chromatography and split-Yellow Fluorescent Protein methods, a nuclear transcriptional regulator, the Nuclear Factor Y Subunit C11/Negative Cofactor 2α (NF-YC11/NC2α), was identified as a GRXS17 interacting partner. A mutant deficient in NF-YC11/NC2α exhibited similar phenotypes to grxs17 in response to photoperiod. Therefore, we propose that GRXS17 interacts with NF-YC11/NC2α to relay a redox signal generated by the photoperiod to maintain meristem function. PMID:25699589

  2. Using the "Kalanchoe daigremontiana" Plant To Show the Effects of Photoperiodism on Plantlet Formation.

    ERIC Educational Resources Information Center

    Hershey, David R.

    2002-01-01

    Describes an activity demonstrating the importance of photoperiod on plant development. Uses the plant devil's backbone for the experiment and studies the details of photoperiodic requirement for plantlet formation. (Contains 12 references.) (YDS)

  3. Adaptation of barley to mild winters: A role for PPDH2

    PubMed Central

    2011-01-01

    Background Understanding the adaptation of cereals to environmental conditions is one of the key areas in which plant science can contribute to tackling challenges presented by climate change. Temperature and day length are the main environmental regulators of flowering and drivers of adaptation in temperate cereals. The major genes that control flowering time in barley in response to environmental cues are VRNH1, VRNH2, VRNH3, PPDH1, and PPDH2 (candidate gene HvFT3). These genes from the vernalization and photoperiod pathways show complex interactions to promote flowering that are still not understood fully. In particular, PPDH2 function is assumed to be limited to the ability of a short photoperiod to promote flowering. Evidence from the fields of biodiversity, ecogeography, agronomy, and molecular genetics was combined to obtain a more complete overview of the potential role of PPDH2 in environmental adaptation in barley. Results The dominant PPDH2 allele is represented widely in spring barley cultivars but is found only occasionally in modern winter cultivars that have strong vernalization requirements. However, old landraces from the Iberian Peninsula, which also have a vernalization requirement, possess this allele at a much higher frequency than modern winter barley cultivars. Under field conditions in which the vernalization requirement of winter cultivars is not satisfied, the dominant PPDH2 allele promotes flowering, even under increasing photoperiods above 12 h. This hypothesis was supported by expression analysis of vernalization-responsive genotypes. When the dominant allele of PPDH2 was expressed, this was associated with enhanced levels of VRNH1 and VRNH3 expression. Expression of these two genes is needed for the induction of flowering. Therefore, both in the field and under controlled conditions, PPDH2 has an effect of promotion of flowering. Conclusions The dominant, ancestral, allele of PPDH2 is prevalent in southern European barley germplasm. The presence of the dominant allele is associated with early expression of VRNH1 and early flowering. We propose that PPDH2 promotes flowering of winter cultivars under all non-inductive conditions, i.e. under short days or long days in plants that have not satisfied their vernalization requirement. This mechanism is indicated to be a component of an adaptation syndrome of barley to Mediterranean conditions. PMID:22098798

  4. Identifying yield-optimizing environments for two cowpea breeding lines by manipulating photoperiod and harvest scenario

    NASA Technical Reports Server (NTRS)

    Ohler, T. A.; Mitchell, C. A.

    1996-01-01

    Photoperiod and harvest scenario of cowpea (Vigna unguiculata L. Walp) canopies were manipulated to optimize productivity for use in future controlled ecological life-support systems. Productivity was measured by edible yield rate (EYR:g m-2 day-1), shoot harvest index (SHI: g edible biomass [g total shoot dry weight]), and yield-efficiency rate (YER:g edible biomass m-2 day-1 per[g nonedible shoot dry weight]). Breeding lines 'IT84S-2246' (S-2246) and "IT82D-889' (D-889) were grown in a greenhouse under 8-, 12-, or 24-h photoperiods. S-2246 was short-day and D-889 was day-neutral for flowering. Under each photoperiod, cowpeas were harvested either for leaves only, seeds only, or leaves plus seeds (mixed harvest). Photoperiod did not affect EYR of either breeding line for any harvest scenario tested. Averaged over both breeding lines, seed harvest gave the highest EYR at 6.7 g m-2 day-1. The highest SHI (65%) and YER (94 mg m-2 day-1 g-1) were achieved for leaf-only harvest of D-889 under an 8-h photoperiod. For leaf-only harvest of S-2246, both SHI and YER increased with increasing photoperiod, but declined for seed-only and mixed harvests. However, photoperiod had no effect on SHI or YER for D-889 for any harvest scenario. A second experiment utilized the short-day cowpea breeding line 'IT89KD-288' (D-288) and the day-neutral breeding line 'IT87D-941-1' (D-941) to compare yield parameters using photoperiod extension under differing lamp types. This experiment confirmed the photoperiod responses of D-889 and S-2246 to a mixed-harvest scenario and indicated that daylength extension with higher irradiance from high pressure sodium lamps further suppressed EYR, SHI, and YER of the short-day breeding line D-288.

  5. Constant and changing photoperiods in the laying period for broiler breeders allowed [corrected] normal or accelerated growth during the rearing period.

    PubMed

    Lewis, P D; Gous, R M

    2006-02-01

    Broiler breeder pullets were grown on 8-h photoperiods to 2.23 or 2.42 kg of BW at 20 wk, and then transferred abruptly to 11- or 16-h photoperiods. Subsequently, some of the 11-h photoperiod birds were given 15-min increases in day length weekly or a 1-h increase every 4 wk to reach 16 h of light at 54 wk. The birds transferred abruptly to a 16-h photoperiod at 20 wk matured 4 d earlier than 11-h photoperiod birds, required 500 g less feed to reach 50% lay, but, because of a 3% lower rate of lay after peak, produced 5 fewer eggs to 60 wk. However, the number of settable eggs was similar for the 2 groups because the 11-h photoperiod birds laid more eggs on the floor, resulting in more cracked and dirty eggs. The 11-h photoperiod birds converted feed into egg more efficiently, and were 100 g heavier at end of lay. Increasing the photoperiod in 15-min or 1-h increments from 11 to 16 h during the laying cycle depressed egg production. Mean egg weight and mortality were similar for all lighting groups. The heavier BW birds at 20 wk reached maturity 1 d earlier, but used 1 kg more feed to reach maturity, laid 5 fewer total eggs (because of a 3% lower rate of lay after peak), produced 7 more unsettable eggs (because more eggs were laid on the floor), and converted feed into egg less efficiently than did the lighter BW birds. Mean egg weight, BW at 57 wk, and mortality were similar for both groups. There was no significant light x growth interaction for any performance parameter. It is concluded that there is no benefit to egg production from extending the photoperiod to 16 h when broiler breeders are kept in light-proofed housing, especially if they have access to illuminated nest boxes.

  6. Internode and petiole elongation of soybean in response to photoperiod and end-of-day light quality

    NASA Technical Reports Server (NTRS)

    Thomas, J. F.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1985-01-01

    Elongation of main stem internodes and petioles of soybeans, Glycine max 'Ransom,' was examined in response to various photoperiod/temperature combinations and to end-of-day (EOD) light quality. Photoperiod treatments consisted of 10, 14, and 16 h in combination with day/night temperatures of 18/14, 22/18, 26/22, 30/26, and 34/30 C. The EOD treatments consisted of exposing plants to illumination from either incandescent (high far-red component, FR) or fluorescent (high red component, R) lamps during the final 0.5 h of a 10-h photoperiod. Internode elongation was not significantly promoted by the photoperiod treatments, and, in fact, under the two highest temperature regimes, internode elongation was suppressed under the longer photoperiods. Petiole elongation, however, was enhanced under the longer photoperiods at all temperatures. In the EOD light study, internode and petiole elongation was significantly greater on plants exposed to 0.5 h EOD from incandescent lamps than from fluorescent. Under the incandescent EOD treatment, plants increased dry matter production by 41% and exhibited greater partitioning of assimilates in stem and root portions than under fluorescent EOD.

  7. Development and Seed Number in Indeterminate Soybean as Affected by Timing and Duration of Exposure to Long Photoperiods after Flowering

    PubMed Central

    Kantolic, Adriana G.; Slafer, Gustavo A.

    2007-01-01

    Background and Aims Long photoperiods from flowering to maturity have been found to delay reproductive development in soybean (Glycine max) and to increase the number of seeds per unit land area. This study was aimed to evaluate whether sensitivity to photoperiod after flowering (a) is quantitatively related to the length of exposure to long days and (b) persists throughout the whole pod-setting period. It was also evaluated whether seed number was related to changes in the duration of post-flowering phenophases. Methods Two field experiments were conducted with an indeterminate cultivar of soybean of maturity group V. In expt 1, photoperiods 2 h longer than natural daylength were applied during different numbers of days from the beginning pod stage (R3) onwards, while in expt 2 these photoperiod extensions were imposed during 9 consecutive days starting at different times between R3 and R6 (full seed) stages. Key Results There was a quantitative response of development to the number of cycles with a long photoperiod. The exposure to long photoperiods from R3 to R5 (beginning of seed growth) increased the duration of R3–R6 regardless of the timing of exposure. The stages of development comprised in the R3–R6 phase were delayed by current as well as by previous exposure to long days. A positive relationship was found between seed number and the duration of R3–R6, irrespective of the timing and length of exposure to the long photoperiod. Conclusions Sensitivity to photoperiod remained high during the reproductive period and was highly and positively coupled with the processes of generation of yield. PMID:17452381

  8. Effects of photoperiod on wheat growth, development and yield in CELSS

    NASA Astrophysics Data System (ADS)

    Yunze, Shen; Shuangsheng, Guo

    2014-12-01

    A Controlled Ecological Life Support System (CELSS) is a sealed system used in spaceflight in order to provide astronauts with food and O2 by plants. It is of great significance to increase the energy-using efficiency because energy is extremely deficient in the space. Therefore, the objective of this research was to increase the energy-using efficiency of wheat by regulating the photoperiod. Sixteen treatments were set in total: four photoperiods before flowering (PBF) combined with four photoperiods after flowering (PAF) of 12 h, 16 h, 20 h and 24 h. The light source was red-blue LED (90% red+10% blue). As a result, the growth period of wheat was largely extended by shorter PBF, particularly the number of days from tillering to jointing and from jointing to heading. The period from flowering to maturity was extended by shorter PAF. Shorter PBF and longer PAF could increase not only the yield but also the energy-using efficiency of wheat. As for the nutritional quality, longer photoperiod (both PBF and PAF) increased starch concentration as well as decreased protein concentration of seeds. The effects of PBF and PAF were interactional. The lighting strategy with PBF of 12 h and PAF of 24 h was proved to be the optimum photoperiod for wheat cultivation in CELSS. The mechanisms of photoperiod effect contain two aspects. Firstly, photoperiod is a signal for many processes in plant growth, particularly the process of ear differentiation. Shorter PBF promoted the ear differentiation of wheat, increasing the spikelet number, floret number and seed number and thus enhancing the yield. Secondly, longer photoperiod leads to more light energy input and longer time of photosynthesis, so that longer PAF provided more photosynthate and increased seed yield.

  9. Responses of alloplasmic (cytoplasm=Triticum timopheevii) and euplasmic wheats (Triticum aestivum) to photoperiod and vernalization.

    PubMed

    Ward, R W; Heyne, E G; Paulsen, G M

    1983-07-01

    Studies were conducted to determine the influence of the male sterility-inducing cytoplasm of Triticum timopheevii (Zhuk.) Zhuk. on response of several common winter wheat (T. aestivum L.) nuclear genotypes to photoperiod and vernalization. Comparative studies of cytoplasmic substitution lines provide information on the role of the cytoplasmic genetic mechanism in growth and development. In the case of cytoplasmic male sterility-based hybrid production systems, ubiquity of sterility-inducing cytoplasm in derived hybrids warrants thorough characterization of its influence on plant phenotype. Factorial combinations of cytoplasm (T. timopheevii and T. aestivum), nuclear genotype, and photoperiod or vernalization treatments were evaluated under hydroponic conditions in controlled environment chambers. Interaction of cytoplasm, photoperiod, and nuclear genotype was significant in one or more experiments for days to anthesis and potential spikelet number, and interaction of cytoplasm, vernalization, and nuclear genotype was significant for days to spike emergence. Long day length was associated with increased percentage seed set in one study, but interactions of photoperiod and cytoplasm were not detected for percentage seed set. Interactions involving cytoplasm and photoperiod or vernalization were interpreted as evidence of the existence of genetic factors in cytoplsam of T. timopheevii which alter photoperiod or vernalization responses of alloplasmic plants relative to responses exhibited by euplasmic plants. Since photoperiod and vernalization responses are critical to adaptation, T. timopheevii cytoplasm can alter adaptability of T. aestivum. The specific effect would be nuclear genotype dependent, and does not appear to be of a magnitude greater than that induced by nuclear genetic variability at loci conditioning photoperiod or vernalization responses or other adaptation-determining characteristics. Normal multilocation/year testing of alloplasmic hybrids should therefore adequately identify zones of adaptation.

  10. Control of annual reproductive cycle in the subtropical house sparrow (Passer domesticus): evidence for conservation of photoperiodic control mechanisms in birds

    PubMed Central

    Trivedi, Amit K; Rani, Sangeeta; Kumar, Vinod

    2006-01-01

    Background In many birds, day length (=photoperiod) regulates reproductive cycle. The photoperiodic environment varies between different seasons and latitudes. As a consequence, species at different latitudes may have evolved separate photoperiodic strategies or modified them as per their adaptive need. We studied this using house sparrow as a model since it is found worldwide and is widely investigated. In particular, we examined whether photoperiodism in house sparrows (Passer domesticus) at 27°N, 81°E shared features with those exhibited by its conspecifics at high latitudes. Results Initial experiment described in the wild and captive conditions the gonad development and molt (only in captives) cycles over a 12-month period. Both male and female sparrows had similar seasonal cycles, linked with annual variations in day length; this suggested that seasonal reproduction in house sparrows was under the photoperiodic control. However, a slower testis and attenuated follicular growth among captives indicated that other (supplementary) factors are also involved in controlling the reproductive cycle. Next experiment examined if sparrows underwent seasonal variations in their response to stimulatory effects of long day lengths. When birds were transferred every month over a period of 1 year to 16 hours light:8 hours darkness (16L:8D) for 17–26 weeks, there was indeed a time-of-year effect on the growth-regression cycle of gonads. The final experiment investigated response of house sparrows to a variety of light-dark (LD) cycles. In the first set, sparrows were exposed for 31 weeks to photoperiods that were close to what they receive in between the period from sunrise to sunset at this latitude: 9L:15D (close to shortest day length in December), 12L:12D (equinox, in March and September) 15L:9D (close to longest day length in June). They underwent testicular growth and regression and molt in 12L and 15L photoperiods, but not in 9L photoperiod. In the second set, sparrows were exposed for 17 weeks to photoperiods with light periods extending to different duration of the daily photosensitivity rhythm (e.g. 2L:22D, 6L:18D, 10L:14D, 14L:10D, 18L:6D and 22L:2D). Interestingly, a slow and small testicular response occurred under 2L and 10L photoperiods; 6L:18D was non-inductive. On the other hand, 14L, 18L and 22L photoperiods produced testicular growth and subsequent regression response as is typical of a long day photostimulation. Conclusion Subtropical house sparrows exhibit photoperiodic responses similar to that is reported for its population living at high latitudes. This may suggest the conservation of the photoperiodic control mechanisms in birds evolved over a long period of time, as a physiological strategy in a temporally changing environment ensuring reproduction at the best suited time of the year. PMID:16923197

  11. MicroRNA319-regulated TCPs interact with FBHs and PFT1 to activate CO transcription and control flowering time in Arabidopsis.

    PubMed

    Liu, Jie; Cheng, Xiliu; Liu, Pan; Li, Dayong; Chen, Tao; Gu, Xiaofeng; Sun, Jiaqiang

    2017-05-01

    The transcription factor CONSTANS (CO) is a central component that promotes Arabidopsis flowering under long-day conditions (LDs). Here, we show that the microRNA319-regulated TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) transcription factors promote photoperiodic flowering through binding to the CO promoter and activating its transcription. Meanwhile, these TCPs directly interact with the flowering activators FLOWERING BHLH (FBHs), but not the flowering repressors CYCLING DOF FACTORs (CDFs), to additively activate CO expression. Furthermore, both the TCPs and FBHs physically interact with the flowering time regulator PHYTOCHROME AND FLOWERING TIME 1 (PFT1) to facilitate CO transcription. Our findings provide evidence that a set of transcriptional activators act directly and additively at the CO promoter to promote CO transcription, and establish a molecular mechanism underlying the regulation of photoperiodic flowering time in Arabidopsis.

  12. MicroRNA319-regulated TCPs interact with FBHs and PFT1 to activate CO transcription and control flowering time in Arabidopsis

    PubMed Central

    Liu, Pan; Li, Dayong; Chen, Tao; Gu, Xiaofeng; Sun, Jiaqiang

    2017-01-01

    The transcription factor CONSTANS (CO) is a central component that promotes Arabidopsis flowering under long-day conditions (LDs). Here, we show that the microRNA319-regulated TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) transcription factors promote photoperiodic flowering through binding to the CO promoter and activating its transcription. Meanwhile, these TCPs directly interact with the flowering activators FLOWERING BHLH (FBHs), but not the flowering repressors CYCLING DOF FACTORs (CDFs), to additively activate CO expression. Furthermore, both the TCPs and FBHs physically interact with the flowering time regulator PHYTOCHROME AND FLOWERING TIME 1 (PFT1) to facilitate CO transcription. Our findings provide evidence that a set of transcriptional activators act directly and additively at the CO promoter to promote CO transcription, and establish a molecular mechanism underlying the regulation of photoperiodic flowering time in Arabidopsis. PMID:28558040

  13. Local Populations of Arabidopsis thaliana Show Clear Relationship between Photoperiodic Sensitivity of Flowering Time and Altitude

    PubMed Central

    Lewandowska-Sabat, Anna M.; Fjellheim, Siri; Olsen, Jorunn E.; Rognli, Odd A.

    2017-01-01

    Adaptation of plants to local conditions that vary substantially within their geographic range is essential for seasonal timing of flowering, a major determinant of plant reproductive success. This study investigates photoperiodic responses in natural populations of Arabidopsis thaliana from high northern latitudes and their significance for local adaptation. Thirty lineages from ten local A. thaliana populations, representing different locations across an altitudinal gradient (2–850 m a.s.l.) in Norway, were grown under uniform controlled conditions, and used to screen for responses to five different photoperiods. We studied relationships between variation in photoperiodic sensitivity of flowering time, altitude, and climatic factors associated with the sites of origin. We found that variation in response to photoperiod is significantly correlated with altitude and climatic variables associated with the sites of origin of the populations. Populations originating from lower altitudes showed stronger photoperiodic sensitivity than populations from higher altitudes. Our results indicate that the altitudinal climatic gradient generates clinal variation in adaptive traits in A. thaliana. PMID:28659966

  14. Unravelling molecular mechanisms from floral initiation to lipid biosynthesis in a promising biofuel tree species, Pongamia pinnata using transcriptome analysis

    PubMed Central

    Sreeharsha, Rachapudi V.; Mudalkar, Shalini; Singha, Kambam T.; Reddy, Attipalli R.

    2016-01-01

    Pongamia pinnata (L.) (Fabaceae) is a promising biofuel tree species which is underexploited in the areas of both fundamental and applied research, due to the lack of information either on transcriptome or genomic data. To investigate the possible metabolic pathways, we performed whole transcriptome analysis of Pongamia through Illumina NextSeq platform and generated 2.8 GB of paired end sequence reads. The de novo assembly of raw reads generated 40,000 contigs and 35,000 transcripts, representing leaf, flower and seed unigenes. Spatial and temporal expression profiles of photoperiod and floral homeotic genes in Pongamia, identified GIGANTEA (GI) - CONSTANS (CO) - FLOWERING LOCUS T (FT) as active signal cascade for floral initiation. Four prominent stages of seed development were selected in a high yielding Pongamia accession (TOIL 1) to follow the temporal expression patterns of key fatty acid biosynthetic genes involved in lipid biosynthesis and accumulation. Our results provide insights into an array of molecular events from flowering to seed maturity in Pongamia which will provide substantial basis for modulation of fatty acid composition and enhancing oil yields which should serve as a potential feedstock for biofuel production. PMID:27677333

  15. Effects of photoperiod on boll weevil (Coleoptera: Curculionidae) development, survival, and reproduction.

    PubMed

    Greenberg, S M; Sappington, T W; Adamczyk, J J; Liu, T-X; Setamou, M

    2008-12-01

    Effects of photoperiod on development, survival, feeding, and oviposition of boll weevils, Anthonomus grandis grandis Boheman, were assessed under five different photophases (24, 14, 12, 10, and 0 h) at a constant 27 degrees C temperature and 65% RH in the laboratory. Analyses of our results detected positive relationships between photoperiod and puncturing (mean numbers of oviposition and feeding punctures per day), and oviposition (oviposition punctures/oviposition+feeding punctures) activities, and the proportion of squares attacked by boll weevil females. When boll weevil females developed in light:darkness cycles, they produced a significantly higher percentage of eggs developing to adulthood than those developed in 24-h light or dark conditions. In long photoperiod (24:0 and 14:10 h), the number of female progeny was significantly higher and their development time was significantly shorter than those developed in short photoperiod (0:24 and 10:14 h). Lifetime oviposition was significantly highest at 12- and 14-h photophase, lowest at 0- and 10-h photophase, and intermediate at 24 h of light. Life table calculations indicated that boll weevil populations developed in a photoperiod of 14:10 and 12:12 (L:D) h will increase an average of two-fold each generation (Ro) compared with boll weevils developed in 24:0- and 10:14-h photoperiods and 15-fold compared with those at 0:24 h. Knowledge of the photoperiod-dependent population growth potential is critical for understanding population dynamics to better develop sampling protocols and timing insecticide applications.

  16. Deep sequencing reveals complex mechanisms of diapause preparation in the invasive mosquito, Aedes albopictus.

    PubMed

    Poelchau, Monica F; Reynolds, Julie A; Elsik, Christine G; Denlinger, David L; Armbruster, Peter A

    2013-05-22

    Seasonal environments present fundamental physiological challenges to a wide range of insects. Many temperate insects surmount the exigencies of winter by undergoing photoperiodic diapause, in which photoperiod provides a token cue that initiates an alternative developmental programme leading to dormancy. Pre-diapause is a crucial preparatory phase of this process, preceding developmental arrest. However, the regulatory and physiological mechanisms of diapause preparation are largely unknown. Using high-throughput gene expression profiling in the Asian tiger mosquito, Aedes albopictus, we reveal major shifts in endocrine signalling, cell proliferation, metabolism, energy production and cellular structure across pre-diapause development. While some hallmarks of diapause, such as insulin signalling and stress response, were not important at the transcriptional level, two genes, Pepck and PCNA, appear to show diapause-induced transcriptional changes across insect taxa. These processes demonstrate physiological commonalities between Ae. albopictus pre-diapause and diapause strategies across insects, and support the idea of a genetic 'toolkit' for diapause. Observations of gene expression trends from a comparative developmental perspective suggest that individual physiological processes are delayed against a background of a fixed morphological ontogeny. Our results demonstrate how deep sequencing can provide new insights into elusive molecular bases of complex ecological adaptations.

  17. Periodicity of sex pheromone biosynthesis, release and degradation in the lightbrown apple moth, Epiphyas postvittana (Walker).

    PubMed

    Foster, S P

    2000-03-01

    Pheromone titer in moths is a product of three processes occurring in or at the surface of the pheromone gland: biosynthesis, release, and intraglandular degradation, of pheromone. Changes in titers of sex pheromone, the fatty acyl pheromone analog (FAPA), and tetradecanoate, a pheromone biosynthetic intermediate, were studied in detail in the lightbrown apple moth, Epiphyas postvittana (Walker). Although changes in the pheromone titers in a day were relatively small, with the peak titer being 2-3 times greater than that at the trough, pheromone titer did show a distinct diel periodicity. Titer of the FAPA showed a similar, but less variable, diel pattern, but tetradecanoate titer showed little or no diel pattern. The pattern of pheromone titer suggested that females biosynthesize pheromone at two different rates during the photoperiod: a high rate during the latter half of the photophase and most of the scotophase, which is associated with a high pheromone titer, and a low rate throughout the first half of the photophase, which is associated with a low titer. Consistent with data on commencement of copulation, pheromone was released from the second hour of the scotophase through to the eighth hour. Pheromone release rate during this period appeared to be similar to the rate of pheromone biosynthesis. In contrast to the other two processes, pheromone degradation did not appear to have a diel pattern. Females decapitated at different times of the photoperiod showed a similar decline in pheromone titer, consistent with the reaction kinetics being first order in pheromone titer.

  18. Research update: Yield and nutritive value of photoperiod-sensitive sorghum and sorghum-sudangrass

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to evaluate the yield of photoperiod-sensitive forage sorghum and sorghum-sudangrass against non-photoperiod-sensitive sorghum, sorghum-sudangrass, or corn silage. Forages were planted on two dates at two locations (Marshfield and Hancock, WI). Results suggested some ...

  19. Analysis of Photoperiod Requirements of Soft Winter Wheat from the Eastern United States

    USDA-ARS?s Scientific Manuscript database

    Photoperiod response plays a major role in determining the climatic adaptation of wheat, and variation is commonly associated with Ppd loci on group two chromosomes. Seventy-three soft winter wheat (SWW) cultivars from the eastern U.S. were tested for photoperiod response in growth chambers. Floweri...

  20. Effect of Light Intensity and Photoperiod on Growth and Biochemical Composition of a Local Isolate of Nostoc calcicola.

    PubMed

    Khajepour, Fateme; Hosseini, Seyed Abbas; Ghorbani Nasrabadi, Rasoul; Markou, Giorgos

    2015-08-01

    A study was conducted to investigate the effect of light intensity (21, 42, and 63 μmol photons m(-2) s(-1)) and photoperiod (8:16, 12:12, and 16:8 h light/dark) on the biomass production and its biochemical composition (total carotenoids, chlorophyll a, phycoerythrin (PE), phycocyanin (PC) and allophycocyanin (APC), total protein, and carbohydrates) of a local isolate of Nostoc calcicola. The results revealed that N. calcicola prefers dim light; however, the most of the levels of light intensity and photoperiod investigated did not have a significant impact on biomass production. Increasing light intensity biomass content of chlorophyll a, PE, PC, APC, and total protein decreased, while total carotenoids and carbohydrate increased. The same behavior was observed also when light duration (photoperiod) increased. The interaction effect of increasing light intensity and photoperiod resulted in an increase of carbohydrate and total carotenoids, and to the decrease of chlorophyll a, PE, PC, APC, and total protein content. The results indicate that varying the light regime, it is capable to manipulate the biochemical composition of the local isolate of N. calcicola, producing either valuable phycobiliproteins or proteins under low light intensity and shorter photoperiods, or producing carbohydrates and carotenoids under higher light intensities and longer photoperiods.

  1. Conceptual framework of the eco-physiological phases of insect diapause development justified by transcriptomic profiling

    PubMed Central

    Štětina, Tomáš; Poupardin, Rodolphe; Korbelová, Jaroslava; Bruce, Alexander William

    2017-01-01

    Insects often overcome unfavorable seasons in a hormonally regulated state of diapause during which their activity ceases, development is arrested, metabolic rate is suppressed, and tolerance of environmental stress is bolstered. Diapausing insects pass through a stereotypic succession of eco-physiological phases termed “diapause development.” The phasing is varied in the literature, and the whole concept is sometimes criticized as being too artificial. Here we present the results of transcriptional profiling using custom microarrays representing 1,042 genes in the drosophilid fly, Chymomyza costata. Fully grown, third-instar larvae programmed for diapause by a photoperiodic (short-day) signal were assayed as they traversed the diapause developmental program. When analyzing the gradual dynamics in the transcriptomic profile, we could readily distinguish distinct diapause developmental phases associated with induction/initiation, maintenance, cold acclimation, and termination by cold or by photoperiodic signal. Accordingly, each phase is characterized by a specific pattern of gene expression, supporting the physiological relevance of the concept of diapause phasing. Further, we have dissected in greater detail the changes in transcript levels of elements of several signaling pathways considered critical for diapause regulation. The phase of diapause termination is associated with enhanced transcript levels in several positive elements stimulating direct development (the 20-hydroxyecdysone pathway: Ecr, Shd, Broad; the Wnt pathway: basket, c-jun) that are countered by up-regulation in some negative elements (the insulin-signaling pathway: Ilp8, PI3k, Akt; the target of rapamycin pathway: Tsc2 and 4EBP; the Wnt pathway: shaggy). We speculate such up-regulations may represent the early steps linked to termination of diapause programming. PMID:28720705

  2. Heading date QTL in winter wheat (Triticum aestivum L.) coincide with major developmental genes Vernalization-1 and Photoperiod-1

    USDA-ARS?s Scientific Manuscript database

    In wheat (Triticum aestivum L.), time from planting to spike emergence is influenced by genes controlling vernalization requirement and photoperiod response. Characterizing the available genetic diversity of known and novel alleles of Vernalization-1 (Vrn-1) and Photoperiod-1 (Ppd-1) in winter wheat...

  3. Emission of floral volatiles from Mahonia japonica (Berberidaceae).

    PubMed

    Picone, Joanne M; MacTavish, Hazel S; Clery, Robin A

    2002-07-01

    Flowering Mahonia japonica plants were subjected to controlled environments and the floral volatiles emitted from whole racemes (laterals) were trapped by Porapak Q adsorbent and analysed by GC-FID. An experiment with photoperiods of 6 and 9 h at constant temperature (10+/-1 degrees C) demonstrated that photoperiod was the stimulus for enhanced emission of most volatiles. Small quantitative differences in emitted fragrance composition were observed between light and dark periods and between plants acclimatised to different photoperiods. Maximum rates of emission occurred in the middle of the light period; aromatic compounds (benzaldehyde, benzyl alcohol and indole) displayed a more rapid increase and subsequent decline compared with monoterpenes (cis- and trans-ocimene and linalool). When the photoperiod was extended from 6 to 9 h, maximum rates of emission continued throughout the additional 3 h. Total emission (microg/h) of volatiles was 2-fold greater in the day-time (DT) (39.7 microg/h) compared with the night-time (NT) (19.8 microgg/h) under a 6 h photoperiod and was not significantly different from total emission under a 9 h photoperiod.

  4. Molecular cloning and potential function prediction of homologous SOC1 genes in tree peony.

    PubMed

    Wang, Shunli; Beruto, Margherita; Xue, Jingqi; Zhu, Fuyong; Liu, Chuanjiao; Yan, Yueming; Zhang, Xiuxin

    2015-08-01

    The central flower integrator PsSOC1 was isolated and its expression profiles were analyzed; then the potential function of PsSOC1 in tree peony was postulated. The six flowering genes PrSOC1, PdSOC1, PsSOC1, PsSOC1-1, PsSOC1-2, and PsSOC1-3 were isolated from Paeonia rockii, Paeonia delavayi, and Paeonia suffruticosa, respectively. Sequence comparison analysis showed that the six genes were highly conserved and shared 99.41% nucleotide identity. Further investigation suggested PsSOC1 was highly homologous to the floral integrators, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), from Arabidopsis. Phylogenetic analysis showed that the SOC1 protein clustering has family specificity and PsSOC1 has a close relationship with homologous SOC1 from Asteraceae species. The studies of PsSOC1's expression patterns in different buds and flower buds, and vegetative organs indicated that PsSOC1 could express in both vegetative and reproductive organs. While the expression of PsSOC1 in different developmental stages of buds was different; high expression levels of PsSOC1 occurred in the bud at the bud sprouting stage and the type I aborted the flower bud. PsSOC1 expression was also shown to be affected by gibberellins (GA), low temperature, and photoperiod. One of the pathways that regulates tree peony flowering may be the GA-inductive pathway. Ectopic expression of PsSOC1 in tobacco demonstrated that greater PsSOC1 expression in the transgenic tobacco plants not only promoted plant growth, but also advanced the flowering time. Finally, the potential function of PsSOC1 in tree peony was postulated.

  5. Birth seasonality and pattern in black-and-white snub-nosed monkeys (Rhinopithecus bieti) at Mt. Lasha, Yunnan.

    PubMed

    Li, Jin-Fa; He, Yu-Chao; Huang, Zhi-Pang; Wang, Shuang-Jin; Xiang, Zuo-Fu; Zhao, Juan-Jun; Xiao, Wen; Cui, Liang-Wei

    2014-11-18

    Seasonal variation in environmental factors is vital to the regulation of seasonal reproduction in primates. Consequently, long-term systematic data is necessary to clarify the birth seasonality and pattern of primates in highly seasonal environments. This study indicated that black-and-white snub-nosed monkeys (Rhinopithecus bieti) at Mt. Lasha exhibited strict birth seasonality with a pulse model. Infants were born with a certain degree of synchronization. Birth distribution showed three birth peaks, and the birth pattern showed a "V" style in even-numbered years and a gradual increase in odd-numbered years. The beginning date, end date and median birth date were earlier in even-numbered years than those in odd-numbered years. The higher latitude of their habitats, earlier birth date, shorter birth period, fewer birth peaks and stronger birth synchrony might be adaptations for strongly seasonal variation in climate and food resources. After the summer solstice when daylight length began to gradually shorten, R. bieti at Mt. Lasha started to breed during the period with the highest environmental temperature and food availability, which implied that photoperiod may be the proximate factor triggering the onset of estrus and mating. It appears that R. bieti coincided conception and mid-lactation with the peak in staple foods, and weaning with the peak in high quality of foods. Thus, food availability was the ultimate factor regulating reproductive seasonality, and photoperiod was the proximate factor fine-turning the coordination between seasonal breeding and food availability.

  6. Vernalization Requirement and the Chromosomal VRN1-Region can Affect Freezing Tolerance and Expression of Cold-Regulated Genes in Festuca pratensis

    PubMed Central

    Ergon, Åshild; Melby, Tone I.; Höglind, Mats; Rognli, Odd A.

    2016-01-01

    Plants adapted to cold winters go through annual cycles of gain followed by loss of freezing tolerance (cold acclimation and deacclimation). Warm spells during winter and early spring can cause deacclimation, and if temperatures drop, freezing damage may occur. Many plants are vernalized during winter, a process making them competent to flower in the following summer. In winter cereals, a coincidence in the timing of vernalization saturation, deacclimation, downregulation of cold-induced genes, and reduced ability to reacclimate, occurs under long photoperiods and is under control of the main regulator of vernalization requirement in cereals, VRN1, and/or closely linked gene(s). Thus, the probability of freezing damage after a warm spell may depend on both vernalization saturation and photoperiod. We investigated the role of vernalization and the VRN1-region on freezing tolerance of meadow fescue (Festuca pratensis Huds.), a perennial grass species. Two F2 populations, divergently selected for high and low vernalization requirement, were studied. Each genotype was characterized for the copy number of one of the four parental haplotypes of the VRN1-region. Clonal plants were cold acclimated for 2 weeks or vernalized/cold acclimated for a total of 9 weeks, after which the F2 populations reached different levels of vernalization saturation. Vernalized and cold acclimated plants were deacclimated for 1 week and then reacclimated for 2 weeks. All treatments were given at 8 h photoperiod. Flowering response, freezing tolerance and expression of the cold-induced genes VRN1, MADS3, CBF6, COR14B, CR7 (BLT14), LOS2, and IRI1 was measured. We found that some genotypes can lose some freezing tolerance after vernalization and a deacclimation–reacclimation cycle. The relationship between vernalization and freezing tolerance was complex. We found effects of the VRN1-region on freezing tolerance in plants cold acclimated for 2 weeks, timing of heading after 9 weeks of vernalization, expression of COR14B, CBF6, and LOS2 in vernalized and/or deacclimated treatments, and restoration of freezing tolerance during reacclimation. While expression of VRN1, COR14B, CBF6, LOS2, and IRI1 was correlated, CR7 was associated with vernalization requirement by other mechanisms, and appeared to play a role in freezing tolerance in reacclimated plants. PMID:26941767

  7. Effect of photoperiod prior to cold acclimation on freezing tolerance and carbohydrate metabolism in alfalfa (Medicago sativa L.).

    PubMed

    Bertrand, Annick; Bipfubusa, Marie; Claessens, Annie; Rocher, Solen; Castonguay, Yves

    2017-11-01

    Cold acclimation proceeds sequentially in response to decreases in photoperiod and temperature. This study aimed at assessing the impact of photoperiod prior to cold acclimation on freezing tolerance and related biochemical and molecular responses in two alfalfa cultivars. The fall dormant cultivar Evolution and semi-dormant cultivar 6010 were grown in growth chambers under different photoperiods (8, 10, 12, 14 or 16h) prior to cold acclimation. Freezing tolerance was evaluated as well as carbohydrate concentrations, levels of transcripts encoding enzymes of carbohydrate metabolism as well as a K-3dehydrin, before and after cold acclimation. The fall dormant cultivar Evolution had a better freezing tolerance than the semi-dormant cultivar 6010. The effect of photoperiod prior to cold acclimation on the level of freezing tolerance differed between the two cultivars: an 8h-photoperiod induced the highest level of freezing tolerance in Evolution and the lowest in 6010. In Evolution, the 8h-induced superior freezing tolerance was associated with higher concentration of raffinose-family oligosaccharides (RFO). The transcript levels of sucrose synthase (SuSy) decreased whereas those of sucrose phosphatase synthase (SPS) and galactinol synthase (GaS) increased in response to cold acclimation in both cultivars. Our results indicate that RFO metabolism could be involved in short photoperiod-induced freezing tolerance in dormant alfalfa cultivars. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  8. Evaluating potential artefacts of photo-reversal on behavioral studies with nocturnal invasive sea lamprey (Petromyzon marinus)

    USGS Publications Warehouse

    Barnett, Matthew; Imre, Istvan; Wagner, Michael C.; Di Rocco, Richard T.; Johnson, Nicholas; Brown, Grant E.

    2016-01-01

    Sea lampreys (Petromyzon marinus L., 1758) are nocturnal, so experiments evaluating their behaviour to chemosensory cues have typically been conducted at night. However, given the brief timeframe each year that adult P. marinus are available for experimentation, we investigated whether P. marinus exposed to a 12 h shifted diurnal cycle (reversed photoperiod) could be tested in a darkened arena during the day and show the same response to chemosensory cues as natural photoperiod P. marinus that were tested during the night. Ten replicates of 10 P. marinus, from each photoperiod, were exposed to deionized water (negative control), 2-phenylethylamine hydrochloride (PEA HCl, putative predator cue), or P. marinus whole-body extract (conspecific alarm cue). All P. marinus demonstrated a significant avoidance response to both cues. No significant differences were found in avoidance to PEA HCl between photoperiods. Avoidance of P. marinus whole-body extract was significantly stronger in natural compared with reversed photoperiod P. marinus. The use of reversed photoperiod subjects is suitable for examining the presence or absence of avoidance in response to novel chemosensory alarm cues, or the change in the magnitude of antipredator response. Studies investigating the natural magnitude of antipredator response should use natural photoperiod experimental subjects.

  9. Effect of Melatonin Implants during the Non-Breeding Season on the Onset of Ovarian Activity and the Plasma Prolactin in Dromedary Camel

    PubMed Central

    El Allali, Khalid; Sghiri, Abdelmalek; Bouâouda, Hanan; Achaâban, Mohamed Rachid; Ouzir, Mounir; Bothorel, Béatrice; El Mzibri, Mohammed; El Abbadi, Najia; Moutaouakkil, Adnane; Tibary, Ahmed; Pévet, Paul

    2018-01-01

    To examine a possible control of reproductive seasonality by melatonin, continual-release subcutaneous melatonin implants were inserted 4.5 months before the natural breeding season (October–April) into female camels (Melatonin-treated group). The animals were exposed to an artificial long photoperiod (16L:8D) for 41 days prior to implant placement to facilitate receptivity to the short-day signal that is expected with melatonin implants. The treated and control groups (untreated females) were maintained separately under outdoor natural conditions. Ovarian follicular development was monitored in both groups by transrectal ultrasonography and by plasma estradiol-17β concentrations performed weekly for 8 weeks and then for 14 weeks following implant insertion. Plasma prolactin concentrations were determined at 45 and 15 days before and 0, 14, 28, 56, and 98 days after implant insertion. Plasma melatonin concentration was determined to validate response to the artificial long photoperiod and to verify the pattern of release from the implants. Results showed that the artificial long photoperiod induced a melatonin secretion peak of significantly (P < 0.05) shorter duration (about 2.5 h). Melatonin release from the implants resulted in higher circulating plasma melatonin levels during daytime and nighttime which persisted for more than 12 weeks following implants insertion. Treatment with melatonin implants advanced the onset of follicular growth activity by 3.5 months compared to untreated animals. Plasma estradiol-17β increased gradually from the second week after the beginning of treatment to reach significantly (P < 0.01) higher concentrations (39.2 ± 6.2 to 46.4 ± 4.5 pg/ml) between the third and the fifth week post insertion of melatonin implants. Treatment with melatonin implants also induced a moderate, but significant (P < 0.05) suppressive effect on plasma prolactin concentration on the 28th day. These results demonstrate that photoperiod appears to be involved in dromedary reproductive seasonality. Melatonin implants may be a useful tool to manipulate seasonality and to improve reproductive performance in this species. Administration of subcutaneous melatonin implants during the transition period to the breeding season following an artificial signal of long photoperiod have the potential to advance the breeding season in camels by about 2.5 months. PMID:29594158

  10. Diurnal variation in the functioning of cowpea nodules.

    PubMed

    Rainbird, R M; Atkins, C A; Pate, J S

    1983-06-01

    Nitrogenase (EC 1.7.99.2) activity of nodules of cowpea (Vigna unguiculata [L.] Walp), maintained under conditions of a 12-hour day at 30 degrees C and 800 to 1,000 microeinsteins per square meter per second (photosynthetically active radiation) and a 12-hour night at 20 degrees C, showed a marked diurnal variation with the total electron flux through the enzyme at night being 60% of that in the photoperiod. This diurnal pattern was, however, due to changes in hydrogen evolution. The rate of nitrogen fixation, measured by short-term (15)N(2) assimilation or estimated from the difference in hydrogen evolution in air or Ar:O(2) (80:20; v/v), showed no diurnal variation. Carbon dioxide released from nodules showed a diurnal variation synchronized with that of nitrogenase functioning and, as a consequence, the apparent ;respiratory cost' of nitrogen fixation in the photoperiod was almost double that at night (9.74 +/- 0.38 versus 5.70 +/- 0.90 moles CO(2) evolved per mole N(2) fixed). Separate carbon and nitrogen balances constructed for nodules during the photoperiod and dark period showed that, at night, nodule functioning required up to 40% less carbohydrate to achieve the same level of nitrogen fixation as during the photoperiod (2.4 versus 1.4 moles hexose per mole N(2) fixed).Stored reserves of nonstructural carbohydrate of the nodule only partly satisfied the requirement for carbon at night, and fixation was dependent on continued import of translocated assimilates at all times. Measurements of the soluble nitrogen pools of the nodule together with (15)N studies indicated that, both during the day and night, nitrogenous products of fixation were effectively translocated to all organs of the host plant despite low rates of transpiration at night. Reduced fluxes of water through the plant at night were apparently counteracted by increased concentration of nitrogen, especially as ureides, in the xylem stream.

  11. Phenology and growth adjustments of oil palm (Elaeis guineensis) to photoperiod and climate variability

    PubMed Central

    Legros, S.; Mialet-Serra, I.; Caliman, J.-P.; Siregar, F. A.; Clément-Vidal, A.; Dingkuhn, M.

    2009-01-01

    Background and Aims Oil palm flowering and fruit production show seasonal maxima whose causes are unknown. Drought periods confound these rhythms, making it difficult to analyse or predict dynamics of production. The present work aims to analyse phenological and growth responses of adult oil palms to seasonal and inter-annual climatic variability. Methods Two oil palm genotypes planted in a replicated design at two sites in Indonesia underwent monthly observations during 22 months in 2006–2008. Measurements included growth of vegetative and reproductive organs, morphology and phenology. Drought was estimated from climatic water balance (rainfall – potential evapotranspiration) and simulated fraction of transpirable soil water. Production history of the same plants for 2001–2005 was used for inter-annual analyses. Key Results Drought was absent at the equatorial Kandista site (0°55′N) but the Batu Mulia site (3°12′S) had a dry season with variable severity. Vegetative growth and leaf appearance rate fluctuated with drought level. Yield of fruit, a function of the number of female inflorescences produced, was negatively correlated with photoperiod at Kandista. Dual annual maxima were observed supporting a recent theory of circadian control. The photoperiod-sensitive phases were estimated at 9 (or 9 + 12 × n) months before bunch maturity for a given phytomer. The main sensitive phase for drought effects was estimated at 29 months before bunch maturity, presumably associated with inflorescence sex determination. Conclusion It is assumed that seasonal peaks of flowering in oil palm are controlled even near the equator by photoperiod response within a phytomer. These patterns are confounded with drought effects that affect flowering (yield) with long time-lag. Resulting dynamics are complex, but if the present results are confirmed it will be possible to predict them with models. PMID:19748909

  12. Effects of Photoperiod and Temperature on Growth and Development in Clouded Salamander (Hynobius nebulosus) Larvae.

    PubMed

    Kukita, Sayuri; Gouda, Mika; Ikeda, Sakiko; Ishibashi, Sakiko; Furuya, Tatsunori; Nakamura, Keiji

    2015-06-01

    Day length is one of the most important factors that organisms use to predict seasonal changes in their environment. Several amphibians regulate their growth and development in response to photoperiod. However, many studies have not focused on the ecological effects of the photoperiodic response on growth and development because they use tropical animals, animals from a commercial source or from unknown localities, or extreme light regimens for experiments. In the present study, we examined the effects of photoperiod on growth and development in the clouded salamander (Hynobius nebulosus) by raising larvae under different photoperiods and at different temperatures in the laboratory. The average larval period under a long-day photoperiod of L16:D8 was longer than that under L12:D12 at 15°C or 20°C, although the difference between the photoperiods was only significant for 15°C. Juveniles weighed more at metamorphosis under L16:D8 than those under L12:D12, irrespective of temperature, suggesting that a longer developmental period results in a heavier body weight. The head width of juveniles did not differ for different photoperiods at either temperature. However, the growth rate of the head width under L12:D12 was faster than that under L16:D8 at 15°C. Long day length appears to produce larger H. nebulosus juveniles in a relatively stable aquatic environment with a low population density. Thus, development may be accelerated when the day length becomes shorter as winter approaches, and larvae may have increased the growth rate of their head widths to compensate for the shorter growing period under shorter day lengths.

  13. Photoperiod and temperature responses of bud swelling and bud burst in four temperate forest tree species.

    PubMed

    Basler, David; Körner, Christian

    2014-04-01

    Spring phenology of temperate forest trees is optimized to maximize the length of the growing season while minimizing the risk of freezing damage. The release from winter dormancy is environmentally mediated by species-specific responses to temperature and photoperiod. We investigated the response of early spring phenology to temperature and photoperiod at different stages of dormancy release in cuttings from four temperate tree species in controlled environments. By tracking bud development, we were able to identify the onset of bud swelling and bud growth in Acer pseudoplatanus L., Fagus sylvatica L., Quercus petraea (Mattuschka) Liebl. and Picea abies (L.) H. Karst. At a given early stage of dormancy release, the onset and duration of the bud swelling prior to bud burst are driven by concurrent temperature and photoperiod, while the maximum growth rate is temperature dependent only, except for Fagus, where long photoperiods also increased bud growth rates. Similarly, the later bud burst was controlled by temperature and photoperiod (in the photoperiod sensitive species Fagus, Quercus and Picea). We conclude that photoperiod is involved in the release of dormancy during the ecodormancy phase and may influence bud burst in trees that have experienced sufficient chilling. This study explored and documented the early bud swelling period that precedes and defines later phenological stages such as canopy greening in conventional phenological works. It is the early bud growth resumption that needs to be understood in order to arrive at a causal interpretation and modelling of tree phenology at a large scale. Classic spring phenology events mark visible endpoints of a cascade of processes as evidenced here.

  14. Overexpression of suppressor of cytokine signaling 3 in the arcuate nucleus of juvenile Phodopus sungorus alters seasonal body weight changes.

    PubMed

    Ganjam, Goutham K; Benzler, Jonas; Pinkenburg, Olaf; Boucsein, Alisa; Stöhr, Sigrid; Steger, Juliane; Culmsee, Carsten; Barrett, Perry; Tups, Alexander

    2013-12-01

    The profound seasonal cycle in body weight exhibited by the Djungarian hamster (Phodopus sungorus) is associated with the development of hypothalamic leptin resistance during long day photoperiod (LD, 16:8 h light dark cycle), when body weight is elevated relative to short day photoperiod (SD, 8:16 h light dark cycle). We previously have shown that this seasonal change in physiology is associated with higher levels of mRNA for the potent inhibitor of leptin signaling, suppressor of cytokine signaling-3 (SOCS3), in the arcuate nucleus (ARC) of LD hamsters relative to hamsters in SD. The alteration in SOCS3 gene expression preceded the body weight change suggesting that SOCS3 might be the molecular switch of seasonal body weight changes. To functionally characterize the role of SOCS3 in seasonal body weight regulation, we injected SOCS3 expressing recombinant adeno-associated virus type-2 (rAAV2-SOCS3) constructs into the ARC of leptin sensitive SD hamsters immediately after weaning. Hamsters that received rAAV2 expressing enhanced green fluorescent protein (rAAV2-EGFP) served as controls. ARC-directed SOCS3 overexpression led to a significant increase in body weight over a period of 12 weeks without fully restoring the LD phenotype. This increase was partially due to elevated brown and white adipose tissue mass. Gene expression of pro-opiomelanocortin was increased while thyroid hormone converting enzyme DIO3 mRNA levels were reduced in SD hamsters with SOCS3 overexpression. In conclusion, our data suggest that ARC-directed SOCS3 overexpression partially overcomes the profound seasonal body weight cycle exhibited by the hamster which is associated with altered pro-opiomelanocortin and DIO3 gene expression.

  15. Photoperiodic inhibition of testicular development is mediated by the pineal gland in white-footed mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, P.G.; Boshes, M.; Zucker, I.

