Science.gov

Sample records for photoreceptor cell patterning

  1. Photoreceptor cells constitutively express functional TLR4

    PubMed Central

    Tu, Zhidan; Portillo, Jose-Andres; Howell, Scott; Bu, Hong; Subauste, Carlos S.; Al-Ubaidi, Muayyad R; Pearlman, Eric; Lin, Feng

    2010-01-01

    Toll-like receptor 4 (TLR4) is expressed on a number of cells including neurons in the brain. However, it has yet to be determined if TLR4 is expressed on photoreceptor cells in the retina. In this report, we examined primary photoreceptor cells and an established photoreceptor cell line (661W). We found that functional TLR4 is constitutively expressed on photoreceptor cells, and can be activated by LPS. We conclude that TLR4 on photoreceptor cells could directly contribute to retinal inflammatory diseases and photoreceptor cell survival. PMID:20801528

  2. Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision

    PubMed Central

    Ecker, Jennifer L.; Dumitrescu, Olivia N.; Wong, Kwoon Y.; Alam, Nazia M.; Chen, Shih-Kuo; LeGates, Tara; Renna, Jordan M.; Prusky, Glen T.; Berson, David M.; Hattar, Samer

    2010-01-01

    Using the photopigment melanopsin, intrinsically photosensitive retinal ganglion cells (ipRGCs) respond directly to light to drive circadian clock resetting and pupillary constriction. We now report that ipRGCs are more abundant and diverse than previously appreciated, project more widely within the brain, and can support spatial visual perception. A Cre-based melanopsin reporter mouse line revealed at least five subtypes of ipRGCs with distinct morphological and physiological characteristics. Collectively, these cells project beyond the known brain targets of ipRGCs to heavily innervate the superior colliculus and dorsal lateral geniculate nucleus, retinotopically-organized nuclei mediating object localization and discrimination. Mice lacking classical rod-cone photoreception, and thus entirely dependent on melanopsin for light detection, were able to discriminate grating stimuli from equiluminant gray, and had measurable visual acuity. Thus, non-classical retinal photoreception occurs within diverse cell types, and influences circuits and functions encompassing luminance as well as spatial information. PMID:20624591

  3. Photoreceptor cell fate specification in vertebrates

    PubMed Central

    Brzezinski, Joseph A.; Reh, Thomas A.

    2015-01-01

    Photoreceptors – the light-sensitive cells in the vertebrate retina – have been extremely well-characterized with regards to their biochemistry, cell biology and physiology. They therefore provide an excellent model for exploring the factors and mechanisms that drive neural progenitors into a differentiated cell fate in the nervous system. As a result, great progress in understanding the transcriptional network that controls photoreceptor specification and differentiation has been made over the last 20 years. This progress has also enabled the production of photoreceptors from pluripotent stem cells, thereby aiding the development of regenerative medical approaches to eye disease. In this Review, we outline the signaling and transcription factors that drive vertebrate photoreceptor development and discuss how these function together in gene regulatory networks to control photoreceptor cell fate specification. PMID:26443631

  4. Avian photoreceptor patterns represent a disordered hyperuniform solution to a multiscale packing problem.

    PubMed

    Jiao, Yang; Lau, Timothy; Hatzikirou, Haralampos; Meyer-Hermann, Michael; Joseph C Corbo; Torquato, Salvatore

    2014-02-01

    Optimal spatial sampling of light rigorously requires that identical photoreceptors be arranged in perfectly regular arrays in two dimensions. Examples of such perfect arrays in nature include the compound eyes of insects and the nearly crystalline photoreceptor patterns of some fish and reptiles. Birds are highly visual animals with five different cone photoreceptor subtypes, yet their photoreceptor patterns are not perfectly regular. By analyzing the chicken cone photoreceptor system consisting of five different cell types using a variety of sensitive microstructural descriptors, we find that the disordered photoreceptor patterns are "hyperuniform" (exhibiting vanishing infinite-wavelength density fluctuations), a property that had heretofore been identified in a unique subset of physical systems, but had never been observed in any living organism. Remarkably, the patterns of both the total population and the individual cell types are simultaneously hyperuniform. We term such patterns "multihyperuniform" because multiple distinct subsets of the overall point pattern are themselves hyperuniform. We have devised a unique multiscale cell packing model in two dimensions that suggests that photoreceptor types interact with both short- and long-ranged repulsive forces and that the resultant competition between the types gives rise to the aforementioned singular spatial features characterizing the system, including multihyperuniformity. These findings suggest that a disordered hyperuniform pattern may represent the most uniform sampling arrangement attainable in the avian system, given intrinsic packing constraints within the photoreceptor epithelium. In addition, they show how fundamental physical constraints can change the course of a biological optimization process. Our results suggest that multihyperuniform disordered structures have implications for the design of materials with novel physical properties and therefore may represent a fruitful area for future

  5. Avian photoreceptor patterns represent a disordered hyperuniform solution to a multiscale packing problem

    NASA Astrophysics Data System (ADS)

    Jiao, Yang; Lau, Timothy; Hatzikirou, Haralampos; Meyer-Hermann, Michael; Corbo, Joseph C.; Torquato, Salvatore

    2014-02-01

    Optimal spatial sampling of light rigorously requires that identical photoreceptors be arranged in perfectly regular arrays in two dimensions. Examples of such perfect arrays in nature include the compound eyes of insects and the nearly crystalline photoreceptor patterns of some fish and reptiles. Birds are highly visual animals with five different cone photoreceptor subtypes, yet their photoreceptor patterns are not perfectly regular. By analyzing the chicken cone photoreceptor system consisting of five different cell types using a variety of sensitive microstructural descriptors, we find that the disordered photoreceptor patterns are "hyperuniform" (exhibiting vanishing infinite-wavelength density fluctuations), a property that had heretofore been identified in a unique subset of physical systems, but had never been observed in any living organism. Remarkably, the patterns of both the total population and the individual cell types are simultaneously hyperuniform. We term such patterns "multihyperuniform" because multiple distinct subsets of the overall point pattern are themselves hyperuniform. We have devised a unique multiscale cell packing model in two dimensions that suggests that photoreceptor types interact with both short- and long-ranged repulsive forces and that the resultant competition between the types gives rise to the aforementioned singular spatial features characterizing the system, including multihyperuniformity. These findings suggest that a disordered hyperuniform pattern may represent the most uniform sampling arrangement attainable in the avian system, given intrinsic packing constraints within the photoreceptor epithelium. In addition, they show how fundamental physical constraints can change the course of a biological optimization process. Our results suggest that multihyperuniform disordered structures have implications for the design of materials with novel physical properties and therefore may represent a fruitful area for future

  6. Effects of Müller cell disruption on mouse photoreceptor cell development.

    PubMed

    Rich, K A; Figueroa, S L; Zhan, Y; Blanks, J C

    1995-08-01

    Müller cells have been proposed to play an important role in photoreceptor cell development during the final stages of retinal maturation. The effect of disrupting Müller cells during mouse retinal development was investigated using the specific glial cell toxin, DL-alpha-aminoadipic acid (AAA). By giving multiple systemic injections over several days, impairment of Müller cell function was maintained during the period of photoreceptor migration and differentiation. Following three consecutive days of AAA treatment [commencing on post-natal (P) day 3, 5, 7 or 9, and examined at P8-P14], clumps of photoreceptor nuclei were displaced through the inner segments, lying immediately beneath the retinal pigment epithelium (RPE). Apart from the scalloped appearance of the outer retina, the overall lamination pattern of the retina was relatively well preserved. Even when AAA treatment commenced as early as P3, several days prior to the formation of the outer nuclear layer, the majority of photoreceptors migrated to their correct position and formed inner and outer segments. Therefore, the signals for photoreceptor migration are either provided by the Müller cells prior to P3, or, alternatively, are derived from different intrinsic or extrinsic cues. Disruption of Müller cell function was evidenced by decreased glutamine synthetase activity as well as by increased glial fibrillary acidic protein (GFAP) and decreased cellular retinaldehyde-binding protein (CRALBP) immunoreactivity. Immunocytochemistry with an antibody to CD44, which labels the microvilli of Müller cells at the outer limiting membrane, coupled with electron microscopic analysis, demonstrated that the zonulae adherentes between Müller cells and photoreceptors were either irregular or absent in areas adjacent to displaced clumps of photoreceptors. Thus AAA treatment of early post-natal mice results in localized disruption of the contacts between Müller cells and photoreceptors. These pathologic changes

  7. Photoreceptor cell death and rescue in retinal detachment and degenerations

    PubMed Central

    Murakami, Yusuke; Notomi, Shoji; Hisatomi, Toshio; Nakazawa, Toru; Ishibashi, Tatsuro; Miller, Joan W.; Vavvas, Demetrios G.

    2013-01-01

    Photoreceptor cell death is the ultimate cause of vision loss in various retinal disorders, including retinal detachment (RD). Photoreceptor cell death has been thought to occur mainly through apoptosis, which is the most characterized form of programmed cell death. The caspase family of cysteine proteases plays a central role for inducing apoptosis, and in experimental models of RD, dying photoreceptor cells exhibit caspase activation; however, there is a paradox that caspase inhibition alone does not provide a sufficient protection against photoreceptor cell loss, suggesting that other mechanisms of cell death are involved. Recent accumulating evidence demonstrates that non-apoptotic forms of cell death, such as autophagy and necrosis, are also regulated by specific molecular machinery, such as those mediated by autophagy-related proteins and receptor-interacting protein kinases, respectively. Here we summarize the current knowledge of cell death signaling and its roles in photoreceptor cell death after RD and other retinal degenerative diseases. A body of studies indicate that not only apoptotic but also autophagic and necrotic signaling are involved in photoreceptor cell death, and that combined targeting of these pathways may be an effective neuroprotective strategy for retinal diseases associated with photoreceptor cell loss. PMID:23994436

  8. Tbx2b is required for ultraviolet photoreceptor cell specification during zebrafish retinal development

    PubMed Central

    Alvarez-Delfin, Karen; Morris, Ann C.; Snelson, Corey D.; Gamse, Joshua T.; Gupta, Tripti; Marlow, Florence L.; Mullins, Mary C.; Burgess, Harold A.; Granato, Michael; Fadool, James M.

    2009-01-01

    The vertebrate rod and cone photoreceptors are highly specialized sensory neurons that transduce light into the chemical and electrical signals of the nervous system. Although the physiological properties of cones and rods are well known, only a handful of genes have been identified that regulate the specification of photoreceptor subtypes. Taking advantage of the mosaic organization of photoreceptors in zebrafish, we report the isolation of a mutation resulting in a unique change in photoreceptor cell fate. Mutation of the lots-of-rods (lor) locus results in a near one-for-one transformation of UV-cone precursors into rods. The transformed cells exhibit morphological characteristics and a gene-expression pattern typical of rods, but differentiate in a temporal and spatial pattern consistent with UV-cone development. In mutant larvae and adults, the highly ordered photoreceptor mosaic is maintained and degeneration is not observed, suggesting that lor functions after the specification of the other photoreceptor subtypes. In genetic chimeras, lor functions cell-autonomously in the specification of photoreceptor cell fate. Linkage analysis and genetic-complementation testing indicate that lor is an allele of tbx2b/fby (from beyond). fby was identified by a pineal complex phenotype, and carries a nonsense mutation in the T-box domain of the tbx2b transcription factor. Homozygous fby mutant larvae and lor/fby transheterozygotes also display the lots-of-rods phenotype. Based upon these data, we propose a previously undescribed function for tbx2b in photoreceptor cell precursors, to promote the UV cone fate by repressing the rod differentiation pathway. PMID:19179291

  9. Mechanisms of Photoreceptor Patterning in Vertebrates and Invertebrates.

    PubMed

    Viets, Kayla; Eldred, Kiara C; Johnston, Robert J

    2016-10-01

    Across the animal kingdom, visual systems have evolved to be uniquely suited to the environments and behavioral patterns of different species. Visual acuity and color perception depend on the distribution of photoreceptor (PR) subtypes within the retina. Retinal mosaics can be organized into three broad categories: stochastic/regionalized, regionalized, and ordered. We describe here the retinal mosaics of flies, zebrafish, chickens, mice, and humans, and the gene regulatory networks controlling proper PR specification in each. By drawing parallels in eye development between these divergent species, we identify a set of conserved organizing principles and transcriptional networks that govern PR subtype differentiation. PMID:27615122

  10. Expression of Drosophila rhodopsins during photoreceptor cell differentiation: insights into R7 and R8 cell subtype commitment.

    PubMed

    Earl, James B; Britt, Steven G

    2006-10-01

    The R7 and R8 photoreceptor cells of the Drosophila retina are thought to mediate color discrimination and polarized light detection. This is based on the patterned expression of different visual pigments, rhodopsins, in different photoreceptor cells. In this report, we examined the developmental timing of retinal patterning. There is genetic evidence that over the majority of the eye, patterned expression of opsin genes is regulated by a signal from one subtype of R7 cells to adjacent R8 cells. We examined the onset of expression of the rhodopsin genes to determine the latest time point by which photoreceptor subtype commitment must have occurred. We found that the onset of rhodopsin expression in all photoreceptors of the compound eye occurs during a narrow window from 79% to 84% of pupal development (approximately 8 h), pupal stages P12-P14. Rhodopsin 1 has the earliest onset, followed by Rhodopsins 3, 4, and 5 at approximately the same time, and finally Rhodopsin 6. This sequence mimics the model for how R7 and R8 photoreceptor cells are specified, and defines the timing of photoreceptor cell fate decisions with respect to other events in eye development. PMID:16495161

  11. The ventral photoreceptor cells of Limulus. I. The microanatomy.

    PubMed

    Clark, A W; Millecchia, R; Mauro, A

    1969-09-01

    The ventral photoreceptor cells of Limulus polyphemus resemble the retinular cells of the lateral eyes both in electrical behavior and in morphology. Because of the great size of the ventral photoreceptor cells they are easy to impale with glass capillary micropipettes. Their location along the length of the ventral eye nerve makes them easy to dissect out and fix for electron microscopy. Each cell has a large, ellipsoidal soma that tapers into an axon whose length depends upon the distance of the cell from the brain. The cell body contains a rich variety of cytoplasmic organelles with an especially abundant endoplasmic reticulum. The most prominent structural feature is the microvillous rhabdomere, a highly modified infolding of the plasmalemma. The microvilli are tightly packed together within the rhabdomere, and quintuple-layered junctions are encountered wherever microvillar membranes touch each other. Glial cells cover the surface of the photoreceptor cell and send long, sheet-like projections of their cytoplasm into the cell body of the photoreceptor cell. Some of these projections penetrate the rhabdomere deep within the cell and form quintuple-layered junctions with the microvilli. Junctions between glial cells and the photoreceptor cell and between adjacent glial cells are rarely encountered elsewhere, indicating that there is an open pathway between the intermicrovillous space and the extracellular medium. The axon has a normal morphology but it is electrically inexcitable. PMID:5806591

  12. Diacylglycerol kinase epsilon in bovine and rat photoreceptor cells. Light-dependent distribution in photoreceptor cells.

    PubMed

    Natalini, Paola M; Zulian, Sandra E; Ilincheta de Boschero, Mónica G; Giusto, Norma M

    2013-07-01

    The present study shows the selective light-dependent distribution of 1,2-diacylglycerol kinase epsilon (DAGKɛ) in photoreceptor cells from bovine and albino rat retina. Immunofluorescence microscopy in isolated rod outer segments from bleached bovine retinas (BBROS) revealed a higher DAGKɛ signal than that found in rod outer segments from dark-adapted bovine retinas (BDROS). The light-dependent outer segment localization of DAGKɛ was also observed by immunohistochemistry in retinas from albino rats. DAGK activity, measured in terms of phosphatidic acid formation from a) [(3)H]DAG and ATP in the presence of EGTA and R59022, a type I DAGK inhibitor, or b) [γ-(32)P]ATP and 1-stearoyl, 2-arachidonoylglycerol (SAG), was found to be significantly higher in BBROS than in BDROS. Higher light-dependent DAGK activity (condition b) was also found when ROS were isolated from dark-adapted rat retinas exposed to light. Western blot analysis of isolated ROS proteins from bovine and rat retinas confirmed that illumination increases DAGKɛ content in the outer segments of these two species. Light-dependent DAGKɛ localization in the outer segment was not observed when U73122, a phospholipase C inhibitor, was present prior to the exposure of rat eyecups (in situ model) to light. Furthermore, no increased PA synthesis from [(3)H]DAG and ATP was observed in the presence of neomycin prior to the exposure of bovine eyecups to light. Interestingly, when BBROS were pre-phosphorylated with ATP in the presence of 1,2-dioctanoyl sn-glycerol (di-C8) or phorbol dibutyrate (PDBu) as PKC activation conditions, higher DAGK activity was observed than in dephosphorylated controls. Taken together, our findings suggest that the selective distribution of DAGKɛ in photoreceptor cells is a light-dependent mechanism that promotes increased SAG removal and synthesis of 1-stearoyl, 2-arachidonoyl phosphatidic acid in the sensorial portion of this cell, thus demonstrating a novel mechanism of light

  13. Ih channels control feedback regulation from amacrine cells to photoreceptors.

    PubMed

    Hu, Wen; Wang, Tingting; Wang, Xiao; Han, Junhai

    2015-04-01

    In both vertebrates and invertebrates, photoreceptors' output is regulated by feedback signals from interneurons that contribute to several important visual functions. Although synaptic feedback regulation of photoreceptors is known to occur in Drosophila, many questions about the underlying molecular mechanisms and physiological implementation remain unclear. Here, we systematically investigated these questions using a broad range of experimental methods. We isolated two Ih mutant fly lines that exhibit rhythmic photoreceptor depolarization without light stimulation. We discovered that Ih channels regulate glutamate release from amacrine cells by modulating calcium channel activity. Moreover, we showed that the eye-enriched kainate receptor (EKAR) is expressed in photoreceptors and receives the glutamate signal released from amacrine cells. Finally, we presented evidence that amacrine cell feedback regulation helps maintain light sensitivity in ambient light. Our findings suggest plausible molecular underpinnings and physiological effects of feedback regulation from amacrine cells to photoreceptors. These results provide new mechanistic insight into how synaptic feedback regulation can participate in network processing by modulating neural information transfer and circuit excitability.

  14. Apoptotic photoreceptor cell death in mouse models of retinitis pigmentosa.

    PubMed Central

    Portera-Cailliau, C; Sung, C H; Nathans, J; Adler, R

    1994-01-01

    Retinitis pigmentosa (RP) is a group of inherited human diseases in which photoreceptor degeneration leads to visual loss and eventually to blindness. Although mutations in the rhodopsin, peripherin, and cGMP phosphodiesterase genes have been identified in some forms of RP, it remains to be determined whether these mutations lead to photoreceptor cell death through necrotic or apoptotic mechanisms. In this paper, we report a test of the hypothesis that photoreceptor cell death occurs by an apoptotic mechanism in three mouse models of RP: retinal degeneration slow (rds) caused by a peripherin mutation, retinal degeneration (rd) caused by a defect in cGMP phosphodiesterase, and transgenic mice carrying a rhodopsin Q344ter mutation responsible for autosomal dominant RP. Two complementary techniques were used to detect apoptosis-specific internucleosomal DNA fragmentation: agarose gel electrophoresis and in situ labeling of apoptotic cells by terminal dUTP nick end labeling. Both methods showed extensive apoptosis of photoreceptors in all three mouse models of retinal degeneration. We also show that apoptotic death occurs in the retina during normal development, suggesting that different mechanisms can cause photoreceptor death by activating an intrinsic death program in these cells. These findings raise the possibility that retinal degenerations may be slowed by interfering with the apoptotic mechanism itself. Images PMID:8302876

  15. Understanding Cone Photoreceptor Cell Death in Achromatopsia.

    PubMed

    Carvalho, Livia S; Vandenberghe, Luk H

    2016-01-01

    Colour vision is only achieved in the presence of healthy and functional cone photoreceptors found in the retina. It is an essential component of human vision and usually the first complaint patients undergoing vision degeneration have is the loss of daylight colour vision. Therefore, an understanding of the biology and basic mechanisms behind cone death under the degenerative state of retinal dystrophies and how the activation of the apoptotic pathway is triggered will provide valuable knowledge. It will also have broader applications for a spectrum of visual disorders and will be critical for future advances in translational research. PMID:26427416

  16. Accumulation of Rhodopsin in Late Endosomes Triggers Photoreceptor Cell Degeneration

    PubMed Central

    Chinchore, Yashodhan; Mitra, Amitavo; Dolph, Patrick J.

    2009-01-01

    Progressive retinal degeneration is the underlying feature of many human retinal dystrophies. Previous work using Drosophila as a model system and analysis of specific mutations in human rhodopsin have uncovered a connection between rhodopsin endocytosis and retinal degeneration. In these mutants, rhodopsin and its regulatory protein arrestin form stable complexes, and endocytosis of these complexes causes photoreceptor cell death. In this study we show that the internalized rhodopsin is not degraded in the lysosome but instead accumulates in the late endosomes. Using mutants that are defective in late endosome to lysosome trafficking, we were able to show that rhodopsin accumulates in endosomal compartments in these mutants and leads to light-dependent retinal degeneration. Moreover, we also show that in dying photoreceptors the internalized rhodopsin is not degraded but instead shows characteristics of insoluble proteins. Together these data implicate buildup of rhodopsin in the late endosomal system as a novel trigger of death of photoreceptor neurons. PMID:19214218

  17. Genetic Dissection of Dual Roles for the Transcription Factor six7 in Photoreceptor Development and Patterning in Zebrafish

    PubMed Central

    Sotolongo-Lopez, Mailin; Alvarez-Delfin, Karen; Saade, Carole J.; Vera, Daniel L.; Fadool, James M.

    2016-01-01

    The visual system of a particular species is highly adapted to convey detailed ecological and behavioral information essential for survival. The consequences of structural mutations of opsins upon spectral sensitivity and environmental adaptation have been studied in great detail, but lacking is knowledge of the potential influence of alterations in gene regulatory networks upon the diversity of cone subtypes and the variation in the ratio of rods and cones observed in numerous diurnal and nocturnal species. Exploiting photoreceptor patterning in cone-dominated zebrafish, we uncovered two independent mechanisms by which the sine oculis homeobox homolog 7 (six7) regulates photoreceptor development. In a genetic screen, we isolated the lots-of-rods-junior (ljrp23ahub) mutation that resulted in an increased number and uniform distribution of rods in otherwise normal appearing larvae. Sequence analysis, genome editing using TALENs and knockdown strategies confirm ljrp23ahub as a hypomorphic allele of six7, a teleost orthologue of six3, with known roles in forebrain patterning and expression of opsins. Based on the lack of predicted protein-coding changes and a deletion of a conserved element upstream of the transcription start site, a cis-regulatory mutation is proposed as the basis of the reduced expression of six7 in ljrp23ahub. Comparison of the phenotypes of the hypomorphic and knock-out alleles provides evidence of two independent roles in photoreceptor development. EdU and PH3 labeling show that the increase in rod number is associated with extended mitosis of photoreceptor progenitors, and TUNEL suggests that the lack of green-sensitive cones is the result of cell death of the cone precursor. These data add six7 to the small but growing list of essential genes for specification and patterning of photoreceptors in non-mammalian vertebrates, and highlight alterations in transcriptional regulation as a potential source of photoreceptor variation across species

  18. ROLES OF CELL-INTRINSIC AND MICROENVIRONMENTAL FACTORS IN PHOTORECEPTOR CELL DIFFERENTIATION

    PubMed Central

    Bradford, Rebecca L.; Wang, Chenwei; Zack, Donald J.; Adler, Ruben

    2005-01-01

    Photoreceptor differentiation requires the coordinated expression of numerous genes. It is unknown whether those genes share common regulatory mechanisms or are independently regulated by distinct mechanisms. To distinguish between these scenarios, we have used in situ hybridization, RT-PCR and real time PCR to analyze the expression of visual pigments and other photoreceptor-specific genes during chick embryo retinal development in ovo, as well as in retinal cell cultures treated with molecules that regulate the expression of particular visual pigments. In ovo, onset of gene expression was asynchronous, becoming detectable at the time of photoreceptor generation (ED 5–8) for some photoreceptor genes, but only around the time of outer segment formation (ED 14–16) for others. Treatment of retinal cell cultures with activin, staurosporine or CNTF selectively induced or down-regulated specific visual pigment genes, but many cognate rod- or cone-specific genes were not affected by the treatments. These results indicate that many photoreceptor genes are independently regulated during development, are consistent with the existence of at least two distinct stages of gene expression during photoreceptor differentiation, suggest that intrinsic, coordinated regulation of a cascade of gene expression triggered by a commitment to the photoreceptor fate is not a general mechanism of photoreceptor differentiation, and imply that using a single photoreceptor-specific “marker” as a proxy to identify photoreceptor cell fate is problematic. PMID:16120439

  19. Fundus Autofluorescence and Photoreceptor Cell Rosettes in Mouse Models

    PubMed Central

    Flynn, Erin; Ueda, Keiko; Auran, Emily; Sullivan, Jack M.; Sparrow, Janet R.

    2014-01-01

    Purpose. This study was conducted to study correlations among fundus autofluorescence (AF), RPE lipofuscin accumulation, and photoreceptor cell degeneration and to investigate the structural basis of fundus AF spots. Methods. Fundus AF images (55° lens; 488-nm excitation) and spectral-domain optical coherence tomography (SD-OCT) scans were acquired in pigmented Rdh8−/−/Abca4−/− mice (ages 1–9 months) with a confocal scanning laser ophthalmoscope (cSLO). For quantitative fundus AF (qAF), gray levels (GLs) were calibrated to an internal fluorescence reference. Retinal bisretinoids were measured by quantitative HPLC. Histometric analysis of outer nuclear layer (ONL) thicknesses was performed, and cryostat sections of retina were examined by fluorescence microscopy. Results. Quantified A2E and qAF intensities increased until age 4 months in the Rdh8−/−/Abca4−/− mice. The A2E levels declined after 4 months of age, but qAF intensity values continued to rise. The decline in A2E levels in the Rdh8−/−/Abca4−/− mice paralleled reduced photoreceptor cell viability as reflected in ONL thinning. Hyperautofluorescent puncta in fundus AF images corresponded to photoreceptor cell rosettes in SD-OCT images and histological sections stained with hematoxylin and eosin. The inner segment/outer segment–containing core of the rosette emitted an autofluorescence detected by fluorescence microscopy. Conclusions. When neural retina is disordered, AF from photoreceptor cells can contribute to noninvasive fundus AF images. Hyperautofluorescent puncta in fundus AF images are attributable, in at least some cases, to photoreceptor cell rosettes. PMID:25015357

  20. Photoreceptor Cells Produce Inflammatory Mediators That Contribute to Endothelial Cell Death in Diabetes

    PubMed Central

    Tonade, Deoye; Liu, Haitao; Kern, Timothy S.

    2016-01-01

    Purpose Recent studies suggest that photoreceptor cells regulate local inflammation in the retina in diabetes. The purpose of this study was to determine if photoreceptor cells themselves produce inflammatory proteins in diabetes and if soluble factors released by photoreceptors in elevated glucose induce inflammatory changes in nearby cells. Methods Laser capture microdissection was used to isolate the outer retina (photoreceptors) from the inner retina in nondiabetic and diabetic mice. Diabetes-induced changes in the expression of inflammatory targets were assessed by reverse transcription polymerase chain reaction and immunohistochemistry. Cell culture experiments were carried out to determine if photoreceptors in vitro and ex vivo release soluble mediators that can stimulate nearby cells. Photoreceptor contribution to leukocyte-mediated endothelial cell death was tested using coculture models. Results Messenger ribonucleic acid and protein expression levels for inflammatory proteins intercellular adhesion molecule 1 (ICAM1), inducible nitric oxide synthase (iNOS), and cyclooxygenase 2 (COX2) were increased in photoreceptors cells in diabetes. In vitro and ex vivo studies show that photoreceptor cells in elevated glucose release mediators that can induce tumor necrosis factor-α in leukocytes and endothelial cells, but not in glia. The soluble mediators released by photoreceptor cells in elevated glucose are regulated by transforming growth factor β-activated kinase 1 and nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) signaling. In contrast to enhanced leukocyte-mediated killing of endothelial cells by leukocytes from wild-type diabetic mice, leukocytes from diabetic mice lacking photoreceptor cells (opsin−/−) did not kill endothelial cells. Conclusions These data indicate that photoreceptor cells are a source of inflammatory proteins in diabetes, and their release of soluble mediators can contribute to the death of retinal capillaries

  1. DNA methylation and differential gene regulation in photoreceptor cell death

    PubMed Central

    Farinelli, P; Perera, A; Arango-Gonzalez, B; Trifunovic, D; Wagner, M; Carell, T; Biel, M; Zrenner, E; Michalakis, S; Paquet-Durand, F; Ekström, P A R

    2014-01-01

    Retinitis pigmentosa (RP) defines a group of inherited degenerative retinal diseases causing progressive loss of photoreceptors. To this day, RP is still untreatable and rational treatment development will require a thorough understanding of the underlying cell death mechanisms. Methylation of the DNA base cytosine by DNA methyltransferases (DNMTs) is an important epigenetic factor regulating gene expression, cell differentiation, cell death, and survival. Previous studies suggested an involvement of epigenetic mechanisms in RP, and in this study, increased cytosine methylation was detected in dying photoreceptors in the rd1, rd2, P23H, and S334ter rodent models for RP. Ultrastructural analysis of photoreceptor nuclear morphology in the rd1 mouse model for RP revealed a severely altered chromatin structure during retinal degeneration that coincided with an increased expression of the DNMT isozyme DNMT3a. To identify disease-specific differentially methylated DNA regions (DMRs) on a genomic level, we immunoprecipitated methylated DNA fragments and subsequently analyzed them with a targeted microarray. Genome-wide comparison of DMRs between rd1 and wild-type retina revealed hypermethylation of genes involved in cell death and survival as well as cell morphology and nervous system development. When correlating DMRs with gene expression data, we found that hypermethylation occurred alongside transcriptional repression. Consistently, motif analysis showed that binding sites of several important transcription factors for retinal physiology were hypermethylated in the mutant model, which also correlated with transcriptional silencing of their respective target genes. Finally, inhibition of DNMTs in rd1 organotypic retinal explants using decitabine resulted in a substantial reduction of photoreceptor cell death, suggesting inhibition of DNA methylation as a potential novel treatment in RP. PMID:25476906

  2. Neurogenin1 effectively reprograms cultured chick RPE cells to differentiate towards photoreceptors

    PubMed Central

    Yan, Run-Tao; Liang, Lina; Ma, Wenxin; Li, Xiumei; Xie, Wenlian; Wang, Shu-Zhen

    2009-01-01

    Photoreceptors are highly specialized sensory neurons in the retina, and their degeneration results in blindness. Replacement with developing photoreceptor cells promises to be an effective therapy, but it requires a supply of new photoreceptors, because the neural retina in human eyes lacks regeneration capability. We report efficient generation of differentiating, photoreceptor-like neurons from chick retinal pigment epithelial (RPE) cells propagated in culture through reprogramming with neurogenin1 (ngn1). In reprogrammed culture, a large number of the cells (85.0 ± 5.9%) began to differentiate towards photoreceptors. Reprogrammed cells expressed transcription factors that set in motion photoreceptor differentiation, including Crx, Nr2E3, NeuroD, and RXRγ, and phototransduction pathway components, including transducin, cGMP-gated channel, and red opsin of cone photoreceptors (equivalent to rhodopsin of rod photoreceptors). They developed inner segments rich in mitochondria. Furthermore, they responded to light by decreasing their cellular free calcium (Ca2+) levels and responded to 9-cis-retinal by increasing their Ca2+ levels after photobleaching, hallmarks of photoreceptor physiology. The high efficiency and the advanced photoreceptor differentiation indicate ngn1 as a gene of choice to reprogram RPE progeny cells to differentiate into photoreceptor neurons in future cell replacement studies. PMID:20029995

  3. Photoreceptor Cells Influence Retinal Vascular Degeneration in Mouse Models of Retinal Degeneration and Diabetes

    PubMed Central

    Liu, Haitao; Tang, Jie; Du, Yunpeng; Saadane, Aicha; Tonade, Deoye; Samuels, Ivy; Veenstra, Alex; Palczewski, Krzysztof; Kern, Timothy S.

    2016-01-01

    Purpose Loss of photoreceptor cells is associated with retinal vascular degeneration in retinitis pigmentosa, whereas the presence of photoreceptor cells is implicated in vascular degeneration in diabetic retinopathy. To investigate how both the absence and presence of photoreceptors could damage the retinal vasculature, we compared two mouse models of photoreceptor degeneration (opsin−/− and RhoP23H/P23H ) and control C57Bl/5J mice, each with and without diabetes. Methods Retinal thickness, superoxide, expression of inflammatory proteins, ERG and optokinetic responses, leukocyte cytotoxicity, and capillary degeneration were evaluated at 1 to 10 months of age using published methods. Results Retinal photoreceptor cells degenerated completely in the opsin mutants by 2 to 4 months of age, and visual function subsided correspondingly. Retinal capillary degeneration was substantial while photoreceptors were still present, but slowed after the photoreceptors degenerated. Diabetes did not further exacerbate capillary degeneration in these models of photoreceptor degeneration, but did cause capillary degeneration in wild-type animals. Photoreceptor cells, however, did not degenerate in wild-type diabetic mice, presumably because the stress responses in these cells were less than in the opsin mutants. Retinal superoxide and leukocyte damage to retinal endothelium contributed to the degeneration of retinal capillaries in diabetes, and leukocyte-mediated damage was increased in both opsin mutants during photoreceptor cell degeneration. Conclusions Photoreceptor cells affect the integrity of the retinal microvasculature. Deterioration of retinal capillaries in opsin mutants was appreciable while photoreceptor cells were present and stressed, but was less after photoreceptors degenerated. This finding proves relevant to diabetes, where persistent stress in photoreceptors likewise contributes to capillary degeneration. PMID:27548901

  4. Renewal of opsin in the photoreceptor cells of the mosquito

    PubMed Central

    1979-01-01

    Mosquito rhodopsin is a digitonin-soluble membrane protein of molecular weight 39,000 daltons, as determined by sodium dodecyl sulfate gel electrophoresis. The rhodopsin undergoes a spectral transition from R515-520 to M480 after orange illumination. The visual pigment apoprotein, opsin, is the major membrane protein in the eye. Protein synthesis in the photoreceptor cells occurs in the perinuclear cytoplasm and the newly made protein is transported to the rhabdom. Light adaptation increases the rate of turnover of this rhabdomal protein. The turnover of electrophoretically isolated opsin is also stimulated by light adaptation. The changes observed in protein metabolism biochemically, are consistent with previous morphological observations of photoreceptor membrane turnover. The results agree with the hypothesis that the newly synthesized rhabdomal protein is opsin. PMID:512631

  5. The ventral photoreceptor cells of Limulus. II. The basic photoresponse.

    PubMed

    Millecchia, R; Mauro, A

    1969-09-01

    The ventral photoreceptors of Limulus polyphemus are unipolar cells with large, ellipsoidal somas located long both "lateral olfactory nerves." As a consequence of their size and location, the cells are easily impaled with microelectrodes. The cells have an average resting potential of -48 mv. The resting potential is a function of the external concentration of K. When the cell is illuminated, it gives rise to the typical "receptor potential" seen in most invertebrate photoreceptors which consists of a transient phase followed by a maintained phase of depolarization. The amplitude of the transient phase depends on both the state of adaptation of the cell and the intensity of the illumination, while the amplitude of the maintained phase depends only on the intensity of the illumination. The over-all size of the receptor potential depends on the external concentration of Na, e.g. in sodium-free seawater the receptor potential is markedly reduced, but not abolished. On the other hand lowering the Ca concentration produces a marked enhancement of both components of the response, but predominantly of the steady-state component. Slow potential fluctuations are seen in the dark-adapted cell when it is illuminated with a low intensity light. A spike-like regenerative process can be evoked by either the receptor potential or a current applied via a microelectrode. No evidence of impulse activity has been found in the axons of these cells. The ventral photoreceptor cell has many properties in common with a variety of retinular cells and therefore should serve as a convenient model of the primary receptor cell in many invertebrate eyes. PMID:5806592

  6. Protein and Signaling Networks in Vertebrate Photoreceptor Cells

    PubMed Central

    Koch, Karl-Wilhelm; Dell’Orco, Daniele

    2015-01-01

    Vertebrate photoreceptor cells are exquisite light detectors operating under very dim and bright illumination. The photoexcitation and adaptation machinery in photoreceptor cells consists of protein complexes that can form highly ordered supramolecular structures and control the homeostasis and mutual dependence of the secondary messengers cyclic guanosine monophosphate (cGMP) and Ca2+. The visual pigment in rod photoreceptors, the G protein-coupled receptor rhodopsin is organized in tracks of dimers thereby providing a signaling platform for the dynamic scaffolding of the G protein transducin. Illuminated rhodopsin is turned off by phosphorylation catalyzed by rhodopsin kinase (GRK1) under control of Ca2+-recoverin. The GRK1 protein complex partly assembles in lipid raft structures, where shutting off rhodopsin seems to be more effective. Re-synthesis of cGMP is another crucial step in the recovery of the photoresponse after illumination. It is catalyzed by membrane bound sensory guanylate cyclases (GCs) and is regulated by specific neuronal Ca2+-sensor proteins called guanylate cyclase-activating proteins (GCAPs). At least one GC (ROS-GC1) was shown to be part of a multiprotein complex having strong interactions with the cytoskeleton and being controlled in a multimodal Ca2+-dependent fashion. The final target of the cGMP signaling cascade is a cyclic nucleotide-gated (CNG) channel that is a hetero-oligomeric protein located in the plasma membrane and interacting with accessory proteins in highly organized microdomains. We summarize results and interpretations of findings related to the inhomogeneous organization of signaling units in photoreceptor outer segments. PMID:26635520

  7. Measurement of Photon Statistics with Live Photoreceptor Cells

    NASA Astrophysics Data System (ADS)

    Sim, Nigel; Cheng, Mei Fun; Bessarab, Dmitri; Jones, C. Michael; Krivitsky, Leonid A.

    2012-09-01

    We analyzed the electrophysiological response of an isolated rod photoreceptor of Xenopus laevis under stimulation by coherent and pseudothermal light sources. Using the suction-electrode technique for single cell recordings and a fiber optics setup for light delivery allowed measurements of the major statistical characteristics of the rod response. The results indicate differences in average responses of rod cells to coherent and pseudothermal light of the same intensity and also differences in signal-to-noise ratios and second-order intensity correlation functions. These findings should be relevant for interdisciplinary studies seeking applications of quantum optics in biology.

  8. Apical-basal polarity proteins are required cell-type specifically to direct photoreceptor morphogenesis.

    PubMed

    Hwa, Jennifer J; Clandinin, Thomas R

    2012-12-18

    Insect photoreceptor function is dependent on precise placement of the rhabdomeres, elaborated apical domains specialized for capturing light, within each facet of a compound eye. In Diptera, an asymmetric arrangement of rhabdomeres, combined with a particular pattern of axonal connections, enhances light sensitivity through the principle of neural superposition. To achieve the necessary retinal geometry, different photoreceptors (R cells) have distinct shapes. The Crumbs and Bazooka complexes play critical roles in directing rhabdomere development, but whether they might direct cell-type-specific apical architectures is unknown. We demonstrate that while mutations in Bazooka complex members cause pleiotropic morphogenesis defects in all R cell subtypes, Crumbs (Crb) and Stardust (Sdt) function cell autonomously to direct early stages in rhabdomere assembly in specific subsets of R cells. This requirement is reflected in the cell-type-specific expression of Crb protein and demonstrates that Sdt and Crb can act independently to similar effect. These two genes are also required for zonula adherens (ZA) assembly but display an unusual pattern of cellular redundancy for this function, as each gene is required in only one of two adjoining cells. Our results provide a direct link between fate specification and morphogenetic patterning and suggest a model for ZA assembly.

  9. Retinal Hypercholesterolemia Triggers Cholesterol Accumulation and Esterification in Photoreceptor Cells.

    PubMed

    Saadane, Aicha; Mast, Natalia; Dao, Tung; Ahmad, Baseer; Pikuleva, Irina A

    2016-09-23

    The process of vision is impossible without the photoreceptor cells, which have a unique structure and specific maintenance of cholesterol. Herein we report on the previously unrecognized cholesterol-related pathway in the retina discovered during follow-up characterizations of Cyp27a1(-/-)Cyp46a1(-/-) mice. These animals have retinal hypercholesterolemia and convert excess retinal cholesterol into cholesterol esters, normally present in the retina in very small amounts. We established that in the Cyp27a1(-/-)Cyp46a1(-/-) retina, cholesterol esters are generated by and accumulate in the photoreceptor outer segments (OS), which is the retinal layer with the lowest cholesterol content. Mouse OS were also found to express the cholesterol-esterifying enzyme acyl-coenzyme A:cholesterol acyltransferase (ACAT1), but not lecithin-cholesterol acyltransferase (LCAT), and to differ from humans in retinal expression of ACAT1. Nevertheless, cholesterol esters were discovered to be abundant in human OS. We suggest a mechanism for cholesterol ester accumulation in the OS and that activity impairment of ACAT1 in humans may underlie the development of subretinal drusenoid deposits, a hallmark of age-related macular degeneration, which is a common blinding disease. We generated Cyp27a1(-/-)Cyp46a1(-/-)Acat1(-/-) mice, characterized their retina by different imaging modalities, and confirmed that unesterified cholesterol does accumulate in their OS and that there is photoreceptor apoptosis and OS degeneration in this line. Our results provide insights into the retinal response to local hypercholesterolemia and the retinal significance of cholesterol esterification, which could be cell-specific and both beneficial and detrimental for retinal structure and function.

  10. Retinal Hypercholesterolemia Triggers Cholesterol Accumulation and Esterification in Photoreceptor Cells.

    PubMed

    Saadane, Aicha; Mast, Natalia; Dao, Tung; Ahmad, Baseer; Pikuleva, Irina A

    2016-09-23

    The process of vision is impossible without the photoreceptor cells, which have a unique structure and specific maintenance of cholesterol. Herein we report on the previously unrecognized cholesterol-related pathway in the retina discovered during follow-up characterizations of Cyp27a1(-/-)Cyp46a1(-/-) mice. These animals have retinal hypercholesterolemia and convert excess retinal cholesterol into cholesterol esters, normally present in the retina in very small amounts. We established that in the Cyp27a1(-/-)Cyp46a1(-/-) retina, cholesterol esters are generated by and accumulate in the photoreceptor outer segments (OS), which is the retinal layer with the lowest cholesterol content. Mouse OS were also found to express the cholesterol-esterifying enzyme acyl-coenzyme A:cholesterol acyltransferase (ACAT1), but not lecithin-cholesterol acyltransferase (LCAT), and to differ from humans in retinal expression of ACAT1. Nevertheless, cholesterol esters were discovered to be abundant in human OS. We suggest a mechanism for cholesterol ester accumulation in the OS and that activity impairment of ACAT1 in humans may underlie the development of subretinal drusenoid deposits, a hallmark of age-related macular degeneration, which is a common blinding disease. We generated Cyp27a1(-/-)Cyp46a1(-/-)Acat1(-/-) mice, characterized their retina by different imaging modalities, and confirmed that unesterified cholesterol does accumulate in their OS and that there is photoreceptor apoptosis and OS degeneration in this line. Our results provide insights into the retinal response to local hypercholesterolemia and the retinal significance of cholesterol esterification, which could be cell-specific and both beneficial and detrimental for retinal structure and function. PMID:27514747

  11. Photoreceptor-based magnetoreception: optimal design of receptor molecules, cells, and neuronal processing

    PubMed Central

    Ritz, Thorsten; Ahmad, Margaret; Mouritsen, Henrik; Wiltschko, Roswitha; Wiltschko, Wolfgang

    2010-01-01

    The sensory basis of magnetoreception in animals still remains a mystery. One hypothesis of magnetoreception is that photochemical radical pair reactions can transduce magnetic information in specialized photoreceptor cells, possibly involving the photoreceptor molecule cryptochrome. This hypothesis triggered a considerable amount of research in the past decade. Here, we present an updated picture of the radical-pair photoreceptor hypothesis. In our review, we will focus on insights that can assist biologists in their search for the elusive magnetoreceptors. PMID:20129953

  12. Antagonistic functions of two stardust isoforms in Drosophila photoreceptor cells.

    PubMed

    Bulgakova, Natalia A; Rentsch, Michaela; Knust, Elisabeth

    2010-11-15

    Membrane-associated guanylate kinases (MAGUKs) are scaffolding proteins that organize supramolecular protein complexes, thereby partitioning the plasma membrane into spatially and functionally distinct subdomains. Their modular organization is ideally suited to organize protein complexes with cell type- or stage-specific composition, or both. Often more than one MAGUK isoform is expressed by one gene in the same cell, yet very little is known about their individual in vivo functions. Here, we show that two isoforms of Drosophila stardust, Sdt-H (formerly called Sdt-B2) and Sdt-D, which differ in their N terminus, are expressed in adult photoreceptors. Both isoforms associate with Crumbs and PATJ, constituents of the conserved Crumbs-Stardust complex. However, they form distinct complexes, localized at the stalk, a restricted region of the apical plasma membrane. Strikingly, Sdt-H and Sdt-D have antagonistic functions. While Sdt-H overexpression increases stalk membrane length and prevents light-dependent retinal degeneration, Sdt-D overexpression reduces stalk length and enhances light-dependent retinal degeneration. These results suggest that a fine-tuned balance of different Crumbs complexes regulates photoreceptor homeostasis.

  13. Antagonistic Functions of Two Stardust Isoforms in Drosophila Photoreceptor Cells

    PubMed Central

    Bulgakova, Natalia A.; Rentsch, Michaela

    2010-01-01

    Membrane-associated guanylate kinases (MAGUKs) are scaffolding proteins that organize supramolecular protein complexes, thereby partitioning the plasma membrane into spatially and functionally distinct subdomains. Their modular organization is ideally suited to organize protein complexes with cell type- or stage-specific composition, or both. Often more than one MAGUK isoform is expressed by one gene in the same cell, yet very little is known about their individual in vivo functions. Here, we show that two isoforms of Drosophila stardust, Sdt-H (formerly called Sdt-B2) and Sdt-D, which differ in their N terminus, are expressed in adult photoreceptors. Both isoforms associate with Crumbs and PATJ, constituents of the conserved Crumbs–Stardust complex. However, they form distinct complexes, localized at the stalk, a restricted region of the apical plasma membrane. Strikingly, Sdt-H and Sdt-D have antagonistic functions. While Sdt-H overexpression increases stalk membrane length and prevents light-dependent retinal degeneration, Sdt-D overexpression reduces stalk length and enhances light-dependent retinal degeneration. These results suggest that a fine-tuned balance of different Crumbs complexes regulates photoreceptor homeostasis. PMID:20861315

  14. Melatonin modulates M4-type ganglion-cell photoreceptors.

    PubMed

    Pack, W; Hill, D D; Wong, K Y

    2015-09-10

    In the retina, melatonin is secreted at night by rod/cone photoreceptors and serves as a dark-adaptive signal. Melatonin receptors have been found in many retinal neurons including melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs), suggesting it could modulate the physiology of these inner retinal photoreceptors. Here, we investigated whether melatonin modulates the alpha-like M4-type ipRGCs, which are believed to mediate image-forming vision as well as non-image-forming photoresponses. Applying melatonin during daytime (when endogenous melatonin secretion is low) caused whole-cell-recorded M4 cells' rod/cone-driven depolarizing photoresponses to become broader and larger, whereas the associated elevation in spike rate was reduced. Melanopsin-based light responses were not affected significantly. Nighttime application of the melatonin receptor antagonist luzindole also altered M4 cells' rod/cone-driven light responses but in the opposite ways: the duration and amplitude of the graded depolarization were reduced, whereas the accompanying spiking increase was enhanced. These luzindole-induced changes confirmed that M4 cells are modulated by endogenous melatonin. Melatonin could induce the above effects by acting directly on M4 cells because immunohistochemistry detected MT1 receptors in these cells, although it could also act presynaptically. Interestingly, the daytime and nighttime recordings showed significant differences in resting membrane potential, spontaneous spike rate and rod/cone-driven light responses, suggesting that M4 cells are under circadian control. This is the first report of a circadian variation in ipRGCs' resting properties and synaptic input, and of melatoninergic modulation of ipRGCs. PMID:26141846

  15. In vitro transdifferentiation of human peripheral blood mononuclear cells to photoreceptor-like cells

    PubMed Central

    Komuta, Yukari; Ishii, Toshiyuki; Kaneda, Makoto; Ueda, Yasuji; Miyamoto, Kiyoko; Toyoda, Masashi; Umezawa, Akihiro

    2016-01-01

    ABSTRACT Direct reprogramming is a promising, simple and low-cost approach to generate target cells from somatic cells without using induced pluripotent stem cells. Recently, peripheral blood mononuclear cells (PBMCs) have attracted considerable attention as a somatic cell source for reprogramming. As a cell source, PBMCs have an advantage over dermal fibroblasts with respect to the ease of collecting tissues. Based on our studies involving generation of photosensitive photoreceptor cells from human iris cells and human dermal fibroblasts by transduction of photoreceptor-related transcription factors via retrovirus vectors, we transduced these transcription factors into PBMCs via Sendai virus vectors. We found that retinal disease-related genes were efficiently detected in CRX-transduced cells, most of which are crucial to photoreceptor functions. In functional studies, a light-induced inward current was detected in some CRX-transduced cells. Moreover, by modification of the culture conditions including additional transduction of RAX1 and NEUROD1, we found a greater variety of retinal disease-related genes than that observed in CRX-transduced PBMCs. These data suggest that CRX acts as a master control gene for reprogramming PBMCs into photoreceptor-like cells and that our induced photoreceptor-like cells might contribute to individualized drug screening and disease modeling of inherited retinal degeneration. PMID:27170256

  16. Reprogramming Progeny Cells of Embryonic RPE to Produce Photoreceptors: Development of Advanced Photoreceptor Traits under the Induction of neuroD

    PubMed Central

    Liang, Lina; Yan, Run-Tao; Li, Xiumei; Chimento, Melissa; Wang, Shu-Zhen

    2008-01-01

    PURPOSE In examining the prospect of producing functional photoreceptors by reprogramming the differentiation of RPE progeny cells, this study was conducted to investigate whether reprogrammed cells can develop highly specialized ultrastructural and physiological traits that characterize retinal photoreceptors. METHODS Cultured chick RPE cells were reprogrammed to differentiate along the photoreceptor pathway by ectopic expression of neuroD. Cellular ultrastructure was examined with electron microscopy. Cellular physiology was studied by monitoring cellular free calcium (Ca2+) levels in dark-adapted cells in response to light and in light-bleached cells in response to 9-cis-retinal. RESULTS Reprogrammed cells were found to localize red opsin protein appropriately to the apex. These cells developed inner segments rich in mitochondria, and while in culture, some formed rudimentary outer segments, analogous to those of developing photoreceptors in the retina. In response to light, reprogrammed cells reduced their Ca2+ levels, as observed with developing retinal photoreceptors in culture. Further, on exposure to 9-cis-retinal, the light-bleached, reprogrammed cells increased their Ca2+ levels, reminiscent of visual cycle recovery. CONCLUSIONS These results indicate the potential of reprogrammed cells to develop advanced ultrastructural and physiological traits of photoreceptors and point to reprogramming progeny cells of embryonic RPE as a possible alternative in producing developing photoreceptors. PMID:18469196

  17. The functional cycle of visual arrestins in photoreceptor cells

    PubMed Central

    Gurevich, Vsevolod V.; Hanson, Susan M.; Song, Xiufeng; Vishnivetskiy, Sergey A.; Gurevich, Eugenia V.

    2011-01-01

    Visual arrestin-1 plays a key role in the rapid and reproducible shutoff of rhodopsin signaling. Its highly selective binding to light-activated phosphorylated rhodopsin is an integral part of the functional perfection of rod photoreceptors. Structure-function studies revealed key elements of the sophisticated molecular mechanism ensuring arrestin-1 selectivity and paved the way to the targeted manipulation of the arrestin-1 molecule to design mutants that can compensate for congenital defects in rhodopsin phosphorylation. Arrestin-1 self-association and light-dependent translocation in photoreceptor cells work together to keep a constant supply of active rhodopsin-binding arrestin-1 monomer in the outer segment. Recent discoveries of arrestin-1 interaction with other signaling proteins suggest that it is a much more versatile signaling regulator than previously thought, affecting the function of the synaptic terminals and rod survival. Elucidation of the fine molecular mechanisms of arrestin-1 interactions with rhodopsin and other binding partners is necessary for the comprehensive understanding of rod function and for devising novel molecular tools and therapeutic approaches to the treatment of visual disorders. PMID:21824527

  18. Direct observation of light focusing by single photoreceptor cell nuclei.

    PubMed

    Błaszczak, Zuzanna; Kreysing, Moritz; Guck, Jochen

    2014-05-01

    The vertebrate retina is inverted with respect to its optical function, which requires light to pass through the entire tissue prior to detection. The last significant barrier for photons to overcome is the outer nuclear layer formed by photoreceptor cell (PRC) nuclei. Here we experimentally characterise the optical properties of PRC nuclei using bright-field defocusing microscopy to capture near-field intensity distributions behind individual nuclei. We find that some nuclei efficiently focus incident light confirming earlier predictions based on comparative studies of chromatin organisation in nocturnal and diurnal mammals. The emergence of light focusing during the development of mouse nuclei highlights the acquired nature of the observed lens-like behaviour. Optical characterisation of these nuclei is an important first step towards an improved understanding of how light transmission through the retina is influenced by its constituents.

  19. Function of human pluripotent stem cell-derived photoreceptor progenitors in blind mice

    PubMed Central

    Barnea-Cramer, Alona O.; Wang, Wei; Lu, Shi-Jiang; Singh, Mandeep S.; Luo, Chenmei; Huo, Hongguang; McClements, Michelle E.; Barnard, Alun R.; MacLaren, Robert E.; Lanza, Robert

    2016-01-01

    Photoreceptor degeneration due to retinitis pigmentosa (RP) is a primary cause of inherited retinal blindness. Photoreceptor cell-replacement may hold the potential for repair in a completely degenerate retina by reinstating light sensitive cells to form connections that relay information to downstream retinal layers. This study assessed the therapeutic potential of photoreceptor progenitors derived from human embryonic and induced pluripotent stem cells (ESCs and iPSCs) using a protocol that is suitable for future clinical trials. ESCs and iPSCs were cultured in four specific stages under defined conditions, resulting in generation of a near-homogeneous population of photoreceptor-like progenitors. Following transplantation into mice with end-stage retinal degeneration, these cells differentiated into photoreceptors and formed a cell layer connected with host retinal neurons. Visual function was partially restored in treated animals, as evidenced by two visual behavioral tests. Furthermore, the magnitude of functional improvement was positively correlated with the number of engrafted cells. Similar efficacy was observed using either ESCs or iPSCs as source material. These data validate the potential of human pluripotent stem cells for photoreceptor replacement therapies aimed at photoreceptor regeneration in retinal disease. PMID:27405580

  20. Reprogramming Müller glia via in vivo cell fusion regenerates murine photoreceptors.

    PubMed

    Sanges, Daniela; Simonte, Giacoma; Di Vicino, Umberto; Romo, Neus; Pinilla, Isabel; Nicolás, Marta; Cosma, Maria Pia

    2016-08-01

    Vision impairments and blindness caused by retinitis pigmentosa result from severe neurodegeneration that leads to a loss of photoreceptors, the specialized light-sensitive neurons that enable vision. Although the mammalian nervous system is unable to replace neurons lost due to degeneration, therapeutic approaches to reprogram resident glial cells to replace retinal neurons have been proposed. Here, we demonstrate that retinal Müller glia can be reprogrammed in vivo into retinal precursors that then differentiate into photoreceptors. We transplanted hematopoietic stem and progenitor cells (HSPCs) into retinas affected by photoreceptor degeneration and observed spontaneous cell fusion events between Müller glia and the transplanted cells. Activation of Wnt signaling in the transplanted HSPCs enhanced survival and proliferation of Müller-HSPC hybrids as well as their reprogramming into intermediate photoreceptor precursors. This suggests that Wnt signaling drives the reprogrammed cells toward a photoreceptor progenitor fate. Finally, Müller-HSPC hybrids differentiated into photoreceptors. Transplantation of HSPCs with activated Wnt functionally rescued the retinal degeneration phenotype in rd10 mice, a model for inherited retinitis pigmentosa. Together, these results suggest that photoreceptors can be generated by reprogramming Müller glia and that this approach may have potential as a strategy for reversing retinal degeneration. PMID:27427986

  1. Photoreceptor projection and termination pattern in the lamina of gonodactyloid stomatopods (mantis shrimp).

    PubMed

    Kleinlogel, Sonja; Marshall, N Justin

    2005-08-01

    The apposition compound eyes of gonodactyloid stomatopods are divided into a ventral and a dorsal hemisphere by six equatorial rows of enlarged ommatidia, the mid-band (MB). Whereas the hemispheres are specialized for spatial vision, the MB consists of four dorsal rows of ommatidia specialized for colour vision and two ventral rows specialized for polarization vision. The eight retinula cell axons (RCAs) from each ommatidium project retinotopically onto one corresponding lamina cartridge, so that the three retinal data streams (spatial, colour and polarization) remain anatomically separated. This study investigates whether the retinal specializations are reflected in differences in the RCA arrangement within the corresponding lamina cartridges. We have found that, in all three eye regions, the seven short visual fibres (svfs) formed by retinula cells 1-7 (R1-R7) terminate at two distinct lamina levels, geometrically separating the terminals of photoreceptors sensitive to either orthogonal e-vector directions or different wavelengths of light. This arrangement is required for the establishment of spectral and polarization opponency mechanisms. The long visual fibres (lvfs) of the eighth retinula cells (R8) pass through the lamina and project retinotopically to the distal medulla externa. Differences between the three eye regions exist in the packing of svf terminals and in the branching patterns of the lvfs within the lamina. We hypothesize that the R8 cells of MB rows 1-4 are incorporated into the colour vision system formed by R1-R7, whereas the R8 cells of MB rows 5 and 6 form a separate neural channel from R1 to R7 for polarization processing. PMID:15947970

  2. Transcriptional analysis of Volvox photoreceptors suggests the existence of different cell-type specific light-signaling pathways.

    PubMed

    Kianianmomeni, Arash; Hallmann, Armin

    2015-02-01

    Photosynthetic organisms, e.g., plants including green algae, use a sophisticated light-sensing system, composed of primary photoreceptors and additional downstream signaling components, to monitor changes in the ambient light environment towards adjust their growth and development. Although a variety of cellular processes, e.g., initiation of cleavage division and final cellular differentiation, have been shown to be light-regulated in the green alga Volvox carteri, little is known about the underlying light perception and signaling pathways. This multicellular alga possesses at least 12 photoreceptors, i.e., one phototropin (VcPhot), four cryptochromes (VcCRYa, VcCRYp, VcCRYd1, and VcCRYd2), and seven members of rhodopsin-like photoreceptors (VR1, VChR1, VChR2, VcHKR1, VcHKR2, VcHKR3, and VcHKR4), which display distinct light-dependent chemical processes based on their protein architectures and associated chromophores. Gene expression analyses could show that the transcript levels of some of the photoreceptor genes (e.g., VChR1 and VcHKR1) accumulate during division cleavages, while others (e.g., VcCRYa, VcCRYp, and VcPhot) accumulate during final cellular differentiation. However, the pattern of transcript accumulation changes when the alga switches to the sexual development. Eight photoreceptor genes, e.g., VcPhot, VcCRYp, and VcHKR1, are highly expressed in the somatic cells, while only the animal-type rhodopsin VR1 was found to be highly expressed in the reproductive cells/embryos during both asexual and sexual life cycles. Moreover, accumulation of VChR1 and VcCRYa transcripts is more sensitive to light and changes in response to more than one light quality. Obviously, different regulatory mechanisms underlying gene expression control transcript accumulation of photoreceptors not only during development, but also in a cell-type specific way and in response to various external signals such as light quality. The transcriptional patterns described in this study

  3. Anatomy of the Hesse photoreceptor cell axonal system in the central nervous system of amphioxus.

    PubMed

    Castro, Antonio; Becerra, Manuela; Manso, María Jesús; Sherwood, Nancy M; Anadón, Ramón

    2006-01-01

    The present study reports the organization of the Hesse cell axonal system in the central nervous system of the amphioxus, with the use of a polyclonal antiserum raised against lamprey gonadotropin-releasing hormone-I (GnRH-I). In the spinal cord, the rhabdomeric photoreceptor cells of the bicellular organs were well labeled with this antibody. These cells sent smooth, straight, lateral processes that bent and became beaded as they passed ventrally and crossed to the contralateral side of the cord. There, the processes of several cells aggregated to give rise to a longitudinal fiber bundle. Beaded collaterals of these processes were directed to ventral neuropil and did not appear to contact giant Rohde cell axons. The crossed projections of the Hesse photoreceptors are compared with those of vertebrate retinal ganglion cells. Other antisera raised against GnRH weakly labeled rhabdomeric photoreceptors located dorsally in the brain, the Joseph cells. The finding that GnRH antibodies label amphioxus photoreceptor cells and axons is not definitive proof that the photoreceptors contain GnRH. Regardless of whether the antibody recognizes amphioxus GnRH, which has not yet been identified by structure, the antibody has revealed the processes of the Hesse photoreceptor cells.

  4. Gap Junctions between Photoreceptor Cells in the Vertebrate Retina

    PubMed Central

    Raviola, Elio; Gilula, Norton B.

    1973-01-01

    In the outer plexiform layer of the retina the synaptic endings of cone cells make specialized junctions with each other and with the endings of rod cells. The ultrastructure of these interreceptor junctions is described in retinas of monkeys, rabbits, and turtles, in thin sections of embedded specimens and by the freeze-fracturing technique. Cone-to-rod junctions are ribbon-like areas of close membrane approximation. On either side of the narrowing of the intercellular space, the junctional membranes contain a row of particles located on the fracture face A (cytoplasmic leaflet), while the complementary element, a row of single depressions, is located on fracture face B. The particle rows are surrounded by a membrane region that is devoid of particulate inclusions and bears an adherent layer of dense cytoplasmic material. Cone-to-cone junctions in some places are identical to cone-to-rod junctions, while in other places they closely resemble typical gap junctions (nexus). Interreceptor junctions, therefore, represent a morphological variant of the gap junction, and probably mediate electrotonic coupling between neighboring photoreceptor cells. Images PMID:4198274

  5. Adiponectin receptor 1 conserves docosahexaenoic acid and promotes photoreceptor cell survival

    PubMed Central

    Rice, Dennis S.; Calandria, Jorgelina M.; Gordon, William C.; Jun, Bokkyoo; Zhou, Yongdong; Gelfman, Claire M.; Li, Songhua; Jin, Minghao; Knott, Eric J.; Chang, Bo; Abuin, Alex; Issa, Tawfik; Potter, David; Platt, Kenneth A.; Bazan, Nicolas G.

    2015-01-01

    The identification of pathways necessary for photoreceptor and retinal pigment epithelium (RPE) function is critical to uncover therapies for blindness. Here we report the discovery of adiponectin receptor 1 (AdipoR1) as a regulator of these cells’ functions. Docosahexaenoic acid (DHA) is avidly retained in photoreceptors, while mechanisms controlling DHA uptake and retention are unknown. Thus, we demonstrate that AdipoR1 ablation results in DHA reduction. In situ hybridization reveals photoreceptor and RPE cell AdipoR1 expression, blunted in AdipoR1−/− mice. We also find decreased photoreceptor-specific phosphatidylcholine containing very long-chain polyunsaturated fatty acids and severely attenuated electroretinograms. These changes precede progressive photoreceptor degeneration in AdipoR1−/− mice. RPE-rich eyecup cultures from AdipoR1−/− reveal impaired DHA uptake. AdipoR1 overexpression in RPE cells enhances DHA uptake, whereas AdipoR1 silencing has the opposite effect. These results establish AdipoR1 as a regulatory switch of DHA uptake, retention, conservation and elongation in photoreceptors and RPE, thus preserving photoreceptor cell integrity. PMID:25736573

  6. Macrophage- and RIP3-dependent inflammasome activation exacerbates retinal detachment-induced photoreceptor cell death

    PubMed Central

    Kataoka, K; Matsumoto, H; Kaneko, H; Notomi, S; Takeuchi, K; Sweigard, J H; Atik, A; Murakami, Y; Connor, K M; Terasaki, H; Miller, J W; Vavvas, D G

    2015-01-01

    Detachment of photoreceptors from the retinal pigment epithelium is seen in various retinal disorders, resulting in photoreceptor death and subsequent vision loss. Cell death results in the release of endogenous molecules that activate molecular platforms containing caspase-1, termed inflammasomes. Inflammasome activation in retinal diseases has been reported in some cases to be protective and in others to be detrimental, causing neuronal cell death. Moreover, the cellular source of inflammasomes in retinal disorders is not clear. Here, we demonstrate that patients with photoreceptor injury by retinal detachment (RD) have increased levels of cleaved IL-1β, an end product of inflammasome activation. In an animal model of RD, photoreceptor cell death led to activation of endogenous inflammasomes, and this activation was diminished by Rip3 deletion. The major source of Il1b expression was found to be infiltrating macrophages in the subretinal space, rather than dying photoreceptors. Inflammasome inhibition attenuated photoreceptor death after RD. Our data implicate the infiltrating macrophages as a source of damaging inflammasomes after photoreceptor detachment in a RIP3-dependent manner and suggest a novel therapeutic target for treatment of retinal diseases. PMID:25906154

  7. Expression pattern in retinal photoreceptors of POMGnT1, a protein involved in muscle-eye-brain disease

    PubMed Central

    Uribe, Mary Luz; Haro, Carmen; Campello, Laura; Cruces, Jesús; Martín-Nieto, José

    2016-01-01

    Purpose The POMGNT1 gene, encoding protein O-linked-mannose β-1,2-N-acetylglucosaminyltransferase 1, is associated with muscle-eye-brain disease (MEB) and other dystroglycanopathies. This gene’s lack of function or expression causes hypoglycosylation of α-dystroglycan (α-DG) in the muscle and the central nervous system, including the brain and the retina. The ocular symptoms of patients with MEB include retinal degeneration and detachment, glaucoma, and abnormal electroretinogram. Nevertheless, the POMGnT1 expression pattern in the healthy mammalian retina has not yet been investigated. In this work, we address the expression of the POMGNT1 gene in the healthy retina of a variety of mammals and characterize the distribution pattern of this gene in the adult mouse retina and the 661W photoreceptor cell line. Methods Using reverse transcription (RT)–PCR and immunoblotting, we studied POMGNT1 expression at the mRNA and protein levels in various mammalian species, from rodents to humans. Immunofluorescence confocal microscopy analyses were performed to characterize the distribution profile of its protein product in mouse retinal sections and in 661W cultured cells. The intranuclear distribution of POMT1 and POMT2, the two enzymes preceding POMGnT1 in the α-DG O-mannosyl glycosylation pathway, was also analyzed. Results POMGNT1 mRNA and its encoded protein were expressed in the neural retina of all mammals studied. POMGnT1 was located in the cytoplasmic fraction in the mouse retina and concentrated in the myoid portion of the photoreceptor inner segments, where the protein colocalized with GM130, a Golgi complex marker. The presence of POMGnT1 in the Golgi complex was also evident in 661W cells. However, and in contrast to retinal tissue, POMGnT1 additionally accumulated in the nucleus of the 661W photoreceptors. Colocalization was found within this organelle between POMGnT1 and POMT1/2, the latter associated with euchromatic regions of the nucleus. Conclusions

  8. Adalimumab Reduces Photoreceptor Cell Death in A Mouse Model of Retinal Degeneration

    PubMed Central

    Martínez-Fernández de la Cámara, Cristina; Hernández-Pinto, Alberto M.; Olivares-González, Lorena; Cuevas-Martín, Carmen; Sánchez-Aragó, María; Hervás, David; Salom, David; Cuezva, José M.; de la Rosa, Enrique J.; Millán, José M; Rodrigo, Regina

    2015-01-01

    Growing evidence suggests that inflammation is involved in the progression of retinitis pigmentosa (RP) both in patients and in animal models. The aim of this study was to investigate the effect of Adalimumab, a monoclonal anti-TNFα antibody, on retinal degeneration in a murine model of human autosomal recessive RP, the rd10 mice at postnatal day (P) 18. In our housing conditions, rd10 retinas were seriously damaged at P18. Adalimumab reduced photoreceptor cell death, as determined by scoring the number of TUNEL-positive cells. In addition, nuclear poly (ADP) ribose (PAR) content, an indirect measure of PAR polymerase (PARP) activity, was also reduced after treatment. The blockade of TNFα ameliorated reactive gliosis, as visualized by decreased GFAP and IBA1 immunolabelling (Müller cell and microglial markers, respectively) and decreased up-regulation of TNFα gene expression. Adalimumab also improved antioxidant response by restoring total antioxidant capacity and superoxide dismutase activity. Finally, we observed that Adalimumab normalized energetic and metabolic pattern in rd10 mouse retinas. Our study suggests that the TNFα blockade could be a successful therapeutic approach to increase photoreceptor survival during the progression of RP. Further studies are needed to characterize its effect along the progression of the disease. PMID:26170250

  9. Glial-, neuronal- and photoreceptor-specific cell markers in rosettes of retinoblastoma and retinal dysplasia.

    PubMed

    Ohira, A; Yamamoto, M; Honda, O; Ohnishi, Y; Inomata, H; Honda, Y

    1994-11-01

    Previous studies have shown that a rosette formation represents an attempt to form embryonic retinal tissue, primarily rods and cones. To test the theories as to the origin and characteristics of retinoblastoma cells, we compared the characteristics of tumor rosettes with those of dysplastic rosettes seen in retinal dysplasia using the glial, neuronal and photoreceptor markers. Forty-four retinoblastoma and one retinal dysplasia specimens were analyzed by indirect immunohistochemistry, using specific antibodies against glial fibrillary acidic protein, S-100 protein, myelin basic protein, neuron-specific enolase, neurofilament, retinal S-antigen and retinal pigment epithelial antigen. In human retinoblastoma, all the glial, neuronal, retinal pigment epithelial, and photoreceptor cell markers, except for the neurofilament, were present in parts of rosette-forming tumor cells. However, their localization was different for each antigen and it was not clear whether each tumor cell possesses several antigens. These immuno-positive tumor cells were cytologically indistinguishable from other rosette-forming cells at the light microscopic level. In retinal dysplasia, neuron specific enolase and retinal S-antigen were diffusely expressed in the dysplastic rosettes, however, other antigen were not seen in those rosettes. The staining pattern by immunocytochemistry is totally different in tumor rosettes from dysplastic ones. We found varying localizations of different immunoreactivities within tumor rosettes. These results led us to suggest that tumor cells in the rosettes of retinoblastoma may have the ability to differentiate into neural and glial cells. To prove the theory that retinoblastoma cells may have originated from a primitive neuroectodermal cell capable of multipotentiality, further investigation is needed.

  10. Synergistically acting agonists and antagonists of G protein–coupled receptors prevent photoreceptor cell degeneration

    PubMed Central

    Chen, Yu; Palczewska, Grazyna; Masuho, Ikuo; Gao, Songqi; Jin, Hui; Dong, Zhiqian; Gieser, Linn; Brooks, Matthew J.; Kiser, Philip D.; Kern, Timothy S.; Martemyanov, Kirill A.; Swaroop, Anand; Palczewski, Krzysztof

    2016-01-01

    Photoreceptor cell degeneration leads to visual impairment and blindness in several types of retinal disease. However, the discovery of safe and effective therapeutic strategies conferring photoreceptor cell protection remains challenging. Targeting distinct cellular pathways with low doses of different drugs that produce a functionally synergistic effect could provide a strategy for preventing or treating retinal dystrophies. We took a systems pharmacology approach to identify potential combination therapies using a mouse model of light-induced retinal degeneration. We showed that a combination of U.S. Food and Drug Administration–approved drugs that act on different G protein (guanine nucleotide–binding protein)–coupled receptors (GPCRs) exhibited synergistic activity that protected retinas from light-induced degeneration even when each drug was administered at a low dose. In functional assays, the combined effects of these drugs were stimulation of Gi/o signaling by activating the dopamine receptors D2R and D4R, as well as inhibition of Gs and Gq signaling by antagonizing D1R and the α1A-adrenergic receptor ADRA1A, respectively. Moreover, transcriptome analyses demonstrated that such combined GPCR-targeted treatments preserved patterns of retinal gene expression that were more similar to those of the normal retina than did higher-dose monotherapy. Our study thus supports a systems pharmacology approach to identify treatments for retinopathies, an approach that could extend to other complex disorders. PMID:27460988

  11. Synergistically acting agonists and antagonists of G protein-coupled receptors prevent photoreceptor cell degeneration.

    PubMed

    Chen, Yu; Palczewska, Grazyna; Masuho, Ikuo; Gao, Songqi; Jin, Hui; Dong, Zhiqian; Gieser, Linn; Brooks, Matthew J; Kiser, Philip D; Kern, Timothy S; Martemyanov, Kirill A; Swaroop, Anand; Palczewski, Krzysztof

    2016-01-01

    Photoreceptor cell degeneration leads to visual impairment and blindness in several types of retinal disease. However, the discovery of safe and effective therapeutic strategies conferring photoreceptor cell protection remains challenging. Targeting distinct cellular pathways with low doses of different drugs that produce a functionally synergistic effect could provide a strategy for preventing or treating retinal dystrophies. We took a systems pharmacology approach to identify potential combination therapies using a mouse model of light-induced retinal degeneration. We showed that a combination of U.S. Food and Drug Administration-approved drugs that act on different G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors (GPCRs) exhibited synergistic activity that protected retinas from light-induced degeneration even when each drug was administered at a low dose. In functional assays, the combined effects of these drugs were stimulation of Gi/o signaling by activating the dopamine receptors D2R and D4R, as well as inhibition of Gs and Gq signaling by antagonizing D1R and the α1A-adrenergic receptor ADRA1A, respectively. Moreover, transcriptome analyses demonstrated that such combined GPCR-targeted treatments preserved patterns of retinal gene expression that were more similar to those of the normal retina than did higher-dose monotherapy. Our study thus supports a systems pharmacology approach to identify treatments for retinopathies, an approach that could extend to other complex disorders. PMID:27460988

  12. TrkB/BDNF Signaling Regulates Photoreceptor Progenitor Cell Fate Decisions

    PubMed Central

    Turner, Brian A.; Sparrow, Janet; Cai, Bolin; Monroe, Julie; Mikawa, Takashi; Hempstead, Barbara L.

    2008-01-01

    Neurotrophins, via activation of Trk receptor tyrosine kinases, serve as mitogens, survival factors and regulators of arborization during retinal development. Brain-derived neurotrophic factor (BDNF) and TrkB regulate neuronal arborization and survival in late retinal development. However, TrkB is expressed during early retinal developmet where its functions are unclear. To assess TrkB/BDNF actions in the early chick retina, replication-incompetent retroviruses were utilized to over-express a dominant negative truncated form of TrkB (trunc TrkB), or BDNF and effects were assessed at E15. Clones expressing trunc TrkB were smaller than controls, and proliferation and apoptosis assays suggest that decreased clone size correlated with increased cell death when BDNF/TrkB signaling was impaired. Analysis of clonal composition revealed that trunc TrkB over-expression decreased photoreceptor numbers (41%) and increased cell numbers in the middle third of the inner nuclear layer (INL) (23%). Conversely, BDNF over-expression increased photoreceptor numbers (25%) and decreased INL numbers (17%). Photoreceptors over-expressing trunc TrkB demonstrated no increase in apoptosis nor abnormalities in lamination suggesting that TrkB activation is not required for photoreceptor cell survival or migration. These studies suggest that TrkB signaling regulates commitment to and/or differentiation of photoreceptor cells from retinal progenitor cells, identifying a novel role for TrkB/BDNF in regulating cell fate decisions. PMID:17005175

  13. Hypoxia-induced metabolic stress in retinal pigment epithelial cells is sufficient to induce photoreceptor degeneration

    PubMed Central

    Kurihara, Toshihide; Westenskow, Peter D; Gantner, Marin L; Usui, Yoshihiko; Schultz, Andrew; Bravo, Stephen; Aguilar, Edith; Wittgrove, Carli; Friedlander, Mollie SH; Paris, Liliana P; Chew, Emily; Siuzdak, Gary; Friedlander, Martin

    2016-01-01

    Photoreceptors are the most numerous and metabolically demanding cells in the retina. Their primary nutrient source is the choriocapillaris, and both the choriocapillaris and photoreceptors require trophic and functional support from retinal pigment epithelium (RPE) cells. Defects in RPE, photoreceptors, and the choriocapillaris are characteristic of age-related macular degeneration (AMD), a common vision-threatening disease. RPE dysfunction or death is a primary event in AMD, but the combination(s) of cellular stresses that affect the function and survival of RPE are incompletely understood. Here, using mouse models in which hypoxia can be genetically triggered in RPE, we show that hypoxia-induced metabolic stress alone leads to photoreceptor atrophy. Glucose and lipid metabolism are radically altered in hypoxic RPE cells; these changes impact nutrient availability for the sensory retina and promote progressive photoreceptor degeneration. Understanding the molecular pathways that control these responses may provide important clues about AMD pathogenesis and inform future therapies. DOI: http://dx.doi.org/10.7554/eLife.14319.001 PMID:26978795

  14. Have We Achieved a Unified Model of Photoreceptor Cell Fate Specification in Vertebrates?

    PubMed Central

    Raymond, Pamela A.

