Science.gov

Sample records for photosphere

  1. The Photospheric Convection Spectrum

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    1999-01-01

    Spectra of the photospheric cellular flows are determined from Solar and Heliospheric Observatory/Michelson Doppler Imager (SOHO/MDI) observations. Spherical harmonic decompositions are obtained from the full-disc observations. Fourier decompositions are obtained from the high-resolution observations. The p-mode oscillation signals and instrumental artifacts are reduced by temporal filtering of the Doppler data. The resulting spectra give power (kinetic energy) per wavenumber for effective spherical harmonic degrees from 1 to about 3000. The spectra show distinct peaks representing granules and supergranules but no distinct features at wavenumbers representative of mesogranules or giant cells.

  2. The Photospheric Convection Spectrum

    NASA Technical Reports Server (NTRS)

    Hathaway, D. H.; Beck, J. G.; Bogart, R. S.; Bachmann, K. T.; Khatri, G.; Petitto, J. M.; Han, S.; Raymond, J.

    1999-01-01

    Spectra of the cellular photospheric flows are determined from observations acquired by the MDI instrument on the SOHO spacecraft. Spherical harmonic spectra are obtained from the full-disk observations. Fourier spectra are obtained from the high-resolution observations. The p-mode oscillation signals and instrumental artifacts are reduced by temporal filtering of the Doppler data. The resulting spectra give power (kinetic energy) per wavenumber for effective spherical harmonic degrees from 1 to over 3000. The spectra show distinct peaks representing granules and supergranules but no distinct features at wavenumbers representative of mesogranu;es or giant cells. The observed cellular patterns and spectra are well represented by a model that only includes granules and supergranules.

  3. HXR photospheric footprints

    NASA Astrophysics Data System (ADS)

    Martínez-Oliveros, J. C.; Donea, A.-C.; Cally, P. S.

    2008-05-01

    We have analysed the 6 mHz egression power signatures of some accoustically active X-class solar flares. During the impulsive phase these flares produced conspicuous seismic signatures which have kernel-like structures, mostly aligned with the neutral line of the host active region. The kernel-like structures show the effect of constructive interference of the acoustic waves emanating from the complex sources, suggesting motion of the acoustic sources. The co-aligment between the seismic signatures and the hard X-ray emission observed by RHESSI from the footpoints of the coronal loops suggests a direct link between relativistic particles accelerated during the flare and the hydrodynamic response of the photosphere during flares.

  4. Solar and stellar photospheric abundances

    NASA Astrophysics Data System (ADS)

    Allende Prieto, Carlos

    2016-12-01

    The determination of photospheric abundances in late-type stars from spectroscopic observations is a well-established field, built on solid theoretical foundations. Improving those foundations to refine the accuracy of the inferred abundances has proven challenging, but progress has been made. In parallel, developments on instrumentation, chiefly regarding multi-object spectroscopy, have been spectacular, and a number of projects are collecting large numbers of observations for stars across the Milky Way and nearby galaxies, promising important advances in our understanding of galaxy formation and evolution. After providing a brief description of the basic physics and input data involved in the analysis of stellar spectra, a review is made of the analysis steps, and the available tools to cope with large observational efforts. The paper closes with a quick overview of relevant ongoing and planned spectroscopic surveys, and highlights of recent research on photospheric abundances.

  5. Photospheric and coronal magnetic fields

    SciTech Connect

    Sheeley, N.R., Jr. )

    1991-01-01

    Research on small-scale and large-scale photospheric and coronal magnetic fields during 1987-1990 is reviewed, focusing on observational studies. Particular attention is given to the new techniques, which include the correlation tracking of granules, the use of highly Zeeman-sensitive infrared spectral lines and multiple lines to deduce small-scale field strength, the application of long integration times coupled with good seeing conditions to study weak fields, and the use of high-resolution CCD detectors together with computer image-processing techniques to obtain images with unsurpassed spatial resolution. Synoptic observations of large-scale fields during the sunspot cycle are also discussed. 101 refs.

  6. PHOTOSPHERIC EMISSION FROM STRATIFIED JETS

    SciTech Connect

    Ito, Hirotaka; Nagataki, Shigehiro; Ono, Masaomi; Lee, Shiu-Hang; Mao, Jirong; Yamada, Shoichi; Pe'er, Asaf; Mizuta, Akira; Harikae, Seiji

    2013-11-01

    We explore photospheric emissions from stratified two-component jets, wherein a highly relativistic spine outflow is surrounded by a wider and less relativistic sheath outflow. Thermal photons are injected in regions of high optical depth and propagated until the photons escape at the photosphere. Because of the presence of shear in velocity (Lorentz factor) at the boundary of the spine and sheath region, a fraction of the injected photons are accelerated using a Fermi-like acceleration mechanism such that a high-energy power-law tail is formed in the resultant spectrum. We show, in particular, that if a velocity shear with a considerable variance in the bulk Lorentz factor is present, the high-energy part of observed gamma-ray bursts (GRBs) photon spectrum can be explained by this photon acceleration mechanism. We also show that the accelerated photons might also account for the origin of the extra-hard power-law component above the bump of the thermal-like peak seen in some peculiar bursts (e.g., GRB 090510, 090902B, 090926A). We demonstrate that time-integrated spectra can also reproduce the low-energy spectrum of GRBs consistently using a multi-temperature effect when time evolution of the outflow is considered. Last, we show that the empirical E{sub p}-L{sub p} relation can be explained by differences in the outflow properties of individual sources.

  7. STOCHASTIC COUPLING OF SOLAR PHOTOSPHERE AND CORONA

    SciTech Connect

    Uritsky, Vadim M.; Ofman, Leon; Davila, Joseph M.; Coyner, Aaron J.

    2013-05-20

    The observed solar activity is believed to be driven by the dissipation of nonpotential magnetic energy injected into the corona by dynamic processes in the photosphere. The enormous range of scales involved in the interaction makes it difficult to track down the photospheric origin of each coronal dissipation event, especially in the presence of complex magnetic topologies. In this paper, we propose an ensemble-based approach for testing the photosphere-corona coupling in a quiet solar region as represented by intermittent activity in Solar and Heliospheric Observatory Michelson Doppler Imager and Solar TErrestrial RElations Observatory Extreme Ultraviolet Imager image sets. For properly adjusted detection thresholds corresponding to the same degree of intermittency in the photosphere and corona, the dynamics of the two solar regions is described by the same occurrence probability distributions of energy release events but significantly different geometric properties. We derive a set of scaling relations reconciling the two groups of results and enabling statistical description of coronal dynamics based on photospheric observations. Our analysis suggests that multiscale intermittent dissipation in the corona at spatial scales >3 Mm is controlled by turbulent photospheric convection. Complex topology of the photospheric network makes this coupling essentially nonlocal and non-deterministic. Our results are in an agreement with the Parker's coupling scenario in which random photospheric shuffling generates marginally stable magnetic discontinuities at the coronal level, but they are also consistent with an impulsive wave heating involving multiscale Alfvenic wave packets and/or magnetohydrodynamic turbulent cascade. A back-reaction on the photosphere due to coronal magnetic reconfiguration can be a contributing factor.

  8. Deep photospheric flows in Tau Scorpii

    NASA Technical Reports Server (NTRS)

    Smith, M. A.; Karp, A. H.

    1979-01-01

    From analysis of weak, unblended, ultraviolet lines observed in Tau Scorpii by Copernicus, the same line widths and the same slightly blue-depressed wings as found in the upper photospheric lines of the visual region are found. In addition, a radial-velocity discrepancy of about 6 km/s between weak and strong lines in the 1000-1300-A region is found. These results are in quantitative agreement with one another and with the results of the visual region. They imply that a flow of material is present even in the deep photosphere of this star. However, one cannot yet specify the geometry of the flow (outward-radial versus temperature-weighted convection columns). At the least, this flow alters the expected radiation-driven flow solution close to the photosphere. At the most, it could provide the heating of a chromosphere or a corona just outside the photosphere, as required by the imperfect flow model.

  9. Deep photospheric flows in Tau Scorpii

    NASA Technical Reports Server (NTRS)

    Smith, M. A.; Karp, A. H.

    1979-01-01

    From analysis of weak, unblended, ultraviolet lines observed in Tau Scorpii by Copernicus, the same line widths and the same slightly blue-depressed wings as found in the upper photospheric lines of the visual region are found. In addition, a radial-velocity discrepancy of about 6 km/s between weak and strong lines in the 1000-1300-A region is found. These results are in quantitative agreement with one another and with the results of the visual region. They imply that a flow of material is present even in the deep photosphere of this star. However, one cannot yet specify the geometry of the flow (outward-radial versus temperature-weighted convection columns). At the least, this flow alters the expected radiation-driven flow solution close to the photosphere. At the most, it could provide the heating of a chromosphere or a corona just outside the photosphere, as required by the imperfect flow model.

  10. Sub-photospheric Shocks in Relativistic Explosions

    NASA Astrophysics Data System (ADS)

    Beloborodov, Andrei M.

    2017-04-01

    This paper examines the mechanism of internal shocks in opaque relativistic outflows, in particular in cosmological gamma-ray bursts. The shocks produce neutrino emission and affect the observed photospheric radiation from the explosion. They develop from internal compressive waves and can be of different types depending on the composition of the outflow. (1) Shocks in “photon gas,” with negligible plasma inertia, have a unique structure determined by the force-free condition—zero radiation flux in the plasma rest frame. Radiation dominance over plasma inertia suppresses the formation of collisionless shocks mediated by collective electromagnetic fields. (2) If the outflow is sufficiently magnetized, a strong collisionless subshock develops, which is embedded in a thicker radiation-mediated structure. (3) Waves in outflows with a free neutron component lead to dissipation through nuclear collisions. At large optical depths, shocks have a thickness comparable to the neutron free path, with embedded radiation-mediated and collisionless subshocks. The paper also presents first-principles simulations of magnetized flows filled with photons, demonstrating the formation of shocks and their structure. Simple estimates show that magnetized sub-photospheric shocks are efficient producers of photons and have a great impact on the observed photospheric radiation. The shock structure changes as the outflow expands toward its photosphere. The dissipation is accompanied by strong {e}+/- pair creation, and the {e}+/- -dressed shock carries the photosphere with it up to two decades in radius, emitting a strong pulse of nonthermal radiation.

  11. Global Solar Photospheric Magnetic Field Modeling (Invited)

    NASA Astrophysics Data System (ADS)

    Henney, C. J.; Arge, C. N.; Toussaint, W.; Gonzalez-Hernandez, I. E.; Koller, J.; Godinez, H. C.; Macdonald, G. A.

    2013-12-01

    Estimation of the global photospheric magnetic field distribution is currently difficult since only approximately half of the solar surface is magnetically observed at any given time. With the solar rotational period relative to Earth at approximately 27 days, these global maps include observed data that are more than 13 days old. Data assimilation between old and new observations can result in spatial polarity discontinuities that result in monopole signals. To help minimize these large discontinuities we have developed the ADAPT (Air Force Data Assimilative Photospheric flux Transport) model, which incorporates data assimilation using an Ensemble Least Squares (EnLS) estimation method with photospheric magnetic flux transport. The ADAPT transport model evolves the solar magnetic flux for an ensemble of realizations using different parameter values for rotational, meridional, and super-granular diffusive transport processes. New data assimilative methods, along with recent progress to incorporate solar farside and subsurface nearside data inferred from helioseismology, will be discussed in this presentation.

  12. TURBULENT PAIR DISPERSION OF PHOTOSPHERIC BRIGHT POINTS

    SciTech Connect

    Lepreti, F.; Carbone, V.; Capparelli, V.; Vecchio, A.

    2012-11-01

    Observations of solar granulation obtained with the New Solar Telescope of Big Bear Solar Observatory are used to study the turbulent pair dispersion of photospheric bright points in a quiet-Sun area, a coronal hole, and an active region plage. In all the three magnetic environments, it is found that the pair mean-squared separation {Delta}{sup 2}(t) follows a power-law timescaling {Delta}{sup 2}(t) {approx} t {sup {eta}} in the range 10 s {approx}< t {approx}< 400 s. The power-law index is found to be {eta} {approx_equal} 1.5 for all the three investigated regions. It is shown that these results can be explained in the same framework as the classical Batchelor theory, under the hypothesis that the observed range of timescales corresponds to a non-asymptotic regime in which the photospheric bright points keep the memory of their initial separations.

  13. MAGNETOHYDRODYNAMICS OF THE WEAKLY IONIZED SOLAR PHOTOSPHERE

    SciTech Connect

    Cheung, Mark C. M.; Cameron, Robert H.

    2012-05-01

    We investigate the importance of ambipolar diffusion and Hall currents for high-resolution comprehensive ({sup r}ealistic{sup )} photospheric simulations. To do so, we extended the radiative magnetohydrodynamics code MURaM to use the generalized Ohm's law under the assumption of local thermodynamic equilibrium. We present test cases comparing analytical solutions with numerical simulations for validation of the code. Furthermore, we carried out a number of numerical experiments to investigate the impact of these neutral-ion effects in the photosphere. We find that, at the spatial resolutions currently used (5-20 km per grid point), the Hall currents and ambipolar diffusion begin to become significant-with flows of 100 m s{sup -1} in sunspot light bridges, and changes of a few percent in the thermodynamic structure of quiet-Sun magnetic features. The magnitude of the effects is expected to increase rapidly as smaller-scale variations are resolved by the simulations.

  14. Photospheric Emission of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Beloborodov, A. M.; Mészáros, P.

    2017-07-01

    We review the physics of GRB production by relativistic jets that start highly opaque near the central source and then expand to transparency. We discuss dissipative and radiative processes in the jet and how radiative transfer shapes the observed nonthermal spectrum released at the photosphere. A comparison of recent detailed models with observations gives estimates for important parameters of GRB jets, such as the Lorentz factor and magnetization. We also discuss predictions for GRB polarization and neutrino emission.

  15. Photospheric Emission of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Beloborodov, A. M.; Mészáros, P.

    2017-03-01

    We review the physics of GRB production by relativistic jets that start highly opaque near the central source and then expand to transparency. We discuss dissipative and radiative processes in the jet and how radiative transfer shapes the observed nonthermal spectrum released at the photosphere. A comparison of recent detailed models with observations gives estimates for important parameters of GRB jets, such as the Lorentz factor and magnetization. We also discuss predictions for GRB polarization and neutrino emission.

  16. The photospheric Poynting flux and coronal heating

    NASA Astrophysics Data System (ADS)

    Welsch, Brian T.

    2015-04-01

    Some models of coronal heating suppose that convective motions at the photosphere shuffle the footpoints of coronal magnetic fields and thereby inject sufficient magnetic energy upward to account for observed coronal and chromospheric energy losses in active regions. Using high-resolution observations of plage magnetic fields made with the Solar Optical Telescope aboard the Hinode satellite, we investigate this idea by estimating the upward transport of magnetic energy-the vertical Poynting flux, Sz-across the photosphere in a plage region. To do so, we combine the following: (i) estimates of photospheric horizontal velocities, vh, determined by local correlation tracking applied to a sequence of line-of-sight magnetic field maps from the Narrowband Filter Imager, with (ii) a vector magnetic field measurement from the SpectroPolarimeter. Plage fields are ideal observational targets for estimating energy injection by convection, because they are (i) strong enough to be measured with relatively small uncertainties, (ii) not so strong that convection is heavily suppressed (as within umbrae), and (iii) unipolar, so Sz in plage is not influenced by mixed-polarity processes (e.g., flux emergence) unrelated to heating in stable, active-region fields. In this plage region, we found that the average Sz varied in space, but was positive (upward) and sufficient to explain coronal heating, with values near (5 ± 1) × 107 erg cm-2 s-1. We find the energy input per unit magnetic flux to be on the order of 105 erg s-1 Mx-1. A comparison of intensity in a Ca II image co-registered with one plage magnetogram shows stronger spatial correlations with both total field strength and unsigned vertical field, |Bz|, than either Sz or horizontal flux density, Bh. The observed Ca II brightness enhancement, however, probably contains a strong contribution from a near-photosphere hot-wall effect, which is unrelated to heating in the solar atmosphere.

  17. Photospheric and Chromospheric Oscillations in Solar Faculae

    NASA Astrophysics Data System (ADS)

    Kobanov, N. I.; Pulyaev, V. A.

    2007-11-01

    The differences between physical conditions in solar faculae and those in sunspots and quiet photosphere (increased temperature and different magnetic field topology) suggest that oscillation characteristics in facula areas may also have different properties. The analysis of 28 time series of simultaneous spectropolarimetric observations in facula photosphere (Fe i 6569 Å, 8538 Å) and chromosphere (Hα, Ca ii 8542 Å) yields the following results. The amplitude of five-minute oscillations of line-of-sight (LOS) velocity decreases by 20 40% in facula photosphere. There are only some cases revealing the inverse effect. The amplitude of four- to five-minute LOS velocity oscillations increases significantly in the chromosphere above faculae, and power spectra fairly often show pronounced peaks in a frequency range of 1.3 2.5 mHz. Evidence of propagating oscillations can be seen from space time diagrams. We have found oscillations of the longitudinal magnetic field (1.5 2 mHz and 5.2 mHz) inside faculae.

  18. Sub-photosphere to Solar Atmosphere Connection

    NASA Astrophysics Data System (ADS)

    Komm, Rudolf; De Moortel, Ineke; Fan, Yuhong; Ilonidis, Stathis; Steiner, Oskar

    2015-12-01

    Magnetic fields extend from the solar interior through the atmosphere. The formation and evolution of active regions can be studied by measuring subsurface flows with local helioseismology. The emergence of magnetic flux from the solar convection zone is associated with acoustic perturbation signatures. In near-surface layers, the average dynamics can be determined for emerging regions. MHD simulations of the emergence of a twisted flux tube show how magnetic twist and free energy are transported from the interior into the corona and the dynamic signatures associated with such transport in the photospheric and sub-photospheric layers. The subsurface twisted flux tube does not emerge into the corona as a whole in emerging active regions. Shear flows at the polarity inversion line and coherent vortical motions in the subsurface flux tubes are the major means by which twist is transported into the corona, leading to the formation of sigmoid-shaped coronal magnetic fields capable of driving solar eruptions. The transport of twist can be followed from the interior by using the kinetic helicity of subsurface flows as a proxy of magnetic helicity; this quantity holds great promise for improving the understanding of eruptive phenomena. Waves are not only vital for studying the link between the solar interior and the surface but for linking the photosphere with the corona as well. Acoustic waves that propagate from the surface into the magnetically structured, dynamic atmosphere undergo mode conversion and refraction. These effects enable atmospheric seismology to determine the topography of magnetic canopies in the solar atmosphere. Inclined magnetic fields lower the cut-off frequency so that low frequency waves can leak into the outer atmosphere. Recent high resolution, high cadence observations of waves and oscillations in the solar atmosphere, have lead to a renewed interest in the potential role of waves as a heating mechanism. In light of their potential contribution

  19. The Photospheric Poynting Flux and Coronal Heating

    NASA Astrophysics Data System (ADS)

    Welsch, Brian

    2014-06-01

    Some models of coronal heating suppose that random (cf., coherent) convective motions at the photosphere shuffle the footpoints of coronal magnetic fields and thereby inject sufficient magnetic energy upward to account for observed coronal and chromospheric energy losses in active regions. Using high-resolution observations of plage magnetic fields made with the Solar Optical Telescope aboard the Hinode satellite, we observationally test this idea by estimating the upward transport of magnetic energy --- the vertical Poynting flux, S_z --- across the photosphere in a plage region. To do so, we combine: (i) estimates of photospheric horizontal velocities, v_h, determined by local correlation tracking applied to a sequence of line-of-sight magnetic field maps from the Narrowband Filter Imager, with (ii) a vector magnetic field measurement from the SpectroPolarimeter. Plage fields are ideal observational targets for estimating energy injection by convection, because they are: (i) strong enough to be measured with relatively small uncertainties; (ii) not so strong that convection is heavily suppressed (as within umbrae); and (iii) unipolar, so S_z in plage is not influenced by mixed-polarity processes (e.g., flux emergence) that cannot explain steady heating in stable, active-region fields. In this and a previously analyzed plage region, we found that the average S_z varied between the regions, but was positive (upward) and sufficient to explain coronal heating, with values near 2 x 10^7 erg/ cm^2/ s. We find the energy input per unit magnetic flux to be on the order of a few times 10^4 erg/ s/ Mx. A comparison of intensity in a Ca II image co-registered with one plage magnetogram shows stronger spatial correlation with unsigned vertical field, |B_z|, than either S_z or horizontal flux density, |B_h|.

  20. Proper orthogonal decomposition of solar photospheric motions.

    PubMed

    Vecchio, A; Carbone, V; Lepreti, F; Primavera, L; Sorriso-Valvo, L; Veltri, P; Alfonsi, G; Straus, Th

    2005-08-05

    The spatiotemporal dynamics of the solar photosphere is studied by performing a proper orthogonal decomposition (POD) of line of sight velocity fields computed from high resolution data coming from the MDI/SOHO instrument. Using this technique, we are able to identify and characterize the different dynamical regimes acting in the system. Low-frequency oscillations, with frequencies in the range 20-130 microHz, dominate the most energetic POD modes (excluding solar rotation), and are characterized by spatial patterns with typical scales of about 3 Mm. Patterns with larger typical scales of approximately 10 Mm, are associated to p-modes oscillations at frequencies of about 3000 microHz.

  1. Spherical harmonic analysis of steady photospheric flows

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    1987-01-01

    A technique is presented in which full disk Doppler velocity measurements are analyzed using spherical harmonic functions to determine the characteristics of the spectrum of spherical harmonic modes and the nature of steady photospheric flows. Synthetic data are constructed in order to test the technique. In spite of the mode mixing due to the lack of information about the motions on the backside of the sun, solar rotation and differential rotation can be accurately measured and monitored for secular changes, and meridional circulations with small amplitudes can be measured. Furthermore, limb shift measurements can be accurately obtained, and supergranules can be fully resolved and separated from giant cells by their spatial characteristics.

  2. The source surface and photospheric magnetic field models

    NASA Technical Reports Server (NTRS)

    Saito, T.; Kozuka, Y.; Oki, T.; Akasofu, S.-I.

    1991-01-01

    It is possible to reproduce the configuration of the neutral line on the solar source surface by the axial dipole at the center of the sun and a few fictitious dipoles on the photosphere. An attempt is made to identify the nature of such fictitious dipoles in the photospheric magnetic fields. It is shown that large-scale photospheric dipole fields can be identified clearly at the locations indicated by the fictitious dipoles when the photospheric field is very simple. They are found to be active regions.

  3. Photospheric flows around a quiescent filament

    NASA Astrophysics Data System (ADS)

    Rondi, S.; Roudier, Th.; Molodij, G.; Bommier, V.; Keil, S.; Sütterlin, P.; Malherbe, J. M.; Meunier, N.; Schmieder, B.; Maloney, P.

    2007-06-01

    Context: The horizontal photospheric flows below and around a filament are one of the components in the formation and evolution of filaments. Few studies exist because they require multiwalength time sequences at high spatial resolution. Aims: Our objective is to measure the horizontal photospheric flows associated with the evolution and eruption of a filament. Methods: We present observations obtained in 2004 during the international JOP 178 campaign which involved eleven instruments both in space and at ground based observatories. We use TRACE WL, DOT and DST observation to derive flow maps which are then coaligned with intensity images and with the vector magnetic field map obtained with THEMIS/MTR. Results: Several supergranulation cells cross the Polarity Inversion Line (PIL) and can transport magnetic flux through the PIL, in particular parasitic polarities. We present a detailed example of the formation of a secondary magnetic dip at the location of a filament footpoint. Large-scale converging flows, which could exist along the filament channel and contribute to its formation, are not observed. Before the filament's eruptive phase, we observe both parasitic and normal polarities being swept by a continuously diverging horizontal flow located in the filament gap. The disappearance of the filament initiates in this gap. Such purely horizontal motions could lead to destabilization of the filament and could trigger the sudden filament disappearance.

  4. Photospheric Magnetic Flux Transport - Supergranules Rule

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Rightmire-Upton, Lisa

    2012-01-01

    Observations of the transport of magnetic flux in the Sun's photosphere show that active region magnetic flux is carried far from its origin by a combination of flows. These flows have previously been identified and modeled as separate axisymmetric processes: differential rotation, meridional flow, and supergranule diffusion. Experiments with a surface convective flow model reveal that the true nature of this transport is advection by the non-axisymmetric cellular flows themselves - supergranules. Magnetic elements are transported to the boundaries of the cells and then follow the evolving boundaries. The convective flows in supergranules have peak velocities near 500 m/s. These flows completely overpower the superimposed 20 m/s meridional flow and 100 m/s differential rotation. The magnetic elements remain pinned at the supergranule boundaries. Experiments with and without the superimposed axisymmetric photospheric flows show that the axisymmetric transport of magnetic flux is controlled by the advection of the cellular pattern by underlying flows representative of deeper layers. The magnetic elements follow the differential rotation and meridional flow associated with the convection cells themselves -- supergranules rule!

  5. Magnetic balltracking: Tracking the photospheric magnetic flux

    NASA Astrophysics Data System (ADS)

    Attie, R.; Innes, D. E.

    2015-02-01

    Context. One aspect of understanding the dynamics of the quiet Sun is to quantify the evolution of the flux within small-scale magnetic features. These features are routinely observed in the quiet photosphere and were given various names, such as pores, knots, magnetic patches. Aims: This work presents a new algorithm for tracking the evolution of the broad variety of small-scale magnetic features in the photosphere, with a precision equal to the instrumental resolution. Methods: We have developed a new technique to track the evolution of the individual magnetic features from magnetograms, called "magnetic balltracking". It quantifies the flux of the tracked features, and it can track the footpoints of magnetic field lines inferred from magnetic field extrapolation. The algorithm can detect and quantify flux emergence, as well as flux cancellation. Results: The capabilities of magnetic balltracking are demonstrated with the detection and the tracking of two cases of magnetic flux emergence that lead to the brightening of X-ray loops. The maximum emerged flux ranges from 1018 Mx to 1019 Mx (unsigned flux) when the X-ray loops are observed. Movies associated to Figs. 6 and 18 are available in electronic form at http://www.aanda.org

  6. Reconnection brightenings in the quiet solar photosphere

    NASA Astrophysics Data System (ADS)

    Rouppe van der Voort, Luc H. M.; Rutten, Robert J.; Vissers, Gregal J. M.

    2016-08-01

    We describe a new quiet-Sun phenomenon which we call quiet-Sun Ellerman-like brightenings (QSEB). QSEBs are similar to Ellerman bombs (EB) in some respects but differ significantly in others. EBs are transient brightenings of the wings of the Balmer Hα line that mark strong-field photospheric reconnection in complex active regions. QSEBs are similar but smaller and less intense Balmer-wing brightenings that occur in quiet areas away from active regions. In the Hα wing, we measure typical lengths of less than 0.5 arcsec, widths of 0.23 arcsec, and lifetimes of less than a minute. We discovered them using high-quality Hα imaging spectrometry from the Swedish 1-m Solar Telescope (SST) and show that, in lesser-quality data, they cannot be distinguished from more ubiquitous facular brightenings, nor in the UV diagnostics currently available from space platforms. We add evidence from concurrent SST spectropolarimetry that QSEBs also mark photospheric reconnection events, but in quiet regions on the solar surface. The movies are available in electronic form at http://www.aanda.org

  7. Data Assimilation in the ADAPT Photospheric Flux Transport Model

    SciTech Connect

    Hickmann, Kyle S.; Godinez, Humberto C.; Henney, Carl J.; Arge, C. Nick

    2015-03-17

    Global maps of the solar photospheric magnetic flux are fundamental drivers for simulations of the corona and solar wind and therefore are important predictors of geoeffective events. However, observations of the solar photosphere are only made intermittently over approximately half of the solar surface. The Air Force Data Assimilative Photospheric Flux Transport (ADAPT) model uses localized ensemble Kalman filtering techniques to adjust a set of photospheric simulations to agree with the available observations. At the same time, this information is propagated to areas of the simulation that have not been observed. ADAPT implements a local ensemble transform Kalman filter (LETKF) to accomplish data assimilation, allowing the covariance structure of the flux-transport model to influence assimilation of photosphere observations while eliminating spurious correlations between ensemble members arising from a limited ensemble size. We give a detailed account of the implementation of the LETKF into ADAPT. Advantages of the LETKF scheme over previously implemented assimilation methods are highlighted.

  8. Data Assimilation in the ADAPT Photospheric Flux Transport Model

    NASA Astrophysics Data System (ADS)

    Hickmann, Kyle S.; Godinez, Humberto C.; Henney, Carl J.; Arge, C. Nick

    2015-04-01

    Global maps of the solar photospheric magnetic flux are fundamental drivers for simulations of the corona and solar wind and therefore are important predictors of geoeffective events. However, observations of the solar photosphere are only made intermittently over approximately half of the solar surface. The Air Force Data Assimilative Photospheric Flux Transport (ADAPT) model uses localized ensemble Kalman filtering techniques to adjust a set of photospheric simulations to agree with the available observations. At the same time, this information is propagated to areas of the simulation that have not been observed. ADAPT implements a local ensemble transform Kalman filter (LETKF) to accomplish data assimilation, allowing the covariance structure of the flux-transport model to influence assimilation of photosphere observations while eliminating spurious correlations between ensemble members arising from a limited ensemble size. We give a detailed account of the implementation of the LETKF into ADAPT. Advantages of the LETKF scheme over previously implemented assimilation methods are highlighted.

  9. The quiet-Sun photosphere and chromosphere.

    PubMed

    Rutten, Robert J

    2012-07-13

    The overall structure and the fine structure of the solar photosphere outside active regions are largely understood, except possibly the important roles of a turbulent near-surface dynamo at its bottom, internal gravity waves at its top and small-scale vorticity. Classical one-dimensional static radiation-escape modelling has been replaced by three-dimensional time-dependent magento-hydrodynamic simulations that come closer to reality. The solar chromosphere, in contrast, remains little understood, although its pivotal role in coronal mass and energy loading makes it a principal research area. Its fine structure defines its overall structure, so that hard-to-observe and hard-to-model small-scale dynamical processes are key to understanding. However, both chromospheric observation and chromospheric simulation presently mature towards the required sophistication. Open-field features seem of greater interest than easier-to-see closed-field features.

  10. Relationships Between Photospheric Flows and Solar Flares

    NASA Astrophysics Data System (ADS)

    Welsch, B. T.; Li, Y.

    2013-12-01

    Fourier Local Correlation Tracking (FLCT) has been applied to the entire database of 96-minute cadence line-of-sight (LOS) magnetograms from the SOHO/MDI mission, to derive photospheric transverse velocities (u_x,u_y). In a previous study, we applied FLCT to a few dozen active regions (ARs), and found that the "proxy Poynting flux" (PPF) --- the product u B^2, where u is the FLCT flow speed and B is the LOS field divided by the cosine of viewing angle, integrated over each AR --- was statistically related to flare activity. We will present preliminary results of our investigation of the relationship between PPF and flare activity from NOAA's GOES catalog for several hundred ARs identified in NOAA's daily Solar Region Summaries.

  11. Measurements of Photospheric and Chromospheric Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Lagg, Andreas; Lites, Bruce; Harvey, Jack; Gosain, Sanjay; Centeno, Rebecca

    2015-12-01

    The Sun is replete with magnetic fields, with sunspots, pores and plage regions being their most prominent representatives on the solar surface. But even far away from these active regions, magnetic fields are ubiquitous. To a large extent, their importance for the thermodynamics in the solar photosphere is determined by the total magnetic flux. Whereas in low-flux quiet Sun regions, magnetic structures are shuffled around by the motion of granules, the high-flux areas like sunspots or pores effectively suppress convection, leading to a temperature decrease of up to 3000 K. The importance of magnetic fields to the conditions in higher atmospheric layers, the chromosphere and corona, is indisputable. Magnetic fields in both active and quiet regions are the main coupling agent between the outer layers of the solar atmosphere, and are therefore not only involved in the structuring of these layers, but also for the transport of energy from the solar surface through the corona to the interplanetary space. Consequently, inference of magnetic fields in the photosphere, and especially in the chromosphere, is crucial to deepen our understanding not only for solar phenomena such as chromospheric and coronal heating, flares or coronal mass ejections, but also for fundamental physical topics like dynamo theory or atomic physics. In this review, we present an overview of significant advances during the last decades in measurement techniques, analysis methods, and the availability of observatories, together with some selected results. We discuss the problems of determining magnetic fields at smallest spatial scales, connected with increasing demands on polarimetric sensitivity and temporal resolution, and highlight some promising future developments for their solution.

  12. A MAGNETIC CALIBRATION OF PHOTOSPHERIC DOPPLER VELOCITIES

    SciTech Connect

    Welsch, Brian T.; Fisher, George H.; Sun, Xudong

    2013-03-10

    The zero point of measured photospheric Doppler shifts is uncertain for at least two reasons: instrumental variations (from, e.g., thermal drifts); and the convective blueshift, a known correlation between intensity and upflows. Accurate knowledge of the zero point is, however, useful for (1) improving estimates of the Poynting flux of magnetic energy across the photosphere, and (2) constraining processes underlying flux cancellation, the mutual apparent loss of magnetic flux in closely spaced, opposite-polarity magnetogram features. We present a method to absolutely calibrate line-of-sight (LOS) velocities in solar active regions (ARs) near disk center using three successive vector magnetograms and one Dopplergram coincident with the central magnetogram. It exploits the fact that Doppler shifts measured along polarity inversion lines (PILs) of the LOS magnetic field determine one component of the velocity perpendicular to the magnetic field, and optimizes consistency between changes in LOS flux near PILs and the transport of transverse magnetic flux by LOS velocities, assuming that ideal electric fields govern the magnetic evolution. Previous calibrations fitted the center-to-limb variation of Doppler velocities, but this approach cannot, by itself, account for residual convective shifts at the limb. We apply our method to vector magnetograms of AR 11158, observed by the Helioseismic and Magnetic Imager aboard the Solar Dynamics Observatory, and find clear evidence of offsets in the Doppler zero point in the range of 50-550 m s{sup -1}. In addition, we note that a simpler calibration can be determined from an LOS magnetogram and Dopplergram pair from the median Doppler velocity among all near-disk-center PIL pixels. We briefly discuss shortcomings in our initial implementation, and suggest ways to address these. In addition, as a step in our data reduction, we discuss the use of temporal continuity in the transverse magnetic field direction to correct apparently

  13. Measurements of Photospheric and Chromospheric Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Lagg, Andreas; Lites, Bruce; Harvey, Jack; Gosain, Sanjay; Centeno, Rebecca

    2017-09-01

    The Sun is replete with magnetic fields, with sunspots, pores and plage regions being their most prominent representatives on the solar surface. But even far away from these active regions, magnetic fields are ubiquitous. To a large extent, their importance for the thermodynamics in the solar photosphere is determined by the total magnetic flux. Whereas in low-flux quiet Sun regions, magnetic structures are shuffled around by the motion of granules, the high-flux areas like sunspots or pores effectively suppress convection, leading to a temperature decrease of up to 3000 K. The importance of magnetic fields to the conditions in higher atmospheric layers, the chromosphere and corona, is indisputable. Magnetic fields in both active and quiet regions are the main coupling agent between the outer layers of the solar atmosphere, and are therefore not only involved in the structuring of these layers, but also for the transport of energy from the solar surface through the corona to the interplanetary space. Consequently, inference of magnetic fields in the photosphere, and especially in the chromosphere, is crucial to deepen our understanding not only for solar phenomena such as chromospheric and coronal heating, flares or coronal mass ejections, but also for fundamental physical topics like dynamo theory or atomic physics. In this review, we present an overview of significant advances during the last decades in measurement techniques, analysis methods, and the availability of observatories, together with some selected results. We discuss the problems of determining magnetic fields at smallest spatial scales, connected with increasing demands on polarimetric sensitivity and temporal resolution, and highlight some promising future developments for their solution.

  14. Are the photospheric sunspots magnetically force-free in nature?

    NASA Astrophysics Data System (ADS)

    Tiwari, Sanjiv Kumar

    2011-08-01

    In a force-free magnetic field, there is no interaction of field and the plasma in the surrounding atmosphere i.e., electric currents are aligned with the magnetic field, giving rise to zero Lorentz force. The computation of many magnetic parameters like magnetic energy, gradient of twist of sunspot magnetic fields (computed from the force-free parameter α), including any kind of extrapolations heavily hinge on the force-free approximation of the photospheric magnetic fields. The force-free magnetic behaviour of the photospheric sunspot fields has been examined by Metcalf et al. (1995) and Moon et al. (2002) ending with inconsistent results. Metcalf et al. (1995) concluded that the photospheric magnetic fields are far from the force-free nature whereas Moon et al. (2002) found the that the photospheric magnetic fields are not so far from the force-free nature as conventionally regarded. The accurate photospheric vector field measurements with high resolution are needed to examine the force-free nature of sunspots. We use high resolution vector magnetograms obtained from the Solar Optical Telescope/Spectro-Polarimeter (SOT/SP) aboard Hinode to inspect the force-free behaviour of the photospheric sunspot magnetic fields. Both the necessary and sufficient conditions for force-freeness are examined by checking global as well as as local nature of sunspot magnetic fields. We find that the sunspot magnetic fields are very close to the force-free approximation, although they are not completely force-free on the photosphere.

  15. X-ray spectra from convective photospheres of neutron stars

    SciTech Connect

    Zavlin, V.E.; Pavlov, G.G. |; Shibanov, Yu.A.; Rogers, F.J.; Iglesias, C.A.

    1996-01-17

    We present first results of modeling convective photospheres of neutron stars. We show that in photospheres composed of the light elements convection arises only at relatively low effective temperatures ({le}3 - 5 x 10{sup 4} K), whereas in the case of iron composition it arises at T{sub eff}{le} 3 x 10{sup 5}K. Convection changes the depth dependence of the photosphere temperature and the shapes of the emergent spectra. Thus, it should be taken into account for the proper interpretation of EUV/soft-X-ray observations of the thermal radiation from neutron stars.

  16. Magnetic rotation of the solar photosphere

    NASA Technical Reports Server (NTRS)

    Snodgrass, H. B.

    1983-01-01

    Magnetograms made at Mt. Wilson Observatory from January 1967 to May 1982 are crosscorrelated in 34 latitude strips at 1-4-day increments to determine the rotation of magnetic features in the solar photosphere. The data are smoothed by averaging corresponding correlations and calculating rotation from the displacement of the averaged-correlation maximum; the usefulness and validity of this procedure are discussed. No significant time variation or field dependence is found for the period of the observations, at least to the accuracy of the calculated means (variance of from about 2 m/sec at low latitudes to about 10 m/sec near the poles). The rotation function omega at solar latitude phi is shown to be 2.902 0.464 sin sq phi - 0.328 sin to the 4th phi microrad/sec, in agreement with the Mt. Wilson Doppler profile near the poles and with the sunspot determination of Newton and Nunn (1951) at sunspot latitudes, where the Doppler estimate is about 30 m/sec slower.

  17. Photospheric composition and structure in white dwarfs

    NASA Astrophysics Data System (ADS)

    Barstow, M. A.

    1993-12-01

    One of the central mysteries of white dwarf studies has been the nature and abundance of trace elements in the atmospheres of these stars. It had been thought that the dominant trace element in otherwise pure hydrogen DA white dwarf atmospheres was helium. However, some spectroscopic and theoretical evidence suggested that, at least in some stars, heavier elements may be important. Prior to the launch of ROSAT the questions regarding the atmospheric composition of DA white dwarfs in general remained unresolved. The ROSAT mission has provided EUV and X-ray data for a large sample of DA white dwarfs with which we can study their photospheric composition and structure through the effect of trace opacity sources on the emergent fluxes. Contrary to expectations little (if any) helium is found and the main sources of opacity appear to be trace heavy elements. Support for these conclusions is found in recent EUV and far-UV spectra of several stars. However, photometric data do not allow us to determine the abundance of the individual elements and observations with the extreme ultraviolet explorer satellite (EUVE) spectrometers will be essential for detailed composition measurements.

  18. Uncertainties in the solar photospheric oxygen abundance

    NASA Astrophysics Data System (ADS)

    Cubas Armas, M.; Asensio Ramos, A.; Socas-Navarro, H.

    2017-03-01

    Aims: The purpose of this work is to better understand the confidence limits of the photospheric solar oxygen abundance derived from three-dimensional models using the forbidden [OI] line at 6300 Å, including correlations with other parameters involved. Methods: We worked with a three-dimensional empirical model and two solar intensity atlases. Bayesian inference was employed as a tool to determine the most probable value for the solar oxygen abundance given the model chosen. We considered a number of error sources, such as uncertainties in the continuum derivation, in the wavelength calibration and in the abundance/strength of Ni. Results: Our results show correlations between the effects of several parameters employed in the derivation. The Bayesian analysis provides robust confidence limits taking into account all of these factors in a rigorous manner. We obtain that, given the empirical three-dimensional model and the atlas observations employed here, the most probable value for the solar oxygen abundance is log (ɛO) = 8.86 ± 0.04. However, we note that this uncertainty does not consider possible sources of systematic errors due to the model choice.

  19. THE SUN’S PHOTOSPHERIC CONVECTION SPECTRUM

    SciTech Connect

    Hathaway, David H.; Teil, Thibaud; Kitiashvili, Irina; Norton, Aimee A. E-mail: thibaud.teil@gmail.com E-mail: aanorton@stanford.edu

    2015-10-01

    Spectra of the cellular photospheric flows are determined from full-disk Doppler velocity observations acquired by the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory spacecraft. Three different analysis methods are used to separately determine spectral coefficients representing the poloidal flows, the toroidal flows, and the radial flows. The amplitudes of these spectral coefficients are constrained by simulated data analyzed with the same procedures as the HMI data. We find that the total velocity spectrum rises smoothly to a peak at a wavenumber of about 120 (wavelength of about 35 Mm), which is typical of supergranules. The spectrum levels off out to wavenumbers of about 400, and then rises again to a peak at a wavenumber of about 3500 (wavelength of about 1200 km), which is typical of granules. The velocity spectrum is dominated by the poloidal flow component (horizontal flows with divergence but no curl) at wavenumbers above 30. The toroidal flow component (horizontal flows with curl but no divergence) dominates at wavenumbers less than 30. The radial flow velocity is only about 3% of the total flow velocity at the lowest wavenumbers, but increases in strength to become about 50% at wavenumbers near 4000. The spectrum compares well with the spectrum of giant cell flows at the lowest wavenumbers and with the spectrum of granulation from a 3D radiative-hydrodynamic simulation at the highest wavenumbers.

  20. ALFVÉN WAVES IN SIMULATIONS OF SOLAR PHOTOSPHERIC VORTICES

    SciTech Connect

    Shelyag, S.; Cally, P. S.; Reid, A.; Mathioudakis, M.

    2013-10-10

    Using advanced numerical magneto-hydrodynamic simulations of the magnetized solar photosphere, including non-gray radiative transport and a non-ideal equation of state, we analyze plasma motions in photospheric magnetic vortices. We demonstrate that apparent vortex-like motions in photospheric magnetic field concentrations do not exhibit 'tornado'-like behavior or a 'bath-tub' effect. While at each time instance the velocity field lines in the upper layers of the solar photosphere show swirls, the test particles moving with the time-dependent velocity field do not demonstrate such structures. Instead, they move in a wave-like fashion with rapidly changing and oscillating velocity field, determined mainly by magnetic tension in the magnetized intergranular downflows. Using time-distance diagrams, we identify horizontal motions in the magnetic flux tubes as torsional Alfvén perturbations propagating along the nearly vertical magnetic field lines with local Alfvén speed.

  1. Photospheric Magnetic Diffusion by Measuring Moments of Active Regions

    NASA Astrophysics Data System (ADS)

    Engell, Alexander; Longcope, D.

    2013-07-01

    Photospheric magnetic surface diffusion is an important constraint for the solar dynamo. The HMI Active Region Patches (HARPs) program automatically identify all magnetic regions above a certain flux. In our study we measure the moments of ARs that are no longer actively emerging and can thereby give us good statistical constraints on photospheric diffusion. We also present the diffusion properties as a function of latitude, flux density, and single polarity (leading or following) within each HARP.

  2. A THEORY OF PHOTOSPHERIC EMISSION FROM RELATIVISTIC OUTFLOWS

    SciTech Connect

    Ruffini, R.; Siutsou, I. A.; Vereshchagin, G. V.

    2013-07-20

    We derive the optical depth and photospheric radius of relativistic outflows using a model of a relativistic wind with a finite duration. We also discuss the role of radiative diffusion in such an outflow. We numerically solve the radiative transfer equation and obtain light curves and observed spectra of the photospheric emission. The spectra we obtain are nonthermal and in some cases have Band shapes.

  3. The development of convective structures in the solar photosphere

    NASA Astrophysics Data System (ADS)

    Baran, O.; Stodilka, M.

    2016-12-01

    We study the development of convective structures in the solar photosphere on the basis of the photospheric convection models obtained using data from VTT by the solving of the inverse nonequilibrium radiative transfer problem. Temporal changes of the variations of vertical velocity and temperature within granular cells are analyzed. Features of the appearance and the disappearance of granules according to their size, the formation of "trees" of fragmenting granules are investigated.

  4. The development of convective structures in the solar photosphere

    NASA Astrophysics Data System (ADS)

    Baran, O.; Stodilka, M.

    2016-12-01

    We study the development of convective structures in the solar photosphere on the basis of the photospheric convection models obtained using data from VTT by the solving of the inverse nonequilibrium radiative transfer problem. Temporal changes of the variations of vertical velocity and temperature within granular cells are analyzed. Features of the appearance and the disappearance of granules according to their size, the formation of "trees" of fragmenting granules are investigated.

  5. Forecasting the Solar Photosphere's Magnetic Flux with Local Data Assimilation

    NASA Astrophysics Data System (ADS)

    Hickmann, K. S.; Godinez, H. C.; Henney, C. J.; Arge, C. N.

    2014-12-01

    Accurate forecasts of the photospheric magnetic flux are important since the photosphere provides the driving bound-ary conditions for the Corona and Solar wind which impact near Earth space weather. These space weather phenomenaeffect satellite trajectories and communication systems as well as safety on manned space missions. In this presen-tation we detail our recent improvements to the data assimilation mechanisms in the Air Force Data AssimilativePhotospheric flux Transport (ADAPT) model. These include implementation of the local ensemble transform Kalmanfilter (LETKF) for the assimilation of satellite observations. In the past non-local ensemble methods have been usedto assimilate data into photosphere models. Due to the small ensemble sizes allowed for Solar forecasts spuriouscorrelations were introduced in the sample covariance, causing model divergence from observations. With our imple-mentation of the LETKF in ADAPT this ensemble divergence has been reduced. In addition multi-scale techniqueshave been implemented in ADAPT to deal with the lack of active region creation in the photosphere model. Lackof large scale active region creation in the ADAPT model caused ensemble bias when assimilating observations ofnewly created regions using ensemble Kalman methods. Separating the scales at which active regions occur allowsobservational noise for such regions to be controlled independently. We show that our consideration of the multi-scalenature of photosphere flux transport has allowed more accurate assimilation of large active regions.

  6. EVIDENCE FOR THE PHOTOSPHERIC EXCITATION OF INCOMPRESSIBLE CHROMOSPHERIC WAVES

    SciTech Connect

    Morton, R. J.; Verth, G.; Fedun, V.; Erdelyi, R.; Shelyag, S.

    2013-05-01

    Observing the excitation mechanisms of incompressible transverse waves is vital for determining how energy propagates through the lower solar atmosphere. We aim to show the connection between convectively driven photospheric flows and incompressible chromospheric waves. The observations presented here show the propagation of incompressible motion through the quiet lower solar atmosphere, from the photosphere to the chromosphere. We determine photospheric flow vectors to search for signatures of vortex motion and compare results to photospheric flows present in convective simulations. Further, we search for the chromospheric response to vortex motions. Evidence is presented that suggests incompressible waves can be excited by the vortex motions of a strong magnetic flux concentration in the photosphere. A chromospheric counterpart to the photospheric vortex motion is also observed, presenting itself as a quasi-periodic torsional motion. Fine-scale, fibril structures that emanate from the chromospheric counterpart support transverse waves that are driven by the observed torsional motion. A new technique for obtaining details of transverse waves from time-distance diagrams is presented and the properties of transverse waves (e.g., amplitudes and periods) excited by the chromospheric torsional motion are measured.

  7. Decorrelation Times of Photospheric Fields and Flows

    NASA Technical Reports Server (NTRS)

    Welsch, B. T.; Kusano, K.; Yamamoto, T. T.; Muglach, K.

    2012-01-01

    We use autocorrelation to investigate evolution in flow fields inferred by applying Fourier Local Correlation Tracking (FLCT) to a sequence of high-resolution (0.3 "), high-cadence (approx = 2 min) line-of-sight magnetograms of NOAA active region (AR) 10930 recorded by the Narrowband Filter Imager (NFI) of the Solar Optical Telescope (SOT) aboard the Hinode satellite over 12 - 13 December 2006. To baseline the timescales of flow evolution, we also autocorrelated the magnetograms, at several spatial binnings, to characterize the lifetimes of active region magnetic structures versus spatial scale. Autocorrelation of flow maps can be used to optimize tracking parameters, to understand tracking algorithms f susceptibility to noise, and to estimate flow lifetimes. Tracking parameters varied include: time interval Delta t between magnetogram pairs tracked, spatial binning applied to the magnetograms, and windowing parameter sigma used in FLCT. Flow structures vary over a range of spatial and temporal scales (including unresolved scales), so tracked flows represent a local average of the flow over a particular range of space and time. We define flow lifetime to be the flow decorrelation time, tau . For Delta t > tau, tracking results represent the average velocity over one or more flow lifetimes. We analyze lifetimes of flow components, divergences, and curls as functions of magnetic field strength and spatial scale. We find a significant trend of increasing lifetimes of flow components, divergences, and curls with field strength, consistent with Lorentz forces partially governing flows in the active photosphere, as well as strong trends of increasing flow lifetime and decreasing magnitudes with increases in both spatial scale and Delta t.

  8. Signatures of running penumbral waves in sunspot photospheres

    NASA Astrophysics Data System (ADS)

    Löhner-Böttcher, J.; Bello González, N.

    2015-08-01

    Context. The highly dynamic atmosphere above sunspots exhibits a wealth of magnetohydrodynamic waves. Recent studies suggest a coupled nature of the most prominent phenomena: umbral flashes and running penumbral waves (RPWs). Aims: From an observational point of view, we perform a height-dependent study of RPWs, compare their wave characteristics, and aim to track down these so far only chromospherically observed phenomena to photospheric layers to prove the upward propagating field-guided nature of RPWs. Methods: We analyze a time series (58 min) of multiwavelength observations of an isolated circular sunspot (NOAA11823) taken at high spatial and temporal resolution in spectroscopic mode with the Interferometric BIdimensional Spectro-polarimeter (IBIS/DST). By means of a multilayer intensity sampling, velocity comparisons, wavelet power analysis, and sectorial studies of time slices, we retrieve the power distribution, characteristic periodicities, and propagation characteristics of sunspot waves at photospheric and chromospheric levels. Results: Signatures of RPWs are found at photospheric layers. Those continuous oscillations occur preferably at periods between 4-6 min starting at the inner penumbral boundary. The photospheric oscillations all have a slightly delayed, more defined chromospheric counterpart with larger relative velocities, which are linked to preceding umbral flash events. In all of the layers, the power of RPWs follows a filamentary fine-structure and shows a typical ring-shaped power distribution increasing in radius for larger wave periods. The analysis of time slices reveals apparent horizontal velocities for RPWs at photospheric layers of ≈51 km s-1, which decrease to ≈37 km s-1 at chromospheric heights. Conclusions: The observations strongly support the scenario of RPWs being upward propagating slow-mode waves guided by the magnetic field lines. Clear evidence for RPWs at photospheric layers is given. The inverse proportionality of the

  9. New Observations of Subarcsecond Photospheric Bright Points

    NASA Technical Reports Server (NTRS)

    Berger, T. E.; Schrijver, C. J.; Shine, R. A.; Tarbell, T. D.; Title, A. M.; Scharmer, G.

    1995-01-01

    We have used an interference filter centered at 4305 A within the bandhead of the CH radical (the 'G band') and real-time image selection at the Swedish Vacuum Solar Telescope on La Palma to produce very high contrast images of subarcsecond photospheric bright points at all locations on the solar disk. During the 6 day period of 1993 September 15-20 we observed active region NOAA 7581 from its appearance on the East limb to a near-disk-center position on September 20. A total of 1804 bright points were selected for analysis from the disk center image using feature extraction image processing techniques. The measured Full Width at Half Maximum (FWHM) distribution of the bright points in the image is lognormal with a modal value of 220 km (0 sec .30) and an average value of 250 km (0 sec .35). The smallest measured bright point diameter is 120 km (0 sec .17) and the largest is 600 km (O sec .69). Approximately 60% of the measured bright points are circular (eccentricity approx. 1.0), the average eccentricity is 1.5, and the maximum eccentricity corresponding to filigree in the image is 6.5. The peak contrast of the measured bright points is normally distributed. The contrast distribution variance is much greater than the measurement accuracy, indicating a large spread in intrinsic bright-point contrast. When referenced to an averaged 'quiet-Sun' area in the image, the modal contrast is 29% and the maximum value is 75%; when referenced to an average intergranular lane brightness in the image, the distribution has a modal value of 61% and a maximum of 119%. The bin-averaged contrast of G-band bright points is constant across the entire measured size range. The measured area of the bright points, corrected for pixelation and selection effects, covers about 1.8% of the total image area. Large pores and micropores occupy an additional 2% of the image area, implying a total area fraction of magnetic proxy features in the image of 3.8%. We discuss the implications of this

  10. New Observations of Subarcsecond Photospheric Bright Points

    NASA Technical Reports Server (NTRS)

    Berger, T. E.; Schrijver, C. J.; Shine, R. A.; Tarbell, T. D.; Title, A. M.; Scharmer, G.

    1995-01-01

    We have used an interference filter centered at 4305 A within the bandhead of the CH radical (the 'G band') and real-time image selection at the Swedish Vacuum Solar Telescope on La Palma to produce very high contrast images of subarcsecond photospheric bright points at all locations on the solar disk. During the 6 day period of 15-20 Sept. 1993 we observed active region NOAA 7581 from its appearance on the East limb to a near-disk-center position on 20 Sept. A total of 1804 bright points were selected for analysis from the disk center image using feature extraction image processing techniques. The measured FWHM distribution of the bright points in the image is lognormal with a modal value of 220 km (0.30 sec) and an average value of 250 km (0.35 sec). The smallest measured bright point diameter is 120 km (0.17 sec) and the largest is 600 km (O.69 sec). Approximately 60% of the measured bright points are circular (eccentricity approx. 1.0), the average eccentricity is 1.5, and the maximum eccentricity corresponding to filigree in the image is 6.5. The peak contrast of the measured bright points is normally distributed. The contrast distribution variance is much greater than the measurement accuracy, indicating a large spread in intrinsic bright-point contrast. When referenced to an averaged 'quiet-Sun' area in the image, the modal contrast is 29% and the maximum value is 75%; when referenced to an average intergranular lane brightness in the image, the distribution has a modal value of 61% and a maximum of 119%. The bin-averaged contrast of G-band bright points is constant across the entire measured size range. The measured area of the bright points, corrected for pixelation and selection effects, covers about 1.8% of the total image area. Large pores and micropores occupy an additional 2% of the image area, implying a total area fraction of magnetic proxy features in the image of 3.8%. We discuss the implications of this area fraction measurement in the context of

  11. Data Assimilation in the ADAPT Photospheric Flux Transport Model

    DOE PAGES

    Hickmann, Kyle S.; Godinez, Humberto C.; Henney, Carl J.; ...