    White-footed mice were maintained in short or long photoperiods from birth to 60 days of age (10 h vs. 14 h of light per day). Testes weights and spermatogenesis were substantially reduced in short daylengths. Pinealectomy at 5-7 days of age eliminated the suppressive effect of photoperiod on the reproductive system. However, testicular development was not retarded in intact males kept from 25 to 60 days of age in short daylengths. Exposure to short daylengths prior to 25 days of age contributes to photoperiodic inhibition of testicular development. Removal of the pineal gland did not consistently affect gonadal maturation inmore » long photoperiods. The pineal gland transduces the effects of short daylengths on reproductive development. Some effects of long daylengths on the neuroendocrine axis of white-footed mice may also be mediated by the pineal gland.« less

  16. Effects of Varying Photoperiodic Regimens on Critical Biological Fitness Traits of Culex quinquefasciatus (Diptera: Culicidae) Mosquito Vector

    PubMed Central

    Ukubuiwe, Azubuike Christian; Olayemi, Israel Kayode; Omalu, Innocent Chukwuemeka James; Arimoro, Francis Ofurum; Baba, Bulus Musa; Ukubuiwe, Chinenye Catherine

    2018-01-01

    This study investigated the effects of varying photoperiodic conditions on critical life stages’ parameters of Culex quinquefasciatus. To this end, first larval stage was reared under different constant photoperiodic regimens: 0, 6 (short), 12 (equal), 13 (prevailing condition), and 18 and 24 (long) hours of light (hL). Duration of development, survivorship, emergence successes, adult longevity, caloric indices (CIs), and utilisation of teneral reserves for metamorphosis at each regimen were monitored. Analyses revealed significant negative effects of increasing photoperiod on all entomological variables measured. Short photo-phases elicited faster development times, increased life stages’ survivorship and number at emergence, adult longevity, and CI for all life stages while increasing teneral components for adult life traits. The information generated in this study is important in understanding the role played by photoperiod in disease transmission and for development of integrated vector control strategies based on environmental manipulation. PMID:29636636

  17. The Arabidopsis E3 Ubiquitin Ligase HOS1 Negatively Regulates CONSTANS Abundance in the Photoperiodic Control of Flowering[W

    PubMed Central

    Lazaro, Ana; Valverde, Federico; Piñeiro, Manuel; Jarillo, Jose A.

    2012-01-01

    The Arabidopsis thaliana early in short days6 (esd6) mutant was isolated in a screen for mutations that accelerate flowering time. Among other developmental alterations, esd6 displays early flowering in both long- and short-day conditions. Fine mapping of the mutation showed that the esd6 phenotype is caused by a lesion in the HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1 (HOS1) locus, which encodes a RING finger–containing E3 ubiquitin ligase. The esd6/hos1 mutation causes decreased FLOWERING LOCUS C expression and requires CONSTANS (CO) protein for its early flowering phenotype under long days. Moreover, CO and HOS1 physically interact in vitro and in planta, and HOS1 regulates CO abundance, particularly during the daylight period. Accordingly, hos1 causes a shift in the regular long-day pattern of expression of FLOWERING LOCUS T (FT) transcript, starting to rise 4 h after dawn in the mutant. In addition, HOS1 interacts synergistically with CONSTITUTIVE PHOTOMORPHOGENIC1, another regulator of CO protein stability, in the regulation of flowering time. Taken together, these results indicate that HOS1 is involved in the control of CO abundance, ensuring that CO activation of FT occurs only when the light period reaches a certain length and preventing precocious flowering in Arabidopsis. PMID:22408073

  18. Expression analysis of the Arabidopsis thaliana AtSpen2 gene, and its relationship with other plant genes encoding Spen proteins

    PubMed Central

    Solís-Guzmán, María Gloria; Argüello-Astorga, Gerardo; López-Bucio, José; Ruiz-Herrera, León Francisco; López-Meza, Joel; Sánchez-Calderón, Lenin; Carreón-Abud, Yazmín; Martínez-Trujillo, Miguel

    2017-01-01

    Abstract Proteins of the Split ends (Spen) family are characterized by an N-terminal domain, with one or more RNA recognition motifs and a SPOC domain. In Arabidopsis thaliana, the Spen protein FPA is involved in the control of flowering time as a component of an autonomous pathway independent of photoperiod. The A. thaliana genome encodes another gene for a putative Spen protein at the locus At4g12640, herein named AtSpen2. Bioinformatics analysis of the AtSPEN2 SPOC domain revealed low sequence similarity with the FPA SPOC domain, which was markedly lower than that found in other Spen proteins from unrelated plant species. To provide experimental information about the function of AtSpen2, A. thaliana plants were transformed with gene constructs of its promoter region with uidA::gfp reporter genes; the expression was observed in vascular tissues of leaves and roots, as well as in ovules and developing embryos. There was absence of a notable phenotype in knockout and overexpressing lines, suggesting that its function in plants might be specific to certain endogenous or environmental conditions. Our results suggest that the function of Atspen2 diverged from that of fpa due in part to their different transcription expression pattern and divergence of the regulatory SPOC domain. PMID:28850635

  19. Glyma11g13220, a homolog of the vernalization pathway gene VERNALIZATION 1 from soybean [Glycine max (L.) Merr.], promotes flowering in Arabidopsis thaliana.

    PubMed

    Lü, Jing; Suo, Haicui; Yi, Rong; Ma, Qibin; Nian, Hai

    2015-09-29

    The precise timing of flowering is fundamental to successful reproduction, and has dramatic significance for crop yields. Although prolonged low temperatures are not required for flowering induction in soybean, vernalization pathway genes have been retained during the evolution of this species. Little information is currently available in regarding these genes in soybean. We were able to detect the expression of Glyma11g13220 in different organs at all monitored developmental stages in soybean. Glyma11g13220 expression was higher in leaves and pods than in shoot apexes and stems. In addition, Glyma11g13220 was responsive to photoperiod and low temperature in soybean. Furthermore, Glyma11g13220 was found to be a nuclear-localized protein. Over-expression of Glyma11g13220 in an Arabidopsis Columbia-0 (Col-0) background resulted in early flowering. Quantitative real-time PCR analysis revealed that transcript levels of flower repressor FLOWERING LOCUS C (FLC), and FD decreased significantly in transgenic Arabidopsis compared with wild-type Col-0, while the expression of VERNALIZATION INSENSITIVE 3 (VIN3) and FLOWERING LOCUS T (FT) noticeably increased. Our results suggest that Glyma11g13220, a homolog of Arabidopsis VRN1, is a functional protein. Glyma11g13220, which is responsive to photoperiod and low temperature in soybean, may participate in the vernalization pathway in Arabidopsis and help regulate flowering time. Arabidopsis VRN1 and Glyma11g13220 exhibit conserved as well as diverged functions.

  20. Differences in respiration between dormant and non-dormant buds suggest the involvement of ABA in the development of endodormancy in grapevines.

    PubMed

    Parada, Francisca; Noriega, Ximena; Dantas, Débora; Bressan-Smith, Ricardo; Pérez, Francisco J

    2016-08-20

    Grapevine buds (Vitis vinifera L) enter endodormancy (ED) after perceiving the short-day (SD) photoperiod signal and undergo metabolic changes that allow them to survive the winter temperatures. In the present study, we observed an inverse relationship between the depth of ED and the respiration rate of grapevine buds. Moreover, the respiration of dormant and non-dormant buds differed in response to temperature and glucose, two stimuli that normally increase respiration in plant tissues. While respiration in non-dormant buds rose sharply in response to both stimuli, respiration in dormant buds was only slightly affected. This suggests that a metabolic inhibitor is present. Here, we propose that the plant hormone abscisic acid (ABA) could be this inhibitor. ABA inhibits respiration in non-dormant buds and represses the expression of respiratory genes, such as ALTERNATIVE NADH DEHYDROGENASE (VaND1, VvaND2), CYTOCHROME OXIDASE (VvCOX6) and CYTOCHROME C (VvCYTC), and induces the expression of VvSnRK1, a gene encoding a member of a highly conserved family of protein kinases that act as energy sensors and regulate gene expression in response to energy depletion. In addition to inducing ED the SD-photoperiod up-regulated the expression of VvNCED, a gene that encodes a key enzyme in ABA synthesis. Taken together, these results suggest that ABA through the mediation of VvSnRK1, could play a key role in the regulation of the metabolic changes accompanying the entry into ED of grapevine buds. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. Proximate cues for a short-distance migratory species: An application of survival analysis

    USGS Publications Warehouse

    Meunier, J.; Song, R.; Lutz, R.S.; Andersen, D.E.; Doherty, K.E.; Bruggink, J.G.; Oppelt, E.

    2008-01-01

    Investigation of bird migration has often highlighted the importance of external factors in determining timing of migration However, little distinction has been made between short- and long-distance migrants and between local and flight birds (passage migrants) in describing migration chronology. In addition, measures of food abundance as a proximate factor influencing timing of migration are lacking in studies of migration chronology. To address the relationship between environmental variables and timing of migration we quantified the relative importance of proximate external factors on migration chronology of local American woodcock (Scolopax minor), a short distance migrant, using event-time analysis methods (survival analysis). We captured 1,094 woodcock local to our study sites in Michigan, Minnesota and Wisconsin (USA) during autumn 2002-2004 and documented 786 departure dates for these birds. Photoperiod appeared to provide an initial proximate cue for timing of departure. Moon phase was important in modifying timing of departure, which may serve as a navigational aid in piloting and possibly orientation. Local synoptic weather variables also contributed to timing of departure by changing the rate of departure from our study sites. We found no evidence that food availability influenced timing of woodcock departure. Our results suggest that woodcock use a conservative photoperiod-controlled strategy with proximate modifiers for timing of migration rather than relying on abundance of their primary food, earthworms. Managing harvest pressure on local birds by adjusting season lengths may be an effective management tool with consistent migration patterns from year to year based on photoperiod.

  2. Seasonal changes in circulating gonadal steroid levels and physiological evidence for the presence of intrinsic circannual reproductive cycles in captive finless porpoises Neophocaena asiaeorientalis from the western Inland Sea, Japan.

    PubMed

    Funasaka, Noriko; Yoshioka, Motoi; Ishibashi, Toshiaki; Tatsukawa, Toshiyuki; Shindo, Hideaki; Takada, Koji; Nakamura, Masayuki; Iwata, Tomohiko; Fujimaru, Kaoru; Tanaka, Taira

    2018-04-13

    We monitored annual fluctuations of gonadal steroid levels in three sexually mature captive finless porpoises (Neophocaena asiaeorientalis; two males and one female) from two different facilities over 56-91 months. Two animals (one male and one female) were held in an indoor tank with a sunroof (facility A) and the other male was held in an indoor tank without a sunroof (facility B). Water temperatures in both facilities reflected seasonal changes during the study period with a minor difference in the fluctuation pattern. Testosterone levels of the male in facility A were higher from spring to summer every year and exhibited a 12-month cycle. The female showed estrus cycles in 1-month intervals from summer to winter, excluding 2 anestrus years. In contrast, the period of higher testosterone levels of the male in facility B gradually initiated earlier over the years under a constant photoperiod (11.5L:12.5D) and exhibited a 9-month cycle during the first 52 months. After changing the light conditions to a natural photoperiod, its testosterone levels were high from early spring to summer for 3 consecutive years and exhibited a 12-month cycle. Our results showed that under a constant artificial photoperiod, the male in facility B failed to recognize the seasonal changes of a natural external environment, resulting in a 9-month, free-running hormone cycle.

  3. Reproductive allochrony in seasonally sympatric populations maintained by differential response to photoperiod: Implications for population divergence and response to climate change

    USGS Publications Warehouse

    Fudickar, A.M.; Grieves, T.J.; Atwell, Jonathan W.; Stricker, Craig A.; Ketterson, Ellen D.

    2016-01-01

    Reproductive allochrony presents a potential barrier to gene flow and is common in seasonally sympatric migratory and sedentary birds. Mechanisms mediating reproductive allochrony can influence population divergence and the capacity of populations to respond to environmental change. We asked whether reproductive allochrony in seasonally sympatric birds results from a difference in response to supplementary or photoperiodic cues and whether the response varies in relation to the distance separating breeding and wintering locations as measured by stable isotopes. We held seasonally sympatric migratory and sedentary male dark-eyed juncos (Junco hyemalis) in a common garden in early spring under simulated natural changes in photoperiod and made measurements of reproductive and migratory physiology. On the same dates and photoperiods, sedentary juncos had higher testosterone (initial and gonadotropin-releasing hormone induced), more developed cloacal protuberances, and larger testes than migrants. In contrast, migratory juncos had larger fat reserves (fuel for migration). We found a negative relationship between testis mass and feather hydrogen isotope ratios, indicating that testis growth was more delayed in migrants making longer migrations. We conclude that reproductive allochrony in seasonally sympatric migratory and sedentary birds can result from a differential response to photoperiodic cues in a common garden, and as a result, gene flow between migrants and residents may be reduced by photoperiodic control of reproductive development. Further, earlier breeding in response to future climate change may currently be constrained by differential response to photoperiodic cues.

  4. Beyond Emotional and Spatial Processes: Cognitive Dysfunction in a Depressive Phenotype Produced by Long Photoperiod Exposure.

    PubMed

    Barnes, Abigail K; Smith, Summer B; Datta, Subimal

    2017-01-01

    Cognitive dysfunction in depression has recently been given more attention and legitimacy as a core symptom of the disorder. However, animal investigations of depression-related cognitive deficits have generally focused on emotional or spatial memory processing. Additionally, the relationship between the cognitive and affective disturbances that are present in depression remains obscure. Interestingly, sleep disruption is one aspect of depression that can be related both to cognition and affect, and may serve as a link between the two. Previous studies have correlated sleep disruption with negative mood and impaired cognition. The present study investigated whether a long photoperiod-induced depressive phenotype showed cognitive deficits, as measured by novel object recognition, and displayed a cognitive vulnerability to an acute period of total sleep deprivation. Adult male Wistar rats were subjected to a long photoperiod (21L:3D) or a normal photoperiod (12L:12D) condition. Our results indicate that our long photoperiod exposed animals showed behaviors in the forced swim test consistent with a depressive phenotype, and showed significant deficits in novel object recognition. Three hours of total sleep deprivation, however, did not significantly change novel object recognition in either group, but the trends suggest that the long photoperiod and normal photoperiod groups had different cognitive responses to total sleep deprivation. Collectively, these results underline the extent of cognitive dysfunction present in depression, and suggest that altered sleep plays a role in generating both the affective and cognitive symptoms of depression.

  5. Photoperiod as a proximate factor in control of seasonality in the subtropical male Tree Sparrow, Passer montanus

    PubMed Central

    2011-01-01

    Background Most species of birds exhibit well-defined seasonality in their various physiological and behavioral functions like reproduction, molt, bill color etc. such that they occur at the most appropriate time of the year. Day length has been shown to be a major source of temporal information regulating seasonal reproduction and associated events in a number of avian species. The present study aims to investigate the role of photoperiod in control of seasonal cycles in the subtropical male tree sparrow (Passer montanus) and to compare its responses at Shillong (Latitude 25°34'N, Longitude 91°53'E) with those exhibited by its conspecifics and related species at other latitudes. Results Initial experiment involving study of seasonal cycles revealed that the wild tree sparrows posses definite seasonal cycles of testicular volume, molt and bill color. These cycles were found remarkably linked to annual solar cycle suggesting the possibility of their photoperiodic control. To confirm this possibility in the next experiment, the photosensitive birds were exposed to three different light-dark regimes that were close to what they experience at this latitude: 9L/15D (close to shortest day length), 12L/12D (equinox day length) and 14L/10D (close to longest day length) for 18 months. Tree sparrows showed testicular growth followed by regression and development of photorefractoriness, molting and bill color changes only under long daily photoperiods (12 L and 14 L) but not under short daily photoperiod (9 L). Birds, under stimulatory photoperiods, did not show reinitiation of the above responses after the completion of initiation regression cycle even after their exposure to these photoperiods for 18 months. This precludes the possibility of circannual rhythm generation and suggests the involvement of photoperiodic mechanism in control of their seasonal cycles. Further, replacement of body and primary feathers progressed with gonadal regression only under long days suggesting that the two high energy demanding events of reproduction and molt are phased at two different times in the annual cycle of the bird and are photoperiodically regulated. Results of the final experiment involving exposure of photosensitive birds to a variety of photoperiodic treatments (9L/15D, 10L/14D, 11L/13D, 12L/12D, 14L/10D and 16L/8D) for 30 days suggested that the light falling for 11 h or more is important in inducing testicular growth and function in this species. Conclusion These results clearly indicate that despite of small photofluctuation, subtropical tree sparrows are capable of fine discrimination of photoperiodic information and use day length as a proximate environmental factor to time their seasonal responses similar to their conspecifics and related species at other latitudes suggesting the conservation of photoperiodic control mechanism in them. PMID:21223557

  6. Seasonal prolactin secretion and its role in seasonal reproduction: a review.

    PubMed

    Curlewis, J D

    1992-01-01

    The majority of seasonally breeding mammals show a seasonal pattern of prolactin secretion with peak concentrations in spring or summer and a nadir in autumn or winter. Photoperiod influences prolactin secretion via its effects on the secretion of the pineal hormone melatonin. Preliminary evidence suggests that the effects of melatonin on both prolactin and gonadotrophin secretion are via a common target area, possibly within the anterior hypothalamus, and that differences in response to photoperiod may be due to differences in the processing and/or interpretation of the melatonin signal. In contrast to seasonal gonadotrophin secretion, the seasonal changes in prolactin are not due to changes in the sensitivity of a feedback loop and so must be due to direct effects on the hypothalamic pathways that control prolactin secretion. Little else can be said with confidence about the neuroendocrine mechanisms that lead to the seasonal changes in prolactin secretion. Dopamine and noradrenaline turnover in the arcuate nucleus and median eminence decrease under short daylength. If catecholamine turnover in these structures is positively correlated with catecholamine concentrations in the long or short hypophysial portal vessels, it is unlikely that the decrease in prolactin concentration in winter is due to the effects of increased concentrations of dopamine or noradrenaline in the portal vessels. There is, however, evidence for increased pituitary sensitivity to dopamine under short daylength, so increased dopamine concentrations may not be required for suppression of prolactin secretion at this time. In addition to the diminished secretion of prolactin under short daylength, rate of prolactin synthesis and pituitary content of prolactin also decline although the mechanisms that regulate these changes are poorly understood. Although all seasonal breeders show a seasonal change in prolactin secretion, there are continuously breeding species in which prolactin secretion is also under photoperiodic control. It is likely therefore that a seasonal pattern of prolactin secretion is only evidence of neuroendocrine sensitivity to changing photoperiod. Depending upon the species, this sensitivity to the seasonal changes in daylength may or may not be accompanied by seasonal changes in a biological endpoint such as seasonal reproduction or indeed other adaptations. Whether the seasonal change in prolactin secretion is an endocrine mediator of such adaptations remains in contention. Certainly in some species this signal does have a role in reproduction. For example, in species with an obligate seasonal embryonic diapause, the seasonal increase in prolactin can act as a luteotrophin (mink and western spotted skunk) or luteostatin (Bennett's and tammar wallabies.(ABSTRACT TRUNCATED AT 400 WORDS)

  7. Developmental ecology of annual killifish Millerichthys robustus (Cyprinodontiformes: Cynolebiidae).

    PubMed

    Domínguez-Castanedo, Omar; Valdesalici, Stefano; Rosales-Torres, Ana María

    2017-11-01

    Populations of annual killifishes persist in temporary water bodies over the dry season through the expression of diapause in their drought-resistant embryos. Environmental cues may influence expression of the diapause phenotype during embryonic incubation. Millerichthys robustus is the only annual killifish distributed in North America. The aim of this review is to analyze the ecology of M. robustus development and contrast this with that of annual killifishes in austral locations. The temporary water bodies inhabited by M. robustus present the following environmental conditions: flood, drought, and humidity. During the flooding period, the environment presents the lowest temperatures, shortest photoperiod, and highest precipitation, and embryos were found in diapause I. The drought period features the highest temperatures and lowest precipitation, and embryos were found in diapause II. In contrast, during the humid period at the beginning of the rainy season, embryos were found in diapause I, II, and III, associated with the longer photoperiod and high temperatures. These dynamics of the diapause phenotypes can be explained by a combination of the strategies of phenotypic plasticity during flood and drought periods, and bet-hedging during the humid period. Moreover, the microenvironmental conditions in which embryos were buried could influence developmental trajectories. Developmental Dynamics 246:802-806, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. The Pineal and Photoperiodism in Artic Species,

    DTIC Science & Technology

    1977-01-01

    University of Iowa, Iowa City, Iowa *1 A chapter in the book: The Pineal Gland and Reproduction / ::. . / .. ,, " /-. ., . / >( JUN19 1981 A and sale; . td...Three Kinds of Bird Pineal Glands Arctic Mammals and Photoperiod Outline of Arctic Reproductive Physiology Arctic Pineal Physiology: Size Arctic... pineal physiology. Because this gland is not only associated with photoperiodic responses with some species, but also with resistance to cold (14; 21

  9. Increased Air Temperature during Simulated Autumn Conditions Impairs Photosynthetic Electron Transport between Photosystem II and Photosystem I1[OA

    PubMed Central

    Busch, Florian; Hüner, Norman P.A.; Ensminger, Ingo

    2008-01-01

    Changes in temperature and daylength trigger physiological and seasonal developmental processes that enable evergreen trees of the boreal forest to withstand severe winter conditions. Climate change is expected to increase the autumn air temperature in the northern latitudes, while the natural decreasing photoperiod remains unaffected. As shown previously, an increase in autumn air temperature inhibits CO2 assimilation, with a concomitant increased capacity for zeaxanthin-independent dissipation of energy exceeding the photochemical capacity in Pinus banksiana. In this study, we tested our previous model of antenna quenching and tested a limitation in intersystem electron transport in plants exposed to elevated autumn air temperatures. Using a factorial design, we dissected the effects of temperature and photoperiod on the function as well as the stoichiometry of the major components of the photosynthetic electron transport chain in P. banksiana. Natural summer conditions (16-h photoperiod/22°C) and late autumn conditions (8-h photoperiod/7°C) were compared with a treatment of autumn photoperiod with increased air temperature (SD/HT: 8-h photoperiod/22°C) and a treatment with summer photoperiod and autumn temperature (16-h photoperiod/7°C). Exposure to SD/HT resulted in an inhibition of the effective quantum yield associated with a decreased photosystem II/photosystem I stoichiometry coupled with decreased levels of Rubisco. Our data indicate that a greater capacity to keep the primary electron donor of photosystem I (P700) oxidized in plants exposed to SD/HT compared with the summer control may be attributed to a reduced rate of electron transport from the cytochrome b6f complex to photosystem I. Photoprotection under increased autumn air temperature conditions appears to be consistent with zeaxanthin-independent antenna quenching through light-harvesting complex II aggregation and a decreased efficiency in energy transfer from the antenna to the photosystem II core. We suggest that models that predict the effect of climate change on the productivity of boreal forests must take into account the interactive effects of photoperiod and elevated temperatures. PMID:18375598

  10. Increased air temperature during simulated autumn conditions impairs photosynthetic electron transport between photosystem II and photosystem I.

    PubMed

    Busch, Florian; Hüner, Norman P A; Ensminger, Ingo

    2008-05-01

    Changes in temperature and daylength trigger physiological and seasonal developmental processes that enable evergreen trees of the boreal forest to withstand severe winter conditions. Climate change is expected to increase the autumn air temperature in the northern latitudes, while the natural decreasing photoperiod remains unaffected. As shown previously, an increase in autumn air temperature inhibits CO2 assimilation, with a concomitant increased capacity for zeaxanthin-independent dissipation of energy exceeding the photochemical capacity in Pinus banksiana. In this study, we tested our previous model of antenna quenching and tested a limitation in intersystem electron transport in plants exposed to elevated autumn air temperatures. Using a factorial design, we dissected the effects of temperature and photoperiod on the function as well as the stoichiometry of the major components of the photosynthetic electron transport chain in P. banksiana. Natural summer conditions (16-h photoperiod/22 degrees C) and late autumn conditions (8-h photoperiod/7 degrees C) were compared with a treatment of autumn photoperiod with increased air temperature (SD/HT: 8-h photoperiod/22 degrees C) and a treatment with summer photoperiod and autumn temperature (16-h photoperiod/7 degrees C). Exposure to SD/HT resulted in an inhibition of the effective quantum yield associated with a decreased photosystem II/photosystem I stoichiometry coupled with decreased levels of Rubisco. Our data indicate that a greater capacity to keep the primary electron donor of photosystem I (P700) oxidized in plants exposed to SD/HT compared with the summer control may be attributed to a reduced rate of electron transport from the cytochrome b6f complex to photosystem I. Photoprotection under increased autumn air temperature conditions appears to be consistent with zeaxanthin-independent antenna quenching through light-harvesting complex II aggregation and a decreased efficiency in energy transfer from the antenna to the photosystem II core. We suggest that models that predict the effect of climate change on the productivity of boreal forests must take into account the interactive effects of photoperiod and elevated temperatures.

  11. The joint influence of photoperiod and temperature during growth cessation and development of dormancy in white spruce (Picea glauca).

    PubMed

    Hamilton, Jill A; El Kayal, Walid; Hart, Ashley T; Runcie, Daniel E; Arango-Velez, Adriana; Cooke, Janice E K

    2016-11-01

    Timely responses to environmental cues enable the synchronization of phenological life-history transitions essential for the health and survival of north-temperate and boreal tree species. While photoperiodic cues will remain persistent under climate change, temperature cues may vary, contributing to possible asynchrony in signals influencing developmental and physiological transitions essential to forest health. Understanding the relative contribution of photoperiod and temperature as determinants of the transition from active growth to dormancy is important for informing adaptive forest management decisions that consider future climates. Using a combination of photoperiod (long = 20 h or short = 8 h day lengths) and temperature (warm = 22 °C/16 °C and cool = 8 °C/4 °C day/night, respectively) treatments, we used microscopy, physiology and modeling to comprehensively examine hallmark traits of the growth-dormancy transition-including bud formation, growth cessation, cold hardiness and gas exchange-within two provenances of white spruce [Picea glauca (Moench) Voss] spanning a broad latitude in Alberta, Canada. Following exposure to experimental treatments, seedlings were transferred to favorable conditions, and the depth of dormancy was assessed by determining the timing and ability of spruce seedlings to resume growth. Short photoperiods promoted bud development and growth cessation, whereas longer photoperiods extended the growing season through the induction of lammas growth. In contrast, cool temperatures under both photoperiodic conditions delayed bud development. Photoperiod strongly predicted the development of cold hardiness, whereas temperature predicted photosynthetic rates associated with active growth. White spruce was capable of attaining endodormancy, but its release was environmentally determined. Dormancy depth varied substantially across experimental treatments suggesting that environmental cues experienced within one season could affect growth in the following season, which is particularly important for a determinate species such as white spruce. The joint influence of these environmental cues points toward the importance of including local constant photoperiod and shifting temperature cues into predictive models that consider how climate change may affect northern forests. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Potato growth in a porous tube water and nutrient delivery system

    NASA Technical Reports Server (NTRS)

    Bula, R. J.; Morrow, R. C.; Tibbitts, T. W.

    1996-01-01

    Potato (Solanum tuberosum L.) cv. 'Norland', vegetative growth and tuber productivity grown in the porous water and nutrient delivery system (PTNDS) developed by the Wisconsin Center for Space Automation and Robotics were compared with the vegetative growth and tuber productivity of plants grown in a peat:vermiculite potting mixture (PT/VR). The plants were grown at 12, 16, and 24-h light periods, 18 degrees C constant temperature, 70% relative humidity, and 300 micromol m-2 s-1 photosynthetic photon flux. Canopy height of plants grown in the PT/VR system was taller than that of plants grown in the PTNDS system. Canopy height differences were greatest when the plants were grown under a 24-h photoperiod. Leaf and stem dry masses were similar for plants grown in the two systems under the 12-h photoperiod. Under the 24-h photoperiod, leaf and stem dry masses of plants grown in the PT/VR system were more than 3 times those of plants grown in the PTNDS system. Tuber dry masses were similar for plants grown in the two systems under the 12-h photoperiod. Under the 24 h-photoperiod, tuber dry weights of plants grown in the PT/VR system were more than twice those of plants grown in the PTNDS system. A slightly higher harvest index (ratio of tuber weight to leaf plus stem weight) was noted for the plants grown in the PTNDS than for the plants grown in the PT/VR system. Plants grown in the PTNDS system at the 24-h photoperiod matured earlier than plants grown at this photoperiod in the PT/VR system. Vegetative growth and tuber productivity of plants grown under the 16-h photoperiod generally were intermediate to those noted for plants grown under the 12 and 24-h photoperiods. These results indicate that potato plants grown in a PTNDS system may require less plant growing volume, mature in a shorter time, and likely produce more tubers per unit area compared with plants grown in the PT/VR system. These plant characteristics are a distinct advantage for a plant growing unit of a CELSS.

  13. Migration phenology and breeding success are predicted by methylation of a photoperiodic gene in the barn swallow

    PubMed Central

    Saino, Nicola; Ambrosini, Roberto; Albetti, Benedetta; Caprioli, Manuela; De Giorgio, Barbara; Gatti, Emanuele; Liechti, Felix; Parolini, Marco; Romano, Andrea; Romano, Maria; Scandolara, Chiara; Gianfranceschi, Luca; Bollati, Valentina; Rubolini, Diego

    2017-01-01

    Individuals often considerably differ in the timing of their life-cycle events, with major consequences for individual fitness, and, ultimately, for population dynamics. Phenological variation can arise from genetic effects but also from epigenetic modifications in DNA expression and translation. Here, we tested if CpG methylation at the poly-Q and 5′-UTR loci of the photoperiodic Clock gene predicted migration and breeding phenology of long-distance migratory barn swallows (Hirundo rustica) that were tracked year-round using light-level geolocators. Increasing methylation at Clock poly-Q was associated with earlier spring departure from the African wintering area, arrival date at the European breeding site, and breeding date. Higher methylation levels also predicted increased breeding success. Thus, we showed for the first time in any species that CpG methylation at a candidate gene may affect phenology and breeding performance. Methylation at Clock may be a candidate mechanism mediating phenological responses of migratory birds to ongoing climate change. PMID:28361883

  14. Seed germination of three Ulmus species from Turkey as influenced by temperature and light.

    PubMed

    Cicek, Emrah; Tilki, Fahrettin

    2007-04-01

    The effect of temperature and light on the germination performance of Ulmus minor, Ulmus glabra and Ulmus laevis were studied in this research. Seeds were germinated under constant temperatures of 20 and 25 degrees C and alternating temperatures of 25/15 and 30/20 degrees C. Within each temperature regime, seeds were subjected daily to the following photoperiods: total darkness and 8 hr photoperiod. Temperature and light affected seed germination percentage (GP) and germination rate expressed as peak value (PV) in Ulmus minor and 25 and 30/20 degrees C under light gave the highest GP (>95%) and PV (>23). The temperatures of 25/15 and 30/20 degrees C gave the highest GP (>89%) in Ulmus glabra and light did not significantly affect GP. But the highest PV in Ulmus glabra was found at these temperatures under light. Germination percentage of Ulmus laevis was not affected by temperature and light, but the alternating temperature of 30/20 degrees C produced the highest germination rate under darkness.

  15. Migration phenology and breeding success are predicted by methylation of a photoperiodic gene in the barn swallow.

    PubMed

    Saino, Nicola; Ambrosini, Roberto; Albetti, Benedetta; Caprioli, Manuela; De Giorgio, Barbara; Gatti, Emanuele; Liechti, Felix; Parolini, Marco; Romano, Andrea; Romano, Maria; Scandolara, Chiara; Gianfranceschi, Luca; Bollati, Valentina; Rubolini, Diego

    2017-03-31

    Individuals often considerably differ in the timing of their life-cycle events, with major consequences for individual fitness, and, ultimately, for population dynamics. Phenological variation can arise from genetic effects but also from epigenetic modifications in DNA expression and translation. Here, we tested if CpG methylation at the poly-Q and 5'-UTR loci of the photoperiodic Clock gene predicted migration and breeding phenology of long-distance migratory barn swallows (Hirundo rustica) that were tracked year-round using light-level geolocators. Increasing methylation at Clock poly-Q was associated with earlier spring departure from the African wintering area, arrival date at the European breeding site, and breeding date. Higher methylation levels also predicted increased breeding success. Thus, we showed for the first time in any species that CpG methylation at a candidate gene may affect phenology and breeding performance. Methylation at Clock may be a candidate mechanism mediating phenological responses of migratory birds to ongoing climate change.

  16. The signal transduction pathways controlling in planta tuberization in potato: an emerging synthesis.

    PubMed

    Sarkar, Debabrata

    2008-01-01

    Tuberization is one of the multiple outputs of a single-input phytochrome B sensory system, involving several regulatory genes. Phytochrome B- and GA-mediated photoperiodic perception occurs in the leaf, and then the RNA acts as a systemic signal in the long-distance signaling pathway to initiate tuberization in the subapical region of an underground stolon. There is good evidence that flowering and tuberizing signals might be similar. Is there a cross-talk with an oxidative burst-mediated redox signaling pathway during tuberization? Is the lipoxygenase cascade involved in the formation of the perimedullary tissue in a growing tuber? Do aquaporins regulate cell division, expansion and elongation during stolon growth and tuber induction in potato? Is the adaptive diversity for tuberization under varying photoperiods a micro-evolutionary indicator of differential transduction of cell-to-cell signal molecules under spatial and temporal expression of regulatory genes encoding transcriptional activators? Taking these views into consideration, the review presents an interim synthesis of a signaling network regulating in planta tuberization in potato.

  17. Effects of changes in photoperiod and temperature on the estrous cycle of a captive female giant panda (Ailuropoda melanoleuca).

    PubMed

    Tay, Trisha T N; Li, Desheng; Huang, Yan; Wang, Pengyan; Tahar, Tasha; Kawi, Josephine

    2018-03-01

    The female giant panda's estrus is known to be photoperiod sensitive, triggered by increasing day length. A pair of giant pandas was brought to Singapore in September 2012 and exposed to a constant temperature and photoperiod during the first 2 years. The female did not show any signs of estrus during that period. In November 2014, photoperiod and temperature were manipulated to simulate seasonal changes, to investigate the effects of environmental factors on the sexual behavior of the giant pandas. This paper documents the changes and observations carried out from 2012 to 2016, in the attempt to breed this vulnerable species. © 2018 Wiley Periodicals, Inc.

  18. Reproductive responses of male Brandt's voles ( Lasiopodomys brandtii) to 6-methoxybenzoxazolinone (6-MBOA) under short photoperiod

    NASA Astrophysics Data System (ADS)

    Dai, Xin; Jiang, Lian Yu; Han, Mei; Ye, Man Hong; Wang, Ai Qin; Wei, Wan Hong; Yang, Sheng Mei

    2016-04-01

    The plant secondary metabolite 6-methoxybenzoxazolinone (6-MBOA) can stimulate and enhance animal reproduction. This compound has been successfully detected in Leymus chinensis, which is the main diet of Brandt's voles. The aim of this study was to investigate the effect of different 6-MBOA doses on the reproductive physiology of male Brandt's voles under a short photoperiod. The results showed that 6-MBOA administration increased relative testis weight, regardless of the dose, but it had little effect on the body mass. Low and middle doses of 6-MBOA increased the concentrations of luteinizing hormone and testosterone in the serum and the mRNA levels of StAR and CYP11a1 in the testes. However, 6-MBOA did not cause any significant increase in the mRNA levels of KiSS-1, GPR54, and GnRH compared to those in the control group. The mRNA level of KiSS-1 in the arcuate nucleus (ARC) was higher than that in the anteroventral periventricular nucleus (AVPV). Collectively, our results demonstrated that the number of KiSS-1-expressing neurons located in the ARC was the highest, and that 6-MBOA, which might modulate the reproductive activity along the hypothalamic-pituitary-gonadal axis, had a dose-dependent stimulatory effect on the reproductive activity of Brandt's voles under a short photoperiod. Our study provided insights into the mechanism of 6-MBOA action and the factors influencing the onset of reproduction in Brandt's voles.

  19. Reproductive responses of male Brandt's voles (Lasiopodomys brandtii) to 6-methoxybenzoxazolinone (6-MBOA) under short photoperiod.

    PubMed

    Dai, Xin; Jiang, Lian Yu; Han, Mei; Ye, Man Hong; Wang, Ai Qin; Wei, Wan Hong; Yang, Sheng Mei

    2016-04-01

    The plant secondary metabolite 6-methoxybenzoxazolinone (6-MBOA) can stimulate and enhance animal reproduction. This compound has been successfully detected in Leymus chinensis, which is the main diet of Brandt's voles. The aim of this study was to investigate the effect of different 6-MBOA doses on the reproductive physiology of male Brandt's voles under a short photoperiod. The results showed that 6-MBOA administration increased relative testis weight, regardless of the dose, but it had little effect on the body mass. Low and middle doses of 6-MBOA increased the concentrations of luteinizing hormone and testosterone in the serum and the mRNA levels of StAR and CYP11a1 in the testes. However, 6-MBOA did not cause any significant increase in the mRNA levels of KiSS-1, GPR54, and GnRH compared to those in the control group. The mRNA level of KiSS-1 in the arcuate nucleus (ARC) was higher than that in the anteroventral periventricular nucleus (AVPV). Collectively, our results demonstrated that the number of KiSS-1-expressing neurons located in the ARC was the highest, and that 6-MBOA, which might modulate the reproductive activity along the hypothalamic-pituitary-gonadal axis, had a dose-dependent stimulatory effect on the reproductive activity of Brandt's voles under a short photoperiod. Our study provided insights into the mechanism of 6-MBOA action and the factors influencing the onset of reproduction in Brandt's voles.

  20. Integrated transcriptomic and proteomic profiling of white spruce stems during the transition from active growth to dormancy.

    PubMed

    Galindo González, Leonardo M; El Kayal, Walid; Ju, Chelsea J-T; Allen, Carmen C G; King-Jones, Susanne; Cooke, Janice E K

    2012-04-01

    In the autumn, stems of woody perennials such as forest trees undergo a transition from active growth to dormancy. We used microarray transcriptomic profiling in combination with a proteomics analysis to elucidate processes that occur during this growth-to-dormancy transition in a conifer, white spruce (Picea glauca[Moench] Voss). Several differentially expressed genes were likely associated with the developmental transition that occurs during growth cessation in the cambial zone and the concomitant completion of cell maturation in vascular tissues. Genes encoding for cell wall and membrane biosynthetic enzymes showed transcript abundance patterns consistent with completion of cell maturation, and also of cell wall and membrane modifications potentially enabling cells to withstand the harsh conditions of winter. Several differentially expressed genes were identified that encoded putative regulators of cambial activity, cell development and of the photoperiodic pathway. Reconfiguration of carbon allocation figured centrally in the tree's overwintering preparations. For example, genes associated with carbon-based defences such as terpenoids were down-regulated, while many genes associated with protein-based defences and other stress mitigation mechanisms were up-regulated. Several of these correspond to proteins that were accumulated during the growth-to-dormancy transition, emphasizing the importance of stress protection in the tree's adaptive response to overwintering. © 2011 Blackwell Publishing Ltd.

  1. Major QTLs for critical photoperiod and vernalization underlie extensive variation in flowering in the Mimulus guttatus species complex.

    PubMed

    Friedman, Jannice; Willis, John H

    2013-07-01

    Species with extensive ranges experience highly variable environments with respect to temperature, light and soil moisture. Synchronizing the transition from vegetative to floral growth is important to employ favorable conditions for reproduction. Optimal timing of this transition might be different for semelparous annual plants and iteroparous perennial plants. We studied variation in the critical photoperiod necessary for floral induction and the requirement for a period of cold-chilling (vernalization) in 46 populations of annuals and perennials in the Mimulus guttatus species complex. We then examined critical photoperiod and vernalization QTLs in growth chambers using F(2) progeny from annual and perennial parents that differed in their requirements for flowering. We identify extensive variation in critical photoperiod, with most annual populations requiring substantially shorter day lengths to initiate flowering than perennial populations. We discover a novel type of vernalization requirement in perennial populations that is contingent on plants experiencing short days first. QTL analyses identify two large-effect QTLs which influence critical photoperiod. In two separate vernalization experiments we discover each set of crosses contain different large-effect QTLs for vernalization. Mimulus guttatus harbors extensive variation in critical photoperiod and vernalization that may be a consequence of local adaptation. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  2. Effect of body condition score of does and use of bucks subjected to added artificial light on estrus response of Alpine goats.

    PubMed

    Rivas-Muñoz, Raymundo; Carrillo, Evaristo; Rodriguez-Martinez, Rafael; Leyva, Carlos; Mellado, Miguel; Véliz, Francisco Gerardo

    2010-08-01

    The effects of body condition score of does and exposure to sexually active bucks after exposure to long-day artificial photoperiod were examined in mature anovulatory French Alpine goat in Northern Mexico. In June, goats in good (2.3 +/- 0.2, scale 1 to 4; n = 10) or poor (1.6 +/- 0.3; n = 10) body condition were exposed during 15 day to sexually active bucks, which had been exposed to long photoperiod (16:8-h light-dark cycle, starting in December). A third group of goats in good body condition was exposed to bucks kept under the natural photoperiod of this region (26 degrees N). All goats in good body condition exposed to bucks treated with prolonged photoperiod exhibited estrus behavior, whereas only 50% of the does in poor body condition showed estrous behavior during the 15-day buck exposure. None of the does in good body condition showed estrus when exposed to bucks under natural photoperiod. These results revealed that a good body condition is required for maximum estrus response in anestrous Alpine goats and that exposure of bucks to long photoperiod in winter is essential for an adequate stimulus to reestablish estrus cycles in anovulatory Alpine does in Northern Mexico.

  3. Seasonal and photoperiodic effects on lipid droplet size and lipid peroxidation in the brown adipose tissue of bank voles (Myodes glareolus).

    PubMed

    Bonda-Ostaszewska, Elżbieta; Włostowski, Tadeusz; Krasowska, Alicja; Kozłowski, Paweł

    2012-10-01

    Seasonal changes in lipid droplet size and lipid peroxidation in the brown adipose tissue (BAT) of wild bank voles were examined. In addition, a role of photoperiod in these changes was studied; bank voles were held from the birth under long photoperiod (LP) for 12 weeks, and then half of them was transferred to short photoperiod (SP) for 6 weeks and another one remained under LP. In the wild bank voles the absolute BAT weight was seasonally constant, while the significant differences in the lipid droplet size were observed. The smallest lipid droplets (mean, 11 μm(2)) were seen in winter; they increased by 30 % in spring and reached the highest size (24 μm(2)) in summer. Lipid peroxidation in the BAT did not differ significantly between the seasons, although high intraseason variation of this process was noted. The laboratory experiment revealed that the size of lipid droplets was determined by photoperiod; SP induced 13-fold decrease, and continuous exposure to LP brought about a further 2.5-fold increase in the size of lipid droplets. Conversely, a significant decrease in lipid peroxidation was seen in LP bank voles in comparison with the SP animals. The data indicate that short photoperiod is responsible for the small size of lipid droplets in the BAT of bank voles during winter, which may be a necessary requirement for high thermogenic capacity of the tissue. Photoperiod appears also to affect lipid peroxidation in the BAT of these animals.

  4. Interactive effects of photoperiod and light intensity on blood physiological and biochemical reactions of broilers grown to heavy weights.

    PubMed

    Olanrewaju, H A; Purswell, J L; Collier, S D; Branton, S L

    2013-04-01

    The effects of photoperiod, light intensity, and their interaction on blood acid-base balance, metabolites, and electrolytes in broiler chickens under environmentally controlled conditions were examined in 2 trials. A 3 × 3 factorial experiment in a randomized complete block design was used in this study. In each trial, all treatment groups were provided 23L:1D with 20 lx of intensity from placement to 7 d, and then subjected to the treatments. The 9 treatments consisted of 3 photoperiods [long/continuous (23L:1D) from d 8 to 56, regular/intermittent (2L:2D), and short/nonintermittent (8L:16D) from d 8 to 48 and 23L:1D from d 49 to 56, respectively] and exposure to 3 light intensities (10, 5.0, and 0.5 lx) from d 8 through d 56 at 50% RH. Feed and water were provided ad libitum. Venous blood samples were collected on d 7, 14, 28, 42, and 56. Main effects indicated that short/nonintermittent photoperiod significantly (P < 0.05) reduced BW, pH, partial pressure of O2, saturated O2, Na(+), K(+), Ca(2+), Cl(-), osmolality, triiodothyronine (T3), and total protein along with significantly (P < 0.05) elevated partial pressure of CO2, hematocrit, hemoglobin, and lactate concentrations. In addition, there were no effects of photoperiod on HCO3(-), glucose, anion gap, and thyroxine (T4). Plasma corticosterone was not affected by photoperiod, light intensity, or their interaction. There was no effect of light intensity on most of the blood variables examined. Acid-base regulation during photoperiod and light intensity exposure did not deteriorate despite a lower pH and higher partial pressure of CO2 with normal HCO3(-). These results indicate that continuous exposure of broiler chickens to varying light intensities had a minor effect on blood physiological variables, whereas the short photoperiod markedly affected most blood physiological variables without inducing physiological stress in broilers.

  5. Effect of reverse photoperiod on in vitro regeneration and piperine production in Piper nigrum L.

    PubMed

    Ahmad, Nisar; Abbasi, Bilal Haider; Fazal, Hina; Khan, Mubarak Ali; Afridi, Muhammad Siddique

    2014-01-01

    In this study, a novel approach for in vitro regeneration of Piper nigrum L. has been applied in order to increase healthy biomass, phytochemicals and piperine production via reverse photoperiod (16hD/8hL). Leaf portions of the seed-derived plants were placed on an MS-medium fortified with different PGRs. Under 16hD/8hL, thidiazuron (TDZ; 4.0 mg L⁻¹) and BA (1.5 mg L⁻¹) was found to be the most effective (<90%) in callus induction. Two concentrations (1.5, 2.0 mg L⁻¹) of the IBA produced>80% shoots from callus cultures. Healthy shoots were transferred to rooting medium and higher percentage of rooting (<90%) was observed on IBA (1.5 mg L⁻¹). These in vitro tissues were subjected to amino acid analysis, spectrophotometry, and HPLC. ARG, SER, THR, and TYR were the most abundant components out of 17 amino acids. Higher amino acid production was observed under normal photoperiod (16hL/8hD) than under reverse photoperiod (16hD/8hL). The highest total phenolic content (TPC; 9.91 mg/g-DW) and flavonoid content (7.38 mg/g-DW) were observed in callus cultures incubated under 16hL/8hD than other tissues incubated under 16hD/8hL photoperiod. Higher DPPH and PoMo activities were observed in tissues incubated under 16hL/8hD photoperiod, while ABTS and Fe²⁺ chelating activities were found higher in tissues incubated under reverse photoperiod. Significant quantities of piperine content were observed in all tissues except callus cultures. These results suggest that reverse photoperiod is a promising approach for callus induction, phytochemicals and piperine production for commercial applications. Copyright © 2013 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  6. Molecular mapping of QTL alleles of Brassica oleracea affecting days to flowering and photosensitivity in spring Brassica napus

    PubMed Central

    Bennett, Rick A.; Kebede, Berisso

    2018-01-01

    Earliness of flowering and maturity are important traits in spring Brassica napus canola–whether grown under long- or short-day condition. By use of a spring B. napus mapping population carrying the genome content of B. oleracea and testing this population under 10 to 18 h photoperiod and 18 to 20 0C (day) temperature conditions, we identified a major QTL on the chromosome C1 affecting flowering time without being influenced by photoperiod and temperature, and a major QTL on C9 affecting flowering time under a short photoperiod (10 h); in both cases, the QTL alleles reducing the number of days to flowering in B. napus were introgressed from the late flowering species B. oleracea. Additive effect of the C1 QTL allele at 14 to18 h photoperiod was 1.1 to 2.9 days; however, the same QTL allele exerted an additive effect of 6.2 days at 10 h photoperiod. Additive effect of the C9 QTL at 10 h photoperiod was 2.8 days. These two QTL also showed significant interaction in the control of flowering only under a short-day (10 h photoperiod) condition with an effect of 2.3 days. A few additional QTL were also detected on the chromosomes C2 and C8; however, none of these QTL could be detected under all photoperiod and temperature conditions. BLASTn search identified several putative flowering time genes on the chromosomes C1 and C9 and located the physical position of the QTL markers in the Brassica genome; however, only a few of these genes were found within the QTL region. Thus, the molecular markers and the genomic regions identified in this research could potentially be used in breeding for the development of early flowering photoinsensitive B. napus canola cultivars, as well as for identification of candidate genes involved in flowering time variation and photosensitivity. PMID:29320498

  7. Molecular mapping of QTL alleles of Brassica oleracea affecting days to flowering and photosensitivity in spring Brassica napus.

    PubMed

    Rahman, Habibur; Bennett, Rick A; Kebede, Berisso

    2018-01-01

    Earliness of flowering and maturity are important traits in spring Brassica napus canola-whether grown under long- or short-day condition. By use of a spring B. napus mapping population carrying the genome content of B. oleracea and testing this population under 10 to 18 h photoperiod and 18 to 20 0C (day) temperature conditions, we identified a major QTL on the chromosome C1 affecting flowering time without being influenced by photoperiod and temperature, and a major QTL on C9 affecting flowering time under a short photoperiod (10 h); in both cases, the QTL alleles reducing the number of days to flowering in B. napus were introgressed from the late flowering species B. oleracea. Additive effect of the C1 QTL allele at 14 to18 h photoperiod was 1.1 to 2.9 days; however, the same QTL allele exerted an additive effect of 6.2 days at 10 h photoperiod. Additive effect of the C9 QTL at 10 h photoperiod was 2.8 days. These two QTL also showed significant interaction in the control of flowering only under a short-day (10 h photoperiod) condition with an effect of 2.3 days. A few additional QTL were also detected on the chromosomes C2 and C8; however, none of these QTL could be detected under all photoperiod and temperature conditions. BLASTn search identified several putative flowering time genes on the chromosomes C1 and C9 and located the physical position of the QTL markers in the Brassica genome; however, only a few of these genes were found within the QTL region. Thus, the molecular markers and the genomic regions identified in this research could potentially be used in breeding for the development of early flowering photoinsensitive B. napus canola cultivars, as well as for identification of candidate genes involved in flowering time variation and photosensitivity.

  8. Photoperiod length paces the temporal orchestration of cell cycle and carbon-nitrogen metabolism in Crocosphaera watsonii.