    2008-01-01

    How does a retinal progenitor choose to differentiate as a rod or a cone and, if it becomes a cone, which one of their different subtypes? The mechanisms of photoreceptor cell fate specification and differentiation have been extensively investigated in a variety of animal model systems, including human and non-human primates, rodents (mice and rats), chickens, frogs (Xenopus) and fish. It appears timely to discuss whether it is possible to synthesize the resulting information into a unified model applicable to all vertebrates. In this review we focus on several widely used experimental animal model systems to highlight differences in photoreceptor properties among species, the diversity of developmental strategies and solutions that vertebrates use to create retinas with photoreceptors that are adapted to the visual needs of their species, and the limitations of the methods currently available for the investigation of photoreceptor cell fate specification. Based on these considerations, we conclude that we are not yet ready to construct a unified model of photoreceptor cell fate specification in the developing vertebrate retina. PMID:17466954

  15. Metabolic signaling between photoreceptors and glial cells in the retina of the drone (Apis mellifera).

    PubMed

    Brazitikos, P D; Tsacopoulos, M

    1991-12-13

    Experimental evidence showing metabolic interaction and signaling between photoreceptors-neurons and glial cells of the honeybee drone retina is presented. In this tissue [3H]2-deoxyglucose ([3H]2DG) in the dark and during repetitive light stimulation is phosphorylated to [3H]2-deoxyglucose-6P ([3H]2DG-6P) almost exclusively in the glial cells. Hence, stimulus-induced changes in the rate of formation of [3H]2DG-6P occurs predominantly in the glial cells. Repetitive stimulation of the photoreceptors with light flashes induced about a 47% rise in the rate of formation of [3H]2DG-6P in the glial cells and this effect is probably due to the activation of hexokinase. The potent inhibitor of glycolysis iodoacetic acid (IAA), inhibited this phosphorylation by about 75%. Probably this was largely due to an about 70% decrease of adenosine triphosphate (ATP). Exposure of the retina to IAA suppressed the transient rise in oxygen consumption (delta QO2) in the photoreceptors and subsequently the light-induced receptor potential. This indicates that the supply of a glycolytic substrate by glial cells to the photoreceptors is greatly reduced by IAA. Anoxia, by rapidly suppressing QO2, abolished the receptor potential of the photoreceptors and caused a rapid drop of about 50% in the ATP content of the retina. At the same time the formation of [3H]2DG-6P was inhibited by about 30%. This indicates that respiring photoreceptors send a metabolic signal to glial cells which is suppressed by anoxia. PMID:1815828

  16. Metabolic signaling between photoreceptors and glial cells in the retina of the drone (Apis mellifera).

    PubMed

    Brazitikos, P D; Tsacopoulos, M

    1991-12-13

    Experimental evidence showing metabolic interaction and signaling between photoreceptors-neurons and glial cells of the honeybee drone retina is presented. In this tissue [3H]2-deoxyglucose ([3H]2DG) in the dark and during repetitive light stimulation is phosphorylated to [3H]2-deoxyglucose-6P ([3H]2DG-6P) almost exclusively in the glial cells. Hence, stimulus-induced changes in the rate of formation of [3H]2DG-6P occurs predominantly in the glial cells. Repetitive stimulation of the photoreceptors with light flashes induced about a 47% rise in the rate of formation of [3H]2DG-6P in the glial cells and this effect is probably due to the activation of hexokinase. The potent inhibitor of glycolysis iodoacetic acid (IAA), inhibited this phosphorylation by about 75%. Probably this was largely due to an about 70% decrease of adenosine triphosphate (ATP). Exposure of the retina to IAA suppressed the transient rise in oxygen consumption (delta QO2) in the photoreceptors and subsequently the light-induced receptor potential. This indicates that the supply of a glycolytic substrate by glial cells to the photoreceptors is greatly reduced by IAA. Anoxia, by rapidly suppressing QO2, abolished the receptor potential of the photoreceptors and caused a rapid drop of about 50% in the ATP content of the retina. At the same time the formation of [3H]2DG-6P was inhibited by about 30%. This indicates that respiring photoreceptors send a metabolic signal to glial cells which is suppressed by anoxia.

  17. Potassium activity in photoreceptors, glial cells and extracellular space in the drone retina: changes during photostimulation.

    PubMed

    Coles, J A; Tsacopoulos, M

    1979-05-01

    1. A double-barrelled potassium-sensitive micro-electrode was developed that was fine enough to record intracellular electrical potentials and potassium activities (aK) in the drone retina. 2. aK was measured in the photoreceptor cells, in the pigment (glial) cells, and in the extracellular space, in the superfused, cut, retina. The effect of photostimulation was studied: 20 msec light flashes, intense enough to evoke receptor potentials of maximum amplitude were presented, 1/sec, in a train lasting about 2 min. 3. In photoreceptors with membrane potentials greater than or equal to 50 mV aK in the dark was 79 mM, S.D. = 27 mM, n = 11. During photostimulation aK fell by 21.5 +/- 9.5 mM with a half-time of 30 +/- 22 sec. (A tentative conversion from activities to free concentrations can be made by taking the activity coefficient as 0.70 its value in the Ringer solution). 4. In pigment cells with membrane potentials greater than or equal to 50 mV, aK in the dark was 52 mM, S.D. = 13 mM, n = 11. During photostimulation aK increased by 14 +/- 5 mM. 5. In the extracellular space aK increased during photostimulation with a mean half-time of less than 1.3 sec to a maximum (mean value 14 mM, S.D. = 8.4 mM, n = 22), and then fell to a plateau. 6. It is estimated from the anatomy that the photoreceptors occupy approximately 38% of the total volume of the retina, the pigment cells 57%, and extracellular space 5%. Hence, it seems possible that during photostimulation nearly all the net loss of potassium from the photoreceptors is temporarily stored in the pigment cells. 7. Recordings were made in the extracellular space of the intact animal by passing the electrode through a hole in the cornea. The mean aK in the dark was 7.7 mM, S.E. = 0.4 mM, n = 22. In the superfused retina, aK in the dark was 6.3 mM, S.E. = 0.7 mM, n = 22, even though aK in the Ringer solution was 2.2 mM. Increasing the aK of the Ringer solution to 7.0 mM had no apparent effect on aK in the extracellular

  18. Predicted molecular signaling guiding photoreceptor cell migration following transplantation into damaged retina

    PubMed Central

    Unachukwu, Uchenna John; Warren, Alice; Li, Ze; Mishra, Shawn; Zhou, Jing; Sauane, Moira; Lim, Hyungsik; Vazquez, Maribel; Redenti, Stephen

    2016-01-01

    To replace photoreceptors lost to disease or trauma and restore vision, laboratories around the world are investigating photoreceptor replacement strategies using subretinal transplantation of photoreceptor precursor cells (PPCs) and retinal progenitor cells (RPCs). Significant obstacles to advancement of photoreceptor cell-replacement include low migration rates of transplanted cells into host retina and an absence of data describing chemotactic signaling guiding migration of transplanted cells in the damaged retinal microenvironment. To elucidate chemotactic signaling guiding transplanted cell migration, bioinformatics modeling of PPC transplantation into light-damaged retina was performed. The bioinformatics modeling analyzed whole-genome expression data and matched PPC chemotactic cell-surface receptors to cognate ligands expressed in the light-damaged retinal microenvironment. A library of significantly predicted chemotactic ligand-receptor pairs, as well as downstream signaling networks was generated. PPC and RPC migration in microfluidic ligand gradients were analyzed using a highly predicted ligand-receptor pair, SDF-1α – CXCR4, and both PPCs and RPCs exhibited significant chemotaxis. This work present a systems level model and begins to elucidate molecular mechanisms involved in PPC and RPC migration within the damaged retinal microenvironment. PMID:26935401

  19. Predicted molecular signaling guiding photoreceptor cell migration following transplantation into damaged retina.

    PubMed

    Unachukwu, Uchenna John; Warren, Alice; Li, Ze; Mishra, Shawn; Zhou, Jing; Sauane, Moira; Lim, Hyungsik; Vazquez, Maribel; Redenti, Stephen

    2016-01-01

    To replace photoreceptors lost to disease or trauma and restore vision, laboratories around the world are investigating photoreceptor replacement strategies using subretinal transplantation of photoreceptor precursor cells (PPCs) and retinal progenitor cells (RPCs). Significant obstacles to advancement of photoreceptor cell-replacement include low migration rates of transplanted cells into host retina and an absence of data describing chemotactic signaling guiding migration of transplanted cells in the damaged retinal microenvironment. To elucidate chemotactic signaling guiding transplanted cell migration, bioinformatics modeling of PPC transplantation into light-damaged retina was performed. The bioinformatics modeling analyzed whole-genome expression data and matched PPC chemotactic cell-surface receptors to cognate ligands expressed in the light-damaged retinal microenvironment. A library of significantly predicted chemotactic ligand-receptor pairs, as well as downstream signaling networks was generated. PPC and RPC migration in microfluidic ligand gradients were analyzed using a highly predicted ligand-receptor pair, SDF-1α - CXCR4, and both PPCs and RPCs exhibited significant chemotaxis. This work present a systems level model and begins to elucidate molecular mechanisms involved in PPC and RPC migration within the damaged retinal microenvironment. PMID:26935401

  20. Predicted molecular signaling guiding photoreceptor cell migration following transplantation into damaged retina

    NASA Astrophysics Data System (ADS)

    Unachukwu, Uchenna John; Warren, Alice; Li, Ze; Mishra, Shawn; Zhou, Jing; Sauane, Moira; Lim, Hyungsik; Vazquez, Maribel; Redenti, Stephen

    2016-03-01

    To replace photoreceptors lost to disease or trauma and restore vision, laboratories around the world are investigating photoreceptor replacement strategies using subretinal transplantation of photoreceptor precursor cells (PPCs) and retinal progenitor cells (RPCs). Significant obstacles to advancement of photoreceptor cell-replacement include low migration rates of transplanted cells into host retina and an absence of data describing chemotactic signaling guiding migration of transplanted cells in the damaged retinal microenvironment. To elucidate chemotactic signaling guiding transplanted cell migration, bioinformatics modeling of PPC transplantation into light-damaged retina was performed. The bioinformatics modeling analyzed whole-genome expression data and matched PPC chemotactic cell-surface receptors to cognate ligands expressed in the light-damaged retinal microenvironment. A library of significantly predicted chemotactic ligand-receptor pairs, as well as downstream signaling networks was generated. PPC and RPC migration in microfluidic ligand gradients were analyzed using a highly predicted ligand-receptor pair, SDF-1α – CXCR4, and both PPCs and RPCs exhibited significant chemotaxis. This work present a systems level model and begins to elucidate molecular mechanisms involved in PPC and RPC migration within the damaged retinal microenvironment.

  1. Predicted molecular signaling guiding photoreceptor cell migration following transplantation into damaged retina

    NASA Astrophysics Data System (ADS)

    Unachukwu, Uchenna John; Warren, Alice; Li, Ze; Mishra, Shawn; Zhou, Jing; Sauane, Moira; Lim, Hyungsik; Vazquez, Maribel; Redenti, Stephen

    2016-03-01

    To replace photoreceptors lost to disease or trauma and restore vision, laboratories around the world are investigating photoreceptor replacement strategies using subretinal transplantation of photoreceptor precursor cells (PPCs) and retinal progenitor cells (RPCs). Significant obstacles to advancement of photoreceptor cell-replacement include low migration rates of transplanted cells into host retina and an absence of data describing chemotactic signaling guiding migration of transplanted cells in the damaged retinal microenvironment. To elucidate chemotactic signaling guiding transplanted cell migration, bioinformatics modeling of PPC transplantation into light-damaged retina was performed. The bioinformatics modeling analyzed whole-genome expression data and matched PPC chemotactic cell-surface receptors to cognate ligands expressed in the light-damaged retinal microenvironment. A library of significantly predicted chemotactic ligand-receptor pairs, as well as downstream signaling networks was generated. PPC and RPC migration in microfluidic ligand gradients were analyzed using a highly predicted ligand-receptor pair, SDF-1α - CXCR4, and both PPCs and RPCs exhibited significant chemotaxis. This work present a systems level model and begins to elucidate molecular mechanisms involved in PPC and RPC migration within the damaged retinal microenvironment.

  2. Transcriptome Dynamics of Developing Photoreceptors in Three-Dimensional Retina Cultures Recapitulates Temporal Sequence of Human Cone and Rod Differentiation Revealing Cell Surface Markers and Gene Networks.

    PubMed

    Kaewkhaw, Rossukon; Kaya, Koray Dogan; Brooks, Matthew; Homma, Kohei; Zou, Jizhong; Chaitankar, Vijender; Rao, Mahendra; Swaroop, Anand

    2015-12-01

    The derivation of three-dimensional (3D) stratified neural retina from pluripotent stem cells has permitted investigations of human photoreceptors. We have generated a H9 human embryonic stem cell subclone that carries a green fluorescent protein (GFP) reporter under the control of the promoter of cone-rod homeobox (CRX), an established marker of postmitotic photoreceptor precursors. The CRXp-GFP reporter replicates endogenous CRX expression in vitro when the H9 subclone is induced to form self-organizing 3D retina-like tissue. At day 37, CRX+ photoreceptors appear in the basal or middle part of neural retina and migrate to apical side by day 67. Temporal and spatial patterns of retinal cell type markers recapitulate the predicted sequence of development. Cone gene expression is concomitant with CRX, whereas rod differentiation factor neural retina leucine zipper protein (NRL) is first observed at day 67. At day 90, robust expression of NRL and its target nuclear receptor NR2E3 is evident in many CRX+ cells, while minimal S-opsin and no rhodopsin or L/M-opsin is present. The transcriptome profile, by RNA-seq, of developing human photoreceptors is remarkably concordant with mRNA and immunohistochemistry data available for human fetal retina although many targets of CRX, including phototransduction genes, exhibit a significant delay in expression. We report on temporal changes in gene signatures, including expression of cell surface markers and transcription factors; these expression changes should assist in isolation of photoreceptors at distinct stages of differentiation and in delineating coexpression networks. Our studies establish the first global expression database of developing human photoreceptors, providing a reference map for functional studies in retinal cultures. PMID:26235913

  3. The Zebrafish pob Gene Encodes a Novel Protein Required for Survival of Red Cone Photoreceptor Cells

    PubMed Central

    Taylor, Michael R.; Kikkawa, Satoshi; Diez-Juan, Antonio; Ramamurthy, Visvanathan; Kawakami, Koichi; Carmeliet, Peter; Brockerhoff, Susan E.

    2005-01-01

    The zebrafish mutant, partial optokinetic response b (pob), was isolated using an N-ethyl N-nitrosourea (ENU)-based screening strategy designed to identify larvae with defective optokinetic responses in red but not white light. Previous studies showed that red-light blindness in pob is due to the specific loss of long-wavelength photoreceptor cells via an apoptotic mechanism. Here, we used positional cloning to identify the mutated pob gene. We find that pob encodes a highly conserved 30-kDa protein of unknown function. To demonstrate that the correct gene was isolated, we used the Tol2 transposon system to generate transgenic animals and rescue the mutant phenotype. The Pob protein contains putative transmembrane regions and protein-sorting signals. It is localized to the inner segment and synapse in photoreceptor cells, and when expressed in COS-7 cells it localizes to intracellular compartments. We also show that the degeneration of red cone photoreceptors in the mutants occurs independently of light. On the basis of our findings, we propose that Pob is not involved in phototransduction but rather plays an essential role in protein sorting and/or trafficking. PMID:15716502

  4. Transcription factor NF-Y is involved in differentiation of R7 photoreceptor cell in Drosophila.

    PubMed

    Yoshioka, Yasuhide; Ly, Luong Linh; Yamaguchi, Masamitsu

    2012-01-15

    The CCAAT motif-binding factor NF-Y consists of three different subunits, NF-YA, NF-YB and NF-YC. Knockdown of Drosophila NF-YA (dNF-YA) in eye discs with GMR-GAL4 and UAS-dNF-YAIR resulted in a rough eye phenotype and monitoring of differentiation of photoreceptor cells by LacZ expression in seven up-LacZ and deadpan-lacZ enhancer trap lines revealed associated loss of R7 photoreceptor signals. In line with differentiation of R7 being regulated by the sevenless (sev) gene and the MAPK cascade, the rough eye phenotype and loss of R7 signals in dNF-YA-knockdown flies were rescued by expression of the sev gene, or the D-raf gene, a downstream component of the MAPK cascade. The sev gene promoter contains two dNF-Y-binding consensus sequences which play positive roles in promoter activity. In chromatin immunoprecipitation assays with anti-dNF-YA antibody and S2 cells, the sev gene promoter region containing the NF-Y consensus was effectively amplified in immunoprecipitates from transgenic flies by polymerase chain reaction, indicating that dNF-Y is necessary for appropriate sev expression and involved in R7 photoreceptor cell development.

  5. A Positive Feedback Synapse from Retinal Horizontal Cells to Cone Photoreceptors

    PubMed Central

    Jackman, Skyler L.; Babai, Norbert; Chambers, James J.; Thoreson, Wallace B.; Kramer, Richard H.

    2011-01-01

    Cone photoreceptors and horizontal cells (HCs) have a reciprocal synapse that underlies lateral inhibition and establishes the antagonistic center-surround organization of the visual system. Cones transmit to HCs through an excitatory synapse and HCs feed back to cones through an inhibitory synapse. Here we report that HCs also transmit to cone terminals a positive feedback signal that elevates intracellular Ca2+ and accelerates neurotransmitter release. Positive and negative feedback are both initiated by AMPA receptors on HCs, but positive feedback appears to be mediated by a change in HC Ca2+, whereas negative feedback is mediated by a change in HC membrane potential. Local uncaging of AMPA receptor agonists suggests that positive feedback is spatially constrained to active HC-cone synapses, whereas the negative feedback signal spreads through HCs to affect release from surrounding cones. By locally offsetting the effects of negative feedback, positive feedback may amplify photoreceptor synaptic release without sacrificing HC-mediated contrast enhancement. PMID:21559323

  6. Injection of guanosine and adenosine nucleotides into Limulus ventral photoreceptor cells

    PubMed Central

    Bolsover, S. R.; Brown, J. E.

    1982-01-01

    1. Several nucleotide and nucleotide analogues had striking effects when pressure-injected into Limulus ventral photoreceptor cells. The poorly hydrolysable GTP analogues guanosine 5′-0-(3-thiotriphosphate) (GTPγS), guanylyl imidodiphosphate (Gpp[NH]p) and guanylyl (β, γ methylene) diphosphonate (Gpp[CH2]p) produced large increases in the frequency of `discrete events' that were recorded from photoreceptors in darkness. This effect was only observed after the injected cell was exposed to light. Injection of the ATP analogue ATPγS had effects similar to those of the GTP analogues. 2. We conclude that GTPγS, Gpp[NH]p, Gpp[CH2]p and ATPγS act at a common site to cause a light-dependent, long-term activation of the excitation mechanism of the photoreceptor. 3. Injection of GTP or GDP at pH 4.8 was followed by a smooth, transient depolarization that was observed neither when GTP at pH 7.5 was injected nor when ATP, 5′GMP or 2-[N-morpholino] ethane sulphonic acid (MES) were injected at pH 4.8. The reversal potential of the current induced by GTP injection was significantly more positive than the reversal potential of the light-induced current. 4. We conclude that GTP injection induces changes of membrane conductance either in addition to, or different from, the light-induced change of membrane conductance. 5. Injection of the ATP analogue adenylyl imidodiphosphate (App[NH]p), and the pyrophosphate analogue imidodiphosphate (p[NH]p) produced a drastic decrease in the sensitivity of photoreceptors to light. This decrease in sensitivity was partially reversed when the concentration of calcium ions in the bathing medium was reduced. 6. We suggest that App[NH]p and p[NH]p injections act by increasing the cytoplasmic concentration of calcium ions. PMID:7153930

  7. Cobalamin C Deficiency Shows a Rapidly Progressing Maculopathy With Severe Photoreceptor and Ganglion Cell Loss

    PubMed Central

    Bonafede, Lucas; Ficicioglu, Can H.; Serrano, Leona; Han, Grace; Morgan, Jessica I. W.; Mills, Monte D.; Forbes, Brian J.; Davidson, Stefanie L.; Binenbaum, Gil; Kaplan, Paige B.; Nichols, Charles W.; Verloo, Patrick; Leroy, Bart P.; Maguire, Albert M.; Aleman, Tomas S.

    2015-01-01

    Purpose To describe in detail the retinal structure and function of a group of patients with cobalamin C (cblC) disease. Methods Patients (n = 11, age 4 months to 15 years) with cblC disease (9/11, early onset) diagnosed by newborn screening underwent complete ophthalmic examinations, fundus photography, near-infrared reflectance imaging, and spectral-domain optical coherence tomography (SD-OCT). Electroretinograms (ERGs) were performed in a subset of patients. Results Patients carried homozygous or compound heterozygote mutations in the methylmalonic aciduria and homocystinuria type C (MMACHC) gene. Late-onset patients had a normal exam. All early-onset patients showed a maculopathy; older subjects had a retina-wide degeneration (n = 4; >7 years of age). In general, retinal changes were first observed before 1 year of age and progressed within months to a well-established maculopathy. Pseudocolobomas were documented in three patients. Measurable visual acuities ranged from 20/200 to 20/540. Nystagmus was present in 8/11 patients; 5/6 patients had normal ERGs; 1/6 had reduced rod-mediated responses. Spectral-domain OCT showed macular thinning, with severe ganglion cell layer (GCL) and outer nuclear layer (ONL) loss. Inner retinal thickening was observed in areas of total GCL/ONL loss. A normal lamination pattern in the peripapillary nasal retina was often seen despite severe central and/or retina-wide disease. Conclusions Patients with early-onset cblC and MMACHC mutations showed an early-onset, unusually fast-progressing maculopathy with severe central ONL and GCL loss. An abnormally thickened inner retina supports a remodeling response to both photoreceptor and ganglion cell degeneration and/or an interference with normal development in early-onset cblC. PMID:26658511

  8. In vitro characterization of micropatterned PLGA-PHBV8 blend films as temporary scaffolds for photoreceptor cells.

    PubMed

    Tezcaner, A; Hicks, D

    2008-07-01

    In developed countries the aging population faces increasing risks of blinding retinal diseases, for which there are few effective treatments available. Photoreceptor transplantation represents one approach, but generally results have been disappointing. We hypothesize that micropatterned biodegradable poly(L-lactic acid-co-glycolic acid)/poly(hydroxybutyrate-co-hydroxyvaleric acid) (PLGA-PHBV8) blend films could deliver photoreceptor cells in a more organized manner than bolus injections. Blending of PLGA and PHBV8 was used to optimize the degradation rate of the temporary template. At the end of 8 weeks, for both thin and thick films of PLGA-PHBV8 a 50% decrease of their initial weight with increasing water uptake was observed. When photoreceptor cells were seeded onto micropatterned PLGA-PHBV8 films with parallel grooves (21- and 42-microm-wide grooves and 20 microm ridge width and depth), the cells preferred laminin-deposited grooves to ridges and expressed rod- and cone-specific markers such as rhodopsin and arrestin. A loss in photoreceptor viability of 50% was observed after 7 days in culture. The effects of either retinal pigment epithelium (RPE)-derived or Muller glial cell-derived conditioned media or bFGF on the survival of photoreceptor cells seeded on PLGA-PHBV8 films were investigated. Addition of either RPE- and Muller-conditioned media increased statistically (p < 0.01) the viability of photoreceptor cells after 7 days of incubation. Our results suggest that such biodegradable micropatterned PLGA-PHBV8 blend films have a potential to deliver photoreceptor cells to the subretinal space and ensure laminar organization and maintenance of differentiation, and that incorporation of intrinsic factors within the scaffold would enhance the survival rate of transplanted cells.

  9. Transition of differential histone H3 methylation in photoreceptors and other retinal cells during retinal differentiation

    PubMed Central

    Ueno, Kazuko; Iwagawa, Toshiro; Kuribayashi, Hiroshi; Baba, Yukihiro; Nakauchi, Hiromitsu; Murakami, Akira; Nagasaki, Masao; Suzuki, Yutaka; Watanabe, Sumiko

    2016-01-01

    To analyze cell lineage-specific transitions in global transcriptional and epigenetic changes during retinogenesis, we purified retinal cells from normal mice during postnatal development into two fractions, namely, photoreceptors and other retinal cells, based on Cd73 expression, and performed RNA sequencing and ChIP sequencing of H3K27me3 and H3K4me3. Genes expressed in the photoreceptor lineage were marked with H3K4me3 in the Cd73-positive cell fraction; however, the level of H3K27me3 was very low in both Cd73-positive and -negative populations. H3K27me3 may be involved in spatio-temporal onset of a subset of bipolar-related genes. Subsets of genes expressed in amacrine and retinal ganglion cells, which are early-born retinal cell types, were suggested to be maintained in a silent state by H3K27me3 during late-stage retinogenesis. In the outer nuclear layer, upregulation of Rho and rod-related genes were observed in Ezh2-ablated retina, suggesting a role for H3K27me3 in the maintenance of proper expression levels. Taken together, our data on the transition of lineage-specific molecular signatures during development suggest that histone methylation is involved in retinal differentiation and maintenance through cell lineage-specific mechanisms. PMID:27377164

  10. A role of Heat Shock Protein 70 in Photoreceptor Cell Death: Potential as a Novel Therapeutic Target in Retinal Degeneration.

    PubMed

    Furukawa, Ayako; Koriyama, Yoshiki

    2016-01-01

    Retinal degenerative diseases (RDs) such as retinitis pigmentosa (RP) are a genetically heterogeneous group of disorders characterized by night blindness and peripheral vision loss, which caused by the dysfunction and death of photoreceptor cells. Although many causative gene mutations have been reported, the final common end stage is photoreceptor cell death. Unfortunately, no effective treatments or therapeutic agents have been discovered. Heat shock protein 70 (HSP70) is highly conserved and has antiapoptotic activities. A few reports have shown that HSP70 plays a role in RDs. Thus, we focused on the role of HSP70 in photoreceptor cell death. Using the N-methyl-N-nitrosourea (MNU)-induced photoreceptor cell death model in mice, we could examine two stages of the novel cell death mechanism; the early stage, including HSP70 cleavage through protein carbonylation by production of reactive oxygen species, lipid peroxidation and Ca(2+) influx/calpain activation, and the late stage of cathepsin and/or caspase activation. The upregulation of intact HSP70 expression by its inducer is likely to protect photoreceptor cells. In this review, we focus on the role of HSP70 and the novel cell death signaling process in RDs. We also describe candidate therapeutic agents for RDs. PMID:26507240

  11. Understanding photoreceptor outer segment phagocytosis: use and utility of RPE cells in culture.

    PubMed

    Mazzoni, Francesca; Safa, Hussein; Finnemann, Silvia C

    2014-09-01

    RPE cells are the most actively phagocytic cells in the human body. In the eye, RPE cells face rod and cone photoreceptor outer segments at all times but contribute to shedding and clearance phagocytosis of distal outer segment tips only once a day. Analysis of RPE phagocytosis in situ has succeeded in identifying key players of the RPE phagocytic mechanism. Phagocytic processes comprise three distinct phases, recognition/binding, internalization, and digestion, each of which is regulated separately by phagocytes. Studies of phagocytosis by RPE cells in culture allow specifically analyzing and manipulating these distinct phases to identify their molecular mechanisms. Here, we compare similarities and differences of primary, immortalized, and stem cell-derived RPE cells in culture to RPE cells in situ with respect to phagocytic function. We discuss in particular potential pitfalls of RPE cell culture phagocytosis assays. Finally, we point out considerations for phagocytosis assay development for future studies.

  12. Morphologic evidence for differentiation of pinealocytes from photoreceptor cells in the adult noctule bat (Nyctalus noctula, Schreber).

    PubMed

    Pevet, P; Ariëns Kappers, J; Voûte, A M

    1977-07-26

    An electron microscopical investigation of the pineal gland of the adult noctule bat revealed the presence of some peculiar ciliary derivatives, similar to the club-shaped outer segment of rudimentary photoreceptor cells in the pineal organ of nonmammalian vertebrates. The pinealocytes of population I can be classified in several morphological types, one of them displaying morphological features resembling those of rudimentary photoreceptor cells. These results reconfirm the concept of the sensory cell line in the vertebrate pineal organ. The question whether the pinealocytes of population II belong to the same sensory cell line is discussed.

  13. The traffic of particles in the axonic process of vertebrate cone-type photoreceptor cells.

    PubMed

    Kishigami, A; Kano, M; Tashiro, H; Tsukahara, Y

    1995-06-01

    Differential-interference-contrast microscopy with video enhancement displayed the movement of particles for the first time in the isolated axonic process of cone-type photoreceptor cells of Rana catesbiana. This movement was observed under visible light which visual pigments could absorb. The number of retrograde moving particles in an arbitrary area on the axonic process was twice that of those moving in the anterograde direction. The mean velocities were 1.03 +/- 0.55 microns/sec for anterograde particles and 0.41 +/- 0.30 microns/sec for retrograde particles, which are of the same order as those found in isolated neurons. PMID:7580814

  14. An Electrogenic Sodium Pump in Limulus Ventral Photoreceptor Cells

    PubMed Central

    Brown, J. E.; Lisman, J. E.

    1972-01-01

    A hyperpolarization can be recorded intracellularly following either a single bright light stimulus or the intracellular injection of Na+. This after-hyperpolarization is abolished by bathing in 5 x 10-6 M strophanthidin or removal of extracellular K+. Both treatments also lead to a small, rapid depolarization of the dark-adapted cell. When either treatment is prolonged, light responses can still be elicited, although with repetitive stimuli the responses are slowly and progressively diminished in size. The rate of diminution is greater for higher values of [Ca++]out; with [Ca++]out = 0.1 mM, there is almost no progressive diminution of repetitive responses produced by either K+-free seawater or strophanthidin. We propose that an electrogenic Na+ pump contributes directly to dark-adapted membrane voltage and also generates the after-hyperpolarizations, but does not directly generate the receptor potential. Inhibition of this pump leads to intracellular accumulation of sodium ions, which in turn leads to an increase in intracellular Ca++ (provided there is sufficient extracellular Ca++). This increase in intracellular calcium probably accounts for the progressive decrease in the size of the receptor potential seen when the pump is inhibited. PMID:5025747

  15. Feedback from horizontal cells to rod photoreceptors in vertebrate retina

    PubMed Central

    Thoreson, Wallace B.; Babai, Norbert; Bartoletti, Theodore M.

    2013-01-01

    Retinal horizontal cells (HCs) provide negative feedback to cones but, largely because annular illumination fails to evoke a depolarizing response in rods, it is widely believed that there is no feedback from HCs to rods. However, feedback from HCs to cones involves small changes in the calcium current (ICa) that does not always generate detectable depolarizing responses. We therefore recorded ICa directly from rods to test whether they were modulated by feedback from HCs. To circumvent problems presented by overlapping receptive fields of HCs and rods, we manipulated the membrane potential of voltage clamped HCs while simultaneously recording from rods in a salamander retinal slice preparation. Like HC feedback in cones, hyperpolarizing HCs from −14 to −54, −84, and −104 mV increased the amplitude of ICa recorded from synaptically connected rods and caused hyperpolarizing shifts in ICa voltage dependence. These effects were blocked by supplementing the bicarbonate-buffered saline solution with HEPES. In rods lacking light-responsive outer segments, hyperpolarizing neighboring HCs with light caused a negative activation shift and increased the amplitude of ICa. These changes in ICa were blocked by HEPES and by inhibiting HC light responses with a glutamate antagonist indicating they were due to HC feedback. These results show that rods, like cones, receive negative feedback from HCs that regulates the amplitude and voltage dependence of ICa. HC to rod feedback counters light-evoked decreases in synaptic output and thus shapes the transmission of rod responses to downstream visual neurons. PMID:18509030

  16. Müller cell GFAP expression exhibits gradient from focus of photoreceptor light damage.

    PubMed

    Burns, M S; Robles, M

    1990-05-01

    High intensity (ca. 150 foot-candles), cumulative fluorescent light exposure regimes of 40 or 60 minutes to pigmented Long Evans rats were sufficient to elicit glial fibrillary acidic protein immunoreactivity (GFAP-IR) in Müller cells, when the animals are sacrificed 7 days post-exposure. Exposure to only 20 minutes of cumulative light or sacrifice immediately after exposure was not sufficient to initiate GFAP-IR in Müller cells. A gradient of GFAP-IR was observed extending from an approximately circular focus superior to the optic disc to the peripheral retina, whether or not there was morphological damage to the photoreceptors observable at the light microscopic level. Photoreceptor lesions produced by laser photocoagulation elicited the same gradient of GFAP-IR, and showed that GFAP-IR was not a reflection of a central to peripheral gradient of light received by the retina. Excessive light exposure initiated a signal which induced GFAP expression in Müller cells. This signal appeared to require a dark period and may be a diffusible factor that moves through extracellular pathways. PMID:2200639

  17. Two-photon microscopy reveals early rod photoreceptor cell damage in light-exposed mutant mice

    PubMed Central

    Maeda, Akiko; Palczewska, Grazyna; Golczak, Marcin; Kohno, Hideo; Dong, Zhiqian; Maeda, Tadao; Palczewski, Krzysztof

    2014-01-01

    Atrophic age-related and juvenile macular degeneration are especially devastating due to lack of an effective cure. Two retinal cell types, photoreceptor cells and the adjacent retinal pigmented epithelium (RPE), reportedly display the earliest pathological changes. Abca4−/−Rdh8−/− mice, which mimic many features of human retinal degeneration, allowed us to determine the sequence of light-induced events leading to retinal degeneration. Using two-photon microscopy with 3D reconstruction methodology, we observed an initial strong retinoid-derived fluorescence and expansion of Abca4−/−Rdh8−/− mouse rod cell outer segments accompanied by macrophage infiltration after brief exposure of the retina to bright light. Additionally, light-dependent fluorescent compounds produced in rod outer segments were not transferred to the RPE of mice genetically defective in RPE phagocytosis. Collectively, these findings suggest that for light-induced retinopathies in mice, rod photoreceptors are the primary site of toxic retinoid accumulation and degeneration, followed by secondary changes in the RPE. PMID:24706832

  18. Damage to the photoreceptor cells of the rabbit retina from 56Fe ions: effect of age at exposure, 1

    NASA Technical Reports Server (NTRS)

    Williams, G. R.; Lett, J. T.; Chatterjee, A. (Principal Investigator)

    1996-01-01

    Optic and proximate tissues of New Zealand white (NZW) rabbits at ages (approximately 3.5 years) near the middle of their median lifespan (5-7 years) were given 0.5-3.5 Gy of 465 MeV u-1 56Fe ions in the Bragg plateau region of energy deposition at a linear energy transfer (LET infinity) of 220 +/- 31 keV micrometer-1. Dose-dependent losses of retinal photoreceptor cells (rods) occurred until 1-2 years after irradiation, the period of this interim report. Similar cumulative losses of photoreceptor cells were seen during the period 1-2 years post-irradiation for rabbits given comparable exposures when young (6-9 weeks old). Since losses of photoreceptor cells at early times had not been determined previously, the current experiment, which was designed to simulate the responses of mature astronauts, redressed that deficiency.

  19. Damage to the photoreceptor cells of the rabbit retina from 56Fe ions: effect of age at exposure, 1.

    PubMed

    Williams, G R; Lett, J T

    1996-01-01

    Optic and proximate tissues of New Zealand white (NZW) rabbits at ages (approximately 3.5 years) near the middle of their median lifespan (5-7 years) were given 0.5-3.5 Gy of 465 MeV u-1 56Fe ions in the Bragg plateau region of energy deposition at a linear energy transfer (LET infinity) of 220 +/- 31 keV micrometer-1. Dose-dependent losses of retinal photoreceptor cells (rods) occurred until 1-2 years after irradiation, the period of this interim report. Similar cumulative losses of photoreceptor cells were seen during the period 1-2 years post-irradiation for rabbits given comparable exposures when young (6-9 weeks old). Since losses of photoreceptor cells at early times had not been determined previously, the current experiment, which was designed to simulate the responses of mature astronauts, redressed that deficiency. PMID:11538988

  20. Limulus ventral eye. Physiological properties of photoreceptor cells in an organ culture medium

    PubMed Central

    1978-01-01

    Ventral photoreceptor cells bathed in an organ culture medium typically have resting potentials of -85 mV and membrane resistances of 35 Momega and, when dark-adapted, exhibit large potential fluctuations (LPFs) of 60 mV and small potential fluctuations (SPFs) of less than 30 mV. LPFs appear to be regenerative events triggered by SPFs, the well-known quantum bumps. In the dark, SPFs and LPFs occur spontaneously. At intensities near threshold, the rate of occurrence is directly proportional to light intensity, indicating that SPFs and LPFs are elicited by single photon events. At higher intensities, SPFs and LPFs sum to produce a receptor potential that is graded over approximately a 9-log-unit range of light intensity. Amplitude histograms of the discrete potential waves are bimodal, reflecting the SPF and LPF populations. Histograms of current waves are unimodal. SPFs and LPFs are insensitive to 1 microgram tetrodotoxin. I-V characteristics show initial inward currents of approximately 15 nA for voltage clamps to - 40 mV and steady-state outward currents for all clamp potentials. Photoreceptor cells bathed in organ culture medium retain these properties for periods of at least 75 days. PMID:722278

  1. Soluble Adenylyl Cyclase Is Required for Retinal Ganglion Cell and Photoreceptor Differentiation

    PubMed Central

    Shaw, Peter X.; Fang, Jiahua; Sang, Alan; Wang, Yan; Kapiloff, Michael S.; Goldberg, Jeffrey L.

    2016-01-01

    Purpose We have previously demonstrated that soluble adenylyl cyclase (sAC) is necessary for retinal ganglion cell (RGC) survival and axon growth. Here, we further investigate the role of sAC in neuronal differentiation during retinal development. Methods Chx10 or Math5 promoter-driven Cre-Lox recombination were used to conditionally delete sAC from early and intermediate retinal progenitor cells during retinal development. We examined cell type–specific markers expressed by retinal cells to estimate their relative numbers and characterize retinal laminar morphology by immunofluorescence in adult and newborn mice. Results Retinal ganglion cell and amacrine cell markers were significantly lower in the retinas of adult Math5cre/sACfl/fl and Chx10cre/sACfl/fl mice than in those of wild-type controls. The effect on RGC development was detectable as early as postnatal day 1 and deleting sAC in either Math5- or Chx10-expressing retinal progenitor cells also reduced nerve fiber layer thickness into adulthood. The thickness of the photoreceptor layer was slightly but statistically significantly decreased in both the newborn Chx10cre/sACfl/fl and Math5cre/sACfl/fl mice, but this reduction and abnormal morphology persisted in the adults in only the Chx10cre/sACfl/fl mice. Conclusions sAC plays an important role in the early retinal development of RGCs as well as in the development of amacrine cells and to a lesser degree photoreceptors. PMID:27679853

  2. Cellular synthesis and axonal transport of gamma-aminobutyric acid in a photoreceptor cell of the barnacle.

    PubMed Central

    Koike, H; Tsuda, K

    1980-01-01

    1. [3H]glutamate or [3H]gamma-aminobutyric acid (GABA) was injected into the photoreceptor cell of the lateral ocellus of Balanus eburneus, in order to study the transmitter substance of the cell. 2. The photoreceptor cell synthesized [3H]GABA from injected [3H]glutamate. 3. The newly formed [3H]GABA moved inside the photoreceptor axon towards the axon terminal with a velocity of about 0.9 mm/hr. Injected [3H]GABA moved at 0.9 mm/hr and also at 0.4 mm/hr. 4. Axonally transported [3H]GABA reached the axon terminal within several hours following the injection. It did not accumulate at the terminal, but gradually disappeared. 5. Light-microscope and electron-microscope autoradiography following the injection of [3H]GABA revealed that [3H]-reacted silver grains were present in a certain type of axon terminal. The terminal thus identified as that of a photoreceptor cell contains many clear, polymorphic synaptic vesicles about 300-500 A in diameter, some dense-cored vesicles 700-1300 A in diameter, and glycogen granules. The terminal forms many synapses, and each synapse has a synaptic dense body. The terminal always faces two post-synaptic elements at the synapse, forming a triad with a gap distance of about 160-200 A. 6. A GABA analogue, [3H]di-aminobutyric acid, was selectively taken up into the terminals previously identified as those of photoreceptors. 7. These results support the notion that the transmitter substance of the photoreceptor cell of the barnacle is GABA. Images Plate 1 Plate 2 PMID:6160239

  3. Photoreceptor engineering

    PubMed Central

    Ziegler, Thea; Möglich, Andreas

    2015-01-01

    Sensory photoreceptors not only control diverse adaptive responses in Nature, but as light-regulated actuators they also provide the foundation for optogenetics, the non-invasive and spatiotemporally precise manipulation of cellular events by light. Novel photoreceptors have been engineered that establish control by light over manifold biological processes previously inaccessible to optogenetic intervention. Recently, photoreceptor engineering has witnessed a rapid development, and light-regulated actuators for the perturbation of a plethora of cellular events are now available. Here, we review fundamental principles of photoreceptors and light-regulated allostery. Photoreceptors dichotomize into associating receptors that alter their oligomeric state as part of light-regulated allostery and non-associating receptors that do not. A survey of engineered photoreceptors pinpoints light-regulated association reactions and order-disorder transitions as particularly powerful and versatile design principles. Photochromic photoreceptors that are bidirectionally toggled by two light colors augur enhanced spatiotemporal resolution and use as photoactivatable fluorophores. By identifying desirable traits in engineered photoreceptors, we provide pointers for the design of future, light-regulated actuators. PMID:26137467

  4. CULD is required for rhodopsin and TRPL channel endocytic trafficking and survival of photoreceptor cells

    PubMed Central

    Xu, Ying; Wang, Tao

    2016-01-01

    ABSTRACT Endocytosis of G-protein-coupled receptors (GPCRs) and associated channels contributes to desensitization and adaptation of a variety of signaling cascades. In Drosophila melanogaster, the main light-sensing rhodopsin (Rh1; encoded by ninaE) and the downstream ion channel, transient receptor potential like (TRPL), are endocytosed in response to light, but the mechanism is unclear. By using an RNA-Sequencing (RNA-Seq) approach, we discovered a protein we named CULD, a photoreceptor-cell enriched CUB- and LDLa-domain transmembrane protein, that is required for endocytic trafficking of Rh1 and TRPL. CULD localized to endocytic Rh1-positive or TRPL-positive vesicles. Mutations in culd resulted in the accumulation of Rh1 and TRPL within endocytic vesicles, and disrupted the regular turnover of endocytic Rh1 and TRPL. In addition, loss of CULD induced light- and age-dependent retinal degeneration, and reduced levels of Rh1, but not of TRPL, suppressed retinal degeneration in culd-null mutant flies. Our data demonstrate that CULD plays an important role in the endocytic turnover of Rh1 and TRPL, and suggest that CULD-dependent rhodopsin endocytic trafficking is required for maintaining photoreceptor integrity. PMID:26598556

  5. Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light

    PubMed Central

    Kuse, Yoshiki; Ogawa, Kenjiro; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Hara, Hideaki

    2014-01-01

    Our eyes are increasingly exposed to light from the emitting diode (LED) light of video display terminals (VDT) which contain much blue light. VDTs are equipped with televisions, personal computers, and smart phones. The present study aims to clarify the mechanism underlying blue LED light-induced photoreceptor cell damage. Murine cone photoreceptor-derived cells (661 W) were exposed to blue, white, or green LED light (0.38 mW/cm2). In the present study, blue LED light increased reactive oxygen species (ROS) production, altered the protein expression level, induced the aggregation of short-wavelength opsins (S-opsin), resulting in severe cell damage. While, blue LED light damaged the primary retinal cells and the damage was photoreceptor specific. N-Acetylcysteine (NAC), an antioxidant, protected against the cellular damage induced by blue LED light. Overall, the LED light induced cell damage was wavelength-, but not energy-dependent and may cause more severe retinal photoreceptor cell damage than the other LED light. PMID:24909301

  6. Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light.

    PubMed

    Kuse, Yoshiki; Ogawa, Kenjiro; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Hara, Hideaki

    2014-01-01

    Our eyes are increasingly exposed to light from the emitting diode (LED) light of video display terminals (VDT) which contain much blue light. VDTs are equipped with televisions, personal computers, and smart phones. The present study aims to clarify the mechanism underlying blue LED light-induced photoreceptor cell damage. Murine cone photoreceptor-derived cells (661 W) were exposed to blue, white, or green LED light (0.38 mW/cm(2)). In the present study, blue LED light increased reactive oxygen species (ROS) production, altered the protein expression level, induced the aggregation of short-wavelength opsins (S-opsin), resulting in severe cell damage. While, blue LED light damaged the primary retinal cells and the damage was photoreceptor specific. N-Acetylcysteine (NAC), an antioxidant, protected against the cellular damage induced by blue LED light. Overall, the LED light induced cell damage was wavelength-, but not energy-dependent and may cause more severe retinal photoreceptor cell damage than the other LED light. PMID:24909301

  7. Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light.

    PubMed

    Kuse, Yoshiki; Ogawa, Kenjiro; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Hara, Hideaki

    2014-06-09

    Our eyes are increasingly exposed to light from the emitting diode (LED) light of video display terminals (VDT) which contain much blue light. VDTs are equipped with televisions, personal computers, and smart phones. The present study aims to clarify the mechanism underlying blue LED light-induced photoreceptor cell damage. Murine cone photoreceptor-derived cells (661 W) were exposed to blue, white, or green LED light (0.38 mW/cm(2)). In the present study, blue LED light increased reactive oxygen species (ROS) production, altered the protein expression level, induced the aggregation of short-wavelength opsins (S-opsin), resulting in severe cell damage. While, blue LED light damaged the primary retinal cells and the damage was photoreceptor specific. N-Acetylcysteine (NAC), an antioxidant, protected against the cellular damage induced by blue LED light. Overall, the LED light induced cell damage was wavelength-, but not energy-dependent and may cause more severe retinal photoreceptor cell damage than the other LED light.

  8. cGMP production of patient-specific iPSCs and photoreceptor precursor cells to treat retinal degenerative blindness

    PubMed Central

    Wiley, Luke A.; Burnight, Erin R.; DeLuca, Adam P.; Anfinson, Kristin R.; Cranston, Cathryn M.; Kaalberg, Emily E.; Penticoff, Jessica A.; Affatigato, Louisa M.; Mullins, Robert F.; Stone, Edwin M.; Tucker, Budd A.

    2016-01-01

    Immunologically-matched, induced pluripotent stem cell (iPSC)-derived photoreceptor precursor cells have the potential to restore vision to patients with retinal degenerative diseases like retinitis pigmentosa. The purpose of this study was to develop clinically-compatible methods for manufacturing photoreceptor precursor cells from adult skin in a non-profit cGMP environment. Biopsies were obtained from 35 adult patients with inherited retinal degeneration and fibroblast lines were established under ISO class 5 cGMP conditions. Patient-specific iPSCs were then generated, clonally expanded and validated. Post-mitotic photoreceptor precursor cells were generated using a stepwise cGMP-compliant 3D differentiation protocol. The recapitulation of the enhanced S-cone phenotype in retinal organoids generated from a patient with NR2E3 mutations demonstrated the fidelity of these protocols. Transplantation into immune compromised animals revealed no evidence of abnormal proliferation or tumor formation. These studies will enable clinical trials to test the safety and efficiency of patient-specific photoreceptor cell replacement in humans. PMID:27471043

  9. cGMP production of patient-specific iPSCs and photoreceptor precursor cells to treat retinal degenerative blindness.

    PubMed

    Wiley, Luke A; Burnight, Erin R; DeLuca, Adam P; Anfinson, Kristin R; Cranston, Cathryn M; Kaalberg, Emily E; Penticoff, Jessica A; Affatigato, Louisa M; Mullins, Robert F; Stone, Edwin M; Tucker, Budd A

    2016-01-01

    Immunologically-matched, induced pluripotent stem cell (iPSC)-derived photoreceptor precursor cells have the potential to restore vision to patients with retinal degenerative diseases like retinitis pigmentosa. The purpose of this study was to develop clinically-compatible methods for manufacturing photoreceptor precursor cells from adult skin in a non-profit cGMP environment. Biopsies were obtained from 35 adult patients with inherited retinal degeneration and fibroblast lines were established under ISO class 5 cGMP conditions. Patient-specific iPSCs were then generated, clonally expanded and validated. Post-mitotic photoreceptor precursor cells were generated using a stepwise cGMP-compliant 3D differentiation protocol. The recapitulation of the enhanced S-cone phenotype in retinal organoids generated from a patient with NR2E3 mutations demonstrated the fidelity of these protocols. Transplantation into immune compromised animals revealed no evidence of abnormal proliferation or tumor formation. These studies will enable clinical trials to test the safety and efficiency of patient-specific photoreceptor cell replacement in humans. PMID:27471043

  10. Photoreceptor Ablation Initiates the Immediate Loss of Glutamate Receptors in Postsynaptic Bipolar Cells in Retina

    PubMed Central

    2015-01-01

    Structural changes underlying neurodegenerative diseases include dismantling of synapses, degradation of circuitry, and even massive rewiring. Our limited understanding of synapse dismantling stems from the inability to control the timing and extent of cell death. In this study, selective ablation of cone photoreceptors in live mouse retina and tracking of postsynaptic partners at the cone-to-ON cone bipolar cell synapse reveals that early reaction to cone loss involves rapid and local changes in postsynaptic glutamate receptor distribution. Glutamate receptors disappear with a time constant of 2 h. Furthermore, binding of glutamate receptors by agonists and antagonists is insufficient to rescue glutamate receptor loss, suggesting that receptor allocation depends on the physical presence of cones. These findings demonstrate that the initial step in synapse disassembly involves postsynaptic receptor loss rather than dendritic retraction, providing insight into the early stages of neurodegenerative disease. PMID:25673837

  11. Basal bodies exhibit polarized positioning in zebrafish cone photoreceptors

    PubMed Central

    Ramsey, Michelle; Perkins, Brian D.

    2012-01-01

    The asymmetric positioning of basal bodies, and therefore cilia, is often critical for proper cilia function. This planar polarity is critical for motile cilia function but has not been extensively investigated for non-motile cilia or for sensory cilia such as vertebrate photoreceptors. Zebrafish photoreceptors form an organized mosaic ideal for investigating cilia positioning. We report that in the adult retina, the basal bodies of red, green-, and blue-sensitive cone photoreceptors localized asymmetrically on the cell edge nearest to the optic nerve. In contrast, no patterning was seen in the basal bodies of ultraviolet-sensitive cones or in rod photoreceptors. The asymmetric localization of basal bodies was consistent in all regions of the adult retina. Basal body patterning was unaffected in the cones of the XOPS-mCFP transgenic line, which lacks rod photoreceptors. Finally, the adult pattern was not seen in 7 day post fertilization (dpf) larvae as basal bodies were randomly distributed in all the photoreceptor subtypes. These results establish the asymmetrical localization of basal bodies in red-, green-, and blue-sensitive cones in adult zebrafish retinas but not in larvae. This pattern suggests an active cellular mechanism regulated the positioning of basal bodies after the transition to the adult mosaic and that rods do not seem to be necessary for the patterning of cone basal bodies. PMID:23171982

  12. Adenosine modulates light responses of rat retinal ganglion cell photoreceptors througha cAMP-mediated pathway

    PubMed Central

    Sodhi, Puneet; Hartwick, Andrew T E

    2014-01-01

    Adenosine is an established neuromodulator in the mammalian retina, with A1 adenosine receptors being especially prevalent in the innermost ganglion cell layer. Activation of A1 receptors causes inhibition of adenylate cyclase, decreases in intracellular cyclic AMP (cAMP) levels and inhibition of protein kinase A (PKA). In this work, our aim was to characterize the effects of adenosine on the light responses of intrinsically photosensitive retinal ganglion cells (ipRGCs) and to determine whether these photoreceptors are subject to neuromodulation through intracellular cAMP-related signalling pathways. Using multielectrode array recordings from postnatal and adult rat retinas, we demonstrated that adenosine significantly shortened the duration of ipRGC photoresponses and reduced the number of light-evoked spikes fired by these neurons. The effects were A1 adenosine receptor-mediated, and the expression of this receptor on melanopsin-containing ipRGCs was confirmed by calcium imaging experiments on isolated cells in purified cultures. While inhibition of the cAMP/PKA pathway by adenosine shortened ipRGC light responses, stimulation of this pathway with compounds such as forskolin had the opposite effect and lengthened the duration of ipRGC spiking. Our findings reveal that the modification of ipRGC photoresponses through a cAMP/PKA pathway is a general feature of rat ganglion cell photoreceptors, and this pathway can be inhibited through activation of A1 receptors by adenosine. As adenosine levels in the retina rise at night, adenosinergic modulation of ipRGCs may serve as an internal regulatory mechanism to limit transmission of nocturnal photic signals by ipRGCs to the brain. Targeting retinal A1 adenosine receptors for ipRGC inhibition represents a potential therapeutic target for sleep disorders and migraine-associated photophobia. PMID:25038240

  13. DEFECTIVE TRAFFICKING OF CONE PHOTORECEPTOR CNG CHANNELS INDUCES THE UNFOLDED PROTEIN RESPONSE AND ER STRESS-ASSOCIATED CELL DEATH

    PubMed Central

    Duricka, Deborah L.; Brown, R. Lane; Varnum, Michael D.

    2011-01-01

    SYNOPSIS Mutations that perturb the function of photoreceptor cyclic nucleotide-gated (CNG) channels are associated with several human retinal disorders, but the molecular and cellular mechanisms leading to photoreceptor dysfunction and degeneration remain unclear. Many loss-of-function mutations result in intracellular accumulation of CNG channel subunits. Accumulation of proteins in the endoplasmic reticulum (ER) is known to cause ER stress and trigger the unfolded protein response (UPR), an evolutionarily conserved cellular program that results in either adaptation via increased protein processing capacity or apoptotic cell death. We hypothesize that defective trafficking of cone photoreceptor CNG channels can induce UPR-mediated cell death. To test this idea, CNGA3 subunits bearing the R563H and Q655X mutations were expressed in photoreceptor-derived 661W cells with CNGB3 subunits. Compared to wild type, R563H and Q655X subunits displayed altered degradation rates and/or were retained in the ER. ER retention was associated with increased expression of UPR-related markers of ER stress and with decreased cell viability. Chemical and pharmacological chaperones (TUDCA, 4PBA, and the cGMP analog CPT-cGMP) differentially reduced degradation and/or promoted plasma-membrane localization of defective subunits. Improved subunit maturation was concordant with reduced expression of ER stress markers and improved viability of cells expressing localization-defective channels. These results indicate that ER stress can arise from expression of localization defective CNG channels, and may represent a contributing factor for photoreceptor degeneration. PMID:21992067

  14. Regulatory arrestin cycle secures the fidelity and maintenance of the fly photoreceptor cell.

    PubMed Central

    Byk, T; Bar-Yaacov, M; Doza, Y N; Minke, B; Selinger, Z

    1993-01-01

    Excitation of fly photoreceptor cells is initiated by photoisomerization of rhodopsin to the active form of metarhodopsin. Fly metarhodopsin is thermostable, does not bleach, and does not regenerate spontaneously to rhodopsin. For this reason, the activity of metarhodopsin must be stopped by an effective termination reaction. On the other hand, there is also a need to restore the inactivated photopigment to an excitable state in order to keep a sufficient number of photopigment molecules available for excitation. The following findings reveal how these demands are met. The photopigment undergoes rapid phosphorylation upon photoconversion of rhodopsin to metarhodopsin and an efficient Ca2+ dependent dephosphorylation upon regeneration of metarhodopsin to rhodopsin. Phosphorylation decreases the ability of metarhodopsin to activate the guanine nucleotide-binding protein. Binding of 49-kDa arrestin further quenches the activity of metarhodopsin and protects it from dephosphorylation. Light-dependent binding and release of 49-kDa arrestin from metarhodopsin- and rhodopsin-containing membranes, respectively, directs the dephosphorylation reaction toward rhodopsin. This ensures the return of phosphorylated metarhodopsin to the rhodopsin pool without initiating transduction in the dark. Assays of rhodopsin dephosphorylation in the Drosophila retinal degeneration C (rdgC) mutant, a mutant in a gene previously cloned and predicted to encode a serine/threonine protein phosphatase, reveal that phosphorylated rhodopsin is a major substrate for the rdgC phosphatase. We propose that mutations resulting in either a decrease or an improper regulation of rhodopsin phosphatase activity bring about degeneration of the fly photoreceptor cells. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8446607

  15. Targeted Deletion of Vesicular GABA Transporter from Retinal Horizontal Cells Eliminates Feedback Modulation of Photoreceptor Calcium Channels123

    PubMed Central

    Liu, Xue; Boulter, Jim; Grove, James; Pérez de Sevilla Müller, Luis; Barnes, Steven; Brecha, Nicholas C.

    2016-01-01

    Abstract The cellular mechanisms underlying feedback signaling from horizontal cells to photoreceptors, which are important for the formation of receptive field surrounds of early visual neurons, remain unsettled. Mammalian horizontal cells express a complement of synaptic proteins that are necessary and sufficient for calcium-dependent exocytosis of inhibitory neurotransmitters at their contacts with photoreceptor terminals, suggesting that they are capable of releasing GABA via vesicular release. To test whether horizontal cell vesicular release is involved in feedback signaling, we perturbed inhibitory neurotransmission in these cells by targeted deletion of the vesicular GABA transporter (VGAT), the protein responsible for the uptake of inhibitory transmitter by synaptic vesicles. To manipulate horizontal cells selectively, an iCre mouse line with Cre recombinase expression controlled by connexin57 (Cx57) regulatory elements was generated. In Cx57-iCre mouse retina, only horizontal cells expressed Cre protein, and its expression occurred in all retinal regions. After crossing with a VGATflox/flox mouse line, VGAT was selectively eliminated from horizontal cells, which was confirmed immunohistochemically. Voltage-gated ion channel currents in horizontal cells of Cx57-VGAT−/− mice were the same as Cx57-VGAT+/+ controls, as were the cell responses to the ionotropic glutamate receptor agonist kainate, but the response to the GABAA receptor agonist muscimol in Cx57-VGAT−/− mice was larger. In contrast, the feedback inhibition of photoreceptor calcium channels, which in control animals is induced by horizontal cell depolarization, was completely absent in Cx57-VGAT−/− mice. The results suggest that vesicular release of GABA from horizontal cells is required for feedback inhibition of photoreceptors. PMID:27022629

  16. Human neural progenitor cells decrease photoreceptor degeneration, normalize opsin distribution and support synapse structure in cultured porcine retina.

    PubMed

    Mollick, Tanzina; Mohlin, Camilla; Johansson, Kjell

    2016-09-01

    Retinal neurodegenerative disorders like retinitis pigmentosa, age-related macular degeneration, diabetic retinopathy and retinal detachment decrease retinal functionality leading to visual impairment. The pathological events are characterized by photoreceptor degeneration, synaptic disassembly, remodeling of postsynaptic neurons and activation of glial cells. Despite intense research, no effective treatment has been found for these disorders. The current study explores the potential of human neural progenitor cell (hNPC) derived factors to slow the degenerative processes in adult porcine retinal explants. Retinas were cultured for 3 days with or without hNPCs as a feeder layer and investigated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), immunohistochemical, western blot and quantitative real time-polymerase chain reaction (qRT-PCR) techniques. TUNEL showed that hNPCs had the capacity to limit photoreceptor cell death. Among cone photoreceptors, hNPC coculture resulted in better maintenance of cone outer segments and reduced opsin mislocalization. Additionally, maintained synaptic structural integrity and preservation of second order calbindin positive horizontal cells was also observed. However, Müller cell gliosis only seemed to be alleviated in terms of reduced Müller cell density. Our observations indicate that at 3 days of coculture, hNPC derived factors had the capacity to protect photoreceptors, maintain synaptic integrity and support horizontal cell survival. Human neural progenitor cell applied treatment modalities may be an effective strategy to help maintain retinal functionality in neurodegenerative pathologies. Whether hNPCs can independently hinder Müller cell gliosis by utilizing higher concentrations or by combination with other pharmacological agents still needs to be determined. PMID:27369448

  17. Human neural progenitor cells decrease photoreceptor degeneration, normalize opsin distribution and support synapse structure in cultured porcine retina.

    PubMed

    Mollick, Tanzina; Mohlin, Camilla; Johansson, Kjell

    2016-09-01

    Retinal neurodegenerative disorders like retinitis pigmentosa, age-related macular degeneration, diabetic retinopathy and retinal detachment decrease retinal functionality leading to visual impairment. The pathological events are characterized by photoreceptor degeneration, synaptic disassembly, remodeling of postsynaptic neurons and activation of glial cells. Despite intense research, no effective treatment has been found for these disorders. The current study explores the potential of human neural progenitor cell (hNPC) derived factors to slow the degenerative processes in adult porcine retinal explants. Retinas were cultured for 3 days with or without hNPCs as a feeder layer and investigated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), immunohistochemical, western blot and quantitative real time-polymerase chain reaction (qRT-PCR) techniques. TUNEL showed that hNPCs had the capacity to limit photoreceptor cell death. Among cone photoreceptors, hNPC coculture resulted in better maintenance of cone outer segments and reduced opsin mislocalization. Additionally, maintained synaptic structural integrity and preservation of second order calbindin positive horizontal cells was also observed. However, Müller cell gliosis only seemed to be alleviated in terms of reduced Müller cell density. Our observations indicate that at 3 days of coculture, hNPC derived factors had the capacity to protect photoreceptors, maintain synaptic integrity and support horizontal cell survival. Human neural progenitor cell applied treatment modalities may be an effective strategy to help maintain retinal functionality in neurodegenerative pathologies. Whether hNPCs can independently hinder Müller cell gliosis by utilizing higher concentrations or by combination with other pharmacological agents still needs to be determined.

  18. Differentiation of human embryonic stem cells into cone photoreceptors through simultaneous inhibition of BMP, TGFβ and Wnt signaling.

    PubMed

    Zhou, Shufeng; Flamier, Anthony; Abdouh, Mohamed; Tétreault, Nicolas; Barabino, Andrea; Wadhwa, Shashi; Bernier, Gilbert

    2015-10-01

    Cone photoreceptors are required for color discrimination and high-resolution central vision and are lost in macular degenerations, cone and cone/rod dystrophies. Cone transplantation could represent a therapeutic solution. However, an abundant source of human cones remains difficult to obtain. Work performed in model organisms suggests that anterior neural cell fate is induced 'by default' if BMP, TGFβ and Wnt activities are blocked, and that photoreceptor genesis operates through an S-cone default pathway. We report here that Coco (Dand5), a member of the Cerberus gene family, is expressed in the developing and adult mouse retina. Upon exposure to recombinant COCO, human embryonic stem cells (hESCs) differentiated into S-cone photoreceptors, developed an inner segment-like protrusion, and could degrade cGMP when exposed to light. Addition of thyroid hormone resulted in a transition from a unique S-cone population toward a mixed M/S-cone population. When cultured at confluence for a prolonged period of time, COCO-exposed hESCs spontaneously developed into a cellular sheet composed of polarized cone photoreceptors. COCO showed dose-dependent and synergistic activity with IGF1 at blocking BMP/TGFβ/Wnt signaling, while its cone-inducing activity was blocked in a dose-dependent manner by exposure to BMP, TGFβ or Wnt-related proteins. Our work thus provides a unique platform to produce human cones for developmental, biochemical and therapeutic studies and supports the hypothesis that photoreceptor differentiation operates through an S-cone default pathway during human retinal development. PMID:26443633

  19. Differentiation of human embryonic stem cells into cone photoreceptors through simultaneous inhibition of BMP, TGFβ and Wnt signaling.

    PubMed

    Zhou, Shufeng; Flamier, Anthony; Abdouh, Mohamed; Tétreault, Nicolas; Barabino, Andrea; Wadhwa, Shashi; Bernier, Gilbert

    2015-10-01

    Cone photoreceptors are required for color discrimination and high-resolution central vision and are lost in macular degenerations, cone and cone/rod dystrophies. Cone transplantation could represent a therapeutic solution. However, an abundant source of human cones remains difficult to obtain. Work performed in model organisms suggests that anterior neural cell fate is induced 'by default' if BMP, TGFβ and Wnt activities are blocked, and that photoreceptor genesis operates through an S-cone default pathway. We report here that Coco (Dand5), a member of the Cerberus gene family, is expressed in the developing and adult mouse retina. Upon exposure to recombinant COCO, human embryonic stem cells (hESCs) differentiated into S-cone photoreceptors, developed an inner segment-like protrusion, and could degrade cGMP when exposed to light. Addition of thyroid hormone resulted in a transition from a unique S-cone population toward a mixed M/S-cone population. When cultured at confluence for a prolonged period of time, COCO-exposed hESCs spontaneously developed into a cellular sheet composed of polarized cone photoreceptors. COCO showed dose-dependent and synergistic activity with IGF1 at blocking BMP/TGFβ/Wnt signaling, while its cone-inducing activity was blocked in a dose-dependent manner by exposure to BMP, TGFβ or Wnt-related proteins. Our work thus provides a unique platform to produce human cones for developmental, biochemical and therapeutic studies and supports the hypothesis that photoreceptor differentiation operates through an S-cone default pathway during human retinal development.

  20. Light-Dependent Phosphorylation of Bardet Biedl Syndrome 5 in Photoreceptor Cells Modulates its Interaction with Arrestin1

    PubMed Central

    Smith, Tyler S.; Spitzbarth, Benjamin; Li, Jian; Dugger, Donald R.; Stern-Schneider, Gabi; Sehn, Elisabeth; Bolch, Susan N.; McDowell, J. Hugh; Tipton, Jeremiah; Wolfrum, Uwe; Smith, W. Clay

    2013-01-01

    Arrestins are dynamic proteins which move between cell compartments triggered by stimulation of G-protein-coupled receptors. Even more dynamically in vertebrate photoreceptors, arrestin1 (Arr1) moves between the inner and outer segments according to the lighting conditions. Previous studies have shown that the light-driven translocation of Arr1 in rod photoreceptors is initiated by rhodopsin through a phospholipase C/protein kinase C (PKC) signaling cascade. The purpose of this study is to identify the PKC substrate that regulates the translocation of Arr1. Mass spectrometry was used to identify the primary phosphorylated proteins in extracts prepared from PKC-stimulated mouse eye cups, confirming the finding with in vitro phosphorylation assays. Our results show that BBS5 is the principal protein phosphorylated either by phorbol ester stimulation or by light stimulation of PKC. Via immunoprecipitation of BBS5 in rod outer segments, Arr1 was pulled down; phosphorylation of BBS5 reduced this co-precipitation of Arr1. Immunofluorescence and immunoelectron microscopy showed that BBS5 principally localizes along the axonemes of rods and cones, but also in photoreceptor inner segments, and synaptic regions. Our principal findings in this study are three-fold. First, we demonstrate that BBS5 is post-translationally regulated by phosphorylation via PKC, an event that is triggered by light in photoreceptor cells. Second, we find a direct interaction between BBS5 and Arr1, an interaction that is modulated by phosphorylation of BBS5. Finally, we show that BBS5 is distributed along the photoreceptor axoneme, co-localizing with Arr1 in the dark. These findings suggest a role for BBS5 in regulating light-dependent translocation of Arr1 and a model describing its role in Arr1 translocation is proposed. PMID:23817741

  1. Induction of the unfolded protein response by constitutive G-protein signaling in rod photoreceptor cells.

    PubMed

    Wang, Tian; Chen, Jeannie

    2014-10-17

    Phototransduction is a G-protein signal transduction cascade that converts photon absorption to a change in current at the plasma membrane. Certain genetic mutations affecting the proteins in the phototransduction cascade cause blinding disorders in humans. Some of these mutations serve as a genetic source of "equivalent light" that activates the cascade, whereas other mutations lead to amplification of the light response. How constitutive phototransduction causes photoreceptor cell death is poorly understood. We showed that persistent G-protein signaling, which occurs in rod arrestin and rhodopsin kinase knock-out mice, caused a rapid and specific induction of the PERK pathway of the unfolded protein response. These changes were not observed in the cGMP-gated channel knock-out rods, an equivalent light condition that mimics light-stimulated channel closure. Thus transducin signaling, but not channel closure, triggers rapid cell death in light damage caused by constitutive phototransduction. Additionally, we show that in the albino light damage model cell death was not associated with increase in global protein ubiquitination or unfolded protein response induction. Taken together, these observations provide novel mechanistic insights into the cell death pathway caused by constitutive phototransduction and identify the unfolded protein response as a potential target for therapeutic intervention.

  2. Retinal signal transmission in Duchenne muscular dystrophy: evidence for dysfunction in the photoreceptor/depolarizing bipolar cell pathway.

    PubMed Central

    Fitzgerald, K M; Cibis, G W; Giambrone, S A; Harris, D J

    1994-01-01

    There have been reports of abnormal retinal neurotransmission determined by electroretinography in boys with Duchenne and Becker muscular dystrophy. Dystrophin may play a role in transmitting signals between photoreceptors and the excitatory synapse of the ON-bipolar cell. These electroretinographic changes appeared to be limited to the rod ON-pathway but we felt there was also similar abnormality in the cone ON-pathway. We used long-duration stimuli to separate ON-(depolarizing bipolar cell) and OFF (hyperpolarizing bipolar cell) contributions to the cone-dominated ERG to better understand how the retina functions in boys with Duchenne muscular dystrophy. We recorded the electroretinograms of 11 boys with Duchenne muscular dystrophy and found abnormal signal transmission at the level of the photoreceptor and ON-bipolar cell in both the rod and cone generated responses. The OFF-bipolar cell that responds to the offset of the stimulus continues to function normally. The results support our hypothesis that retinal dystrophin plays a role in receptor function or controlling ion channels at the level of the photoreceptor and depolarizing bipolar cell. PMID:8200977

  3. Colored lenses suppress blue light-emitting diode light-induced damage in photoreceptor-derived cells

    NASA Astrophysics Data System (ADS)

    Hiromoto, Kaho; Kuse, Yoshiki; Tsuruma, Kazuhiro; Tadokoro, Nobuyuki; Kaneko, Nobuyuki; Shimazawa, Masamitsu; Hara, Hideaki

    2016-03-01

    Blue light-emitting diodes (LEDs) in liquid crystal displays emit high levels of blue light, exposure to which is harmful to the retina. Here, we investigated the protective effects of colored lenses in blue LED light-induced damage to 661W photoreceptor-derived cells. We used eight kinds of colored lenses and one lens that reflects blue light. Moreover, we evaluated the relationship between the protective effects of the lens and the transmittance of lens at 464 nm. Lenses of six colors, except for the SY, PN, and reflective coating lenses, strongly decreased the reduction in cell damage induced by blue LED light exposure. The deep yellow lens showed the most protective effect from all the lenses, but the reflective coating lens and pink lens did not show any effects on photoreceptor-derived cell damage. Moreover, these results were correlated with the lens transmittance of blue LED light (464 nm). These results suggest that lenses of various colors, especially deep yellow lenses, may protect retinal photoreceptor cells from blue LED light in proportion to the transmittance for the wavelength of blue LED and the suppression of reactive oxygen species production and cell damage.

  4. Colored lenses suppress blue light-emitting diode light-induced damage in photoreceptor-derived cells.

    PubMed

    Hiromoto, Kaho; Kuse, Yoshiki; Tsuruma, Kazuhiro; Tadokoro, Nobuyuki; Kaneko, Nobuyuki; Shimazawa, Masamitsu; Hara, Hideaki

    2016-03-01

    Blue light-emitting diodes (LEDs) in liquid crystal displays emit high levels of blue light, exposure to which is harmful to the retina. Here, we investigated the protective effects of colored lenses in blue LED light-induced damage to 661W photoreceptor-derived cells. We used eight kinds of colored lenses and one lens that reflects blue light. Moreover, we evaluated the relationship between the protective effects of the lens and the transmittance of lens at 464 nm. Lenses of six colors, except for the SY, PN, and reflective coating lenses, strongly decreased the reduction in cell damage induced by blue LED light exposure. The deep yellow lens showed the most protective effect from all the lenses, but the reflective coating lens and pink lens did not show any effects on photoreceptor-derived cell damage. Moreover, these results were correlated with the lens transmittance of blue LED light (464 nm). These results suggest that lenses of various colors, especially deep yellow lenses, may protect retinal photoreceptor cells from blue LED light in proportion to the transmittance for the wavelength of blue LED and the suppression of reactive oxygen species production and cell damage.

  5. Chloride enters glial cells and photoreceptors in response to light stimulation in the retina of the honey bee drone.

    PubMed

    Coles, J A; Orkand, R K; Yamate, C L

    1989-01-01

    Double-barrelled ion-selective microelectrodes were used to measure free [Cl-] in photoreceptors, extracellular space, and glial cells in superfused slices of drone retina. Tests indicated that with normal superfusate the intracellular electrode signal was due essentially to Cl- and not to some other interfering anion. The results indicate that Cl- is more concentrated in both photoreceptors and glial cells than would be predicted for a passive electrochemical distribution. When the photoreceptors were stimulated by a standard train of 20 ms flashes, 1/s for 90 s, their intracellular free [Cl-] (Cli) rose by 8 +/- 1 mM. At the end of stimulation Cli usually continued to rise for up to a further 2 min and then returned toward the baseline over about 10 min. During light stimulation Cli in the glia rose. The magnitude of the increase was 5.1 +/- 0.4 mM, about half the increase in Ki. In some extracellular recording sites, light stimulation caused [Cl-] to increase and in others to decrease. The mean change was -0.7 mM, SD 6.5 mM. The Cl- that entered the photoreceptors and the glia was presumably made available by the shrinking of the extracellular space. When the cells were depolarized by increasing [K+] in the superfusate from 7.5 mM to 18 mM, Cli increased. The half-time of the change in Cli was longer than the half-time of the depolarization by 10-30 s in the glia and 50-250s in the photoreceptors. During superfusion with 0 Cl- Ringer's solution, the light-induced rise in extracellular [K+] was greater by a factor of 1.4-2.7, and the clearance after the end of the stimulation was slower. The rate of increase in glial Ki during light stimulation fell; the rate of increase of glial Ki caused by superfusion with raised [K+] (in the absence of Cl-) fell more. We conclude that when extracellular [K+] is increased, entry of Cl- into the glia is necessary for part, but not all, of the net uptake of K+. During light stimulation, the observed movement of CL- into glia

  6. Membrane-bound and soluble Fas ligands have opposite functions in photoreceptor cell death following separation from the retinal pigment epithelium

    PubMed Central

    Matsumoto, H; Murakami, Y; Kataoka, K; Notomi, S; Mantopoulos, D; Trichonas, G; Miller, J W; Gregory, M S; Ksander, B R; Marshak-Rothstein, A; Vavvas, D G

    2015-01-01

    Fas ligand (FasL) triggers apoptosis of Fas-positive cells, and previous reports described FasL-induced cell death of Fas-positive photoreceptors following a retinal detachment. However, as FasL exists in membrane-bound (mFasL) and soluble (sFasL) forms, and is expressed on resident microglia and infiltrating monocyte/macrophages, the current study examined the relative contribution of mFasL and sFasL to photoreceptor cell death after induction of experimental retinal detachment in wild-type, knockout (FasL−/−), and mFasL-only knock-in (ΔCS) mice. Retinal detachment in FasL−/− mice resulted in a significant reduction of photoreceptor cell death. In contrast, ΔCS mice displayed significantly more apoptotic photoreceptor cell death. Photoreceptor loss in ΔCS mice was inhibited by a subretinal injection of recombinant sFasL. Thus, Fas/FasL-triggered cell death accounts for a significant amount of photoreceptor cell loss following the retinal detachment. The function of FasL was dependent upon the form of FasL expressed: mFasL triggered photoreceptor cell death, whereas sFasL protected the retina, indicating that enzyme-mediated cleavage of FasL determines, in part, the extent of vision loss following the retinal detachment. Moreover, it also indicates that treatment with sFasL could significantly reduce photoreceptor cell loss in patients with retinal detachment. PMID:26583327

  7. Low-calcium-induced enhancement of chemical synaptic transmission from photoreceptors to horizontal cells in the vertebrate retina.