    2015-03-17

    Global maps of the solar photospheric magnetic flux are fundamental drivers for simulations of the corona and solar wind and therefore are important predictors of geoeffective events. However, observations of the solar photosphere are only made intermittently over approximately half of the solar surface. The Air Force Data Assimilative Photospheric Flux Transport (ADAPT) model uses localized ensemble Kalman filtering techniques to adjust a set of photospheric simulations to agree with the available observations. At the same time, this information is propagated to areas of the simulation that have not been observed. ADAPT implements a local ensemble transform Kalman filter (LETKF)more » to accomplish data assimilation, allowing the covariance structure of the flux-transport model to influence assimilation of photosphere observations while eliminating spurious correlations between ensemble members arising from a limited ensemble size. We give a detailed account of the implementation of the LETKF into ADAPT. Advantages of the LETKF scheme over previously implemented assimilation methods are highlighted.« less

  12. The Evershed Effect from the Photosphere to the Chromosphere

    NASA Astrophysics Data System (ADS)

    Healy, Brian; Tritschler, Alexandra

    2017-01-01

    The Evershed effect is the observed Doppler shift of spectral lines within a sunspot due to flows of plasma. In the photosphere, the Evershed effect is interpreted as a horizontal outflow of plasma with a maximum speed of 1-2 km/s, while in the chromosphere, the inverse Evershed effect is interpreted as an inflow with a speed reaching 5-6 km/s. In this project, we study the Evershed effect from the photosphere to the chromosphere in order to determine line-of-sight flow velocity and inclination. We present line-of-sight velocity maps and their azimuthal dependence based on spectroscopic observations of four different spectral lines. From the azimuthal dependence of the velocity we find flow vectors at varying radial distances from the center of the sunspot. In the photosphere, the flow speed reaches a maximum of around 1.6 km/s within the penumbra, and the outflow maintains a nearly horizontal inclination. In the chromosphere, the inflow speed reaches 3.8 km/s in the superpenumbra as it acquires a descending vertical component that tilts the flow by as much as 20○ below the horizontal. Spectral observations of the boundary between the photosphere and chromosphere show slight indications of inflow at speeds less than 0.5 km/s. Our results contribute to the understanding of the inverse Evershed flow in the chromosphere, which is thought to have a different driving mechanism than the photospheric Evershed flow.

  13. 3D model atmospheres and the solar photospheric oxygen abundance

    NASA Astrophysics Data System (ADS)

    Caffau, E.; Ludwig, H.-G.

    2008-10-01

    In recent years the photospheric solar oxygen abundance experienced a significant downward revision. However, a low photospheric abundance is incompatible with the value in the solar interior inferred from helioseismology. For contributing to the dispute whether the solar oxygen abundance is “high” or “low”, we re-derived its photospheric abundance independently of previous analyses. We applied 3D (CO5BOLD) as well as 1D model atmospheres. We considered standard disc-centre and disc-integrated spectral atlases, as well as newly acquired solar intensity spectra at different heliocentric angles. We determined the oxygen abundances from equivalent width and/or line profile fitting of a number of atomic lines. As preliminary result, we find an oxygen abundance in the range 8.73 8.79, encompassing the value obtained by Holweger (2001), and somewhat higher than the value obtained by Asplund et al. (2005).

  14. Fe II lines in the presence of photospheric oscillations

    SciTech Connect

    Viotti, R.; Vitton, A.; Friedjung, M.

    1988-01-01

    Line asymmetries and wavelength shifts can be produced by dynamical processes at work in the solar photosphere. Dravins, Nordlund and coworkers discussed the importance of the granulation in determining the C-shape of solar lines of Fe I and Fe II ions. Iron is a suitable atomic species to diagnose photospheric motions, since it has negligible asymmetries due to isotope composition and to pressure shifts and no hyperfine structure splitting. Marmolino, Roberti, Severino and coworkers studied the effects produced by photospheric oscillations (5-min and short-period acoustic waves) on the resonance line of KI at 7699 A. To extend this study to iron lines, in this paper we show the synthesis of the Fe II 6516 line in the presence of granulation and 65-min oscillation.

  15. How the Solar Wind Ties to its Photospheric Origins

    NASA Astrophysics Data System (ADS)

    Leamon, Robert J.; McIntosh, Scott W.

    2009-05-01

    We present a new method of visualizing the solar photospheric magnetic field based on the "Magnetic Range of Influence" (MRoI). The MRoI is a simple realization of the magnetic environment in the photosphere, reflecting the distance required to balance the integrated magnetic field contained in any magnetogram pixel. It provides a new perspective on where subterrestrial field lines in a Potential Field Source Surface (PFSS) model connect to the photosphere, and thus the source of Earth-directed solar wind (within the limitations of PFSS models), something that is not usually obvious from a regular synoptic magnetogram. In each of three sample solar rotations, at different phases of the solar cycle, the PFSS footpoint either jumps between isolated areas of high MRoI or moves slowly within one such area. Footpoint motions are consistent with Fisk's interchange reconnection model.

  16. X-ray spectra from convective photospheres of neutron stars

    NASA Technical Reports Server (NTRS)

    Zavlin, V. E.; Pavlov, G. G.; Shibanov, Yu. A.; Rogers, F. J.; Iglesias, C. A.

    1996-01-01

    The preliminary results from the simulation of convective photospheres of neutron stars are presented. It is shown that in photospheres composed of light elements, convection arises at relatively low effective temperatures of between 3 x 10(exp 4) and 5 x 10(exp 4) K, whereas, in the case of iron composition, it arises at temperatures of less than or equal to 3 x 10(exp 5) K. Convection changes the depth dependence of the photosphere temperature and the shapes of the emergent spectra. It is concluded that depth should be taken into account for the correct interpretation of extreme ultraviolet/soft X-ray observations of the thermal radiation from neutron stars.

  17. X-ray spectra from convective photospheres of neutron stars

    NASA Technical Reports Server (NTRS)

    Zavlin, V. E.; Pavlov, G. G.; Shibanov, Yu. A.; Rogers, F. J.; Iglesias, C. A.

    1996-01-01

    The preliminary results from the simulation of convective photospheres of neutron stars are presented. It is shown that in photospheres composed of light elements, convection arises at relatively low effective temperatures of between 3 x 10(exp 4) and 5 x 10(exp 4) K, whereas, in the case of iron composition, it arises at temperatures of less than or equal to 3 x 10(exp 5) K. Convection changes the depth dependence of the photosphere temperature and the shapes of the emergent spectra. It is concluded that depth should be taken into account for the correct interpretation of extreme ultraviolet/soft X-ray observations of the thermal radiation from neutron stars.

  18. Photospheric Magnetic Free Energy Density of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Zhang, Hongqi

    2016-12-01

    We present the photospheric energy density of magnetic fields in two solar active regions (one of them recurrent) inferred from observational vector magnetograms, and compare it with other available differently defined energy parameters of magnetic fields in the photosphere. We analyze the magnetic fields in Active Regions NOAA 6580-6619-6659 and 11158. The quantity 1/4π{B}n\\cdot{B}p is an important energy parameter that reflects the contribution of magnetic shear to the difference between the potential (Bp) and the non-potential magnetic field (Bn), and also the contribution to the free magnetic energy near the magnetic neutral lines in the active regions. It is found that the photospheric mean magnetic energy density shows clear changes before the powerful solar flares in Active Region NOAA 11158, which is consistent with the change in magnetic fields in the flaring lower atmosphere.

  19. Energetic electrons and photospheric electric currents during solar flares

    NASA Astrophysics Data System (ADS)

    Musset, S.; Vilmer, N.; Bommier, V.

    2015-12-01

    Solar flares are among the most energetic events in the solar system. Magnetic energy previously stored in the coronal magnetic field is transferred to particle acceleration, plasma motion and plasma heating. Magnetic energy release is likely to occur in coronal currents sheets associated with regions of strong gradient of magnetic connectivity. Coronal current sheets can be traced by their footprints at the surface on the Sun, in e.g. photospheric current ribbons. We aim to study the relationship between the current ribbons observed at the photospheric level which trace coronal current sheets, and the flare energetic electrons traced by their X-ray emissions. The photospheric magnetic field and vertical current density are calculated from SDO/HMI spectropolarimetric data using the UNNOFIT inversion and Metcalf disambiguation codes, while the X-ray images and spectra are reconstructed from RHESSI data. In a first case (the GOES X2.2 flare of February 15, 2011), a spatial correlation is observed between the photospheric current ribbons and the coronal X-ray emissions from energetic electrons (Musset et al., 2015). Moreover, a conjoint evolution of both the photospheric currents and the X-ray emission is observed during the course of the flare. Both results are interpreted as consequences of the magnetic reconnection in coronal current sheets. Propagation of the reconnection sites to new structures during the flare results in new X-ray emission sites and local increase of the photospheric currents We will examine in this contribution whether similar results are obtained for other X-class flares.

  20. Energetic electrons and photospheric electric currents during solar flares

    NASA Astrophysics Data System (ADS)

    Musset, Sophie; Vilmer, Nicole; Bommier, Veronique

    2016-07-01

    It is currently admitted that solar flares are powered by magnetic energy previously stored in the coronal magnetic field. During magnetic reconnection processes, this energy is transferred to particle acceleration, plasma motion and plasma heating. Magnetic energy release is likely to occur on coronal currents sheets along regions of strong gradient of magnetic connectivity. These coronal current sheets can be traced by their footprints at the surface on the Sun, i.e. by photospheric current ribbons. We aim to study the relation between these current ribbons observed at the photospheric level, tracing the coronal current sheets, and the flare energetic electrons traced by their X-ray emissions. The photospheric magnetic field and vertical current density have been calculated from SDO/HMI spectropolarimetric data with the UNNOFIT inversion and Metcalf disambiguation codes, while the X-ray images and spectra have been reconstructed from RHESSI data. In a first case, the GOES X2.2 flare of February 15, 2011, a spatial correlation is observed between the photospheric current ribbons and the coronal X-ray emissions from energetic electrons. Moreover, a conjoint evolution of both the photospheric currents and the X-ray emission is observed during the course of the flare. Both results are interpreted as consequences of the magnetic reconnection in coronal current sheets, and propagation of the reconnection sites to new structures during the flare, leading to new X-ray emission and local increase of the photospheric currents (Musset et al., 2015). We shall discuss here similar results obtained for other X-class flares.

  1. Association of solar coronal loops to photospheric magnetic field

    NASA Astrophysics Data System (ADS)

    Pradeep Chitta, Lakshmi; Peter, Hardi; Solanki, Sami

    2017-08-01

    Magnetic connectivity and its evolution from the solar photosphere to the corona will play a crucial role in the energetics of the solar atmosphere. To explore this connectivity, we use high spatial resolution magnetic field observations of an active region from the balloon-borne SUNRISE telescope, in combination with the observations of coronal loops imaged in extreme ultraviolet by SDO/AIA. We show that photospheric magnetic field at the base of coronal loops is rapidly evolving through small-scale flux emergence and cancellation events with rates on the order of 10^15 Mx/s. When observed at high spatial resolution better than 0.5 arcsec, we find that basically all coronal loops considered so far are rooted in the photosphere above small-scale opposite polarity magnetic field patches. In the photosphere, the magnetic field threading coronal loops is interacting with opposite polarity parasitic magnetic concentrations leading to dynamic signatures in the upper atmosphere. Chromospheric small-scale jets aligned to coronal loops are observed at these locations. We will present preliminary results from 3D MHD simulations of coronal loops driven by realistic magneto-convection and discuss what role the magnetic interactions at coronal loop footpoints could play in the evolution of coronal loops and their heating.

  2. Photospheric and Chromospheric Gas Motions around a Dark Filament

    NASA Astrophysics Data System (ADS)

    Magara, Tetsuya; Kitai, Reizaburo

    1999-10-01

    In this paper, we investigate how photospheric material moves below a dark filament, and we study chromospheric gas motions inside the filament. In the photosphere we trace granular motions by means of a local correlation tracking (LCT) technique to derive horizontal velocity field, while inside the filament we obtain the line-of-sight velocity field by subtracting a blueshifted Hα image from a redshifted Hα image. We find that a typical value of horizontal photospheric velocity is 1 km s-1, and its divergence map maintains a large-scale pattern during several hours. We also find that photospheric motions around a filament channel are random in space and changeable in time. As for the motion inside the filament, our results show that there is an area of upward motions at one side of the filament axis and an area of downward motions at the other side, which means that filament material has a helical motion inside the filament. We think that these results provide new important information on theories of filament formation.

  3. Reconnection in photospheric-chromospheric current sheet and coronal heating

    SciTech Connect

    Kumar, P.; Kumar, N.; Uddin, W.

    2011-02-15

    It has been observed by various ground and space based solar missions that magnetic reconnection occurs frequently in the photosphere-chromosphere region as well as in the solar corona. The purpose of this article is to examine the process of reconnection in thin current sheet formed between two oppositely directed magnetic flux tubes in photospheric-chromospheric region. Using the data of different atmospheric models for the solar photosphere and chromosphere, we have estimated the rate of magnetic reconnection in terms of Alfvenic Mach number, growth rate of tearing mode, island length scales, and energy dissipation rate necessary to heat the chromospheric plasma. It is found that magnetic Reynolds number for the current sheet in the chromosphere varies from 1.14 Multiplication-Sign 10{sup 3} to 7.14 Multiplication-Sign 10{sup 6} which indicates that the field lines in the photosphere and chromosphere reconnect with speed, that is, 0.00034 to 0.0297 times the Alfven speed. Frequency of the MHD waves generated in the chromosphere reconnection region is of the order of 100 Hz, so these high-frequency waves may be the sources of coronal heating and solar wind acceleration.

  4. Diverse Manifestations of the Jet Photosphere in GRB Spectra

    NASA Astrophysics Data System (ADS)

    Acuner, Zeynep; Ryde, Felix; Iyyani, Shabnam

    2016-07-01

    The interpretation of GRB spectra has been a quite intriguing task due to the large number of bursts showing narrow spectral shapes as well as hard low energy spectral slopes. These are not explicable by pure non-thermal emission despite the initial expectations, hence point towards the existence of a photospheric component. We consider the multi-component models, where the photosphere forms only a part of the spectrum and photospheric emission models, where the observed spectrum is dominated by photospheric origin and discuss how they explain the double break shape of most of the spectra. We also convey that there are more complex spectral shapes, which, although statistically can be explained via current models, give an interesting probe to the nature of spectral formation in GRB prompt emission. We illustrate different models and discuss them on several sample bursts. We conclude that it is difficult to distinguish between these models on a purely statistical basis and therefore, detailed predictions from different physical scenarios should be tested on the observations.

  5. Solar Photosphere: The Limb Effect and Gravitational Redshift

    NASA Astrophysics Data System (ADS)

    Wöhl, H.; Murdin, P.

    2000-11-01

    The `limb effect' is the observational finding that many spectral absorption lines formed in the photosphere (FRAUNHOFER LINES) show a REDSHIFT of their mean wavelength when comparing limb observations with observations from the solar disk center. The magnitude of this effect is different for each spectral line and equals some 100 m s-1 when explained as a DOPPLER EFFECT....

  6. The Cyclic Variation of Solar Photospheric Intensity from SOHO Images

    NASA Astrophysics Data System (ADS)

    Jeong, Dong-Gwon; Park, Hyungmin; Moon, Byeongha; Oh, Suyeon

    2017-08-01

    The well-known solar cycle controls almost the entire appearance of the solar photosphere. We therefore presume that the continuous emission of visible light from the solar surface follows the solar cyclic variation. In this study, we examine the solar cyclic variation of photospheric brightness in the visible range using solar images taken by the Solar and Heliospheric Observatory (SOHO)/Michelson Doppler Imager (MDI). The photospheric brightness in the visible range is quantified via the relative intensity acquired from in the raw solar images. In contrast to total solar irradiance, the relative intensity is out of phase with the solar cycle. During the solar minimum of solar cycles 23-24, the relative intensity shows enhanced heliolatitudinal asymmetry due to a positive asymmetry of the sunspot number. This result can be explained by the strength of the solar magnetic field that controls the strength of convection, implying that the emission in the visible range is controlled by the strength of convection. This agrees with the photospheric brightness increasing during a period of long spotless days.

  7. Turbulent convective flows in the solar photospheric plasma

    NASA Astrophysics Data System (ADS)

    Caroli, A.; Giannattasio, F.; Fanfoni, M.; Del Moro, D.; Consolini, G.; Berrilli, F.

    2015-10-01

    > The origin of the 22-year solar magnetic cycle lies below the photosphere where multiscale plasma motions, due to turbulent convection, produce magnetic fields. The most powerful intensity and velocity signals are associated with convection cells, called granules, with a scale of typically 1 Mm and a lifetime of a few minutes. Small-scale magnetic elements (SMEs), ubiquitous on the solar photosphere, are passively transported by associated plasma flows. This advection makes their traces very suitable for defining the convective regime of the photosphere. Therefore the solar photosphere offers an exceptional opportunity to investigate convective motions, associated with compressible, stratified, magnetic, rotating and large Rayleigh number stellar plasmas. The magnetograms used here come from a Hinode/SOT uninterrupted 25-hour sequence of spectropolarimetric images. The mean-square displacement of SMEs has been modelled with a power law with spectral index . We found for times up to and for times up to . An alternative way to investigate the advective-diffusive motion of SMEs is to look at the evolution of the two-dimensional probability distribution function (PDF) for the displacements. Although at very short time scales the PDFs are affected by pixel resolution, for times shorter than the PDFs seem to broaden symmetrically with time. In contrast, at longer times a multi-peaked feature of the PDFs emerges, which suggests the non-trivial nature of the diffusion-advection process of magnetic elements. A Voronoi distribution analysis shows that the observed small-scale distribution of SMEs involves the complex details of highly nonlinear small-scale interactions of turbulent convective flows detected in solar photospheric plasma.

  8. Incorporation of a Generalized Data Assimilation Module within a Global Photospheric Flux Transport Model

    DTIC Science & Technology

    2016-03-31

    represent the instantaneous state of the global solar photospheric magnetic field distribution by incorporating advanced data assimilation techniques...helioseismically detected active region data so that truly instantaneous global solar photospheric magnetic field maps are generated. The photospheric flux...magnetic flux transport model selected for this effort was the Worden and Harvey (WH) model originally developed at the National Solar Observatory

  9. Gamma radiation and photospheric white-light flare continuum

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.; Dwivedi, B. N.

    1982-01-01

    It is noted that recent gamma-ray observations of solar flares have provided a better means for estimating the heating of the solar atmosphere by energetic protons. This type of heating has been suggested as the explanation of the continuum emission of the white-light flare. The effects on the photosphere of high-energy particles capable of producing the intense gamma-ray emission observed in the flare of July 11, 1978, are analyzed. A simple energy-balance argument is used, and hydrogen ionization is taken into account. It is found that energy deposition increases with height for the inferred proton spectra and is not strongly dependent upon the assumed angle of incidence. At the top of the photosphere, the computed energy inputs fall in the range 10-100 ergs/cu cm-s.

  10. On the generation of Alfven waves in the solar photosphere

    NASA Astrophysics Data System (ADS)

    Tsap, Yuriy; Stepanov, Alexander; Kopylova, Yulia

    The influence of collisions between neutrals and ions on the energy flux of Alfven waves in the weakly ionized plasma based on the three-fluid equations is considered. As distinguished from Vranjes et al. (2008) and Soler et al. (2013) it has been shown that amplitudes of Alfven waves that are generated in the solar photosphere do not depend on the ionization ratio and the initial conditions for ions, if the wave frequency is much less that the effective frequency of collisions between ions and neutral atoms. This is explained by the strong coupling due to ion-neutral collisions and the magnetic field freezing-in effect. Alfven waves can be effectively excited in the photosphere of the Sun by the convective motions.

  11. Spectropolarimetry of an Active Region at the Photosphere and Chromosphere

    NASA Astrophysics Data System (ADS)

    Nagaraju, K.; Sankarasubramanian, K.; Rangarajan, K. E.

    2009-06-01

    Initial results on the simultaneous spectropolarimetric observations of an active region at the photosphere and chromosphere are presented. For this purpose, the Fe I line at λ6569 and the H I at λ6563 (H α) are used. Stratification of the line-of-sight (LOS) velocity and magnetic fields above an active region are discussed. The LOS magnetic field strengths are derived using the center-of-gravity (COG) method and the LOS velocity gradients are derived using the bisector technique. From this analysis it is found that both the velocity and magnetic gradients are larger in the umbral region above the sunspot compared to the penumbral region. And the magnetic field strength decreases much faster with height in the umbral region compared to the penumbral region. Upflows with larger LOS velocity gradients are located in the regions where stronger photospheric fields are observed.

  12. Modelling the influence of photospheric turbulence on solar flare statistics

    NASA Astrophysics Data System (ADS)

    Mendoza, M.; Kaydul, A.; de Arcangelis, L.; Andrade, J. S., Jr.; Herrmann, H. J.

    2014-09-01

    Solar flares stem from the reconnection of twisted magnetic field lines in the solar photosphere. The energy and waiting time distributions of these events follow complex patterns that have been carefully considered in the past and that bear some resemblance with earthquakes and stockmarkets. Here we explore in detail the tangling motion of interacting flux tubes anchored in the plasma and the energy ejections resulting when they recombine. The mechanism for energy accumulation and release in the flow is reminiscent of self-organized criticality. From this model, we suggest the origin for two important and widely studied properties of solar flare statistics, including the time-energy correlations. We first propose that the scale-free energy distribution of solar flares is largely due to the twist exerted by the vorticity of the turbulent photosphere. Second, the long-range temporal and time-energy correlations appear to arise from the tube-tube interactions. The agreement with satellite measurements is encouraging.

  13. Modelling the influence of photospheric turbulence on solar flare statistics.

    PubMed

    Mendoza, M; Kaydul, A; de Arcangelis, L; Andrade, J S; Herrmann, H J

    2014-09-23

    Solar flares stem from the reconnection of twisted magnetic field lines in the solar photosphere. The energy and waiting time distributions of these events follow complex patterns that have been carefully considered in the past and that bear some resemblance with earthquakes and stockmarkets. Here we explore in detail the tangling motion of interacting flux tubes anchored in the plasma and the energy ejections resulting when they recombine. The mechanism for energy accumulation and release in the flow is reminiscent of self-organized criticality. From this model, we suggest the origin for two important and widely studied properties of solar flare statistics, including the time-energy correlations. We first propose that the scale-free energy distribution of solar flares is largely due to the twist exerted by the vorticity of the turbulent photosphere. Second, the long-range temporal and time-energy correlations appear to arise from the tube-tube interactions. The agreement with satellite measurements is encouraging.

  14. Study of Magnetic Structure in the Solar Photosphere and Chromosphere

    NASA Technical Reports Server (NTRS)

    Noyes, Robert W.; Avrett, Eugene; Nisenson, Peter; Uitenbroek, Han; vanBallegooijen, Adriaan

    1998-01-01

    This grant funded an observational and theoretical program to study the structure and dynamics of the solar photosphere and low chromosphere, and the spectral signatures that result. The overall goal is to learn about mechanisms that cause heating of the overlying atmosphere, and produce variability of solar emission in spectral regions important for astrophysics and space physics. The program exploited two new ground-based observational capabilities: one using the Swedish Solar Telescope on La Palma for very high angular resolution observations of the photospheric intensity field (granulation) and proxies of the magnetic field (G-band images); and the other using the Near Infrared Magnetograph at the McMath-Pierce Solar Facility to map the spatial variation and dynamic behavior of the solar temperature minimum region using infrared CO lines. We have interpreted these data using a variety of theoretical and modelling approaches, some developed especially for this project. Previous annual reports cover the work done up to 31 May 1997. This final report summarizes our work for the entire period, including the period of no-cost extension from 1 June 1997 through September 30 1997. In Section 2 we discuss observations and modelling of the photospheric flowfields and their consequences for heating of the overlying atmosphere, and in Section 3 we discuss imaging spectroscopy of the CO lines at 4.67 mu.

  15. Active Region Magnetic Structure Observed in the Photosphere and Chromosphere

    NASA Technical Reports Server (NTRS)

    Leka, K. D.; Metcalf, Thomas R.

    2001-01-01

    The magnetic flux above sunspots and plage in NOAA (National Oceanic and Atmospheric Administration) Active Region 8299 has been measured in the photosphere and the chromosphere. We investigate the vertical magnetic structure above the umbrae, penumbrae and plage regions using quantitative statistical comparisons of the photospheric and chromospheric vector magnetic flux data. The results include: (1) a decrease in flux with height, (2) the direct detection of the superpenumbral canopy in the chromosphere, (3) values for dB/dz which are consistent with earlier investigations when derived from a straight difference between the two datasets but quite low when derived from the delta x B = 0 condition, (4) a monolithic structure in the umbra which extends well into the upper chromosphere with a very complex and varied structure in the penumbra and plage, as evidenced by (5) a uniform magnetic scale height in the umbrae with an abrupt jump to widely varying scale heights in the penumbral and plage regions. Further, we find (6) evidence for a very large (delta z approximately equals 3Mm) height difference between the atmospheric layers sampled in the two magnetograms, almost a factor of three larger than that implied by atmospheric models. We additionally test the apropriateness of using photospheric magnetic flux as a boundary for field-line extrapolations, and find a better agreement with observed coronal structure when the chromospheric flux is used as a boundary.

  16. Pixel Analysis and Plasma Dynamics Characterized by Photospheric Spectral Data

    NASA Astrophysics Data System (ADS)

    Rasca, Anthony P.; Chen, James; Pevtsov, Alexei A.

    2016-05-01

    Recent observations of the photosphere using high spatial and temporal resolutions show small dynamic features at the resolving limit during emerging flux events. However, line-of-sight (LOS) magnetogram pixels only contain the net uncanceled magnetic flux, which is expected to increase for fixed regions as resolution limits improve. A new pixel dynamics method uses spectrographic images to characterize photospheric absorption line profiles by variations in line displacement, width, asymmetry, and peakedness and is applied to quiet-sun regions, active regions with no eruption, and an active region with an ongoing eruption. Using Stokes I images from SOLIS/VSM on 2012 March 13, variations in line width and peakedness of Fe I 6301.5 Å are shown to have a strong spatial and temporal relationship with an M7.9 X-ray flare originating from NOAA 11429. This relationship is observed as a flattening in the line profile as the X-ray flare approaches peak intensity and was not present in area scans of a non-eruptive active region on 2011 April 14. These results are used to estimate dynamic plasma properties on sub-pixel scales and provide both spatial and temporal information of sub-pixel activity at the photosphere. The analysis can be extended to include the full Stokes parameters and study signatures of magnetic fields and coupled plasma properties.

  17. Active Region Magnetic Structure Observed in the Photosphere and Chromosphere

    NASA Technical Reports Server (NTRS)

    Leka, K. D.; Metcalf, Thomas R.

    2001-01-01

    The magnetic flux above sunspots and plage in NOAA (National Oceanic and Atmospheric Administration) Active Region 8299 has been measured in the photosphere and the chromosphere. We investigate the vertical magnetic structure above the umbrae, penumbrae and plage regions using quantitative statistical comparisons of the photospheric and chromospheric vector magnetic flux data. The results include: (1) a decrease in flux with height, (2) the direct detection of the superpenumbral canopy in the chromosphere, (3) values for dB/dz which are consistent with earlier investigations when derived from a straight difference between the two datasets but quite low when derived from the delta x B = 0 condition, (4) a monolithic structure in the umbra which extends well into the upper chromosphere with a very complex and varied structure in the penumbra and plage, as evidenced by (5) a uniform magnetic scale height in the umbrae with an abrupt jump to widely varying scale heights in the penumbral and plage regions. Further, we find (6) evidence for a very large (delta z approximately equals 3Mm) height difference between the atmospheric layers sampled in the two magnetograms, almost a factor of three larger than that implied by atmospheric models. We additionally test the apropriateness of using photospheric magnetic flux as a boundary for field-line extrapolations, and find a better agreement with observed coronal structure when the chromospheric flux is used as a boundary.

  18. The Conundrum of the Solar Pre-Flare Photospheric State.

    NASA Astrophysics Data System (ADS)

    Leka, KD; Barnes, Graham; Wagner, Eric

    2015-08-01

    Knowledge of the state of the solar photospheric magnetic field at a single instant in time does not appear sufficient to predict the size and timing of impending solar flares. Such knowledge may provide necessary conditions, such as the free magnetic energy needed for a flare to occur. Given the necessary conditions, it is often assumed that the evolution of the field, possibly by only a small amount, may trigger the onset of a flare. We present the results of a study using time series of photospheric vector field data from the Helioseismic and Magnetic Imager (HMI) on NASA's Solar Dynamics Observatory (SDO) to quantitatively parameterize both the state and evolution of solar active regions - their complexity, magnetic topology and energy - as related to solar flare events. We examine both extensive and intensive parameters and their temporal behavior, in the context of both large and small flaring episodes. Statistical tests based on nonparametric Discriminant Analysis are used to compare pre-flare epochs to a control group of flare-quiet epochs and active regions. Results regarding the type of photospheric signature examined and the efficacy of using the present state vs. temporal evolution to predict solar flares is quantified by standard skill scores.This work is made possible by contracts NASA NNH12CG10C and NOAA/SBIR WC-133R-13-CN-0079.

  19. How the Solar Wind Ties to Its Photospheric Origins

    NASA Astrophysics Data System (ADS)

    Leamon, Robert; McIntosh, S. W.

    2009-05-01

    We present a new method of visualizing the solar photospheric magnetic field based on the "Magnetic Range of Influence" (MRoI). The MRoI is a simple realization of the magnetic environment in the photosphere, reflecting the distance required to balance the integrated magnetic field contained in any magnetogram pixel. It provides a new perspective on where sub-terrestrial field lines in a Potential Field Source Surface (PFSS) model connect to the photosphere, and thus the source of Earth-directed solar wind (within the limitations of PFSS models), something that is not usually obvious from a regular synoptic magnetogram. In each of three sample solar rotations, at different phases of the solar cycle, the PFSS footpoint either jumps between isolated areas of high MRoI or moves slowly within one such area. Footpoint motions are consistent with Fisk's interchange reconnection model. We explore the relationships between the MRoI and flux at the footpoint and the in situ composition of the resulting wind.

  20. Correlating chromospheric and photospheric activity of FK Com

    NASA Astrophysics Data System (ADS)

    Vida, Krisztián; Korhonen, Heidi; Ilyin, Ilya; Oláh, Katalin; Andersen, Michael; Hackman, Thomas

    2015-08-01

    Using photometric observations between 1987-­­2010 and Halpha measurements from 1997-­­2010 we study the connection between the chromospheric and photospheric behaviour of the active late­-type star FK Comae. The Halpha region shows a double­-peaked emission, possibly indicating a circumstellar disc. Prominence-­like structures are often detected which extend to more than a stellar radius, and are stable for weeks. The prominences are often, but not always, connected with dark photospheric spots. From lower resolution Halpha spectra we find that the changes in the chromosphere happen mainly on a time scale longer than a few hours, but shorter variations are also observed. The rotational modulation of the Halpha emission are typically anticorrelated with the light curves, but we did not find convincing evidence of a clear connection between the long­-term trends of the Halpha emission and the overall brightness variation of the star. In addition, the chromosphere of FK Com seems to be in an unusually quiet state in 2009—2010, although there are many spots in the photosphere since the overall brightness of the star is low.

  1. Photospheric Origin of Three-minute Oscillations in a Sunspot

    NASA Astrophysics Data System (ADS)

    Chae, Jongchul; Lee, Jeongwoo; Cho, Kyuhyoun; Song, Donguk; Cho, Kyungsuk; Yurchyshyn, Vasyl

    2017-02-01

    The origin of the three-minute oscillations of intensity and velocity observed in the chromosphere of sunspot umbrae is still unclear. We investigated the spatio-spectral properties of the 3 minute oscillations of velocity in the photosphere of a sunspot umbra as well as those in the low chromosphere using the spectral data of the Ni i λ5436, Fe i λ5435, and Na i D2 λ5890 lines taken by the Fast Imaging Solar Spectrograph of the 1.6 m New Solar Telescope at the Big Bear Solar Observatory. As a result, we found a local enhancement of the 3 minute oscillation power in the vicinities of a light bridge (LB) and numerous umbral dots (UDs) in the photosphere. These 3 minute oscillations occurred independently of the 5 minute oscillations. Through wavelet analysis, we determined the amplitudes and phases of the 3 minute oscillations at the formation heights of the spectral lines, and they were found to be consistent with the upwardly propagating slow magnetoacoustic waves in the photosphere with energy flux large enough to explain the chromospheric oscillations. Our results suggest that the 3 minute chromospheric oscillations in this sunspot may have been generated by magnetoconvection occurring in the LB and UDs.

  2. Photospheric Magnetic Evolution in the WHI Active Regions

    NASA Technical Reports Server (NTRS)

    Welsch, B. T.; McTiernan, J. M.; Christe, S.

    2012-01-01

    Sequences of line-of-sight (LOS) magnetograms recorded by the Michelson Doppler Imager are used to quantitatively characterize photospheric magnetic structure and evolution in three active regions that rotated across the Sun s disk during the Whole Heliosphere Interval (WHI), in an attempt to relate the photospheric magnetic properties of these active regions to flares and coronal mass ejections (CMEs). Several approaches are used in our analysis, on scales ranging from whole active regions, to magnetic features, to supergranular scales, and, finally, to individual pixels. We calculated several parameterizations of magnetic structure and evolution that have previously been associated with flare and CME activity, including total unsigned magnetic flux, magnetic flux near polarity-inversion lines, amount of canceled flux, the "proxy Poynting flux," and helicity flux. To catalog flare events, we used flare lists derived from both GOES and RHESSI observations. By most such measures, AR 10988 should have been the most flare- and CME-productive active region, and AR 10989 the least. Observations, however, were not consistent with this expectation: ARs 10988 and 10989 produced similar numbers of flares, and AR 10989 also produced a few CMEs. These results highlight present limitations of statistics-based flare and CME forecasting tools that rely upon line-of-sight photospheric magnetic data alone.

  3. Radio Photospheres of Long-Period Variable Stars

    NASA Astrophysics Data System (ADS)

    Reid, Mark J.; Menten, Karl M.

    1997-02-01

    We report the detection of centimeter-wavelength emission from a sample of nearby long-period (Mira and semiregular) variables using the VLA. Six of the eight stars in the sample were detected. We find the continuum emission in the radio band to have a spectral index near 2.0, as expected for optically thick blackbody emission. The flux densities are a factor of ~2 above the level expected from the optical photospheres of the stars. We monitored three stars over a period of nearly 2 yr and find flux density variations of less than +/-15%. We partially resolved the stellar disk of W Hya and find an average diameter of 0.080" +/- 0.015" and a brightness temperature of 1500 +/- 570 K. Our observations suggest that long-period variables have a ``radio photosphere'' near 2R*, where R* is the stellar radius (defined by line-free regions of the optical spectrum). For the physical conditions expected in the radio photosphere, free electrons, obtained predominantly from the ionization of potassium and sodium, provide the dominant opacity through free-free interactions with neutral H and H2. A simple model with a single set of physical parameters can approximate all of our centimeter-wavelength data, as well as providing plausible sizes and brightness temperatures at far-IR wavelengths. At centimeter wavelengths, unity optical depth is achieved at a radius of about 4.8 × 1013 cm, where the density and temperature are ~1.5 × 1012 cm-3 and ~1630 K, respectively. The lack of variability of the centimeter-wavelength flux density for stars like o Ceti, R Leo, and W Hya limits variations of the temperature and/or radius of the radio photosphere to less than +/-150 K and +/-4 × 1012 cm. Also, any periodic shocks or disturbances near 2R* probably propagate outward at less than ~5 km s-1 and/or are mostly damped. The radio photosphere lies just outside of a ``molecular photosphere,'' seen optically in strong absorption lines of metallic oxides, and just inside of the SiO maser

  4. North south asymmetry in the coronal and photospheric magnetic fields

    NASA Astrophysics Data System (ADS)

    Virtanen, I.; Mursula, K.

    2013-12-01

    Several recent studies have shown that the Heliospheric current sheet (HCS) is southward shifted during about three years in the solar declining phase (the so-called bashful ballerina phenomenon). We study the hemispherical asymmetry in the photospheric and coronal magnetic fields using Wilcox Solar Observatory (WSO) measurements of the photospheric magnetic field since 1976 and the potential field source surface (PFSS) model. Multipole analysis of the photospheric magnetic field shows that during the late declining phase of solar cycles since 1970s, bashful ballerina phenomenon is a consequence of g02 quadrupole term, signed oppositely to the dipole moment. Surges of new flux transport magnetic field from low latitudes to the poles, thus leading to a systematically varying contribution to the g02-term from different latitudes. In the case of a north-south asymmetric flux production this is seen as a quadrupole contribution traveling towards higher latitudes. When the quadrupole term is largest the main contribution comes from the polar latitudes. At least during the four recent solar cycles the g02-term arises because the magnitude of the southern polar field is larger than in the north in the declining phase of the cycle. Magnetic flux is transported polewards by the meridional flow and it is most likely that besides the north-south asymmetric production of the magnetic flux, also the asymmetric transportation may significantly contribute to the observed asymmetry of polar field intensities. The overall activity during solar cycle is not significantly different in the northern and southern hemispheres, but hemispheres tend to develop in a different phase.

  5. The Effects of Transients on Photospheric and Chromospheric Power Distributions

    NASA Astrophysics Data System (ADS)

    Samanta, T.; Henriques, V. M. J.; Banerjee, D.; Krishna Prasad, S.; Mathioudakis, M.; Jess, D.; Pant, V.

    2016-09-01

    We have observed a quiet-Sun region with the Swedish 1 m Solar Telescope equipped with the CRISP Imaging SpectroPolarimeter. High-resolution, high-cadence, Hα line scanning images were taken to observe different layers of the solar atmosphere from the photosphere to upper chromosphere. We study the distribution of power in different period bands at different heights. Power maps of the upper photosphere and the lower chromosphere show suppressed power surrounding the magnetic-network elements, known as “magnetic shadows.” These also show enhanced power close to the photosphere, traditionally referred to as “power halos.” The interaction between acoustic waves and inclined magnetic fields is generally believed to be responsible for these two effects. In this study we explore whether small-scale transients can influence the distribution of power at different heights. We show that the presence of transients, like mottles, Rapid Blueshifted Excursions (RBEs), and Rapid Redshifted Excursions (RREs), can strongly influence the power maps. The short and finite lifetime of these events strongly affects all power maps, potentially influencing the observed power distribution. We show that Doppler-shifted transients like RBEs and RREs that occur ubiquitously can have a dominant effect on the formation of the power halos in the quiet Sun. For magnetic shadows, transients like mottles do not seem to have a significant effect on the power suppression around 3 minutes, and wave interaction may play a key role here. Our high-cadence observations reveal that flows, waves, and shocks manifest in the presence of magnetic fields to form a nonlinear magnetohydrodynamic system.

  6. Photospheric Current Spikes as Possible Predictors of Flares

    NASA Technical Reports Server (NTRS)

    Goodman, Michael L.; Kwan, Chiman; Ayhan, Bulent; Shang, Eric L.

    2016-01-01

    Flares involve generation of the largest current densities in the solar atmosphere. This suggests the hypothesis that prior to a large (M,X) flare there are related time dependent changes in the photospheric current distribution, and hence in the resistive heating rate in neutral line regions (NLRs). If this is true, these changes might be useful predictors of flares. Evidence supporting this hypothesis is presented. Results from a data driven, near photospheric, 3D magnetohydrodynamic type model suggest the model might be useful for predicting M and X flares several hours to several days in advance. The model takes as input the photospheric magnetic field observed by the Helioseismic & Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO) satellite. The model computes quantities in every active region (AR) pixel for 14 ARs, with spurious Doppler periods due to SDO orbital motion filtered out of the time series of the magnetic field for each pixel. Spikes in the NLR resistive heating rate Q, appearing as increases by orders of magnitude above background values in the time series of Q are found to occur, and appear to be correlated with the occurrence of M or X flares a few hours to a few days later. The subset of spikes analyzed at the pixel level are found to occur on HMI and granulation scales of 1 arcsec and 12 minutes. Spikes are found in NLRs with and without M or X flares, and outside as well as inside NLRs, but the largest spikes are localized in the NLRs of ARs with M or X flares, and associated with horizontal magnetic field strengths several hG, and vertical magnetic field strengths several orders of magnitude smaller, suggesting that the spikes are associated with current sheets.

  7. Photospheric Current Spikes as Possible Predictors of Flares

    NASA Technical Reports Server (NTRS)

    Goodman, Michael L.; Kwan, Chiman; Ayhan, Bulent; Shang, Eric L.

    2016-01-01

    Flares involve generation of the largest current densities in the solar atmosphere. This suggests the hypothesis that prior to a large (M,X) flare there are related time dependent changes in the photospheric current distribution, and hence in the resistive heating rate in neutral line regions (NLRs). If this is true, these changes might be useful predictors of flares. Preliminary evidence supporting this hypothesis is presented. Results from a data driven, near photospheric, 3D magnetohydrodynamic type model suggest the model might be useful for predicting M and X flares several hours to several days in advance. The model takes as input the photospheric magnetic field observed by the Helioseismic and Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO) satellite. The model computes quantities in every active region (AR) pixel for 14 ARs, with spurious Doppler periods due to SDO orbital motion filtered out of the time series of the magnetic field for each pixel. Spikes in the NLR resistive heating rate Q, appearing as increases by orders of magnitude above background values in the time series of Q are found to occur, and appear to be correlated with the occurrence of M or X flares a few hours to a few days later. The subset of spikes analyzed at the pixel level are found to occur on HMI and granulation scales of 1 arcsec and 12 minutes. Spikes are found in NLRs with and without M or X flares, and outside as well as inside NLRs, but the largest spikes are localized in the NLRs of ARs with M or X flares, and associated with horizontal magnetic field strengths approximately several hG, and vertical magnetic field strengths several orders of magnitude smaller. The spikes may be signatures of horizontal current sheets associated with emerging magnetic flux.

  8. Pixel Analysis of Photospheric Spectral Data. I. Plasma Dynamics

    NASA Astrophysics Data System (ADS)

    Rasca, Anthony P.; Chen, James; Pevtsov, Alexei A.

    2016-11-01

    Recent observations of the photosphere using high spatial and temporal resolution show small dynamic features at or below the current resolving limits. A new pixel dynamics method has been developed to analyze spectral profiles and quantify changes in line displacement, width, asymmetry, and peakedness of photospheric absorption lines. The algorithm evaluates variations of line profile properties in each pixel and determines the statistics of such fluctuations averaged over all pixels in a given region. The method has been used to derive statistical characteristics of pixel fluctuations in observed quiet-Sun regions, an active region with no eruption, and an active region with an ongoing eruption. Using Stokes I images from the Vector Spectromagnetograph (VSM) of the Synoptic Optical Long-term Investigations of the Sun (SOLIS) telescope on 2012 March 13, variations in line width and peakedness of Fe i 6301.5 Å are shown to have a distinct spatial and temporal relationship with an M7.9 X-ray flare in NOAA 11429. This relationship is observed as stationary and contiguous patches of pixels adjacent to a sunspot exhibiting intense flattening in the line profile and line-center displacement as the X-ray flare approaches peak intensity, which is not present in area scans of the non-eruptive active region. The analysis of pixel dynamics allows one to extract quantitative information on differences in plasma dynamics on sub-pixel scales in these photospheric regions. The analysis can be extended to include the Stokes parameters and study signatures of vector components of magnetic fields and coupled plasma properties.

  9. CHROMOSPHERIC POLARIZATION IN THE PHOTOSPHERIC SOLAR OXYGEN INFRARED TRIPLET

    SciTech Connect

    Del Pino Alemán, Tanausú; Trujillo Bueno, Javier

    2015-07-20

    We present multilevel radiative transfer modeling of the scattering polarization observed in the solar O i infrared triplet around 777 nm. We demonstrate that the scattering polarization pattern observed on the solar disk forms in the chromosphere, far above the photospheric region where the bulk of the emergent intensity profiles originate. We investigate the sensitivity of the polarization pattern to the thermal structure of the solar atmosphere and to the presence of weak magnetic fields (10{sup −2}–100 G) through the Hanle effect, showing that the scattering polarization signals of the oxygen infrared triplet encode information on the magnetism of the solar chromosphere.

  10. Helium at White Dwarf Photospheric Conditions: Preliminary Laboratory Results

    NASA Astrophysics Data System (ADS)

    Schaeuble, M.; Falcon, R. E.; Gomez, T. A.; Winget, D. E.; Montgomery, M. H.; Bailey, J. E.

    2017-03-01

    We present preliminary results of an experimental study exploring helium at photospheric conditions of white dwarf stars. These data were collected at Sandia National Laboratories' Z-machine, the largest x-ray source on earth. Our helium results could have many applications ranging from validating current DB white dwarf model atmospheres to providing accurate He pressure shifts at varying temperatures and densities. In a much broader context, these helium data can be used to guide theoretical developments in new continuum-lowering models for two-electron atoms. We also discuss future applications of our updated experimental design, which enables us to sample a greater range of densities, temperatures, and gas compositions.

  11. Photospheric Driving of Non-Potential Coronal Magnetic Field Simulations

    DTIC Science & Technology

    2016-09-19

    the locations of electric current and free energy. We only show the results for dt h24 . The two chosen times are as follow: (i) during the large...quantities based on the parallel electric current and local twist of the field line, we have settled on an alternative quantity called the “field line...Air Force Data-Assimilative Photospheric flux Transport model • α: current helicity density alpha = j ·B/B2 • B: magnetic field • E: electric field

  12. Vertical magnetic field gradient in the photospheric layers of sunspots

    NASA Astrophysics Data System (ADS)

    Joshi, Jayant; Lagg, Andreas; Hirzberger, Johann; Solanki, Sami K.; Tiwari, Sanjiv K.

    2017-02-01

    Aims: We investigate the vertical gradient of the magnetic field of sunspots in the photospheric layer. Methods: Independent observations were obtained with the Solar Optical Telescope/Spectropolarimeter (SOT/SP) on board the Hinode spacecraft and with the Tenrife Infrared Polarimeter-2 (TIP-2) mounted at the German Vacuum Tower Telescope (VTT). We apply state-of-the-art inversion techniques to both data sets to retrieve the magnetic field and the corresponding vertical gradient along with other atmospheric parameters in the solar photosphere. Results: In the sunspot penumbrae we detected patches of negative vertical gradients of the magnetic field strength, i.e., the magnetic field strength decreases with optical depth in the photosphere. The negative gradient patches are located in the inner and partly in the middle penumbrae in both data sets. From the SOT/SP observations we found that the negative gradient patches are restricted mainly to the deep photospheric layers and are concentrated near the edges of the penumbral filaments. Magnetohydrodynamic (MHD) simulations also show negative gradients in the inner penumbrae, also at the locations of filaments. In the observations and the simulation negative gradients of the magnetic field vs. optical depth dominate at some radial distances in the penumbra. The negative gradient with respect to optical depth in the inner penumbrae persists even after averaging in the azimuthal direction in the observations and, to a lesser extent, in the MHD simulations. If the gradients in the MHD simulations are determined with respect to geometrical height, then the azimuthal averages are always positive within the sunspot (above log τ = 0), corresponding to magnetic field increasing with depth, as generally expected. Conclusions: We interpret the observed localized presence of negative vertical gradient of the magnetic field strength in the observations as a consequence of stronger field from spines expanding with height and

  13. Fine-scale Photospheric Connections of Ellerman Bombs

    NASA Astrophysics Data System (ADS)

    Yang, Heesu; Chae, Jongchul; Lim, Eun-Kyung; Song, Donguk; Cho, Kyuhyoun; Kwak, Hannah; Yurchyshyn, Vasyl B.; Kim, Yeon-Han

    2016-10-01

    We investigate the photospheric and magnetic field structures associated with Ellerman bombs (EBs) using the 1.6 m New Solar Telescope at Big Bear Solar Observatory. The nine observed EBs were accompanied by elongated granule-like features (EGFs) that showed transverse motions prior to the EBs with an average speed of about 3.8 km s-1. Each EGF consisted of a sub-arcsecond bright core encircled by a dark lane around its moving front. The bright core appeared in the TiO broadband filter images and in the far wings of the Hα and Ca ii 8542 Å lines. In four EBs, the bi-directional expanding motion of the EGFs was identified in the TiO images. In those cases, the EGFs were found to be accompanied by an emerging flux (EF). In four other EBs, the EGF developed at the edge of a penumbra and traveled in the sunspot’s radial direction. The EGFs in these cases were identified as a moving magnetic feature (MMF). Our results show a clear connection among the magnetic elements, photospheric features, and EBs. This result suggests that the EBs result from magnetic reconnection forced by EFs or MMFs that are frequently manifested by EGFs.

  14. Chromospheric and coronal manifestations of photospheric cancelling magnetic fields

    NASA Astrophysics Data System (ADS)

    Panasenco, Olga; Martin, Sara F.; Engvold, Oddbjorn

    We discuss observable changes in solar features interpreted as evidences of the transfer of magnetic fields from the photosphere to the chromosphere and corona. In the photospheric level, new or decayed active region magnetic fields of opposite polarity encounter each other and cancel along a pre-existing polarity reversal boundary. Concurrently, in the chromospheric level of the solar atmosphere, the cancelling fields appear to lead to the creation and maintenance of a filament channel. The channel is identified by systematic changes in the orientation of fibrils in the chromosphere. We deduce that invisible extensions of the magnetic fields of the chromospheric fibrils into the corona could represent the beginning of the formation of a filament cavity in the low corona, before and/or during the initial appearance of a filament threads. When the filament channel is fully developed, such that there is a local magnetic field aligned with the polarity reversal boundary, the cancelling fields are then associated with the transfer of plasma, as well as magnetic field, into the low corona. We suggest this plasma is observed as new filament threads.

  15. Measuring Photospheric Rotational and Meridional Flows Using Magnetic Feature Tracking

    NASA Astrophysics Data System (ADS)

    Lamb, Derek

    2016-05-01

    Long-lived rotational and meridional flows are important ingredients of the solar cycle. Using magnetic field images to measure these flows on the solar surface has typically been performed by cross-correlating thin longitudinal strips or square patches across sufficiently long time gaps. Here, I use one month of SDO/HMI line-of-sight magnetic field observations, combined with the SWAMIS magnetic feature tracking algorithm to measure the motion of individual features in these magnetograms. By controlling for perturbations due to short-lived flows and due to false motions from feature interactions, I effectively isolate the long-lived flows traced by the magnetic features. This allows me to produce high-fidelity differential rotation measurements with well-characterized variances and covariances of the fit parameters. I also produce medium-fidelity measurements of the much weaker meridional flow that is broadly consistent with previous results, showing a peak flow of 16.7 m/s at 45 degrees latitude. This work shows that measuring the motions of individual features in photospheric magnetograms can produce high precision results in relatively short time spans, which suggests that high resolution non-longitudinally averaged photospheric velocity residual measurements could be produced to compare with coronal results, and to provide other diagnostics of the solar dynamo. This work has been partially supported by NASA Grants NNX11AP03G and NNX14AJ67G.

  16. Spherical harmonic analysis of steady photospheric flows. II

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    1992-01-01

    The use of the spherical harmonic functions to analyze the nearly steady flows in the solar photosphere is extended to situations in which B(0) the latitude at disk center, is nonzero and spurious velocities are present. The procedures for extracting the rotation profile and meridional circulation are altered to account for the seasonal tilt of the sun's rotation axis toward and away from the observer. A more robust and accurate method for separating the limb shift and meridional circulation signals is described. The analysis procedures include the ability to mask out areas containing spurious velocities (velocity-like signals that do not represent true flow velocities in the photosphere). The procedures are shown to work well in extracting the various flow components from realistic artificial data with a broad, continuous spectrum for the supergranulation. The presence of this supergranulation signal introduces errors of a few m/s in the measurements of the rotation profile, meridional circulation, and limb shift from a single Doppler image.

  17. Flare-associated Energy Exchange Between the Photosphere and Corona

    NASA Astrophysics Data System (ADS)

    Abramenko, Valentyna; Harra, L.

    2012-05-01

    In recent decades, it has been clearly demonstrated that strong flares in ARs (referred before as chromospheric flares) are not restricted to some closed volume in the chromosphere but rather involve a huge volume from deep sub-photospheric layers to the outer heliosphere. Undoubtedly, there exists interaction and energy exchange between different parts of the volume occupied by a flare, e.g., reconnection between up-welling loops and the pre-existing flux, waves and shocks, seismic response to a flare, momentum distribution and Lorentz Force acting, accelerated particle, heat, X-ray propagation, Poynting flux transport, etc. However, mechanisms of the processes, as well as their relationship with the flare itself (is a phenomenon a prelude to the flare, its consequence or non of such) is not well understood yet. We explore new metrics of the photospheric magnetic field: we monitor the magnetic energy dissipation rate. For three strong flares, we found that the magnetic energy dissipation rate sets to a monotonous ceasing several hours before the flare onset. Assuming nearly gradual energy input, the reduction of the energy dissipation rate implies that somewhere in the active region, the energy is being accumulated. The non-dissipated and accumulated energy amounts to (3 - 10) x 1032 ergs. We presume that at least part of the energy accumulated immediately before the flare is transferred into the corona and further drives the corona to a trigger point when flare occurs.

  18. THE BUILDUP OF A SCALE-FREE PHOTOSPHERIC MAGNETIC NETWORK

    SciTech Connect

    Thibault, K.; Charbonneau, P.; Crouch, A. D. E-mail: paulchar@astro.umontreal.ca-b

    2012-10-01

    We use a global Monte Carlo simulation of the formation of the solar photospheric magnetic network to investigate the origin of the scale invariance characterizing magnetic flux concentrations visible on high-resolution magnetograms. The simulations include spatially and temporally homogeneous injection of small-scale magnetic elements over the whole photosphere, as well as localized episodic injection associated with the emergence and decay of active regions. Network elements form in response to cumulative pairwise aggregation or cancellation of magnetic elements, undergoing a random walk on the sphere and advected on large spatial scales by differential rotation and a poleward meridional flow. The resulting size distribution of simulated network elements is in very good agreement with observational inferences. We find that the fractal index and size distribution of network elements are determined primarily by these post-emergence surface mechanisms, and carry little or no memory of the scales at which magnetic flux is injected in the simulation. Implications for models of dynamo action in the Sun are briefly discussed.