    PubMed

    Dron, Anthony; Rabouille, Sophie; Claquin, Pascal; Talec, Amélie; Raimbault, Virginie; Sciandra, Antoine

    2013-12-01

    We analysed the effect of photoperiod length (PPL) (16:8 and 8:16 h of light-dark regime, named long and short PPL, respectively) on the temporal orchestration of the two antagonistic, carbon and nitrogen acquisitions in the unicellular, diazotrophic cyanobacterium Crocosphaera watsonii strain WH8501 growing diazotrophically. Carbon and nitrogen metabolism were monitored at high frequency, and their patterns were compared with the cell cycle progression. The oxygen-sensitive N2 fixation process occurred mainly during the dark period, where photosynthesis cannot take place, inducing a light-dark cycle of cellular C : N ratio. Examination of circadian patterns in the cell cycle revealed that cell division occurred during the midlight period, (8 h and 4 h into the light in the long and short PPL conditions, respectively), thus timely separated from the energy-intensive diazotrophic process. Results consistently show a nearly 5 h time lag between the end of cell division and the onset of N2 fixation. Shorter PPLs affected DNA compaction of C. watsonii cells and also led to a decrease in the cell division rate. Therefore, PPL paces the growth of C. watsonii: a long PPL enhances cell division while a short PPL favours somatic growth (biomass production) with higher carbon and nitrogen cell contents. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Photosynthetic photon flux, photoperiod, and temperature effects on emissions of (Z)-3-hexenal, (Z)-3-hexenol, and (Z)-3-hexenyl acetate from lettuce

    NASA Technical Reports Server (NTRS)

    Charron, C. S.; Cantliffe, D. J.; Wheeler, R. M.; Manukian, A.; Heath, R. R.

    1996-01-01

    To investigate the effects of environment on plant volatile emissions, 'Waldmann's Green' leaf lettuce was cultivated under different levels of photosynthetic photon flux (PPF), photoperiod, and temperature. A modified growth chamber was used to sample plant volatile emissions nondestructively, over time, and under controlled conditions. Total volatile emission rates were significantly higher from lettuce cultivated under PPF of 360 or 200 micromoles m-2 s-1 compared to 105 micromoles m-2 s-1, and significantly higher under a 16-h photoperiod than an 8-h photoperiod. No differences were detected among emission rates from different temperature treatments. In controlled environments, emissions could be regulated by adjusting environmental conditions accordingly.

  10. Geography of the circadian gene clock and photoperiodic response in western North American populations of the three-spined stickleback Gasterosteus aculeatus.

    PubMed

    O'Brien, C; Unruh, L; Zimmerman, C; Bradshaw, W E; Holzapfel, C M; Cresko, W A

    2013-03-01

    Controlled laboratory experiments were used to show that Oregon and Alaskan three-spined stickleback Gasterosteus aculeatus, collected from locations differing by 18° of latitude, exhibited no significant variation in length of the polyglutamine domain of the clock protein or in photoperiodic response within or between latitudes despite the fact that male and female G. aculeatus are photoperiodic at both latitudes. Hence, caution is urged when interpreting variation in the polyglutamine repeat (PolyQ) domain of the gene clock in the context of seasonal activities or in relationship to photoperiodism along geographical gradients. © 2013 The Authors. Journal of Fish Biology © 2013 The Fisheries Society of the British Isles.

  11. Geographic Variation of Diapause and Sensitive Stages of Photoperiodic Response in Laodelphax striatellus Fallén (Hemiptera: Delphacidae)

    PubMed Central

    Hou, Yang-Yang; Xu, Lan-Zhen; Wu, Yan; Wang, Peng; Shi, Jin-Jian; Zhai, Bao-Ping

    2016-01-01

    Large numbers of the small brown planthopper Laodelphax striatellus (Fallén) (Hemiptera: Delphacidae) occur in temperate regions, causing severe losses in rice, wheat, and other economically important crops. The planthoppers enter diapause in the third- or fourth-instar nymph stage, induced by short photoperiods and low temperatures. To investigate the geographic variation in L. striatellus diapause, we compared the incidence of nymphal diapause under various constant temperature (20 and 27°C) and a photoperiod of 4:20, 8:16, 10:14, 12:12, 14:10, and 16:8 (L:D) h regimes among three populations collected from Hanoi (21.02° N, 105.85° E, northern Vietnam), Jiangyan (32.51° N, 120.15° E, eastern China), and Changchun (43.89° N, 125.32° E, north-eastern China). Our results indicated that there were significant geographic variations in the diapause of L. striatellus. When the original latitude of the populations increased, higher diapause incidence and longer critical photoperiod (CP) were exhibited. The CPs of the Jiangyan and Changchun populations were ∼12 hr 30 min and 13 hr at 20°C, and 11 hr and 11 hr 20 min at 27°C, respectively. The second- and third-instar nymphs were at the stage most sensitive to the photoperiod. However, when the fourth- and fifth-instar nymphs were transferred to a long photoperiod, the diapause-inducing effect of the short photoperiod on young instars was almost reversed. The considerable geographic variations in the nymphal diapause of L. striatellus reflect their adaptation in response to a variable environment and provide insights to develop effective pest management strategies. PMID:26839318

  12. Discussion of Yellow Starthistle Response to Irradiance, Photoperiod, and CO2

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.

    2016-01-01

    Yellow Starthistle (Centaurea solstitialis) is a native annual weed of Eurasia and since introduction into the US has become an invasive and noxious weed. It grows in a rosette habit during the vegetative state and usually bolts in summer to produce a large and branched flowering stem. Time to flowering in Yellow Starthistle has been attributed to photoperiod, nitrogen nutrition, temperature, and water stress. We executed a series of studies to investigate the role of light, both photoperiod and photosynthetic photon flux, on flowering and development in Yellow Starthistle. Treatments were presented in 4 ways: (1) Varying day length with constant photosynthetic photon flus (PPF) - providing increasing daily integrated Photosynthetic Photon (PP) exposure with longer day lengths, (2) Varying day length while adjusting PPF to maintain daily PP exposure for all treatments, (3) Extending photoperiod treatments beyond common 12-h photosynthetic period with low light levels to maintain both PPF and daily PP across all treatments; and (4) Reciprocal exchange of plant among photoperiod treatments. Yellow Starthistle appears to be a long-day plant with a critical day length requirement between 14-h and 16-h to induce transition from vegetative to floral stages in development. PPF and daily absorbed photons did not affect time to vegetative / floral stage transition, but did affect factors such as biomass accumulation and canopy parameters such as specific leaf mass. Reciprocal exchange of plants between floral inducing and inhibiting photoperiod treatments, starting at 2-weeks post germination, had no effect on to flower. Flowering was determined by photoperiod experienced during the first 2-weeks (or less) post germination. Yellow Starthistle net photosynthetic response to elevated atmospheric CO2 concentrations over a range of photosynthetically active radiation flux rates and temperatures will also be presented and discussed.

  13. Discussion of Yellow Starthistle Response to Photosynthetic Irradiance, Photoperiod, and CO2

    NASA Technical Reports Server (NTRS)

    Bubenheim, David

    2017-01-01

    Yellow Starthistle (Centaurea solstitialis) is a native annual weed of Eurasia and since introduction into the United STates has become an invasive and noxious weed. It grows in a rosette habit during the vegetative state and usually bolts in summer to produce a large and branched flowering stem. Time to flowering in Yellow Starthistle has been attributed to photoperiod, nitrogen nutrition, temperature, and water stress. We executed a series of studies to investigate the role of light, both photoperiod and photosynthetic photon flux, on flowering and development in Yellow Starthistle. Treatments were presented in 4 ways: 1) varying day length with constant photosynthetic photon flus (PPF) providing increasing daily integrated Photosynthetic Photon (PP) exposure with longer day lengths 2) varying day length while adjusting PPF to maintain daily PP exposure for all treatments 3) extending photoperiod treatments beyond common 12-h photosynthetic period with low light levels to maintain both PPF and daily PP across all treatments4)reciprocal exchange of plant among photoperiod treatments Yellow Starthistle appears to be a long-day plant with a critical day length requirement between 14-h and 16-h to induce transition from vegetative to floral stages in development. PPF and daily absorbed photons did not affect time to vegetative floral stage transition, but did affect factors such as biomass accumulation and canopy parameters such as specific leaf mass. Reciprocal exchange of plants between floral inducing and inhibiting photoperiod treatments, starting at 2-weeks post germination, had no effect on to flower. Flowering was determined by photoperiod experienced during the first 2-weeks (or less) post germination.Yellow Starthistle net photosynthetic response to elevated atmospheric CO2 concentrations over a range of photosynthetically active radiation flux rates and temperatures will also be presented and discussed.

  14. Supplementary dim light differentially influences sexual maturity, oviposition time, and melatonin rhythms in pullets.

    PubMed

    Lewis, P D; Perry, G C; Morris, T R; English, J

    2001-12-01

    The addition of two 3-h periods of very dim light, one before and one after a normal 8-h photoperiod, advances sexual maturity in pullets by about a week. This trial tested the hypothesis that dim light given before a short day of normal intensity is linked to form a more stimulatory day length and that dim light given after it is photosexually ignored. Pullets were reared from 2 d of age on 8-h photoperiods. From 10 wk, they were continued on 8-h photoperiods, transferred to 16 h, or given an 8-h period of dim light (0.09 lx) immediately before or after the main 8-h photoperiod. The bright/dim and dim/ bright groups matured at the same age, thus disproving the hypothesis tested. Both groups matured 1 wk earlier than the 8-h controls but 5 wk later than birds transferred to 16-h photoperiod. Oviposition time was similar for 8-h controls and bright/dim hens and delayed by 3 h for 16-h birds, but phase advanced by 2.4 h for dim/bright hens. Plasma melatonin rhythm was phase-advanced by about 5 h in the dim/bright hens and retarded by about 5 h in the bright/dim hens, suggesting a 13-h subjective day. However, these treatments were not regarded as fully stimulatory, as a transfer to a normal 13-h photoperiod at this age advances maturity by 5 to 6 wk. These findings show that the addition of a period of dim light to a normal nonstimulatory photoperiod differentially affects the clocks that control sexual maturation, plasma melatonin concentration, and oviposition time.

  15. Geographic Variation of Diapause and Sensitive Stages of Photoperiodic Response in Laodelphax striatellus Fallén (Hemiptera: Delphacidae).

    PubMed

    Hou, Yang-Yang; Xu, Lan-Zhen; Wu, Yan; Wang, Peng; Shi, Jin-Jian; Zhai, Bao-Ping

    2016-01-01

    Large numbers of the small brown planthopper Laodelphax striatellus (Fallén) (Hemiptera: Delphacidae) occur in temperate regions, causing severe losses in rice, wheat, and other economically important crops. The planthoppers enter diapause in the third- or fourth-instar nymph stage, induced by short photoperiods and low temperatures. To investigate the geographic variation in L. striatellus diapause, we compared the incidence of nymphal diapause under various constant temperature (20 and 27 °C) and a photoperiod of 4:20, 8:16, 10:14, 12:12, 14:10, and 16:8 (L:D) h regimes among three populations collected from Hanoi (21.02° N, 105.85° E, northern Vietnam), Jiangyan (32.51° N, 120.15° E, eastern China), and Changchun (43.89° N, 125.32° E, north-eastern China). Our results indicated that there were significant geographic variations in the diapause of L. striatellus. When the original latitude of the populations increased, higher diapause incidence and longer critical photoperiod (CP) were exhibited. The CPs of the Jiangyan and Changchun populations were ∼ 12 hr 30 min and 13 hr at 20 °C, and 11 hr and 11 hr 20 min at 27 °C, respectively. The second- and third-instar nymphs were at the stage most sensitive to the photoperiod. However, when the fourth- and fifth-instar nymphs were transferred to a long photoperiod, the diapause-inducing effect of the short photoperiod on young instars was almost reversed. The considerable geographic variations in the nymphal diapause of L. striatellus reflect their adaptation in response to a variable environment and provide insights to develop effective pest management strategies. © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.

  16. Influences of graded dose of melatonin on the levels of blood glucose and adrenal catecholamines in male roseringed parakeets (Psittacula krameri ) under different photoperiods.

    PubMed

    Maitra, S K; Dey, M; Dutta, S; Bhattacharya, S; Dey, R; Sengupta, A

    2000-12-01

    Effects of daily evening (just before the onset of darkness in a 24 h light dark cycle) administration of graded doses (25, 50, or 100 microg/100 g body wt./day for 30 days) of melatonin on the concentrations of blood glucose and adrenal catecholamines were studied in sexually active male roseringed parakeets under natural (NP; approximately 12L: 12D) and artificial long (LP; 16L: 8D) and short (SP; 8L: 16D) photoperiods. Blood samples and adrenal glands were collected from each bird during the mid-day on the following day of the last treatment. The concentrations of glucose in blood and epinephrine (E) and norepinephrine (NE) in the adrenals were measured. The results of the study indicated that exogenous melatonin induces hypo- or hyperglycemia depending on the dose of hormone administered as well as to the length of photoperiod to which birds were exposed. The levels of E and NE in the adrenals were shown also to vary in relation to photoperiod and the dose of melatonin administered. But the nature of the influence of melatonin becomes different under altered photoperiodic conditions. It appears that short photoperiods are more effective than long photoperiods as a modulator of glycemic and adrenal catecholaminergic responses to exogenous melatonin. A statistically significant correlation between the levels of blood glucose and that of E and NE in the adrenals was found in the control birds, but not in the melatonin treated birds. The results suggested that the responses of blood glucose and adrenal catecholamines to the treatment with melatonin in the roseringed parakeets may not be dependent on each other.

  17. Three-year lifecycle, large body, and very high threshold temperature in the cricket Gryllus argenteus for special adaptation to desiccation cycle in Malawi.

    PubMed

    Kosumi, Takuya; Takeda, Makio

    2017-08-08

    In temperate climates, the initiation and termination of diapause synchronize the stress-tolerant stage with the stressful season and reproduction with the non-stressful season in many insects. Synchronization is often regulated by photoperiodism.Voltinism and the ultimate size of adults are also important determinants for their lifecycle, and different diapause stages and voltinism patterns are known in crickets.Here, we investigated the life history of the African cricket Gryllus argenteus from Malawi, which is a typical arid tropical highland. The climate is characterized by alternating arid and wet seasons, each of which lasts for half a year, and where the available heat mass is much less than lowlands at the same latitude. We first measured the nymphal duration at each rearing temperature and calculated the lower developmental threshold (t 0 ) to be 20.19 °C based on Ikemoto and Takai (2000) and 19.38 °C based on a conventional line-fitting method. These values are very high relative to many other insects. The local temperature in winter does not fall below 15 °C, but this is much higher than the lethal limit. This suggested that critical stress in this locality was not coldness but low precipitation in winter. We estimated, based both on local temperature change and the Ikemoto and Takai's t 0 , that G. argenteus required 3 years to complete its lifecycle unlike wet lowland species, where univoltinism or multi-voltinism are commonplace. Photoperiodism was observed in this species, but due to a lag between annual cycles in photoperiod, temperature, and humidity, photoperiodism alone cannot atune their lifecycle with local conditions.Synchronization in this species was achieved by three different adaptations: photoperiodism, high t 0 , and large body size, which give it a long lifecycle. Although the species cannot achieve a univoltine lifecycle because of its high t 0 value, it can escape from dry season by entering diapause at moderate temperatures, probably thereby achieving adaptive synchrony of lifecycle with both favorable and unfavorable seasons. A comparison between a conventional photothermogram and a newly formulated photohydrogram or photohygrogram demonstrates that even though sufficient heat is available, scarcity of water and thus scarcity of foliage should force the cricket to maintain diapause at intermediate temperature. The results suggested that high t 0 , large body size, and multi-ennial lifecycle mutually affect each other and formulate a unique adaptation under such an extreme environment.

  18. Three-year lifecycle, large body, and very high threshold temperature in the cricket Gryllus argenteus for special adaptation to desiccation cycle in Malawi

    NASA Astrophysics Data System (ADS)

    Kosumi, Takuya; Takeda, Makio

    2017-10-01

    In temperate climates, the initiation and termination of diapause synchronize the stress-tolerant stage with the stressful season and reproduction with the non-stressful season in many insects. Synchronization is often regulated by photoperiodism. Voltinism and the ultimate size of adults are also important determinants for their lifecycle, and different diapause stages and voltinism patterns are known in crickets. Here, we investigated the life history of the African cricket Gryllus argenteus from Malawi, which is a typical arid tropical highland. The climate is characterized by alternating arid and wet seasons, each of which lasts for half a year, and where the available heat mass is much less than lowlands at the same latitude. We first measured the nymphal duration at each rearing temperature and calculated the lower developmental threshold ( t 0) to be 20.19 °C based on Ikemoto and Takai (2000) and 19.38 °C based on a conventional line-fitting method. These values are very high relative to many other insects. The local temperature in winter does not fall below 15 °C, but this is much higher than the lethal limit. This suggested that critical stress in this locality was not coldness but low precipitation in winter. We estimated, based both on local temperature change and the Ikemoto and Takai's t 0, that G. argenteus required 3 years to complete its lifecycle unlike wet lowland species, where univoltinism or multi-voltinism are commonplace. Photoperiodism was observed in this species, but due to a lag between annual cycles in photoperiod, temperature, and humidity, photoperiodism alone cannot atune their lifecycle with local conditions. Synchronization in this species was achieved by three different adaptations: photoperiodism, high t 0, and large body size, which give it a long lifecycle. Although the species cannot achieve a univoltine lifecycle because of its high t0 value, it can escape from dry season by entering diapause at moderate temperatures, probably thereby achieving adaptive synchrony of lifecycle with both favorable and unfavorable seasons. A comparison between a conventional photothermogram and a newly formulated photohydrogram or photohygrogram demonstrates that even though sufficient heat is available, scarcity of water and thus scarcity of foliage should force the cricket to maintain diapause at intermediate temperature. The results suggested that high t 0, large body size, and multi-ennial lifecycle mutually affect each other and formulate a unique adaptation under such an extreme environment.

  19. Effect of differential photoperiod treatment on Leydig cell ultrastructure in the bank vole (Clethrionomys glareolus, S.).

    PubMed

    Tähkä, K M

    1988-08-01

    Juvenile bank voles (18-22 days of age) born and reared in a stimulatory long photoperiod (18L:6D, lights on 0600-2400 hr) were subjected either to a long photoperiod (18L:6D, Group L) or to a short photoperiod (6L:18D, lights on 0800-1400 hr, Group S) for 6 to 8 weeks whereafter the animals were killed by decapitation. Possible photoperiod-induced changes in Leydig cell ultrastructure were studied by conventional transmission electron microscopy and stereological methods. Striking differences in Leydig cell ultrastructure between the experimental groups were encountered. Light deprivation induced a marked decrease in the cytoplasmic and nuclear volume as well as in the amounts of smooth endoplasmic reticulum (SER), rough endoplasmic reticulum, mitochondria, and lipid inclusions in the Leydig cells. The number of myelin bodies and dense bodies seemed to be somewhat higher in the regressive Group S Leydig cells. These results are in good agreement with our previous histological and biochemical studies on the effects of photoperiod on Leydig cell function and suggest that in the bank vole the volume of mitochondria and SER in particular correlates positively with the steroidogenic capacity (the activity of C20 alpha 22-C27 desmolase, 17 alpha-hydroxylase, and C17-20 lyase in particular) in the Leydig cell.

  20. PHOTOPERIODIC BEHAVIOR OF SUNFLOWER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyer, H.J.; Skok, J.; Scully, N.J.

    1959-09-01

    S>The sunflower, Helianthus annuus L., var. Mammoth Russian, has been shown to be a short-day type plant. It will, however, flower under a wide range of photoperiodic conditions, including excessively long days (as long as 20 hours) and a regime in which the daily dark periods are interrupted by 1-hour light periods if it be permitted to grow for a sufficiently long period. Short photoperiods promote flowering both by hastening the initiation of flower primordia and by hastening the development of primordia into macroscropic floral structures. Interruption of the dark periods by light is effective in inhibiting both the initiationmore » of flower primordia as well as the development of primordia into macroscopic floral structures. Sunflower thus exhibits a wide range of photoperiodic conditions under which flowering may take place plus an unusual variability in the time of flowering among individual plants in a given population. This may be related to the phenomenon pointed out by Habermann and Wallace: that a certain maturation requiremert or vegetative growth requirement for flowering must be met before flowering can occur. Stem elongation in sunflower is favored by long photoperiods. (auth)« less

  1. Melatonin and 6-methoxy-2-benzoxazolinone (6-MBOA) alter the response of the male Syrian hamster to natural photoperiod

    NASA Astrophysics Data System (ADS)

    Vaughan, M. K.; Little, J. C.; Powell, D. C.; Puig-Domingo, M.; Reiter, R. J.

    1988-06-01

    Adult male hamsters bearing either a blank beeswax, 6-methoxy-2-benzoxazolinone (6-MBOA), or melatonin pellet were exposed to 8 weeks (Oct. 6 Dec. 6) of natural autumn decreasing photoperiod (<11 h light) and temperature conditions (mean 10°C for last 4 weeks) or to a 14 h light/10 h dark (14L∶10D) photoperiod and controlled temperature (20°C). Melatonin but not 6-MBOA pellets partially prevented the combined effects of short photoperiod and cold temperatures on the testes and accessory organs. However, both 6-MBOA-and melatonin-treated hamsters maintained outdoors had significantly higher pituitary follicle stimulating hormone (FSH) values compared to their respective indoor-treated controls or to the animals kept outdoors and treated with a blank beeswax pellet. When one compares the various effects of 6-MBOA and melatonin (2 mg/month) on the reproductive system of the male hamster, 6-MBOA is not as effective as melatonin in altering reproductive responses to short photoperiod and cool temperatures at the dose administered.

  2. Photoperiodism of Male Offspring Production in the Water Flea Daphnia pulex.

    PubMed

    Toyota, Kenji; Sato, Tomomi; Tatarazako, Norihisa; Iguchi, Taisen

    2017-08-01

    Photoperiodism is a biological seasonal timing system utilized to regulate development and reproduction in organisms. The freshwater micro-crustacean Daphnia pulex displays environmental sex determination, the precise physiological mechanisms of which are largely unknown due to the lack of an experimental system to induce female or male offspring production by alterations of the rearing environment. We recently found that D. pulex, WTN6 strain, produces female or male offspring in response to long-day or short-day conditions, respectively. Taking advantage of this system, here we report the photoperiodic response curve for male offspring production, showing 12 hours as natural critical daylength (50% incidence of male-producing mothers), and that male offspring inducibility is highly sensitive to photoperiodic alterations. By using monochromatic light emitting diode (LED) devices, we found that the effective wavelength is red-light (627 nm), which stably induces male offspring production. This suggests that the red-light photoreceptor may be decisive in the primary step of sex determination process in this strain. Our findings provide the first insights into photoperiodism and red-light as key factors in triggering male offspring production in daphnids.

  3. Annual gonadal cycles in birds: modeling the effects of photoperiod on seasonal changes in GnRH-1 secretion.

    PubMed

    Dawson, Alistair

    2015-04-01

    This paper reviews current knowledge of photoperiod control of GnRH-1 secretion and proposes a model in which two processes act together to regulate GnRH1 secretion. Photo-induction controls GnRH1 secretion and is directly related to prevailing photoperiod. Photo-inhibition, a longer term process, acts through GnRH1 synthesis. It progresses each day during daylight hours, but reverses during darkness. Thus, photo-inhibition gradually increases when photoperiods exceed 12h, and reverses under shorter photoperiods. GnRH1 secretion on any particular day is the net result of these two processes acting in tandem. The only difference between species is their sensitivity to photo-inhibition. This can potentially explain differences in timing and duration of breeding seasons between species, why some species become absolutely photorefractory and others relatively photorefractory, why breeding seasons end at the same time at different latitudes within species, and why experimental protocols sometimes produce results that appear counter to what happens naturally. Copyright © 2014 The Author. Published by Elsevier Inc. All rights reserved.

  4. Plasticity of crassulacean acid metabolism at subtropical latitudes: a pineapple case study.

    PubMed

    Rainha, Nuno; Medeiros, Violante P; Câmara, Mariana; Faustino, Hélder; Leite, João P; Barreto, Maria do Carmo; Cruz, Cristina; Pacheco, Carlos A; Ponte, Duarte; Bernardes da Silva, Anabela

    2016-01-01

    Plants with the crassulacean acid metabolism (CAM) express high-metabolic plasticity, to adjust to environmental stresses. This article hypothesizes that irradiance and nocturnal temperatures are the major limitations for CAM at higher latitudes such as the Azores (37°45'N). Circadian CAM expression in Ananas comosus L. Merr. (pineapple) was assessed by the diurnal pattern of leaf carbon fixation into l-malate at the solstices and equinoxes, and confirmed by determining maximal phosphoenolpyruvate carboxylase (PEPC) activity in plant material. Metabolic adjustments to environmental conditions were confirmed by gas exchange measurements, and integrated with environmental data to determine CAM's limiting factors: light and temperature. CAM plasticity was observed at the equinoxes, under similar photoperiods, but different environmental conditions. In spring, CAM expression was similar between vegetative and flowering plants, while in autumn, flowering (before anthesis) and fructifying (with fully developed fruit before ripening) plants accumulated more l-malate. Below 100 µmol m(-2) s(-1) , CAM phase I was extended, reducing CAM phase III during the day. Carbon fixation inhibition may occur by two major pathways: nocturnal temperature (<15°C) inhibiting PEPC activity and l-malate accumulation; and low irradiance influencing the interplay between CAM phase I and III, affecting carboxylation and decarboxylation. Both have important consequences for plant development in autumn and winter. Observations were confirmed by flowering time prediction using environmental data, emphasizing that CAM expression had a strong seasonal regulation due to a complex network response to light and temperature, allowing pineapple to survive in environments not suitable for high productivity. © 2015 Scandinavian Plant Physiology Society.

  5. A novel function for the pineal organ in the control of swim depth in the Atlantic halibut larva

    NASA Astrophysics Data System (ADS)

    Novales Flamarique, Iñigo

    2002-02-01

    The pineal organ of vertebrates is a photo-sensitive structure that conveys photoperiod information to the brain. This information influences circadian rhythm and related metabolic processes such as thermoregulation, hatching time, body growth, and the timing of reproduction. This study demonstrates extra-ocular light responses that control swim depth in the larva of the Atlantic halibut, Hyppoglosus hyppoglosus. Young larvae without a functional eye (<29 days) swim upwards after an average delay of 5 s following the onset of a downwelling light stimulus, but sink downwards a few seconds later. Older larvae (>=29 days), which possess a functional eye, swim immediately downwards (microsecond delay) following the onset of the light stimulus, but proceed to swim upwards several seconds later. These two response patterns are thus opposite in polarity and have different time kinetics. Because the pineal organ of the Atlantic halibut develops during the embryonic stage, and because it is the only centre in the brain that expresses functional visual pigments (opsins) at early larval stages, it is the only photosensory organ capable of generating the extra-ocular responses observed.

  6. Seasonal adaptation of dwarf hamsters (Genus Phodopus): differences between species and their geographic origin.

    PubMed

    Müller, D; Hauer, J; Schöttner, K; Fritzsche, P; Weinert, D

    2015-12-01

    The genus Phodopus consists of three species--P. campbelli (Pc), P. sungorus (Ps), and P. roborovskii (Pr). They inhabit steppes, semi-deserts, and deserts in continental Asia with a climate changing from a moderate to a hard Continental one with extreme daily and seasonal variations. These different environmental challenges are likely to have consequences for hamsters' morphology, physiology, and behavior. Hamsters of all three species were investigated during the course of the year in the laboratory though using natural lighting and temperature conditions. Motor activity and body temperature were measured continuously, and body mass, testes size, and fur coloration every 1-2 weeks. With regard to the pattern of activity, nearly twice as many Pc as Ps hamsters (25 vs. 14%) failed to respond to changes of photoperiod, whereas all Pr hamsters did. Body mass and testes size were high in summer and low in winter, with the biggest relative change in Ps and the lowest in Pr hamsters. Changes of fur coloration were found in Ps hamsters only. All responding animals (that is excluding Pr), exhibited regular torpor bouts during the short winter days. In autumn, seasonal changes started considerably earlier in Ps hamsters. To investigate the putative causes of these different time courses, a further experiment was performed, to identify the critical photoperiod. Hamsters were kept for 10 weeks under different photoperiods, changing from 16 to 8 h light per day. Motor activity was recorded continuously, to identify responding and non-responding animals. Body mass was measured at the beginning and the end of the experiment, testes mass only at the end. The critical photoperiod was found to be similar in all three species. Though in a further experiment, Pc and Pr hamsters showed a delayed response, whereas the changes in Ps hamsters started immediately following transfer to short-day conditions. The results show that interspecific differences in seasonal adaptation exist, even between the closely related Ps and Pc hamsters, possibly due to different conditions in their natural habitat. Also, the impact of environmental factors like climatic conditions and food resources may differ between species.

  7. Latitudinal variation in photoperiodic response of the three-spined stickleback Gasterosteus aculeatus in western North America

    PubMed Central

    Yeates-Burghart, Q. S.; O’Brien, C.; Cresko, W. A.; Holzapfel, C. M.; Bradshaw, W. E.

    2014-01-01

    Reproductive maturation in both male and female three-spined stickleback Gasterosteus aculeatus was strongly photoperiodic in a northern population (Alaska, 61° N) but not in a southern population (Oregon, 43° N) from western North America. Increasing reliance on photoperiod with increasing latitude is a general phenomenon among vertebrates, and is probably due to the anticipation of a narrower window of opportunity for reproduction and development at higher latitudes. PMID:20738673

  8. Periodic regulation of expression of genes for kisspeptin, gonadotropin-inhibitory hormone and their receptors in the grass puffer: Implications in seasonal, daily and lunar rhythms of reproduction.

    PubMed

    Ando, Hironori; Shahjahan, Md; Kitahashi, Takashi

    2018-04-03

    The seasonal, daily and lunar control of reproduction involves photoperiodic, circadian and lunar changes in the activity of kisspeptin, gonadotropin-inhibitory hormone (GnIH) and gonadotropin-releasing hormone (GnRH) neurons. These changes are brought through complex networks of light-, time- and non-photic signal-dependent control mechanisms, which are mostly unknown at present. The grass puffer, Takifugu alboplumbeus, a semilunar spawner, provides a unique and excellent animal model to assess this question because its spawning is synchronized with seasonal, daily and lunar cycles. In the diencephalon, the genes for kisspeptin, GnIH and their receptors showed similar expression patterns with clear seasonal and daily oscillations, suggesting that they are regulated by common mechanisms involving melatonin, circadian clock and water temperature. For implications in semilunar-synchronized spawning rhythm, melatonin receptor genes showed ultradian oscillations in expression with the period of 14.0-15.4 h in the pineal gland. This unique ultradian rhythm might be driven by circatidal clock. The possible circatidal clock and circadian clock in the pineal gland may cooperate to drive circasemilunar rhythm to regulate the expression of the kisspeptin, GnIH and their receptor genes. On the other hand, high temperature (over 28 °C) conditions, under which the expression of the kisspeptin and its receptor genes is markedly suppressed, may provide an environmental signal that terminates reproduction at the end of breeding period. Taken together, the periodic regulation of the kisspeptin, GnIH and their receptor genes by melatonin, circadian clock and water temperature may be important in the precisely-timed spawning of the grass puffer. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Functional Characterization of Phalaenopsis aphrodite Flowering Genes PaFT1 and PaFD

    PubMed Central

    Jang, Seonghoe; Choi, Sang-Chul; Li, Hsing-Yi; An, Gynheung; Schmelzer, Elmon

    2015-01-01

    We show that the key flowering regulators encoded by Phalaenopsis aphrodite FLOWERING LOCUS T1 (PaFT1) and PaFD share high sequence homologies to these from long-day flowering Arabidopsis and short-day flowering rice. Interestingly, PaFT1 is specifically up-regulated during flowering inductive cooling treatment but is not subjected to control by photoperiod in P. aphrodite. Phloem or shoot apex-specific expression of PaFT1 restores the late flowering of Arabidopsis ft mutants. Moreover, PaFT1 can suppress the delayed flowering caused by SHORT VEGATATIVE PHASE (SVP) overexpression as well as an active FRIGIDA (FRI) allele, indicating the functional conservation of flowering regulatory circuit in different plant species. PaFT1 promoter:GUS in Arabidopsis showed similar staining pattern to that of Arabidopsis FT in the leaves and guard cells but different in the shoot apex. A genomic clone or heat shock-inducible expression of PaFT1 is sufficient to the partial complementation of the ft mutants. Remarkably, ectopic PaFT1 expression also triggers precocious heading in rice. To further demonstrate the functional conservation of the flowering regulators, we show that PaFD, a bZIP transcription factor involved in flowering promotion, interacts with PaFT1, and PaFD partially complemented Arabidopsis fd mutants. Transgenic rice expressing PaFD also flowered early with increased expression of rice homologues of APETALA1 (AP1). Consistently, PaFT1 knock-down Phalaenopsis plants generated by virus-induced gene silencing exhibit delayed spiking. These studies suggest functional conservation of FT and FD genes, which may have evolved and integrated into distinct regulatory circuits in monopodial orchids, Arabidopsis and rice that promote flowering under their own inductive conditions. PMID:26317412

  10. Regulation of vernal migration in Gambel's white-crowned sparrows: Role of thyroxine and triiodothyronine.

    PubMed

    Pérez, Jonathan H; Furlow, J David; Wingfield, John C; Ramenofsky, Marilyn

    2016-08-01

    Appropriate timing of migratory behavior is critical for migrant species. For many temperate zone birds in the spring, lengthening photoperiod is the initial cue leading to morphological, physiological and behavior changes that are necessary for vernal migration and breeding. Strong evidence has emerged in recent years linking thyroid hormone signaling to the photoinduction of breeding in birds while more limited information suggest a potential role in the regulation of vernal migration in photoperiodic songbirds. Here we investigate the development and expression of the vernal migratory life history stage in captive Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii) in a hypothyroidic state, induced by chemical inhibition of thyroid hormone production. To explore possible variations in the effects of the two thyroid hormones, triiodothyronine and thyroxine, we subsequently performed a thyroid inhibition coupled with replacement therapy. We found that chemical inhibition of thyroid hormones resulted in complete abolishment of mass gain, fattening, and muscle hypertrophy associated with migratory preparation as well as resulting in failure to display nocturnal restlessness behavior. Replacement of thyroxine rescued all of these elements to near control levels while triiodothyronine replacement displayed partial or delayed rescue. Our findings support thyroid hormones as being necessary for the expression of changes in morphology and physiology associated with migration as well as migratory behavior itself. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Both Low Temperature and Shorter Duration of Food Availability Delay Testicular Regression and Affect the Daily Cycle in Body Temperature in a Songbird.

    PubMed

    Dawson, Alistair

    Photoperiodic control of reproduction in birds is based on two processes, a positive effect leading to gonadal maturation and an inhibitory effect subsequently inducing regression. Nonphotoperiodic cues can modulate photoperiodic control, particularly the inhibitory process. In previous studies of common starlings (Sturnus vulgaris), (1) restriction of food availability to 8 h after dawn had little effect on testicular maturation but dramatically delayed subsequent regression and (2) lower ambient temperature also had little effect during maturation but delayed regression. Could the effects of food restriction and temperature share a common underlying mechanism? Four groups of starlings were kept on a simulated natural cycle in photoperiod in a 2 × 2 factorial experimental design. Two groups were held under an ambient temperature of 16°C, and the other two were held under 6°C. One of each of these groups had food provided ad lib., and in the other two groups access to food was denied 7 h after dawn. In both the ad lib. food groups and the food-restricted groups, lower temperature had little effect on testicular maturation but delayed subsequent regression and molt. In both the 16°C groups and the 6°C groups, food restriction had no effect on testicular maturation but delayed regression and molt. The daily cycle in body temperature was recorded in all groups when the photoperiod had reached 12L∶12D, the photoperiod at which regression is initiated. In both 6°C groups, nighttime body temperature was lower than in the 16°C groups, a characteristic of shorter photoperiods. In the two ad lib. food groups high daytime temperature was maintained until dusk, whereas in the two food-restricted groups body temperature began to decrease after food withdrawal. Thus, both lower temperature and food restriction delayed regression, as if the photoperiod was shorter than it actually was, and both resulted in daily cycles in body temperature that reflected cycles under shorter photoperiods. This implies that the daily cycle in body temperature is possibly a common pathway through which nonphotoperiodic cues may operate.

  12. Blooming rhythms of cactus Cereus peruvianus with nocturnal peak at full moon during seasons of prolonged daytime photoperiod.

    PubMed

    Ben-Attia, Mossadok; Reinberg, Alain; Smolensky, Michael H; Gadacha, Wafa; Khedaier, Achraf; Sani, Mamane; Touitou, Yvan; Boughamni, Néziha Ghanem

    2016-01-01

    Cereus peruvianus (Peruvian apple cactus) is a large erect and thorny succulent cactus characterized by column-like (cereus [L]: column), that is, candle-shaped, appendages. For three successive years (1100 days), between early April and late November, we studied the flowering patterns of eight cacti growing in public gardens and rural areas of north and central Tunisia, far from nighttime artificial illumination, in relation to natural environmental light, temperature, relative humidity and precipitation parameters. Flower blooming was assessed nightly between 23:00 h and until at least 02:00 h, and additionally around-the-clock at ~1 h intervals for 30 consecutive days during the late summer of each year of study to quantify both nyctohemeral (day-night) and lunar patterns. During the summer months of prolonged daytime photoperiod, flower blooming of C. peruvianus exhibited predictable-in-time variation as "waves" with average period of 29.5 days synchronized by the light of the full moon. The large-sized flower (~16 cm diameter) opens almost exclusively at night, between sunset and sunrise, as a 24 h rhythm during a specific 3-4-day span of the lunar cycle (full moon), with a strong correlation between moon phase and number and proportion of flowers in bloom (ranging from r = +0.59 to +0.91). Black, blue and red cotton sheets were used to filter specific spectral bands of nighttime moonlight from illuminating randomly selected plant appendages as a means to test the hypothesis of a "gating" 24 h rhythm phenomenon of photoreceptors at the bud level. Relative to control conditions (no light filtering), black sheet covering inhibited flower bud induction by 87.5%, red sheet covering by 46.6% and blue sheet covering by 34%, and the respective inhibiting effects on number of flowers in bloom were essentially 100%, ~81% and ~44%. C. peruvianus is a unique example of a terrestrial plant that exhibits a circadian flowering rhythm (peak ~00:00 h) "gated" by 24 h, lunar 29.5-day (bright light of full moon) and annual 365.25-day (prolonged summertime day length) environmental photoperiod cycles.

  13. Floral Induction in a Photoperiodically Insensitive Duckweed, Lemna paucicostata LP6 1

    PubMed Central

    Khurana, J. P.; Tamot, B. K.; Maheshwari, S. C.

    1988-01-01

    The effects of 20 amino acids and two amides were studied on the flowering of a photoperiodically insensitive duckweed, Lemna paucicostata LP6. Alanine, asparagine, aspartate, cystine, glutamate, glutamine, glycine, lysine, methionine, proline, serine, and threonine induced flowering under a photoperiodic regime of 16 hours light and 8 hours darkness. Among these, glutamate and aspartate were found to be the most effective for flower induction. These acids could initiate flowering even at 5 × 10−7 molar level, though maximal flowering (about 80%) was obtained at 10−5 molar. Change in the photoperiodic schedule or the pH of the nutrient medium did not influence glutamate- or aspartate-induced flowering. The low concentrations at which glutamate and aspartate are effective suggests that they may have a regulatory role rather than simply acting as metabolites. PMID:16666006

  14. Studies on flower initiation of Super-Dwarf wheat under stress conditions simulating those on the Space Station, Mir

    NASA Technical Reports Server (NTRS)

    Jiang, L.; Salisbury, F. B.; Campbell, W. F.; Carman, J. G.; Nan, R.

    1998-01-01

    Super-Dwarf wheat plants were grown in growth chambers under 12 treatments with three photoperiods (18 h, 21 h, 24 h) and four carbon dioxide (CO2) levels (360, 1,200, 3,000 and 7,000 micromoles mol-1). Carbon dioxide concentrations affected flower initiation rates of Super-Dwarf wheat. The optimum CO2 level for flower initiation and development was 1,200 micromoles mol-1. Super-optimum CO2 levels delayed flower initiation, but did not decrease final flower bud number per head. Longer photoperiods not only accelerated flower initiation rates, but also decreased deleterious effects of super-optimum CO2. Flower bud size and head length at the same developmental stage were larger under longer photoperiods, but final flower bud number was not affected by photoperiod.

  15. Temperature alters the photoperiodically controlled phenologies linked with migration and reproduction in a night-migratory songbird

    PubMed Central

    Singh, Jyoti; Budki, Puja; Rani, Sangeeta; Kumar, Vinod

    2012-01-01

    We investigated the effects of temperature on photoperiodic induction of the phenologies linked with migration (body fattening and premigratory night-time restlessness, Zugunruhe) and reproduction (testicular maturation) in the migratory blackheaded bunting. Birds were exposed for four weeks to near-threshold photoperiods required to induce testicular growth (11.5 L:12.5 D and 12 L:12 D) or for 18 weeks to a long photoperiod (13 L:11 D) at 22°C or 27°C (low) and 35°C or 40°C (high) temperatures. A significant body fattening and half-maximal testicular growth occurred in birds under the 12 L, but not under the 11.5 L photoperiod. Further, one of six birds in both temperature groups on 11.5 L, and four and two of six birds, respectively, in low- and high-temperature groups on 12 L showed the Zugunruhe. Buntings on 13 L in both temperature groups showed complete growth-regression cycles in body fattening, Zugunruhe and testis maturation. In birds on 13 L, high temperature attenuated activity levels, delayed onset of Zugunruhe by about 12 days, reduced body fattening and slowed testicular maturation. The effect of temperature seems to be on the rate of photoperiodic induction rather than on the critical day length. It is suggested that a change in temperature could alter the timing of the development of phenologies linked with seasonal migration and reproduction in migratory songbirds. PMID:21715403

  16. Photoperiod is the main cue that triggers supercooling ability in the land snail, Helix aspersa (Gastropoda: Helicidae).

    PubMed

    Ansart, A; Vernon, P; Daguzan, J

    2001-06-01

    Helix aspersa hibernates in Brittany (western France), where it may experience subzero temperatures. Studies on cold hardiness, although scarce in land snails, have shown a seasonal variation in supercooling ability, associated with high temperatures of crystallization (Tc). In the present work, two key environmental factors, temperature and photoperiod, were studied to elucidate, how they may affect the enhancement of supercooling ability in the snails from the end of summer to winter. Nine groups of adult snails were acclimated to different combinations of photoperiod (LD-16:8, LD-12:12, and LD-8:16 h) and temperature (15, 10, and 5 degrees C). Temperature of crystallization, hemolymph osmolality, and water content were measured. The results demonstrate a significant effect of the photoperiod on Tc, i.e., shorter photoperiods induce lower Tc (LD-16:8 h, mean Tc = -3.0 degrees C, SD = 2.0; LD-12:12 h, mean Tc = -4.3 degrees C, SD = 1.9; LD-8:16 h, mean Tc = -5.2 degrees C, SD = 1.9; n = 90), whereas the acclimation temperature had no effect. Measurements of hemolymph osmolality and water content showed that osmolality is negatively correlated with water content. Mechanisms such as dehydration are involved in the decrease of Tc. A declining photoperiod triggers a lower Tc, long before the onset of winter conditions. This response may have an adaptive component, allowing individuals to cope with the mild winters typically observed in oceanic regions. Copyright 2001 Elsevier Science.

  17. Effects of spectral composition, photoperiod and light intensity on the gonadal development of Atlantic salmon Salmo salar in recirculating aquaculture systems (RAS)

    NASA Astrophysics Data System (ADS)

    Qiu, Denggao; Xu, Shihong; Song, Changbin; Chi, Liang; Li, Xian; Sun, Guoxiang; Liu, Baoliang; Liu, Ying

    2015-01-01

    Artificial lighting regimes have been successfully used to inhibit sexual maturity of Atlantic salmon in confinement. However, when these operations are applied in commercial recirculating aquaculture systems (RAS) using standard lighting technology, sexual maturation is not suppressed. In this study, an L9 (33) orthogonal design was used to determine the effects of three factors (spectral composition, photoperiod, and light intensity) on the gonadal development of Atlantic salmon in RAS. We demonstrated that the photoperiod at the tested levels had a much greater effect on the gonadosomatic index and female Fulton condition factor than spectral composition and light intensity. The photoperiod had a significant effect on the secretion of sex steroids and melatonin ( P<0.05), and a short photoperiod delayed sex steroid and melatonin level increases. The three test factors had no significant effects on the survival rate, specific growth rate, relative weight gain, and male Fulton condition factor ( P>0.05). The optimum lighting levels in female and male Atlantic salmon were LD 8:16, 455 nm (or 625 nm), 8.60 W/m2; and LD 8:16, 8.60 W/m2, 455 nm respectively. These conditions not only delayed gonadal development, but also had no negative effects on Atlantic salmon growth in RAS. These results demonstrate that a combination of spectral composition, photoperiod and light intensity is effective at delaying the gonadal development of both male and female salmon in RAS.

  18. Photorefractoriness in birds--photoperiodic and non-photoperiodic control.

    PubMed

    Dawson, Alistair; Sharp, Peter J

    2007-01-01

    Avian breeding seasons vary in length and in the degree of asymmetry with respect to the annual cycle in photoperiod to suit species-specific food resources. Asymmetry is the result of photorefractoriness. The degree of photorefractoriness, absolute or relative, is related to the length and asymmetry of the breeding season. Absolute photorefractoriness is associated with a marked decrease in hypothalamic cGnRH-I. However, during the initiation of absolute photorefractoriness there is a transient period during which the gonads regress in advance of the decrease in cGnRH-I, and this stage may be analogous to relative photorefractoriness. Photoinduced prolactin secretion has an inhibitory modulatory role during the initiation of absolute photorefractoriness, but is unlikely to be the only factor involved, while a possible role for avian gonadotrophin inhibitory hormone is not established. The first stage in the termination of photorefractoriness is the resumption of cGnRH-I synthesis. The major environmental cue driving gonadal maturation, and the transitions between the photosensitive state and photorefractoriness is the annual cycle in photoperiod. A range of non-photoperiodic cues may also play a role: social cues, climatic factors (temperature, rainfall, etc.), food availability and nutritional state. There is considerable evidence that these cues can influence gonadal maturation and the timing of egg-laying. There is some evidence that non-photoperiodic cues (certainly temperature and possibly social cues and food availability) can affect the timing of the onset of photorefractoriness, but no evidence that they can influence the time of the end of photorefractoriness.

  19. How annual course of photoperiod shapes seasonal behavior of diploid and triploid oysters, Crassostrea gigas

    PubMed Central

    Payton, Laura; Sow, Mohamedou; Massabuau, Jean-Charles; Ciret, Pierre

    2017-01-01

    In this work, we study if ploidy (i.e. number of copies of chromosomes) in the oyster Crassostrea gigas may introduce differences in behavior and in its synchronization by the annual photoperiod. To answer to the question about the effect of the seasonal course of the photoperiod on the behavior of C. gigas according to its ploidy, we quantified valve activity by HFNI valvometry in situ for 1 year in both diploid and triploid oysters. Chronobiological analyses of daily, tidal and lunar rhythms were performed according the annual change of the photoperiod. In parallel, growth and gametogenesis status were measured and spawning events were detected by valvometry. The results showed that triploids had reduced gametogenesis, without spawning events, and approximately three times more growth than diploids. These differences in physiological efforts could explain the result that photoperiod (daylength and/or direction of daylength) differentially drives and modulates seasonal behavior of diploid and triploid oysters. Most differences were observed during long days (spring and summer), where triploids showed longer valve opening duration but lower opening amplitude, stronger daily rhythm and weaker tidal rhythm. During this period, diploids did major gametogenesis and spawning whereas triploids did maximal growth. Differences were also observed in terms of moonlight rhythmicity and neap-spring tidal cycle rhythmicity. We suggest that the seasonal change of photoperiod differentially synchronizes oyster behavior and biological rhythms according to physiological needs based on ploidy. PMID:29020114

  20. How annual course of photoperiod shapes seasonal behavior of diploid and triploid oysters, Crassostrea gigas.

    PubMed

    Payton, Laura; Sow, Mohamedou; Massabuau, Jean-Charles; Ciret, Pierre; Tran, Damien

    2017-01-01

    In this work, we study if ploidy (i.e. number of copies of chromosomes) in the oyster Crassostrea gigas may introduce differences in behavior and in its synchronization by the annual photoperiod. To answer to the question about the effect of the seasonal course of the photoperiod on the behavior of C. gigas according to its ploidy, we quantified valve activity by HFNI valvometry in situ for 1 year in both diploid and triploid oysters. Chronobiological analyses of daily, tidal and lunar rhythms were performed according the annual change of the photoperiod. In parallel, growth and gametogenesis status were measured and spawning events were detected by valvometry. The results showed that triploids had reduced gametogenesis, without spawning events, and approximately three times more growth than diploids. These differences in physiological efforts could explain the result that photoperiod (daylength and/or direction of daylength) differentially drives and modulates seasonal behavior of diploid and triploid oysters. Most differences were observed during long days (spring and summer), where triploids showed longer valve opening duration but lower opening amplitude, stronger daily rhythm and weaker tidal rhythm. During this period, diploids did major gametogenesis and spawning whereas triploids did maximal growth. Differences were also observed in terms of moonlight rhythmicity and neap-spring tidal cycle rhythmicity. We suggest that the seasonal change of photoperiod differentially synchronizes oyster behavior and biological rhythms according to physiological needs based on ploidy.

  1. Seasonality of reproduction and production in farm fishes, birds and mammals.

    PubMed

    Chemineau, P; Malpaux, B; Brillard, J P; Fostier, A

    2007-03-01

    A very large majority of farm animals express seasonal variations in their production traits, thus inducing seasonal availability of fresh derived animal products (meat, milk, cheese and eggs). This pattern is in part the consequence of the farmer's objective to market his products in the most economically favourable period. It may also be imposed by the season-dependent access to feed resources, as in ruminants, or by the specific requirements derived from adaptation to environmental conditions such as water temperature in fish. But seasonal variations in animal products are also the consequence of constraints resulting from the occurrence of a more or less marked seasonal reproductive season in most farm animal species including fish, poultry and mammals. Like their wild counterparts, at mid and high latitudes, most farm animals normally give birth at the end of winter-early spring, the most favourable period for the progeny to survive and thus promote the next generation. As a consequence, most species show seasonal variations in their ovulation frequency (mammals and fish: presence or absence of ovulation; birds: variations or suppression of laying rates), spermatogenic activity (from moderate to complete absence of sperm production), gamete quality (variations in fertilisation rates and embryo survival), and also sexual behaviour. Among species of interest for animal production, fishes and birds are generally considered as more directly sensitive to external factors (mainly temperature in fish, photoperiod in birds). In all species, it is therefore advisable that artificial photoperiodic treatments consisting of extra-light during natural short days (in chickens, turkeys, guinea fowl, sheep and goats) or melatonin during long days (in goats, sheep) be extensively used to either adjust the breeding season to animal producer needs and/or to completely overcome seasonal variations of sperm production in artificial insemination centres (mammals) and breeder flock operations (poultry, fish farming). Pure light treatments (without melatonin), especially when applied in open barns, could be considered as non invasive ones which fully respect animal welfare.