    PubMed Central

    Piccolino, M; Byzov, A L; Kurennyi, D E; Pignatelli, A; Sappia, F; Wilkinson, M; Barnes, S

    1996-01-01

    According to the classical calcium hypothesis of synaptic transmission, the release of neurotransmitter from presynaptic terminals occurs through an exocytotic process triggered by depolarization-induced presynaptic calcium influx. However, evidence has been accumulating in the last two decades indicating that, in many preparations, synaptic transmitter release can persist or even increase when calcium is omitted from the perfusing saline, leading to the notion of a "calcium-independent release" mechanism. Our study shows that the enhancement of synaptic transmission between photoreceptors and horizontal cells of the vertebrate retina induced by low-calcium media is caused by an increase of calcium influx into presynaptic terminals. This paradoxical effect is accounted for by modifications of surface potential on the photoreceptor membrane. Since lowering extracellular calcium concentration may likewise enhance calcium influx into other nerve cells, other experimental observations of "calcium-independent" release may be reaccommodated within the framework of the classical calcium hypothesis without invoking unconventional processes. PMID:8637867

  8. The ventral photoreceptor cells of Limulus. 3. A voltage-clamp study.

    PubMed

    Millecchia, R; Mauro, A

    1969-09-01

    In the dark, the ventral photoreceptor of Limulus exhibits time-variant currents under voltage-clamp conditions; that is, if the membrane potential of the cell is clamped to a depolarized value there is an initial large outward current which slowly declines to a steady level. The current-voltage relation of the cell in the dark is nonlinear. The only ion tested which has any effect on the current-voltage relation is potassium; high potassium shifts the reversal potential towards zero and introduces a negative slope-conductance region. When the cell is illuminated under voltage-clamp conditions, an additional current, the light-induced current, flows across the cell membrane. The time course of this current mimics the time course of the light response (receptor potential) in the unclamped cell; namely, an initial transient phase is followed by a steady-state phase. The amplitude of the peak transient current can be as large as 60 times the amplitude of the steady-state current, while in the unclamped cell the amplitude of the peak transient voltage never exceeds 4 times the amplitude of the steady-state voltage. The current-voltage relations of the additional light-induced current obtained for different instants of time are also nonlinear, but differ from the current-voltage relations of the dark current. The ions tested which have the greatest effect on the light-induced current are sodium and calcium; low sodium decreases the current, while low calcium increases the current. The data strongly support the hypothesis that two systems of electric current exist in the membrane. Thus the total ionic current which flows in the membrane is accounted for as the sum of a dark current and a light-induced current. PMID:5806593

  9. Sodium formate induces autophagy and apoptosis via the JNK signaling pathway of photoreceptor cells

    PubMed Central

    WANG, YING; XU, SHAO-LIN; XU, WEN-JING; YANG, HAI-YAN; HU, PING; LI, YU-XIN

    2016-01-01

    Incidents associated with methanol intoxication resulting from the consumption of fake wine occur not infrequently worldwide. Certain individuals are made blind due to methanol poisoning. The present study aimed to investigate the effects of sodium formate exposure on photoreceptor cells (661W cells). The 661W cells were exposed to sodium formate for 6–24 h and cell viability was determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Subsequently, the 661W cells were exposed to 15 or 30 mM sodium formate for 24 h. The level of apoptosis was determined using Hoechst 33342/propidium iodide staining, visualizing the cells under a fluorescence microscope, and annexin V-fluorescein isothiocyanate staining, using flow cytometric analysis. Intracellular reactive oxygen species (ROS) were measured using 2′,7′-dichlorofluorescein diacetate (DCFH-DA) staining, followed by flow cytometric analysis. Autophagy of the 661W cells was measured by monodansylcadaverine staining. The activation of phosphorylated c-Jun N-terminal kinase (p-JNK), B-cell lymphoma (Bcl-2), Bcl-2-associated X protein, cleaved caspase-3, cleaved caspase-9 and microtubule-associated protein 1A/1B-light chain 3 (LC3) was assessed by western blotting. The effects of Z-VAD-fmk (a pan-caspase inhibitor) and SP600125 (a JNK inhibitor) on the viability of the sodium formate-induced 661W cells were determined using an MTT assay. Sodium formate treatment induced a decrease in the viability of the 661W cells in a time- and a dose-dependent manner. In addition, sodium formate at concentrations of 15 or 30 mM markedly increased the level of apoptosis and the ROS levels, as measured by DCFH-DA staining of the 661W cells. Additionally, 661W cells exposed to sodium formate for 24 h exhibited increased levels of p-JNK, Bax, cleaved caspase-3, cleaved caspase-9 and LC3II (the phosphatidylethanolamine-modified form of LC3), although the level of Bcl-2 was decreased

  10. Drosophila Lin-7 is a component of the Crumbs complex in epithelia and photoreceptor cells and prevents light-induced retinal degeneration.

    PubMed

    Bachmann, André; Grawe, Ferdi; Johnson, Kevin; Knust, Elisabeth

    2008-03-01

    The Drosophila Crumbs protein complex is required to maintain epithelial cell polarity in the embryo, to ensure proper morphogenesis of photoreceptor cells and to prevent light-dependent retinal degeneration. In Drosophila, the core components of the complex are the transmembrane protein Crumbs, the membrane-associated guanylate kinase (MAGUK) Stardust and the scaffolding protein DPATJ. The composition of the complex and some of its functions are conserved in mammalian epithelial and photoreceptor cells. Here, we report that Drosophila Lin-7, a scaffolding protein with one Lin-2/Lin-7 (L27) domain and one PSD-95/Dlg/ZO-1 (PDZ) domain, is associated with the Crumbs complex in the subapical region of embryonic and follicle epithelia and at the stalk membrane of adult photoreceptor cells. DLin-7 loss-of-function mutants are viable and fertile. While DLin-7 localization depends on Crumbs, neither Crumbs, Stardust nor DPATJ require DLin-7 for proper accumulation in the subapical region. Unlike other components of the Crumbs complex, DLin-7 is also enriched in the first optic ganglion, the lamina, where it co-localizes with Discs large, another member of the MAGUK family. In contrast to crumbs mutant photoreceptor cells, those mutant for DLin-7 do not display any morphogenetic abnormalities. Similar to crumbs mutant eyes, however, DLin-7 mutant photoreceptors undergo progressive, light-dependent degeneration. These results support the previous conclusions that the function of the Crumbs complex in cell survival is independent from its function in photoreceptor morphogenesis.

  11. Luminescence- and nanoparticle-mediated increase of light absorption by photoreceptor cells: Converting UV light to visible light

    PubMed Central

    Li, Lei; Sahi, Sunil K.; Peng, Mingying; Lee, Eric B.; Ma, Lun; Wojtowicz, Jennifer L.; Malin, John H.; Chen, Wei

    2016-01-01

    We developed new optic devices – singly-doped luminescence glasses and nanoparticle-coated lenses that convert UV light to visible light – for improvement of visual system functions. Tb3+ or Eu3+ singly-doped borate glasses or CdS-quantum dot (CdS-QD) coated lenses efficiently convert UV light to 542 nm or 613 nm wavelength narrow-band green or red light, or wide-spectrum white light, and thereby provide extra visible light to the eye. In zebrafish (wild-type larvae and adult control animals, retinal degeneration mutants, and light-induced photoreceptor cell degeneration models), the use of Tb3+ or Eu3+ doped luminescence glass or CdS-QD coated glass lenses provide additional visible light to the rod and cone photoreceptor cells, and thereby improve the visual system functions. The data provide proof-of-concept for the future development of optic devices for improvement of visual system functions in patients who suffer from photoreceptor cell degeneration or related retinal diseases. PMID:26860393

  12. Protective effects of naringenin eye drops on N-methyl-N-nitrosourea-induced photoreceptor cell death in rats

    PubMed Central

    Lin, Jun-Li; Wang, Yan-Dong; Ma, Yan; Zhong, Chun-Mei; Zhu, Mei-Rong; Chen, Wen-Pei; Lin, Bao-Qin

    2014-01-01

    AIM To investigate the effects of naringenin eye drops on N-methyl-N-nitrosourea (MNU)-induced photoreceptor cell death in rats. METHODS Photoreceptor cell death was induced by single intraperitoneal injection of MNU (60 mg/kg) in rats. Both eyes of all animals were instilled with one drop of vehicle, 0.5% or 1.0% naringenin eye drops three times per day from 7d before to 17d after MNU injection. Effects of naringenin on MNU-induced photoreceptor cell death were evaluated by electrophysiological and histological analysis. RESULTS Flash electroretinography (FERG) and oscillatory potentials (OPs) recordings showed that the vehicle control group had remarkable reduction of amplitudes and prolongation of latency times. FERG and OPs responses were significantly reversed in MNU-induced rats treated with 0.5% or 1.0% naringenin eye drops compared with the vehicle control. The retinal morphological results showed that naringenin dose-dependently preserved the outer nuclear layer, outer retina and total retina. CONCLUSION These results indicate that topical treatment with naringenin eye drops prevented retinal neurons from MNU-induced structural and functional damages. PMID:24967179

  13. Luminescence- and nanoparticle-mediated increase of light absorption by photoreceptor cells: Converting UV light to visible light.

    PubMed

    Li, Lei; Sahi, Sunil K; Peng, Mingying; Lee, Eric B; Ma, Lun; Wojtowicz, Jennifer L; Malin, John H; Chen, Wei

    2016-02-10

    We developed new optic devices - singly-doped luminescence glasses and nanoparticle-coated lenses that convert UV light to visible light - for improvement of visual system functions. Tb(3+) or Eu(3+) singly-doped borate glasses or CdS-quantum dot (CdS-QD) coated lenses efficiently convert UV light to 542 nm or 613 nm wavelength narrow-band green or red light, or wide-spectrum white light, and thereby provide extra visible light to the eye. In zebrafish (wild-type larvae and adult control animals, retinal degeneration mutants, and light-induced photoreceptor cell degeneration models), the use of Tb(3+) or Eu(3+) doped luminescence glass or CdS-QD coated glass lenses provide additional visible light to the rod and cone photoreceptor cells, and thereby improve the visual system functions. The data provide proof-of-concept for the future development of optic devices for improvement of visual system functions in patients who suffer from photoreceptor cell degeneration or related retinal diseases.

  14. Two Light-Induced Processes in the Photoreceptor Cells of Limulus Ventral Eye

    PubMed Central

    Lisman, J. E.; Brown, J. E.

    1971-01-01

    The dark-adapted current-voltage (I-V) curve of a ventral photoreceptor cell of Limulus, measured by a voltage-clamp technique, has a high slope-resistance region more negative than resting voltage, a lower slope-resistance region between resting voltage and zero, and a negative slope-resistance region more positive than 0 v. With illumination, we find no unique voltage at which there is no light-induced current. At the termination of illumination, the I-V curve changes quickly, then recovers very slowly to a dark-adapted configuration. The voltage-clamp currents during and after illumination can be interpreted to arise from two separate processes. One process (fast) changes quickly with change in illumination, has a reversal potential at +20 mv, and has an I-V curve with positive slope resistance at all voltages. These properties are consistent with a light-induced change in membrane conductance to sodium ions. The other process (slow) changes slowly with changes in illumination, generates light-activated current at +20 mv, and has an I-V curve with a large region of negative slope resistance. The mechanism of this process cannot as yet be identified. PMID:5122373

  15. Erythropoietin Slows Photoreceptor Cell Death in a Mouse Model of Autosomal Dominant Retinitis Pigmentosa

    PubMed Central

    Kasmala, Lorraine; Bond, Wesley S.; de Lucas Cerrillo, Ana M.; Wynn, Kristi; Lewin, Alfred S.

    2016-01-01

    Purpose To test the efficacy of systemic gene delivery of a mutant form of erythropoietin (EPO-R76E) that has attenuated erythropoietic activity, in a mouse model of autosomal dominant retinitis pigmentosa. Methods Ten-day old mice carrying one copy of human rhodopsin with the P23H mutation and both copies of wild-type mouse rhodopsin (hP23H RHO+/-,mRHO+/+) were injected into the quadriceps with recombinant adeno-associated virus (rAAV) carrying either enhanced green fluorescent protein (eGFP) or EpoR76E. Visual function (electroretinogram) and retina structure (optical coherence tomography, histology, and immunohistochemistry) were assessed at 7 and 12 months of age. Results The outer nuclear layer thickness decreased over time at a slower rate in rAAV.EpoR76E treated as compared to the rAAV.eGFP injected mice. There was a statistically significant preservation of the electroretinogram at 7, but not 12 months of age. Conclusions Systemic EPO-R76E slows death of the photoreceptors and vision loss in hP23H RHO+/-,mRHO+/+ mice. Treatment with EPO-R76E may widen the therapeutic window for retinal degeneration patients by increasing the number of viable cells. Future studies might investigate if co-treatment with EPO-R76E and gene replacement therapy is more effective than gene replacement therapy alone. PMID:27299810

  16. Quantitative metabolomics of photoreceptor degeneration and the effects of stem cell-derived retinal pigment epithelium transplantation.

    PubMed

    Wang, Junhua; Westenskow, Peter D; Fang, Mingliang; Friedlander, Martin; Siuzdak, Gary

    2016-10-28

    Photoreceptor degeneration is characteristic of vision-threatening diseases including age-related macular degeneration. Photoreceptors are metabolically demanding cells in the retina, but specific details about their metabolic behaviours are unresolved. The quantitative metabolomics of retinal degeneration could provide valuable insights and inform future therapies. Here, we determined the metabolomic 'fingerprint' of healthy and dystrophic retinas in rat models using optimized metabolite extraction techniques. A number of classes of metabolites were consistently dysregulated during degeneration: vitamin A analogues, fatty acid amides, long-chain polyunsaturated fatty acids, acyl carnitines and several phospholipid species. For the first time, a distinct temporal trend of several important metabolites including DHA (4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoic acid), all-trans-retinal and its toxic end-product N-retinyl-N-retinylidene-ethanolamine were observed between healthy and dystrophic retinas. In this study, metabolomics was further used to determine the temporal effects of the therapeutic intervention of grafting stem cell-derived retinal pigment epithelium (RPE) in dystrophic retinas, which significantly prevented photoreceptor atrophy in our previous studies. The result revealed that lipid levels such as phosphatidylethanolamine in eyes were restored in those animals receiving the RPE grafts. In conclusion, this study provides insight into the metabolomics of retinal degeneration, and further understanding of the efficacy of RPE transplantation.This article is part of the themed issue 'Quantitative mass spectrometry'. PMID:27644974

  17. Ciliary photoreceptors in the cerebral eyes of a protostome larva

    PubMed Central

    2011-01-01

    Background Eyes in bilaterian metazoans have been described as being composed of either ciliary or rhabdomeric photoreceptors. Phylogenetic distribution, as well as distinct morphologies and characteristic deployment of different photopigments (ciliary vs. rhabdomeric opsins) and transduction pathways argue for the co-existence of both of these two photoreceptor types in the last common bilaterian ancestor. Both receptor types exist throughout the Bilateria, but only vertebrates are thought to use ciliary photoreceptors for directional light detection in cerebral eyes, while all other invertebrate bilaterians studied utilize rhabdomeric photoreceptors for this purpose. In protostomes, ciliary photoreceptors that express c-opsin have been described only from a non-visual deep-brain photoreceptor. Their homology with vertebrate rods and cones of the human eye has been hypothesized to represent a unique functional transition from non-visual to visual roles in the vertebrate lineage. Results To test the hypothesis that protostome cerebral eyes employ exclusively rhabdomeric photoreceptors, we investigated the ultrastructure of the larval eyes in the brachiopod Terebratalia transversa. We show that these pigment-cup eyes consist of a lens cell and a shading pigment cell, both of which are putative photoreceptors, deploying a modified, enlarged cilium for light perception, and have axonal connections to the larval brain. Our investigation of the gene expression patterns of c-opsin, Pax6 and otx in these eyes confirms that the larval eye spots of brachiopods are cerebral eyes that deploy ciliary type photoreceptors for directional light detection. Interestingly, c-opsin is also expressed during early embryogenesis in all potential apical neural cells, becoming restricted to the anterior neuroectoderm, before expression is initiated in the photoreceptor cells of the eyes. Coincident with the expression of c-opsin in the presumptive neuroectoderm, we found that middle

  18. Biosynthesis of Acetylcholine in Turtle Photoreceptors

    PubMed Central

    Lam, Dominic M. K.

    1972-01-01

    For determination of possible neurotransmitters synthesized by photoreceptor cells, turtle retinas were dissociated into single cells with proteolytic enzymes. These cells were partially separated by velocity sedimentation to yield a fraction rich in photoreceptors. Individual photoreceptor cells were then sucked into a micropipette and incubated with labeled precursors of known or suspected neurotransmitters. After incubation, the radioactive products were analyzed by high-voltage electrophoresis. Of all the chemicals tested, turtle photoreceptor cells synthesized only acetylcholine, suggesting that these cells may be cholinergic. Images PMID:4505678

  19. Drosophila chaoptin, a member of the leucine-rich repeat family, is a photoreceptor cell-specific adhesion molecule.

    PubMed Central

    Krantz, D E; Zipursky, S L

    1990-01-01

    Drosophila chaoptin, required for photoreceptor cell morphogenesis, is a member of the leucine-rich repeat family of proteins. On the basis of biochemical and genetic analyses we previously proposed that chaoptin might function as a cell adhesion molecule. To test this hypothesis, chaoptin cDNA driven by the hsp 70 promoter was transfected into non-self-adherent Drosophila Schneider line 2 (S2) cells. Following heat shock induction of chaoptin expression, the transfected S2 cells formed multicellular aggregates. Mixing experiments of chaoptin expressing and non-expressing cells suggest that chaoptin expressing cells adhere homotypically. Previously it was shown that chaoptin is exclusively localized to photoreceptor cells. Thus, chaoptin is a cell-type-specific adhesion molecule. Biochemical analyses presented in this paper demonstrate that chaoptin is linked to the extracellular surface of the plasma membrane by covalent attachment to glycosyl-phosphatidylinositol. We propose that chaoptin and several other members of the leucine-rich repeat family of proteins define a new class of cell adhesion molecules. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 8. PMID:2189727

  20. Drosophila Photoreceptor Cells Exploited for the Production of Eukaryotic Membrane Proteins: Receptors, Transporters and Channels

    PubMed Central

    Panneels, Valérie; Kock, Ines; Krijnse-Locker, Jacomine; Rezgaoui, Meriem; Sinning, Irmgard

    2011-01-01

    Background Membrane proteins (MPs) play key roles in signal transduction. However, understanding their function at a molecular level is mostly hampered by the lack of protein in suitable amount and quality. Despite impressive developments in the expression of prokaryotic MPs, eukaryotic MP production has lagged behind and there is a need for new expression strategies. In a pilot study, we produced a Drosophila glutamate receptor specifically in the eyes of transgenic flies, exploiting the naturally abundant membrane stacks in the photoreceptor cells (PRCs). Now we address the question whether the PRCs also process different classes of medically relevant target MPs which were so far notoriously difficult to handle with conventional expression strategies. Principal Findings We describe the homologous and heterologous expression of 10 different targets from the three major MP classes - G protein-coupled receptors (GPCRs), transporters and channels in Drosophila eyes. PRCs offered an extraordinary capacity to produce, fold and accommodate massive amounts of MPs. The expression of some MPs reached similar levels as the endogenous rhodopsin, indicating that the PRC membranes were almost unsaturable. Expression of endogenous rhodopsin was not affected by the target MPs and both could coexist in the membrane stacks. Heterologous expression levels reached about 270 to 500 pmol/mg total MP, resulting in 0.2–0.4 mg purified target MP from 1 g of fly heads. The metabotropic glutamate receptor and human serotonin transporter - both involved in synaptic transmission - showed native pharmacological characteristics and could be purified to homogeneity as a prerequisite for further studies. Significance We demonstrate expression in Drosophila PRCs as an efficient and inexpensive tool for the large scale production of functional eukaryotic MPs. The fly eye system offers a number of advantages over conventional expression systems and paves the way for in-depth analyses of

  1. An alternative pathway for rod signals in the rodent retina: rod photoreceptors, cone bipolar cells, and the localization of glutamate receptors.

    PubMed

    Hack, I; Peichl, L; Brandstätter, J H

    1999-11-23

    In the mammalian retina, extensive processing of spatiotemporal and chromatic information occurs. One key principle in signal transfer through the retina is parallel processing. Two of these parallel pathways are the ON- and OFF-channels transmitting light and dark signals. This dual system is created in the outer plexiform layer, the first relay station in retinal signal transfer. Photoreceptors release glutamate onto ON- and OFF-type bipolar cells, which are functionally distinguished by their postsynaptic expression of different types of glutamate receptors, namely ionotropic and metabotropic glutamate receptors. In the current concept, rod photoreceptors connect only to rod bipolar cells (ON-type) and cone photoreceptors connect only to cone bipolar cells (ON- and OFF-type). We have studied the distribution of (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor subunits at the synapses in the outer plexiform layer of the rodent retina by immunoelectron microscopy and serial section reconstruction. We report a non-classical synaptic contact and an alternative pathway for rod signals in the retina. Rod photoreceptors made synaptic contact with putative OFF-cone bipolar cells that expressed the AMPA glutamate receptor subunits GluR1 and GluR2 on their dendrites. Thus, in the retina of mouse and rat, an alternative pathway for rod signals exists, where rod photoreceptors bypass the rod bipolar cell and directly excite OFF-cone bipolar cells through an ionotropic sign-conserving AMPA glutamate receptor.

  2. A method for measuring the oxygen consumption of photoreceptor cells in the steady state and after a brief stimulation by light.

    PubMed

    Poitry, S; Tsacopoulos, M; Widmer, H

    1990-01-01

    The rate of oxygen consumption (QO2) in living tissue cannot be directly measured but may be estimated by mathematically modelling the diffusion of oxygen in the tissue and measuring the local partial pressure of oxygen (PO2). The retina of arthropods contains only two types of cells, photoreceptor and glial cells, which are regularly distributed. Because of this simple structure, simple models of diffusion can be used to estimate the QO2 of the tissue, both in steady state and after a brief stimulation by light. We used a model of diffusion in a plane sheet to calculate the QO2 in a slice of honeybee drone retina, which contains a few thousand cells. We then modified the method slightly and used a model with spherical symmetry to calculate the QO2 in the cluster of three photoreceptor cells of the barnacle and in the single ventral photoreceptor cells of Limulus.

  3. Solar cell grid patterns

    NASA Technical Reports Server (NTRS)

    Yasui, R. K.; Berman, P. A. (Inventor)

    1976-01-01

    A grid pattern is described for a solar cell of the type which includes a semiconductive layer doped to a first polarity and a top counter-doped layer. The grid pattern comprises a plurality of concentric conductive grids of selected geometric shapes which are centered about the center of the exposed active surface of the counter-doped layer. Connected to the grids is one or more conductors which extend to the cell's periphery. For the pattern area, the grids and conductors are arranged in the pattern to minimize the maximum distance which any injected majority carriers have to travel to reach any of the grids or conductors. The pattern has a multiaxes symmetry with respect to the cell center to minimize the maximum temperature differentials between points on the cell surface and to provide a more uniform temperature distribution across the cell face.

  4. Two types of transgenic lines for doxycycline-inducible, cell-specific gene expression in zebrafish ultraviolet cone photoreceptors.

    PubMed

    West, Megan C; Campbell, Leah J; Willoughby, John J; Jensen, Abbie M

    2014-03-01

    Temporal and spatial control of gene expression is important for studying the molecular and cellular mechanisms of development, physiology, and disease. We used the doxycycline (Dox)-inducible, Tet-On system to develop transgenic zebrafish for inducible, cell specific control of gene expression in the ultraviolet (UV) cone photoreceptors. Two constructs containing the reverse tetracycline-controlled transcriptional transactivator (rtTA) gene driven by the UV opsin-specific promoter (opn1sw1) were used to generate stable transgenic zebrafish lines using the Tol2-based transgenesis method. One construct included a self-reporting GFP (opn1sw1:rtTA, TRE:GFP) and the other incorporated an epitope tag on the rtTA protein (opn1sw1:rtTA(flag)). UV cone-specific expression of TRE-controlled transgenes was induced by Dox treatment in larvae and adults. Induction of gene expression was observed in 96% of all larval UV cones within 16 h of Dox treatment. UV cone-specific expression of two genes from a bidirectional TRE construct injected into one-cell Tg(opn1sw1:rtTA(flag)) embryos were also induced by Dox treatment. In addition, UV cone-specific expression of Crb2a(IntraWT) was induced by Dox treatment in progeny from crosses of the TRE-response transgenic line, Tg(TRE:HA-Crb2a(IntraWT)), to the Tg(opn1sw1:rtTA, TRE:GFP) line and the Tg(opn1sw1:rtTA(flag)) line. These lines can be used in addition to the inducible, rod-specific gene expression system from the Tet-On Toolkit to elucidate the photoreceptor-specific effects of genes of interest in photoreceptor cell biology and retinal disease.

  5. The Comparative Protective Effects of Ganoderma Spores Lipid and Fish Oil on N-Methyl-N-Nitrosourea-Induced Photoreceptor Cell Lesion in Rats

    PubMed Central

    Gao, Yang; Deng, Xin-Guo; Li, Na; Luo, Guang-Wei; Chung, Peter C. K.

    2011-01-01

    Purpose. To compare Ganoderma spores lipid (GSL) and fish oil (FO) in inhibiting retinal photoreceptor cell lesions induced by N-methyl-N-nitrosourea (MNU) in rats. Methods. 120 rats were untreated (normal control, NC group) or treated with a single intraperitoneal injection of 40 mg/kg MNU (MNU group) then treated with GSL (GSL group) or FO (FO group). Eyes were obtained at 1, 3, 5, 7, and 10 days. Results. Light microscopy assay demonstrated that GSL and FO alleviated rat retinal photoreceptor cell damage (GSL and FO versus MNU group P < .001) similarly (GSL versus FO group P = .980). Electron microscopy confirmed that GSL and FO reversed damage to photoreceptor segments and photoreceptor cell nuclei. GSL-treated rats showed significantly elevated a-wave and b-wave amplitudes over MNU group (P < .05) but less than NC group (P < .05) and not significantly different from FO group (P > .05). Conclusion. GSL, like FO, alleviates rat retinal photoreceptor cell damage induced by MNU. PMID:21660315

  6. Formation of lipofuscin in cultured retinal pigment epithelial cells exposed to pre-oxidized photoreceptor outer segments.

    PubMed

    Wihlmark, U; Wrigstad, A; Roberg, K; Brunk, U T; Nilsson, S E

    1996-04-01

    Accumulation of lipofuscin in the retinal pigment epithelium (RPE) with increasing age may affect essential supportive functions for the photoreceptors. Earlier, we described a model system for the study of lipofuscinogenesis in RPE cell cultures and showed that mild oxidative stress enhances lipofuscin formation from phagocytized photoreceptor outer segments (POS). In the present study, bovine POS were photo-oxidized, and turned into a lipofuscin-like material, by irradiation with UV light. Transmission electron microscopy of irradiated POS showed loss of the normal stacks of the disk membranes with conversion into an amorphous osmiophilic electron-dense mass. The formation of thiobarbituric acid reactive substances (TBARS), estimated during the irradiation process, indicated lipid peroxidation. Irradiated POS also showed a strong granular yellow autofluorescence. RPE cell cultures, kept at 21% ambient oxygen, were fed daily for 3, 5 or 7 days with either (i) UV-peroxidized POS, (ii) native POS or (iii) culture medium only. RPE cells fed irradiated POS showed significantly higher levels of lipofuscin-specific autofluorescence compared to cells exposed to native POS after 3 days (p = 0.0056), 5 days (p = 0.0037) and 7 days (p = 0.0020), and to the non-exposed control cells (3 days: p = 0.005, 5 days: p = 0.0037, 7 days: p = 0.0094). The lipofuscin content of cells exposed to irradiated POS increased significantly between days 3 and 7 (p = 0.0335). Ultrastructural studies showed much more numerous and larger lipofuscin-like inclusions in RPE cells fed irradiated POS compared to cells exposed to native POS. In the control cells, lipofuscin-like granules were small and sparse. It appears that exposing RPE cells to previously peroxidized POS, thus artificially converted to lipofuscin and obviously not digestible by the lysosomal enzymes, accelerates the formation of severely lipofuscin-loaded cells. The results will be useful for further studies of possible harmful

  7. ERK-mediated activation of Fas apoptotic inhibitory molecule 2 (Faim2) prevents apoptosis of 661W cells in a model of detachment-induced photoreceptor cell death.

    PubMed

    Besirli, Cagri G; Zheng, Qiong-Duon; Reed, David M; Zacks, David N

    2012-01-01

    In this study, we examined the role of Fas apoptotic inhibitory molecule 2 (Faim2), an inhibitor of the Fas signaling pathway, and its regulation by stress kinase signaling during Fas-mediated apoptosis of 661W cells, an immortalized photoreceptor-like cell line Treatment of 661W cells with a Fas-activating antibody led to increased levels of Faim2. Both ERK and JNK stress kinase pathways were activated in Fas-treated 661W cells, but only the inhibition of the ERK pathway reduced the levels of Faim2. Blocking the ERK pathway using a pharmacological inhibitor increased the susceptibility of 661W cells to Fas-induced caspase activation and apoptosis. When the levels of Faim2 were reduced in 661W cells by siRNA knockdown, Fas activating antibody treatment resulted in earlier and more robust caspase activation, and increased cell death. These results demonstrate that Faim2 acts as a neuroprotectant during Fas-mediated apoptosis of 661W cells. The expression of Faim2 is triggered, at least in part, by Fas-receptor activation and subsequent ERK signaling. Our findings identify a novel protective pathway that auto-regulates Fas-induced photoreceptor apoptosis in vitro. Modulation of this pathway to increase Faim2 expression may be a potential therapeutic option to prevent photoreceptor death.

  8. ERK-Mediated Activation of Fas Apoptotic Inhibitory Molecule 2 (Faim2) Prevents Apoptosis of 661W Cells in a Model of Detachment-Induced Photoreceptor Cell Death

    PubMed Central

    Besirli, Cagri G.; Zheng, Qiong-Duon; Reed, David M.; Zacks, David N.

    2012-01-01

    In this study, we examined the role of Fas apoptotic inhibitory molecule 2 (Faim2), an inhibitor of the Fas signaling pathway, and its regulation by stress kinase signaling during Fas-mediated apoptosis of 661W cells, an immortalized photoreceptor-like cell line Treatment of 661W cells with a Fas-activating antibody led to increased levels of Faim2. Both ERK and JNK stress kinase pathways were activated in Fas-treated 661W cells, but only the inhibition of the ERK pathway reduced the levels of Faim2. Blocking the ERK pathway using a pharmacological inhibitor increased the susceptibility of 661W cells to Fas-induced caspase activation and apoptosis. When the levels of Faim2 were reduced in 661W cells by siRNA knockdown, Fas activating antibody treatment resulted in earlier and more robust caspase activation, and increased cell death. These results demonstrate that Faim2 acts as a neuroprotectant during Fas-mediated apoptosis of 661W cells. The expression of Faim2 is triggered, at least in part, by Fas-receptor activation and subsequent ERK signaling. Our findings identify a novel protective pathway that auto-regulates Fas-induced photoreceptor apoptosis in vitro. Modulation of this pathway to increase Faim2 expression may be a potential therapeutic option to prevent photoreceptor death. PMID:23029562

  9. Effects of photoreceptor metabolism on interstitial and glial cell pH in bee retina: evidence of a role for NH4+.

    PubMed

    Coles, J A; Marcaggi, P; Véga, C; Cotillon, N

    1996-09-01

    1. Measurements were made with pH microelectrodes in superfused slices of the retina of the honey-bee drone. In the dark, the mean +/- S.E.M. pH values in the three compartments of the tissue were: neurones (photoreceptors), 6.99 +/- 0.04; glial cells (outer pigment cells), 7.31 +/- 0.03; extracellular space, 6.60 +/- 0.03. 2. Stimulation of the photoreceptors with light caused transient pH changes: a decrease in the photoreceptors (pHn) and in the glial cells (pHg), and an increase in the interstitial clefts (pHo). 3. The effects of inhibition and activation of aerobic metabolism showed that part, perhaps all, of the light-induced delta pHo resulted from the increased aerobic metabolism in the photoreceptors. 4. Addition of 2 mM NH4+ to the superfusate produced changes in pHo and pHg of the same sign as and similar amplitude to those caused by light stimulation. Manipulation of transmembrane pH gradients had similar effects on changes in pHo induced by light or by exogenous NH4+. 5. Measurements with NH(4+)-sensitive microelectrodes showed that stimulation of aerobic metabolism in the photoreceptors increased [NH4+]o and also that exogenous NH4+/NH3 was taken up by cells, presumably the glial cells. 6. We conclude that within seconds of an increase in the aerobic metabolism in the photoreceptors, they release an increased amount of NH4+/NH3 which affects pHo and enters glial cells. Other evidence suggests that in drone retina the glial cells supply the neurones with amino acids as substrates of energy metabolism; the present results suggest that fixed nitrogen is returned to the glial cells as NH4+/NH3.

  10. Cell-specific DNA methylation patterns of retina-specific genes.

    PubMed

    Merbs, Shannath L; Khan, Miriam A; Hackler, Laszlo; Oliver, Verity F; Wan, Jun; Qian, Jiang; Zack, Donald J

    2012-01-01

    Many studies have demonstrated that epigenetic mechanisms are important in the regulation of gene expression during embryogenesis, gametogenesis, and other forms of tissue-specific gene regulation. We sought to explore the possible role of epigenetics, specifically DNA methylation, in the establishment and maintenance of cell type-restricted gene expression in the retina. To assess the relationship between DNA methylation status and expression level of retinal genes, bisulfite sequence analysis of the 1000 bp region around the transcription start sites (TSS) of representative rod and cone photoreceptor-specific genes and gene expression analysis were performed in the WERI and Y79 human retinoblastoma cell lines. Next, the homologous genes in mouse were bisulfite sequenced in the retina and in non-expressing tissues. Finally, bisulfite sequencing was performed on isolated photoreceptor and non-photoreceptor retinal cells isolated by laser capture microdissection. Differential methylation of rhodopsin (RHO), retinal binding protein 3 (RBP3, IRBP) cone opsin, short-wave-sensitive (OPN1SW), cone opsin, middle-wave-sensitive (OPN1MW), and cone opsin, long-wave-sensitive (OPN1LW) was found in the retinoblastoma cell lines that inversely correlated with gene expression levels. Similarly, we found tissue-specific hypomethylation of the promoter region of Rho and Rbp3 in mouse retina as compared to non-expressing tissues, and also observed hypomethylation of retinal-expressed microRNAs. The Rho and Rbp3 promoter regions were unmethylated in expressing photoreceptor cells and methylated in non-expressing, non-photoreceptor cells from the inner nuclear layer. A third regional hypomethylation pattern of photoreceptor-specific genes was seen in a subpopulation of non-expressing photoreceptors (Rho in cones from the Nrl -/- mouse and Opn1sw in rods). These results demonstrate that a number of photoreceptor-specific genes have cell-specific differential DNA methylation that

  11. Hyperpolarizing photoreceptors in the eyes of the giant clam Tridacna: physiological evidence for both spiking and nonspiking cell types.

    PubMed

    Wilkens, L A

    1988-05-01

    Intracellular studies on photoreceptors in the eyes of the giant clam Tridacna give evidence for two types of light-sensitive cells, both of which are hyperpolarized by light. These cells are distinguished by the presence or absence of spikes and corresponding characteristics of the receptor potential. In non-spiking (NS) receptors, the average resting potential in the dark is low (-15 mV) and peak receptor potentials are large (to 100 mV) and adapt rapidly to light. Spiking (S) receptors have higher average resting potentials (-45 mV), but receptor potentials do not exceed 20 mV and also do not adapt to light. The spikes in S-receptors are small (3-8 mV), occur spontaneously at low levels of illumination and are inhibited by light. Bursts of spikes arise on the repolarizing off-component of the receptor potential. Light adaptation increases the excitability of S-receptors in terms of a higher frequency and shorter latency of the off response burst. The receptor potential in both cells is due to a light-activated increase in membrane conductance to potassium ions. Membrane conductance decreases in NS-receptors in relation to light adaptation. Unlike the scallop eye, no depolarizing photoreceptors are present.

  12. Pax6a and Pax6b are required at different points in neuronal progenitor cell proliferation during zebrafish photoreceptor regeneration.

    PubMed

    Thummel, Ryan; Enright, Jennifer M; Kassen, Sean C; Montgomery, Jacob E; Bailey, Travis J; Hyde, David R

    2010-05-01

    The light-damaged zebrafish retina results in the death of photoreceptor cells and the subsequent regeneration of the missing rod and cone cells. Photoreceptor regeneration initiates with asymmetric Müller glial cell division to produce neuronal progenitor cells, which amplify, migrate to the outer nuclear layer (ONL), and differentiate into both classes of photoreceptor cells. In this study, we examined the role of the Pax6 protein in regeneration. In zebrafish, there are two Pax6 proteins, one encoded by the pax6a gene and the other encoded by the pax6b gene. We intravitreally injected and electroporated morpholinos that were complementary to either the pax6a or pax6b mRNA to knockdown the translation of the corresponding protein. Loss of Pax6b expression did not affect Müller glial cell division, but blocked the subsequent first cell division of the neuronal progenitors. In contrast, the paralogous Pax6a protein was required for later neuronal progenitor cell divisions, which maximized the number of neuronal progenitors. Without neuronal progenitor cell amplification, proliferation of resident ONL rod precursor cells, which can only regenerate rods, increased inversely proportional to the number of INL neuronal progenitor cells. This confirmed that Müller glial-derived neuronal progenitor cells are necessary to regenerate cones and that distinct mechanisms selectively regenerate rod and cone photoreceptors. This work also defines distinct roles for Pax6a and Pax6b in regulating neuronal progenitor cell proliferation in the adult zebrafish retina and increases our understanding of the molecular pathways required for photoreceptor cell regeneration. PMID:20152834

  13. Phospholipid flippase ATP8A2 is required for normal visual and auditory function and photoreceptor and spiral ganglion cell survival

    PubMed Central

    Coleman, Jonathan A.; Zhu, Xianjun; Djajadi, Hidayat R.; Molday, Laurie L.; Smith, Richard S.; Libby, Richard T.; John, Simon W. M.; Molday, Robert S.

    2014-01-01

    ABSTRACT ATP8A2 is a P4-ATPase that is highly expressed in the retina, brain, spinal cord and testes. In the retina, ATP8A2 is localized in photoreceptors where it uses ATP to transport phosphatidylserine (PS) and phosphatidylethanolamine (PE) from the exoplasmic to the cytoplasmic leaflet of membranes. Although mutations in ATP8A2 have been reported to cause mental retardation in humans and degeneration of spinal motor neurons in mice, the role of ATP8A2 in sensory systems has not been investigated. We have analyzed the retina and cochlea of ATP8A2-deficient mice to determine the role of ATP8A2 in visual and auditory systems. ATP8A2-deficient mice have shortened photoreceptor outer segments, a reduction in photoresponses and decreased photoreceptor viability. The ultrastructure and phagocytosis of the photoreceptor outer segment appeared normal, but the PS and PE compositions were altered and the rhodopsin content was decreased. The auditory brainstem response threshold was significantly higher and degeneration of spiral ganglion cells was apparent. Our studies indicate that ATP8A2 plays a crucial role in photoreceptor and spiral ganglion cell function and survival by maintaining phospholipid composition and contributing to vesicle trafficking. PMID:24413176

  14. Pharmacological inhibitions of glutamate transporters EAAT1 and EAAT2 compromise glutamate transport in photoreceptor to ON- bipolar cell synapses

    PubMed Central

    Tse, Dennis Y.; Chung, Inyoung; Wu, Samuel M.

    2015-01-01

    To maintain reliable signal transmission across a synapse, free synaptic neurotransmitters must be removed from the cleft in a timely manner. In the first visual synapse, this critical task is mainly undertaken by glutamate transporters (EAATs). Here we study the differential roles of the EAAT1, EAAT2 and EAAT5 subtypes in glutamate (GLU) uptake at the photoreceptor-to-depolarizing bipolar cell synapse in intact dark-adapted retina. Various doses of EAAT blockers and/or GLU were injected into the eye before the electroretinogram (ERG) was measured. Their effectiveness and potency in inhibiting the ERG b-wave were studied to determine their relative contributions to the GLU clearing activity at the synapse. The results showed that EAAT1 and EAAT2 plays different roles. Selectively blocking glial EAAT1 alone using UCPH101 inhibited the b-wave 2–24 hours following injection, suggesting a dominating role of EAAT1 in the overall GLU clearing capacity in the synaptic cleft. Selectively blocking EAAT2 on photoreceptor terminals had no significant effect on the b-wave, but increased the potency of exogenous GLU in inhibiting the b-wave. These suggest that EAAT2 play a secondary yet significant role in the GLU reuptake activity at the rod and the cone output synapses. Additionally, we have verified our electrophysiological findings with double-label immunohistochemistry, and extend the literature on the spatial distribution of EAAT2 splice variants in the mouse retina. PMID:25152321

  15. Turing Patterns Inside Cells

    PubMed Central

    Strier, Damián E.; Ponce Dawson, Silvina

    2007-01-01

    Concentration gradients inside cells are involved in key processes such as cell division and morphogenesis. Here we show that a model of the enzymatic step catalized by phosphofructokinase (PFK), a step which is responsible for the appearance of homogeneous oscillations in the glycolytic pathway, displays Turing patterns with an intrinsic length-scale that is smaller than a typical cell size. All the parameter values are fully consistent with classic experiments on glycolytic oscillations and equal diffusion coefficients are assumed for ATP and ADP. We identify the enzyme concentration and the glycolytic flux as the possible regulators of the pattern. To the best of our knowledge, this is the first closed example of Turing pattern formation in a model of a vital step of the cell metabolism, with a built-in mechanism for changing the diffusion length of the reactants, and with parameter values that are compatible with experiments. Turing patterns inside cells could provide a check-point that combines mechanical and biochemical information to trigger events during the cell division process. PMID:17940616

  16. Necrotic enlargement of cone photoreceptor cells and the release of high-mobility group box-1 in retinitis pigmentosa

    PubMed Central

    Murakami, Y; Ikeda, Y; Nakatake, S; Tachibana, T; Fujiwara, K; Yoshida, N; Notomi, S; Nakao, S; Hisatomi, T; Miller, J W; Vavvas, DG; Sonoda, KH; Ishibashi, T

    2015-01-01

    Retinitis pigmentosa (RP) refers to a group of inherited retinal degenerations resulting form rod and cone photoreceptor cell death. The rod cell death due to deleterious genetic mutations has been shown to occur mainly through apoptosis, whereas the mechanisms and features of the secondary cone cell death have not been fully elucidated. Our previous study showed that the cone cell death in rd10 mice, an animal model of RP, involves necrotic features and is partly mediated by the receptor interacting protein kinase. However, the relevancy of necrotic cone cell death in human RP patients remains unknown. In the present study, we showed that dying cone cells in rd10 mice exhibited cellular enlargement, along with necrotic changes such as cellular swelling and mitochondrial rupture. In human eyes, live imaging of cone cells by adaptive optics scanning laser ophthalmoscopy revealed significantly increased percentages of enlarged cone cells in the RP patients compared with the control subjects. The vitreous of the RP patients contained significantly higher levels of high-mobility group box-1, which is released extracellularly associated with necrotic cell death. These findings suggest that necrotic enlargement of cone cells is involved in the process of cone degeneration, and that necrosis may be a novel target to prevent or delay the loss of cone-mediated central vision in RP. PMID:27551484

  17. CNTF-mediated protection of photoreceptors requires initial activation of the cytokine receptor gp130 in Müller glial cells

    PubMed Central

    Rhee, Kun Do; Nusinowitz, Steven; Chao, Kevin; Yu, Fei; Bok, Dean; Yang, Xian-Jie

    2013-01-01

    Ciliary neurotrophic factor (CNTF) acts as a potent neuroprotective agent in multiple retinal degeneration animal models. Recently, CNTF has been evaluated in clinical trials for the inherited degenerative disease retinitis pigmentosa (RP) and for dry age-related macular degeneration (AMD). Despite its potential as a broad-spectrum therapeutic treatment for blinding diseases, the target cells of exogenous CNTF and its mechanism of action remain poorly understood. We have shown previously that constitutive expression of CNTF prevents photoreceptor death but alters the retinal transcriptome and suppresses visual function. Here, we use a lentivirus to deliver the same secreted human CNTF used in clinical trials to a mouse model of RP. We found that low levels of CNTF halt photoreceptor death, improve photoreceptor morphology, and correct opsin mislocalization. However, we did not detect corresponding improvement of retinal function as measured by the electroretinogram. Disruption of the cytokine receptor gp130 gene in Müller glia reduces CNTF-dependent photoreceptor survival and prevents phosphorylation of STAT3 and ERK in Müller glia and the rest of the retina. Targeted deletion of gp130 in rods also demolishes neuroprotection by CNTF and prevents further activation of Müller glia. Moreover, CNTF elevates the expression of LIF and endothelin 2, thus positively promoting Müller and photoreceptor interactions. We propose that exogenous CNTF initially targets Müller glia, and subsequently induces cytokines acting through gp130 in photoreceptors to promote neuronal survival. These results elucidate a cellular mechanism for exogenous CNTF-triggered neuroprotection and provide insight into the complex cellular responses induced by CNTF in diseased retinas. PMID:24191003

  18. Three-dimensional retinal organoids from mouse pluripotent stem cells mimic in vivo development with enhanced stratification and rod photoreceptor differentiation

    PubMed Central

    Chen, Holly Yu; Kaya, Koray Dogan; Dong, Lijin

    2016-01-01

    Purpose The generation of three-dimensional (3D) organoids with optic cup–like structures from pluripotent stem cells has created opportunities for investigating mammalian retinal development in vitro. However, retinal organoids in culture do not completely reflect the developmental state and in vivo architecture of the rod-dominant mouse retina. The goals of this study were to develop an efficient protocol for generating retinal organoids from stem cells and examine the morphogenesis of rods in vitro. Methods To assess rod photoreceptor differentiation in retinal organoids, we took advantage of Nrl-green fluorescent protein (GFP) mice that show rod-specific expression of GFP directed by the promoter of leucine zipper transcription factor NRL. Using embryonic and induced pluripotent stem cells (ESCs and iPSCs, respectively) derived from the Nrl-GFP mouse, we were successful in establishing long-term retinal organoid cultures using modified culture conditions (called High Efficiency Hypoxia Induced Generation of Photoreceptors in Retinal Organoids, or HIPRO). Results We demonstrated efficient differentiation of pluripotent stem cells to retinal structures. More than 70% of embryoid bodies formed optic vesicles at day (D) 7, >50% produced optic cups by D10, and most of them survived until at least D35. The HIPRO organoids included distinct inner retina neurons in a somewhat stratified architecture and mature Müller glia spanning the entire retina. Almost 70% of the cells in the retinal organoids were rod photoreceptors that exhibited elongated cilia. Transcriptome profiles of GFP+ rod photoreceptors, purified from organoids at D25–35, demonstrated a high correlation with the gene profiles of purified rods from the mouse retina at P2 to P6, indicating their early state of differentiation. Conclusions The 3D retinal organoids, generated by HIPRO method, closely mimic in vivo retinogenesis and provide an efficient in vitro model to investigate photoreceptor

  19. Three-dimensional retinal organoids from mouse pluripotent stem cells mimic in vivo development with enhanced stratification and rod photoreceptor differentiation

    PubMed Central

    Chen, Holly Yu; Kaya, Koray Dogan; Dong, Lijin

    2016-01-01

    Purpose The generation of three-dimensional (3D) organoids with optic cup–like structures from pluripotent stem cells has created opportunities for investigating mammalian retinal development in vitro. However, retinal organoids in culture do not completely reflect the developmental state and in vivo architecture of the rod-dominant mouse retina. The goals of this study were to develop an efficient protocol for generating retinal organoids from stem cells and examine the morphogenesis of rods in vitro. Methods To assess rod photoreceptor differentiation in retinal organoids, we took advantage of Nrl-green fluorescent protein (GFP) mice that show rod-specific expression of GFP directed by the promoter of leucine zipper transcription factor NRL. Using embryonic and induced pluripotent stem cells (ESCs and iPSCs, respectively) derived from the Nrl-GFP mouse, we were successful in establishing long-term retinal organoid cultures using modified culture conditions (called High Efficiency Hypoxia Induced Generation of Photoreceptors in Retinal Organoids, or HIPRO). Results We demonstrated efficient differentiation of pluripotent stem cells to retinal structures. More than 70% of embryoid bodies formed optic vesicles at day (D) 7, >50% produced optic cups by D10, and most of them survived until at least D35. The HIPRO organoids included distinct inner retina neurons in a somewhat stratified architecture and mature Müller glia spanning the entire retina. Almost 70% of the cells in the retinal organoids were rod photoreceptors that exhibited elongated cilia. Transcriptome profiles of GFP+ rod photoreceptors, purified from organoids at D25–35, demonstrated a high correlation with the gene profiles of purified rods from the mouse retina at P2 to P6, indicating their early state of differentiation. Conclusions The 3D retinal organoids, generated by HIPRO method, closely mimic in vivo retinogenesis and provide an efficient in vitro model to investigate photoreceptor

  20. p27KIP1 loss promotes proliferation and phagocytosis but prevents epithelial–mesenchymal transition in RPE cells after photoreceptor damage

    PubMed Central

    ul Quraish, Reeshan; Sudou, Norihiro; Nomura-Komoike, Kaori; Sato, Fumi

    2016-01-01

    Purpose p27KIP1 (p27), originally identified as a cell cycle inhibitor, is now known to have multifaceted roles beyond cell cycle regulation. p27 is required for the normal histogenesis of the RPE, but the role of p27 in the mature RPE remains elusive. To define the role of p27 in the maintenance and function of the RPE, we investigated the effects of p27 deletion on the responses of the RPE after photoreceptor damage. Methods Photoreceptor damage was induced in wild-type (WT) and p27 knockout (KO) mice with N-methyl-N-nitrosourea (MNU) treatment. Damage-induced responses of the RPE were investigated with bromodeoxyuridine (BrdU) incorporation assays, immunofluorescence, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays at different stages after MNU treatment. Subcellular localization of p27 in the WT RPE was also analyzed in vivo and in vitro. Results MNU treatment induced photoreceptor-specific degeneration in the WT and KO retinas. BrdU incorporation assays revealed virtually no proliferation of RPE cells in the WT retinas while, in the KO retinas, approximately 16% of the RPE cells incorporated BrdU at day 2 after MNU treatment. The RPE in the KO retinas developed aberrant protrusions into the outer nuclear layer in response to photoreceptor damage and engulfed outer segment debris, as well as TUNEL-positive photoreceptor cells. Increased phosphorylation of myosin light chains and their association with rhodopsin-positive phagosomes were observed in the mutant RPE, suggesting possible deregulation of cytoskeletal dynamics. In addition, WT RPE cells exhibited evidence of the epithelial–mesenchymal transition (EMT), including morphological changes, induction of α-smooth muscle actin expression, and attenuated expression of tight junction protein ZO-1 while these changes were absent in the KO retinas. In the normal WT retinas, p27 was localized to the nuclei of RPE cells while nuclear and cytoplasmic p27 was detected in RPE cells

  1. Restoration of vision after transplantation of photoreceptors.

    PubMed

    Pearson, R A; Barber, A C; Rizzi, M; Hippert, C; Xue, T; West, E L; Duran, Y; Smith, A J; Chuang, J Z; Azam, S A; Luhmann, U F O; Benucci, A; Sung, C H; Bainbridge, J W; Carandini, M; Yau, K-W; Sowden, J C; Ali, R R

    2012-05-01

    Cell transplantation is a potential strategy for treating blindness caused by the loss of photoreceptors. Although transplanted rod-precursor cells are able to migrate into the adult retina and differentiate to acquire the specialized morphological features of mature photoreceptor cells, the fundamental question remains whether transplantation of photoreceptor cells can actually improve vision. Here we provide evidence of functional rod-mediated vision after photoreceptor transplantation in adult Gnat1−/− mice, which lack rod function and are a model of congenital stationary night blindness. We show that transplanted rod precursors form classic triad synaptic connections with second-order bipolar and horizontal cells in the recipient retina. The newly integrated photoreceptor cells are light-responsive with dim-flash kinetics similar to adult wild-type photoreceptors. By using intrinsic imaging under scotopic conditions we demonstrate that visual signals generated by transplanted rods are projected to higher visual areas, including V1. Moreover, these cells are capable of driving optokinetic head tracking and visually guided behaviour in the Gnat1−/− mouse under scotopic conditions. Together, these results demonstrate the feasibility of photoreceptor transplantation as a therapeutic strategy for restoring vision after retinal degeneration.

  2. The GTP- and Phospholipid-Binding Protein TTD14 Regulates Trafficking of the TRPL Ion Channel in Drosophila Photoreceptor Cells

    PubMed Central

    Cerny, Alexander C.; Altendorfer, André; Schopf, Krystina; Baltner, Karla; Maag, Nathalie; Sehn, Elisabeth; Wolfrum, Uwe; Huber, Armin

    2015-01-01

    Recycling of signaling proteins is a common phenomenon in diverse signaling pathways. In photoreceptors of Drosophila, light absorption by rhodopsin triggers a phospholipase Cβ-mediated opening of the ion channels transient receptor potential (TRP) and TRP-like (TRPL) and generates the visual response. The signaling proteins are located in a plasma membrane compartment called rhabdomere. The major rhodopsin (Rh1) and TRP are predominantly localized in the rhabdomere in light and darkness. In contrast, TRPL translocates between the rhabdomeral plasma membrane in the dark and a storage compartment in the cell body in the light, from where it can be recycled to the plasma membrane upon subsequent dark adaptation. Here, we identified the gene mutated in trpl translocation defective 14 (ttd14), which is required for both TRPL internalization from the rhabdomere in the light and recycling of TRPL back to the rhabdomere in the dark. TTD14 is highly conserved in invertebrates and binds GTP in vitro. The ttd14 mutation alters a conserved proline residue (P75L) in the GTP-binding domain and abolishes binding to GTP. This indicates that GTP binding is essential for TTD14 function. TTD14 is a cytosolic protein and binds to PtdIns(3)P, a lipid enriched in early endosome membranes, and to phosphatidic acid. In contrast to TRPL, rhabdomeral localization of the membrane proteins Rh1 and TRP is not affected in the ttd14 P75L mutant. The ttd14 P75L mutation results in Rh1-independent photoreceptor degeneration and larval lethality suggesting that other processes are also affected by the ttd14 P75L mutation. In conclusion, TTD14 is a novel regulator of TRPL trafficking, involved in internalization and subsequent sorting of TRPL into the recycling pathway that enables this ion channel to return to the plasma membrane. PMID:26509977

  3. Star is required in a subset of photoreceptor cells in the developing Drosophila retina and displays dosage sensitive interactions with rough.

    PubMed

    Heberlein, U; Rubin, G M

    1991-04-01

    We report that mutations at the Star locus act as dominant enhancers of the eye phenotype displayed by flies carrying a null allele of rough. Our analysis of double mutants at different stages of eye development suggests that this phenotype results from defects in the early stages of photoreceptor cell differentiation in the eye imaginal disc. Complete loss of Star function during retinal development, analyzed in mosaic animals, results in cell death, visible as scars in the adult eye. The requirement for wild-type Star function, however, is confined to only a subset of photoreceptor cells, R8, R2, and R5, which are the first three cells to differentiate neurally in the developing retina. These results suggest an essential role for the Star gene in the initial events of ommatidial cluster formation during the development of the Drosophila compound eye.

  4. chaoptin, prominin, eyes shut and crumbs form a genetic network controlling the apical compartment of Drosophila photoreceptor cells

    PubMed Central

    Gurudev, Nagananda; Yuan, Michaela; Knust, Elisabeth

    2014-01-01

    ABSTRACT The apical surface of epithelial cells is often highly specialised to fulfil cell type-specific functions. Many epithelial cells expand their apical surface by forming microvilli, actin-based, finger-like membrane protrusions. The apical surface of Drosophila photoreceptor cells (PRCs) forms tightly packed microvilli, which are organised into the photosensitive rhabdomeres. As previously shown, the GPI-anchored adhesion protein Chaoptin is required for the stability of the microvilli, whereas the transmembrane protein Crumbs is essential for proper rhabdomere morphogenesis. Here we show that chaoptin synergises with crumbs to ensure optimal rhabdomere width. In addition, reduction of crumbs ameliorates morphogenetic defects observed in PRCs mutant for prominin and eyes shut, known antagonists of chaoptin. These results suggest that these four genes provide a balance of adhesion and anti-adhesion to maintain microvilli development and maintenance. Similar to crumbs mutant PRCs, PRCs devoid of prominin or eyes shut undergo light-dependent retinal degeneration. Given the observation that human orthologues of crumbs, prominin and eyes shut result in progressive retinal degeneration and blindness, the Drosophila eye is ideally suited to unravel the genetic and cellular mechanisms that ensure morphogenesis of PRCs and their maintenance under light-mediated stress. PMID:24705015

  5. Circadian and Dopaminergic Regulation of Fatty Acid Oxidation Pathway Genes in Retina and Photoreceptor Cells

    PubMed Central

    Vancura, Patrick; Wolloscheck, Tanja; Baba, Kenkichi; Tosini, Gianluca; Iuvone, P. Michael; Spessert, Rainer

    2016-01-01

    The energy metabolism of the retina might comply with daily changes in energy demand and is impaired in diabetic retinopathy—one of the most common causes of blindness in Europe and the USA. The aim of this study was to investigate putative adaptation of energy metabolism in healthy and diabetic retina. Hence expression analysis of metabolic pathway genes was performed using quantitative polymerase chain reaction, semi-quantitative western blot and immunohistochemistry. Transcriptional profiling of key enzymes of energy metabolism identified transcripts of mitochondrial fatty acid β-oxidation enzymes, i.e. carnitine palmitoyltransferase-1α (Cpt-1α) and medium chain acyl-CoA dehydrogenase (Acadm) to display daily rhythms with peak values during daytime in preparations of the whole retina and microdissected photoreceptors. The cycling of both enzymes persisted in constant darkness, was dampened in mice deficient for dopamine D4 (D4) receptors and was altered in db/db mice—a model of diabetic retinopathy. The data of the present study are consistent with circadian clock-dependent and dopaminergic regulation of fatty acid oxidation in retina and its putative disturbance in diabetic retina. PMID:27727308

  6. Nanoceria extend photoreceptor cell lifespan in tubby mice by modulation of apoptosis/survival signaling pathways.

    PubMed

    Kong, Li; Cai, Xue; Zhou, Xiaohong; Wong, Lily L; Karakoti, Ajay S; Seal, Sudipta; McGinnis, James F

    2011-06-01

    Cerium oxide nanoparticles, nanoceria, are inorganic antioxidants that have catalytic activities which mimic those of the neuroprotective enzymes superoxide dismutase and catalase. We have previously shown that nanoceria preserve retinal morphology and prevent loss of retinal function in a rat light damage model. In this study, the homozygous tubby mutant mouse, which exhibits inherited early progressive cochlear and retinal degeneration, was used as a model to test the ability of nanoceria to slow the progression of retinal degeneration. Tubby mice were injected systemically, intracardially, with 20 μl of 1mM nanoceria in saline, at postnatal day 10 and subsequently at P20 and P30 whereas saline injected and uninjected wild type (or heterozygous tubby) served as injected and uninjected controls, respectively. Assays for retinal function, morphology and signaling pathway gene expression were performed on P34 mice. Our data demonstrate that nanoceria protect the retina by decreasing Reactive Oxygen Species (ROS), up-regulating the expression of neuroprotection-associated genes; down-regulating apoptosis signaling pathways and/or up-regulating survival signaling pathways to slow photoreceptor degeneration. These data suggest that nanoceria have significant potential as global agents for therapeutic treatment of inherited retinal degeneration and most types of ocular diseases.

  7. Gene therapy into photoreceptors and Müller glial cells restores retinal structure and function in CRB1 retinitis pigmentosa mouse models.

    PubMed

    Pellissier, Lucie P; Quinn, Peter M; Alves, C Henrique; Vos, Rogier M; Klooster, Jan; Flannery, John G; Heimel, J Alexander; Wijnholds, Jan

    2015-06-01

    Mutations in the Crumbs-homologue-1 (CRB1) gene lead to severe recessive inherited retinal dystrophies. Gene transfer therapy is the most promising cure for retinal dystrophies and has primarily been applied for recessive null conditions via a viral gene expression vector transferring a cDNA encoding an enzyme or channel protein, and targeting expression to one cell type. Therapy for the human CRB1 disease will be more complex, as CRB1 is a structural and signaling transmembrane protein present in three cell classes: Müller glia, cone and rod photoreceptors. In this study, we applied CRB1 and CRB2 gene therapy vectors in Crb1-retinitis pigmentosa mouse models at mid-stage disease. We tested if CRB expression restricted to Müller glial cells or photoreceptors or co-expression in both is required to recover retinal function. We show that targeting both Müller glial cells and photoreceptors with CRB2 ameliorated retinal function and structure in Crb1 mouse models. Surprisingly, targeting a single cell type or all cell types with CRB1 reduced retinal function. We show here the first pre-clinical studies for CRB1-related eye disorders using CRB2 vectors and initial elucidation of the cellular mechanisms underlying CRB1 function.

  8. Calcium overload is associated with lipofuscin formation in human retinal pigment epithelial cells fed with photoreceptor outer segments

    PubMed Central

    Zhang, L; Hui, Y-N; Wang, Y-S; Ma, J-X; Wang, J-B; Ma, L-N

    2011-01-01

    Purpose To investigate the role of Ca2+ in lipofuscin formation in human retinal pigment epithelial (RPE) cells that phagocytize bovine photoreceptor outer segments (POSs). Methods Cultured human RPE cells fed with 2 × 107 per l bovine POS were treated with flunarizine, an antagonist of Ca2+ channel, or/and centrophenoxine, a lipofuscin scavenger. The Ca2+ changes and lipofuscin formation were measured with fluoresence dye Fluo-3/AM ester, laser scanning confocal microscopy (LSCM) and flow cytometry (FCM). The activity of RPE cells was measured by methyl thiazolyl tetrazolium (MTT) assay and argyrophilic nucleolar organizer regions (AgNORs) assay. Results The Ca2+ fluorescence intensity (CFI) of RPE cells fed with POS was significantly increased compared with the controls (165.36±29.92 U). It reached a peak with 777.33±63.86 U (P<0.01) at 12 h, and then decreased but still maintained a high level of 316.90±36.07 U (P<0.01) for 4 days. Flunarizine and centrophenoxine significantly decreased the Ca2+ overload to 227.18±14.00 U at 12 h and 211.06±20.45 U at 4 days. FCM confirmed these changes. The drugs also showed an inhibitory effect on the lipofuscin formation. The proliferation rate of the cells fed with POS increased significantly. Both drugs had inhibitory effects on the activity of the cultured cells. This tendency was confirmed by AgNORs assay. Conclusions The Ca2+ inflow initiated lipofuscin accumulation in RPE cells fed with POS. Flunarizine and centrophenoxine can decrease Ca2+ overload and lipofuscin formation in RPE cells, accompanied by maintaining cellular vitality. PMID:21311572

  9. Mfsd2a Is a Transporter for the Essential ω-3 Fatty Acid Docosahexaenoic Acid (DHA) in Eye and Is Important for Photoreceptor Cell Development.

    PubMed

    Wong, Bernice H; Chan, Jia Pei; Cazenave-Gassiot, Amaury; Poh, Rebecca W; Foo, Juat Chin; Galam, Dwight L A; Ghosh, Sujoy; Nguyen, Long N; Barathi, Veluchamy A; Yeo, Sia W; Luu, Chi D; Wenk, Markus R; Silver, David L

    2016-05-13

    Eye photoreceptor membrane discs in outer rod segments are highly enriched in the visual pigment rhodopsin and the ω-3 fatty acid docosahexaenoic acid (DHA). The eye acquires DHA from blood, but transporters for DHA uptake across the blood-retinal barrier or retinal pigment epithelium have not been identified. Mfsd2a is a newly described sodium-dependent lysophosphatidylcholine (LPC) symporter expressed at the blood-brain barrier that transports LPCs containing DHA and other long-chain fatty acids. LPC transport via Mfsd2a has been shown to be necessary for human brain growth. Here we demonstrate that Mfsd2a is highly expressed in retinal pigment epithelium in embryonic eye, before the development of photoreceptors, and is the primary site of Mfsd2a expression in the eye. Eyes from whole body Mfsd2a-deficient (KO) mice, but not endothelium-specific Mfsd2a-deficient mice, were DHA-deficient and had significantly reduced LPC/DHA transport in vivo Fluorescein angiography indicated normal blood-retinal barrier function. Histological and electron microscopic analysis indicated that Mfsd2a KO mice exhibited a specific reduction in outer rod segment length, disorganized outer rod segment discs, and mislocalization of and reduction in rhodopsin early in postnatal development without loss of photoreceptors. Minor photoreceptor cell loss occurred in adult Mfsd2a KO mice, but electroretinography indicated visual function was normal. The developing eyes of Mfsd2a KO mice had activated microglia and up-regulation of lipogenic and cholesterogenic genes, likely adaptations to loss of LPC transport. These findings identify LPC transport via Mfsd2a as an important pathway for DHA uptake in eye and for development of photoreceptor membrane discs. PMID:27008858

  10. Mfsd2a Is a Transporter for the Essential ω-3 Fatty Acid Docosahexaenoic Acid (DHA) in Eye and Is Important for Photoreceptor Cell Development.

    PubMed

    Wong, Bernice H; Chan, Jia Pei; Cazenave-Gassiot, Amaury; Poh, Rebecca W; Foo, Juat Chin; Galam, Dwight L A; Ghosh, Sujoy; Nguyen, Long N; Barathi, Veluchamy A; Yeo, Sia W; Luu, Chi D; Wenk, Markus R; Silver, David L

    2016-05-13

    Eye photoreceptor membrane discs in outer rod segments are highly enriched in the visual pigment rhodopsin and the ω-3 fatty acid docosahexaenoic acid (DHA). The eye acquires DHA from blood, but transporters for DHA uptake across the blood-retinal barrier or retinal pigment epithelium have not been identified. Mfsd2a is a newly described sodium-dependent lysophosphatidylcholine (LPC) symporter expressed at the blood-brain barrier that transports LPCs containing DHA and other long-chain fatty acids. LPC transport via Mfsd2a has been shown to be necessary for human brain growth. Here we demonstrate that Mfsd2a is highly expressed in retinal pigment epithelium in embryonic eye, before the development of photoreceptors, and is the primary site of Mfsd2a expression in the eye. Eyes from whole body Mfsd2a-deficient (KO) mice, but not endothelium-specific Mfsd2a-deficient mice, were DHA-deficient and had significantly reduced LPC/DHA transport in vivo Fluorescein angiography indicated normal blood-retinal barrier function. Histological and electron microscopic analysis indicated that Mfsd2a KO mice exhibited a specific reduction in outer rod segment length, disorganized outer rod segment discs, and mislocalization of and reduction in rhodopsin early in postnatal development without loss of photoreceptors. Minor photoreceptor cell loss occurred in adult Mfsd2a KO mice, but electroretinography indicated visual function was normal. The developing eyes of Mfsd2a KO mice had activated microglia and up-regulation of lipogenic and cholesterogenic genes, likely adaptations to loss of LPC transport. These findings identify LPC transport via Mfsd2a as an important pathway for DHA uptake in eye and for development of photoreceptor membrane discs.

  11. Effects of Ar-40 and Fe-56 ions on retinal photoreceptor cells of the rabbit: Implications for manned missions to Mars

    NASA Technical Reports Server (NTRS)

    Williams, G. R.; Lett, J. T.

    1994-01-01

    Losses of photoreceptor cells (rods) from the retinas of New Zealand white (NZW) rabbits were detectable within 2 years after localized acute irradiation of optic and proximal tissues with greater than or equal to 7 Gy of 530 MeV u(exp -1) Ar-40 ions or greater than or equal to 2 Gy of 465 MeV u(exp -1) Fe-56 ions in the Bragg plateau region of energy deposition. Those limits were determined only from an analysis of variance of dose groups because the shapes of the dose response curves at early post-irradiation times are not known, a concern being addressed by experiments in progress. Losses of photoreceptor cells for the period 0.5-2.5 years post-irradiation, determined by provisional linear regression analysis, were approxiamtely 1.7% Gy(exp -1) and 2.5% Gy(exp.-1) for Ar-40 and Fe-56 ions, respectively.

  12. Effects of 40Ar and 56Fe ions on retinal photoreceptor cells of the rabbit: implications for manned missions to Mars

    NASA Technical Reports Server (NTRS)

    Williams, G. R.; Lett, J. T.

    1994-01-01

    Losses of photoreceptor cells (rods) from the retinas of New Zealand white (NZW) rabbits were detectable within 2 years after localized acute irradiation of optic and proximal tissues with > or = 7 Gy of 530 MeV u-1 40Ar ions or > or = 2 Gy of 465 MeV u-1 56Fe ions in the Bragg plateau region of energy deposition. Those limits were determined only from an analysis of variance of dose groups because the shapes of the dose response curves at early post-irradiation times are not known, a concern being addressed by experiments in progress. Losses of photoreceptor cells for the period 0.5-2.5 years post-irradiation, determined by provisional linear regression analysis, were approximately 1.7% Gy-1 and 2.5% Gy-1 for 40Ar and 56Fe ions, respectively.

  13. The Musashi 1 Controls the Splicing of Photoreceptor-Specific Exons in the Vertebrate Retina

    PubMed Central

    Murphy, Daniel; Carstens, Russ

    2016-01-01

    Alternative pre-mRNA splicing expands the coding capacity of eukaryotic genomes, potentially enabling a limited number of genes to govern the development of complex anatomical structures. Alternative splicing is particularly prevalent in the vertebrate nervous system, where it is required for neuronal development and function. Here, we show that photoreceptor cells, a type of sensory neuron, express a characteristic splicing program that affects a broad set of transcripts and is initiated prior to the development of the light sensing outer segments. Surprisingly, photoreceptors lack prototypical neuronal splicing factors and their splicing profile is driven to a significant degree by the Musashi 1 (MSI1) protein. A striking feature of the photoreceptor splicing program are exons that display a "switch-like" pattern of high inclusion levels in photoreceptors and near complete exclusion outside of the retina. Several ubiquitously expressed genes that are involved in the biogenesis and function of primary cilia produce highly photoreceptor specific isoforms through use of such “switch-like” exons. Our results suggest a potential role for alternative splicing in the development of photoreceptors and the conversion of their primary cilia to the light sensing outer segments. PMID:27541351

  14. The Musashi 1 Controls the Splicing of Photoreceptor-Specific Exons in the Vertebrate Retina.

    PubMed

    Murphy, Daniel; Cieply, Benjamin; Carstens, Russ; Ramamurthy, Visvanathan; Stoilov, Peter

    2016-08-01

    Alternative pre-mRNA splicing expands the coding capacity of eukaryotic genomes, potentially enabling a limited number of genes to govern the development of complex anatomical structures. Alternative splicing is particularly prevalent in the vertebrate nervous system, where it is required for neuronal development and function. Here, we show that photoreceptor cells, a type of sensory neuron, express a characteristic splicing program that affects a broad set of transcripts and is initiated prior to the development of the light sensing outer segments. Surprisingly, photoreceptors lack prototypical neuronal splicing factors and their splicing profile is driven to a significant degree by the Musashi 1 (MSI1) protein. A striking feature of the photoreceptor splicing program are exons that display a "switch-like" pattern of high inclusion levels in photoreceptors and near complete exclusion outside of the retina. Several ubiquitously expressed genes that are involved in the biogenesis and function of primary cilia produce highly photoreceptor specific isoforms through use of such "switch-like" exons. Our results suggest a potential role for alternative splicing in the development of photoreceptors and the conversion of their primary cilia to the light sensing outer segments. PMID:27541351

  15. Visual Coding in Locust Photoreceptors

    PubMed Central

    Faivre, Olivier; Juusola, Mikko

    2008-01-01

    Information capture by photoreceptors ultimately limits the quality of visual processing in the brain. Using conventional sharp microelectrodes, we studied how locust photoreceptors encode random (white-noise, WN) and naturalistic (1/f stimuli, NS) light patterns in vivo and how this coding changes with mean illumination and ambient temperature. We also examined the role of their plasma membrane in shaping voltage responses. We found that brightening or warming increase and accelerate voltage responses, but reduce noise, enabling photoreceptors to encode more information. For WN stimuli, this was accompanied by broadening of the linear frequency range. On the contrary, with NS the signaling took place within a constant bandwidth, possibly revealing a ‘preference’ for inputs with 1/f statistics. The faster signaling was caused by acceleration of the elementary phototransduction current - leading to bumps - and their distribution. The membrane linearly translated phototransduction currents into voltage responses without limiting the throughput of these messages. As the bumps reflected fast changes in membrane resistance, the data suggest that their shape is predominantly driven by fast changes in the light-gated conductance. On the other hand, the slower bump latency distribution is likely to represent slower enzymatic intracellular reactions. Furthermore, the Q10s of bump duration and latency distribution depended on light intensity. Altogether, this study suggests that biochemical constraints imposed upon signaling change continuously as locust photoreceptors adapt to environmental light and temperature conditions. PMID:18478123

  16. Molecular chaperones and photoreceptor function

    PubMed Central

    Kosmaoglou, Maria; Schwarz, Nele; Bett, John S.; Cheetham, Michael E.

    2008-01-01

    Molecular chaperones facilitate and regulate protein conformational change within cells. This encompasses many fundamental cellular processes: including the correct folding of nascent chains; protein transport and translocation; signal transduction and protein quality control. Chaperones are, therefore, important in several forms of human disease, including neurodegeneration. Within the retina, the highly specialized photoreceptor cell presents a fascinating paradigm to investigate the specialization of molecular chaperone function and reveals unique chaperone requirements essential to photoreceptor function. Mutations in several photoreceptor proteins lead to protein misfolding mediated neurodegeneration. The best characterized of these are mutations in the molecular light sensor, rhodopsin, which cause autosomal dominant retinitis pigmentosa. Rhodopsin biogenesis is likely to require chaperones, while rhodopsin misfolding involves molecular chaperones in quality control and the cellular response to protein aggregation. Furthermore, the specialization of components of the chaperone machinery to photoreceptor specific roles has been revealed by the identification of mutations in molecular chaperones that cause inherited retinal dysfunction and degeneration. These chaperones are involved in several important cellular pathways and further illuminate the essential and diverse roles of molecular chaperones. PMID:18490186

  17. Male germ cells and photoreceptors, both dependent on close cell-cell interactions, degenerate upon ClC-2 Cl(-) channel disruption.

    PubMed

    Bösl, M R; Stein, V; Hübner, C; Zdebik, A A; Jordt, S E; Mukhopadhyay, A K; Davidoff, M S; Holstein, A F; Jentsch, T J

    2001-03-15

    The functions of some CLC Cl(-) channels are evident from human diseases that result from their mutations, but the role of the broadly expressed ClC-2 Cl(-) channel is less clear. Several important functions have been attributed to ClC-2, but contrary to these expectations ClC-2-deficient mice lacked overt abnormalities except for a severe degeneration of the retina and the testes, which led to selective male infertility. Seminiferous tubules did not develop lumina and germ cells failed to complete meiosis. Beginning around puberty there was a massive death of primary spermatocytes and later also of spermatogonia. Tubules were filled with abnormal Sertoli cells, which normally express ClC-2 in patches adjacent to germ cells. In the retina, photoreceptors lacked normal outer segments and degenerated between days P10 and P30. The current across the retinal pigment epithelium was severely reduced at P36. Thus, ClC-2 disruption entails the death of two cell types which depend on supporting cells that form the blood-testes and blood-retina barriers. We propose that ClC-2 is crucial for controlling the ionic environment of these cells. PMID:11250895

  18. Photoreceptor cell apoptosis induced by the 2-nitroimidazole radiosensitizer, CI-1010, is mediated by p53-linked activation of caspase-3.

    PubMed

    Miller, Terry J; Schneider, Randal J; Miller, James A; Martin, Brad P; Al-Ubaidi, Muayyad R; Agarwal, Neeraj; Dethloff, Lloyd A; Philbert, Martin A

    2006-01-01

    The nitroimidazole radiosensitizer CI-1010 ((R)-alpha-[[(2-bromoethyl)-amino]methyl]-2-nitro-1H-imidazole-1-ethanol monohydrobromide) causes selective, irreversible, retinal photoreceptor apoptosis in vivo. The mouse 661 W photoreceptor cell line was used as a neuronotypic model of CI-1010-mediated retinal degeneration. Exposure to CI-1010 for 24 h induced apoptosis in 661 W cells, as determined by ultrastructural analysis, agarose electrophoresis and analysis of TUNEL-positive nuclei. CI-1010 caused a loss of viability in 661 W cells, as measured by the reduction of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide). A clear link was established between the onset of apoptosis and activity of caspase-3 and caspase-8, prior to poly[ADP-ribose]polymerase (PARP) cleavage. Pretreatment with caspase inhibitors, ZVAD.fmk or DEVD-CHO, prevented morphological changes in most CI-1010-treated cells. Evaluation of mitochondrial inner membrane potential (Deltapsi(m)) in live 661 W cells using the fluorescent dye, tetramethylrhodamine methyl ester revealed retention of (Deltapsi(m)) until after caspase activation. Absence of cytochrome c in the cytoplasm in treated cells further supports the hypothesis of a mitochondrial-independent mechanism of cell death. Significant increase in DNA crosslinks observed in 661 W cells correlates with induction and phosphorylation of p53 at multiple serine sites. Cell cycle analysis of 661 W cells reveals a G(2) arrest in response to CI-1010-induced DNA damage and neuronal cell death. Increased protein expression of Bax, Fas, and FasL, concomitant to the loss of Bcl-xL in treated 661 W cells may be modulated by p53. This study evaluates in vitro mechanisms of CI-1010-induced cell death in photoreceptors and provides evidence in support of a p53-linked activation of caspase-3 in response to DNA damage caused by CI-1010.

  19. The Influence of Photoreceptor Size and Distribution on Optical Sensitivity in the Eyes of Lanternfishes (Myctophidae)

    PubMed Central

    de Busserolles, Fanny; Fitzpatrick, John L.; Marshall, N. Justin; Collin, Shaun P.

    2014-01-01

    The mesopelagic zone of the deep-sea (200-1000 m) is characterised by exponentially diminishing levels of downwelling sunlight and by the predominance of bioluminescence emissions. The ability of mesopelagic organisms to detect and behaviourally react to downwelling sunlight and/or bioluminescence will depend on the visual task and ultimately on the eyes and their capacity for detecting low levels of illumination and intermittent point sources of bioluminescent light. In this study, we investigate the diversity of the visual system of the lanternfish (Myctophidae). We focus specifically on the photoreceptor cells by examining their size, arrangement, topographic distribution and contribution to optical sensitivity in 53 different species from 18 genera. We also examine the influence(s) of both phylogeny and ecology on these photoreceptor variables using phylogenetic comparative analyses in order to understand the constraints placed on the visual systems of this large group of mesopelagic fishes at the first stage of retinal processing. We report great diversity in the visual system of the Myctophidae at the level of the photoreceptors. Photoreceptor distribution reveals clear interspecific differences in visual specialisations (areas of high rod photoreceptor density), indicating potential interspecific differences in interactions with prey, predators and/or mates. A great diversity in photoreceptor design (length and diameter) and density is also present. Overall, the myctophid eye is very sensitive compared to other teleosts and each species seems to be specialised for the detection of a specific signal (downwelling light or bioluminescence), potentially reflecting different visual demands for survival. Phylogenetic comparative analyses highlight several relationships between photoreceptor characteristics and the ecological variables tested (depth distribution and luminous tissue patterns). Depth distribution at night was a significant factor in most of the

  20. Subcellular calcium localization and AT0-dependent Ca2+-uptake by smooth endoplasmic reticulum in an invertebrate photoreceptor cell. An ultrastrucutral, cytochemical and X-ray microanalytical study.