  19. Catastrophe of Coronal Magnetic Flux Ropes Caused by Photospheric Motions

    NASA Astrophysics Data System (ADS)

    Hu, Y. Q.; Jiang, Y. W.

    2001-11-01

    Using a 2.5-D, time-dependent ideal MHD model in Cartesian coordinates, we carried out numerical simulations to investigate the equilibrium and evolution properties of a magnetic configuration that consists of a coronal magnetic flux rope and a partly open photospheric background field, which is equivalent to that produced by a two-patch magnetic source on the photospheric surface. The axial and annular magnetic fluxes of the flux rope are given and fixed. The global magnetic configuration evolves in response to three types of changes of the background field: decreasing of the distance between the two sources, shrinking of the size of each source, and increasing of the shear in the closed component of the background field. As a result, the geometrical parameters of the flux rope, i.e. the height of the rope axis, the half-width of the rope and the length of the vertical current sheet below the rope, change due to the variation of the background field. It is shown that for a given coronal magnetic flux rope in a partly open background field, the variation of the geometrical parameters of the flux rope displays a catastrophic behavior, namely, there exists a critical point for each case, at which an infinitesimal change of the background field leads to a loss of equilibrium, and thus a jump of the flux rope. The implication of such a catastrophe in solar active phenomena is briefly discussed.

  20. Germanium and lead: Significant differences between meteoritic and photospheric abundances?

    NASA Technical Reports Server (NTRS)

    Grevesse, N.; Meyer, J. P.

    1985-01-01

    The order of the Galactic cosmic ray source (GCRS) composition in terms of first ionization potential (FIP) was examined. For most elements, the degree of volatility is (positively) correlated with the value of the FIP, so that it is not easy to distinguish a correlation of GCRS abundances anomalies with FIP from a correlation with volatility. Only a few permit to distinguish between the two kinds of ordering: if they are depleted relative to refractory metals, volatility must be relevant, if not, FIP is relevant. Among them Cu and Zn would seem to favor FIP. Among the best indicators are Ge and Pb. The abundance anomalies in GCRS are defined relative to a standard which, for the heavy elements concerned, is commonly taken as C1 Carbonaceous Chondrites. Photospheric abundances are more directly representative of the protosolar nebula, and hence of ordinary local galactic (LG) matter. The Ge and Pb reference abundance determinations in the Photosphere and in C1 meteorites are examined and their relevance to the problem with FIP vs. volatility in GCRs is discussed.

  1. Pixel Analysis and Plasma Dynamics Characterized by Photospheric Spectral Data

    NASA Astrophysics Data System (ADS)

    Rasca, A.; Chen, J.; Pevtsov, A. A.

    2015-12-01

    Continued advances in solar observations have led to higher-resolution magnetograms and surface (photospheric) images, revealing bipolar magnetic features operating near the resolution limit during emerging flux events and other phenomena used to predict solar eruptions responsible for geomagnetic plasma disturbances. However, line of sight (LOS) magnetogram pixels only contain the net uncanceled magnetic flux, which is expected to increase for fixed regions as resolution limits improve. A pixel dynamics model utilizing Stokes I spectral profiles was previously-used to quantify changes in the Doppler shift, width, asymmetry, and tail flatness of Fe I lines at 6301.5 and 6302.5 Å and used pixel-by-pixel line profile fluctuations to characterize quiet and active regions on the Sun. We use this pixel dynamics model with circularly polarized photospheric data (e.g., SOLIS data) to estimate plasma dynamic properties at a sub-pixel level. The analysis can be extended to include the full Stokes parameters and study signatures of magnetic fields and coupled plasma properties on sub-pixel scales.

  2. Spectral and polarization properties of photospheric emission from stratified jets

    SciTech Connect

    Ito, Hirotaka; Nagataki, Shigehiro; Matsumoto, Jin; Lee, Shiu-Hang; Tolstov, Alexey; Mao, Jirong; Dainotti, Maria; Mizuta, Akira

    2014-07-10

    We explore the spectral and polarization properties of photospheric emissions from stratified jets in which multiple components, separated by sharp velocity shear regions, are distributed in lateral directions. Propagation of thermal photons injected at a high optical depth region are calculated until they escape from the photosphere. It is found that the presence of the lateral structure within the jet leads to the nonthermal feature of the spectra and significant polarization signal in the resulting emission. The deviation from thermal spectra, as well as the polarization degree, tends to be enhanced as the velocity gradient in the shear region increases. In particular, we show that emissions from multicomponent jet can reproduce the typical observed spectra of gamma-ray bursts irrespective of the position of the observer when a velocity shear region is closely spaced in various lateral (θ) positions. The degree of polarization associated with the emission is significant (>few percent) at a wide range of observer angles and can be higher than 30%.

  3. Magnetic coupling of the solar photosphere and chromosphere

    NASA Astrophysics Data System (ADS)

    Rezaei, R.

    2008-10-01

    The solar surface outside sunspots and active regions, i.e., the quiet Sun, shows the ubiquitous pattern of granulation in the photosphere. The quiet solar photosphere harbors small-scale magnetic structures inside and between granules. This thesis presents thermodynamic properties of the small-scale magnetic flux concentrations in the quiet Sun using high spatial and temporal resolution observations along with numerical simulations. Spectral line profiles of the Fe I 630 nm pair and Ca II H were used to trace the photospheric and chromospheric layers of the magnetic elements. In the presence of magnetic field spectral lines split and are polarized via the Zeeman effect. The difference of a spectral line profile, measured in left and right circular polarized light, is a Stokes-V profile with two lobes. In the absence of any gradients of velocity or magnetic field along the line of sight, Stokes-V profiles are anti-symmetric. The different area of the two lobes, the Stokes-V area asymmetry, provides information about the gradients of the magnetic and velocity fields along the line of sight. Comparing high resolution spectropolarimetric data with synthetic maps of a 3D MHD simulation, we found several magnetic elements in the photosphere showing a central region of negative Stokes-V area asymmetry surrounded by a peripheral region with larger positive asymmetry. This finding was the first observational confirmation of the existence of a sharp boundary layer between magnetic elements and their immediate surroundings. Such boundary layers had been theoretically predicted ten years go. Furthermore, we found for the first time two Stokes-V profiles of the Fe I 630 nm line pair in a single spectrum showing opposite magnetic polarities. These two lines form in slightly different layers, so they trace the magnetic field in different geometrical heights. The temporal evolution of these profiles showed a magnetic flux cancellation, suggesting a magnetic reconnection in the

  4. Flare Activity and Magnetic Helicity Injection By Photospheric Horizontal Motions

    NASA Astrophysics Data System (ADS)

    Moon, Y.-J.; Chae, J.; Choe, G.; Wang, H.; Park, Y. D.; Yun, H. S.; Yurchyshyn, V.; Goode, P. R.

    2002-05-01

    We present observational evidence that the occurrence of homologous flares in an active region is physically related to the injection of magnetic helicity by horizontal photospheric motions. We have analyzed a set of 1 minute cadence magnetograms of NOAA AR 8100 taken over a period of 6.5 hours by Michelson Doppler Imager (MDI) on board Solar and Heliospheric Observatory (SOHO). During this observing time span, seven homologous flares took place in the active region. We have computed the magnetic helicity injection rate into the solar atmosphere by photospheric shearing motions, and found that a significant amount of magnetic helicity was injected during the observing period. In a strong M4.1 flare, the magnetic helicity injection rate impulsively increased and peaked at the same time as the X-ray flux did. The flare X-ray flux integrated over the X-ray emission time strongly correlates with the magnetic helicity injected during the flaring interval. The integrated X-ray flux is found to be a logarithmically increasing function of the injected magnetic helicity. Our results suggest that injection of helicity and abrupt increase of helicity magnitude play a significant role in flare triggering. This work has been supported by NASA grants NAG5-10894 and NAG5-7837, by MURI grant of AFOSR, by the US-Korea Cooperative Science Program (NSF INT-98-16267), by NRL M10104000059-01J000002500 of the Korean government, and by the BK 21 project of the Korean government.

  5. Simulations of Magnetohydrodynamic Waves Driven by Photospheric Motions

    NASA Astrophysics Data System (ADS)

    Mumford, Stuart

    2016-04-01

    This thesis investigates the properties of various modelled photospheric motions as generation mechanisms for magnetohydrodynamic (MHD) waves in the low solar atmosphere. The solar atmosphere is heated to million-degree temperatures, yet there is no fully understood heating mechanism which can provide the ≈ 300 W/m^2) required to keep the quiet corona at its observed temperatures. MHD waves are one mechanism by which this energy could be provided to the upper solar atmosphere, however, these waves need to be excited. The excitation of these waves, in or below the photosphere is a complex interaction between the plasma and the magnetic field embedded within it. This thesis studies a model of a small-scale magnetic flux tube based upon a magnetic bright point (MBP). These features are very common in the photosphere and have been observed to be affected by the plasma motions. The modelled flux tube has a foot point magnetic field strength of 120 mT and a FWHM of 90 km, and is embedded in a realistic, stratified solar atmosphere based upon the VALIIIc model. To better understand the excitation of MHD waves in this type of magnetic structures, a selection of velocity profiles are implemented to excite waves. Initially a study of five different driving profiles was performed. A uniform torsional driver as well as Archimedean and logarithmic spiral drivers which mimic observed torsional motions in the solar photosphere, along with vertical and horizontal drivers to mimic different motions caused by convection in the photosphere. The results are then analysed using a novel method for extracting the parallel, perpendicular and azimuthal components of the perturbations, which caters to both the linear and non-linear cases. Employing this method yields the identification of the wave modes excited in the numerical simulations and enables a comparison of excited modes via velocity perturbations and wave energy flux. The wave energy flux distribution is calculated, to enable

  6. THE EVOLUTION OF OPEN MAGNETIC FLUX DRIVEN BY PHOTOSPHERIC DYNAMICS

    SciTech Connect

    Linker, Jon A.; Lionello, Roberto; Mikic, Zoran; Titov, Viacheslav S.; Antiochos, Spiro K. E-mail: lionel@predsci.com E-mail: titovv@predsci.com

    2011-04-20

    The coronal magnetic field is of paramount importance in solar and heliospheric physics. Two profoundly different views of the coronal magnetic field have emerged. In quasi-steady models, the predominant source of open magnetic field is in coronal holes. In contrast, in the interchange model, the open magnetic flux is conserved, and the coronal magnetic field can only respond to the photospheric evolution via interchange reconnection. In this view, the open magnetic flux diffuses through the closed, streamer belt fields, and substantial open flux is present in the streamer belt during solar minimum. However, Antiochos and coworkers, in the form of a conjecture, argued that truly isolated open flux cannot exist in a configuration with one heliospheric current sheet-it will connect via narrow corridors to the polar coronal hole of the same polarity. This contradicts the requirements of the interchange model. We have performed an MHD simulation of the solar corona up to 20 R{sub sun} to test both the interchange model and the Antiochos conjecture. We use a synoptic map for Carrington rotation 1913 as the boundary condition for the model, with two small bipoles introduced into the region where a positive polarity extended coronal hole forms. We introduce flows at the photospheric boundary surface to see if open flux associated with the bipoles can be moved into the closed-field region. Interchange reconnection does occur in response to these motions. However, we find that the open magnetic flux cannot be simply injected into closed-field regions-the flux eventually closes down and disconnected flux is created. Flux either opens or closes, as required, to maintain topologically distinct open- and closed-field regions, with no indiscriminate mixing of the two. The early evolution conforms to the Antiochos conjecture in that a narrow corridor of open flux connects the portion of the coronal hole that is nearly detached by one of the bipoles. In the later evolution, a

  7. The Evolution of Open Magnetic Flux Driven by Photospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Linker, Jon A.; Lionello, Roberto; Mikic, Zoran; Titov, Viacheslav S.; Antiochos, Spiro K.

    2010-01-01

    The coronal magnetic field is of paramount importance in solar and heliospheric physics. Two profoundly different views of the coronal magnetic field have emerged. In quasi-steady models, the predominant source of open magnetic field is in coronal holes. In contrast, in the interchange model, the open magnetic flux is conserved, and the coronal magnetic field can only respond to the photospheric evolution via interchange reconnection. In this view the open magnetic flux diffuses through the closed, streamer belt fields, and substantial open flux is present in the streamer belt during solar minimum. However, Antiochos and co-workers, in the form of a conjecture, argued that truly isolated open flux cannot exist in a configuration with one heliospheric current sheet (HCS) - it will connect via narrow corridors to the polar coronal hole of the same polarity. This contradicts the requirements of the interchange model. We have performed an MHD simulation of the solar corona up to 20R solar to test both the interchange model and the Antiochos conjecture. We use a synoptic map for Carrington Rotation 1913 as the boundary condition for the model, with two small bipoles introduced into the region where a positive polarity extended coronal hole forms. We introduce flows at the photospheric boundary surface to see if open flux associated with the bipoles can be moved into the closed-field region. Interchange reconnection does occur in response to these motions. However, we find that the open magnetic flux cannot be simply injected into closed-field regions - the flux eventually closes down and disconnected flux is created. Flux either opens or closes, as required, to maintain topologically distinct open and closed field regions, with no indiscriminate mixing of the two. The early evolution conforms to the Antiochos conjecture in that a narrow corridor of open flux connects the portion of the coronal hole that is nearly detached by one of the bipoles. In the later evolution, a

  8. The Role of Scale and Model Bias in ADAPT's Photospheric Eatimation

    SciTech Connect

    Godinez Vazquez, Humberto C.; Hickmann, Kyle Scott; Arge, Charles Nicholas; Henney, Carl

    2015-05-20

    The Air Force Assimilative Photospheric flux Transport model (ADAPT), is a magnetic flux propagation based on Worden-Harvey (WH) model. ADAPT would be used to provide a global photospheric map of the Earth. A data assimilation method based on the Ensemble Kalman Filter (EnKF), a method of Monte Carlo approximation tied with Kalman filtering, is used in calculating the ADAPT models.

  9. Influence of Photospheric Magnetic Conditions on the Catastrophic Behaviors of Flux Ropes in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Zhang, Quanhao; Wang, Yuming; Hu, Youqiu; Liu, Rui; Liu, Jiajia

    2017-02-01

    Since only the magnetic conditions at the photosphere can be routinely observed in current observations, it is of great significance to determine the influences of photospheric magnetic conditions on solar eruptive activities. Previous studies about catastrophe indicated that the magnetic system consisting of a flux rope in a partially open bipolar field is subject to catastrophe, but not if the bipolar field is completely closed under the same specified photospheric conditions. In order to investigate the influence of the photospheric magnetic conditions on the catastrophic behavior of this system, we expand upon the 2.5-dimensional ideal magnetohydrodynamic model in Cartesian coordinates to simulate the evolution of the equilibrium states of the system under different photospheric flux distributions. Our simulation results reveal that a catastrophe occurs only when the photospheric flux is not concentrated too much toward the polarity inversion line and the source regions of the bipolar field are not too weak; otherwise no catastrophe occurs. As a result, under certain photospheric conditions, a catastrophe could take place in a completely closed configuration, whereas it ceases to exist in a partially open configuration. This indicates that whether the background field is completely closed or partially open is not the only necessary condition for the existence of catastrophe, and that the photospheric conditions also play a crucial role in the catastrophic behavior of the flux rope system.

  10. VERY HIGH EFFICIENCY PHOTOSPHERIC EMISSION IN LONG-DURATION {gamma}-RAY BURSTS

    SciTech Connect

    Lazzati, Davide; Morsony, Brian J.; Begelman, Mitchell C.

    2009-07-20

    We numerically analyze the evolution of a long-duration gamma-ray burst jet as it leaves the progenitor star and propagates to the photospheric radius, where radiation can be released. We find that the interaction of the relativistic material with the progenitor star has influences well beyond the stellar surface. Tangential collimation shocks are observed throughout the jet evolution, out to about 100 stellar radii, which is the whole range of our simulation. We find that the jet is internally hot at the photospheric radius and we compute the photospheric emission. The photosphere is a very efficient radiator, capable of converting more than half of the total energy of the jet into radiation. We show that bright photospheres are a common feature of jets born inside massive progenitor stars and that this effect can explain the high radiative efficiency observed in long-duration bursts.

  11. The evolution of a coronal streamer and the photospheric magnetic field

    NASA Technical Reports Server (NTRS)

    Poland, A. I.; Macqueen, R. M.

    1981-01-01

    A large equatorial coronal streamer observed in the outer corona grew in brightness and size during successive limb passages between October 6, 1973 and January 10, 1974 (solar rotations 1606-1611). Unlike previous studies of streamers and their photospheric associations, no definite surface feature could be identified in the present case. This suggests that the streamer is associated with the large scale photospheric magnetic field. Comparison of the streamer growth with observed underlying photospheric magnetic flux changes indicated that as the streamer increased in brightness, areal extent, and density, the photospheric magnetic flux decreased. Three possible explanations for the streamer's growth are presented, the conceptually simplest being that the decrease in photospheric field results in an opening of the flux tubes under the streamer, which permits an increase mass flux through the streamer.

  12. Distance determination to eight galaxies using expanding photosphere method

    SciTech Connect

    Bose, Subhash; Kumar, Brijesh E-mail: bose@aries.res.in

    2014-02-20

    Type IIP supernovae (SNe) are recognized as independent extragalactic distance indicators; however, keeping in mind the diverse nature of their observed properties as well as the availability of good quality data, more and newer events need to be tested for their applicability as reliable distance indicators. We use early photometric and spectroscopic data of eight Type IIP SNe to derive distances to their host galaxies by using the expanding photosphere method (EPM). For five of these, the EPM is applied for the first time. In this work, we improved EPM application by using SYNOW estimated velocities and by semi-deconvolving the broadband filter responses while deriving color temperatures and blackbody angular radii. We find that the derived EPM distances are consistent with that derived using other redshift-independent methods.

  13. Disruption of a helmet streamer by photospheric shear

    NASA Technical Reports Server (NTRS)

    Linker, Jon A.; Mikic, Zoran

    1995-01-01

    Helmet streamers on the Sun have been observed to be the site of coronal mass ejections, dynamic events that eject coronal plasma and magnetic fields into the solar wind. We develop a two-dimensional (azimuthally symmetric) helmet streamer configuration by computing solutions of the time-dependent magnetohydrodynamic (MHD) equations, and we investigate the evolution of the configuration when photospheric shearing motions are imposed. We find that the configuration disrupts when a critical shear is exceeded, ejecting a plasmoid into the solar wind. The results are similar to the case of a sheared dipole magnetic field in a hydrostatic atmosphere (Mikic & Linker 1994). However, the presence of the outflowing solar wind makes the disruption significantly more energetic when a helmet streamer is sheared. Our resutls suggest that shearing of helmet streamers may initiate coronal mass ejections.

  14. Disruption of a helmet streamer by photospheric shear

    NASA Technical Reports Server (NTRS)

    Linker, Jon A.; Mikic, Zoran

    1995-01-01

    Helmet streamers on the Sun have been observed to be the site of coronal mass ejections, dynamic events that eject coronal plasma and magnetic fields into the solar wind. We develop a two-dimensional (azimuthally symmetric) helmet streamer configuration by computing solutions of the time-dependent magnetohydrodynamic (MHD) equations, and we investigate the evolution of the configuration when photospheric shearing motions are imposed. We find that the configuration disrupts when a critical shear is exceeded, ejecting a plasmoid into the solar wind. The results are similar to the case of a sheared dipole magnetic field in a hydrostatic atmosphere (Mikic & Linker 1994). However, the presence of the outflowing solar wind makes the disruption significantly more energetic when a helmet streamer is sheared. Our resutls suggest that shearing of helmet streamers may initiate coronal mass ejections.

  15. The Telescope for Observation of the Photosphere of the Sun

    NASA Astrophysics Data System (ADS)

    Efimenko, V.; Kaminsky, S.

    2015-12-01

    Visual observation of solar spots on Astronomical observatory began in 1923. Since 1951 photographic observation with use of photographic plates of AGFA and ORWO were conducted. Transition from photographic plates to CCD matrixes demands modernization or replacement of thetelescope. The made analysis taking into account the parameters a CCD matrixes of the receiver proves need of production of the new telescope.Calculations, modeling and production of the telescope were executed by opportunities of Astronomical observatory. Tests of the telescope withthe digital camera showed that quality of images satisfactory, resolution of the telescope answers settlement and the telescope with the digitalcamera can be used for receiving pictures of the photosphere of the Sun. The average error of definition of numbers of Wolf doesn't exceed 10 %.

  16. Distance Determination to Eight Galaxies Using Expanding Photosphere Method

    NASA Astrophysics Data System (ADS)

    Bose, Subhash; Kumar, Brijesh

    2014-02-01

    Type IIP supernovae (SNe) are recognized as independent extragalactic distance indicators; however, keeping in mind the diverse nature of their observed properties as well as the availability of good quality data, more and newer events need to be tested for their applicability as reliable distance indicators. We use early photometric and spectroscopic data of eight Type IIP SNe to derive distances to their host galaxies by using the expanding photosphere method (EPM). For five of these, the EPM is applied for the first time. In this work, we improved EPM application by using SYNOW estimated velocities and by semi-deconvolving the broadband filter responses while deriving color temperatures and blackbody angular radii. We find that the derived EPM distances are consistent with that derived using other redshift-independent methods.

  17. Discovery of Photospheric Germanium in Hot DA White Dwarfs

    NASA Astrophysics Data System (ADS)

    Vennes, Stéphane; Chayer, Pierre; Dupuis, Jean

    2005-04-01

    We report the identification of Ge IV resonance lines in ultraviolet spectra of the hot DA white dwarfs Feige 24, G191-B2B, and GD 246. The lines originate in the stellar photosphere, and we measure low Ge/H abundance ratios ranging between -8.0 and -8.7. We also tentatively identify a resonance line of Sn IV blended with an Fe V line in the spectrum of G191-B2B. The presence of germanium extends our knowledge of the abundance pattern in hot white dwarfs beyond the iron group. The abundance ratio appears nearly solar, which implies either that the germanium abundance mixture in these stars has remained unaltered since leaving the main sequence or that diffusion processes (e.g., selective radiation pressure) are coincidentally reproducing a solar Ge/H ratio.

  18. Solar photospheric network properties and their cycle variation

    SciTech Connect

    Thibault, K.; Charbonneau, P.; Béland, M. E-mail: paulchar@astro.umontreal.ca-b

    2014-11-20

    We present a numerical simulation of the formation and evolution of the solar photospheric magnetic network over a full solar cycle. The model exhibits realistic behavior as it produces large, unipolar concentrations of flux in the polar caps, a power-law flux distribution with index –1.69, a flux replacement timescale of 19.3 hr, and supergranule diameters of 20 Mm. The polar behavior is especially telling of model accuracy, as it results from lower-latitude activity, and accumulates the residues of any potential modeling inaccuracy and oversimplification. In this case, the main oversimplification is the absence of a polar sink for the flux, causing an amount of polar cap unsigned flux larger than expected by almost one order of magnitude. Nonetheless, our simulated polar caps carry the proper signed flux and dipole moment, and also show a spatial distribution of flux in good qualitative agreement with recent high-latitude magnetographic observations by Hinode. After the last cycle emergence, the simulation is extended until the network has recovered its quiet Sun initial condition. This permits an estimate of the network relaxation time toward the baseline state characterizing extended periods of suppressed activity, such as the Maunder Grand Minimum. Our simulation results indicate a network relaxation time of 2.9 yr, setting 2011 October as the soonest the time after which the last solar activity minimum could have qualified as a Maunder-type Minimum. This suggests that photospheric magnetism did not reach its baseline state during the recent extended minimum between cycles 23 and 24.

  19. Sunspot Oscillations from the Photosphere to the Corona

    NASA Astrophysics Data System (ADS)

    Shine, R. A.

    2000-05-01

    Denied the radiative splendor of the rest of the solar surface, sunspots seem to be compensated with more vigorous oscillations above their dark interiors. The observational properties of these oscillations will be reviewed along with some possibilities for employing them to study sunspot structure. The most obvious of these phenomena are the umbral oscillations and penumbral running waves seen in the chromosphere. Discovered in the late 1960's, umbral oscillations exhibit well documented non-linear behavior leading to shocks and umbral flashes in the upper chromosphere and transition region. Periods are typically 150 - 180s and are thought to be driven by photospheric motions. Running penumbral waves, best seen in H alpha or Na I D Dopplergrams, have periods near 250s and move outward in the penumbra with horizontal velocities from 10 - 25 km/s. Observations with the SMM/UVSP instrument showed that sunspot oscillations extended into the transition region and recent results from the CDS and SUMER instruments on SOHO show this in much more detail. The TRACE satellite has shown that coronal EUV loops (Fe IX 171 Angstroms and Fe X 195 Angstroms) originating in sunspots exhibit prominent intensity oscillations wherever they overlay the photospheric penumbra or umbra. Loops not associated with sunspots occasionally show similar oscillations but most do not. Some recent coordinated TRACE and H alpha observations (from the SVST on La Palma) will be presented to establish the relationships between the chromospheric and coronal oscillations. This work is supported by the TRACE and SOI/MDI projects at LMSAL and Stanford (contract NAS5-38099 and grant NAG5-3077).

  20. Structure of the solar photosphere studied from the radiation hydrodynamics code ANTARES

    NASA Astrophysics Data System (ADS)

    Leitner, P.; Lemmerer, B.; Hanslmeier, A.; Zaqarashvili, T.; Veronig, A.; Grimm-Strele, H.; Muthsam, H. J.

    2017-09-01

    The ANTARES radiation hydrodynamics code is capable of simulating the solar granulation in detail unequaled by direct observation. We introduce a state-of-the-art numerical tool to the solar physics community and demonstrate its applicability to model the solar granulation. The code is based on the weighted essentially non-oscillatory finite volume method and by its implementation of local mesh refinement is also capable of simulating turbulent fluids. While the ANTARES code already provides promising insights into small-scale dynamical processes occurring in the quiet-Sun photosphere, it will soon be capable of modeling the latter in the scope of radiation magnetohydrodynamics. In this first preliminary study we focus on the vertical photospheric stratification by examining a 3-D model photosphere with an evolution time much larger than the dynamical timescales of the solar granulation and of particular large horizontal extent corresponding to 25''×25'' on the solar surface to smooth out horizontal spatial inhomogeneities separately for up- and downflows. The highly resolved Cartesian grid thereby covers ˜4 Mm of the upper convection zone and the adjacent photosphere. Correlation analysis, both local and two-point, provides a suitable means to probe the photospheric structure and thereby to identify several layers of characteristic dynamics: The thermal convection zone is found to reach some ten kilometers above the solar surface, while convectively overshooting gas penetrates even higher into the low photosphere. An ≈145 km wide transition layer separates the convective from the oscillatory layers in the higher photosphere.

  1. Flare Prediction Using Photospheric and Coronal Image Data

    NASA Astrophysics Data System (ADS)

    Jonas, E.; Shankar, V.; Bobra, M.; Recht, B.

    2016-12-01

    We attempt to forecast M-and X-class solar flares using a machine-learning algorithm and five years of image data from both the Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA) instruments aboard the Solar Dynamics Observatory. HMI is the first instrument to continuously map the full-disk photospheric vector magnetic field from space (Schou et al., 2012). The AIA instrument maps the transition region and corona using various ultraviolet wavelengths (Lemen et al., 2012). HMI and AIA data are taken nearly simultaneously, providing an opportunity to study the entire solar atmosphere at a rapid cadence. Most flare forecasting efforts described in the literature use some parameterization of solar data - typically of the photospheric magnetic field within active regions. These numbers are considered to capture the information in any given image relevant to predicting solar flares. In our approach, we use HMI and AIA images of solar active regions and a deep convolutional kernel network to predict solar flares. This is effectively a series of shallow-but-wide random convolutional neural networks stacked and then trained with a large-scale block-weighted least squares solver. This algorithm automatically determines which patterns in the image data are most correlated with flaring activity and then uses these patterns to predict solar flares. Using the recently-developed KeystoneML machine learning framework, we construct a pipeline to process millions of images in a few hours on commodity cloud computing infrastructure. This is the first time vector magnetic field images have been combined with coronal imagery to forecast solar flares. This is also the first time such a large dataset of solar images, some 8.5 terabytes of images that together capture over 3000 active regions, has been used to forecast solar flares. We evaluate our method using various flare prediction windows defined in the literature (e.g. Ahmed et al., 2013) and a novel per

  2. Brightness of the photosphere and faculae at the limb based on eclipse observations

    SciTech Connect

    Akimov, L.A.; Belkina, I.L.; Dyatel, N.P.

    1982-05-01

    The absolute distributions of integral and surface brightness of the photospheric continuum (lambdaroughly-equal5870 A) and in faculae at the very limb are obtained from slitless spectrograms of the total solar eclipse of July 10, 1972. Several possible reasons for the brightness increase toward the limb in the distribution of photospheric surface brightness are discussed. The faculae showed high contrasts, up to 1.76 at a height of 200 km from the limb. A comparison of the times of local contacts observed and calculated with allowance for lunar relief showed that the active regions are at about 300 km above the photosphere. A schematic model of a facula is proposed.

  3. THE TWO REGIMES OF PHOTOSPHERIC MOTIONS IN {alpha} HYDRA

    SciTech Connect

    Gray, David F.

    2013-02-10

    High-resolution spectroscopic observations of {alpha} Hya were acquired between 2003 and 2010. Analysis of line shifts, differential shifts, line widths, and line bisectors points to two regimes of velocity fields in the photosphere of {alpha} Hya: (1) normal granulation embedded in (2) large convection cells. Variations occur on a wide range of timescales, from several years on down. Radial velocity variations, which are irregular and span 786 m s{sup -1}, have a distribution consistent with a true mean rise velocity of the large cells of {approx}725 m s{sup -1} and a dispersion of {approx}220 m s{sup -1}. The distribution of granulation velocities, as measured from the widths of spectral lines, shows only small variations, consistent with the two regime concepts. On the multi-year timescale, radial velocity changes, small temperature variations ({approx}10 K), and small line-width variations ({approx}<0.8%) track each other, possibly with phase shifts. The granulation velocity gradient for {alpha} Hya is about half as large as the Sun's and no variation with time was seen, implying that any variation in velocity gradient from one large cell to the next must be less than a few percent. The asymmetry in the granulation velocity distribution, as specified in the flux deficit, is smaller than expected for {alpha} Hya's position in the HR diagram and appears to be variable.

  4. Generation of magnetic structures on the solar photosphere

    SciTech Connect

    Gangadhara, R. T.; Krishan, V.; Bhowmick, A. K.; Chitre, S. M.

    2014-06-20

    The lower solar atmosphere is a partially ionized plasma consisting of electrons, ions, and neutral atoms. In this, which is essentially a three-fluid system, the Hall effect arises from the treatment of the electrons and ions as two separate fluids and the ambipolar diffusion arises from the inclusion of neutrals as the third fluid. The Hall effect and ambipolar diffusion have been shown to be operational in a region beginning from near the photosphere up to the chromosphere. In a partially ionized plasma, the magnetic induction is subjected to ambipolar diffusion and the Hall drift in addition to the usual resistive dissipation. These nonlinear effects create sharp magnetic structures which then submit themselves to various relaxation mechanisms. A first-principles derivation of these effects in a three-fluid system and an analytic solution to the magnetic induction equation in a stationary state are presented, which in the general case includes the Hall effect, ambipolar diffusion, and ohmic dissipation. The temporal evolution of the magnetic field is then investigated under the combined as well as the individual effects of the Hall drift and ambipolar diffusion to demonstrate the formation of steep magnetic structures and the resultant current sheet formation. These structures have just the right features for the release of magnetic energy into the solar atmosphere.

  5. Latitudinal variation of helicity of photospheric magnetic fields

    NASA Technical Reports Server (NTRS)

    Pevtsov, Alexei A.; Canfield, Richard C.; Metcalf, Thomas R.

    1995-01-01

    Using a 1988-1994 data set of original photospheric vector magnetograms as well as published data, we have studied the average magnetic helicity of 69 diverse active regions, adopting the linear force-free field parameter alpha as a measure. This average value was determined by minimizing the differences between the computed constant-alpha force-free and observed horizontal magnetic fields. The average magnetic helicity shows a sign difference at the 2 sigma level in opposite hemispheres. In our data set, 76% of the active regions in the northern hemisphere have negative helicity, and 69% in the southern hemisphere, positive. Although the data show considerable variation from one active region to the next, the data set as a whole suggest that the magnitude of the average helicity increases with solar latitude, starting at zero near the equator, reaches a maximum near 15 deg - 25 deg in both hemispheres, and drops back toward smaller values avove 35 deg - 40 deg. Qualitative comparison with published models shows that such latitudinal variation of the average magnetic helicity may result from either turbulent convective motions or differential rotation, although our studies of rotating sunspots lead us to favor the former.

  6. PHOTOSPHERIC RADIUS EXPANSION IN SUPERBURST PRECURSORS FROM NEUTRON STARS

    SciTech Connect

    Keek, L.

    2012-09-10

    Thermonuclear runaway burning of carbon is in rare cases observed from accreting neutron stars as day-long X-ray flares called superbursts. In the few cases where the onset is observed, superbursts exhibit a short precursor burst at the start. In each instance, however, the data are of insufficient quality for spectral analysis of the precursor. Using data from the propane anti-coincidence detector of the Proportional Counter Array instrument on the Rossi X-ray Timing Explorer, we perform the first detailed time-resolved spectroscopy of precursors. For a superburst from 4U 1820-30 we demonstrate the presence of photospheric radius expansion. We find the precursor to be 1.4-2 times more energetic than other short bursts from this source, indicating that the burning of accreted helium is insufficient to explain the full precursor. Shock heating would be able to account for the shortfall in energy. We argue that this precursor is a strong indication that the superburst starts as a detonation, and that a shock induces the precursor. Furthermore, we employ our technique to study the superexpansion phase of the same superburst in greater detail.

  7. Laboratory measurements of white dwarf photospheric spectral lines: Hβ

    DOE PAGES

    Falcon, Ross Edward; Rochau, Gregory A.; Bailey, James E.; ...

    2015-06-18

    We spectroscopically measure multiple hydrogen Balmer line profiles from laboratory plasmas to investigate the theoretical line profiles used in white dwarf (WD) atmosphere models. X-ray radiation produced at the Z Pulsed Power Facility at Sandia National Laboratories initiates plasma formation in a hydrogen-filled gas cell, replicating WD photospheric conditions. We also present time-resolved measurements of Hβ and fit this line using different theoretical line profiles to diagnose electron density, ne, and n = 2 level population, n2. Aided by synthetic tests, we characterize the validity of our diagnostic method for this experimental platform. During a single experiment, we infer amore » continuous range of electron densities increasing from ne ~ 4 to ~30 × 1016 cm-3 throughout a 120-ns evolution of our plasma. Also, we observe n2 to be initially elevated with respect to local thermodynamic equilibrium (LTE); it then equilibrates within ~55 ns to become consistent with LTE. This also supports our electron-temperature determination of Te ~ 1.3 eV (~15,000 K) after this time. At ne≲ 1017 cm-3, we find that computer-simulation-based line-profile calculations provide better fits (lower reduced χ2) than the line profiles currently used in the WD astronomy community. The inferred conditions, however, are in good quantitative agreement. Lastly, this work establishes an experimental foundation for the future investigation of relative shapes and strengths between different hydrogen Balmer lines.« less

  8. Shocks in the Quiet Solar Photosphere: A Rather Common Occurrence

    NASA Astrophysics Data System (ADS)

    Socas-Navarro, H.; Manso Sainz, R.

    2005-02-01

    We present observations of the quiet solar photosphere in the Fe I lines at 6302 Å where at least four different spatial locations exhibit upward-directed supersonic flows. These upflows can only be detected in the circular polarization profiles as a double-peaked structure in the blue lobe of both Fe I lines. We have detected cases of either magnetic polarity in the data. The polarization signals associated with the upflows are very weak, which is probably why they had not been seen before in this type of observation. We propose that the observed flows are the signature of aborted convective collapse, similar to the case reported by Bellot Rubio et al. Our data indicate that this phenomenon occurs frequently in the quiet Sun, which means that many magnetic elements (although the fraction is still unknown) are destroyed even before they are formed completely. The spectral signatures of supersonic upflows reported here are probably present in most spectropolarimetric observations of sufficient signal-to-noise ratio and spatial resolution.

  9. Photospheric flows around a quiescent filament and CALAS first results .

    NASA Astrophysics Data System (ADS)

    Rondi, S.; Roudier, Th.; Molodij, G.; Bommier, V.; Malherbe, J. M.; Schmieder, B.; Meunier, N.; Rieutord, M.; Beigbeder., F.

    The horizontal photospheric flows below and around a filament are one of the components in the formation and evolution of filaments. Few studies have been done so far because this requires multiwalength time sequences with high spatial resolution. We present observations obtained in 2004 during the international JOP 178 campaign in which eleven instruments were involved, from space and ground based observatories. Several supergranulation cells are crossing the Polarity Inversion Line (PIL) allowing the transport of magnetic flux through the PIL, in particular the parasitic polarities. Before the filament eruptive phase, parasitic and normal polarities are swept by a continuous diverging horizontal flow located in the filament gap where the disappearance of the filament starts. In the future, observations at high spatial resolution on a large field-of-view would be very useful to study filaments, as they are very large structures. We also present the first images obtained with the use of our new 14 MPixel camera CALAS (CAmera for the LArge Scales of the Solar Surface) (10 arcmin× 6.7 arcmin) . These are the first large-scale and high-resolution images of the solar surface ever made.

  10. Photospheric Emission from Collapsar Jets in 3D Relativistic Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Ito, Hirotaka; Matsumoto, Jin; Nagataki, Shigehiro; Warren, Donald C.; Barkov, Maxim V.

    2015-12-01

    We explore the photospheric emission from a relativistic jet breaking out from a massive stellar envelope based on relativistic hydrodynamical simulations and post-process radiation transfer calculations in three dimensions. To investigate the impact of three-dimensional (3D) dynamics on the emission, two models of injection conditions are considered for the jet at the center of the progenitor star: one with periodic precession and another without precession. We show that structures developed within the jet due to the interaction with the stellar envelope, as well as due to the precession, have a significant imprint on the resulting emission. Particularly, we find that the signature of precession activity by the central engine is not smeared out and can be directly observed in the light curve as a periodic signal. We also show that non-thermal features, which can account for observations of gamma-ray bursts, are produced in the resulting spectra even though only thermal photons are injected initially and the effect of non-thermal particles is not considered.

  11. The source of 5 minute period photospheric umbral oscillations

    NASA Technical Reports Server (NTRS)

    Penn, M. J.; Labonte, B. J.

    1993-01-01

    We observed the oscillations in the umbrae of two sunspots, using the MCCD imaging spectrograph at the Mees Solar Observatory on Haleakala, Maui. We perform four spatial analyses of the umbral velocity and find that (1) there is more power traveling toward the center of the umbrae than leaving the center of the umbrae (this provides a direct measure of the absorption of p-modes by the sunspot umbrae); (2) the umbral oscillations display power in the same spatial and temporal frequency band as the quiet-sun oscillations; (3) Fourier-Bessel analysis of one umbra shows no obvious resonant frequencies which might represent natural oscillation modes; and (4) the centers of the umbrae have less rms velocity at high spatial wavenumber than the edges of the umbrae. We conclude: (1) the photospheric umbral oscillations are driven by a source external to the sunspot, the global p-mode oscillations; (2) there are no resonant frequencies in the oscillations; and (3) the absorption of acoustic waves occurs inside the umbrae.

  12. PHOTOSPHERIC EMISSION FROM COLLAPSAR JETS IN 3D RELATIVISTIC HYDRODYNAMICS

    SciTech Connect

    Ito, Hirotaka; Matsumoto, Jin; Nagataki, Shigehiro; Warren, Donald C.; Barkov, Maxim V.

    2015-12-01

    We explore the photospheric emission from a relativistic jet breaking out from a massive stellar envelope based on relativistic hydrodynamical simulations and post-process radiation transfer calculations in three dimensions. To investigate the impact of three-dimensional (3D) dynamics on the emission, two models of injection conditions are considered for the jet at the center of the progenitor star: one with periodic precession and another without precession. We show that structures developed within the jet due to the interaction with the stellar envelope, as well as due to the precession, have a significant imprint on the resulting emission. Particularly, we find that the signature of precession activity by the central engine is not smeared out and can be directly observed in the light curve as a periodic signal. We also show that non-thermal features, which can account for observations of gamma-ray bursts, are produced in the resulting spectra even though only thermal photons are injected initially and the effect of non-thermal particles is not considered.

  13. Generation of Magnetic Structures on the Solar Photosphere

    NASA Astrophysics Data System (ADS)

    Gangadhara, R. T.; Krishan, V.; Bhowmick, A. K.; Chitre, S. M.

    2014-06-01

    The lower solar atmosphere is a partially ionized plasma consisting of electrons, ions, and neutral atoms. In this, which is essentially a three-fluid system, the Hall effect arises from the treatment of the electrons and ions as two separate fluids and the ambipolar diffusion arises from the inclusion of neutrals as the third fluid. The Hall effect and ambipolar diffusion have been shown to be operational in a region beginning from near the photosphere up to the chromosphere. In a partially ionized plasma, the magnetic induction is subjected to ambipolar diffusion and the Hall drift in addition to the usual resistive dissipation. These nonlinear effects create sharp magnetic structures which then submit themselves to various relaxation mechanisms. A first-principles derivation of these effects in a three-fluid system and an analytic solution to the magnetic induction equation in a stationary state are presented, which in the general case includes the Hall effect, ambipolar diffusion, and ohmic dissipation. The temporal evolution of the magnetic field is then investigated under the combined as well as the individual effects of the Hall drift and ambipolar diffusion to demonstrate the formation of steep magnetic structures and the resultant current sheet formation. These structures have just the right features for the release of magnetic energy into the solar atmosphere.

  14. Alfvén Waves in Simulations of Solar Photospheric Vortices

    NASA Astrophysics Data System (ADS)

    Shelyag, S.; Cally, P. S.; Reid, A.; Mathioudakis, M.

    2013-10-01

    Using advanced numerical magneto-hydrodynamic simulations of the magnetized solar photosphere, including non-gray radiative transport and a non-ideal equation of state, we analyze plasma motions in photospheric magnetic vortices. We demonstrate that apparent vortex-like motions in photospheric magnetic field concentrations do not exhibit "tornado"-like behavior or a "bath-tub" effect. While at each time instance the velocity field lines in the upper layers of the solar photosphere show swirls, the test particles moving with the time-dependent velocity field do not demonstrate such structures. Instead, they move in a wave-like fashion with rapidly changing and oscillating velocity field, determined mainly by magnetic tension in the magnetized intergranular downflows. Using time-distance diagrams, we identify horizontal motions in the magnetic flux tubes as torsional Alfvén perturbations propagating along the nearly vertical magnetic field lines with local Alfvén speed.

  15. Study of magnetic notions in the solar photosphere and their implications for heating the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Noyes, Robert W.

    1995-01-01

    This progress report covers the first year of NASA Grant NAGw-2545, a study of magnetic structure in the solar photosphere and chromosphere. We have made significant progress in three areas: (1) analysis of vorticity in photospheric convection, which probably affects solar atmospheric heating through the stresses it imposes on photospheric magnetic fields; (2) modelling of the horizontal motions of magnetic footpoints in the solar photosphere using an assumed relation between brightness and vertical motion as well as continuity of flow; and (3) observations and analysis of infrared CO lines formed near the solar temperature minimum, whose structure and dynamics also yield important clues to the nature of heating of the upper atmosphere. Each of these areas are summarized in this report, with copies of those papers prepared or published this year included.

  16. The modelling of the solar upper photosphere and lower chromosphere based upon ATM data

    NASA Technical Reports Server (NTRS)

    Heasley, J. N.

    1983-01-01

    Spectral data obtained by the SO82B experiment aboard SKYLAB were used to critically evaluate existing models of the solar upper photosphere and lower chromosphere. These spectral diagnostics were used to develop new solar models.

  17. The modelling of the solar upper photosphere and lower chromosphere based upon ATM data

    NASA Astrophysics Data System (ADS)

    Heasley, J. N.

    1983-09-01

    Spectral data obtained by the SO82B experiment aboard SKYLAB were used to critically evaluate existing models of the solar upper photosphere and lower chromosphere. These spectral diagnostics were used to develop new solar models.

  18. PHOTOSPHERE EMISSION FROM A HYBRID RELATIVISTIC OUTFLOW WITH ARBITRARY DIMENSIONLESS ENTROPY AND MAGNETIZATION IN GRBs

    SciTech Connect

    Gao, He; Zhang, Bing E-mail: zhang@physics.unlv.edu

    2015-03-10

    In view of the recent Fermi observations of gamma-ray burst (GRB) prompt emission spectra, we develop a theory of photosphere emission of a hybrid relativistic outflow with a hot fireball component (defined by dimensionless entropy η) and a cold Poynting-flux component (defined by magnetization σ{sub 0} at the central engine). We consider the scenarios both without and with sub-photospheric magnetic dissipations. Based on a simplified toy model of jet dynamics, we develop two approaches: a 'bottom-up' approach to predict the temperature (for a non-dissipative photosphere) and luminosity of the photosphere emission and its relative brightness for a given pair of (η, σ{sub 0}); and a 'top-down' approach to diagnose central engine parameters (η and σ{sub 0}) based on the observed quasi-thermal photosphere emission properties. We show that a variety of observed GRB prompt emission spectra with different degrees of photosphere thermal emission can be reproduced by varying η and σ{sub 0} within the non-dissipative photosphere scenario. In order to reproduce the observed spectra, the outflows of most GRBs need to have a significant σ, both at the central engine and at the photosphere. The σ value at 10{sup 15} cm from the central engine (a possible non-thermal emission site) is usually also greater than unity, so that internal-collision-induced magnetic reconnection and turbulence (ICMART) may be the mechanism to power the non-thermal emission. We apply our top-down approach to GRB 110721A and find that the temporal evolution behavior of its blackbody component can be well interpreted with a time-varying (η, σ{sub 0}) at the central engine, instead of invoking a varying engine base size r {sub 0} as proposed by previous authors.

  19. The Kelvin-Helmholtz instability in photospheric flows - Effects of coronal heating and structure

    NASA Technical Reports Server (NTRS)

    Karpen, Judith T.; Antiochos, Spiro K.; Dahlburg, Russell B.; Spicer, Daniel S.

    1993-01-01

    A series of hydrodynamic numerical simulations has been used to investigate the nonlinear evolution of driven, subsonic velocity shears under a range of typical photospheric conditions. These calculations show that typical photospheric flows are susceptible to the Kelvin-Helmholtz instability (KHI), with rapid nonlinear growth times that are approximately half of a typical granule lifetime. The KHI produces vortical structures in intergranule lanes comparable to a typical fluxule radius; this is precisely the correct scale for maximum power transfer to the corona.

  20. Photosphere Emission from a Hybrid Relativistic Outflow with Arbitrary Dimensionless Entropy and Magnetization in GRBs

    NASA Astrophysics Data System (ADS)

    Gao, He; Zhang, Bing

    2015-03-01

    In view of the recent Fermi observations of gamma-ray burst (GRB) prompt emission spectra, we develop a theory of photosphere emission of a hybrid relativistic outflow with a hot fireball component (defined by dimensionless entropy η) and a cold Poynting-flux component (defined by magnetization σ0 at the central engine). We consider the scenarios both without and with sub-photospheric magnetic dissipations. Based on a simplified toy model of jet dynamics, we develop two approaches: a "bottom-up" approach to predict the temperature (for a non-dissipative photosphere) and luminosity of the photosphere emission and its relative brightness for a given pair of (η, σ0) and a "top-down" approach to diagnose central engine parameters (η and σ0) based on the observed quasi-thermal photosphere emission properties. We show that a variety of observed GRB prompt emission spectra with different degrees of photosphere thermal emission can be reproduced by varying η and σ0 within the non-dissipative photosphere scenario. In order to reproduce the observed spectra, the outflows of most GRBs need to have a significant σ, both at the central engine and at the photosphere. The σ value at 1015 cm from the central engine (a possible non-thermal emission site) is usually also greater than unity, so that internal-collision-induced magnetic reconnection and turbulence (ICMART) may be the mechanism to power the non-thermal emission. We apply our top-down approach to GRB 110721A and find that the temporal evolution behavior of its blackbody component can be well interpreted with a time-varying (η, σ0) at the central engine, instead of invoking a varying engine base size r 0 as proposed by previous authors.

  1. CONDITIONS FOR PHOTOSPHERICALLY DRIVEN ALFVENIC OSCILLATIONS TO HEAT THE SOLAR CHROMOSPHERE BY PEDERSEN CURRENT DISSIPATION

    SciTech Connect

    Goodman, Michael L.

    2011-07-01

    A magnetohydrodynamic model that includes a complete electrical conductivity tensor is used to estimate conditions for photospherically driven, linear, non-plane Alfvenic oscillations extending from the photosphere to the lower corona to drive a chromospheric heating rate due to Pedersen current dissipation that is comparable to the observed net chromospheric radiative loss of {approx}10{sup 7} erg cm{sup -2} s{sup -1}. The heating rates due to electron current dissipation in the photosphere and corona are also computed. The wave amplitudes are computed self-consistently as functions of an inhomogeneous background (BG) atmosphere. The effects of the conductivity tensor are resolved numerically using a resolution of 3.33 m. The oscillations drive a chromospheric heating flux F{sub Ch} {approx} 10{sup 7}-10{sup 8} erg cm{sup -2} s{sup -1} at frequencies {nu} {approx} 10{sup 2}-10{sup 3} mHz for BG magnetic field strengths B {approx}> 700 G and magnetic field perturbation amplitudes {approx}0.01-0.1 B. The total resistive heating flux increases with {nu}. Most heating occurs in the photosphere. Thermalization of Poynting flux in the photosphere due to electron current dissipation regulates the Poynting flux into the chromosphere, limiting F{sub Ch}. F{sub Ch} initially increases with {nu}, reaches a maximum, and then decreases with increasing {nu} due to increasing electron current dissipation in the photosphere. The resolution needed to resolve the oscillations increases from {approx}10 m in the photosphere to {approx}10 km in the upper chromosphere and is {proportional_to}{nu}{sup -1/2}. Estimates suggest that these oscillations are normal modes of photospheric flux tubes with diameters {approx}10-20 km, excited by magnetic reconnection in current sheets with thicknesses {approx}0.1 km.

  2. Horizontal Flows in the Photosphere and Subphotosphere of Two Active Regions

    NASA Technical Reports Server (NTRS)

    Liu, Yang; Zhao, Junwei; Schuck, P. W.

    2012-01-01

    We compare horizontal flow fields in the photosphere and in the subphotosphere (a layer 0.5 megameters below the photosphere) in two solar active regions: AR11084 and AR11158. AR11084 is a mature, simple active region without significant flaring activity, and AR11158 is a multipolar, complex active region with magnetic flux emerging during the period studied. Flows in the photosphere are derived by applying the Differential Affine Velocity Estimator for Vector Magnetograms (DAVE4VM) on HMI-observed vector magnetic fields, and the subphotospheric flows are inferred by time-distance helioseismology using HMI-observed Dopplergrams. Similar flow patterns are found for both layers for AR11084: inward flows in the sunspot umbra and outward flows surrounding the sunspot. The boundary between the inward and outward flows, which is slightly different in the photosphere and the subphotosphere, is within the sunspot penumbra. The area having inward flows in the subphotosphere is larger than that in the photosphere. For AR11158, flows in these two layers show great similarities in some areas and significant differences in other areas. Both layers exhibit consistent outward flows in the areas surrounding sunspots. On the other hand, most well-documented flux-emergence-related flow features seen in the photosphere do not have counterparts in the subphotosphere. This implies that the horizontal flows caused by flux emergence do not extend deeply into the subsurface.

  3. Laboratory measurements of white dwarf photospheric spectral lines: Hβ

    SciTech Connect

    Falcon, Ross Edward; Rochau, Gregory A.; Bailey, James E.; Gomez, Thomas; Montgomery, Michael Houston; Winget, Donald E.; Nagayama, Taisuke

    2015-06-18

    We spectroscopically measure multiple hydrogen Balmer line profiles from laboratory plasmas to investigate the theoretical line profiles used in white dwarf (WD) atmosphere models. X-ray radiation produced at the Z Pulsed Power Facility at Sandia National Laboratories initiates plasma formation in a hydrogen-filled gas cell, replicating WD photospheric conditions. We also present time-resolved measurements of Hβ and fit this line using different theoretical line profiles to diagnose electron density, ne, and n = 2 level population, n2. Aided by synthetic tests, we characterize the validity of our diagnostic method for this experimental platform. During a single experiment, we infer a continuous range of electron densities increasing from ne ~ 4 to ~30 × 1016 cm-3 throughout a 120-ns evolution of our plasma. Also, we observe n2 to be initially elevated with respect to local thermodynamic equilibrium (LTE); it then equilibrates within ~55 ns to become consistent with LTE. This also supports our electron-temperature determination of Te ~ 1.3 eV (~15,000 K) after this time. At ne≲ 1017 cm-3, we find that computer-simulation-based line-profile calculations provide better fits (lower reduced χ2) than the line profiles currently used in the WD astronomy community. The inferred conditions, however, are in good quantitative agreement. Lastly, this work establishes an experimental foundation for the future investigation of relative shapes and strengths between different hydrogen Balmer lines.

  4. LABORATORY MEASUREMENTS OF WHITE DWARF PHOTOSPHERIC SPECTRAL LINES: Hβ

    SciTech Connect

    Falcon, Ross E.; Gomez, T. A.; Montgomery, M. H.; Winget, D. E.; Rochau, G. A.; Bailey, J. E.; Nagayama, T. E-mail: dew@astro.as.utexas.edu E-mail: garocha@sandia.gov E-mail: gomezt@astro.as.utexas.edu

    2015-06-20

    We spectroscopically measure multiple hydrogen Balmer line profiles from laboratory plasmas to investigate the theoretical line profiles used in white dwarf (WD) atmosphere models. X-ray radiation produced at the Z Pulsed Power Facility at Sandia National Laboratories initiates plasma formation in a hydrogen-filled gas cell, replicating WD photospheric conditions. Here we present time-resolved measurements of Hβ and fit this line using different theoretical line profiles to diagnose electron density, n{sub e}, and n = 2 level population, n{sub 2}. Aided by synthetic tests, we characterize the validity of our diagnostic method for this experimental platform. During a single experiment, we infer a continuous range of electron densities increasing from n{sub e} ∼ 4 to ∼30 × 10{sup 16} cm{sup −3} throughout a 120-ns evolution of our plasma. Also, we observe n{sub 2} to be initially elevated with respect to local thermodynamic equilibrium (LTE); it then equilibrates within ∼55 ns to become consistent with LTE. This supports our electron-temperature determination of T{sub e} ∼ 1.3 eV (∼15,000 K) after this time. At n{sub e} ≳ 10{sup 17} cm{sup −3}, we find that computer-simulation-based line-profile calculations provide better fits (lower reduced χ{sup 2}) than the line profiles currently used in the WD astronomy community. The inferred conditions, however, are in good quantitative agreement. This work establishes an experimental foundation for the future investigation of relative shapes and strengths between different hydrogen Balmer lines.