  2. Daylength and temperature during seed production interactively affect adaptive performance of Picea abies progenies.

    PubMed

    Johnsen, Oystein; Daehlen, Ola Gram; Ostreng, Geir; Skrøppa, Tore

    2005-12-01

    Adaptive traits in Picea abies (Norway spruce) progenies are influenced by the maternal temperatures during seed production. Here, we have extended these studies by testing the effects of maternal photoperiod and temperature on phenology and frost hardiness on progenies. Using eight phytotron rooms, seeds from three unrelated crosses were made in an environmental 2 x 2 factorial combination of long and short days and high and low temperatures. The progenies were then forced to cease growth rapidly at the end of the first growing season. An interactive memory effect was expressed the second growth season. Progenies from high temperature and short days, and from low temperatures and long days, started growth later in spring, ceased shoot growth later in summer, grew taller and were less frost hardy in the autumn than their full siblings from low temperatures and short days, and from high temperatures and long days. Norway spruce has developed a memory mechanism, regulating adaptive plasticity by photoperiod and temperature, which could counteract harmful effects of a rapidly changing climate.

  3. Influence of Changes in Daylength and Carbon Dioxide on the Growth of Potato

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond; Tibbitts, Theodore W.

    1997-01-01

    Potatoes (Solanum tuberosum L.) are highly productive in mid- to high-latitude areas where photoperiods change significantly throughout the growing season. To study the effects of changes in photoperiod on growth and tuber development of potato cv. Denali, plants were grown for 112 d with 400 micromol/sq m/s photosynthetic photon flux (PPF) under a 12-h photoperiod (short days, SD), a 24-h photoperiod (long days, LD), and combinations where plants were moved between the two photoperiods 28, 56, or 84 d after planting. Plants given LD throughout growth received the greatest total daily PPF and produced the greatest tuber yields. At similar levels of total PPF, plants given SD followed by LD yielded greater tuber dry mass (DM) than plants given LD followed by SD. Stem DM per plant, leaf DM, and total plant DM all increased with an increasing proportion of LD and increasing daily PPF, regardless of the daylength sequence. When studies were repeated, but at an enriched (1000micromol/mol) CO2 concentration, overall growth trends were similar, with high CO2 resulting in greater stem length, stem DM, leaf DM, and total plant DM; but high CO2 did not increase tuber DM.

  4. Diurnal and circadian oscillations in expression of kisspeptin, kisspeptin receptor and gonadotrophin-releasing hormone 2 genes in the grass puffer, a semilunar-synchronised spawner.

    PubMed

    Ando, H; Ogawa, S; Shahjahan, Md; Ikegami, T; Doi, H; Hattori, A; Parhar, I

    2014-07-01

    In seasonally breeding animals, the circadian and photoperiodic regulation of neuroendocrine system is important for precisely-timed reproduction. Kisspeptin, encoded by the Kiss1 gene, acts as a principal positive regulator of the reproductive axis by stimulating gonadotrophin-releasing hormone (GnRH) neurone activity in vertebrates. However, the precise mechanisms underlying the cyclic regulation of the kisspeptin neuroendocrine system remain largely unknown. The grass puffer, Takifugu niphobles, exhibits a unique spawning rhythm: spawning occurs 1.5-2 h before high tide on the day of spring tide every 2 weeks, and the spawning rhythm is connected to circadian and lunar-/tide-related clock mechanisms. The grass puffer has only one kisspeptin gene (kiss2), which is expressed in a single neural population in the preoptic area (POA), and has one kisspeptin receptor gene (kiss2r), which is expressed in the POA and the nucleus dorsomedialis thalami. Both kiss2 and kiss2r show diurnal variations in expression levels, with a peak at Zeitgeber time (ZT) 6 (middle of day time) under the light/dark conditions. They also show circadian expression with a peak at circadian time 15 (beginning of subjective night-time) under constant darkness. The synchronous and diurnal oscillations of kiss2 and kiss2r expression suggest that the action of Kiss2 in the diencephalon is highly dependent on time. Moreover, midbrain GnRH2 gene (gnrh2) but not GnRH1 or GnRH3 genes show a unique semidiurnal oscillation with two peaks at ZT6 and ZT18 within a day. The cyclic expression of kiss2, kiss2r and gnrh2 may be important in the control of the precisely-timed diurnal and semilunar spawning rhythm of the grass puffer, possibly through the circadian clock and melatonin, which may transmit the photoperiodic information of daylight and moonlight to the reproductive neuroendocrine centre in the hypothalamus. © 2014 British Society for Neuroendocrinology.

  5. Inhibition of Flowering of Xanthium pensylvanicum Wallr. by Prolonged Irradiation with Far Red

    PubMed Central

    Mancinelli, Alberto L.; Downs, Robert J.

    1967-01-01

    Interrupting each long night with a prolonged period of far red radiant energy resulted in the inhibition of floral initiation in cocklebur. Irradiations inducing different relative levels of PFR from 1 to 2% to 80% had about the same effect under 4-hour photoperiods. The lower levels of PFR induced by continuous far red irradiation were not as effective as the higher levels induced by red under 8 and 12-hours photoperiods. The critical PFR level required to induce inhibition of flowering seems to increase with increasing photoperiods. PMID:16656490

  6. Effects of photoperiod regimes and ultraviolet-C radiations on biosynthesis of industrially important lignans and neolignans in cell cultures of Linum usitatissimum L. (Flax).

    PubMed

    Anjum, Sumaira; Abbasi, Bilal Haider; Doussot, Joël; Favre-Réguillon, Alain; Hano, Christophe

    2017-02-01

    Lignans and neolignans are principal bioactive components of Linum usitatissimum L. (Flax), having multiple pharmacological activities. In present study, we are reporting an authoritative abiotic elicitation strategy of photoperiod regimes along with UV-C radiations. Cell cultures were grown in different photoperiod regimes (24h-dark, 24h-light and 16L/8D h photoperiod) either alone or in combination with various doses (1.8-10.8kJ/m 2 ) of ultraviolet-C (UV-C) radiations. Secoisolariciresinol diglucoside (SDG), lariciresinol diglucoside (LDG), dehydrodiconiferyl alcohol glucoside (DCG), and guaiacylglycerol-β-coniferyl alcohol ether glucoside (GGCG) were quantified by using reverse phase-high performance liquid chromatography (RP-HPLC). Results showed that the cultures exposed to UV-C radiations, accumulated higher levels of lignans, neolignans and other biochemical markers than cultures grown under different photoperiod regimes. 3.6kJ/m 2 dose of UV-C radiations resulted in 1.86-fold (7.1mg/g DW) increase in accumulation of SDG, 2.25-fold (21.6mg/g DW) in LDG, and 1.33-fold (9.2mg/g DW) in GGCG in cell cultures grown under UV+photoperiod than their respective controls. Furthermore, cell cultures grown under UV+dark showed 1.36-fold (60.0mg/g DW) increase in accumulation of DCG in response to 1.8kJ/m 2 dose of UV-C radiations. Smilar trends were observed in productivity of SDG, LDG and GGCG. Additionally, 3.6kJ/m 2 dose of UV-C radiations also resulted in 2.82-fold (195.65mg/l) increase in total phenolic production, 2.94-fold (98.9mg/l) in total flavonoid production and 1.04-fold (95%) in antioxidant activity of cell cultures grown under UV+photoperiod. These findings open new dimensions for feasible production of biologically active lignans and neolignans by Flax cell cultures. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Carbon dioxide effects on potato growth under different photoperiods and irradiance

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.; Tibbitts, Theodore W.; Fitzpatrick, Ann H.

    1991-01-01

    The effects of atmospheric CO2 concentration, photosynthetic photon flux (PPF), and the length of the photoperiod on the tuber yield were investigated for three potato cultivars (Norland, Russet Burbank, and Denali), by growing these cultivars for 90 days in atmospheres containing 350 or 1000 micromol/mol CO2, at photoperiods of 12- or 24-hr, and at PPFs of 400 or 800 micromol/sq m per sec. Air temperatures and relative humidity were kept at 16 C and 70 percent, respectively. It was found that the tuber yield of Denali potatoes showed the greatest increase (21 percent) in response to increased CO2 across all irradiance treatments, while the tuber yields of Russet and Norland were increased 18 and 9 percent, respectively. Greater plant growth from CO2 enrichment was observed under lower PPF and the shorter (12 hr) photoperiod.

  8. The integrative effects of population density, photoperiod, temperature, and host plant on the induction of alate aphids in Schizaphis graminum.

    PubMed

    An, Chunju; Fei, Xiaodong; Chen, Wenfeng; Zhao, Zhangwu

    2012-04-01

    The wheat aphid Schizaphis graminum (Rondani) displays wing dimorphism with both winged and wingless adult morphs. The winged morph is an adaptive microevolutionary response to undesirable environmental conditions, including undesirable population density, photoperiod, temperature, and host plant. Here we studied the integrative effects of population density, photoperiod, temperature, and host plant on the induction of alate aphids in S. graminum. The present results show that these four factors all play roles in inducing alate aphids in S. graminum but population density is the most important under almost all circumstances. In importance, population density is followed by photoperiod, host plant, and temperature, in that order. These results indicate that ambient environmental factors are highly important to stimulation of alate aphids in S. graminum, especially when population density reaches 64 individuals per leaf. © 2012 Wiley Periodicals, Inc.

  9. Evolution of photoperiod sensing in plants and algae.

    PubMed

    Serrano-Bueno, Gloria; Romero-Campero, Francisco J; Lucas-Reina, Eva; Romero, Jose M; Valverde, Federico

    2017-06-01

    Measuring day length confers a strong fitness improvement to photosynthetic organisms as it allows them to anticipate light phases and take the best decisions preceding diurnal transitions. In close association with signals from the circadian clock and the photoreceptors, photoperiodic sensing constitutes also a precise way to determine the passing of the seasons and to take annual decisions such as the best time to flower or the beginning of dormancy. Photoperiodic sensing in photosynthetic organisms is ancient and two major stages in its evolution could be identified, the cyanobacterial time sensing and the evolutionary tool kit that arose in green algae and developed into the photoperiodic system of modern plants. The most recent discoveries about the evolution of the perception of light, measurement of day length and relationship with the circadian clock along the evolution of the eukaryotic green lineage will be discussed in this review. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Cool night-time temperatures induce the expression of CONSTANS and FLOWERING LOCUS T to regulate flowering in Arabidopsis.

    PubMed

    Kinmonth-Schultz, Hannah A; Tong, Xinran; Lee, Jae; Song, Young Hun; Ito, Shogo; Kim, Soo-Hyung; Imaizumi, Takato

    2016-07-01

    Day length and ambient temperature are major stimuli controlling flowering time. To understand flowering mechanisms in more natural conditions, we explored the effect of daily light and temperature changes on Arabidopsis thaliana. Seedlings were exposed to different day/night temperature and day-length treatments to assess expression changes in flowering genes. Cooler temperature treatments increased CONSTANS (CO) transcript levels at night. Night-time CO induction was diminished in flowering bhlh (fbh)-quadruple mutants. FLOWERING LOCUS T (FT) transcript levels were reduced at dusk, but increased at the end of cooler nights. The dusk suppression, which was alleviated in short vegetative phase (svp) mutants, occurred particularly in younger seedlings, whereas the increase during the night continued over 2 wk. Cooler temperature treatments altered the levels of FLOWERING LOCUS M-β (FLM-β) and FLM-δ splice variants. FT levels correlated strongly with flowering time across treatments. Day/night temperature changes modulate photoperiodic flowering by changing FT accumulation patterns. Cooler night-time temperatures enhance FLOWERING BHLH (FBH)-dependent induction of CO and consequently increase CO protein. When plants are young, cooler temperatures suppress FT at dusk through SHORT VEGETATIVE PHASE (SVP) function, perhaps to suppress precocious flowering. Our results suggest day length and diurnal temperature changes combine to modulate FT and flowering time. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  11. Simulated Seasonal Photoperiods and Fluctuating Temperatures Have Limited Effects on Blood Feeding and Life History in Aedes triseriatus (Diptera: Culicidae)

    PubMed Central

    Westby, K. M.

    2015-01-01

    Biotic and abiotic factors change seasonally and impact life history in temperate-zone ectotherms. Temperature and photoperiod are factors that change in predictable ways. Most studies testing for effects of temperature on vectors use constant temperatures and ignore potential correlated effects of photoperiod. In two experiments, we tested for effects of larval rearing environments creating ecologically relevant temperatures and photoperiods simulating early and late season conditions (June and August), or constant temperatures (cool and warm) with the June or August photoperiods, respectively. We determined effects on survivorship, development, size, and a composite performance index in a temperate-zone population of Aedes triseriatus (Say). We followed cohorts of resulting females, all held under the same environmental conditions, to assess carry-over effects of rearing conditions for larvae on longevity, blood feeding, and egg production. Larval survivorship was affected by treatment in one experiment. Development time was greater in the June and cool treatments, but the constant and fluctuating temperatures did not differ. Significantly larger mosquitoes were produced in fluctuating versus constant temperature treatments. There were no significant treatment effects on the composite performance index. Adult female longevity was lower after rearing at constant versus fluctuating temperature, but there was no difference between June and August, nor did size affect longevity. There was no effect of treatments on blood feeding and a limited effect on egg production. We conclude that seasonal temperatures and photoperiods during development have limited effects on this population of A. triseriatus and find little evidence of strong effects of fluctuating versus constant temperatures. PMID:26336255

  12. Long photoperiods sustain high pH in Arctic kelp forests.

    PubMed

    Krause-Jensen, Dorte; Marbà, Núria; Sanz-Martin, Marina; Hendriks, Iris E; Thyrring, Jakob; Carstensen, Jacob; Sejr, Mikael Kristian; Duarte, Carlos M

    2016-12-01

    Concern on the impacts of ocean acidification on calcifiers, such as bivalves, sea urchins, and foraminifers, has led to efforts to understand the controls on pH in their habitats, which include kelp forests and seagrass meadows. The metabolism of these habitats can lead to diel fluctuation in pH with increases during the day and declines at night, suggesting no net effect on pH at time scales longer than daily. We examined the capacity of subarctic and Arctic kelps to up-regulate pH in situ and experimentally tested the role of photoperiod in determining the capacity of Arctic macrophytes to up-regulate pH. Field observations at photoperiods of 15 and 24 hours in Greenland combined with experimental manipulations of photoperiod show that photoperiods longer than 21 hours, characteristic of Arctic summers, are conducive to sustained up-regulation of pH by kelp photosynthesis. We report a gradual increase in pH of 0.15 units and a parallel decline in pCO 2 of 100 parts per million over a 10-day period in an Arctic kelp forest over midsummer, with ample scope for continued pH increase during the months of continuous daylight. Experimental increase in CO 2 concentration further stimulated the capacity of macrophytes to deplete CO 2 and increase pH. We conclude that long photoperiods in Arctic summers support sustained up-regulation of pH in kelp forests, with potential benefits for calcifiers, and propose that this mechanism may increase with the projected expansion of Arctic vegetation in response to warming and loss of sea ice.

  13. Photoperiodic controls on ecosystem-level photosynthetic capacity

    NASA Astrophysics Data System (ADS)

    Stoy, P. C.; Trowbridge, A. M.; Bauerle, W.

    2012-12-01

    Most models of photosynthesis at the leaf or canopy level assume that temperature is the dominant control on the variability of photosynthetic parameters. Recent studies, however, have found that photoperiod is a better descriptor of the seasonal variability of photosynthetic function at the leaf and plant scale, and that spectral indices of leaf functionality are poor descriptors of this seasonality. We explored the variability of photosynthesic parameters at the ecosystem scale using over 100 site-years of air temperature and gross primary productivity (GPP) data from non-tropical forested sites in the Free/Fair Use LaThuille FLUXNET database (www.fluxdata.org), excluding sites that were classified as dry and/or with savanna vegetation, where we expected GPP to be driven by moisture availability. Both GPP and GPP normalized by daily photosynthetic photon flux density (GPPn) were considered, and photoperiod was calculated from eddy covariance tower coordinates. We performed a Granger causality analysis, a method based on the understanding that causes precede effects, on both the GPP and GPPn. Photoperiod Granger-caused GPP (GPPn) in 95% (87%) of all site-years. While temperature Granger-caused GPP in a mere 23% of site years, it Granger-caused GPPn 73% of the time. Both temperature values are significantly less than the percent of cases in which day length Granger-caused GPP (p<0.05, Student's t-test). An inverse analysis was performed for completeness, and it was found that GPP Granger-caused photoperiod (temperature) in 39% (78%) of all site years. Results demonstrate that incorporating simple photoperiod controls may be a logical step in improving ecosystem and global model output.

  14. The influence of temperature and photoperiod on the timing of brood onset in hibernating honey bee colonies

    PubMed Central

    Härtel, Stephan; Steffan-Dewenter, Ingolf

    2018-01-01

    In order to save resources, honey bee (Apis mellifera) colonies in the temperate zones stop brood rearing during winter. Brood rearing is resumed in late winter to build up a sufficient worker force that allows to exploit floral resources in upcoming spring. The timing of brood onset in hibernating colonies is crucial and a premature brood onset could lead to an early depletion of energy reservoirs. However, the mechanisms underlying the timing of brood onset and potential risks of mistiming in the course of ongoing climate change are not well understood. To assess the relative importance of ambient temperature and photoperiod as potential regulating factors for brood rearing activity in hibernating colonies, we overwintered 24 honey bee colonies within environmental chambers. The colonies were assigned to two different temperature treatments and three different photoperiod treatments to disentangle the individual and interacting effects of temperature and photoperiod. Tracking in-hive temperature as indicator for brood rearing activity revealed that increasing ambient temperature triggered brood onset. Under cold conditions, photoperiod alone did not affect brood onset, but the light regime altered the impact of higher ambient temperature on brood rearing activity. Further the number of brood rearing colonies increased with elapsed time which suggests the involvement of an internal clock. We conclude that timing of brood onset in late winter is mainly driven by temperature but modulated by photoperiod. Climate warming might change the interplay of these factors and result in mismatches of brood phenology and environmental conditions. PMID:29844964

  15. Photoperiodic Treatments in Morning Glory: A Laboratory Investigation.

    ERIC Educational Resources Information Center

    Madrazo, Gerry M., Jr.; Hounshell, Paul B.

    1978-01-01

    The Japanese morning glory, a short-day plant, is an excellent specimen for studying photoperiodism. This article gives ideas for investigations including the effects of hormones, light quality, and temperature. Preparation of the seed is also discussed. (BB)

  16. Reproductive status of overwintering potato psyllid: absence of photoperiod effects

    USDA-ARS?s Scientific Manuscript database

    We examined the effects of photoperiod on reproductive diapause of three haplotypes of potato psyllid, Bactericera cockerelli (Hemiptera: Triozidae), collected from three geographic locations: south Texas (Central haplotype), California (Western haplotype), and Washington State (Northwestern haploty...

  17. Embryo-endometrial interactions during early development after embryonic diapause in the marsupial tammar wallaby.

    PubMed

    Renfree, Marilyn B; Shaw, Geoff

    2014-01-01

    The marsupial tammar wallaby has the longest period of embryonic diapause of any mammal. Reproduction in the tammar is seasonal, regulated by photoperiod and also lactation. Reactivation is triggered by falling daylength after the austral summer solstice in December. Young are born late January and commence a 9-10-month lactation. Females mate immediately after birth. The resulting conceptus develops over 6- 7 days to form a unilaminar blastocyst of 80-100 cells and enters lactationally, and later seasonally, controlled diapause. The proximate endocrine signal for reactivation is an increase in progesterone which alters uterine secretions. Since the diapausing blastocyst is surrounded by the zona and 2 other acellular coats, the mucoid layer and shell coat, the uterine signals that maintain or terminate diapause must involve soluble factors in the secretions rather than any direct cellular interaction between uterus and embryo. Our studies suggest involvement of a number of cytokines in the regulation of diapause in tammars. The endometrium secretes platelet activating factor (PAF) and leukaemia inhibitory factor, which increase after reactivation. Receptors for PAF are low on the blastocyst during diapause but are upregulated at reactivation. Conversely, there is endometrial expression of the muscle segment homeobox gene MSX2 throughout diapause, but it is rapidly downregulated at reactivation. These patterns are consistent with those observed in diapausing mice and mink after reactivation, despite the very different patterns of endocrine control of diapause in these 3 divergent species. These common patterns suggest a similar underlying mechanism for diapause, perhaps common to all mammals, but which is activated in only a few.

  18. Differential transcriptional regulation of banana sucrose phosphate synthase gene in response to ethylene, auxin, wounding, low temperature and different photoperiods during fruit ripening and functional analysis of banana SPS gene promoter.

    PubMed

    Roy Choudhury, Swarup; Roy, Sujit; Das, Ranjan; Sengupta, Dibyendu N

    2008-12-01

    Sucrose phosphate synthase (SPS) (EC 2.3.1.14) is the key regulatory component in sucrose formation in banana (Musa acuminata subgroup Cavendish, cv Giant governor) fruit during ripening. This report illustrates differential transcriptional responses of banana SPS gene following ethylene, auxin, wounding, low temperature and different photoperiods during ripening in banana fruit. Whereas ethylene strongly stimulated SPS transcript accumulation, auxin and cold treatment only marginally increased the abundance of SPS mRNA level, while wounding negatively regulated SPS gene expression. Conversely, SPS transcript level was distinctly increased by constant exposure to white light. Protein level, enzymatic activity of SPS and sucrose synthesis were substantially increased by ethylene and increased exposure to white light conditions as compared to other treatments. To further study the transcriptional regulation of SPS in banana fruit, the promoter region of SPS gene was cloned and some cis-acting regulatory elements such as a reverse GCC-box ERE, two ARE motifs (TGTCTC), one LTRE (CCGAA), a GAGA-box (GAGA...) and a GATA-box LRE (GATAAG) were identified along with the TATA and CAAT-box. DNA-protein interaction studies using these cis-elements indicated a highly specific cis-trans interaction in the banana nuclear extract. Furthermore, we specifically studied the light responsive characteristics of GATA-box containing synthetic as well as native banana SPS promoter. Transient expression assays using banana SPS promoter have also indicated the functional importance of the SPS promoter in regulating gene expression. Together, these results provide insights into the transcriptional regulation of banana SPS gene in response to phytohormones and other environmental factors during fruit ripening.

  19. Responses of the circadian system of rats to conditioned and unconditioned stimuli.

    PubMed

    de Groot, M H; Rusak, B

    2000-08-01

    The circadian systems of rodents respond to light pulses presented during the subjective night with phase shifts and altered cellular activity in the suprachiasmatic nuclei (SCN), including expression of immediate-early genes (IEGs) such as c-fos. A recent study showed that a nonphotic stimulus (an air disturbance generated by a fan) that does not normally induce the expression of c-fos-like immunoreactivity in the SCN of rats can be made to do so after being paired repeatedly with a light pulse in a Pavlovian conditioning paradigm. Furthermore, after conditioning (but not after noncontingent exposure to these stimuli), the fan also induced phase shifts in activity and body temperature rhythms comparable to those produced by light. The authors performed three experiments designed to replicate and extend these findings in rats. In experiment 1, rats were tested for conditioning effects of repeated pairings of a light pulse with a neutral air disturbance under a full photoperiod. In experiment 2, a modified conditioning paradigm was used in which a skeleton photoperiod served as both the entraining zeitgeber and the unconditioned stimulus. Animals in the paired and unpaired training conditions were exposed to both the light pulse and the air disturbance, but the air disturbance signaled the onset of light in the paired condition only. Phase shifts of wheel-running activity rhythms and gene expression in the SCN, intergeniculate leaflet, and paraventricular nucleus of the thalamus were assessed in animals following either of the training conditions or the control procedures. Experiment 3 assessed whether the air disturbance could entrain the circadian activity rhythms of rats with or without previous pairing with light in a classical conditioning paradigm. No evidence for classical conditioning, nor for unconditioned effects of the air disturbance on the circadian system, was found in these studies.

  20. Hypothalamic expression and moonlight-independent changes of Cry3 and Per4 implicate their roles in lunar clock oscillators of the lunar-responsive Goldlined spinefoot.

    PubMed

    Toda, Riko; Okano, Keiko; Takeuchi, Yuki; Yamauchi, Chihiro; Fukushiro, Masato; Takemura, Akihiro; Okano, Toshiyuki

    2014-01-01

    Lunar cycle-associated physiology has been found in a wide variety of organisms. Studies suggest the presence of a circalunar clock in some animals, but the location of the lunar clock is unclear. We previously found lunar-associated expression of transcripts for Cryptochrome3 gene (SgCry3) in the brain of a lunar phase-responsive fish, the Goldlined spinefoot (Siganus guttatus). Then we proposed a photoperiodic model for the lunar phase response, in which SgCry3 might function as a phase-specific light response gene and/or an oscillatory factor in unidentified circalunar clock. In this study, we have developed an anti-SgCRY3 antibody to identify SgCRY3-immunoreactive cells in the brain. We found immunoreactions in the subependymal cells located in the mediobasal region of the diencephalon, a crucial site for photoperiodic seasonal responses in birds. For further assessment of the lunar-responding mechanism and the circalunar clock, we investigated mRNA levels of Cry3 as well as those of the other clock(-related) genes, Period (Per2 and Per4), in S. guttatus reared under nocturnal moonlight interruption or natural conditions. Not only SgCry3 but SgPer4 mRNA levels showed lunar phase-dependent variations in the diencephalon without depending on light condition during the night. These results suggest that the expressions of SgCry3 and SgPer4 are not directly regulated by moonlight stimulation but endogenously mediated in the brain, and implicate that circadian clock(-related) genes may be involved in the circalunar clock locating within the mediobasal region of the diencephalon.

  1. In- and outdoor reproduction of first generation common sole Solea solea under a natural photothermal regime: Temporal progression of sexual maturation assessed by monitoring plasma steroids and gonadotropin mRNA expression.

    PubMed

    Palstra, A P; Blok, M C; Kals, J; Blom, E; Tuinhof-Koelma, N; Dirks, R P; Forlenza, M; Blonk, R J W

    2015-09-15

    Reproduction of many temperate fishes is seasonal and maturation and spawning of gametes are under photothermal control. Reproductive success of first generation (G1) common sole Solea solea in captivity has been low. In this study, the sexual maturation status has been assessed during the prespawning months in G1 sole that were housed (a) outdoor under the natural photoperiod and temperature, or (b) indoor under artificial photothermal induction. Maturation was assessed in male and female G1 broodstock in November as controls, after which the remaining population was divided over two outdoor flow-through tanks placed in a pond and two indoor recirculating aquaculture system (RAS) tanks. Subsequently, maturation status (gonadosomatic index GSI and plasma levels of testosterone T and 17β-estradiol E2) was assessed in one tank for each condition in January, February and during spawning in early April, while fish in the other tank were not disturbed in achieving reproductive success. Quantitative real-time PCR was performed to determine species-specific gonadotropin mRNA expression in females. Successful G1 spawning and egg fertilisation occurred in all experimental tanks. Gonadal development was similar under both conditions. Higher E2 and T levels were found in indoor housed females. Gonadotropin expression revealed similar profiles between outdoor and indoor housed females. G1 sole could be reproduced in the outdoor tanks under the natural photoperiod and in the indoor tanks under artificial simulation of this regime that includes a potentially crucial chilling period of 2-3 months at 5-7 °C. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Molecular cloning and photoperiod-regulated expression of gibberellin 20-oxidase from the long-day plant spinach.

    PubMed

    Wu, K; Li, L; Gage, D A; Zeevaart, J A

    1996-02-01

    Spinach (Spinacia oleracea L.) is a long-day (LD) rosette plant in which stem growth under LD conditions is mediated by gibberellins (GAs). Major control points in spinach are the later steps of sequential oxidation and elimination of C-20 of C20-GAs. Degenerate oligonucleotide primers were used to obtain a polymerase chain reaction product from spinach genomic DNA that has a high homology with GA 20-oxidase cDNAs from Cucurbita maxima L. and Arabidopsis thaliana Heynh. This polymerase chain reaction product was used as a probe to isolate a full-length cDNA clone with an open reading frame encoding a putative 43-kD protein of 374 amino acid residues. When this cDNA clone was expressed in Escherichia coli, the fusion protein catalyzed the biosynthetic sequence GA53-->GA44-->GA19-->GA20 and GA19-->GA17. This establishes that in spinach a single protein catalyzes the oxidation and elimination of C-20. Transfer of spinach plants from short day (SD) to LD conditions caused an increase in the level of all GAs of the early-13-hydroxylation pathway, except GA53, with GA20, GA1, and GA8 showing the largest increases. Northern blot analysis indicated that the level of GA 20-oxidase mRNA was higher in plants in LD than in SD conditions, with highest level of expression in the shoot tips and elongating stems. This expression pattern of GA 20-oxidase is consistent with the different levels of GA20, GA1, and GA8 found in spinach plants grown in SD and LD conditions.

  3. Spring bloom onset in the Nordic Seas

    NASA Astrophysics Data System (ADS)

    Mignot, Alexandre; Ferrari, Raffaele; Mork, Kjell Arne

    2016-06-01

    The North Atlantic spring bloom is a massive annual growth event of marine phytoplankton, tiny free-floating algae that form the base of the ocean's food web and generates a large fraction of the global primary production of organic matter. The conditions that trigger the onset of the spring bloom in the Nordic Seas, at the northern edge of the North Atlantic, are studied using in situ data from six bio-optical floats released north of the Arctic Circle. It is often assumed that spring blooms start as soon as phytoplankton cells daily irradiance is sufficiently abundant that division rates exceed losses. The bio-optical float data instead suggest the tantalizing hypothesis that Nordic Seas blooms start when the photoperiod, the number of daily light hours experienced by phytoplankton, exceeds a critical value, independently of division rates. The photoperiod trigger may have developed at high latitudes where photosynthesis is impossible during polar nights and phytoplankton enters into a dormant stage in winter. While the first accumulation of biomass recorded by the bio-optical floats is consistent with the photoperiod hypothesis, it is possible that some biomass accumulation started before the critical photoperiod but at levels too low to be detected by the fluorometers. More precise observations are needed to test the photoperiod hypothesis.

  4. Twilight and photoperiod affect behavioral entrainment in the house mouse (Mus musculus).

    PubMed

    Comas, M; Hut, R A

    2009-10-01

    The effect of twilight transitions on entrainment of C57BL/6JOlaHsd mice (Mus musculus) was studied using light-dark cycles of different photoperiods (6, 12, and 18 h) and twilight transitions of different durations (0, 1, and 2 h). Phase angle differences of the onset, center of gravity, and offset of activity, activity duration (alpha), as well as free-running period (tau) in continuous darkness were analyzed. The main finding was that for all conditions the onset of activity was close to dusk or lights-off except for the short photoperiod with 2 h of twilight where activity onset was on average 5.3 (SEM 1.07) h after lights-off. This finding contrasts with the results of Boulos and Macchi for Syrian hamsters where a 5.9-h earlier activity onset was observed when similar photoperiod and twilight conditions are compared with a rectangular LD cycle. The authors suggest the opposite effects of 2 h of twilight in the 2 species may be related to their different free-running periods under DD conditions following entrainment to short photoperiod with 2-h twilight conditions. Since the authors observed larger variation in phase angle of entrainment in longer twilight conditions, twilight does not necessarily form a stronger zeitgeber.

  5. HvLUX1 is a candidate gene underlying the early maturity 10 locus in barley: phylogeny, diversity, and interactions with the circadian clock and photoperiodic pathways

    PubMed Central

    Campoli, Chiara; Pankin, Artem; Drosse, Benedikt; Casao, Cristina M; Davis, Seth J; von Korff, Maria

    2013-01-01

    Photoperiodic flowering is a major factor determining crop performance and is controlled by interactions between environmental signals and the circadian clock. We proposed Hvlux1, an ortholog of the Arabidopsis circadian gene LUX ARRHYTHMO, as a candidate underlying the early maturity 10 (eam10) locus in barley (Hordeum vulgare L.). The link between eam10 and Hvlux1 was discovered using high-throughput sequencing of enriched libraries and segregation analysis. We conducted functional, phylogenetic, and diversity studies of eam10 and HvLUX1 to understand the genetic control of photoperiod response in barley and to characterize the evolution of LUX-like genes within barley and across monocots and eudicots. We demonstrate that eam10 causes circadian defects and interacts with the photoperiod response gene Ppd-H1 to accelerate flowering under long and short days. The results of phylogenetic and diversity analyses indicate that HvLUX1 was under purifying selection, duplicated at the base of the grass clade, and diverged independently of LUX-like genes in other plant lineages. Taken together, these findings contribute to improved understanding of the barley circadian clock, its interaction with the photoperiod pathway, and evolution of circadian systems in barley and across monocots and eudicots. PMID:23731278

  6. Adaptation to short photoperiods augments circadian food anticipatory activity in Siberian hamsters.

    PubMed

    Bradley, Sean P; Prendergast, Brian J

    2014-06-01

    This article is part of a Special Issue "Energy Balance". Both the light-dark cycle and the timing of food intake can entrain circadian rhythms. Entrainment to food is mediated by a food entrainable circadian oscillator (FEO) that is formally and mechanistically separable from the hypothalamic light-entrainable oscillator. This experiment examined whether seasonal changes in day length affect the function of the FEO in male Siberian hamsters (Phodopus sungorus). Hamsters housed in long (LD; 15 h light/day) or short (SD; 9h light/day) photoperiods were subjected to a timed-feeding schedule for 10 days, during which food was available only during a 5h interval of the light phase. Running wheel activity occurring within a 3h window immediately prior to actual or anticipated food delivery was operationally-defined as food anticipatory activity (FAA). After the timed-feeding interval, hamsters were fed ad libitum, and FAA was assessed 2 and 7 days later via probe trials of total food deprivation. During timed-feeding, all hamsters exhibited increases FAA, but FAA emerged more rapidly in SD; in probe trials, FAA was greater in magnitude and persistence in SD. Gonadectomy in LD did not induce the SD-like FAA phenotype, indicating that withdrawal of gonadal hormones is not sufficient to mediate the effects of photoperiod on FAA. Entrainment of the circadian system to light markedly affects the functional output of the FEO via gonadal hormone-independent mechanisms. Rapid emergence and persistent expression of FAA in SD may reflect a seasonal adaptation that directs behavior toward sources of nutrition with high temporal precision at times of year when food is scarce. © 2013.

  7. LHD1, an allele of DTH8/Ghd8, controls late heading date in common wild rice (Oryza rufipogon).

    PubMed

    Dai, Xiaodong; Ding, Younian; Tan, Lubin; Fu, Yongcai; Liu, Fengxia; Zhu, Zuofeng; Sun, Xianyou; Sun, Xuewen; Gu, Ping; Cai, Hongwei; Sun, Chuanqing

    2012-10-01

    Flowering at suitable time is very important for plants to adapt to complicated environments and produce their seeds successfully for reproduction. In rice (Oryza rufipogon Griff.) photoperiod regulation is one of the important factors for controlling heading date. Common wild rice, the ancestor of cultivated rice, exhibits a late heading date and a more sensitive photoperiodic response than cultivated rice. Here, through map-based cloning, we identified a major quantitative trait loci (QTL) LHD1 (Late Heading Date 1), an allele of DTH8/Ghd8, which controls the late heading date of wild rice and encodes a putative HAP3/NF-YB/CBF-A subunit of the CCAAT-box-binding transcription factor. Sequence analysis revealed that several variants in the coding region of LHD1 were correlated with a late heading date, and a further complementary study successfully rescued the phenotype. These results suggest that a functional site for LHD1 could be among those variants present in the coding region. We also found that LHD1 could down-regulate the expression of several floral transition activators such as Ehd1, Hd3a and RFT1 under long-day conditions, but not under short-day conditions. This indicates that LHD1 may delay flowering by repressing the expression of Ehd1, Hd3a and RFT1 under long-day conditions. © 2012 Institute of Botany, Chinese Academy of Sciences.

  8. Relative roles of temperature and photoperiod as drivers of metabolic flexibility in dark-eyed juncos.

    PubMed

    Swanson, David; Zhang, Yufeng; Liu, Jin-Song; Merkord, Christopher L; King, Marisa O

    2014-03-15

    Seasonal phenotypic flexibility in small birds produces a winter phenotype with elevated maximum cold-induced metabolic rates (=summit metabolism, Msum). Temperature and photoperiod are candidates for drivers of seasonal phenotypes, but their relative impacts on metabolic variation are unknown. We examined photoperiod and temperature effects on Msum, muscle masses and activities of key catabolic enzymes in winter dark-eyed juncos (Junco hyemalis). We randomly assigned birds to four treatment groups varying in temperature (cold=3°C; warm=24°C) and photoperiod [short day (SD)=8 h:16 h light:dark; long day (LD)=16 h:8 h light:dark] in a two-by-two design. We measured body mass (Mb), flight muscle width and Msum before and after 3 and 6 weeks of acclimation, and flight muscle and heart masses after 6 weeks. Msum increased for cold-exposed, but not for warm-exposed, birds. LD birds gained more Mb than SD birds, irrespective of temperature. Flight muscle size and mass did not differ significantly among groups, but heart mass was larger in cold-exposed birds. Citrate synthase, carnitine palmitoyl transferase and β-hydroxyacyl Co-A dehydrogenase activities in the pectoralis were generally higher for LD and cold groups. The cold-induced changes in Msum and heart mass parallel winter changes for small birds, but the larger Mb and higher catabolic enzyme activities in LD birds suggest photoperiod-induced changes associated with migratory disposition. Temperature appears to be a primary driver of flexibility in Msum in juncos, but photoperiod-induced changes in Mb and catabolic enzyme activities, likely associated with migratory disposition, interact with temperature to contribute to seasonal phenotypes.

  9. Male endocrine response to seasonally varying environmental and social factors in a neotropical primate, Cebus capucinus.

    PubMed

    Schoof, Valérie A M; Bonnell, Tyler R; Jack, Katharine M; Ziegler, Toni E; Melin, Amanda D; Fedigan, Linda M

    2016-04-01

    Circannual variation in reproduction is pervasive in birds and mammals. In primates, breeding seasonality is variable, with seasonal birth peaks occurring even in year-round breeders. Environmental seasonality is reportedly an important contributor to the observed variation in reproductive seasonality. Given that food availability is the primary factor constraining female reproduction, predictions concerning responsiveness to environmental seasonality focus on females, with studies of males focusing primarily on social factors. We examined the influence of both environmental and social factors on male fecal testosterone (fT) and glucocorticoids (fGC) in moderately seasonally breeding white-faced capuchin monkeys (Cebus capucinus) in Costa Rica. Over 17 months, we collected 993 fecal samples from 14 males in three groups. We used LMM to simultaneously examine the relative effects of photoperiod, fruit biomass, rainfall, temperature, female reproductive status (i.e., number of periovulatory periods, POPs), and male age and dominance rank on monthly fT and fGC levels. Male age and rank had large effects on fT and fGC. Additionally, some hormone variation was explained by environmental factors: photoperiod in the previous month (i.e., lagged photoperiod) was the best environmental predictor of monthly fT levels, whereas fGC levels were best explained by lagged photoperiod, fruit biomass, and rainfall. POPs predicted monthly fT and fGC, but this effect was reduced when all variables were considered simultaneously, possibly because lagged photoperiod and POP were highly correlated. Males may use photoperiod as a cue predicting circannual trends in the temporal distribution of fertile females, while also fine-tuning short-term hormone increases to the actual presence of ovulatory females, which may occur at any time during the year. © 2016 Wiley Periodicals, Inc.

  10. Failure of photoperiod to alter body growth and carcass composition in beef steers.

    PubMed

    Zinn, S A; Chapin, L T; Enright, W J; Tucker, H A

    1989-05-01

    In each of two experiments, 70 crossbred steers were blocked by BW and assigned to initial slaughter groups or to treatments in a 2 x 2 design. In Exp. 1, treatments were 168 d of photoperiod (8 h of light [L]:16 h of dark [D] or 16L:8D) and plane of nutrition (high energy [HPN] or low energy [LPN]). On d -22, 67 and 155, blood was sampled every 20 min for 8 h. Relative to LPN, HPN increased (P less than .01) ADG by 28%, carcass weight by 26% and accretion of carcass fat by 109% and carcass protein by 20%. On d 155, compared with LPN, HPN increased (P less than .01) serum insulin (INS; 1.09 vs .64 ng/ml) and lowered (P less than .05) growth hormone (GH; 2.14 vs 3.70 ng/ml), but prolactin was not affected. Photoperiod did not affect BW gains, carcass composition or serum hormones. In Exp. 2, treatments were 113 d of photoperiod (8L:16D or 16L:8D) and Synovex-S implant (presence [IMP] or absence [NONIMP]). On d 93, blood was sampled every 30 min for 10 h. Relative to NONIMP, IMP increased (P less than .01) ADG by 12% and accretion of carcass protein by 16%. Implants did not affect carcass weight or accretion of fat. Compared with NONIMP, IMP increased (P less than .05) GH (3.16 vs 2.39 ng/ml) and INS (.68 vs .46 ng/ml) but did not affect PRL. Photoperiod did not affect BW gain, carcass composition or serum hormones. We conclude that photoperiod fails to influence growth and carcass composition of steers.

  11. Prospecting for Energy-Rich Renewable Raw Materials: Sorghum Stem Case Study.

    PubMed

    Byrt, Caitlin S; Betts, Natalie S; Tan, Hwei-Ting; Lim, Wai Li; Ermawar, Riksfardini A; Nguyen, Hai Yen; Shirley, Neil J; Lahnstein, Jelle; Corbin, Kendall; Fincher, Geoffrey B; Knauf, Vic; Burton, Rachel A

    2016-01-01

    Sorghum vegetative tissues are becoming increasingly important for biofuel production. The composition of sorghum stem tissues is influenced by genotype, environment and photoperiod sensitivity, and varies widely between varieties and also between different stem tissues (outer rind vs inner pith). Here, the amount of cellulose, (1,3;1,4)-β-glucan, arabinose and xylose in the stems of twelve diverse sorghum varieties, including four photoperiod-sensitive varieties, was measured. At maturity, most photoperiod-insensitive lines had 1% w/w (1,3;1,4)-β-glucan in stem pith tissue whilst photoperiod-sensitive varieties remained in a vegetative stage and accumulated up to 6% w/w (1,3;1,4)-β-glucan in the same tissue. Three sorghum lines were chosen for further study: a cultivated grain variety (Sorghum bicolor BTx623), a sweet variety (S. bicolor Rio) and a photoperiod-sensitive wild line (S. bicolor ssp. verticilliflorum Arun). The Arun line accumulated 5.5% w/w (1,3;1,4)-β-glucan and had higher SbCslF6 and SbCslH3 transcript levels in pith tissues than did photoperiod-insensitive varieties Rio and BTx623 (<1% w/w pith (1,3;1,4)-β-glucan). To assess the digestibility of the three varieties, stem tissue was treated with either hydrolytic enzymes or dilute acid and the release of fermentable glucose was determined. Despite having the highest lignin content, Arun yielded significantly more glucose than the other varieties, and theoretical calculation of ethanol yields was 10 344 L ha-1 from this sorghum stem tissue. These data indicate that sorghum stem (1,3;1,4)-β-glucan content may have a significant effect on digestibility and bioethanol yields. This information opens new avenues of research to generate sorghum lines optimised for biofuel production.

  12. Adaptive strategies of overwintering adults: reproductive diapause and mating behavior in a grasshopper, Stenocatantops splendens (Orthoptera: Catantopidae).

    PubMed

    Zhu, Dao-Hong; Cui, Shuang-Shuang; Fan, Yong-Sheng; Liu, Zhiwei

    2013-04-01

    To understand the adaptive strategies of the overwintering adults of Stenocatantops splendens, the mechanism of maintenance and termination of the reproductive diapause, the variation in mortality between overwintering females and males, and the mating strategy of the males were investigated. The results indicated that the adult reproductive diapause in natural conditions was mainly regulated by photoperiod in the fall - long photoperiods promoted reproductive development and short photoperiods maintained reproductive diapause, and the sensitivity of the overwintering adults to photoperiod was over before the end of the winter. When transferred from natural conditions to controlled laboratory conditions on dates from September through February, pre-oviposition became increasingly shorter with increasingly deferred transfer dates regardless of photoperiod conditions. The adults treated with low temperature for 30 days in September through November had significantly shorter pre-oviposition, suggesting that low temperatures in winter had an important role in the termination of reproductive diapause. The female had a significantly lower supercooling point than the male, which was related to their lower mortality after winter. In addition, observations of wild populations of the species indicated that mating behavior prior to winter and the duration of pre-mating period were not affected by photoperiod; mating and sperm transfer were mostly completed by November. Compared with females only mating before winter, females mating in the spring had shorter life span, longer pre-oviposition, lower hatching rate and laid fewer egg pods while showing no significant difference with regard to ovipositional interval, per pod number of eggs and nymph dry weight. © 2012 The Authors Insect Science © 2012 Institute of Zoology, Chinese Academy of Sciences.

  13. Celestial Moderation of Tropical Seabird Behavior

    PubMed Central

    Pinet, Patrick; Jaeger, Audrey; Cordier, Emmanuel; Potin, Gaël; Le Corre, Matthieu

    2011-01-01

    Most animals, including birds, have cyclic life histories and numerous studies generally conducted on captive animals have shown that photoperiod is the main factor influencing this periodicity. Moon cycles can also affect periodic behavior of birds. Few studies have investigated the influence of these environmental cues in natural settings, and particularly in tropical areas where the change in photoperiod is slight and some bird species keep cyclic behaviors. Using miniaturized light sensors, we simultaneously investigated under natural conditions the influence of photoperiod and moon phases on the migration dates and at-sea activity of a tropical seabird species, the Barau's petrel, throughout its annual cycle. Firstly, we found that birds consistently started their pre- and post-breeding migrations at precise dates corresponding in both cases to a day-duration of 12.5 hours, suggesting a strong influence of the photoperiod in the regulation of migration behavior. We also found that mean population arrival dates to the colony changed from year to year and they were influenced by moon phases. Returns at their colonies occurred around the last full moon of the austral winter, suggesting that moon cycle is used by birds to synchronize their arrival. Secondly, variations of day-time activity were sinusoidal and correlated to seasonal changes of daylength. We thus hypothesize that the photoperiod could directly affect the behavior of the birds at sea. Night-time at-sea activity exhibited a clear cycle of 29.2 days, suggesting that nocturnal foraging was highly regulated by moon phase, particularly during the non-breeding season. To our knowledge, this is the first study to document a mixed regulation of the behavior of a wild bird by photoperiod and moon phases throughout its annual cycle. PMID:22110711

  14. Celestial moderation of tropical seabird behavior.

    PubMed

    Pinet, Patrick; Jaeger, Audrey; Cordier, Emmanuel; Potin, Gaël; Le Corre, Matthieu

    2011-01-01

    Most animals, including birds, have cyclic life histories and numerous studies generally conducted on captive animals have shown that photoperiod is the main factor influencing this periodicity. Moon cycles can also affect periodic behavior of birds. Few studies have investigated the influence of these environmental cues in natural settings, and particularly in tropical areas where the change in photoperiod is slight and some bird species keep cyclic behaviors. Using miniaturized light sensors, we simultaneously investigated under natural conditions the influence of photoperiod and moon phases on the migration dates and at-sea activity of a tropical seabird species, the Barau's petrel, throughout its annual cycle. Firstly, we found that birds consistently started their pre- and post-breeding migrations at precise dates corresponding in both cases to a day-duration of 12.5 hours, suggesting a strong influence of the photoperiod in the regulation of migration behavior. We also found that mean population arrival dates to the colony changed from year to year and they were influenced by moon phases. Returns at their colonies occurred around the last full moon of the austral winter, suggesting that moon cycle is used by birds to synchronize their arrival. Secondly, variations of day-time activity were sinusoidal and correlated to seasonal changes of daylength. We thus hypothesize that the photoperiod could directly affect the behavior of the birds at sea. Night-time at-sea activity exhibited a clear cycle of 29.2 days, suggesting that nocturnal foraging was highly regulated by moon phase, particularly during the non-breeding season. To our knowledge, this is the first study to document a mixed regulation of the behavior of a wild bird by photoperiod and moon phases throughout its annual cycle.

  15. Male Endocrine Response to Seasonally Varying Environmental and Social Factors in a Neotropical Primate, Cebus capucinus

    PubMed Central

    Schoof, Valérie A. M.; Bonnell, Tyler R.; Jack, Katharine M.; Ziegler, Toni E.; Melin, Amanda D.; Fedigan, Linda M.

    2018-01-01

    Objective Circannual variation in reproduction is pervasive in birds and mammals. In primates, breeding seasonality is variable, with seasonal birth peaks occurring even in year-round breeders. Environmental seasonality is reportedly an important contributor to the observed variation in reproductive seasonality. Given that food availability is the primary factor constraining female reproduction, predictions concerning responsiveness to environmental seasonality focus on females, with studies of males focusing primarily on social factors. We examined the influence of both environmental and social factors on male fecal testosterone (fT) and glucocorticoids (fGC) in moderately seasonally breeding white-faced capuchin monkeys (Cebus capucinus) in Costa Rica. Methods Over 17 months, we collected 993 fecal samples from 14 males in three groups. We used LMM to simultaneously examine the relative effects of photoperiod, fruit biomass, rainfall, temperature, female reproductive status (i.e., number of periovulatory periods, POPs), and male age and dominance rank on monthly fT and fGC levels. Results Male age and rank had large effects on fT and fGC. Additionally, some hormone variation was explained by environmental factors: photoperiod in the previous month (i.e., lagged photoperiod) was the best environmental predictor of monthly fT levels, whereas fGC levels were best explained by lagged photoperiod, fruit biomass, and rainfall. POPs predicted monthly fT and fGC, but this effect was reduced when all variables were considered simultaneously, possibly because lagged photoperiod and POP were highly correlated. Conclusions Males may use photoperiod as a cue predicting circannual trends in the temporal distribution of fertile females, while also fine-tuning short-term hormone increases to the actual presence of ovulatory females, which may occur at any time during the year. PMID:26739266

  16. Testicular atrophy and reproductive quiescence in photorefractory and scotosensitive quail: Involvement of hypothalamic deep brain photoreceptors and GnRH-GnIH system.