    PubMed

    Walz, B

    1979-10-01

    In Hirudo medicinalis an extensive and highly elaborate three dimensional network of smooth endoplasmic reticulum cisternae is found in very close structural relationship to the receptive (microvillar) membrane, as reported for many other invertebrates. A variant of the potassium pyroantimonate technique showed that these submicrovillar endoplasmic reticulum cisternae (SMC) and mitochondria are major intracellular calcium stores. Furthermore, using saponine-skinned photoreceptors for an in situ accumulation experiment, calcium oxalate precipitates in SMC demonstrate that this organelle is able to accumulate Ca2+ from a concentration of 2 x 10(-5) M, when ATP, Mg2+, and oxalate ions are present in the accumulation medium. This result provides direct evidence for the hypothesis that SMC may play a particularly important role in the regulation of intracellular ionized calcium in invertebrate photoreceptor cells. Morphological evidence supports this view. PMID:160317

  1. Photosensory transduction in unicellular eukaryotes: a comparison between related ciliates Blepharisma japonicum and Stentor coeruleus and photoreceptor cells of higher organisms.

    PubMed

    Sobierajska, Katarzyna; Fabczak, Hanna; Fabczak, Stanisław

    2006-06-01

    Blepharisma japonicum and Stentor coeruleus are related ciliates, conspicuous by their photosensitivity. They are capable of avoiding illuminated areas in the surrounding medium, gathering exclusively in most shaded places (photodispersal). Such behaviour results mainly from motile photophobic response occurring in ciliates. This light-avoiding response is observed during a relatively rapid increase in illumination intensity (light stimulus) and consists of cessation of cell movement, a period of backward movement (ciliary reversal), followed by a forward swimming, usually in a new direction. The photosensitivity of ciliates is ascribed to their photoreceptor system, composed of pigment granules, containing the endogenous photoreceptor -- blepharismin in Blepharisma japonicum, and stentorin in Stentor coeruleus. A light stimulus, applied to both ciliates activates specific stimulus transduction processes leading to the electrical changes at the plasma membrane, correlated with a ciliary reversal during photophobic response. These data indicate that both ciliates Blepharisma japonicum and Stentor coeruleus, the lower eukaryotes, are capable of transducing the perceived light stimuli in a manner taking place in some photoreceptor cells of higher eukaryotes. Similarities and differences concerning particular stages of light transduction in eukaryotes at different evolutional levels are discussed in this article. PMID:16488618

  2. Photosensory transduction in unicellular eukaryotes: a comparison between related ciliates Blepharisma japonicum and Stentor coeruleus and photoreceptor cells of higher organisms.

    PubMed

    Sobierajska, Katarzyna; Fabczak, Hanna; Fabczak, Stanisław

    2006-06-01

    Blepharisma japonicum and Stentor coeruleus are related ciliates, conspicuous by their photosensitivity. They are capable of avoiding illuminated areas in the surrounding medium, gathering exclusively in most shaded places (photodispersal). Such behaviour results mainly from motile photophobic response occurring in ciliates. This light-avoiding response is observed during a relatively rapid increase in illumination intensity (light stimulus) and consists of cessation of cell movement, a period of backward movement (ciliary reversal), followed by a forward swimming, usually in a new direction. The photosensitivity of ciliates is ascribed to their photoreceptor system, composed of pigment granules, containing the endogenous photoreceptor -- blepharismin in Blepharisma japonicum, and stentorin in Stentor coeruleus. A light stimulus, applied to both ciliates activates specific stimulus transduction processes leading to the electrical changes at the plasma membrane, correlated with a ciliary reversal during photophobic response. These data indicate that both ciliates Blepharisma japonicum and Stentor coeruleus, the lower eukaryotes, are capable of transducing the perceived light stimuli in a manner taking place in some photoreceptor cells of higher eukaryotes. Similarities and differences concerning particular stages of light transduction in eukaryotes at different evolutional levels are discussed in this article.

  3. Opsin expression, physiological characterization and identification of photoreceptor cells in the dorsal rim area and main retina of the desert locust, Schistocerca gregaria.

    PubMed

    Schmeling, Fabian; Wakakuwa, Motohiro; Tegtmeier, Jennifer; Kinoshita, Michiyo; Bockhorst, Tobias; Arikawa, Kentaro; Homberg, Uwe

    2014-10-01

    For compass orientation many insects rely on the pattern of sky polarization, but some species also exploit the sky chromatic contrast. Desert locusts, Schistocerca gregaria, detect polarized light through a specialized dorsal rim area (DRA) in their compound eye. To better understand retinal mechanisms underlying visual navigation, we compared opsin expression, spectral and polarization sensitivities and response-stimulus intensity functions in the DRA and main retina of the locust. In addition to previously characterized opsins of long-wavelength-absorbing (Lo1) and blue-absorbing visual pigments (Lo2), we identified an opsin of an ultraviolet-absorbing visual pigment (LoUV). DRA photoreceptors exclusively expressed Lo2, had peak spectral sensitivities at 441 nm and showed high polarization sensitivity (PS 1.3-31.7). In contrast, ommatidia in the main eye co-expressed Lo1 and Lo2 in five photoreceptors, expressed Lo1 in two proximal photoreceptors, and Lo2 or LoUV in one distal photoreceptor. Correspondingly, we found broadband blue- and green-peaking spectral sensitivities in the main eye and one narrowly tuned UV peaking receptor. Polarization sensitivity in the main retina was low (PS 1.3-3.8). V-log I functions in the DRA were steeper than in the main retina, supporting a role in polarization vision. Desert locusts occur as two morphs, a day-active gregarious and a night-active solitarious form. In solitarious locusts, sensitivities in the main retina were generally shifted to longer wavelengths, particularly in ventral eye regions, supporting a nocturnal lifestyle at low light levels. The data support the role of the DRA in polarization vision and suggest trichromatic colour vision in the desert locust. PMID:25104757

  4. Blue- and green-absorbing visual pigments of Drosophila: ectopic expression and physiological characterization of the R8 photoreceptor cell-specific Rh5 and Rh6 rhodopsins.

    PubMed

    Salcedo, E; Huber, A; Henrich, S; Chadwell, L V; Chou, W H; Paulsen, R; Britt, S G

    1999-12-15

    Color discrimination requires the input of different photoreceptor cells that are sensitive to different wavelengths of light. The Drosophila visual system contains multiple classes of photoreceptor cells that differ in anatomical location, synaptic connections, and spectral sensitivity. The Rh5 and Rh6 opsins are expressed in nonoverlapping sets of R8 cells and are the only Drosophila visual pigments that remain uncharacterized. In this study, we ectopically expressed Rh5 and Rh6 in the major class of photoreceptor cells (R1-R6) and show them to be biologically active in their new environment. The expression of either Rh5 or Rh6 in "blind" ninaE(17) mutant flies, which lack the gene encoding the visual pigment of the R1-R6 cells, fully rescues the light response. Electrophysiological analysis showed that the maximal spectral sensitivity of the R1-R6 cells is shifted to 437 or 508 nm when Rh5 or Rh6, respectively, is expressed in these cells. These spectral sensitivities are in excellent agreement with intracellular recordings of the R8p and R8y cells measured in Calliphora and Musca. Spectrophotometric analyses of Rh5 and Rh6 in vivo by microspectrophotometry, and of detergent-extracted pigments in vitro, showed that Rh5 is reversibly photoconverted to a stable metarhodopsin (lambda(max) = 494 nm), whereas Rh6 appears to be photoconverted to a metarhodopsin (lambda(max) = 468 nm) that is less thermally stable. Phylogenetically, Rh5 belongs to a group of short-wavelength-absorbing invertebrate visual pigments, whereas Rh6 is related to a group of long-wavelength-absorbing pigments and is the first member of this class to be functionally characterized. PMID:10594055

  5. Cell-type specific photoreceptors and light signaling pathways in the multicellular green alga Volvox carteri and their potential role in cellular differentiation.

    PubMed

    Kianianmomeni, Arash

    2015-01-01

    The formation of multicellular organisms requires genetically predefined signaling pathways in various cell types. Besides differences in size, energy balance and life time, cell types should be enable to modulate appropriate developmental and adaptive responses in ever-changing surrounding environment. One of the most important environmental cues is light which regulates a variety of physiological and cellular processes. During evolution, diverse light-sensitive proteins, so-called photoreceptors, and corresponding signaling pathways have evolved, in almost all kingdoms of life, to monitor light continuously and adjust their growth and development accordingly. However, considering the fact that different cell types should be enable to trigger distinct light signaling pathways according to their needs, cell-type specific light signaling pathways are required to guarantee cell type-matched modulation of cellular and developmental processes in response to different light signals. The multicellular green alga Volvox carteri, which has only 2 cell types with clear division of labor, possesses cell-type specific photoreceptors and light signaling pathways which allow differential regulation of genes involved in various cellular and metabolic pathways in response to environmental light. The existence of cell-type specific light signaling pathways in multicellular organism like Volvox reflects an early development of cell-type specific signaling mechanisms during evolution to ensure maintenance of differentiation. PMID:25874475

  6. Sustained Delivery of Bioactive GDNF from Collagen and Alginate-Based Cell-Encapsulating Gel Promoted Photoreceptor Survival in an Inherited Retinal Degeneration Model.

    PubMed

    Wong, Francisca S Y; Wong, Calvin C H; Chan, Barbara P; Lo, Amy C Y

    2016-01-01

    Encapsulated-cell therapy (ECT) is an attractive approach for continuously delivering freshly synthesized therapeutics to treat sight-threatening posterior eye diseases, circumventing repeated invasive intravitreal injections and improving local drug availability clinically. Composite collagen-alginate (CAC) scaffold contains an interpenetrating network that integrates the physical and biological merits of its constituents, including biocompatibility, mild gelling properties and availability. However, CAC ECT properties and performance in the eye are not well-understood. Previously, we reported a cultured 3D CAC system that supported the growth of GDNF-secreting HEK293 cells with sustainable GDNF delivery. Here, the system was further developed into an intravitreally injectable gel with 1x104 or 2x105 cells encapsulated in 2mg/ml type I collagen and 1% alginate. Gels with lower alginate concentration yielded higher initial cell viability but faster spheroid formation while increasing initial cell density encouraged cell growth. Continuous GDNF delivery was detected in culture and in healthy rat eyes for at least 14 days. The gels were well-tolerated with no host tissue attachment and contained living cell colonies. Most importantly, gel-implanted in dystrophic Royal College of Surgeons rat eyes for 28 days retained photoreceptors while those containing higher initial cell number yielded better photoreceptor survival. CAC ECT gels offers flexible system design and is a potential treatment option for posterior eye diseases. PMID:27441692

  7. Sustained Delivery of Bioactive GDNF from Collagen and Alginate-Based Cell-Encapsulating Gel Promoted Photoreceptor Survival in an Inherited Retinal Degeneration Model

    PubMed Central

    Chan, Barbara P.; Lo, Amy C. Y.

    2016-01-01

    Encapsulated-cell therapy (ECT) is an attractive approach for continuously delivering freshly synthesized therapeutics to treat sight-threatening posterior eye diseases, circumventing repeated invasive intravitreal injections and improving local drug availability clinically. Composite collagen-alginate (CAC) scaffold contains an interpenetrating network that integrates the physical and biological merits of its constituents, including biocompatibility, mild gelling properties and availability. However, CAC ECT properties and performance in the eye are not well-understood. Previously, we reported a cultured 3D CAC system that supported the growth of GDNF-secreting HEK293 cells with sustainable GDNF delivery. Here, the system was further developed into an intravitreally injectable gel with 1x104 or 2x105 cells encapsulated in 2mg/ml type I collagen and 1% alginate. Gels with lower alginate concentration yielded higher initial cell viability but faster spheroid formation while increasing initial cell density encouraged cell growth. Continuous GDNF delivery was detected in culture and in healthy rat eyes for at least 14 days. The gels were well-tolerated with no host tissue attachment and contained living cell colonies. Most importantly, gel-implanted in dystrophic Royal College of Surgeons rat eyes for 28 days retained photoreceptors while those containing higher initial cell number yielded better photoreceptor survival. CAC ECT gels offers flexible system design and is a potential treatment option for posterior eye diseases. PMID:27441692

  8. Thyroid Hormone Signaling and Cone Photoreceptor Viability.

    PubMed

    Ma, Hongwei; Ding, Xi-Qin

    2016-01-01

    Thyroid hormone (TH) signaling regulates cell proliferation, differentiation, and apoptosis. In the retina, TH signaling plays a central role in cone opsin expression. TH signaling inhibits S opsin expression, stimulates M opsin expression, and promotes dorsal-ventral opsin patterning. TH signaling has also been associated with cone photoreceptor viability. Treatment with thyroid hormone triiodothyronine (T3) or induction of high T3 by deleting the hormone-inactivating enzyme type 3 iodothyronine deiodinase (DIO3) causes cone death in mice. This effect is reversed by deletion of the TH receptor (TR) gene. Consistent with the T3 treatment effect, suppressing TH signaling preserves cones in mouse models of retinal degeneration. The regulation of cone survival by TH signaling appears to be independent of its regulatory role in cone opsin expression. The mechanism by which TH signaling regulates cone viability remains to be identified. The current understanding of TH signaling regulation in photoreceptor viability suggests that suppressing TH signaling locally in the retina may represent a novel strategy for retinal degeneration management. PMID:26427466

  9. Photoreceptor Sensory Cilium: Traversing the Ciliary Gate.

    PubMed

    Khanna, Hemant

    2015-01-01

    Cilia are antenna-like extensions of the plasma membrane found in nearly all cell types. In the retina of the eye, photoreceptors develop unique sensory cilia. Not much was known about the mechanisms underlying the formation and function of photoreceptor cilia, largely because of technical limitations and the specific structural and functional modifications that cannot be modeled in vitro. With recent advances in microscopy techniques and molecular and biochemical approaches, we are now beginning to understand the molecular basis of photoreceptor ciliary architecture, ciliary function and its involvement in human diseases. Here, I will discuss the studies that have revealed new knowledge of how photoreceptor cilia regulate their identity and function while coping with high metabolic and trafficking demands associated with processing light signal. PMID:26501325

  10. Inhibition of mTOR signaling protects photoreceptor cells against serum deprivation by reducing oxidative stress and inducing G2/M cell cycle arrest

    PubMed Central

    FAN, BIN; LI, FU-QAING; SONG, JING-YAO; CHEN, XU; LI, GUANG-YU

    2016-01-01

    The mammalian target of rapamycin (mTOR) pathway is a crucial cellular signaling hub, which integrates internal and external cues to modulate the cell cycle, protein synthesis and metabolism. The present study hypothesized that inhibiting mTOR signaling may induce cells to enter lower and more stable bioenergetic states, in which neurons have greater resistance to various insults. Neurotrophin withdrawal from photoreceptor cells (661W cells) was mimicked using serum deprivation, and the neuroprotective mechanisms were studied following suppression of the mTOR pathway. Treatment with an mTOR specific inhibitor, rapamycin, reduced intracellular levels of reactive oxygen species, suppressed oxidative stress, and attenuated mitochondrial dysfunction. In addition, inhibiting mTOR signaling induced a G2/M cell cycle arrest, thus providing an opportunity to repair damaged DNA and block the cell death cascade. These results suggested that inhibition of mTOR had a neuroprotective effect on serum-deprived 661W cells. In conclusion, the mTOR pathway is a critical molecular signal for cell cycle regulation and energy metabolism, and inhibiting the mTOR pathway may attenuate neurotrophin withdrawal-induced damage. These observations may provide evidence for the treatment of retinal degenerative disease, since inducing neurons into a lower and more stable bioenergetic state by blocking mTOR signaling may slow the progression of neurodegenerative diseases. PMID:27035647

  11. Effects of sodium, potassium, and calcium ions on slow and spike potentials in single photoreceptor cells.

    PubMed

    Fulpius, B; Baumann, F

    1969-05-01

    The influence of changes in the ionic composition of the bathing medium on responses of the retinula cell of the honeybee drone to light was examined by means of intracellular microelectrodes. The resting potential of the cell was influenced mainly by the concentration of K. The peak of the receptor potential (the transient), which in a normal solution and with strong light approaches zero membrane potential, overshot this level in a K-rich solution. An increase in the concentration of K also raised the level of the steady-state phase of the receptor potential (the plateau). The amplitude of the receptor potential was decreased and the spike potential rapidly abolished when Na was replaced by either sucrose, choline, or Tris. In a Ca-free solution the amplitude of the response and especially that of the plateau, was increased. An increase in Ca had the opposite effects. All these changes were reversible. An attempt was made to interpret the receptor and spike potentials in terms of passive movements of Na and K across the membrane of the retinula cell. The major difficulty encountered was to find an explanation for the persistence of an appreciable fraction of the transient and the plateau in preparations kept up to 12 hr in a solution in which all the Na had been replaced by choline, Tris, or sucrose.

  12. Drosophila Fatty Acid Transport Protein Regulates Rhodopsin-1 Metabolism and Is Required for Photoreceptor Neuron Survival

    PubMed Central

    Dourlen, Pierre; Bertin, Benjamin; Chatelain, Gilles; Robin, Marion; Napoletano, Francesco; Roux, Michel J.; Mollereau, Bertrand

    2012-01-01

    Tight regulation of the visual response is essential for photoreceptor function and survival. Visual response dysregulation often leads to photoreceptor cell degeneration, but the causes of such cell death are not well understood. In this study, we investigated a fatty acid transport protein (fatp) null mutation that caused adult-onset and progressive photoreceptor cell death. Consistent with fatp having a role in the retina, we showed that fatp is expressed in adult photoreceptors and accessory cells and that its re-expression in photoreceptors rescued photoreceptor viability in fatp mutants. The visual response in young fatp-mutant flies was abnormal with elevated electroretinogram amplitudes associated with high levels of Rhodopsin-1 (Rh1). Reducing Rh1 levels in rh1 mutants or depriving flies of vitamin A rescued photoreceptor cell death in fatp mutant flies. Our results indicate that fatp promotes photoreceptor survival by regulating Rh1 abundance. PMID:22844251

  13. Characterizing and modeling the intrinsic light response of rat ganglion-cell photoreceptors.

    PubMed

    Walch, Olivia J; Zhang, L Samantha; Reifler, Aaron N; Dolikian, Michael E; Forger, Daniel B; Wong, Kwoon Y

    2015-11-01

    Intrinsically photosensitive retinal ganglion cells (ipRGCs) mediate both image-forming vision and non-image-forming visual responses such as pupillary constriction and circadian photoentrainment. Five types of ipRGCs, named M1-M5, have been discovered in rodents. To further investigate their photoresponse properties, we made multielectrode array spike recordings from rat ipRGCs, classified them into M1, M2/M4, and M3/M5 clusters, and measured their intrinsic, melanopsin-based responses to single and flickering light pulses. Results showed that ipRGC spiking can track flickers up to ∼0.2 Hz in frequency and that flicker intervals between 5 and 14 s evoke the most spikes. We also learned that melanopsin's integration time is intensity and cluster dependent. Using these data, we constructed a mathematical model for each cluster's intrinsic photoresponse. We found that the data for the M1 cluster are best fit by a model that assumes a large photoresponse, causing the cell to enter depolarization block. Our models also led us to hypothesize that the M2/M4 and M3/M5 clusters experience comparable photoexcitation but that the M3/M5 cascade decays significantly faster than the M2/M4 cascade, resulting in different response waveforms between these clusters. These mathematical models will help predict how each ipRGC cluster might respond to stimuli of any waveform and could inform the invention of lighting technologies that promote health through melanopsin stimulation.

  14. Photoreceptor fine structure in light- and dark-adaptation in the butterfly fish (Pantodon buchholzi).

    PubMed

    Braekevelt, C R

    1990-01-01

    The morphology of the retinal photoreceptors of the butterfly fish Pantodon buchholzi has been studied by electron microscopy in both light- and dark-adaptation. The photoreceptors in this species are readily divisible into rods and cones based on morphological criteria. No double or twin cones are present. The rod photoreceptors show marked retinomotor movements. In light-adaptation they are extremely elongate cells while in the dark-adapted state they are much shorter. Cones seem to respond but minimally to the circadian cycle. Rod outer segments are composed of membranous discs of uniform diameter displaying several incisures. The inner segment has a small distal ellipsoid and a thin myoid region which is lost in dark-adaptation. The nuclei of rods are condensed and always located vitread to the external limiting membrane. The rod synaptic spherule displays 2 or 3 invaginated sites. The single cones display a tapering outer segment. The wider inner segment contains a large electron-dense ellipsoid with small glycogen deposits located peripherally. The cone nuclei are large and vesicular and usually located sclerad to the external limiting membrane. The synaptic pedicle of cones is larger and more electron-lucent and contains more synaptic sites than do the rods. No mosaic pattern of arrangement of the photoreceptors is apparent. Except for the obvious lengthening or shortening of the rods, the morphology of the photoreceptors changes but little during the circadian cycle.

  15. Separable transcriptional regulatory domains within Otd control photoreceptor terminal differentiation events

    PubMed Central

    McDonald, Elizabeth C.; Xie, Baotong; Workman, Michael; Charlton-Perkins, Mark; Terrell, David A.; Reischl, Joachim; Wimmer, Ernst A.; Gebelein, Brian A.

    2010-01-01

    Summary Orthodenticle (Otd)-related transcription factors are essential for anterior patterning and brain morphogenesis from Cnidaria to Mammals, and genetically underlie several human retinal pathologies. Despite their key developmental functions, relatively little is known regarding the molecular basis of how these factors regulate downstream effectors in a cell- or tissue-specific manner. Many invertebrate and vertebrate species encode two to three Otd proteins, whereas Drosophila encodes a single Otd protein. In the fly retina, Otd controls rhabdomere morphogenesis of all photoreceptors and regulates distinct Rhodopsin-encoding genes in a photoreceptor subtype-specific manner. Here, we performed a structure-function analysis of Otd during Drosophila eye development using in vivo rescue experiments and in vitro transcriptional regulatory assays. Our findings indicate that Otd requires at least three distinct transcriptional regulatory domains to control photoreceptor-specific rhodopsin gene expression and photoreceptor morphogenesis. Our results also uncover a previously unknown role for Otd in preventing co-expression of sensory receptors in blue vs. green-sensitive R8 photoreceptors. Sequence analysis indicates that many of the transcriptional regulatory domains identified here are conserved in multiple Diptera Otd-related proteins. Thus, these studies provide a basis for identifying shared molecular pathways involved in a wide range of developmental processes. PMID:20732315

  16. Algal sensory photoreceptors.

    PubMed

    Hegemann, Peter

    2008-01-01

    Only five major types of sensory photoreceptors (BLUF-proteins, cryptochromes, phototropins, phytochromes, and rhodopsins) are used in nature to regulate developmental processes, photosynthesis, photoorientation, and control of the circadian clock. Sensory photoreceptors of algae and protists are exceptionally rich in structure and function; light-gated ion channels and photoactivated adenylate cyclases are unique examples. During the past ten years major progress has been made with respect to understanding the function, photochemistry, and structure of key sensory players of the algal kingdom.

  17. Kinesin-2 Family Motors in the Unusual Photoreceptor Cilium

    PubMed Central

    Malicki, Jarema; Besharse, Joseph C.

    2012-01-01

    This review focuses on recent advances in the understanding of kinesin-2 family motors in vertebrate photoreceptor development. Zebrafish photoreceptors develop by the 3rd day of embryogenesis, making it possible to study mutant phenotypes without the use of conditional alleles. Recent work using a zebrafish kif3b mutant allele validates the concept that the heterotrimeric kinesin II motor is generally required for ciliogenesis. In zebrafish photoreceptors, however, loss of kif3b function delays but does not block cilium formation. This is thought to occur because both kif3b or kif3c can dimerize with kif3a and function redundantly. The second ciliary kinesin thought to function in photoreceptor cells is kif17. Prior work has shown that either morpholino knockdown of this gene or the overexpression of its dominant negative form can reduce or delay photoreceptor cilium development without any evident impact on ciliogenesis in general. This has led to the idea that kif17 may play an important role only in some specialized cilium types, such the one in photoreceptor cells. In a recently identified kif17 mutant, however, photoreceptor outer segments are formed by 5 dpf and an obvious delay of outer segment formation is seen only at the earliest stage analyzed (3 dpf). This work suggests that kif17 plays a significant role mainly at an early stage of photoreceptor development. Taken together, these studies lead to an intriguing concept that as they differentiate photoreceptors alter their kinesin repertoire. PMID:23123805

  18. Intravitreous transplantation of encapsulated fibroblasts secreting the human fibroblast growth factor 2 delays photoreceptor cell degeneration in Royal College of Surgeons rats

    PubMed Central

    Uteza, Yves; Rouillot, Jean-Sébastien; Kobetz, Alexandra; Marchant, Dominique; Pecqueur, Sèverine; Arnaud, Emmanuelle; Prats, Hervé; Honiger, Jiri; Dufier, Jean-Louis; Abitbol, Marc; Neuner-Jehle, Martin

    1999-01-01

    We developed an experimental approach with genetically engineered and encapsulated mouse NIH 3T3 fibroblasts to delay the progressive degeneration of photoreceptor cells in dark-eyed Royal College of Surgeons rats. These xenogeneic fibroblasts can survive in 1.5-mm-long microcapsules made of the biocompatible polymer AN69 for at least 90 days under in vitro and in vivo conditions because of their stable transfection with the gene for the 18-kDa form of the human basic fibroblast growth factor (hFGF-2). Furthermore, when transferred surgically into the vitreous cavity of 21-day-old Royal College of Surgeons rats, the microencapsulated hFGF-2-secreting fibroblasts provoked a local delay of photoreceptor cell degeneration, as seen at 45 days and 90 days after transplantation. This effect was limited to 2.08 mm2 (45 days) and 0.95 mm2 (90 days) of the retinal surface. In both untreated eyes and control globes with encapsulated hFGF-2-deficient fibroblasts, the rescued area (of at most 0.08 mm2) was significantly smaller at both time points. Although, in a few ocular globes, surgical trauma induced a reorganization of the retinal cytoarchitecture, neither microcapsule rejection nor hFGF-2-mediated tumor formation were detected in any treated eyes. These findings indicate that encapsulated fibroblasts secreting hFGF-2 or perhaps other agents can be applied as potential therapeutic tools to treat retinal dystrophies. PMID:10077648

  19. Selective Photoreceptor Gene Knock-out Reveals a Regulatory Role for the Growth Behavior of Pseudomonas syringae.

    PubMed

    Shah, Rashmi; Pathak, Gopal; Drepper, Thomas; Gärtner, Wolfgang

    2016-07-01

    The plant pathogen Pseudomonas syringae (Ps) is a well-established model organism for bacterial infection of plants. The genome sequences of two pathovars, pv. syringae and pv. tomato, revealed one gene encoding a blue and two genes encoding red/far red light-sensing photoreceptors. Continuing former molecular characterization of the photoreceptor proteins, we here report selective photoreceptor gene disruption for pv. tomato aiming at identification of potentially regulatory functions of these photoreceptors. Transformation of Ps cells with linear DNA constructs yielded interposon mutations of the corresponding genes. Cell growth studies of the generated photoreceptor knock-out mutants revealed their role in light-dependent regulation of cell growth and motility. Disruption of the blue-light (BL) receptor gene caused a growth deregulation, in line with an observed increased virulence of this mutant (Moriconi et al., Plant J., 2013, 76, 322). Bacterial phytochrome-1 (BphP1) deletion mutant caused unaltered cell growth, but a stronger swarming capacity. Inactivation of its ortholog, BphP2, however, caused reduced growth and remarkably altered dendritic swarming behavior. Combined knock-out of both bacteriophytochromes reproduced the swarming pattern observed for the BphP2 mutant alone. A triple knock-out mutant showed a growth rate between that of the BL (deregulation) and the phytochrome-2 mutant (growth reduction).

  20. Selective Photoreceptor Gene Knock-out Reveals a Regulatory Role for the Growth Behavior of Pseudomonas syringae.

    PubMed

    Shah, Rashmi; Pathak, Gopal; Drepper, Thomas; Gärtner, Wolfgang

    2016-07-01

    The plant pathogen Pseudomonas syringae (Ps) is a well-established model organism for bacterial infection of plants. The genome sequences of two pathovars, pv. syringae and pv. tomato, revealed one gene encoding a blue and two genes encoding red/far red light-sensing photoreceptors. Continuing former molecular characterization of the photoreceptor proteins, we here report selective photoreceptor gene disruption for pv. tomato aiming at identification of potentially regulatory functions of these photoreceptors. Transformation of Ps cells with linear DNA constructs yielded interposon mutations of the corresponding genes. Cell growth studies of the generated photoreceptor knock-out mutants revealed their role in light-dependent regulation of cell growth and motility. Disruption of the blue-light (BL) receptor gene caused a growth deregulation, in line with an observed increased virulence of this mutant (Moriconi et al., Plant J., 2013, 76, 322). Bacterial phytochrome-1 (BphP1) deletion mutant caused unaltered cell growth, but a stronger swarming capacity. Inactivation of its ortholog, BphP2, however, caused reduced growth and remarkably altered dendritic swarming behavior. Combined knock-out of both bacteriophytochromes reproduced the swarming pattern observed for the BphP2 mutant alone. A triple knock-out mutant showed a growth rate between that of the BL (deregulation) and the phytochrome-2 mutant (growth reduction). PMID:27289014

  1. BRAIN PHOTORECEPTOR PATHWAYS CONTRIBUTING TO CIRCADIAN RHYTHMICITY IN CRAYFISH

    PubMed Central

    Sullivan, Jeremy M.; Genco, Maria C.; Marlow, Elizabeth D.; Benton, Jeanne L.; Beltz, Barbara S.; Sandeman, David C.

    2011-01-01

    Freshwater crayfish have three known photoreceptive systems: the compound eyes, extraretinal brain photoreceptors, and caudal photoreceptors. The primary goal of the work described here was to explore the contribution of the brain photoreceptors to circadian locomotory activity and define some of the underlying neural pathways. Immunocytochemical studies of the brain photoreceptors in the parastacid (southern hemisphere) crayfish Cherax destructor reveal their expression of the blue light-sensitive photopigment cryptochrome and the neurotransmitter histamine. The brain photo-receptors project to two small protocerebral neuropils, the brain photoreceptor neuropils (BPNs), where they terminate among fibers expressing the neuropeptide pigment-dispersing hormone (PDH), a signaling molecule in arthropod circadian systems. Comparable pathways are also described in the astacid (northern hemisphere) crayfish Procambarus clarkii. Despite exhibiting markedly different diurnal locomotor activity rhythms, removal of the compound eyes and caudal photoreceptors in both C. destructor and P. clarkii (leaving the brain photoreceptors intact) does not abolish the normal light/dark activity cycle in either species, nor prevent the entrainment of their activity cycles to phase shifts of the light/dark period. These results suggest, therefore, that crayfish brain photoreceptors are sufficient for the entrainment of loco-motor activity rhythms to photic stimuli, and that they can act in the absence of the compound eyes and caudal photoreceptors. We also demonstrate that the intensity of PDH expression in the BPNs varies in phase with the locomotor activity rhythm of both crayfish species. Together, these findings suggest that the brain photoreceptor cells can function as extraretinal circadian photoreceptors and that the BPN represents part of an entrainment pathway synchronizing locomotor activity to environmental light/dark cycles, and implicating the neuropeptide PDH in these

  2. [The role of the glial cells in the maintenance of the ionic environment of the photoreceptors of the retina of the drone (author's transl)].

    PubMed

    Tsacopoulos, M; Coles, J A

    1978-04-01

    A double-barrelled potassium sensitive microelectrode was used to record electrical potentials and K+ activities in the retina of the drone Apis Mellifera during stimulation with trains of flashes, 1 per sec, intense enough to produce receptor potentials of near maximal amplitude. During the stimulation photoreceptors lose about 25% of their intracellular potassium concentration. During stimulation the potassium activity in the extracellular space increased transitorily up to 20 mM and then fell to a plateau. By this time the potassium concentration increased by about 20% in the glial cells. These results suggest that the glial cells may participate in the regulation of K+ activity in the extracellular space. The increase of potassium activity in the glial cells may be a stimulus for activation of cellular metabolism.

  3. Protective effects of bilberry and lingonberry extracts against blue light-emitting diode light-induced retinal photoreceptor cell damage in vitro

    PubMed Central

    2014-01-01

    Background Blue light is a high-energy or short-wavelength visible light, which induces retinal diseases such as age-related macular degeneration and retinitis pigmentosa. Bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea) contain high amounts of polyphenols (anthocyanins, resveratrol, and proanthocyanidins) and thus confer health benefits. This study aimed to determine the protective effects and mechanism of action of bilberry extract (B-ext) and lingonberry extract (L-ext) and their active components against blue light-emitting diode (LED) light-induced retinal photoreceptor cell damage. Methods Cultured murine photoreceptor (661 W) cells were exposed to blue LED light following treatment with B-ext, L-ext, or their constituents (cyanidin, delphinidin, malvidin, trans-resveratrol, and procyanidin B2). 661 W cell viability was assessed using a tetrazolium salt (WST-8) assay and Hoechst 33342 nuclear staining, and intracellular reactive oxygen species (ROS) production was determined using CM-H2DCFDA after blue LED light exposure. Activation of p38 mitogen-activated protein kinase (p38 MAPK), nuclear factor-kappa B (NF-κB), and LC3, an ubiquitin-like protein that is necessary for the formation of autophagosomes, were analyzed using Western blotting. Caspase-3/7 activation caused by blue LED light exposure in 661 W cells was determined using a caspase-3/7 assay kit. Results B-ext, L-ext, NAC, and their active components improved the viability of 661 W cells and inhibited the generation of intracellular ROS induced by blue LED light irradiation. Furthermore, B-ext and L-ext inhibited the activation of p38 MAPK and NF-κB induced by blue LED light exposure. Finally, B-ext, L-ext, and NAC inhibited caspase-3/7 activation and autophagy. Conclusions These findings suggest that B-ext and L-ext containing high amounts of polyphenols exert protective effects against blue LED light-induced retinal photoreceptor cell damage mainly through inhibition

  4. Developmental changes in biophysical properties of photoreceptors in the common water strider (Gerris lacustris): better performance at higher cost.

    PubMed

    Frolov, Roman; Weckström, Matti

    2014-08-15

    Although the dependence of invertebrate photoreceptor biophysical properties on visual ecology has already been investigated in some cases, developmental aspects have largely been ignored due to the general research emphasis on holometabolous insects. Here, using the patch-clamp method, we examined changes in biophysical properties and performance of photoreceptors in the common water strider Gerris lacustris during postembryonic development. We identified two types of peripheral photoreceptors, green and blue sensitive. Whole cell capacitance (a measure of cell size) of blue photoreceptors was significantly higher than the capacitance of green photoreceptors (69 ± 20 vs. 43 ± 12 pF, respectively). Most of the measured morphological and biophysical parameters changed with development. Photoreceptor capacitance increased progressively and was positively correlated with sensitivity to light, magnitudes and densities of light-induced (LIC) and delayed rectifier K(+) (IDR) currents, membrane corner frequency, and maximal information rate [Spearman rank correlation coefficients: 0.70 (sensitivity), 0.79 (LIC magnitude), 0.79 (IDR magnitude), 0.48 (corner frequency), and 0.57 (information rate)]. Transient K(+) current increased to a smaller extent, while its density decreased. We found no significant changes in the properties of single photon responses or levels of light-induced depolarization, the latter indicating a balanced channelome expansion associated with IDR expression. However, the dramatic ∼7.6-fold increase in IDR from first instars to adults indicated a development-related rise in the metabolic cost of information. In conclusion, this study provides novel insights into functional photoreceptor adaptations with development and illustrates remarkable variability in patterns of postembryonic retinal development in hemimetabolous insects with dissimilar visual ecologies and behaviors.

  5. Donor and host photoreceptors engage in material transfer following transplantation of post-mitotic photoreceptor precursors

    PubMed Central

    Pearson, R. A.; Gonzalez-Cordero, A.; West, E. L.; Ribeiro, J. R.; Aghaizu, N.; Goh, D.; Sampson, R. D.; Georgiadis, A.; Waldron, P. V.; Duran, Y.; Naeem, A.; Kloc, M.; Cristante, E.; Kruczek, K.; Warre-Cornish, K.; Sowden, J. C.; Smith, A. J.; Ali, R. R.

    2016-01-01

    Photoreceptor replacement by transplantation is proposed as a treatment for blindness. Transplantation of healthy photoreceptor precursor cells into diseased murine eyes leads to the presence of functional photoreceptors within host retinae that express an array of donor-specific proteins. The resulting improvement in visual function was understood to be due to donor cells integrating within host retinae. Here, however, we show that while integration occurs the majority of donor-reporter-labelled cells in the host arises as a result of material transfer between donor and host photoreceptors. Material transfer does not involve permanent donor–host nuclear or cell–cell fusion, or the uptake of free protein or nucleic acid from the extracellular environment. Instead, RNA and/or protein are exchanged between donor and host cells in vivo. These data require a re-evaluation of the mechanisms underlying rescue by photoreceptor transplantation and raise the possibility of material transfer as a strategy for the treatment of retinal disorders. PMID:27701378

  6. The Role of Intraflagellar Transport in the Photoreceptor Sensory Cilium.

    PubMed

    Taub, Daniel G; Liu, Qin

    2016-01-01

    The photoreceptor is a complex specialized cell in which a major component responsible for visual transduction is the photoreceptor sensory cilium (PSC). Building and maintenance of the PSC requires the transport of large proteins along microtubules that extend from the inner segments to the outer segments. A key process, termed intraflagellar transport (IFT), has been recognized as an essential phenomenon for photoreceptor development and maintenance, and exciting new studies have highlighted its importance in retinal and cilia related diseases. This review focuses on the important roles of IFT players, including motor proteins, IFT proteins, and photoreceptor-specific cargos in photoreceptor sensory cilium. In addition, specific IFT components that are involved in inherited human diseases are discussed.

  7. Sexual dimorphism in the compound eye of Heliconius erato: a nymphalid butterfly with at least five spectral classes of photoreceptor.

    PubMed

    McCulloch, Kyle J; Osorio, Daniel; Briscoe, Adriana D

    2016-08-01

    Most butterfly families expand the number of spectrally distinct photoreceptors in their compound eye by opsin gene duplications together with lateral filter pigments; however, most nymphalid genera have limited diversity, with only three or four spectral types of photoreceptor. Here, we examined the spatial pattern of opsin expression and photoreceptor spectral sensitivities in Heliconius erato, a nymphalid with duplicate ultraviolet opsin genes, UVRh1 and UVRh2 We found that the H. erato compound eye is sexually dimorphic. Females express the two UV opsin proteins in separate photoreceptors, but males do not express UVRh1. Intracellular recordings confirmed that females have three short wavelength-sensitive photoreceptors (λmax=356, ∼390 and 470 nm), while males have two (λmax=390 and ∼470 nm). We also found two long wavelength-sensitive photoreceptors (green, λmax∼555 nm, and red, λmax∼600 nm), which express the same LW opsin. The red cell's shifted sensitivity is probably due to perirhabdomal filtering pigments. Sexual dimorphism of the UV-absorbing rhodopsins may reflect the females' need to discriminate conspecifics from co-mimics. Red-green color vision may be used to detect differences in red coloration on Heliconius wings, or for host-plant identification. Among nymphalids so far investigated, only H. erato is known to possess five spectral classes of photoreceptor; sexual dimorphism of the eye via suppression of one class of opsin (here UVRh1 in males) has not - to our knowledge - been reported in any animal. PMID:27247318

  8. Cellular and molecular events mediated by docosahexaenoic acid-derived neuroprotectin D1 signaling in photoreceptor cell survival and brain protection

    PubMed Central

    Bazan, Nicolas G.

    2009-01-01

    Deficiency in docosahexaenoic acid (DHA) is associated with impaired visual and neurological postnatal development, cognitive decline, macular degeneration, and other neurodegenerative diseases. DHA is an omega-3 polyunsaturated fatty acyl chain concentrated in phospholipids of brain and retina, with photoreceptor cells displaying the highest content of DHA of all cell membranes. The identification and characterization of neuroprotectin D1 (NPD1, 10R, 17S-dihydroxy-docosa-4Z, 7Z, 11E, 13E, 15Z, 19Z-hexaenoic acid) contributes to understanding the biological significance of DHA. In oxidative stress-challenged human retinal pigment epithelial (RPE) cells, human brain cells, or rat brains undergoing ischemia-reperfusion, NPD1 synthesis is enhanced as a response for sustaining homeostasis. Thus, neurotrophins, Aβ peptide 42 (Aβ42), calcium ionophore A23187, interleukin (IL)-1 β, or DHA supply enhances NPD1 synthesis. NPD1, in turn, up-regulates the anti-apoptotic proteins of the Bcl-2 family and decreases the expression of pro-apoptotic Bcl-2 family members. Moreover, NPD1 inhibits IL-1 β-stimulated expression of cyclooxygenase-2 (COX-2). Because both RPE and photoreceptors are damaged and then die in retinal degenerations, elucidating how NPD1 signaling contributes to retinal cell survival may lead to a new understanding of disease mechanisms. In human neural cells, DHA attenuates amyloid-β (Aβ) secretion, resulting in concomitant formation of NPD1. NPD1 was found to be reduced in the Alzheimer’s disease (AD) CA1 hippocampal region, but not in other areas of the brain. The expression of key enzymes for NPD1 biosynthesis, cytosolic phospholipase A2 (cPLA2), and 15-lipoxygenase (15-LOX) was found altered in the AD hippocampal CA1 region. NPD1 repressed Aβ42-triggered activation of pro-inflammatory genes and upregulated the anti-apoptotic genes encoding Bcl-2, Bcl-xl, and Bfl-1(A1) in human brain cells in culture. Overall, these results support the concept that

  9. Simple photoreceptors in Limulus polyphemus.

    PubMed

    Millecchia, R; Bradbury, J; Mauro, A

    1966-12-01

    The "olfactory nerve," the endoparietal eye, and the rudimentary lateral eyes of Limulus (polyphemus) contain simple photoreceptor cells that duplicate many of the electrical responses of the retinular cells of the lateral eye; the responses are a receptor potential consisting of aninitial transient phase and a subsequent steady phase,low-amplitude fluctuations, and a small locally regenerative response to pulses of both light and current. Photic stimulation does not induce conducted action potentials, but does increase the membrane conductance. The receptor potentialrequires the presence of sodium ions in the external medium. Measurements of action and absorption spectra indicate a photopigment whose maximum absorption is of light with wavelength of 535 nanometers. The functional significance of these cells has not been ascertained. PMID:5921383

  10. Multiple rod–cone and cone–rod photoreceptor transmutations in snakes: Evidence from visual opsin gene expression

    USGS Publications Warehouse

    Simoe, Bruno F; Sampaio, Filipa L.; Loew, Ellis R.; Sanders, Kate L.; Fisher, Robert N.; Hart, Nathan S.; Hunt, David M.; Partridge, Julian C.; Gower, David J.

    2016-01-01

    In 1934, Gordon Walls forwarded his radical theory of retinal photoreceptor ‘transmutation’. This proposed that rods and cones used for scotopic and photopic vision, respectively, were not fixed but could evolve into each other via a series of morphologically distinguishable intermediates. Walls' prime evidence came from series of diurnal and nocturnal geckos and snakes that appeared to have pure-cone or pure-rod retinas (in forms that Walls believed evolved from ancestors with the reverse complement) or which possessed intermediate photoreceptor cells. Walls was limited in testing his theory because the precise identity of visual pigments present in photoreceptors was then unknown. Subsequent molecular research has hitherto neglected this topic but presents new opportunities. We identify three visual opsin genes, rh1, sws1 and lws, in retinal mRNA of an ecologically and taxonomically diverse sample of snakes central to Walls' theory. We conclude that photoreceptors with superficially rod- or cone-like morphology are not limited to containing scotopic or photopic opsins, respectively. Walls' theory is essentially correct, and more research is needed to identify the patterns, processes and functional implications of transmutation. Future research will help to clarify the fundamental properties and physiology of photoreceptors adapted to function in different light levels.

  11. Multiple rod-cone and cone-rod photoreceptor transmutations in snakes: evidence from visual opsin gene expression.

    PubMed

    Simões, Bruno F; Sampaio, Filipa L; Loew, Ellis R; Sanders, Kate L; Fisher, Robert N; Hart, Nathan S; Hunt, David M; Partridge, Julian C; Gower, David J

    2016-01-27

    In 1934, Gordon Walls forwarded his radical theory of retinal photoreceptor 'transmutation'. This proposed that rods and cones used for scotopic and photopic vision, respectively, were not fixed but could evolve into each other via a series of morphologically distinguishable intermediates. Walls' prime evidence came from series of diurnal and nocturnal geckos and snakes that appeared to have pure-cone or pure-rod retinas (in forms that Walls believed evolved from ancestors with the reverse complement) or which possessed intermediate photoreceptor cells. Walls was limited in testing his theory because the precise identity of visual pigments present in photoreceptors was then unknown. Subsequent molecular research has hitherto neglected this topic but presents new opportunities. We identify three visual opsin genes, rh1, sws1 and lws, in retinal mRNA of an ecologically and taxonomically diverse sample of snakes central to Walls' theory. We conclude that photoreceptors with superficially rod- or cone-like morphology are not limited to containing scotopic or photopic opsins, respectively. Walls' theory is essentially correct, and more research is needed to identify the patterns, processes and functional implications of transmutation. Future research will help to clarify the fundamental properties and physiology of photoreceptors adapted to function in different light levels.

  12. Cell patterning with mucin biopolymers

    PubMed Central

    Crouzier, T.; Jang, H.; Ahn, J.; Stocker, R.; Ribbeck, K.

    2014-01-01

    The precise spatial control of cell adhesion to surfaces is an endeavor that has enabled discoveries in cell biology and new possibilities in tissue engineering. The generation of cell-repellent surfaces currently requires advanced chemistry techniques and could be simplified. Here we show that mucins, glycoproteins of high structural and chemical complexity, spontaneously adsorb on hydrophobic substrates to form coatings that prevent the surface adhesion of mammalian epithelial cells, fibroblasts, and myoblasts. These mucin coatings can be patterned with micrometer precision using a microfluidic device, and are stable enough to support myoblast differentiation over seven days. Moreover, our data indicate that the cell-repellent effect is dependent on mucin-associated glycans because their removal results in a loss of effective cell-repulsion. Last, we show that a critical surface density of mucins, which is required to achieve cell-repulsion, is efficiently obtained on hydrophobic surfaces, but not on hydrophilic glass surfaces. However, this limitation can be overcome by coating glass with hydrophobic fluorosilane. We conclude that mucin biopolymers are attractive candidates to control cell adhesion on surfaces. PMID:23980712

  13. Improved cell metabolism prolongs photoreceptor survival upon retinal-pigmented epithelium loss in the sodium iodate induced model of geographic atrophy

    PubMed Central

    Zieger, Marina; Punzo, Claudio

    2016-01-01

    Age-related macular degeneration (AMD) is characterized by malfunction and loss of retinal-pigmented epithelium (RPE) cells. Because the RPE transfers nutrients from the choriocapillaris to photoreceptor (PR), PRs are affected as well. Geographic atrophy (GA) is an advanced form of AMD characterized by severe vision impairment due to RPE loss over large areas. Currently there is no treatment to delay the degeneration of nutrient deprived PRs once RPE cells die. Here we show that cell-autonomous activation of the key regulator of cell metabolism, the kinase mammalian target of rapamycin complex 1 (mTORC1), delays PR death in the sodium iodate induced model of RPE atrophy. Consistent with this finding loss of mTORC1 in cones accelerates cone death as cones fail to balance demand with supply. Interestingly, promoting rod survival does not promote cone survival in this model of RPE atrophy as both, rods and cones suffer from a sick and dying RPE. The findings suggest that activation of metabolic genes downstream of mTORC1 can serve as a strategy to prolong PR survival when RPE cells malfunction or die. PMID:26883199

  14. Dynamic behavior of rod photoreceptor disks.

    PubMed Central

    Chen, Chunhe; Jiang, Yunhai; Koutalos, Yiannis

    2002-01-01

    Eukaryotic cells use membrane organelles, like the endoplasmic reticulum or the Golgi, to carry out different functions. Vertebrate rod photoreceptors use hundreds of membrane sacs (the disks) for the detection of light. We have used fluorescent tracers and single cell imaging to study the properties of rod photoreceptor disks. Labeling of intact rod photoreceptors with membrane markers and polar tracers revealed communication between intradiskal and extracellular space. Internalized tracers moved along the length of the rod outer segment, indicating communication between the disks as well. This communication involved the exchange of both membrane and aqueous phase and had a time constant in the order of minutes. The communication pathway uses approximately 2% of the available membrane disk area and does not allow the passage of molecules larger than 10 kDa. It was possible to load the intradiskal space with fluorescent Ca(2+) and pH dyes, which reported an intradiskal Ca(2+) concentration in the order of 1 microM and an acidic pH 6.5, both of them significantly different than intracellular and extracellular Ca(2+) concentrations and pH. The results suggest that the rod photoreceptor disks are not discrete, passive sacs but rather comprise an active cellular organelle. The communication between disks may be important for membrane remodeling as well as for providing access to the intradiskal space of the whole outer segment. PMID:12202366

  15. Pharmacological Modulation of Photoreceptor Outer Segment Degradation in a Human iPS Cell Model of Inherited Macular Degeneration.

    PubMed

    Singh, Ruchira; Kuai, David; Guziewicz, Karina E; Meyer, Jackelyn; Wilson, Molly; Lu, Jianfeng; Smith, Molly; Clark, Eric; Verhoeven, Amelia; Aguirre, Gustavo D; Gamm, David M

    2015-11-01

    Degradation of photoreceptor outer segments (POS) by retinal pigment epithelium (RPE) is essential for vision, and studies have implicated altered POS processing in the pathogenesis of some retinal degenerative diseases. Consistent with this concept, a recently established hiPSC-RPE model of inherited macular degeneration, Best disease (BD), displayed reduced rates of POS breakdown. Herein we utilized this model to determine (i) if disturbances in protein degradation pathways are associated with delayed POS digestion and (ii) whether such defect(s) can be pharmacologically targeted. We found that BD hiPSC-RPE cultures possessed increased protein oxidation, decreased free-ubiquitin levels, and altered rates of exosome secretion, consistent with altered POS processing. Application of valproic acid (VPA) with or without rapamycin increased rates of POS degradation in our model, whereas application of bafilomycin-A1 decreased such rates. Importantly, the negative effect of bafilomycin-A1 could be fully reversed by VPA. The utility of hiPSC-RPE for VPA testing was further evident following examination of its efficacy and metabolism in a complementary canine disease model. Our findings suggest that disturbances in protein degradation pathways contribute to the POS processing defect observed in BD hiPSC-RPE, which can be manipulated pharmacologically. These results have therapeutic implications for BD and perhaps other maculopathies. PMID:26300224

  16. Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration.

    PubMed

    Zhao, Lian; Zabel, Matthew K; Wang, Xu; Ma, Wenxin; Shah, Parth; Fariss, Robert N; Qian, Haohua; Parkhurst, Christopher N; Gan, Wen-Biao; Wong, Wai T

    2015-07-02

    Retinitis pigmentosa, caused predominantly by mutations in photoreceptor genes, currently lacks comprehensive treatment. We discover that retinal microglia contribute non-cell autonomously to rod photoreceptor degeneration by primary phagocytosis of living rods. Using rd10 mice, we found that the initiation of rod degeneration is accompanied by early infiltration of microglia, upregulation of phagocytic molecules in microglia, and presentation of "eat-me" signals on mutated rods. On live-cell imaging, infiltrating microglia interact dynamically with photoreceptors via motile processes and engage in rapid phagocytic engulfment of non-apoptotic rods. Microglial contribution to rod demise is evidenced by morphological and functional amelioration of photoreceptor degeneration following genetic ablation of retinal microglia. Molecular inhibition of microglial phagocytosis using the vitronectin receptor antagonist cRGD also improved morphological and functional parameters of degeneration. Our findings highlight primary microglial phagocytosis as a contributing mechanism underlying cell death in retinitis pigmentosa and implicate microglia as a potential cellular target for therapy.

  17. Optimizing Grid Patterns on Photovoltaic Cells

    NASA Technical Reports Server (NTRS)

    Burger, D. R.

    1984-01-01

    CELCAL computer program helps in optimizing grid patterns for different photovoltaic cell geometries and metalization processes. Five different powerloss phenomena associated with front-surface metal grid pattern on photovoltaic cells.

  18. Photoreceptor phagocytosis is mediated by phosphoinositide signaling.

    PubMed

    Mustafi, Debarshi; Kevany, Brian M; Genoud, Christel; Bai, Xiaodong; Palczewski, Krzysztof

    2013-11-01

    Circadian oscillations in peripheral tissues, such as the retinal compartment of the eye, are critical to anticipating changing metabolic demands. Circadian shedding of retinal photoreceptor cell discs with subsequent phagocytosis by the neighboring retinal pigmented epithelium (RPE) is essential for removal of toxic metabolites and lifelong survival of these postmitotic neurons. Defects in photoreceptor phagocytosis can lead to severe retinal pathology, but the biochemical mechanisms remain poorly defined. By first documenting a 2.8-fold burst of photoreceptor phagocytosis events in the mouse eye in the morning compared with the afternoon by serial block face imaging, we established time points to assess transcriptional readouts by RNA sequencing (RNA-Seq). We identified 365 oscillating protein-coding transcripts that implicated the phosphoinositide lipid signaling network mediating the discrete steps of photoreceptor phagocytosis. Moreover, examination of overlapping cistromic sites by core clock transcription factors and promoter elements of these effector genes provided a functional basis for the circadian cycling of these transcripts. RNA-Seq also revealed oscillating expression of 16 long intergenic noncoding RNAs and key histone modifying enzymes critical for circadian gene expression. Our phenotypic and genotypic characterization reveals a complex global landscape of overlapping and temporally controlled networks driving the essential circadian process in the eye.

  19. A structural study of the retinal photoreceptor, plexiform and ganglion cell layers following exposure to UV-B and UV-C radiation in the albino rat.

    PubMed

    de Oliveira Miguel, Nadia Campos; Meyer-Rochow, Victor Benno; Allodi, Silvana

    2003-01-01

    Over the last two decades, ultraviolet radiation levels (UV), reaching the Earth's surface, have been increasing at a rate of 1.5% per each 1% loss of the ozone layer. Moreover, artificial UV-sources have also proliferated and contributed to the rising UV-stress that many organisms have to face. To assess how the vertebrate retina responds to an exposure of short wavelength UV, we focused our attention on the rat retina, observing photoreceptor (containing outer and inner segments of rods and cones), inner plexiform, and ganglion cell layers by light and transmission electron microscopy using conventional and cytochemical techniques. We analyzed how cells of the layers in question responded to a 30 min exposure to UV-C and UV-B radiation with doses of 7200 and 590 J/cm(2), respectively. The results show that there are significant changes in the nuclei and cytoplasmic organelles of the exposed retinae when compared with those of the unexposed controls. The changes include an increase in heterochromatin, distension of rough endoplasmic reticulum, mitochondrial disruptions, and increases in the number of myelin bodies. The recorded morphological changes, especially those of the ganglion cells, are suggestive of apoptotic processes and show that the exposure of vertebrate retina to wavelengths ranging from 254 to 312 nm can produce alterations that are likely to impact negatively on the retina's proper functioning.

  20. Evolution of clitellate phaosomes from rhabdomeric photoreceptor cells of polychaetes – a study in the leech Helobdella robusta (Annelida, Sedentaria, Clitellata)

    PubMed Central

    2013-01-01

    Introduction In Annelida two types of photoreceptor cells (PRCs) are regarded as generally present, rhabdomeric and ciliary PRCs. In certain taxa, however, an additional type of PRC may occur, the so called phaosomal PRC. Whereas the former two types of PRCs are always organized as an epithelium with their sensory processes projecting into an extracellular cavity formed by the PRCs and (pigmented) supportive cells, phaosomes are seemingly intracellular vacuoles housing the sensory processes. Phaosomal PRCs are the only type of PRC found in one major annelid group, Clitellata. Several hypotheses have been put forward explaining the evolutionary origin of the clitellate phaosomes. To elucidate the evolution of clitellate PRC and eyes the leech Helobdella robusta, for which a sequenced genome is available, was chosen. Results TEM observations showed that extraocular and ocular PRCs are structurally identical. Bioinformatic analyses revealed predictions for four opsin genes, three of which could be amplified. All belong to the rhabdomeric opsin family and phylogenetic analyses showed them in a derived position within annelid opsins. Gene expression studies showed two of them expressed in the eye and in the extraocular PRCs. Polychaete eye-typic key enzymes for ommochromme and pterin shading pigments synthesis are not expressed in leech eyes. Conclusions By comparative gene-expression studies we herein provide strong evidence that the phaosomal PRCs typical of Clitellata are derived from the rhabdomeric PRCs characteristic for polychaete adult eyes. Thus, they represent a highly derived type of PRC that evolved in the stem lineage of Clitellata rather than another, primitive type of PRC in Metazoa. Evolution of these PRCs in Clitellata is related to a loss of the primary eyes and most of their photoreceptive elements except for the rhabdomeric PRCs. Most likely this happened while changing to an endobenthic mode of life. This hypothesis of PRC evolution is in accordance

  1. Nr2e3-directed transcriptional regulation of genes involved in photoreceptor development and cell-type specific phototransduction.

    PubMed

    Haider, Neena B; Mollema, Nissa; Gaule, Meghan; Yuan, Yang; Sachs, Andrew J; Nystuen, Arne M; Naggert, Jürgen K; Nishina, Patsy M

    2009-09-01

    The retinal transcription factor Nr2e3 plays a key role in photoreceptor development and function. In this study we examine gene expression in the retina of Nr2e3(rd7/rd7) mutants with respect to wild-type control mice, to identify genes that are misregulated and hence potentially function in the Nr2e3 transcriptional network. Quantitative candidate gene real time PCR and subtractive hybridization approaches were used to identify transcripts that were misregulated in Nr2e3(rd7/rd7) mice. Chromatin immunoprecipitation assays were then used to determine which of the misregulated transcripts were direct targets of NR2E3. We identified 24 potential targets of NR2E3. In the developing retina, NR2E3 targets transcription factors such as Ror1, Rorg, and the nuclear hormone receptors Nr1d1 and Nr2c1. In the mature retina NR2E3 targets several genes including the rod specific gene Gnb1 and cone specific genes blue opsin, and two of the cone transducin subunits, Gnat2 and Gnb3. In addition, we identified 5 novel transcripts that are targeted by NR2E3. While mislocalization of proteins between rods and cones was not observed, we did observe diminished concentration of GNB1 protein in adult Nr2e3(rd7/rd7) retinas. These studies identified novel transcriptional pathways that are potentially targeted by Nr2e3 in the retina and specifically demonstrate a novel role for NR2E3 in regulating genes involved in phototransduction. PMID:19379737

  2. Rescue of compromised lysosomes enhances degradation of photoreceptor outer segments and reduces lipofuscin-like autofluorescence in retinal pigmented epithelial cells.

    PubMed

    Guha, Sonia; Liu, Ji; Baltazar, Gabe; Laties, Alan M; Mitchell, Claire H

    2014-01-01

    Healthful cell maintenance requires the efficient degradative processing and removal of waste material. Retinal pigmented epithelial (RPE) cells have the onerous task of degrading both internal cellular debris generated through autophagy as well as phagocytosed photoreceptor outer segments. We propose that the inadequate processing material with the resulting accumulation of cellular waste contributes to the downstream pathologies characterized as age-related macular degeneration (AMD). The lysosomal enzymes responsible for clearance function optimally over a narrow range of acidic pH values; elevation of lysosomal pH by compounds like chloroquine or A2E can impair degradative enzyme activity and lead to a lipofuscin-like autofluorescence. Restoring acidity to the lysosomes of RPE cells can enhance activity of multiple degradative enzymes and is therefore a logical target in early AMD. We have identified several approaches to reacidify lysosomes of compromised RPE cells; stimulation of beta-adrenergic, A2A adenosine and D5 dopamine receptors each lowers lysosomal pH and improves degradation of outer segments. Activation of the CFTR chloride channel also reacidifies lysosomes and increases degradation. These approaches also restore the lysosomal pH of RPE cells from aged ABCA4(-/-) mice with chronically high levels of A2E, suggesting that functional signaling pathways to reacidify lysosomes are retained in aged cells like those in patients with AMD. Acidic nanoparticles transported to RPE lysosomes also lower pH and improve degradation of outer segments. In summary, the ability of diverse approaches to lower lysosomal pH and enhance outer segment degradation support the proposal that lysosomal acidification can prevent the accumulation of lipofuscin-like material in RPE cells.

  3. Effect of Purified Murine NGF on Isolated Photoreceptors of a Rodent Developing Retinitis Pigmentosa

    PubMed Central

    Rocco, Maria Luisa; Balzamino, Bijorn Omar; Petrocchi Passeri, Pamela; Micera, Alessandra; Aloe, Luigi

    2015-01-01

    A number of different studies have shown that neurotrophins, including nerve growth factor (NGF) support the survival of retinal ganglion neurons during a variety if insults. Recently, we have reported that that eye NGF administration can protect also photoreceptor degeneration in a mice and rat with inherited retinitis pigmentosa. However, the evidence that NGF acts directly on photoreceptors and that other retinal cells mediate the NGF effect could not be excluded. In the present study we have isolated retinal cells from rats with inherited retinitis pigmentosa (RP) during the post-natal stage of photoreceptor degenerative. In presence of NGF, these cells are characterized by enhanced expression of NGF-receptors and rhodopsin, the specific marker of photoreceptor and better cell survival, as well as neuritis outgrowth. Together these observations support the hypothesis that NGF that NGF acts directly on photoreceptors survival and prevents photoreceptor degeneration as previously suggested by in vivo studies. PMID:25897972

  4. Retinal transplantation of photoreceptors results in donor–host cytoplasmic exchange

    PubMed Central

    Santos-Ferreira, Tiago; Llonch, Sílvia; Borsch, Oliver; Postel, Kai; Haas, Jochen; Ader, Marius

    2016-01-01

    Pre-clinical studies provided evidence for successful photoreceptor cell replacement therapy. Migration and integration of donor photoreceptors into the retina has been proposed as the underlying mechanism for restored visual function. Here we reveal that donor photoreceptors do not structurally integrate into the retinal tissue but instead reside between the photoreceptor layer and the retinal pigment epithelium, the so-called sub-retinal space, and exchange intracellular material with host photoreceptors. By combining single-cell analysis, Cre/lox technology and independent labelling of the cytoplasm and nucleus, we reliably track allogeneic transplants demonstrating cellular content transfer between graft and host photoreceptors without nuclear translocation. Our results contradict the common view that transplanted photoreceptors migrate and integrate into the photoreceptor layer of recipients and therefore imply a re-interpretation of previous photoreceptor transplantation studies. Furthermore, the observed interaction of donor with host photoreceptors may represent an unexpected mechanism for the treatment of blinding diseases in future cell therapy approaches. PMID:27701381

  5. OFD1, as a Ciliary Protein, Exhibits Neuroprotective Function in Photoreceptor Degeneration Models

    PubMed Central

    Wang, Fang; Zhang, Jieping; Li, Peng; Li, Zongyi; Xu, Jingying; Gao, Furong; Jin, Caixia; Tian, Haibin; Zhang, Jingfa; Li, Weiye; Lu, Lixia; Xu, Guo-Tong

    2016-01-01

    Ofd1 is a newly identified causative gene for Retinitis pigmentosa (RP), a photoreceptor degenerative disease. This study aimed to examine Ofd1 localization in retina and further to investigate its function in photoreceptor degeneration models. Ofd1 localization in rat retina was examined using immunofluorescence. N-methyl-N-nitrosourea (MNU)-induced rats and Royal College of Surgeons (RCS) rats were used as photoreceptor degeneration models. The expression pattern of Ofd1, other ciliary associated genes and Wnt signaling pathway genes were examined in rat models. Furthermore, pEGFP-Ofd1-CDS and pSUPER-Ofd1-shRNA were constructed to overexpress and knockdown the expression level in 661W and R28 cells. MNU was also used to induce cell death. Cilia formation was observed using immunocytochemistry (ICC). Reactive oxygen species (ROS) were detected using the 2', 7'-Dichlorofluorescin diacetate (DCFH-DA) assay. Apoptosis genes expression was examined using qRT-PCR, Western blotting and fluorescence-activated cell sorting (FACS). Ofd1 localized to outer segments of rat retina photoreceptors. Ofd1 and other ciliary proteins expression levels increased from the 1st and 4th postnatal weeks and decreased until the 6th week in the RCS rats, while their expression consistently decreased from the 1st and 7th day in the MNU rats. Moreover, Wnt signaling pathway proteins expression was significantly up-regulated in both rat models. Knockdown of Ofd1 expression resulted in a smaller population, shorter length of cell cilia, and lower cell viability. Ofd1 overexpression partially attenuated MNU toxic effects by reducing ROS levels and mitigating apoptosis. To the best of our knowledge, this is the first study demonstrating Ofd1 localization and its function in rat retina and in retinal degeneration rat models. Ofd1 plays a role in controlling photoreceptor cilium length and number. Importantly, it demonstrates a neuroprotective function by protecting the photoreceptor from

  6. Morphological and physiological characteristics of dermal photoreceptors in Lymnaea stagnalis

    PubMed Central

    Takigami, Satoshi; Sunada, Hiroshi; Horikoshi, Tetsuro; Sakakibara, Manabu

    2014-01-01

    Dermal photoreceptors located in the mantle of Lymnaea stagnalis were histologically and physiologically characterized. Our previous study demonstrated that the shadow response from dermal photoreceptors induces the whole-body withdrawal response. Through the interneuron, RPeD11, we detected that the light-off response indirectly originated from a dermal photoreceptor. Previous observations, based on behavioral pharmacology, revealed that cyclic guanosine monophosphate acts as a second messenger in the dermal photoreceptor. Furthermore, gastropods possess dermal photoreceptors containing rhodopsin, as a photopigment, and another photo-sensitive protein, arrestin, responsible for terminating the light response. Thus, we chose three antibodies, anti-cGMP, anti-rhodopsin, and anti-β-arrestin, to identify the dermal photoreceptor molecules in Lymnaea mantle. Extracellular recording, using a suction electrode on the mantle, revealed a light off-response from the right parietal nerve. Overlapping structures, positive against each of the antibodies, were also observed. Numerous round, granular particles of 3–47 μm in diameter with one nucleus were distributed around pneumostome and/or inside the mantle. The cells surrounding the pneumostome area, located 10 μm beneath the surface, tended to have smaller cell soma ranging from 3 to 25 μm in diameter, while cells located in other areas were distributed uniformly inside the mantle, with a larger diameter ranging from 12 to 47 μm. The histological examination using back-filing Lucifer Yellow staining of the right parietal nerve with the three dermal photoreceptor antibodies confirmed that these overlapping-stained structures were dermal photoreceptors in Lymnaea. PMID:27493502

  7. Plasma stencilling methods for cell patterning.

    PubMed

    Frimat, Jean-Philippe; Menne, Heike; Michels, Antje; Kittel, Silke; Kettler, Raffael; Borgmann, Sabine; Franzke, Joachim; West, Jonathan

    2009-10-01

    In this paper we describe plasma stencilling techniques for patterning 10 mammalian cell lines on hydrophobic and cell repellent poly(dimethylsiloxane) (PDMS), methylated glass and bacterial grade polystyrene surfaces. An air plasma produced with a Tesla generator operating at atmospheric pressure was used with microengineered stencils for patterned surface oxidation, selectively transforming the surface to a hydrophilic state to enable cell adhesion and growth. Plasma stencilling obviates the need for directly patterning cell adhesion molecules. Instead, during cell culture, adhesion proteins from the media assemble in a bioactive form on the hydrophilic regions. Critically, the removal of protein patterning prior to cell culture provides the option to also use PDMS-PDMS plasma bonding to incorporate cell patterns within microfluidic systems. Linear patterns were generated using PDMS microchannel stencils, and polyimide stencils with through holes were used for the production of cellular arrays. For the production of smaller cellular arrays, a novel microcapillary-based dielectric barrier discharge system was developed. A numerical method to characterise the cell patterns is also introduced and was used to demonstrate that plasma stencilling is highly effective, with complete patterns confined during long term cell culture (>10 days). In summary, plasma stencilling is simple, rapid, inexpensive, reproducible and a potentially universal cell line patterning capability.

  8. Pattern recognition monitoring of PEM fuel cell

    DOEpatents

    Meltser, Mark Alexander

    1999-01-01

    The CO-concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and voltage behavior patterns from an auxiliary cell attached to the end of the stack. The auxiliary cell is connected to the same oxygen and hydrogen feed manifolds that supply the stack, and discharges through a constant load. Pattern recognition software compares the current and voltage patterns from the auxiliary cell to current and voltage signature determined from a reference cell similar to the auxiliary cell and operated under controlled conditions over a wide range of CO-concentrations in the H.sub.2 fuel stream.

  9. Pattern recognition monitoring of PEM fuel cell

    DOEpatents

    Meltser, M.A.

    1999-08-31

    The CO-concentration in the H{sub 2} feed stream to a PEM fuel cell stack is monitored by measuring current and voltage behavior patterns from an auxiliary cell attached to the end of the stack. The auxiliary cell is connected to the same oxygen and hydrogen feed manifolds that supply the stack, and discharges through a constant load. Pattern recognition software compares the current and voltage patterns from the auxiliary cell to current and voltage signature determined from a reference cell similar to the auxiliary cell and operated under controlled conditions over a wide range of CO-concentrations in the H{sub 2} fuel stream. 4 figs.

  10. Photoreceptor Processing Speed and Input Resistance Changes during Light Adaptation Correlate with Spectral Class in the Bumblebee, Bombus impatiens

    PubMed Central

    Skorupski, Peter; Chittka, Lars

    2011-01-01

    Colour vision depends on comparison of signals from photoreceptors with different spectral sensitivities. However, response properties of photoreceptor cells may differ in ways other than spectral tuning. In insects, for example, broadband photoreceptors, with a major sensitivity peak in the green region of the spectrum (>500 nm), drive fast visual processes, which are largely blind to chromatic signals from more narrowly-tuned photoreceptors with peak sensitivities in the blue and UV regions of the spectrum. In addition, electrophysiological properties of the photoreceptor membrane may result in differences in response dynamics of photoreceptors of similar spectral class between species, and different spectral classes within a species. We used intracellular electrophysiological techniques to investigate response dynamics of the three spectral classes of photoreceptor underlying trichromatic colour vision in the bumblebee, Bombus impatiens, and we compare these with previously published data from a related species, Bombus terrestris. In both species, we found significantly faster responses in green, compared with blue- or UV-sensitive photoreceptors, although all 3 photoreceptor types are slower in B. impatiens than in B. terrestris. Integration times for light-adapted B. impatiens photoreceptors (estimated from impulse response half-width) were 11.3±1.6 ms for green photoreceptors compared with 18.6±4.4 ms and 15.6±4.4 for blue and UV, respectively. We also measured photoreceptor input resistance in dark- and light-adapted conditions. All photoreceptors showed a decrease in input resistance during light adaptation, but this decrease was considerably larger (declining to about 22% of the dark value) in green photoreceptors, compared to blue and UV (41% and 49%, respectively). Our results suggest that the conductances associated with light adaptation are largest in green photoreceptors, contributing to their greater temporal processing speed. We suggest that the

  11. Fly Photoreceptors Encode Phase Congruency

    PubMed Central

    Friederich, Uwe; Billings, Stephen A.; Hardie, Roger C.; Juusola, Mikko; Coca, Daniel

    2016-01-01

    More than five decades ago it was postulated that sensory neurons detect and selectively enhance behaviourally relevant features of natural signals. Although we now know that sensory neurons are tuned to efficiently encode natural stimuli, until now it was not clear what statistical features of the stimuli they encode and how. Here we reverse-engineer the neural code of Drosophila photoreceptors and show for the first time that photoreceptors exploit nonlinear dynamics to selectively enhance and encode phase-related features of temporal stimuli, such as local phase congruency, which are invariant to changes in illumination and contrast. We demonstrate that to mitigate for the inherent sensitivity to noise of the local phase congruency measure, the nonlinear coding mechanisms of the fly photoreceptors are tuned to suppress random phase signals, which explains why photoreceptor responses to naturalistic stimuli are significantly different from their responses to white noise stimuli. PMID:27336733

  12. Fly Photoreceptors Encode Phase Congruency.

    PubMed

    Friederich, Uwe; Billings, Stephen A; Hardie, Roger C; Juusola, Mikko; Coca, Daniel

    2016-01-01

    More than five decades ago it was postulated that sensory neurons detect and selectively enhance behaviourally relevant features of natural signals. Although we now know that sensory neurons are tuned to efficiently encode natural stimuli, until now it was not clear what statistical features of the stimuli they encode and how. Here we reverse-engineer the neural code of Drosophila photoreceptors and show for the first time that photoreceptors exploit nonlinear dynamics to selectively enhance and encode phase-related features of temporal stimuli, such as local phase congruency, which are invariant to changes in illumination and contrast. We demonstrate that to mitigate for the inherent sensitivity to noise of the local phase congruency measure, the nonlinear coding mechanisms of the fly photoreceptors are tuned to suppress random phase signals, which explains why photoreceptor responses to naturalistic stimuli are significantly different from their responses to white noise stimuli. PMID:27336733

  13. Using Zinc Finger Nuclease Technology to Generate CRX‐Reporter Human Embryonic Stem Cells as a Tool to Identify and Study the Emergence of Photoreceptors Precursors During Pluripotent Stem Cell Differentiation

    PubMed Central

    Collin, Joseph; Mellough, Carla B; Dorgau, Birthe; Przyborski, Stefan; Moreno‐Gimeno, Inmaculada

    2015-01-01

    Abstract The purpose of this study was to generate human embryonic stem cell (hESC) lines harboring the green fluorescent protein (GFP) reporter at the endogenous loci of the Cone‐Rod Homeobox (CRX) gene, a key transcription factor in retinal development. Zinc finger nucleases (ZFNs) designed to cleave in the 3′ UTR of CRX were transfected into hESCs along with a donor construct containing homology to the target region, eGFP reporter, and a puromycin selection cassette. Following selection, polymerase chain reaction (PCR) and sequencing analysis of antibiotic resistant clones indicated targeted integration of the reporter cassette at the 3′ of the CRX gene, generating a CRX‐GFP fusion. Further analysis of a clone exhibiting homozygote integration of the GFP reporter was conducted suggesting genomic stability was preserved and no other copies of the targeting cassette were inserted elsewhere within the genome. This clone was selected for differentiation towards the retinal lineage. Immunocytochemistry of sections obtained from embryoid bodies and quantitative reverse transcriptase PCR of GFP positive and negative subpopulations purified by fluorescence activated cell sorting during the differentiation indicated a significant correlation between GFP and endogenous CRX expression. Furthermore, GFP expression was found in photoreceptor precursors emerging during hESC differentiation, but not in the retinal pigmented epithelium, retinal ganglion cells, or neurons of the developing inner nuclear layer. Together our data demonstrate the successful application of ZFN technology to generate CRX‐GFP labeled hESC lines, which can be used to study and isolate photoreceptor precursors during hESC differentiation. Stem Cells 2016;34:311–321 PMID:26608863

  14. Dense Pattern Optical Multipass Cell

    NASA Technical Reports Server (NTRS)

    Silver, Joel A. (Inventor)

    2009-01-01

    A multiple pass optical cell and method comprising providing a pair of opposed cylindrical mirrors having curved axes with substantially equal focal lengths, positioning an entrance hole for introducing light into the cell and an exit hole for extracting light from the cell, wherein the entrance hole and exit hole are coextensive or non-coextensive, introducing light into the cell through the entrance hole, and extracting light from the cell through the exit hole.

  15. Dense pattern optical multipass cell

    DOEpatents

    Silver, Joel A [Santa Fe, NM

    2009-01-13

    A multiple pass optical cell and method comprising providing a pair of opposed cylindrical mirrors having curved axes with substantially equal focal lengths, positioning an entrance hole for introducing light into the cell and an exit hole for extracting light from the cell, wherein the entrance hole and exit hole are coextensive or non-coextensive, introducing light into the cell through the entrance hole, and extracting light from the cell through the exit hole.

  16. Pattern formation by vascular mesenchymal cells

    NASA Astrophysics Data System (ADS)

    Garfinkel, Alan; Tintut, Yin; Petrasek, Danny; Boström, Kristina; Demer, Linda L.

    2004-06-01

    In embryogenesis, immature mesenchymal cells aggregate and organize into patterned tissues. Later in life, a pathological recapitulation of this process takes place in atherosclerotic lesions, when vascular mesenchymal cells organize into trabecular bone tissue within the artery wall. Here we show that multipotential adult vascular mesenchymal cells self-organize in vitro into patterns that are predicted by a mathematical model based on molecular morphogens interacting in a reaction-diffusion process. We identify activator and inhibitor morphogens for stripe, spot, and labyrinthine patterns and confirm the model predictions in vitro. Thus, reaction-diffusion principles may play a significant role in morphogenetic processes in adult mesenchymal cells.

  17. The Fine Structure of Some Retinal Photoreceptors

    PubMed Central

    Moody, M. F.; Robertson, J. D.