  5. The Rotation of the Solar Photospheric Magnetic Field

    NASA Astrophysics Data System (ADS)

    Xu, J. C.; Gao, P. X.

    2016-12-01

    The rotational characteristics of the solar photospheric magnetic field at four flux ranges are investigated together with the total flux of active regions (MFar) and quiet regions (MFqr). The first four ranges (MF1-4) are (1.5-2.9) × 1018, (2.9-32.0) × 1018, (3.20-4.27) × 1019, and (4.27-38.01) × 1019, respectively (the unit is Mx per element). Daily values of the flux data are extracted from magnetograms of the Michelson Doppler Imager on board the Solar and Heliospheric Observatory. Lomb-Scargle periodograms show that only MF2, MF4, MFqr, and MFar exhibit rotational periods. The periods of the first three types of flux are very similar, i.e., 26.20, 26.23, and 26.24 days, respectively, while that of MFar is longer, 26.66 days. This indicates that active regions rotate more slowly than quiet regions on average, and strong magnetic fields tend to repress the surface rotation. Sinusoidal function fittings and cross-correlation analyses reveal that MFar leads MF2 and MF4 by 5 and 1 days, respectively. This is speculated to be related with the decaying of active regions. MF2 and MFar are negatively correlated, while both MF4 and MFqr are positively correlated with MFar. At the timescale of the solar activity cycle, MFar leads (negatively) MF2 by around one year (350 days), and leads MF4 by about 3 rotation periods (82 days). The relation between MF2 and MFar may be explained by the possibility that the former mainly comes from a higher latitude, or emerges from the subsurface shear layer. We conjecture that MF4 may partly come from the magnetic flux of active regions; this verifies previous results that were obtained with indirect solar magnetic indices.

  6. Distribution of electric currents in sunspots from photosphere to corona

    SciTech Connect

    Gosain, Sanjay; Démoulin, Pascal; López Fuentes, Marcelo

    2014-09-20

    We present a study of two regular sunspots that exhibit nearly uniform twist from the photosphere to the corona. We derive the twist parameter in the corona and in the chromosphere by minimizing the difference between the extrapolated linear force-free field model field lines and the observed intensity structures in the extreme-ultraviolet images of the Sun. The chromospheric structures appear more twisted than the coronal structures by a factor of two. Further, we derive the vertical component of electric current density, j{sub z} , using vector magnetograms from the Hinode Solar Optical Telescope (SOT). The spatial distribution of j{sub z} has a zebra pattern of strong positive and negative values owing to the penumbral fibril structure resolved by Hinode/SOT. This zebra pattern is due to the derivative of the horizontal magnetic field across the thin fibrils; therefore, it is strong and masks weaker currents that might be present, for example, as a result of the twist of the sunspot. We decompose j{sub z} into the contribution due to the derivatives along and across the direction of the horizontal field, which follows the fibril orientation closely. The map of the tangential component has more distributed currents that are coherent with the chromospheric and coronal twisted structures. Moreover, it allows us to map and identify the direct and return currents in the sunspots. Finally, this decomposition of j{sub z} is general and can be applied to any vector magnetogram in order to better identify the weaker large-scale currents that are associated with coronal twisted/sheared structures.

  7. Empirical determination of the temperature stratification in the photosphere of the quiet Sun

    NASA Astrophysics Data System (ADS)

    Faurobert, M.; Ricort, G.; Aime, C.

    2013-06-01

    Context. Detailed realistic 3D simulations of the photosphere of the Sun are now available, but 1D models of the average quiet-Sun photosphere are still widely used, in particular for spectro-polarimetric inversions. Aims: Here we present an empirical determination of the average radiation temperature variations as a function of the geometrical height above the continuum formation level in the solar photosphere. Methods: We used high resolution spectroscopic scans in the 630 nm Fe i line pair at varying heliocentric angles along the north-south polar axis of the Sun, made with SOT onboard Hinode. Implementing a new method for image reconstruction, we obtained images of the photospheric granulation at constant continuum opacity levels, from the upper photosphere seen at line centers to the low photosphere. The Fourier cross-spectra of images at different opacity levels were computed, and we derived the formation depths of images without referring to any atmospheric model, by measuring the slope of the cross-spectrum phase. Results: A modified Milne-Eddington model for the line formation was tested by comparing it with the average line-intensity profiles observed at solar disk center. It yields consistent results for the FeI 630.2 nm line, whereas the FeI line at 630.1 nm is not well reproduced by the model. We ascribe this discrepancy to non-LTE effects in the line formation processes. The average image intensities at the different FeI 630.2 nm levels were used to determine the depth-variation of the temperature for an average 1D model of the quiet photosphere. We compared our empirical temperature model with the widely used FALC model. Both models agree well for the temperature variations with the continuum optical depth. But in the low photosphere, the temperature gradient we measure with respect to the geometrical height is significantly softer than in Model C. We argue that some of the assumptions used to solve the pseudohydrostatic equilibrium in semi

  8. The atmospheres of type II supernovae and the expanding photosphere method

    SciTech Connect

    Eastman, R.G.; Schmidt, B.P.; Kirshner, R.

    1996-08-01

    The Expanding Photosphere Method (EPM) determines distances to Type II supernova (SNe II) by comparing the photospheric angular size with the expansion velocity measured from spectral lines. The photospheres of SNe II are low density and are dominated by electron scattering, and consequently the photospheric flux is dilute relative to a Planck function at the best-fitting continuum color temperature. The reliability of EPM distances depends on how the dilution is related to physical properties of the supernova atmosphere. We have calculated 63 different model atmospheres relevant to SNe II. The excitation, ionization, and thermal structure are described for the case of high effective temperature in which the atmosphere is completely ionized, and for the case of cooler effective temperatures in which the photosphere is formed in a region of recombining hydrogen. The general spectral features of both cases are discussed. We explore how the computed spectrum changes with density structure, helium abundance, metallicity, expansion rate, and luminosity or effective temperature. The most important variable in determining spectral appearance is the effective temperature. The amount by which the emergent flux is dilute relative to the best-fitting blackbody depends on a number of factors, most important of which are the temperature and, in short-wavelength bandpasses, density at the photosphere. For each model we derive distance correction factors for application in EPM, using the four filter combinations {l_brace}{ital BV}{r_brace}, {l_brace}{ital VI}{sub {ital c}}{r_brace}, {l_brace}{ital BVI}{sub {ital c}}{r_brace}, and {l_brace}{ital JHK}{r_brace}. The main differences may be expressed in terms of the observable color temperature and a slowly varying dependence on density. Functional fits to the distance correction factor are used to estimate the photospheric angular size from broadband photometry. The effect of uncertain dust extinction on angular size is small.

  9. Three-dimensional magnetic structure of a sunspot: Comparison of the photosphere and upper chromosphere

    NASA Astrophysics Data System (ADS)

    Joshi, Jayant; Lagg, Andreas; Hirzberger, Johann; Solanki, Sami K.

    2017-08-01

    Aims: We investigate the magnetic field of a sunspot in the upper chromosphere and compare it to the photospheric properties of the field. Methods: We observed the main leading sunspot of the active region NOAA 11124 during two days with the Tenerife Infrared Polarimeter-2 (TIP-2) mounted at the German Vacuum Tower Telescope (VTT). Through inversion of Stokes spectra of the He i triplet at 10 830 Å, we obtained the magnetic field vector of the upper chromosphere. For comparison with the photosphere, we applied height-dependent inversions of the Si i 10 827.1 Å and Ca i 10 833.4 Å lines. Results: We found that the umbral magnetic field strength in the upper chromosphere is lower by a factor of 1.30-1.65 compared to the photosphere. The magnetic field strength of the umbra decreases from the photosphere toward the upper chromosphere by an average rate of 0.5-0.9 G km-1. The difference in the magnetic field strength between both atmospheric layers steadily decreases from the sunspot center to the outer boundary of the sunspot; the field, in particular its horizontal component, is stronger in the chromopshere outside the spot and this is suggestive of a magnetic canopy. The sunspot displays a twist that on average is similar in the two layers. However, the differential twist between the photosphere and chromosphere increases rapidly toward the outer penumbral boundary. The magnetic field vector is more horizontal with respect to the solar surface by roughly 5-20° in the photosphere compared to the upper chromosphere. Above a lightbridge, the chromospheric magnetic field is equally strong as that in the umbra, whereas the field of the lightbridge is weaker than its surroundings in the photosphere by roughly 1 kG. This suggests a cusp-like magnetic field structure above the lightbridge.

  10. Creating and measuring white dwarf photospheres in a terrestrial laboratory

    NASA Astrophysics Data System (ADS)

    Falcon, Ross Edward

    2014-08-01

    As the ultimate fate of nearly all stars, including our Sun, white dwarfs (WDs) hold rich and informative histories in their observable light. To determine a fundamental parameter of WDs, mass, we perform the first measurement of the average gravitational redshift of an ensemble of WDs. We find a larger mean mass than that determined from the primary and expansive technique known as the spectroscopic method. The potential inaccuracy of this method has broad astrophysical implications, including for our understanding of Type 1a supernova progenitors and for constraining the age of the Universe. This motivates us to investigate the WD atmosphere models used with the spectroscopic method, particularly the input theoretical line profiles, by developing a new experimental platform to create plasmas at WD photospheric conditions (Te~1 eV, ne~1017 cm-3). Instead of observing WD spectra to infer the plasma conditions at the surface of the star, we set the conditions and measure the emergent spectra in the laboratory. X-rays from a z-pinch dynamic hohlraum generated at the Z Pulsed Power Facility at Sandia National Laboratories irradiate a gas cell to initiate formation of a large (120x20x10 mm or 24 cm3) plasma. We observe multiple Balmer lines from our plasma in emission and in absorption simultaneously along relatively long (~120 mm) lines of sight perpendicular to the heating radiation. Using a large, radiation-driven plasma aides us to achieve homogeneity along our observed lines of sight. With time-resolved spectroscopy we measure lines at a range of electron densities that spans an order of magnitude, and we do this within one pulsed power shot experiment. Observing our plasma in absorption not only provides the signal-to-noise to measure relative line shapes, it allows us to measure relative line strengths because the lines share the same lower level population. This constrains the theoretical reduction factors used to describe ionization potential depression or the

  11. Structure of the photospheric magnetic field during sector crossings of the heliospheric magnetic field

    NASA Astrophysics Data System (ADS)

    Getachew, Tibebu; Virtanen, Ilpo; Mursula, Kalevi

    2017-04-01

    The photospheric magnetic field is the source of the coronal and heliospheric magnetic fields (HMF), but their mutual correspondence is non-trivial and depends on the phase of the solar cycle. The photospheric field during the HMF sector crossings observed at 1 AU has been found to contain enhanced field intensities and definite polarity ordering, forming regions called Hale boundaries. Here we study the structure of the photospheric field during the HMF sector crossings during solar cycles 21-24, separately for the four phases of each solar cycle. We use a refined version of Svalgaard's list of major HMF sector crossings, mapped to the Sun using the solar wind speed observed at the Earth, and the daily level-3 magnetograms of the photospheric field measured at the Wilcox Solar Observatory in 1976-2014. We find that the structure of the photospheric field corresponding to the HMF sector crossings, and the existence and properties of the corresponding Hale bipolar regions varies significantly with solar cycle and with solar cycle phase. We find evidence for Hale boundaries in many, but not all ascending, maximum and declining phases of solar cycles but no minimum phase. The most clear Hale boundaries are found during the (+,-) HMF crossings in the northern hemisphere of odd cycles 21 and 23, but less systematically during the (+,-) crossings in the southern hemisphere of even cycles 22 and 24. We also find that the Hale structure of cycles 23 and 24 is more systematic than during cycles 21 and 22. This may be due to the weakening activity, which reduces the complexity of the photospheric field and clarifies the Hale pattern. The photospheric field distribution also depicts a larger area for the field of the northern hemisphere during the declining and minimum phases, in a good agreement with the bashful ballerina phenomenon. The HMF sector crossings observed at 1AU have only a partial correspondence to Hale boundaries in the photosphere, indicating that the two HMF

  12. Inferring plasma flow velocities from photospheric vector magnetic field observations for the investigation of flare onsets

    NASA Astrophysics Data System (ADS)

    Santos, J. C.; Büchner, J.; Zhang, H.

    2008-09-01

    The amount of emergence and submergence of magnetized plasma and the horizontal motion of the footpoints of flux tubes might be crucial for the dynamics of the solar atmosphere. Although the rate of flux emergence and submergence can be observationally determined near the polarity inversion line (Chae et al., 2004), the same is not true for regions away from the PIL. Also, the horizontal motions cannot be directly measured in the solar photosphere. In this sense, the evolution of the photospheric magnetic field provides valuable information which can be used to estimate photospheric plasma flows since magnetic field and plasma are closely associated (frozen-in-condition). We used three methods to estimate the photospheric plasma motion from magnetic field observations. The methods were applied to photospheric vector magnetic field data of active region NOAA 9077, observed by the Huairou Solar Observing Station (HSOS) of the National Astronomical Observatories of China before and after the ‘Bastille Day’ flare on July 13th and 14th, 2000.

  13. Semiempirical photospheric models of a solar flare on May 28, 2012

    NASA Astrophysics Data System (ADS)

    Andriets, E. S.; Kondrashova, N. N.

    2015-02-01

    The variation of the photosphere physical state during the decay phase of SF/B6.8-class solar flare on May 28, 2012 in active region NOAA 11490 is studied. We used the data of the spectropolarimetric observations with the French-Italian solar telescope THEMIS (Tenerife, Spain). Semi-empirical model atmospheres are derived from the inversion with SIR (Stokes Inversion based on Response functions) code. The inversion was based on Stokes profiles of six photospheric lines. Each model atmosphere has a two-component structure: a magnetic flux tube and non-magnetic surroundings. The Harvard Smithsonian Reference Atmosphere (HSRA) has been adopted for the surroundings. The macroturbulent velocity and the filling factor were assumed to be constant with the depth. The optical depth dependences of the temperature, magnetic field strength, and line-of-sight velocity are obtained from inversion. According to the received model atmospheres, the parameters of the magnetic field and the thermodynamical parameters changed during the decay phase of the flare. The model atmospheres showed that the photosphere remained in a disturbed state during observations after the maximum of the flare. There are temporal changes in the temperature and the magnetic field strength optical depth dependences. The temperature enhancement in the upper photospheric layers is found in the flaring atmospheres relative to the quiet-Sun model. The downflows are found in the low and upper photosphere at the decay phase of the flare.

  14. Simulation of Prompt Emission from GRBs with a Photospheric Component and its Detectability By GLAST

    SciTech Connect

    Battelino, Milan; Ryde, Felix; Omodei, Nicola; Longo, Francesco; /U. Trieste /INFN, Trieste

    2011-11-29

    The prompt emission from gamma-ray bursts (GRBs) still requires a physical explanation. Studies of time-resolved GRB spectra, observed in the keV-MeV range, show that a hybrid model consisting of two components, a photospheric and a non-thermal component, in many cases fits bright, single-pulsed bursts as well as, and in some instances even better than, the Band function. With an energy coverage from 8 keV up to 300 GeV, GLAST will give us an unprecedented opportunity to further investigate the nature of the prompt emission. In particular, it will give us the possibility to determine whether a photospheric component is the determining feature of the spectrum or not. Here we present a short study of the ability of GLAST to detect such a photospheric component in the sub-MeV range for typical bursts, using simulation tools developed within the GLAST science collaboration.

  15. Continuous Upflow of Material in an Active Region Filament from the Photosphere to the Corona

    NASA Astrophysics Data System (ADS)

    Kuckein, C.; Centeno, R.; Martínez Pillet, V.

    2011-04-01

    Using spectropolarimetric data of an Active Region (AR) filament we have carried out inversions in order to infer vector magnetic fields in the photosphere (Si I line) and in the chromosphere (He I line). Our filament lies above the polarity inversion line (PIL) situated close to disk center and presents strong Zeeman-like signatures in both photospheric and chromospheric lines. Pore-like formations with both polarities are identified in the continuum under the PIL. The azimuth ambiguity is solved at both heights using the AZAM code. A comparison between the photospheric and chromospheric vector magnetic fields revealed that they are well aligned in some areas of the filament. However, especially at chromospheric heights, the magnetic field is mostly aligned with the dark threads of the filament. Velocity signatures indicating upflows of field lines are found at both heights. The combination of all these findings strongly suggests an emerging flux rope scenario.

  16. New measurements of photospheric magnetic fields in late-type stars and emerging trends

    NASA Technical Reports Server (NTRS)

    Saar, S. H.; Linsky, J. L.

    1986-01-01

    The magnetic fields of late-type stars are measured using the method of Saar et al. (1986). The method includes radiative transfer effects and compensation for line blending; the photospheric magnetic field parameters are derived by comparing observed and theoretical line profiles using an LTE code that includes line saturation and full Zeeman pattern. The preliminary mean active region magnetic field strengths (B) and surface area coverages for 20 stars are discussed. It is observed that there is a trend of increasing B towards the cooler dwarfs stars, and the linear correlation between B and the equipartition value of the magnetic field strength suggests that the photospheric gas pressure determines the photospheric magnetic field strengths. A tendency toward larger filling factors at larger stellar angular velocities is also detected.

  17. Thermal bifurcation in the upper solar photosphere inferred from heterodyne spectroscopy of OH rotational lines

    NASA Technical Reports Server (NTRS)

    Deming, D.; Hillman, J. J.; Kostiuk, T.; Mumma, M. J.; Zipoy, D. M.

    1984-01-01

    Low noise high spectral resolution observations of two pure rotation transitions of OH from the solar photosphere were obtained. The observations were obtained using the technique of optically null-balanced infrared heterodyne spectroscopy, and consist of center-to-limb line profiles of a v=1 and a v=0 transition near 12 microns. These lines should be formed in local thermodynamic equilibrium (LTE), and are diagnostics of the thermal structure of the upper photosphere. The v=0 R22 (24.5)e line strengthens at the solar limb, in contradiction to the predictions of current one dimensional photospheric models. Data for this line support a two dimensional model in which horizontal thermal fluctuations of order + or - 800K occur in the region Tau (sub 5000) approximately .001 to .01. This thermal bifurcation may be maintained by the presence of magnetic flux tubes, and may be related to the solar limb extensions observed in the 30 to 200 micron region.

  18. New measurements of photospheric magnetic fields in late-type stars and emerging trends

    NASA Technical Reports Server (NTRS)

    Saar, S. H.; Linsky, J. L.

    1986-01-01

    The magnetic fields of late-type stars are measured using the method of Saar et al. (1986). The method includes radiative transfer effects and compensation for line blending; the photospheric magnetic field parameters are derived by comparing observed and theoretical line profiles using an LTE code that includes line saturation and full Zeeman pattern. The preliminary mean active region magnetic field strengths (B) and surface area coverages for 20 stars are discussed. It is observed that there is a trend of increasing B towards the cooler dwarfs stars, and the linear correlation between B and the equipartition value of the magnetic field strength suggests that the photospheric gas pressure determines the photospheric magnetic field strengths. A tendency toward larger filling factors at larger stellar angular velocities is also detected.

  19. Penumbral-like Structures in the Solar Photosphere: the Role of Flux Emergence

    NASA Astrophysics Data System (ADS)

    Zuccarello, Francesca; Romano, Paolo; Cristaldi, Alice; Falco, Mariachiara; Guglielmino, Salvo L.

    Observations of the solar photosphere rarely show the appearance of so-called orphan penumbrae, filamentary structures very similar to a bundle of sunspot penumbral filaments, but not connected to any umbra. We report on the plasma flows and on the magnetic properties of such structures observed in different active regions using the Solar Optical Telescope on board the Hinode satellite. We also benefit from continuous observations acquired by the SDO satellite and from some high-resolution data acquired by the DOT telescope. We find that these structures can form in different ways: one seems to break off the penumbra of a nearby sunspot, others are formed through the emergence of new flux. Our analysis suggests that, for these latter features, the horizontal component of the emerging field can be trapped in the photosphere by the overlying fields and form a structure resembling penumbral filaments due to the combination of photospheric flux emergence and magneto-convection in inclined fields.

  20. The Magnetic and Dynamic Structure Of An Active Region From The Photosphere To The Chromosphere

    NASA Astrophysics Data System (ADS)

    Tritschler, Alexandra

    2012-05-01

    We present preliminary results from high-resolution vector imaging spectropolarimetry of active regions obtained with the Interferometric Bidimensional Spectrometer (IBIS) operated at NSO's Dunn Solar Telescope (DST), Sunspot, New Mexico. In order to probe the photospheric-chromospheric height range, IBIS scanned consecutively the photospheric Fe I lines at 617.3 nm and 684.2 nm, the upper photospheric/low chromospheric Na D line at 589.6 nm, and the chromospheric diagnostics Ca II 854.2 nm and H-alpha 656.3 nm (Stokes I only). We calculate two-dimensional maps of the net-circular polarisation and the total linear and circular polarisation and determine LOS Doppler velocities to characterise the structure of the magnetic and flow field, respectively.

  1. Ultra-High-Resolution Observations of MHD Waves in Photospheric Magnetic Structures

    NASA Astrophysics Data System (ADS)

    Jess, D. B.; Verth, G.

    2016-02-01

    This chapter reviews the recent observations of waves and oscillations manifesting in fine-scale magnetic structures in the solar photosphere, which are often interpreted as the "building blocks' of the magnetic Sun. The authors found, through phase relationships between the various waveforms, that small-scale magnetic bright points (MBPs) in the photosphere demonstrated signatures of specific magnetoacoustic waves, in particular the sausage and kink modes. Modern magnetohydrodynamic (MHD) simulations of the lower solar atmosphere clearly show how torsional motions can easily be induced in magnetic elements in the photosphere through the processes of vortical motions and/or buffeting by neighboring granules. The authors detected significant power associated with high-frequency horizontal motions, and suggested that these cases may be especially important in the creation of a turbulent environment that efficiently promotes Alfvén wave dissipation.

  2. Evidence for the equality of the solar photospheric and coronal abundance of iron

    NASA Technical Reports Server (NTRS)

    Phillips, K. J. H.; Pike, C. D.; Lang, J.; Zarro, D. M.; Fludra, A.; Watanabe, T.; Takahashi, M.

    1995-01-01

    The Fe K-alpha and K-beta X-ray lines (wavelengths 1.94 and 1.76 A) in the solar X-ray spectrum are formed by fluoroescence of photospheric iron atoms, and the ratio of the intensity of either to the He-like iron (Fe XXV) resonance line at 1.85 A is a function of the photospheric-to-coronal abundance of iron. The temperature dependence of this ratio is weak as long as the flare temperature T(sub e) greater than or approximately equal to 15 x 10(exp 6)K. Comparison of the theoretical value of this intensity ratio with observations from crystal spectrometers on Yohkoh, Solar Maximum Mission (SMM) and P78-1 are consistent with the photospheric abundance of Fe being equal to the coronal.

  3. Observation of five-minute-period gravity waves in the solar photosphere

    NASA Astrophysics Data System (ADS)

    Stebbins, R. T.; Goode, Philip R.; Hill, Henry A.

    1983-01-01

    Vertically propagating traveling waves have been observed in the solar photosphere. These waves have a period of 278 ± 41 seconds and a vertical phase velocity of about 2 km s-1. It is noted that these waves also have approximately the same period as the well-studied five-minute-period acoustic mode, which is evanescent in the photosphere. The only consistent interpretation of the traveling waves implies that they are gravity waves. About half the time the gravity waves are outgoing, while the remainder of the time they are ingoing. The data were collected by Stebbins et al. (1980) to study the vertical structure of the photosphere. They examined velocity pertubations at nine altitudes in the photosphere using a Doppler shift technique. The current work represents a reanalysis of that data which uncovered the five-minute-period traveling waves. The mean velocity amplitude of disturbances at a given altitude, as registered in the observed Doppler shift, was found to be directly proportional to the mean velocity amplitude at the base of the photosphere. This was the expected relationship between the velocity amplitudes. It was not expected that the standard deviation of the velocity amplitude at a particular altitude would be independent of the velocity amplitude at the base of the photosphere. In addition, the phase difference between velocities at different altitudes is, unexpectedly, inversely proportional to the velocity amplitude at any altitude. These two traits of the data are consistent with a five-minute-period nonacoustic traveling wave being superimposed on the five-minute-period acoustic mode. This supposition is borne out by a detailed examination of the data in the complex plane of amplitude and phase and by a calculation of the power spectrum of the traveling waves as a function of their vertical wavenumber (see Hill et al., 1982).

  4. An Optical Transmission Spectrum of GJ 1214b Suggesting a Heterogeneous Stellar Photosphere

    NASA Astrophysics Data System (ADS)

    Rackham, Benjamin; Espinoza, Néstor; Apai, Daniel; Lopez-Morales, Mercedes; Jordán, Andrés; Osip, David J.; Lewis, Nikole; Rodler, Florian; Fraine, Jonathan D.; Morley, Caroline; Fortney, Jonathan J.

    2016-10-01

    Measurements of the transmission spectrum of a transiting exoplanet require an understanding of the host star's photosphere. If the transit chord differs from the rest of the photosphere, as is the case when unocculted starspots are present, the difference between the two regions will be imprinted on the transmission spectrum we observe. This issue is particularly important for M-dwarf host stars, which provide the best opportunities to study smaller transiting planets, but also remain active for longer after formation than their higher-mass counterparts. Here, we present an optical transmission (4,500-9,260 Å) of the sub-Neptune GJ 1214b measured with Magellan/IMACS, which points to features potentially imprinted by its mid-M-dwarf host star. Our optical spectrum is generally offset below values found in the near-infrared for this target, and tends to decrease at shorter wavelengths. We find the ensemble of optical and near-infrared transit depths are best explained by the combination of a flat planetary transmission spectrum—owing to lofted, equilibrium condensate clouds or thick photochemical hazes—and another signal produced by heterogeneities in the stellar photosphere. We present the Composite Photosphere and Atmospheric Transmission (CPAT) model for jointly incorporating stellar and exoplanetary signals. Using the CPAT model, we show that unocculted stellar faculae with temperature contrasts and covering fractions similar to those found for solar limb faculae can explain the observed optical transmission spectrum. We show how the CPAT model can be used to correct transmission spectra for persistent heterogeneities in stellar photospheres, like limb faculae, and discuss the implications of stellar photospheric heterogeneities for transmission spectroscopy of exciting M-dwarf-hosted exoplanets that will be discovered by the Transiting Exoplanet Survey Satellite.

  5. Identification and properties of the photospheric emission in GRB090902B

    DOE PAGES

    Ryde, F.; Axelsson, M.; Zhang, B. B.; ...

    2010-01-14

    We observed the Fermi Gamma-ray Space Telescope using the bright and long GRB090902B, lying at a redshift of z = 1.822. Together the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM) cover the spectral range from 8 keV to >300 GeV. Here we show that the prompt burst spectrum is consistent with emission from the jet photosphere combined with nonthermal emission described by a single power law with photon index –1.9. The photosphere gives rise to a strong quasi-blackbody spectrum which is somewhat broader than a single Planck function and has a characteristic temperature of ~290 keV. Wemore » model the photospheric emission with a multicolor blackbody, and its shape indicates that the photospheric radius increases at higher latitudes. We derive the averaged photospheric radius R ph = (1.1 ± 0.3) × 1012 Y 1/4 cm and the bulk Lorentz factor of the flow, which is found to vary by a factor of 2 and has a maximal value of Γ = 750 Y 1/4. Here, Y is the ratio between the total fireball energy and the energy emitted in the gamma rays. Here, we find that during the first quarter of the prompt phase the photospheric emission dominates, which explains the delayed onset of the observed flux in the LAT compared to the GBM. We also interpret the broadband emission as synchrotron emission at R ~ 4 × 1015 cm. Our analysis emphasizes the importance of having high temporal resolution when performing spectral analysis on gamma-ray bursts, since there is strong spectral evolution.« less

  6. Identification and properties of the photospheric emission in GRB090902B

    SciTech Connect

    Ryde, F.; Axelsson, M.; Zhang, B. B.; McGlynn, S.; Pe'er, A.; Lundman, C.; Larsson, S.; Battelino, M.; Zhang, B.; Bissaldi, E.; Bregeon, J.; Briggs, M. S.; Chiang, J.; de Palma, F.; Guiriec, S.; Larsson, J.; Longo, F.; McBreen, S.; Omodei, N.; Petrosian, V.; Preece, R.; van der Horst, A. J.

    2010-01-14

    We observed the Fermi Gamma-ray Space Telescope using the bright and long GRB090902B, lying at a redshift of z = 1.822. Together the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM) cover the spectral range from 8 keV to >300 GeV. Here we show that the prompt burst spectrum is consistent with emission from the jet photosphere combined with nonthermal emission described by a single power law with photon index –1.9. The photosphere gives rise to a strong quasi-blackbody spectrum which is somewhat broader than a single Planck function and has a characteristic temperature of ~290 keV. We model the photospheric emission with a multicolor blackbody, and its shape indicates that the photospheric radius increases at higher latitudes. We derive the averaged photospheric radius R ph = (1.1 ± 0.3) × 1012 Y 1/4 cm and the bulk Lorentz factor of the flow, which is found to vary by a factor of 2 and has a maximal value of Γ = 750 Y 1/4. Here, Y is the ratio between the total fireball energy and the energy emitted in the gamma rays. Here, we find that during the first quarter of the prompt phase the photospheric emission dominates, which explains the delayed onset of the observed flux in the LAT compared to the GBM. We also interpret the broadband emission as synchrotron emission at R ~ 4 × 1015 cm. Our analysis emphasizes the importance of having high temporal resolution when performing spectral analysis on gamma-ray bursts, since there is strong spectral evolution.

  7. Dependence of sunspot photospheric waves on the depth of the source of solar p-modes

    NASA Astrophysics Data System (ADS)

    Felipe, T.; Khomenko, E.

    2017-02-01

    Photospheric waves in sunspots moving radially outward at speeds faster than the characteristic wave velocities have been recently detected. It has been suggested that they are the visual pattern of p-modes excited around 5 Mm beneath the sunspot's surface. Using numerical simulations, we performed a parametric study of the waves observed at the photosphere and higher layers that were produced by sources located at different depths beneath the sunspot's surface. The observational measurements are consistent with waves driven between approximately 1 Mm and 5 Mm below the sunspot's surface.

  8. Investigation of turbulence in the solar photosphere with allowance for influence of the instrumental contour

    NASA Technical Reports Server (NTRS)

    Troyan, V. I.

    1973-01-01

    The solar photosphere turbulence was investigated, taking into account the effect of the instrumental profile. Ten Unno's pairs for the center of the solar disk were observed. The main results are as follows: (1) without taking into account the factors distorting a line, the turbulent velocity in solar photosphere would decrease with height. The values of xi sub t are similar to those of Unno; (2) taking into account the instrument profile, the value of turbulent velocity becomes less, but its dependence on height is the same. The maximum relative error of xi sub t is approximately equal to 13.6%.

  9. FUSE Observation of Silicon in the Photosphere of the DBA White Dwarf GD 61

    NASA Astrophysics Data System (ADS)

    Wesemael, F.; Petitclerc, N.; Chayer, P.; Kruk, J. W.; Pesant, S.; Tardif, B.

    2006-06-01

    FUSE observations of the cool (Teff˜ 17,000 K) DBA white dwarf reveal that the carbon features observed in several hotter DB stars are absent, but that photospheric transitions associated with the Si III ion are present. This may be the first indication that the mechanism which allows carbon to remain conspicuous in hotter objects, postulated to be a stellar wind, may well have turned off by the time a DB star cools down to 17,000 K. The photospheres of cooler DB stars are likely to be dominated instead by accretion from the ISM and, at even cooler temperatures, by convective dredge-up of carbon.

  10. Fluorescent excitation of photospheric Fe K-alpha emission during solar flares

    NASA Technical Reports Server (NTRS)

    Parmar, A. N.; Culhane, J. L.; Rapley, C. G.; Phillips, K. J. H.; Wolfson, C. J.; Acton, L. W.; Dennis, B. R.

    1982-01-01

    The Bent Crystal Spectrometer on the NASA Solar Maximum Mission satellite provides high spectral and temporal resolution observations of the Fe K-alpha lines. Analyses have been conducted of spectra from almost 50 solar flares that occurred during 1980. These data strongly support fluorescent excitation of photospheric iron by photons of E greater than 7.11 keV emitted by the hot coronal plasma produced during the flare. After comparison of the data with a model, the observed K-alpha line widths are discussed along with estimates of the size of the emitting region, the height of the coronal source and the photospheric iron abundance.

  11. CHEMI-IONIZATION IN SOLAR PHOTOSPHERE: INFLUENCE ON THE HYDROGEN ATOM EXCITED STATES POPULATION

    SciTech Connect

    Mihajlov, Anatolij A.; Ignjatovic, Ljubinko M.; Sreckovic, Vladimir A.; Dimitrijevic, Milan S. E-mail: mihajlov@ipb.ac.rs

    2011-03-15

    In this paper, the influence of chemi-ionization processes in H*(n {>=} 2) + H(1s) collisions, as well as the influence of inverse chemi-recombination processes on hydrogen atom excited-state populations in solar photosphere, are compared with the influence of concurrent electron-atom and electron-ion ionization and recombination processes. It has been found that the considered chemi-ionization/recombination processes dominate over the relevant concurrent processes in almost the whole solar photosphere. Thus, it is shown that these processes and their importance for the non-local thermodynamic equilibrium modeling of the solar atmosphere should be investigated further.

  12. Tracing p-mode Waves from the Photosphere to the Corona in Active Regions

    NASA Astrophysics Data System (ADS)

    Zhao, Junwei; Felipe, Tobías; Chen, Ruizhu; Khomenko, Elena

    2016-10-01

    Atmosphere above sunspots is abundant with different types of waves. Among these waves are running penumbral waves in the chromosphere, quasi-periodic oscillations in the lower coronal loops, and recently reported running waves in sunspots’ photosphere, all of which were interpreted as magnetoacoustic waves by some authors. Are these waves in different atmospheric layers related to each other, what is the nature of these waves, and where are the ultimate sources of these waves? Applying a time-distance helioseismic analysis over a suite of multi-wavelength observations above a sunspot, we demonstrate that the helioseismic p-mode waves are able to channel up from the photosphere through the chromosphere and transition region into the corona, and that the magnetoacoustic waves observed in different atmospheric layers are a same wave originating from the photosphere but exhibiting differently under different physical conditions. We also show waves of different frequencies travel along different paths, which can be used to derive the physical properties of the atmosphere above sunspots. Our numerical simulation of traveling of waves from a subphotospheric source qualitatively resembles the observed properties of the waves and offers an interpretation of the shapes of the wavefronts above the photosphere.

  13. Observational Analysis of the Relation between Coronal Loop Heating and Photospheric Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Katsukawa, Y.

    2007-10-01

    The solar corona and the photosphere are linked through magnetic field lines, and heating energy is supposed to be supplied from the footpoints of each coronal loop along magnetic field lines. Thus it is important to examine properties of photospheric magnetic fields at the footpoints of the coronal loops in order to understand heating of the coronal loops. We performed simultaneous observations of photospheric magnetic properties and coronal loop structures using the ground based telescopes and Transition Region And Coronal Explorer (TRACE). Footpoint locations were identified in the TRACE images, and the structure in the photosphere was examined by Advanced Stokes Polarimeter (ASP) or Dutch Open Telescope (DOT). Most of the coronal loops emanating from a sunspot had their footpoints around the boundary between the umbra and the penumbra. Furthermore, bright loops were revealed to have their footpoints at the locations where there was highly interlaced magnetic configuration. We observed fragmentation of an umbra and formation of a light bridge in decaying sunspots, and found possible association between such phenomena in the decaying spots and the coronal loops. These observational results suggest that spatial fluctuation of magnetic fields forms current sheets at the base of the corona, resulting in heating of the coronal loops.

  14. Numerical Investigations of Capabilities and Limits of Photospheric Data Driven Magnetic Flux Emergence

    NASA Astrophysics Data System (ADS)

    Linton, M.; Leake, J. E.; Schuck, P. W.

    2016-12-01

    The magnetic field of the solar atmosphere is the primary driver of solar activity. Understanding the magnetic state of the solar atmosphere is therefore of key importance to predicting solar activity. One promising means of studying the magnetic atmosphere is to dynamically build up and evolve this atmosphere from the time evolution of emerging magnetic field at the photosphere, where it can be measured with current solar vector magnetograms at high temporal and spatial resolution. We report here on a series of numerical experiments investigating the capabilities and limits of magnetohydrodynamical simulations of such a process, where a magnetic corona is dynamically built up and evolved from a time series of synthetic photospheric data. These synthetic data are composed of photospheric slices taken from self consistent convection zone to corona simulations of flux emergence. The driven coronae are then quantitatively compared against the coronae of the original simulations. We investigate and report on the fidelity of these driven simulations, both as a function of the emergence timescale of the magnetic flux, and as a function of the driving cadence of the input data. These investigations will then be used to outline future prospects and challenges for using observed photospheric data to drive such solar atmospheric simulations. This work was supported by the Chief of Naval Research and the NASA Living with a Star and Heliophysics Supporting Research programs.

  15. Variations in photospheric limb darkening as a diagnostic of changes in solar luminosity

    SciTech Connect

    Rosen, W.A.; Foukal, P.V.; Kurucz, R.L.; Pierce, A.K.

    1982-02-15

    We report an photospheric limb-darkening measurements obtained at the McMath Solar Telescope in 1980 July, September, and October as part of a continuing program to study possible long-term variations in the photospheric emergent flux. A total of 243 usable full-diameter scans was recorded over 7 days in the clean continuum window at 4451.25 A. Individual scans were fitted to a fifth order polynomial in xi = ln..mu.., and a mean limb-darkening curve was derived for each day. The standard deviation of the daily mean of intensities ranged between 0.08% and 0.12% for all ..mu..>0.15. We note that the limb darkening decreased significantly between September 25 and 26. This change of the limb-darkening curve is not readily understandable in terms of variations in scattered light, seeing, or nonlinear photometric gain. We suggest that it is caused by a decrease of the temperature gradient in the upper photosphere, in the region above approximately tau/sub 5000/ = 0.5. The small increase in effective temperature that might accompany this limb-darkening variation is estimated using a standard radiative equilibrium photospheric model. We note that the increase of effective temperature corresponds in sign with an increase in the solar irradiance reported between September 25 and 26 from both the Nimbus 7 ERB and the SMM ACRIM radiometers.

  16. OBSERVATIONAL EVIDENCE OF CHANGING PHOTOSPHERIC VECTOR MAGNETIC FIELDS ASSOCIATED WITH SOLAR FLARES

    SciTech Connect

    Su, J. T.; Jing, J.; Wang, H. M.; Mao, X. J.; Wang, X. F.; Zhang, H. Q.; Deng, Y. Y.; Guo, J.; Wang, G. P.

    2011-06-01

    Recent observations have provided evidence that the solar photospheric magnetic fields could have rapid and permanent changes in both longitudinal and transverse components associated with major flares. As a result, the Lorentz force (LF) acting on the solar photosphere and solar interior could be perturbed, and the change of LF is always nearly in the downward direction. However, these rapid and permanent changes have not been systematically investigated, yet, using vector magnetograms. In this paper, we analyze photospheric vector magnetograms covering five flares to study the evolution of photospheric magnetic fields. In particular, we investigate two-dimensional spatial distributions of the changing LF. Around the major flaring polarity inversion line, the net change of the LF is directed downward in an area of {approx}10{sup 19} cm{sup 2} for X-class flares. For all events, the white-light observations show that sunspots darken in this location after flares, and magnetic fields become more inclined, which is consistent with the ideas put forward by Hudson et al. and Fisher et al., and observations.

  17. Observing Propagation of Magnetoacoustic Waves from the Photosphere to the Corona in Sunspot Regions

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Chen, R.

    2015-12-01

    Running penumbral waves in the chromosphere and slow magnetoacoustic waves in the lower coronal loops have been observed and studied for a long time. However, it is not clear whether these waves are connected, whether they have photospheric counterparts, and how they get excited. Recently, through cross-correlating oscillation signals in sunspots' umbrae with those in penumbrae and the sunspots' vicinity observed by SDO/HMI, we identified a fast-moving wave propagating from the sunspots to their outside. It is interesting to see whether this type of the photospheric wave is related to those waves observed above the photosphere in the chromopshere and corona. In this work, we analyze a well-observed sunspot region, using SDO/HMI data for the photosphere, AIA 1600Å and 1700Å data for the lower chromosphere, BBSO/NST Hα data for the chromosphere, AIA 304Å data for the transition region, and AIA 171Å data for the lower corona. Our results show that the wave phenomena observed at different atmospheric heights using different spectrum lines are actually a same slow magnetoacoustic wave propagating upward, likely with a wave source located a few megameters below the sunspots' surface.

  18. Study of Photospheric Magnetic and Coronal Data in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Guerra, Jordan A.; Pulkkinen, Antti A.; Uritsky, Vadim

    2015-01-01

    We investigate the dynamical coupling between the photosphere and the corona in active regions by analyzing HMI magnetograms and AIA maps of coronal emission from the Solar Dynamics Observatory (SDO). The study consists of two main components, an spectral analysis and a correlation analysis. In the spectral analysis we characterized the spatiotemporal behavior of the line-of-sight (LOS) photospheric magnetic field and coronal intensity by determining the power-law decay of their Fourier spectra. Values of the power-law scaling exponents reflect the state of the turbulent photospheric plasma and capture field's transient changes that are related to the coronal emission. In particular, the scaling exponents were used to test the validity of Taylor's hypothesis for frozen-in-flow turbulence. For the correlation analysis we calculated the spatiotemporal autocorrelation and cross-correlation functions for the photospheric magnetic field and the coronal emission in different wavelengths. These multidimensional functions were reduced to a form that can be characterized by a single parameter such as the e-folding time or length. Our results suggest that parameters capturing the spatiotemporal complexity and dynamics can be used for monitoring the evolution of the active region towards a state of flare productivity. This type of parameters is often used for building flare prediction models, an essential of Space Weather forecasting.

  19. Solar chromospheric spicules from the leakage of photospheric oscillations and flows.

    PubMed

    De Pontieu, Bart; Erdélyi, Robert; James, Stewart P

    2004-07-29

    Spicules are dynamic jets propelled upwards (at speeds of approximately 20 km s(-1)) from the solar 'surface' (photosphere) into the magnetized low atmosphere of the Sun. They carry a mass flux of 100 times that of the solar wind into the low solar corona. With diameters close to observational limits (< 500 km), spicules have been largely unexplained since their discovery in 1877: none of the existing models can account simultaneously for their ubiquity, evolution, energetics and recently discovered periodicity. Here we report a synthesis of modelling and high-spatial-resolution observations in which numerical simulations driven by observed photospheric velocities directly reproduce the observed occurrence and properties of individual spicules. Photospheric velocities are dominated by convective granulation (which has been considered before for spicule formation) and by p-modes (which are solar global resonant acoustic oscillations visible in the photosphere as quasi-sinusoidal velocity and intensity pulsations). We show that the previously ignored p-modes are crucial: on inclined magnetic flux tubes, the p-modes leak sufficient energy from the global resonant cavity into the chromosphere to power shocks that drive upward flows and form spicules.

  20. Study of the Photospheric Magnetic Field and Coronal Emission from Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Aguilera, Jordan Armando Guerra

    2016-01-01

    Solar explosive phenomena (flares and Coronal Mass Ejections, CMEs) are examples of how the most dynamical processes within the heliosphere are interconnected and powered by the Sun. Solar flares originate in active regions (AR) -- areas of strong magnetic field on the solar surface. The electromagnetic (EM) energy released during flares, along with the often-seen CMEs, propagate through the heliosphere. In the Earth's vicinity, EM radiation and charged particles have the potential to produce unfavorable conditions for humans and technology in space. From many points of view (scientific, operational, economical) it is thus important to understand and try to predict when solar flares and associated eruptive phenomena will occur. This dissertation explores how to best leverage the available observational data to provide predictive information about the future flaring activity. This dissertation consists of two main components: 1) investigation of the photosphere-corona coupling by analyzing photospheric magnetic field and coronal data in search for signals or behaviors that precede eruptions; and 2) the combination of existing flare prediction methods in order to develop a novel ensemble prediction. For the first part, the data employed correspond to line-of-sight (LOS) magnetograms from the Helioseismic and Magnetic Imager (HMI) and EUV intensity maps from the Atmospheric Imaging Assembly (AIA), both instruments onboard NASA's Solar Dynamics Observatory (SDO) satellite. Photospheric magnetic field and coronal EUV emissions were characterized by measuring the power-law decay of their spatio-temporal spectra and the data statistical associations (auto- and cross-correlations). These measures, calculated with high spatio-temporal resolution, appeared to characterize the AR evolution, provide information about the state of the photospheric plasma, reveal insights into the photospheric conditions for flares, and expose the potential of combining coronal and photospheric

  1. Non-magnetic photospheric bright points in 3D simulations of the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Calvo, F.; Steiner, O.; Freytag, B.

    2016-11-01

    Context. Small-scale bright features in the photosphere of the Sun, such as faculae or G-band bright points, appear in connection with small-scale magnetic flux concentrations. Aims: Here we report on a new class of photospheric bright points that are free of magnetic fields. So far, these are visible in numerical simulations only. We explore conditions required for their observational detection. Methods: Numerical radiation (magneto-)hydrodynamic simulations of the near-surface layers of the Sun were carried out. The magnetic field-free simulations show tiny bright points, reminiscent of magnetic bright points, only smaller. A simple toy model for these non-magnetic bright points (nMBPs) was established that serves as a base for the development of an algorithm for their automatic detection. Basic physical properties of 357 detected nMBPs were extracted and statistically evaluated. We produced synthetic intensity maps that mimic observations with various solar telescopes to obtain hints on their detectability. Results: The nMBPs of the simulations show a mean bolometric intensity contrast with respect to their intergranular surroundings of approximately 20%, a size of 60-80 km, and the isosurface of optical depth unity is at their location depressed by 80-100 km. They are caused by swirling downdrafts that provide, by means of the centripetal force, the necessary pressure gradient for the formation of a funnel of reduced mass density that reaches from the subsurface layers into the photosphere. Similar, frequently occurring funnels that do not reach into the photosphere, do not produce bright points. Conclusions: Non-magnetic bright points are the observable manifestation of vertically extending vortices (vortex tubes) in the photosphere. The resolving power of 4-m-class telescopes, such as the DKIST, is needed for an unambiguous detection of them. The movie associated to Fig. 1 is available at http://www.aanda.org

  2. Hard X-ray emitting energetic electrons and photospheric electric currents

    NASA Astrophysics Data System (ADS)

    Musset, S.; Vilmer, N.; Bommier, V.

    2015-08-01

    Context. The energy released during solar flares is believed to be stored in non-potential magnetic fields associated with electric currents flowing in the corona. While no measurements of coronal electric currents are presently available, maps of photospheric electric currents can now be derived from SDO/HMI observations. Photospheric electric currents have been shown to be the tracers of the coronal electric currents. Particle acceleration can result from electric fields associated with coronal electric currents. We revisit here some aspects of the relationship between particle acceleration in solar flares and electric currents in the active region. Aims: We study the relation between the energetic electron interaction sites in the solar atmosphere, and the magnitudes and changes of vertical electric current densities measured at the photospheric level, during the X2.2 flare on February 15, 2011, in AR NOAA 11158. Methods: X-ray images from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) are overlaid on magnetic field and electric current density maps calculated from the spectropolarimetric measurements of the Helioseismic and Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO) using the UNNOFIT inversion and Metcalf disambiguation codes. X-ray images are also compared with extreme ultraviolet (EUV) images from the SDO Atmospheric Imaging Assembly (AIA) to complement the flare analysis. Results: Part of the elongated X-ray emissions from both thermal and non-thermal electrons overlay the elongated narrow current ribbons observed at the photospheric level. A new X-ray source at 50-100 keV (produced by non-thermal electrons) is observed in the course of the flare and is cospatial with a region in which new vertical photospheric currents appeared during the same period (an increase of 15%). These observational results are discussed in the context of the scenarios in which magnetic reconnection (and subsequent plasma heating and particle

  3. Characterizing the Quiet Solar Photosphere Using a Zeeman-Tomography Approach

    NASA Astrophysics Data System (ADS)

    Carroll, T. A.; Kopf, M.

    2008-09-01

    Based on a novel 3-D Stokes profile inversion (Zeeman-Tomography), which utilizes high-spatial, mixed-polarity magnetoconvection simulation data, we have investigated a number of quiet regions in the solar photosphere observed by Hinode/SOT. Zeeman-Tomography is a unique technique to reconstruct, on a geometric height scale, the 3-dimensional structure of various atmospheric quantities from observed Stokes profiles. Using spectropolarimetric observations from Hinode/SOT our Zeeman-Tomography approach allowed us to determine the spatial structure of the temperature, line-of-sight (LOS) velocity as well as the LOS and horizontal component of the magnetic field, for a photospheric layer of 500 km in height and a field-of-view of 12.000x12.000 km. From the 3-D representation of the photospheric region many small scale flux tube like structures can be identified in the lower photosphere with a maximum field strength of several hundred Gauss. The majority of these structures rapidly lose their strength and coherence with height and only a few stronger flux structures can retain a significant field strength to the upper photosphere. Moreover, we are able to estimate the height dependent probability density function (pdf) of the magnetic field strength. The pdf exhibit a rapid decline of the strong field part of the distribution with height which goes along with a decline in the overall (LOS) magnetic flux density. After a brief introduction of our Zeeman-Tomography approach, I will discuss how these topological and empirically derived findings fit into the current picture of the quiet Sun magnetism.

  4. The close circumstellar environment of Betelgeuse. IV. VLTI/PIONIER interferometric monitoring of the photosphere

    NASA Astrophysics Data System (ADS)

    Montargès, M.; Kervella, P.; Perrin, G.; Chiavassa, A.; Le Bouquin, J.-B.; Aurière, M.; López Ariste, A.; Mathias, P.; Ridgway, S. T.; Lacour, S.; Haubois, X.; Berger, J.-P.

    2016-04-01

    Context. The mass-loss mechanism of cool massive evolved stars is poorly understood. The proximity of Betelgeuse makes it an appealing target to study its atmosphere, map the shape of its envelope, and follow the structure of its wind from the photosphere out to the interstellar medium. Aims: A link is suspected between the powerful convective motions in Betelgeuse and its mass loss. We aim to constrain the spatial structure and temporal evolution of the convective pattern on the photosphere and to search for evidence of this link. Methods: We report new interferometric observations in the infrared H-band using the VLTI/PIONIER instrument. We monitored the photosphere of Betelgeuse between 2012 January and 2014 November to look for evolutions that may trigger the outflow. Results: Our interferometric observations at low spatial frequencies are compatible with the presence of a hot spot on the photosphere that has a characteristic width of one stellar radius. It appears to be superposed on the smaller scale convective pattern. In the higher spatial frequency domain, we observe a significant difference between the observations and the predictions of 3D hydrodynamical simulations. Conclusions: We bring new evidence for the presence of a convective pattern in the photosphere of red supergiants. The inferred hot spot is probably the top of a giant convection cell although an asymmetric extension of the star cannot be excluded by these interferometric observations alone. The properties of the observed surface features show a stronger contrast and inhomogeneity as predicted by 3D radiative hydrodynamical simulations. We propose that the large observed feature is modifying the signature of the convective pattern at the surface of the star in a way that simulations cannot reproduce. Based on observations made with ESO telescopes at Paranal Observatory, under ESO programs 288.D-5035(A), 090.D-0548(A), 092.D-0366(A), 092.D-0366(B) and 094.D-0869 (A).

  5. Photospheric Electric Fields and Energy Fluxes in the Eruptive Active Region NOAA 11158

    NASA Astrophysics Data System (ADS)

    Kazachenko, Maria D.; Fisher, George H.; Welsch, Brian T.; Liu, Yang; Sun, Xudong

    2015-09-01

    How much electromagnetic energy crosses the photosphere in evolving solar active regions (ARs)? With the advent of high-cadence vector magnetic field observations, addressing this fundamental question has become tractable. In this paper, we apply the “PTD-Doppler-FLCT-Ideal” (PDFI) electric field inversion technique of Kazachenko et al. to a 6-day vector magnetogram and Doppler velocity sequence from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory to find the electric field and Poynting flux evolution in NOAA 11158, which produced an X2.2 flare early on 2011 February 15. We find photospheric electric fields ranging up to 2 V cm-1. The Poynting fluxes range from [-0.6 to 2.3] × {10}10 {erg} cm-2 s-1, mostly positive, with the largest contribution to the energy budget in the range of [{10}9-{10}10] erg cm-2 s-1. Integrating the instantaneous energy flux over space and time, we find that the total magnetic energy accumulated above the photosphere from the initial emergence to the moment before the X2.2 flare to be E=10.6× {10}32 {erg}, which is partitioned as 2.0×1032erg and 8.6× {10}32 {erg}, respectively, between free and potential energies. Those estimates are consistent with estimates from preflare nonlinear force-free field extrapolations and the Minimum Current Corona estimates, in spite of our very different approach. This study of photospheric electric fields demonstrates the potential of the PDFI approach for estimating Poynting fluxes and opens the door to more quantitative studies of the solar photosphere and more realistic data-driven simulations of coronal magnetic field evolution.

  6. Turbulent transport of Small-scale magnetic flux elements on Solar Photosphere

    NASA Astrophysics Data System (ADS)

    Agrawal, Piyush; Rempel, Matthias; Bellot Rubio, Luis; Rast, Mark

    2016-05-01

    We study the transport of small-scale magnetic elements on the solar photosphere using both observations and simulations. Observational data was obtained from Hinode - Solar Optical Telescope (SOT/SP) instrument and simulations from MURaM code. The magnetic flux elements were tracked in both data sets and statistics were obtained. We compute the probability density of the Eulerian distances traveled by the flux elements along Lagrangian trajectories. For a two-dimensional random walk process this distribution should be Rayleigh. Preliminary results show that the measured probability distribution in both the observed and simulated data approximates a random walk, on time scale close to the lifetime of granules, but deviates from it for longer times. This implies that diffusion may not be an appropriate framework for transport in the solar photosphere. We explore the roles of flux cancelation and element trapping in producing this result. Work is ongoing.

  7. Temporal variations of solar-spectral-line profiles induced by the 5-minute photospheric oscillation

    SciTech Connect

    Gomez, M.T.; Marmolino, C.; Roberti, G.; Severino, G.

    1987-01-01

    The variations induced by the 5-min photospheric oscillation are simulated on the line profiles. A phase lag of the order of 150/degree/ between temperature and velocity wave perturbations can explain the observed differences between the oscillations of the line flanks at residual intensity levels I/I/sub c/ < 0.7. Such a phase relation in the 5-min oscillation differs from that of the adiabatic case in which the temperature and pressure fluctuations are 90/degrees/ out of phase with respect to the velocity. A simple model of radiative damping in the solar photosphere can produce the required phase lag between temperature and velocity. The granulation can affect differentially the oscillations of the line flanks. This effect, however, does not fit the observed behavior of the flank oscillations.