    PubMed

    Banerjee, Somanshu; Chaturvedi, Chandra Mohini

    2017-10-01

    Birds time their daily and seasonal activities in synchronization with circadian and annual periodicities in the environment, which is mainly provided by changes in photoperiod/day length conditions. Photoperiod appears to act at the level of eye, pineal and encephalic/deep brain photoperception and thus entrain the hypothalamic clock as well as reproductive circuitry in different avian species. In this article our focus of study is to elucidate out the underlying molecular mechanism of modulation of the hypothalamic reproductive circuitry following the photoperception through the hypothalamic photoreceptor cells and the subsequent alteration in the reproductive responses in quail, kept under different simulated photoperiodic conditions. Present study investigated the different simulated photoperiodic conditions induced hypothalamic DBP-GnRH-GnIH system mediated translation of photoperiodic information and subsequent exhibition of differential photosexual responses (scoto-/photo-sensitivity and refractoriness) in Japanese quail, Coturnix coturnix japonica. Paired testes weight and paired testicular volume increased 15.9 and 22.6-fold respectively in scotorefractory quail compare to that of scotosensitive phase and 12.8 and 24.3-fold in photosensitive quail compare to that of photorefractory phase. The pineal/eye melatonin (through melatonin receptor subtype Mel 1c R) and hypothalamic deep brain photoreceptor (DBPs) cells directly modulate the hypothalamic GnRH-I/II and GnIH system and thus exhibit testicular stimulation or regression in response to different photoperiodic conditions (PS, PR, SS and SR). The hypothalamic alteration of DBP(s) and GnRH-GnIH system thus may induce the testicular stimulation in PS and SR quail and testicular regression in SS and PR quail. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Assessment of anoxia tolerance and photoperiod dependence of GABAergic polarity in the pond snail Lymnaea stagnalis.

    PubMed

    Buck, Leslie T; Bond, Hilary C; Malik, Aqsa

    2017-01-01

    The pond snail Lymnaea stagnalis is reported to be anoxia-tolerant and if the tolerance mechanism is similar to that of the anoxia-tolerant painted turtle, GABA should play an important role. A potentially confounding factor investigating the role of GABA in anoxia tolerance are reports that GABA has both inhibitory and excitatory effects within L. stagnalis central ganglion. We therefore set out to determine if seasonality or photoperiod has an impact on: 1) the anoxia-tolerance of the intact pond snail, and 2) the response of isolated neuroganglia cluster F neurons to exogenous GABA application. L. stagnalis maintained on a natural summer light cycle were unable to survive any period of anoxic exposure, while those maintained on a natural winter light cycle survived a maximum of 4h. Using intracellular sharp electrode recordings from pedal ganglia cluster F neurons we show that there is a photoperiod dependent shift in the response to GABA. Snails exposed to a 16h:8h light:dark cycle in an environmental chamber (induced summer phenotype) exhibited hyperpolarizing inhibitory responses and those exposed to a 8h:16h light:dark cycle (induced winter phenotype) exhibited depolarizing excitatory responses to GABA application. Using gramicidin-perforated patch recordings we also found a photoperiod dependent shift in the reversal potential for GABA. We conclude that the opposing responses of L. stagnalis central neurons to GABA results from a shift in intracellular chloride concentration that is photoperiod dependent and is likely mediated through the relative efficacy of cation chloride co-transporters. Although the physiological ramifications of the photoperiod dependent shift are unknown this work potentially has important implications for the impact of artificial light pollution on animal health. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Short, natural, and extended photoperiod response in BC2F4 lines of bread wheat with different photoperiod-1 (Ppd-1) alleles.

    PubMed

    Bentley, A R; Horsnell, R; Werner, C P; Turner, A S; Rose, G A; Bedard, C; Howell, P; Wilhelm, E P; Mackay, I J; Howells, R M; Greenland, A; Laurie, D A; Gosman, N

    2013-04-01

    Flowering is a critical period in the life cycle of flowering plant species, resulting in an irreversible commitment of significant resources. Wheat is photoperiod sensitive, flowering only when daylength surpasses a critical length; however, photoperiod insensitivity (PI) has been selected by plant breeders for >40 years to enhance yield in certain environments. Control of flowering time has been greatly facilitated by the development of molecular markers for the Photoperiod-1 (Ppd-1) homeoloci, on the group 2 chromosomes. In the current study, an allelic series of BC2F4 lines in the winter wheat cultivars 'Robigus' and 'Alchemy' was developed to elucidate the influence on flowering of eight gene variants from the B- and D-genomes of bread wheat and the A-genome of durum wheat. Allele effects were tested in short, natural, and extended photoperiods in the field and controlled environments. Across genetic background and treatment, the D-genome PI allele, Ppd-D1a, had a more potent effect on reducing flowering time than Ppd-B1a. However, there was significant donor allele effect for both Ppd-D1a and Ppd-B1a, suggesting the presence of linked modifier genes and/or additional sources of latent sensitivity. Development of Ppd-A1a BC2F4 lines derived from synthetic hexaploid wheat provided an opportunity to compare directly the flowering time effect of the A-genome allele from durum with the B- and D-genome variants from bread wheat for the first time. Analyses indicated that the reducing effect of Ppd-A1a is comparable with that of Ppd-D1a, confirming it as a useful alternative source of PI.

  19. Genetic Dissection of Photoperiod Response Based on GWAS of Pre-Anthesis Phase Duration in Spring Barley

    PubMed Central

    Alqudah, Ahmad M.; Sharma, Rajiv; Pasam, Raj K.; Graner, Andreas; Kilian, Benjamin; Schnurbusch, Thorsten

    2014-01-01

    Heading time is a complex trait, and natural variation in photoperiod responses is a major factor controlling time to heading, adaptation and grain yield. In barley, previous heading time studies have been mainly conducted under field conditions to measure total days to heading. We followed a novel approach and studied the natural variation of time to heading in a world-wide spring barley collection (218 accessions), comprising of 95 photoperiod-sensitive (Ppd-H1) and 123 accessions with reduced photoperiod sensitivity (ppd-H1) to long-day (LD) through dissecting pre-anthesis development into four major stages and sub-phases. The study was conducted under greenhouse (GH) conditions (LD; 16/8 h; ∼20/∼16°C day/night). Genotyping was performed using a genome-wide high density 9K single nucleotide polymorphisms (SNPs) chip which assayed 7842 SNPs. We used the barley physical map to identify candidate genes underlying genome-wide association scans (GWAS). GWAS for pre-anthesis stages/sub-phases in each photoperiod group provided great power for partitioning genetic effects on floral initiation and heading time. In addition to major genes known to regulate heading time under field conditions, several novel QTL with medium to high effects, including new QTL having major effects on developmental stages/sub-phases were found to be associated in this study. For example, highly associated SNPs tagged the physical regions around HvCO1 (barley CONSTANS1) and BFL (BARLEY FLORICAULA/LEAFY) genes. Based upon our GWAS analysis, we propose a new genetic network model for each photoperiod group, which includes several newly identified genes, such as several HvCO-like genes, belonging to different heading time pathways in barley. PMID:25420105

  20. The Response of Honduras Pine to Various Photoperiods

    Treesearch

    J. A. Vozzo; C. B. Briscoe

    1963-01-01

    Height growth of Honduras pine (P. caribaea. v. hondurensis) seedllng'S 18 shown to be significantly influenced by photoperiod. Maximum initial effect was obtained by the longest period tested, 16 hours; but by 7 weeks, greatest growth was obtained by an interrupted 11 (8+3) hours.

  1. Effects of photoperiod, growth temperature and cold acclimatisation on glucosinolates, sugars and fatty acids in kale.

    PubMed

    Steindal, Anne Linn Hykkerud; Rødven, Rolf; Hansen, Espen; Mølmann, Jørgen

    2015-05-01

    Curly kale is a robust, cold tolerant plant with a high content of health-promoting compounds, grown at a range of latitudes. To assess the effects of temperature, photoperiod and cold acclimatisation on levels of glucosinolates, fatty acids and soluble sugars in kale, an experiment was set up under controlled conditions. Treatments consisted of combinations of the temperatures 15/9 or 21/15 °C, and photoperiods of 12 or 24h, followed by a cold acclimatisation period. Levels of glucosinolates and fatty acid types in leaves were affected by growth conditions and cold acclimatisation, being generally highest before acclimatisation. The effects of growth temperature and photoperiod on freezing tolerance were most pronounced in plants grown without cold acclimatisation. The results indicate that cold acclimatisation can increase the content of soluble sugar and can thereby improve the taste, whilst the content of unsaturated fatty and glucosinolates acids may decrease. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Cloning of quantitative trait genes from rice reveals conservation and divergence of photoperiod flowering pathways in Arabidopsis and rice

    PubMed Central

    Matsubara, Kazuki; Hori, Kiyosumi; Ogiso-Tanaka, Eri; Yano, Masahiro

    2014-01-01

    Flowering time in rice (Oryza sativa L.) is determined primarily by daylength (photoperiod), and natural variation in flowering time is due to quantitative trait loci involved in photoperiodic flowering. To date, genetic analysis of natural variants in rice flowering time has resulted in the positional cloning of at least 12 quantitative trait genes (QTGs), including our recently cloned QTGs, Hd17, and Hd16. The QTGs have been assigned to specific photoperiodic flowering pathways. Among them, 9 have homologs in the Arabidopsis genome, whereas it was evident that there are differences in the pathways between rice and Arabidopsis, such that the rice Ghd7–Ehd1–Hd3a/RFT1 pathway modulated by Hd16 is not present in Arabidopsis. In this review, we describe QTGs underlying natural variation in rice flowering time. Additionally, we discuss the implications of the variation in adaptive divergence and its importance in rice breeding. PMID:24860584

  3. Identification of fasciclin-like arabinogalactan proteins in textile hemp (Cannabis sativa L.): in silico analyses and gene expression patterns in different tissues.

    PubMed

    Guerriero, Gea; Mangeot-Peter, Lauralie; Legay, Sylvain; Behr, Marc; Lutts, Stanley; Siddiqui, Khawar Sohail; Hausman, Jean-Francois

    2017-09-20

    The fasciclin-like arabinogalactan proteins (FLAs) belong to the arabinogalactan protein (AGP) superfamily and are known to play different physiological roles in plants. This class of proteins was shown to participate in plant growth, development, defense against abiotic stresses and, notably, cell wall biosynthesis. Although some studies are available on the characterization of FLA genes from different species, both woody and herbaceous, no detailed information is available on the FLA family of textile hemp (Cannabis sativa L.), an economically important fibre crop. By searching the Cannabis genome and EST databases, 23 CsaFLAs have been here identified which are divided into four phylogenetic groups. A real-time qPCR analysis performed on stem tissues (isolated bast fibres and shivs sampled at three heights), hypocotyls (6-9-12-15-17-20 days-old), whole seedlings, roots, leaves and female/male flowers of the monoecious fibre variety Santhica 27, indicates that the identified FLA genes are differentially expressed. Interestingly, some hemp FLAs are expressed during early phases of fibre growth (elongation), while others are more expressed in the middle and base of the stem and thus potentially involved in secondary cell wall formation (fibre thickening). The bioinformatic analysis of the promoter regions shows that the FLAs upregulated in the younger regions of the stem share a conserved motif related to flowering control and regulation of photoperiod perception. The promoters of the FLA genes expressed at higher levels in the older stem regions, instead, share a motif putatively recognized by MYB3, a transcriptional repressor belonging to the MYB family subgroup S4. These results point to the existence of a transcriptional network fine-tuning the expression of FLA genes in the older and younger regions of the stem, as well as in the bast fibres/shivs of textile hemp. In summary, our study paves the way for future analyses on the biological functions of FLAs in an industrially relevant fibre crop.

  4. Seasonal response of ghrelin, growth hormone, and insulin-like growth factor I in the free-ranging Florida manatee (Trichechus manatus latirostris)

    USGS Publications Warehouse

    Tighe, Rachel L; Bonde, Robert K.; Avery, Julie P.

    2016-01-01

    Seasonal changes in light, temperature, and food availability stimulate a physiological response in an animal. Seasonal adaptations are well studied in Arctic, Sub-Arctic, and hibernating mammals; however, limited studies have been conducted in sub-tropical species. The Florida manatee (Trichechus manatus latirostris), a sub-tropical marine mammal, forages less during colder temperatures and may rely on adipose stores for maintenance energy requirements. Metabolic hormones, growth hormone (GH), insulin-like growth factor (IGF)-I, and ghrelin influence growth rate, accretion of lean and adipose tissue. They have been shown to regulate seasonal changes in body composition. The objective of this research was to investigate manatee metabolic hormones in two seasons to determine if manatees exhibit seasonality and if these hormones are associated with seasonal changes in body composition. In addition, age related differences in these metabolic hormones were assessed in multiple age classes. Concentrations of GH, IGF-I, and ghrelin were quantified in adult manatee serum using heterologous radioimmunoassays. Samples were compared between short (winter) and long (summer) photoperiods (n = 22 male, 20 female) and by age class (adult, juvenile, and calf) in long photoperiods (n = 37). Short photoperiods tended to have reduced GH (p = 0.08), greater IGF-I (p = 0.01), and greater blubber depth (p = 0.03) compared with long photoperiods. No differences were observed in ghrelin (p = 0.66). Surprisingly, no age related differences were observed in IGF-I or ghrelin concentrations (p > 0.05). However, serum concentrations of GH tended (p = 0.07) to be greater in calves and juveniles compared with adults. Increased IGF-I, greater blubber thickness, and reduced GH during short photoperiod suggest a prioritization for adipose deposition. Whereas, increased GH, reduced blubber thickness, and decreased IGF-I in long photoperiod suggest prioritization of lean tissue accretion. Hormone profiles in conjunction with difference in body composition between photoperiods indicate seasonal adjustments in manatee nutrient partitioning priorities.

  5. Seasonal ovulatory activity exists in tropical Creole female goats and Black Belly ewes subjected to a temperate photoperiod.

    PubMed

    Chemineau, Philippe; Daveau, Agnès; Cognié, Yves; Aumont, Gilles; Chesneau, Didier

    2004-08-27

    Seasonality of ovulatory activity is observed in European sheep and goat breeds, whereas tropical breeds show almost continuous ovulatory activity. It is not known if these tropical breeds are sensitive or not to temperate photoperiod. This study was therefore designed to determine whether tropical Creole goats and Black-Belly ewes are sensitive to temperate photoperiod. Two groups of adult females in each species, either progeny or directly born from imported embryos, were used and maintained in light-proof rooms under simulated temperate (8 to 16 h of light per day) or tropical (11 - 13 h) photoperiods. Ovulatory activity was determined by blood progesterone assays for more than two years. The experiment lasted 33 months in goats and 25 months in ewes. Marked seasonality of ovulatory activity appeared in the temperate group of Creole female goats. The percentage of female goats experiencing at least one ovulation per month dramatically decreased from May to September for the three years (0%, 27% and 0%, respectively). Tropical female goats demonstrated much less seasonality, as the percentage of goats experiencing at least one ovulation per month never went below 56%. These differences were significant. Both groups of temperate and tropical Black-Belly ewes experienced a marked seasonality in their ovulatory activity, with only a slightly significant difference between groups. The percentage of ewes experiencing at least one ovulation per month dropped dramatically in April and rose again in August (tropical ewes) or September (temperate ewes). The percentage of ewes experiencing at least one ovulation per month never went below 8% and 17% (for tropical and temperate ewes respectively) during the spring and summer months. An important seasonality in ovulatory activity of tropical Creole goats was observed when females were exposed to a simulated temperate photoperiod. An unexpected finding was that Black-Belly ewes and, to a lesser extent, Creole goats exposed to a simulated tropical photoperiod also showed seasonality in their ovulatory activity. Such results indicate that both species are capable of showing seasonality under the photoperiodic changes of the temperate zone even though they do not originate from these regions.

  6. Seasonal ovulatory activity exists in tropical Creole female goats and Black Belly ewes subjected to a temperate photoperiod

    PubMed Central

    Chemineau, Philippe; Daveau, Agnès; Cognié, Yves; Aumont, Gilles; Chesneau, Didier

    2004-01-01

    Background Seasonality of ovulatory activity is observed in European sheep and goat breeds, whereas tropical breeds show almost continuous ovulatory activity. It is not known if these tropical breeds are sensitive or not to temperate photoperiod. This study was therefore designed to determine whether tropical Creole goats and Black-Belly ewes are sensitive to temperate photoperiod. Two groups of adult females in each species, either progeny or directly born from imported embryos, were used and maintained in light-proof rooms under simulated temperate (8 to 16 h of light per day) or tropical (11 – 13 h) photoperiods. Ovulatory activity was determined by blood progesterone assays for more than two years. The experiment lasted 33 months in goats and 25 months in ewes. Results Marked seasonality of ovulatory activity appeared in the temperate group of Creole female goats. The percentage of female goats experiencing at least one ovulation per month dramatically decreased from May to September for the three years (0%, 27% and 0%, respectively). Tropical female goats demonstrated much less seasonality, as the percentage of goats experiencing at least one ovulation per month never went below 56%. These differences were significant. Both groups of temperate and tropical Black-Belly ewes experienced a marked seasonality in their ovulatory activity, with only a slightly significant difference between groups. The percentage of ewes experiencing at least one ovulation per month dropped dramatically in April and rose again in August (tropical ewes) or September (temperate ewes). The percentage of ewes experiencing at least one ovulation per month never went below 8% and 17% (for tropical and temperate ewes respectively) during the spring and summer months. Conclusions An important seasonality in ovulatory activity of tropical Creole goats was observed when females were exposed to a simulated temperate photoperiod. An unexpected finding was that Black-Belly ewes and, to a lesser extent, Creole goats exposed to a simulated tropical photoperiod also showed seasonality in their ovulatory activity. Such results indicate that both species are capable of showing seasonality under the photoperiodic changes of the temperate zone even though they do not originate from these regions. PMID:15333134

  7. The C4 Model Grass Setaria Is a Short Day Plant with Secondary Long Day Genetic Regulation

    PubMed Central

    Doust, Andrew N.; Mauro-Herrera, Margarita; Hodge, John G.; Stromski, Jessica

    2017-01-01

    The effect of photoperiod (day:night ratio) on flowering time was investigated in the wild species, Setaria viridis, and in a set of recombinant inbred lines (RILs) derived from a cross between foxtail millet (S. italica) and its wild ancestor green foxtail (S. viridis). Photoperiods totaled 24 h, with three trials of 8:16, 12:12 and 16:8 light:dark hour regimes for the RIL population, and these plus 10:14 and 14:10 for the experiments with S. viridis alone. The response of S. viridis to light intensity as well as photoperiod was assessed by duplicating photoperiods at two light intensities (300 and 600 μmol.m-2.s-1). In general, day lengths longer than 12 h delayed flowering time, although flowering time was also delayed in shorter day-lengths relative to the 12 h trial, even when daily flux in high intensity conditions exceeded that of the low intensity 12 h trial. Cluster analysis showed that the effect of photoperiod on flowering time differed between sets of RILs, with some being almost photoperiod insensitive and others being delayed with respect to the population as a whole in either short (8 or 12 h light) or long (16 h light) photoperiods. QTL results reveal a similar picture, with several major QTL colocalizing between the 8 and 12 h light trials, but with a partially different set of QTL identified in the 16 h trial. Major candidate genes for these QTL include several members of the PEBP protein family that includes Flowering Locus T (FT) homologs such as OsHd3a, OsRFT1, and ZCN8/12. Thus, Setaria is a short day plant (flowering quickest in short day conditions) whose flowering is delayed by long day lengths in a manner consistent with the responses of most other members of the grass family. However, the QTL results suggest that flowering time under long day conditions uses additional genetic pathways to those used under short day conditions. PMID:28729868

  8. The C4 Model Grass Setaria Is a Short Day Plant with Secondary Long Day Genetic Regulation.

    PubMed

    Doust, Andrew N; Mauro-Herrera, Margarita; Hodge, John G; Stromski, Jessica

    2017-01-01

    The effect of photoperiod (day:night ratio) on flowering time was investigated in the wild species, Setaria viridis , and in a set of recombinant inbred lines (RILs) derived from a cross between foxtail millet ( S. italica ) and its wild ancestor green foxtail ( S. viridis ). Photoperiods totaled 24 h, with three trials of 8:16, 12:12 and 16:8 light:dark hour regimes for the RIL population, and these plus 10:14 and 14:10 for the experiments with S. viridis alone. The response of S. viridis to light intensity as well as photoperiod was assessed by duplicating photoperiods at two light intensities (300 and 600 μmol.m -2 .s -1 ). In general, day lengths longer than 12 h delayed flowering time, although flowering time was also delayed in shorter day-lengths relative to the 12 h trial, even when daily flux in high intensity conditions exceeded that of the low intensity 12 h trial. Cluster analysis showed that the effect of photoperiod on flowering time differed between sets of RILs, with some being almost photoperiod insensitive and others being delayed with respect to the population as a whole in either short (8 or 12 h light) or long (16 h light) photoperiods. QTL results reveal a similar picture, with several major QTL colocalizing between the 8 and 12 h light trials, but with a partially different set of QTL identified in the 16 h trial. Major candidate genes for these QTL include several members of the PEBP protein family that includes Flowering Locus T (FT) homologs such as OsHd3a, OsRFT1, and ZCN8/12. Thus, Setaria is a short day plant (flowering quickest in short day conditions) whose flowering is delayed by long day lengths in a manner consistent with the responses of most other members of the grass family. However, the QTL results suggest that flowering time under long day conditions uses additional genetic pathways to those used under short day conditions.

  9. Pineal and ovarian response to 22- and 24-h days in the ewe.

    PubMed

    English, J; Arendt, J; Symons, A M; Poulton, A L; Tobler, I

    1988-08-01

    Melatonin secretion in ewes was entrained by 22-h light-dark cycles whether of long (16L:6D) or short (6L:16D) photoperiod. In photoperiods of 6L:16D, a phase-delay of melatonin secretion was evident, leading to a dark-phase duration shorter than that found in 8L:16D. Early onset of estrus was induced in anestrous ewes kept in 8L:16D, but not 6L:16D, from 22 July compared to controls in natural light. In photoperiods of 16L:6D, the melatonin profile corresponded precisely to the dark phase. Early offset of estrus was induced in estrous ewes kept in both 18L:6D and 16L:6D from 18 December compared to controls in natural light. Thus, when the duration of melatonin secretion was appropriate to the long photoperiod (16L:6D), but with a constantly changing phase position, a long-day reproductive response was found. Activity-rest cycles were not entrained by 16L:6D; thus the synchronization of melatonin and activity-rest cycles does not appear to be essential for the induction of a long-day reproductive response. These results support the hypothesis that the duration, not the circadian-phase position, of melatonin is critical to the induction of photoperiodic effects.

  10. Photoperiodic Diapause and the Establishment of Aedes albopictus (Diptera: Culicidae) in North America

    PubMed Central

    2016-01-01

    The invasion and range expansion of Aedes albopictus (Skuse) in North America represents an outstanding opportunity to study processes of invasion, range expansion, and climatic adaptation. Furthermore, knowledge obtained from such research is relevant to developing novel strategies to control this important vector species. Substantial evidence indicates that the photoperiodic diapause response is an important adaptation to climatic variation across the range of Ae. albopictus in North America. Photoperiodic diapause is a key determinant of abundance in both space and time, and the timing of entry into and exit out of diapause strongly affects seasonal population dynamics and thus the potential for arbovirus transmission. Emerging genomic technologies are making it possible to develop high-resolution, genome-wide genetic markers that can be used for genetic mapping of traits relevant to disease transmission and phylogeographic studies to elucidate invasion history. Recent work using next-generation sequencing technologies (e.g., RNA-seq), combined with physiological experiments, has provided extensive insight into the transcriptional basis of the diapause response in Ae. albopictus. Applying this knowledge to identify novel targets for vector control represents an important future challenge. Finally, recent studies have begun to identify traits other than diapause that are affected by photoperiodism. Extending this work to identify additional traits influenced by photoperiod should produce important insights into the seasonal biology of Ae. albopictus. PMID:27354438

  11. Natural Variation and Genetics of Photoperiodism in Wyeomyia smithii.

    PubMed

    Bradshaw, William E; Holzapfel, Christina M

    2017-01-01

    Seasonal change in the temperate and polar regions of Earth determines how the world looks around us and, in fact, how we live our day-to-day lives. For biological organisms, seasonal change typically involves complex physiological and metabolic reorganization, the majority of which is regulated by photoperiodism. Photoperiodism is the ability of animals and plants to use day length or night length, resulting in life-historical transformations, including seasonal development, migration, reproduction, and dormancy. Seasonal timing determines not only survival and reproductive success but also the structure and organization of complex communities and, ultimately, the biomes of Earth. Herein, a small mosquito, Wyeomyia smithii, that lives only in the water-filled leaves of a carnivorous plant over a wide geographic range, is used to explore the genetic and evolutionary basis of photoperiodism. Photoperiodism in W. smithii is considered in the context of its historical biogeography in nature to examine the startling finding that recent rapid climate change can drive genetic change in plants and animals at break-neck speed, and to challenge the ponderous 80+ year search for connections between daily and seasonal time-keeping mechanisms. Finally, a model is proposed that reconciles the seemingly disparate 24-h daily clock driven by the invariant rotation of Earth about its axis with the evolutionarily flexible seasonal timer orchestrated by variable seasonality driven by the rotation of Earth about the Sun. © 2017 Elsevier Inc. All rights reserved.

  12. Coupling Developmental Physiology, Photoperiod, and Temperature to Model Phenology and Dynamics of an Invasive Heteropteran, Halyomorpha halys

    PubMed Central

    Nielsen, Anne L.; Chen, Shi; Fleischer, Shelby J.

    2016-01-01

    We developed an agent-based stochastic model expressing stage-specific phenology and population dynamics for an insect species across geographic regions. We used the invasive pentatomid, Halyomorpha halys, as the model organism because gaps in knowledge exist regarding its developmental physiology, it is expanding its global distribution, and it is of significant economic importance. Model predictions were compared against field observations over 3 years, and the parameter set that enables the largest population growth was applied to eight locations over 10 years, capturing the variation in temperature and photoperiod profiles of significant horticultural crop production that could be affected by H. halys in the US. As a species that overwinters as adults, critical photoperiod significantly impacted H. halys seasonality and population size through its influence on diapause termination and induction, and this may impact other insects with similar life-histories. Photoperiod and temperature interactions influenced life stage synchrony among years, resulting in an order of magnitude difference, for occurrence of key life stages. At all locations, there was a high degree of overlap among life stages and generation. Although all populations produced F2 adults and thus could be characterized as bivoltine, the size and relative contribution of each generation to the total, or overwintering, adult population also varied dramatically. In about half of the years in two locations (Geneva, NY and Salem, OR), F1 adults comprised half or more of the adult population at the end of the year. Yearly degree-day accumulation was a significant covariate influencing variation in population growth, and average maximum adult population size varied by 10-fold among locations. Average final population growth was positive (Asheville, NC, Homestead, FL, Davis, CA) or marginal (Geneva, NY, Bridgeton, NJ, Salem, OR, Riverside, CA), but was negative in one location (Wenatchee WA) due to cooler temperatures coupled with timing of vitellogenesis of F2 adults. Years of the highest population growth in the mid-Atlantic site coincided with years of highest crop damage reports. We discuss these results with respect to assumptions and critical knowledge gaps, the ability to realistically model phenology of species with strongly overlapping life stage and which diapause as adults. PMID:27242539

  13. Photosynthetic pathway types of evergreen rosette plants (Liliaceae) of the Chihuahuan desert.

    PubMed

    Kemp, Paul R; Gardetto, Pietra E

    1982-11-01

    Diurnal patterns of CO 2 exchange and titratable acidity were monitored in six species of evergreen rosette plants growing in controlled environment chambers and under outdoor environmental conditions. These patterns indicated that two of the species, Yucca baccata and Y. torreyi, were constituitive CAM plants while the other species, Y. elata, Y. campestris, Nolina microcarpa and Dasylirion wheeleri, were C 3 plants. The C 3 species did not exhibit CAM when grown in any of several different temperature, photoperiod, and moisture regimes. Both photosynthetic pathway types appear adapted to desert environments and all species show environmentally induced changes in their photosynthetic responses consistent with desert adaptation. The results of this study do not indicate that changes in the photosynthetic pathway type are an adaptation in any of these species.

  14. Improvement of Alternative Crop Phenology Detection Algorithms using MODIS NDVI Time Series Data in US Corn Belt Region

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kang, S.; Seo, B.; Lee, K.

    2017-12-01

    Predicting crop phenology is important for understanding of crop development and growth processes and improving the accuracy of crop model. Remote sensing offers a feasible tool for monitoring spatio-temporal patterns of crop phenology in region and continental scales. Various methods have been developed to determine the timing of crop phenological stages using spectral vegetation indices (i.e. NDVI and EVI) derived from satellite data. In our study, it was compared four alternative detection methods to identify crop phenological stages (i.e. the emergence and harvesting date) using high quality NDVI time series data derived from MODIS. Also we investigated factors associated with crop development rate. Temperature and photoperiod are the two main factors which would influence the crop's growth pattern expressed in the VI data. Only the effect of temperature on crop development rate was considered. The temperature response function in the Wang-Engel (WE) model was used, which simulates crop development using nonlinear models with response functions that range from zero to one. It has attempted at the state level over 14 years (2003-2016) in Iowa and Illinois state of USA, where the estimated phenology date by using four methods for both corn and soybean. Weekly crop progress reports produced by the USDA NASS were used to validate phenology detection algorithms effected by temperature. All methods showed substantial uncertainty but the threshold method showed relatively better agreement with the State-level data for soybean phenology.

  15. Yield and nutritive value of photoperiod-sensitive sorghum and sorghum-sudangrass in central Wisconsin

    USDA-ARS?s Scientific Manuscript database

    A study was conducted to evaluate the yield and nutrient composition of photoperiod sensitive (PS) and non-PS forage sorghum, sorghum-sudangrass, and sudangrass compared to corn planted on 2 dates and harvested using single or multiple-cut harvest strategies at 2 research stations (Marshfield and Ha...

  16. QTL mapping for flowering-time and photoperiod insensitivity of wild cotton Gossypium darwinii Watt

    USDA-ARS?s Scientific Manuscript database

    Most wild and semi-wild species of the genus Gossypium are sensitive to photoperiodism. The wild germplasm cotton collection is a valuable source of genes for genetic improvement of current cotton cultivars. For the purpose of identifying quantitative trait loci (QTLs) controlling flowering, a bi-pa...

  17. Timing of short-day exposure influences diapause response of western tarnished plant bug

    USDA-ARS?s Scientific Manuscript database

    The western tarnished plant bug, Lygus hesperus, enters adult diapause in response to short photoperiods. However, the instars or stages responsive to the photoperiodic cue are poorly defined. Lygus were reared under short days (10 h) until they were dissected to determine diapause status as 10-d-o...

  18. [Motility of rats exposed to an altered photoperiod in the open field test].

    PubMed

    Sopova, I Iu; Zamorskiĭ, I I

    2012-01-01

    Motility of rats exposed to an altered photoperiod has been studied in the open field test. It has been shown that physical activity of rats kept in darkness declined. The correlation parameters of locomotor activity as compared to previous data changed in animals kept in continuous light.

  19. Interactive effects of photoperiod and light intensity on blood physiological and biochemical reactions of broilers grown to heavy weights

    USDA-ARS?s Scientific Manuscript database

    The effects of photoperiod, light intensity, and their interaction on blood acid-base balance, metabolites, and electrolytes in broiler chickens under environmentally controlled conditions were examined in 2 trials. The experiment was consisted of a factorial arrangement of treatments in a randomize...

  20. Evaluation of the growth of the bursa of fabricius in broilers reared under different light photoperiods

    USDA-ARS?s Scientific Manuscript database

    Previous studies have investigated the interaction of different light sources and light intensity. Studies are lacking concerning the effect of different light sources and photoperiods on broiler growth and health. The results reported here are a part of a larger study to evaluate the interaction of...

  1. The effect of photoperiod on tuberization in cultivated x wild potato species hybrids

    USDA-ARS?s Scientific Manuscript database

    Wild Solanum species offer a valuable source of genetic diversity for potato improvement. Most of these species are found in equatorial South and Central America and they do not tuberize under long day photoperiods typical of those in the major potato production areas of North America, Europe and As...

  2. Photoperiod and growing degree days effect on dry matter partitioning in Jerusalem artichoke

    USDA-ARS?s Scientific Manuscript database

    The effect of photoperiod and growing degree days (GDD) on dry matter and dry partitioning in Jerusalem artichoke was investigated during 2008-09 and 2009-10. Three Jerusalem artichoke genotypes (CN-52867, JA-89 and HEL-65) were planted in 15 day-intervals between with thirteen different dates (Sep...

  3. Biocapture of CO2 by Different Microalgal-Based Technologies for Biogas Upgrading and Simultaneous Biogas Slurry Purification under Various Light Intensities and Photoperiods

    PubMed Central

    Guo, Pengfei; Zhang, Yuejin; Zhao, Yongjun

    2018-01-01

    Co-cultivation of microalgae and microbes for pollutant removal from sewage is considered as an effective wastewater treatment method. The aim of this study is to screen the optimal photoperiod, light intensity and microalgae co-cultivation method for simultaneously removing nutrients in biogas slurry and capturing CO2 in biogas. The microalgae–fungi pellets are deemed to be a viable option because of their high specific growth rate and nutrient and CO2 removal efficiency under the photoperiod of 14 h light:10 h dark. The order of both the biogas slurry purification and biogas upgrading is ranked the same, that is Chlorella vulgaris–Ganoderma lucidum > Chlorella vulgaris–activated sludge > Chlorella vulgaris under different light intensities. For all cultivation methods, the moderate light intensity of 450 μmol m−2 s−1 is regarded as the best choice. This research revealed that the control of photoperiod and light intensity can promote the biological treatment process of biogas slurry purification and biogas upgrading using microalgal-based technology. PMID:29543784

  4. Biocapture of CO₂ by Different Microalgal-Based Technologies for Biogas Upgrading and Simultaneous Biogas Slurry Purification under Various Light Intensities and Photoperiods.

    PubMed

    Guo, Pengfei; Zhang, Yuejin; Zhao, Yongjun

    2018-03-15

    Abstract : Co-cultivation of microalgae and microbes for pollutant removal from sewage is considered as an effective wastewater treatment method. The aim of this study is to screen the optimal photoperiod, light intensity and microalgae co-cultivation method for simultaneously removing nutrients in biogas slurry and capturing CO₂ in biogas. The microalgae-fungi pellets are deemed to be a viable option because of their high specific growth rate and nutrient and CO 2 removal efficiency under the photoperiod of 14 h light:10 h dark. The order of both the biogas slurry purification and biogas upgrading is ranked the same, that is Chlorella vulga ris - Ganoderma lucidum > Chlorella vulga ris -activated sludge > Chlorella vulgaris under different light intensities. For all cultivation methods, the moderate light intensity of 450 μmol m -2 s -1 is regarded as the best choice. This research revealed that the control of photoperiod and light intensity can promote the biological treatment process of biogas slurry purification and biogas upgrading using microalgal-based technology.

  5. Photoperiod and aggression induce changes in ventral gland compounds exclusively in male Siberian hamsters.

    PubMed

    Rendon, Nikki M; Soini, Helena A; Scotti, Melissa-Ann L; Weigel, Ellen R; Novotny, Milos V; Demas, Gregory E

    2016-05-01

    Chemical communication is a critical component of social behavior as it facilitates social encounters, allows for evaluation of the social partner, defines territories and resources, and advertises information such as sex and physiological state of an animal. Odors provide a key source of information about the social environment to rodents; however, studies identifying chemical compounds have thus far focused primarily on few species, particularly the house mouse. Moreover, considerably less attention has been focused on how environmental factors, reproductive phenotype, and behavioral context alter these compounds outside of reproduction. We examined the effects of photoperiod, sex, and social context on chemical communication in the seasonally breeding Siberian hamster. We sampled ventral gland secretions in both male and female hamsters before and after an aggressive encounter and identified changes in a range of volatile compounds. Next, we investigated how photoperiod, reproductive phenotype, and aggression altered ventral gland volatile compound composition across the sexes. Males exhibited a more diverse chemical composition, more sex-specific volatiles, and showed higher levels of excretion compared to females. Individual volatiles were also differentially excreted across photoperiod and reproductive phenotype, as well as differentially altered in response to an aggressive encounter. Female volatile compound composition, in contrast, did not differ across photoperiods or in response to aggression. Collectively, these data contribute to a greater understanding of context-dependent changes in chemical communication in a seasonally breeding rodent. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Transcriptomic and proteomic analyses of seasonal photoperiodism in the pea aphid

    PubMed Central

    Le Trionnaire, G; Francis, F; Jaubert-Possamai, S; Bonhomme, J; De Pauw, E; Gauthier, J-P; Haubruge, E; Legeai, F; Prunier-Leterme, N; Simon, J-C; Tanguy, S; Tagu, D

    2009-01-01

    Background Aphid adaptation to harsh winter conditions is illustrated by an alternation of their reproductive mode. Aphids detect photoperiod shortening by sensing the length of the night and switch from viviparous parthenogenesis in spring and summer, to oviparous sexual reproduction in autumn. The photoperiodic signal is transduced from the head to the reproductive tract to change the fate of the future oocytes from mitotic diploid embryogenesis to haploid formation of gametes. This process takes place in three consecutive generations due to viviparous parthenogenesis. To understand the molecular basis of the switch in the reproductive mode, transcriptomic and proteomic approaches were used to detect significantly regulated transcripts and polypeptides in the heads of the pea aphid Acyrthosiphon pisum. Results The transcriptomic profiles of the heads of the first generation were slightly affected by photoperiod shortening. This suggests that trans-generation signalling between the grand-mothers and the viviparous embryos they contain is not essential. By analogy, many of the genes and some of the proteins regulated in the heads of the second generation are implicated in visual functions, photoreception and cuticle structure. The modification of the cuticle could be accompanied by a down-regulation of the N-β-alanyldopamine pathway and desclerotization. In Drosophila, modification of the insulin pathway could cause a decrease of juvenile hormones in short-day reared aphids. Conclusion This work led to the construction of hypotheses for photoperiodic regulation of the switch of the reproductive mode in aphids. PMID:19788735

  7. Effects of short photoperiod on energy intake, thermogenesis, and reproduction in desert hamsters (Phodopus roborovskii).

    PubMed

    Zhang, Xueying; Zhao, Zhijun; Vasilieva, Nina; Khrushchova, Anastasia; Wang, Dehua

    2015-03-01

    Desert hamsters (Phodopus roborovskii) are the least known species in the genus Phodopus with respect to ecology and physiology, and deserve scientific attention, particularly because of their small body size. Here, the responses of energy metabolism and reproductive function to short photoperiods in desert hamsters were investigated. Male and female desert hamsters were acclimated to either long day (LD) (L:D 16:8 h) or short day (SD) photoperiods (L:D 8:16 h) for three months, and then the females were transferred back to an LD photoperiod for a further five months, while at the end of the SD acclimation the males were killed and measurements were taken for serum leptin as well as molecular markers for thermogenesis. We found that like the other two species from the genus Phodopus, the desert hamsters under SD decreased body mass, increased adaptive thermogenesis as indicated by elevated mitochondrial protein content and uncoupling protein-1 content in brown adipose tissue, and suppressed reproduction compared to those under LD. However, different from the other two species, desert hamsters did not show any differences in energy intake or serum leptin concentration between LD and SD. These data suggest that different species from the same genus respond in different ways to the environmental signals, and the desert adapted species are not as sensitive to change in photoperiod as the other two species. © 2014 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  8. Effect of colostral volume, interval between calving and first milking, and photoperiod on colostral IgG concentrations in dairy cows.

    PubMed

    Morin, Dawn E; Nelson, Stephanie V; Reid, Eric D; Nagy, Dusty W; Dahl, Geoffrey E; Constable, Peter D

    2010-08-15

    To identify cow and management factors associated with colostral IgG concentration in dairy cows. Prospective observational study. 81 multiparous Holstein-Friesian cows from a single herd. Serum was obtained at the start of the nonlactating period, and cows were assigned to 1 of 4 photoperiod groups: natural day length (n = 22 cows), long days (16 h of light/d [21]) or short days (8 h of light/d [20]) for the entire nonlactating period, or natural day length followed by short days for the last 21 days of the nonlactating period (18). Serum and colostrum were collected at the first milking after calving. Regression analysis was used to investigate associations between colostral IgG concentration and the interval between calving and first milking, colostral volume, photoperiod, length of the nonlactating period, and season of calving. Colostral IgG concentration decreased by 3.7% during each subsequent hour after calving because of postparturient secretion by the mammary glands. The interval between calving and first milking and the colostral volume were significantly and negatively associated with colostral IgG concentration, with the former effect predominating. Photoperiod had no effect on colostral IgG concentration or volume. Serum protein concentration at calving correlated poorly with colostral IgG concentration. Dairy producers should harvest colostrum as soon as possible after calving to optimize transfer of passive immunity in neonatal calves. Photoperiod can be manipulated without adversely affecting colostral IgG concentration.

  9. An Intact Dorsomedial Posterior Arcuate Nucleus is Not Necessary for Photoperiodic Responses in Siberian Hamsters1

    PubMed Central

    Teubner, Brett J.W.; Leitner, Claudia; Thomas, Michael A.; Ryu, Vitaly; Bartness, Timothy J.

    2015-01-01

    Seasonal responses of many animal species are triggered by changes in daylength and its transduction into a neuroendocrine signal by the pineal gland through the nocturnal duration of melatonin (MEL) release. The precise central sites necessary to receive, transduce, and relay the short day (SD) fall-winter MEL signals into seasonal responses and changes in physiology and behavior are unclear. In Siberian hamsters, SDs trigger decreases in body and lipid mass, testicular regression and pelage color changes. Several candidate genes and their central sites of expression have been proposed as components of the MEL transduction system with considerable recent focus on the arcuate nucleus (ARC) and its component, the dorsomedial posterior arcuate nucleus (dmpARC). This site has been postulated as a critical relay of SD information through the modulation of a variety of neurochemicals/receptors important for the control of energy balance. Here the necessity of an intact dmpARC for SD responses was tested by making electrolytic lesions of the Siberian hamster dmpARC and then exposing them to either long days (LD) or SDs for 12 weeks. The SD typical decreases in body and fat mass, food intake, testicular volume, serum testosterone concentrations, pelage color change and increased UCP-1 protein expression (a proxy for brown adipose tissue thermogenesis) all occurred despite the lack of an intact dmpARC. Although the Siberian hamster dmpARC contains photoperiod-modulated constituents, these data demonstrate that an intact dmpARC is not necessary for SD responses and not integral to the seasonal energy- and reproductive-related responses measured here. PMID:25647158

  10. Effect of Plant Species and Environmental Conditions on Ice Nucleation Activity of Pseudomonas syringae on Leaves.

    PubMed

    O'brien, R D; Lindow, S E

    1988-09-01

    Selected plant species and environmental conditions were investigated for their influences on expression of ice nucleation activity by 15 Pseudomonas syringae strains grown on plants in constant-temperature growth chamber studies. Ice nucleation frequencies (INFs), the fraction of cells that expressed ice nucleation at -5 or -9 degrees C, of individual strains varied greatly, both on plants and in culture. This suggests that the probability of frost injury, which is proportional to the number of ice nuclei on leaf surfaces, is strongly determined by the particular bacterial strains that are present on a leaf surface. The INFs of strains were generally higher when they were grown on plants than when they were grown in culture. In addition, INFs in culture did not correlate closely with INFs on plants, suggesting that frost injury prediction should be based on INF measurements of cells grown on plants rather than in culture. The relative INFs of individual strains varied with plant host and environment. However, none of seven plant species tested optimized the INFs of all 15 strains. Similarly, incubation for 48 h at near 100% relative humidity with short photoperiods did not always decrease the INF when compared with a 72 h, 40% relative humidity, long-photoperiod incubation. Pathogenic strains on susceptible hosts were not associated with higher or lower INFs relative to their INFs on nonsusceptible plant species. The ice nucleation activity of individual bacterial strains on plants therefore appears to be controlled by complex and interacting factors such as strain genotype, environment, and host plant species.

  11. Heterologous expression of wheat VERNALIZATION 2 (TaVRN2) gene in Arabidopsis delays flowering and enhances freezing tolerance.

    PubMed

    Diallo, Amadou; Kane, Ndjido; Agharbaoui, Zahra; Badawi, Mohamed; Sarhan, Fathey

    2010-01-13

    The vernalization gene 2 (VRN2), is a major flowering repressor in temperate cereals that is regulated by low temperature and photoperiod. Here we show that the gene from Triticum aestivum (TaVRN2) is also regulated by salt, heat shock, dehydration, wounding and abscissic acid. Promoter analysis indicates that TaVRN2 regulatory region possesses all the specific responsive elements to these stresses. This suggests pleiotropic effects of TaVRN2 in wheat development and adaptability to the environment. To test if TaVRN2 can act as a flowering repressor in species different from the temperate cereals, the gene was ectopically expressed in the model plant Arabidopsis. Transgenic plants showed no alteration in morphology, but their flowering time was significantly delayed compared to controls plants, indicating that TaVRN2, although having no ortholog in Brassicaceae, can act as a flowering repressor in these species. To identify the possible mechanism by which TaVRN2 gene delays flowering in Arabidopsis, the expression level of several genes involved in flowering time regulation was determined. The analysis indicates that the late flowering of the 35S::TaVRN2 plants was associated with a complex pattern of expression of the major flowering control genes, FCA, FLC, FT, FVE and SOC1. This suggests that heterologous expression of TaVRN2 in Arabidopsis can delay flowering by modulating several floral inductive pathways. Furthermore, transgenic plants showed higher freezing tolerance, likely due to the accumulation of CBF2, CBF3 and the COR genes. Overall, our data suggests that TaVRN2 gene could modulate a common regulator of the two interacting pathways that regulate flowering time and the induction of cold tolerance. The results also demonstrate that TaVRN2 could be used to manipulate flowering time and improve cold tolerance in other species.

  12. Continuous light after a long-day treatment is equivalent to melatonin implants to stimulate testosterone secretion in Alpine male goats.

    PubMed

    Delgadillo, J A; Vélez, L I; Flores, J A

    2016-04-01

    In rams, artificial long days followed by continuous light stimulate testosterone secretion during the non-breeding season. The objective of this study was to determine whether artificial long days followed by continuous light could stimulate testosterone secretion in Alpine bucks as well as in those exposed to long days followed by a melatonin treatment. All bucks were kept in shaded open pens. Control males were exposed to natural photoperiod conditions (n=5). Males of the two experimental groups were exposed to 2.5 months of long days from 1 December (n=5 each). On 16 February, one group of males was exposed to 24 h of light per day until 30 June; the other group was exposed to natural variations of photoperiod and received two s.c. melatonin implants. Testicular weight was determined every 2 weeks, and the plasma testosterone concentrations once a week. In the control and the two photoperiodic-treated groups, a treatment×time interaction was detected for testicular weight and plasma testosterone concentrations (P<0.001). In control bucks, testicular weight increased from January and peaked in June, whereas in both photoperiodic-treated groups, this variable increased from January, but peaked in April, when the values were higher than in controls (P<0.05). In the control group, plasma testosterone concentrations remained low from January to June, whereas in both photoperiodic-treated groups, this variable remained low from January to March; thereafter, these levels increased in both photoperiodic-treated groups, and were higher than controls in April and May (P<0.05). We conclude that continuous light after a long-day treatment stimulate testosterone secretion in Alpine male goats during the non-breeding season as well as the long days followed by a melatonin treatment. Therefore, continuous light could replace the implants of melatonin.

  13. Effects of photoperiod on food intake, activity and metabolic rate in adult neutered male cats.

    PubMed

    Kappen, K L; Garner, L M; Kerr, K R; Swanson, K S

    2014-10-01

    With the continued rise in feline obesity, novel weight management strategies are needed. To date, strategies aimed at altering physical activity, an important factor in weight maintenance, have been lacking. Photoperiod is known to cause physiological changes in seasonal mammals, including changes in body weight (BW) and reproductive status. Thus, our objective was to determine the effect of increased photoperiod (longer days) on voluntary physical activity levels, resting metabolic rate (RMR), food intake required to maintain BW, and fasting serum leptin and ghrelin concentrations in adult cats. Eleven healthy, adult, neutered, male domestic shorthair cats were used in a randomized crossover design study. During two 12-week periods, cats were exposed to either a short-day (SD) photoperiod of 8 h light: 16 h dark or a long-day (LD) photoperiod of 16 h light: 8 h dark. Cats were fed a commercial diet to maintain baseline BW. In addition to daily food intake and twice-weekly BW, RMR (via indirect calorimetry), body composition [via dual-energy X-ray absorptiometry (DEXA)] and physical activity (via Actical activity monitors) were measured at week 0 and 12 of each period. Fasting serum leptin and ghrelin concentrations were measured at week 0, 6 and 12 of each period. Average hourly physical activity was greater (p = 0.008) in LD vs. SD cats (3770 vs. 3129 activity counts/h), which was primarily due to increased (p < 0.001) dark period activity (1188 vs. 710 activity counts/h). This corresponded to higher (p < 0.0001) daily metabolizable energy intake (mean over 12-week period: 196 vs. 187 kcal/day), and increased (p = 0.048) RMR in LD cats (9.02 vs. 8.37 kcal/h). Body composition, serum leptin and serum ghrelin were not altered by photoperiod. More research is needed to determine potential mechanisms by which these physiological changes occurred and how they may apply to weight management strategies.

  14. Relevance of Light Spectra to Growth of the Rearing Tiger Puffer Takifugu rubripes

    PubMed Central

    Kim, Byeong-Hoon; Hur, Sung-Pyo; Hur, Sang-Woo; Lee, Chi-Hoon; Lee, Young-Don

    2016-01-01

    In fish, light (photoperiod, intensity and spectra) is main regulator in many physiological actions includinggrowth. We investigate the effect of light spectra on the somatic growth and growth-related gene expression in the rearing tiger puffer. Fish was reared under different light spectra (blue, green and red) for 8 weeks. Fish body weight and total length were promoted when reared under green light condition than red light condition. Expression of somatostatins (ss1 and ss2) in brain were showed higher expression under red light condition than green light condition. The ss3 mRNA was observed only higher expression in blue light condition. Expression of growth hormone (gh) in pituitary was detected no different levels between experimental groups. However, the fish of green light condition group was showed more high weight gain and feed efficiency than other light condition groups. Our present results suggest that somatic growth of tiger puffer is induced under green light condition because of inhibiting ss mRNA expression in brain by effect of green wavelength. PMID:27294208

  15. Photoperiod and fur lengths in the arctic fox ( Alopex lagopus L.)

    NASA Astrophysics Data System (ADS)

    Underwood, L. S.; Reynolds, Patricia

    1980-03-01

    Pelage is seasonally dimorphic in the Arctic fox. During the winter, fur lengths for this species are nearly double similar values taken during the summer season. Considerable site-specific differences in fur length are noted. In general, body sites which are exposed to the environment when an Arctic fox lies in a curled position show greater fur lengths in all seasons and greater seasonal variations than body sites that are more protected during rest. Well-furred sites may tend to conserve heat during periods of inactivity, and scantily furred sites may tend to dissipate heat during periods of exercise. The growth of winter fur may compensate for the severe cold of the arctic winter. Changes in fur lengths indicate a definite pattern in spite of individual variations. During the fall months, fur lengths seem to lag behind an increasing body-to-ambient temperature gradient. Both body-to-ambient temperature gradients and fur lengths peak during December through February. From March through June, gradual environmental warming is accompanied by a decrease in average fur lengths. Thus, there appears to be a remarkable parallel between the body-to-ambient temperature gradient and the fur lengths. The growth of fur in the Arctic fox parallels annual changes in ambient temperature and photoperiod.