    1960-01-01

    An electron microscope study has been made of octopus and amphibian photoreceptors, after fixing with KMnO4 and embedding in araldite. What has previously been seen as a single dense stratum bounding the tubular compartments (octopus) or the double membrane discs (rods and cones), now shows a double structure. We interpret this as showing that these tubules and discs have similar bounding surfaces, which are probably directly related to the cell membrane. This is confirmed by the finding that the tubules and discs are (at least occasionally) continuous with the cell membrane. PMID:14423794

  18. An Unexpected Diversity of Photoreceptor Classes in the Longfin Squid, Doryteuthis pealeii.

    PubMed

    Kingston, Alexandra C N; Wardill, Trevor J; Hanlon, Roger T; Cronin, Thomas W

    2015-01-01

    Cephalopods are famous for their ability to change color and pattern rapidly for signaling and camouflage. They have keen eyes and remarkable vision, made possible by photoreceptors in their retinas. External to the eyes, photoreceptors also exist in parolfactory vesicles and some light organs, where they function using a rhodopsin protein that is identical to that expressed in the retina. Furthermore, dermal chromatophore organs contain rhodopsin and other components of phototransduction (including retinochrome, a photoisomerase first found in the retina), suggesting that they are photoreceptive. In this study, we used a modified whole-mount immunohistochemical technique to explore rhodopsin and retinochrome expression in a number of tissues and organs in the longfin squid, Doryteuthis pealeii. We found that fin central muscles, hair cells (epithelial primary sensory neurons), arm axial ganglia, and sucker peduncle nerves all express rhodopsin and retinochrome proteins. Our findings indicate that these animals possess an unexpected diversity of extraocular photoreceptors and suggest that extraocular photoreception using visual opsins and visual phototransduction machinery is far more widespread throughout cephalopod tissues than previously recognized. PMID:26351853

  19. An Unexpected Diversity of Photoreceptor Classes in the Longfin Squid, Doryteuthis pealeii.

    PubMed

    Kingston, Alexandra C N; Wardill, Trevor J; Hanlon, Roger T; Cronin, Thomas W

    2015-01-01

    Cephalopods are famous for their ability to change color and pattern rapidly for signaling and camouflage. They have keen eyes and remarkable vision, made possible by photoreceptors in their retinas. External to the eyes, photoreceptors also exist in parolfactory vesicles and some light organs, where they function using a rhodopsin protein that is identical to that expressed in the retina. Furthermore, dermal chromatophore organs contain rhodopsin and other components of phototransduction (including retinochrome, a photoisomerase first found in the retina), suggesting that they are photoreceptive. In this study, we used a modified whole-mount immunohistochemical technique to explore rhodopsin and retinochrome expression in a number of tissues and organs in the longfin squid, Doryteuthis pealeii. We found that fin central muscles, hair cells (epithelial primary sensory neurons), arm axial ganglia, and sucker peduncle nerves all express rhodopsin and retinochrome proteins. Our findings indicate that these animals possess an unexpected diversity of extraocular photoreceptors and suggest that extraocular photoreception using visual opsins and visual phototransduction machinery is far more widespread throughout cephalopod tissues than previously recognized.

  20. Loss of retinoschisin (RS1) cell surface protein in maturing mouse rod photoreceptors elevates the luminance threshold for light-driven translocation of transducin but not arrestin.

    PubMed

    Ziccardi, Lucia; Vijayasarathy, Camasamudram; Bush, Ronald A; Sieving, Paul A

    2012-09-19

    Loss of retinoschisin (RS1) in Rs1 knock-out (Rs1-KO) retina produces a post-photoreceptor phenotype similar to X-linked retinoschisis in young males. However, Rs1 is expressed strongly in photoreceptors, and Rs1-KO mice have early reduction in the electroretinogram a-wave. We examined light-activated transducin and arrestin translocation in young Rs1-KO mice as a marker for functional abnormalities in maturing rod photoreceptors. We found a progressive reduction in luminance threshold for transducin translocation in wild-type (WT) retinas between postnatal days P18 and P60. At P21, the threshold in Rs1-KO retinas was 10-fold higher than WT, but it decreased to <2.5-fold higher by P60. Light-activated arrestin translocation and re-translocation of transducin in the dark were not affected. Rs1-KO rod outer segment (ROS) length was significantly shorter than WT at P21 but was comparable with WT at P60. These findings suggested a delay in the structural and functional maturation of Rs1-KO ROS. Consistent with this, transcription factors CRX and NRL, which are fundamental to maturation of rod protein expression, were reduced in ROS of Rs1-KO mice at P21 but not at P60. Expression of transducin was 15-30% lower in P21 Rs1-KO ROS and transducin GTPase hydrolysis was nearly twofold faster, reflecting a 1.7- to 2.5-fold increase in RGS9 (regulator of G-protein signaling) level. Transduction protein expression and activity levels were similar to WT at P60. Transducin translocation threshold elevation indicates photoreceptor functional abnormalities in young Rs1-KO mice. Rapid reduction in threshold coupled with age-related changes in transduction protein levels and transcription factor expression are consistent with delayed maturation of Rs1-KO photoreceptors.

  1. Distinct lobes of Limulus ventral photoreceptors. II. Structure and ultrastructure

    PubMed Central

    1982-01-01

    The structure of Limulus ventral photoreceptors fixed in situ has been investigated using light and electron microscopy and computer-assisted reconstruction and planimetry. Photoreceptors occur singly and in clusters. All photoreceptors have two types of lobes. The rhabdomeral lobe (R lobe) appears to be specialized for light sensitivity, containing the rhabdomere, which completely covers its external surface and forms infoldings into the lobe. The structure of the external rhabdom differs from that within infoldings. The other main structures of the R lobe are the palisades along the rhabdom, multivesicular bodies, lamellar bodies, and mitochondria. The arhabdomeral lobe (A lobe) bears the axon and contains the nucleus, clusters of residual bodies, lamellar arrays of endoplasmic reticulum, masses of glycogen, lipid droplets, and Golgi complexes. The R lobe and A lobe are analogous to the outer and inner segments of vertebrae photoreceptors. In single photoreceptors A and R lobes are separated by an indentation filled with glial processes. Computer reconstructions of cell clusters reveal that each cell has both types of lobes and an axon. Most of the rhabdom is formed from abutting arrays of external rhabdom from the R lobes of different members of the cluster. Efferent fibers containing characteristic angular granules penetrate single cells and clusters in glial invaginations. The main, if not exclusive, target of the efferent fibers is the internal rhabdom. PMID:7175491

  2. Using Zinc Finger Nuclease Technology to Generate CRX-Reporter Human Embryonic Stem Cells as a Tool to Identify and Study the Emergence of Photoreceptors Precursors During Pluripotent Stem Cell Differentiation.

    PubMed

    Collin, Joseph; Mellough, Carla B; Dorgau, Birthe; Przyborski, Stefan; Moreno-Gimeno, Inmaculada; Lako, Majlinda

    2016-02-01

    The purpose of this study was to generate human embryonic stem cell (hESC) lines harboring the green fluorescent protein (GFP) reporter at the endogenous loci of the Cone-Rod Homeobox (CRX) gene, a key transcription factor in retinal development. Zinc finger nucleases (ZFNs) designed to cleave in the 3' UTR of CRX were transfected into hESCs along with a donor construct containing homology to the target region, eGFP reporter, and a puromycin selection cassette. Following selection, polymerase chain reaction (PCR) and sequencing analysis of antibiotic resistant clones indicated targeted integration of the reporter cassette at the 3' of the CRX gene, generating a CRX-GFP fusion. Further analysis of a clone exhibiting homozygote integration of the GFP reporter was conducted suggesting genomic stability was preserved and no other copies of the targeting cassette were inserted elsewhere within the genome. This clone was selected for differentiation towards the retinal lineage. Immunocytochemistry of sections obtained from embryoid bodies and quantitative reverse transcriptase PCR of GFP positive and negative subpopulations purified by fluorescence activated cell sorting during the differentiation indicated a significant correlation between GFP and endogenous CRX expression. Furthermore, GFP expression was found in photoreceptor precursors emerging during hESC differentiation, but not in the retinal pigmented epithelium, retinal ganglion cells, or neurons of the developing inner nuclear layer. Together our data demonstrate the successful application of ZFN technology to generate CRX-GFP labeled hESC lines, which can be used to study and isolate photoreceptor precursors during hESC differentiation.

  3. Redistribution of insoluble interphotoreceptor matrix components during photoreceptor differentiation in the mouse retina.

    PubMed

    Mieziewska, K; Szél, A; Van Veen, T; Aguirre, G D; Philp, N

    1994-07-01

    The development of the nervous system is largely influenced by the extracellular matrix (ECM). In the neural retina, the photoreceptors are surrounded by a unique ECM, the interphotoreceptor matrix (IPM). The IPM plays a central and possibly crucial role in the development, maintenance and specific function of the photoreceptors. Therefore, the characterization of IPM components is necessary to understand the mechanisms regulating photoreceptor differentiation. The IPM in the mouse retina was examined during photoreceptor morphogenesis with the monoclonal antibody (MAb) F22, which recognizes a 250 kDa component of the interphotoreceptor matrix. The binding pattern of MAb F22 revealed a striking redistribution in the expression of the 250 kDa F22 antigen in late stage of postnatal photoreceptor differentiation in the mouse retina. The F22 staining was detectable in the IPM around the inner segments on the third postnatal day (P3). The MAb F22 initially labeled the region around inner segments, but as the outer segments elongated, the F22 distribution became concentrated to the matrix around the rod and cone outer segments until P16-17. At P17, the F22 label around rods began to disappear, while the label around cones became more defined. The shift in label distribution was largely completed by P20. Residual rod-associated label disappeared within a few days. In the adult animal, the F22 antibody labeled the cone-associated matrix only, and this labeling pattern remained stationary. The change in the distribution of MAb F22 demonstrated by immunolabeling was not accompanied by changes in the size of the molecule; F22 antigen isolated from the IPM of P13-15, and from adult IPM migrated with the same molecular weight on SDS gels. The distribution of MAb F22 was compared to that of chondroitin sulfate proteoglycans which are abundant in the IPM. The labeling patterns of MAbs CS-56, C6-S and C4-S were distinct from that of MAb F22. A general decrease of the label

  4. Proteomic Analysis of the Ubiquitin Landscape in the Drosophila Embryonic Nervous System and the Adult Photoreceptor Cells

    PubMed Central

    Ramirez, Juanma; Martinez, Aitor; Lectez, Benoit; Lee, So Young; Franco, Maribel; Barrio, Rosa; Dittmar, Gunnar; Mayor, Ugo

    2015-01-01

    Background Ubiquitination is known to regulate physiological neuronal functions as well as to be involved in a number of neuronal diseases. Several ubiquitin proteomic approaches have been developed during the last decade but, as they have been mostly applied to non-neuronal cell culture, very little is yet known about neuronal ubiquitination pathways in vivo. Methodology/Principal Findings Using an in vivo biotinylation strategy we have isolated and identified the ubiquitinated proteome in neurons both for the developing embryonic brain and for the adult eye of Drosophila melanogaster. Bioinformatic comparison of both datasets indicates a significant difference on the ubiquitin substrates, which logically correlates with the processes that are most active at each of the developmental stages. Detection within the isolated material of two ubiquitin E3 ligases, Parkin and Ube3a, indicates their ubiquitinating activity on the studied tissues. Further identification of the proteins that do accumulate upon interference with the proteasomal degradative pathway provides an indication of the proteins that are targeted for clearance in neurons. Last, we report the proof-of-principle validation of two lysine residues required for nSyb ubiquitination. Conclusions/Significance These data cast light on the differential and common ubiquitination pathways between the embryonic and adult neurons, and hence will contribute to the understanding of the mechanisms by which neuronal function is regulated. The in vivo biotinylation methodology described here complements other approaches for ubiquitome study and offers unique advantages, and is poised to provide further insight into disease mechanisms related to the ubiquitin proteasome system. PMID:26460970

  5. Cell Patterning Chip for Controlling the Stem Cell Microenvironment

    PubMed Central

    Rosenthal, Adam; Macdonald, Alice; Voldman, Joel

    2007-01-01

    Cell-cell signaling is an important component of the stem cell microenvironment, affecting both differentiation and self-renewal. However, traditional cell-culture techniques do not provide precise control over cell-cell interactions, while existing cell patterning technologies are limited when used with proliferating or motile cells. To address these limitations, we created the Bio Flip Chip (BFC), a microfabricated polymer chip containing thousands of microwells, each sized to trap down to a single stem cell. We have demonstrated the functionality of the BFC by patterning a 50×50 grid of murine embryonic stem cells (mESCs), with patterning efficiencies > 75%, onto a variety of substrates – a cell-culture dish patterned with gelatin, a 3-D substrate, and even another layer of cells. We also used the BFC to pattern small groups of cells, with and without cell-cell contact, allowing incremental and independent control of contact-mediated signaling. We present quantitative evidence that cell-cell contact plays an important role in depressing mESC colony formation, and show that E-cadherin is involved in this negative regulatory pathway. Thus, by allowing exquisite control of the cellular microenvironment, we provide a technology that enables new applications in tissue engineering and regenerative medicine. PMID:17434582

  6. Caenorhabditis elegans vulval cell fate patterning

    NASA Astrophysics Data System (ADS)

    Félix, Marie-Anne

    2012-08-01

    The spatial patterning of three cell fates in a row of competent cells is exemplified by vulva development in the nematode Caenorhabditis elegans. The intercellular signaling network that underlies fate specification is well understood, yet quantitative aspects remain to be elucidated. Quantitative models of the network allow us to test the effect of parameter variation on the cell fate pattern output. Among the parameter sets that allow us to reach the wild-type pattern, two general developmental patterning mechanisms of the three fates can be found: sequential inductions and morphogen-based induction, the former being more robust to parameter variation. Experimentally, the vulval cell fate pattern is robust to stochastic and environmental challenges, and minor variants can be detected. The exception is the fate of the anterior cell, P3.p, which is sensitive to stochastic variation and spontaneous mutation, and is also evolving the fastest. Other vulval precursor cell fates can be affected by mutation, yet little natural variation can be found, suggesting stabilizing selection. Despite this fate pattern conservation, different Caenorhabditis species respond differently to perturbations of the system. In the quantitative models, different parameter sets can reconstitute their response to perturbation, suggesting that network variation among Caenorhabditis species may be quantitative. Network rewiring likely occurred at longer evolutionary scales.

  7. Nonvisual photoreceptors of the deep brain, pineal organs and retina.

    PubMed

    Vigh, B; Manzano, M J; Zádori, A; Frank, C L; Lukáts, A; Röhlich, P; Szél, A; Dávid, C

    2002-04-01

    The role of the nonvisual photoreception is to synchronise periodic functions of living organisms to the environmental light periods in order to help survival of various species in different biotopes. In vertebrates, the so-called deep brain (septal and hypothalamic) photoreceptors, the pineal organs (pineal- and parapineal organs, frontal- and parietal eye) and the retina (of the "lateral" eye) are involved in the light-based entrain of endogenous circadian clocks present in various organs. In humans, photoperiodicity was studied in connection with sleep disturbances in shift work, seasonal depression, and in jet-lag of transmeridional travellers. In the present review, experimental and molecular aspects are discussed, focusing on the histological and histochemical basis of the function of nonvisual photoreceptors. We also offer a view about functional changes of these photoreceptors during pre- and postnatal development as well as about its possible evolution. Our scope in some points is different from the generally accepted views on the nonvisual photoreceptive systems. The deep brain photoreceptors are hypothalamic and septal nuclei of the periventricular cerebrospinal fluid (CSF)-contacting neuronal system. Already present in the lancelet and representing the most ancient type of vertebrate nerve cells ("protoneurons"), CSF-contacting neurons are sensory-type cells sitting in the wall of the brain ventricles that send a ciliated dendritic process into the CSF. Various opsins and other members of the phototransduction cascade have been demonstrated in telencephalic and hypothalamic groups of these neurons. In all species examined so far, deep brain photoreceptors play a role in the circadian and circannual regulation of periodic functions. Mainly called pineal "glands" in the last decades, the pineal organs actually represent a differentiated form of encephalic photoreceptors. Supposed to be intra- and extracranially outgrown groups of deep brain photoreceptors

  8. Loss of Retinoschisin (RS1) Cell Surface Protein in Maturing Mouse Rod Photoreceptors Elevates the Luminance Threshold for Light-Driven Translocation of Transducin But Not Arrestin

    PubMed Central

    Ziccardi, Lucia; Vijayasarathy, Camasamudram; Bush, Ronald A.

    2012-01-01

    Loss of retinoschisin (RS1) in Rs1 knock-out (Rs1–KO) retina produces a post-photoreceptor phenotype similar to X-linked retinoschisis in young males. However, Rs1 is expressed strongly in photoreceptors, and Rs1–KO mice have early reduction in the electroretinogram a-wave. We examined light-activated transducin and arrestin translocation in young Rs1–KO mice as a marker for functional abnormalities in maturing rod photoreceptors. We found a progressive reduction in luminance threshold for transducin translocation in wild-type (WT) retinas between postnatal days P18 and P60. At P21, the threshold in Rs1–KO retinas was 10-fold higher than WT, but it decreased to <2.5-fold higher by P60. Light-activated arrestin translocation and re-translocation of transducin in the dark were not affected. Rs1–KO rod outer segment (ROS) length was significantly shorter than WT at P21 but was comparable with WT at P60. These findings suggested a delay in the structural and functional maturation of Rs1–KO ROS. Consistent with this, transcription factors CRX and NRL, which are fundamental to maturation of rod protein expression, were reduced in ROS of Rs1–KO mice at P21 but not at P60. Expression of transducin was 15–30% lower in P21 Rs1–KO ROS and transducin GTPase hydrolysis was nearly twofold faster, reflecting a 1.7- to 2.5-fold increase in RGS9 (regulator of G-protein signaling) level. Transduction protein expression and activity levels were similar to WT at P60. Transducin translocation threshold elevation indicates photoreceptor functional abnormalities in young Rs1–KO mice. Rapid reduction in threshold coupled with age-related changes in transduction protein levels and transcription factor expression are consistent with delayed maturation of Rs1–KO photoreceptors. PMID:22993419

  9. In-vivo imaging of photoreceptor structure and laser injury pathophysiology in the snake eye

    NASA Astrophysics Data System (ADS)

    Zwick, Harry; Elliot, Rowe; Li, Guo; Akers, Andre; Edsall, Peter R.; Stuck, Bruce E.

    1999-06-01

    Confocal scanning laser ophthalmoscopy (CSLO) combined with the high numerical aperture of the snake eye was used to evaluate laser injury at the photoreceptor and vascular retinal layers. An Argon laser source focused within a 35 micron retinal spot was used to produce a range of exposures from 152 to 1000 μjoules in the retinas of the Checkered Garter and Great Plains Rat snake. Anesthesia was induced with ketamine and xylazine. In vivo exposure sites measured post exposure showed unique photoreceptor damage characterized by surviving photoreceptors that were highly reflective and saturated, swollen and revealed more complex mode structure than normal photoreceptors when imaged under higher magnification. Evidence of oxidative stress was observed in photoreceptor cells peripheral to the lesion site as a late developing fluorescence (1-2 hour post exposure) following injection of Dichlorodihydrofluorescein diacetate, a marker of oxidative stress. At the anterior retina, acute exposure produced `sticky' blood cells, identified as leukocytes with Acridine orange. These findings indicate that laser retinal injury in large eyes, such as the human eye may involve pathophysiological cellular dynamics in both posterior and anterior retina and in normal retina adjacent to lesion sites. Photoreceptor movement outside the lesion site may relate to alterations in photoreceptor orientation and the efficiency of the photoreceptors quantal catch.

  10. Algal photoreceptors: in vivo functions and potential applications.

    PubMed

    Kianianmomeni, Arash; Hallmann, Armin

    2014-01-01

    Many algae, particularly microalgae, possess a sophisticated light-sensing system including photoreceptors and light-modulated signaling pathways to sense environmental information and secure the survival in a rapidly changing environment. Over the last couple of years, the multifaceted world of algal photobiology has enriched our understanding of the light absorption mechanisms and in vivo function of photoreceptors. Moreover, specific light-sensitive modules have already paved the way for the development of optogenetic tools to generate light switches for precise and spatial control of signaling pathways in individual cells and even in complex biological systems. PMID:24081482

  11. Rod Photoreceptors Express GPR55 in the Adult Vervet Monkey Retina

    PubMed Central

    Bouskila, Joseph; Javadi, Pasha; Casanova, Christian; Ptito, Maurice; Bouchard, Jean-François

    2013-01-01

    Cannabinoids exert their actions mainly through two receptors, the cannabinoid CB1 receptor (CB1R) and cannabinoid CB2 receptor (CB2R). In recent years, the G-protein coupled receptor 55 (GPR55) was suggested as a cannabinoid receptor based on its activation by anandamide and tetrahydrocannabinol. Yet, its formal classification is still a matter of debate. CB1R and CB2R expression patterns are well described for rodent and monkey retinas. In the monkey retina, CB1R has been localized in its neural (cone photoreceptor, horizontal, bipolar, amacrine and ganglion cells) and CB2R in glial components (Müller cells). The aim of this study was to determine the expression pattern of GPR55 in the monkey retina by using confocal microscopy. Our results show that GPR55 is strictly localized in the photoreceptor layer of the extrafoveal portion of the retina. Co-immunolabeling of GPR55 with rhodopsin, the photosensitive pigment in rods, revealed a clear overlap of expression throughout the rod structure with most prominent staining in the inner segments. Additionally, double-label of GPR55 with calbindin, a specific marker for cone photoreceptors in the primate retina, allowed us to exclude expression of GPR55 in cones. The labeling of GPR55 in rods was further assessed with a 3D visualization in the XZ and YZ planes thus confirming its exclusive expression in rods. These results provide data on the distribution of GPR55 in the monkey retina, different than CB1R and CB2R. The presence of GPR55 in rods suggests a function of this receptor in scotopic vision that needs to be demonstrated. PMID:24244730

  12. Chloroplasts continuously monitor photoreceptor signals during accumulation movement.

    PubMed

    Tsuboi, Hidenori; Wada, Masamitsu

    2013-07-01

    Under low light conditions, chloroplasts gather at a cell surface to maximize light absorption for efficient photosynthesis, which is called the accumulation response. Phototropin1 (phot1) and phototropin2 (phot2) were identified as blue light photoreceptors in the accumulation response that occurs in Arabidopsis thaliana and Adiantum capillus-veneris with neochrome1 (neo1) as a red light photoreceptor in A. capillus-veneris. However, the signal molecule that is emitted from the photoreceptors and transmitted to the chloroplasts is not known. To investigate this topic, the accumulation response was induced by partial cell irradiation with a microbeam of red, blue and far-red light in A. capillus-veneris gametophyte cells. Chloroplasts moved towards the irradiated region and were able to sense the signal as long as its signal flowed. The signal from neo1 had a longer life than the signal that came from phototropins. When two microbeams with the same wavelength and the same fluence rate were placed 20 μm apart from each other and were applied to a dark-adapted cell, chloroplasts at an equidistant position always moved towards the center (midpoint) of the two microbeams, but not towards either one. This result indicates that chloroplasts are detecting the concentration of the signal but not the direction of signal flow. Chloroplasts repeatedly move and stop at roughly 10 s intervals during the accumulation response, suggesting that they monitor the intermittent signal waves from photoreceptors.

  13. Internal dialysis of Limulus ventral photoreceptors.

    PubMed Central

    Stern, J H; Lisman, J E

    1982-01-01

    The internal dialysis technique has been applied to Limulus ventral photoreceptors. This method potentially allows quantitative control of the concentration of diffusible molecules within living cells. During dialysis, Limulus photoreceptors retained their ability to respond to light. Under conditions of dim illumination, responses were normal for close to an hour. In bright light, abnormalities developed more rapidly. The reversible effects of raising the dialysate Mg2+ concentration and the entrance of rhodamine-labeled albumin into cells shows that the dialysis method is useful for assaying the effects of small or large molecules on visual transduction. This method has been used to examine the effects of nucleotide triphosphates and cyclic nucleotides. The results show that nucleotide triphosphates (5-10 mM) are required to maintain a low rate of spontaneous quantum bumps. The importance of cyclic nucleotides in transduction is less clear; the light response was reduced by either cGMP or cAMP but only at very high concentrations (10 mM). Images PMID:6961434

  14. Arrestin translocation is stoichiometric to rhodopsin isomerization and accelerated by phototransduction in Drosophila photoreceptors

    PubMed Central

    Satoh, Akiko K.; Xia, Hongai; Yan, Limin; Liu, Che-Hsiung; Hardie, Roger C.; Ready, Donald F.

    2010-01-01

    Upon illumination visual arrestin translocates from photoreceptor cell bodies to rhodopsin and membrane-rich photosensory compartments - vertebrate outer segments or invertebrate rhabdomeres - where it quenches activated rhodopsin. Both the mechanism and function of arrestin translocation are unresolved and controversial. In dark-adapted photoreceptors of the fruitfly Drosophila, confocal immunocytochemistry shows arrestin (Arr2) associated with distributed photoreceptor endomembranes. Immunocytochemistry and live imaging of GFP-tagged Arr2 demonstrate rapid reversible translocation to stimulated rhabdomeres in stoichiometric proportion to rhodopsin photoisomerization. Translocation is very rapid in normal photoreceptors (time constant <10 s), and can also be resolved in the time course of electroretinogram recordings. Genetic elimination of key phototransduction proteins, including phospholipase C (PLC), Gq and the light-sensitive Ca2+ permeable TRP channels, slows translocation by 10-100 fold. Our results indicate that Arr2 translocation in Drosophila photoreceptors is driven by diffusion, but profoundly accelerated by phototransduction and Ca2+ influx. PMID:20869596

  15. Visual ecology and voltage-gated ion channels in insect photoreceptors.

    PubMed

    Weckström, M; Laughlin, S B

    1995-01-01

    That particular membrane conductances are selected for expression to enable the efficient coding of biologically relevant signals is illustrated by recent work on insect photoreceptors. These studies exploit the richness of insect vision and the accessibility of insect photoreceptors to cellular analysis in both intact animal and isolated cell preparations. The distribution of voltage-gated conductances among photoreceptors of different species correlates with visual ecology. Delayed-rectifier K+ channels are found in the rapidly responding photoreceptors of fast-flying flies. The conductance's activation range and dynamics match light-induced signals, and enable a rapid response by reducing the membrane time constant. Slow-moving flies have slowly responding photoreceptors that lack the delayed rectifier, but express an inactivating K+ conductance that is metabolically less demanding. Complementing these findings, locust photoreceptor membranes are modulated diurnally. The delayed rectifier is exhibited during the day and the inactivating K+ current is exhibited at night. Insect photoreceptors also demonstrate the amplification of signals by voltage-gated Na+ channels. In drone-bee photoreceptors, voltage-gated Na+ channels combine with K+ channels to enhance the small transient signals produced by the image of a queen bee passing over the retina. This subthreshold amplifier operates most effectively over the range of light intensities at which drones pursue queens.

  16. Auxiliary pattern for cell-based OPC

    NASA Astrophysics Data System (ADS)

    Kahng, Andrew B.; Park, Chul-Hong

    2006-10-01

    The runtime of model-based optical proximity correction (OPC) tools has grown unacceptably with each successive technology generation, and has emerged as one of the major bottlenecks for turnaround time (TAT) of IC data preparation and manufacturing. The cell-based OPC approach improves runtime by performing OPC once per cell definition as opposed to once per cell instantiation in the layout. However, cell-based OPC does not comprehend inter-cell optical interactions that affect feature printability in a layout context. In this work, we propose auxiliary pattern-enabled cell-based OPC which can minimize the CD differences between cell-based OPC and model-based OPC. To enable effective insertion of auxiliary pattern (AP) in the design, we also propose a post-placement optimization of a standard cell block with respect to detailed placement. By dynamic programming-based placement perturbation, we achieve 100% AP applicability in designs with placement utilizations of < 70%. In an evaluation with a complete industrial flow, cell-based OPC with AP can match gate edge placement error (EPE) count of model-based OPC within 4%. This is an improvement of 90%, on average, over cell-based OPC without APs. The AP-based OPC approach can reduce OPC runtimes versus model-based OPC by up to 40X in our benchmark designs. We can also achieve reduction of GDSII file size and ORC runtimes due to hierarchy maintenance of cell-based OPC.

  17. Protective function of pyridoxamine on retinal photoreceptor cells via activation of the p‑Erk1/2/Nrf2/Trx/ASK1 signalling pathway in diabetic mice.

    PubMed

    Ren, Xiang; Sun, Hong; Zhang, Chenghong; Li, Chen; Wang, Jinlei; Shen, Jie; Yu, Dong; Kong, Li

    2016-07-01

    The present study aimed to investigate the mechanisms that mediate the protective effects of pyridoxamine (PM) on light‑damaged retinal photoreceptor cells in diabetic mice. A high‑fat diet and streptozotocin were used to induce a mouse model of type II diabetes. During the experiment, mice were divided the mice into three types of group, as follows: Control groups (negative control and light‑damaged groups); experimental groups (diabetic and diabetic light‑damaged groups); and treatment groups (25, 50 and 100 mg/kg PM‑treated groups). Using hematoxylin‑eosin staining, the number of nuclear layer cells were counted. Western blotting and immunohistochemistry were performed to measure the levels of thioredoxin (Trx), phospho‑extracellular signal‑regulated kinase 1/2 (p‑Erk1/2), nuclear factor erythroid 2‑related factor 2 (Nrf2) and apoptosis signal‑regulating kinase 1 (ASK1). The photoreceptor cell count in the outer nuclear layer of the light‑damaged, diabetic control and diabetic light‑damaged groups were significantly reduced compared with the negative control group (P<0.001). The cell counts in the PM‑treated groups were significantly increased compared with the diabetic group (P<0.001). Compared with the negative control group, the light‑damaged, diabetic and diabetic light‑damaged groups exhibited significantly decreased Trx, p‑Erk1/2 and Nrf2 expression levels (P<0.001), and significantly increased ASK1 expression levels (P<0.001). However, in the PM‑treated groups, Trx, p‑Erk1/2 and Nrf2 expression levels were significantly increased (P<0.001), and ASK1 expression was significantly decreased (P<0.001). The results of the present study demonstrate that PM protects retinal photoreceptor cells against light damage in diabetic mice, and that its mechanism may be associated with the upregulation of Trx, p‑Erk1/2 and Nrf2 expression, and the downregulation of ASK1 expression. PMID:27177199

  18. Histamine Recycling Is Mediated by CarT, a Carcinine Transporter in Drosophila Photoreceptors

    PubMed Central

    Xu, Ying; An, Futing; Borycz, Jolanta A.; Borycz, Janusz; Meinertzhagen, Ian A.; Wang, Tao

    2015-01-01

    Histamine is an important chemical messenger that regulates multiple physiological processes in both vertebrate and invertebrate animals. Even so, how glial cells and neurons recycle histamine remains to be elucidated. Drosophila photoreceptor neurons use histamine as a neurotransmitter, and the released histamine is recycled through neighboring glia, where it is conjugated to β-alanine to form carcinine. However, how carcinine is then returned to the photoreceptor remains unclear. In an mRNA-seq screen for photoreceptor cell-enriched transporters, we identified CG9317, an SLC22 transporter family protein, and named it CarT (Carcinine Transporter). S2 cells that express CarT are able to take up carcinine in vitro. In the compound eye, CarT is exclusively localized to photoreceptor terminals. Null mutations of cart alter the content of histamine and its metabolites. Moreover, null cart mutants are defective in photoreceptor synaptic transmission and lack phototaxis. These findings reveal that CarT is required for histamine recycling at histaminergic photoreceptors and provide evidence for a CarT-dependent neurotransmitter trafficking pathway between glial cells and photoreceptor terminals. PMID:26713872

  19. Histamine Recycling Is Mediated by CarT, a Carcinine Transporter in Drosophila Photoreceptors.

    PubMed

    Xu, Ying; An, Futing; Borycz, Jolanta A; Borycz, Janusz; Meinertzhagen, Ian A; Wang, Tao

    2015-12-01

    Histamine is an important chemical messenger that regulates multiple physiological processes in both vertebrate and invertebrate animals. Even so, how glial cells and neurons recycle histamine remains to be elucidated. Drosophila photoreceptor neurons use histamine as a neurotransmitter, and the released histamine is recycled through neighboring glia, where it is conjugated to β-alanine to form carcinine. However, how carcinine is then returned to the photoreceptor remains unclear. In an mRNA-seq screen for photoreceptor cell-enriched transporters, we identified CG9317, an SLC22 transporter family protein, and named it CarT (Carcinine Transporter). S2 cells that express CarT are able to take up carcinine in vitro. In the compound eye, CarT is exclusively localized to photoreceptor terminals. Null mutations of cart alter the content of histamine and its metabolites. Moreover, null cart mutants are defective in photoreceptor synaptic transmission and lack phototaxis. These findings reveal that CarT is required for histamine recycling at histaminergic photoreceptors and provide evidence for a CarT-dependent neurotransmitter trafficking pathway between glial cells and photoreceptor terminals.

  20. Light-dependent repetitive Ca2+ spikes induced by extracellular application of neomycin in honeybee drone photoreceptors.

    PubMed

    Walz, B; Zimmermann, B; Ukhanov, K

    2000-05-01

    Photoreceptor cells of the honeybee drone fire, in the presence of the polycationic aminoglycoside neomycin, repetitive slow spike-like potentials superimposed on the receptor potential plateau phase. We have used conventional intracellular recordings and microfluorometric intracellular Ca2+ measurements to characterize these spike potentials. We have shown that the spike frequency increases in a light-intensity-dependent manner. The spikes are fired only when light stimuli depolarize the cell from a resting potential of -50 to -60 mV to at least -40 to -45 mV; they are tetrodotoxin insensitive and blocked by the Ca2+ channel blockers Ni2+, Cd2+, omega-agatoxin TK, verapamil and methoxyverapamil. Depolarization of the photoreceptors with high extracellular K+ in the presence of neomycin in darkness does not generate spikes. Small intracellular Ca2+ oscillations superimposed on the plateau phase of the light-induced increase in intracellular free Ca2+ concentration have a similar temporal pattern as the spike-like potentials. We conclude that the spike-like potentials require stimulation by light and are generated by voltage-dependent Ca2+ channels localized on the soma of the photoreceptors, distal to the basal lamina.

  1. Light-dependent repetitive Ca2+ spikes induced by extracellular application of neomycin in honeybee drone photoreceptors.

    PubMed

    Walz, B; Zimmermann, B; Ukhanov, K

    2000-05-01

    Photoreceptor cells of the honeybee drone fire, in the presence of the polycationic aminoglycoside neomycin, repetitive slow spike-like potentials superimposed on the receptor potential plateau phase. We have used conventional intracellular recordings and microfluorometric intracellular Ca2+ measurements to characterize these spike potentials. We have shown that the spike frequency increases in a light-intensity-dependent manner. The spikes are fired only when light stimuli depolarize the cell from a resting potential of -50 to -60 mV to at least -40 to -45 mV; they are tetrodotoxin insensitive and blocked by the Ca2+ channel blockers Ni2+, Cd2+, omega-agatoxin TK, verapamil and methoxyverapamil. Depolarization of the photoreceptors with high extracellular K+ in the presence of neomycin in darkness does not generate spikes. Small intracellular Ca2+ oscillations superimposed on the plateau phase of the light-induced increase in intracellular free Ca2+ concentration have a similar temporal pattern as the spike-like potentials. We conclude that the spike-like potentials require stimulation by light and are generated by voltage-dependent Ca2+ channels localized on the soma of the photoreceptors, distal to the basal lamina. PMID:10879952

  2. Photovoltaic cell with nano-patterned substrate

    DOEpatents

    Cruz-Campa, Jose Luis; Zhou, Xiaowang; Zubia, David

    2016-10-18

    A photovoltaic solar cell comprises a nano-patterned substrate layer. A plurality of nano-windows are etched into an intermediate substrate layer to form the nano-patterned substrate layer. The nano-patterned substrate layer is positioned between an n-type semiconductor layer composed of an n-type semiconductor material and a p-type semiconductor layer composed of a p-type semiconductor material. Semiconductor material accumulates in the plurality of nano-windows, causing a plurality of heterojunctions to form between the n-type semiconductor layer and the p-type semiconductor layer.

  3. Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration

    PubMed Central

    Zhao, Lian; Zabel, Matthew K; Wang, Xu; Ma, Wenxin; Shah, Parth; Fariss, Robert N; Qian, Haohua; Parkhurst, Christopher N; Gan, Wen-Biao; Wong, Wai T

    2015-01-01

    Retinitis pigmentosa, caused predominantly by mutations in photoreceptor genes, currently lacks comprehensive treatment. We discover that retinal microglia contribute non-cell autonomously to rod photoreceptor degeneration by primary phagocytosis of living rods. Using rd10 mice, we found that the initiation of rod degeneration is accompanied by early infiltration of microglia, upregulation of phagocytic molecules in microglia, and presentation of “eat-me” signals on mutated rods. On live-cell imaging, infiltrating microglia interact dynamically with photoreceptors via motile processes and engage in rapid phagocytic engulfment of non-apoptotic rods. Microglial contribution to rod demise is evidenced by morphological and functional amelioration of photoreceptor degeneration following genetic ablation of retinal microglia. Molecular inhibition of microglial phagocytosis using the vitronectin receptor antagonist cRGD also improved morphological and functional parameters of degeneration. Our findings highlight primary microglial phagocytosis as a contributing mechanism underlying cell death in retinitis pigmentosa and implicate microglia as a potential cellular target for therapy. PMID:26139610

  4. RIP Kinase-Mediated Necrosis as an Alternative Mechanism of Photoreceptor Death

    PubMed Central

    Murakami, Yusuke; Miller, Joan W.; Vavvas, Demetrios G.

    2011-01-01

    Photoreceptor cell death is the terminal event in a variety of retinal disorders including age-related macular degeneration, retinitis pigmentosa, and retinal detachment. Apoptosis has been thought to be the major form of cell death in these diseases, however accumulating evidence suggests that another pathway, programmed necrosis is also important. Recent studies have shown that, when caspase pathways are blocked, receptor interacting protein (RIP) kinases promote necrosis and overcome apoptosis inhibition. Therefore, targeting of both caspase and RIP kinase pathways are required for effective photoreceptor protection. Here, we summarize the current knowledge of RIP kinase-mediated necrotic signaling and its contribution to photoreceptor death. PMID:21670490

  5. Cell patterning by laser-assisted bioprinting.

    PubMed

    Devillard, Raphaël; Pagès, Emeline; Correa, Manuela Medina; Kériquel, Virginie; Rémy, Murielle; Kalisky, Jérôme; Ali, Muhammad; Guillotin, Bertrand; Guillemot, Fabien

    2014-01-01

    The aim of tissue engineering is to produce functional three-dimensional (3D) tissue substitutes. Regarding native organ and tissue complexity, cell density and cell spatial 3D organization, which influence cell behavior and fate, are key parameters in tissue engineering. Laser-Assisted Bioprinting (LAB) allows one to print cells and liquid materials with a cell- or picoliter-level resolution. Thus, LAB seems to be an emerging and promising technology to fabricate tissue-like structures that have the physiological functionality of their native counterparts. This technology has additional advantages such as automation, reproducibility, and high throughput. It makes LAB compatible with the (industrial) fabrication of 3D constructs of physiologically relevant sizes. Here we present exhaustively the numerous steps that allow printing of viable cells with a well-preserved micrometer pattern. To facilitate the understanding of the whole cell patterning experiment using LAB, it is discussed in two parts: (1) preprocessing: laser set-up, bio-ink cartridge and bio-paper preparation, and pattern design; and (2) processing: bio-ink printing on the bio-paper.

  6. Avian Cone Photoreceptors Tile the Retina as Five Independent, Self-Organizing Mosaics

    PubMed Central

    Kram, Yoseph A.; Mantey, Stephanie; Corbo, Joseph C.

    2010-01-01

    The avian retina possesses one of the most sophisticated cone photoreceptor systems among vertebrates. Birds have five types of cones including four single cones, which support tetrachromatic color vision and a double cone, which is thought to mediate achromatic motion perception. Despite this richness, very little is known about the spatial organization of avian cones and its adaptive significance. Here we show that the five cone types of the chicken independently tile the retina as highly ordered mosaics with a characteristic spacing between cones of the same type. Measures of topological order indicate that double cones are more highly ordered than single cones, possibly reflecting their posited role in motion detection. Although cones show spacing interactions that are cell type-specific, all cone types use the same density-dependent yardstick to measure intercone distance. We propose a simple developmental model that can account for these observations. We also show that a single parameter, the global regularity index, defines the regularity of all five cone mosaics. Lastly, we demonstrate similar cone distributions in three additional avian species, suggesting that these patterning principles are universal among birds. Since regular photoreceptor spacing is critical for uniform sampling of visual space, the cone mosaics of the avian retina represent an elegant example of the emergence of adaptive global patterning secondary to simple local interactions between individual photoreceptors. Our results indicate that the evolutionary pressures that gave rise to the avian retina's various adaptations for enhanced color discrimination also acted to fine-tune its spatial sampling of color and luminance. PMID:20126550

  7. Patterning and cell fate in ear development.

    PubMed

    Alsina, Berta; Giraldez, Fernando; Pujades, Cristina

    2009-01-01

    The inner ear is a complex structure responsible for the senses of audition and balance in vertebrates. The ear is organised into different sense organs that are specialised to detect specific stimuli such as sound and linear or angular accelerations. The elementary sensory unit of the ear consists of hair cells, supporting cells, neurons and Schwann cells. Hair cells are the mechano-electrical transducing elements, and otic neurons convey information coded in electrical impulses to the brain. With the exception of the Schwann cells, all cellular elements of the inner ear derive from the otic placode. This is an ectodermal thickening that is specified in the head ectoderm adjacent to the caudal hindbrain. The complex organisation of the ear requires precise coupling of regional specification and cell fate decisions during development, i.e. specificity in defining particular spatial domains containing particular cell types. Those decisions are taken early in development and are the subject of this article. We review here recent work on: i) early patterning of the otic placode, ii) the role of neural tube signals in the patterning of the otic vesicle, and iii) the genes underlying cell fate determination of neurons and sensory hair cells.

  8. Light, lipids and photoreceptor survival: live or let die?

    PubMed

    German, Olga Lorena; Agnolazza, Daniela L; Politi, Luis E; Rotstein, Nora P

    2015-09-26

    Due to its constant exposure to light and its high oxygen consumption the retina is highly sensitive to oxidative damage, which is a common factor in inducing the death of photoreceptors after light damage or in inherited retinal degenerations. The high content of docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in the retina, has been suggested to contribute to this sensitivity. DHA is crucial for developing and preserving normal visual function. However, further roles of DHA in the retina are still controversial. Current data support that it can tilt the scale either towards degeneration or survival of retinal cells. DHA peroxidation products can be deleterious to the retina and might lead to retinal degeneration. However, DHA has also been shown to act as, or to be the source of, a survival molecule that protects photoreceptors and retinal pigment epithelium cells from oxidative damage. We have established that DHA protects photoreceptors from oxidative stress-induced apoptosis and promotes their differentiation in vitro. DHA activates the retinoid X receptor (RXR) and the ERK/MAPK pathway, thus regulating the expression of anti and pro-apoptotic proteins. It also orchestrates a diversity of signaling pathways, modulating enzymatic pathways that control the sphingolipid metabolism and activate antioxidant defense mechanisms to promote photoreceptor survival and development. A deeper comprehension of DHA signaling pathways and context-dependent behavior is required to understand its dual functions in retinal physiology.

  9. Synthesis of docosahexaenoic acid from eicosapentaenoic acid in retina neurons protects photoreceptors from oxidative stress.

    PubMed

    Simón, María Victoria; Agnolazza, Daniela L; German, Olga Lorena; Garelli, Andrés; Politi, Luis E; Agbaga, Martin-Paul; Anderson, Robert E; Rotstein, Nora P

    2016-03-01

    Oxidative stress is involved in activating photoreceptor death in several retinal degenerations. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in the retina, protects cultured retina photoreceptors from apoptosis induced by oxidative stress and promotes photoreceptor differentiation. Here, we investigated whether eicosapentaenoic acid (EPA), a metabolic precursor to DHA, had similar effects and whether retinal neurons could metabolize EPA to DHA. Adding EPA to rat retina neuronal cultures increased opsin expression and protected photoreceptors from apoptosis induced by the oxidants paraquat and hydrogen peroxide (H2 O2 ). Palmitic, oleic, and arachidonic acids had no protective effect, showing the specificity for DHA. We found that EPA supplementation significantly increased DHA percentage in retinal neurons, but not EPA percentage. Photoreceptors and glial cells expressed Δ6 desaturase (FADS2), which introduces the last double bond in DHA biosynthetic pathway. Pre-treatment of neuronal cultures with CP-24879 hydrochloride, a Δ5/Δ6 desaturase inhibitor, prevented EPA-induced increase in DHA percentage and completely blocked EPA protection and its effect on photoreceptor differentiation. These results suggest that EPA promoted photoreceptor differentiation and rescued photoreceptors from oxidative stress-induced apoptosis through its elongation and desaturation to DHA. Our data show, for the first time, that isolated retinal neurons can synthesize DHA in culture. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in retina photoreceptors, and its precursor, eicosapentaenoic acid (EPA) have multiple beneficial effects. Here, we show that retina neurons in vitro express the desaturase FADS2 and can synthesize DHA from EPA. Moreover, addition of EPA to these cultures protects photoreceptors from oxidative stress and promotes their differentiation through its metabolization to DHA. PMID:26662863

  10. Localization of glutamate receptors at a complex synapse. The mammalian photoreceptor synapse.

    PubMed

    Brandstätter, J H; Hack, I

    2001-01-01

    A key feature of signal processing in the mammalian retina is parallel processing, where the segregation of visual information, e.g., brightness, darkness, and color, starts at the first synapse in the retina, the photoreceptor synapse. These various aspects are transmitted in parallel from the input neurons of the retina, the photoreceptor cells, through the interconnecting bipolar cells, to the output neurons, the ganglion cells. The photoreceptors and bipolar cells release a single excitatory neurotransmitter, glutamate, at their synapses. This parsimony is contrasted by the expression of a plethora of glutamate receptors, receptor subunits, and isoforms. The detailed knowledge of the synaptic distribution of glutamate receptors thus is of major importance in understanding the mechanisms of retinal signal processing. This review intends to highlight recent studies on the distribution of glutamate receptors at the photoreceptor synapses of the mammalian retina.

  11. Silencing of Tuberin Enhances Photoreceptor Survival and Function in a Preclinical Model of Retinitis Pigmentosa (An American Ophthalmological Society Thesis)

    PubMed Central

    Tsang, Stephen H.; Chan, Lawrence; Tsai, Yi-Ting; Wu, Wen-Hsuan; Hsu, Chun-Wei; Yang, Jin; Tosi, Joaquin; Wert, Katherine J.; Davis, Richard J.; Mahajan, Vinit B.

    2014-01-01

    Purpose: To assess the functional consequences of silencing of tuberin, an inhibitor of the mTOR signaling pathway, in a preclinical model of retinitis pigmentosa (RP) in order to test the hypothesis that insufficient induction of the protein kinase B (PKB)-regulated tuberin/mTOR self-survival pathway initiates apoptosis. Methods: In an unbiased genome-scale approach, kinase peptide substrate arrays were used to analyze self-survival pathways at the onset of photoreceptor degeneration. The mutant Pde6bH620Q/Pde6bH620Q at P14 and P18 photoreceptor outer segment (OS) lysates were labeled with P-ATP and hybridized to an array of 1,164 different synthetic peptide substrates. At this stage, OS of Pde6bH620Q/Pde6bH620Q rods are morphologically normal. In vitro kinase assays and immunohistochemistry were used to validate phosphorylation. Short hairpin RNA (shRNA) gene silencing was used to validate tuberin’s role in regulating survival. Results: At the onset of degeneration, 162 peptides were differentially phosphorylated. Protein kinases A, G, C (AGC kinases), and B exhibited increased activity in both peptide array and in vitro kinase assays. Immunohistochemical data confirmed altered phosphorylation patterns for phosphoinositide-dependent kinase-1 (PDK1), ribosomal protein S6 (RPS6), and tuberin. Tuberin gene silencing rescued photoreceptors from degeneration. Conclusions: Phosphorylation of tuberin and RPS6 is due to the upregulated activity of PKB. PKB/tuberin cell growth/survival signaling is activated before the onset of degeneration. Substrates of the AGC kinases in the PKB/tuberin pathway are phosphorylated to promote cell survival. Knockdown of tuberin, the inhibitor of the mTOR pathway, increased photoreceptor survival and function in a preclinical model of RP. PMID:25646031

  12. The Giant Mottled Eel, Anguilla marmorata, Uses Blue-Shifted Rod Photoreceptors during Upstream Migration

    PubMed Central

    Wang, Feng-Yu; Fu, Wen-Chun; Wang, I-Li

    2014-01-01

    Catadromous fishes migrate between ocean and freshwater during particular phases of their life cycle. The dramatic environmental changes shape their physiological features, e.g. visual sensitivity, olfactory ability, and salinity tolerance. Anguilla marmorata, a catadromous eel, migrates upstream on dark nights, following the lunar cycle. Such behavior may be correlated with ontogenetic changes in sensory systems. Therefore, this study was designed to identify changes in spectral sensitivity and opsin gene expression of A. marmorata during upstream migration. Microspectrophotometry analysis revealed that the tropical eel possesses a duplex retina with rod and cone photoreceptors. The λmax of rod cells are 493, 489, and 489 nm in glass, yellow, and wild eels, while those of cone cells are 508, and 517 nm in yellow, and wild eels, respectively. Unlike European and American eels, Asian eels exhibited a blue-shifted pattern of rod photoreceptors during upstream migration. Quantitative gene expression analyses of four cloned opsin genes (Rh1f, Rh1d, Rh2, and SWS2) revealed that Rh1f expression is dominant at all three stages, while Rh1d is expressed only in older yellow eel. Furthermore, sequence comparison and protein modeling studies implied that a blue shift in Rh1d opsin may be induced by two known (N83, S292) and four putative (S124, V189, V286, I290) tuning sites adjacent to the retinal binding sites. Finally, expression of blue-shifted Rh1d opsin resulted in a spectral shift in rod photoreceptors. Our observations indicate that the giant mottled eel is color-blind, and its blue-shifted scotopic vision may influence its upstream migration behavior and habitat choice. PMID:25101636

  13. The giant mottled eel, Anguilla marmorata, uses blue-shifted rod photoreceptors during upstream migration.

    PubMed

    Wang, Feng-Yu; Fu, Wen-Chun; Wang, I-Li; Yan, Hong Young; Wang, Tzi-Yuan

    2014-01-01

    Catadromous fishes migrate between ocean and freshwater during particular phases of their life cycle. The dramatic environmental changes shape their physiological features, e.g. visual sensitivity, olfactory ability, and salinity tolerance. Anguilla marmorata, a catadromous eel, migrates upstream on dark nights, following the lunar cycle. Such behavior may be correlated with ontogenetic changes in sensory systems. Therefore, this study was designed to identify changes in spectral sensitivity and opsin gene expression of A. marmorata during upstream migration. Microspectrophotometry analysis revealed that the tropical eel possesses a duplex retina with rod and cone photoreceptors. The λmax of rod cells are 493, 489, and 489 nm in glass, yellow, and wild eels, while those of cone cells are 508, and 517 nm in yellow, and wild eels, respectively. Unlike European and American eels, Asian eels exhibited a blue-shifted pattern of rod photoreceptors during upstream migration. Quantitative gene expression analyses of four cloned opsin genes (Rh1f, Rh1d, Rh2, and SWS2) revealed that Rh1f expression is dominant at all three stages, while Rh1d is expressed only in older yellow eel. Furthermore, sequence comparison and protein modeling studies implied that a blue shift in Rh1d opsin may be induced by two known (N83, S292) and four putative (S124, V189, V286, I290) tuning sites adjacent to the retinal binding sites. Finally, expression of blue-shifted Rh1d opsin resulted in a spectral shift in rod photoreceptors. Our observations indicate that the giant mottled eel is color-blind, and its blue-shifted scotopic vision may influence its upstream migration behavior and habitat choice.

  14. Light-regulated translocation of signaling proteins in Drosophila photoreceptors

    PubMed Central

    Frechter, Shahar; Minke, Baruch

    2007-01-01

    Illumination of Drosophila photoreceptor cells induces multi-facet responses, which include generation of the photoreceptor potential, screening pigment migration and translocation of signaling proteins which is the focus of recent extensive research. Translocation of three signaling molecules is covered in this review: (1) Light-dependent translocation of arrestin from the cytosol to the signaling membrane, the rhabdomere, determines the lifetime of activated rhodopsin. Arrestin translocates in PIP3 and NINAC myosin III dependent manner, and specific mutations which disrupt the interaction between arrestin and PIP3 or NINAC also impair the light-dependant translocation of arrestin and the termination of the response to light. (2) Activation of Drosophila visual G protein, DGq, causes a massive and reversible, translocation of the α subunit from the signaling membrane to the cytosol, accompanied by activity-dependent architectural changes. Analysis of the translocation and the recovery kinetics of DGqα in wild-type flies and specific visual mutants indicated that DGqα is necessary but not sufficient for the architectural changes. (3) The TRP-like (TRPL) but not TRP channels translocate in a light-dependent manner between the rhabdomere and the cell body. As a physiological consequence of this light-dependent modulation of the TRP/TRPL ratio, the photoreceptors of dark-adapted flies operate at a wider dynamic range, which allows the photoreceptors enriched with TRPL to function better in darkness and dim background illumination. Altogether, signal-dependent movement of signaling proteins plays a major role in the maintenance and function of photoreceptor cells. PMID:16458490

  15. Voronoi cell patterns: Theoretical model and applications

    NASA Astrophysics Data System (ADS)

    González, Diego Luis; Einstein, T. L.

    2011-11-01

    We use a simple fragmentation model to describe the statistical behavior of the Voronoi cell patterns generated by a homogeneous and isotropic set of points in 1D and in 2D. In particular, we are interested in the distribution of sizes of these Voronoi cells. Our model is completely defined by two probability distributions in 1D and again in 2D, the probability to add a new point inside an existing cell and the probability that this new point is at a particular position relative to the preexisting point inside this cell. In 1D the first distribution depends on a single parameter while the second distribution is defined through a fragmentation kernel; in 2D both distributions depend on a single parameter. The fragmentation kernel and the control parameters are closely related to the physical properties of the specific system under study. We use our model to describe the Voronoi cell patterns of several systems. Specifically, we study the island nucleation with irreversible attachment, the 1D car-parking problem, the formation of second-level administrative divisions, and the pattern formed by the Paris Métro stations.

  16. Influence of dietary melatonin on photoreceptor survival in the rat retina: an ocular toxicity study.

    PubMed

    Wiechmann, Allan F; Chignell, Colin F; Roberts, Joan E

    2008-02-01

    Previous studies have shown that melatonin treatment increases the susceptibility of retinal photoreceptors to light-induced cell death. The purpose of this study was to evaluate under various conditions the potential toxicity of dietary melatonin on retinal photoreceptors. Male and female Fischer 344 (non-pigmented) and Long-Evans (pigmented) rats were treated with daily single doses of melatonin by gavage for a period of 14 days early in the light period or early in the dark period. In another group, rats were treated 3 times per week with melatonin early in the light period, and then exposed to high intensity illumination (1000-1500 lx; HII) for 2h, and then returned to the normal cyclic lighting regime. At the end of the treatment periods, morphometric measurements of outer nuclear layer thickness (ONL; the layer containing the photoreceptor cell nuclei) were made at specific loci throughout the retinas. In male and female non-pigmented Fischer rats, melatonin administration increased the degree of photoreceptor cell death when administered during the nighttime and during the day when followed by exposure to HII. There were some modest effects of melatonin on photoreceptor cell death when administered to Fischer rats during the day or night without exposure to HII. Melatonin treatment caused increases in the degree of photoreceptor cell death when administered in the night to male pigmented Long-Evans rats, but melatonin administration during the day, either with or without exposure to HII, had little if any effect on photoreceptor cell survival. In pigmented female Long-Evans rats, melatonin administration did not appear to have significant effects on photoreceptor cell death in any treatment group. The results of this study confirm and extend previous reports that melatonin increases the susceptibility of photoreceptors to light-induced cell death in non-pigmented rats. It further suggests that during the dark period, melatonin administration alone (i.e., no

  17. Photoreceptor current and photoorientation in chlamydomonas mediated by 9-demethylchlamyrhodopsin.

    PubMed Central

    Govorunova, E G; Sineshchekov, O A; Gärtner, W; Chunaev, A S; Hegemann, P

    2001-01-01

    Green flagellates possess rhodopsin-like photoreceptors involved in control of their behavior via generation of photocurrents across the plasma membrane. Chlamydomonas mutants blocked in retinal biosynthesis are "blind," but they can be rescued by the addition of exogenous retinoids. Photosignaling by chlamyrhodopsin regenerated with 9-demethylretinal was investigated by recording photocurrents from single cells and cell suspensions, and by measuring phototactic orientation. The addition of a saturating concentration of this analog led to reconstitution of all receptor molecules. However, sensitivity of the photoreceptor current in cells reconstituted with the analog was smaller compared with retinal-reconstituted cells, indicating a decreased signaling efficiency of the analog receptor protein. Suppression of the photoreceptor current in double-flash experiments was smaller and its recovery faster with 9-demethylretinal than with retinal, as it would be expected from a decreased PC amplitude in the analog-reconstituted cells. Cells reconstituted with either retinal or the analog displayed negative phototaxis at low light and switched to positive one upon an increase in stimulus intensity, as opposed to the wild type. The reversal of the phototaxis direction in analog-reconstituted cells was shifted to a higher fluence rate compared with cells reconstituted with retinal, which corresponded to the decreased signaling efficiency of 9-demethylchlamyrhodopsin. PMID:11606300

  18. An array of early differentiating cones precedes the emergence of the photoreceptor mosaic in the fetal monkey retina.

    PubMed Central

    Wikler, K C; Rakic, P

    1994-01-01

    We previously have demonstrated that approximately 10% of cones in the fetal monkey retina precociously express the red/green opsin. These data suggested the possibility that a subset of cones differentiates prior to their nascent cone neighbors. To further assess this early cone differentiation in the fetal monkey retina, we used monoclonal antibodies proven to be important developmental markers of photoreceptor phenotypes and synaptogenesis (XAP-1, specific to photoreceptor membranes; SV2, specific to synaptic vesicle protein). Although these two antibodies recognize functionally distinct antigens, our analyses revealed that both identify a subset of precociously immunoreactive cones. Further, XAP-1- and SV2-positive cones are distributed in the same pattern as precocious red/green-sensitive cones in immature regions of the fetal monkey retina. These results support the hypothesis that the primate retina possesses a spatially organized protomap that may induce the emergence of the photoreceptor mosaic and trigger the formation of color-specific pathways that include horizontal, bipolar, and retinal ganglion cells. Images PMID:7912829

  19. Light Adaptation in Pecten Hyperpolarizing Photoreceptors

    PubMed Central

    Gomez, Maria del Pilar; Nasi, Enrico

    1997-01-01

    The ability of scallop hyperpolarizing photoreceptors to respond without attenuation to repetitive flashes, together with their low light sensitivity, lack of resolvable quantum bumps and fast photoresponse kinetics, had prompted the suggestion that these cells may be constitutively in a state akin to light adaptation. We here demonstrate that their photocurrent displays all manifestations of sensory adaptation: (a) The response amplitude to a test flash is decreased in a graded way by background or conditioning lights. This attenuation of the response develops with a time constant of 200–800 ms, inversely related to background intensity. (b) Adapting stimuli shift the stimulus-response curve and reduce the size of the saturating photocurrent. (c) The fall kinetics of the photoresponse are accelerated by light adaptation, and the roll-off of the modulation transfer function is displaced to higher frequencies. This light-induced desensitization exhibits a rapid recovery, on the order of a few seconds. Based on the notion that Ca mediates light adaptation in other cells, we examined the consequences of manipulating this ion. Removal of external Ca reversibly increased the photocurrent amplitude, without affecting light sensitivity, photoresponse kinetics, or susceptibility to background adaptation; the effect, therefore, concerns ion permeation, rather than the regulation of the visual response. Intracellular dialysis with 10 mM BAPTA did not reduce the peak-to-plateau decay of the photocurrent elicited by prolonged light steps, not the background-induced compression of the response amplitude range and the acceleration of its kinetics. Conversely, high levels of buffered free [Ca]i (10 μM) only marginally shifted the sensitivity curve (Δσ = 0.3 log) and spared all manifestations of light adaptation. These results indicate that hyperpolarizing invertebrate photoreceptors adapt to light, but the underlying mechanisms must utilize pathways that are largely

  20. Carnosic acid slows photoreceptor degeneration in the Pde6brd10 mouse model of retinitis pigmentosa

    PubMed Central

    Kang, Kai; Tarchick, Matthew J.; Yu, Xiaoshan; Beight, Craig; Bu, Ping; Yu, Minzhong

    2016-01-01

    The photoreceptor cell death associated with the various genetic forms of retinitis pigmentosa (RP) is currently untreatable and leads to partial or complete vision loss. Carnosic acid (CA) upregulates endogenous antioxidant enzymes and has proven neuroprotective in studies of neurodegenerative models affecting the brain. In this study, we examined the potential effect of CA on photoreceptor death in the Pde6brd10 mouse model of RP. Our data shows that CA provided morphological and functional preservation of photoreceptors. CA appears to exert its neuroprotective effects through inhibition of oxidative stress and endoplasmic reticulum stress. PMID:26961159

  1. Optics of cone photoreceptors in the chicken (Gallus gallus domesticus).

    PubMed

    Wilby, David; Toomey, Matthew B; Olsson, Peter; Frederiksen, Rikard; Cornwall, M Carter; Oulton, Ruth; Kelber, Almut; Corbo, Joseph C; Roberts, Nicholas W

    2015-10-01

    Vision is the primary sensory modality of birds, and its importance is evident in the sophistication of their visual systems. Coloured oil droplets in the cone photoreceptors represent an adaptation in the avian retina, acting as long-pass colour filters. However, we currently lack understanding of how the optical properties and morphology of component structures (e.g. oil droplet, mitochondrial ellipsoid and outer segment) of the cone photoreceptor influence the transmission of light into the outer segment and the ultimate effect they have on receptor sensitivity. In this study, we use data from microspectrophotometry, digital holographic microscopy and electron microscopy to inform electromagnetic models of avian cone photoreceptors to quantitatively investigate the integrated optical function of the cell. We find that pigmented oil droplets primarily function as spectral filters, not light collection devices, although the mitochondrial ellipsoid improves optical coupling between the inner segment and oil droplet. In contrast, unpigmented droplets found in violet-sensitive cones double sensitivity at its peak relative to other cone types. Oil droplets and ellipsoids both narrow the angular sensitivity of single cone photoreceptors, but not as strongly as those in human cones. PMID:26423439

  2. Optics of cone photoreceptors in the chicken (Gallus gallus domesticus).

    PubMed

    Wilby, David; Toomey, Matthew B; Olsson, Peter; Frederiksen, Rikard; Cornwall, M Carter; Oulton, Ruth; Kelber, Almut; Corbo, Joseph C; Roberts, Nicholas W

    2015-10-01

    Vision is the primary sensory modality of birds, and its importance is evident in the sophistication of their visual systems. Coloured oil droplets in the cone photoreceptors represent an adaptation in the avian retina, acting as long-pass colour filters. However, we currently lack understanding of how the optical properties and morphology of component structures (e.g. oil droplet, mitochondrial ellipsoid and outer segment) of the cone photoreceptor influence the transmission of light into the outer segment and the ultimate effect they have on receptor sensitivity. In this study, we use data from microspectrophotometry, digital holographic microscopy and electron microscopy to inform electromagnetic models of avian cone photoreceptors to quantitatively investigate the integrated optical function of the cell. We find that pigmented oil droplets primarily function as spectral filters, not light collection devices, although the mitochondrial ellipsoid improves optical coupling between the inner segment and oil droplet. In contrast, unpigmented droplets found in violet-sensitive cones double sensitivity at its peak relative to other cone types. Oil droplets and ellipsoids both narrow the angular sensitivity of single cone photoreceptors, but not as strongly as those in human cones.

  3. Optics of cone photoreceptors in the chicken (Gallus gallus domesticus)

    PubMed Central

    Wilby, David; Toomey, Matthew B.; Olsson, Peter; Frederiksen, Rikard; Cornwall, M. Carter; Oulton, Ruth; Kelber, Almut; Corbo, Joseph C.; Roberts, Nicholas W.

    2015-01-01

    Vision is the primary sensory modality of birds, and its importance is evident in the sophistication of their visual systems. Coloured oil droplets in the cone photoreceptors represent an adaptation in the avian retina, acting as long-pass colour filters. However, we currently lack understanding of how the optical properties and morphology of component structures (e.g. oil droplet, mitochondrial ellipsoid and outer segment) of the cone photoreceptor influence the transmission of light into the outer segment and the ultimate effect they have on receptor sensitivity. In this study, we use data from microspectrophotometry, digital holographic microscopy and electron microscopy to inform electromagnetic models of avian cone photoreceptors to quantitatively investigate the integrated optical function of the cell. We find that pigmented oil droplets primarily function as spectral filters, not light collection devices, although the mitochondrial ellipsoid improves optical coupling between the inner segment and oil droplet. In contrast, unpigmented droplets found in violet-sensitive cones double sensitivity at its peak relative to other cone types. Oil droplets and ellipsoids both narrow the angular sensitivity of single cone photoreceptors, but not as strongly as those in human cones. PMID:26423439

  4. Cubozoan genome illuminates functional diversification of opsins and photoreceptor evolution.

    PubMed

    Liegertová, Michaela; Pergner, Jiří; Kozmiková, Iryna; Fabian, Peter; Pombinho, Antonio R; Strnad, Hynek; Pačes, Jan; Vlček, Čestmír; Bartůněk, Petr; Kozmik, Zbyněk

    2015-07-08

    Animals sense light primarily by an opsin-based photopigment present in a photoreceptor cell. Cnidaria are arguably the most basal phylum containing a well-developed visual system. The evolutionary history of opsins in the animal kingdom has not yet been resolved. Here, we study the evolution of animal opsins by genome-wide analysis of the cubozoan jellyfish Tripedalia cystophora, a cnidarian possessing complex lens-containing eyes and minor photoreceptors. A large number of opsin genes with distinct tissue- and stage-specific expression were identified. Our phylogenetic analysis unequivocally classifies cubozoan opsins as a sister group to c-opsins and documents lineage-specific expansion of the opsin gene repertoire in the cubozoan genome. Functional analyses provided evidence for the use of the Gs-cAMP signaling pathway in a small set of cubozoan opsins, indicating the possibility that the majority of other cubozoan opsins signal via distinct pathways. Additionally, these tests uncovered subtle differences among individual opsins, suggesting possible fine-tuning for specific photoreceptor tasks. Based on phylogenetic, expression and biochemical analysis we propose that rapid lineage- and species-specific duplications of the intron-less opsin genes and their subsequent functional diversification promoted evolution of a large repertoire of both visual and extraocular photoreceptors in cubozoans.

  5. Classical Photoreceptors Are Primarily Responsible for the Pupillary Light Reflex in Mouse

    PubMed Central

    Jain, Varsha; Srivastava, Ipsit; Palchaudhuri, Shriya; Goel, Manvi; Sinha-Mahapatra, Sumit K.; Dhingra, Narender K.

    2016-01-01

    Pupillary light reflex (PLR) is an important clinical tool to assess the integrity of visual pathways. The available evidence suggests that melanopsin-expressing retinal ganglion cells (mRGCs) mediate PLR—driven by the classical photoreceptors (rods and cones) at low irradiances and by melanopsin activation at high irradiances. However, genetic or pharmacological elimination of melanopsin does not completely abolish PLR at high irradiances, raising the possibility that classical photoreceptors may have a role even at high irradiances. Using an inducible mouse model of photoreceptor degeneration, we asked whether classical photoreceptors are responsible for PLR at all irradiances, and found that the PLR was severely attenuated at all irradiances. Using multiple approaches, we show that the residual PLR at high irradiances in this mouse was primarily from the remnant rods and cones, with a minor contribution from melanopsin activation. In contrast, in rd1 mouse where classical photoreceptor degeneration occurs during development, the PLR was absent at low irradiances but intact at high irradiances, as reported previously. Since mRGCs receive inputs from classical photoreceptors, we also asked whether developmental loss of classical photoreceptors as in rd1 mouse leads to compensatory takeover of the high-irradiance PLR by mRGCs. Specifically, we looked at a distinct subpopulation of mRGCs that express Brn3b transcription factor, which has been shown to mediate PLR. We found that rd1 mouse had a significantly higher proportion of Brn3b-expressing M1 type of mRGCs than in the inducible model. Interestingly, inducing classical photoreceptor degeneration during development also resulted in a higher proportion of Brn3b-expressing M1 cells and partially rescued PLR at high irradiances. These results suggest that classical photoreceptors are primarily responsible for PLR at all irradiances, while melanopsin activation makes a minor contribution at very high irradiances

  6. Auditory hair cell innervational patterns in lizards.

    PubMed

    Miller, M R; Beck, J

    1988-05-22

    The pattern of afferent and efferent innervation of two to four unidirectional (UHC) and two to nine bidirectional (BHC) hair cells of five different types of lizard auditory papillae was determined by reconstruction of serial TEM sections. The species studies were Crotaphytus wislizeni (iguanid), Podarcis (Lacerta) sicula and P. muralis (lacertids), Ameiva ameiva (teiid), Coleonyx variegatus (gekkonid), and Mabuya multifasciata (scincid). The main object was to determine in which species and in which hair cell types the nerve fibers were innervating only one (exclusive innervation), or two or more hair cells (nonexclusive innervation); how many nerve fibers were supplying each hair cell; how many synapses were made by the innervating fibers; and the total number of synapses on each hair cell. In the species studies, efferent innervation was limited to the UHC, and except for the iguanid, C. wislizeni, it was nonexclusive, each fiber supplying two or more hair cells. Afferent innervation varied both with the species and the hair cell types. In Crotaphytus, both the UHC and the BHC were exclusively innervated. In Podarcis and Ameiva, the UHC were innervated exclusively by some fibers but nonexclusively by others (mixed pattern). In Coleonyx, the UHC were exclusively innervated but the BHC were nonexclusively innervated. In Mabuya, both the UHC and BHC were nonexclusively innervated. The number of afferent nerve fibers and the number of afferent synapses were always larger in the UHC than in the BHC. In Ameiva, Podarcis, and Mabuya, groups of bidirectionally oriented hair cells occur in regions of cytologically distinct UHC, and in Ameiva, unidirectionally oriented hair cells occur in cytologically distinct BHC regions. PMID:3385019

  7. Cell patterning technologies for organotypic tissue fabrication.

    PubMed

    Guillotin, Bertrand; Guillemot, Fabien

    2011-04-01

    Bottom-up tissue engineering technologies address two of the main limitations of top-down tissue engineering approaches: the control of mass transfer and the fabrication of a controlled and functional histoarchitecture. These emerging technologies encompass mesoscale (e.g. cell sheets, cell-laden hydrogels and 3D printing) and microscale technologies (e.g. inkjet printing and laser-assisted bioprinting), which are used to manipulate and assemble cell-laden building blocks whose thicknesses correspond to the diffusion limit of metabolites, and present the capacity for cell patterning with microscale precision, respectively. Here, we review recent technological advances and further discuss how these technologies are complementary, and could therefore be combined for the biofabrication of organotypic tissues either in vitro, thus serving as realistic tissue models, or within a clinic setting.

  8. Photothermal nanoblade for patterned cell membrane cutting

    PubMed Central

    Wu, Ting-Hsiang; Teslaa, Tara; Teitell, Michael A.; Chiou, Pei-Yu

    2010-01-01

    We report a photothermal nanoblade that utilizes a metallic nanostructure to harvest short laser pulse energy and convert it into a highly localized and specifically shaped explosive vapor bubble. Rapid bubble expansion and collapse punctures a lightly-contacting cell membrane via high-speed fluidic flows and induced transient shear stress. The membrane cutting pattern is controlled by the metallic nanostructure configuration, laser pulse polarization, and energy. Highly controllable, sub-micron sized circular hole pairs to half moon-like, or cat-door shaped, membrane cuts were realized in glutaraldehyde treated HeLa cells. PMID:21164656

  9. Photothermal nanoblade for patterned cell membrane cutting.

    PubMed

    Wu, Ting-Hsiang; Teslaa, Tara; Teitell, Michael A; Chiou, Pei-Yu

    2010-10-25

    We report a photothermal nanoblade that utilizes a metallic nanostructure to harvest short laser pulse energy and convert it into a highly localized and specifically shaped explosive vapor bubble. Rapid bubble expansion and collapse punctures a lightly-contacting cell membrane via high-speed fluidic flows and induced transient shear stress. The membrane cutting pattern is controlled by the metallic nanostructure configuration, laser pulse polarization, and energy. Highly controllable, sub-micron sized circular hole pairs to half moon-like, or cat-door shaped, membrane cuts were realized in glutaraldehyde treated HeLa cells. PMID:21164656

  10. Photothermal nanoblade for patterned cell membrane cutting.

    PubMed

    Wu, Ting-Hsiang; Teslaa, Tara; Teitell, Michael A; Chiou, Pei-Yu

    2010-10-25

    We report a photothermal nanoblade that utilizes a metallic nanostructure to harvest short laser pulse energy and convert it into a highly localized and specifically shaped explosive vapor bubble. Rapid bubble expansion and collapse punctures a lightly-contacting cell membrane via high-speed fluidic flows and induced transient shear stress. The membrane cutting pattern is controlled by the metallic nanostructure configuration, laser pulse polarization, and energy. Highly controllable, sub-micron sized circular hole pairs to half moon-like, or cat-door shaped, membrane cuts were realized in glutaraldehyde treated HeLa cells.

  11. The transcription factor Glass links eye field specification with photoreceptor differentiation in Drosophila.

    PubMed

    Bernardo-Garcia, F Javier; Fritsch, Cornelia; Sprecher, Simon G

    2016-04-15

    Eye development requires an evolutionarily conserved group of transcription factors, termed the retinal determination network (RDN). However, little is known about the molecular mechanism by which the RDN instructs cells to differentiate into photoreceptors. We show that photoreceptor cell identity in Drosophila is critically regulated by the transcription factor Glass, which is primarily expressed in photoreceptors and whose role in this process was previously unknown. Glass is both required and sufficient for the expression of phototransduction proteins. Our results demonstrate that the RDN member Sine oculis directly activates glass expression, and that Glass activates the expression of the transcription factors Hazy and Otd. We identified hazy as a direct target of Glass. Induced expression of Hazy in the retina partially rescues the glass mutant phenotype. Together, our results provide a transcriptional link between eye field specification and photoreceptor differentiation in Drosophila, placing Glass at a central position in this developmental process.

  12. Identifying Functional Connections of the Inner Photoreceptors in Drosophila using Tango-Trace

    PubMed Central

    Jagadish, Smitha; Barnea, Gilad; Clandinin, Thomas R.; Axel, Richard

    2014-01-01

    SUMMARY In Drosophila, the four inner photoreceptor neurons exhibit overlapping but distinct spectral sensitivities and mediate behaviors that reflect spectral preference. We have developed a genetic strategy, Tango-Trace, that has permitted the identification of the connections of the four chromatic photoreceptors. Each of the four stochastically distributed chromatic photoreceptor subtypes make distinct connections in the medulla with four different TmY cells. Moreover, each class of TmY cells forms a retinotopic map in both the medulla and the lobula complex, generating four overlapping topographic maps that could carry different color information. Thus, the four inner photoreceptors transmit spectral information through distinct channels that may converge in both the medulla and lobula complex. These projections could provide an anatomic basis for color vision and may relay information about color to motion sensitive areas. Moreover, the Tango-Trace strategy we have employed may be applied more generally to identify neural circuits in the fly brain. PMID:25043419

  13. Identifying functional connections of the inner photoreceptors in Drosophila using Tango-Trace.

    PubMed

    Jagadish, Smitha; Barnea, Gilad; Clandinin, Thomas R; Axel, Richard

    2014-08-01

    In Drosophila, the four inner photoreceptor neurons exhibit overlapping but distinct spectral sensitivities and mediate behaviors that reflect spectral preference. We developed a genetic strategy, Tango-Trace, that has permitted the identification of the connections of the four chromatic photoreceptors. Each of the four stochastically distributed chromatic photoreceptor subtypes make distinct connections in the medulla with four different TmY cells. Moreover, each class of TmY cells forms a retinotopic map in both the medulla and the lobula complex, generating four overlapping topographic maps that could carry different color information. Thus, the four inner photoreceptors transmit spectral information through distinct channels that may converge in both the medulla and lobula complex. These projections could provide an anatomic basis for color vision and may relay information about color to motion sensitive areas. Moreover, the Tango-Trace strategy we used may be applied more generally to identify neural circuits in the fly brain. PMID:25043419

  14. Topographical characterization of cone photoreceptors and the area centralis of the canine retina

    PubMed Central

    Mowat, Freya M.; Petersen-Jones, Simon M.; Williamson, Helen; Williams, David L.; Luthert, Philip J.; Ali, Robin R.