  8. Refining the Expanding Photosphere Method: Comparison of Velocity and Temperature Parameters

    NASA Astrophysics Data System (ADS)

    Mitchell, Robert C.

    2016-01-01

    The Expanding Photosphere Method (EPM) is used to measure the distance to a supernova by determining the temperature and expansion velocity of the supernova's photosphere at different epochs, and calculating its luminosity. To account for the supernova's deviation from a true blackbody, flux dilution factors, empirically derived from methods by Hamuy et al. (2001) and Dessart and Hillier (2005), were applied to our calculations for several Type II-P supernovae. In this work, we compare different lines used to measure the expansion velocity, H-alpha vs. Fe II vs. Sc II, and we compare blackbody-fit temperatures vs. color temperatures. Our goal is to determine the combination of specific line velocities, temperature calculation, and other parameters that produce the most reliable distance determination for a supernova.

  9. Recovering Photospheric Velocities from Vector Magnetograms by Using a Three-dimensional, Fully Magnetohydrodynamic Model

    NASA Astrophysics Data System (ADS)

    Wang, A. H.; Wu, S. T.; Liu, Yang; Hathaway, D.

    2008-02-01

    We use a numerical simulation method for recovering the photospheric velocity field from the vector magnetograms. The traditional method is local correlation tracking (LCT), which is based on measuring the relative displacements of features in blocks of pixels between successive white-light images or magnetograms. Within this method, there are a variety of implementations. One of recently developed implementations is induction local correlation tracking (ILCT) as described by Welsch and coworkers. They employ the normal component of magnetic induction equation as a constraint to assure consistent solutions. Our numerical method uses the fully three-dimensional MHD equations to recover the photospheric velocity field with individual vector magnetograms. We compare our method to the ILCT method using NOAA AR 8210 as an example. The differences and similarities are discussed in detail.

  10. Recovering Photospheric Velocities from Vector Magnetograms by using a Three-Dimensional, Fully Magnetohydrodynamic (MHD) Model

    NASA Technical Reports Server (NTRS)

    Wang, A. H.; Wu, S. T.; Liu, Yang; Hathaway, D.

    2008-01-01

    We introduce a numerical simulation method for recovering the photospheric velocity field from the vector magnetograms. The traditional method is local correlation tracking (LCT) which is based on measuring the relative displacements of features in blocks of pixels between successive white-light images or magnetograms. Within this method, there are a variety of implementations. One of recently developed implementations is induction local correlation tracking (ILCT) as described by Welsch et al. (2004). They employ the normal component of magnetic induction equation as a constraint to assure consistent solutions. Our numerical method uses the fully three-dimensional MHD equations to recover the photospheric velocity field with individual vector magnetograms. We compare our method to the ILCT method using NOAA AR8210 as an example. The differences and similarities are discussed in detail.

  11. Global Evolving Models of Photospheric Flux as Driven by Electric Fields

    NASA Astrophysics Data System (ADS)

    DeRosa, Marc L.; Cheung, Mark; Kazachenko, Maria D.; Fisher, George H.

    2017-08-01

    We present a novel method for modeling the global radial magnetic field that is based on the incorporation of time series of photospheric electric fields. The determination of the electric fields is the result of a recently developed method that uses as input various data products from SDO/HMI, namely vector magnetic fields and line-of-sight Doppler images. For locations on the sphere where electric field data are unavailable, we instead use electric fields that are consistent with measurements of the mean differential rotation, meridional flow, and flux dispersal profiles. By combining these electric fields, a full-Sun model of the photospheric radial magnetic field can be advanced forward in time via Faraday's Law.

  12. PHOTOSPHERIC EMISSION AS THE DOMINANT RADIATION MECHANISM IN LONG-DURATION GAMMA-RAY BURSTS

    SciTech Connect

    Lazzati, Davide; Morsony, Brian J.; Margutti, Raffaella; Begelman, Mitchell C.

    2013-03-10

    We present the results of a set of numerical simulations of long-duration gamma-ray burst jets associated with massive, compact stellar progenitors. The simulations extend to large radii and allow us to locate the region in which the peak frequency of the advected radiation is set before the radiation is released at the photosphere. Light curves and spectra are calculated for different viewing angles as well as different progenitor structures and jet properties. We find that the radiation released at the photosphere of matter-dominated jets is able to reproduce the observed Amati and energy-Lorentz factor correlations. Our simulations also predict a correlation between the burst energy and the radiative efficiency of the prompt phase, consistent with observations.

  13. Microturbulence in the upper photosphere of Alpha Persei (F5 Ib) derived from ultraviolet spectral observations

    NASA Technical Reports Server (NTRS)

    Spaan, F. H. P.; De Jager, C.; Nieuwenhuijzen, H.; Kondo, Y.

    1987-01-01

    High-resolution ultraviolet spectra of the moderate supergiant Alpha Per (F5 Ib) were studied to determine the dynamic state of its upper photosphere. It was found that the line-of-sight microturbulent velocity component in the region of origin of the UV spectrum is about 5 km/s, and is slightly smaller than the value derived from the visual spectrum. This is ascribed to dissipation of mechanical energy between the higher and lower layers where, respectively, the ultraviolet and visual light lines originate. Between these two levels, which are one scale height apart, the mechanical energy flux decreases to about 0.3 of its photospheric value. The consequent value for the (outward directed) turbulent acceleration is 24 cm/sec-squared, more than one half the observationally determined effective acceleration of gravity.

  14. Investigation of photospheric temperature gradient variations using limb darkening measurements and simulations

    NASA Astrophysics Data System (ADS)

    Criscuoli, Serena; Foukal, Peter V.

    2016-05-01

    The temperature stratifications of magnetic elements and unmagnetized plasma are different, so that changes of the facular and network filling factor over the cycle modify the average temperature gradient in the photosphere.Such variations have been suggested to explain irradiance measurements obtained by the SIM spectrometers in he visible and infrared spectral ranges. On the other hand, limb darkening measurements show no dependence upon activity level. We investigate the sensitivity of limb darkening to changes in network area filling factor using a 3-D MHD model of the magnetized photosphere. We find that the expected limb darkening change due to the measured 11- yr variation in filling factor lies outside the formal 99% confidence limit of the limb darkening measurements. This poses important constraints for observational validation of 3D-MHD simulations.

  15. Photospheric soft X-ray emission from hot DA white dwarfs

    NASA Technical Reports Server (NTRS)

    Wesemael, F.; Raymond, J. C.; Kahn, S. M.; Liebert, J.; Steiner, J. E.; Shipman, H. L.

    1984-01-01

    The Einstein Observatory's imaging proportional counter has detected 150-eV soft X-ray radiation from the four hot DA white dwarfs EG 187, Gr 288 and 289, and LB 1663. The observed pulse height spectra suggest that the emission is generated by hot photospheres whose T(eff) lie in the 30,000-60,000 K range. The IUE spacecraft UV spectra and H-beta line profiles for the four stars have been fitted, along with the X-ray fluxes, with a grid of hot, high gravity, homogeneous model atmospheres of mixed H-He composition. In all cases, the data require the presence of some X-ray opacity in the photosphere. Attention is given to the implications of this result in the context of white dwarf surface layer diffusion theories. Also noted are the limits imposed on the hot white dwarf population by the Einstein Medium Sensitivity Survey.

  16. Regularities in the response of spectral lines to small perturbations in physical quantities in the photosphere

    NASA Astrophysics Data System (ADS)

    Mozharovskii, S. G.

    2017-01-01

    Numerical simulations are used to establish a number of dependencies between small perturbations in physical quantities in the photosphere and small variations in the Stokes profiles of spectral lines. A perturbation of any physical quantity in the model photosphere shifts every point in a line profile in the direction perpendicular to the tangent to the profile at that point. The actions on the wing of a spectral line of perturbations in the magnetic field and radial velocity are equivalent for a particular ratio of these perturbations (if the line is fully split in the magnetic field). If the response of part of a line wing is considered as a shift in wavelength, the area under the curve representing the response to perturbations in the magnetic field and radial velocity has a simple physical meaning.

  17. Recovering Photospheric Velocities from Vector Magnetograms by using a Three-Dimensional, Fully Magnetohydrodynamic (MHD) Model

    NASA Technical Reports Server (NTRS)

    Wang, A. H.; Wu, S. T.; Liu, Yang; Hathaway, D.

    2008-01-01

    We introduce a numerical simulation method for recovering the photospheric velocity field from the vector magnetograms. The traditional method is local correlation tracking (LCT) which is based on measuring the relative displacements of features in blocks of pixels between successive white-light images or magnetograms. Within this method, there are a variety of implementations. One of recently developed implementations is induction local correlation tracking (ILCT) as described by Welsch et al. (2004). They employ the normal component of magnetic induction equation as a constraint to assure consistent solutions. Our numerical method uses the fully three-dimensional MHD equations to recover the photospheric velocity field with individual vector magnetograms. We compare our method to the ILCT method using NOAA AR8210 as an example. The differences and similarities are discussed in detail.

  18. NUMERICAL SUNSPOT MODELS: ROBUSTNESS OF PHOTOSPHERIC VELOCITY AND MAGNETIC FIELD STRUCTURE

    SciTech Connect

    Rempel, M.

    2012-05-01

    MHD simulations of sunspots have successfully reproduced many aspects of sunspot fine structure as a consequence of magneto-convection in inclined magnetic field. We study how global sunspot properties and penumbral fine structure depend on the magnetic top boundary condition as well as on grid spacing. The overall radial extent of the penumbra is subject to the magnetic top boundary condition. All other aspects of sunspot structure and penumbral fine structure are resolved at an acceptable level starting from a grid resolution of 48 [24] km (horizontal [vertical]). We find that the amount of inverse polarity flux and the overall amount of overturning convective motions in the penumbra are robust with regard to both resolution and boundary conditions. At photospheric levels Evershed flow channels are strongly magnetized. We discuss in detail the relation between velocity and magnetic field structure in the photosphere and point out observational consequences.

  19. A LIGHT CURVE ANALYSIS OF CLASSICAL NOVAE: FREE-FREE EMISSION VERSUS PHOTOSPHERIC EMISSION

    SciTech Connect

    Hachisu, Izumi; Kato, Mariko E-mail: mariko@educ.cc.keio.ac.jp

    2015-01-10

    We analyzed light curves of seven relatively slower novae, PW Vul, V705 Cas, GQ Mus, RR Pic, V5558 Sgr, HR Del, and V723 Cas, based on an optically thick wind theory of nova outbursts. For fast novae, free-free emission dominates the spectrum in optical bands rather than photospheric emission, and nova optical light curves follow the universal decline law. Faster novae blow stronger winds with larger mass-loss rates. Because the brightness of free-free emission depends directly on the wind mass-loss rate, faster novae show brighter optical maxima. In slower novae, however, we must take into account photospheric emission because of their lower wind mass-loss rates. We calculated three model light curves of free-free emission, photospheric emission, and their sum for various white dwarf (WD) masses with various chemical compositions of their envelopes and fitted reasonably with observational data of optical, near-IR (NIR), and UV bands. From light curve fittings of the seven novae, we estimated their absolute magnitudes, distances, and WD masses. In PW Vul and V705 Cas, free-free emission still dominates the spectrum in the optical and NIR bands. In the very slow novae, RR Pic, V5558 Sgr, HR Del, and V723 Cas, photospheric emission dominates the spectrum rather than free-free emission, which makes a deviation from the universal decline law. We have confirmed that the absolute brightnesses of our model light curves are consistent with the distance moduli of four classical novae with known distances (GK Per, V603 Aql, RR Pic, and DQ Her). We also discussed the reason why the very slow novae are about ∼1 mag brighter than the proposed maximum magnitude versus rate of decline relation.

  20. GENERATION OF MAGNETOHYDRODYNAMIC WAVES IN LOW SOLAR ATMOSPHERIC FLUX TUBES BY PHOTOSPHERIC MOTIONS

    SciTech Connect

    Mumford, S. J.; Fedun, V.; Erdélyi, R.

    2015-01-20

    Recent ground- and space-based observations reveal the presence of small-scale motions between convection cells in the solar photosphere. In these regions, small-scale magnetic flux tubes are generated via the interaction of granulation motion and the background magnetic field. This paper studies the effects of these motions on magnetohydrodynamic (MHD) wave excitation from broadband photospheric drivers. Numerical experiments of linear MHD wave propagation in a magnetic flux tube embedded in a realistic gravitationally stratified solar atmosphere between the photosphere and the low choromosphere (above β = 1) are performed. Horizontal and vertical velocity field drivers mimic granular buffeting and solar global oscillations. A uniform torsional driver as well as Archimedean and logarithmic spiral drivers mimic observed torsional motions in the solar photosphere. The results are analyzed using a novel method for extracting the parallel, perpendicular, and azimuthal components of the perturbations, which caters to both the linear and non-linear cases. Employing this method yields the identification of the wave modes excited in the numerical simulations and enables a comparison of excited modes via velocity perturbations and wave energy flux. The wave energy flux distribution is calculated to enable the quantification of the relative strengths of excited modes. The torsional drivers primarily excite Alfvén modes (≈60% of the total flux) with small contributions from the slow kink mode, and, for the logarithmic spiral driver, small amounts of slow sausage mode. The horizontal and vertical drivers primarily excite slow kink or fast sausage modes, respectively, with small variations dependent upon flux surface radius.

  1. 22 year cycle in the imbalance of the photospheric magnetic fluxes

    NASA Astrophysics Data System (ADS)

    Vernova, Elena; Baranov, Dmitrii; Tyasto, Marta

    The manifestation of the 22 year solar magnetic cycle in the imbalance of positive and negative photospheric magnetic fluxes is studied. For the analysis we use synoptic maps of the photospheric magnetic field of Kitt Peak Observatory (1976 - 2003) and John Wilcox Observatory in Stanford (1976 - 2012). We consider strong magnetic fields for the heliolatitudes in the interval from +40° to -40°. It is shown that the sign of the imbalance between positive and negative fluxes remains constant during 11 years from one inversion of the Sun’s global magnetic field to the next one and always coincides with the sign of the polar field in the Northern hemisphere. Thus, the imbalance between the magnetic fluxes of different polarities changes according to the 22 year cycle. The sign of the imbalance is determined both by the phase of the solar cycle (before or after the inversion) and by the parity of the solar cycle. The imbalance of positive and negative magnetic fluxes can be observed not only for the strong fields in the sunspot zone. The mean magnetic field of the Sun (Sun as a star), which is determined by the net flux of the background fields, changes according to the same pattern as the imbalance of the strong fields. The regular changes of the imbalance of the photospheric magnetic fields are reflected also in the parameters of heliosphere. We show the connection of the imbalance with the quadrupole component of the photospheric magnetic field and with the imbalance of the interplanetary magnetic field (the difference between the numbers of the days with positive and negative polarities of the interplanetary magnetic field near Earth).

  2. Supernova Resonance-scattering Line Profiles in the Absence of a Photosphere

    NASA Astrophysics Data System (ADS)

    Friesen, Brian; Baron, E.; Branch, David; Chen, Bin; Parrent, Jerod T.; Thomas, R. C.

    2012-11-01

    In supernova (SN) spectroscopy relatively little attention has been given to the properties of optically thick spectral lines in epochs following the photosphere's recession. Most treatments and analyses of post-photospheric optical spectra of SNe assume that forbidden-line emission comprises most if not all spectral features. However, evidence exists that suggests that some spectra exhibit line profiles formed via optically thick resonance-scattering even months or years after the SN explosion. To explore this possibility, we present a geometrical approach to SN spectrum formation based on the "Elementary Supernova" model, wherein we investigate the characteristics of resonance-scattering in optically thick lines while replacing the photosphere with a transparent central core emitting non-blackbody continuum radiation, akin to the optical continuum provided by decaying {}^{56}{\\protect {Co}} formed during the explosion. We develop the mathematical framework necessary for solving the radiative transfer equation under these conditions and calculate spectra for both isolated and blended lines. Our comparisons with analogous results from the Elementary Supernova code SYNOW reveal several marked differences in line formation. Most notably, resonance lines in these conditions form P Cygni-like profiles, but the emission peaks and absorption troughs shift redward and blueward, respectively, from the line's rest wavelength by a significant amount, despite the spherically symmetric distribution of the line optical depth in the ejecta. These properties and others that we find in this work could lead to misidentification of lines or misattribution of properties of line-forming material at post-photospheric times in SN optical spectra.

  3. The emergence of different polarity photospheric flux as the cause of CMEs and interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Bravo, S.

    1995-01-01

    Here we discuss the effect that the emergence of flux with a polarity opposed to that previously established in a certain photospheric region. can have on the magnetic structure of the solar atmosphere. We show that such a flux emergence may lead to the ejection of coronal material into the interplanetary medium (a CME) and also to a rapid change in the velocity of the solar wind from the region, which may eventually lead to the formation of an interplanetary shock.

  4. North south asymmetry in the photospheric and coronal magnetic fields observed by different instruments

    NASA Astrophysics Data System (ADS)

    Virtanen, Ilpo; Mursula, Kalevi

    2015-04-01

    Several recent studies have shown that the solar and heliospheric magnetic fields are north-south asymmetric. The southward shift of the Heliospheric current sheet (HCS) (the so-called bashful ballerina phenomenon) is a persistent pattern, which occurs typically for about three years during the late declining phase of solar cycle. We study here the hemispherical asymmetry in the photospheric and coronal magnetic fields using Wilcox Solar Observatory (WSO), Mount Wilson, Kitt Peak, Solis, SOHO/MDI and SDO/HMI measurements of the photospheric magnetic field since the 1970s and the potential field source surface (PFSS) model.Multipole analysis of the photospheric magnetic field has shown that the bashful ballerina phenomenon is a consequence of g20 quadrupole term, which is oppositely signed to the dipole moment. We find that, at least during the four recent solar cycles, the g20 reflects the larger magnitude of the southern polar field during a few years in the declining phase of the cycle. Although the overall magnetic activity during the full solar cycle is not very different in the two hemispheres, the temporal distribution of activity is different, contributing to the asymmetry. The used data sets are in general in a good agreement with each other, but there are some significant deviations, especially in WSO data. Also, the data from Kitt Peak 512 channel magnetograph is known to suffer from zero level errors.We also note that the lowest harmonic coefficients do not scale with the overall magnitude in photospheric synoptic magnetic maps. Scaling factors based on histogram techniques can be as large as 10 (from Wilcox to HMI), but the corresponding difference in dipole strength is typically less than two. This is because the polar field has a dominant contribution to the dipole and quadrupole components. This should be noted, e.g., when using synoptic maps as input for coronal models.

  5. White Light Movies of the Solar Photosphere from the Soup Instrument on Space Lab 2

    DTIC Science & Technology

    1986-01-01

    about 5 arc seconds. Movies temporally filtered to suppress the five minute oscillations show the motion moste clearly and allow an estimate of the...the motions from movies , we have utilized local correlation tracking to obtain quantitative information about the flow field perpendicular to the...AD-A280 884 June 16, 1994 Reprint WHITE-LIGHT MOVIES OF THE SOLAR PHOTOSPHERE FROM THE SOUP INSTRUMENT ON SPACE LAB 2 PE 61102F PR 2311 A.M.Title

  6. MAGNETIC AND DYNAMICAL PHOTOSPHERIC DISTURBANCES OBSERVED DURING AN M3.2 SOLAR FLARE

    SciTech Connect

    Kuckein, C.; Collados, M.; Sainz, R. Manso

    2015-02-01

    This Letter reports on a set of full-Stokes spectropolarimetric observations in the near-infrared He i 10830 Å spectral region covering the pre-flare, flare, and post-flare phases of an M3.2 class solar flare. The flare originated on 2013 May 17 and belonged to active region NOAA 11748. We detected strong He i 10830 Å emission in the flare. The red component of the He i triplet peaks at an intensity ratio to the continuum of about 1.86. During the flare, He i Stokes V is substantially larger and appears reversed compared to the usually larger Si i Stokes V profile. The photospheric Si i inversions of the four Stokes profiles reveal the following: (1) the magnetic field strength in the photosphere decreases or is even absent during the flare phase, as compared to the pre-flare phase. However, this decrease is not permanent. After the flare, the magnetic field recovers its pre-flare configuration in a short time (i.e., 30 minutes after the flare). (2) In the photosphere, the line of sight velocities show a regular granular up- and downflow pattern before the flare erupts. During the flare, upflows (blueshifts) dominate the area where the flare is produced. Evaporation rates of ∼10{sup −3} and ∼10{sup −4} g cm{sup −2} s{sup −1} have been derived in the deep and high photosphere, respectively, capable of increasing the chromospheric density by a factor of two in about 400 s.

  7. Generation of Magnetohydrodynamic Waves in Low Solar Atmospheric Flux Tubes by Photospheric Motions

    NASA Astrophysics Data System (ADS)

    Mumford, S. J.; Fedun, V.; Erdélyi, R.

    2015-01-01

    Recent ground- and space-based observations reveal the presence of small-scale motions between convection cells in the solar photosphere. In these regions, small-scale magnetic flux tubes are generated via the interaction of granulation motion and the background magnetic field. This paper studies the effects of these motions on magnetohydrodynamic (MHD) wave excitation from broadband photospheric drivers. Numerical experiments of linear MHD wave propagation in a magnetic flux tube embedded in a realistic gravitationally stratified solar atmosphere between the photosphere and the low choromosphere (above β = 1) are performed. Horizontal and vertical velocity field drivers mimic granular buffeting and solar global oscillations. A uniform torsional driver as well as Archimedean and logarithmic spiral drivers mimic observed torsional motions in the solar photosphere. The results are analyzed using a novel method for extracting the parallel, perpendicular, and azimuthal components of the perturbations, which caters to both the linear and non-linear cases. Employing this method yields the identification of the wave modes excited in the numerical simulations and enables a comparison of excited modes via velocity perturbations and wave energy flux. The wave energy flux distribution is calculated to enable the quantification of the relative strengths of excited modes. The torsional drivers primarily excite Alfvén modes (≈60% of the total flux) with small contributions from the slow kink mode, and, for the logarithmic spiral driver, small amounts of slow sausage mode. The horizontal and vertical drivers primarily excite slow kink or fast sausage modes, respectively, with small variations dependent upon flux surface radius.

  8. GRB 110721A: PHOTOSPHERE 'DEATH LINE' AND THE PHYSICAL ORIGIN OF THE GRB BAND FUNCTION

    SciTech Connect

    Zhang Bing; Lu Ruijing; Liang Enwei; Wu Xuefeng

    2012-10-20

    The prompt emission spectra of gamma-ray bursts (GRBs) usually have a dominant component that is well described by a phenomenological Band function. The physical origin of this spectral component is debated. Although the traditional interpretation is synchrotron radiation of non-thermal electrons accelerated in internal shocks or magnetic dissipation regions, the growing trend within the community is to interpret this component as modified thermal emission from a dissipative photosphere of a GRB fireball. We analyze the time-dependent spectrum of GRB 110721A detected by the Fermi Gamma-Ray Burst Monitor and Large Area Telescope, and pay special attention to the rapid evolution of the peak energy E{sub p} . We define a 'death line' of thermally dominated dissipative photospheric emission in the E{sub p} -L plane, and show that E{sub p} of GRB 110721A at the earliest epoch has a very high E{sub p} {approx} 15 MeV that is beyond the 'death line'. Together with the finding that an additional 'shoulder' component exists in this burst that is consistent with a photospheric origin, we suggest that at least for some bursts, the Band component is not from a dissipative photosphere, but must invoke a non-thermal origin (e.g., synchrotron or inverse Compton) in the optically thin region of a GRB outflow. We also suggest that the rapid hard-to-soft spectral evolution is consistent with the quick discharge of magnetic energy in a magnetically dominated outflow in the optically thin region.

  9. The equatorial rotation velocity of the photosphere is measured to be the same as sunspots

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.; Scherrer, P. H.; Wilcox, J. M.

    1978-01-01

    The equatorial rotation rate of the photosphere was measured at effect data. It was found that scattered light has a large influence and must be taken into account properly. When this was done it was found that the rotation rate from Doppler shifts agreed very well with the rate found for sunspots. Short-term fluctuations in rotation rate (i.e. from day to day) were less than plus or minus 15 m/s and were thus within observational errors.

  10. The emergence of different polarity photospheric flux as the cause of CMEs and interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Bravo, S.

    1995-01-01

    Here we discuss the effect that the emergence of flux with a polarity opposed to that previously established in a certain photospheric region. can have on the magnetic structure of the solar atmosphere. We show that such a flux emergence may lead to the ejection of coronal material into the interplanetary medium (a CME) and also to a rapid change in the velocity of the solar wind from the region, which may eventually lead to the formation of an interplanetary shock.

  11. Observation and Interpretation of Photospheric Line Asymmetry Changes Near Active Regions

    DTIC Science & Technology

    1989-01-01

    from Solar Stellar Granulation , ed. R.Ruffen & G Severino, Dec 88, by KluwerPr _c_, pp 27J221 17 COSATI CODES 18 SUBJECT TERMS (Cortinue On reverse if...necessary and identify by block number) FIELD GROUP SUB-GROUP ’olar granulation ,’ Convection solar active regions,’ Magnetic ( ffields, ///rf...scale solar granulation produces the well-known convective blue-shift of photospheric lines, when the lines are observed with insufficient spatial

  12. Developing an Experimental Platform to Create White Dwarf Photospheres in the Laboratory

    NASA Astrophysics Data System (ADS)

    Falcon, Ross; Rochau, G. A.; Bailey, J. E.; Ellis, J. L.; Carlson, A. L.; Gomez, T.; Montgomery, M. H.; Winget, D. E.; Gomez, M. R.

    2012-01-01

    We continue to improve upon the laboratory astrophysics experiments to create macroscopic ( 9-38 cm3) hydrogen plasmas with white dwarf (WD) photospheric conditions (electron temperature and density). Falcon et al. (2010) demonstrate the ability to create the plasma and to observe time-resolved spectra throughout its 400 ns lifetime. We extend the observations from emission to absorption spectra, improve the design of the experimental platform, and discuss the astrophysical motivations, spearheaded by recent work in WD spectroscopy and atmosphere modeling.

  13. SUPERNOVA RESONANCE-SCATTERING LINE PROFILES IN THE ABSENCE OF A PHOTOSPHERE

    SciTech Connect

    Friesen, Brian; Baron, E.; Branch, David; Chen Bin; Parrent, Jerod T.; Thomas, R. C.

    2012-11-15

    In supernova (SN) spectroscopy relatively little attention has been given to the properties of optically thick spectral lines in epochs following the photosphere's recession. Most treatments and analyses of post-photospheric optical spectra of SNe assume that forbidden-line emission comprises most if not all spectral features. However, evidence exists that suggests that some spectra exhibit line profiles formed via optically thick resonance-scattering even months or years after the SN explosion. To explore this possibility, we present a geometrical approach to SN spectrum formation based on the 'Elementary Supernova' model, wherein we investigate the characteristics of resonance-scattering in optically thick lines while replacing the photosphere with a transparent central core emitting non-blackbody continuum radiation, akin to the optical continuum provided by decaying {sup 56}Co formed during the explosion. We develop the mathematical framework necessary for solving the radiative transfer equation under these conditions and calculate spectra for both isolated and blended lines. Our comparisons with analogous results from the Elementary Supernova code SYNOW reveal several marked differences in line formation. Most notably, resonance lines in these conditions form P Cygni-like profiles, but the emission peaks and absorption troughs shift redward and blueward, respectively, from the line's rest wavelength by a significant amount, despite the spherically symmetric distribution of the line optical depth in the ejecta. These properties and others that we find in this work could lead to misidentification of lines or misattribution of properties of line-forming material at post-photospheric times in SN optical spectra.

  14. Characteristics of the photospheric magnetic field associated with solar flare initiation

    SciTech Connect

    Yang, Ya-Hui; Chen, P. F.; Hsieh, Min-Shiu; Wu, S. T.; He, Han; Tsai, Tsung-Che E-mail: chenpf@nju.edu.cn E-mail: wus@uah.edu E-mail: tctsai@narlabs.org.tw

    2014-05-01

    The physical environment governing the solar flare initiation is not fully understood, although there are significant efforts to address the relationship between magnetic non-potential parameters and early flare signatures. In this study, we attempt to characterize the flare initiation based on the processed Helioseismic and Magnetic Imager vector magnetograms, Atmospheric Imaging Assembly 1600 Å, and RHESSI hard X-ray observations. Three flare events, the M6.6 flare on 2011 February 13, the X2.2 flare on 2011 February 15, and the X2.1 flare on 2011 September 6, in two active regions AR 11158 and AR 11283 are investigated. We analyze the source field strength in the photosphere, which is defined as the magnitude of the observed magnetic field deviation from the potential field. It is found that one of the strong source field regions above the magnetic polarity inversion line well connects the initial bright kernels of two conjugate ribbons. The results imply that the distribution of the photospheric source field strength can be used to locate the initiation site of flaring loops regardless of the configuration of pre-flare magnetic fields or the evolution of active regions. Moreover, the field configuration in the strong source field regions tends to become more inclined after flares, which is consistent with the coronal implosion scenario. We also employ a fast method to derive the total current density from the photospheric vector magnetogram in the framework of force-free field. This method can provide fast estimation of photospheric current density within a reasonable accuracy without appealing for the more accurate calculation from a model extrapolation.

  15. PHOTOSPHERIC ABUNDANCES OF POLAR JETS ON THE SUN OBSERVED BY HINODE

    SciTech Connect

    Lee, Kyoung-Sun; Imada, Shinsuke

    2015-08-20

    Many jets are detected at X-ray wavelengths in the Sun's polar regions, and the ejected plasma along the jets has been suggested to contribute mass to the fast solar wind. From in situ measurements in the magnetosphere, it has been found that the fast solar wind has photospheric abundances while the slow solar wind has coronal abundances. Therefore, we investigated the abundances of polar jets to determine whether they are the same as that of the fast solar wind. For this study, we selected 22 jets in the polar region observed by Hinode/EUV Imaging Spectroscopy (EIS) and X-ray Telescope (XRT) simultaneously on 2007 November 1–3. We calculated the First Ionization Potential (FIP) bias factor from the ratio of the intensity between high (S) and low (Si, Fe) FIP elements using the EIS spectra. The values of the FIP bias factors for the polar jets are around 0.7–1.9, and 75% of the values are in the range of 0.7–1.5, which indicates that they have photospheric abundances similar to the fast solar wind. The results are consistent with the reconnection jet model where photospheric plasma emerges and is rapidly ejected into the fast wind.

  16. Modeling the Sun’s Small-scale Global Photospheric Magnetic Field

    NASA Astrophysics Data System (ADS)

    Meyer, K. A.; Mackay, D. H.

    2016-10-01

    We present a new model for the Sun’s global photospheric magnetic field during a deep minimum of activity, in which no active regions emerge. The emergence and subsequent evolution of small-scale magnetic features across the full solar surface is simulated, subject to the influence of a global supergranular flow pattern. Visually, the resulting simulated magnetograms reproduce the typical structure and scale observed in quiet Sun magnetograms. Quantitatively, the simulation quickly reaches a steady state, resulting in a mean field and flux distribution that are in good agreement with those determined from observations. A potential coronal magnetic field is extrapolated from the simulated full Sun magnetograms to consider the implications of such a quiet photospheric magnetic field on the corona and inner heliosphere. The bulk of the coronal magnetic field closes very low down, in short connections between small-scale features in the simulated magnetic network. Just 0.1% of the photospheric magnetic flux is found to be open at 2.5 R ⊙, around 10-100 times less than that determined for typical Helioseismic and Magnetic Imager synoptic map observations. If such conditions were to exist on the Sun, this would lead to a significantly weaker interplanetary magnetic field than is currently observed, and hence a much higher cosmic ray flux at Earth.

  17. PENUMBRAL-LIKE FILAMENTS IN THE SOLAR PHOTOSPHERE AS A MANIFESTATION OF FLUX EMERGENCE

    SciTech Connect

    Guglielmino, Salvo L.; Zuccarello, Francesca; Romano, Paolo

    2014-05-10

    Rare observations of the solar photosphere show the appearance of orphan penumbrae, filamentary structures very similar to a bundle of sunspot penumbral filaments not connected to any umbra. Lim et al. found an orphan penumbra in active region NOAA 11391 near a mature sunspot. We analyze a different data set to study the same structure using the Solar Optical Telescope on board the Hinode satellite. Spectropolarimetric measurements along the Fe I 630.2 nm pair, complemented by G-band and Ca II H filtergrams, show the evolution of this penumbral-like structure and reveal that an emerging flux region is its ancestor. We find new evidence for the interaction between the emerging flux and the pre-existing field that leads to a brightening observed near the base of the chromosphere. Our analysis suggests that as a result of the combination of photospheric flux emergence and magneto-convection in inclined fields the horizontal component of the emerging field can be trapped in the photosphere by the overlying fields and form a structure resembling penumbral filaments.

  18. THE PHOTOSPHERIC ENERGY AND HELICITY BUDGETS OF THE FLUX-INJECTION HYPOTHESIS

    SciTech Connect

    Schuck, P. W.

    2010-05-01

    The flux-injection hypothesis for driving coronal mass ejections (CMEs) requires the transport of substantial magnetic energy and helicity flux through the photosphere concomitant with the eruption. Under the magnetohydrodynamics approximation, these fluxes are produced by twisting magnetic field and/or flux emergence in the photosphere. A CME trajectory, observed 2000 September 12 and fitted with a flux-rope model, constrains energy and helicity budgets for testing the flux-injection hypothesis. Optimal velocity profiles for several driving scenarios are estimated by minimizing the photospheric plasma velocities for a cylindrically symmetric flux-rope magnetic field subject to the flux budgets required by the flux-rope model. Ideal flux injection, involving only flux emergence, requires hypersonic upflows in excess of the solar escape velocity 617 km s{sup -1} over an area of 6 x 10{sup 8} km{sup 2} to satisfy the energy and helicity budgets of the flux-rope model. These estimates are compared with magnetic field and Doppler measurements from Solar and Heliospheric Observatory/Michelson Doppler Imager on 2000 September 12 at the footpoints of the CME. The observed Doppler signatures are insufficient to account for the required energy and helicity budgets of the flux-injection hypothesis.

  19. Are Internetwork Magnetic Fields in the Solar Photosphere Horizontal or Vertical?

    NASA Astrophysics Data System (ADS)

    Lites, B. W.; Rempel, M.; Borrero, J. M.; Danilovic, S.

    2017-01-01

    Using many observations obtained during 2007 with the Spectro-Polarimeter of the Hinode Solar Optical Telescope, we explore the angular distribution of magnetic fields in the quiet internetwork regions of the solar photosphere. Our work follows from the insight of Stenflo, who examined only linear polarization signals in photospheric lines, thereby avoiding complications of the analysis arising from the differing responses to linear and circular polarization. We identify and isolate regions of a strong polarization signal that occupy only a few percent of the observed quiet Sun area yet contribute most to the net linear polarization signal. The center-to-limb variation of the orientation of linear polarization in these strong signal regions indicates that the associated magnetic fields have a dominant vertical orientation. In contrast, the great majority of the solar disk is occupied by much weaker linear polarization signals. The orientation of the linear polarization in these regions demonstrates that the field orientation is dominantly horizontal throughout the photosphere. We also apply our analysis to Stokes profiles synthesized from the numerical MHD simulations of Rempel as viewed at various oblique angles. The analysis of the synthetic data closely follows that of the observations, lending confidence to using the simulations as a guide for understanding the physical origins of the center-to-limb variation of linear polarization in the quiet Sun area.

  20. Photospheric and Coronal Observations of Abrupt Magnetic Restructuring in Two Flaring Active Regions

    NASA Astrophysics Data System (ADS)

    Petrie, Gordon

    2016-05-01

    For two major X-class flares observed by the Solar Dynamics Observatory (SDO) and the Solar TErrestrial RElations Observatory Ahead (STEREO-A) spacecraft when they were close to quadrature, we compare major, abrupt changes in the photospheric magnetic vector field to changes in the observed coronal magnetic structure during the two flares. The Lorentz force changes in strong photospheric fields within active regions are estimated from time series of SDO Helioseismic and Magnetic Imager (HMI) vector magnetograms. These show that the major changes occurred in each case near the main neutral line of the region and in two neighboring twisted opposite-polarity sunspots. In each case the horizontal parallel field strengthened significantly near the neutral line while the azimuthal field in the sunspots decreased, suggesting that a flux rope joining the two sunspots collapsed across the neutral line with reduced magnetic pressure because of a reduced field twist component. At the same time, the coronal extreme ultraviolet (EUV) loop structure was observed by the Atmospheric Imaging Assembly (AIA) onboard SDO and the Extreme Ultraviolet Imager (EUVI) on STEREO-A to decrease significantly in height during each eruption, discontinuous changes signifying ejection of magnetized plasma, and outward-propagating continuous but abrupt changes consistent with loop contraction. An asymmetry in the observed EUV loop changes during one of the flares matches an asymmetry in the photospheric magnetic changes associated with that flare. The observations are discussed in terms of the well-known tether-cutting and breakout flare initiation models.

  1. Magnetohydrodynamics modeling of coronal magnetic field and solar eruptions based on the photospheric magnetic field

    NASA Astrophysics Data System (ADS)

    Inoue, Satoshi

    2016-12-01

    In this paper, we summarize current progress on using the observed magnetic fields for magnetohydrodynamics (MHD) modeling of the coronal magnetic field and of solar eruptions, including solar flares and coronal mass ejections (CMEs). Unfortunately, even with the existing state-of-the-art solar physics satellites, only the photospheric magnetic field can be measured. We first review the 3D extrapolation of the coronal magnetic fields from measurements of the photospheric field. Specifically, we focus on the nonlinear force-free field (NLFFF) approximation extrapolated from the three components of the photospheric magnetic field. On the other hand, because in the force-free approximation the NLFFF is reconstructed for equilibrium states, the onset and dynamics of solar flares and CMEs cannot be obtained from these calculations. Recently, MHD simulations using the NLFFF as an initial condition have been proposed for understanding these dynamics in a more realistic scenario. These results have begun to reveal complex dynamics, some of which have not been inferred from previous simulations of hypothetical situations, and they have also successfully reproduced some observed phenomena. Although MHD simulations play a vital role in explaining a number of observed phenomena, there still remains much to be understood. Herein, we review the results obtained by state-of-the-art MHD modeling combined with the NLFFF.

  2. A Study of Solar Photospheric Temperature Gradient Variation Using Limb Darkening Measurements

    NASA Astrophysics Data System (ADS)

    Criscuoli, Serena; Foukal, Peter

    2017-01-01

    The variation in area of quiet magnetic network measured over the sunspot cycle should modulate the spatially averaged photospheric temperature gradient, since temperature declines with optical depth more gradually in magnetic flux tube atmospheres. Yet, limb darkening measurements show no dependence upon activity level, even at an rms precision of 0.04%. We study the sensitivity of limb darkening to changes in area filling factor using a 3D MHD model of the magnetized photosphere. The limb darkening change expected from the measured 11-year area variation lies below the level of measured limb darkening variations, for a reasonable range of magnetic flux in quiet network and internetwork regions. So the remarkably constant limb darkening observed over the solar activity cycle is not inconsistent with the measured 11-year change in area of quiet magnetic network. Our findings offer an independent constraint on photospheric temperature gradient changes reported from measurements of the solar spectral irradiance from the Spectral Irradiance Monitor, and recently, from wavelength-differential spectrophotometry using the Solar Optical Telescope aboard the HINODE spacecraft.

  3. The rotation of photospheric magnetic fields: A random walk transport model

    NASA Technical Reports Server (NTRS)

    Wang, Y. -M.; Sheeley, N. R., Jr.

    1994-01-01

    In an earlier study of solar differential rotation, we showed that the transport of magnetic flux across latitudes acts to establish quasi-stationary patterns, therby accounting for the observed rigid rotation of the large-scale photospheric field. In that paper, the effect of supergranular convection was represented by a continuum diffusion, limiting the applicability of the calculations to large spatial scales. Here we extend the model to scales comparable to that of the supergranulation itself by replacing the diffusive transport with a discrete random walk process. Rotation curves are derived by cross-correlating the simulated photospheric field maps for a variety of time lags and spatial resolutions. When the lag between maps is relatively short less than or approximately = 15 days), the midlatitude correlation functions show two distinct components: a broad feature associated with the large-scale unipolar patterns and a narrow feature originating from small magnetic structures encompossing from one to several supergranular cells. By fitting the broad component we obtain the rigid rotation profile of the patterns, whereas by fitting the narrow component, we recover the differential rate of the photospheric plasma itself. For time lags of 1 month or greater, only the broad feature associated with the long-lived patterns remains clearly identifiable in the simulations.

  4. High-resolution Observations of Photospheric Structural Evolution Associated with a Flare

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Xu, Yan; Ahn, Kwangsu; Jing, Ju; Deng, Na; Cao, Wenda; Wang, Haimin

    2017-08-01

    The structural evolution of the photosphere not only play an important role in contributing to the accumulation of free energy in the corona that powers solar flares, but also may response to the restructuring of coronal field as a result of flare energy release. A better understanding of these issues may be achieved by high-resolution observations of the photospheric structure covering the entire flaring period, which are, however, still rare. Here we present photospheric vector magnetograms and TiO images (at 0.2" and 0.09" resolution, respectively) from before to after a major flare, taken by the 1.6 m New Solar Telescope at Big Bear Solar Observatory. In the pre-flare state, a small-scale magnetic structure of opposite-polarity configuration is seen near the footpoints of sheared magnetic loops; its magnetic fluxes and currents enhance till the flare start time and decline afterwards. During the main phase, as one flare ribbon sweeps across a sunspot, its different portions accelerate at different times corresponding to peaks of flare hard X-ray emission. We suggest that the small-scale flux emergence between the two sheared flux systems triggers the flare reconnection, and that the sunspot rotation is driven by the surface Lorentz-force change due to the coronal back reaction.

  5. DETECTION OF FAST-MOVING WAVES PROPAGATING OUTWARD ALONG SUNSPOTS’ RADIAL DIRECTION IN THE PHOTOSPHERE

    SciTech Connect

    Zhao, Junwei; Chen, Ruizhu; Hartlep, Thomas; Kosovichev, Alexander G.

    2015-08-10

    Helioseismic and magnetohydrodynamic waves are abundant in and above sunspots. Through cross-correlating oscillation signals in the photosphere observed by the Solar Dynamics Observatory/Helioseismic and Magnetic Imager, we reconstruct how waves propagate away from virtual wave sources located inside a sunspot. In addition to the usual helioseismic wave, a fast-moving wave is detected traveling along the sunspot’s radial direction from the umbra to about 15 Mm beyond the sunspot boundary. The wave has a frequency range of 2.5–4.0 mHz with a phase velocity of 45.3 km s{sup −1}, substantially faster than the typical speeds of Alfvén and magnetoacoustic waves in the photosphere. The observed phenomenon is consistent with a scenario of that a magnetoacoustic wave is excited at approximately 5 Mm beneath the sunspot. Its wavefront travels to and sweeps across the photosphere with a speed higher than the local magnetoacoustic speed. The fast-moving wave, if truly excited beneath the sunspot’s surface, will help open a new window for studying the internal structure and dynamics of sunspots.

  6. Observations of Photospheric Vortical Motions During the Early Stage of Filament Eruption

    NASA Astrophysics Data System (ADS)

    Dhara, Sajal Kumar; Ravindra, B.; Banyal, Ravinder Kumar

    2014-12-01

    Solar filaments/prominences exhibit rotational motion during different phases of their evolution from their formation to eruption. We have observed the rotational/vortical motion in the photosphere near the ends of ten filaments during their initial phase of eruption, at the onset of the fast rise phase. All the filaments were associated with active regions. The photospheric vortical motions we observed lasted for 4 - 20 minutes. In the vicinity of the conjugate ends of the filament the direction of rotation was opposite, except for two cases, where rotational motion was observed at only one end point. The sudden onset of a large photospheric vortex motion could have played a role in destabilizing the filament by transporting axial flux into the activated filament thereby increasing the outward magnetic pressure in it. The outward magnetic pressure may have pushed the filament/flux rope to the height where the torus instability criterion was satisfied, and hence it could have caused the filament instability and eruption.

  7. Different Modes of Turbulence in the Active Regions of the Solar Photosphere

    NASA Astrophysics Data System (ADS)

    Kozak, L. V.; Kostik, R. I.; Cheremnykh, O. K.

    In work the range of different methods for the analysis of characteristics of turbulent processes in the active regions of the solar photosphere has been used. The changes of fluctuations distribution function and its moments were analyzed, spectral analysis was carried out.It was found out from the observations of active region carried out with the 70-cm vacuum tower telescope VTT in Isanie (Tenerife Island, Spain) that the turbulent processes in the sun photosphere are characterized by two different spectra of turbulence. The first one of them is well known Kolmohorov spectrum, which describes the plasma with zero mean magnetic field. The second one is the Kraichnan spectrum with a different from zero mean magnetic field. Transition from one spectrum type to another one occurs at scale of 3 Mm.We have to note that the scale 3 Mm corresponds to one of mesogranulation and testifies about non-zero mean magnetic fields for the consideration of regions exceeding the granulation in active regions of the photosphere. Besides, this clears the possibility of appearance of selforganizing magnetic plasma structures such as spots, active regions and complexes of activity.

  8. New Measurements of the Radio Photosphere of Mira Based on Data from the JVLA and ALMA

    NASA Astrophysics Data System (ADS)

    Matthews, L. D.; Reid, M. J.; Menten, K. M.

    2015-07-01

    We present new measurements of the millimeter wavelength continuum emission from the long period variable Mira (o Ceti) at frequencies of 46, 96, and 229 GHz (λ ≈ 7, 3, and 1 mm) based on observations obtained with the Jansky Very Large Array (JVLA) and the Atacama Large Millimeter/submillimeter Array (ALMA). The measured millimeter flux densities are consistent with a radio photosphere model derived from previous observations, where flux density {S}ν \\propto {ν }1.86. The stellar disk is resolved, and the measurements indicate a decrease in the size of the radio photosphere at higher frequencies, as expected if the opacity decreases at shorter wavelengths. The shape of the radio photosphere is found to be slightly elongated, with a flattening of ˜10%-20%. The data also reveal evidence for brightness non-uniformities on the surface of Mira at radio wavelengths. Mira’s hot companion, Mira B was detected at all three observed wavelengths, and we measure a radius for its radio-emitting surface of ≈ 2.0× {10}13 cm. The data presented here highlight the power of the JVLA and ALMA for the study of the atmospheres of evolved stars.

  9. Photospheric and coronal magnetic fields in 1974 - 2015: A comparison of six magnetographs

    NASA Astrophysics Data System (ADS)

    Virtanen, I. I.; Mursula, K.

    2015-12-01

    Photospheric magnetic field has been measured since 1950s and digital synoptic data exists since 1970s. We study the long-term development of photospheric and coronal magnetic fields, using Wilcox Solar Observatory (WSO), Mount Wilson, Kitt Peak, Solis, SOHO/MDI and SDO/HMI measurements of the photospheric magnetic field and the the potential field source surface (PFSS) model. We pay particular attention to the occurrence of the hemispheric asymmetry of the coronal field. The solar and heliospheric magnetic fields are systematically north-south asymmetric. The southward shift of the heliospheric current sheet (HCS) (the so-called Bashful ballerina phenomenon) is a persistent pattern, which occurs typically for about three years during the late declining phase of solar cycle. Multipole analysis of the photospheric magnetic field has shown that the Bashful ballerina is mainly due to the g02 quadrupole term, which is oppositely signed to the dipole moment and reflects the larger magnitude of the southern polar field. The six data sets are in general in a good agreement with each other, but the different spatial resolution causes difference some in results. Moreover, there are number of deviations in different individual data sets that are not related to resolution, e.g., in WSO data and in the current version of Kitt Peak 512 channel magnetograph data. We note that the two lowest harmonic coefficients do not scale with the overall magnitude of photospheric synoptic magnetic maps. Scaling factors based on histogram techniques can be as large as 10 (from Wilcox to HMI), but the corresponding factor in dipole strength is typically less than two. Scaling also depends on the harmonic coefficient. This should be noted, e.g., when using synoptic maps as input for coronal models. We find that, despite the differences between the six different data sets, especially in the measurements at the highest latitudes, they all support the southward shift of the HCS. At the moment

  10. An extensive VLT/X-shooter library of photospheric templates of pre-main sequence stars

    NASA Astrophysics Data System (ADS)

    Manara, C. F.; Frasca, A.; Alcalá, J. M.; Natta, A.; Stelzer, B.; Testi, L.

    2017-09-01

    Context. Studies of the formation and evolution of young stars and their disks rely on knowledge of the stellar parameters of the young stars. The derivation of these parameters is commonly based on comparison with photospheric template spectra. Furthermore, chromospheric emission in young active stars impacts the measurement of mass accretion rates, a key quantity for studying disk evolution. Aims: Here we derive stellar properties of low-mass (M⋆≲ 2 M⊙) pre-main sequence stars without disks, which represent ideal photospheric templates for studies of young stars. We also use these spectra to constrain the impact of chromospheric emission on the measurements of mass accretion rates. The spectra are reduced, flux-calibrated, and corrected for telluric absorption, and are made available to the community. Methods: We derive the spectral type for our targets by analyzing the photospheric molecular features present in their VLT/X-shooter spectra by means of spectral indices and comparison of the relative strength of photospheric absorption features. We also measure effective temperature, gravity, projected rotational velocity, and radial velocity from our spectra by fitting them with synthetic spectra with the ROTFIT tool. The targets have negligible extinction (AV< 0.5 mag) and spectral type from G5 to K6, and from M6.5 to M8. They thus complement the library of photospheric templates presented in our previous publication. We perform synthetic photometry on the spectra to derive the typical colors of young stars in different filters. We measure the luminosity of the emission lines present in the spectra and estimate the noise due to chromospheric emission in the measurements of accretion luminosity in accreting stars. Results: We provide a calibration of the photospheric colors of young pre-main sequence stars as a function of their spectral type in a set of standard broad-band optical and near-infrared filters. The logarithm of the noise on the accretion

  11. North-South Asymmetric Solar Cycle Evolution: Signatures in the Photosphere and Consequences in the Corona

    NASA Astrophysics Data System (ADS)

    Virtanen, I. I.; Mursula, K.

    2014-02-01

    The heliospheric current sheet is the continuum of the coronal magnetic equator that divides the heliospheric magnetic field into two sectors (polarities). Several recent studies have shown that the heliospheric current sheet is southward shifted during approximately 3 years in the solar declining phase (the so-called bashful ballerina phenomenon). In this article we study the hemispherical asymmetry in the photospheric and coronal magnetic fields using Wilcox Solar Observatory measurements of the photospheric magnetic field since 1976 as well as the potential field source surface model. Multipole analysis of the photospheric magnetic field shows that during the late declining phase of solar cycles since the 1970s, the "bashful ballerina phenomenon" is a consequence of the g^{0}_{2} quadrupole term, signed oppositely to the dipole moment. Surges of new flux transport magnetic field from low latitudes to the poles, thus leading to a systematically varying contribution to the g^{0}_{2}-term from different latitudes. In the case of a north-south asymmetric flux production, this is seen as a quadrupole contribution traveling toward higher latitudes. When the quadrupole term is largest, the main contribution comes from the polar latitudes. At least during the four recent solar cycles, the g^{0}_{2}-term arises because the magnitude of the southern polar field is larger than the magnitude found in the north in the declining phase of the cycle. In the heliosphere this hemispheric asymmetry of the coronal fields is seen as a southward shift of the heliospheric current sheet by about 2°.

  12. Observations of photospheric magnetic fields and shear flows in flaring active regions

    NASA Technical Reports Server (NTRS)

    Tarbell, T.; Ferguson, S.; Frank, Z.; Title, A.; Topka, K.

    1988-01-01

    Horizontal flows in the photosphere and subsurface convection zone move the footpoints of coronal magnetic field lines. Magnetic energy to power flares can be stored in the corona if the flows drive the fields far from the potential configuration. Videodisk movies were shown with 0.5 to 1 arcsecond resolution of the following simultaneous observations: green continuum, longitudinal magnetogram, Fe I 5576 A line center (mid-photosphere), H alpha wings, and H alpha line center. The movies show a 90 x 90 arcsecond field of view of an active region at S29, W11. When viewed at speeds of a few thousand times real-time, the photospheric movies clearly show the active region fields being distorted by a remarkable combination of systematic flows and small eruptions of new flux. Magnetic bipoles are emerging over a large area, and the polarities are systematically flowing apart. The horizontal flows were mapped in detail from the continuum movies, and these may be used to predict the future evolution of the region. The horizontal flows are not discernable in H alpha. The H alpha movies strongly suggest reconnection processes in the fibrils joining opposite polarities. When viewed in combination with the magnetic movies, the cause for this evolution is apparent: opposite polarity fields collide and partially cancel, and the fibrils reconnect above the surface. This type of reconnection, driven by subphotospheric flows, complicates the chromospheric and coronal fields, causing visible braiding and twisting of the fibrils. Some of the transient emission events in the fibrils and adjacent plage may also be related.

  13. Observations of Magnetic Evolution and Network Flares Driven by Photospheric Flows in the Quiet Sun

    NASA Astrophysics Data System (ADS)

    Attie, Raphael; Thompson, Barbara J.

    2017-08-01

    The quiet Sun may be the biggest laboratory to study physical elementary processes of fundamental importance to space plasma. The advantage is the continuous availability of small-scale events, carrying the hidden microphysics that is responsible for larger-scale phenomena. By small-scale events, we mean spatial dimensions of a few Mm at most, and durations of less than an hour. I present here an attempt to describe and understand the coupling between the photospheric flows, the photospheric magnetic flux, and small-scale energetic transient events. By adapting and improving the highly efficient Balltracking technique for Hinode/SOT data, we relate the fine structures of the supergranular flow fields with the magnetic flux evolution. For studying the dynamics of the latter, and more precisely, the magnetic flux cancellation at sites of energy releases, we applied a new feature tracking algorithm called "Magnetic Balltracking" -- which tracks photospheric magnetic elements -- to high-resolution magnetograms from Hinode/SOT.Using observations of the low corona in soft X-rays with Hinode/XRT, we analyse the triggering mechanism of small-scale network flares. By tracking both the flow fields on the one hand, and the magnetic motions on the other hand, we relate the flows with cancelling magnetic flux. We identify two patterns of horizontal flows that act as catalysts for efficient magnetic reconnection: (i) Funnel-shaped streamlines in which the magnetic flux is carried, and (ii) large-scale vortices (~10 Mm and above) at the network intersections, in which distant magnetic features of opposite polarities seem to be sucked in and ultimately vanish. The excess energy stored in the stressed magnetic field of the vortices is sufficient to power network flares.Prospects for determining the magnetic energy budget in the quiet sun are discussed.