  16. Sweetgum Dormancy Release: Effects of Chilling, Photoperiod, and Genotype

    Treesearch

    Robert E. Farmer

    1968-01-01

    In L., 1200 to 1600 hours of chilling (3 D C) resulted in rapid resumption of growth under greenhouse forcing conditions. Long photoperiods were effective substitutes for chilling. Plants from southern Alabama (Lat. 31°) had a lower chilling requirement than those from western Tennessee (Lat. 36°). Growth rate of plants under...

  17. Evaluation of yield and quality of photoperiod sensitive sorghum and sorghum sudangrass

    USDA-ARS?s Scientific Manuscript database

    A 2-year study was conducted at 2 sites (Hancock, Marshfield) in central Wisconsin to assess yield and quality of photoperiod sensitive (PS) and non-PS sorghums in relation to corn planted on 2 dates and harvested once or twice. At each site, treatments were arranged as a split-split plot in a rando...

  18. Influence of light-sources and photoperiod on growth performance, carcass characteristics and health indices of broilers grown to heavy weights

    USDA-ARS?s Scientific Manuscript database

    Effects of light sources and photoperiod on growth performance, carcass characteristics and health indices of broilers were investigated in 4 trials. In each trial, 720 1 d old Ross × Ross 708 chicks were equally and randomly distributed into 12 environmentally-controlled rooms (30 males/30 females ...

  19. Diapause response to photoperiod in an Arizona population of Lygus hesperus (Hemiptera: Miridae)

    USDA-ARS?s Scientific Manuscript database

    The western tarnished plant bug (Lygus hesperus Knight) is an important crop pest in the western U.S. that overwinters in an adult diapause. However, knowledge of L. hesperus diapause is incomplete. Eggs from field-collected adults were reared under photoperiods of 10:14, 11:13, 12:12, and 13:10 (L:...

  20. Extraretinal Light Perception in the Sparrow, III: The Eyes Do Not Participate in Photoperiodic Photoreception*

    PubMed Central

    Menaker, Michael; Roberts, Richard; Elliott, Jeffrey; Underwood, Herbert

    1970-01-01

    Photoperiodic control of testis growth in Passer domesticus (house sparrow) is mediated entirely by extraretinal photoreceptors in the brain. The eyes do not participate in photoperiodically significant photoreception. Removal of the pineal organ does not affect either the response to light or, to a first approximation, the process of recrudescence. The intensity of light reaching the retina and that reaching the extraretinal photoreceptor were varied independently. This technique will make it possible to study brain photoreception in species of birds that will not tolerate blinding. Extreme caution is necessary in the interpretation of brain lesion experiments in which reproductive function is modified, since photoreception by brain receptors of unknown anatomical location affects testicular state. PMID:5272320

  1. When do predatory mites (Phytoseiidae) attack? Understanding their diel and seasonal predation patterns.

    PubMed

    Pérez-Sayas, Consuelo; Aguilar-Fenollosa, Ernestina; Hurtado, Mónica A; Jaques, Josep A; Pina, Tatiana

    2017-06-16

    Predatory mites of the Phytoseiidae family are considered one of the most important groups of natural enemies used in biological control. The behavioral patterns of arthropods can differ greatly daily and seasonally; however, there is a lack of literature related to Phytoseiidae diel and seasonal predation patterns. The predatory activity of three phytoseiid species (two Tetranychidae-specialists, Phytoseiulus persimilis and Neoseiulus californicus, and one omnivore, Euseius stipulatus) that occur naturally in Spanish citrus orchards was observed under laboratory conditions in winter and summer. The temperature and photoperiod of the climatic chamber where the mites were reared did not change during the experiment. Our study demonstrates that phytoseiids can exhibit diel and seasonal predatory patterns when feeding on Tetranychus urticae (Acari: Tetranychidae). Neoseiulus californicus was revealed to be a nocturnal predator in summer but diurnal in winter. In contrast, P. persimilis activity was maximal during the daytime, and E. stipulatus showed no clear daily predation patterns. The predatory patterns described in this study should be taken into account when designing laboratory studies and also in field samplings, especially when applying molecular techniques to unveil trophic relationships. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  2. Effect of different photoperiods on the growth, infectivity and colonization of Trinidadian strains of Paecilomyces fumosoroseus on the greenhouse whitefly, Trialeurodes vaporariorum, using a glass slide bioassay.

    PubMed

    Avery, Pasco B; Faull, Jane; Simmonds, Monique S J

    2004-01-01

    Growth, infectivity and colonization rates for blastospores and conidia of Trinidadian strains T, T10, and T11 of Paecilomyces fumosoroseus (Wize) Brown and Smith were assessed for activity against late fourth-instar nymphs of Trialeurodes vaporariorum (Westwood) (Homoptera:Aleyrodidae) under two different photoperiods (24 and 16 hour photophase). A glass-slide bioassay and a fungal development index, modified for both blastospores and conidia, were used to compare the development rates of the fungal strains on the insect hosts. Fewer adult whiteflies emerged from nymphs treated with blastospores and reared under a 16:8 hour light:dark photoperiod than a 24:0 hour photoperiod. Eclosion times of whitefly adults that emerged from nymphs treated with the different strains of conidia were similar over the 8 day experimental period at both light regimes. The percent eclosion of adult whiteflies seems to be directly correlated with the speed of infection of the blastospore or conidial treatment and the photoperiod regime. The longer photophase had a significant positive effect on development index for blastospores; however, a lesser effect was observed for the conidia at either light regime. Blastospore strain T11 offered the most potential of the three Trinidadian strains against T. vaporariorum fourth-instar nymphs, especially under constant light. The glass-slide bioassay was successfully used to compare both blastospores and conidia of P. fumosoroseus. It can be used to determine the pathogenicity and the efficacy of various fungal preparations against aleyrodid pests.

  3. Effects of temperature and photoperiod on postponing bermudagrass (Cynodon dactylon [L.] Pers.) turf dormancy.

    PubMed

    Esmaili, Somayeh; Salehi, Hassan

    2012-06-15

    Growth chamber and field experiments were carried out to determine the effects of extended photoperiod under low and freezing temperatures on bermudagrass turf dormancy at Bajgah, in the southern part of Iran. The experiment in the growth chamber was conducted with four temperature regimes (15, 7.5, 0 and -7.5°C) and three light durations (8, 12 and 16h) in a completely randomized design with four replications. The field study was conducted in two consecutive years (2008-2009) with three light durations (8, 12 and 16h) in months with natural short day length and arranged in a randomized complete blocks design with three replications. Results in both experiments showed that decreasing temperature and photoperiod decreased verdure fresh and dry weight, shoot height, tiller density, leaf area and chlorophyll and relative water contents (RWC). However, rooting depth and fresh weight of roots increased in the growth chamber. Decreasing the temperature and light duration increased electrolyte leakage and proline content. Reducing sugars increased with decreasing temperature and declined with lowering light duration in both shoots and roots. Starch content of both shoots and roots showed an adverse trend compared to reducing sugars; starch content increased in both shoots and roots in all treatments by shortening the photoperiod. Practically, the problem of bermudagrass turf's dormancy could be solved via increasing the photoperiod in months with short day lengths. This treatment would be efficient and useful for turfgrass managers to apply in landscapes and stadiums. Copyright © 2012 Elsevier GmbH. All rights reserved.

  4. Interacting effects of photoperiod and photosynthetic photon flux on net carbon assimilation and starch accumulation in potato leaves

    NASA Technical Reports Server (NTRS)

    Stutte, G. W.; Yorio, N. C.; Wheeler, R. M.

    1996-01-01

    The effect of photoperiod (PP) on net carbon assimilation rate (Anet) and starch accumulation in newly mature canopy leaves of 'Norland' potato (Solanum tuberosum L.) was determined under high (412 varies as mol m-2s-1) and low (263 varies as mol m-2s-1) photosynthetic photon flux (PPF) conditions. The Anet decreased from 13.9 to 11.6 and 9.3 micromoles m-2s-1, and leaf starch increased from 70 to 129 and 118 mg g-1 drymass (DM) as photoperiod (PP) was increased from 12/12 to 18/6, and 24/0, respectively. Longer PP had a greater effect with high PPF conditions than with low PPF treatments, with high PPF showing greater decline in Anet. Photoperiod did not affect either the CO2 compensation point (50 micromoles mol-1) or CO2 saturation point (1100-1200 micromoles mol-1) for Anet. These results show an apparent limit to the amount of starch that can be stored (approximately 15% DM) in potato leaves. An apparent feedback mechanism exists for regulating Anet under high PPF, high CO2, and long PP, but there was no correlation between Anet and starch concentration in individual leaves. This suggests that maximum Anet cannot be sustained with elevated CO2 conditions under long PP (> or = 12 hours) and high PPF conditions. If a physiological limit exists for the fixation and transport of carbon,then increasing photoperiod and light intensity under high CO2 conditions is not the most appropriate means to maximize the yield of potatoes.

  5. Morphofunctional evidence for the involvement of hypothalamic dopaminergic and GABAergic neurons in the mechanisms of photoperiod-dependent prolactin release in the mink.

    PubMed

    Boissin-Agasse, L; Tappaz, M; Roch, G; Gril, C; Boissin, J

    1991-06-01

    This study was designed to examine possible relationships between the photoperiodic regulation of prolactin secretion and the activity of dopaminergic and GABAergic neurons projecting to the external layer of the median eminence. The study was carried out on the mink whose remarkable photosensitivity has been clearly demonstrated. The animals were reared in short (4L:20D) or long (20L:4D) photoperiods. The experiment began in November when day length is short (9.5 h). Dopaminergic and GABAergic neurons were studied using immunocytochemical methods allowing evaluation of the immunoreactivities of tyrosine hydroxylase (TH) and glutamate decarboxylase (GAD), which are respective markers of these neurons. The results were quantified by image analysis. The plasma prolactin level of animals maintained in 4L:20D decreased after 60 days and TH and GAD immunoreactivity were strongly stimulated. After 110 days, the prolactin concentration and TH and GAD immunoreactivity recovered their starting levels. In animals maintained in 20L:4D, the prolactin level was 3 times higher than at the beginning of the photoperiodic treatment but only dopaminergic neurons showed a change, i.e. a decrease in immunoreactivity. At the end of the experiment, prolactin secretion was no longer affected by the stimulatory effect of long-day treatment, and TH immunoreactivity remained low. These results confirm the generally accepted concept that dopaminergic neurons are potent PIF-producing components. GABAergic hypothalamic system appears to be implicated in photoperiodic PRL regulation, but this remains to be clearly demonstrated.

  6. Effects of temperature and photoperiod on lure display and glochidial release in a freshwater mussel

    Treesearch

    Andrew M. Gascho-Landis; Tyler L. Mosley; Wendell R. Haag; James A. Stoeckel

    2012-01-01

    Freshwater mussels use an array of strategies to transfer their parasitic larvae (glochidia) to fish hosts. We examined the effects of temperature, photoperiod, and female gravidity on mantle lure display and conglutinate release by Ligumia subrostrata (Say, 1831) in 2 laboratory experiments. In the 1st experiment, we examined the use of these strategies in 4...

  7. Relationships among chilling hours, photoperiod, calendar date, cold hardiness, seed source, and storage of Douglas-fir seedlings

    Treesearch

    Diane L. Haase; Nabil Khadduri; Euan Mason; Kas Dumroese

    2016-01-01

    Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) seedlings from three nurseries in the Pacific Northwest United States were lifted on five dates from mid-October through mid-December 2006. Each nursery provided seedlings from a low- and a high-elevation seed lot. Photoperiod and accumulated chilling hours (calculated using two methods) were evaluated...

  8. Short-day treatment alters Douglas-fir seedling dehardening and transplant root proliferation at varying rhizosphere temperatures

    Treesearch

    Douglass F. Jacobs; Anthony S. Davis; BArrett C. Wilson; R. Kasten Dumroese; Rosa C. Goodman; K. Francis Salifu

    2008-01-01

    We tested effects of shortened day length during nursery culture on Douglis-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco) seedling development at dormancy release. Seedlings from a 42 N source were grown either under ambient photoperiods (long-day (LD)) or with a 28 day period of 9 h light: 15 h dark photoperiods (short...

  9. Photoperiod shift effects on yield characteristics of rice

    NASA Technical Reports Server (NTRS)

    Volk, G. M.; Mitchell, C. A.

    1995-01-01

    Edible yield must be maximized for each crop species selected for inclusion in the Controlled Ecological Life-Support System (CELSS) proposed by NASA to support long-term manned space missions. In a greenhouse study aimed at increasing biomass partitioning to rice (Oryza sativa L.) grain, plants of the high yielding semi-dwarf rice cultivar Ai-Nan-Tsao were started in pots under 8-h photoperiods at a density of 212 plants m-2. After different periods of time under 8-h photoperiods, pots were switched to continuous light for the remainder of the cropping cycle. Continuous light did not delay time to first panicle emergence (60 d) or time to harvest (83 d). There was a positive correlation between the length of continuous light treatments and nongrain biomass. Grain yield (1.6 +/- 0.2 g plant-1) did not increase in continuous light. Yield-efficiency rate (grain weight per length of cropping cycle, canopy volume, and weight of nongrain shoot biomass) was used to compare treatments. Small Ai-Nan-Tsao rice canopies grown under 8-h photoperiods were more efficient producers of grain than canopies grown under continuous light for a portion of the rice cropping cycle.

  10. Acute Toxicity of TiO2 Nanoparticles to Ceriodaphnia dubia under Visible Light and Dark Conditions in a Freshwater System

    PubMed Central

    Dalai, Swayamprava; Pakrashi, Sunandan; Chandrasekaran, Natarajan; Mukherjee, Amitava

    2013-01-01

    The ever increasing industrial and consumer applications of titanium dioxide nanoparticles (TiO2 NPs) raise concern over the possible risk associated with their environmental exposure. Still, the knowledge regarding nanoparticle behavior in a freshwater ecosystem is lacking. The current study focuses on the toxicity of TiO2 NPs towards Ceriodaphnia dubia (a dominant daphnid isolated from the freshwater) under two different conditions; (1) light and dark photoperiod (16:8 h) and (2) continuous dark conditions, for a period of 48 h. An increase in toxicity was observed with an increase in the concentration, until a certain threshold level (under both photoperiod and dark conditions), and beyond which, reduction was noted. The decrease in toxicity would have resulted from the aggregation and settling of NPs, making them less bioavailable. The oxidative stress was one of the major contributors towards cytotoxicity under both photoperiod and dark conditions. The slow depuration of TiO2 NPs under the photoperiod conditions confirmed a higher NP bioaccumulation and thus a higher bioconcentration factor (BCF) compared to dark conditions. The transmission electron micrographs confirmed the bioaccumulation of NPs and damage of tissues in the gut lining. PMID:23658658

  11. Rapid changes in ovarian mRNA induced by brief photostimulation in Siberian hamsters (Phodopus sungorus)

    PubMed Central

    Shahed, Asha; McMichael, Carling F.; Young, Kelly A.

    2017-01-01

    This study sought to characterize the rapid intraovarian mRNA response of key folliculogenic factors that may contribute to the restoration of folliculogenesis during 2-10 days of photostimulation in Siberian hamsters. Adult hamsters were exposed to short photoperiod (8L:16D) for 14 weeks (SD). A subset were then transferred to long photoperiod (16L:8D) for 2(PT day-2), 4(PT day-4), or 10 days (PT day-10). Quantitative real-time PCR was used to measure intraovarian mRNA expression of: gonadotropin releasing hormone (GnRH), follicle stimulating hormone β-subunit (FSHβ-subunit), luteinizing hormone β-subunit (LHβ-subunit), FSH and LH receptors, estrogen receptorsα and β (Esr1 and Esr2), matrix metalloproteinase (MMP)-2 and -9, anti-Müllerian hormone (AMH), inhibin-α subunit, fibroblast growth factor-2 (FGF-2) and proliferating cell nuclear antigen (PCNA). Compared to SD, plasma FSH concentrations increased on PT day-4 and the number of antral follicles and corpora lutea increased on PT day-10. FSHR and inhibin-α mRNA expression also increased on PT day-4, whereas LHR and proliferation marker PCNA both increased on PT day-10 as compared to SD. Esr1 mRNA increased on PT day-2 and remained significantly increased as compared to SD, whereas Esr1 mRNA increased only on PT day-2, similar to FGF-2 and MMP-2 results. No differences were observed in mRNA expression in ovarian GnRH, FSHβ- and LHβ-subunits, AMH, and MMP-9 mRNA with 2-10 days of photostimulation. Rapid increases in intraovarian FSHR and inhibin-α mRNA and antral follicle/corpora lutea numbers suggest that the ovary is primed to react quickly to the FSH released in response to brief periods of photostimulation. PMID:26174001

  12. Evidence of cyclical light/dark-regulated expression of freezing tolerance in young winter wheat plants.

    PubMed

    Skinner, Daniel Z; Bellinger, Brian; Hiscox, William; Helms, Gregory L

    2018-01-01

    The ability of winter wheat (Triticum aestivum L.) plants to develop freezing tolerance through cold acclimation is a complex rait that responds to many environmental cues including day length and temperature. A large part of the freezing tolerance is conditioned by the C-repeat binding factor (CBF) gene regulon. We investigated whether the level of freezing tolerance of 12 winter wheat lines varied throughout the day and night in plants grown under a constant low temperature and a 12-hour photoperiod. Freezing tolerance was significantly greater (P<0.0001) when exposure to subfreezing temperatures began at the midpoint of the light period, or the midpoint of the dark period, compared to the end of either period, with an average of 21.3% improvement in survival. Thus, freezing survival was related to the photoperiod, but cycled from low, to high, to low within each 12-hour light period and within each 12-hour dark period, indicating ultradian cyclic variation of freezing tolerance. Quantitative real-time PCR analysis of expression levels of CBF genes 14 and 15 indicated that expression of these two genes also varied cyclically, but essentially 180° out of phase with each other. Proton nuclear magnetic resonance analysis (1H-NMR) showed that the chemical composition of the wheat plants' cellular fluid varied diurnally, with consistent separation of the light and dark phases of growth. A compound identified as glutamine was consistently found in greater concentration in a strongly freezing-tolerant wheat line, compared to moderately and poorly freezing-tolerant lines. The glutamine also varied in ultradian fashion in the freezing-tolerant wheat line, consistent with the ultradian variation in freezing tolerance, but did not vary in the less-tolerant lines. These results suggest at least two distinct signaling pathways, one conditioning freezing tolerance in the light, and one conditioning freezing tolerance in the dark; both are at least partially under the control of the CBF regulon.

  13. Photoperiod affects the expression of sex and species differences in leukocyte number and leukocyte trafficking in congeneric hamsters.

    PubMed

    Bilbo, S D; Dhabhar, F S; Viswanathan, K; Saul, A; Nelson, R J

    2003-11-01

    Sex differences in immune function are well documented. These sex differences may be modulated by social and environmental factors. Individuals of polygynous species generally exhibit more pronounced sex differences in immune parameters than individuals of monogamous species, often displaying an energetic trade-off between enhanced immunity and high mating success. During winter, animals contend with environmental conditions (e.g. low temperatures and decreased food availability) that evoke energetic-stress responses; many mammals restrict reproduction in response to photoperiod as part of an annual winter coping strategy. To test the hypothesis that extant sex and species differences in immune surveillance may be modulated by photoperiod, we examined leukocyte numbers in males and females of two closely related hamster species (Phodopus). As predicted, uniparental P. sungorus exhibited a robust sex difference, with total white blood cells, total lymphocytes, T cells, and B cells higher in females than males, during long days when reproduction occurs, but not during short days when reproduction usually stops. In contrast, biparental male and female P. campbelli exhibited comparable leukocyte numbers during both long and short days. To study sex differences in stress responses, we also examined immune cell trafficking in response to an acute (2 h) restraint stressor. During stressful challenges, it appears beneficial for immune cells to exit the blood and move to primary immune defense areas such as the skin, in preparation for potential injury or infection. Acute stress moved lymphocytes and monocytes out of the blood in all animals. Blood cortisol concentrations were increased in P. sungorus females compared to males at baseline (52%) and in response to restraint stress (38%), but only in long days. P. campbelli males and females exhibited comparable blood cortisol and stress responses during both long and short days. Our results suggest that interactions among social factors and the environment play a significant role in modulating sex and seasonal alterations in leukocyte numbers and stress responses.

  14. Environmental impacts on the gonadotropic system in female Atlantic salmon (Salmo salar) during vitellogenesis: Photothermal effects on pituitary gonadotropins, ovarian gonadotropin receptor expression, plasma sex steroids and oocyte growth.

    PubMed

    Taranger, Geir Lasse; Muncaster, Simon; Norberg, Birgitta; Thorsen, Anders; Andersson, Eva

    2015-09-15

    The gonadotropic system and ovarian growth and development were studied during vitellogenesis in female Atlantic salmon subjected to either simulated natural photoperiod and ambient water temperature (NL-amb), or an accelerating photoperiod (short day of LD8:16 from May 10) combined with either warmed (ca 2°C above ambient; 8L-warm) or cooled water (ca 2°C below ambient; 8L-cold) from May to September. Monthly samples were collected from 10 females/group for determination of transcript levels of pituitary gonadotropin subunits (fshb and lhb) and ovarian gonadotropin receptors (fshr and lhr), plasma sex steroids (testosterone: T and estradiol-17β: E2), gonadosomatic index (GSI) and oocyte size. Short day in combination with either warmed or cooled water induced an earlier increase in pituitary fshb and lhb levels compared with NL-amb controls, and advanced ovarian growth and the seasonal profiles of T, E2. By contrast only minor effects were seen of the photothermal treatments on ovarian fshr and lhr. The 8L-cold had earlier increase in fshb, lhb and E2, but similar oocyte and gonadal growth as 8L-warm, suggesting that the 8L-cold group tried to compensate for the lower water temperature during the period of rapid gonadal growth by increasing fshb and E2 production. Both the 8L-warm and 8L-cold groups showed incomplete ovulation in a proportion of the females, possibly due to the photoperiod advancement resulting in earlier readiness of spawning occurring at a higher ambient temperature, or due to some reproductive dysfunction caused by photothermal interference with normal neuroendocrine regulation of oocyte development and maturation. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Thermal plasticity of growth and development varies adaptively among alternative developmental pathways.

    PubMed

    Kivelä, Sami M; Svensson, Beatrice; Tiwe, Alma; Gotthard, Karl

    2015-09-01

    Polyphenism, the expression of discrete alternative phenotypes, is often a consequence of a developmental switch. Physiological changes induced by a developmental switch potentially affect reaction norms, but the evolution and existence of alternative reaction norms remains poorly understood. Here, we demonstrate that, in the butterfly Pieris napi (Lepidoptera: Pieridae), thermal reaction norms of several life history traits vary adaptively among switch-induced alternative developmental pathways of diapause and direct development. The switch was affected both by photoperiod and temperature, ambient temperature during late development having the potential to override earlier photoperiodic cues. Directly developing larvae had higher development and growth rates than diapausing ones across the studied thermal gradient. Reaction norm shapes also differed between the alternative developmental pathways, indicating pathway-specific selection on thermal sensitivity. Relative mass increments decreased linearly with increasing temperature and were higher under direct development than diapause. Contrary to predictions, population phenology did not explain trait variation or thermal sensitivity, but our experimental design probably lacks power for finding subtle phenology effects. We demonstrate adaptive differentiation in thermal reaction norms among alternative phenotypes, and suggest that the consequences of an environmentally dependent developmental switch primarily drive the evolution of alternative thermal reaction norms in P. napi. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  16. The Comparison between Circadian Oscillators in Mouse Liver and Pituitary Gland Reveals Different Integration of Feeding and Light Schedules

    PubMed Central

    Bur, Isabelle M.; Zouaoui, Sonia; Fontanaud, Pierre; Coutry, Nathalie; Molino, François; Martin, Agnès O.; Mollard, Patrice; Bonnefont, Xavier

    2010-01-01

    The mammalian circadian system is composed of multiple peripheral clocks that are synchronized by a central pacemaker in the suprachiasmatic nuclei of the hypothalamus. This system keeps track of the external world rhythms through entrainment by various time cues, such as the light-dark cycle and the feeding schedule. Alterations of photoperiod and meal time modulate the phase coupling between central and peripheral oscillators. In this study, we used real-time quantitative PCR to assess circadian clock gene expression in the liver and pituitary gland from mice raised under various photoperiods, or under a temporal restricted feeding protocol. Our results revealed unexpected differences between both organs. Whereas the liver oscillator always tracked meal time, the pituitary circadian clockwork showed an intermediate response, in between entrainment by the light regimen and the feeding-fasting rhythm. The same composite response was also observed in the pituitary gland from adrenalectomized mice under daytime restricted feeding, suggesting that circulating glucocorticoids do not inhibit full entrainment of the pituitary clockwork by meal time. Altogether our results reveal further aspects in the complexity of phase entrainment in the circadian system, and suggest that the pituitary may host oscillators able to integrate multiple time cues. PMID:21179516

  17. Genetic differences in human circadian clock genes among worldwide populations.

    PubMed

    Ciarleglio, Christopher M; Ryckman, Kelli K; Servick, Stein V; Hida, Akiko; Robbins, Sam; Wells, Nancy; Hicks, Jennifer; Larson, Sydney A; Wiedermann, Joshua P; Carver, Krista; Hamilton, Nalo; Kidd, Kenneth K; Kidd, Judith R; Smith, Jeffrey R; Friedlaender, Jonathan; McMahon, Douglas G; Williams, Scott M; Summar, Marshall L; Johnson, Carl Hirschie

    2008-08-01

    The daily biological clock regulates the timing of sleep and physiological processes that are of fundamental importance to human health, performance, and well-being. Environmental parameters of relevance to biological clocks include (1) daily fluctuations in light intensity and temperature, and (2) seasonal changes in photoperiod (day length) and temperature; these parameters vary dramatically as a function of latitude and locale. In wide-ranging species other than humans, natural selection has genetically optimized adaptiveness along latitudinal clines. Is there evidence for selection of clock gene alleles along latitudinal/photoperiod clines in humans? A number of polymorphisms in the human clock genes Per2, Per3, Clock, and AANAT have been reported as alleles that could be subject to selection. In addition, this investigation discovered several novel polymorphisms in the human Arntl and Arntl2 genes that may have functional impact upon the expression of these clock transcriptional factors. The frequency distribution of these clock gene polymorphisms is reported for diverse populations of African Americans, European Americans, Ghanaians, Han Chinese, and Papua New Guineans (including 5 subpopulations within Papua New Guinea). There are significant differences in the frequency distribution of clock gene alleles among these populations. Population genetic analyses indicate that these differences are likely to arise from genetic drift rather than from natural selection.

  18. Heritable heading time variation in wheat lines with the same number of Ppd-B1 gene copies.

    PubMed

    Ivaničová, Zuzana; Valárik, Miroslav; Pánková, Kateřina; Trávníčková, Martina; Doležel, Jaroslav; Šafář, Jan; Milec, Zbyněk

    2017-01-01

    The ability of plants to identify an optimal flowering time is critical for ensuring the production of viable seeds. The main environmental factors that influence the flowering time include the ambient temperature and day length. In wheat, the ability to assess the day length is controlled by photoperiod (Ppd) genes. Due to its allohexaploid nature, bread wheat carries the following three Ppd-1 genes: Ppd-A1, Ppd-B1 and Ppd-D1. While photoperiod (in)sensitivity controlled by Ppd-A1 and Ppd-D1 is mainly determined by sequence changes in the promoter region, the impact of the Ppd-B1 alleles on the heading time has been linked to changes in the copy numbers (and possibly their methylation status) and sequence changes in the promoter region. Here, we report that plants with the same number of Ppd-B1 copies may have different heading times. Differences were observed among F7 lines derived from crossing two spring hexaploid wheat varieties. Several lines carrying three copies of Ppd-B1 headed 16 days later than other plants in the population with the same number of gene copies. This effect was associated with changes in the gene expression level and methylation of the Ppd-B1 gene.

  19. Discovery, evaluation and distribution of haplotypes of the wheat Ppd-D1 gene.

    PubMed

    Guo, Zhiai; Song, Yanxia; Zhou, Ronghua; Ren, Zhenglong; Jia, Jizeng

    2010-02-01

    Ppd-D1 is one of the most potent genes affecting the photoperiod response of wheat (Triticum aestivum). Only two alleles, insensitive Ppd-D1a and sensitive Ppd-D1b, were known previously, and these did not adequately explain the broad adaptation of wheat to photoperiod variation. In this study, five diagnostic molecular markers were employed to identify Ppd-D1 haplotypes in 492 wheat varieties from diverse geographic locations and 55 accessions of Aegilops tauschii, the D genome donor species of wheat. Six Ppd-D1 haplotypes, designated I-VI, were identified. Types II, V and VI were considered to be more ancient and types I, III and IV were considered to be derived from type II. The transcript abundances of the Ppd-D1 haplotypes showed continuous variation, being highest for haplotype I, lowest for haplotype III, and correlating negatively with varietal differences in heading time. These haplotypes also significantly affected other agronomic traits. The distribution frequency of Ppd-D1 haplotypes showed partial correlations with both latitudes and altitudes of wheat cultivation regions. The evolution, expression and distribution of Ppd-D1 haplotypes were consistent evidentially with each other. What was regarded as a pair of alleles in the past can now be considered a series of alleles leading to continuous variation.

  20. Heritable heading time variation in wheat lines with the same number of Ppd-B1 gene copies

    PubMed Central

    Ivaničová, Zuzana; Valárik, Miroslav; Pánková, Kateřina; Trávníčková, Martina; Doležel, Jaroslav; Šafář, Jan

    2017-01-01

    The ability of plants to identify an optimal flowering time is critical for ensuring the production of viable seeds. The main environmental factors that influence the flowering time include the ambient temperature and day length. In wheat, the ability to assess the day length is controlled by photoperiod (Ppd) genes. Due to its allohexaploid nature, bread wheat carries the following three Ppd-1 genes: Ppd-A1, Ppd-B1 and Ppd-D1. While photoperiod (in)sensitivity controlled by Ppd-A1 and Ppd-D1 is mainly determined by sequence changes in the promoter region, the impact of the Ppd-B1 alleles on the heading time has been linked to changes in the copy numbers (and possibly their methylation status) and sequence changes in the promoter region. Here, we report that plants with the same number of Ppd-B1 copies may have different heading times. Differences were observed among F7 lines derived from crossing two spring hexaploid wheat varieties. Several lines carrying three copies of Ppd-B1 headed 16 days later than other plants in the population with the same number of gene copies. This effect was associated with changes in the gene expression level and methylation of the Ppd-B1 gene. PMID:28846721

  1. Cycling of clock genes entrained to the solar rhythm enables plants to tell time: data from Arabidopsis.

    PubMed

    Yeang, Hoong-Yeet

    2015-07-01

    An endogenous rhythm synchronized to dawn cannot time photosynthesis-linked genes to peak consistently at noon since the interval between sunrise and noon changes seasonally. In this study, a solar clock model that circumvents this limitation is proposed using two daily timing references synchronized to noon and midnight. Other rhythmic genes that are not directly linked to photosynthesis, and which peak at other times, also find an adaptive advantage in entrainment to the solar rhythm. Fourteen datasets extracted from three published papers were used in a meta-analysis to examine the cyclic behaviour of the Arabidopsis thaliana photosynthesis-related gene CAB2 and the clock oscillator genes TOC1 and LHY in T cycles and N-H cycles. Changes in the rhythms of CAB2, TOC1 and LHY in plants subjected to non-24-h light:dark cycles matched the hypothesized changes in their behaviour as predicted by the solar clock model, thus validating it. The analysis further showed that TOC1 expression peaked ∼5·5 h after mid-day, CAB2 peaked close to noon, while LHY peaked ∼7·5 h after midnight, regardless of the cycle period, the photoperiod or the light:dark period ratio. The solar clock model correctly predicted the zeitgeber timing of these genes under 11 different lighting regimes comprising combinations of seven light periods, nine dark periods, four cycle periods and four light:dark period ratios. In short cycles that terminated before LHY could be expressed, the solar clock correctly predicted zeitgeber timing of its expression in the following cycle. Regulation of gene phases by the solar clock enables the plant to tell the time, by which means a large number of genes are regulated. This facilitates the initiation of gene expression even before the arrival of sunrise, sunset or noon, thus allowing the plant to 'anticipate' dawn, dusk or mid-day respectively, independently of the photoperiod. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Increased Air Temperature during Simulated Autumn Conditions Does Not Increase Photosynthetic Carbon Gain But Affects the Dissipation of Excess Energy in Seedlings of the Evergreen Conifer Jack Pine1[OA

    PubMed Central

    Busch, Florian; Hüner, Norman P.A.; Ensminger, Ingo

    2007-01-01

    Temperature and daylength act as environmental signals that determine the length of the growing season in boreal evergreen conifers. Climate change might affect the seasonal development of these trees, as they will experience naturally decreasing daylength during autumn, while at the same time warmer air temperature will maintain photosynthesis and respiration. We characterized the down-regulation of photosynthetic gas exchange and the mechanisms involved in the dissipation of energy in Jack pine (Pinus banksiana) in controlled environments during a simulated summer-autumn transition under natural conditions and conditions with altered air temperature and photoperiod. Using a factorial design, we dissected the effects of daylength and temperature. Control plants were grown at either warm summer conditions with 16-h photoperiod and 22°C or conditions representing a cool autumn with 8 h/7°C. To assess the impact of photoperiod and temperature on photosynthesis and energy dissipation, plants were also grown under either cold summer (16-h photoperiod/7°C) or warm autumn conditions (8-h photoperiod/22°C). Photosynthetic gas exchange was affected by both daylength and temperature. Assimilation and respiration rates under warm autumn conditions were only about one-half of the summer values but were similar to values obtained for cold summer and natural autumn treatments. In contrast, photosynthetic efficiency was largely determined by temperature but not by daylength. Plants of different treatments followed different strategies for dissipating excess energy. Whereas in the warm summer treatment safe dissipation of excess energy was facilitated via zeaxanthin, in all other treatments dissipation of excess energy was facilitated predominantly via increased aggregation of the light-harvesting complex of photosystem II. These differences were accompanied by a lower deepoxidation state and larger amounts of β-carotene in the warm autumn treatment as well as by changes in the abundance of thylakoid membrane proteins compared to the summer condition. We conclude that photoperiod control of dormancy in Jack pine appears to negate any potential for an increased carbon gain associated with higher temperatures during the autumn season. PMID:17259287

  3. Increased air temperature during simulated autumn conditions does not increase photosynthetic carbon gain but affects the dissipation of excess energy in seedlings of the evergreen conifer Jack pine.

    PubMed

    Busch, Florian; Hüner, Norman P A; Ensminger, Ingo

    2007-03-01

    Temperature and daylength act as environmental signals that determine the length of the growing season in boreal evergreen conifers. Climate change might affect the seasonal development of these trees, as they will experience naturally decreasing daylength during autumn, while at the same time warmer air temperature will maintain photosynthesis and respiration. We characterized the down-regulation of photosynthetic gas exchange and the mechanisms involved in the dissipation of energy in Jack pine (Pinus banksiana) in controlled environments during a simulated summer-autumn transition under natural conditions and conditions with altered air temperature and photoperiod. Using a factorial design, we dissected the effects of daylength and temperature. Control plants were grown at either warm summer conditions with 16-h photoperiod and 22 degrees C or conditions representing a cool autumn with 8 h/7 degrees C. To assess the impact of photoperiod and temperature on photosynthesis and energy dissipation, plants were also grown under either cold summer (16-h photoperiod/7 degrees C) or warm autumn conditions (8-h photoperiod/22 degrees C). Photosynthetic gas exchange was affected by both daylength and temperature. Assimilation and respiration rates under warm autumn conditions were only about one-half of the summer values but were similar to values obtained for cold summer and natural autumn treatments. In contrast, photosynthetic efficiency was largely determined by temperature but not by daylength. Plants of different treatments followed different strategies for dissipating excess energy. Whereas in the warm summer treatment safe dissipation of excess energy was facilitated via zeaxanthin, in all other treatments dissipation of excess energy was facilitated predominantly via increased aggregation of the light-harvesting complex of photosystem II. These differences were accompanied by a lower deepoxidation state and larger amounts of beta-carotene in the warm autumn treatment as well as by changes in the abundance of thylakoid membrane proteins compared to the summer condition. We conclude that photoperiod control of dormancy in Jack pine appears to negate any potential for an increased carbon gain associated with higher temperatures during the autumn season.

  4. Antiphase light and temperature cycles affect PHYTOCHROME B-controlled ethylene sensitivity and biosynthesis, limiting leaf movement and growth of Arabidopsis.

    PubMed

    Bours, Ralph; van Zanten, Martijn; Pierik, Ronald; Bouwmeester, Harro; van der Krol, Alexander

    2013-10-01

    In the natural environment, days are generally warmer than the night, resulting in a positive day/night temperature difference (+DIF). Plants have adapted to these conditions, and when exposed to antiphase light and temperature cycles (cold photoperiod/warm night [-DIF]), most species exhibit reduced elongation growth. To study the physiological mechanism of how light and temperature cycles affect plant growth, we used infrared imaging to dissect growth dynamics under +DIF and -DIF in the model plant Arabidopsis (Arabidopsis thaliana). We found that -DIF altered leaf growth patterns, decreasing the amplitude and delaying the phase of leaf movement. Ethylene application restored leaf growth in -DIF conditions, and constitutive ethylene signaling mutants maintain robust leaf movement amplitudes under -DIF, indicating that ethylene signaling becomes limiting under these conditions. In response to -DIF, the phase of ethylene emission advanced 2 h, but total ethylene emission was not reduced. However, expression analysis on members of the 1-aminocyclopropane-1-carboxylic acid (ACC) synthase ethylene biosynthesis gene family showed that ACS2 activity is specifically suppressed in the petiole region under -DIF conditions. Indeed, petioles of plants under -DIF had reduced ACC content, and application of ACC to the petiole restored leaf growth patterns. Moreover, acs2 mutants displayed reduced leaf movement under +DIF, similar to wild-type plants under -DIF. In addition, we demonstrate that the photoreceptor PHYTOCHROME B restricts ethylene biosynthesis and constrains the -DIF-induced phase shift in rhythmic growth. Our findings provide a mechanistic insight into how fluctuating temperature cycles regulate plant growth.

  5. Photoperiod and temperature constraints on the relationship between the photochemical reflectance index and the light use efficiency of photosynthesis in Pinus strobus

    PubMed Central

    Fréchette, Emmanuelle; Chang, Christine Yao-Yun; Ensminger, Ingo

    2016-01-01

    The photochemical reflectance index (PRI) is a proxy for the activity of the photoprotective xanthophyll cycle and photosynthetic light use efficiency (LUE) in plants. Evergreen conifers downregulate photosynthesis in autumn in response to low temperature and shorter photoperiod, and the dynamic xanthophyll cycle-mediated non-photochemical quenching (NPQ) is replaced by sustained NPQ. We hypothesized that this shift in xanthophyll cycle-dependent energy partitioning during the autumn is the cause for variations in the PRI–LUE relationship. In order to test our hypothesis, we characterized energy partitioning and pigment composition during a simulated summer–autumn transition in a conifer and assessed the effects of temperature and photoperiod on the PRI–LUE relationship. We measured gas exchange, chlorophyll fluorescence and leaf reflectance during the photosynthetic downregulation in Pinus strobus L. seedlings exposed to low temperature/short photoperiod or elevated temperature/short photoperiod conditions. Shifts in energy partitioning during simulated autumn were observed when the pools of chlorophylls decreased and pools of photoprotective carotenoids increased. On a seasonal timescale, PRI was controlled by carotenoid pool sizes rather than xanthophyll cycle dynamics. Photochemical reflectance index variation under cold autumn conditions mainly reflected long-term pigment pool adjustments associated with sustained NPQ, which impaired the PRI–LUE relationship. Exposure to warm autumn conditions prevented the induction of sustained NPQ but still impaired the PRI–LUE relationship. We therefore conclude that alternative zeaxanthin-independent NPQ mechanisms, which remain undetected by the PRI, are present under both cold and warm autumn conditions, contributing to the discrepancy in the PRI–LUE relationship during autumn. PMID:26846980

  6. Photoperiod and temperature constraints on the relationship between the photochemical reflectance index and the light use efficiency of photosynthesis in Pinus strobus.

    PubMed

    Fréchette, Emmanuelle; Chang, Christine Yao-Yun; Ensminger, Ingo

    2016-03-01

    The photochemical reflectance index (PRI) is a proxy for the activity of the photoprotective xanthophyll cycle and photosynthetic light use efficiency (LUE) in plants. Evergreen conifers downregulate photosynthesis in autumn in response to low temperature and shorter photoperiod, and the dynamic xanthophyll cycle-mediated non-photochemical quenching (NPQ) is replaced by sustained NPQ. We hypothesized that this shift in xanthophyll cycle-dependent energy partitioning during the autumn is the cause for variations in the PRI-LUE relationship. In order to test our hypothesis, we characterized energy partitioning and pigment composition during a simulated summer-autumn transition in a conifer and assessed the effects of temperature and photoperiod on the PRI-LUE relationship. We measured gas exchange, chlorophyll fluorescence and leaf reflectance during the photosynthetic downregulation in Pinus strobus L. seedlings exposed to low temperature/short photoperiod or elevated temperature/short photoperiod conditions. Shifts in energy partitioning during simulated autumn were observed when the pools of chlorophylls decreased and pools of photoprotective carotenoids increased. On a seasonal timescale, PRI was controlled by carotenoid pool sizes rather than xanthophyll cycle dynamics. Photochemical reflectance index variation under cold autumn conditions mainly reflected long-term pigment pool adjustments associated with sustained NPQ, which impaired the PRI-LUE relationship. Exposure to warm autumn conditions prevented the induction of sustained NPQ but still impaired the PRI-LUE relationship. We therefore conclude that alternative zeaxanthin-independent NPQ mechanisms, which remain undetected by the PRI, are present under both cold and warm autumn conditions, contributing to the discrepancy in the PRI-LUE relationship during autumn. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Effects of Temperature, Photoperiod, and Rainfall on Morphometric Variation of Diaphorina citri (Hemiptera: Liviidae).

    PubMed

    Paris, Thomson M; Allan, Sandra A; Hall, David G; Hentz, Matthew G; Croxton, Scott D; Ainpudi, Niharika; Stansly, Philip A

    2017-02-01

    Phenotypic plasticity provides a mechanism by which an organism can adapt to new or changing environments. Earlier studies have demonstrated the variability of Diaphorina citri Kuwayama (Asian citrus psyllid) population dynamics, but no analysis of morphological changes induced by seasonal or artificial laboratory-induced conditions has yet been documented. Such morphometric variation has been found to correspond in dispersal capabilities in several insect taxa. In this study, the effects of temperature and photoperiod on morphometric variation of D. citri were examined through laboratory rearing of psyllids under controlled temperatures (20 °C, 28 °C, and 30 °C) and under a short photoperiod of 10.5:13.5 (L:D) h and a long photoperiod of 16:8 (L:D) h. Diaphorina citri were field-collected monthly from three citrus groves in Fort Pierce, Gainesville, and Immokalee, FL, to evaluate potential field-associated environmental effects. Both traditional and geometric morphometric data were used to analyze the correlation between environmental and morphometric variation. A strong correlation was found between temperature and shape change, with larger and broader wings at colder temperatures in the laboratory. Short day length resulted in shorter and narrower wings as well. From the field, temperature, rainfall, and photoperiod were moderately associated with shape parameters. Adult D. citri with blue/green abdomens collected in the laboratory and field studies were larger in size and shape than those with brown/gray abdomens. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the US.

  8. Do photoperiod and endocrine disruptor 4-tert-octylphenol effect on spermatozoa of bank vole (Clethrionomys glareolus)?

    PubMed

    Kotula-Balak, Malgorzata; Grzmil, Pawel; Chojnacka, Katarzyna; Andryka, Katarzyna; Bilinska, Barbara

    2014-05-15

    Photoperiod is an environmental signal that controls physiology and behavior of all organisms. Bank voles, which are seasonal breeders, are stimulated to reproduce by the long photoperiod associated with spring and summer. To date, physiology of bank vole spermatozoa has not been explored, although they constitute an interesting model for examining the relationship between photoperiod and xenoestrogen on spermatozoa function. In an attempt to evaluate the acute effect of 4-tert-octylphenol (OP) an in vitro system was used. Spermatozoa isolated from the cauda epididymidies of long-day (LD; 18 h light: 6 h darkness) and short-day (SD; 6 h light: 18 h darkness) bank voles were treated with two OP concentrations (10(-4) M and 10(-8)M, respectively). OP-treated spermatozoa were used for the examination of motility parameters (computer-assisted semen analyzer CEROS), acrosome integrity (Commassie blue staining), cAMP production (immunoenzymatic assay) and cell viability (flow-cytometry analysis). The study revealed the photoperiod-dependent effect of short OP-treatment on motility parameters of vole spermatozoa. In LD spermatozoa, an increase of velocities: (curvilinear velocity [VCL], average path velocity [VAP] straight line velocity [VSL]) and head activity (amplitude of the lateral head displacement, [ALH]) was found. Interestingly, in SD spermatozoa opposite effect on VCL, VAP, VSL and ALH was observed, however only after treatment with 10(-4)M OP. The dose-dependent influence of OP upon acrosome integrity, as well as cAMP levels, in relation to the reproductive status of voles was observed. Moreover, OP exposure affected spermatozoa morphology rather than spermatozoa viability. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Multiple effects of circadian dysfunction induced by photoperiod shifts: alterations in context memory and food metabolism in the same subjects.

    PubMed

    McDonald, Robert J; Zelinski, Erin L; Keeley, Robin J; Sutherland, Dylan; Fehr, Leah; Hong, Nancy S

    2013-06-13

    Humans exposed to shiftwork conditions have been reported to have increased susceptibility to various health problems including various forms of dementia, cancer, heart disease, and metabolic disorders related to obesity. The present experiments assessed the effects of circadian disruption on learning and memory function and various food related processes including diet consumption rates, food metabolism, and changes in body weight. These experiments utilized a novel variant of the conditioned place preference task (CPP) that is normally used to assess Pavlovian associative learning and memory processes produced via repeated context-reward pairings. For the present experiments, the standard CPP paradigm was modified in that both contexts were paired with food, but the dietary constituents of the food were different. In particular, we were interested in whether rats could differentiate between two types of carbohydrates, simple (dextrose) and complex (starch). Consumption rates for each type of carbohydrate were measured throughout training. A test of context preference without the food present was also conducted. At the end of behavioral testing, a fasting glucose test and a glucose challenge test were administered. Chronic photoperiod shifting resulted in impaired context learning and memory processes thought to be mediated by a neural circuit centered on the hippocampus. The results also showed that preferences for the different carbohydrate diets were altered in rats experiencing photoperiod shifting in that they maintained an initial preference for the simple carbohydrate throughout training. Lastly, photoperiod shifting resulted in changes in fasting blood glucose levels and elicited weight gain. These results show that chronic photoperiod shifting, which likely resulted in circadian dysfunction, impairs multiple functions of the brain and/or body in the same individual. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  10. Utilization of potatoes for life support systems in space. III - Productivity at successive harvest dates under 12-h and 24-h photoperiods

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.; Tibbitts, Theodore W.

    1987-01-01

    Efficient crop production for controlled ecological life support systems requires near-optimal growing conditions with harvests taken when production per unit area per unit time is maximum. This maximum for potato was determined using data on Norland plants which were grown in walk-in growth rooms under 12-h and 24-h photoperiods at 16 C. Results show that high tuber production can be obtained from potatoes grown under a continuous light regime. The dry weights (dwt) of tuber and of the entire plants were found to increase under both photoperiods until the final harvest date (148 days), reaching 5732 g tuber dwt and 704 g total dwt under 12-h, and 791 g tuber dwt and 972 g total dwt under 24-h.

  11. Possible molecular mechanism underlying cadmium-induced circadian rhythms disruption in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Bo; Chen, Tian-Ming; Zhong, Yingbin

    This study was aimed to explore the mechanisms underlying cadmium-induced circadian rhythms disruption. Two groups of zebrafish larvae treated with or without 5 ppm CdCl{sub 2} were incubated in a photoperiod of 14-h light/10-h dark conditions. The mRNA levels of clock1a, bmal1b, per2 and per1b in two groups were determined. Microarray data were generated in two group of samples. Differential expression of genes were identified and the changes in expression level for some genes were validated by RT-PCR. Finally, Gene Ontology functional and KEGG pathway enrichment analysis of differentially expressed genes (DEGs) were performed. In comparison with normal group, the mRNAmore » levels of clock1a, bmal1b, and per2 were significantly changed and varied over the circadian cycle in CdCl2-treated group. DEGs were obtained from the light (84 h, ZT12) and dark (88 h, ZT16) phase. In addition, G-protein coupled receptor protein signaling pathway and immune response were both enriched by DEGs in both groups. While, proteolysis and amino acid metabolism were found associated with DEGs in light phase, and Neuroactive ligand-receptor interaction and oxidation-reduction process were significantly enriched by DEGs in dark phase. Besides, the expression pattern of genes including hsp70l and or115-11 obtained by RT-PCR were consistent with those obtained by microarray analysis. As a consequence, cadmium could make significant effects on circadian rhythms through immune response and G protein-coupled receptor signaling pathway. Besides, between the dark and the light phase, the mechanism by which cadmium inducing disruption of circadian rhythms were different to some extent. - Highlights: • Cadmium could affect the expression levels of circadian rhythm-related genes. • Genes expression in microarray data were consistent with those in RT-PCR analysis. • Immune response and G protein-coupled receptor signaling pathway were identified. • Cadmium induces circadian rhythm disruption by different mechanism in day and night.« less

  12. Quantification of three steroid hormone receptors of the leopard gecko (Eublepharis macularius), a lizard with temperature-dependent sex determination: their tissue distributions and the effect of environmental change on their expressions.