    2008-01-01

    Purpose The canine is an important large animal model of human retinal genetic disorders. Studies of ganglion cell distribution in the canine retina have identified a visual streak of high density superior to the optic disc with a temporal area of peak density known as the area centralis. The topography of cone photoreceptors in the canine retina has not been characterized in detail, and in contrast to the macula in humans, the position of the area centralis in dogs is not apparent on clinical funduscopic examination. The purpose of this study was to define the location of the area centralis in the dog and to characterize in detail the topography of rod and cone photoreceptors within the area centralis. This will facilitate the investigation and treatment of retinal disease in the canine. Methods We used peanut agglutinin, which labels cone matrix sheaths and antibodies against long/medium wavelength (L/M)- and short wavelength (S)-cone opsins, to stain retinal cryosections and flatmounts from beagle dogs. Retinas were imaged using differential interference contrast imaging, fluorescence, and confocal microscopy. Within the area centralis, rod and cone size and density were quantified, and the proportion of cones expressing each cone opsin subtype was calculated. Using a grid pattern of sampling in 9 retinal flatmounts, we investigated the distribution of cones throughout the retina to predict the location of the area centralis. Results We identified the area centralis as the site of maximal density of rod and cone photoreceptor cells, which have a smaller inner segment cross-sectional area in this region. L/M opsin was expressed by the majority of cones in the retina, both within the area centralis and in the peripheral retina. Using the mean of cone density distribution from 9 retinas, we calculated that the area centralis is likely to be centered at a point 1.5 mm temporal and 0.6 mm superior to the optic disc. For clinical funduscopic examination, this

  15. Stochastic, Adaptive Sampling of Information by Microvilli in Fly Photoreceptors

    PubMed Central

    Song, Zhuoyi; Postma, Marten; Billings, Stephen A.; Coca, Daniel; Hardie, Roger C.; Juusola, Mikko

    2012-01-01

    Summary Background In fly photoreceptors, light is focused onto a photosensitive waveguide, the rhabdomere, consisting of tens of thousands of microvilli. Each microvillus is capable of generating elementary responses, quantum bumps, in response to single photons using a stochastically operating phototransduction cascade. Whereas much is known about the cascade reactions, less is known about how the concerted action of the microvilli population encodes light changes into neural information and how the ultrastructure and biochemical machinery of photoreceptors of flies and other insects evolved in relation to the information sampling and processing they perform. Results We generated biophysically realistic fly photoreceptor models, which accurately simulate the encoding of visual information. By comparing stochastic simulations with single cell recordings from Drosophila photoreceptors, we show how adaptive sampling by 30,000 microvilli captures the temporal structure of natural contrast changes. Following each bump, individual microvilli are rendered briefly (∼100–200 ms) refractory, thereby reducing quantum efficiency with increasing intensity. The refractory period opposes saturation, dynamically and stochastically adjusting availability of microvilli (bump production rate: sample rate), whereas intracellular calcium and voltage adapt bump amplitude and waveform (sample size). These adapting sampling principles result in robust encoding of natural light changes, which both approximates perceptual contrast constancy and enhances novel events under different light conditions, and predict information processing across a range of species with different visual ecologies. Conclusions These results clarify why fly photoreceptors are structured the way they are and function as they do, linking sensory information to sensory evolution and revealing benefits of stochasticity for neural information processing. PMID:22704990

  16. Cortical microtubule rearrangements and cell wall patterning

    PubMed Central

    Oda, Yoshihisa

    2015-01-01

    Plant cortical microtubules, which form a highly ordered array beneath the plasma membrane, play essential roles in determining cell shape and function by directing the arrangement of cellulosic and non-cellulosic compounds on the cell surface. Interphase transverse arrays of cortical microtubules self-organize through their dynamic instability and inter-microtubule interactions, and by branch-form microtubule nucleation and severing. Recent studies revealed that distinct spatial signals including ROP GTPase, cellular geometry, and mechanical stress regulate the behavior of cortical microtubules at the subcellular and supercellular levels, giving rise to dramatic rearrangements in the cortical microtubule array in response to internal and external cues. Increasing evidence indicates that negative regulators of microtubules also contribute to the rearrangement of the cortical microtubule array. In this review, I summarize recent insights into how the rearrangement of the cortical microtubule array leads to proper, flexible cell wall patterning. PMID:25904930

  17. Immunocytochemical analysis of photoreceptors in the tiger salamander retina

    PubMed Central

    Zhang, Jian; Wu, Samuel M.

    2013-01-01

    In the tiger salamander retina, visual signals are transmitted to the inner retina via six morphologically distinct types of photoreceptors: large/small rods, large/small single cones, and double cones composed of principal and accessory members. The objective of this study was to determine the morphology of these photoreceptors and their synaptic interconnection with bipolar cells and horizontal cells in the outer plexiform layer (OPL). Here we showed that glutamate antibodies labeled all photoreceptors and recoverin antibodies strongly labeled all cones and weakly labeled all rods. Antibodies against calbindin selectively stained accessory members of double cones. Antibodies against S-cone opsin stained small rods, a subpopulation of small single cones, and the outer segments of accessory double cones and a subtype of unidentified single cones. On average, large rods and small S-cone opsin positive rods accounted for 98.6% and 1.4% of all rods, respectively. Large/small cones, principle/accessory double cones, S-cone opsin positive small single cones, and S-cone opsin positive unidentified single cones accounted for about 66.9%, 23%, 4.5%, and 5.6% of the total cones, respectively. Moreover, the differential connection between rods/cones and bipolar/horizontal cells and the wide distribution of AMPA receptor subunits GluR2/3 and GluR4 at the rod/cone synapses were observed. These results provide anatomical evidence for the physiological findings that bipolar/horizontal cells in the salamander retina are driven by rod/cone inputs of different weights, and that AMPA receptors play an important role in glutamatergic neurotransmission at the first visual synapses. The different photoreceptors selectively contacting bipolar and horizontal cells support the idea that visual signals may be conveyed to the inner retina by different functional pathways in the outer retina. PMID:18977238

  18. Opsins in Limulus eyes: characterization of three visible light-sensitive opsins unique to and co-expressed in median eye photoreceptors and a peropsin/RGR that is expressed in all eyes.

    PubMed

    Battelle, Barbara-Anne; Kempler, Karen E; Saraf, Spencer R; Marten, Catherine E; Dugger, Donald R; Speiser, Daniel I; Oakley, Todd H

    2015-02-01

    The eyes of the horseshoe crab Limulus polyphemus have long been used for studies of basic mechanisms of vision, and the structure and physiology of Limulus photoreceptors have been examined in detail. Less is known about the opsins Limulus photoreceptors express. We previously characterized a UV opsin (LpUVOps1) that is expressed in all three types of Limulus eyes (lateral compound eyes, median ocelli and larval eyes) and three visible light-sensitive rhabdomeric opsins (LpOps1, -2 and -5) that are expressed in Limulus lateral compound and larval eyes. Physiological studies showed that visible light-sensitive photoreceptors are also present in median ocelli, but the visible light-sensitive opsins they express were unknown. In the current study we characterize three newly identified, visible light-sensitive rhabdomeric opsins (LpOps6, -7 and -8) that are expressed in median ocelli. We show that they are ocellar specific and that all three are co-expressed in photoreceptors distinct from those expressing LpUVOps1. Our current findings show that the pattern of opsin expression in Limulus eyes is much more complex than previously thought and extend our previous observations of opsin co-expression in visible light-sensitive Limulus photoreceptors. We also characterize a Limulus peropsin/RGR (LpPerOps1). We examine the phylogenetic relationship of LpPerOps1 with other peropsins and RGRs, demonstrate that LpPerOps1 transcripts are expressed in each of the three types of Limulus eyes and show that the encoded protein is expressed in membranes of cells closely associated with photoreceptors in each eye type. These finding suggest that peropsin was in the opsin repertoire of euchelicerates. PMID:25524988

  19. Opsins in Limulus eyes: characterization of three visible light-sensitive opsins unique to and co-expressed in median eye photoreceptors and a peropsin/RGR that is expressed in all eyes

    PubMed Central

    Battelle, Barbara-Anne; Kempler, Karen E.; Saraf, Spencer R.; Marten, Catherine E.; Dugger, Donald R.; Speiser, Daniel I.; Oakley, Todd H.

    2015-01-01

    The eyes of the horseshoe crab Limulus polyphemus have long been used for studies of basic mechanisms of vision, and the structure and physiology of Limulus photoreceptors have been examined in detail. Less is known about the opsins Limulus photoreceptors express. We previously characterized a UV opsin (LpUVOps1) that is expressed in all three types of Limulus eyes (lateral compound eyes, median ocelli and larval eyes) and three visible light-sensitive rhabdomeric opsins (LpOps1, -2 and -5) that are expressed in Limulus lateral compound and larval eyes. Physiological studies showed that visible light-sensitive photoreceptors are also present in median ocelli, but the visible light-sensitive opsins they express were unknown. In the current study we characterize three newly identified, visible light-sensitive rhabdomeric opsins (LpOps6, -7 and -8) that are expressed in median ocelli. We show that they are ocellar specific and that all three are co-expressed in photoreceptors distinct from those expressing LpUVOps1. Our current findings show that the pattern of opsin expression in Limulus eyes is much more complex than previously thought and extend our previous observations of opsin co-expression in visible light-sensitive Limulus photoreceptors. We also characterize a Limulus peropsin/RGR (LpPerOps1). We examine the phylogenetic relationship of LpPerOps1 with other peropsins and RGRs, demonstrate that LpPerOps1 transcripts are expressed in each of the three types of Limulus eyes and show that the encoded protein is expressed in membranes of cells closely associated with photoreceptors in each eye type. These finding suggest that peropsin was in the opsin repertoire of euchelicerates. PMID:25524988

  20. Opsins in Limulus eyes: characterization of three visible light-sensitive opsins unique to and co-expressed in median eye photoreceptors and a peropsin/RGR that is expressed in all eyes.

    PubMed

    Battelle, Barbara-Anne; Kempler, Karen E; Saraf, Spencer R; Marten, Catherine E; Dugger, Donald R; Speiser, Daniel I; Oakley, Todd H

    2015-02-01

    The eyes of the horseshoe crab Limulus polyphemus have long been used for studies of basic mechanisms of vision, and the structure and physiology of Limulus photoreceptors have been examined in detail. Less is known about the opsins Limulus photoreceptors express. We previously characterized a UV opsin (LpUVOps1) that is expressed in all three types of Limulus eyes (lateral compound eyes, median ocelli and larval eyes) and three visible light-sensitive rhabdomeric opsins (LpOps1, -2 and -5) that are expressed in Limulus lateral compound and larval eyes. Physiological studies showed that visible light-sensitive photoreceptors are also present in median ocelli, but the visible light-sensitive opsins they express were unknown. In the current study we characterize three newly identified, visible light-sensitive rhabdomeric opsins (LpOps6, -7 and -8) that are expressed in median ocelli. We show that they are ocellar specific and that all three are co-expressed in photoreceptors distinct from those expressing LpUVOps1. Our current findings show that the pattern of opsin expression in Limulus eyes is much more complex than previously thought and extend our previous observations of opsin co-expression in visible light-sensitive Limulus photoreceptors. We also characterize a Limulus peropsin/RGR (LpPerOps1). We examine the phylogenetic relationship of LpPerOps1 with other peropsins and RGRs, demonstrate that LpPerOps1 transcripts are expressed in each of the three types of Limulus eyes and show that the encoded protein is expressed in membranes of cells closely associated with photoreceptors in each eye type. These finding suggest that peropsin was in the opsin repertoire of euchelicerates.

  1. Photobiomodulation reduces photoreceptor death and regulates cytoprotection in early states of P23H retinal dystrophy

    NASA Astrophysics Data System (ADS)

    Kirk, Diana K.; Gopalakrishnan, Sandeep; Schmitt, Heather; Abroe, Betsy; Stoehr, Michele; Dubis, Adam; Carroll, Joseph; Stone, Jonathan; Valter, Krisztina; Eells, Janis

    2013-03-01

    Irradiation by light in the far-red to near-infrared (NIR) region of the spectrum (photobiomodulation, PBM) has been demonstrated to attenuate the severity of neurodegenerative disease in experimental and clinical studies. The purpose of this study was to test the hypothesis that 670 nm PBM would protect against the loss of retinal function and improve photoreceptor survival in a rodent model of retinitis pigmentosa, the P23H transgenic rat. P23H rat pups were treated once per day with a 670 nm LED array (180 sec treatments at 50 mW/cm2; fluence 9 joules/cm2) (Quantum Devices Inc., Barneveld WI) from postnatal day (p) 16-20 or from p10-20. Sham-treated rats were restrained, but not exposed to NIR light. The status of the retina was determined at p22 by assessment of mitochondrial function, oxidative stress and cell death. In a second series of studies, retinal status was assessed at p30 by measuring photoreceptor function by ERG and retinal morphology by Spectral Domain Optical Coherence Tomography (SD-OCT). 670 nm PBM increased retinal mitochondrial cytochrome oxidase activity and upregulated the retina's production of the key mitochondrial antioxidant enzyme, MnSOD. PBM also attenuated photoreceptor cell loss and improved photoreceptor function. PBM protects photoreceptors in the developing P23H retina, by augmenting mitochondrial function and stimulating antioxidant protective pathways. Photobiomodulation may have therapeutic potential, where mitochondrial damage is a step in the death of photoreceptors.

  2. Light-evoked responses of the retinal pigment epithelium: changes accompanying photoreceptor loss in the mouse.

    PubMed

    Samuels, Ivy S; Sturgill, Gwen M; Grossman, Gregory H; Rayborn, Mary E; Hollyfield, Joe G; Peachey, Neal S

    2010-07-01

    Mutations in genes expressed in the retinal pigment epithelium (RPE) underlie a number of human inherited retinal disorders that manifest with photoreceptor degeneration. Because light-evoked responses of the RPE are generated secondary to rod photoreceptor activity, RPE response reductions observed in human patients or animal models may simply reflect decreased photoreceptor input. The purpose of this study was to define how the electrophysiological characteristics of the RPE change when the complement of rod photoreceptors is decreased. To measure RPE function, we used an electroretinogram (dc-ERG)-based technique. We studied a slowly progressive mouse model of photoreceptor degeneration (Prph(Rd2/+)), which was crossed onto a Nyx(nob) background to eliminate the b-wave and most other postreceptoral ERG components. On this background, Prph(Rd2/+) mice display characteristic reductions in a-wave amplitude, which parallel those in slow PIII amplitude and the loss of rod photoreceptors. At 2 and 4 mo of age, the amplitude of each dc-ERG component (c-wave, fast oscillation, light peak, and off response) was larger in Prph(Rd2/+) mice than predicted by rod photoreceptor activity (Rm(P3)) or anatomical analysis. At 4 mo of age, the RPE in Prph(Rd2/+) mice showed several structural abnormalities including vacuoles and swollen, hypertrophic cells. These data demonstrate that insights into RPE function can be gained despite a loss of photoreceptors and structural changes in RPE cells and, moreover, that RPE function can be evaluated in a broader range of mouse models of human retinal disease.

  3. Reversal of end-stage retinal degeneration and restoration of visual function by photoreceptor transplantation.

    PubMed

    Singh, Mandeep S; Charbel Issa, Peter; Butler, Rachel; Martin, Chris; Lipinski, Daniel M; Sekaran, Sumathi; Barnard, Alun R; MacLaren, Robert E

    2013-01-15

    One strategy to restore vision in retinitis pigmentosa and age-related macular degeneration is cell replacement. Typically, patients lose vision when the outer retinal photoreceptor layer is lost, and so the therapeutic goal would be to restore vision at this stage of disease. It is not currently known if a degenerate retina lacking the outer nuclear layer of photoreceptor cells would allow the survival, maturation, and reconnection of replacement photoreceptors, as prior studies used hosts with a preexisting outer nuclear layer at the time of treatment. Here, using a murine model of severe human retinitis pigmentosa at a stage when no host rod cells remain, we show that transplanted rod precursors can reform an anatomically distinct and appropriately polarized outer nuclear layer. A trilaminar organization was returned to rd1 hosts that had only two retinal layers before treatment. The newly introduced precursors were able to resume their developmental program in the degenerate host niche to become mature rods with light-sensitive outer segments, reconnecting with host neurons downstream. Visual function, assayed in the same animals before and after transplantation, was restored in animals with zero rod function at baseline. These observations suggest that a cell therapy approach may reconstitute a light-sensitive cell layer de novo and hence repair a structurally damaged visual circuit. Rather than placing discrete photoreceptors among preexisting host outer retinal cells, total photoreceptor layer reconstruction may provide a clinically relevant model to investigate cell-based strategies for retinal repair. PMID:23288902

  4. Reversal of end-stage retinal degeneration and restoration of visual function by photoreceptor transplantation.

    PubMed

    Singh, Mandeep S; Charbel Issa, Peter; Butler, Rachel; Martin, Chris; Lipinski, Daniel M; Sekaran, Sumathi; Barnard, Alun R; MacLaren, Robert E

    2013-01-15

    One strategy to restore vision in retinitis pigmentosa and age-related macular degeneration is cell replacement. Typically, patients lose vision when the outer retinal photoreceptor layer is lost, and so the therapeutic goal would be to restore vision at this stage of disease. It is not currently known if a degenerate retina lacking the outer nuclear layer of photoreceptor cells would allow the survival, maturation, and reconnection of replacement photoreceptors, as prior studies used hosts with a preexisting outer nuclear layer at the time of treatment. Here, using a murine model of severe human retinitis pigmentosa at a stage when no host rod cells remain, we show that transplanted rod precursors can reform an anatomically distinct and appropriately polarized outer nuclear layer. A trilaminar organization was returned to rd1 hosts that had only two retinal layers before treatment. The newly introduced precursors were able to resume their developmental program in the degenerate host niche to become mature rods with light-sensitive outer segments, reconnecting with host neurons downstream. Visual function, assayed in the same animals before and after transplantation, was restored in animals with zero rod function at baseline. These observations suggest that a cell therapy approach may reconstitute a light-sensitive cell layer de novo and hence repair a structurally damaged visual circuit. Rather than placing discrete photoreceptors among preexisting host outer retinal cells, total photoreceptor layer reconstruction may provide a clinically relevant model to investigate cell-based strategies for retinal repair.

  5. The locations of mitochondria in mammalian photoreceptors: relation to retinal vasculature.

    PubMed

    Stone, Jonathan; van Driel, Diana; Valter, Krisztina; Rees, Sandra; Provis, Jan

    2008-01-16

    Adult mammalian photoreceptors are elongated cells, and their mitochondria are sequestered to the ends of the cell, to the inner segments and (in some species) to axon terminals in the outer plexiform layer (OPL). We hypothesised that mitochondria migrate to these locations towards sources of oxygen, from the choroid and (in some species) from the deep capillaries of the retinal circulation. Six mammalian species were surveyed, using electron and light microscopy, including immunohistochemistry for the mitochondrial enzyme cytochrome oxidase (CO). In all 6 species, mitochondria were absent from photoreceptor somas and were numerous in inner segments. Mitochondria were prominent in axon terminals in 3 species (mouse, rat, human) with a retinal circulation and were absent from those terminals in 3 species (wallaby, rat, guinea pig) with avascular retinas. Further, in a human developmental series, it was evident that mitochondria migrate within rods and cones, towards and eventually past the outer limiting membrane (OLM), into the inner segment. In Müller and RPE cells also, mitochondria concentrated at the external surface of the cells. Neurones located in the inner layers of avascular retinas have mitochondria, but their expression of CO is low. Mitochondrial locations in photoreceptors, Müller and RPE cells are economically explained as the result of migration within the cell towards sources of oxygen. In photoreceptors, this migration results in a separation of mitochondria from the nuclear genome; this separation may be a factor in the vulnerability of photoreceptors to mutations, toxins and environmental stresses, which other retinal neurones survive.

  6. Donepezil delays photoreceptor apoptosis induced by N-methyl-N-nitrosourea in mice

    PubMed Central

    WU, LONGYAN; XU, MAN; LIU, SHENGTAO; CHEN, GUO; ZHANG, FENGJUN; ZHAO, YAO; YI, JINGLIN

    2016-01-01

    Retinitis pigmentosa (RP) is a group of inherited retinal degeneration diseases characterized by photoreceptor cell death that causes visual disturbances and eventual blindness. Intraperitoneal injection of N-methyl-N-nitrosourea (MNU) causes photoreceptor loss, and is used to create an animal model for investigating the mechanisms that cause retinal degeneration diseases. Donepezil is an acetylcholinesterase inhibitor that has a protective effect on retinal ganglion cells in vitro and in vivo, and it is understood that donepezil increases the expression of a heat shock protein 70 (Hsp70), which serves to protect neurons. Hsp70 functions as a chaperone molecule that protects cells from protein aggregation and assists in the refolding of denatured proteins. In the present study, the effects of donepezil on photoreceptor survival in mice was investigated. It was observed that donepezil upregulates the expression of Hsp70, to increase resistance to MNU-induced photoreceptor cell apoptosis by using its anti-apoptotic properties. In addition, the present study observed that Hsp70 promotes photoreceptor cell survival by upregulating the expression levels of B-cell lymphoma 2 (Bcl-2). In conclusion, the results of the present study indicate that donepezil has the potential to be used as a treatment for retinal degenerative diseases. PMID:27284332

  7. Proteomic Changes in the Photoreceptor Outer Segment Upon Intense Light Exposure

    PubMed Central

    Hajkova, Dagmar; Imanishi, Yoshikazu; Palamalai, Vikram; Rao, K. C. Sekhar; Yuan, Chao; Sheng, Quanhu; Tang, Haixu; Zeng, Rong; Darrow, Ruth M.; Organisciak, Daniel T.; Miyagi, Masaru

    2010-01-01

    Acute light-induced photoreceptor degeneration has been studied in experimental animals as a model for photoreceptor cell loss in human retinal degenerative diseases. Light absorption by rhodopsin in rod photoreceptor outer segments (OS) induces oxidative stress and initiates apoptotic cell death. However, the molecular events that induce oxidative stress and initiate the apoptotic cascade remain poorly understood. To better understand the molecular mechanisms of light-induced photoreceptor cell death, we studied the proteomic changes in OS upon intense light exposure by using a proteolytic 18O labeling method. Of 171 proteins identified, the relative abundance of 98 proteins in light-exposed and unexposed OS was determined. The quantities of 11 proteins were found to differ by more than 2-fold between light-exposed OS and those remaining in darkness. Among the 11 proteins, 8 were phototransduction proteins and 7 of these were altered such that the efficiency of phototransduction would be reduced or quenched during light exposure. In contrast, the amount of OS rhodopsin kinase was reduced by 2-fold after light exposure, suggesting attenuation in the mechanism of quenching phototransduction. Liquid chromatography multiple reaction monitoring (LC-MRM) was performed to confirm this reduction in the quantity of rhodopsin kinase. As revealed by immunofluorescence microscopy, this reduction of rhodopsin kinase is not a result of protein translocation from the outer to the inner segment. Collectively, our findings suggest that the absolute quantity of rhodopsin kinase in rod photoreceptors is reduced upon light stimulation and that this reduction may be a contributing factor to light-induced photoreceptor cell death. This report provides new insights into the proteomic changes in the OS upon intense light exposure and creates a foundation for understanding the mechanisms of light-induced photoreceptor cell death. PMID:20020778

  8. Localization of the photocurrent of Limulus ventral photoreceptors using a vibrating probe.

    PubMed Central

    Payne, R; Fein, A

    1986-01-01

    We have used a vibrating probe to determine the profile of electrical current density around ventral photoreceptors of the horseshoe crab following flashes of light that uniformly illuminated the entire surface of the photoreceptor's cell body. The vibrating probe signal indicated that the density of inward current was greatest at the distal region of the cell, the region that is expected to contain the light-sensitive rhabdom. The density of inward current typically declined at the midpoint of the cell body and then reversed to an outward current flow in the proximal region of the cell body, close to the axon. The profile of local sensitivity of the photoreceptor to light closely matched the profile of inward current density, suggesting that the light-activated conductance is localized to the light-sensitive region of the cell. Images FIGURE 1 PMID:3730503

  9. Imaging Ca2+ dynamics in cone photoreceptor axon terminals of the mouse retina.

    PubMed

    Kulkarni, Manoj; Schubert, Timm; Baden, Tom; Wissinger, Bernd; Euler, Thomas; Paquet-Durand, Francois

    2015-01-01

    Retinal cone photoreceptors (cones) serve daylight vision and are the basis of color discrimination. They are subject to degeneration, often leading to blindness in many retinal diseases. Calcium (Ca(2+)), a key second messenger in photoreceptor signaling and metabolism, has been proposed to be indirectly linked with photoreceptor degeneration in various animal models. Systematically studying these aspects of cone physiology and pathophysiology has been hampered by the difficulties of electrically recording from these small cells, in particular in the mouse where the retina is dominated by rod photoreceptors. To circumvent this issue, we established a two-photon Ca(2+) imaging protocol using a transgenic mouse line that expresses the genetically encoded Ca(2+) biosensor TN-XL exclusively in cones and can be crossbred with mouse models for photoreceptor degeneration. The protocol described here involves preparing vertical sections ("slices") of retinas from mice and optical imaging of light stimulus-evoked changes in cone Ca(2+) level. The protocol also allows "in-slice measurement" of absolute Ca(2+) concentrations; as the recordings can be followed by calibration. This protocol enables studies into functional cone properties and is expected to contribute to the understanding of cone Ca(2+) signaling as well as the potential involvement of Ca(2+) in photoreceptor death and retinal degeneration. PMID:25993489

  10. Imaging Ca2+ dynamics in cone photoreceptor axon terminals of the mouse retina.

    PubMed

    Kulkarni, Manoj; Schubert, Timm; Baden, Tom; Wissinger, Bernd; Euler, Thomas; Paquet-Durand, Francois

    2015-05-06

    Retinal cone photoreceptors (cones) serve daylight vision and are the basis of color discrimination. They are subject to degeneration, often leading to blindness in many retinal diseases. Calcium (Ca(2+)), a key second messenger in photoreceptor signaling and metabolism, has been proposed to be indirectly linked with photoreceptor degeneration in various animal models. Systematically studying these aspects of cone physiology and pathophysiology has been hampered by the difficulties of electrically recording from these small cells, in particular in the mouse where the retina is dominated by rod photoreceptors. To circumvent this issue, we established a two-photon Ca(2+) imaging protocol using a transgenic mouse line that expresses the genetically encoded Ca(2+) biosensor TN-XL exclusively in cones and can be crossbred with mouse models for photoreceptor degeneration. The protocol described here involves preparing vertical sections ("slices") of retinas from mice and optical imaging of light stimulus-evoked changes in cone Ca(2+) level. The protocol also allows "in-slice measurement" of absolute Ca(2+) concentrations; as the recordings can be followed by calibration. This protocol enables studies into functional cone properties and is expected to contribute to the understanding of cone Ca(2+) signaling as well as the potential involvement of Ca(2+) in photoreceptor death and retinal degeneration.

  11. Imaging Ca2+ Dynamics in Cone Photoreceptor Axon Terminals of the Mouse Retina

    PubMed Central

    Kulkarni, Manoj; Schubert, Timm; Baden, Tom; Wissinger, Bernd; Euler, Thomas; Paquet-Durand, Francois

    2015-01-01

    Retinal cone photoreceptors (cones) serve daylight vision and are the basis of color discrimination. They are subject to degeneration, often leading to blindness in many retinal diseases. Calcium (Ca2+), a key second messenger in photoreceptor signaling and metabolism, has been proposed to be indirectly linked with photoreceptor degeneration in various animal models. Systematically studying these aspects of cone physiology and pathophysiology has been hampered by the difficulties of electrically recording from these small cells, in particular in the mouse where the retina is dominated by rod photoreceptors. To circumvent this issue, we established a two-photon Ca2+ imaging protocol using a transgenic mouse line that expresses the genetically encoded Ca2+ biosensor TN-XL exclusively in cones and can be crossbred with mouse models for photoreceptor degeneration. The protocol described here involves preparing vertical sections (“slices”) of retinas from mice and optical imaging of light stimulus-evoked changes in cone Ca2+ level. The protocol also allows “in-slice measurement” of absolute Ca2+ concentrations; as the recordings can be followed by calibration. This protocol enables studies into functional cone properties and is expected to contribute to the understanding of cone Ca2+ signaling as well as the potential involvement of Ca2+ in photoreceptor death and retinal degeneration. PMID:25993489

  12. Kinesin family 17 (osmotic avoidance abnormal-3) is dispensable for photoreceptor morphology and function.

    PubMed

    Jiang, Li; Tam, Beatrice M; Ying, Guoxing; Wu, Sen; Hauswirth, William W; Frederick, Jeanne M; Moritz, Orson L; Baehr, Wolfgang

    2015-12-01

    In Caenorhabditis elegans, homodimeric [kinesin family (KIF) 17, osmotic avoidance abnormal-3 (OSM-3)] and heterotrimeric (KIF3) kinesin-2 motors are required to establish sensory cilia by intraflagellar transport (IFT) where KIF3 and KIF17 cooperate to build the axoneme core and KIF17 builds the distal segments. However, the function of KIF17 in vertebrates is unresolved. We expressed full-length and motorless KIF17 constructs in mouse rod photoreceptors using adeno-associated virus in Xenopus laevis rod photoreceptors using a transgene and in ciliated IMCD3 cells. We found that tagged KIF17 localized along the rod outer segment axoneme when expressed in mouse and X. laevis photoreceptors, whereas KIF3A was restricted to the proximal axoneme. Motorless KIF3A and KIF17 mutants caused photoreceptor degeneration, likely through dominant negative effects on IFT. KIF17 mutant lacking the motor domain translocated to nuclei after exposure of a C-terminal nuclear localization signal. Germ-line deletion of Kif17 in mouse did not affect photoreceptor function. A rod-specific Kif3/Kif17 double knockout mouse demonstrated that KIF17 and KIF3 do not act synergistically and did not prevent rhodopsin trafficking to rod outer segments. In summary, the nematode model of KIF3/KIF17 cooperation apparently does not apply to mouse photoreceptors in which the photosensory cilium is built exclusively by KIF3. PMID:26229057

  13. Dosage Thresholds for AAV2 and AAV8 Photoreceptor Gene Therapy in Monkey

    PubMed Central

    Vandenberghe, Luk H.; Bell, Peter; Maguire, Albert M.; Cearley, Cassia N.; Xiao, Ru; Calcedo, Roberto; Wang, Lili; Castle, Michael J.; Maguire, Alexandra C.; Grant, Rebecca; Wolfe, John H.; Wilson, James M.; Bennett, Jean

    2016-01-01

    Gene therapy is emerging as a therapeutic modality for treating disorders of the retina. Photoreceptor cells are the primary cell type affected in many inherited diseases of retinal degeneration. Successfully treating these diseases with gene therapy requires the identification of efficient and safe targeting vectors that can transduce photoreceptor cells. One serotype of adeno-associated virus, AAV2, has been used successfully in clinical trials to treat a form of congenital blindness that requires transduction of the supporting cells of the retina in the retinal pigment epithelium (RPE). Here, we determined the dose required to achieve targeting of AAV2 and AAV8 vectors to photoreceptors in nonhuman primates. Transgene expression in animals injected subretinally with various doses of AAV2 or AAV8 vectors carrying a green fluorescent protein transgene was correlated with surgical, clinical, and immunological observations. Both AAV2 and AAV8 demonstrated efficient transduction of RPE, but AAV8 was markedly better at targeting photoreceptor cells. These preclinical results provide guidance for optimal vector and dose selection in future human gene therapy trials to treat retinal diseases caused by loss of photoreceptors. PMID:21697530

  14. Thyroid aspiration cytology: a "cell pattern" approach to interpretation.

    PubMed

    Nayar, R; Frost, A R

    2001-05-01

    The key to the interpretation of thyroid fine needle aspiration is largely dependent on the recognition of various morphologic patterns of epithelial cells, usually follicular cells, and background elements, such as colloid. These morphologic patterns consist of 3 parts: 1) The arrangement of cells with respect to one another, 2) The cytologic features of individual cells, and 3) The presence of background elements. The cellular arrangements generally encountered in fine needle aspiration of the thyroid include the follicular patterns (macro-/normo-follicular and micro-follicular), the papillary pattern, the syncytial pattern, the dispersed cell pattern, and the cystic pattern. This article approaches some of the differential diagnostic challenges encountered while interpreting thyroid aspiration cytology by focusing first on the overall cellular arrangement to generate a differential diagnosis and then narrowing that differential by assessing cellular features of individual cells and the presence of background elements. PMID:11403258

  15. Thyroid aspiration cytology: a "cell pattern" approach to interpretation.

    PubMed

    Nayar, R; Frost, A R

    2001-05-01

    The key to the interpretation of thyroid fine needle aspiration is largely dependent on the recognition of various morphologic patterns of epithelial cells, usually follicular cells, and background elements, such as colloid. These morphologic patterns consist of 3 parts: 1) The arrangement of cells with respect to one another, 2) The cytologic features of individual cells, and 3) The presence of background elements. The cellular arrangements generally encountered in fine needle aspiration of the thyroid include the follicular patterns (macro-/normo-follicular and micro-follicular), the papillary pattern, the syncytial pattern, the dispersed cell pattern, and the cystic pattern. This article approaches some of the differential diagnostic challenges encountered while interpreting thyroid aspiration cytology by focusing first on the overall cellular arrangement to generate a differential diagnosis and then narrowing that differential by assessing cellular features of individual cells and the presence of background elements.

  16. Flash photolysis of caged compounds in Limulus ventral photoreceptors

    PubMed Central

    1992-01-01

    Rapid concentration jumps of Ins(1,4,5)P3 or ATP were made inside Limulus ventral photoreceptors by flash photolysis of the parent caged compounds. In intact ventral photoreceptors, the photolysis flash evokes a maximum amplitude light-activated current; therefore, a procedure was developed for uncoupling phototransduction by blocking two of the initial reactions in the cascade, rhodopsin excitation and G protein activation. Rhodopsin was inactivated by exposure to hydroxylamine and bright light. This procedure abolished the early receptor potential and reduced the quantum efficiency by 325 +/- 90- fold (mean +/- SD). G protein activation was blocked by injection of guanosine-5'-O-(2-thiodiphosphate) (GDP beta S). GDP beta S injection reduced the quantum efficiency by 1,881 +/- 1,153-fold (mean +/- SD). Together hydroxylamine exposure and GDP beta S injection reduced the quantum efficiency by 870,000 +/- 650,000-fold (mean +/- SD). After the combined treatment, photoreceptors produced quantum bumps to light that was approximately 10(6) times brighter than the intensity that produced quantum bumps before treatment. Experiments were performed with caged compounds injected into photoreceptors in which phototransduction was largely uncoupled. Photolysis of one compound, myo-inositol 1,4,5- triphosphate P4(5)-1-(2-nitrophenyl)ethyl ester (caged IP3), increased the voltage clamp current in response to the flashlamp by more than twofold without changing the latency of the response. The effect was not seen with photolysis of either adenosine-5'-triphosphate P3-1-(2- nitrophenyl)ethyl ester (caged ATP) or caged IP3 in cells preloaded with either heparin or (1,2-bis-(o-amino-phenoxy)ethane-N-N-N'-N' tetraacetic acid tetrapotassium salt (BAPTA). The results suggest that photoreleased IP3 releases calcium ions from intracellular stores and the resulting increase in [Ca2+]i enhances the amplification of the phototransduction cascade. PMID:1431805

  17. The Drosophila bifocal gene encodes a novel protein which colocalizes with actin and is necessary for photoreceptor morphogenesis.

    PubMed

    Bahri, S M; Yang, X; Chia, W

    1997-09-01

    Photoreceptor cells of the Drosophila compound eye begin to develop specialized membrane foldings at the apical surface in midpupation. The microvillar structure ultimately forms the rhabdomere, an actin-rich light-gathering organelle with a characteristic shape and morphology. In a P-element transposition screen, we isolated mutations in a gene, bifocal (bif), which is required for the development of normal rhabdomeres. The morphological defects seen in bif mutant animals, in which the distinct contact domains established by the newly formed rhabdomeres are abnormal, first become apparent during midpupal development. The later defects seen in the mutant adult R cells are more dramatic, with the rhabdomeres enlarged, elongated, and frequently split. bif encodes a novel putative protein of 1063 amino acids which is expressed in the embryo and the larval eye imaginal disc in a pattern identical to that of F actin. During pupal development, Bif localizes to the base of the filamentous actin associated with the forming rhabdomeres along one side of the differentiating R cells. On the basis of its subcellular localization and loss-of-function phenotype, we discuss possible roles of Bif in photoreceptor morphogenesis.

  18. The temporal topography of the N-Methyl- N-nitrosourea induced photoreceptor degeneration in mouse retina

    PubMed Central

    Tao, Ye; Chen, Tao; Fang, Wei; Peng, Guanghua; Wang, liqiang; Qin, Limin; Liu, Bei; Fei Huang, Yi

    2015-01-01

    Retinitis pigmentosa (RP) is a group of inherited neurodegenerative diseases characterized by the progressive photoreceptors apoptosis. The N-Methyl- N-nitrosourea (MNU) is an alkylating toxicant which could induce photoreceptor apoptosis resembling that of the hereditary RP. However, the detailed process pattern of this degeneration remains poorly characterized. We systemically explored the topography of the photoreceptor degeneration in the MNU treated mouse, and related these spatial data with the time-dependent characteristics of retinal pathology. These temporal topographic data delineated sequential scenes of the progressive photoreceptor degeneration in the MNU treated retinas: focal photoreceptors showed different vulnerabilities to the MNU toxicity and displayed a distinctive spatial- and time-dependent progression. Moreover, the positional asymmetry between the retinal quadrants firstly provided instructive information about the unique toxicology properties of the MNU. Further mechanism study suggested that the up-regulation of Bax and Calpain-2, rather than the Caspase-3, should be responsible for the asymmetry in the MNU induced photoreceptor degeneration. Together with the comparative sensitivities to the neurotoxicity of MNU between two photoreceptor populations, these topographic data would facilitate the standardization of analytic parameters related to the MNU induced RP model, and enhance its application in the therapeutic explorations of human RP. PMID:26685797

  19. Structure and function of the photoreceptor stentorins in Stentor coeruleus. I. Partial characterization of the photoreceptor organelle and stentorins.

    PubMed

    Kim, I H; Rhee, J S; Huh, J W; Florell, S; Faure, B; Lee, K W; Kahsai, T; Song, P S; Tamai, N; Yamazaki, T

    1990-08-01

    The unicellular ciliary protozoan, Stentor coeruleus, exhibits photophobic and phototactic responses to visible light stimuli. The pigment granule contains the photoreceptor chromoproteins (stentorins). Stentorin localized in the pigment granules of the cell serves as the primary photoreceptor for the photophobic and phototactic responses in this organism. An initial characterization of the pigment granules has been described in terms of size, absorbance spectra and ATPase activity. Two forms of the stentorin pigments have been isolated from the pigment granules. Stentorin I has an apparent molecular weight of 68,600 and 52,000 by SDS-PAGE (at 10 and 13% gel, respectively) or 102,000 by steric exclusion HPLC, whereas stentorin II is a larger molecular assembly probably composed of several proteins (mol. wt. greater than 500,000). Stentorin I is composed of at least two heterologous subunits corresponding to apparent mol. wts. of 46,000 (fluorescent, Coomassie blue negative) and 52,000 (fluorescent, Coomassie blue positive) on SDS-PAGE (13% gel). However, these values were found to be strongly dependent on the degree of crosslinking in the acrylamide gel. Stentorin II appears to be the primary photoreceptor whose absorption and fluorescence properties are consistent with the action spectra for the photoresponses of the ciliate to visible light. PMID:2378901

  20. Unidirectional Photoreceptor-to-Müller Glia Coupling and Unique K+ Channel Expression in Caiman Retina

    PubMed Central

    Rivera, Yomarie; Benedikt, Jan; Ulbricht, Elke; Karl, Anett; Dávila, José; Savvinov, Alexey; Kucheryavykh, Yuriy; Inyushin, Mikhail; Cubano, Luis A.; Pannicke, Thomas; Veh, Rüdiger W.; Francke, Mike; Verkhratsky, Alexei; Eaton, Misty J.; Reichenbach, Andreas; Skatchkov, Serguei N.

    2014-01-01

    Background Müller cells, the principal glial cells of the vertebrate retina, are fundamental for the maintenance and function of neuronal cells. In most vertebrates, including humans, Müller cells abundantly express Kir4.1 inwardly rectifying potassium channels responsible for hyperpolarized membrane potential and for various vital functions such as potassium buffering and glutamate clearance; inter-species differences in Kir4.1 expression were, however, observed. Localization and function of potassium channels in Müller cells from the retina of crocodiles remain, hitherto, unknown. Methods We studied retinae of the Spectacled caiman (Caiman crocodilus fuscus), endowed with both diurnal and nocturnal vision, by (i) immunohistochemistry, (ii) whole-cell voltage-clamp, and (iii) fluorescent dye tracing to investigate K+ channel distribution and glia-to-neuron communications. Results Immunohistochemistry revealed that caiman Müller cells, similarly to other vertebrates, express vimentin, GFAP, S100β, and glutamine synthetase. In contrast, Kir4.1 channel protein was not found in Müller cells but was localized in photoreceptor cells. Instead, 2P-domain TASK-1 channels were expressed in Müller cells. Electrophysiological properties of enzymatically dissociated Müller cells without photoreceptors and isolated Müller cells with adhering photoreceptors were significantly different. This suggests ion coupling between Müller cells and photoreceptors in the caiman retina. Sulforhodamine-B injected into cones permeated to adhering Müller cells thus revealing a uni-directional dye coupling. Conclusion Our data indicate that caiman Müller glial cells are unique among vertebrates studied so far by predominantly expressing TASK-1 rather than Kir4.1 K+ channels and by bi-directional ion and uni-directional dye coupling to photoreceptor cells. This coupling may play an important role in specific glia-neuron signaling pathways and in a new type of K+ buffering. PMID

  1. In the Limelight: Photoreceptors in Cyanobacteria

    PubMed Central

    2016-01-01

    ABSTRACT Certain cyanobacteria look green if grown in red light and vice versa. This dramatic color change, called complementary chromatic adaptation (CCA), is caused by alterations of the major colored light-harvesting proteins. A major controller of CCA is the cyanobacteriochrome (CBCR) RcaE, a red-green reversible photoreceptor that triggers a complex signal transduction pathway. Now, a new study demonstrates that CCA is also modulated by DpxA, a CBCR that senses yellow and teal (greenish blue) light. DpxA acts to expand the range of wavelengths that can impact CCA, by fine-tuning the process. This dual control of CCA might positively impact the fitness of cells growing in the shade of competing algae or in a water column where light levels and spectral quality change gradually with depth. This discovery adds to the growing number of light-responsive phenomena controlled by multiple CBCRs. Furthermore, the diverse CBCRs which are exclusively found in cyanobacteria have significant biotechnological potential. PMID:27353763

  2. In the Limelight: Photoreceptors in Cyanobacteria.

    PubMed

    Bhaya, Devaki

    2016-01-01

    Certain cyanobacteria look green if grown in red light and vice versa. This dramatic color change, called complementary chromatic adaptation (CCA), is caused by alterations of the major colored light-harvesting proteins. A major controller of CCA is the cyanobacteriochrome (CBCR) RcaE, a red-green reversible photoreceptor that triggers a complex signal transduction pathway. Now, a new study demonstrates that CCA is also modulated by DpxA, a CBCR that senses yellow and teal (greenish blue) light. DpxA acts to expand the range of wavelengths that can impact CCA, by fine-tuning the process. This dual control of CCA might positively impact the fitness of cells growing in the shade of competing algae or in a water column where light levels and spectral quality change gradually with depth. This discovery adds to the growing number of light-responsive phenomena controlled by multiple CBCRs. Furthermore, the diverse CBCRs which are exclusively found in cyanobacteria have significant biotechnological potential. PMID:27353763

  3. Arl13b Interacts With Vangl2 to Regulate Cilia and Photoreceptor Outer Segment Length in Zebrafish

    PubMed Central

    Song, Ping; Dudinsky, Lynn; Fogerty, Joseph; Gaivin, Robert; Perkins, Brian D.

    2016-01-01

    Purpose Mutations in the gene ARL13B cause the classical form of Joubert syndrome, an autosomal recessive ciliopathy with variable degrees of retinal degeneration. As second-site modifier alleles can contribute to retinal pathology in ciliopathies, animal models provide a unique platform to test how genetic interactions modulate specific phenotypes. In this study, we analyzed the zebrafish arl13b mutant for retinal degeneration and for epistatic relationships with the planar cell polarity protein (PCP) component vangl2. Methods Photoreceptor and cilia structure was examined by light and electron microscopy. Immunohistochemistry was performed to examine ciliary markers. Genetic interactions were tested by pairwise crosses of heterozygous animals. Genetic mosaic animals were generated by blastula transplantation and analyzed by fluorescence microscopy. Results At 5 days after fertilization, photoreceptor outer segments were shorter in zebrafish arl13b−/− mutants compared to wild-type larvae, no overt signs of retinal degeneration were observed by light or electron microscopy. Starting at 14 days after fertilization (dpf) and continuing through 30 dpf, cells lacking Arl13b died following transplantation into wild-type host animals. Photoreceptors of arl13b−/−;vangl2−/− mutants were more compromised than the photoreceptors of single mutants. Finally, when grown within a wild-type retina, the vangl2−/− mutant cone photoreceptors displayed normal basal body positioning. Conclusions We show that arl13b−/− mutants have shortened cilia and photoreceptor outer segments and exhibit a slow, progressive photoreceptor degeneration that occurs over weeks. The data suggest that loss of Arl13b leads to slow photoreceptor degeneration, but can be exacerbated by the loss of vangl2. Importantly, the data show that Arl13b can genetically and physically interact with Vangl2 and this association is important for normal photoreceptor structure. The loss of vangl2

  4. OTX2 and CRX rescue overlapping and photoreceptor-specific functions in the Drosophila eye

    PubMed Central

    Terrell, David; Xie, Baotong; Workman, Michael; Mahato, Simpla; Zelhof, Andrew; Gebelein, Brian; Cook, Tiffany

    2012-01-01

    Background Otd-related transcription factors are evolutionarily conserved to control anterior patterning and neurogenesis. In humans, two such factors, OTX2 and CRX, are expressed in all photoreceptors from early specification through adulthood and associate with several photoreceptor-specific retinopathies. It is not well understood how these factors function independently vs. redundantly, or how specific mutations lead to different disease outcomes. It is also unclear how OTX1 and OTX2 functionally overlap during other aspects of neurogenesis and ocular development. Drosophila encodes a single Otd factor that has multiple functions during eye development. Using the Drosophila eye as a model, we tested the ability of the human OTX1, OTX2, and CRX genes, as well as several disease-associated CRX alleles, to rescue the different functions of Otd. Results Our results indicate the following: OTX2 and CRX display overlapping, yet distinct subfunctions of Otd during photoreceptor differentiation; CRX disease alleles can be functionally distinguished based on their rescue properties; and all three factors are able to rescue rhabdomeric photoreceptor morphogenesis. Conclusions Our findings have important implications for understanding how Otx proteins have subfunctionalized during evolution, and cement Drosophila as an effective tool to unravel the molecular bases of photoreceptor pathogenesis. PMID:22113834

  5. Color image detection by biomolecular photoreceptor using bacteriorhodopsin-based complex LB films.

    PubMed

    Choi, H G; Jung, W C; Min, J; Lee, W H; Choi, J W

    2001-12-01

    A biomolecular photoreceptor consisting of bacteriorhodopsin (bR)-based complex Langmuir-Blodgett (LB) films was developed for color image detection. By mimicking the functions of the pigments in retina of human visual system, biomolecules with photoelectric conversion function were chosen and used as constituents for an artificial photoreceptor. bR and flavin were deposited onto the patterned (9-pixelized) ITO glass by LB technique. A 9-pixel biomolecular photoreceptor was fabricated with a sandwich-type structure of ITO/LB films/electrolyte gel/Pt. Since each functional molecule shows its own response characteristic according to the light illumination in the visible region, the simplified knowledge-based algorithm for interpretation of the incident light wavelength (color) was proposed based on the basic rule describing the relationship between the photoelectric response characteristics and the incident light wavelength. When simple color images were projected onto the photoreceptor, the primary colors in visible light region, red, green, and blue were clearly recognized, and the projected color images were fairly well reproduced onto the color monitor by the proposed photoreceptor with the knowledge-based algorithm. It is concluded that the proposed device has a capability of recognizing the color images and can be used as a model system to simulate the information processing function of the human visual system.

  6. The division abnormally delayed (dally) gene: a putative integral membrane proteoglycan required for cell division patterning during postembryonic development of the nervous system in Drosophila.

    PubMed

    Nakato, H; Futch, T A; Selleck, S B

    1995-11-01

    We have devised a genetic screen to obtain mutants affecting cell division patterning in the developing central nervous system of Drosophila. The division abnormally delayed (dally) locus was identified using a combination of "enhancer trap" and behavioral screening methods. The ordered cell cycle progression of lamina precursor cells, which generate synaptic target neurons for photoreceptors, is disrupted in dally mutants. The first of two lamina precursor cell divisions shows a delayed entry into mitosis. The second division, one that is triggered by an intercellular signal from photoreceptor axons, fails to take place. Similar to lamina precursors, cells that generate the ommatidia of the adult eye show two synchronized divisions found along the morphogenetic furrow in the eye disc and the first division cycle in dally mutants displays a delayed progression into M phase like that found in the first lamina precursor cell division. dally mutations also affect viability and produce morphological defects in several adult tissues, including the eye, antenna, wing and genitalia. Sequencing of a dally cDNA reveals a potential open reading frame of 626 amino acids with homology to a family of Glypican-related integral membrane proteoglycans. These heparan sulfate-containing proteins are attached to the external leaflet of the plasma membrane via a glycosylphosphatidylinositol linkage. Heparan sulfate proteoglycans may serve as co-receptors for a variety of secreted proteins including fibroblast growth factor, vascular endothelial growth factor, hepatocyte growth factor and members of the Wnt, TGF-beta and Hedgehog families. The cell division defects found in dally mutants implicate the Glypican group of integral membrane proteoglycans in the control of cell division during development.

  7. Discrete Waves and Phototransduction in Voltage-damped Ventral Photoreceptors

    PubMed Central

    Behbehani, Michael; Srebro, Richard

    1974-01-01

    Discrete waves in the voltage-clamped photoreceptor of Limulus are remarkably similar in all essential properties to those found in an unclamped cell. The latency distribution of discrete waves is not affected by considerable changes in the holding potential in a voltage-clamped cell. Both large and small waves occur in voltage-clamped and unclamped cells and in approximately the same proportion. Large and small waves also share the same latency distributions and spectral sensitivity. We suggest that small waves may result from the activation of damaged membrane areas. Large waves have an average amplitude of approximately 5 nA in voltage-clamped photoreceptors. It probably requires several square microns of cell membrane to support this much photo-current. Thus the amplification inherent in the discrete wave process may involve spatial spread of activation from unimolecular dimensions to several square microns of cell membrane surface. Neither local current flow, nor pre-packaging of any transmitter substance appears to be involved in the amplification process. The possible mechanisms of the amplification are evaluated with relationship to the properties of discrete waves. PMID:4846766

  8. Lack of protein-tyrosine sulfation disrupts photoreceptor outer segment morphogenesis, retinal function and retinal anatomy.

    PubMed

    Sherry, David M; Murray, Anne R; Kanan, Yogita; Arbogast, Kelsey L; Hamilton, Robert A; Fliesler, Steven J; Burns, Marie E; Moore, Kevin L; Al-Ubaidi, Muayyad R

    2010-11-01

    To investigate the role(s) of protein-tyrosine sulfation in the retina, we examined retinal function and structure in mice lacking tyrosylprotein sulfotransferases (TPST) 1 and 2. Tpst double knockout (DKO; Tpst1(-/-) /Tpst2 (-/-) ) retinas had drastically reduced electroretinographic responses, although their photoreceptors exhibited normal responses in single cell recordings. These retinas appeared normal histologically; however, the rod photoreceptors had ultrastructurally abnormal outer segments, with membrane evulsions into the extracellular space, irregular disc membrane spacing and expanded intradiscal space. Photoreceptor synaptic terminals were disorganized in Tpst DKO retinas, but established ultrastructurally normal synapses, as did bipolar and amacrine cells; however, the morphology and organization of neuronal processes in the inner retina were abnormal. These results indicate that protein-tyrosine sulfation is essential for proper outer segment morphogenesis and synaptic function, but is not critical for overall retinal structure or synapse formation, and may serve broader functions in neuronal development and maintenance.

  9. Reorganization of human cortical maps caused by inherited photoreceptor abnormalities.

    PubMed

    Baseler, Heidi A; Brewer, Alyssa A; Sharpe, Lindsay T; Morland, Antony B; Jägle, Herbert; Wandell, Brian A

    2002-04-01

    We describe a compelling demonstration of large-scale developmental reorganization in the human visual pathways. The developmental reorganization was observed in rod monochromats, a rare group of congenitally colorblind individuals who virtually lack cone photoreceptor function. Normal controls had a cortical region, spanning several square centimeters, that responded to signals initiated in the all-cone foveola but was inactive under rod viewing conditions; in rod monochromats this cortical region responded powerfully to rod-initiated signals. The measurements trace a causal pathway that begins with a genetic anomaly that directly influences sensory cells and ultimately results in a substantial central reorganization. PMID:11914722

  10. The Retina of Ansorge's Cusimanse (Crossarchus ansorgei): Number, Topography and Convergence of Photoreceptors and Ganglion Cells in Relation to Ecology and Behavior.

    PubMed

    Coimbra, João Paulo; Kaswera-Kyamakya, Consolate; Gilissen, Emmanuel; Manger, Paul R; Collin, Shaun P

    2015-01-01

    The family Herpestidae (cusimanses and mongooses) is a monophyletic radiation of carnivores with remarkable variation in microhabitat occupation and diel activity, but virtually nothing is known about how they use vision in the context of their behavioral ecology. In this paper, we measured the number and topographic distribution of neurons (rods, cones and retinal ganglion cells) and estimated the spatial resolving power of the eye of the diurnal, forest-dwelling Ansorge's cusimanse (Crossarchus ansorgei). Using retinal wholemounts and stereology, we found that rods are more numerous (42,500,000; 92%) than cones (3,900,000; 8%). Rod densities form a concentric and dorsotemporally asymmetric plateau that matches the location and shape of a bright yellow tapetum lucidum located within the dorsal aspect of the eye. Maximum rod density (340,300 cells/mm(2)) occurs within an elongated plateau below the optic disc that corresponds to a transitional region between the tapetum lucidum and the pigmented choroid. Cone densities form a temporal area with a peak density of 44,500 cells/mm(2) embedded in a weak horizontal streak that matches the topographic distribution of retinal ganglion cells. Convergence ratios of cones to retinal ganglion cells vary from 50:1 in the far periphery to 3:1 in the temporal area. With a ganglion cell peak density of 13,400 cells/mm(2) and an eye size of 11 mm in axial length, we estimated upper limits of spatial resolution of 7.5-8 cycles/degree, which is comparable to other carnivores such as hyenas. In conclusion, we suggest that the topographic retinal traits described for Ansorge's cusimanse conform to a presumed carnivore retinal blueprint but also show variations that reflect its specific ecological needs. PMID:26288092

  11. Tachykinin-related peptide and GABA-mediated presynaptic inhibition of crayfish photoreceptors.

    PubMed

    Glantz, R M; Miller, C S; Nässel, D R

    2000-03-01

    Off-axis illumination elicits lateral inhibition at the primary visual synapse in crustacea and insects. The evidence suggests that the inhibitory action is presynaptic (i.e., on the photoreceptor terminal) and that the amacrine neurons of the lamina ganglionaris (the first synaptic layer) may be part of the inhibitory pathway. The neurotransmitters and the synaptic mechanisms are unknown. We show by immunocytochemistry that GABA and a tachykinin-related peptide (TRP) are localized in the amacrine neurons of the crayfish lamina ganglionaris. Indirect evidence suggests that GABA and TRP may be colocalized in these neurons. The extensive processes of the amacrine neurons occupy lamina layers containing the terminals of photoreceptors. Application of exogenous GABA and TRP to photoreceptor terminals produces a short-latency, dose-dependent hyperpolarization with a decay time constant on the order of a few seconds. TRP also exhibits actions that evolve over several minutes. These include a reduction of the receptor potential (and the light-elicited current) by approximately 40% and potentiation of the action of GABA by approximately 100%. The mechanisms of TRP action in crayfish are not known, but a plausible pathway is a TRP-dependent elevation of intracellular Ca(2+) that reduces photoreceptor sensitivity in arthropods. Although the mechanisms are not established, the results indicate that in crayfish photoreceptors TRP displays actions on two time scales and can exert profound modulatory control over cell function.

  12. A rhodopsin is the functional photoreceptor for phototaxis in the unicellular eukaryote Chlamydomonas.

    PubMed

    Foster, K W; Saranak, J; Patel, N; Zarilli, G; Okabe, M; Kline, T; Nakanishi, K

    Rhodopsin is a visual pigment ubiquitous in multicellular animals. If visual pigments have a common ancient origin, as is believed, then some unicellular organisms might also use a rhodopsin photoreceptor. We show here that the unicellular alga Chlamydomonas does indeed use a rhodopsin photoreceptor. We incorporated analogues of its retinal chromophore into a blind mutant; normal photobehaviour was restored and the colour of maximum sensitivity was shifted in a manner consistent with the nature of the retinal analogue added. The data suggest that 11-cis-retinal is the natural chromophore and that the protein environment of this retinal is similar to that found in bovine rhodopsin, suggesting homology with the rhodopsins of higher organisms. This is the first demonstration of a rhodopsin photoreceptor in an alga or eukaryotic protist and also the first report of behavioural spectral shifts caused by exogenous synthetic retinals in a eukaryote. A survey of the morphology and action spectra of other protists suggests that rhodopsins may be common photoreceptors of chlorophycean, prasinophycean and dinophycean algae. Thus, Chlamydomonas represents a useful new model for studying photoreceptor cells.

  13. Use of Hydrogen as a Novel Therapeutic Strategy Against Photoreceptor Degeneration in Retinitis Pigmentosa Patients

    PubMed Central

    Tao, Ye; Geng, Lei; Wang, Liqiang; Xu, Weiwei; Qin, Limin; Peng, Guanghua; Huang, Yi Fei; Yang, Ji xue

    2016-01-01

    Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal dystrophies characterized by progressive photoreceptor apoptosis. Reactive oxygen species (ROS) have been recognized as critical initiators of the photoreceptor apoptosis in RP. Photoreceptor survival in RP mutants will not only require the inhibition of effectors of apoptotic machinery, but also the elimination of the initiating upstream signals, such as ROS. These cytotoxic ROS should be neutralized by the antioxidant defense system, otherwise they would interact with the macromolecules essential for photoreceptor survival. Hydrogen is a promising gaseous agent that has come to the forefront of therapeutic research over the last few years. It has been verified that hydrogen is capable of neutralizing the cytotoxic ROS selectively, rectifying abnormities in the apoptotic cascades, and attenuating the related inflammatory response. Hydrogen is so mild that it does not disturb the metabolic oxidation-reduction reactions or disrupt the physiologic ROS involved in cell signaling. Based on these findings, we hypothesize that hydrogen might be an effective therapeutic agent to slow or prevent photoreceptor degeneration in RP retinas. It is a logical step to test hydrogen for therapeutic use in multiple RP animal models, and ultimately in human RP patients. PMID:26952558

  14. The carcinine transporter CarT is required in Drosophila photoreceptor neurons to sustain histamine recycling

    PubMed Central

    Stenesen, Drew; Moehlman, Andrew T; Krämer, Helmut

    2015-01-01

    Synaptic transmission from Drosophila photoreceptors to lamina neurons requires recycling of histamine neurotransmitter. Synaptic histamine is cleared by uptake into glia and conversion into carcinine, which functions as transport metabolite. How carcinine is transported from glia to photoreceptor neurons remains unclear. In a targeted RNAi screen for genes involved in this pathway, we identified carT, which encodes a member of the SLC22A transporter family. CarT expression in photoreceptors is necessary and sufficient for fly vision and behavior. Carcinine accumulates in the lamina of carT flies. Wild-type levels are restored by photoreceptor-specific expression of CarT, and endogenous tagging suggests CarT localizes to synaptic endings. Heterologous expression of CarT in S2 cells is sufficient for carcinine uptake, demonstrating the ability of CarT to utilize carcinine as a transport substrate. Together, our results demonstrate that CarT transports the histamine metabolite carcinine into photoreceptor neurons, thus contributing an essential step to the histamine–carcinine cycle. DOI: http://dx.doi.org/10.7554/eLife.10972.001 PMID:26653853

  15. Central projections of photoreceptor axons originating from ectopic eyes in Drosophila

    PubMed Central

    Clements, Jason; Lu, Zhiyuan; Gehring, Walter J.; Meinertzhagen, Ian A.; Callaerts, Patrick

    2008-01-01

    Ectopic expression of the retinal determination gene eyeless (ey) induces the formation of supernumerary eyes on antennae, legs, wings, and halteres. These ectopic eyes form ommatidia that contain photoreceptors and accessory cells and respond to light. Here, we demonstrate that ectopic eyes on antennae and legs extend axonal projections to the central nervous system. Furthermore, electroretinograms and morphological evidence indicate that the photoreceptor axons of at least the antennal ectopic eyes can form completely constituted ectopic synapses with foreign postsynaptic elements and suggest that transmission at these sites may be functional. However, the ectopic axons do not connect to their correct optic lobe targets and do not project deeply into the neuropile, but rather form synapses at superficial positions in the neuropils. By means of confocal and electron microscopy we show that these ectopic synapses resemble normal synapses, albeit with some distinct morphological differences. Our data strongly suggest that the developmental programs controlling photoreceptor synaptogenesis and visual map formation depend to a considerable extent on presynaptic and thus photoreceptor-autonomous steps. Our data also suggest that photoreceptor axon projections and the establishment of the highly stereotypical neural circuitry in the optic lobe, the normal target neuropil, may depend on target-specific cues that appear to be absent from the antennal lobe and thoracic ganglion. PMID:18577588

  16. 3',5'-cyclic adenosine monophosphate and adenylate cyclase in phototransduction by limulus ventral photoreceptors.

    PubMed Central

    Brown, J E; Kaupp, U B; Malbon, C C

    1984-01-01

    Biochemical and electrophysiological measurements were made on photoreceptor cells from Limulus ventral eyes to investigate the possible role of cyclic AMP and adenylate cyclase in the visual transduction mechanism. Cyclic AMP content in a photoreceptor-enriched fraction (the end organs) of Limulus ventral eyes was approximately 15 pmol/mg protein. The cyclic AMP content was increased by bathing eyes in 1-methyl-3-isobutyl xanthine or forskolin and was increased almost 100-fold when bathed in both. Illumination did not change cyclic AMP content significantly in any of these conditions. Discrete events that can be recorded electrophysiologically occur spontaneously in darkness. An increase in the frequency of discrete events is evoked by dim illumination. The discrete events are a sign of excitation of Limulus photoreceptor cells. Drug-induced changes in the rate of occurrence of discrete events recorded electrophysiologically in darkness were not correlated with changes in cyclic AMP content. Adenylate cyclase activity measured from a small number of pooled photoreceptor clusters was stimulated by fluoride and vanadate ions, hydrolysis-resistant analogues of GTP, cholera toxin and forskolin. The Limulus enzyme is similar pharmacologically to mammalian and avian adenylate cyclases. Activation of adenylate cyclase by drugs was not correlated with changes in the rate of occurrence of discrete events recorded electrophysiologically in darkness. A heat-treated Lubrol extract of membranes from Limulus ventral eyes reconstituted the adenylate cyclase activity of membranes from S49 mouse lymphoma cyc- mutant cells which lack a functional regulatory protein. These findings suggest that Limulus ventral eye photoreceptors contain a regulatory protein that mediates the activation of adenylate cyclase by guanine nucleotides, fluoride or cholera toxin. This regulatory protein is homologous with that found in mammalian and avian adenylate cyclases. Our findings suggest that

  17. Active opsin loci adopt intrachromosomal loops that depend on the photoreceptor transcription factor network.

    PubMed

    Peng, Guang-Hua; Chen, Shiming

    2011-10-25

    Rod and cone opsin genes are expressed in a mutually exclusive manner in their respective photoreceptor subtypes in the mammalian retina. Previous transgenic mouse studies showed that functional interactions between the distal enhancer and proximal promoter of rhodopsin and long/medium-wavelength (L/M) opsin genes are essential for regulating their cell-type-specific transcription. We have used chromosomal conformation capture assays in mouse retinas to investigate the molecular mechanism responsible for this interaction. Here we show that each opsin gene forms intrachromosomal loops in the appropriate photoreceptor subtype, while maintaining a linear configuration in other cell types where it is silent. The enhancer forms physical contacts not only with the promoter but also with the coding regions of each opsin locus. ChIP assays showed that cell-type-specific target binding by three key photoreceptor transcription factors-cone--rod homeobox (CRX), neural retina leucine zipper (NRL), and nuclear receptor subfamily 2, group E, member 3 (NR2E3)--is required for the appropriate local chromosomal organization and transcription of rod and cone opsins. Similar correlations between chromosomal loops and active transcription of opsin genes were also observed in human photoreceptors. Furthermore, quantitative chromosomal conformation capture on human retinas from two male donors showed that the L/M enhancer locus control region (LCR) loops with either the L or M promoter in a near 3:1 ratio, supporting distance-dependent competition between L and M for LCR. Altogether, our results suggest that the photoreceptor transcription factor network cooperatively regulates the chromosomal organization of target genes to precisely control photoreceptor subtype-specific gene expression.

  18. G-quartet oligonucleotide mediated delivery of proteins into photoreceptors and retinal pigment epithelium via intravitreal injection.

    PubMed

    Leaderer, Derek; Cashman, Siobhan M; Kumar-Singh, Rajendra

    2016-04-01

    There is currently no available method to efficiently deliver proteins across the plasma membrane of photoreceptor or retinal pigment epithelium (RPE) cells in vivo. Thus, current clinical application of recombinant proteins in ophthalmology is limited to the use of proteins that perform their biological function extracellularly. The ability to traverse biological membranes would enable the mobilization of a significantly larger number of proteins with previously well characterized properties. Nucleolin is abundantly present on the surface of rapidly dividing cells including cancer cells. Surprisingly, nucleolin is also present on the surface of photoreceptor cell bodies. Here we investigated whether nucleolin can be utilized as a gateway for the delivery of proteins into retinal cells following intravitreal injection. AS1411 is a G-quartet aptamer capable of targeting nucleolin. Subsequent to intravitreal injection, fluorescently labeled AS1411 localized to various retinal cell types including the photoreceptors and RPE. AS1411 linked to streptavidin (a ∼50 kDa protein) via a biotin bridge enabled the uptake of Streptavidin into photoreceptors and RPE. AS1411-Streptavidin conjugate applied topically to the cornea allowed for uptake of the conjugate into the nucleus and cytoplasm of corneal endothelial cells. Clinical relevance of AS1411 as a delivery vehicle was strongly indicated by demonstration of the presence of cell surface nucleolin on the photoreceptors, inner neurons and ganglion cells of human retina. These data support exploration of AS1411 as a means of delivering therapeutic proteins to diseased retina. PMID:26923800

  19. Optimized metallization patterns for large-area silicon solar cells

    NASA Technical Reports Server (NTRS)

    Matzen, W. T.; Chiang, S. Y.; Carbajal, B. G.

    1976-01-01

    Design criteria is presented for optimizing the front-surface metallization pattern of large-area silicon solar cells. A computer program calculates the spacing of metal fingers which minimizes resistive and shadowing losses. Finger spacing and efficiency for the optimum design are presented as a function of finger width and cell size. It is shown that quantitative evaluation of metallization pattern options can be made without cell fabrication.

  20. Estimating photoreceptor excitations from spectral outputs of a personal light exposure measurement device.

    PubMed

    Cao, Dingcai; Barrionuevo, Pablo A

    2015-03-01

    The intrinsic circadian clock requires photoentrainment to synchronize the 24-hour solar day. Therefore, light stimulation is an important component of chronobiological research. Currently, the chronobiological research field overwhelmingly uses photopic illuminance that is based on the luminous efficiency function, V(λ), to quantify light levels. However, recent discovery of intrinsically photosensitive retinal ganglion cells (ipRGCs), which are activated by self-contained melanopsin photopigment and also by inputs from rods and cones, makes light specification using a one-dimensional unit inadequate. Since the current understanding of how different photoreceptor inputs contribute to the circadian system through ipRGCs is limited, it is recommended to specify light in terms of the excitations of five photoreceptors (S-, M-, L-cones, rods and ipRGCs; Lucas et al., 2014). In the current study, we assessed whether the spectral outputs from a commercially available spectral watch (i.e. Actiwatch Spectrum) could be used to estimate photoreceptor excitations. Based on the color sensor spectral sensitivity functions from a previously published work, as well as from our measurements, we computed spectral outputs in the long-wavelength range (R), middle-wavelength range (G), short-wavelength range (B) and broadband range (W) under 52 CIE illuminants (25 daylight illuminants, 27 fluorescent lights). We also computed the photoreceptor excitations for each illuminant using human photoreceptor spectral sensitivity functions. Linear regression analyses indicated that the Actiwatch spectral outputs could predict photoreceptor excitations reliably, under the assumption of linear responses of the Actiwatch color sensors. In addition, R, G, B outputs could classify illuminant types (fluorescent versus daylight illuminants) satisfactorily. However, the assessment of actual Actiwatch recording under several testing light sources showed that the spectral outputs were subject to

  1. AAV Vectors for FRET-Based Analysis of Protein-Protein Interactions in Photoreceptor Outer Segments

    PubMed Central

    Becirovic, Elvir; Böhm, Sybille; Nguyen, Ong N. P.; Riedmayr, Lisa M.; Hammelmann, Verena; Schön, Christian; Butz, Elisabeth S.; Wahl-Schott, Christian; Biel, Martin; Michalakis, Stylianos

    2016-01-01

    Fluorescence resonance energy transfer (FRET) is a powerful method for the detection and quantification of stationary and dynamic protein-protein interactions. Technical limitations have hampered systematic in vivo FRET experiments to study protein-protein interactions in their native environment. Here, we describe a rapid and robust protocol that combines adeno-associated virus (AAV) vector-mediated in vivo delivery of genetically encoded FRET partners with ex vivo FRET measurements. The method was established on acutely isolated outer segments of murine rod and cone photoreceptors and relies on the high co-transduction efficiency of retinal photoreceptors by co-delivered AAV vectors. The procedure can be used for the systematic analysis of protein-protein interactions of wild type or mutant outer segment proteins in their native environment. Conclusively, our protocol can help to characterize the physiological and pathophysiological relevance of photoreceptor specific proteins and, in principle, should also be transferable to other cell types. PMID:27516733

  2. AAV Vectors for FRET-Based Analysis of Protein-Protein Interactions in Photoreceptor Outer Segments.

    PubMed

    Becirovic, Elvir; Böhm, Sybille; Nguyen, Ong N P; Riedmayr, Lisa M; Hammelmann, Verena; Schön, Christian; Butz, Elisabeth S; Wahl-Schott, Christian; Biel, Martin; Michalakis, Stylianos

    2016-01-01

    Fluorescence resonance energy transfer (FRET) is a powerful method for the detection and quantification of stationary and dynamic protein-protein interactions. Technical limitations have hampered systematic in vivo FRET experiments to study protein-protein interactions in their native environment. Here, we describe a rapid and robust protocol that combines adeno-associated virus (AAV) vector-mediated in vivo delivery of genetically encoded FRET partners with ex vivo FRET measurements. The method was established on acutely isolated outer segments of murine rod and cone photoreceptors and relies on the high co-transduction efficiency of retinal photoreceptors by co-delivered AAV vectors. The procedure can be used for the systematic analysis of protein-protein interactions of wild type or mutant outer segment proteins in their native environment. Conclusively, our protocol can help to characterize the physiological and pathophysiological relevance of photoreceptor specific proteins and, in principle, should also be transferable to other cell types. PMID:27516733

  3. Rod photoreceptors drive circadian photoentrainment across a wide range of light intensities

    PubMed Central

    Altimus, C.M.; Güler, A.D.; Alam, N.M.; Arman, A.C.; Prusky, G.T.; Sampath, A.P.; Hattar, S

    2010-01-01

    In mammals, synchronization of the circadian pacemaker in the hypothalamus is achieved through direct input from the eyes conveyed by intrinsically photosensitive retinal ganglion cells (ipRGCs). Circadian photoentrainment can be maintained by rod and cone photoreceptors, but their functional contributions and their retinal circuits that impinge on ipRGCs are not well understood. We demonstrate in genetic mouse models lacking functional rods, or where rods are the only functional photoreceptors, that rods are solely responsible for photoentrainment at scotopic light intensities. Surprisingly, rods were also capable of driving circadian photoentrainment at photopic intensities where they were incapable of supporting a visually–guided behavior. Using animals in which cone photoreceptors were ablated, we demonstrate that rods signal through cones at high light intensities, but not low light intensities. Thus two distinct retinal circuits drive ipRGC function to support circadian photoentrainment across a wide range of light intensities. PMID:20711184

  4. Effects of hypophysectomy, pituitary gland homogenates and transplants, and prolactin on photoreceptor destruction.

    PubMed

    O'Steen, W K; Kraeer, S L

    1977-10-01

    Prepubertal removal of the pituitary gland, which in young animals influences sexual maturation, reduces significantly the amount of retinal photoreceptor destruction when the rats are exposed to continuous illumination in adulthood. When crude pituitary gland homogenate is administered to adult rats hypophysectomized prior to puberty, photoreceptor destruction is more severe. Transplantation of whole pituitary glands to the kidney capsule of hypophysectomized rats also reduces the effect of pituitary gland removal and results in more extensive damage to receptor cells than found in hypophysectomized, adult animals. Hypophysectomized rats treated with prolactin had more severe retinal damage than untreated, hypophysectomized rats. The injection of pregnant mare serum and human chorionic gonadotropic hormones into hypophysectomized rats was not effective in reversing the protection afforded by hypophysectomy. Results of these studies indicate the hormones of the pituitary gland have a regulatory influence on the severity of light-induced, retinal photoreceptor damage in the rat. PMID:908647

  5. Mutations in PNPLA6 are linked to photoreceptor degeneration and various forms of childhood blindness

    PubMed Central

    Kmoch, S.; Majewski, J.; Ramamurthy, V.; Cao, S.; Fahiminiya, S.; Ren, H.; MacDonald, I.M.; Lopez, I.; Sun, V.; Keser, V.; Khan, A.; Stránecký, V.; Hartmannová, H.; Přistoupilová, A.; Hodaňová, K.; Piherová, L.; Kuchař, L.; Baxová, A.; Chen, R.; Barsottini, O.G.P.; Pyle, A.; Griffin, H.; Splitt, M.; Sallum, J.; Tolmie, J.L.; Sampson, J.R.; Chinnery, P.; Canada, Care4Rare; Banin, E.; Sharon, D.; Dutta, S.; Grebler, R.; Helfrich-Foerster, C.; Pedroso, J.L.; Kretzschmar, D.; Cayouette, M.; Koenekoop, R.K.

    2015-01-01

    Blindness due to retinal degeneration affects millions of people worldwide, but many disease-causing mutations remain unknown. PNPLA6 encodes the patatin-like phospholipase domain containing protein 6, also known as neuropathy target esterase (NTE), which is the target of toxic organophosphates that induce human paralysis due to severe axonopathy of large neurons. Mutations in PNPLA6 also cause human spastic paraplegia characterized by motor neuron degeneration. Here we identify PNPLA6 mutations in childhood blindness in seven families with retinal degeneration, including Leber congenital amaurosis and Oliver McFarlane syndrome. PNPLA6 localizes mostly at the inner segment plasma membrane in photo-receptors and mutations in Drosophila PNPLA6 lead to photoreceptor cell death. We also report that lysophosphatidylcholine and lysophosphatidic acid levels are elevated in mutant Drosophila. These findings show a role for PNPLA6 in photoreceptor survival and identify phospholipid metabolism as a potential therapeutic target for some forms of blindness. PMID:25574898

  6. Heterogeneous distribution of AMPA glutamate receptor subunits at the photoreceptor synapses of rodent retina.

    PubMed

    Hack, I; Frech, M; Dick, O; Peichl, L; Brandstätter, J H

    2001-01-01

    In the retina the segregation of different aspects of visual information starts at the first synapse in signal transfer from the photoreceptors to the second-order neurons, via the neurotransmitter glutamate. We examined the distribution of the four AMPA glutamate receptor subunits GluR1-GluR4 at the photoreceptor synapses in mouse and rat retinae by light and immunoelectron microscopy and serial section reconstructions. On the dendrites of OFF-cone bipolar cells, which make flat, noninvaginating contacts postsynaptic at cone synaptic terminals, the subunits GluR1 and GluR2 were predominantly found. Horizontal cell processes postsynaptic at both rod and cone synaptic terminals preferentially expressed the subunits GluR2, GluR2/3 and GluR4. An intriguing finding was the presence of GluR2/3 and GluR4 subunits on dendrites of putative rod bipolar cells, which are thought to signal through the sign-inverting metabotropic glutamate receptor 6, mGluR6. Furthermore, at the rod terminals, horizontal cell processes and rod bipolar cell dendrites showed labelling for the AMPA receptor subunits at the ribbon synaptic site or perisynaptically at their site of invagination into the rod terminal. The wide distribution of AMPA receptor subunits at the photoreceptor synapses suggests that AMPA receptors play an important role in visual signal transfer from the photoreceptors to their postsynaptic partners.

  7. Förster resonance energy transfer as a tool to study photoreceptor biology.

    PubMed

    Hovan, Stephanie C; Howell, Scott; Park, Paul S-H

    2010-01-01

    Vision is initiated in photoreceptor cells of the retina by a set of biochemical events called phototransduction. These events occur via coordinated dynamic processes that include changes in secondary messenger concentrations, conformational changes and post-translational modifications of signaling proteins, and protein-protein interactions between signaling partners. A complete description of the orchestration of these dynamic processes is still unavailable. Described in this work is the first step in the development of tools combining fluorescent protein technology, Förster resonance energy transfer (FRET), and transgenic animals that have the potential to reveal important molecular insights about the dynamic processes occurring in photoreceptor cells. We characterize the fluorescent proteins SCFP3A and SYFP2 for use as a donor-acceptor pair in FRET assays, which will facilitate the visualization of dynamic processes in living cells. We also demonstrate the targeted expression of these fluorescent proteins to the rod photoreceptor cells of Xenopus laevis, and describe a general method for detecting FRET in these cells. The general approaches described here can address numerous types of questions related to phototransduction and photoreceptor biology by providing a platform to visualize dynamic processes in molecular detail within a native context.