  14. ON THERMALIZATION IN GAMMA-RAY BURST JETS AND THE PEAK ENERGIES OF PHOTOSPHERIC SPECTRA

    SciTech Connect

    Vurm, Indrek; Piran, Tsvi; Lyubarsky, Yuri

    2013-02-20

    The low-energy spectral slopes of the prompt emission of most gamma-ray bursts (GRBs) are difficult to reconcile with radiatively efficient optically thin emission models irrespective of the radiation mechanism. An alternative is to ascribe the radiation around the spectral peak to a thermalization process occurring well inside the Thomson photosphere. This quasi-thermal spectrum can evolve into the observed non-thermal shape by additional energy release at moderate to small Thomson optical depths, which can readily give rise to the hard spectral tail. The position of the spectral peak is determined by the temperature and Lorentz factor of the flow in the thermalization zone, where the total number of photons carried by the jet is established. To reach thermalization, dissipation alone is not sufficient and photon generation requires an efficient emission/absorption process in addition to scattering. We perform a systematic study of all relevant photon production mechanisms searching for possible conditions in which thermalization can take place. We find that a significant fraction of the available energy should be dissipated at intermediate radii, {approx}10{sup 10} to a few Multiplication-Sign 10{sup 11} cm, and the flow there should be relatively slow: the bulk Lorentz factor could not exceed a few tens for all but the most luminous bursts with the highest E {sub pk} values. The least restrictive constraint for successful thermalization, {Gamma} {approx}< 20, is obtained if synchrotron emission acts as the photon source. This requires, however, a non-thermal acceleration deep below the Thomson photosphere transferring a significant fraction of the flow energy to relativistic electrons with Lorentz factors between 10 and 100. Other processes require bulk flow Lorentz factors of order of a few for typical bursts. We examine the implications of these results to different GRB photospheric emission models.

  15. North-south asymmetric solar cycle evolution: Signatures in the photosphere and consequences in the corona

    SciTech Connect

    Virtanen, I. I.; Mursula, K.

    2014-02-01

    The heliospheric current sheet is the continuum of the coronal magnetic equator that divides the heliospheric magnetic field into two sectors (polarities). Several recent studies have shown that the heliospheric current sheet is southward shifted during approximately 3 years in the solar declining phase (the so-called bashful ballerina phenomenon). In this article we study the hemispherical asymmetry in the photospheric and coronal magnetic fields using Wilcox Solar Observatory measurements of the photospheric magnetic field since 1976 as well as the potential field source surface model. Multipole analysis of the photospheric magnetic field shows that during the late declining phase of solar cycles since the 1970s, the 'bashful ballerina phenomenon' is a consequence of the g{sub 2}{sup 0} quadrupole term, signed oppositely to the dipole moment. Surges of new flux transport magnetic field from low latitudes to the poles, thus leading to a systematically varying contribution to the g{sub 2}{sup 0}-term from different latitudes. In the case of a north-south asymmetric flux production, this is seen as a quadrupole contribution traveling toward higher latitudes. When the quadrupole term is largest, the main contribution comes from the polar latitudes. At least during the four recent solar cycles, the g{sub 2}{sup 0}-term arises because the magnitude of the southern polar field is larger than the magnitude found in the north in the declining phase of the cycle. In the heliosphere this hemispheric asymmetry of the coronal fields is seen as a southward shift of the heliospheric current sheet by about 2°.

  16. ACCESS I: An Optical Transmission Spectrum of GJ 1214b Reveals a Heterogeneous Stellar Photosphere

    NASA Astrophysics Data System (ADS)

    Rackham, Benjamin; Espinoza, Néstor; Apai, Dániel; López-Morales, Mercedes; Jordán, Andrés; Osip, David J.; Lewis, Nikole K.; Rodler, Florian; Fraine, Jonathan D.; Morley, Caroline V.; Fortney, Jonathan J.

    2017-01-01

    GJ 1214b is the most studied sub-Neptune exoplanet to date. Recent measurements have shown its near-infrared transmission spectrum to be flat, pointing to a high-altitude opacity source in the exoplanet's atmosphere, either equilibrium condensate clouds or photochemical hazes. Many photometric observations have been reported in the optical by different groups, though simultaneous measurements spanning the entire optical regime are lacking. We present an optical transmission spectrum (4500–9260 Å) of GJ 1214b in 14 bins, measured with Magellan/IMACS repeatedly over three transits. We measure a mean planet-to-star radius ratio of {R}p/{R}s=0.1146+/- 2× {10}-4 and mean uncertainty of σ ({R}p/{R}s)=8.7× {10}-4 in the spectral bins. The optical transit depths are shallower on average than observed in the near-infrared. We present a model for jointly incorporating the effects of a composite photosphere and atmospheric transmission through the exoplanet's limb (the CPAT model), and use it to examine the cases of absorber and temperature heterogeneities in the stellar photosphere. We find the optical and near-infrared measurements are best explained by the combination of (1) photochemical haze in the exoplanetary atmosphere with a mode particle size r = 0.1 μm and haze-forming efficiency {f}{haze}=10 % and (2) faculae in the unocculted stellar disk with a temperature contrast {{Δ }}T={354}-46+46 K, assuming 3.2% surface coverage. The CPAT model can be used to assess potential contributions of heterogeneous stellar photospheres to observations of exoplanet transmission spectra, which will be important for searches for spectral features in the optical.

  17. Expanding photospheres of type II supernovae and the extragalactic distance scale

    NASA Astrophysics Data System (ADS)

    Schmidt, Brian P.; Kirshner, Robert P.; Eastman, Ronald G.

    1992-08-01

    The Expanding Photosphere Method is applied here to determine distances to 10 Type II SNe, exploring the effects of asymmetries, extinction, and flux dilution. It is shown that blackbody corrections caused by flux dilution are small for type II SNe in the infrared, and in the optical when their color temperatures are less than 6000 K. The distance measurements to the SNe span a wide range of 50 kpc to 120 Mpc, which is unique among the methods for establishing the extragalactic distance scale. A value of H(0) = 60 +/- 10 km/s/Mpc is derived.

  18. Photospheric magnetic field of an eroded-by-solar-wind coronal mass ejection

    NASA Astrophysics Data System (ADS)

    Palacios, J.; Cid, C.; Saiz, E.; Guerrero, A.

    2017-10-01

    We have investigated the case of a coronal mass ejection that was eroded by the fast wind of a coronal hole in the interplanetary medium. When a solar ejection takes place close to a coronal hole, the flux rope magnetic topology of the coronal mass ejection (CME) may become misshapen at 1 AU as a result of the interaction. Detailed analysis of this event reveals erosion of the interplanetary coronal mass ejection (ICME) magnetic field. In this communication, we study the photospheric magnetic roots of the coronal hole and the coronal mass ejection area with HMI/SDO magnetograms to define their magnetic characteristics.

  19. Evolution pattern of the exploding granules. [interpretation in terms of photospheric cooling and convection

    NASA Technical Reports Server (NTRS)

    Namba, O.; Van Rijsbergen, R.

    1977-01-01

    Observational features of exploding granules that may be of some importance for the theory of unsteady convection are discussed on the basis of a time sequence of high-definition photographs of the solar granulation obtained during a Stratoscope flight. The evolutionary pattern of exploding granules is summarized schematically, and several characteristic features are derived from a study of seven such granules. The exploding-granule phenomenon is interpreted qualitatively in terms of cooling at the photospheric level and the subsequent sinking of cold matter at the center of a granule due to loss of buoyancy

  20. On the detectibility of HeH(+) in the solar photospheric spectrum

    NASA Astrophysics Data System (ADS)

    Sinha, K.

    1994-06-01

    In a recent publication of the Bulletin of the Astronomical Society of India, the possibility of detection of the (1-0) vibration-rotation lines of HeH(+) molecules in the solar photospheric spectrum has been suggested. Taking cue, the Photometric Atlas of the solar Spectrum from 1850 to 10,000 1 cm was scanned for the suggested lines in the present preliminary ivestigation. It is tentatively concluded that (1) it seems rather difficult to detect the HeH(+) lines and (2) observations from above the terrestrial atmosphere may be required for firm conclusions.

  1. Radio Photosphere and Mass-Loss Envelope of VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Lipscy, S. J.; Jura, M.; Reid, M. J.

    2005-06-01

    We have used the VLA to detect emission from the supergiant VY CMa at radio wavelengths and have constructed 3000-4500 K isothermal outer atmospheres constrained by the data. These models produce a radio photosphere at 1.5-2 R*. An extrapolation of the model can account for the observed total mass-loss rate of the star. We also present mid-infrared imaging of the supergiant which suggests that warm dust is extended in the same direction as the near-infrared reflection nebula around VY CMa. The origin of the asymmetries in the outflow remains an unsolved problem.

  2. The detection of photospheric X-ray pulsations from PG 1159-035 with EXOSAT

    NASA Technical Reports Server (NTRS)

    Barstow, M. A.; Holberg, J. B.; Grauer, A. D.; Winget, D. E.

    1986-01-01

    The detection of soft X-ray pulsations from the hot, helium-rich, degenerate object, PG 1159-035 is reported. These observations, obtained with the Low Energy experiment on EXOSAT, show the presence of large-amplitude soft X-ray (44-150 A) pulsations analogous to several of the low-amplitude, nonradial, g-mode pulsations which are observed in the optical. These soft X-ray pulsations, with periods of 516 s, 524 s, and 539 s, arise from the photosphere of PG 1159-035 and constitute the first observations of stellar atmospheric pulsational phenomena in the X-ray band.

  3. Photospheric and Coronal Observations of Abrupt Magnetic Restructuring in Flaring Active Regions

    NASA Astrophysics Data System (ADS)

    Petrie, G. J. D.

    2015-12-01

    The Lorentz force changes associated with strong photospheric fields in large structures within active regions can be estimated from time series of Solar Dynamics Observatory (SDO) Helioseismic and Magnetic Imager (HMI) vector magnetograms. The major, most organized changes tend to occur close to the centers of flaring regions, near the main neutral line and/or in twisted sunspots. Fields close to the neutral line tend to collapse downward and inward, consistent with compression rather than rotation of the vector field. In sunspots the twist (or azimuthal component around the sunspot axis) tends to decrease. In a limited number of cases particularly well-observed by the Atmospheric Imaging Assembly (AIA) on SDO and the Extreme Ultraviolet Imager (EUVI) on the Solar TErrestrial RElations Observatory (STEREO), the evolution of the photospheric magnetic vector field can be related to changes in coronal magnetic structure to provide a coherent description of the magnetic changes during the different phases of a flare. This work was supported by NASA grant NNX14AE05G.

  4. Diagnostics of turbulent and fractal properties of photospheric plasma outside active regions of the Sun

    NASA Astrophysics Data System (ADS)

    Abramenko, V. I.

    2016-12-01

    Results of analysis of multi-scale and turbulent properties of observed photospheric granulation patterns in undisturbed solar photosphere are presented. Data were obtained with the New Solar Telescope at Big Bear Solar observatory. Different types of magnetic environment were explored: a coronal hole (CH) area, a quiet sun (QS) intranetwork area, a QS/network area, and an area with small pores. The property of multifractality was revealed for granulation patterns in all environments on scales below 600 km. The degree of multifractality tends to be stronger as the magnetic environment becomes weaker. Analysis of turbulent diffusion on scales less than 1000-2000 km revealed the regime of super-diffusivity for all data sets. Super-diffusion becomes stronger from the QS/network to the QS/intranetwork to the CH. Both multifractality and super-diffusivity on very small scales are associated with the fast turbulent dynamo action. The results show that the most favorable conditions for the fast turbulent dynamo are met outside the network, inside vast areas of weakest magnetic fields, which supports the idea of nonlocal, deep turbulent dynamo.

  5. Observations of the longitudinal magnetic field in the transition region and photosphere of a sunspot

    NASA Technical Reports Server (NTRS)

    Henze, W., Jr.; Tandberg-Hanssen, E.; Hagyard, M. J.; West, E. A.; Woodgate, B. E.; Shine, R. A.; Beckers, J. M.; Bruner, M.; Hyder, C. L.; West, E. A.

    1982-01-01

    The Ultraviolet Spectrometer and Polarimeter on the Solar Maximum Mission spacraft has observed for the first time the longitudinal component of the magnetic field by means of the Zeeman effect in the transition region above a sunspot. The data presented here were obtained on three days in one sunspot, have spatial resolutions of 10 arcsec and 3 arcsec, and yield maximum field strengths greater than 1000 G above the umbrae in the spot. The method of analysis, including a line-width calibration feature used during some of the observations, is described in some detail in an appendix; the line width is required for the determination of the longitudinal magnetic field from the observed circular polarization. The transition region data for one day are compared with photospheric magnetograms from the Marshall Space Flight Center. Vertical gradients of the magnetic field are compared from the two sets of data; the maximum gradients of 0.41 to 0.62 G/km occur above the umbra and agree with or are smaller than values observed previously in the photosphere and low chromosphere.

  6. Determining the solar-flare photospheric scale height from SMM gamma-ray measurements

    NASA Technical Reports Server (NTRS)

    Lingenfelter, Richard E.

    1991-01-01

    A connected series of Monte Carlo programs was developed to make systematic calculations of the energy, temporal and angular dependences of the gamma-ray line and neutron emission resulting from such accelerated ion interactions. Comparing the results of these calculations with the Solar Maximum Mission/Gamma Ray Spectrometer (SMM/GRS) measurements of gamma-ray line and neutron fluxes, the total number and energy spectrum of the flare-accelerated ions trapped on magnetic loops at the Sun were determined and the angular distribution, pitch angle scattering, and mirroring of the ions on loop fields were constrained. Comparing the calculations with measurements of the time dependence of the neutron capture line emission, a determination of the He-3/H ratio in the photosphere was also made. The diagnostic capabilities of the SMM/GRS measurements were extended by developing a new technique to directly determine the effective photospheric scale height in solar flares from the neutron capture gamma-ray line measurements, and critically test current atmospheric models in the flare region.

  7. Observations of the longitudinal magnetic field in the transition region and photosphere of a sunspot

    NASA Technical Reports Server (NTRS)

    Henze, W., Jr.; Tandberg-Hanssen, E.; Hagyard, M. J.; West, E. A.; Woodgate, B. E.; Shine, R. A.; Beckers, J. M.; Bruner, M.; Hyder, C. L.; West, E. A.

    1982-01-01

    The Ultraviolet Spectrometer and Polarimeter on the Solar Maximum Mission spacraft has observed for the first time the longitudinal component of the magnetic field by means of the Zeeman effect in the transition region above a sunspot. The data presented here were obtained on three days in one sunspot, have spatial resolutions of 10 arcsec and 3 arcsec, and yield maximum field strengths greater than 1000 G above the umbrae in the spot. The method of analysis, including a line-width calibration feature used during some of the observations, is described in some detail in an appendix; the line width is required for the determination of the longitudinal magnetic field from the observed circular polarization. The transition region data for one day are compared with photospheric magnetograms from the Marshall Space Flight Center. Vertical gradients of the magnetic field are compared from the two sets of data; the maximum gradients of 0.41 to 0.62 G/km occur above the umbra and agree with or are smaller than values observed previously in the photosphere and low chromosphere.

  8. A quantitative study relating observed shear in photospheric magnetic fields to repeated flaring

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.; Teuber, D.; West, E. A.; Smith, J. B.

    1984-01-01

    In this paper a quantitative evaluation of the shear in the magnetic field along the neutral line in an active region during an epoch of flare activity is presented. Shear is defined as the angular difference in the photosphere between the potential magnetic field, which fits the boundary conditions imposed by the observed line-of-sight field, and the observed magnetic field. For the active region studied, this angular difference (shear) is non-uniform along the neutral line with maxima occurring at the locations of repeated flare onsets. It is suggested that continued magnetic evolution causes the field's maximum shear to exceed a critical value of shear, resulting in a flare around the site of maximum shear. Evidently, the field at the site of the flare must relax to a state of shear somewhat below the critical value (but still far from potential), with subsequent evolution returning the field to the critical threshold. This inference is drawn because several flares occured at sites of maximum photospheric shear which were persistent in location.

  9. Sub-Pixel Magnetic Field Dynamics Derived from Photospheric Spectral Line Profiles

    NASA Astrophysics Data System (ADS)

    Rasca, A.; Chen, J.; Pevtsov, A. A.; Yurchyshyn, V.; Bertello, L.

    2016-12-01

    Current high-resolution observations of the photosphere show small dynamic features at the resolving limit during emerging flux events. However, line-of-sight (LOS) magnetogram pixels only contain the net uncanceled magnetic flux, which is expected to increase for fixed regions as resolution limits improve. Using a new method with spectrographic images, we quantify distortions in photospheric absorption (or emission) lines caused by sub-pixel magnetic field and plasma dynamics in the vicinity of active regions and emerging flux events. Absorption lines—quantified by their displacement, width, asymmetry, and peakedness—have previously been used with Stokes I images from SOLIS/VSM to relate line distortions with sub-pixel plasma dynamics driven by solar flares or small-scale flux ropes. The method is extended to include the full Stokes parameters and relate inferred sub-pixel dynamics with small-scale magnetic fields. Our analysis is performed on several sets of spectrographic images taken by SOLIS/VSM and NST/NIRIS while observing eruptive and non-eruptive active regions. We discuss the results of this application and their relevance for understanding magnetic fields signatures and coupled plasma properties on sub-pixel scales.

  10. Sub-Pixel Magnetic Field and Plasma Dynamics Derived from Photospheric Spectral Data

    NASA Astrophysics Data System (ADS)

    Rasca, Anthony P.; Chen, James; Pevtsov, Alexei A.

    2017-08-01

    Current high-resolution observations of the photosphere show small dynamic features at the resolving limit during emerging flux events. However, line-of-sight (LOS) magnetogram pixels only contain the net uncanceled magnetic flux, which is expected to increase for fixed regions as resolution limits improve. Using a new method with spectrographic images, we quantify distortions in photospheric absorption (or emission) lines caused by sub-pixel magnetic field and plasma dynamics in the vicinity of active regions and emerging flux events. Absorption lines—quantified by their displacement, width, asymmetry, and peakedness—have previously been used with Stokes I images from SOLIS/VSM to relate line distortions with sub-pixel plasma dynamics driven by solar flares or small-scale flux ropes. The method is extended to include the full Stokes parameters and relate inferred sub-pixel dynamics with small-scale magnetic fields. Our analysis is performed on several sets of spectrographic images taken by SOLIS/VSM while observing eruptive and non-eruptive active regions. We discuss the results of this application and their relevance for understanding magnetic fields signatures and coupled plasma properties on sub-pixel scales.

  11. IUE observations of a hot DAO white dwarf: Implications for diffusion theory and photospheric stratification

    NASA Technical Reports Server (NTRS)

    Holberg, J. B.; Sion, E. M.; Liebert, J.; Vauclair, Gerard

    1988-01-01

    Observations of the DAO white dwarf PG1210+533, including the first high dispersion spectrum of a hybrid H-He object of this nature were obtained by IUE. In contrast with hot DAs in the 50,000 K temperature range, PG1210+533 shows no narrow interstellar-like metal lines, in spite of an optically observed He/H abundance of 0.1. This lack of metal makes accretion from the ISM an unlikely source for the He in the PG1210+533 photosphere. A significant discovery in the high dispersion spectrum is the existence of a sharp, non-LTE like, core seen in the He II 1640 line. Such features are detected in DO white dwarfs. A small aperture SWP low dispersion observation reveals the Lyman alpha profile of PG1210+533 to be surprisingly weak and narrow. Fits of this profile using pure H models yielded a T(eff) = 56,000 K. Fits of the Balmer H gamma profile however, yield T(eff) = 42,300 K and log g = 8.5 + or - 0.5 for the same models. It is unlikely that homogeneously mixed H-He atmospheres can resolve the inconsistency between the Lyman alpha and H gamma features in this star. Stratified models involving thin H photospheres may be necessary to explain these results.

  12. Identifying and Tracking Solar Photospheric Bright Points Based on Three-dimensional Segmentation Technology

    NASA Astrophysics Data System (ADS)

    Jian-ping, Xiong; Ai-li, Zhang; Kai-fan, Ji; Song, Feng; Hui, Deng; Yun-fei, Yang

    2016-10-01

    Photospheric bright points (PBPs) are tiny short-lived brightening phenomena that can be seen within dark inter-granular lanes. In this paper, we develop a new method to identify and track a PBP in a 3D space-time cube. Different from the common-adopted strategy of "identifying-before-tracking", this algorithm is based on the strategy of "identifying-by-tracking". This method can identify a PBP when its intensity is still rather weak, and can avoid the discontinuous evolution of PBP caused by the algorithm of Laplacian morphological dilation (LMD) to recognize completely the evolutionary process of a PBP. The statistics on a group of G-band data observed by Hinode/SOT (Solar Optical Telescope) in quiet regions indicate that the average lifetime of isolated PBP is as long as 3 minutes, and the longest lifetime is up to 27 minutes, which means that the lifetime of PBPs is longer than that obtained by the previous LMD algorithm. Furthermore, it is also found that the mean intensity contrast of PBPs is 1.02 times of the mean photospheric intensity, which is weaker than that calculated by the LMD algorithm, and that the intensity of PBP exhibits a periodical oscillation of 2∼3 minute during the whole lifetime.

  13. An experimental platform for creating white dwarf photospheres in the laboratory: Preliminary results

    NASA Astrophysics Data System (ADS)

    Montgomery, M. H.; Falcon, Ross E.; Rochau, G. A.; Bailey, J. E.; Gomez, T. A.; Carlson, A. L.; Bliss, D. E.; Nagayama, T.; Stein, M.; Winget, D. E.

    2015-12-01

    We present the current status of the White Dwarf Photosphere Experiment at the Z Pulsed Power Facility at Sandia National Laboratories. This experiment has evolved into a unique platform for simultaneously measuring emission, absorption, and back-lighter continua spectra of plasmas with white dwarf (WD) photospheric compositions and conditions (Te∼1 eV, ne∼1016-1018e/cm3); our current experiments involve line profile measurements of hydrogen-corresponding to the most common surface composition in white dwarf stars, with future experiments planned for helium, carbon, and oxygen. These profiles will test line broadening theories used in white dwarf model atmospheres to infer the fundamental parameters (e.g., effective temperature and mass) of thousands of WDs. This experiment uses the large amount of x-rays generated from a z-pinch dynamic hohlraum to radiatively drive plasma formation in a gas cell. We reach significantly higher densities than the landmark study of Wiese et al. (1972), thereby putting competing line broadening theories to the test in a regime where their predictions strongly diverge. The simultaneous measurement of emission, absorption, and back-lighter continua in macroscopic plasmas represents a significant advance relative to hydrogen line profile experiments of the past.

  14. Photospheric Magnitude Diagrams for Type II Supernovae: A Promising Tool to Compute Distances

    NASA Astrophysics Data System (ADS)

    Rodríguez, Ósmar; Clocchiatti, Alejandro; Hamuy, Mario

    2014-12-01

    We develop an empirical color-based standardization for Type II supernovae (SNe II), equivalent to the classical surface brightness method given in Wesselink. We calibrate this standardization using SNe II with host galaxy distances measured using Cepheids, and a well-constrained shock breakout epoch and extinction due to the host galaxy. We estimate the reddening with an analysis of the B - V versus V - I color-color curves, similar to that of Natali et al. With four SNe II meeting the above requirements, we build a photospheric magnitude versus color diagram (similar to an H-R diagram) with a dispersion of 0.29 mag. We also show that when using time since shock breakout instead of color as the independent variable, the same standardization gives a dispersion of 0.09 mag. Moreover, we show that the above time-based standardization corresponds to the generalization of the standardized candle method of Hamuy & Pinto for various epochs throughout the photospheric phase. To test the new tool, we construct Hubble diagrams for different subsamples of 50 low-redshift (cz < 104 km s-1) SNe II. For 13 SNe within the Hubble flow (cz CMB > 3000 km s-1) and with a well-constrained shock breakout epoch we obtain values of 68-69 km s-1 Mpc-1 for the Hubble constant and a mean intrinsic scatter of 0.12 mag or 6% in relative distances.

  15. Non Grey Radiative Transfer in the Photospheric Convection: Validity of the Eddington Approximation

    NASA Astrophysics Data System (ADS)

    Bach, Kiehunn

    2016-02-01

    The aim of this study is to describe the physical processes taking place in the solar photosphere. Based on 3D hydrodynamic simulations including a detailed radiation transfer scheme, we investigate thermodynamic structures and radiation fields in solar surface convection. As a starting model, the initial stratification in the outer envelope calculated using the solar calibrations in the context of the standard stellar theory. When the numerical fluid becomes thermally relaxed, the thermodynamic structure of the steady-state turbulent flow was explicitly collected. Particularly, a non-grey radiative transfer incorporating the opacity distribution function was considered in our calculations. In addition, we evaluate the classical approximations that are usually adopted in the one-dimensional stellar structure models. We numerically reconfirm that radiation fields are well represented by the asymptotic characteristics of the Eddington approximation (the diffusion limit and the streaming limit). However, this classical approximation underestimates radiation energy in the shallow layers near the surface, which implies that a reliable treatment of the non-grey line opacities is crucial for the accurate description of the photospheric convection phenomenon.

  16. Photospheric electric current and transition region brightness within an active region

    NASA Technical Reports Server (NTRS)

    Deloach, A. C.; Hagyard, M. J.; Rabin, D.; Moore, R. L.; Smith, B. J., Jr.; West, E. A.; Tandberg-Hanssen, E.

    1984-01-01

    Distributions of vertical electrical current density J(z) calculated from vector measurements of the photospheric magnetic field are compared with ultraviolet spectroheliograms to investigate whether resistive heating is an important source of enhanced emission in the transition region. The photospheric magnetic fields in Active Region 2372 were measured on April 6 and 7, 1980 with the Marshall Space Flight Center vector magnetograph; ultraviolet wavelength spectroheliograms (L-alpha and N V 1239 A) were obtained with the UV Spectrometer and Polarimeter experiment aboard the Solar Maximum Mission satellite. Spatial registration of the J(z) (5 arcsec resolution) and UV (3 arcsec resolution) maps indicates that the maximum current density is cospatial with a minor but persistent UV enhancement, but there is little detected current associated with other nearby bright areas. It is concluded that, although resistive heating may be important in the transition region, the currents responsible for the heating are largely unresolved in the present measurements and have no simple correlation with the residual current measured on 5-arcsec scales.

  17. Kelvin-Helmholtz instability of kink waves in photospheric, chromospheric, and X-ray solar jets

    NASA Astrophysics Data System (ADS)

    Zhelyazkov, I.

    2013-09-01

    One of the most enduring mysteries in solar physics is why the Sun's outer atmosphere, or corona, is millions of kelvins hotter than its surface. Among suggested theories for coronal heating are those that consider the role of various jets of plasma shooting up from just above the Sun's surface through the photosphere and chromosphere to corona. The energy carrying by the waves propagating along the jets can be dissipated and thus transferred to the medium via different mechanisms. Among the various magnetohydrodynamic (MHD) waves which can propagate in the solar atmosphere the most promising for the heating process turns out to be the so cold kink waves. These waves actually are normal modes of the MHD waves running in spatially (or magnetically) bounded flux tubes. When plasma in a flux tube floats the kink mode can become unstable if the jet's speed exceeds some threshold/critical value. The instability which appears is of the Kelvin-Helmholtz type and it can trigger MHD turbulence, more specifically Alvfén waves' turbulence. Notably this kind of turbulence is considered to be one of the main mechanisms of coronal heating. Here, we consider the conditions under which kink waves traveling on three types of solar flowing plasmas, namely photospheric jets, spicules, and X-ray jets, can become unstable against the Kelvin-Helmholtz instability.

  18. On the relationship between photospheric footpoint motions and coronal heating in solar active regions

    SciTech Connect

    Van Ballegooijen, A. A.; Asgari-Targhi, M.; Berger, M. A.

    2014-05-20

    Coronal heating theories can be classified as either direct current (DC) or alternating current (AC) mechanisms, depending on whether the coronal magnetic field responds quasi-statically or dynamically to the photospheric footpoint motions. In this paper we investigate whether photospheric footpoint motions with velocities of 1-2 km s{sup –1} can heat the corona in active regions, and whether the corona responds quasi-statically or dynamically to such motions (DC versus AC heating). We construct three-dimensional magnetohydrodynamic models for the Alfvén waves and quasi-static perturbations generated within a coronal loop. We find that in models where the effects of the lower atmosphere are neglected, the corona responds quasi-statically to the footpoint motions (DC heating), but the energy flux into the corona is too low compared to observational requirements. In more realistic models that include the lower atmosphere, the corona responds more dynamically to the footpoint motions (AC heating) and the predicted heating rates due to Alfvén wave turbulence are sufficient to explain the observed hot loops. The higher heating rates are due to the amplification of Alfvén waves in the lower atmosphere. We conclude that magnetic braiding is a highly dynamic process.

  19. HIGH-EFFICIENCY PHOTOSPHERIC EMISSION OF LONG-DURATION GAMMA-RAY BURST JETS: THE EFFECT OF THE VIEWING ANGLE

    SciTech Connect

    Lazzati, Davide; Morsony, Brian J.; Begelman, Mitchell C.

    2011-05-01

    We present the results of a numerical investigation of the spectra and light curves of the emission from the photospheres of long-duration gamma-ray burst jets. We confirm that the photospheric emission has high efficiency and show that the efficiency increases slightly with the off-axis angle. We show that the peak frequency of the observed spectrum is proportional to the square root of the photosphere's luminosity, in agreement with the Amati relation. However, a quantitative comparison reveals that the thermal peak frequency is too small for the corresponding total luminosity. As a consequence, the radiation must be out of thermal equilibrium with the baryons in order to reproduce the observations. Finally, we show that the spectrum integrated over the emitting surface is virtually indistinguishable from a Planck law, and therefore an additional mechanism has to be identified to explain the non-thermal behavior of the observed spectra at both high and low frequencies.

  20. On the Doppler Shift and Asymmetry of Stokes Profiles of Photospheric FeI and Chromospheric MgI Lines

    DTIC Science & Technology

    2010-06-15

    10/09 ON THE DOPPLER SHIFT AND ASYMMETRY OF STOKES PROFILES OF PHOTOSPHERIC Fe I AND CHROMOSPHERIC Mg I LINES NA DENG AND DEBI PRASAD CHOUDHARY...photospheric (Fe I 630.15 and 630.25 nm) and chromospheric (Mg I b2 517.27 nm) lines. The data were obtained with the HAO/NSO Advanced Stokes...among the three spectral lines, which helps us to better understand the chromospheric lines and the magnetic and flow fields in different magnetic

  1. Evidence for a supersonic turbulent velocity gradient in the outer photosphere of the supergiant alpha Cygni (A2Ia)

    NASA Technical Reports Server (NTRS)

    De Jager, C.; Mulder, P. S.; Kondo, Y.

    1984-01-01

    The balloon-borne UV Stellar Spectrometer's high resolution, near-UV spectra of the supergiant Alpha Cyg are subjected to analysis in order to determine the average microturbulent line-of-sight velocity component. A value of 15.0 + or - 0.5 km/sec is obtained, which is close to the 13.7 km/sec local sound velocity, and is consistent with the view that shock waves are the dominant structure in the outer photosphere of Deneb, so that shock wave dissipation determines the thermal structure of the photosphere.

  2. Magnetic and Velocity Field of Sunspots in the Photosphere and Upper Chromosphere

    NASA Astrophysics Data System (ADS)

    Joshi, Jayant

    2014-03-01

    Sunspots, the dark blemishes on the solar surface have been widely studied for the past 400 years. Sunspots are the most readily identifiable manifestation of magnetic field concentrations on the solar surface. Interaction of the sunspot magnetic field with the plasma makes them one of the most interesting objects for research in solar physics. This thesis presents a study of the photospheric and upper chromospheric velocity and magnetic field structure of sunspots by analyzing spectro-polarimetric observations. These observations comprise different spectral lines obtained with two ground based telescopes and a space borne telescope. The lower brightness of sunspots on the solar surface is due to the presence of strong magnetic fields (up to 4 kG in the umbra), which makes the overturning convection inefficient. Convection is the main heat transport mechanism in the quiet Sun. The Penumbra, the annular part around the umbra has a brightness of about 75% of that in the quiet Sun. At the same time it has an average magnetic field strength of around 1.5 kG. The brightness of penumbrae has been an enigma for solar physicists for a long time. Theoretical models like the gappy penumbra model and the convective roll model as well as magnetohydrodynamic (MHD) simulations suggest that the heat transport in penumbrae is based on the presence of overturning convection. Direct observational evidence for the presence of convective flows in penumbral filaments was missing so far. In Chapter 3 we present observations of a penumbra in the C i 5380 Å spectral line formed in the deep photosphere. These high spatial resolution observations (0. '' 14) are obtained with the Swedish 1-m Solar Telescope (SST). Doppler map clearly shows the presence of several dark downflow lanes at the edges of the penumbral filaments which surround the bright upflows at the center of the filaments, supporting overturning convection as a mechanism of heat transport in penumbrae. Chapter 4 analyses the

  3. An automated classification approach to ranking photospheric proxies of magnetic energy build-up

    NASA Astrophysics Data System (ADS)

    Al-Ghraibah, A.; Boucheron, L. E.; McAteer, R. T. J.

    2015-07-01

    Aims: We study the photospheric magnetic field of ~2000 active regions over solar cycle 23 to search for parameters that may be indicative of energy build-up and its subsequent release as a solar flare in the corona. Methods: We extract three sets of parameters: (1) snapshots in space and time: total flux, magnetic gradients, and neutral lines; (2) evolution in time: flux evolution; and (3) structures at multiple size scales: wavelet analysis. This work combines standard pattern recognition and classification techniques via a relevance vector machine to determine (i.e., classify) whether a region is expected to flare (≥C1.0 according to GOES). We consider classification performance using all 38 extracted features and several feature subsets. Classification performance is quantified using both the true positive rate (the proportion of flares correctly predicted) and the true negative rate (the proportion of non-flares correctly classified). Additionally, we compute the true skill score which provides an equal weighting to true positive rate and true negative rate and the Heidke skill score to allow comparison to other flare forecasting work. Results: We obtain a true skill score of ~0.5 for any predictive time window in the range 2 to 24 h, with a true positive rate of ~0.8 and a true negative rate of ~0.7. These values do not appear to depend on the predictive time window, although the Heidke skill score (<0.5) does. Features relating to snapshots of the distribution of magnetic gradients show the best predictive ability over all predictive time windows. Other gradient-related features and the instantaneous power at various wavelet scales also feature in the top five (of 38) ranked features in predictive power. It has always been clear that while the photospheric magnetic field governs the coronal non-potentiality (and hence likelihood of producing a solar flare), photospheric magnetic field information alone is not sufficient to determine this in a unique manner

  4. Signature of collision of magnetic flux tubes in the quiet solar photosphere

    NASA Astrophysics Data System (ADS)

    Andic, Aleksandra

    2011-08-01

    Collision of the magnetic flux tubes in the Quiet Sun was proposed as one of the possible sources for the heating of the solar atmosphere (Furusawa and Sakai, 2000). The solar photosphere was observed using the New Solar Telescope ad Big Bear Solar Observatory. In TiO spectral line at 705.68 nm we approached resolution of 0.1''. The horizontal plasma wave was observed spreading from the larger bright point. Shorty after this wave an increase in the oscillatory power appeared at the same location as the observed bright point. This behavior matches some of the results from the simulation of the collision of the two flux tubes with a weak current.

  5. Contribution functions for Zeeman-split lines, and line formation in photospheric faculae

    NASA Technical Reports Server (NTRS)

    Vanballegooijen, A. A.

    1985-01-01

    The transfer of polarized light in an inhomogeneous stellar atmosphere, and the formation of magnetically sensitive spectral lines, are discussed. A new method for the solution of the transfer equations is proposed. The method gives a natural definition of the contribution functions for Stokes' parameters, i.e., functions describing the contributions from different parts along the line-of-sight (LOS). The formalism includes all magneto-optical effects, and allows for an arbitrary variation of magnetic field, velocity field, temperature, density, etc., along the LOS. The formation of FeI lambda 5250.2 in photospheric faculae is described. A potential-field model of a facular element is presented, and spectra profiles and contribution functions are computed for the Stokes parameters I, Q, and V.

  6. Contribution functions for Zeeman-split lines, and line formation in photospheric faculae

    NASA Technical Reports Server (NTRS)

    Vanballegooijen, A. A.

    1985-01-01

    The transfer of polarized light in an inhomogeneous stellar atmosphere, and the formation of magnetically sensitive spectral lines, are discussed. A new method for the solution of the transfer equations is proposed. The method gives a natural definition of the contribution functions for Stokes' parameters, i.e., functions describing the contributions from different parts along the line-of-sight (LOS). The formalism includes all magneto-optical effects, and allows for an arbitrary variation of magnetic field, velocity field, temperature, density, etc., along the LOS. The formation of FeI lambda 5250.2 in photospheric faculae is described. A potential-field model of a facular element is presented, and spectra profiles and contribution functions are computed for the Stokes parameters I, Q, and V.

  7. What is the horizontal scale of the 5-min oscillations. [in solar photosphere

    NASA Technical Reports Server (NTRS)

    Wolff, C. L.

    1973-01-01

    Solar oscillations with periods near 5 min were discovered in the photosphere by Leighton et al. (1962) on Doppler photographs which showed the sun to be covered with small velocity cells a few thousand km in diameter. If wrong, all the early reports of a small horizontal scale (about 2000 km) for the 5-min oscillations may be due to unfortunate similarities between the velocity and overturning time of the solar granule convection and the corresponding velocity and period typical of the oscillations. A large horizontal scale (about 30,000 km) for the oscillations seems consistent with the old data and almost required by more recent measurements. The large scales recently measured would imply that a sizable fraction of the solar volume is involved in the oscillation and would cast some doubt on all the old theories of the 5-min oscillations which were based on plane parallel atmospheres.

  8. Peculiar CNO photospheric abundances in the central star of NGC 2392

    NASA Astrophysics Data System (ADS)

    Méndez, Roberto H.; Urbaneja, Miguel A.; Kudritzki, Rolf-Peter; Prinja, Raman K.

    2012-08-01

    Using new, high signal-to-noise CFHT ESPaDOnS visual spectrograms, and archive IUE and FUSE UV spectrograms, together with state-of-the-art non-LTE hydrodynamical model atmospheres, we have obtained accurate He, C, N, O photospheric abundance determinations in the central stars of NGC 2392, IC 4593, and NGC 6826. We compare with the corresponding nebular abundances, taken from the literature. The central star of NGC 2392 shows high He, N, and very low C, O abundances. We propose that these peculiar abundances must have originated in a common-envelope phase of interaction with a close binary companion. If we assume that the companion is more evolved than the visible central star, this offers a way of solving the old mystery of the discrepant He II Zanstra temperature of NGC 2392.

  9. On the numerical computation of nonlinear force-free magnetic fields. [from solar photosphere

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Sun, M. T.; Chang, H. M.; Hagyard, M. J.; Gary, G. A.

    1990-01-01

    An algorithm has been developed to extrapolate nonlinear force-free magnetic fields from the photosphere, given the proper boundary conditions. This paper presents the results of this work, describing the mathematical formalism that was developed, the numerical techniques employed, and comments on the stability criteria and accuracy developed for these numerical schemes. An analytical solution is used for a benchmark test; the results show that the computational accuracy for the case of a nonlinear force-free magnetic field was on the order of a few percent (less than 5 percent). This newly developed scheme was applied to analyze a solar vector magnetogram, and the results were compared with the results deduced from the classical potential field method. The comparison shows that additional physical features of the vector magnetogram were revealed in the nonlinear force-free case.

  10. The spontaneous concentration of magnetic field in the photosphere of the sun

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1981-01-01

    The basic physics of magnetic flux tubes in the solar photosphere is reviewed, with areas still open to conjecture pointed out. The question of the concentration of individual small flux tubes to levels of 1-2 kilogauss, when the average solar surface magnetic field is on the order of 10 gauss, by processes of twisting and the formation of flux ropes made up of tubes wound around each other is considered together with the effects of turbulence on the flux tube. Mechanisms for tube compression by the evacuation of the gas contained within a flux tube are then examined, and the possibility of field concentration through the cooling of the gas within the tube in a superadiabatic process is suggested. Attention is then given to possible mechanisms serving to maintain the concentration of flux tubes far below the surface of the sun which gives rise to sunspots and pores as the flux tree emerges through the surface.

  11. Hydraulic concentration of magnetic fields in the solar photosphere. III - Fields of one or two kilogauss

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1976-01-01

    Detailed analysis of weak and strong lines suggests that the magnetic fields in isolated intense flux tubes in supergranule boundaries in the solar photosphere may be as large as 2000 gauss. This paper is a concise systematic review of hydrodynamic effects that might compress a magnetic field to great intensity. The properties of force-free fields are reviewed to show that they do not contribute to concentration of magnetic fields, in spite of the popular notion to the contrary. Of the seven effects considered, it is concluded that only cooling of the gas within the field can produce the high field densities inferred from observation. It is shown that inhibition of convection appears not to possess the necessary qualitative cooling features and that overstability, generating transverse hydromagnetic waves - essentially Alfven waves - is the only way to account for the cooling and field intensification.

  12. Sunspot Light-Bridges - A Bridge Between the Photosphere and the Corona?

    NASA Astrophysics Data System (ADS)

    Matthews, S.; Baker, D.; Domínguez, S. V.

    2012-08-01

    Recent observations of sunspot light-bridges (LBs) have shed new light on the fact that they are often associated with significant chromospheric activity. In particular chromospheric jets (Shimizu et al. 2009) persisting over a period of days have been identified, sometimes associated with large downflows at the photospheric level (Louis et al. 2009). One possible explanation for this activity is reconnection low in the atmosphere. LBs have also been associated with a constant brightness enhancement in the 1600 Å passband of TRACE, and the heating of 1 MK loops. Using data from EIS, SOT and STEREO EUVI we investigate the response of the transition region and lower corona to the presence of a LB.

  13. Mass and Radius of Neutron Stars Constrained by Photospheric Radius Expansion X-ray Bursts

    NASA Astrophysics Data System (ADS)

    Kwak, Kyujin; Kim, Myungkuk; Kim, Young-Min; Lee, Chang-Hwan

    Simultaneous measurement of mass and radius of a neutron star is important because it provides strong constraint on the equation of state for nuclear matter inside a neutron star. Type I X-ray Bursts (XRBs) that have been observed in low-mass X-ray binaries sometimes show photospheric radius expansion (PRE). By combining observed fluxes, X-ray spectra, and distances of PRE XRBs and using a statistical analysis, it is possible to simultaneously constrain the mass and radius of a neutron star. However, the mass and radius of a neutron star estimated in this method depends on the opacity of accreted material. We investigate the effect of the opacity on the mass and radius estimation by taking into account the cases that the hydrogen mass fraction of accreted material has narrowly-distributed values. We present preliminary results that are investigated with three different values of hydrogen mass fraction and compare our results with previous studies.

  14. TRANSVERSE COMPONENT OF THE MAGNETIC FIELD IN THE SOLAR PHOTOSPHERE OBSERVED BY SUNRISE

    SciTech Connect

    Danilovic, S.; Beeck, B.; Pietarila, A.; Schuessler, M.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; MartInez Pillet, V.; Bonet, J. A.; Domingo, V.; Berkefeld, T.; Schmidt, W.; Knoelker, M.; Title, A. M.

    2010-11-10

    We present the first observations of the transverse component of a photospheric magnetic field acquired by the imaging magnetograph SUNRISE/IMaX. Using an automated detection method, we obtain statistical properties of 4536 features with significant linear polarization signal. We obtain a rate of occurrence of 7 x 10{sup -4} s{sup -1} arcsec{sup -2}, which is 1-2 orders of magnitude larger than the values reported by previous studies. We show that these features have no characteristic size or lifetime. They appear preferentially at granule boundaries with most of them being caught in downflow lanes at some point. Only a small percentage are entirely and constantly embedded in upflows (16%) or downflows (8%).

  15. Photospheric subrotations, differential rotation and zonal wind bands - A reverse pirouette

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.; Mayr, H. G.; Levine, R. H.

    1981-01-01

    It is noted that on the sun the core is assumed to be rotating with a period of about 12 days while the overlying 'mantle' convection zone has a solid body component of about 27 days. It is proposed that this phenomenon could simply be understood as a 'reverse pirouette'. It is noted that while previously proposed models provide solutions of valid equations and computer analyses, they lack a simple physical picture to explain the phenomenon. In the model proposed here, the solar oblateness is conventionally providing added heat input at the poles. The result is the large scale transport of material toward the equator, causing subrotation. The model is thus seen as facilitating an understanding of the formation of a slowly rotating convection zone above the more rapidly rotating core. The latitudinal photospheric differential rotation is interpreted as a 'second order' effect associated with the horizontal transport of momentum.

  16. Rapid Changes of Photospheric Magnetic Field after Tether-cutting Reconnection and Magnetic Implosion

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Deng, N.; Liu, R.; Lee, J.; Wiegelmann, T.; Jing, J.; Xu, Y.; Wang, S.; Wang, H.

    2012-05-01

    A rapid and persistent change of the photospheric magnetic field co-temporal with the impulsive phase of solar flare emissions has been recognized as an important element of the flare process from both observational and theoretical points of view. Using the state-of-the-art photospheric vector magnetograms acquired by HMI and Hinode, we have studied such a change associated with the 2011 February 13 M6.6 flare in NOAA AR 11158. Our aim is not only to identify the field change but also to understand it in the context of magnetic reconnection involved with the flare. In our analysis, (1) the rapid change is detected in a compact region lying at the central neutral line, where the mean horizontal field strength increased significantly by 28% in 30 minutes. The field also becomes more sheared and inclined to the surface. (2) Sunspot umbrae with opposite polarity lying on the two sides of the compact region experienced sudden perturbations, moving in opposite directions at an apparent velocity of 3 km/s against the long-term evolution. (3) The field variation induces a downward Lorentz-force change acting on the compact region and two opposite horizontal components of the Lorentz-force change consistent with the sunspot motions. (4) Four conspicuous UV flare kernels appear at the event onset and are linked to ribbon-like hard X-ray emissions in the impulsive phase. The compact region lies between the central two kernels that are co-spatial with the central feet of the sigmoid according to the nonlinear force-free field (NLFFF) model. (5) The NLFFF model further shows that strong coronal currents are concentrated immediately above the compact region and undergo apparent downward collapse after the sigmoid eruption. These results are discussed in favor of both the tether-cutting reconnection producing the flare and the ensuing implosion (collapse) of the coronal field resulting from the energy release.

  17. A Novel Approach to Fast SOLIS Stokes Inversion for Photospheric Vector Magnetography.

    NASA Astrophysics Data System (ADS)

    Harker, Brian; Mighell, K.

    2009-05-01

    The SOLIS (Synoptic Optical Long-term Investigations of the Sun) Vector Spectromagnetograph (VSM) is a full-disc spectropolarimeter, located at Kitt Peak National Observatory, which records Zeeman-induced polarization in the magnetically-sensitive FeI spectral lines at 630.15 nm and 630.25 nm. A SOLIS VSM full-disc dataset consists of 2048 scanlines, with each scanline containing the Stokes I, Q, U, and V spectral line profiles in 128 unique wavelength bins for all 2048 pixels in the scanline. These Stokes polarization profiles are inverted to obtain the magnetic and thermodynamic structure of the observations, based on a model Milne-Eddington plane-parallel atmosphere. Until recently, this has been a compute-intensive, relatively slow process. This poster presents a novel method of producing such model-based characterizations of the photospheric magnetic field by utilizing an inversion engine based on a genetic algorithm. The algorithm executes in a heterogeneous compute environment composed of both a CPU and a graphics processing unit (GPU). Using the cutting-edge NVIDIA CUDA platform, we are able to offload the compute-intensive portions of the inversion code to the GPU, which results in significant speedup. This speedup provides the impetus which has driven the development of this strategy. Currently, SOLIS vector magnetic field products are generated with a modified version of the HAO ASP inversion code developed by Skumanich & Lites (1987), and these data products are made available to the scientific community 24 hours after the actual observation(s). With this work, we aim to drastically reduce this waiting period to allow near real-time characterizations of the photospheric vector magnetic field. Here, we here detail the inversion method we have pioneered, present preliminary results on the derived full-disc magnetic field as well as timing/speedup considerations, and finally offer some outlooks on the future direction of this work.

  18. The Solar Photospheric Oxygen Abundance and the Role of 3D Model Atmospheres

    NASA Astrophysics Data System (ADS)

    Caffau, E.; Steffen, M.; Ludwig, H.-G.

    2008-09-01

    The solar oxygen abundance has undergone a major downward revision in the last decade, reputedly as a result of employing 3D hydrodynamical simulations to model the inhomogeneous structure of the solar photosphere. The very low oxygen abundance advocated by Asplund et al. 2004, A(O)=8.66, together with the downward revision of the abundances of other key elements, has created serious problems for solar models to explain the helioseismic measurements. In an effort to contribute to the dispute of whether the Sun has "solar" or "sub-solar" abundances, we have re-derived its photospheric abundance of oxygen, nitrogen, and other elements, independently of previous analyses. We applied a state-of-the art 3D (CO5BOLD) hydrodynamical simulation of the solar granulation as well as different 1D model atmospheres for the line by line spectroscopic abundance determinations. The analysis is based on both standard disk-center and full-disk spectral atlases; for oxygen we acquired in addition spectra at different heliocentric angles. The derived abundances are the result of equivalent width and/or line profile fitting of the available atomic lines. Our recommended oxygen abundance is A(O)=8.76+- 0.07, 0.1 dex higher than the value of Asplund et al. (2004). Our current estimate of the overall solar metallicity is 0.014< Z<0.016. Questions we discuss include: (i) Is the general downward revision of the solar abundances a 3D effect? (ii) How large are the abundance corrections due to horizontal inhomogeneities? (iii) What is the main reason for the differences between the abundances obtained in our study and those derived by Apslund and coworkers? (iv) How large are the uncertainties in the observed solar spectra? (v) What is the reason why the two forbidden oxygen lines, [OI] lambda 630 nm and [OI] lambda 636.3 nm, give significantly different answers for the solar oxygen abundance?

  19. New View on Quiet-Sun Photospheric Dynamics Offered by NST Data

    NASA Astrophysics Data System (ADS)

    Abramenko, Valentyna; Yurchyshyn, V.; Goode, P. R.

    2011-05-01

    Recent observations of the quiet sun photosphere obtained with the 1.6 meter New Solar telescope (NST) of Big Bear Solar observatory (BBSO) delivered new information about photospheric fine structures and their dynamics, as well as posing new questions. The 2-hour uninterrupted data set of solar granulation obtained under excellent seeing conditions on August 3, 2010 (with cadence of 10 sec) was the basis for the study. Statistical analysis of automatically detected and tracked magnetic bright points (MBPs) showed that the MBPs population monotonically increases as their size decreases, down to 60-70 km. Our analysis shows that if the smallest magnetic flux tubes exist, their size is still smaller that 60-70 km, which impose strong restrictions on the modeling of these structures. We also found that the distributions of the MBP's size and lifetime do not follow a traditional Gaussian distribution, typical for random processes. Instead, it follows a log-normal distribution, typical for avalanches, catastrophes, stock market data, etc. Our data set also demonstrated that a majority (98.6 %) of MBPs are short live (<2 min). This remarkable fact was not obvious from previous studies because an extremely high time cadence was required. The fact indicates that the majority of MBPs appear for a very short time (tens of seconds), similar to other transient features, for example, chromospheric jets. The most important point here is that these small and short living MBPs significantly increase dynamics (flux emergence, collapse into MBPs, and magnetic flux recycling) of the solar surface magnetic fields.

  20. Photospheric and coronal magnetic fields in six magnetographs. I. Consistent evolution of the bashful ballerina

    NASA Astrophysics Data System (ADS)

    Virtanen, Ilpo; Mursula, Kalevi

    2016-06-01

    Aims: We study the long-term evolution of photospheric and coronal magnetic fields and the heliospheric current sheet (HCS), especially its north-south asymmetry. Special attention is paid to the reliability of the six data sets used in this study and to the consistency of the results based on these data sets. Methods: We use synoptic maps constructed from Wilcox Solar Observatory (WSO), Mount Wilson Observatory (MWO), Kitt Peak (KP), SOLIS, SOHO/MDI, and SDO/HMI measurements of the photospheric field and the potential field source surface (PFSS) model. Results: The six data sets depict a fairly similar long-term evolution of magnetic fields and the heliospheric current sheet, including polarity reversals and hemispheric asymmetry. However, there are time intervals of several years long, when first KP measurements in the 1970s and 1980s, and later WSO measurements in the 1990s and early 2000s, significantly deviate from the other simultaneous data sets, reflecting likely errors at these times. All of the six magnetographs agree on the southward shift of the heliospheric current sheet (the so-called bashful ballerina phenomenon) in the declining to minimum phase of the solar cycle during a few years of the five included cycles. We show that during solar cycles 20-22, the southward shift of the HCS is mainly due to the axial quadrupole term, reflecting the stronger magnetic field intensity at the southern pole during these times. During cycle 23 the asymmetry is less persistent and mainly due to higher harmonics than the quadrupole term. Currently, in the early declining phase of cycle 24, the HCS is also shifted southward and is mainly due to the axial quadrupole as for most earlier cycles. This further emphasizes the special character of the global solar field during cycle 23.

  1. Magnetic Upflow Events in the Quiet-Sun Photosphere. I. Observations

    NASA Astrophysics Data System (ADS)

    Jafarzadeh, S.; Rouppe van der Voort, L.; de la Cruz Rodríguez, J.

    2015-09-01

    Rapid magnetic upflows in the quiet-Sun photosphere were recently uncovered from both Sunrise/IMaX and Hinode/SOT observations. Here, we study magnetic upflow events (MUEs) from high-quality, high- (spatial, temporal, and spectral) resolution, and full Stokes observations in four photospheric magnetically sensitive Fe i lines centered at 5250.21, 6173.34, 6301.51, and 6302.50 Å acquired with the Swedish Solar Telescope (SST)/CRISP. We detect MUEs by subtracting in-line Stokes V signals from those in the far blue wing whose signal-to-noise ratio (S/N) ≥slant 7. We find a larger number of MUEs at any given time (2.0× {10}-2 arcsec-2), larger by one to two orders of magnitude, than previously reported. The MUEs appear to fall into four classes presenting different shapes of Stokes V profiles with (I) asymmetric double lobes, (II) single lobes, (III) double-humped (two same-polarity lobes), and (IV) three lobes (an extra blueshifted bump in addition to double lobes), of which less than half are single-lobed. We also find that MUEs are almost equally distributed in network and internetwork areas and they appear in the interior or at the edge of granules in both regions. Distributions of physical properties, except for horizontal velocity, of the MUEs (namely, Stokes V signal, size, line-of-sight velocity, and lifetime) are almost identical for the different spectral lines in our data. A bisector analysis of our spectrally resolved observations shows that these events host modest upflows and do not show a direct indication of the presence of supersonic upflows reported earlier. Our findings reveal that the numbers, types (classes), and properties determined for MUEs can strongly depend on the detection techniques used and the properties of the employed data, namely, S/Ns, resolutions, and wavelengths.