    PubMed

    Endo, Daisuke; Park, Min Kyun

    2003-12-01

    Sex steroid hormones play a central role in the reproduction of all vertebrates. These hormones function through their specific receptors, so the expression levels of the receptors may reflect the responsibility of target organs. However, there was no effective method to quantify the expression levels of these receptors in reptilian species. In this study, we established the competitive-PCR assay systems for the quantification of the mRNA expression levels of three sex steroid hormone receptors in the leopard gecko. These assay systems were successfully able to detect the mRNA expression level of each receptor in various organs of male adult leopard geckoes. The expression levels of mRNA of these receptors were highly various depending on the organs assayed. This is the first report regarding the tissue distributions of sex steroid hormone receptor expressions in reptile. The effects of environmental conditions on these hormone receptor expressions were also examined. After the low temperature and short photoperiod treatment for 6 weeks, only the androgen receptor expression was significantly increased in the testes. The competitive-PCR assay systems established in this report should be applicable for various studies of the molecular mechanism underlying the reproductive activity of the leopard gecko.

  13. Mechanisms of animal diapause: recent developments from nematodes, crustaceans, insects, and fish

    PubMed Central

    Denlinger, David L.; Podrabsky, Jason E.; Roy, Richard

    2016-01-01

    Life cycle delays are beneficial for opportunistic species encountering suboptimal environments. Many animals display a programmed arrest of development (diapause) at some stage(s) of their development, and the diapause state may or may not be associated with some degree of metabolic depression. In this review, we will evaluate current advancements in our understanding of the mechanisms responsible for the remarkable phenotype, as well as environmental cues that signal entry and termination of the state. The developmental stage at which diapause occurs dictates and constrains the mechanisms governing diapause. Considerable progress has been made in clarifying proximal mechanisms of metabolic arrest and the signaling pathways like insulin/Foxo that control gene expression patterns. Overlapping themes are also seen in mechanisms that control cell cycle arrest. Evidence is emerging for epigenetic contributions to diapause regulation via small RNAs in nematodes, crustaceans, insects, and fish. Knockdown of circadian clock genes in selected insect species supports the importance of clock genes in the photoperiodic response that cues diapause. A large suite of chaperone-like proteins, expressed during diapause, protects biological structures during long periods of energy-limited stasis. More information is needed to paint a complete picture of how environmental cues are coupled to the signal transduction that initiates the complex diapause phenotype, as well as molecular explanations for how the state is terminated. Excellent examples of molecular memory in post-dauer animals have been documented in Caenorhabditis elegans. It is clear that a single suite of mechanisms does not regulate diapause across all species and developmental stages. PMID:27053646

  14. Mechanisms of animal diapause: recent developments from nematodes, crustaceans, insects, and fish.

    PubMed

    Hand, Steven C; Denlinger, David L; Podrabsky, Jason E; Roy, Richard

    2016-06-01

    Life cycle delays are beneficial for opportunistic species encountering suboptimal environments. Many animals display a programmed arrest of development (diapause) at some stage(s) of their development, and the diapause state may or may not be associated with some degree of metabolic depression. In this review, we will evaluate current advancements in our understanding of the mechanisms responsible for the remarkable phenotype, as well as environmental cues that signal entry and termination of the state. The developmental stage at which diapause occurs dictates and constrains the mechanisms governing diapause. Considerable progress has been made in clarifying proximal mechanisms of metabolic arrest and the signaling pathways like insulin/Foxo that control gene expression patterns. Overlapping themes are also seen in mechanisms that control cell cycle arrest. Evidence is emerging for epigenetic contributions to diapause regulation via small RNAs in nematodes, crustaceans, insects, and fish. Knockdown of circadian clock genes in selected insect species supports the importance of clock genes in the photoperiodic response that cues diapause. A large suite of chaperone-like proteins, expressed during diapause, protects biological structures during long periods of energy-limited stasis. More information is needed to paint a complete picture of how environmental cues are coupled to the signal transduction that initiates the complex diapause phenotype, as well as molecular explanations for how the state is terminated. Excellent examples of molecular memory in post-dauer animals have been documented in Caenorhabditis elegans It is clear that a single suite of mechanisms does not regulate diapause across all species and developmental stages. Copyright © 2016 the American Physiological Society.

  15. Perception of photoperiod in individual buds of mature trees regulates leaf-out.

    PubMed

    Zohner, Constantin M; Renner, Susanne S

    2015-12-01

    Experimental data on the perception of day length and temperature in dormant temperate zone trees are surprisingly scarce. In order to investigate when and where these environmental signals are perceived, we carried out bagging experiments in which buds on branches of Fagus sylvatica, Aesculus hippocastanum and Picea abies trees were exposed to natural light increase or kept at constant 8-h days from December until June. Parallel experiments used twigs cut from the same trees, harvesting treated and control twigs seven times and then exposing them to 8- or 16-h days in a glasshouse. Under 8-h days, budburst in Fagus outdoors was delayed by 41 d and in Aesculus by 4 d; in Picea, day length had no effect. Buds on nearby branches reacted autonomously, and leaf primordia only reacted to light cues in late dormancy after accumulating warm days. Experiments applying different wavelength spectra and high-resolution spectrometry to buds indicate a phytochrome-mediated photoperiod control. By demonstrating local photoperiodic control of buds, revealing the time when these signals are perceived, and showing the interplay between photoperiod and chilling, this study contributes to improved modelling of the impact of climate warming on photosensitive species. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  16. Effects of Photoperiod on Behavior and Courtship of the Neosho madtom (Noturus placidus)

    USGS Publications Warehouse

    Bulger, Angela G.; Wildhaber, Mark L.; Edds, David R.

    2002-01-01

    To test effects of long and short day-length on behavior of the Neosho madtom (Noturus placidus), we held six pairs of fish in separate tanks under 16 hr (L): 8 hr (D) (long-day) and six pairs under 12 hr (L): 12 hr (D) (short-day) photoperiods. An ethogram was created and behavior was electronically and continuously recorded. Two-minute intervals for each hour over four 4-day periods were examined, and proportion of time active and performing specific behaviors in each tank was analyzed to compare differences between treatments. Individuals held under 16 L, 8 D were more active during the light cycle than those in 12 L, 12 D. Specific behaviors examined included resting, swimming, feeding, aggression, cavity enhancement, and courtship. A higher proportion of time was spent performing cavity enhancement, cavities were deeper, and gravel size in cavities was smaller for those fish in the long-day treatment. Throughout the experiment various courtship behaviors were observed in male-female pairs held in 16 L, 8 D, but no such behaviors were observed in 12L, 12D. The relationships between a long photoperiod and activity, cavity enhancement, and courtship behaviors illustrate the influence of photoperiod on the Neosho madtom reproductive cycle.

  17. Comparison of the life cycle and photoperiodic response between northern and southern populations of the terrestrial slug Lehmannia valentiana in Japan.

    PubMed

    Udaka, Hiroko; Numata, Hideharu

    2010-09-01

    The terrestrial slug Lehmannia valentiana was first recorded in Japan in the late 1950s and is now distributed throughout the country. Previous studies have revealed that in Osaka, southwestern Japan, L. valentiana reproduces from November to April. In the present study, in order to clarify the climatic adaptations of L. valentiana in Japan, we examined the life cycle of this slug in Sapporo, northern Japan. In the Sapporo population, the ratio of gonad weight to body weight reached a maximum in September. Most slugs had mature sperm from late August to April and large oocytes from September to April. Thus, the Sapporo population of L. valentiana commenced reproduction two months earlier than the Osaka population. We also examined the effect of various photoperiodic conditions on growth and reproductive maturation in both the Osaka and Sapporo populations. The effect of photoperiod on growth was different in the two populations. In both populations, however, reproductive maturation was induced by short days of photophase 14 h or less, and there was no obvious difference between the two populations, even though reproductive maturation in the wild commences in different seasons. This indicates the possibility that L. valentiana adapts to climatically different regions without changes in its critical daylength in photoperiodic response.

  18. Multi-response optimization of Artemia hatching process using split-split-plot design based response surface methodology

    PubMed Central

    Arun, V. V.; Saharan, Neelam; Ramasubramanian, V.; Babitha Rani, A. M.; Salin, K. R.; Sontakke, Ravindra; Haridas, Harsha; Pazhayamadom, Deepak George

    2017-01-01

    A novel method, BBD-SSPD is proposed by the combination of Box-Behnken Design (BBD) and Split-Split Plot Design (SSPD) which would ensure minimum number of experimental runs, leading to economical utilization in multi- factorial experiments. The brine shrimp Artemia was tested to study the combined effects of photoperiod, temperature and salinity, each with three levels, on the hatching percentage and hatching time of their cysts. The BBD was employed to select 13 treatment combinations out of the 27 possible combinations that were grouped in an SSPD arrangement. Multiple responses were optimized simultaneously using Derringer’s desirability function. Photoperiod and temperature as well as temperature-salinity interaction were found to significantly affect the hatching percentage of Artemia, while the hatching time was significantly influenced by photoperiod and temperature, and their interaction. The optimum conditions were 23 h photoperiod, 29 °C temperature and 28 ppt salinity resulting in 96.8% hatching in 18.94 h. In order to verify the results obtained from BBD-SSPD experiment, the experiment was repeated preserving the same set up. Results of verification experiment were found to be similar to experiment originally conducted. It is expected that this method would be suitable to optimize the hatching process of animal eggs. PMID:28091611

  19. Lectin histochemistry as a tool to identify apoptotic cells in the seminiferous epithelium of Syrian hamster (Mesocricetus auratus) subjected to short photoperiod.

    PubMed

    Seco-Rovira, V; Beltrán-Frutos, E; Ferrer, C; Sánchez-Huertas, M M; Madrid, J F; Saez, F J; Pastor, L M

    2013-12-01

    Lectins have been widely used to study the pattern of cellular glycoconjugates in numerous species. In the process of cellular apoptosis, it has been observed that changes occur in the membrane sugar sequences of these apoptotic cells. The aim of our work was to identify which lectins, out of an extensive battery of the same (PNA, SBA, HPA, LTA, Con-A, UEA-I, WGA, DBA, MAA, GNA, AAA, SNA), show affinity for germinal cells in apoptosis, at what stage of cell death they do so and in which germinal cell types they can be detected. For this, we studied testis sections during testicular regression in Syrian hamster (Mesocricetus auratus) subjected to short photoperiod. Several lectins showed an affinity for the glycoconjugate residues of germ cells in apoptosis: Gal β1,3-GalNAcα1, α-d-mannose, N-acetylgalactosamine and l-fucose. Furthermore, lectin specificity was observed for some specific germinal cells and in certain stages of apoptosis. It was also observed that one of these lectins (PNA) showed affinity for Sertoli cells undergoing apoptosis. Therefore, we conclude that the use of lectin histochemistry could be a very useful tool for studying apoptosis in the seminiferous epithelium because of the specificity shown towards germinal cells in pathological or experimentally induced epithelial depletion models. © 2013 Blackwell Verlag GmbH.

  20. Abscisic Acid and the Photoperiodic Induction of Dormancy in Salix viminalis L.

    PubMed

    Alvim, R; Saunders, P F; Barros, R S

    1979-04-01

    A series of growth room experiments was carried out aiming to establish the role of abscisic acid on dormancy of Salix viminalis L. The inhibitor content and abscisic acid levels of extracts from roots, sap, leaves, and apical tissues of willow were measured using biological assay and gas-liquid chromatography.No evidence was obtained that photoperiodically mediated dormancy is associated with changes in abscisic acid levels or beta-inhibitor activity.

  1. Seasonal Variation in the Hormone Content of Willow: II. Effect of Photoperiod on Growth and Abscisic Acid Content of Trees under Field Conditions.

    PubMed

    Alvim, R

    1978-11-01

    Levels of abscisic acid were followed in the xylem sap, mature leaves, and apices of field-grown willow (Salix viminalis L.) during the summer months, under natural and artificially extended photoperiods. Although the long day treatment prevented the general onset of dormancy, the plants grown under natural daylengths showed lower concentration of abscisic acid than those kept under long days.

  2. Photosynthetic Rates of Citronella and Lemongrass 1

    PubMed Central

    Herath, H. M. Walter; Ormrod, Douglas P.

    1979-01-01

    Ten selections of citronella (Cymbopogon nardus [L.] Rendle) were grown at 32/27, 27/21, or 15/10 C day/night temperatures, and plants from three populations of lemongrass (Cymbopogon citratus [D.C.] Stapf from Japan or Sri Lanka and Cymbopogon flexuosus [D.C.] Stapf from India) were grown at 8- or 15-hour photoperiods. Net photosynthetic rates of mature leaves were measured in a controlled environment at 25 C and 260 microeinsteins per meter2 per second. Rates declined with increasing leaf age, and from the tip to the base of the leaf blade. Rates for citronella leaves grown at 15/10 C were extremely low for all selections. Highest rates of net photosynthesis were recorded for four selections grown at 27/21 C and for two selections grown at 32/27 C. Lemongrass grown at 8-hour photoperiod had higher photosynthetic rates than that grown at 15-hour photoperiod. PMID:16660737

  3. Day length unlikely to constrain climate-driven shifts in leaf-out times of northern woody plants

    NASA Astrophysics Data System (ADS)

    Zohner, Constantin M.; Benito, Blas M.; Svenning, Jens-Christian; Renner, Susanne S.

    2016-12-01

    The relative roles of temperature and day length in driving spring leaf unfolding are known for few species, limiting our ability to predict phenology under climate warming. Using experimental data, we assess the importance of photoperiod as a leaf-out regulator in 173 woody species from throughout the Northern Hemisphere, and we also infer the influence of winter duration, temperature seasonality, and inter-annual temperature variability. We combine results from climate- and light-controlled chambers with species’ native climate niches inferred from georeferenced occurrences and range maps. Of the 173 species, only 35% relied on spring photoperiod as a leaf-out signal. Contrary to previous suggestions, these species come from lower latitudes, whereas species from high latitudes with long winters leafed out independent of photoperiod. The strong effect of species’ geographic-climatic history on phenological strategies complicates the prediction of community-wide phenological change.

  4. Combined organizational and activational effects of short and long photoperiods on spatial and temporal memory in rats.

    PubMed

    MacDonald, Christopher J; Cheng, Ruey-Kuang; Williams, Christina L; Meck, Warren H

    2007-02-22

    The present study examined the effects of photoperiod on spatial and temporal memory in adult Sprague-Dawley rats that were conceived and reared in different day lengths, i.e., short day (SD-8:16 light/dark) and long day (LD-16:8 light/dark). Both male and female LD rats demonstrated increased spatial memory capacity as evidenced by a lower number of choices to criterion in a 12-arm radial maze task relative to the performance of SD rats. SD rats also demonstrated a distortion in the content of temporal memory as evidenced by a proportional rightward shift in the 20 and 60 s temporal criteria trained using the peak-interval procedure that is consistent with reduced cholinergic function. The conclusion is that both spatial and temporal memory are sensitive to photoperiod variation in laboratory rats in a manner similar to that previously observed for reproductive behaviour.

  5. Influence of Photoperiod on Hormones, Behavior, and Immune Function

    PubMed Central

    Walton, James C.; Weil, Zachary M.; Nelson, Randy J.

    2011-01-01

    Photoperiodism is the ability of plants and animals to measure environmental day length to ascertain time of year. Central to the evolution of photoperiodism in animals is the adaptive distribution of energetically challenging activities across the year to optimize reproductive fitness while balancing the energetic tradeoffs necessary for seasonally- appropriate survival strategies. The ability to accurately predict future events requires endogenous mechanisms to permit physiological anticipation of annual conditions. Day length provides a virtually noise free environmental signal to monitor and accurately predict time of the year. In mammals, melatonin provides the hormonal signal transducing day length. Duration of pineal melatonin is inversely related to day length and its secretion drives enduring changes in many physiological systems, including the HPA, HPG, and brain-gut axes, the autonomic nervous system, and the immune system. Thus, melatonin is the fulcrum mediating redistribution of energetic investment among physiological processes to maximize fitness and survival. PMID:21156187

  6. FLOWERING LOCUS T Protein May Act as the Long-Distance Florigenic Signal in the Cucurbits[W

    PubMed Central

    Lin, Ming-Kuem; Belanger, Helene; Lee, Young-Jin; Varkonyi-Gasic, Erika; Taoka, Ken-Ichiro; Miura, Eriko; Xoconostle-Cázares, Beatriz; Gendler, Karla; Jorgensen, Richard A.; Phinney, Brett; Lough, Tony J.; Lucas, William J.

    2007-01-01

    Cucurbita moschata, a cucurbit species responsive to inductive short-day (SD) photoperiods, and Zucchini yellow mosaic virus (ZYMV) were used to test whether long-distance movement of FLOWERING LOCUS T (FT) mRNA or FT is required for floral induction. Ectopic expression of FT by ZYMV was highly effective in mediating floral induction of long-day (LD)–treated plants. Moreover, the infection zone of ZYMV was far removed from floral meristems, suggesting that FT transcripts do not function as the florigenic signal in this system. Heterografting demonstrated efficient transmission of a florigenic signal from flowering Cucurbita maxima stocks to LD-grown C. moschata scions. Real-time RT-PCR performed on phloem sap collected from C. maxima stocks detected no FT transcripts, whereas mass spectrometry of phloem sap proteins revealed the presence of Cm-FTL1 and Cm-FTL2. Importantly, studies on LD- and SD-treated C. moschata plants established that Cmo-FTL1 and Cmo-FTL2 are regulated by photoperiod at the level of movement into the phloem and not by transcription. Finally, mass spectrometry of florally induced heterografted C. moschata scions revealed that C. maxima FT, but not FT mRNA, crossed the graft union in the phloem translocation stream. Collectively, these studies are consistent with FT functioning as a component of the florigenic signaling system in the cucurbits. PMID:17540715

  7. Reproductive failure in Arabidopsis thaliana under transient carbohydrate limitation: flowers and very young siliques are jettisoned and the meristem is maintained to allow successful resumption of reproductive growth.

    PubMed

    Lauxmann, Martin A; Annunziata, Maria G; Brunoud, Géraldine; Wahl, Vanessa; Koczut, Andrzej; Burgos, Asdrubal; Olas, Justyna J; Maximova, Eugenia; Abel, Christin; Schlereth, Armin; Soja, Aleksandra M; Bläsing, Oliver E; Lunn, John E; Vernoux, Teva; Stitt, Mark

    2016-04-01

    The impact of transient carbon depletion on reproductive growth in Arabidopsis was investigated by transferring long-photoperiod-grown plants to continuous darkness and returning them to a light-dark cycle. After 2 days of darkness, carbon reserves were depleted in reproductive sinks, and RNA in situ hybridization of marker transcripts showed that carbon starvation responses had been initiated in the meristem, anthers and ovules. Dark treatments of 2 or more days resulted in a bare-segment phenotype on the floral stem, with 23-27 aborted siliques. These resulted from impaired growth of immature siliques and abortion of mature and immature flowers. Depolarization of PIN1 protein and increased DII-VENUS expression pointed to rapid collapse of auxin gradients in the meristem and inhibition of primordia initiation. After transfer back to a light-dark cycle, flowers appeared and formed viable siliques and seeds. A similar phenotype was seen after transfer to sub-compensation point irradiance or CO2 . It also appeared in a milder form after a moderate decrease in irradiance and developed spontaneously in short photoperiods. We conclude that Arabidopsis inhibits primordia initiation and aborts flowers and very young siliques in C-limited conditions. This curtails demand, safeguarding meristem function and allowing renewal of reproductive growth when carbon becomes available again. © 2015 John Wiley & Sons Ltd.

  8. Monopodial and sympodial branching architecture in cotton is differentially regulated by the Gossypium hirsutum SINGLE FLOWER TRUSS and SELF-PRUNING orthologs.

    PubMed

    McGarry, Roisin C; Prewitt, Sarah F; Culpepper, Samantha; Eshed, Yuval; Lifschitz, Eliezer; Ayre, Brian G

    2016-10-01

    Domestication of upland cotton (Gossypium hirsutum) converted it from a lanky photoperiodic perennial to a day-neutral annual row-crop. Residual perennial traits, however, complicate irrigation and crop management, and more determinate architectures are desired. Cotton simultaneously maintains robust monopodial indeterminate shoots and sympodial determinate shoots. We questioned if and how the FLOWERING LOCUS T/SINGLE FLOWER TRUSS (SFT)-like and TERMINAL FLOWER1/SELF-PRUNING (SP)-like genes control the balance of monopodial and sympodial growth in a woody perennial with complex growth habit. Virus-based manipulation of GhSP and GhSFT expression enabled unprecedented functional analysis of cotton development. GhSP maintains growth in all apices; in its absence, both monopodial and sympodial branch systems terminate precociously. GhSFT encodes a florigenic signal stimulating rapid onset of sympodial branching and flowering in side shoots of wild photoperiodic and modern day-neutral accessions. High florigen concentrations did not alter monopodial apices, implying that once a cotton apex is SP-determined, it cannot be reset by florigen. GhSP is also essential to establish and maintain cambial activity. Dynamic changes in GhSFT and GhSP levels navigate meristems between monopodial and sympodial programs in a single plant. SFT and SP influenced cotton domestication and are ideal targets for further agricultural optimization. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  9. Copy Number Variation Affecting the Photoperiod-B1 and Vernalization-A1 Genes Is Associated with Altered Flowering Time in Wheat (Triticum aestivum)

    PubMed Central

    Isaac, Peter; Laurie, David A.

    2012-01-01

    The timing of flowering during the year is an important adaptive character affecting reproductive success in plants and is critical to crop yield. Flowering time has been extensively manipulated in crops such as wheat (Triticum aestivum L.) during domestication, and this enables them to grow productively in a wide range of environments. Several major genes controlling flowering time have been identified in wheat with mutant alleles having sequence changes such as insertions, deletions or point mutations. We investigated genetic variants in commercial varieties of wheat that regulate flowering by altering photoperiod response (Ppd-B1 alleles) or vernalization requirement (Vrn-A1 alleles) and for which no candidate mutation was found within the gene sequence. Genetic and genomic approaches showed that in both cases alleles conferring altered flowering time had an increased copy number of the gene and altered gene expression. Alleles with an increased copy number of Ppd-B1 confer an early flowering day neutral phenotype and have arisen independently at least twice. Plants with an increased copy number of Vrn-A1 have an increased requirement for vernalization so that longer periods of cold are required to potentiate flowering. The results suggest that copy number variation (CNV) plays a significant role in wheat adaptation. PMID:22457747

  10. Effects of CO2 Concentration on Leaf Photosynthesis and Stomatal Conductance of Potatoes Grown Under Different Irradiance Levels and Photoperiods

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Fitzpatrick, A. H.; Tibbitts, T. W.

    2012-01-01

    Potato (Solanum tuberosum L.) cvs. Russet Burbank, Denali, and Norland, were grown in environmental rooms controlled at approx 350 micro mol/mol (ambient during years 1987/1988) and 1000 micro mol/mol (enriched) CO2 concentrations. Plants and electric lamps were arranged to provide two irradiance zones, 400 and 800 micro mol/mol/square m/S PPF and studies were repeated using two photoperiods (12-h light / 12-h dark and continuous light). Leaf photosynthetic rates and leaf stomatal conductance were measured using fully expanded, upper canopy leaves at weekly intervals throughout growth (21 through 84 days after transplanting). Increasing the CO2 from approx 350 to 1000 micro mol/mol under the 12-h photoperiod increased leaf photosynthetic rates by 39% at 400 micro mol/mol/square m/S PPF and 27% at 800 micro mol/mol/square m/S PPF. Increasing the CO2 from approx 350 to 1000 micro mol/mol under continuous light decreased leaf photosynthetic rates by 7% at 400 micro mol/mol/square m/S PPF and 13% at 800 micro mol/mol/square m/S PPF. Increasing the CO2 from approx 350 to 1000 micro mol/mol under the 12-h photoperiod plants decreased stomatal conductance by an average of 26% at 400 micro mol/mol/square m/S PPF and 42% at 800 micro mol/mol/square m/S PPF. Under continuous light, CO2 enrichment resulted in a small increase (2%) of stomatal conductance at 400 micro mol/mol/square m/S PPF, and a small decrease (3%) at 800 micro mol/mol/square m/S PPF. Results indicate that CO2 enrichment under the 12-h photoperiod showed the expected increase in photosynthesis and decrease in stomatal conductance for a C3 species like potato, but the decreases in leaf photosynthetic rates and minimal effect on conductance from CO2 enrichment under continuous light were not expected. The plant leaves under continuous light showed more chlorosis and some rusty flecking versus plants under the 12-h photoperiod, suggesting the continuous light was more stressful on the plants. The increased rates of leaf photosynthesis with increased CO2 concentration paralleled trends in biomass production (published previously) but were not proportional to the biomass yields.

  11. Abscisic Acid and the Photoperiodic Induction of Dormancy in Salix viminalis L 1

    PubMed Central

    Alvim, Ronald; Saunders, Peter F.; Barros, Raimundo S.

    1979-01-01

    A series of growth room experiments was carried out aiming to establish the role of abscisic acid on dormancy of Salix viminalis L. The inhibitor content and abscisic acid levels of extracts from roots, sap, leaves, and apical tissues of willow were measured using biological assay and gas-liquid chromatography. No evidence was obtained that photoperiodically mediated dormancy is associated with changes in abscisic acid levels or β-inhibitor activity. PMID:16660810

  12. Cellular changes in the hamster testicular interstitium with ageing and after exposure to short photoperiod.

    PubMed

    Beltrán-Frutos, E; Seco-Rovira, V; Ferrer, C; Madrid, J F; Sáez, F J; Canteras, M; Pastor, L M

    2016-04-01

    The aim of this study was to evaluate the cellular changes that occur in the hamster testicular interstitium in two very different physiological situations involving testicular involution: ageing and exposure to a short photoperiod. The animals were divided into an 'age group' with three subgroups - young, adult and old animals - and a 'regressed group' with animals subjected to a short photoperiod. The testicular interstitium was characterised by light and electron microscopy. Interstitial cells were studied histochemically with regard to their proliferation, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP in situ nick end labelling (TUNEL+) and testosterone synthetic activity. We identified two types of Leydig cell: Type A cells showed a normal morphology, while Type B cells appeared necrotic. With ageing, pericyte proliferation decreased but there was no variation in the index of TUNEL-positive Leydig cells. In the regressed group, pericyte proliferation was greater and TUNEL-positive cells were not observed in the interstitium. The testicular interstitium suffered few ultrastructural changes during ageing and necrotic Leydig cells were observed. In contrast, an ultrastructural involution of Leydig cells with no necrosis was observed in the regressed group. In conclusion, the testicular interstitium of Mesocricetus auratus showed different cellular changes in the two groups (age and regressed), probably due to the irreversible nature of ageing and the reversible character of changes induced by short photoperiod.

  13. Synergistic effects of drought stress and photoperiods on phenology and secondary metabolism of Silybum marianum.

    PubMed

    Zahir, Adnan; Abbasi, Bilal Haider; Adil, Muhammad; Anjum, Sumaira; Zia, Muhammad; Ihsan-Ul-Haq

    2014-09-01

    Silybum marianum is an important medicinal plant of the family Asteraceae, well known for its set of bioactive isomeric mixture of secondary metabolites "silymarin", primarily acting as a hepato-protective agent. Abiotic stress augments plant secondary metabolism in different plant tissues to withstand harsh environmental fluctuations. In the current study, our aim was to induce drought stress in vitro on S. marianum under the influence of different photoperiod treatments to study the effects, with respect to variations in secondary metabolic profile and plant growth and development. S. marianum was extremely vulnerable to different levels of mannitol-induced drought stress. Water deficiency inhibited root induction completely and retarded plant growth was observed; however, phytochemical analysis revealed enhanced accumulation of total phenolic content (TPC), total flavonoid content (TFC), and total protein content along with several antioxidative enzymes. Secondary metabolic content was positively regulated with increasing degree of drought stress. A dependent correlation of seed germination frequency at mild drought stress and antioxidative activities was established with 2 weeks dark + 2 weeks 16/8 h photoperiod treatment, respectively, whereas a positive correlation existed for TPC and TFC when 4 weeks 16/8 h photoperiod treatment was applied. The effects of drought stress are discussed in relation to phenology, seed germination frequency, biomass build up, antioxidative potential, and secondary metabolites accumulation.

  14. Diurnal patterns of gas-exchange and metabolic pools in tundra plants during three phases of the arctic growing season.

    PubMed

    Patankar, Rajit; Mortazavi, Behzad; Oberbauer, Steven F; Starr, Gregory

    2013-02-01

    Arctic tundra plant communities are subject to a short growing season that is the primary period in which carbon is sequestered for growth and survival. This period is often characterized by 24-h photoperiods for several months a year. To compensate for the short growing season tundra plants may extend their carbon uptake capacity on a diurnal basis, but whether this is true remains unknown. Here, we examined in situ diurnal patterns of physiological activity and foliar metabolites during the early, mid, and late growing season in seven arctic species under light-saturated conditions. We found clear diurnal patterns in photosynthesis and respiration, with midday peaks and midnight lulls indicative of circadian regulation. Diurnal patterns in foliar metabolite concentrations were less distinct between the species and across seasons, suggesting that metabolic pools are likely governed by proximate external factors. This understanding of diurnal physiology will also enhance the parameterization of process-based models, which will aid in better predicting future carbon dynamics for the tundra. This becomes even more critical considering the rapid changes that are occurring circumpolarly that are altering plant community structure, function, and ultimately regional and global carbon budgets.

  15. Influence of Light Intensity and Photoperiod on the Seed Germination of Four Rhododendron Species in Taiwan.

    PubMed

    Lin, Lei-Chen; Wang, Chang-Sheng

    2017-01-01

    There are 15 native Rhododendron species in Taiwan, among which 11 species are endemic and compose 73% of these native species. Although researchers predominantly use cuttings to propagate Rhododendron shrubs, there are no studies on the seed germination of Rhododendron species. The objective of this study was to evaluate the seed germination of four Rhododendron species in Taiwan under different light intensities and photoperiods. Two experiments on the seed germination percentage of R. breviperulatum, R. kanehirai, R. ovatum and R. simsii were conducted in this study. The first experiment was to identify the seed germination percentage of these four Rhododendron species using different light intensities (0, 700, 1400 and 3200 lux). The second experiment was to clarify the seed germination percentage of these four Rhododendron species using different photoperiods (0, 1, 4 and 16 h). All statistical analyses were performed using Statistical Package for the Social Science (SPSS12.0) for Windows software program. The data were analyzed using Tukey's multiple range test at the p<0.05 significance level. After 30 days, no seed germination occurred in darkness. The highest average seed germination percentages were all observed at 700 lux: R. breviperulatum (83.3%), R. kanehirai (68.9%), R. ovatum (85.6%) and R. simsii (92.2%). The highest average germination percentages of seeds were observed in R. breviperulatum at 16 h (83.3%), R. kanehirai at 1 h (60.0%), R. ovatum at 16 h (84.4%) and R. simsii at 16 h (85.6%). According to the results, these four Rhododendron species required light for germination. There were significant differences (p<0.05) in the seed germination of these four Rhododendron species for light intensity greater than 700 lux. Similar results were observed with photoperiods. The seed germination percentage of R. breviperulatum, R. ovatum and R. simsii increased with increasing photoperiod.

  16. Crosstalks between kisspeptin neurons and somatostatin neurons are not photoperiod dependent in the ewe hypothalamus.

    PubMed

    Dufourny, Laurence; Lomet, Didier

    2017-12-01

    Seasonal reproduction is under the control of gonadal steroid feedback, itself synchronized by day-length or photoperiod. As steroid action on GnRH neurons is mostly indirect and therefore exerted through interneurons, we looked for neuroanatomical interactions between kisspeptin (KP) neurons and somatostatin (SOM) neurons, two populations targeted by sex steroids, in three diencephalic areas involved in the central control of ovulation and/or sexual behavior: the arcuate nucleus (ARC), the preoptic area (POA) and the ventrolateral part of the ventromedial hypothalamus (VMHvl). KP is the most potent secretagogue of GnRH secretion while SOM has been shown to centrally inhibit LH pulsatile release. Notably, hypothalamic contents of these two neuropeptides vary with photoperiod in specific seasonal species. Our hypothesis is that SOM inhibits KP neuron activity and therefore indirectly modulate GnRH release and that this effect may be seasonally regulated. We used sections from ovariectomized estradiol-replaced ewes killed after photoperiodic treatment mimicking breeding or anestrus season. We performed triple immunofluorescent labeling to simultaneously detect KP, SOM and synapsin, a marker for synaptic vesicles. Sections from the POA and from the mediobasal hypothalamus were examined using a confocal microscope. Randomly selected KP or SOM neurons were observed in the POA and ARC. SOM neurons were also observed in the VMHvl. In both the ARC and POA, nearly all KP neurons presented numerous SOM contacts. SOM neurons presented KP terminals more frequently in the ARC than in the POA and VMHvl. Quantitative analysis failed to demonstrate major seasonal variations of KP and SOM interactions. Our data suggest a possible inhibitory action of SOM on all KP neurons in both photoperiodic statuses. On the other hand, the physiological significance of KP modulation of SOM neuron activity and vice versa remain to be determined. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Testicular histomorphometry and the proliferative and apoptotic activities of the seminiferous epithelium in Syrian hamster during spontaneous recrudescence after exposure to short photoperiod.

    PubMed

    Martínez-Hernández, Jesús; Seco-Rovira, Vicente; Beltrán-Frutos, Ester; Ferrer, Concepción; Canteras, Manuel; Sánchez-Huertas, María Del Mar; Pastor, Luis Miguel

    2018-05-21

    Syrian hamsters are photoperiodic rodents in which reproduction, including testicular function, is stimulated by long photoperiod exposure and curtailed by exposure to a short photoperiod. The objectives of this study were to characterize the testis histomorphometrically and to determine the role of the proliferation and apoptosis phenomena in the recovery of the seminiferous epithelium during spontaneous recrudescence after exposure to short photoperiod. The study was performed using conventional light microscopy, proliferating cell nuclear antigen and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP in situ nick end labelling staining, image analysis software, and transmission electron microscopy in three recrudescence groups: initial recrudescence (IR), advanced recrudescence (AR) and total recrudescence (TR). The results morphometrically pointed to the gradual recovery of the testicular and tubular volumes, as well as of the seminiferous epithelium. Among the IR and AR groups, the increase in testicular and tubular volumes was accompanied by an increase in tubular diameter and length, with an increase in interstitial volume. From AR to TR, there was an increase in the tubular and total volumes, but, in this case, with a gradual increase in tubular diameter. Recovery of the seminiferous epithelium was accompanied by changes in apoptosis and proliferation activities. The first decreased halfway through the process, and the second remained higher than the control levels throughout the recrudescence stage. Alterations in the spermatozoa were ultrastructurally observed, which indicated that spermiogenesis was not yet completely normal. In conclusion, spontaneous testicular recrudescence in Syrian hamster comprises two histomorphometrical phases: the first related to an increase in tubular length and diameter and interstitial volume and the second depending principally on the gradual increase in tubular diameter. The restoration of the seminiferous epithelium is due to apoptosis reaching normal values in the AR group accompanied by higher proliferative activity than that observed in the Control group. © 2018 Blackwell Verlag GmbH.

  18. Photoperiod induced obesity in the Brandt's vole (Lasiopodomys brandtii): a model of ‘healthy obesity’?

    PubMed Central

    Liu, Xin-Yu; Yang, Deng-Bao; Xu, Yan-Chao; Gronning, Marianne O. L.; Zhang, Fang; Wang, De-Hua; Speakman, John R.

    2016-01-01

    ABSTRACT Brandt's voles have an annual cycle of body weight and adiposity. These changes can be induced in the laboratory by manipulation of photoperiod. In the present study, male captive-bred Brandt's voles aged 35 days were acclimated to a short day (SD) photoperiod (8L:16D) for 70 days. A subgroup of individuals (n=16) were implanted with transmitters to monitor physical activity and body temperature. They were then randomly allocated into long day (LD=16L:8D) (n=19, 8 with transmitters) and SD (n=18, 8 with transmitters) groups for an additional 70 days. We monitored aspects of energy balance, glucose and insulin tolerance (GTT and ITT), body composition and organ fat content after exposure to the different photoperiods. LD voles increased in weight for 35 days and then re-established stability at a higher level. At the end of the experiment LD-exposed voles had greater white adipose tissue mass than SD voles (P=0.003). During weight gain they did not differ in their food intake or digestive efficiency; however, daily energy expenditure was significantly reduced in the LD compared with SD animals (ANCOVA, P<0.05) and there was a trend to reduced resting metabolic rate RMR (P=0.075). Physical activity levels were unchanged. Despite different levels of fat storage, the GTT and ITT responses of SD and LD voles were not significantly different, and these traits were not correlated to body fatness. Hence, the photoperiod-induced obesity was independent on disruptions to glucose homeostasis, indicating a potential adaptive decoupling of these states in evolutionary time. Fat content in both the liver and muscle showed no significant difference between LD and SD animals. How voles overcome the common negative aspects of fat storage might make them a useful model for understanding the phenomenon of ‘healthy obesity’. PMID:27736740

  19. Continuous exposure to sexually active rams extends estrous activity in ewes in spring.

    PubMed

    Abecia, J A; Chemineau, P; Flores, J A; Keller, M; Duarte, G; Forcada, F; Delgadillo, J A

    2015-12-01

    Sexual activity in sheep is under photoperiodic control, which is the main environmental factor responsible for the seasonality of reproduction. However, other natural environmental factors such as presence of conspecifics can slightly influence the timing of onset and offset of the breeding season. In goats, we have found that the continuous presence of bucks that were rendered sexually active out of season by previous exposure to long days, prevented goats from displaying seasonal anestrus, which suggests that the relative contribution of photoperiod in controlling seasonal anestrus should be reevaluated in small ruminant species. The aim of this study was to assess whether the presence of sexually active rams that had been stimulated by artificial photoperiod and melatonin implants, reduces seasonal anestrus in sheep, by prolonging ovulatory activity in spring. Ewes were assigned to one of two groups (n = 16 and 15), which were housed in two separate barns, and kept in contact, either with the treated or the control rams between March and July. Vasectomized rams were either exposed to 2 months of long days followed by the insertion of three subcutaneous melatonin implants (treated rams, n = 8), or exposed to natural light conditions (control rams, n = 2). Estrus was monitored daily, and weekly plasma progesterone analyses indicated ovulatory activity. Ewes that were exposed to treated rams exhibited a higher proportion of monthly estrus than ewes exposed to the control rams (P < 0.05). Thirteen of 15 ewes (one ewe was not considered because of the presence of persistent CL) exposed to stimulated rams exhibited estrous behavior in a cyclic manner. In contrast, all ewes exposed to control rams stopped estrous activity for a period of time during the study, such that this group exhibited a significantly longer anestrous season (mean ± standard error of the mean 89 ± 9 days) than did the ewes housed with treated rams (26 ± 10 days; P < 0.0001). Among 15 ewes housed with treated rams, 13 of them exhibited continuous ovulatory activity between March and July, whereas one stopped in June and two in July. All ewes kept with control rams stopped ovulating for some time; consequently, those ewes had a longer anovulation period than did the group exposed to treated rams (3 ± 3 vs. 18 ± 7 days, respectively; P < 0.05). In conclusion, continuous exposure to sexually activated rams induced by artificial photoperiod and melatonin implants in spring extended the ovarian activity of ewes in spring, which results in an increase in estrous expression. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Quantification of the rates of resynchronization of heart rate with body temperature rhythms in man following a photoperiod shift

    NASA Technical Reports Server (NTRS)

    Hetherington, N. W.; Rosenblatt, L. S.; Higgins, E. A.; Winget, C. M.

    1973-01-01

    A mathematical model previously presented by Rosenblatt et al. (1973) for estimating the rates of resynchronization of individual biorhythms following transmeridian flights or photoperiod shifts is extended to estimation of rates at which two biorythms resynchronize with respect to each other. Such quantification of the rate of restoration of the initial phase relationship of the two biorhythms is pointed out as a valuable tool in the study of internal desynchronosis.

  1. Transcription through the eye of a needle: daily and annual cyclic gene expression variation in Douglas-fir needles.

    PubMed

    Cronn, Richard; Dolan, Peter C; Jogdeo, Sanjuro; Wegrzyn, Jill L; Neale, David B; St Clair, J Bradley; Denver, Dee R

    2017-07-24

    Perennial growth in plants is the product of interdependent cycles of daily and annual stimuli that induce cycles of growth and dormancy. In conifers, needles are the key perennial organ that integrates daily and seasonal signals from light, temperature, and water availability. To understand the relationship between seasonal cycles and seasonal gene expression responses in conifers, we examined diurnal and circannual needle mRNA accumulation in Douglas-fir (Pseudotsuga menziesii) needles at diurnal and circannual scales. Using mRNA sequencing, we sampled 6.1 × 10 9 reads from 19 trees and constructed a de novo pan-transcriptome reference that includes 173,882 tree-derived transcripts. Using this reference, we mapped RNA-Seq reads from 179 samples that capture daily and annual variation. We identified 12,042 diurnally-cyclic transcripts, 9299 of which showed homology to annotated genes from other plant genomes, including angiosperm core clock genes. Annual analysis revealed 21,225 circannual transcripts, 17,335 of which showed homology to annotated genes from other plant genomes. The timing of maximum gene expression is associated with light intensity at diurnal scales and photoperiod at annual scales, with approximately half of transcripts reaching maximum expression +/- 2 h from sunrise and sunset, and +/- 20 days from winter and summer solstices. Comparisons with published studies from other conifers shows congruent behavior in clock genes with Japanese cedar (Cryptomeria), and a significant preservation of gene expression patterns for 2278 putative orthologs from Douglas-fir during the summer growing season, and 760 putative orthologs from spruce (Picea) during the transition from fall to winter. Our study highlight the extensive diurnal and circannual transcriptome variability demonstrated in conifer needles. At these temporal scales, 29% of expressed transcripts show a significant diurnal cycle, and 58.7% show a significant circannual cycle. Remarkably, thousands of genes reach their annual peak activity during winter dormancy. Our study establishes the fine-scale timing of daily and annual maximum gene expression for diverse needle genes in Douglas-fir, and it highlights the potential for using this information for evaluating hypotheses concerning the daily or seasonal timing of gene activity in temperate-zone conifers, and for identifying cyclic transcriptome components in other conifer species.

  2. Influence of EARLI1-like genes on flowering time and lignin synthesis of Arabidopsis thaliana.

    PubMed

    Shi, Y; Zhang, X; Xu, Z-Y; Li, L; Zhang, C; Schläppi, M; Xu, Z-Q

    2011-09-01

    EARLI1 encodes a 14.7 kDa protein in the cell wall, is a member of the PRP (proline-rich protein) family and has multiple functions, including resistance to low temperature and fungal infection. RNA gel blot analyses in the present work indicated that expression of EARLI1-like genes, EARLI1, At4G12470 and At4G12490, was down-regulated in Col-FRI-Sf2 RNAi plants derived from transformation with Agrobacterium strain ABI, which contains a construct encoding a double-strand RNA targeting 8CM of EARLI1. Phenotype analyses revealed that Col-FRI-Sf2 RNAi plants of EARLI1 flowered earlier than Col-FRI-Sf2 wild-type plants. The average bolting time of Col-FRI-Sf2 and Col-FRI-Sf2 RNAi plants was 39.7 and 19.4 days, respectively, under a long-day photoperiod. In addition, there were significant differences in main stem length, internode number and rosette leaf number between Col-FRI-Sf2 and Col-FRI-Sf2 RNAi plants. RT-PCR showed that EARLI1-like genes might delay flowering time through the autonomous and long-day photoperiod pathways by maintaining the abundance of FLC transcripts. In Col-FRI-Sf2 RNAi plants, transcription of FLC was repressed, while expression of SOC1 and FT was activated. Microscopy observations showed that EARLI1-like genes were also associated with morphogenesis of leaf cells in Arabidopsis. Using histochemical staining, EARLI1-like genes were found to be involved in regulation of lignin synthesis in inflorescence stems, and Col-FRI-Sf2 and Col-FRI-Sf2 RNAi plants had 9.67% and 8.76% dry weight lignin, respectively. Expression analysis revealed that cinnamoyl-CoA reductase, a key enzyme in lignin synthesis, was influenced by EARLI1-like genes. These data all suggest that EARLI1-like genes could control the flowering process and lignin synthesis in Arabidopsis. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  3. Mutant Alleles of Photoperiod-1 in Wheat (Triticum aestivum L.) That Confer a Late Flowering Phenotype in Long Days

    PubMed Central

    Shaw, Lindsay M.; Turner, Adrian S.; Herry, Laurence; Griffiths, Simon; Laurie, David A.

    2013-01-01

    Flowering time in wheat and barley is known to be modified by mutations in the Photoperiod-1 (Ppd-1) gene. Semi-dominant Ppd-1a mutations conferring an early flowering phenotype are well documented in wheat but gene sequencing has also identified candidate loss of function mutations for Ppd-A1 and Ppd-D1. By analogy to the recessive ppd-H1 mutation in barley, loss of function mutations in wheat are predicted to delay flowering under long day conditions. To test this experimentally, introgression lines were developed in the spring wheat variety ‘Paragon’. Plants lacking a Ppd-B1 gene were identified from a gamma irradiated ‘Paragon’ population. These were crossed with the other introgression lines to generate plants with candidate loss of function mutations on one, two or three genomes. Lines lacking Ppd-B1 flowered 10 to 15 days later than controls under long days. Candidate loss of function Ppd-A1 alleles delayed flowering by 1 to 5 days while candidate loss of function Ppd-D1 alleles did not affect flowering time. Loss of Ppd-A1 gave an enhanced effect, and loss of Ppd-D1 became detectable in lines where Ppd-B1 was absent, indicating effects may be buffered by functional Ppd-1 alleles on other genomes. Expression analysis revealed that delayed flowering was associated with reduced expression of the TaFT1 gene and increased expression of TaCO1. A survey of the GEDIFLUX wheat collection grown in the UK and North Western Europe between the 1940s and 1980s and the A.E. Watkins global collection of landraces from the 1920s and 1930s showed that the identified candidate loss of function mutations for Ppd-D1 were common and widespread, while the identified candidate Ppd-A1 loss of function mutation was rare in countries around the Mediterranean and in the Far East but was common in North Western Europe. This may reflect a possible benefit of the latter in northern locations. PMID:24244507

  4. Temperature Variation under Continuous Light Restores Tomato Leaf Photosynthesis and Maintains the Diurnal Pattern in Stomatal Conductance

    PubMed Central

    Haque, Mohammad S.; de Sousa, Alexandra; Soares, Cristiano; Kjaer, Katrine H.; Fidalgo, Fernanda; Rosenqvist, Eva; Ottosen, Carl-Otto

    2017-01-01

    The response of tomato plants (Solanum lycopersicum L. cv. Aromata) to continuous light (CL) in relation to photosynthesis, abscisic acid (ABA) and reactive oxygen species (ROS) was investigated to improve the understanding of the development and/or alleviation of CL-induced leaf injury in constant and diurnal temperature fluctuations with similar daily light integral and daily mean temperature. The plants were grown in three photoperiodic treatments for 15 days; One treatment with a 16/8 h light/dark period and a light/dark temperature of 27/17°C (Control), two CL treatments with 24 h photoperiods, one with a constant temperature of 24°C (CLCT) and the other one with variable temperature of 27/17°C for 16/8 ho, respectively (CLVT). A diurnal pattern of stomatal conductance (gs) and [ABA] was observed in the plants grown in the control and CLVT conditions, while the plants in CLCT conditions experienced a significant decrease in stomatal conductance aligned with an increase in ABA. The net photosynthesis (A) was significantly reduced in CLCT, aligned with a significant decrease in the maximum rate of Rubisco carboxylation (Vcmax), the maximum rate of electron transport (Jmax) and mesophyll diffusion conductance to CO2 (gm) in comparison to the control and CLVT. An increased production of H2O2 and O2•- linked with increased activities of antioxidative enzymes was seen in both CL treatments, but despite of this, leaf injuries were only observed in the CLCT treatment. The results suggest that the diurnal temperature fluctuations alleviated the CL injury symptoms, probably because the diurnal cycles of cellular mechanisms were maintained. The ROS were shown not to be directly involved in CL-induced leaf injury, since both ROS production and scavenging was highest in CLVT without leaf chlorotic symptoms. PMID:28979273

  5. Deciduousness in a seasonal tropical forest in western Thailand: interannual and intraspecific variation in timing, duration and environmental cues.

    PubMed

    Williams, Laura J; Bunyavejchewin, Sarayudh; Baker, Patrick J

    2008-03-01

    Seasonal tropical forests exhibit a great diversity of leaf exchange patterns. Within these forests variation in the timing and intensity of leaf exchange may occur within and among individual trees and species, as well as from year to year. Understanding what generates this diversity of phenological behaviour requires a mechanistic model that incorporates rate-limiting physiological conditions, environmental cues, and their interactions. In this study we examined long-term patterns of leaf flushing for a large proportion of the hundreds of tree species that co-occur in a seasonal tropical forest community in western Thailand. We used the data to examine community-wide variation in deciduousness and tested competing hypotheses regarding the timing and triggers of leaf flushing in seasonal tropical forests. We developed metrics to quantify the nature of deciduousness (its magnitude, timing and duration) and its variability among survey years and across a range of taxonomic levels. Tree species varied widely in the magnitude, duration, and variability of leaf loss within species and across years. The magnitude of deciduousness ranged from complete crown loss to no crown loss. Among species that lost most of their crown, the duration of deciduousness ranged from 2 to 21 weeks. The duration of deciduousness in the majority of species was considerably shorter than in neotropical forests with similar rainfall periodicity. While the timing of leaf flushing varied among species, most ( approximately 70%) flushed during the dry season. Leaf flushing was associated with changes in photoperiod in some species and the timing of rainfall in other species. However, more than a third of species showed no clear association with either photoperiod or rainfall, despite the considerable length and depth of the dataset. Further progress in resolving the underlying internal and external mechanisms controlling leaf exchange will require targeting these species for detailed physiological and microclimatic studies.

  6. Differences in protein expression among five species of stream stonefly (Plecoptera) along a latitudinal gradient in Japan.

    PubMed

    Gamboa, Maribet; Tsuchiya, Maria Claret; Matsumoto, Suguru; Iwata, Hisato; Watanabe, Kozo

    2017-11-01

    Proteome variation among natural populations along an environmental gradient may provide insights into how the biological functions of species are related to their local adaptation. We investigated protein expression in five stream stonefly species from four geographic regions along a latitudinal gradient in Japan with varying climatic conditions. The extracted proteins were separated by two-dimensional gel electrophoresis and identified by matrix-assisted laser desorption/ionization of time-of-flight (MALDI TOF/TOF), yielding 446 proteins. Low interspecies variation in the proteome profiles was observed among five species within geographical regions, presumably due to the co-occurring species sharing the environments. However, large spatial variations in protein expression were found among four geographic regions, suggesting strong regulation of protein expression in heterogeneous environments, where the spatial variations were positively correlated with water temperature. We identified 21 unique proteins expressed specifically in a geographical region and six common proteins expressed throughout all regions. In warmer regions, metabolic proteins were upregulated, whereas proteins related to cold stress, the photoperiod, and mating were downregulated. Oxygen-related and energy-production proteins were upregulated in colder regions with higher altitudes. Thus, our proteomic approach is useful for identifying and understanding important biological functions related to local adaptations by populations of stoneflies. © 2017 Wiley Periodicals, Inc.