  8. Förster resonance energy transfer as a tool to study photoreceptor biology

    NASA Astrophysics Data System (ADS)

    Hovan, Stephanie C.; Howell, Scott; Park, Paul S.-H.

    2010-11-01

    Vision is initiated in photoreceptor cells of the retina by a set of biochemical events called phototransduction. These events occur via coordinated dynamic processes that include changes in secondary messenger concentrations, conformational changes and post-translational modifications of signaling proteins, and protein-protein interactions between signaling partners. A complete description of the orchestration of these dynamic processes is still unavailable. Described in this work is the first step in the development of tools combining fluorescent protein technology, Förster resonance energy transfer (FRET), and transgenic animals that have the potential to reveal important molecular insights about the dynamic processes occurring in photoreceptor cells. We characterize the fluorescent proteins SCFP3A and SYFP2 for use as a donor-acceptor pair in FRET assays, which will facilitate the visualization of dynamic processes in living cells. We also demonstrate the targeted expression of these fluorescent proteins to the rod photoreceptor cells of Xenopus laevis, and describe a general method for detecting FRET in these cells. The general approaches described here can address numerous types of questions related to phototransduction and photoreceptor biology by providing a platform to visualize dynamic processes in molecular detail within a native context.

  9. Patterning as a signature of human epidermal stem cell regulation

    PubMed Central

    Klein, Allon M.; Nikolaidou-Neokosmidou, Varvara; Doupé, David P.; Jones, Philip H.; Simons, Benjamin D.

    2011-01-01

    Understanding how stem cells are regulated in adult tissues is a major challenge in cell biology. In the basal layer of human epidermis, clusters of almost quiescent stem cells are interspersed with proliferating and differentiating cells. Previous studies have shown that the proliferating cells follow a pattern of balanced stochastic cell fate. This behaviour enables them to maintain homeostasis, while stem cells remain confined to their quiescent clusters. Intriguingly, these clusters reappear spontaneously in culture, suggesting that they may play a functional role in stem cell auto-regulation. We propose a model of pattern formation that explains how clustering could regulate stem cell activity in homeostatic tissue through contact inhibition and stem cell aggregation. PMID:21632613

  10. The cell pattern correction through design-based metrology

    NASA Astrophysics Data System (ADS)

    Kim, Yonghyeon; Lee, Kweonjae; Chang, Jinman; Kim, Taeheon; Han, Daehan; Lee, Kyusun; Hong, Aeran; Kang, Jinyoung; Choi, Bumjin; Lee, Joosung; Yeom, Kyehee; Lee, Jooyoung; Hong, Hyeongsun; Lee, Kyupil; Jin, Gyoyoung

    2015-03-01

    Starting with the sub 2Xnm node, the process window becomes smaller and tighter than before. Pattern related error budget is required for accurate critical-dimension control of Cell layers. Therefore, lithography has been faced with its various difficulties, such as weird distribution, overlay error, patterning difficulty etc. The distribution of cell pattern and overlay management are the most important factors in DRAM field. We had been experiencing that the fatal risk is caused by the patterns located in the tail of the distribution. The overlay also induces the various defect sources and misalignment issues. Even though we knew that these elements are important, we could not classify the defect type of Cell patterns. Because there is no way to gather massive small pattern CD samples in cell unit block and to compare layout with cell patterns by the CD-SEM. The CD- SEM is used in order to gather these data through high resolution, but CD-SEM takes long time to inspect and extract data because it measures the small FOV. (Field Of View) However, the NGR(E-beam tool) provides high speed with large FOV and high resolution. Also, it's possible to measure an accurate overlay between the target layout and cell patterns because they provide DBM. (Design Based Metrology) By using massive measured data, we extract the result that it is persuasive by applying the various analysis techniques, as cell distribution and defects, the pattern overlay error correction etc. We introduce how to correct cell pattern, by using the DBM measurement, and new analysis methods.

  11. Photoreceptors mapping from past history till date.

    PubMed

    Parihar, Parul; Singh, Rachana; Singh, Samiksha; Tripathi, Durgesh Kumar; Chauhan, Devendra Kumar; Singh, Vijay Pratap; Prasad, Sheo Mohan

    2016-09-01

    The critical source of information in plants is light, which is perceived by receptors present in plants and animals. Receptors present in plant and animal system regulate important processes, and knowing the chromophores and signalling domains for each receptor could pave a way to trace out links between these receptors. The signalling mechanism for each receptor will give insight knowledge. This review has focussed on the photoreceptors from past history till date, that have evolved in the plant as well as in the animal system (to lesser extent). We have also focussed our attention on finding the links between the receptors by showing the commonalities as well as the differences between them, and also tried to trace out the links with the help of chromophores and signalling domain. Several photoreceptors have been traced out, which share similarity in the chromophore as well as in the signalling domain, which indicate towards the evolution of photoreceptors from one another. For instance, cryptochrome has been found to evolve three times from CPD photolyase as well as evolution of different types of phytochrome is a result of duplication and divergence. In addition, similarity between the photoreceptors suggested towards evolution from one another. This review has also discussed possible mechanism for each receptor i.e. how they regulate developmental processes and involve what kinds of regulators and also gives an insight on signalling mechanisms by these receptors. This review could also be a new initiative in the study of UVR8 associated studies.

  12. Chromosomal DNA Replication Pattern in Human Tumour Cells in vitro

    PubMed Central

    Kucheria, Kiran

    1970-01-01

    The present paper deals with the chromosomal DNA replication pattern in human solid tumour cells in vitro. This was studied at the terminal stages of the S-period. All the cell lines of female origin showed a late replicating chromosome in group XX6-12. In cell lines of male origin one of the chromosomes of group 21-22Y was later replicating than the rest of the members of the group. The DNA replication pattern of the autosomes and the sex chromosomes was similar to that of the cultured human leucocytes. The results of the present study show that the DNA replication pattern of the chromosome in neoplastic cells is basically unchanged despite the changes in the chromosome number and morphology. Therefore the abnormal behaviour of the neoplastic cells cannot be related to the changes in the pattern of the chromosomal DNA replication. ImagesFig. 5Fig. 1Fig. 6Fig. 2Fig. 3Fig. 4 PMID:5475754

  13. Endothelial cell motility, coordination and pattern formation during vasculogenesis.

    PubMed

    Czirok, Andras

    2013-01-01

    How vascular networks assemble is a fundamental problem of developmental biology that also has medical importance. To explain the organizational principles behind vascular patterning, we must understand how can tissue level structures be controlled through cell behavior patterns like motility and adhesion that, in turn, are determined by biochemical signal transduction processes? We discuss the various ideas that have been proposed as mechanisms for vascular network assembly: cell motility guided by extracellular matrix alignment (contact guidance), chemotaxis guided by paracrine and autocrine morphogens, and multicellular sprouting guided by cell-cell contacts. All of these processes yield emergent patterns, thus endothelial cells can form an interconnected structure autonomously, without guidance from an external pre-pattern.

  14. Direct patterning of mammalian cells in an ultrasonic heptagon stencil.

    PubMed

    Bernassau, A L; Gesellchen, F; Macpherson, P G A; Riehle, M; Cumming, D R S

    2012-06-01

    We describe the construction of a ultrasonic device suitable for micro patterning particles and cells for tissue engineering applications. The device is formed by seven transducers shaped into a heptagon cavity. By exciting two and three transducers simultaneously, lines or hexagonal shapes can be formed with beads and cells. Furthermore, phase control of the transducers allows shifting the standing waves and thus patterning at different positions on a surface in a controlled manner. The paper discusses direct patterning of mammalian cells by ultrasound "stencil". PMID:22327813

  15. Single cell pattern formation and transient cytoskeletal arrays

    PubMed Central

    Bement, William M.; von Dassow, George

    2015-01-01

    A major goal of developmental biology is to explain the emergence of pattern in cell layers, tissues and organs. Developmental biologists now accept that reaction diffusion-based mechanisms are broadly employed in developing organisms to direct pattern formation. Here we briefly consider these mechanisms and then apply some of the concepts derived from them to several processes that occur in single cells: wound repair, yeast budding, and cytokinesis. Two conclusions emerge from this analysis: first, there is considerable overlap at the level of general mechanisms between developmental and single cell pattern formation; second, dynamic structures based on the actin cytoskeleton may be far more ordered than is generally recognized. PMID:24529246

  16. Directionality of individual cone photoreceptors in the parafoveal region.

    PubMed

    Morris, Hugh J; Blanco, Leonardo; Codona, Johanan L; Li, Simone L; Choi, Stacey S; Doble, Nathan

    2015-12-01

    The pointing direction of cone photoreceptors can be inferred from the Stiles-Crawford Effect of the First Kind (SCE-I) measurement. Healthy retinas have tightly packed cones with a SCE-I function peak either centered in the pupil or with a slight nasal bias. Various retinal pathologies can change the profile of the SCE-I function implying that the arrangement or the light capturing properties of the cone photoreceptors are affected. Measuring the SCE-I may reveal early signs of photoreceptor change before actual cell apoptosis occurs. In vivo retinal imaging with adaptive optics (AO) was used to measure the pointing direction of individual cones at eight retinal locations in four control human subjects. Retinal images were acquired by translating an aperture in the light delivery arm through 19 different locations across a subject's entrance pupil. Angular tuning properties of individual cones were calculated by fitting a Gaussian to the reflected intensity profile of each cone projected onto the pupil. Results were compared to those from an accepted psychophysical SCE-I measurement technique. The maximal difference in cone directionality of an ensemble of cones, ρ¯, between the major and minor axes of the Gaussian fit was 0.05 versus 0.29mm(-2) in one subject. All four subjects were found to have a mean nasal bias of 0.81mm with a standard deviation of ±0.30mm in the peak position at all retinal locations with mean ρ¯ value decreasing by 23% with increasing retinal eccentricity. Results show that cones in the parafoveal region converge towards the center of the pupillary aperture, confirming the anterior pointing alignment hypothesis. PMID:26494187

  17. Light-driven calcium signals in mouse cone photoreceptors.

    PubMed

    Wei, Tao; Schubert, Timm; Paquet-Durand, François; Tanimoto, Naoyuki; Chang, Le; Koeppen, Katja; Ott, Thomas; Griesbeck, Oliver; Seeliger, Mathias W; Euler, Thomas; Wissinger, Bernd

    2012-05-16

    Calcium mediates various neuronal functions. The complexity of neuronal Ca²⁺ signaling is well exemplified by retinal cone photoreceptors, which, with their distinct compartmentalization, offer unique possibilities for studying the diversity of Ca²⁺ functions in a single cell. Measuring subcellular Ca²⁺ signals in cones under physiological conditions is not only fundamental for understanding cone function, it also bears important insights into pathophysiological processes governing retinal neurodegeneration. However, due to the proximity of light-sensitive outer segments to other cellular compartments, optical measurements of light-evoked Ca²⁺ responses in cones are challenging. We addressed this problem by generating a transgenic mouse (HR2.1:TN-XL) in which both short- and middle-wavelength-sensitive cones selectively express the genetically encoded ratiometric Ca²⁺ biosensor TN-XL. We show that HR2.1:TN-XL allows recording of light-evoked Ca²⁺ responses using two-photon imaging in individual cone photoreceptor terminals and to probe phototransduction and its diverse regulatory mechanisms with pharmacology at subcellular resolution. To further test this system, we asked whether the classical, nitric oxide (NO)-soluble guanylyl-cyclase (sGC)-cGMP pathway could modulate Ca²⁺ in cone terminals. Surprisingly, NO reduced Ca²⁺ resting levels in mouse cones, without evidence for direct sGC involvement. In conclusion, HR2.1:TN-XL mice offer unprecedented opportunities to elucidate light-driven Ca²⁺ dynamics and their (dys)regulation in cone photoreceptors.

  18. Accumulation of non-outer segment proteins in the outer segment underlies photoreceptor degeneration in Bardet–Biedl syndrome

    PubMed Central

    Datta, Poppy; Allamargot, Chantal; Hudson, Joseph S.; Andersen, Emily K.; Bhattarai, Sajag; Drack, Arlene V.; Sheffield, Val C.; Seo, Seongjin

    2015-01-01

    Compartmentalization and polarized protein trafficking are essential for many cellular functions. The photoreceptor outer segment (OS) is a sensory compartment specialized for phototransduction, and it shares many features with primary cilia. As expected, mutations disrupting protein trafficking to cilia often disrupt protein trafficking to the OS and cause photoreceptor degeneration. Bardet–Biedl syndrome (BBS) is one of the ciliopathies associated with defective ciliary trafficking and photoreceptor degeneration. However, precise roles of BBS proteins in photoreceptor cells and the underlying mechanisms of photoreceptor degeneration in BBS are not well understood. Here, we show that accumulation of non-OS proteins in the OS underlies photoreceptor degeneration in BBS. Using a newly developed BBS mouse model [Leucine zipper transcription factor-like 1 (Lztfl1)/Bbs17 mutant], isolated OSs, and quantitative proteomics, we determined 138 proteins that are enriched more than threefold in BBS mutant OS. In contrast, only eight proteins showed a more than threefold reduction. We found striking accumulation of Stx3 and Stxbp1/Munc18-1 and loss of polarized localization of Prom1 within the Lztfl1 and Bbs1 mutant OS. Ultrastructural analysis revealed that large vesicles are formed in the BBS OS, disrupting the lamellar structure of the OS. Our findings suggest that accumulation (and consequent sequestration) of non-OS proteins in the OS is likely the primary cause of photoreceptor degeneration in BBS. Our data also suggest that a major function of BBS proteins in photoreceptors is to transport proteins from the OS to the cell body or to prevent entry of non-OS proteins into the OS. PMID:26216965

  19. Long-term preservation of cone photoreceptors and visual acuity in rd10 mutant mice exposed to continuous environmental enrichment

    PubMed Central

    Strettoi, Enrica

    2014-01-01

    Purpose In human patients and animal models of retinitis pigmentosa (RP), a gradual loss of rod photoreceptors and decline in scotopic vision are the primary manifestations of the disease. Secondary death of cones and gradual, regressive remodeling of the inner retina follow and progress at different speeds according to the underlying genetic defect. In any case, the final outcome is near-blindness without a conclusive cure yet. We recently reported that environmental enrichment (EE), an experimental manipulation based on exposure to enhanced motor, sensory, and social stimulation, when started at birth, exerts clear beneficial effects on a mouse model of RP, by slowing vision loss. The purpose of this study was to investigate in the same mouse the long-term effects of chronic exposure to an EE and assess the outcome of this manipulation on cone survival, inner retinal preservation, and visual behavior. Methods Two groups of rd10 mutant mice were maintained in an EE or standard (ST) laboratory conditions up to 1 year of age. Then, retinal preservation was assessed with immunocytochemistry, confocal microscopy examination, cone counts, and electron microscopy of the photoreceptor layer, while visual acuity was tested behaviorally with a Prusky water maze. Results rd10 mice are a model of autosomal recessive RP with a typical rod-cone, center to the periphery pattern of photoreceptor degeneration. They carry a mutation of the rod-specific phosphodiesterase gene and undergo rod death that peaks at around P24, while cone electroretinogram (ERG) is extinct by P60. We previously showed that early exposure to an EE efficiently delays photoreceptor degeneration in these mutants, extending the time window of cone viability and cone-mediated vision well beyond the phase of maximum rod death. Here we find that a maintained EE can delay the degeneration of cones even in the long term. Confocal and electron microscopy examination of the retinas of the rd10 EE and ST mice at 1

  20. Photoreceptor types and distributions in the retinae of insectivores.

    PubMed

    Peichl, L; Künzle, H; Vogel, P

    2000-01-01

    The retinae of insectivores have been rarely studied, and their photoreceptor arrangements and expression patterns of visual pigments are largely unknown. We have determined the presence and distribution of cones in three species of shrews (common shrew Sorex araneus, greater white-toothed shrew Crocidura russula, dark forest shrew Crocidura poensis; Soricidae) and in the lesser hedgehog tenrec Echinops telfairi (Tenrecidae). Special cone types were identified and quantified in flattened whole retinae by antisera/antibodies recognizing the middle-to-long-wavelength-sensitive (M/L-)cone opsin and the short-wavelength-sensitive (S-)cone opsin, respectively. A combination of immunocytochemistry with conventional histology was used to assess rod densities and cone/rod ratios. In all four species the rods dominate at densities of about 230,000-260,000/mm2. M/L- and S-cones are present, comprising between 2% of the photoreceptors in the nocturnal Echinops telfairi and 13% in Sorex araneus that has equal diurnal and nocturnal activity phases. This suggests dichromatic color vision like in many other mammals. A striking feature in all four species are dramatically higher S-cone proportions in ventral than in dorsal retina (0.5% vs. 2.5-12% in Sorex, 5-15% vs. 30-45% in Crocidura poensis, 3-12% vs. 20-50% in Crocidura russula, 10-30% vs. 40-70% in Echinops). The functional and comparative aspects of these structural findings are discussed.

  1. THE ACCESSIBILITY OF BOVINE RHODOPSIN IN PHOTORECEPTOR MEMBRANES

    PubMed Central

    Saari, John C.

    1974-01-01

    Bovine photoreceptor membranes have been treated with proteases to determine the accessibility of rhodopsin to these large, water soluble molecules. The polypeptides that remain associated with the membranous structure after proteolysis were detected by sodium dodecyl sulfate gel electrophoresis. Thermolysin and chymotrypsin degraded rhodopsin (apparent mol wt 35,000–36,000) to fragments of 29,000 and 23,000 apparent mol wt, respectively, without affecting the chromophoric absorption of the molecule or removing the region of the polypeptide carrying carbohydrate. The two fragments were isolated and their amino acid compositions were determined. They do not appear to be more hydrophobic than rhodopsin. Subtilisin, at low concentration and temperature, produced a fragment with the same molecular weight as that produced by thermolysin. At higher concentrations, subtilisin yields major fragments of mol wt 23,000 and 20,000 without affecting the chromophoric absorption. Two intermediate fragments of apparent mol wt 29,000 and 26,000 were detected during the course of this degradation. Carbohydrate is retained by all but the smallest fragment. Bleaching of the photoreceptor pigment did not appreciably alter any of the fragmentation patterns. Trypsin did not alter the molecular weight of rhodopsin under the conditions of this study. Approximately 35–45% of rhodopsin appears to be accessible to the aqueous environment and can be removed without affecting the chromophoric properties of the retinaldehyde-carrying region which remains bound to the membrane. PMID:4417532

  2. Ion channels activated by light in Limulus ventral photoreceptors

    PubMed Central

    1986-01-01

    The light-activated conductance of Limulus ventral photoreceptors was studied using the patch-clamp technique. Channels (40 pS) were observed whose probability of opening was greatly increased by light. In some cells the latency of channel activation was nearly the same as that of the macroscopic response, while in other cells the channel latency was much greater. Like the macroscopic conductance, channel activity was reduced by light adaptation but enhanced by the intracellular injection of the calcium chelator EGTA. The latter observation indicates that channel activation was not a secondary result of the light-induced rise in intracellular calcium. A two-microelectrode voltage-clamp method was used to measure the voltage dependence of the light-activated macroscopic conductance. It was found that this conductance is constant over a wide voltage range more negative than zero, but it increases markedly at positive voltages. The single channel currents measured over this same voltage range show that the single channel conductance is independent of voltage, but that channel gating properties are dependent on voltage. Both the mean channel open time and the opening rate increase at positive voltages. These properties change in a manner consistent with the voltage dependence of the macroscopic conductance. The broad range of similarities between the macroscopic and single channel currents supports the conclusion that the 40-pS channel that we have observed is the principal channel underlying the response to light in these photoreceptors. PMID:2419481

  3. Facile cell patterning on an albumin-coated surface.

    PubMed

    Yamazoe, Hironori; Uemura, Toshimasa; Tanabe, Toshizumi

    2008-08-19

    Fabrication of micropatterned surfaces to organize and control cell adhesion and proliferation is an indispensable technique for cell-based technologies. Although several successful strategies for creating cellular micropatterns on substrates have been demonstrated, a complex multistep process and requirements for special and expensive equipment or materials limit their prevalence as a general experimental tool. To circumvent these problems, we describe here a novel facile fabrication method for a micropatterned surface for cell patterning by utilizing the UV-induced conversion of the cell adhesive property of albumin, which is the most abundant protein in blood plasma. An albumin-coated surface was prepared by cross-linking albumin with ethylene glycol diglycidyl ether and subsequent casting of the cross-linked albumin solution on the cell culture dish. While cells did not attach to the albumin surface prepared in this way, UV exposure renders the surface cell-adhesive. Thus, surface micropatterning was achieved simply by exposing the albumin-coated surface to UV light through a mask with the desired pattern. Mouse fibroblast L929 cells were inoculated on the patterned albumin substrates, and cells attached and spread in a highly selective manner according to the UV-irradiated pattern. Although detailed investigation of the molecular-level mechanism concerning the change in cell adhesiveness of the albumin-coated surface is required, the present results would give a novel facile method for the fabrication of cell micropatterned surfaces. PMID:18627191

  4. Pharmacological disruption of the outer limiting membrane leads to increased retinal integration of transplanted photoreceptor precursors

    PubMed Central

    West, E.L.; Pearson, R.A.; Tschernutter, M.; Sowden, J.C.; MacLaren, R.E.; Ali, R.R.

    2008-01-01

    Retinal degeneration is the leading cause of untreatable blindness in the developed world. Cell transplantation strategies provide a novel therapeutic approach to repair the retina and restore sight. Previously, we have shown that photoreceptor precursor cells can integrate and form functional photoreceptors after transplantation into the subretinal space of the adult mouse. In a clinical setting, however, it is likely that far greater numbers of integrated photoreceptors would be required to restore visual function. We therefore sought to assess whether the outer limiting membrane (OLM), a natural barrier between the subretinal space and the outer nuclear layer (ONL), could be reversibly disrupted and if disruption of this barrier could lead to enhanced numbers of transplanted photoreceptors integrating into the ONL. Transient chemical disruption of the OLM was induced in adult mice using the glial toxin, dl-alpha-aminoadipic acid (AAA). Dissociated early post-natal neural retinal cells were transplanted via subretinal injection at various time-points after AAA administration. At 3 weeks post-injection, the number of integrated, differentiated photoreceptor cells was assessed and compared with those found in the PBS-treated contralateral eye. We demonstrate for the first time that the OLM can be reversibly disrupted in adult mice, using a specific dose of AAA administered by intravitreal injection. In this model, OLM disruption is maximal at 72 h, and recovers by 2 weeks. When combined with cell transplantation, disruption of the OLM leads to a significant increase in the number of photoreceptors integrated within the ONL compared with PBS-treated controls. This effect was only seen in animals in which AAA had been administered 72 h prior to transplantation, i.e. when precursor cells were delivered into the subretinal space at a time coincident with maximal OLM disruption. These findings suggest that the OLM presents a physical barrier to photoreceptor

  5. Cell Transmembrane Receptors Determine Tissue Pattern Stability

    NASA Astrophysics Data System (ADS)

    Beyer, Tilo; Meyer-Hermann, Michael

    2008-10-01

    The analysis of biological systems requires mathematical tools that represent their complexity from the molecular scale up to the tissue level. The formation of cell aggregates by chemotaxis is investigated using Delaunay object dynamics. It is found that when cells migrate fast such that the chemokine distribution is far from equilibrium, the details of the chemokine receptor dynamics can induce an internalization driven instability of cell aggregates. The instability occurs in a parameter regime relevant for lymphoid tissue and is similar to ectopic lymphoid structures.

  6. Coexpression of Spectrally Distinct Rhodopsins in Aedes aegypti R7 Photoreceptors

    PubMed Central

    Hu, Xiaobang; Whaley, Michelle A.; Stein, Michelle M.; Mitchell, Bronwen E.; O'Tousa, Joseph E.

    2011-01-01

    The retina of the mosquito Aedes aegypti can be divided into four regions based on the non-overlapping expression of a UV sensitive Aaop8 rhodopsin and a long wavelength sensitive Aaop2 type rhodopsin in the R7 photoreceptors. We show here that another rhodopsin, Aaop9, is expressed in all R7 photoreceptors and a subset of R8 photoreceptors. In the dorsal region, Aaop9 is expressed in both the cell body and rhabdomere of R7 and R8 cells. In other retinal regions Aaop9 is expressed only in R7 cells, being localized to the R7 rhabdomere in the central and ventral regions and in both the cell body and rhabdomere within the ventral stripe. Within the dorsal-central transition area ommatidia do not show a strict pairing of R7–R8 cell types. Thus, Aaop9 is coexpressed in the two classes of R7 photoreceptors previously distinguished by the non-overlapping expression of Aaop8 and Aaop2 rhodopsins. Electroretinogram analysis of transgenic Drosophila shows that Aaop9 is a short wavelength rhodopsin with an optimal response to 400–450 nm light. The coexpressed Aaop2 rhodopsin has dual wavelength sensitivity of 500–550 nm and near 350 nm in the UV region. As predicted by the spectral properties of each rhodopsin, Drosophila photoreceptors expressing both Aaop9 and Aaop2 rhodopsins exhibit a uniform sensitivity across the broad 350–550 nm light range. We propose that rhodopsin coexpression is an adaptation within the R7 cells to improve visual function in the low-light environments in which Ae. aegypti is active. PMID:21858005

  7. Self-Organizing Actomyosin Patterns on the Cell Cortex at Epithelial Cell-Cell Junctions

    PubMed Central

    Moore, Thomas; Wu, Selwin K.; Michael, Magdalene; Yap, Alpha S.; Gomez, Guillermo A.; Neufeld, Zoltan

    2014-01-01

    The behavior of actomyosin critically determines morphologically distinct patterns of contractility found at the interface between adherent cells. One such pattern is found at the apical region (zonula adherens) of cell-cell junctions in epithelia, where clusters of the adhesion molecule E-cadherin concentrate in a static pattern. Meanwhile, E-cadherin clusters throughout lateral cell-cell contacts display dynamic movements in the plane of the junctions. To gain insight into the principles that determine the nature and organization of these dynamic structures, we analyze this behavior by modeling the 2D actomyosin cell cortex as an active fluid medium. The numerical simulations show that the stability of the actin filaments influences the spatial structure and dynamics of the system. We find that in addition to static Turing-type patterns, persistent dynamic behavior occurs in a wide range of parameters. In the 2D model, mechanical stress-dependent actin breakdown is shown to produce a continuously changing network of actin bridges, whereas with a constant breakdown rate, more isolated clusters of actomyosin tend to form. The model qualitatively reproduces the dynamic and stable patterns experimentally observed at the junctions between epithelial cells. PMID:25468344

  8. Self-organizing actomyosin patterns on the cell cortex at epithelial cell-cell junctions.

    PubMed

    Moore, Thomas; Wu, Selwin K; Michael, Magdalene; Yap, Alpha S; Gomez, Guillermo A; Neufeld, Zoltan

    2014-12-01

    The behavior of actomyosin critically determines morphologically distinct patterns of contractility found at the interface between adherent cells. One such pattern is found at the apical region (zonula adherens) of cell-cell junctions in epithelia, where clusters of the adhesion molecule E-cadherin concentrate in a static pattern. Meanwhile, E-cadherin clusters throughout lateral cell-cell contacts display dynamic movements in the plane of the junctions. To gain insight into the principles that determine the nature and organization of these dynamic structures, we analyze this behavior by modeling the 2D actomyosin cell cortex as an active fluid medium. The numerical simulations show that the stability of the actin filaments influences the spatial structure and dynamics of the system. We find that in addition to static Turing-type patterns, persistent dynamic behavior occurs in a wide range of parameters. In the 2D model, mechanical stress-dependent actin breakdown is shown to produce a continuously changing network of actin bridges, whereas with a constant breakdown rate, more isolated clusters of actomyosin tend to form. The model qualitatively reproduces the dynamic and stable patterns experimentally observed at the junctions between epithelial cells. PMID:25468344

  9. Changes in Parthenogenetic Imprinting Patterns during Reprogramming by Cell Fusion.

    PubMed

    Jang, Hyun Sik; Hong, Yean Ju; Choi, Hyun Woo; Song, Hyuk; Byun, Sung June; Uhm, Sang Jun; Seo, Han Geuk; Do, Jeong Tae

    2016-01-01

    Differentiated somatic cells can be reprogrammed into the pluripotent state by cell-cell fusion. In the pluripotent state, reprogrammed cells may then self-renew and differentiate into all three germ layers. Fusion-induced reprogramming also epigenetically modifies the somatic cell genome through DNA demethylation, X chromosome reactivation, and histone modification. In this study, we investigated whether fusion with embryonic stem cells (ESCs) also reprograms genomic imprinting patterns in somatic cells. In particular, we examined imprinting changes in parthenogenetic neural stem cells fused with biparental ESCs, as well as in biparental neural stem cells fused with parthenogenetic ESCs. The resulting hybrid cells expressed the pluripotency markers Oct4 and Nanog. In addition, methylation of several imprinted genes except Peg3 was comparable between hybrid cells and ESCs. This finding indicates that reprogramming by cell fusion does not necessarily reverse the status of all imprinted genes to the state of pluripotent fusion partner. PMID:27232503

  10. Changes in Parthenogenetic Imprinting Patterns during Reprogramming by Cell Fusion

    PubMed Central

    Jang, Hyun Sik; Hong, Yean Ju; Choi, Hyun Woo; Song, Hyuk; Byun, Sung June; Uhm, Sang Jun; Seo, Han Geuk; Do, Jeong Tae

    2016-01-01

    Differentiated somatic cells can be reprogrammed into the pluripotent state by cell-cell fusion. In the pluripotent state, reprogrammed cells may then self-renew and differentiate into all three germ layers. Fusion-induced reprogramming also epigenetically modifies the somatic cell genome through DNA demethylation, X chromosome reactivation, and histone modification. In this study, we investigated whether fusion with embryonic stem cells (ESCs) also reprograms genomic imprinting patterns in somatic cells. In particular, we examined imprinting changes in parthenogenetic neural stem cells fused with biparental ESCs, as well as in biparental neural stem cells fused with parthenogenetic ESCs. The resulting hybrid cells expressed the pluripotency markers Oct4 and Nanog. In addition, methylation of several imprinted genes except Peg3 was comparable between hybrid cells and ESCs. This finding indicates that reprogramming by cell fusion does not necessarily reverse the status of all imprinted genes to the state of pluripotent fusion partner. PMID:27232503

  11. Cell cycles and proliferation patterns in Haematococcus pluvialis

    NASA Astrophysics Data System (ADS)

    Zhang, Chunhui; Liu, Jianguo; Zhang, Litao

    2016-09-01

    Most studies on Haematococcus pluvialis have been focused on cell growth and astaxanthin accumulation; far less attention has been paid to cell cycles and proliferation patterns. The purpose of this study was to clarify cell cycles and proliferation patterns in H. pluvialis microscopically using a camera and video recorder system. The complicated life history of H. pluvialis can be divided into two stages: the motile stage and the non-motile stage. All the cells can be classified into forms as follows: motile cell, non-motile cell, zoospore and aplanospore. The main cell proliferation, both in the motile phase and non-motile phase in H. pluvialis, is by asexual reproduction. Under normal growth conditions, a motile cell usually produces two, sometimes four, and exceptionally eight zoospores. Under unfavorable conditions, the motile cell loses its flagella and transforms into a non-motile cell, and the non-motile cell usually produces 2, 4 or 8 aplanospores, and occasionally 20-32 aplanospores, which further develop into non-motile cells. Under suitable conditions, the non-motile cell is also able to release zoospores. The larger non-motile cells produce more than 16 zoospores, and the smaller ones produce 4 or 8 zoospores. Vegetative reproduction is by direct cell division in the motile phase and by occasional cell budding in the non-motile phase. There is, as yet, no convincing direct evidence for sexual reproduction.

  12. Melanopsin-Expressing Amphioxus Photoreceptors Transduce Light via a Phospholipase C Signaling Cascade

    PubMed Central

    Angueyra, Juan Manuel; Pulido, Camila; Malagón, Gerardo; Nasi, Enrico; Gomez, Maria del Pilar

    2012-01-01

    Melanopsin, the receptor molecule that underlies light sensitivity in mammalian ‘circadian’ receptors, is homologous to invertebrate rhodopsins and has been proposed to operate via a similar signaling pathway. Its downstream effectors, however, remain elusive. Melanopsin also expresses in two distinct light-sensitive cell types in the neural tube of amphioxus. This organism is the most basal extant chordate and can help outline the evolutionary history of different photoreceptor lineages and their transduction mechanisms; moreover, isolated amphioxus photoreceptors offer unique advantages, because they are unambiguously identifiable and amenable to single-cell physiological assays. In the present study whole-cell patch clamp recording, pharmacological manipulations, and immunodetection were utilized to investigate light transduction in amphioxus photoreceptors. A Gq was identified and selectively localized to the photosensitive microvillar membrane, while the pivotal role of phospholipase C was established pharmacologically. The photocurrent was profoundly depressed by IP3 receptor antagonists, highlighting the importance of IP3 receptors in light signaling. By contrast, surrogates of diacylglycerol (DAG), as well as poly-unsaturated fatty acids failed to activate a membrane conductance or to alter the light response. The results strengthen the notion that calcium released from the ER via IP3-sensitive channels may fulfill a key role in conveying - directly or indirectly - the melanopsin-initiated light signal to the photoconductance; moreover, they challenge the dogma that microvillar photoreceptors and phoshoinositide-based light transduction are a prerogative of invertebrate eyes. PMID:22235344

  13. Carbon nanotube monolayer patterns for modulating stem cell behavior

    NASA Astrophysics Data System (ADS)

    Park, Sung Young; Lee, Ki-Bum; Hong, Seunghun

    2010-03-01

    Nanostructures and nanomaterials intrinsically can interact with biological systems at the fundamental molecular levels with high specificity, which has held great potential for developing methods of controlling cell behaviors such as adhesion, proliferation, and differentiation. For instance, carbon nanotubes (CNTs), as extracellular scaffolds, have been used to guide neural cell growth and regulate cell polarity. However, in order to harness the potential of nanomaterials as artificial scaffolds, there is a clear need to develop methods of patterning nanomaterials over large surfaces with high precision and maintaining biocompatibility of patterned nanostructures. Herein, we report a novel method to regulate stem cell behaviors by using of combinatorial CNT patterns with different shapes and sizes in an effective way. Importantly, the SCs exhibited preferential growth on CNT patterns, and the CNT monolayer patterns did not show cytotoxicity during the long-term cell culture. These results clearly show that CNT monolayer patterns have enormous potentials as a platform for basic research and applications in stem cell tissue-engineering.

  14. Circadian clock control of connexin36 phosphorylation in retinal photoreceptors of the CBA/CaJ mouse strain.

    PubMed

    Zhang, Zhijing; Li, Hongyan; Liu, Xiaoqin; O'Brien, John; Ribelayga, Christophe P

    2015-01-01

    The gap-junction-forming protein connexin36 (Cx36) represents the anatomical substrate of photoreceptor electrical coupling in mammals. The strength of coupling is directly correlated to the phosphorylation of Cx36 at two regulatory sites: Ser110 and Ser293. Our previous work demonstrated that the extent of biotinylated tracer coupling between photoreceptor cells, which provides an index of the extent of electrical coupling, depends on the mouse strain. In the C57Bl/6J strain, light or dopamine reduces tracer coupling and Cx36 phosphorylation in photoreceptors. Conversely, darkness or a dopaminergic antagonist increases tracer coupling and Cx36 phosphorylation, regardless of the daytime. In the CBA/CaJ strain, photoreceptor tracer coupling is not only regulated by light and dopamine, but also by a circadian clock, a type of oscillator with a period close to 24 h and intrinsic to the retina, so that under prolonged dark-adapted conditions tracer coupling is broader at night compared to daytime. In the current study, we examined whether the modulation of photoreceptor coupling by a circadian clock in the CBA/CaJ mouse photoreceptors reflected a change in Cx36 protein expression and/or phosphorylation. We found no significant change in Cx36 expression or in the number of Cx36 gap junction among the conditions examined. However, we found that Cx36 phosphorylation is higher under dark-adapted conditions at night than in the daytime, and is the lowest under prolonged illumination at any time of the day/night cycle. Our observations are consistent with the view that the circadian clock regulation of photoreceptor electrical coupling is mouse strain-dependent and highlights the critical position of Cx36 phosphorylation in the control of photoreceptor coupling.

  15. Surface texturing and patterning in solar cells

    SciTech Connect

    Green, M.A.

    1993-11-01

    Surface texture can perform a number of functions in modern solar cell design. The most obvious function is in control of reflection from surfaces on which sunlight is incident. However, texture can also be used to influence the fate of light that is refracted into the cell. Light steering by surface texture can ensure this refracted light is absorbed in regions of the cell which are most responsive. When used with rear reflectors, surface texture can help trap weakly absorbed light into the cell, increasing the effective path length or optical thickness of the cell by factors of 30--60. Two general types of texture are considered. One involves macroscopic features of controlled shape designed to control the direction of interacting light. The other is based on the use of irregular features of size comparable to wavelength of the light. These can be very effective in scattering light into a wide range of directions. Non-optical uses of texture are also briefly described. 62 refs., 22 figs.

  16. The analysis method of the DRAM cell pattern hotspot

    NASA Astrophysics Data System (ADS)

    Lee, Kyusun; Lee, Kweonjae; Chang, Jinman; Kim, Taeheon; Han, Daehan; Hong, Aeran; Kim, Yonghyeon; Kang, Jinyoung; Choi, Bumjin; Lee, Joosung; Lee, Jooyoung; Hong, Hyeongsun; Lee, Kyupil; Jin, Gyoyoung

    2015-03-01

    It is increasingly difficult to determine degree of completion of the patterning and the distribution at the DRAM Cell Patterns. When we research DRAM Device Cell Pattern, there are three big problems currently, it is as follows. First, due to etch loading, it is difficult to predict the potential defect. Second, due to under layer topology, it is impossible to demonstrate the influence of the hotspot. Finally, it is extremely difficult to predict final ACI pattern by the photo simulation, because current patterning process is double patterning technology which means photo pattern is completely different from final etch pattern. Therefore, if the hotspot occurs in wafer, it is very difficult to find it. CD-SEM is the most common pattern measurement tool in semiconductor fabrication site. CD-SEM is used to accurately measure small region of wafer pattern primarily. Therefore, there is no possibility of finding places where unpredictable defect occurs. Even though, "Current Defect detector" can measure a wide area, every chip has same pattern issue, the detector cannot detect critical hotspots. Because defect detecting algorithm of bright field machine is based on image processing, if same problems occur on compared and comparing chip, the machine cannot identify it. Moreover this instrument is not distinguished the difference of distribution about 1nm~3nm. So, "Defect detector" is difficult to handle the data for potential weak point far lower than target CD. In order to solve those problems, another method is needed. In this paper, we introduce the analysis method of the DRAM Cell Pattern Hotspot.

  17. Lithography application of a novel photoresist for patterning of cells.

    PubMed

    He, Wei; Halberstadt, Craig R; Gonsalves, Kenneth E

    2004-05-01

    Photolithography is the current workhorse for the microelectronic industry. It has been used extensively for the creation of patterns on two-dimensional surfaces. Various research groups have studied the use of photolithography to pattern surfaces for the alignment of cells. So far, these applications have been limited due to the use of organic solvents in the pattern developing process, which can denature biomacromolecules that would be attached to the material. To address this problem, a novel bioactive photoresist (bioresist) based on the copolymer of methyl methacrylate and 3-(t-butoxycarbonyl)-N-vinyl-2-pyrrolidone (MMA:TBNVP) was prepared and in vitro fibroblast cell growth on this resist was studied. Results demonstrated that the resist is non-adhesive to the fibroblast cells. By deprotecting the t-BOC groups into carboxyl groups (MMA:D-TBNVP), the material became cell adhesive. Furthermore, cells were able to proliferate on the MMA:D-TBNVP surface. By culturing cells on the MMA:D-TBNVP surface in serum versus serum-free medium, we reached the conclusion that the chemistry of the deprotected copolymer indirectly promoted cell attachment through its absorbance of serum proteins on the material. Patterns of 25 microm x 25 microm lines were obtained by chemically manipulating the surface of the photoresist using UV lithography without any solvent development. Fibroblast cells were observed to align on the patterned surface. This resist could be a suitable candidate to improve the application of conventional lithography in direct protein patterning for the guided growth of cells.

  18. Parabolic growth patterns in 96-well plate cell growth experiments.

    PubMed

    Faessel, H M; Levasseur, L M; Slocum, H K; Greco, W R

    1999-05-01

    In preparing for the routine use of the ubiquitous in vitro cell growth inhibition assay for the study of anticancer agents, we characterized the statistical properties of the assay and found some surprising results. Parabolic well-to-well cell growth patterns were discovered, which could profoundly affect the results of routine growth inhibition studies of anticancer and other agents. Four human ovarian cell lines, A2780/WT, A2780/DX5, A2780/DX5B, and A121, and one human ileocecal adenocarcinoma cell line, HCT-8, were seeded into plastic 96-well plates with a 12-channel pipette, without drugs, and grown from 1-5 d. The wells were washed with a plate washer, cells stained with sulforhodamine B (SRB), and dye absorbance measured with a plate reader. Variance models were fit to the data from replicates to determine the nature of the heteroscedastic error structure. Exponential growth models were fit to data to estimate doubling times for each cell line. Polynomial models were fit to data from 10-plate stacks of 96-well plates to explore nonuniformity of cell growth in wells in different regions of the stacks. Each separate step in the assay was examined for precision, patterns, and underlying causes of variation. Differential evaporation of water from wells is likely a major, but not exclusive, contributor to the systematic well-to-well cell growth patterns. Because the fundamental underlying causes of the parabolic growth patterns were not conclusively found, a randomization step for the growth assay was developed.

  19. Digitonin effects on photoreceptor adenylate cyclase.

    PubMed

    Bitensky, M W; Gorman, R E; Miller, W H

    1972-03-24

    Adenylate cyclase is described in a number of photoreceptor membranes. Vertebrate rod outer segments contain light-regulated cyclase, and light regulation is abolished by digitonin. Disruption of microvilli in cone and rhabdomphotoreceptors is also associated with loss of light regulation and retention of full enzymic activity. The data suggest that inhibitory constraint provides regulation in cyclase systems and that disruption of membrane structure uncouples catalytic and regulatory elements.

  20. Human Cone Visual Pigment Deletions Spare Sufficient Photoreceptors to Warrant Gene Therapy

    PubMed Central

    Cideciyan, Artur V.; Hufnagel, Robert B.; Carroll, Joseph; Sumaroka, Alexander; Luo, Xunda; Schwartz, Sharon B.; Dubra, Alfredo; Land, Megan; Michaelides, Michel; Gardner, Jessica C.; Hardcastle, Alison J.; Moore, Anthony T.; Sisk, Robert A.; Ahmed, Zubair M.; Kohl, Susanne

    2013-01-01

    Abstract Human X-linked blue-cone monochromacy (BCM), a disabling congenital visual disorder of cone photoreceptors, is a candidate disease for gene augmentation therapy. BCM is caused by either mutations in the red (OPN1LW) and green (OPN1MW) cone photoreceptor opsin gene array or large deletions encompassing portions of the gene array and upstream regulatory sequences that would predict a lack of red or green opsin expression. The fate of opsin-deficient cone cells is unknown. We know that rod opsin null mutant mice show rapid postnatal death of rod photoreceptors. Using in vivo histology with high-resolution retinal imaging, we studied a cohort of 20 BCM patients (age range 5–58) with large deletions in the red/green opsin gene array. Already in the first years of life, retinal structure was not normal: there was partial loss of photoreceptors across the central retina. Remaining cone cells had detectable outer segments that were abnormally shortened. Adaptive optics imaging confirmed the existence of inner segments at a spatial density greater than that expected for the residual blue cones. The evidence indicates that human cones in patients with deletions in the red/green opsin gene array can survive in reduced numbers with limited outer segment material, suggesting potential value of gene therapy for BCM. PMID:24067079

  1. Changes in Intracellular Free Calcium Concentration during Illumination of Invertebrate Photoreceptors

    PubMed Central

    Brown, J. E.; Blinks, J. R.

    1974-01-01

    Aequorin, which luminesces in the presence of calcium, was injected into photoreceptor cells of Limulus ventral eye. A bright light stimulus elicited a large increase in aequorin luminescence, the aequorin response, indicating a rise of intracellular calcium ion concentration, Cai. The aequorin response reached a maximum after the peak of the electrical response of the photoreceptor, decayed during a prolonged stimulus, and returned to an undetectable level in the dark. Reduction of Cao reduced the amplitude of the aequorin response by a factor no greater than 3. Raising Cao increased the amplitude of the aequorin response. The aequorin response became smaller when membrane voltage was clamped to successively more positive values. These results indicate that the stimulus-induced rise of Cai may be due in part to a light-induced influx of Ca and in part to release of Ca from an intracellular store. Our findings are consistent with the hypothesis that a rise in Cai is a step in the sequence of events underlying light-adaptation in Limulus ventral photoreceptors. Aequorin was also injected into photoreceptors of Balanus. The aequorin responses were similar to those recorded from Limulus cells in all but two ways: (a) A large sustained aequorin luminescence was measured during a prolonged stimulus, and (b) removal of extracellular calcium reduced the aequorin response to an undetectable level. PMID:4155426

  2. Myocardial Cell Pattern on Piezoelectric Nanofiber Mats for Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Liu, X.; Wang, X.; Zhao, H.; Du, Y.

    2014-11-01

    The paper presents in vitro contractile myocardial cell pattern on piezoelectric nanofiber mats with applications in energy harvesting. The cell-based energy harvester consists of myocardial cell sheet and a PDMS substrate with a PVDF nanofiber mat on. Experimentally, cultured on specifically distributed nanofiber mats, neonatal rat ventricular cardiomyocytes are characterized with the related morphology and contraction. Previously, we have come up with the concept of energy harvesting from heart beating using piezoelectric material. A bio-hybrid energy harvester combined living cardiomyocytes, PDMS polymer substrate and piezoelectric PVDF film with the electrical output of peak current 87.5nA and peak voltage 92.3mV. However, the thickness of the cardiomyocyte cultured on a two-dimensional substrate is much less than that of the piezoelectric film. The Micro Contact Printing (μCP) method used in cell pattern on the PDMS thin film has tough requirement for the film surface. As such, in this paper we fabricated nanofiber-constructed PDMS thin film to realize cell pattern due to PVDF nanofibers with better piezoelectricity and microstructures of nanofiber mats guiding cell distribution. Living cardiomyocytes patterned on those distributed piezoelectric nanofibers with the result of the same distribution as the nanofiber pattern.

  3. Longitudinal continuity of the subrhabdomeric cisternae in the photoreceptors of the compound eye of the drone, Apis mellifera.

    PubMed

    Skalska-Rakowska, J M; Baumgartner, B

    1985-01-15

    It is shown that the subrhabdomeric cisternae of the honey bee drone photoreceptor cell constitute a single structure with a continuous lumen, that extends over at least 15 micron and perhaps the whole length of the cell. In this case, the structure of the cisternae might subserve the propagation of light adaptation along the cell.

  4. Autonomous patterning of cells on microstructured fine particles.

    PubMed

    Takeda, Iwori; Kawanabe, Masato; Kaneko, Arata

    2015-05-01

    Regularly patterned cells can clarify cellular function and are required in some biochip applications. This study examines cell patterning along microstructures and the effect of microstructural geometry on selective cellular adhesion. Particles can be autonomously assembled on a soda-lime glass substrate that is chemically patterned by immersion in a suspension of fine particles. By adopting various sizes of fine particles, we can control the geometry of the microstructure. Cells adhere more readily to microstructured fine particles than to flat glass substrate. Silica particles hexagonally packed in 5-40 μm line and space microstructures provide an effective cell scaffold on the glass substrate. Cultured cells tend to attach and proliferate along the microstructured region while avoiding the flat region. The difference in cell adhesion is attributed to their geometries, as both of the silica particles and soda-lime glass are hydrophilic related with cell adhesiveness. After cell seeding, cells adhered to the flat region migrated toward the microstructured region. For most of the cells to assemble on the scaffold, the scaffolding microstructures must be spaced by at most 65 μm.

  5. Autonomous patterning of cells on microstructured fine particles.

    PubMed

    Takeda, Iwori; Kawanabe, Masato; Kaneko, Arata

    2015-05-01

    Regularly patterned cells can clarify cellular function and are required in some biochip applications. This study examines cell patterning along microstructures and the effect of microstructural geometry on selective cellular adhesion. Particles can be autonomously assembled on a soda-lime glass substrate that is chemically patterned by immersion in a suspension of fine particles. By adopting various sizes of fine particles, we can control the geometry of the microstructure. Cells adhere more readily to microstructured fine particles than to flat glass substrate. Silica particles hexagonally packed in 5-40 μm line and space microstructures provide an effective cell scaffold on the glass substrate. Cultured cells tend to attach and proliferate along the microstructured region while avoiding the flat region. The difference in cell adhesion is attributed to their geometries, as both of the silica particles and soda-lime glass are hydrophilic related with cell adhesiveness. After cell seeding, cells adhered to the flat region migrated toward the microstructured region. For most of the cells to assemble on the scaffold, the scaffolding microstructures must be spaced by at most 65 μm. PMID:25746259

  6. Spontaneous Regeneration of Human Photoreceptor Outer Segments.

    PubMed

    Horton, Jonathan C; Parker, Alicia B; Botelho, James V; Duncan, Jacque L

    2015-01-01

    Photoreceptors are damaged in many common eye diseases, such as macular degeneration, retinal detachment, and retinitis pigmentosa. The development of methods to promote the repair or replacement of affected photoreceptors is a major goal of vision research. In this context, it would be useful to know whether photoreceptors are capable of undergoing some degree of spontaneous regeneration after injury. We report a subject who lost retinal function in a wide zone around the optic disc, giving rise to massive enlargement of the physiological blind spot. Imaging with an adaptive optics scanning laser ophthalmoscope (AOSLO) showed depletion of cone outer segments in the affected retina. A year later visual function had improved, with shrinkage of the enlarged blind spot. AOSLO imaging showed repopulation of cone outer segments, although their density remained below normal. There was a one-to-one match between sites of formerly missing outer segments and new outer segments that had appeared over the course of the year's recovery. This correspondence provided direct morphological evidence that damaged cones are capable, under some circumstances, of generating new outer segments. PMID:26213154

  7. Breakdown analysis of multilayer amorphous silicon photoreceptors

    NASA Astrophysics Data System (ADS)

    Hu, Jian

    1993-06-01

    The breakdown mechanism of hydrogenated amorphous silicon (a-Si:H) has been investigated. It has been shown that the acceptance of the surface potential of an a-Si:H photoreceptor is very sensitive to the micro-roughness of the substrate surface. This is because the junction between the metal substrate (usually aluminum) and the blocking layer (p+ or n+ a-Si:H) is strongly affected by the micro-roughness of the substrate surface. A model is proposed to expound this phenomenon, which indicates that the existence of micro- defects on the substrate surface results in the bending of the metal-semiconductor junction at these defect positions; that is, the original parallel plane junction changes into a spherical abrupt junction. Compared to the former, the curved junction has a lower breakdown voltage, therefore, it will more easily break down at these defect positions during charging. An a-Si:H photoreceptor was prepared on the drum substrate half covered with a thin aluminum film to confirm the model. The experiment result was qualitatively in agreement with the analysis mentioned above. In addition, the effects of PVD-like deposition processes (e.g., high power or high argon diluted silane deposition) on the microstructure and breakdown of a-Si:H photoreceptors are reviewed.

  8. Spontaneous Regeneration of Human Photoreceptor Outer Segments

    PubMed Central

    Horton, Jonathan C.; Parker, Alicia B.; Botelho, James V.; Duncan, Jacque L.

    2015-01-01

    Photoreceptors are damaged in many common eye diseases, such as macular degeneration, retinal detachment, and retinitis pigmentosa. The development of methods to promote the repair or replacement of affected photoreceptors is a major goal of vision research. In this context, it would be useful to know whether photoreceptors are capable of undergoing some degree of spontaneous regeneration after injury. We report a subject who lost retinal function in a wide zone around the optic disc, giving rise to massive enlargement of the physiological blind spot. Imaging with an adaptive optics scanning laser ophthalmoscope (AOSLO) showed depletion of cone outer segments in the affected retina. A year later visual function had improved, with shrinkage of the enlarged blind spot. AOSLO imaging showed repopulation of cone outer segments, although their density remained below normal. There was a one-to-one match between sites of formerly missing outer segments and new outer segments that had appeared over the course of the year’s recovery. This correspondence provided direct morphological evidence that damaged cones are capable, under some circumstances, of generating new outer segments. PMID:26213154

  9. The Classification of HEp-2 Cell Patterns Using Fractal Descriptor.

    PubMed

    Xu, Rudan; Sun, Yuanyuan; Yang, Zhihao; Song, Bo; Hu, Xiaopeng

    2015-07-01

    Indirect immunofluorescence (IIF) with HEp-2 cells is considered as a powerful, sensitive and comprehensive technique for analyzing antinuclear autoantibodies (ANAs). The automatic classification of the HEp-2 cell images from IIF has played an important role in diagnosis. Fractal dimension can be used on the analysis of image representing and also on the property quantification like texture complexity and spatial occupation. In this study, we apply the fractal theory in the application of HEp-2 cell staining pattern classification, utilizing fractal descriptor firstly in the HEp-2 cell pattern classification with the help of morphological descriptor and pixel difference descriptor. The method is applied to the data set of MIVIA and uses the support vector machine (SVM) classifier. Experimental results show that the fractal descriptor combining with morphological descriptor and pixel difference descriptor makes the precisions of six patterns more stable, all above 50%, achieving 67.17% overall accuracy at best with relatively simple feature vectors.

  10. Rod photoreceptors protect from cone degeneration-induced retinal remodeling and restore visual responses in zebrafish

    PubMed Central

    Saade, Carole J.; Alvarez-Delfin, Karen; Fadool, James M.

    2013-01-01

    Humans are largely dependent upon cone-mediated vision. However, death or dysfunction of rods, the predominant photoreceptor subtype, results in secondary loss of cones, remodeling of retinal circuitry and blindness. The changes in circuitry may contribute to the vision deficit and undermine attempts at restoring sight. We exploit zebrafish larvae as a genetic model to specifically characterize changes associated with photoreceptor degenerations in a cone-dominated retina. Photoreceptors form synapses with two types of second order neurons, bipolar cells and horizontal cells. Using cell-specific reporter gene expression and immunolabeling for postsynaptic glutamate receptors, significant remodeling is observed following cone degeneration in the pde6cw59 larval retina but not rod degeneration in the Xops:mCFPq13 line. In adults, rods and cones are present in approximately equal numbers, and in pde6cw59 mutants glutamate receptor expression and synaptic structures in the outer plexiform layer are preserved, and visual responses are gained in these once-blind fish. We propose that the abundance of rods in the adult protects the retina from cone degeneration-induced remodeling. We test this hypothesis by genetically manipulating the number of rods in larvae. We show that an increased number and uniform distribution of rods in lor/tbx2bp22bbtl or six7 morpholino-injected larvae protect from pde6cw59-induced secondary changes. The observations that remodeling is a common consequence of photoreceptor death across species, and that in zebrafish a small number of surviving photoreceptors afford protection from degeneration-induced changes provides a model for systematic analysis of factors that slow or even prevent the secondary deteriorations associated with neural degenerative disease. PMID:23365220

  11. The supply of metabolic substrate from glia to photoreceptors in the retina of the honeybee drone.

    PubMed

    Tsacopoulos, M; Coles, J A; Van de Werve, G

    1987-01-01

    1. The drone retina is composed essentially of only two types of cells: a population of identical photoreceptor cells occupying 38% of the volume is embedded in a syncytium of glia (called outer pigment cells). Nearly all the mitochondria are in the photoreceptors. 2. A retinal slice consumes 18 microliter O2 (ml tissue)-1 min-1 in the dark for up to 6 h, even without exogenous substrate; in 6 h this would require the equivalent of 127 mM glucose in the photoreceptors or 8.7 mg glycogen (ml tissue)-1. 3. Freshly dissected retinas contain about 45 mg glycogen (ml tissue)-1, but this appears, from electron micrographs and from the PAS reaction, to be exclusively in the glia. After superfusion with substrate-free Ringer solution for 30 min, slices of retina contained less than 20 microM glucose. It therefore appears that to sustain respiration, carbohydrate substrate must be transferred from the glia to the photoreceptors. 4. Even after 6 h superfusion with substrate-free Ringer solution O2 consumption (QO2) was not increased by exogenous glucose, pyruvate, trehalose or lactate, nor decreased by 2-deoxy-D-glucose. QO2 was increased 2-3 fold by either light stimulation or (for at least 20 min) by 50 microM dinitrophenol. 5. QO2 was only slightly reduced when Na-dependent glucose transport was inhibited either by reduction of extracellular [Na+], or the presence of phlorizin. 6. It is suggested that drone retinal function does not require the uptake of glucose by the photoreceptors, but that the glia do take up glucose.

  12. NEURONATIN IS A STRESS-RESPONSIVE PROTEIN OF ROD PHOTORECEPTORS

    PubMed Central

    SHINDE, VISHAL; PITALE, PRIYAMVADA M.; HOWSE, WAYNE; GORBATYUK, OLEG; GORBATYUK, MARINA

    2016-01-01

    Neuronatin (NNAT) is a small transmembrane proteolipid that is highly expressed in the embryonic developing brain and several other peripheral tissues. This study is the first to provide evidence that NNAT is detected in the adult retina of various adult rod-dominant mammals, including wild-type (WT) rodents, transgenic rodents expressing mutant S334ter, P23H, or T17M rhodopsin, non-human primates, humans, and cone-dominant tree shrews. Immunohistochemical and quantitative real time polymerase chain reaction (qRT-PCR) analyses were applied to detect NNAT. Confocal microscopy analysis revealed that NNAT immunofluorescence is restricted to the outer segments (OSs) of photoreceptors without evidence of staining in other retinal cell types across all mammalian species. Moreover, in tree shrew retinas, we found NNAT to be co-localized with rhodopsin, indicating its predominant expression in rods. The rod-derived expression of NNAT was further confirmed by qRT-PCR in isolated rod photoreceptor cells. We also used these cells to mimic cellular stress in transgenic retinas by treating them with the endoplasmic reticulum stress inducer, tunicamycin. Thus, our data revealed accumulation of NNAT around the nucleus as compared to dispersed localization of NNAT within control cells. This distribution coincided with the partial intracellular mislocalization of NNAT to the outer nuclear layer observed in transgenic retinas. In addition, stressed retinas demonstrated an increase of NNAT mRNA and protein levels. Therefore, our study demonstrated that NNAT is a novel stress-responsive protein with a potential structural and/or functional role in adult mammalian retinas. PMID:27109921

  13. Spatial Pattern of Cell Damage in Tissue from Heavy Ions

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem L.; Huff, Janice L.; Cucinotta, Francis A.

    2007-01-01

    A new Monte Carlo algorithm was developed that can model passage of heavy ions in a tissue, and their action on the cellular matrix for 2- or 3-dimensional cases. The build-up of secondaries such as projectile fragments, target fragments, other light fragments, and delta-rays was simulated. Cells were modeled as a cell culture monolayer in one example, where the data were taken directly from microscopy (2-d cell matrix). A simple model of tissue was given as abstract spheres with close approximation to real cell geometries (3-d cell matrix), as well as a realistic model of tissue was proposed based on microscopy images. Image segmentation was used to identify cells in an irradiated cell culture monolayer, or slices of tissue. The cells were then inserted into the model box pixel by pixel. In the case of cell monolayers (2-d), the image size may exceed the modeled box size. Such image was is moved with respect to the box in order to sample as many cells as possible. In the case of the simple tissue (3-d), the tissue box is modeled with periodic boundary conditions, which extrapolate the technique to macroscopic volumes of tissue. For real tissue, specific spatial patterns for cell apoptosis and necrosis are expected. The cell patterns were modeled based on action cross sections for apoptosis and necrosis estimated based on BNL data, and other experimental data.

  14. The Spalt family transcription factor Sall3 regulates the development of cone photoreceptors and retinal horizontal interneurons

    PubMed Central

    de Melo, Jimmy; Peng, Guang-Hua; Chen, Shiming; Blackshaw, Seth

    2011-01-01

    The mammalian retina is a tractable model system for analyzing transcriptional networks that guide neural development. Spalt family zinc-finger transcription factors play a crucial role in photoreceptor specification in Drosophila, but their role in mammalian retinal development has not been investigated. In this study, we show that that the spalt homolog Sall3 is prominently expressed in developing cone photoreceptors and horizontal interneurons of the mouse retina and in a subset of cone bipolar cells. We find that Sall3 is both necessary and sufficient to activate the expression of multiple cone-specific genes, and that Sall3 protein is selectively bound to the promoter regions of these genes. Notably, Sall3 shows more prominent expression in short wavelength-sensitive cones than in medium wavelength-sensitive cones, and that Sall3 selectively activates expression of the short but not the medium wavelength-sensitive cone opsin gene. We further observe that Sall3 regulates the differentiation of horizontal interneurons, which form direct synaptic contacts with cone photoreceptors. Loss of function of Sall3 eliminates expression of the horizontal cell-specific transcription factor Lhx1, resulting in a radial displacement of horizontal cells that partially phenocopies the loss of function of Lhx1. These findings not only demonstrate that Spalt family transcription factors play a conserved role in regulating photoreceptor development in insects and mammals, but also identify Sall3 as a factor that regulates terminal differentiation of both cone photoreceptors and their postsynaptic partners. PMID:21558380

  15. Plasma-Sprayed Titanium Patterns for Enhancing Early Cell Responses

    NASA Astrophysics Data System (ADS)

    Shi, Yunqi; Xie, Youtao; Pan, Houhua; Zheng, Xuebin; Huang, Liping; Ji, Fang; Li, Kai

    2016-06-01

    Titanium coating has been widely used as a biocompatible metal in biomedical applications. However, the early cell responses and long-term fixation of titanium implants are not satisfied. To obviate these defects, in this paper, micro-post arrays with various widths (150-1000 μm) and intervals (100-300 μm) were fabricated on the titanium substrate by template-assisted plasma spraying technology. In vitro cell culture experiments showed that MC3T3-E1 cells exhibited significantly higher osteogenic differentiation as well as slightly improved adhesion and proliferation on the micro-patterned coatings compared with the traditional one. The cell number on the pattern with 1000 µm width reached 130% after 6 days of incubation, and the expressions of osteopontin (OPN) as well as osteocalcin (OC) were doubled. No obvious difference was found in cell adhesion on various size patterns. The present micro-patterned coatings proposed a new modification method for the traditional plasma spraying technology to enhance the early cell responses and convenience for the bone in-growth.

  16. Ire1 supports normal ER differentiation in developing Drosophila photoreceptors

    PubMed Central

    Xu, Zuyuan; Chikka, Madhusudana Rao; Xia, Hongai; Ready, Donald F.

    2016-01-01

    ABSTRACT The endoplasmic reticulum (ER) serves virtually all aspects of cell physiology and, by pathways that are incompletely understood, is dynamically remodeled to meet changing cell needs. Inositol-requiring enzyme 1 (Ire1), a conserved core protein of the unfolded protein response (UPR), participates in ER remodeling and is particularly required during the differentiation of cells devoted to intense secretory activity, so-called ‘professional’ secretory cells. Here, we characterize the role of Ire1 in ER differentiation in the developing Drosophila compound eye photoreceptors (R cells). As part of normal development, R cells take a turn as professional secretory cells with a massive secretory effort that builds the photosensitive membrane organelle, the rhabdomere. We find rough ER sheets proliferate as rhabdomere biogenesis culminates, and Ire1 is required for normal ER differentiation. Ire1 is active early in R cell development and is required in anticipation of peak biosynthesis. Without Ire1, the amount of rough ER sheets is strongly reduced and the extensive cortical ER network at the rhabdomere base, the subrhabdomere cisterna (SRC), fails. Instead, ER proliferates in persistent and ribosome-poor tubular tangles. A phase of Ire1 activity early in R cell development thus shapes dynamic ER. PMID:26787744

  17. Orientation behavior of retinal photoreceptors in alternating electric fields.

    PubMed

    Radu, M; Ionescu, M; Irimescu, N; Iliescu, K; Pologea-Moraru, R; Kovacs, E

    2005-11-01

    In alternating electric (AC) fields, particles experience polarizing effects that induce dipoles that orient elongated specimens either parallel or perpendicular to the field lines. In this work we studied the behavior of photoreceptor cells' rod outer segments (ROS) in AC fields of different frequencies. We showed that at low frequencies, ROS orient parallel to the field, whereas at higher frequencies they orient perpendicular to the field lines (in the frequency range from 100 Hz to 10 MHz). We found this behavior to be dependent on the physiological state of cells (due to modifications in their electrical properties). To simulate cell damage, the membrane conductivity was changed by treating the cell with gramicidin A, which resulted in a decrease of cytosol conductivity and, consequently, in a change of the orientation behavior of the treated cells. The change of cell orientation with cytosol conductivity is rather sharp, suggesting the potential of the method for accurate evaluation of the cell physiological status. We modeled the interaction between ROS and AC fields approximating the rod cell by a prolate spheroid with a very long axis. The internal compartment of the ellipsoid was considered to be filled with an inhomogeneous medium consisting of alternating layers of membrane and cytoplasm as media modeling the disks. This theoretical model proved to be in good agreement with the experimental results and enabled the derivation (by fitting with the experimental results) of the membrane and cytosol parameters for normal and damaged cells.

  18. Retinal cone photoreceptors of the deer mouse Peromyscus maniculatus: development, topography, opsin expression and spectral tuning.

    PubMed

    Arbogast, Patrick; Glösmann, Martin; Peichl, Leo

    2013-01-01

    A quantitative analysis of photoreceptor properties was performed in the retina of the nocturnal deer mouse, Peromyscus maniculatus, using pigmented (wildtype) and albino animals. The aim was to establish whether the deer mouse is a more suitable model species than the house mouse for photoreceptor studies, and whether oculocutaneous albinism affects its photoreceptor properties. In retinal flatmounts, cone photoreceptors were identified by opsin immunostaining, and their numbers, spectral types, and distributions across the retina were determined. Rod photoreceptors were counted using differential interference contrast microscopy. Pigmented P. maniculatus have a rod-dominated retina with rod densities of about 450.000/mm(2) and cone densities of 3000-6500/mm(2). Two cone opsins, shortwave sensitive (S) and middle-to-longwave sensitive (M), are present and expressed in distinct cone types. Partial sequencing of the S opsin gene strongly supports UV sensitivity of the S cone visual pigment. The S cones constitute a 5-15% minority of the cones. Different from house mouse, S and M cone distributions do not have dorsoventral gradients, and coexpression of both opsins in single cones is exceptional (<2% of the cones). In albino P. maniculatus, rod densities are reduced by approximately 40% (270.000/mm(2)). Overall, cone density and the density of cones exclusively expressing S opsin are not significantly different from pigmented P. maniculatus. However, in albino retinas S opsin is coexpressed with M opsin in 60-90% of the cones and therefore the population of cones expressing only M opsin is significantly reduced to 5-25%. In conclusion, deer mouse cone properties largely conform to the general mammalian pattern, hence the deer mouse may be better suited than the house mouse for the study of certain basic cone properties, including the effects of albinism on cone opsin expression. PMID:24260509

  19. Cell Patterning for Liver Tissue Engineering via Dielectrophoretic Mechanisms

    PubMed Central

    Yahya, Wan Nurlina Wan; Kadri, Nahrizul Adib; Ibrahim, Fatimah

    2014-01-01

    Liver transplantation is the most common treatment for patients with end-stage liver failure. However, liver transplantation is greatly limited by a shortage of donors. Liver tissue engineering may offer an alternative by providing an implantable engineered liver. Currently, diverse types of engineering approaches for in vitro liver cell culture are available, including scaffold-based methods, microfluidic platforms, and micropatterning techniques. Active cell patterning via dielectrophoretic (DEP) force showed some advantages over other methods, including high speed, ease of handling, high precision and being label-free. This article summarizes liver function and regenerative mechanisms for better understanding in developing engineered liver. We then review recent advances in liver tissue engineering techniques and focus on DEP-based cell patterning, including microelectrode design and patterning configuration. PMID:24991941

  20. Light adaptation in Pecten hyperpolarizing photoreceptors. Insensitivity to calcium manipulations.

    PubMed

    Gomez, M P; Nasi, E

    1997-03-01

    The ability of scallop hyperpolarizing photoreceptors to respond without attenuation to repetitive flashes, together with their low light sensitivity, lack of resolvable quantum bumps and fast photoresponse kinetics, had prompted the suggestion that these cells may be constitutively in a state akin to light adaptation. We here demonstrate that their photocurrent displays all manifestations of sensory adaptation: (a) The response amplitude to a test flash is decreased in a graded way by background or conditioning lights. This attenuation of the response develops with a time constant of 200-800 ms, inversely related to background intensity. (b) Adapting stimuli shift the stimulus-response curve and reduce the size of the saturating photocurrent. (c) The fall kinetics of the photoresponse are accelerated by light adaptation, and the roll-of of the modulation transfer function is displaced to higher frequencies. This light-induced desensitization exhibits a rapid recovery, on the order of a few seconds. Based on the notion that Ca mediates light adaptation in other cells, we examined the consequences of manipulating this ion. Removal of external Ca reversibly increased the photocurrent amplitude, without affecting light sensitivity, photoresponse kinetics, or susceptibility to background adaptation; the effect, therefore, concerns ion permeation, rather than the regulation of the visual response. Intracellular dialysis with 10 mM BAPTA did not reduce the peak-to-plateau decay of the photocurrent elicited by prolonged light steps, not the background-induced compression of the response amplitude range and the acceleration of its kinetics. Conversely, high levels of buffered free [Ca]i (10 microM) only marginally shifted the sensitivity curve (delta sigma = 0.3 log) and spared all manifestations of light adaptation. These results indicate that hyperpolarizing invertebrate photoreceptors adapt to light, but the underlying mechanisms must utilize pathways that are largely

  1. An expanded set of photoreceptors in the Eastern Pale Clouded Yellow butterfly, Colias erate

    PubMed Central

    Arikawa, Kentaro; Stavenga, Doekele G.

    2010-01-01

    We studied the spectral and polarisation sensitivities of photoreceptors of the butterfly Colias erate by using intracellular electrophysiological recordings and stimulation with light pulses. We developed a method of response waveform comparison (RWC) for evaluating the effective intensity of the light pulses. We identified one UV, four violet-blue, two green and two red photoreceptor classes. We estimated the peak wavelengths of four rhodopsins to be at about 360, 420, 460 and 560 nm. The four violet-blue classes are presumably based on combinations of two rhodopsins and a violet-absorbing screening pigment. The green classes have reduced sensitivity in the ultraviolet range. The two red classes have primary peaks at about 650 and 665 nm, respectively, and secondary peaks at about 480 nm. The shift of the main peak, so far the largest amongst insects, is presumably achieved by tuning the effective thickness of the red perirhabdomal screening pigment. Polarisation sensitivity of green and red photoreceptors is higher at the secondary than at the main peak. We found a 20-fold variation of sensitivity within the cells of one green class, implying possible photoreceptor subfunctionalisation. We propose an allocation scheme of the receptor classes into the three ventral ommatidial types. PMID:20524001

  2. An extraretinally expressed insect cryptochrome with similarity to the blue light photoreceptors of mammals and plants.

    PubMed

    Egan, E S; Franklin, T M; Hilderbrand-Chae, M J; McNeil, G P; Roberts, M A; Schroeder, A J; Zhang, X; Jackson, F R

    1999-05-15

    Photic entrainment of insect circadian rhythms can occur through either extraretinal (brain) or retinal photoreceptors, which mediate sensitivity to blue light or longer wavelengths, respectively. Although visual transduction processes are well understood in the insect retina, almost nothing is known about the extraretinal blue light photoreceptor of insects. We now have identified and characterized a candidate blue light photoreceptor gene in Drosophila (DCry) that is homologous to the cryptochrome (Cry) genes of mammals and plants. The DCry gene is located in region 91F of the third chromosome, an interval that does not contain other genes required for circadian rhythmicity. The protein encoded by DCry is approximately 50% identical to the CRY1 and CRY2 proteins recently discovered in mammalian species. As expected for an extraretinal photoreceptor mediating circadian entrainment, DCry mRNA is expressed within the adult brain and can be detected within body tissues. Indeed, tissue in situ hybridization demonstrates prominent expression in cells of the lateral brain, which are close to or coincident with the Drosophila clock neurons. Interestingly, DCry mRNA abundance oscillates in a circadian manner in Drosophila head RNA extracts, and the temporal phasing of the rhythm is similar to that documented for the mouse Cry1 mRNA, which is expressed in clock tissues. Finally, we show that changes in DCry gene dosage are associated predictably with alterations of the blue light resetting response for the circadian rhythm of adult locomotor activity. PMID:10233998

  3. Arf-like Protein 3 (ARL3) Regulates Protein Trafficking and Ciliogenesis in Mouse Photoreceptors.

    PubMed

    Hanke-Gogokhia, Christin; Wu, Zhijian; Gerstner, Cecilia D; Frederick, Jeanne M; Zhang, Houbin; Baehr, Wolfgang

    2016-03-25

    Arf-like protein 3 (ARL3) is a ubiquitous small GTPase expressed in ciliated cells of plants and animals. Germline deletion ofArl3in mice causes multiorgan ciliopathy reminiscent of Bardet-Biedl or Joubert syndromes. As photoreceptors are elegantly compartmentalized and have cilia, we probed the function of ARL3 (ADP-ribosylation factor (Arf)-like 3 protein) by generating rod photoreceptor-specific (prefix(rod)) and retina-specific (prefix(ret))Arl3deletions. In predegenerate(rod)Arl3(-/-)mice, lipidated phototransduction proteins showed trafficking deficiencies, consistent with the role of ARL3 as a cargo displacement factor for lipid-binding proteins. By contrast,(ret)Arl3(-/-)rods and cones expressing Cre recombinase during embryonic development formed neither connecting cilia nor outer segments and degenerated rapidly. Absence of cilia infers participation of ARL3 in ciliogenesis and axoneme formation. Ciliogenesis was rescued, and degeneration was reversed in part by subretinal injection of adeno-associated virus particles expressing ARL3-EGFP. The conditional knock-out phenotypes permitted identification of two ARL3 functions, both in the GTP-bound form as follows: one as a regulator of intraflagellar transport participating in photoreceptor ciliogenesis and the other as a cargo displacement factor transporting lipidated protein to the outer segment. Surprisingly, a farnesylated inositol polyphosphate phosphatase only trafficked from the endoplasmic reticulum to the Golgi, thereby excluding it from a role in photoreceptor cilia physiology. PMID:26814127

  4. The contribution of Shaker K+ channels to the information capacity of Drosophila photoreceptors

    NASA Astrophysics Data System (ADS)

    Niven, Jeremy E.; Vähäsöyrinki, Mikko; Kauranen, Mika; Hardie, Roger C.; Juusola, Mikko; Weckström, Matti

    2003-02-01

    An array of rapidly inactivating voltage-gated K+ channels is distributed throughout the nervous systems of vertebrates and invertebrates. Although these channels are thought to regulate the excitability of neurons by attenuating voltage signals, their specific functions are often poorly understood. We studied the role of the prototypical inactivating K+ conductance, Shaker, in Drosophila photoreceptors by recording intracellularly from wild-type and Shaker mutant photoreceptors. Here we show that loss of the Shaker K+ conductance produces a marked reduction in the signal-to-noise ratio of photoreceptors, generating a 50% decrease in the information capacity of these cells in fully light-adapted conditions. By combining experiments with modelling, we show that the inactivation of Shaker K+ channels amplifies voltage signals and enables photoreceptors to use their voltage range more effectively. Loss of the Shaker conductance attenuated the voltage signal and induced a compensatory decrease in impedance. Our results demonstrate the importance of the Shaker K+ conductance for neural coding precision and as a mechanism for selectively amplifying graded signals in neurons, and highlight the effect of compensatory mechanisms on neuronal information processing.