  2. Measurements of Solar Differential Rotation and Meridional Circulation from Tracking of Photospheric Magnetic Features

    NASA Astrophysics Data System (ADS)

    Lamb, Derek A.

    2017-02-01

    Long-lived rotational and meridional flows are important ingredients of the solar cycle. Magnetic field images have typically been used to measure these flows on the solar surface by cross-correlating thin longitudinal strips or square patches across sufficiently long time gaps. Here, I use 1 month of SDO/HMI line-of-sight magnetic field observations, combined with the Southwest Automatic Magnetic Identification Suite magnetic feature-tracking code to measure the motion of individual features in these magnetograms. By controlling for perturbations due to short-lived flows and due to false motions from feature interactions, I effectively isolate the long-lived flows traced by the magnetic features. This allows me to produce high-resolution (2° bins) differential rotation measurements with well-characterized variances and covariances of the fit parameters. I find a sidereal rotational profile of (14.296 ± 0.006) + (‑1.847 ± 0.056)sin2 b + (‑2.615 ± 0.093) sin4 b, with units of deg day‑1, and a large covariance σ BC 2 = ‑4.87 × 10‑3(deg day‑1)2. I also produce measurements of the much weaker meridional flow that are broadly consistent with previous results. These measurements exhibit a peak flow of 16.7 ± 0.6 m s‑1 at latitude b = 45° but are insufficiently characterized at higher latitudes to ascertain whether the chosen functional form 2\\cos b\\sin b is appropriate. This work demonstrates that measuring the motions of individual features in photospheric magnetograms can produce high-precision results in relatively short time spans, and suggests that high-resolution non-longitudinally averaged photospheric velocity residual measurements could be produced to compare with coronal results and to provide other diagnostics of the solar dynamo.

  3. The Emergence of Kinked Flux Tubes as the Source of Delta-Spots on the Photosphere

    NASA Astrophysics Data System (ADS)

    Knizhnik, Kalman; Linton, Mark; Norton, Aimee Ann

    2017-08-01

    It has been observationally well established that the magnetic configurations most favorable to producing energetic flaring events reside in so called delta-spots. These delta-spots are a subclass of sunspots, and are classified as sunspots which have umbrae (dark regions in the interior of sunspots) with opposite magnetic polarities that share a common penumbra. They are characterized by strong rotation and an extremely compact magnetic configuration, and are observed to follow an inverse-Hale law. It has been shown that over 90% of X-class flares that occurred during solar cycles 22 and 23 originated in delta-spots (Guo, Lin & Deng, 2014). Understanding the origin of delta-spots, therefore, is a crucial step towards the ultimate goal of space weather forecasting. In this work, we argue that delta-spots arise during the emergence of kinked flux tubes into the corona, and that their unique properties are due to the emergence of knots present in the kink mode of twisted flux tubes. We present numerical simulations that study the emergence of both kink-stable and unstable flux tubes into the solar corona, and demonstrate quantitatively that their photospheric signatures are dramatically different, with the latter flux tubes demonstrating strong coherent rotation and a very tight flux distribution on the photosphere. We show that the coronal magnetic field resulting from the emergence of a kinked flux tube contains significantly more free energy than the unkinked case, potentially leading to more energetic flares. We discuss the implications of our simulations for observations.

  4. The photosphere-corona Interface: enrichement of the corona in low FIP elements and helium shells

    NASA Astrophysics Data System (ADS)

    Bazin, C.; Koutchmy, S.; Lamy, P.; Veselovski, I.

    2014-12-01

    Slitless consecutive spectra were obtained during the contacts of the last total solar eclipses (2008, 2009, 2010, 2012, et 2013). They allowed to show that the overabundance of low First Ionisation Potential (FIP) elements (Fe II, Ti II, Ba II) in the corona comes from the low layers of the solar atmosphere, just near and above the temperature minimum region of the high photosphere. All spectra are recorded with a fast CCD/CMOS camera, with an equivalent radial resolution of 60 milliarcseconds, or 45 km in the solar atmosphere, above a solar edge not affected by the parasitic light like it is outside of total eclipse conditions. Many emission lines of low FIP elements appear in regions situated between 200 to 600 km above the solar limb defined by the true continuum measured between the lines. This continuum appears at these altitudes where the beta of the plasma is near 1. The He I 4713 Å and He II 4686 Å (Paschen alpha line) shells appear at the height of 800 km above the solar edge and higher. The light curve I = f(h) of each ion is located at a particuliar altitude in the solar atmosphere. The scale height corresponds to a density variation, which allows to evaluate the temperature thanks to the hydrostatic equilibrium assumption. Moreover, with ionised Titanium lines taken as markers, we show a similarity between the photosphere-corona interface and the prominence-corona interface. We discuss the role of the magnetic field and the ambipolar diffusion for supplying the corona in mass, without taking into account the role of spicules. The photo-ionisation of the helium lines by the EUV coronal lines is illustrated thanks to an extract of SDO/AIA coronal stacked image simultaneously obtained.

  5. Photospheric magnitude diagrams for type II supernovat: A promising tool to compute distances

    SciTech Connect

    Rodríguez, Ósmar; Clocchiatti, Alejandro; Hamuy, Mario

    2014-12-01

    We develop an empirical color-based standardization for Type II supernovae (SNe II), equivalent to the classical surface brightness method given in Wesselink. We calibrate this standardization using SNe II with host galaxy distances measured using Cepheids, and a well-constrained shock breakout epoch and extinction due to the host galaxy. We estimate the reddening with an analysis of the B – V versus V – I color-color curves, similar to that of Natali et al. With four SNe II meeting the above requirements, we build a photospheric magnitude versus color diagram (similar to an H-R diagram) with a dispersion of 0.29 mag. We also show that when using time since shock breakout instead of color as the independent variable, the same standardization gives a dispersion of 0.09 mag. Moreover, we show that the above time-based standardization corresponds to the generalization of the standardized candle method of Hamuy and Pinto for various epochs throughout the photospheric phase. To test the new tool, we construct Hubble diagrams for different subsamples of 50 low-redshift (cz < 10{sup 4} km s{sup –1}) SNe II. For 13 SNe within the Hubble flow (cz {sub CMB} > 3000 km s{sup –1}) and with a well-constrained shock breakout epoch we obtain values of 68-69 km s{sup –1} Mpc{sup –1} for the Hubble constant and a mean intrinsic scatter of 0.12 mag or 6% in relative distances.

  6. Utilizing Nst Data To Look For Connection Between Photospheric Dynamics And Small-scale Chromospheric Activity

    NASA Astrophysics Data System (ADS)

    Yurchyshyn, Vasyl B.

    2011-05-01

    The largest ground-based solar telescope, the new solar telescope (NST) of Big Bear Solar Observatory now allows us to address many important issues of coupling between the photosphere and chromosphere by means of simultaneous observations of photospheric granulation with well resolved bright points (BPs) and associated dynamics in the low chromosphere, as seen in H-alpha spectral line. Excellent seeing conditions, augmented with an adaptive optics system and speckle-reconstruction applications produce diffraction limited images. We use these data to search for any possible connection between typical dynamics of bright points (collision, clustering and rapid motions) and chromospheric activity, such as jets that are visible on all scales down to the smallest resolved features. In this presentation we will highlight the most important findings, which include the following. 1) In mostly unipolar coronal holes, the majority of colliding/interacting BPs are not associated with any detectable chromospheric activity. This means that the component reconnection, presumably occurring when the same polarity BPs interact, may not be very effective in producing chromospheric flows. We speculate that interaction of opposite polarity BPs may be more effective in generating up-flows. 2) NST/TiO images further reveal the hidden structure of plasma vortex tubes, previously predicted by Steiner et al. Besides the bright granular lane, a vortex tube structure also includes rapidly developing bright grain co-spatial with the tube's axis. Finally, some vortex tube events, detected in a CH data set, are co-spatial with small-scale chromospheric jets, which suggests that they may be associated with new magnetic flux emerging within a granule.

  7. Long-term spectroscopic monitoring of BA-type supergiants. III. Variability of photospheric lines.

    NASA Astrophysics Data System (ADS)

    Kaufer, A.; Stahl, O.; Wolf, B.; Fullerton, A. W.; Gaeng, T.; Gummersbach, C. A.; Jankovics, I.; Kovacs, J.; Mandel, H.; Peitz, J.; Rivinius, T.; Szeifert, T.

    1997-04-01

    We obtained time series of spectra with high S/N and high resolution in wavelength and time of early-type A and late-type B supergiants (cf. Kaufer et al. 1996A&A...305..887K, Paper I, and Kaufer et al. 1996A&A...314..599K, Paper II for the analysis of the variability of the stellar envelopes). In this work we inspect the time variations of the numerous photospheric line profiles in the optical spectrum. We find complex cyclical variations of the radial velocities with a typical velocity dispersion of σ=~3km/s. The corresponding equivalent-width variations are less than 1% of their mean if we assume a common modulation mechanism for both radial velocities and equivalent width. We do not find any depth dependence of the velocity fields in the metallic lines. For αCyg the Balmer lines show an increase of the radial velocity from H27 to H8 by 3km/s, which is identified with the onset of the radially accelerating velocity field of the stellar wind. The Cleaned periodograms of the radial-velocity curves show the simultaneous excitation of multiple pulsation modes with periods longer and shorter than the estimated radial fundamental periods of the objects, which might indicate the excitation of non-radial and radial overtones, respectively. The analysis of the line-profile variations (LPV) of the photospheric line spectrum reveals prograde travelling features in the dynamical spectra. The travelling times of these features are in contradiction to the possible rotation periods of these extended, slowly rotating objects. Therefore, we suggest that these features should be identified with non-radial pulsation modes, possibly g-modes, of low order (l=|m|<~5).

  8. Relationship between the photospheric Poynting flux and the active region luminosity

    NASA Astrophysics Data System (ADS)

    Kazachenko, Maria D.; Canfield, Richard C.; Fisher, George H.; Hudson, Hugh S.; Welsch, Brian

    2014-06-01

    How does energy radiated by active regions compare with magnetic energy that propagates lower across the photosphere? This is a fundamental question for energy storage and release in active regions, yet it is presently poorly understood. In this work we quantify and compare both energy terms using SDO observations of the active region (AR) 11520. To quantify the magnetic energy crossing the photosphere, or the Poynting flux, we need to know both the magnetic field vector B and electric field vector E as well. Our current electric field inversion technique, PDFI, combines the Poloidal-Toroidal-Decomposition method with information from Doppler measurements, Fourier local correlation tracking (FLCT) results, and the ideal MHD constraint, to determine the electric field from vector magnetic field and Doppler data. We apply the PDFI method to a sequence of Helioseismic and Magnetic Imager (HMI/SDO) vector magnetogram data, to find the electric-field and hence the Poynting-flux evolution in AR 11520. We find that most of the magnetic energy in this AR is injected in the range of $10^7$ to $10^8$ $ergs/{cm^2 s}$, with the largest fluxes reaching $10^{10}$ $ergs/{cm^2 s}$. Integrating over the active region this yields a total energy of order $10^{28}$ ergs/s. To quantify the active region luminosity, we use EUV Variability Experiment (EVE) and Atmospheric Imaging Assembly (AIA) spectrally resolved observations. We find the active region luminosity of order $10^{28}$ ergs/s. We compare derived magnetic and radiated energy fluxes on different temporal and spatial scales and estimate their uncertainties. We also discuss the roles that potential/non-potential and emerging/shearing terms play in the total magnetic energy budget.

  9. CHARACTERIZING THE STELLAR PHOTOSPHERES AND NEAR-INFRARED EXCESSES IN ACCRETING T TAURI SYSTEMS

    SciTech Connect

    McClure, M. K.; Calvet, N.; Hartmann, L.; Ingleby, L.; Espaillat, C.; Hernandez, J.; Luhman, K. L.; D'Alessio, P.; Sargent, B. E-mail: ncalvet@umich.edu E-mail: lingleby@umich.edu E-mail: hernandj@cida.ve E-mail: p.dalessio@astrosmo.unam.mx

    2013-05-20

    Using NASA Infrared Telescope Facility SpeX data from 0.8 to 4.5 {mu}m, we determine self-consistently the stellar properties and excess emission above the photosphere for a sample of classical T Tauri stars (CTTS) in the Taurus molecular cloud with varying degrees of accretion. This process uses a combination of techniques from the recent literature as well as observations of weak-line T Tauri stars to account for the differences in surface gravity and chromospheric activity between the T Tauri stars and dwarfs, which are typically used as photospheric templates for CTTS. Our improved veiling and extinction estimates for our targets allow us to extract flux-calibrated spectra of the excess in the near-infrared. We find that we are able to produce an acceptable parametric fit to the near-infrared excesses using a combination of up to three blackbodies. In half of our sample, two blackbodies at temperatures of 8000 K and 1600 K suffice. These temperatures and the corresponding solid angles are consistent with emission from the accretion shock on the stellar surface and the inner dust sublimation rim of the disk, respectively. In contrast, the other half requires three blackbodies at 8000, 1800, and 800 K, to describe the excess. We interpret the combined two cooler blackbodies as the dust sublimation wall with either a contribution from the disk surface beyond the wall or curvature of the wall itself, neither of which should have single-temperature blackbody emission. In these fits, we find no evidence of a contribution from optically thick gas inside the inner dust rim.

  10. Deep probing of the photospheric sunspot penumbra: no evidence of field-free gaps

    NASA Astrophysics Data System (ADS)

    Borrero, J. M.; Asensio Ramos, A.; Collados, M.; Schlichenmaier, R.; Balthasar, H.; Franz, M.; Rezaei, R.; Kiess, C.; Orozco Suárez, D.; Pastor, A.; Berkefeld, T.; von der Lühe, O.; Schmidt, D.; Schmidt, W.; Sigwarth, M.; Soltau, D.; Volkmer, R.; Waldmann, T.; Denker, C.; Hofmann, A.; Staude, J.; Strassmeier, K. G.; Feller, A.; Lagg, A.; Solanki, S. K.; Sobotka, M.; Nicklas, H.

    2016-11-01

    Context. Some models for the topology of the magnetic field in sunspot penumbrae predict regions free of magnetic fields or with only dynamically weak fields in the deep photosphere. Aims: We aim to confirm or refute the existence of weak-field regions in the deepest photospheric layers of the penumbra. Methods: We investigated the magnetic field at log τ5 = 0 is by inverting spectropolarimetric data of two different sunspots located very close to disk center with a spatial resolution of approximately 0.4-0.45''. The data have been recorded using the GRIS instrument attached to the 1.5-m solar telescope GREGOR at the El Teide observatory. The data include three Fe i lines around 1565 nm, whose sensitivity to the magnetic field peaks half a pressure scale height deeper than the sensitivity of the widely used Fe i spectral line pair at 630 nm. Before the inversion, the data were corrected for the effects of scattered light using a deconvolution method with several point spread functions. Results: At log τ5 = 0 we find no evidence of regions with dynamically weak (B< 500 Gauss) magnetic fields in sunspot penumbrae. This result is much more reliable than previous investigations made on Fe i lines at 630 nm. Moreover, the result is independent of the number of nodes employed in the inversion, is independent of the point spread function used to deconvolve the data, and does not depend on the amount of stray light (i.e., wide-angle scattered light) considered.

  11. An optical spectroscopic study of T Tauri stars. I. Photospheric properties

    SciTech Connect

    Herczeg, Gregory J.; Hillenbrand, Lynne A.

    2014-05-10

    Estimates of the mass and age of young stars from their location in the H-R diagram are limited by not only the typical observational uncertainties that apply to field stars, but also by large systematic uncertainties related to circumstellar phenomena. In this paper, we analyze flux-calibrated optical spectra to measure accurate spectral types and extinctions of 281 nearby T Tauri stars (TTSs). The primary advances in this paper are (1) the incorporation of a simplistic accretion continuum in optical spectral type and extinction measurements calculated over the full optical wavelength range and (2) the uniform analysis of a large sample of stars, many of which are well known and can serve as benchmarks. Comparisons between the non-accreting TTS photospheric templates and stellar photosphere models are used to derive conversions from spectral type to temperature. Differences between spectral types can be subtle and difficult to discern, especially when accounting for accretion and extinction. The spectral types measured here are mostly consistent with spectral types measured over the past decade. However, our new spectral types are one to two subclasses later than literature spectral types for the original members of the TW Hya Association (TWA) and are discrepant with literature values for some well-known members of the Taurus Molecular Cloud. Our extinction measurements are consistent with other optical extinction measurements but are typically 1 mag lower than near-IR measurements, likely the result of methodological differences and the presence of near-IR excesses in most CTTSs. As an illustration of the impact of accretion, spectral type, and extinction uncertainties on the H-R diagrams of young clusters, we find that the resulting luminosity spread of stars in the TWA is 15%-30%. The luminosity spread in the TWA and previously measured for binary stars in Taurus suggests that for a majority of stars, protostellar accretion rates are not large enough to

  12. Characterizing the Stellar Photospheres and Near-infrared Excesses in Accreting T Tauri Systems

    NASA Astrophysics Data System (ADS)

    McClure, M. K.; Calvet, N.; Espaillat, C.; Hartmann, L.; Hernández, J.; Ingleby, L.; Luhman, K. L.; D'Alessio, P.; Sargent, B.

    2013-05-01

    Using NASA Infrared Telescope Facility SpeX data from 0.8 to 4.5 μm, we determine self-consistently the stellar properties and excess emission above the photosphere for a sample of classical T Tauri stars (CTTS) in the Taurus molecular cloud with varying degrees of accretion. This process uses a combination of techniques from the recent literature as well as observations of weak-line T Tauri stars to account for the differences in surface gravity and chromospheric activity between the T Tauri stars and dwarfs, which are typically used as photospheric templates for CTTS. Our improved veiling and extinction estimates for our targets allow us to extract flux-calibrated spectra of the excess in the near-infrared. We find that we are able to produce an acceptable parametric fit to the near-infrared excesses using a combination of up to three blackbodies. In half of our sample, two blackbodies at temperatures of 8000 K and 1600 K suffice. These temperatures and the corresponding solid angles are consistent with emission from the accretion shock on the stellar surface and the inner dust sublimation rim of the disk, respectively. In contrast, the other half requires three blackbodies at 8000, 1800, and 800 K, to describe the excess. We interpret the combined two cooler blackbodies as the dust sublimation wall with either a contribution from the disk surface beyond the wall or curvature of the wall itself, neither of which should have single-temperature blackbody emission. In these fits, we find no evidence of a contribution from optically thick gas inside the inner dust rim.

  13. Study of nonstationarity of the atmosphere of κ Cas. I. Variability of profiles of photospheric and He I wind lines

    NASA Astrophysics Data System (ADS)

    Rzaev, A. Kh.

    2017-01-01

    Temporal variations of radial velocities and line profiles in the spectrum of the supergiant κ Cas were investigated. Variability of radial velocities and profiles of photospheric lines Si III, OII, He I, H10-Hδ and wind lines He I λ 5875, 6678 Å ismainly caused by non-radial pulsations. For photospheric lines quasisinusoidal variabilities of the radial velocity were found. Temporal variability of radial velocity of the wind lines He I λ 5875, 6678 A˚ differ from each other and from the photospheric lines. Gamma velocities and amplitudes of radial velocity variability were determined. The amplitude of variability and the velocity of expansion increase from lower to upper layers of the atmosphere. Emission components are superimposed on the line profiles at positions about -135 ± 10.0, -20 ± 20 and 135 ± 10.0 kms-1 respectively. They are more obvious in the wind line profiles, although, there are signs of emissions also in the photospheric lines. Such a character of variability of all the lines in the κ Cas spectrum confirms its Be nature.

  14. NONLINEAR PROPAGATION OF ALFVEN WAVES DRIVEN BY OBSERVED PHOTOSPHERIC MOTIONS: APPLICATION TO THE CORONAL HEATING AND SPICULE FORMATION

    SciTech Connect

    Matsumoto, Takuma; Shibata, Kazunari

    2010-02-20

    We have performed MHD simulations of Alfven wave propagation along an open flux tube in the solar atmosphere. In our numerical model, Alfven waves are generated by the photospheric granular motion. As the wave generator, we used a derived temporal spectrum of the photospheric granular motion from G-band movies of Hinode/Solar Optical Telescope. It is shown that the total energy flux at the corona becomes larger and the transition region's height becomes higher in the case when we use the observed spectrum rather than the white/pink noise spectrum as the wave generator. This difference can be explained by the Alfven wave resonance between the photosphere and the transition region. After performing Fourier analysis on our numerical results, we have found that the region between the photosphere and the transition region becomes an Alfven wave resonant cavity. We have confirmed that there are at least three resonant frequencies, 1, 3, and 5 mHz, in our numerical model. Alfven wave resonance is one of the most effective mechanisms to explain the dynamics of the spicules and the sufficient energy flux to heat the corona.

  15. Nonlinear Propagation of Alfven Waves Driven by Observed Photospheric Motions: Application to the Coronal Heating and Spicule Formation

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takuma; Shibata, Kazunari

    We have performed MHD simulations of Alfven wave propagation along an open ux tube in the solar atmosphere. In our numerical model, Alfven waves are generated by the photospheric granular motion. As the wave generator, we used a derived temporal spectrum of the photo-spheric granular motion from G-band movies of Hinode/SOT. It is shown that the total energy ux at the corona becomes larger and the transition region height becomes higher in the case when we use the observed spectrum rather than white/pink noise spectrum as the wave gener-ator. This difference can be explained by the Alfven wave resonance between the photosphere and the transition region. After performing Fourier analysis on our numerical results, we have found that the region between the photosphere and the transition region becomes an Alfven wave resonant cavity. We have conrmed that there are at least three resonant frequencies, 1, 3 and 5 mHz, in our numerical model. Alfven wave resonance is one of the most effective mechanisms to explain the dynamics of the spicules and the sufficient energy ux to heat the corona.

  16. The Polarization Signature of Photospheric Magnetic Fields in 3D MHD Simulations and Observations at Disk Center

    NASA Astrophysics Data System (ADS)

    Beck, C.; Fabbian, D.; Rezaei, R.; Puschmann, K. G.

    2017-06-01

    Before using three-dimensional (3D) magnetohydrodynamical (MHD) simulations of the solar photosphere in the determination of elemental abundances, one has to ensure that the correct amount of magnetic flux is present in the simulations. The presence of magnetic flux modifies the thermal structure of the solar photosphere, which affects abundance determinations and the solar spectral irradiance. The amount of magnetic flux in the solar photosphere also constrains any possible heating in the outer solar atmosphere through magnetic reconnection. We compare the polarization signals in disk-center observations of the solar photosphere in quiet-Sun regions with those in Stokes spectra computed on the basis of 3D MHD simulations having average magnetic flux densities of about 20, 56, 112, and 224 G. This approach allows us to find the simulation run that best matches the observations. The observations were taken with the Hinode SpectroPolarimeter (SP), the Tenerife Infrared Polarimeter (TIP), the Polarimetric Littrow Spectrograph (POLIS), and the GREGOR Fabry-Pèrot Interferometer (GFPI), respectively. We determine characteristic quantities of full Stokes profiles in a few photospheric spectral lines in the visible (630 nm) and near-infrared (1083 and 1565 nm). We find that the appearance of abnormal granulation in intensity maps of degraded simulations can be traced back to an initially regular granulation pattern with numerous bright points in the intergranular lanes before the spatial degradation. The linear polarization signals in the simulations are almost exclusively related to canopies of strong magnetic flux concentrations and not to transient events of magnetic flux emergence. We find that the average vertical magnetic flux density in the simulation should be less than 50 G to reproduce the observed polarization signals in the quiet-Sun internetwork. A value of about 35 G gives the best match across the SP, TIP, POLIS, and GFPI observations.

  17. A Combined Study of Photospheric Magnetic and Current Helicities and Subsurface Kinetic Helicities of Solar Active Regions during 2006-2013

    NASA Astrophysics Data System (ADS)

    Seligman, D.; Petrie, G. J. D.; Komm, R.

    2014-11-01

    We compare the average photospheric current helicity Hc , photospheric twist parameter α (a well-known proxy for the full relative magnetic helicity), and subsurface kinetic helicity Hk for 194 active regions observed between 2006-2013. We use 2440 Hinode photospheric vector magnetograms, and the corresponding subsurface fluid velocity data derived from GONG (2006-2012) and Helioseismic and Magnetic Imager (2010-2013) dopplergrams. We find a significant hemispheric bias in all three parameters. The subsurface kinetic helicity is preferentially positive in the southern hemisphere and negative in the northern hemisphere. The photospheric current helicity and the α parameter have the same bias for strong fields (|B| > 1000 G) and no significant bias for weak fields (100 G <|B| < 500 G). We find no significant region-by-region correlation between the subsurface kinetic helicity and either the strong-field current helicity or α. Subsurface fluid motions of a given handedness correspond to photospheric helicities of both signs in approximately equal numbers. However, common variations appear in annual averages of these quantities over all regions. Furthermore, in a subset of 77 regions, we find significant correlations between the temporal profiles of the subsurface and photospheric helicities. In these cases, the sign of the linear correlation coefficient matches the sign relationship between the helicities, indicating that the photospheric magnetic field twist is sensitive to the twisting motions below the surface.

  18. Using Beta Cen to Probe the Photosphere-wind Connection in B Stars

    NASA Technical Reports Server (NTRS)

    Miller, Nathan A.

    2005-01-01

    In this project we began by identifying the large number of emission lines visible in the XMM-Newton RGS spectra of Beta Cen. A comprehensive analysis of the temperature structure of the hot gas was carried out by simultaneously fitting the data from all the instruments on the spacecraft. This resulted in a measured temperature range of 0.1-0.6 keV. In more detailed analysis, three characteristic plasma temperatures were found: 0.1, 0.2, and 0.6 keV. The research carried out at UW-Eau Claire primarily focused on two aspects of the data: the analysis of the forbidden line to intercombination line ratio for He-like ions and the time variability of the overall X-ray flux as detected in the direct X-ray images of the star. The analysis of the lines from He-like ions indicate that the Ne IX lines are formed no farther than about 4 stellar radii from the star's photosphere, while the N VI lines are formed within 11 stellar radii of the photosphere. X-ray flux variability would be particularly interesting for this star because it is a known Beta Cep-type variable as seen in optical light: similar variation in the X-ray region would forge an interesting link between the two wavebands. Initial analysis of the X-ray flux was complicated by spikes in the count rates early in the observation. Detailed analysis of the spectral characteristics these count rate anomalies indicated that these flares were probably not intrinsic to the star, rather they were contaminations of the data due to the passage of the satellite through soft proton clouds in the Earth's magnetosphere. An analysis of the light curve of the uncontaminated portions of the light curve did not reveal any variation on the known optical period of variation for this star, and a general search for periodic variability also did not find any significant periods of variation.

  19. Comparison of solar photospheric bright points between Sunrise observations and MHD simulations

    NASA Astrophysics Data System (ADS)

    Riethmüller, T. L.; Solanki, S. K.; Berdyugina, S. V.; Schüssler, M.; Martínez Pillet, V.; Feller, A.; Gandorfer, A.; Hirzberger, J.

    2014-08-01

    Bright points (BPs) in the solar photosphere are thought to be the radiative signatures (small-scale brightness enhancements) of magnetic elements described by slender flux tubes or sheets located in the darker intergranular lanes in the solar photosphere. They contribute to the ultraviolet (UV) flux variations over the solar cycle and hence may play a role in influencing the Earth's climate. Here we aim to obtain a better insight into their properties by combining high-resolution UV and spectro-polarimetric observations of BPs by the Sunrise Observatory with 3D compressible radiation magnetohydrodynamical (MHD) simulations. To this end, full spectral line syntheses are performed with the MHD data and a careful degradation is applied to take into account all relevant instrumental effects of the observations. In a first step it is demonstrated that the selected MHD simulations reproduce the measured distributions of intensity at multiple wavelengths, line-of-sight velocity, spectral line width, and polarization degree rather well. The simulated line width also displays the correct mean, but a scatter that is too small. In the second step, the properties of observed BPs are compared with synthetic ones. Again, these are found to match relatively well, except that the observations display a tail of large BPs with strong polarization signals (most likely network elements) not found in the simulations, possibly due to the small size of the simulation box. The higher spatial resolution of the simulations has a significant effect, leading to smaller and more numerous BPs. The observation that most BPs are weakly polarized is explained mainly by the spatial degradation, the stray light contamination, and the temperature sensitivity of the Fe i line at 5250.2 Å. Finally, given that the MHD simulations are highly consistent with the observations, we used the simulations to explore the properties of BPs further. The Stokes V asymmetries increase with the distance to the

  20. Mass loss from evolved massive stars: self-consistent modeling of the wind and photosphere

    NASA Astrophysics Data System (ADS)

    Groh, J. H.

    2007-03-01

    This work analyzes the mass loss phenomenon in evolved massive stars through self-consistent modeling of the wind and photosphere of such stars, using the radiative transfer code CMFGEN. In the first part, fundamental physical parameters of Wolf-Rayet stars of spectral types WN3-w (WR 46 e WR 152) and WN6-s (WR 136) were obtained. The results clearly indicate that hydrogen is present on the surface of those stars in a considerable fraction, defying current evolutionary models. For both WN subtypes, significant difference between the physical parameters obtained here and in previous works were noticed. The 20-year evolution of the luminous blue variable (LBV) AG Carinae was analyzed in detail in the second part of this work. The results indicate unexpected changes in the current paradigm of massive star evolution during the S Dor cycle. In this work, the high rotational velocity obtained during the hot phases, and the transition between the bistability regimes of line-driven winds were detected for the first time in LBVs. Those results need to be considered in future analysis of such massive stars. This Thesis also presents a pioneering study about the impact of the time variability effects on the analysis of the winds of LBVs. The results achieved here are valid for the whole LBV class, and show that the mass-loss rates derived from Hα and radio free-free emission are affected by time-dependent effects. The mass-loss rate evolution during the S Dor cycle, derived using time-dependent models, implies that LBV eruptions begin well before the maximum in the visual lightcurve during this phase. The analysis of the full S Dor cycle of AG Car rule out that the S Dor variability is caused exclusively by an expanding pseudo-photosphere. The AG Car hydrostatic radius was found to vary by a factor of six between cool and hot phases, while the bolometric luminosity is 50% higher during the hot phase. Both results provide observational contraints for the physical mechanism

  1. The Abundances of Carbon and Nitrogen in the Photospheres of Active B Stars

    NASA Astrophysics Data System (ADS)

    Peters, Geraldine J.

    2011-01-01

    Contemporary models for the structure and evolution of rapidly-rotating OB stars predict a photospheric enrichment of nitrogen due to the mixing of the CNO-processed material from the star's core with the original surface material. The predicted N-enhancement increases as the star approaches its critical rotational velocity. Alternatively the Algol primaries should have N-enriched photospheres if the material currently being transferred is from the mass loser's original core. To test these predictions, the C and N abundances in selected early Be stars and B-type mass gainers in Algol systems have been determined from spectroscopic data obtained with the IUE and FUSE spacecraft. The abundance analyses, carried through with the Hubeny/Lanz NLTE codes TLUSTY/SYNSPEC, were confronted with some challenges that are not encountered in abundance studies of sharp-lined, non-emission B stars including the treatment of shallow, blended rotationally-broadened lines, the appropriate value for the microturbulence parameter, correction for disk emission and possible shell absorption, and latitudinal variation of Teff and log g. The FUV offers an advantage over the optical region as there is far less influence from disk emission and the N lines are intrinsically stronger. Particularly useful are the features of C II 1324 Å, C III 1176 Å, 1247 Å, N I 1243 Å, and N III 1183,84 Å. Be stars with v sin i < 150 km s-1 were chosen to minimize the effect of latitudinal parameter variation. Given the errors it appears that the N abundance in the Be stars is normal. Expected mixing is apparently suppressed, and this study lends no support for Be star models based upon critical rotation. However, expected N-enhancement and a low C abundance are inferred for the B-type primaries in some interacting binaries. GJP is grateful for support from NASA Grants NNX07AH56G (ADP) and NNX07AF89G (FUSE), and the USC WiSE program.

  2. Modelling the photosphere of active stars for planet detection and characterization

    NASA Astrophysics Data System (ADS)

    Herrero, Enrique; Ribas, Ignasi; Jordi, Carme; Morales, Juan Carlos; Perger, Manuel; Rosich, Albert

    2016-02-01

    Context. Stellar activity patterns are responsible for jitter effects that are observed at different timescales and amplitudes in the measurements obtained from photometric and spectroscopic time series observations. These effects are currently in the focus of many exoplanet search projects, since the lack of a well-defined characterization and correction strategy hampers the detection of the signals associated with small exoplanets. Aims: Accurate simulations of the stellar photosphere based on the most recent available models for main-sequence stars can provide synthetic photometric and spectroscopic time series data. These may help to investigate the relation between activity jitter and stellar parameters when considering different active region patterns. Moreover, jitters can be analysed at different wavelength scales (defined by the passbands of given instruments or space missions) to design strategies to remove or minimize them. Methods: We present the StarSim tool, which is based on a model for a spotted rotating photosphere built from the integration of the spectral contribution of a fine grid of surface elements. The model includes all significant effects affecting the flux intensities and the wavelength of spectral features produced by active regions and planets. The resulting synthetic time series data generated with this simulator were used to characterize the effects of activity jitter in extrasolar planet measurements from photometric and spectroscopic observations. Results: Several cases of synthetic data series for Sun-like stars are presented to illustrate the capabilities of the methodology. A specific application for characterizing and modelling the spectral signature of active regions is considered, showing that the chromatic effects of faculae are dominant for low-temperature contrasts of spots. Synthetic multi-band photometry and radial velocity time series are modelled for HD 189733 by adopting the known system parameters and fitting for the

  3. Spectroscopic Detection of a Stellar-like Photosphere in an Accreting Protostar

    NASA Technical Reports Server (NTRS)

    Greene, Thomas P.; Lada, Charles J.; DeVincenzi, Donald L. (Technical Monitor)

    2002-01-01

    We present high-resolution (R is approximately equal to 18,000), high signal-to-noise 2 micron spectra of two luminous, X-ray flaring Class I protostars in the rho Ophiuchi cloud acquired with the NIRSPEC (near infrared spectrograph) of the Keck II telescope. We present the first spectrum of a highly veiled, strongly accreting protostar which shows photospheric absorption features and demonstrates the stellar nature of its central core. We find the spectrum of the luminous (L (sub bol) = 10 solar luminosity) protostellar source, YLW 15, to be stellar-like with numerous atomic and molecular absorption features, indicative of a K5 IV/V spectral type and a continuum veiling r(sub k) = 3.0. Its derived stellar luminosity (3 stellar luminosity) and stellar radius (3.1 solar radius) are consistent with those of a 0.5 solar mass pre-main-sequence star. However, 70% of its bolometric luminosity is due to mass accretion, whose rate we estimate to be 1.7 x 10(exp -6) solar masses yr(exp -1). We determine that excess infrared emission produced by the circumstellar accretion disk, the inner infalling envelope, and accretion shocks at the surface of the stellar core of YLW 15 all contribute significantly to its near-IR (infrared) continuum veiling. Its rotational velocity v sin i = 50 km s(exp -1) is comparable to those of flat-spectrum protostars but considerably higher than those of classical T Tauri stars in the rho Oph cloud. The protostar may be magnetically coupled to its circumstellar disk at a radius of 2 - 3 R(sub *). It is also plausible that this protostar can shed over half its angular momentum and evolve into a more slowly rotating classical T Tauri star by remaining coupled to its circumstellar disk (at increasing radius) as its accretion rate drops by an order of magnitude during the rapid transition between the Class I and Class II phases of evolution. The spectrum of WL 6 does not show any photospheric absorption features, and we estimate that its continuum

  4. Wavelength variation of p-mode intensity fluctuations. [in solar photosphere and low chromosphere

    NASA Technical Reports Server (NTRS)

    Ronan, R. S.; Harvey, J. W.; Duvall, T. L, Jr.

    1991-01-01

    The oscillatory signal in the solar p-mode band has been measured as a function of optical wavelength using a grating spectrometer and Fourier transform spectrometer. The relative intensity fluctuations are found to increase with height in the solar photosphere, while the absolute level of intensity fluctuations in the p-mode band is reduced by about 50 percent in the cores and wings of Ca II H and K, H-delta, and H-gamma compared to the neighboring spectral regions. Thus, these spectral regions of diminished absolute p-mode signal could be exploited as signal references by spectrophotometers while attempting to observe nonradial p-mode oscillations in stars from the ground. High spectral and temporal resolution observations of several unblended lines in the red portion of the visible spectrum show an asymmetry in the relative and absolute p-mode intensity oscillations across the line profiles. The peak in intensity oscillations lies in the blue wing of the lines.

  5. Chromospheric and photospheric evolution of an extremely active solar region in solar cycle 19

    NASA Technical Reports Server (NTRS)

    Mckenna-Lawlor, S. M. P.

    1981-01-01

    a comprehensive investigation was made of phenomena attending the disk passage, July 7 to 21, 1959, of active solar center HAO-59Q. At the photospheric level that comprised an aggregate of groups of sunspots of which one group, Mt. Wilson 14284, showed all the attributes deemed typical of solar regions associated with the production of major flares. A special characteristic of 59Q was its capability to eject dark material. Part of this material remained trapped in the strong magnetic fields above group 14284 where it formed a system of interrelated arches, the legs of which passed through components of the bright chromospheric network of the plage and were rooted in various underlying umbrae. Two apparently diffeent kinds of flare were identified in 59Q; namely, prominence flares (which comprised brightenings within part of the suspended dark prominence) and plage flares (which comprised brightenings within part of the chromospheric network). Prominence flares were of three varieties described as 'impact', 'stationary' and 'moving' prominence flares. Plage flares were accompanied in 3 percent of cases by Type III bursts. These latter radio events indicate the associated passage through the corona of energetic electrons in the approximate energy range 10 to 100 keV. At least 87.5 percent, and probably all, impulsive brightenings in 59Q began directly above minor spots, many of which satellites to major umbrae. Stationary and moving prominence flares were individually triggered at sites beneath which magnetic changes occurred within intervals which included each flare's flash phase.

  6. Polarity Reversal of the Solar Photospheric Magnetic Field During Activity Cycle 24

    NASA Astrophysics Data System (ADS)

    Sun, Xudong; Hoeksema, Jon Todd; Liu, Yang; Zhao, Junwei

    2014-06-01

    The large-scale solar magnetic field reverses its polarity during the maximum phase of each activity cycle. As observed on the photosphere, active region (AR) magnetic flux migrates poleward in narrow, sheared streams resulted from large-scale flows and diffusion. A small net flux of the trailing sunspot polarity eventually aggregates at high latitudes, manifesting the poloidal field of the next cycle. We characterize this process for the ongoing cycle 24 based on four years' line-of-sight magnetograms from the Helioseismic and Magnetic Imager (HMI). The axial dipole component reversed sign in early 2012, but the poleward flux migration was grossly out of phase in the two hemispheres. As a proxy, the northern polar field (taken as mean above 70 degrees latitude) switched from negative to positive in late 2012, whereas the southern remained positive as of March 2014. Three factors that are in line with the surface flux transport model may have contributed. First, AR emergence started and peaked earlier in the north. Second, several ARs with small or inverse tilt angles (w.r.t. the Joy's law) emerged in the south in late 2010. Third, meridional flow speed inferred from helioseismology varied greatly prior to 2013; slower streams (compared to a three-year mean at the same latitude) appeared earlier in the north. We correlate HMI with the long-running Wilcox Solar Observatory (WSO) dataset, and compare the current cycle with the previous three.

  7. Photospheric Emission in the Joint GBM and Konus Prompt Spectra of GRB 120323A

    NASA Astrophysics Data System (ADS)

    Guiriec, S.; Gehrels, N.; McEnery, J.; Kouveliotou, C.; Hartmann, D. H.

    2017-09-01

    GRB 120323A is a very intense short gamma -ray burst (GRB) detected simultaneously during its prompt γ-ray emission phase with the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope and the Konus experiment on board the Wind satellite. GBM and Konus operate in the keV–MeV regime; however, the GBM range is broader toward both the low and the high parts of the γ-ray spectrum. Analyses of such bright events provide a unique opportunity to check the consistency of the data analysis as well as cross-calibrate the two instruments. We performed time-integrated and coarse time-resolved spectral analysis of GRB 120323A prompt emission. We conclude that the analyses of GBM and Konus data are only consistent when using a double-hump spectral shape for both data sets; in contrast, the single hump of the empirical Band function, traditionally used to fit GRB prompt emission spectra, leads to significant discrepancies between GBM and Konus analysis results. Our two-hump model is a combination of a thermal-like and a non-thermal component. We interpret the first component as a natural manifestation of the jet photospheric emission.

  8. X-ray flares in GRBs: general considerations and photospheric origin

    NASA Astrophysics Data System (ADS)

    Beniamini, Paz; Kumar, Pawan

    2016-03-01

    Observations of X-ray flares from Gamma Ray Bursts imply strong constraints on possible physical models. We provide a general discussion of these. In particular, we show that in order to account for the relatively flat and weak optical flux during the X-ray flares, the size of the emitting region should be ≲3 × 1014cm. The bolometric luminosity of flares also strongly constrain the energy budget, and are inconsistent with late time activity of a central engine powered by the spin-down of a magnetar. We provide a simple toy model according to which flares are produced by an outflow of modest Lorentz factor (a few tens instead of hundreds) that is launched more or less simultaneously with the highly relativistic jet which produced the prompt gamma-ray emission. The `slower moving outflow produces the flare as it reaches its photosphere. If the X-ray flare jets are structured, the existence of such a component may naturally resolve the observational challenges imposed by flares, outlined in this work.

  9. Evidence of Asymmetries in the Aldebaran Photosphere from Multi-Wavelength Lunar Occultations

    NASA Astrophysics Data System (ADS)

    Dyachenko, V.; Richichi, A.; Pandey, A.; Sharma, S.; Tasuya, O.; Balega, Yu.; Beskakotov, A.; Rastegaev, D.

    2017-06-01

    We present the results of three lunar occultations of the K5 giant Aldebaran, observed in late 2015 and early 2016. The 6-m SAO, 1.3-m Devasthal, and 2.4-m TNT telescopes were used to obtain light curves with few ms sampling and at wavelengths ranging from the ultraviolet to the red. These were fitted using uniform -disk (UD) models and then converted to limb-darkened (LD) models using Kurucz's atmospheric models. The resulting diameter values are in good agreement with previous determinations, with an average LD diameter of 20.3 milliseconds of arc. We have also been able to use model-independent methods to reconstruct the star's brightness profile and have found indications that the photospheric brightness profile of Aldebaran may not have been symmetric, a finding already reported by other authors for this and for similar late-type stars. The presence of surface spots on a scale of a few milliarcseconds is a likely explanation of the observed asymmetries.

  10. Photospheric Current Spikes and Their Possible Association with Flares - Results from an HMI Data Driven Model

    NASA Technical Reports Server (NTRS)

    Goodman, Michael; Kwan, Chiman; Ayhan, Bulent; Shang, Eric L.

    2016-01-01

    A data driven, near photospheric magnetohydrodynamic model predicts spikes in the horizontal current density, and associated resistive heating rate per unit volume Q. The spikes appear as increases by orders of magnitude above background values in neutral line regions (NLRs) of active regions (ARs). The largest spikes typically occur a few hours to a few days prior to M or X flares. The spikes correspond to large vertical derivatives of the horizontal magnetic field. The model takes as input the photospheric magnetic field observed by the Helioseismic & Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO) satellite. This 2.5 D field is used to determine an analytic expression for a 3 D magnetic field, from which the current density, vector potential, and electric field are computed in every AR pixel for 14 ARs. The field is not assumed to be force-free. The spurious 6, 12, and 24 hour Doppler periods due to SDO orbital motion are filtered out of the time series of the HMI magnetic field for each pixel using a band pass filter. The subset of spikes analyzed at the pixel level are found to occur on HMI and granulation scales of 1 arcsec and 12 minutes. Spikes are found in ARs with and without M or X flares, and outside as well as inside NLRs, but the largest spikes are localized in the NLRs of ARs with M or X flares. The energy to drive the heating associated with the largest current spikes comes from bulk flow kinetic energy, not the electromagnetic field, and the current density is highly non-force free. The results suggest that, in combination with the model, HMI is revealing strong, convection driven, non-force free heating events on granulation scales, and that it is plausible these events are correlated with subsequent M or X flares. More and longer time series need to be analyzed to determine if such a correlation exists. Above an AR dependent threshold value of Q, the number of events N(Q) with heating rates greater than or equal to Q obeys a scale

  11. DISTANCE DETERMINATION TO 12 TYPE II SUPERNOVAE USING THE EXPANDING PHOTOSPHERE METHOD

    SciTech Connect

    Jones, M. I.; Hamuy, Mario; Lira, P.; Maza, J.; Clocchiatti, A.; Phillips, M.; Morrell, N.; Roth, M.; Suntzeff, N. B.; Matheson, T.; Filippenko, A. V.; Foley, R. J.; Leonard, D. C.

    2009-05-10

    We use early-time photometry and spectroscopy of 12 Type II plateau supernovae (SNe IIP) to derive their distances using the expanding photosphere method (EPM). We perform this study using two sets of Type II supernova (SN II) atmosphere models, three filter subsets ({l_brace}BV{r_brace}, {l_brace}BVI{r_brace}, and {l_brace}VI{r_brace}), and two methods for the host-galaxy extinction, which leads to 12 Hubble diagrams. We find that systematic differences in the atmosphere models lead to {approx}50% differences in the EPM distances and to a value of H {sub 0} between 52 and 101 km s{sup -1}Mpc{sup -1}. Using the {l_brace}VI{r_brace} filter subset we obtain the lowest dispersion in the Hubble diagram, {sigma}{sub {mu}} = 0.32 mag. We also apply the EPM analysis to the well observed SN IIP 1999em. With the {l_brace}VI{r_brace} filter subset we derive a distance ranging from 9.3 {+-} 0.5 Mpc to 13.9 {+-} 1.4 Mpc depending on the atmosphere model employed.

  12. The vorticity of Solar photospheric flows on the scale of granulation

    NASA Astrophysics Data System (ADS)

    Pevtsov, A. A.

    2016-12-01

    We employ time sequences of images observed with a G-band filter (λ4305Å) by the Solar Optical Telescope (SOT) on board of Hinode spacecraft at different latitude along solar central meridian to study vorticity of granular flows in quiet Sun areas during deep minimum of solar activity. Using a feature correlation tracking (FCT) technique, we calculate the vorticity of granular-scale flows. Assuming the known pattern of vertical flows (upward in granules and downward in intergranular lanes), we infer the sign of kinetic helicity of these flows. We show that the kinetic helicity of granular flows and intergranular vortices exhibits a weak hemispheric preference, which is in agreement with the action of the Coriolis force. This slight hemispheric sign asymmetry, however, is not statistically significant given large scatter in the average vorticity. The sign of the current helicity density of network magnetic fields computed using full disk vector magnetograms from the Synoptic Optical Long-term Investigations of the Sun (SOLIS) does not show any hemispheric preference. The combination of these two findings suggests that the photospheric dynamo operating on the scale of granular flows is non-helical in nature.

  13. Evidence of asymmetries in the Aldebaran photosphere from multiwavelength lunar occultations

    NASA Astrophysics Data System (ADS)

    Richichi, A.; Dyachenko, V.; Pandey, A. K.; Sharma, S.; Tasuya, O.; Balega, Y.; Beskakotov, A.; Rastegaev, D.; Dhillon, V. S.

    2017-01-01

    We have recorded three lunar occultations of Aldebaran (α Tau) at different telescopes and using various band-passes, from the ultraviolet to the far red. The data have been analysed using both model-dependent and model-independent methods. The derived uniform-disc angular diameter values have been converted to limb-darkened values using model atmosphere relations and are found in broad agreement among themselves and with previous literature values. The limb-darkened diameter is about 20.3 mas on average. However, we have found indications that the photospheric brightness profile of Aldebaran may have not been symmetric, a finding already reported by other authors for this and for similar late-type stars. At the sampling scale of our brightness profile, between 1 and 2 mas, the uniform and limb-darkened disc models may not be a good description for Aldebaran. The asymmetries appear to differ with wavelength and over the 137-d time span of our measurements. Surface spots appear as a likely explanation for the differences between observations and the models.

  14. Markov Properties of the Magnetic Field in the Quiet Solar Photosphere

    NASA Astrophysics Data System (ADS)

    Gorobets, A. Y.; Borrero, J. M.; Berdyugina, S.

    2016-07-01

    The observed magnetic field on the solar surface is characterized by a very complex spatial and temporal behavior. Although feature-tracking algorithms have allowed us to deepen our understanding of this behavior, subjectivity plays an important role in the identification and tracking of such features. In this paper, we study the temporal stochasticity of the magnetic field on the solar surface without relying on either the concept of magnetic feature or on the subjective assumptions about their identification and interaction. The analysis is applied to observations of the magnetic field of the quiet solar photosphere carried out with the Imaging Magnetograph eXperiment (IMaX) instrument on board the stratospheric balloon, Sunrise. We show that the joint probability distribution functions of the longitudinal ({B}\\parallel ) and transverse ({B}\\perp ) components of the magnetic field, as well as of the magnetic pressure ({B}2={B}\\perp 2+{B}\\parallel 2), verify the necessary and sufficient condition for the Markov chains. Therefore, we establish that the magnetic field as seen by IMaX with a resolution of 0.″15-0.″18 and 33 s cadence, which can be considered as a memoryless temporal fluctuating quantity.

  15. Dynamics of the photosphere along the solar cycle from SDO/HMI

    NASA Astrophysics Data System (ADS)

    Roudier, Th.; Malherbe, J. M.; Mirouh, G. M.

    2017-02-01

    Context. As the global magnetic field of the Sun has an activity cycle, one expects to observe some variation of the dynamical properties of the flows visible in the photosphere. Aims: We investigate the flow field during the solar cycle by analysing SDO/HMI observations of continuum intensity, Doppler velocity and longitudinal magnetic field. Methods: We first picked data at disk center during 6 yr along the solar cycle with a 48-h time step in order to study the overall evolution of the continuum intensity and magnetic field. Then we focused on thirty 6-h sequences of quiet regions without any remnant of magnetic activity separated by 6 months, in summer and winter, when disk center latitude B0 is close to zero. The horizontal velocity was derived from the local correlation tracking technique over a field of view of 216.4 Mm × 216.4 Mm located at disk center. Results: Our measurements at disk center show the stability of the flow properties between meso- and supergranular scales along the solar cycle. Conclusions: The network magnetic field, produced locally at disk center independently from large scale dynamo, together with continuum contrast, vertical and horizontal flows, seem to remain constant during the solar cycle.

  16. Photospheric Velocity Structures during the Emergence of Small Active Regions on the Sun

    NASA Astrophysics Data System (ADS)

    Khlystova, Anna; Toriumi, Shin

    2017-04-01

    We study the plasma flows in the solar photosphere during the emergence of two small active regions, NOAA 9021 and 10768. Using Solar and Heliospheric Observatory/Michelson Doppler Imager data, we find that the strong plasma upflows appear at the initial stage of active region formation, with maximum upflow velocities of -1650 and -1320 m s-1. The structures with enhanced upflows have size ˜8 Mm in diameter, and they exist for 1-2 hr. The parameters of the enhanced upflows are consistent with those of the large active region NOAA 10488, which may suggest the possibility that the elementary emerging magnetic loops that appear at the earliest phase of active region formation have similar properties, irrespective of scales of active regions. Comparison between the observations and a numerical simulation of magnetic flux emergence shows a striking consistency. We find that the driving force of the plasma upflow is at first the gas pressure gradient and later the magnetic pressure gradient.

  17. Using Beta Cen to Probe the Photosphere-Wind Connection to B Stars

    NASA Technical Reports Server (NTRS)

    MacFarlane, Joseph J.

    2005-01-01

    The goal of the project was to probe the connection between the photospheric pulsations and the X-ray production in the stellar winds of B stars. The B1 III star Beta Centauri is a Beta Cephei variable with a high X-ray count rate, and was observed by XMM. Analysis of XMM X-ray spectra showed characteristic plasma temperatures of 0.1, 0.2 and 0.6 keV. Analysis of He-like forbidden-to-intercombination lines was performed to determine the dominant locations of the X-ray emission. At Prism, work focused on developing and upgrading spectral models to calculate forbidden-to-intercombination line ratios using more detailed atomic models than the simple models typically used in the analysis of X-ray spectral lines, thereby allowing us to assess the effects of a broader variety of populating and depopulating channels for energy levels contributing to the observed X-ray line emission. Based on Ne IX lines, the source location was determined to be no farther than 4 stellar radii. Examination of the time variability of the XMM data for Beta Cen showed no significant correlation with the known optical pulsation period for the star, and also did not find any significant periods of variation at X-ray wavelengths.

  18. Large-scale horizontal flows in the solar photosphere. III. Effects on filament destabilization

    NASA Astrophysics Data System (ADS)

    Roudier, T.; Švanda, M.; Meunier, N.; Keil, S.; Rieutord, M.; Malherbe, J. M.; Rondi, S.; Molodij, G.; Bommier, V.; Schmieder, B.

    2008-03-01

    Aims:We study the influence of large-scale photospheric motions on the destabilization of an eruptive filament, observed on October 6, 7, and 8, 2004, as part of an international observing campaign (JOP 178). Methods: Large-scale horizontal flows were investigated from a series of MDI full-disc Dopplergrams and magnetograms. From the Dopplergrams, we tracked supergranular flow patterns using the local correlation tracking (LCT) technique. We used both LCT and manual tracking of isolated magnetic elements to obtain horizontal velocities from magnetograms. Results: We find that the measured flow fields obtained by the different methods are well-correlated on large scales. The topology of the flow field changed significantly during the filament eruptive phase, suggesting a possible coupling between the surface flow field and the coronal magnetic field. We measured an increase in the shear below the point where the eruption starts and a decrease in shear after the eruption. We find a pattern in the large-scale horizontal flows at the solar surface that interact with differential rotation. Conclusions: We conclude that there is probably a link between changes in surface flow and the disappearance of the eruptive filament.

  19. Phase-locked photospheric and stellar-wind variations of θ^1^Orionis C.

    NASA Astrophysics Data System (ADS)

    Stahl, O.; Kaufer, A.; Rivinius, T.; Szeifert, T.; Wolf, B.; Gaeng, T.; Gummersbach, C. A.; Jankovics, I.; Kovacs, J.; Mandel, H.; Pakull, M. W.; Peitz, J.

    1996-08-01

    We have obtained a long series of optical spectra and new IUE spectra of θ^1^Ori C, the brightest star in the Orion Trapezium and the main source of ionization of the Orion nebula (M 42). With these data, we have improved the accuracy of the period of the optical emission-line variations and the UV stellar-wind absorption-line variations. We find a period of 15.422 +/- 0.002 days. The high accuracy of the period makes it possible to phase correctly our new data and archival IUE data obtained more than fifteen years ago. The stellar wind absorption is weakest when the emission lines have maximum strength. In addition, we have detected periodic variations in the strength of photospheric spectral lines. Lines from HeI, HeII, C IV and OIII all vary in phase. The absorption of these lines is strongest when the emission is at its maximum. These variations appear to be due to a rotating surface feature which spatially coincides with the emission region.