  7. Seasonal and daily plasma corticosterone rhythms in American toads, Bufo americanus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pancak, M.K.; Taylor, D.H.

    1983-06-01

    Concentrations of corticosterone were measured in the plasma of American toads, Bufo americanus, on a seasonal basis using a radioimmunoassay technique. Two populations of toads, maintained under different light conditions, were monitored to observe the effects of photoperiod on the seasonal rhythm of plasma corticosterone. Under a natural photoperiod toads demonstrated a rhythm consisting of a spring peak and a fall peak in corticosterone concentration. Toads maintained under a 12L:12D photoperiod all year round demonstrated a similar rhythm with peaks in the spring and fall. This suggests that an endogenous (circannual) rhythm of corticosterone may be playing an important rolemore » in the seasonal change of overt behavior and physiology of Bufo americanus. A daily rhythm of corticosterone was also detected in toads when blood samples were taken every 4 hr. When compared to a previously published circadian rhythm study of locomotor activity, the surge in corticosterone concentration for the day occurred at 1730 just prior to the peak in locomotor activity.« less

  8. Genome Sequence and Transcriptome Analyses of Chrysochromulina tobin: Metabolic Tools for Enhanced Algal Fitness in the Prominent Order Prymnesiales (Haptophyceae)

    PubMed Central

    Hovde, Blake T.; Deodato, Chloe R.; Hunsperger, Heather M.; Ryken, Scott A.; Yost, Will; Jha, Ramesh K.; Patterson, Johnathan; Monnat, Raymond J.; Barlow, Steven B.; Starkenburg, Shawn R.; Cattolico, Rose Ann

    2015-01-01

    Haptophytes are recognized as seminal players in aquatic ecosystem function. These algae are important in global carbon sequestration, form destructive harmful blooms, and given their rich fatty acid content, serve as a highly nutritive food source to a broad range of eco-cohorts. Haptophyte dominance in both fresh and marine waters is supported by the mixotrophic nature of many taxa. Despite their importance the nuclear genome sequence of only one haptophyte, Emiliania huxleyi (Isochrysidales), is available. Here we report the draft genome sequence of Chrysochromulina tobin (Prymnesiales), and transcriptome data collected at seven time points over a 24-hour light/dark cycle. The nuclear genome of C. tobin is small (59 Mb), compact (∼40% of the genome is protein coding) and encodes approximately 16,777 genes. Genes important to fatty acid synthesis, modification, and catabolism show distinct patterns of expression when monitored over the circadian photoperiod. The C. tobin genome harbors the first hybrid polyketide synthase/non-ribosomal peptide synthase gene complex reported for an algal species, and encodes potential anti-microbial peptides and proteins involved in multidrug and toxic compound extrusion. A new haptophyte xanthorhodopsin was also identified, together with two “red” RuBisCO activases that are shared across many algal lineages. The Chrysochromulina tobin genome sequence provides new information on the evolutionary history, ecology and economic importance of haptophytes. PMID:26397803

  9. Molecular phenology in plants: in natura systems biology for the comprehensive understanding of seasonal responses under natural environments.

    PubMed

    Kudoh, Hiroshi

    2016-04-01

    Phenology refers to the study of seasonal schedules of organisms. Molecular phenology is defined here as the study of the seasonal patterns of organisms captured by molecular biology techniques. The history of molecular phenology is reviewed briefly in relation to advances in the quantification technology of gene expression. High-resolution molecular phenology (HMP) data have enabled us to study phenology with an approach of in natura systems biology. I review recent analyses of FLOWERING LOCUS C (FLC), a temperature-responsive repressor of flowering, along the six steps in the typical flow of in natura systems biology. The extensive studies of the regulation of FLC have made this example a successful case in which a comprehensive understanding of gene functions has been progressing. The FLC-mediated long-term memory of past temperatures creates time lags with other seasonal signals, such as photoperiod and short-term temperature. Major signals that control flowering time have a phase lag between them under natural conditions, and hypothetical phase lag calendars are proposed as mechanisms of season detection in plants. Transcriptomic HMP brings a novel strategy to the study of molecular phenology, because it provides a comprehensive representation of plant functions. I discuss future perspectives of molecular phenology from the standpoints of molecular biology, evolutionary biology and ecology. © 2015 The Author. New Phytologist © 2015 New Phytologist Trust.

  10. Daytime light intensity affects seasonal timing via changes in the nocturnal melatonin levels

    NASA Astrophysics Data System (ADS)

    Kumar, Vinod; Rani, Sangeeta; Malik, Shalie; Trivedi, Amit K.; Schwabl, Ingrid; Helm, Barbara; Gwinner, Eberhard

    2007-08-01

    Daytime light intensity can affect the photoperiodic regulation of the reproductive cycle in birds. The actual way by which light intensity information is transduced is, however, unknown. We postulate that transduction of the light intensity information is mediated by changes in the pattern of melatonin secretion. This study, therefore, investigated the effects of high and low daytime light intensities on the daily melatonin rhythm of Afro-tropical stonechats ( Saxicola torquata axillaris) in which seasonal changes in daytime light intensity act as a zeitgeber of the circannual rhythms controlling annual reproduction and molt. Stonechats were subjected to light conditions simulated as closely as possible to native conditions near the equator. Photoperiod was held constant at 12.25 h of light and 11.75 h of darkness per day. At intervals of 2.5 to 3.5 weeks, daytime light intensity was changed from bright (12,000 lux at one and 2,000 lux at the other perch) to dim (1,600 lux at one and 250 lux at the other perch) and back to the original bright light. Daily plasma melatonin profiles showed that they were linked with changes in daytime light intensity: Nighttime peak and total nocturnal levels were altered when transitions between light conditions were made, and these changes were significant when light intensity was changed from dim to bright. We suggest that daytime light intensity could affect seasonal timing via changes in melatonin profiles.

  11. Blind, olfactory bulbectomized female rats do not have daily luteinizing hormone surges.

    PubMed

    Pieper, D R; Mortiere, M R

    1985-03-15

    Previous studies from other laboratories have shown that female hamsters on short photoperiod become acyclic and have daily LH surges. These effects are eliminated if the animals are pinealectomized (PX) before being placed on the short photoperiod. Reiter and colleagues have shown that pre-pubertally blinded (BL) and olfactory bulbectomized (BX) female rats also have irregular estrous cycles, and this effect is also eliminated by PX [Endocr. Rev., 1 (1983) 109]. The main question addressed by the present study was whether the BL + BX rats also have daily LH surges. Twenty-five-day-old female Sprague-Dawley rats were divided into 5 groups: LD 14:10 sham (control); BL + BX; BL + BX + PX; LD 6:18 sham; and LD 6:18 BX. Ten weeks following surgery, all animals were sampled (0.5 ml) every 5 h for 2 days from an indwelling atrial catheter. Daily vaginal smears indicated that the BL + BX group were in estrus much less frequently than controls (15.8 +/- 1.8 vs 27.3 +/- 1.5% of days cornified cells, 10 rats/group smeared for more than 23 days each) and in general had longer, irregular cycles. The other 3 groups all had smear patterns similar to controls. All 5 groups had LH surges on the day of proestrus (greater than 200 ng/ml maximum value), but no group had LH surges on 2 sequential days or an LH surge on any other day of the cycle.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Use of transcriptome sequencing to understand the pistillate flowering in hickory (Carya cathayensis Sarg.).

    PubMed

    Huang, You-Jun; Liu, Li-Li; Huang, Jian-Qin; Wang, Zheng-Jia; Chen, Fang-Fang; Zhang, Qi-Xiang; Zheng, Bing-Song; Chen, Ming

    2013-10-10

    Different from herbaceous plants, the woody plants undergo a long-period vegetative stage to achieve floral transition. They then turn into seasonal plants, flowering annually. In this study, a preliminary model of gene regulations for seasonal pistillate flowering in hickory (Carya cathayensis) was proposed. The genome-wide dynamic transcriptome was characterized via the joint-approach of RNA sequencing and microarray analysis. Differential transcript abundance analysis uncovered the dynamic transcript abundance patterns of flowering correlated genes and their major functions based on Gene Ontology (GO) analysis. To explore pistillate flowering mechanism in hickory, a comprehensive flowering gene regulatory network based on Arabidopsis thaliana was constructed by additional literature mining. A total of 114 putative flowering or floral genes including 31 with differential transcript abundance were identified in hickory. The locations, functions and dynamic transcript abundances were analyzed in the gene regulatory networks. A genome-wide co-expression network for the putative flowering or floral genes shows three flowering regulatory modules corresponding to response to light abiotic stimulus, cold stress, and reproductive development process, respectively. Totally 27 potential flowering or floral genes were recruited which are meaningful to understand the hickory specific seasonal flowering mechanism better. Flowering event of pistillate flower bud in hickory is triggered by several pathways synchronously including the photoperiod, autonomous, vernalization, gibberellin, and sucrose pathway. Totally 27 potential flowering or floral genes were recruited from the genome-wide co-expression network function module analysis. Moreover, the analysis provides a potential FLC-like gene based vernalization pathway and an 'AC' model for pistillate flower development in hickory. This work provides an available framework for pistillate flower development in hickory, which is significant for insight into regulation of flowering and floral development of woody plants.

  13. Use of transcriptome sequencing to understand the pistillate flowering in hickory (Carya cathayensis Sarg.)

    PubMed Central

    2013-01-01

    Background Different from herbaceous plants, the woody plants undergo a long-period vegetative stage to achieve floral transition. They then turn into seasonal plants, flowering annually. In this study, a preliminary model of gene regulations for seasonal pistillate flowering in hickory (Carya cathayensis) was proposed. The genome-wide dynamic transcriptome was characterized via the joint-approach of RNA sequencing and microarray analysis. Results Differential transcript abundance analysis uncovered the dynamic transcript abundance patterns of flowering correlated genes and their major functions based on Gene Ontology (GO) analysis. To explore pistillate flowering mechanism in hickory, a comprehensive flowering gene regulatory network based on Arabidopsis thaliana was constructed by additional literature mining. A total of 114 putative flowering or floral genes including 31 with differential transcript abundance were identified in hickory. The locations, functions and dynamic transcript abundances were analyzed in the gene regulatory networks. A genome-wide co-expression network for the putative flowering or floral genes shows three flowering regulatory modules corresponding to response to light abiotic stimulus, cold stress, and reproductive development process, respectively. Totally 27 potential flowering or floral genes were recruited which are meaningful to understand the hickory specific seasonal flowering mechanism better. Conclusions Flowering event of pistillate flower bud in hickory is triggered by several pathways synchronously including the photoperiod, autonomous, vernalization, gibberellin, and sucrose pathway. Totally 27 potential flowering or floral genes were recruited from the genome-wide co-expression network function module analysis. Moreover, the analysis provides a potential FLC-like gene based vernalization pathway and an 'AC’ model for pistillate flower development in hickory. This work provides an available framework for pistillate flower development in hickory, which is significant for insight into regulation of flowering and floral development of woody plants. PMID:24106755

  14. Loss of the two major leaf isoforms of sucrose-phosphate synthase in Arabidopsis thaliana limits sucrose synthesis and nocturnal starch degradation but does not alter carbon partitioning during photosynthesis

    PubMed Central

    Volkert, Kathrin; Debast, Stefan; Voll, Lars M.; Voll, Hildegard; Schießl, Ingrid; Hofmann, Jörg; Schneider, Sabine; Börnke, Frederik

    2014-01-01

    Sucrose (Suc)-phosphate synthase (SPS) catalyses one of the rate-limiting steps in the synthesis of Suc in plants. The Arabidopsis genome contains four annotated SPS genes which can be grouped into three different families (SPSA1, SPSA2, SPSB, and SPSC). However, the functional significance of this multiplicity of SPS genes is as yet only poorly understood. All four SPS isoforms show enzymatic activity when expressed in yeast although there is variation in sensitivity towards allosteric effectors. Promoter–reporter gene analyses and quantitative real-time reverse transcription–PCR studies indicate that no two SPS genes have the same expression pattern and that AtSPSA1 and AtSPSC represent the major isoforms expressed in leaves. An spsa1 knock-out mutant showed a 44% decrease in leaf SPS activity and a slight increase in leaf starch content at the end of the light period as well as at the end of the dark period. The spsc null mutant displayed reduced Suc contents towards the end of the photoperiod and a concomitant 25% reduction in SPS activity. In contrast, an spsa1/spsc double mutant was strongly impaired in growth and accumulated high levels of starch. This increase in starch was probably not due to an increased partitioning of carbon into starch, but was rather caused by an impaired starch mobilization during the night. Suc export from excised petioles harvested from spsa1/spsc double mutant plants was significantly reduced under illumination as well as during the dark period. It is concluded that loss of the two major SPS isoforms in leaves limits Suc synthesis without grossly changing carbon partitioning in favour of starch during the light period but limits starch degradation during the dark period. PMID:24994761

  15. Zebrafish take their cue from temperature but not photoperiod for the seasonal plasticity of thermal performance.

    PubMed

    Condon, Catriona H; Chenoweth, Stephen F; Wilson, Robbie S

    2010-11-01

    Organisms adjust to seasonal variability in the environment by responding to cues that indicate environmental change. As most studies of seasonal phenotypic plasticity test only the effect of a single environmental cue, how animals may integrate information from multiple cues to fine-tune plastic responses remains largely unknown. We examined the interaction between correlated (seasonally matching) and conflicting (seasonally opposite) temperature and photoperiod cues on the acclimation of performance traits in male zebrafish, Danio rerio. We acclimated fish for 8 weeks and then tested the change in thermal dependence of maximum burst swimming and feeding rate between 8 and 38°C. We predicted that correlated environmental cues should induce a greater acclimation response than uncorrelated cues. However, we found that only temperature was important for the seasonal acclimation of performance traits in zebrafish. Thermal acclimation shifted the thermal performance curve of both traits. For maximum burst swimming, performance increased for each group near the acclimation temperature and reduced in environments that were far from their acclimation temperature. The feeding rate of cold-acclimated zebrafish was reduced across the test temperature range compared with that of warm-acclimated fish. Our study is the first that has found no effect of the covariation between temperature and photoperiod acclimation cues on locomotor performance in fishes. Our results support the intuitive idea that photoperiod may be a less important seasonal cue for animals living at lower latitudes.

  16. Individual differences in circadian waveform of Siberian hamsters under multiple lighting conditions

    PubMed Central

    Evans, Jennifer A.; Elliott, Jeffrey A.; Gorman, Michael R.

    2013-01-01

    Because the circadian clock in the mammalian brain derives from a network of interacting cellular oscillators, characterizing the nature and bases of circadian coupling is fundamental to understanding how the pacemaker operates. Various phenomena involving plasticity in circadian waveform have been theorized to reflect changes in oscillator coupling; however, it remains unclear whether these different behavioral paradigms reference a unitary underlying process. To test if disparate coupling assays index a common mechanism, we examined whether there is co-variation among behavioral responses to various lighting conditions that produce changes in circadian waveform. Siberian hamsters, Phodopus sungorus, were transferred from long to short photoperiods to distinguish short photoperiod responders (SP-R) from non-responders (SP-NR). Short photoperiod chronotyped hamsters were subsequently transferred, along with unselected controls, to 24 h light:dark:light:dark cycles (LDLD) with dim nighttime illumination, a procedure that induces bifurcated entrainment. Under LDLD, SP-R hamsters were more likely to bifurcate their rhythms than SP-NR hamsters or unselected controls. After transfer from LDLD to constant dim light, SP-R hamsters were also more likely to become arrhythmic compared to SP-NR hamsters and unselected controls. In contrast, short photoperiod chronotype did not influence more transient changes in circadian waveform. The present data reveal a clear relationship in the plasticity of circadian waveform across three distinct lighting conditions, suggesting a common mechanism wherein individual differences reflect variation in circadian coupling. PMID:23010663

  17. Host plant, temperature, and photoperiod effects on ovipositional preference of Frankliniella occidentalis and Frankliniella fusca (Thysanoptera: Thripidae).

    PubMed

    Chaisuekul, C; Riley, D G

    2005-12-01

    Host plant effects of tomato, Lycopersicon esculentum Mill., and chickweed, Stellaria media (L.) Vill., foliage infected and uninfected with Tomato spotted wilt virus (family Bunyaviridae, genus Tospovirus, TSWV) on the ovipositional preferences of western flower thrips, Frankliniella occidentalis (Pergande), and tobacco thrips, Frankliniella fusca (Hinds), were investigated for whole plants in the greenhouse. In addition, the preference for leaf disks from the same host plants was investigated under a range of temperatures, 15-30 degrees C at a photoperiod of 12:12 (L:D) h, and at three photoperiods, 6:18, 12:12, and 18:6, at 20 degrees C in no-choice and choice studies conducted in growth chambers. In a choice test, F. fusca oviposited significantly more eggs per whole plant foliage over a 7-d period than F. occidentalis by an average ratio of 3:1 over both tomato and chickweed. The optimum temperature for oviposition of F. occidentalis and F. fusca was 24.5 and 24.9 degrees C, respectively. Both species laid significantly more eggs under the longest daylight hours tested, 18:6, in the choice study. Temperature and photoperiod did not significantly interact in terms of thrips ovipositional preference. Ovipositional preference for chickweed or tomato foliage was different for each thrips species in the choice and no-choice tests. However, both thrips species laid significantly more eggs per square centimeter of leaf area in chickweed than in tomato in the whole plant choice test.

  18. Effects of several environmental factors on sweetpotato growth

    NASA Technical Reports Server (NTRS)

    Loretan, P. A.; Bonsi, C. K.; Mortley, D. G.; Wheeler, R. M.; Mackowiak, C. L.; Hill, W. A.; Morris, C. E.; Trotman, A. A.; David, P. P.

    1994-01-01

    Effects of relative humidity, light intensity and photoperiod on growth of 'Ga Jet' and TI-155' sweetpotato cultivars, using the nutrient film technique (NFT), have been reported. In this study, the effect of ambient temperature regimes (constant 28 C and diurnal 28:222 C day:night) and different CO2 levels (ambient, 400, 1 000 and 10 000 microL/L-400, 1 000 and 10 000 ppm) on growth of one or both of these cultivars in NFT are reported. For a 24-h photoperiod, no storage roots were prodcued for either cultivar in NFT when sweetpotato plants were grown at a constant temperature of 28 C. For the same photoperiod, when a 28:22 C diurnal temperature variation was used, there were still no storage roots for 'TI-155' but the cv. 'Ga Jet' produced 537 g/plant of storage roots. For both a 12-h and 24-h photoperiod. 'Ga Jet' storage root fresh and dry weight tended to be higher with a 28:22 C diurnal temperature variation than with a constant 28 C temperature regime. Preliminary results with both 'Ga Jet' and 'TI-155' cultivars indicate a distinctive diurnal stomatal response for sweetpotato grown in NFT under an ambient CO2 level. The stomatal conductance values observed for 'Ga Jet' at elevated CO2 levels indicated that the difference between the light- and dark-period conductance rates persisted at 400, 1 000, and 10 000 microL/L.

  19. Reproduction and Feeding of the Electric Fish Brachyhypopomus gauderio (Gymnotiformes: Hypopomidae) and the Discussion of a Life History Pattern for Gymnotiforms from High Latitudes

    PubMed Central

    Giora, Julia; Tarasconi, Hellen M.; Fialho, Clarice B.

    2014-01-01

    The reproductive biology and feeding habits of the electric fish Brachyhypopomus gauderio were studied. The species has seasonal reproductive behavior, with breeding occurring during the Southern Hemisphere spring and summer, and having a positive relation with the photoperiod variation. Brachyhypopomus gauderio was defined as a fractional spawner, with low relative fecundity and high first maturation size. Sexual dimorphism was registered, males undergoing hypertrophy of the distal portion of caudal filament. The results on reproductive biology herein obtained are in agreement with data concerning gymnotiforms from Southern Brazil and Uruguay, pointing to an ecological pattern for the species from high latitudes, differing from species with tropical distribution. According to the analysis of the food items, B. gauderio feed mainly on autochthonous insects, likewise the other gymnotiforms previously investigated, leading to conclude that there is no variation on the diet of the species of the order related to climatic conditions or even to habitat of occurrence. PMID:25207924

  20. [The influence of acute hypoxia on motility of rats in the open field test under the conditions of an altered photoperiod].

    PubMed

    Sopova, I Iu

    2014-01-01

    The influence of acute hypoxia on the motility of rats under the conditions of an altered photoperiod in the open field test was studied. Thus, keeping the animals in constant darkness after the modeling of acute hypoxia leads to the depression of locomotive and exploratory components of the behavior. At the same time the animals that were kept under the conditions of constant light show a change in the correlation between the components of motility after the action of hypoxia.

  1. Effect of 16 and 24 hours daily radiation (light) on lettuce growth

    NASA Technical Reports Server (NTRS)

    Koontz, H. V.; Prince, R. P.; Knott, W. M. (Principal Investigator)

    1986-01-01

    A 50% increase in total radiation by extending the photoperiod from 16 to 24 hr doubled the weight of all cultivars of loose-leaf lettuce (Lactuca sativa L.) 'Grand Rapids Forcing', 'Waldmanns Green', 'Salad Bowl', and 'RubyConn', but not a Butterhead cultivar, 'Salina'. When total daily radiation (moles of photons) was the same, plants under continuous radiation weighed 30% to 50% more than plants under a 16 hr photoperiod. By using continuous radiation on loose-leaf lettuce, fewer lamp fixtures were required and yield was increased.

  2. Day light quality affects the night-break response in the short-day plant chrysanthemum, suggesting differential phytochrome-mediated regulation of flowering.

    PubMed

    Higuchi, Yohei; Sumitomo, Katsuhiko; Oda, Atsushi; Shimizu, Hiroshi; Hisamatsu, Tamotsu

    2012-12-15

    Chrysanthemum (Chrysanthemum morifolium) is a short-day plant, which flowers when the night length is longer than a critical minimum. Flowering is effectively inhibited when the required long-night phase is interrupted by a short period of exposure to red light (night break; NB). The reversal of this inhibition by subsequent exposure to far-red (FR) light indicates the involvement of phytochromes in the flowering response. Here, we elucidated the role of light quality in photoperiodic regulation of chrysanthemum flowering, by applying a range of different conditions. Flowering was consistently observed under short days with white light (W-SD), SD with monochromatic red light (R-SD), or SD with monochromatic blue light (B-SD). For W-SD, NB with monochromatic red light (NB-R) was most effective in inhibiting flowering, while NB with monochromatic blue light (NB-B) and NB with far-red light (NB-FR) caused little inhibition. In contrast, for B-SD, flowering was strongly inhibited by NB-B and NB-FR. However, when B-SD was supplemented with monochromatic red light (B+R-SD), no inhibition by NB-B and NB-FR was observed. Furthermore, the inhibitory effect of NB-B following B-SD was partially reversed by subsequent exposure to a FR light pulse. The conditions B-SD/NB-B (no flowering) and B+R-SD/NB-B (flowering) similarly affected the expression of circadian clock-related genes. However, only the former combination suppressed expression of the chrysanthemum orthologue of FLOWERING LOCUS T (CmFTL3). Our results suggest the involvement of at least 2 distinct phytochrome responses in the flowering response of chrysanthemum. Furthermore, it appears that the light quality supplied during the daily photoperiod affects the light quality required for effective NB. Copyright © 2012 Elsevier GmbH. All rights reserved.

  3. Evaluation of reference genes for gene expression studies in radish (Raphanus sativus L.) using quantitative real-time PCR.

    PubMed

    Xu, Yuanyuan; Zhu, Xianwen; Gong, Yiqin; Xu, Liang; Wang, Yan; Liu, Liwang

    2012-08-03

    Real-time quantitative reverse transcription PCR (RT-qPCR) is a rapid and reliable method for gene expression studies. Normalization based on reference genes can increase the reliability of this technique; however, recent studies have shown that almost no single reference gene is universal for all possible experimental conditions. In this study, eight frequently used reference genes were investigated, including Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Actin2/7 (ACT), Tubulin alpha-5 (TUA), Tubulin beta-1 (TUB), 18S ribosomal RNA (18SrRNA), RNA polymerase-II transcription factor (RPII), Elongation factor 1-b (EF-1b) and Translation elongation factor 2 (TEF2). Expression stability of candidate reference genes was examined across 27 radish samples, representing a range of tissue types, cultivars, photoperiodic and vernalization treatments, and developmental stages. The eight genes in these sample pools displayed a wide range of Ct values and were variably expressed. Two statistical software packages, geNorm and NormFinder showed that TEF2, RPII and ACT appeared to be relatively stable and therefore the most suitable for use as reference genes. These results facilitate selection of desirable reference genes for accurate gene expression studies in radish. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Allelic Variation in Developmental Genes and Effects on Winter Wheat Heading Date in the U.S. Great Plains

    PubMed Central

    Brown-Guedira, Gina; Haley, Scott D.; McMaster, Gregory S.; Reid, Scott D.; Smith, Jared; Byrne, Patrick F.

    2016-01-01

    Heading date in wheat (Triticum aestivum L.) and other small grain cereals is affected by the vernalization and photoperiod pathways. The reduced-height loci also have an effect on growth and development. Heading date, which occurs just prior to anthesis, was evaluated in a population of 299 hard winter wheat entries representative of the U.S. Great Plains region, grown in nine environments during 2011–2012 and 2012–2013. The germplasm was evaluated for candidate genes at vernalization (Vrn-A1, Vrn-B1, and Vrn-D1), photoperiod (Ppd-A1, Ppd-B1 and Ppd-D1), and reduced-height (Rht-B1 and Rht-D1) loci using polymerase chain reaction (PCR) and Kompetitive Allele Specific PCR (KASP) assays. Our objectives were to determine allelic variants known to affect flowering time, assess the effect of allelic variants on heading date, and investigate changes in the geographic and temporal distribution of alleles and haplotypes. Our analyses enhanced understanding of the roles developmental genes have on the timing of heading date in wheat under varying environmental conditions, which could be used by breeding programs to improve breeding strategies under current and future climate scenarios. The significant main effects and two-way interactions between the candidate genes explained an average of 44% of variability in heading date at each environment. Among the loci we evaluated, most of the variation in heading date was explained by Ppd-D1, Ppd-B1, and their interaction. The prevalence of the photoperiod sensitive alleles Ppd-A1b, Ppd-B1b, and Ppd-D1b has gradually decreased in U.S. Great Plains germplasm over the past century. There is also geographic variation for photoperiod sensitive and reduced-height alleles, with germplasm from breeding programs in the northern Great Plains having greater incidences of the photoperiod sensitive alleles and lower incidence of the semi-dwarf alleles than germplasm from breeding programs in the central or southern plains. PMID:27058239

  5. GIGANTEA directly activates Flowering Locus T in Arabidopsis thaliana.

    PubMed

    Sawa, Mariko; Kay, Steve A

    2011-07-12

    Plants perceive environmental signals such as day length and temperature to determine optimal timing for the transition from vegetative to floral stages. Arabidopsis flowers under long-day conditions through the CONSTANS (CO)-FLOWERING LOCUS T (FT) regulatory module. It is thought that the environmental cues for photoperiodic control of flowering are initially perceived in the leaves. We have previously shown that GIGANTEA (GI) regulates the timing of CO expression, together with FLAVIN-BINDING, KELCH REPEAT, F BOX protein 1. Normally, CO and FT are expressed exclusively in vascular bundles, whereas GI is expressed in various tissues. To better elucidate the role of tissue-specific expression of GI in the flowering pathway, we established transgenic lines in which GI is expressed exclusively in mesophyll, vascular bundles, epidermis, shoot apical meristem, or root. We found that GI expressed in either mesophyll or vascular bundles rescues the late-flowering phenotype of the gi-2 loss-of-function mutant under both short-day and long-day conditions. Interestingly, GI expressed in mesophyll or vascular tissues increases FT expression without up-regulating CO expression under short-day conditions. Furthermore, we examined the interaction between GI and FT repressors in mesophyll. We found that GI can bind to three FT repressors: SHORT VEGETATIVE PHASE (SVP), TEMPRANILLO (TEM)1, and TEM2. Finally, our chromatin immunoprecipitation experiments showed that GI binds to FT promoter regions that are near the SVP binding sites. Taken together, our data further elucidate the multiple roles of GI in the regulation of flowering time.

  6. Low temperature limits photoperiod control of smolting in atlantic salmon through endocrine mechanisms

    USGS Publications Warehouse

    McCormick, S.D.; Moriyama, S.

    2000-01-01

    We have examined the interaction of photoperiod and temperature in regulating the parr-smolt transformation and its endocrine control. Atlantic salmon juveniles were reared at a constant temperature of 10??C or ambient temperature (2??C from January to April followed by seasonal increase) under simulated natural day length. At 10??C, an increase in day length [16 h of light and 8 h of darkness (LD 16:8)] in February accelerated increases in gill Na+K+-ATPase activity, whereas fish at ambient temperature did not respond to increased day length. Increases in gill Na+K+-ATPase activity under both photoperiods occurred later at ambient temperature than at 10??C. Plasma growth hormone (GH), insulin-like growth factor, and thyroxine increased within 7 days of increased day length at 10??C and remained elevated for 5-9 wk; the same photoperiod treatment at 2??C resulted in much smaller increases of shorter duration. Plasma cortisol increased transiently 3 and 5 wk after LD 16:8 at 10??C and ambient temperature, respectively. Plasma thyroxine was consistently higher at ambient temperature than at 10??C. Plasma triiodothyronine was initially higher at 10??C than at ambient temperature, and there was no response to LD 16:8 under either temperature regimen. There was a strong correlation between gill Na+K+-ATPase activity and plasma GH; correlations were weaker with other hormones. The results provide evidence that low temperature limits the physiological response to increased day length and that GH, insulin-like growth factor I, cortisol, and thyroid hormones mediate the environmental control of the parr-smolt transformation.

  7. Photoperiod control of downstream movements of Atlantic salmon Salmo salar smolts

    USGS Publications Warehouse

    Zydlewski, Gayle B.; Stich, Daniel S.; McCormick, Stephen D.

    2014-01-01

    This study provides the first direct observations that photoperiod controls the initiation of downstream movement in Atlantic salmon Salmo salar smolts. Under simulated natural day length (LDN) conditions and seasonal increases in temperature, smolts increased their downstream movements five-fold for a period of 1 month in late spring. Under the same conditions, parr did not show changes in downstream movement behaviour. When given a shortened day length (10L:14D) beginning in late winter, smolts did not increase the number of downstream movements. An early increase in day length (16L:8D) in late winter resulted in earlier initiation and termination of downstream movements compared to the LDN group. Physiological status and behaviour were related but not completely coincident: gill Na+/K+-ATPase activity increased in all treatments and thyroid hormone was elevated prior to movement in 16L:8D treatment. The most parsimonious model describing downstream movement of smolts included synergistic effects of photoperiod treatment and temperature, indicating that peak movements occurred at colder temperatures in the 16L:8D treatment than in LDN, and temperature did not influence movement of smolts in the 10L:14D treatment. The complicated interactions of photoperiod and temperature are not surprising since many organisms have evolved to rely on correlations among environmental cues and windows of opportunity to time behaviours associated with life-history transitions. These complicated interactions, however, have serious implications for phenological adjustments and persistence ofS. salar populations in response to climate change.

  8. Diapause Induction, Color Change, and Cold Tolerance Physiology of the Diapausing Larvae of the Chouioia cunea (Hymenoptera: Eulophidae)

    PubMed Central

    Zhao, Liwei; Xu, Xiaorui; Xu, Zhe; Liu, Yanqun; Sun, Shouhui

    2014-01-01

    Abstract The chalcid wasp Chouioia cunea Yang (Hymenoptera: Eulophidae) is one of the most dominant pupal parasitoids of Hyphantria cunea (Drury) (Lepidoptera: Arctiidae), an invasive pest of many forestry trees and agricultural crops. For mass rearing C. cunea for biological control purposes, the pupae of Antheraea pernyi (Guérin-Méneville) (Lepidoptera: Saturniidae) have been widely used as a substitute host in China. In this article, photoperiodic effect on diapause induction in C. cunea within the pupae of A. pernyi was investigated, and the differences in cold tolerance physiology including supercooling point, water content, and activities of three protective enzymes (Peroxidase [POD], Catalase [CAT], and Superoxide dismuase [SOD]) between diapause and nondiapause mature larvae were comparatively determined. Our results revealed that C. cunea possess a short-day induced larval diapause. The critical photoperiods for diapause induction in C. cunea were estimated to be between a photoperiod of 13:11 and 14:10 (L:D) h at 18°C, or between a photoperiod of 12:12 and 13:11 (L:D) h at 21°C or 24°C. We also found that the color of C. cunea diapausing larvae was taupe, while the normally developed (nondiapausing) individuals were light yellow. This body color change can be used as an indicator of diapause entry of C. cunea larave. The average supercooling point of diapausing mature larvae were lower than those of nondiapausing ones. There were significant differences in the activity of three protective enzymes (POD, CAT, and SOD) between diapausing and nondiapausing mature larvae. PMID:25527599

  9. Estimation of effective day length at any light intensity using solar radiation data.

    PubMed

    Yokoya, Masana; Shimizu, Hideyasu

    2011-11-01

    The influence of day length on living creatures differs with the photosensitivity of the creature; however, the possible sunshine duration (N(0)) might be an inadequate index of the photoperiod for creatures with low light sensitivity. To address this issue, the authors tried to estimate the effective day length, i.e., the duration of the photoperiod that exceeds a certain threshold of light intensity. Continual global solar radiation observation data were gathered from the baseline surface radiation network (BSRN) of 18 sites from 2004 to 2007 and were converted to illuminance data using a luminous efficiency model. The monthly average of daily photoperiods exceeding each defined intensity (1 lx, 300 lx, … 20,000 lx) were calculated [defined as Ne(() (lux) ())]. The relationships between the monthly average of global solar radiation (Rs), N(0), and Ne(() (lux) ()) were investigated. At low light intensity (<500 lx), Ne(() (lux) ()) were almost the same as N(0). At high light intensity (>10,000 lx), Ne(() (lux) ()) and Rs showed a logarithmic relationship. Using these relationships, empirical models were derived to estimate the effective day length at different light intensities. According to the validation of the model, the effective day length for any light intensity could be estimated with an accuracy of less than 11% of the mean absolute percentage error (MAPE) in the estimation of the monthly base photoperiod. Recently, a number of studies have provided support for a link between day length and some diseases. Our results will be useful in further assessing the relationships between day length and these diseases.

  10. Soybean fruit development and set at the node level under combined photoperiod and radiation conditions

    PubMed Central

    Nico, Magalí; Mantese, Anita I.; Miralles, Daniel J.; Kantolic, Adriana G.

    2016-01-01

    In soybean, long days during post-flowering increase seed number. This positive photoperiodic effect on seed number has been previously associated with increments in the amount of radiation accumulated during the crop cycle because long days extend the duration of the crop cycle. However, evidence of intra-nodal processes independent of the availability of assimilates suggests that photoperiodic effects at the node level might also contribute to pod set. This work aims to identify the main mechanisms responsible for the increase in pod number per node in response to long days; including the dynamics of flowering, pod development, growth and set at the node level. Long days increased pods per node on the main stems, by increasing pods on lateral racemes (usually dominated positions) at some main stem nodes. Long days lengthened the flowering period and thereby increased the number of opened flowers on lateral racemes. The flowering period was prolonged under long days because effective seed filling was delayed on primary racemes (dominant positions). Long days also delayed the development of flowers into pods with filling seeds, delaying the initiation of pod elongation without modifying pod elongation rate. The embryo development matched the external pod length irrespective of the pod’s chronological age. These results suggest that long days during post-flowering enhance pod number per node through a relief of the competition between pods of different hierarchy within the node. The photoperiodic effect on the development of dominant pods, delaying their elongation and therefore postponing their active growth, extends flowering and allows pod set at positions that are usually dominated. PMID:26512057

  11. Thyrotrophin-releasing hormone decreases feeding and increases body temperature, activity and oxygen consumption in Siberian hamsters.

    PubMed

    Schuhler, S; Warner, A; Finney, N; Bennett, G W; Ebling, F J P; Brameld, J M

    2007-04-01

    Thyrotrophin-releasing hormone (TRH) is known to play an important role in the control of food intake and energy metabolism in addition to its actions on the pituitary-thyroid axis. We have previously shown that central administration of TRH decreases food intake in Siberian hamsters. This species is being increasingly used as a physiological rodent model in which to understand hypothalamic control of long-term changes in energy balance because it accumulates fat reserves in long summer photoperiods, and decreases food intake and body weight when exposed to short winter photoperiods. The objectives of our study in Siberian hamsters were: (i) to investigate whether peripheral administration of TRH would mimic the effects of central administration of TRH on food intake and whether these effects would differ dependent upon the ambient photoperiod; (ii) to determine whether TRH would have an effect on energy expenditure; and (iii) to investigate the potential sites of action of TRH. Both peripheral (5-50 mg/kg body weight; i.p.) and central (0.5 microg/ml; i.c.v.) administration of TRH decreased food intake, and increased locomotor activity, body temperature and oxygen consumption in the Siberian hamster, with a rapid onset and short duration of action. Systemic treatment with TRH was equally effective in suppressing feeding regardless of ambient photoperiod. The acute effects of TRH are likely to be centrally mediated and independent of its role in the control of the production of thyroid hormones. We conclude that TRH functions to promote a catabolic energetic state by co-ordinating acute central and chronic peripheral (thyroid-mediated) function.

  12. Distribution of photoperiod-insensitive alleles Ppd-B1a and Ppd-D1a and their effect on heading time in Japanese wheat cultivars.

    PubMed

    Seki, Masako; Chono, Makiko; Matsunaka, Hitoshi; Fujita, Masaya; Oda, Shunsuke; Kubo, Katashi; Kiribuchi-Otobe, Chikako; Kojima, Hisayo; Nishida, Hidetaka; Kato, Kenji

    2011-12-01

    The genotypes of photoperiod response genes Ppd-B1 and Ppd-D1 in Japanese wheat cultivars were determined by a PCR-based method, and heading times were compared among genotypes. Most of the Japanese wheat cultivars, except those from the Hokkaido region, carried the photoperiod-insensitive allele Ppd-D1a, and heading was accelerated 10.3 days compared with the Ppd-D1b genotype. Early cultivars with Ppd-D1a may have been selected to avoid damage from preharvest rain. In the Hokkaido region, Ppd-D1a frequency was lower and heading date was late regardless of Ppd-D1 genotype, suggesting another genetic mechanism for late heading in Hokkaido cultivars. In this study, only 11 cultivars proved to carry Ppd-B1a, and all of them carried another photoperiod-insensitive allele, Ppd-D1a. The Ppd-B1a/Ppd-D1a genotype headed 6.7 days earlier than the Ppd-B1b/Ppd-D1a genotype, indicating a significant effect of Ppd-B1a in the genetic background with Ppd-D1a. Early-maturity breeding in Japan is believed to be accelerated by the introduction of the Ppd-B1a allele into medium-heading cultivars carrying Ppd-D1a. Pedigree analysis showed that Ppd-B1a in three extra-early commercial cultivars was inherited from 'Shiroboro 21' by early-heading Chugoku lines bred at the Chugoku Agriculture Experimental Station.

  13. Distribution of photoperiod-insensitive alleles Ppd-B1a and Ppd-D1a and their effect on heading time in Japanese wheat cultivars

    PubMed Central

    Seki, Masako; Chono, Makiko; Matsunaka, Hitoshi; Fujita, Masaya; Oda, Shunsuke; Kubo, Katashi; Kiribuchi-Otobe, Chikako; Kojima, Hisayo; Nishida, Hidetaka; Kato, Kenji

    2011-01-01

    The genotypes of photoperiod response genes Ppd-B1 and Ppd-D1 in Japanese wheat cultivars were determined by a PCR-based method, and heading times were compared among genotypes. Most of the Japanese wheat cultivars, except those from the Hokkaido region, carried the photoperiod-insensitive allele Ppd-D1a, and heading was accelerated 10.3 days compared with the Ppd-D1b genotype. Early cultivars with Ppd-D1a may have been selected to avoid damage from preharvest rain. In the Hokkaido region, Ppd-D1a frequency was lower and heading date was late regardless of Ppd-D1 genotype, suggesting another genetic mechanism for late heading in Hokkaido cultivars. In this study, only 11 cultivars proved to carry Ppd-B1a, and all of them carried another photoperiod-insensitive allele, Ppd-D1a. The Ppd-B1a/Ppd-D1a genotype headed 6.7 days earlier than the Ppd-B1b/Ppd-D1a genotype, indicating a significant effect of Ppd-B1a in the genetic background with Ppd-D1a. Early-maturity breeding in Japan is believed to be accelerated by the introduction of the Ppd-B1a allele into medium-heading cultivars carrying Ppd-D1a. Pedigree analysis showed that Ppd-B1a in three extra-early commercial cultivars was inherited from ‘Shiroboro 21’ by early-heading Chugoku lines bred at the Chugoku Agriculture Experimental Station. PMID:23136478

  14. Control of the annual cycle in birds: endocrine constraints and plasticity in response to ecological variability.

    PubMed

    Dawson, Alistair

    2008-05-12

    This paper reviews information from ecological and physiological studies to assess how extrinsic factors can modulate intrinsic physiological processes. The annual cycle of birds is made up of a sequence of life-history stages: breeding, moult and migration. Each stage has evolved to occur at the optimum time and to last for the whole duration of time available. Some species have predictable breeding seasons, others are more flexible and some breed opportunistically in response to unpredictable food availability. Photoperiod is the principal environmental cue used to time each stage, allowing birds to adapt their physiology in advance of predictable environmental changes. Physiological (neuroendocrine and endocrine) plasticity allows non-photoperiodic cues to modulate timing to enable individuals to cope with, and benefit from, short-term environmental variability. Although the timing and duration of the period of full gonadal maturation is principally controlled by photoperiod, non-photoperiodic cues, such as temperature, rainfall or food availability, could potentially modulate the exact time of breeding either by fine-tuning the time of egg-laying within the period of full gonadal maturity or, more fundamentally, by modulating gonadal maturation and/or regression. The timing of gonadal regression affects the time of the start of moult, which in turn may affect the duration of the moult. There are many areas of uncertainty. Future integrated studies are required to assess the scope for flexibility in life-history strategies as this will have a critical bearing on whether birds can adapt sufficiently rapidly to anthropogenic environmental changes, in particular climate change.

  15. The influence of light intensity and photoperiod on duckweed biomass and starch accumulation for bioethanol production.

    PubMed

    Yin, Yehu; Yu, Changjiang; Yu, Li; Zhao, Jinshan; Sun, Changjiang; Ma, Yubin; Zhou, Gongke

    2015-01-01

    Duckweed has been considered as a valuable feedstock for bioethanol production due to its high biomass and starch production. To investigate the effects of light conditions on duckweed biomass and starch production, Lemna aequinoctialis 6000 was cultivated at different photoperiods (12:12, 16:8 and 24:0h) and light intensities (20, 50, 80, 110, 200 and 400μmolm(-2)s(-1)). The results showed that the duckweed biomass and starch production was increased with increasing light intensity and photoperiod except at 200 and 400μmolm(-2)s(-1). Considering the light cost, 110μmolm(-2)s(-1) was optimum light condition for starch accumulation with the highest maximum growth rate, biomass and starch production of 8.90gm(-2)day(-1), 233.25gm(-2) and 98.70gm(-2), respectively. Moreover, the results suggested that high light induction was a promising method for duckweed starch accumulation. This study provides optimized light conditions for future industrial large-scale duckweed cultivation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Circadian Rhythm of Pyrocystis fusiformis

    NASA Astrophysics Data System (ADS)

    Weishaar, B.

    2016-12-01

    For the Academy of Science St. Louis Science Fair, I tested how different photoperiods affect the morphology of Pyrocystis fusiformis with respect to the placement and formation of the chloroplasts. I set up four different rooms to observe the effect the different times in the photoperiod on location of chloroplasts in the cell. At 3:00pm, one room has been in the dark for 12 hours, one for 6 hours, one had been in the light phase for 12 hours and the fourth in the light phase for 6 hours. P fusiformis samples were obtained from each room, observed, photographed at X100 power, and categorized as being a 1, 2, 3, or 4 depending on the position of the chloroplasts. The samples in the different rooms were observed once a week for two weeks, then the samples were rotated to see if P. fusiformis would synchronize the same to the new photoperiod. It was observed that the cells changed morphological stages in the circadian cycle, the chloroplasts moved further away from the nucleus when exposed to light and moved closer to the nucleus when experiencing no light.

  17. Induction of diapause and seasonal morphs in butterflies and other insects: knowns, unknowns and the challenge of integration

    PubMed Central

    Nylin, Sören

    2013-01-01

    The ‘choice’ of whether to enter diapause or to develop directly has profound effects on the life histories of insects, and may thus have cascading consequences such as seasonal morphs and other less obvious forms of seasonal plasticity. Present knowledge of the control of diapause and seasonal morphs at the physiological and molecular levels is briefly reviewed. Examples, mainly derived from personal research (primarily on butterflies), are given as a starting point with the aim of outlining areas of research that are still poorly understood. These include: the role of the direction of change in photoperiod; the role of factors such as temperature and diet in modifying the photoperiodic responses; and the role of sex, parental effects and sex linkage on photoperiodic control. More generally, there is still a limited understanding of how external cues and physiological pathways regulating various traits are interconnected via gene action to form a co-adapted complete phenotype that is adaptive in the wild despite environmental fluctuation and change. PMID:23894219

  18. Innovative polyhydroxybutyrate production by Chlorella fusca grown with pentoses.

    PubMed

    Cassuriaga, A P A; Freitas, B C B; Morais, M G; Costa, J A V

    2018-06-11

    The current study aimed to evaluate if the addition of pentoses along with variations in light intensity and photoperiod can stimulate the production of polyhydroxybutyrate (PHB) and other biomolecules by Chlorella fusca LEB 111. The variables evaluated were the addition of xylose and arabinose as sources of organic carbon, different photoperiods (18 h, 12 h and 6 h light) and variations in light intensities (58, 28 and 9 μmol photons  m -2  s -1 ). The highest PHB accumulation (17.4% w w -1 ) and protein production (53.2% ww -1 ) were observed in assays with xylose addition and a photoperiod of 6 h of light provided at 28 and 58 μmol photons  m -2  s -1 , respectively. The highest lipid content (24.7% w w -1 ) was obtained with 18 h of light. The current study contributes to the development of sustainable alternatives for the use of wastes and the production of biomolecules from algae. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Seasonal influences on sleep and executive function in the migratory White-crowned Sparrow (Zonotrichia leucophrys gambelii)

    PubMed Central

    2010-01-01

    Background We have previously shown that the White-crowned Sparrow (WCS) decreases sleep by 60% during a period of migratory restlessness relative to a non-migratory period when housed in a 12 h light: 12 h dark cycle. Despite this sleep reduction, accuracy of operant performance was not impaired, and in fact rates of responding were elevated during the migratory period, effects opposite to those routinely observed following enforced sleep deprivation. To determine whether the previously observed increases in operant responding were due to improved performance or to the effects of migration on activity level, here we assessed operant performance using a task in which optimal performance depends on the bird's ability to withhold a response for a fixed interval of time (differential-reinforcement-of-low-rate-behavior, or DRL); elevated response rates ultimately impair performance by decreasing access to food reward. To determine the influence of seasonal changes in day length on sleep and behavioral patterns, we recorded sleep and assessed operant performance across 4 distinct seasons (winter, spring, summer and fall) under a changing photoperiod. Results Sleep amount changed in response to photoperiod in winter and summer, with longest sleep duration in the winter. Sleep duration in the spring and fall migratory periods were similar to what we previously reported, and were comparable to sleep duration observed in summer. The most striking difference in sleep during the migratory periods compared to non-migratory periods was the change from discrete day-night temporal organization to an almost complete temporal fragmentation of sleep. The birds' ability to perform on the DRL task was significantly impaired during both migratory periods, but optimal performance was sustained during the two non-migratory periods. Conclusions Birds showed dramatic changes in sleep duration across seasons, related to day length and migratory status. Migration was associated with changes in sleep amount and diurnal distribution pattern, whereas duration of sleep in the non-migratory periods was largely influenced by the light-dark cycle. Elevated response rates on the DRL task were observed during migration but not during the short sleep duration of summer, suggesting that the migratory periods may be associated with decreased inhibition/increased impulsivity. Although their daily sleep amounts and patterns may vary by season, birds are susceptible to sleep loss throughout the year, as evidenced by decreased responding rates following enforced sleep deprivation. PMID:20670404

  20. Patterns of Spatial Variation of Assemblages Associated with Intertidal Rocky Shores: A Global Perspective

    PubMed Central

    Cruz-Motta, Juan José; Miloslavich, Patricia; Palomo, Gabriela; Iken, Katrin; Konar, Brenda; Pohle, Gerhard; Trott, Tom; Benedetti-Cecchi, Lisandro; Herrera, César; Hernández, Alejandra; Sardi, Adriana; Bueno, Andrea; Castillo, Julio; Klein, Eduardo; Guerra-Castro, Edlin; Gobin, Judith; Gómez, Diana Isabel; Riosmena-Rodríguez, Rafael; Mead, Angela; Bigatti, Gregorio; Knowlton, Ann; Shirayama, Yoshihisa

    2010-01-01

    Assemblages associated with intertidal rocky shores were examined for large scale distribution patterns with specific emphasis on identifying latitudinal trends of species richness and taxonomic distinctiveness. Seventy-two sites distributed around the globe were evaluated following the standardized sampling protocol of the Census of Marine Life NaGISA project (www.nagisa.coml.org). There were no clear patterns of standardized estimators of species richness along latitudinal gradients or among Large Marine Ecosystems (LMEs); however, a strong latitudinal gradient in taxonomic composition (i.e., proportion of different taxonomic groups in a given sample) was observed. Environmental variables related to natural influences were strongly related to the distribution patterns of the assemblages on the LME scale, particularly photoperiod, sea surface temperature (SST) and rainfall. In contrast, no environmental variables directly associated with human influences (with the exception of the inorganic pollution index) were related to assemblage patterns among LMEs. Correlations of the natural assemblages with either latitudinal gradients or environmental variables were equally strong suggesting that neither neutral models nor models based solely on environmental variables sufficiently explain spatial variation of these assemblages at a global scale. Despite the data shortcomings in this study (e.g., unbalanced sample distribution), we show the importance of generating biological global databases for the use in large-scale diversity comparisons of rocky intertidal assemblages to stimulate continued sampling and analyses. PMID:21179546

Top