  5. Visual eyes: a quantitative analysis of the photoreceptor layer in deep-sea sharks.

    PubMed

    Newman, Amy S; Marshall, Justin N; Collin, Shaun P

    2013-01-01

    The marine environment presents unique visual challenges for a range of organisms, particularly those dwelling at great depths, where sunlight may either be absent or drop to very low levels. Under these environmental conditions, the visual system must maximise light absorption in order to enhance the detection of prey, predators and potential mates. Using stereological analysis of retinal wholemounts, the distribution and number of photoreceptors (rods) was determined for 5 deep-sea shark species from a range of depths (46-1,500 m). All species possessed areas of increased photoreceptor density (with peaks between 41,000 and 82,000 rods/mm(2)) within discrete regions of the retina. The total number of rods in the photoreceptor layer also varied between 17 × 10(6) and 63 × 10(6). It is evident that increasing sensitivity of the retina is an important adaptation to life in the deep sea. The location of discrete areas of high cell density within the photoreceptor layer of the retina corresponds to discrete areas of the visual field that are sampled at a higher intensity, hence increasing sensitivity. The location of these areas of increased sensitivity differed between the species of this study. The disparity of areas of increased sensitivity seen between species is thought to reflect distinctive predator avoidance and prey capture strategies. This study reveals that the visual demands of deep-sea sharks vary interspecifically and that sampling of each species' visual field is not solely determined by its habitat. PMID:24280649

  6. Electron Microscopy of Retinal Photoreceptors

    PubMed Central

    Lasansky, Arnaldo; de Robertis, Eduardo

    1960-01-01

    The fine structure of the cone and rod outer segments of the toad was studied under the electron microscope after fixation in osmium tetroxide and fixation in formaldehyde followed by chromation. In the OsO4-fixed specimens, the rod outer segment appears to be built of a stack of lobulated flattened sacs, each of which is made of two membranes of about 40 A separated by an innerspace of about 30 A. The distance between the rod sacs is about 50 A. The sacs in the cone outer segment are originated by the folding of a continuous membrane. The thickness of the membranes and width of the spaces between the cone sacs is the same as in rod, but the sac innerspace is slightly narrower in the cone (∼ 20 A). After fixation in formaldehyde and chromation, two different dense lines (l1 and l2) separated by spaces of less density appear. One of the lines, l1, has a thickness of 70 A and is less dense than the other, l2, which is 30 A thick. The correlation of the patterns obtained with both fixatives is considered and two possible interpretations are given. The possibility that l2 is related to a soluble phospholipid component is discussed. It is suggested that the outer segments have a paracrystallin organization similar to that found in myelin. PMID:14414323

  7. Reversed cell imprinting, AFM imaging and adhesion analyses of cells on patterned surfaces.

    PubMed

    Zhou, Xiongtu; Shi, Jian; Zhang, Fan; Hu, Jie; Li, Xin; Wang, Li; Ma, Xueming; Chen, Yong

    2010-05-01

    Cell adhesion and motility depend strongly on the interactions between cells and cell culture substratum. To observe the cell morphology at the interface between cells and artificial substratum or patterned surfaces, we have developed a technique named reversed cell imprinting. After culture and chemical fixation of the cells on a patterned hole array, a liquid polymer was poured on and UV cured, allowing taking off the cell-polymer assembly for a direct observation of the underside cell surface using atomic force microscopy. As expected, we observed local deformation of the cell membrane in the hole area with a penetration depth strongly dependent on the size and depth of the hole as well as the culture time. Quantitative analyses of Hela cells on patterned surfaces of polydimethylsiloxane (PDMS) revealed that the penetration was also position dependent over the cell attachment area due to the non-homogeneous distribution of the membrane stress. With the increase of the culture time, the penetration depth was reduced, in a close correlation with the increase of the cell spreading area. Nevertheless, both cell seeding and adhesion efficiency on high density hole arrays could be significantly increased comparing to that on a smooth surface. Patterned substrates are increasingly required to produce and interrogate new biomaterials for therapeutic benefit. Overall, this work suggests a strategy to endow conventional imaging methods with added functionality to enable easy observation of the underside cell morphology on topographic patterns. PMID:20390138

  8. Generation of Viable Cell and Biomaterial Patterns by Laser Transfer

    NASA Astrophysics Data System (ADS)

    Ringeisen, Bradley

    2001-03-01

    In order to fabricate and interface biological systems for next generation applications such as biosensors, protein recognition microarrays, and engineered tissues, it is imperative to have a method of accurately and rapidly depositing different active biomaterials in patterns or layered structures. Ideally, the biomaterial structures would also be compatible with many different substrates including technologically relevant platforms such as electronic circuits or various detection devices. We have developed a novel laser-based technique, termed matrix assisted pulsed laser evaporation direct write (MAPLE DW), that is able to direct write patterns and three-dimensional structures of numerous biologically active species ranging from proteins and antibodies to living cells. Specifically, we have shown that MAPLE DW is capable of forming mesoscopic patterns of living prokaryotic cells (E. coli bacteria), living mammalian cells (Chinese hamster ovaries), active proteins (biotinylated bovine serum albumin, horse radish peroxidase), and antibodies specific to a variety of classes of cancer related proteins including intracellular and extracellular matrix proteins, signaling proteins, cell cycle proteins, growth factors, and growth factor receptors. In addition, patterns of viable cells and active biomolecules were deposited on different substrates including metals, semiconductors, nutrient agar, and functionalized glass slides. We will present an explanation of the laser-based transfer mechanism as well as results from our recent efforts to fabricate protein recognition microarrays and tissue-based microfluidic networks.

  9. R7 Photoreceptor Specification in the Developing Drosophila Eye: The Role of the Transcription Factor Deadpan

    PubMed Central

    Mavromatakis, Yannis Emmanuel; Tomlinson, Andrew

    2016-01-01

    As cells proceed along their developmental pathways they make a series of sequential cell fate decisions. Each of those decisions needs to be made in a robust manner so there is no ambiguity in the state of the cell as it proceeds to the next stage. Here we examine the decision made by the Drosophila R7 precursor cell to become a photoreceptor and ask how the robustness of that decision is achieved. The transcription factor Tramtrack (Ttk) inhibits photoreceptor assignment, and previous studies found that the RTK-induced degradation of Ttk was critically required for R7 specification. Here we find that the transcription factor Deadpan (Dpn) is also required; it is needed to silence ttk transcription, and only when Ttk protein degradation and transcriptional silencing occur together is the photoreceptor fate robustly achieved. Dpn expression needs to be tightly restricted to R7 precursors, and we describe the role played by Ttk in repressing dpn transcription. Thus, Dpn and Ttk act as mutually repressive transcription factors, with Dpn acting to ensure that Ttk is effectively removed from R7, and Ttk acting to prevent Dpn expression in other cells. Furthermore, we find that N activity is required to promote dpn transcription, and only in R7 precursors does the removal of Ttk coincide with high N activity, and only in this cell does Dpn expression result. PMID:27427987

  10. Focal high cell density generates a gradient of patterns in self-organizing vascular mesenchymal cells.

    PubMed

    Cheng, Henry; Reddy, Aneela; Sage, Andrew; Lu, Jinxiu; Garfinkel, Alan; Tintut, Yin; Demer, Linda L

    2012-01-01

    In embryogenesis, structural patterns, such as vascular branching, may form via a reaction-diffusion mechanism in which activator and inhibitor morphogens guide cells into periodic aggregates. We previously found that vascular mesenchymal cells (VMCs) spontaneously aggregate into nodular structures and that morphogen pairs regulate the aggregation into patterns of spots and stripes. To test the effect of a focal change in activator morphogen on VMC pattern formation, we created a focal zone of high cell density by plating a second VMC layer within a cloning ring over a confluent monolayer. After 24 h, the ring was removed and pattern formation monitored by phase-contrast microscopy. At days 2-8, the patterns progressed from uniform distributions to swirl, labyrinthine and spot patterns. Within the focal high-density zone (HDZ) and a narrow halo zone, cells aggregated into spot patterns, whilst in the outermost zone of the plate, cells formed a labyrinthine pattern. The area occupied by aggregates was significantly greater in the outermost zone than in the HDZ or halo. The rate of pattern progression within the HDZ increased as a function of its plating density. Thus, focal differences in cell density may drive pattern formation gradients in tissue architecture, such as vascular branching.

  11. Focal High Cell Density Generates a Gradient of Patterns in Self-Organizing Vascular Mesenchymal Cells

    PubMed Central

    Cheng, Henry; Reddy, Aneela; Sage, Andrew; Lu, Jinxiu; Garfinkel, Alan; Tintut, Yin; Demer, Linda

    2012-01-01

    In embryogenesis, structural patterns, such as vascular branching, may form via a reaction-diffusion mechanism in which activator and inhibitor morphogens guide cells into periodic aggregates. We previously found that vascular mesenchymal cells (VMC) spontaneously aggregate into nodular structures and that morphogen pairs regulate the aggregation into patterns of spots and stripes. To test the effect of a focal change in activator morphogen on VMC pattern formation, we created a focal zone of high cell density by plating a second layer VMC within a cloning ring over a confluent monolayer. After 24 hours, the ring was removed, and pattern formation monitored by phase-contrast microscopy. At days 2–8, the patterns progressed from uniform distributions to swirl, labyrinthine, and spot patterns. Within the focal high-density zone and a narrow halo zone, cells aggregated into spot patterns; in the outermost zone of the plate, cells formed a labyrinthine pattern. Area occupied by aggregates was significantly greater in the outermost zone than in the HDZ or halo. The rate of pattern progression within the HDZ increased as a function of its plating density. Thus, focal differences in cell density may drive pattern formation gradients in tissue architecture, such as vascular branching. PMID:22797747

  12. Defective photoreceptor phagocytosis in a mouse model of enhanced S-cone syndrome causes progressive retinal degeneration

    PubMed Central

    Mustafi, Debarshi; Kevany, Brian M.; Genoud, Christel; Okano, Kiichiro; Cideciyan, Artur V.; Sumaroka, Alexander; Roman, Alejandro J.; Jacobson, Samuel G.; Engel, Andreas; Adams, Mark D.; Palczewski, Krzysztof

    2011-01-01

    Enhanced S-cone syndrome (ESCS), featuring an excess number of S cones, manifests as a progressive retinal degeneration that leads to blindness. Here, through optical imaging, we identified an abnormal interface between photoreceptors and the retinal pigment epithelium (RPE) in 9 patients with ESCS. The neural retina leucine zipper transcription factor-knockout (Nrl−/−) mouse model demonstrates many phenotypic features of human ESCS, including unstable S-cone-positive photoreceptors. Using massively parallel RNA sequencing, we identified 6203 differentially expressed transcripts between wild-type (Wt) and Nrl−/− mouse retinas, with 6 highly significant differentially expressed genes of the Pax, Notch, and Wnt canonical pathways. Changes were also obvious in expression of 30 genes involved in the visual cycle and 3 key genes in photoreceptor phagocytosis. Novel high-resolution (100 nm) imaging and reconstruction of Nrl−/− retinas revealed an abnormal packing of photoreceptors that contributed to buildup of photoreceptor deposits. Furthermore, lack of phagosomes in the RPE layer of Nrl−/− retina revealed impairment in phagocytosis. Cultured RPE cells from Wt and Nrl−/− mice illustrated that the phagocytotic defect was attributable to the aberrant interface between ESCS photoreceptors and the RPE. Overcoming the retinal phagocytosis defect could arrest the progressive degenerative component of this disease.—Mustafi, D., Kevany, B. M., Genoud, C., Okano, K., Cideciyan, A. V., Sumaroka, A., Roman, A. J., Jacobson, S. G. Engel, A., Adams, M. D., Palczewski, K. Defective photoreceptor phagocytosis in a mouse model of enhanced S-cone syndrome causes progressive retinal degeneration. PMID:21659555

  13. Modal content of living human cone photoreceptors

    PubMed Central

    Liu, Zhuolin; Kocaoglu, Omer P.; Turner, Timothy L.; Miller, Donald T.

    2015-01-01

    Decades of experimental and theoretical investigations have established that photoreceptors capture light based on the principles of optical waveguiding. Yet considerable uncertainty remains, even for the most basic prediction as to whether photoreceptors support more than a single waveguide mode. To test for modal behavior in human cone photoreceptors in the near infrared, we took advantage of adaptive-optics optical coherence tomography (AO-OCT, λc = 785 nm) to noninvasively image in three dimensions the reflectance profile of cones. Modal content of reflections generated at the cone inner segment and outer segment junction (IS/OS) and cone outer segment tip (COST) was examined over a range of cone diameters in 1,802 cones from 0.6° to 10° retinal eccentricity. Second moment analysis in conjunction with theoretical predictions indicate cone IS and OS have optical properties consistent of waveguides, which depend on segment diameter and refractive index. Cone IS was found to support a single mode near the fovea (≤3°) and multiple modes further away (>4°). In contrast, no evidence of multiple modes was found in the cone OSs. The IS/OS and COST reflections share a common optical aperture, are most circular near the fovea, show no orientation preference, and are temporally stable. We tested mode predictions of a conventional step-index fiber model and found that in order to fit our AO-OCT results required a lower estimate of the IS refractive index and introduction of an IS focusing/tapering effect. PMID:26417509

  14. Divergent T-Cell Cytokine Patterns in Inflammatory Arthritis

    NASA Astrophysics Data System (ADS)

    Simon, A. K.; Seipelt, E.; Sieper, J.

    1994-08-01

    A major immunoregulatory mechanism in inflammatory infections and allergic diseases is the control of the balance of cytokines secreted by Th1/Th2 subsets of T helper (Th) cells. This might also be true in autoimmune diseases; a Th2 pattern that prevents an effective immune response in infections with intracellular bacteria may favor immunosuppression in autoimmune diseases. The pattern of cytokine expression was compared in the synovial tissue from patients with a typical autoimmune disease, rheumatoid arthritis, and with a disorder with similar synovial pathology but driven by persisting exogenous antigen, reactive arthritis. We screened 12 rheumatoid and 9 reactive arthritis synovial tissues by PCR and in situ hybridization for their expression of T-cell cytokines. The cytokine pattern differs significantly between the two diseases; rheumatoid arthritis samples express a Th1-like pattern whereas in reactive arthritis interferon γ expression is accompanied by that of interleukin 4. Studying the expression of cytokines by in situ hybridization confirmed the results found by PCR; they also show an extremely low frequency of cytokine-transcribing cells. In a double-staining experiment, it was demonstrated that interleukin 4 is made by CD4 cells. These experiments favor the possibility of therapeutic intervention in inflammatory rheumatic diseases by means of inhibitory cytokines.

  15. Calcium ion, an intracellular messenger of light adaptation, also participates in excitation of Limulus photoreceptors.

    PubMed Central

    Bolsover, S R; Brown, J E

    1985-01-01

    Photoreceptor cells of Limulus ventral eyes were bathed in artificial sea water (ASW) that contained 10 mM-EGTA and no added Ca2+ (EGTA-ASW). Test flashes elicited responses that increased to a maximum size within 10 min in EGTA-ASW but did not change further when dark-adapted cells were bathed for an additional 35 min in this solution. Light responses progressively declined from this maximum size if the cells were repetitively illuminated in EGTA-ASW. In this state of reduced responsiveness, response amplitudes were further reduced by intracellular ionophoretic injection of EGTA; response amplitudes were increased by intracellular ionophoretic injection of Ca2+. Both of these findings are opposite to what is normally observed for cells bathed in ASW. Also, after repetitive illumination in EGTA-ASW, both the slope of the response versus intensity relationship became steeper and light responses often had a delayed increase in amplitude. The light responses and the response versus intensity relation returned to normal when the bathing medium was changed back to ASW containing 10 mM-Ca2+. The light-induced rise in luminescence recorded from photoreceptors injected with the photoprotein aequorin (the 'aequorin response') declined by at most 50% after dark-adapted photoreceptors were bathed in EGTA-ASW for 45 min. However, the aequorin response progressively declined by 98% if cells were repetitively illuminated while bathed in EGTA-ASW. The total intracellular Ca content of whole end-organs was measured by atomic absorption spectroscopy. Total intracellular Ca content did not change significantly while photoreceptors were bathed in EGTA-ASW even after repetitive illumination. We suggest that cytosolic Ca2+ is required by one or more steps in the mechanisms that link rhodopsin isomerization to both (i) an increase in the conductance of the cell membrane to Na+ and (ii) a release of Ca2+ from a light-labile store. PMID:3928878

  16. Transcriptional Regulation of Rod Photoreceptor Homeostasis Revealed by In Vivo NRL Targetome Analysis

    PubMed Central

    Hao, Hong; Kim, Douglas S.; Klocke, Bernward; Johnson, Kory R.; Cui, Kairong; Gotoh, Norimoto; Zang, Chongzhi; Gregorski, Janina; Gieser, Linn; Peng, Weiqun; Fann, Yang; Seifert, Martin; Zhao, Keji; Swaroop, Anand

    2012-01-01

    A stringent control of homeostasis is critical for functional maintenance and survival of neurons. In the mammalian retina, the basic motif leucine zipper transcription factor NRL determines rod versus cone photoreceptor cell fate and activates the expression of many rod-specific genes. Here, we report an integrated analysis of NRL-centered gene regulatory network by coupling chromatin immunoprecipitation followed by high-throughput sequencing (ChIP–Seq) data from Illumina and ABI platforms with global expression profiling and in vivo knockdown studies. We identified approximately 300 direct NRL target genes. Of these, 22 NRL targets are associated with human retinal dystrophies, whereas 95 mapped to regions of as yet uncloned retinal disease loci. In silico analysis of NRL ChIP–Seq peak sequences revealed an enrichment of distinct sets of transcription factor binding sites. Specifically, we discovered that genes involved in photoreceptor function include binding sites for both NRL and homeodomain protein CRX. Evaluation of 26 ChIP–Seq regions validated their enhancer functions in reporter assays. In vivo knockdown of 16 NRL target genes resulted in death or abnormal morphology of rod photoreceptors, suggesting their importance in maintaining retinal function. We also identified histone demethylase Kdm5b as a novel secondary node in NRL transcriptional hierarchy. Exon array analysis of flow-sorted photoreceptors in which Kdm5b was knocked down by shRNA indicated its role in regulating rod-expressed genes. Our studies identify candidate genes for retinal dystrophies, define cis-regulatory module(s) for photoreceptor-expressed genes and provide a framework for decoding transcriptional regulatory networks that dictate rod homeostasis. PMID:22511886

  17. Role of protein kinase C in light adaptation of molluscan microvillar photoreceptors

    PubMed Central

    Piccoli, Giuseppe; del Pilar Gomez, Maria; Nasi, Enrico

    2002-01-01

    The mechanisms by which Ca2+ regulates light adaptation in microvillar photoreceptors remain poorly understood. Protein kinase C (PKC) is a likely candidate, both because some sub-types are activated by Ca2+ and because of its association with the macromolecular ‘light-transduction complex’ in Drosophila. We investigated the possible role of PKC in the modulation of the light response in molluscan photoreceptors. Western blot analysis with isoform-specific antibodies revealed the presence of PKCα in retinal homogenates. Immunocytochemistry in isolated cell preparations confirmed PKCα localization in microvillar photoreceptors, preferentially confined to the light-sensing lobe. Light stimulation induced translocation of PKCα immunofluorescence to the photosensitive membrane, an effect that provides independent evidence for PKC activation by illumination; a similar outcome was observed after incubation with the phorbol ester PMA. Several chemically distinct activators of PKC, such as phorbol-12-myristate-13-acetate (PMA), (-)indolactam V and 1,2,-dioctanoyl-sn-glycerol (DOG) inhibited the light response of voltage-clamped microvillar photoreceptors, but were ineffective in ciliary photoreceptors, in which light does not activate the Gq/PLC cascade, nor elevates intracellular Ca2+. Pharmacological inhibition of PKC antagonized the desensitization produced by adapting lights and also caused a small, but consistent enhancement of basal sensitivity. These results strongly support the involvement of PKC activation in the light-dependent regulation of response sensitivity. However, unlike adapting background light or elevation of [Ca2+]i, PKC activators did not speed up the photoresponse, nor did PKC inhibitors antagonize the accelerating effects of background adaptation, suggesting that modulation of photoresponse time course may involve a separate Ca2+-dependent signal. PMID:12205183

  18. Asymmetric properties of the Chlamydomonas reinhardtii cytoskeleton direct rhodopsin photoreceptor localization.

    PubMed

    Mittelmeier, Telsa M; Boyd, Joseph S; Lamb, Mary Rose; Dieckmann, Carol L

    2011-05-16

    The eyespot of the unicellular green alga Chlamydomonas reinhardtii is a photoreceptive organelle required for phototaxis. Relative to the anterior flagella, the eyespot is asymmetrically positioned adjacent to the daughter four-membered rootlet (D4), a unique bundle of acetylated microtubules extending from the daughter basal body toward the posterior of the cell. Here, we detail the relationship between the rhodopsin eyespot photoreceptor Channelrhodopsin 1 (ChR1) and acetylated microtubules. In wild-type cells, ChR1 was observed in an equatorial patch adjacent to D4 near the end of the acetylated microtubules and along the D4 rootlet. In cells with cytoskeletal protein mutations, supernumerary ChR1 patches remained adjacent to acetylated microtubules. In mlt1 (multieyed) mutant cells, supernumerary photoreceptor patches were not restricted to the D4 rootlet, and more anterior eyespots correlated with shorter acetylated microtubule rootlets. The data suggest a model in which photoreceptor localization is dependent on microtubule-based trafficking selective for the D4 rootlet, which is perturbed in mlt1 mutant cells. PMID:21555459

  19. Hydrogel microfluidics for the patterning of pluripotent stem cells

    NASA Astrophysics Data System (ADS)

    Cosson, S.; Lutolf, M. P.

    2014-03-01

    Biomolecular signaling is of utmost importance in governing many biological processes such as the patterning of the developing embryo where biomolecules regulate key cell-fate decisions. In vivo, these factors are presented in a spatiotemporally tightly controlled fashion. Although state-of-the-art microfluidic technologies allow precise biomolecule delivery in time and space, long-term (stem) cell culture at the micro-scale is often far from ideal due to medium evaporation, limited space for cell growth or shear stress. To overcome these challenges, we here introduce a concept based on hydrogel microfluidics for decoupling conventional, macro-scale cell culture from precise biomolecule delivery through a gel layer. We demonstrate the spatiotemporally controlled neuronal commitment of mouse embryonic stem cells via delivery of retinoic acid gradients. This technique should be useful for testing the effect of dose and timing of biomolecules, singly or in combination, on stem cell fate.

  20. Development of Spatial Distribution Patterns by Biofilm Cells

    PubMed Central

    Haagensen, Janus A. J.; Hansen, Susse K.; Christensen, Bjarke B.; Molin, Søren

    2015-01-01

    Confined spatial patterns of microbial distribution are prevalent in nature, such as in microbial mats, soil communities, and water stream biofilms. The symbiotic two-species consortium of Pseudomonas putida and Acinetobacter sp. strain C6, originally isolated from a creosote-polluted aquifer, has evolved a distinct spatial organization in the laboratory that is characterized by an increased fitness and productivity. In this consortium, P. putida is reliant on microcolonies formed by Acinetobacter sp. C6, to which it attaches. Here we describe the processes that lead to the microcolony pattern by Acinetobacter sp. C6. Ecological spatial pattern analyses revealed that the microcolonies were not entirely randomly distributed and instead were arranged in a uniform pattern. Detailed time-lapse confocal microscopy at the single-cell level demonstrated that the spatial pattern was the result of an intriguing self-organization: small multicellular clusters moved along the surface to fuse with one another to form microcolonies. This active distribution capability was dependent on environmental factors (carbon source and oxygen) and historical contingency (formation of phenotypic variants). The findings of this study are discussed in the context of species distribution patterns observed in macroecology, and we summarize observations about the processes involved in coadaptation between P. putida and Acinetobacter sp. C6. Our results contribute to an understanding of spatial species distribution patterns as they are observed in nature, as well as the ecology of engineered communities that have the potential for enhanced and sustainable bioprocessing capacity. PMID:26116674

  1. Postembryonic developmental changes in photoreceptors of the stick insect Carausius morosus enhance the shift to an adult nocturnal life-style.

    PubMed

    Frolov, Roman; Immonen, Esa-Ville; Vähäsöyrinki, Mikko; Weckström, Matti

    2012-11-21

    Optimization of sensory processing during development can be studied by using photoreceptors of hemimetabolous insects (with incomplete metamorphosis) as a research model. We have addressed this topic in the stick insect Carausius morosus, where retinal growth after hatching is accompanied by a diurnal-to-nocturnal shift in behavior, by recording from photoreceptors of first instar nymphs and adult animals using the patch-clamp method. In the nymphs, ommatidia were smaller and photoreceptors were on average 15-fold less sensitive to light than in adults. The magnitude of A-type K(+) current did not increase but the delayed rectifier doubled in adults compared with nymphs, the K(+) current densities being greater in the nymphs. By contrast, the density of light-induced current did not increase, although its magnitude increased 8.6-fold, probably due to the growth of microvilli. Nymph photoreceptors performed poorly, demonstrating a peak information rate (IR) of 2.9 ± 0.7 bits/s versus 34.1 ± 5.0 bits/s in adults in response to white-noise stimulation. Strong correlations were found between photoreceptor capacitance (a proxy for cell size) and IR, and between light sensitivity and IR, with larger and more sensitive photoreceptors performing better. In adults, IR peaked at light intensities matching irradiation from the evening sky. Our results indicate that biophysical properties of photoreceptors at each age stage and visual behavior are interdependent and that developmental improvement in photoreceptor performance may facilitate the switch from the diurnal to the safer nocturnal lifestyle. This also has implications for how photoreceptors achieve optimal performance. PMID:23175835

  2. Pattern matching based active optical sorting of colloids/cells

    NASA Astrophysics Data System (ADS)

    Verma, R. S.; Dasgupta, R.; Ahlawat, S.; Kumar, N.; Uppal, A.; Gupta, P. K.

    2013-08-01

    We report active optical sorting of colloids/cells by employing a cross correlation based pattern matching technique for selection of the desired objects and thereafter sorting using dynamically controllable holographic optical traps. The problem of possible collision between the different sets of objects during sorting was avoided by raising one set of particles to a different plane. We also present the results obtained on using this approach for some representative applications such as sorting of silica particles of two different sizes, of closely packed colloids and of white blood cells and red blood cells from a mixture of the two.

  3. Regional differences in lectin binding patterns of vestibular hair cells

    NASA Technical Reports Server (NTRS)

    Baird, R. A.; Schuff, N. R.; Bancroft, J.

    1993-01-01

    Surface glycoconjugates of hair cells and supporting cells in the vestibular endorgans of the bullfrog were identified using biotinylated lectins with different carbohydrate specificities. Lectin binding in hair cells was consistent with the presence of glucose and mannose (CON A), galactose (RCA-I), N-acetylglucosamine (WGA), N-acetylgalactosamine (VVA), but not fucose (UEA-I) residues. Hair cells in the bullfrog sacculus, unlike those in the utriculus and semicircular canals, did not strain for N-acetylglucosamine (WGA) or N-acetylgalactosamine (VVA). By contrast, WGA and, to a lesser extent, VVA, differentially stained utricular and semicircular canal hair cells, labeling hair cells located in peripheral, but not central, regions. In mammals, WGA uniformly labeled Type I hair cells while labeling, as in the bullfrog, Type II hair cells only in peripheral regions. These regional variations were retained after enzymatic digestion. We conclude that vestibular hair cells differ in their surface glycoconjugates and that differences in lectin binding patterns can be used to identify hair cell types and to infer the epithelial origin of isolated vestibular hair cells.

  4. Regional differences in lectin binding patterns of vestibular hair cells

    NASA Technical Reports Server (NTRS)

    Baird, Richard A.; Schuff, N. R.; Bancroft, J.

    1994-01-01

    Surface glycoconjugates of hair cells and supporting cells in the vestibular endorgans of the bullfrog were identified using biotinylated lectins with different carbohydrate specificities. Lectin binding in hair cells was consistent with the presence of glucose and mannose (CON A), galactose (RCA-I), N-acetylgalactosamine (VVA), but not fucose (UEA-I) residues. Hair cells in the bullfrog sacculus, unlike those in the utriculus and semicircular canals, did not stain for N-acetylglucosamine (WGA) or N-acetylgalactosamine (VVA). By contrast, WGA and, to a lesser extent, VVA, differentially stained utricular and semicircular canal hair cells, labeling hair cells located in peripheral, but not central, regions. In mammals, WGA uniformly labeled Type 1 hair cells while labeling, as in the bullfrog, Type 2 hair cells only in peripheral regions. These regional variations were retained after enzymatic digestion. We conclude that vestibular hair cells differ in their surface glycoconjugates and that differences in lectin binding patterns can be used to identify hair cell types and to infer the epithelial origin of isolated vestibular hair cells.

  5. Report on the National Eye Institute Audacious Goals Initiative: Photoreceptor Regeneration and Integration Workshop

    PubMed Central

    Gamm, David M.; Wong, Rachel

    2015-01-01

    The National Eye Institute (NEI) hosted a workshop on May 2, 2015, as part of the Audacious Goals Initiative (AGI) to foster a concerted effort to develop novel therapies for outer retinal diseases. The central goal of this initiative is to “demonstrate by 2025 the restoration of usable vision in humans through the regeneration of neurons and neural connections in the eye and visual system.” More specifically, the AGI identified two neural retinal cell classes—ganglion cells and photoreceptors—as challenging, high impact targets for these efforts. A prior workshop and subsequent white paper provided a foundation to begin addressing issues regarding optic nerve regeneration, whereas the major objective of the May 2015 workshop was to review progress toward photoreceptor replacement and identify research gaps and barriers that are limiting advancement of the field. The present report summarizes that discussion and input, which was gathered from a panel of distinguished basic science and clinical investigators with diverse technical expertise and experience with different model systems. Four broad discussion categories were put forth during the workshop, each addressing a critical area of need in the pursuit of functional photoreceptor regeneration: (1) cell sources for photoreceptor regeneration, (2) cell delivery and/or integration, (3) outcome assessment, and (4) preclinical models and target patient populations. For each category, multiple challenges and opportunities for research discovery and tool production were identified and vetted. The present report summarizes the dialogue that took place and seeks to encourage continued interactions within the vision science community on this topic. It also serves as a guide for funding to support the pursuit of cell and circuit repair in diseases leading to photoreceptor degeneration. PMID:26629398

  6. Passive signal propagation and membrane properties in median photoreceptors of the giant barnacle

    PubMed Central

    Hudspeth, A. J.; Poo, Mu Ming; Stuart, Ann E.

    1977-01-01

    1. The light-induced electrical responses of barnacle photoreceptors spread decrementally along the cells' axons. The decay of the depolarizing and hyperpolarizing components of the visual signal was studied by recording intracellularly from single receptor axons of the median ocellus of the giant barnacle. 2. The resistance of the photoreceptor neurone decreases markedly when the cell is depolarized with respect to its dark resting potential of -60 mV. This rectification results in differential attenuation of the depolarizing and hyperpolarizing components of the visual signal as they spread down the axon. Consequently, the visual signal entering the synaptic region is conspicuously distorted. 3. Bathing the photoreceptor axons in sodium-free or calcium-free saline or in isotonic sucrose does not significantly affect the spread of the visual signal to the terminals. Thus the signal is not amplified by an ionic mechanism along the axon. 4. Membrane characteristics of the photoreceptor for hyperpolarizing voltage changes were estimated from (a) the ratio of the amplitudes of the visual signals recorded simultaneously in the axon and in the soma, (b) the time constant, and (c) the input resistance of the cell. All three independent measurements are consistent with a length constant 1 to 2 times the total length of the cell (λ = 10-18 mm) and an unusually high membrane resistivity of about 300 kΩ cm2. This resistivity enables the receptor potential to spread passively to the terminal region. 5. Electron microscopic examination of receptor axons reveals an investment of glial lamellae, but demonstrates neither unusual structures which would lead to a high apparent membrane resistivity, nor junctions between cells which would seal off the extracellular space. Thus the observed high resistivity appears to be an intrinsic property of the receptor membrane. ImagesABCD PMID:592129

  7. Directing cell migration and organization via nanocrater-patterned cell-repellent interfaces.

    PubMed

    Jeon, Hojeong; Koo, Sangmo; Reese, Willie Mae; Loskill, Peter; Grigoropoulos, Costas P; Healy, Kevin E

    2015-09-01

    Although adhesive interactions between cells and nanostructured interfaces have been studied extensively, there is a paucity of data on how nanostructured interfaces repel cells by directing cell migration and cell-colony organization. Here, by using multiphoton ablation lithography to pattern surfaces with nanoscale craters of various aspect ratios and pitches, we show that the surfaces altered the cells' focal-adhesion size and distribution, thus affecting cell morphology, migration and ultimately localization. We also show that nanocrater pitch can disrupt the formation of mature focal adhesions to favour the migration of cells towards higher-pitched regions, which present increased planar area for the formation of stable focal adhesions. Moreover, by designing surfaces with variable pitch but constant nanocrater dimensions, we were able to create circular and striped cellular patterns. Our surface-patterning approach, which does not involve chemical treatments and can be applied to various materials, represents a simple method to control cell behaviour on surfaces. PMID:26213899

  8. Temporospatial cell interactions regulating mandibular and maxillary arch patterning.

    PubMed

    Ferguson, C A; Tucker, A S; Sharpe, P T

    2000-01-01

    The cellular origin of the instructive information for hard tissue patterning of the jaws has been the subject of a long-standing controversy. Are the cranial neural crest cells prepatterned or does the epithelium pattern a developmentally uncommitted population of ectomesenchymal cells? In order to understand more about how orofacial patterning is controlled we have investigated the temporal signalling interactions and responses between epithelium and mesenchymal cells in the mandibular and maxillary primordia. We show that within the mandibular arch, homeobox genes that are expressed in different proximodistal spatial domains corresponding to presumptive molar and incisor ectomesenchymal cells are induced by signals from the oral epithelium. In mouse, prior to E10, all ectomesenchyme cells in the mandibular arch are equally responsive to epithelial signals such as Fgf8, indicating that there is no pre-specification of these cells into different populations and suggesting that patterning of the hard tissues of the mandible is instructed by the epithelium. By E10.5, ectomesenchymal cell gene expression domains are still dependent on epithelial signals but have become fixed and ectopic expression cannot be induced. At E11 expression becomes independent of epithelial signals such that removal of the epithelium does not affect spatial ectomesenchymal expression. Significantly, however, the response of ectomesenchyme cells to epithelial regulatory signals was found to be different in the mandibular and maxillary primordium. Thus, whereas both mandibular and maxillary arch epithelia could induce Dlx2 and Dlx5 expression in the mandible and Dlx2 expression in the maxilla, neither could induce Dlx5 expression in the maxilla. Reciprocal cell transplantations between mandibular and maxillary arch ectomesenchymal cells revealed intrinsic differences between these populations of cranial neural crest-derived cells. Research in odontogenesis has shown that the oral epithelium

  9. Light-induced changes of sensitivity in Limulus ventral photoreceptors

    PubMed Central

    1975-01-01

    The responses of Limulus ventral photoreceptors to brief test flashes and to longer adapting lights were measured under voltage clamp conditions. When the cell was dark adapted, there was a range of energy of the test flashes over which the peak amplitude of the responses (light-induced currents) was directly proportional to the flash energy. This was also true when test flashes were superposed on adapting stimuli but the proportionality constant (termed peak currently/photon) was reduced. The peak current/photon was attenuated more by brighter adapting stimuli than by less bright adapting stimuli. The peak current/photon is a measure of the sensitivity of the conductance- increase mechanism underlying the light response of the photo-receptor. The response elicited by an adapting stimulus had a large initial transient which declined to a smaller plateau. The peak current/photon decreased sharply during the declining phase of the transient and was relatively stable during the plateau. This indicates that the onset of light adaptation is delayed with respect to the onset of the response to the adapting stimulus. If the adaptational state just before the onset of each of a series of adapting stimuli was constant, the amplitude of the transient was a nearly linear function of intensity. When the total intensity was rapidly doubled (or halved) during a plateau response, the total current approximately doubled (or halved). We argue that the transition from transient to plateau, light-elicited changes of threshold, and the nonlinear function relating the plateau response to stimulus intensity all reflect changes of the responsiveness of the conductance-increase mechanism. PMID:1181378

  10. In vivo tracking of phosphoinositides in Drosophila photoreceptors

    PubMed Central

    Hardie, Roger C.; Liu, Che-Hsiung; Randall, Alexander S.; Sengupta, Sukanya

    2015-01-01

    ABSTRACT In order to monitor phosphoinositide turnover during phospholipase C (PLC)-mediated Drosophila phototransduction, fluorescently tagged lipid probes were expressed in photoreceptors and imaged both in dissociated cells, and in eyes of intact living flies. Of six probes tested, TbR332H (a mutant of the Tubby protein pleckstrin homology domain) was judged the best reporter for phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P2], and the P4M domain from Legionella SidM for phosphatidylinositol 4-phosphate (PtdIns4P). Using accurately calibrated illumination, we found that only ∼50% of PtdIns(4,5)P2 and very little PtdIns4P were depleted by full daylight intensities in wild-type flies, but both were severely depleted by ∼100-fold dimmer intensities in mutants lacking Ca2+-permeable transient receptor potential (TRP) channels or protein kinase C (PKC). Resynthesis of PtdIns4P (t½ ∼12 s) was faster than PtdIns(4,5)P2 (t½ ∼40 s), but both were greatly slowed in mutants of DAG kinase (rdgA) or PtdIns transfer protein (rdgB). The results indicate that Ca2+- and PKC-dependent inhibition of PLC is required for enabling photoreceptors to maintain phosphoinositide levels despite high rates of hydrolysis by PLC, and suggest that phosphorylation of PtdIns4P to PtdIns(4,5)P2 is the rate-limiting step of the cycle. PMID:26483384

  11. Rotenone induces degeneration of photoreceptors and impairs the dopaminergic system in the rat retina.

    PubMed

    Esteve-Rudd, Julián; Fernández-Sánchez, Laura; Lax, Pedro; De Juan, Emilio; Martín-Nieto, José; Cuenca, Nicolás

    2011-10-01

    Rotenone is a widely used pesticide and a potent inhibitor of mitochondrial complex I (NADH-quinone reductase) that elicits the degeneration of dopaminergic neurons and thereby the appearance of a parkinsonian syndrome. Here we have addressed the alterations induced by rotenone at the functional, morphological and molecular levels in the retina, including those involving both dopaminergic and non-dopaminergic retinal neurons. Rotenone-treated rats showed abnormalities in equilibrium, postural instability and involuntary movements. In their outer retina we observed a loss of photoreceptors, and a reduced synaptic connectivity between those remaining and their postsynaptic neurons. A dramatic loss of mitochondria was observed in the inner segments, as well as in the axon terminals of photoreceptors. In the inner retina we observed a decrease in the expression of dopaminergic cell molecular markers, including loss of tyrosine hydroxylase immunoreactivity, associated with a reduction of the dopaminergic plexus and cell bodies. An increase in immunoreactivity of AII amacrine cells for parvalbumin, a Ca(2+)-scavenging protein, was also detected. These abnormalities were accompanied by a decrease in the amplitude of scotopic and photopic a- and b-waves and an increase in the b-wave implicit time, as well as by a lower amplitude and greater latency in oscillatory potentials. These results indicate that rotenone induces loss of vision by promoting photoreceptor cell death and impairment of the dopaminergic retinal system.

  12. Evolution of photosensory pineal organs in new light: the fate of neuroendocrine photoreceptors.

    PubMed Central

    Ekström, Peter; Meissl, Hilmar

    2003-01-01

    Pineal evolution is envisaged as a gradual transformation of pinealocytes (a gradual regression of pinealocyte sensory capacity within a particular cell line), the so-called sensory cell line of the pineal organ. In most non-mammals the pineal organ is a directly photosensory organ, while the pineal organ of mammals (epiphysis cerebri) is a non-sensory neuroendocrine organ under photoperiod control. The phylogenetic transformation of the pineal organ is reflected in the morphology and physiology of the main parenchymal cell type, the pinealocyte. In anamniotes, pinealocytes with retinal cone photoreceptor-like characteristics predominate, whereas in sauropsids so-called rudimentary photoreceptors predominate. These have well-developed secretory characteristics, and have been interpreted as intermediaries between the anamniote pineal photoreceptors and the mammalian non-sensory pinealocytes. We have re-examined the original studies on which the gradual transformation hypothesis of pineal evolution is based, and found that the evidence for this model of pineal evolution is ambiguous. In the light of recent advances in the understanding of neural development mechanisms, we propose a new hypothesis of pineal evolution, in which the old notion 'gradual regression within the sensory cell line' should be replaced with 'changes in fate restriction within the neural lineage of the pineal field'. PMID:14561326

  13. Control of a four-color sensing photoreceptor by a two-color sensing photoreceptor reveals complex light regulation in cyanobacteria.

    PubMed

    Bussell, Adam N; Kehoe, David M

    2013-07-30

    Photoreceptors are biologically important for sensing changes in the color and intensity of ambient light and, for photosynthetic organisms, processing this light information to optimize food production through photosynthesis. Cyanobacteria are an evolutionarily and ecologically important prokaryotic group of oxygenic photosynthesizers that contain cyanobacteriochrome (CBCR) photoreceptors, whose family members sense nearly the entire visible spectrum of light colors. Some cyanobacteria contain 12 to 15 different CBCRs, and many family members contain multiple light-sensing domains. However, the complex interactions that must be occurring within and between these photoreceptors remain unexplored. Here we describe the regulation and photobiology of a unique CBCR called IflA (influenced by far-red light), demonstrating that a second CBCR called RcaE strongly regulates IflA abundance and that IflA uses two distinct photosensory domains to respond to four different light colors: blue, green, red, and far-red. The absorption of red or far-red light by one domain affects the conformation of the other domain, and the rate of relaxation of one of these domains is influenced by the conformation of the other. Deletion of iflA results in delayed growth at low cell density, suggesting that IflA accelerates growth under this condition, apparently by sensing the ratio of red to far-red light in the environment. The types of complex photobiological interactions described here, both between unrelated CBCR family members and within photosensory domains of a single CBCR, may be advantageous for species using these photoreceptors in aquatic environments, where light color ratios are influenced by many biotic and abiotic factors.

  14. Patterns of periodic holes created by increased cell motility

    PubMed Central

    Chen, Ting-Hsuan; Guo, Chunyan; Zhao, Xin; Yao, Yucheng; Boström, Kristina I.; Wong, Margaret N.; Tintut, Yin; Demer, Linda L.; Ho, Chih-Ming; Garfinkel, Alan

    2012-01-01

    The reaction and diffusion of morphogens is a mechanism widely used to explain many spatial patterns in physics, chemistry and developmental biology. However, because experimental control is limited in most biological systems, it is often unclear what mechanisms account for the biological patterns that arise. Here, we study a biological model of cultured vascular mesenchymal cells (VMCs), which normally self-organize into aggregates that form into labyrinthine configurations. We use an experimental control and a mathematical model that includes reacting and diffusing morphogens and a third variable reflecting local cell density. With direct measurements showing that cell motility was increased ninefold and threefold by inhibiting either Rho kinase or non-muscle myosin-II, respectively, our experimental results and mathematical modelling demonstrate that increased motility alters the multicellular pattern of the VMC cultures, from labyrinthine to a pattern of periodic holes. These results suggest implications for the tissue engineering of functional replacements for trabecular or spongy tissue such as endocardium and bone. PMID:22649581

  15. Rotation of photoreceptor clusters in the developing Drosophila eye requires the nemo gene.

    PubMed

    Choi, K W; Benzer, S

    1994-07-15

    The Drosophila eye consists of a reiterative hexagonal array of photoreceptor cell clusters, the ommatidia. During normal morphogenesis, the clusters in the dorsal or ventral halves of the disc rotate 90 degrees in opposite directions, forming mirror images across a dorsoventral equator. In the mutant nemo (nmo), there is an initial turning of approximately 45 degrees, but further rotation is blocked. Genetic mosaic analysis indicates that the nmo gene acts upon each cluster as a whole; normal nmo function in one or more photoreceptor cells appears to be sufficient to induce full rotation. The nmo gene sequence encodes a serine/threonine protein kinase homolog, suggesting that the kinase is required to initiate the second step of rotation. In another mutant, roulette, excessive rotation through varying angles occurs in many ommatidia. This defect is suppressed by nmo, indicating that nmo acts upstream in a rotation-regulating pathway.

  16. Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness.

    PubMed

    Carroll, Joseph; Neitz, Maureen; Hofer, Heidi; Neitz, Jay; Williams, David R

    2004-06-01

    There is enormous variation in the X-linked L/M (long/middle wavelength sensitive) gene array underlying "normal" color vision in humans. This variability has been shown to underlie individual variation in color matching behavior. Recently, red-green color blindness has also been shown to be associated with distinctly different genotypes. This has opened the possibility that there may be important phenotypic differences within classically defined groups of color blind individuals. Here, adaptive optics retinal imaging has revealed a mechanism for producing dichromatic color vision in which the expression of a mutant cone photopigment gene leads to the loss of the entire corresponding class of cone photoreceptor cells. Previously, the theory that common forms of inherited color blindness could be caused by the loss of photoreceptor cells had been discounted. We confirm that remarkably, this loss of one-third of the cones does not impair any aspect of vision other than color.

  17. Tuning cell adhesion by direct nanostructuring silicon into cell repulsive/adhesive patterns.

    PubMed

    Premnath, Priyatha; Tavangar, Amirhossein; Tan, Bo; Venkatakrishnan, Krishnan

    2015-09-10

    Developing platforms that allow tuning cell functionality through incorporating physical, chemical, or mechanical cues onto the material surfaces is one of the key challenges in research in the field of biomaterials. In this respect, various approaches have been proposed and numerous structures have been developed on a variety of materials. Most of these approaches, however, demand a multistep process or post-chemical treatment. Therefore, a simple approach would be desirable to develop bio-functionalized platforms for effectively modulating cell adhesion and consequently programming cell functionality without requiring any chemical or biological surface treatment. This study introduces a versatile yet simple laser approach to structure silicon (Si) chips into cytophobic/cytophilic patterns in order to modulate cell adhesion and proliferation. These patterns are fabricated on platforms through direct laser processing of Si substrates, which renders a desired computer-generated configuration into patterns. We investigate the morphology, chemistry, and wettability of the platform surfaces. Subsequently, we study the functionality of the fabricated platforms on modulating cervical cancer cells (HeLa) behaviour. The results from in vitro studies suggest that the nanostructures efficiently repel HeLa cells and drive them to migrate onto untreated sites. The study of the morphology of the cells reveals that cells evade the cytophobic area by bending and changing direction. Additionally, cell patterning, cell directionality, cell channelling, and cell trapping are achieved by developing different platforms with specific patterns. The flexibility and controllability of this approach to effectively structure Si substrates to cell-repulsive and cell-adhesive patterns offer perceptible outlook for developing bio-functionalized platforms for a variety of biomedical devices. Moreover, this approach could pave the way for developing anti-cancer platforms that selectively repel

  18. Tuning cell adhesion by direct nanostructuring silicon into cell repulsive/adhesive patterns.

    PubMed

    Premnath, Priyatha; Tavangar, Amirhossein; Tan, Bo; Venkatakrishnan, Krishnan

    2015-09-10

    Developing platforms that allow tuning cell functionality through incorporating physical, chemical, or mechanical cues onto the material surfaces is one of the key challenges in research in the field of biomaterials. In this respect, various approaches have been proposed and numerous structures have been developed on a variety of materials. Most of these approaches, however, demand a multistep process or post-chemical treatment. Therefore, a simple approach would be desirable to develop bio-functionalized platforms for effectively modulating cell adhesion and consequently programming cell functionality without requiring any chemical or biological surface treatment. This study introduces a versatile yet simple laser approach to structure silicon (Si) chips into cytophobic/cytophilic patterns in order to modulate cell adhesion and proliferation. These patterns are fabricated on platforms through direct laser processing of Si substrates, which renders a desired computer-generated configuration into patterns. We investigate the morphology, chemistry, and wettability of the platform surfaces. Subsequently, we study the functionality of the fabricated platforms on modulating cervical cancer cells (HeLa) behaviour. The results from in vitro studies suggest that the nanostructures efficiently repel HeLa cells and drive them to migrate onto untreated sites. The study of the morphology of the cells reveals that cells evade the cytophobic area by bending and changing direction. Additionally, cell patterning, cell directionality, cell channelling, and cell trapping are achieved by developing different platforms with specific patterns. The flexibility and controllability of this approach to effectively structure Si substrates to cell-repulsive and cell-adhesive patterns offer perceptible outlook for developing bio-functionalized platforms for a variety of biomedical devices. Moreover, this approach could pave the way for developing anti-cancer platforms that selectively repel

  19. Structural and functional remodeling in the retina of a mouse with a photoreceptor synaptopathy: plasticity in the rod and degeneration in the cone system.

    PubMed

    Specht, Dana; Tom Dieck, Susanne; Ammermüller, Josef; Regus-Leidig, Hanna; Gundelfinger, Eckart Dieter; Brandstätter, Johann Helmut

    2007-11-01

    Knowledge about the plastic and regenerative capacity of the retina is of key importance for therapeutic approaches to restore vision in patients who suffer from degenerative retinal diseases. In the retinae of mice, mutant for the presynaptic scaffolding protein Bassoon, signal transfer at photoreceptor ribbon synapses is disturbed due to impaired ribbon attachment to the active zone. In a long-term study we observed, with light and electron microscopic immunocytochemistry and electroretinographic recordings, two overlapping events in the Bassoon mutant retina, i.e. loss of photoreceptor synapses in the outer plexiform layer, and structural remodeling and formation of ectopic photoreceptor synapses in the outer nuclear layer, a region usually devoid of synapses. Formation of ectopic synaptic sites starts around the time when photoreceptor synaptogenesis is completed in wild-type mice and progresses throughout life. The result is a dense plexus of ectopic photoreceptor synapses with significantly altered but considerable synaptic transmission. Ectopic synapse formation is led by the sprouting of horizontal cells followed by the extension of rod bipolar cell neurites that fasciculate with and grow along the horizontal cell processes. Although only the rod photoreceptors and their postsynaptic partners show structural and functional remodeling, our study demonstrates the potential of the retina for long-lasting plastic changes.

  20. Laser-based techniques for living cell pattern formation

    NASA Astrophysics Data System (ADS)

    Hopp, Béla; Smausz, Tomi; Papdi, Bence; Bor, Zsolt; Szabó, András; Kolozsvári, Lajos; Fotakis, Costas; Nógrádi, Antal

    2008-10-01

    In the production of biosensors or artificial tissues a basic step is the immobilization of living cells along the required pattern. In this paper the ability of some promising laser-based methods to influence the interaction between cells and various surfaces is presented. In the first set of experiments laser-induced patterned photochemical modification of polymer foils was used to achieve guided adherence and growth of cells to the modified areas: (a) Polytetrafluoroethylene was irradiated with ArF excimer laser ( λ=193 nm, FWHM=20 ns, F=9 mJ/cm2) in presence of triethylene tetramine liquid photoreagent; (b) a thin carbon layer was produced by KrF excimer laser ( λ=248 nm, FWHM=30 ns, F=35 mJ/cm2) irradiation on polyimide surface to influence the cell adherence. It was found that the incorporation of amine groups in the PTFE polymer chain instead of the fluorine atoms can both promote and prevent the adherence of living cells (depending on the applied cell types) on the treated surfaces, while the laser generated carbon layer on polyimide surface did not effectively improve adherence. Our attempts to influence the cell adherence by morphological modifications created by ArF laser irradiation onto polyethylene terephtalate surface showed a surface roughness dependence. This method was effective only when the Ra roughness parameter of the developed structure did not exceed the 0.1 micrometer value. Pulsed laser deposition with femtosecond KrF excimer lasers ( F=2.2 J/cm2) was effectively used to deposit structured thin films from biomaterials (endothelial cell growth supplement and collagen embedded in starch matrix) to promote the adherence and growth of cells. These results present evidence that some surface can be successfully altered to induce guided cell growth.

  1. Spatially patterned matrix elasticity directs stem cell fate

    NASA Astrophysics Data System (ADS)

    Yang, Chun; DelRio, Frank W.; Ma, Hao; Killaars, Anouk R.; Basta, Lena P.; Kyburz, Kyle A.; Anseth, Kristi S.

    2016-08-01

    There is a growing appreciation for the functional role of matrix mechanics in regulating stem cell self-renewal and differentiation processes. However, it is largely unknown how subcellular, spatial mechanical variations in the local extracellular environment mediate intracellular signal transduction and direct cell fate. Here, the effect of spatial distribution, magnitude, and organization of subcellular matrix mechanical properties on human mesenchymal stem cell (hMSCs) function was investigated. Exploiting a photodegradation reaction, a hydrogel cell culture substrate was fabricated with regions of spatially varied and distinct mechanical properties, which were subsequently mapped and quantified by atomic force microscopy (AFM). The variations in the underlying matrix mechanics were found to regulate cellular adhesion and transcriptional events. Highly spread, elongated morphologies and higher Yes-associated protein (YAP) activation were observed in hMSCs seeded on hydrogels with higher concentrations of stiff regions in a dose-dependent manner. However, when the spatial organization of the mechanically stiff regions was altered from a regular to randomized pattern, lower levels of YAP activation with smaller and more rounded cell morphologies were induced in hMSCs. We infer from these results that irregular, disorganized variations in matrix mechanics, compared with regular patterns, appear to disrupt actin organization, and lead to different cell fates; this was verified by observations of lower alkaline phosphatase (ALP) activity and higher expression of CD105, a stem cell marker, in hMSCs in random versus regular patterns of mechanical properties. Collectively, this material platform has allowed innovative experiments to elucidate a novel spatial mechanical dosing mechanism that correlates to both the magnitude and organization of spatial stiffness.

  2. Spatially patterned matrix elasticity directs stem cell fate

    PubMed Central

    Yang, Chun; DelRio, Frank W.; Ma, Hao; Killaars, Anouk R.; Basta, Lena P.; Kyburz, Kyle A.; Anseth, Kristi S.

    2016-01-01

    There is a growing appreciation for the functional role of matrix mechanics in regulating stem cell self-renewal and differentiation processes. However, it is largely unknown how subcellular, spatial mechanical variations in the local extracellular environment mediate intracellular signal transduction and direct cell fate. Here, the effect of spatial distribution, magnitude, and organization of subcellular matrix mechanical properties on human mesenchymal stem cell (hMSCs) function was investigated. Exploiting a photodegradation reaction, a hydrogel cell culture substrate was fabricated with regions of spatially varied and distinct mechanical properties, which were subsequently mapped and quantified by atomic force microscopy (AFM). The variations in the underlying matrix mechanics were found to regulate cellular adhesion and transcriptional events. Highly spread, elongated morphologies and higher Yes-associated protein (YAP) activation were observed in hMSCs seeded on hydrogels with higher concentrations of stiff regions in a dose-dependent manner. However, when the spatial organization of the mechanically stiff regions was altered from a regular to randomized pattern, lower levels of YAP activation with smaller and more rounded cell morphologies were induced in hMSCs. We infer from these results that irregular, disorganized variations in matrix mechanics, compared with regular patterns, appear to disrupt actin organization, and lead to different cell fates; this was verified by observations of lower alkaline phosphatase (ALP) activity and higher expression of CD105, a stem cell marker, in hMSCs in random versus regular patterns of mechanical properties. Collectively, this material platform has allowed innovative experiments to elucidate a novel spatial mechanical dosing mechanism that correlates to both the magnitude and organization of spatial stiffness. PMID:27436901

  3. Voronoi Cell Patterns: theoretical model and application to submonolayer growth

    NASA Astrophysics Data System (ADS)

    González, Diego Luis; Einstein, T. L.

    2012-02-01

    We use a simple fragmentation model to describe the statistical behavior of the Voronoi cell patterns generated by a homogeneous and isotropic set of points in 1D and in 2D. In particular, we are interested in the distribution of sizes of these Voronoi cells. Our model is completely defined by two probability distributions in 1D and again in 2D, the probability to add a new point inside an existing cell and the probability that this new point is at a particular position relative to the preexisting point inside this cell. In 1D the first distribution depends on a single parameter while the second distribution is defined through a fragmentation kernel; in 2D both distributions depend on a single parameter. The fragmentation kernel and the control parameters are closely related to the physical properties of the specific system under study. We apply our model to describe the Voronoi cell patterns of island nucleation for critical island sizes i=0,1,2,3. Experimental results for the Voronoi cells of InAs/GaAs quantum dots are also described by our model.

  4. Cone Photoreceptors Develop Normally in the Absence of Functional Rod Photoreceptors in a Transgenic Swine Model of Retinitis Pigmentosa

    PubMed Central

    Fernandez de Castro, Juan P.; Scott, Patrick A.; Fransen, James W.; Demas, James; DeMarco, Paul J.; Kaplan, Henry J.; McCall, Maureen A.

    2014-01-01

    Purpose. Human and swine retinas have morphological and functional similarities. In the absence of primate models, the swine is an attractive model to study retinal function and disease, with its cone-rich visual streak, our ability to manipulate their genome, and the differences in susceptibility of rod and cone photoreceptors to disease. We characterized the normal development of cone function and its subsequent decline in a P23H rhodopsin transgenic (TgP23H) miniswine model of autosomal dominant RP. Methods. Semen from TgP23H miniswine 53-1 inseminated domestic swine and produced TgP23H and Wt hybrid littermates. Retinal function was evaluated using ERGs between postnatal days (P) 14 and 120. Retinal ganglion cell (RGC) responses were recorded to full-field stimuli at several intensities. Retinal morphology was assessed using light and electron microscopy. Results. Scotopic retinal function matures in Wt pigs up to P60, but never develops in TgP23H pigs. Wt and TgP23H photopic vision matures similarly up to P30 and diverges at P60 where TgP23H cone vision declines. There are fewer TgP23H RGCs with visually evoked responses at all ages and their response to light is compromised. Photoreceptor morphological changes mirror these functional changes. Conclusions. Lack of early scotopic function in TgP23H swine suggests it as a model of an aggressive form of RP. In this mammalian model of RP, normal cone function develops independent of rod function. Therefore, its retina represents a system in which therapies to rescue cones can be developed to prolong photopic visual function in RP patients. PMID:24618325

  5. A model for photoreceptor-based magnetoreception in birds.

    PubMed

    Ritz, T; Adem, S; Schulten, K

    2000-02-01

    A large variety of animals has the ability to sense the geomagnetic field and utilize it as a source of directional (compass) information. It is not known by which biophysical mechanism this magnetoreception is achieved. We investigate the possibility that magnetoreception involves radical-pair processes that are governed by anisotropic hyperfine coupling between (unpaired) electron and nuclear spins. We will show theoretically that fields of geomagnetic field strength and weaker can produce significantly different reaction yields for different alignments of the radical pairs with the magnetic field. As a model for a magnetic sensory organ we propose a system of radical pairs being 1) orientationally ordered in a molecular substrate and 2) exhibiting changes in the reaction yields that affect the visual transduction pathway. We evaluate three-dimensional visual modulation patterns that can arise from the influence of the geomagnetic field on radical-pair systems. The variations of these patterns with orientation and field strength can furnish the magnetic compass ability of birds with the same characteristics as observed in behavioral experiments. We propose that the recently discovered photoreceptor cryptochrome is part of the magnetoreception system and suggest further studies to prove or disprove this hypothesis.

  6. DNA Methylation Heterogeneity Patterns in Breast Cancer Cell Lines.

    PubMed

    Tian, Sunny; Bertelsmann, Karina; Yu, Linda; Sun, Shuying

    2016-01-01

    Heterogeneous DNA methylation patterns are linked to tumor growth. In order to study DNA methylation heterogeneity patterns for breast cancer cell lines, we comparatively study four metrics: variance, I (2) statistic, entropy, and methylation state. Using the categorical metric methylation state, we select the two most heterogeneous states to identify genes that directly affect tumor suppressor genes and high- or moderate-risk breast cancer genes. Utilizing the Gene Set Enrichment Analysis software and the ConsensusPath Database visualization tool, we generate integrated gene networks to study biological relations of heterogeneous genes. This analysis has allowed us to contribute 19 potential breast cancer biomarker genes to cancer databases by locating "hub genes" - heterogeneous genes of significant biological interactions, selected from numerous cancer modules. We have discovered a considerable relationship between these hub genes and heterogeneously methylated oncogenes. Our results have many implications for further heterogeneity analyses of methylation patterns and early detection of breast cancer susceptibility. PMID:27688708

  7. DNA Methylation Heterogeneity Patterns in Breast Cancer Cell Lines

    PubMed Central

    Tian, Sunny; Bertelsmann, Karina; Yu, Linda; Sun, Shuying

    2016-01-01

    Heterogeneous DNA methylation patterns are linked to tumor growth. In order to study DNA methylation heterogeneity patterns for breast cancer cell lines, we comparatively study four metrics: variance, I2 statistic, entropy, and methylation state. Using the categorical metric methylation state, we select the two most heterogeneous states to identify genes that directly affect tumor suppressor genes and high- or moderate-risk breast cancer genes. Utilizing the Gene Set Enrichment Analysis software and the ConsensusPath Database visualization tool, we generate integrated gene networks to study biological relations of heterogeneous genes. This analysis has allowed us to contribute 19 potential breast cancer biomarker genes to cancer databases by locating “hub genes” – heterogeneous genes of significant biological interactions, selected from numerous cancer modules. We have discovered a considerable relationship between these hub genes and heterogeneously methylated oncogenes. Our results have many implications for further heterogeneity analyses of methylation patterns and early detection of breast cancer susceptibility.

  8. DNA Methylation Heterogeneity Patterns in Breast Cancer Cell Lines

    PubMed Central

    Tian, Sunny; Bertelsmann, Karina; Yu, Linda; Sun, Shuying

    2016-01-01

    Heterogeneous DNA methylation patterns are linked to tumor growth. In order to study DNA methylation heterogeneity patterns for breast cancer cell lines, we comparatively study four metrics: variance, I2 statistic, entropy, and methylation state. Using the categorical metric methylation state, we select the two most heterogeneous states to identify genes that directly affect tumor suppressor genes and high- or moderate-risk breast cancer genes. Utilizing the Gene Set Enrichment Analysis software and the ConsensusPath Database visualization tool, we generate integrated gene networks to study biological relations of heterogeneous genes. This analysis has allowed us to contribute 19 potential breast cancer biomarker genes to cancer databases by locating “hub genes” – heterogeneous genes of significant biological interactions, selected from numerous cancer modules. We have discovered a considerable relationship between these hub genes and heterogeneously methylated oncogenes. Our results have many implications for further heterogeneity analyses of methylation patterns and early detection of breast cancer susceptibility. PMID:27688708

  9. Tuning cell adhesion by direct nanostructuring silicon into cell repulsive/adhesive patterns

    SciTech Connect

    Premnath, Priyatha; Venkatakrishnan, Krishnan

    2015-09-10

    Developing platforms that allow tuning cell functionality through incorporating physical, chemical, or mechanical cues onto the material surfaces is one of the key challenges in research in the field of biomaterials. In this respect, various approaches have been proposed and numerous structures have been developed on a variety of materials. Most of these approaches, however, demand a multistep process or post-chemical treatment. Therefore, a simple approach would be desirable to develop bio-functionalized platforms for effectively modulating cell adhesion and consequently programming cell functionality without requiring any chemical or biological surface treatment. This study introduces a versatile yet simple laser approach to structure silicon (Si) chips into cytophobic/cytophilic patterns in order to modulate cell adhesion and proliferation. These patterns are fabricated on platforms through direct laser processing of Si substrates, which renders a desired computer-generated configuration into patterns. We investigate the morphology, chemistry, and wettability of the platform surfaces. Subsequently, we study the functionality of the fabricated platforms on modulating cervical cancer cells (HeLa) behaviour. The results from in vitro studies suggest that the nanostructures efficiently repel HeLa cells and drive them to migrate onto untreated sites. The study of the morphology of the cells reveals that cells evade the cytophobic area by bending and changing direction. Additionally, cell patterning, cell directionality, cell channelling, and cell trapping are achieved by developing different platforms with specific patterns. The flexibility and controllability of this approach to effectively structure Si substrates to cell-repulsive and cell-adhesive patterns offer perceptible outlook for developing bio-functionalized platforms for a variety of biomedical devices. Moreover, this approach could pave the way for developing anti-cancer platforms that selectively repel

  10. Synthesis and patterning of tunable multiscale materials with engineered cells

    PubMed Central

    Chen, Allen Y.; Deng, Zhengtao; Billings, Amanda N.; Seker, Urartu O.S.; Lu, Michelle Y.; Citorik, Robert J.; Zakeri, Bijan; Lu, Timothy K.

    2014-01-01

    Many natural biological systems - such as biofilms, shells and skeletal tissues - are able to assemble multifunctional and environmentally responsive multiscale assemblies of living and non-living components. Here, by using inducible genetic circuits and cellular communication circuits to regulate Escherichia coli curli amyloid production, we show that E. coli cells can organize self-assembling amyloid fibrils across multiple length scales, producing amyloid-based materials that are either externally controllable or undergo autonomous patterning. We also interfaced curli fibrils with inorganic materials, such as gold nanoparticles (AuNPs) and quantum dots (QDs), and used these capabilities to create an environmentally responsive biofilm-based electrical switch, produce gold nanowires and nanorods, co-localize AuNPs with CdTe/CdS QDs to modulate QD fluorescence lifetimes, and nucleate the formation of fluorescent ZnS QDs. This work lays a foundation for synthesizing, patterning, and controlling functional composite materials with engineered cells. PMID:24658114

  11. Synthesis and patterning of tunable multiscale materials with engineered cells

    NASA Astrophysics Data System (ADS)

    Chen, Allen Y.; Deng, Zhengtao; Billings, Amanda N.; Seker, Urartu O. S.; Lu, Michelle Y.; Citorik, Robert J.; Zakeri, Bijan; Lu, Timothy K.

    2014-05-01

    Many natural biological systems—such as biofilms, shells and skeletal tissues—are able to assemble multifunctional and environmentally responsive multiscale assemblies of living and non-living components. Here, by using inducible genetic circuits and cellular communication circuits to regulate Escherichia coli curli amyloid production, we show that E. coli cells can organize self-assembling amyloid fibrils across multiple length scales, producing amyloid-based materials that are either externally controllable or undergo autonomous patterning. We also interfaced curli fibrils with inorganic materials, such as gold nanoparticles (AuNPs) and quantum dots (QDs), and used these capabilities to create an environmentally responsive biofilm-based electrical switch, produce gold nanowires and nanorods, co-localize AuNPs with CdTe/CdS QDs to modulate QD fluorescence lifetimes, and nucleate the formation of fluorescent ZnS QDs. This work lays a foundation for synthesizing, patterning, and controlling functional composite materials with engineered cells.

  12. Estimating the Size of Onion Epidermal Cells from Diffraction Patterns

    NASA Astrophysics Data System (ADS)

    Groff, Jeffrey R.

    2012-10-01

    Bioscience and premedical profession students are a major demographic served by introductory physics courses at many colleges and universities. Exposing these students to biological applications of physical principles will help them to appreciate physics as a useful tool for their future professions. Here I describe an experiment suitable for introductory physics where principles of wave optics are applied to probe the size of onion epidermal cells. The epidermis tissue is composed of cells of relatively uniform size and shape (Fig. 1) so the tissue acts like a one-dimensional transmission diffraction grating. The diffraction patterns generated when a laser beam passes through the tissue (Fig. 2) are analyzed and an estimate of the average width of individual onion epidermal cells is calculated. The results are compared to direct measurements taken using a light microscope. The use of microscopes and plant-cell tissue slides creates opportunities for cross-discipline collaboration between physics and biology instructors.

  13. Innate immune pattern recognition: a cell biological perspective.

    PubMed

    Brubaker, Sky W; Bonham, Kevin S; Zanoni, Ivan; Kagan, Jonathan C

    2015-01-01

    Receptors of the innate immune system detect conserved determinants of microbial and viral origin. Activation of these receptors initiates signaling events that culminate in an effective immune response. Recently, the view that innate immune signaling events rely on and operate within a complex cellular infrastructure has become an important framework for understanding the regulation of innate immunity. Compartmentalization within this infrastructure provides the cell with the ability to assign spatial information to microbial detection and regulate immune responses. Several cell biological processes play a role in the regulation of innate signaling responses; at the same time, innate signaling can engage cellular processes as a form of defense or to promote immunological memory. In this review, we highlight these aspects of cell biology in pattern-recognition receptor signaling by focusing on signals that originate from the cell surface, from endosomal compartments, and from within the cytosol.

  14. Adaptation in the input-output relation of the synapse made by the barnacle's photoreceptor.

    PubMed Central

    Hayashi, J H; Moore, J W; Stuart, A E

    1985-01-01

    A study was made of synaptic transmission between the four median photoreceptors of the giant barnacle (Balanus nubilus) and their post-synaptic cells (I-cells). Simultaneous intracellular recordings were made from the presynaptic terminal region of a photoreceptor and from the soma of an I-cell. The photoreceptor's membrane potential provided feed-back to bath electrodes that passed current into the receptors' axons, permitting the voltage to be controlled at the point of arborization of their presynaptic terminals. Simultaneous recordings from a second photoreceptor showed that its voltage tracked the first. Step depolarizations of the receptors from their dark resting potential (about -60 mV) caused hyperpolarizations of the I-cell that reached a peak, then decayed to a plateau value. The amplitude of the I-cell's response grew with presynaptic depolarizations, saturating at presynaptic values 10-20 mV depolarized from dark rest. Step hyperpolarizations of the receptors from dark rest evoked depolarizations of the I-cell consisting of an initial peak, which varied greatly in amplitude and wave form from preparation to preparation, followed by a plateau. The presence of this post-synaptic response indicates that transmitter is released continuously from the receptors at their dark resting potential. An input-output relation of the synapse was obtained by presenting step depolarizations from a holding potential of -80 mV, where steady-state transmitter release is shut off. The relation is sigmoidal; in the exponentially rising phase of the curve, a 5-11 mV presynaptic change produces a 10-fold change in post-synaptic response. When the presynaptic holding potential was set at values ranging from -80 to -40 mV, the relation between the I-cell's response and the absolute potential to which the receptor was stepped shifted along the presynaptic voltage axis. The slopes of the input-output relations were roughly parallel or increased as the photoreceptors were held

  15. Spectral information coding by infrared photoreceptors

    NASA Astrophysics Data System (ADS)

    Coon, D. D.; Perera, A. G. U.

    1986-10-01

    Spontaneous pulsing has been observed in circuits containing cryogenically cooled silicon p-i-n (p+-n-n+) diodes under dc forward bias. The intensity of infrared radiation incident on the diodes controls the pulse rate with no appreciable effect on the shape or size of the pulses. A strong similarity is noted between these properties and the nearly universal means of coding of visual information by animal photoreceptors and neural networks. It is proposed that exploitation of this remarkable analogy could lead to radically new approaches to acquisition and processing of infrared optical information. Infrared analogs of neural color coding and color vision are proposed based on analysis of p-i-n spectral response measurements.

  16. UV-B photoreceptor-mediated signalling in plants.

    PubMed

    Heijde, Marc; Ulm, Roman

    2012-04-01

    Ultraviolet-B radiation (UV-B) is a key environmental signal that is specifically perceived by plants to promote UV acclimation and survival in sunlight. Whereas the plant photoreceptors for visible light are rather well characterised, the UV-B photoreceptor UVR8 was only recently described at the molecular level. Here, we review the current understanding of the UVR8 photoreceptor-mediated pathway in the context of UV-B perception mechanism, early signalling components and physiological responses. We further outline the commonalities in UV-B and visible light signalling as well as highlight differences between these pathways.

  17. Local adaptation in the ventral photoreceptors of Limulus

    PubMed Central

    1975-01-01

    Local adaptation was demonstrated in the ventral photoreceptors of Lumulus using either flashes or continuous illumination. Spots of light locally desensitized the region of the photoreceptor on which they were focused. In dark-adapted photoreceptors where "quantum bumps" were clearly discernible, local adaptation of the quantum bumps was observed. Local adaptation could induce differences of threshold of 1 decade over distances of 50-80 mum. With continuous local illumination these gradients could be maintained from 2 s to 30 min. In addition, the decrease in time scale associated with light adaptation was also found to be localized to the region of illumination. PMID:1194890

  18. Microtubule-associated protein tau in bovine retinal photoreceptor rod outer segments: comparison with brain tau

    PubMed Central

    Yamazaki, Akio; Nishizawa, Yuji; Matsuura, Isao; Hayashi, Fumio; Usukura, Jiro; Bondarenko, Vladimir A.

    2013-01-01

    Recent studies have suggested a possible involvement of abnormal tau in some retinal degenerative diseases. The common view in these studies is that these retinal diseases share the mechanism of tau-mediated degenerative diseases in brain and that information about these brain diseases may be directly applied to explain these retinal diseases. Here we collectively examine this view by revealing three basic characteristics of tau in the rod outer segment (ROS) of bovine retinal photoreceptors, i.e., its isoforms, its phosphorylation mode and its interaction with microtubules, and by comparing them with those of brain tau. We find that ROS contains at least four isoforms: three are identical to those in brain and one is unique in ROS. All ROS isoforms, like brain isoforms, are modified with multiple phosphate molecules; however, ROS isoforms show their own specific phosphorylation pattern, and these phosphorylation patterns appear not to be identical to those of brain tau. Interestingly, some ROS isoforms, under the normal conditions, are phosphorylated at the sites identical to those in Alzheimer’s patient isoforms. Surprisingly, a large portion of ROS isoforms tightly associates with a membranous component(s) other than microtubules, and this association is independent of their phosphorylation states. These observations strongly suggest that tau plays various roles in ROS and that some of these functions may not be comparable to those of brain tau. We believe that knowledge about tau in the entire retinal network and/or its individual cells are also essential for elucidation of tau-mediated retinal diseases, if any. PMID:23712071

  19. Effect of light intensity on flight control and temporal properties of photoreceptors in bumblebees.

    PubMed

    Reber, Therese; Vähäkainu, Antti; Baird, Emily; Weckström, Matti; Warrant, Eric; Dacke, Marie

    2015-05-01

    To control flight, insects rely on the pattern of visual motion generated on the retina as they move through the environment. When light levels fall, vision becomes less reliable and flight control thus becomes more challenging. Here, we investigated the effect of light intensity on flight control by filming the trajectories of free-flying bumblebees (Bombus terrestris, Linnaeus 1758) in an experimental tunnel at different light levels. As light levels fell, flight speed decreased and the flight trajectories became more tortuous but the bees were still remarkably good at centring their flight about the tunnel's midline. To investigate whether this robust flight performance can be explained by visual adaptations in the bumblebee retina, we also examined the response speed of the green-sensitive photoreceptors at the same light intensities. We found that the response speed of the photoreceptors significantly decreased as light levels fell. This indicates that bumblebees have both behavioural (reduction in flight speed) and retinal (reduction in response speed of the photoreceptors) adaptations to allow them to fly in dim light. However, the more tortuous flight paths recorded in dim light suggest that these adaptations do not support flight with the same precision during the twilight hours of the day.

  20. Electron probe microanalysis of calcium release and magnesium uptake by endoplasmic reticulum in bee photoreceptors.

    PubMed

    Baumann, O; Walz, B; Somlyo, A V; Somlyo, A P

    1991-02-01

    Honey bee photoreceptors contain large sacs of endoplasmic reticulum (ER) that can be located unequivocally in freeze-dried cryosections. The elemental composition of the ER was determined by electron probe x-ray microanalysis and was visualized in high-resolution x-ray maps. In the ER of dark-adapted photoreceptors, the Ca concentration was 47.5 +/- 1.1 mmol/kg (dry weight) (mean +/- SEM). During a 3-sec nonsaturating light stimulus, approximately 50% of the Ca content was released from the ER. Light stimulation also caused a highly significant increase in the Mg content of the ER; the ratio of Mg uptake to Ca released was approximately 0.7. Our results show unambiguously that the ER is the source of Ca2+ release during cell stimulation and suggest that Mg2+ can nearly balance the charge movement of Ca2+. PMID:1992466

  1. Electron probe microanalysis of calcium release and magnesium uptake by endoplasmic reticulum in bee photoreceptors

    SciTech Connect

    Baumann, O.; Walz, B. ); Somlyo, A.V.; Somlyo, A.P. )

    1991-02-01

    Honey bee photoreceptors contain large sacs of endoplasmic reticulum (ER) that can be located unequivocally in freeze-dried cryosections. The elemental compositon of the ER was determined by electron probe x-ray microanalysis and was visualized in high-resolution x-ray maps. In the ER of dark-adapted photoreceptors, the Ca concentration was 47.5 {plus minus} 1.1 mmol/kg (dry weight). During a 3-sec nonsaturating light stimulus, {approximately}50% of the Ca content was released from the ER. Light stimulation also caused a highly significant increase in the Mg content of the ER; the ratio of Mg uptake to Ca released was {approximately}0.7. Our results show unambiguously that the ER is the source of Ca{sup 2+} release during cell stimulation and suggest the Mg{sup 2+} can nearly balance the charge movement of Ca{sup 2+}.

  2. Pattern formation in discrete cell tissues under long range filopodia-based direct cell to cell contact.

    PubMed

    Vasilopoulos, Georgios; Painter, Kevin J

    2016-03-01

    Pattern formation via direct cell to cell contact has received considerable attention over the years. In particular the lateral-inhibition mechanism observed in the Notch signalling pathway can generate a regular periodic pattern of differential cell activity, and has been proposed to explain the emergence of patterns in various tissues and organs. The majority of models of this system have focussed on short-range contacts: a cell signals only to its nearest neighbours and the resulting patterns tend to be of fine-scale "salt and pepper" nature. The capacity of certain cells to extend signalling filopodia (cytonemes) over multiple cell lengths, however, inserts a long-range or non-local component into this process. Here we explore how long range signalling can impact on pattern formation. Specifically, we extend a standard model for Notch-like lateral inhibition to include cytoneme-mediated signalling, and investigate how pattern formation depends on the spatial distribution of signal from the signalling cell. We show that a variety of patterns can be obtained, ranging from a sparse pattern of single isolated cells to larger clusters or stripes.

  3. Efficacy of electrical stimulation of retinal ganglion cells with temporal patterns resembling light-evoked spike trains.

    PubMed

    Wong, Raymond C S; Garrett, David J; Grayden, David B; Ibbotson, Michael R; Cloherty, Shaun L

    2014-01-01

    People with degenerative retinal diseases such as retinitis pigmentosa lose most of their photoreceptors but retain a significant proportion (~30%) of their retinal ganglion cells (RGCs). Microelectronic retinal prostheses aim to bypass the lost photoreceptors and restore vision by directly stimulating the surviving RGCs. Here we investigate the extent to which electrical stimulation of RGCs can evoke neural spike trains with statistics resembling those of normal visually-evoked responses. Whole-cell patch clamp recordings were made from individual cat RGCs in vitro. We first recorded the responses of each cell to short sequences of visual stimulation. These responses were converted to trains of electrical stimulation that we then presented to the same cell via an epiretinal stimulating electrode. We then quantified the efficacy of the electrical stimuli and the latency of the evoked spikes. In all cases, spikes were evoked with sub-millisecond latency (0.55 ms, median, ON cells, n = 8; 0.75 ms, median, OFF