  20. The pseudo-photosphere model for the continuum emission of gaseous discs

    NASA Astrophysics Data System (ADS)

    Vieira, R. G.; Carciofi, A. C.; Bjorkman, J. E.

    2015-12-01

    We investigate the continuum emission of viscous decretion discs around Be stars in this paper. The results obtained from non-LTE (local thermodynamic equilibrium) radiative transfer models show two regimes in the disc surface brightness profile: an inner optically thick region, which behaves as a pseudo-photosphere with a wavelength-dependent size, and an optically thin tenuous outer part, which contributes with about a third of the total flux. The isophotal shape of the surface brightness is well described by elliptical contours with an axial ratio b/a = cos i for inclinations i < 75°. Based on these properties, a semi-analytical model was developed to describe the continuum emission of gaseous discs. It provides fluxes and spectral slopes at the infrared within an accuracy of 10 and 5 per cent, respectively, when compared to the numerical results. The model indicates that the infrared spectral slope is mainly determined by both the density radial slope and the disc flaring exponent, being practically independent of disc inclination and base density. As a first application, the density structure of 15 Be stars was investigated, based on the infrared flux excess, and the results compared to previous determinations in the literature. Our results indicate that the decretion rates are in the range of 10-12-10-9 M⊙ yr-1, which is at least two orders of magnitude smaller than the previous outflowing disc model predictions.

  1. Probing pulsation physics by resolving dynamical structure in the photosphere of V652 Herculis

    NASA Astrophysics Data System (ADS)

    Jeffery, Simon

    2015-08-01

    The extrem helium star V652 Herculis is pulsating in a fundamental radial model with a period of 0.1 d. Amongst many other unique properties, the radial motion of the surface can be cleanly divided into an intense acceleration phase followed by a near ballistic phase. The major question was whether the accelaration phase is shocked. In addition, the transparency of the hydrogen-deficient atmosphere means that layers of the atmosphere are observed which are deeper than is normal in hydrogen-rich stars. New observations have been able to resolve the vertical motion of the photosphere as a function of optical depth, and hence have mapped the outward passage of minimum radius. New hydrodynamic models for the pulsation are being developed, and these are coupled to a formal radiative transfer solution in order to model the dynamical spectrum directly. We will present the latest models for the pulsations in V652 Her, compare these with our Subaru high-resolution observations, and endeavour to extract new information about the overall and internal properties of V652 Her - the born-again rocket star.

  2. The cyclical variation of energy flux and photospheric magnetic field strength from coronal holes

    NASA Technical Reports Server (NTRS)

    Webb, D. F.; Davis, J. M.

    1985-01-01

    The average soft X-ray emission from coronal holes observed on images obtained during rocket flights from 1974 to 1981 is measured. The variation of this emission over the solar cycle was then compared with photospheric magnetic flux measurements within coronal holes over the same period. It was found that coronal hole soft X-ray emission could be detected and that this emission appeared to increase with the rise of the sunspot cycle from activity minimum to maximum. These quantitative results confirmed previous suggestions that the coronal brightness contrast between holes and large-scale structure decreased during this period of the cycle. Gas pressures at the hole base were estimated for assumed temperatures and found to vary from about 0.03 dyne/sq cm in 1974 to 0.35 dyne/sq cm in 1981. The increase in coronal hole X-ray emission was accompanied by a similar trend in the surface magnetic flux of near-equatorial holes between 1975 and 1980 (Harvey et al., 1982).

  3. FIRST SIMULTANEOUS DETECTION OF MOVING MAGNETIC FEATURES IN PHOTOSPHERIC INTENSITY AND MAGNETIC FIELD DATA

    SciTech Connect

    Lim, Eun-Kyung; Yurchyshyn, Vasyl; Goode, Philip

    2012-07-01

    The formation and the temporal evolution of a bipolar moving magnetic feature (MMF) was studied with high-spatial and temporal resolution. The photometric properties were observed with the New Solar Telescope at Big Bear Solar Observatory using a broadband TiO filter (705.7 nm), while the magnetic field was analyzed using the spectropolarimetric data obtained by Hinode. For the first time, we observed a bipolar MMF simultaneously in intensity images and magnetic field data, and studied the details of its structure. The vector magnetic field and the Doppler velocity of the MMF were also studied. A bipolar MMF with its positive polarity closer to the negative penumbra formed, accompanied by a bright, filamentary structure in the TiO data connecting the MMF and a dark penumbral filament. A fast downflow ({<=}2 km s{sup -1}) was detected at the positive polarity. The vector magnetic field obtained from the full Stokes inversion revealed that a bipolar MMF has a U-shaped magnetic field configuration. Our observations provide a clear intensity counterpart of the observed MMF in the photosphere, and strong evidence of the connection between the MMF and the penumbral filament as a serpentine field.

  4. MAGNETIC NONPOTENTIALITY IN PHOTOSPHERIC ACTIVE REGIONS AS A PREDICTOR OF SOLAR FLARES

    SciTech Connect

    Yang Xiao; Lin Ganghua; Zhang Hongqi; Mao Xinjie

    2013-09-10

    Based on several magnetic nonpotentiality parameters obtained from the vector photospheric active region magnetograms obtained with the Solar Magnetic Field Telescope at the Huairou Solar Observing Station over two solar cycles, a machine learning model has been constructed to predict the occurrence of flares in the corresponding active region within a certain time window. The Support Vector Classifier, a widely used general classifier, is applied to build and test the prediction models. Several classical verification measures are adopted to assess the quality of the predictions. We investigate different flare levels within various time windows, and thus it is possible to estimate the rough classes and erupting times of flares for particular active regions. Several combinations of predictors have been tested in the experiments. The True Skill Statistics are higher than 0.36 in 97% of cases and the Heidke Skill Scores range from 0.23 to 0.48. The predictors derived from longitudinal magnetic fields do perform well, however, they are less sensitive in predicting large flares. Employing the nonpotentiality predictors from vector fields improves the performance of predicting large flares of magnitude {>=}M5.0 and {>=}X1.0.

  5. Dynamic Power Spectral Analysis of Solar Measurements from Photospheric, Chromospheric, and Coronal Sources

    NASA Technical Reports Server (NTRS)

    Bouwer, S. D.; Pap, J.; Donnelly, R. F.

    1990-01-01

    An important aspect in the power spectral analysis of solar variability is the quasistationary and quasiperiodic nature of solar periodicities. In other words, the frequency, phase, and amplitude of solar periodicities vary on time scales ranging from active region lifetimes to solar cycle time scales. Here, researchers employ a dynamic, or running, power spectral density analysis to determine many periodicities and their time-varying nature in the projected area of active sunspot groups (S sub act). The Solar Maximum Mission/Active Cavity Radiometer Irradiance Monitor (SMM/ACRIM) total solar irradiance (S), the Nimbus-7 MgII center-to-wing ratio (R (MgII sub c/w)), the Ottawa 10.7 cm flux (F sub 10.7), and the GOES background x ray flux (X sub b) for the maximum, descending, and minimum portions of solar cycle 21 (i.e., 1980 to 1986) are used. The technique dramatically illustrates several previously unrecognized periodicities. For example, a relatively stable period at about 51 days has been found in those indices which are related to emerging magnetic fields. The majority of solar periodicities, particularly around 27, 150 and 300 days, are quasiperiodic because they vary in amplitude and frequency throughout the solar cycle. Finally, it is shown that there are clear differences between the power spectral densities of solar measurements from photospheric, chromospheric, and coronal sources.

  6. Time-dependent ionization in the envelopes of type II supernovae at the photospheric phase.

    NASA Astrophysics Data System (ADS)

    Potashov, M. Sh.; Blinnikov, S. I.; Utrobin, V. P.

    2017-01-01

    The importance of allowance for the time-dependent effect in the kinetics at the photospheric phase during a supernova explosion has been confirmed by several independent research groups. The time-dependent effect provides a higher degree of hydrogen ionization in comparison with the steady state solutions and strengthens the Hα line in the resulting simulated spectrum, with the intensity of the effect increasing with time. However, some researchers argue that the time-dependent ionization effect is unimportant. Its allowance leads to an insignificant strengthening of Hα in their modeling only in the first days after explosion. We have demonstrated the importance of the time-dependent effect with the models of SN 1999em as an example using the new original LEVELS software package. The role of a number of factors that can weaken the time-dependent effect has been checked. We have confirmed that the intensity of the effect is affected by the abundance of metal admixtures in the envelope, while the addition of extra levels to the model hydrogen atom weakens the time-dependent effect to a lesser degree and never removes it completely.

  7. On Photospheric Fluorescence and the Nature of the 17.62 Angstrom Feature in Solar X-ray Spectra

    NASA Technical Reports Server (NTRS)

    Drake, Jeremy J.; Swartz, Douglas A.; Beiersdorfer, Peter; Brown, Greg; Kahn, S.

    1999-01-01

    The identification of the emission line feature at 17.62 Angstroms in solar x-ray spectra is re-examined. Using a Monte Carlo technique, we compute a realistic theoretical upper limit to the observed Fe L-alpha photospheric fluorescent line strength caused by irradiation from an overlying corona. These calculations demonstrate that the photospheric Fe L-alpha characteristic line is much too weak to account for the observed 17.62 Angstrom line flux. Instead, we identify this line with the configuration interaction 2s2p3p2P-2s2p6 2S transition in Fe XVIII seen in Electron Beam Ion Trap spectra and predicted in earlier theoretical work on the Fe XVIII x-ray spectrum.

  8. Prompt high-energy neutrinos from gamma-ray bursts in photospheric and synchrotron self-Compton scenarios

    SciTech Connect

    Murase, Kohta

    2008-11-15

    We investigate neutrino emission from gamma-ray bursts (GRBs) under alternative scenarios for prompt emission (the photospheric and synchrotron self-Compton scenarios) rather than the classical optically thin synchrotron scenario. In the former scenario, we find that neutrinos from the pp reaction can be very important at energies < or approx. (10-100) TeV. They may be detected by IceCube/KM3Net and useful as a probe of baryon acceleration around/below the photosphere. In the latter scenario, we may expect {approx}EeV p{gamma} neutrinos produced by soft photons. Predicted spectra are different from that in the classical scenario, and neutrinos would be useful as one of the clues to the nature of GRBs (the jet composition, emission radius, magnetic field, and so on)

  9. Nonlinear Torsional and Compressional Waves in a Magnetic Flux Tube with Electric Current near the Quiet Solar Photospheric Network

    NASA Astrophysics Data System (ADS)

    Sakai, J. I.; Minamizuka, R.; Kawata, T.; Cramer, N. F.

    2001-04-01

    Recent high-resolution observations from photospheric magnetograms made with the SOHO/Michelson Doppler Imager instrument and the Swedish Vacuum Solar Telescope on La Palma showed that magnetic flux tubes in the quiet photospheric network of the solar photosphere are highly dynamic objects with small-scale substructures. We investigate nonlinear waves propagating along a magnetic flux tube in weakly ionized plasmas with high plasma beta (β~=1) by using three-dimensional neutral MHD equations. Recently Sakai et al. investigated nonlinear wave propagation along a magnetic flux tube with a weak current for the two cases of uniform density along the flux tube and density inhomogeneity due to solar gravity. They showed that shear Alfvén waves are excited by localized, predominantly rotational perturbations and that excited waves with a strong upflow of wave energy can propagate only upward along the flux tube when density inhomogeneity due to gravity is taken into account. In this paper we extend this work by investigating nonlinear torsional and compressional waves in a magnetic flux tube with a strong electric current, i.e., a twisted magnetic field, near the quiet solar photospheric network. If gravity is neglected, the torsional waves are found to propagate in a direction such as to decrease the twist of the magnetic field, while the compressional waves propagate symmetrically. We have found that solar gravity results in the important effect that wave energies excited by both torsional and compressional disturbances can be transferred upward in both untwisted and highly twisted flux tubes and eventually contribute to coronal heating.

  10. Interpretation of the veiling of the photospheric spectrum for T Tauri stars in terms of an accretion model

    NASA Astrophysics Data System (ADS)

    Dodin, A. V.; Lamzin, S. A.

    2012-10-01

    The problem on heating the atmospheres of T Tauri stars by radiation from an accretion shock has been solved. The structure and radiation spectrum of the emerging so-called hot spot have been calculated in the LTE approximation. The emission not only in continuum but also in lines has been taken into account for the first time when calculating the spot spectrum. Comparison with observations has shown that the strongest of these lines manifest themselves as narrow components of helium and metal emission lines, while the weaker ones decrease significantly the depth of photospheric absorption lines, although until now, this effect has been thought to be due to the emission continuum alone. The veiling by lines changes the depth of different photospheric lines to a very different degree even within a narrow spectral range. Therefore, the nonmonotonic wavelength dependence of the degree of veiling r found for some CTTS does not suggest a nontrivial spectral energy distribution of the veiling continuum. In general, it makes sense to specify the degree of veiling r only by providing the set of photospheric lines from which this quantity was determined. We show that taking into account the contribution of lines to the veiling of the photospheric spectrum can cause the existing estimates of the accretion rate onto T Tauri stars to decrease by several times, with this being also true for stars with a comparatively weakly veiled spectrum. Neglecting the contribution of lines to the veiling can also lead to appreciable errors in determining the effective temperature, interstellar extinction, radial velocity, and v sin i.

  11. Abrupt Changes of the Photospheric Magnetic Field in Active Regions and the Impulsive Phase of Solar Flares (Preprint)

    DTIC Science & Technology

    2012-08-09

    PHASE OF SOLAR FLARES (PREPRINT) E. W. Cliver, et al. 9 August 2012 Interim Report APPROVED FOR PUBLIC...the Impulsive Phase of Solar Flares (Preprint) 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) 5d. PROJECT NUMBER...public release; distribution is unlimited. Abrupt Changes of the Photospheric Magnetic Field in Active Regions and the Impulsive Phase of Solar

  12. Understanding Solar Eruptions with SDO/HMI Measuring Photospheric Flows, Testing Models, and Steps Towards Forecasting Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Schuck, Peter W.; Linton, M.; Muglach, K.; Hoeksema, T.

    2010-01-01

    The Solar Dynamics Observatory (SDO) is carrying the first full-disk imaging vector magnetograph, the Helioseismic and Magnetic Imager (HMI), into an inclined geosynchronous orbit. This magnetograph will provide nearly continuous measurements of photospheric vector magnetic fields at cadences of 90 seconds to 12 minutes with 1" resolution, precise pointing, and unfettered by atmospheric seeing. The enormous data stream of 1.5 Terabytes per day from SAO will provide an unprecedented opportunity to understand the mysteries of solar eruptions. These ground-breaking observations will permit the application of a new technique, the differential affine velocity estimator for vector magnetograms (DAVE4VM), to measure photospheric plasma flows in active regions. These measurements will permit, for the first time, accurate assessments of the coronal free energy available for driving CMEs and flares. The details of photospheric plasma flows, particularly along magnetic neutral-lines, are critical to testing models for initiating coronal mass ejections (CMEs) and flares. Assimilating flows and fields into state-of-the art 3D MHD simulations that model the highly stratified solar atmosphere from the convection zone to the corona represents the next step towards achieving NASA's Living with a Star forecasting goals of predicting "when a solar eruption leading to a CME will occur." Our presentation will describe these major science and predictive advances that will be delivered by SDO/HMI.

  13. SUDDEN PHOTOSPHERIC MOTION AND SUNSPOT ROTATION ASSOCIATED WITH THE X2.2 FLARE ON 2011 FEBRUARY 15

    SciTech Connect

    Wang, Shuo; Liu, Chang; Deng, Na; Wang, Haimin

    2014-02-20

    The Helioseismic and Magnetic Imager provides 45 s cadence intensity images and 720 s cadence vector magnetograms. These unprecedented high-cadence and high-resolution data give us a unique opportunity to study the change of photospheric flows and sunspot rotations associated with flares. By using the differential affine velocity estimator method and the Fourier local correlation tracking method separately, we calculate velocity and vorticity of photospheric flows in the flaring NOAA AR 11158, and investigate their temporal evolution around the X2.2 flare on 2011 February 15. It is found that the shear flow around the flaring magnetic polarity inversion line exhibits a sudden decrease, and both of the two main sunspots undergo a sudden change in rotational motion during the impulsive phase of the flare. These results are discussed in the context of the Lorentz-force change that was proposed by Hudson et al. and Fisher et al. This mechanism can explain the connections between the rapid and irreversible photospheric vector magnetic field change and the observed short-term motions associated with the flare. In particular, the torque provided by the horizontal Lorentz force change agrees with what is required for the measured angular acceleration.

  14. Abrupt Changes of the Photospheric Magnetic Field in Active Regions and the Impulsive Phase of Solar Flares

    NASA Astrophysics Data System (ADS)

    Cliver, E. W.; Petrie, G. J. D.; Ling, A. G.

    2012-09-01

    We compared time profiles of changes of the unsigned photospheric magnetic flux in active regions with those of their associated soft X-ray (SXR) bursts for a sample of 75 >= M5 flares well observed by Global Oscillation Network Group longitudinal magnetographs. Sixty-six of these events had stepwise changes in the spatially integrated unsigned flux during the SXR flares. In superposed epoch plots for these 66 events, there is a sharp increase in the unsigned magnetic flux coincident with the onset of the flare impulsive phase while the end of the stepwise change corresponds to the time of peak SXR emission. We substantiated this result with a histogram-based comparison of the timing of flux steps (onset, midpoint of step, and end) for representative points in the flaring regions with their associated SXR event time markers (flare onset, onset of impulsive phase, time of peak logarithmic derivative, maximum). On an individual event basis, the principal part of the stepwise magnetic flux change occurred during the main rise phase of the SXR burst (impulsive phase onset to SXR peak) for ~60% of the 66 cases. We find a close timing agreement between magnetic flux steps and >100 keV emission for the three largest hard X-ray (>100 keV) bursts in our sample. These results identify the abrupt changes in photospheric magnetic fields as an impulsive phase phenomenon and indicate that the coronal magnetic field changes that drive flares are rapidly transmitted to the photosphere.

  15. ABRUPT CHANGES OF THE PHOTOSPHERIC MAGNETIC FIELD IN ACTIVE REGIONS AND THE IMPULSIVE PHASE OF SOLAR FLARES

    SciTech Connect

    Cliver, E. W.; Petrie, G. J. D.; Ling, A. G.

    2012-09-10

    We compared time profiles of changes of the unsigned photospheric magnetic flux in active regions with those of their associated soft X-ray (SXR) bursts for a sample of 75 {>=} M5 flares well observed by Global Oscillation Network Group longitudinal magnetographs. Sixty-six of these events had stepwise changes in the spatially integrated unsigned flux during the SXR flares. In superposed epoch plots for these 66 events, there is a sharp increase in the unsigned magnetic flux coincident with the onset of the flare impulsive phase while the end of the stepwise change corresponds to the time of peak SXR emission. We substantiated this result with a histogram-based comparison of the timing of flux steps (onset, midpoint of step, and end) for representative points in the flaring regions with their associated SXR event time markers (flare onset, onset of impulsive phase, time of peak logarithmic derivative, maximum). On an individual event basis, the principal part of the stepwise magnetic flux change occurred during the main rise phase of the SXR burst (impulsive phase onset to SXR peak) for {approx}60% of the 66 cases. We find a close timing agreement between magnetic flux steps and >100 keV emission for the three largest hard X-ray (>100 keV) bursts in our sample. These results identify the abrupt changes in photospheric magnetic fields as an impulsive phase phenomenon and indicate that the coronal magnetic field changes that drive flares are rapidly transmitted to the photosphere.

  16. Understanding Solar Eruptions with SDO/HMI Measuring Photospheric Flows, Testing Models, and Steps Towards Forecasting Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Schuck, Peter W.; Linton, Mark; Muglach, Karin; Welsch, Brian; Hageman, Jacob

    2010-01-01

    The imminent launch of Solar Dynamics Observatory (SDO) will carry the first full-disk imaging vector magnetograph, the Helioseismic and Magnetic Imager (HMI), into an inclined geosynchronous orbit. This magnetograph will provide nearly continuous measurements of photospheric vector magnetic fields at cadences of 90 seconds to 12 minutes with I" resolution, precise pointing, and unfettered by atmospheric seeing. The enormous data stream of 1.5 Terabytes per day from SDO will provide an unprecedented opportunity to understand the mysteries of solar eruptions. These ground-breaking observations will permit the application of a new technique, the differential affine velocity estimator for vector magnetograms (DAVE4VM), to measure photospheric plasma flows in active regions. These measurements will permit, for the first time, accurate assessments of the coronal free energy available for driving CMEs and flares. The details of photospheric plasma flows, particularly along magnetic neutral-lines, are critical to testing models for initiating coronal mass ejections (CMEs) and flares. Assimilating flows and fields into state-of-the art 3D MHD simulations that model the highly stratified solar atmosphere from the convection zone to the corona represents the next step towards achieving NASA's Living with a Star forecasting goals of predicting "when a solar eruption leading to a CME will occur." This talk will describe these major science and predictive advances that will be delivered by SDO /HMI.

  17. PHOTOSPHERIC FLOW FIELD RELATED TO THE EVOLUTION OF THE SUN'S POLAR MAGNETIC PATCHES OBSERVED BY HINODE SOLAR OPTICAL TELESCOPE

    SciTech Connect

    Kaithakkal, Anjali John; Suematsu, Y.; Kubo, M.; Iida, Y.; Tsuneta, S.; Shiota, D.

    2015-02-01

    We investigated the role of photospheric plasma motions in the formation and evolution of polar magnetic patches using time-sequence observations with high spatial resolution. The observations were obtained with the spectropolarimeter on board the Hinode satellite. From the statistical analysis using 75 magnetic patches, we found that they are surrounded by strong converging, supergranulation associated flows during their apparent lifetime and that the converging flow around the patch boundary is better observed in the Doppler velocity profile in the deeper photosphere. Based on our analysis, we suggest that the like-polarity magnetic fragments in the polar region are advected and clustered by photospheric converging flows, thereby resulting in the formation of polar magnetic patches. Our observations show that, in addition to direct cancellation, magnetic patches decay by fragmentation followed by unipolar disappearance or unipolar disappearance without fragmentation. It is possible that the magnetic patches of existing polarity fragment or diffuse away into smaller elements and eventually cancel out with opposite polarity fragments that reach the polar region around the solar cycle maximum. This could be one of the possible mechanisms by which the existing polarity decays during the reversal of the polar magnetic field.

  18. Supergranulation and multiscale flows in the solar photosphere. Global observations vs. a theory of anisotropic turbulent convection

    NASA Astrophysics Data System (ADS)

    Rincon, F.; Roudier, T.; Schekochihin, A. A.; Rieutord, M.

    2017-03-01

    The Sun provides us with the only spatially well-resolved astrophysical example of turbulent thermal convection. While various aspects of solar photospheric turbulence, such as granulation (one-Megameter horizontal scale), are well understood, the questions of the physical origin and dynamical organization of larger-scale flows, such as the 30-Megameters supergranulation and flows deep in the solar convection zone, remain largely open in spite of their importance for solar dynamics and magnetism. Here, we present a new critical global observational characterization of multiscale photospheric flows and subsequently formulate an anisotropic extension of the Bolgiano-Obukhov theory of hydrodynamic stratified turbulence that may explain several of their distinctive dynamical properties. Our combined analysis suggests that photospheric flows in the horizontal range of scales between supergranulation and granulation have a typical vertical correlation scale of 2.5 to 4 Megameters and operate in a strongly anisotropic, self-similar, nonlinear, buoyant dynamical regime. While the theory remains speculative at this stage, it lends itself to quantitative comparisons with future high-resolution acoustic tomography of subsurface layers and advanced numerical models. Such a validation exercise may also lead to new insights into the asymptotic dynamical regimes in which other, unresolved turbulent anisotropic astrophysical fluid systems supporting waves or instabilities operate.

  19. Height-dependent Velocity Structure of Photospheric Convection in Granules and Intergranular Lanes with Hinode/SOT

    NASA Astrophysics Data System (ADS)

    Oba, T.; Iida, Y.; Shimizu, T.

    2017-02-01

    The solar photosphere is the visible surface of the Sun, where many bright granules, surrounded by narrow dark intergranular lanes, are observed everywhere. The granular pattern is a manifestation of convective motion at the photospheric level, but its velocity structure in the height direction is poorly understood observationally. Applying bisector analysis to a photospheric spectral line recorded by the Hinode Solar Optical Telescope, we derived the velocity structure of the convective motion in granular regions and intergranular lanes separately. The amplitude of motion of the convective material decreases from 0.65 to 0.40 km s‑1 as the material rises in granules, whereas the amplitude of motion increases from 0.30 to 0.50 km s‑1 as it descends in intergranular lanes. These values are significantly larger than those obtained in previous studies using bisector analysis. The acceleration of descending materials with depth is not predicted from the convectively stable condition in a stratified atmosphere. Such convective instability can be developed more efficiently by radiative cooling and/or a gas pressure gradient, which can control the dynamical behavior of convective material in intergranular lanes. Our analysis demonstrated that bisector analysis is a useful method for investigating the long-term dynamic behavior of convective material when a large number of pixels is available. In addition, one example is the temporal evolution of granular fragmentation, in which downflowing material develops gradually from a higher layer downward.

  20. Relationship between the Occurrence of a Flare and the Small-Scale Variation of Photospheric Magnetic Field in Active Region 12371

    NASA Astrophysics Data System (ADS)

    Kang, Jihye; Magara, Tetsuya; Moon, Yong-Jae

    2017-08-01

    We investigate the flare productivity of a magnetic structure by focusing on the spatial and temporal changes of photospheric magnetic field. The physical process to develop a flare-producing magnetic structure in the corona in response to these photospheric changes is one of the hot topics. We analyzed small-scale photospheric changes of observation data to see how they are related to the occurrence of a flare. It is found that difference of transverse components between potential field and observed photospheric vector field is noticeable in a small-scale emerging region near the main polarity inversion line in AR12371 when it produced an M-class flare. We also investigate a flare-producing coronal magnetic configuration of this active region by using a nonlinear force-free field model.

  1. ON THE FORCE-FREE NATURE OF PHOTOSPHERIC SUNSPOT MAGNETIC FIELDS AS OBSERVED FROM HINODE (SOT/SP)

    SciTech Connect

    Tiwari, Sanjiv Kumar

    2012-01-01

    A magnetic field is force-free if there is no interaction between it and the plasma in the surrounding atmosphere, i.e., electric currents are aligned with the magnetic field, giving rise to zero Lorentz force. The computation of various magnetic parameters, such as magnetic energy (using the virial theorem), gradient of twist of sunspot magnetic fields (computed from the force-free parameter {alpha}), and any kind of extrapolation, heavily hinges on the force-free approximation of the photospheric sunspot magnetic fields. Thus, it is of vital importance to inspect the force-free behavior of sunspot magnetic fields. The force-free nature of sunspot magnetic fields has been examined earlier by some researchers, ending with incoherent results. Accurate photospheric vector field measurements with high spatial resolution are required to inspect the force-free nature of sunspots. For this purpose, we use several vector magnetograms of high spatial resolution obtained from the Solar Optical Telescope/Spectro-Polarimeter on board Hinode. Both the necessary and sufficient conditions for force-free nature are examined by checking the global and local nature of equilibrium magnetic forces over sunspots. We find that sunspot magnetic fields are not very far from the force-free configuration, although they are not completely force-free on the photosphere. The umbral and inner penumbral fields are more force-free than the middle and outer penumbral fields. During their evolution, sunspot magnetic fields are found to maintain their proximity to force-free field behavior. Although a dependence of net Lorentz force components is seen on the evolutionary stages of the sunspots, we do not find a systematic relationship between the nature of sunspot magnetic fields and the associated flare activity. Further, we examine whether the fields at the photosphere follow linear or nonlinear force-free conditions. After examining this in various complex and simple sunspots, we conclude that

  2. Probing deep photospheric layers of the quiet Sun with high magnetic sensitivity

    NASA Astrophysics Data System (ADS)

    Lagg, A.; Solanki, S. K.; Doerr, H.-P.; Martínez González, M. J.; Riethmüller, T.; Collados Vera, M.; Schlichenmaier, R.; Orozco Suárez, D.; Franz, M.; Feller, A.; Kuckein, C.; Schmidt, W.; Asensio Ramos, A.; Pastor Yabar, A.; von der Lühe, O.; Denker, C.; Balthasar, H.; Volkmer, R.; Staude, J.; Hofmann, A.; Strassmeier, K.; Kneer, F.; Waldmann, T.; Borrero, J. M.; Sobotka, M.; Verma, M.; Louis, R. E.; Rezaei, R.; Soltau, D.; Berkefeld, T.; Sigwarth, M.; Schmidt, D.; Kiess, C.; Nicklas, H.

    2016-11-01

    Context. Investigations of the magnetism of the quiet Sun are hindered by extremely weak polarization signals in Fraunhofer spectral lines. Photon noise, straylight, and the systematically different sensitivity of the Zeeman effect to longitudinal and transversal magnetic fields result in controversial results in terms of the strength and angular distribution of the magnetic field vector. Aims: The information content of Stokes measurements close to the diffraction limit of the 1.5 m GREGOR telescope is analyzed. We took the effects of spatial straylight and photon noise into account. Methods: Highly sensitive full Stokes measurements of a quiet-Sun region at disk center in the deep photospheric Fe i lines in the 1.56 μm region were obtained with the infrared spectropolarimeter GRIS at the GREGOR telescope. Noise statistics and Stokes V asymmetries were analyzed and compared to a similar data set of the Hinode spectropolarimeter (SOT/SP). Simple diagnostics based directly on the shape and strength of the profiles were applied to the GRIS data. We made use of the magnetic line ratio technique, which was tested against realistic magneto-hydrodynamic simulations (MURaM). Results: About 80% of the GRIS spectra of a very quiet solar region show polarimetric signals above a 3σ level. Area and amplitude asymmetries agree well with small-scale surface dynamo-magneto hydrodynamic simulations. The magnetic line ratio analysis reveals ubiquitous magnetic regions in the ten to hundred Gauss range with some concentrations of kilo-Gauss fields. Conclusions: The GRIS spectropolarimetric data at a spatial resolution of ≈0.̋4 are so far unique in the combination of high spatial resolution scans and high magnetic field sensitivity. Nevertheless, the unavoidable effect of spatial straylight and the resulting dilution of the weak Stokes profiles means that inversion techniques still bear a high risk of misinterpretating the data.

  3. Evolution and Dynamics of Orphan Penumbrae in the Solar Photosphere: Analysis from Multi-instrument Observations

    NASA Astrophysics Data System (ADS)

    Zuccarello, Francesca; Guglielmino, Salvo L.; Romano, Paolo

    2014-05-01

    We investigate the dynamics and magnetic properties of orphan penumbrae observed in the solar photosphere to understand the formation process of such structures. We observed two orphan penumbrae in active region NOAA 11089 during a coordinated observing campaign carried out in 2010 July, involving the Hinode/Solar Optical Telescope (SOT) and Dutch Open Telescope (DOT), benefiting also from continuous observations acquired by the SDO satellite. We follow their evolution during about three days. The two structures form in different ways: one seems to break off the penumbra of a nearby sunspot, the other is formed through the emergence of new flux. Then they fragment while evolving. The SDO Helioseismic and Magnetic Imager measurements indicate the presence of strong line-of-sight motions in the regions occupied by these orphan penumbrae, lasting for several hours and decreasing with time. This is confirmed by SOT spectro-polarimetric measurements of the Fe I 630.2 nm pair. The latter also show that Stokes parameters exhibit significant asymmetries in the orphan penumbral regions, typical of an uncombed filamentary structure. The orphan penumbrae lie above polarity inversion lines, where peculiar plasma motions take place with velocities larger than ±3 km s-1. The vector magnetic field in these regions is highly inclined, with the average magnetic field strength decreasing with time. The DOT observations in the Hα line and SDO Atmospheric Imaging Assembly measurements in the He II 30.4 nm line indicate that there is no counterpart for the orphan penumbrae at midchromospheric heights or above. Our findings suggest that in at least one of the features investigated the emerging flux may be trapped in the low atmospheric layers by the overlying pre-existing fields, forming these filamentary structures.

  4. SN 2012ec: mass of the progenitor from PESSTO follow-up of the photospheric phase

    NASA Astrophysics Data System (ADS)

    Barbarino, C.; Dall'Ora, M.; Botticella, M. T.; Della Valle, M.; Zampieri, L.; Maund, J. R.; Pumo, M. L.; Jerkstrand, A.; Benetti, S.; Elias-Rosa, N.; Fraser, M.; Gal-Yam, A.; Hamuy, M.; Inserra, C.; Knapic, C.; LaCluyze, A. P.; Molinaro, M.; Ochner, P.; Pastorello, A.; Pignata, G.; Reichart, D. E.; Ries, C.; Riffeser, A.; Schmidt, B.; Schmidt, M.; Smareglia, R.; Smartt, S. J.; Smith, K.; Sollerman, J.; Sullivan, M.; Tomasella, L.; Turatto, M.; Valenti, S.; Yaron, O.; Young, D.

    2015-04-01

    We present the results of a photometric and spectroscopic monitoring campaign of SN 2012ec, which exploded in the spiral galaxy NGC 1084, during the photospheric phase. The photometric light curve exhibits a plateau with luminosity L = 0.9 × 1042 erg s-1 and duration ˜90 d, which is somewhat shorter than standard Type II-P supernovae (SNe). We estimate the nickel mass M(56Ni) = 0.040 ± 0.015 M⊙ from the luminosity at the beginning of the radioactive tail of the light curve. The explosion parameters of SN 2012ec were estimated from the comparison of the bolometric light curve and the observed temperature and velocity evolution of the ejecta with predictions from hydrodynamical models. We derived an envelope mass of 12.6 M⊙, an initial progenitor radius of 1.6 × 1013 cm and an explosion energy of 1.2 foe. These estimates agree with an independent study of the progenitor star identified in pre-explosion images, for which an initial mass of M = 14-22 M⊙ was determined. We have applied the same analysis to two other Type II-P SNe (SNe 2012aw and 2012A), and carried out a comparison with the properties of SN 2012ec derived in this paper. We find a reasonable agreement between the masses of the progenitors obtained from pre-explosion images and masses derived from hydrodynamical models. We estimate the distance to SN 2012ec with the standardized candle method (SCM) and compare it with other estimates based on other primary and secondary indicators. SNe 2012A, 2012aw and 2012ec all follow the standard relations for the SCM for the use of Type II-P SNe as distance indicators.

  5. The expanding photosphere method applied to SN 1992am AT cz = 14 600 km/s

    NASA Technical Reports Server (NTRS)

    Schmidt, Brian P.; Kirshner, Robert P.; Eastman, Ronald G.; Hamuy, Mario; Phillips, Mark M.; Suntzeff, Nicholas B.; Maza, Jose; Filippenko, Alexei V.; Ho, Luis C.; Matheson, Thomas

    1994-01-01

    We present photometry and spectroscopy of Supernova (SN) 1992am for five months following its discovery by the Calan Cerro-Tololo Inter-American Observatory (CTIO) SN search. These data show SN 1992am to be type II-P, displaying hydrogen in its spectrum and the typical shoulder in its light curve. The photometric data and the distance from our own analysis are used to construct the supernova's bolometric light curve. Using the bolometric light curve, we estimate SN 1992am ejected approximately 0.30 solar mass of Ni-56, an amount four times larger than that of other well studied SNe II. SN 1992am's; host galaxy lies at a redshift of cz = 14 600 km s(exp -1), making it one of the most distant SNe II discovered, and an important application of the Expanding Photsphere Method. Since z = 0.05 is large enough for redshift-dependent effects to matter, we develop the technique to derive luminosity distances with the Expanding Photosphere Method at any redshift, and apply this method to SN 1992am. The derived distance, D = 180(sub -25) (sup +30) Mpc, is independent of all other rungs in the extragalactic distance ladder. The redshift of SN 1992am's host galaxy is sufficiently large that uncertainties due to perturbations in the smooth Hubble flow should be smaller than 10%. The Hubble ratio derived from the distance and redshift of this single object is H(sub 0) = 81(sub -15) (sup +17) km s(exp -1) Mpc(exp -1). In the future, with more of these distant objects, we hope to establish an independent and statistically robust estimate of H(sub 0) based solely on type II supernovae.

  6. ELLERMAN BOMBS AT HIGH RESOLUTION. I. MORPHOLOGICAL EVIDENCE FOR PHOTOSPHERIC RECONNECTION

    SciTech Connect

    Watanabe, Hiroko; Kitai, Reizaburo; Vissers, Gregal; Rouppe van der Voort, Luc; Rutten, Robert J.

    2011-07-20

    High-resolution imaging-spectroscopy movies of solar active region NOAA 10998 obtained with the Crisp Imaging Spectropolarimeter at the Swedish 1-m Solar Telescope show very bright, rapidly flickering, flame-like features that appear intermittently in the wings of the Balmer H{alpha} line in a region with moat flows and likely some flux emergence. They show up at regular H{alpha} blue-wing bright points that outline the magnetic network, but flare upward with much larger brightness and distinct 'jet' morphology seen from aside in the limbward view of these movies. We classify these features as Ellerman bombs and present a morphological study of their appearance at the unprecedented spatial, temporal, and spectral resolution of these observations. The bombs appear along the magnetic network with footpoint extents up to 900 km. They show apparent travel away from the spot along the pre-existing network at speeds of about 1 km s{sup -1}. The bombs flare repetitively with much rapid variation at timescales of seconds only, in the form of upward jet-shaped brightness features. These reach heights of 600-1200 km and tend to show blueshifts; some show bi-directional Doppler signature and some seem accompanied with an H{alpha} surge. They are not seen in the core of H{alpha} due to shielding by overlying chromospheric fibrils. The network where they originate has normal properties. The morphology of these jets strongly supports deep-seated photospheric reconnection of emergent or moat-driven magnetic flux with pre-existing strong vertical network fields as the mechanism underlying the Ellerman bomb phenomenon.

  7. Evolution and dynamics of orphan penumbrae in the solar photosphere: Analysis from multi-instrument observations

    SciTech Connect

    Zuccarello, Francesca; Guglielmino, Salvo L.; Romano, Paolo

    2014-05-20

    We investigate the dynamics and magnetic properties of orphan penumbrae observed in the solar photosphere to understand the formation process of such structures. We observed two orphan penumbrae in active region NOAA 11089 during a coordinated observing campaign carried out in 2010 July, involving the Hinode/Solar Optical Telescope (SOT) and Dutch Open Telescope (DOT), benefiting also from continuous observations acquired by the SDO satellite. We follow their evolution during about three days. The two structures form in different ways: one seems to break off the penumbra of a nearby sunspot, the other is formed through the emergence of new flux. Then they fragment while evolving. The SDO Helioseismic and Magnetic Imager measurements indicate the presence of strong line-of-sight motions in the regions occupied by these orphan penumbrae, lasting for several hours and decreasing with time. This is confirmed by SOT spectro-polarimetric measurements of the Fe I 630.2 nm pair. The latter also show that Stokes parameters exhibit significant asymmetries in the orphan penumbral regions, typical of an uncombed filamentary structure. The orphan penumbrae lie above polarity inversion lines, where peculiar plasma motions take place with velocities larger than ±3 km s{sup –1}. The vector magnetic field in these regions is highly inclined, with the average magnetic field strength decreasing with time. The DOT observations in the Hα line and SDO Atmospheric Imaging Assembly measurements in the He II 30.4 nm line indicate that there is no counterpart for the orphan penumbrae at midchromospheric heights or above. Our findings suggest that in at least one of the features investigated the emerging flux may be trapped in the low atmospheric layers by the overlying pre-existing fields, forming these filamentary structures.

  8. What is the Relationship Between the Properties of Photospheric Flows and Flares?

    NASA Astrophysics Data System (ADS)

    Welsch, Brian; Li, Y.; Schuck, P. W.; Fisher, G. H.

    2009-05-01

    We estimated photospheric velocities by separately applying the Fourier Local Correlation Tracking (FLCT) and Differential Affine Velocity Estimator (DAVE) methods to 2708 co-registered pairs of SOHO/MDI magnetograms, with nominal 96-minute cadence, from 46 active regions (ARs) from 1996-1998 over the time interval κ45 when each AR was within 45° of disk center. For each magnetogram pair, we computed the average estimated radial magnetic field, BR and each tracking method produced an independently estimated flow field, u. We then quantitatively characterized these magnetic and flow fields by computing several extrinsic and intrinsic properties of each; extrinsic properties scale with AR size, while intrinsic properties do not depend directly on AR size. Intrinsic flow properties included moments of speeds, horizontal divergences, and radial curls; extrinsic flow properties included included sums of these properties, and a crude proxy for the ideal Poynting flux, ∑ |u| BR2. Several quantities derived from BR were also computed, including: total unsigned flux, Φ a measure of the amount of unsigned flux near strong-field polarity inversion lines (SPILs), R and ∑ BR2. Next, using correlation and discriminant analysis, we investigated the associations between derived properties and average flare flux determined from the GOES flare catalog, when averaged over both κ45 and shorter time windows, of 6 and 24 hours. Our AR sample included both flaring and flare-quiet ARs; the latter did not flare above GOES C1.0 level during κ45. Among magnetic properties, we found R to be most strongly associated with flare flux. Among extrinsic flow properties, the proxy Poynting flux, ∑ |u| BR2, was most strongly associated with flux, at a level comparable to that of R. All intrinsic flow properties studied were more poorly associated with flare flux than these magnetic properties.

  9. HARD X-RAY EMISSION DURING FLARES AND PHOTOSPHERIC FIELD CHANGES

    SciTech Connect

    Burtseva, O.; Petrie, G. J. D.; Pevtsov, A. A.; Martínez-Oliveros, J. C.

    2015-06-20

    We study the correlation between abrupt permanent changes of magnetic field during X-class flares observed by the Global Oscillation Network Group and Helioseismic and Magnetic Imager instruments, and the hard X-ray (HXR) emission observed by RHESSI, to relate the photospheric field changes to the coronal restructuring and investigate the origin of the field changes. We find that spatially the early RHESSI emission corresponds well to locations of the strong field changes. The field changes occur predominantly in the regions of strong magnetic field near the polarity inversion line (PIL). The later RHESSI emission does not correspond to significant field changes as the flare footpoints are moving away from the PIL. Most of the field changes start before or around the start time of the detectable HXR signal, and they end at about the same time or later than the detectable HXR flare emission. Some of the field changes propagate with speed close to that of the HXR footpoint at a later phase of the flare. The propagation of the field changes often takes place after the strongest peak in the HXR signal when the footpoints start moving away from the PIL, i.e., the field changes follow the same trajectory as the HXR footpoint, but at an earlier time. Thus, the field changes and HXR emission are spatio-temporally related but not co-spatial nor simultaneous. We also find that in the strongest X-class flares the amplitudes of the field changes peak a few minutes earlier than the peak of the HXR signal. We briefly discuss this observed time delay in terms of the formation of current sheets during eruptions.

  10. Ellerman Bombs at High Resolution. I. Morphological Evidence for Photospheric Reconnection

    NASA Astrophysics Data System (ADS)

    Watanabe, Hiroko; Vissers, Gregal; Kitai, Reizaburo; Rouppe van der Voort, Luc; Rutten, Robert J.

    2011-07-01

    High-resolution imaging-spectroscopy movies of solar active region NOAA 10998 obtained with the Crisp Imaging Spectropolarimeter at the Swedish 1-m Solar Telescope show very bright, rapidly flickering, flame-like features that appear intermittently in the wings of the Balmer Hα line in a region with moat flows and likely some flux emergence. They show up at regular Hα blue-wing bright points that outline the magnetic network, but flare upward with much larger brightness and distinct "jet" morphology seen from aside in the limbward view of these movies. We classify these features as Ellerman bombs and present a morphological study of their appearance at the unprecedented spatial, temporal, and spectral resolution of these observations. The bombs appear along the magnetic network with footpoint extents up to 900 km. They show apparent travel away from the spot along the pre-existing network at speeds of about 1 km s-1. The bombs flare repetitively with much rapid variation at timescales of seconds only, in the form of upward jet-shaped brightness features. These reach heights of 600-1200 km and tend to show blueshifts; some show bi-directional Doppler signature and some seem accompanied with an Hα surge. They are not seen in the core of Hα due to shielding by overlying chromospheric fibrils. The network where they originate has normal properties. The morphology of these jets strongly supports deep-seated photospheric reconnection of emergent or moat-driven magnetic flux with pre-existing strong vertical network fields as the mechanism underlying the Ellerman bomb phenomenon.

  11. Formation and Initiation of Erupting Flux Rope and Embedded Filament Driven by Photospheric Converging Motion

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaozhou; Xia, Chun; Keppens, Rony; Gan, Weiqun

    2017-06-01

    In this paper, we study how a flux rope (FR) is formed and evolves into the corresponding structure of a coronal mass ejection (CME) numerically driven by photospheric converging motion. A two-and-a-half-dimensional magnetohydrodynamics simulation is conducted in a chromosphere-transition-corona setup. The initial arcade-like linear force-free magnetic field is driven by an imposed slow motion converging toward the magnetic inversion line at the bottom boundary. The convergence brings opposite-polarity magnetic flux to the polarity inversion, giving rise to the formation of an FR by magnetic reconnection and eventually to the eruption of a CME. During the FR formation, an embedded prominence gets formed by the levitation of chromospheric material. We confirm that the converging flow is a potential mechanism for the formation of FRs and a possible triggering mechanism for CMEs. We investigate the thermal, dynamical, and magnetic properties of the FR and its embedded prominence by tracking their thermal evolution, analyzing their force balance, and measuring their kinematic quantities. The phase transition from the initiation phase to the acceleration phase of the kinematic evolution of the FR was observed in our simulation. The FR undergoes a series of quasi-static equilibrium states in the initiation phase; while in the acceleration phase the FR is driven by Lorentz force and the impulsive acceleration occurs. The underlying physical reason for the phase transition is the change of the reconnection mechanism from the Sweet-Parker to the unsteady bursty regime of reconnection in the evolving current sheet underneath the FR.

  12. Three-Dimensional View of Transient Horizontal Magnetic Fields in the Photosphere

    NASA Astrophysics Data System (ADS)

    Ishikawa, Ryohko; Tsuneta, Saku; Jurčák, Jan

    2010-04-01

    We infer the three-dimensional magnetic structure of a transient horizontal magnetic field (THMF) during its evolution through the photosphere using SIRGAUS inversion code. The SIRGAUS code is a modified version of SIR (Stokes Inversion based on Response function), and allows for retrieval of information on the magnetic and thermodynamic parameters of the flux tube embedded in the atmosphere from the observed Stokes profiles. Spectropolarimetric observations of the quiet Sun at the disk center were performed with the Solar Optical Telescope on board Hinode with Fe I 630.2 nm lines. Using repetitive scans with a cadence of 130 s, we first detect the horizontal field that appears inside a granule, near its edge. On the second scan, vertical fields with positive and negative polarities appear at both ends of the horizontal field. Then, the horizontal field disappears leaving the bipolar vertical magnetic fields. The results from the inversion of the Stokes spectra clearly point to the existence of a flux tube with magnetic field strength of ~400 G rising through the line-forming layer of the Fe I 630.2 nm lines. The flux tube is located at around log τ500 ~ 0 at Δt = 0 s and around log τ500 ~ -1.7 at Δt = 130 s. At Δt = 260 s, the horizontal part is already above the line-forming region of the analyzed lines. The observed Doppler velocity is maximally 3 km s-1, consistent with the upward motion of the structure as retrieved from the SIRGAUS code. The vertical size of the tube is smaller than the thickness of the line-forming layer. The THMF has a clear Ω-shaped loop structure with the apex located near the edge of a granular cell. The magnetic flux carried by this THMF is estimated to be 3.1 × 1017 Mx.

  13. Spectral variability of photospheric radiation due to faculae. I. The Sun and Sun-like stars

    NASA Astrophysics Data System (ADS)

    Norris, Charlotte M.; Beeck, Benjamin; Unruh, Yvonne C.; Solanki, Sami K.; Krivova, Natalie A.; Yeo, Kok Leng

    2017-09-01

    Context. Stellar spectral variability on timescales of a day and longer, arising from magnetic surface features such as dark spots and bright faculae, is an important noise source when characterising extra-solar planets. Current 1D models of faculae do not capture the geometric properties and fail to reproduce observed solar facular contrasts. Magnetoconvection simulations provide facular contrasts accounting for geometry. Aims: We calculate facular contrast spectra from magnetoconvection models of the solar photosphere with a view to improve (a) future parameter determinations for planets with early G type host stars and (b) reconstructions of solar spectral variability. Methods: Regions of a solar twin (G2, log g = 4.44) atmosphere with a range of initial average vertical magnetic fields (100 to 500 G) were simulated using a 3D radiation-magnetohydrodynamics code, MURaM, and synthetic intensity spectra were calculated from the ultraviolet (149.5 nm) to the far infrared (160 000 nm) with the ATLAS9 radiative transfer code. Nine viewing angles were investigated to account for facular positions across most of the stellar disc. Results: Contrasts of the radiation from simulation boxes with different levels of magnetic flux relative to an atmosphere with no magnetic field are a complicated function of position, wavelength and magnetic field strength that is not reproduced by 1D facular models. Generally, contrasts increase towards the limb, but at UV wavelengths a saturation and decrease are observed close to the limb. Contrasts also increase strongly from the visible to the UV; there is a rich spectral dependence, with marked peaks in molecular bands and strong spectral lines. At disc centre, a complex relationship with magnetic field was found and areas of strong magnetic field can appear either dark or bright, depending on wavelength. Spectra calculated for a wide variety of magnetic fluxes will also serve to improve total and spectral solar irradiance

  14. The expanding photosphere method applied to SN 1992am AT cz = 14 600 km/s

    NASA Technical Reports Server (NTRS)

    Schmidt, Brian P.; Kirshner, Robert P.; Eastman, Ronald G.; Hamuy, Mario; Phillips, Mark M.; Suntzeff, Nicholas B.; Maza, Jose; Filippenko, Alexei V.; Ho, Luis C.; Matheson, Thomas

    1994-01-01

    We present photometry and spectroscopy of Supernova (SN) 1992am for five months following its discovery by the Calan Cerro-Tololo Inter-American Observatory (CTIO) SN search. These data show SN 1992am to be type II-P, displaying hydrogen in its spectrum and the typical shoulder in its light curve. The photometric data and the distance from our own analysis are used to construct the supernova's bolometric light curve. Using the bolometric light curve, we estimate SN 1992am ejected approximately 0.30 solar mass of Ni-56, an amount four times larger than that of other well studied SNe II. SN 1992am's; host galaxy lies at a redshift of cz = 14 600 km s(exp -1), making it one of the most distant SNe II discovered, and an important application of the Expanding Photsphere Method. Since z = 0.05 is large enough for redshift-dependent effects to matter, we develop the technique to derive luminosity distances with the Expanding Photosphere Method at any redshift, and apply this method to SN 1992am. The derived distance, D = 180(sub -25) (sup +30) Mpc, is independent of all other rungs in the extragalactic distance ladder. The redshift of SN 1992am's host galaxy is sufficiently large that uncertainties due to perturbations in the smooth Hubble flow should be smaller than 10%. The Hubble ratio derived from the distance and redshift of this single object is H(sub 0) = 81(sub -15) (sup +17) km s(exp -1) Mpc(exp -1). In the future, with more of these distant objects, we hope to establish an independent and statistically robust estimate of H(sub 0) based solely on type II supernovae.

  15. Predictions of Heating Rates in Localized Magnetic Structures From The Photosphere To The Upper Chromosphere

    NASA Astrophysics Data System (ADS)

    Goodman, M. L.

    2003-05-01

    The heating rates due to resistive dissipation of magnetic field aligned currents and of Pedersen currents are computed as functions of height and horizontal radius in a specified 2.5 D magnetic field from the photosphere to the upper chromosphere. The model uses the VAL C height dependent profiles of temperature, and electron, proton, hydrogen, helium, and heavy ion densities together with the magnetic field to compute the anisotropic electrical conductivity tensor for each charged particle species. The magnetic field is parameterized by its maximum magnitude B0, scale height L, characteristic diameter D0, and twist τ which is the ratio of the azimuthal field component to the radial field component. The objective is to determine the ranges of values of these parameters that yield heating rates that are within observational constraints for values of D0 that are above and below the resolution limit of ˜ 150 km. This provides a test of the proposition that Pedersen current dissipation is a major source of chromopsheric heating in magnetic structures throughout the chromosphere, and that it is the rapid increase of charged particle magnetization with height in the lower chromosphere that causes the chromospheric temperature inversion and the rapid increase of the heating rate per unit mass with height in this region. It is found that the heating rate is a monotonically increasing function of B0, L, and τ , and a monotonically decreasing function of D0. For values of D0 below the resolution limit, values of τ >> 1 correspond to strongly heated magnetic structures. This work was supported by NSF grant ATM 9816335.

  16. Spectroscopic determinations of stellar parameters and photospheric helium abundances for Alpha Cygni and Beta Orionis

    NASA Astrophysics Data System (ADS)

    Takeda, Yoichi

    1994-04-01

    A detailed non-local thermodynamic equilibrium (non-LTE) analysis of neutral helium lines was carried out for two early A-late B supergiants Alpha Cygni and Beta Orionis in order to obtain information concerning the abundance of helium in their photospheres, the key element for studying evolution-induced mixing in the envelope of such massive stars. To minimize the systematic errors caused by uncertainties of model atmospheres, an elaborate study for determining their model parameters was first performed by using the Balmer line profiles (H(gamma), H(delta)) and the energy distributions from ultraviolet (UV) to infrared (IR), while attention was paid to the impact of the interstellar reddening effect. The best parameters were concluded to be: Teff approximately equals 10000 K, log g approximately equals 1.5, and EB-V approximately equals +0.15 for Alpha Cygni; and Teff approximately equals 13000 K, log g approximately equals 2.0, and EB-V approximately equals +0.05 for Beta Orionis. This suggested somewhat higher Teff's than those so far believed. These results, as well as the related fundamental stellar parameters (also derived), are discussed and compared along with other estimations. With these models, a reasonably good agreement was found between the theoretical predictions and the observations, except for the spectra in the far-UV or far-IR regions, which are presumably affected by the extended circumstellar envelope surrounding these stars. The resulting helium abundances based on these model atmospheres indicated an apparent He-deficiency by as much as approximately 0.8 dex in Alpha Cygni and a moderate He-excess of approximately 0.4 dex in Beta Orionis. When combined with the evidence of N-excess for both stars, the former consequence for Alpha Cygni is rather difficult to interpret, and further investigations are therefore needed concerning this matter; the latter implies that the surface layer of Beta Orionis is most likely contaminated by the CNO

  17. Properties of Magnetohydrodynamic Waves in the Solar Photosphere Obtained with Hinode

    NASA Astrophysics Data System (ADS)

    Fujimura, D.; Tsuneta, S.

    2009-09-01

    We report the observations of the magnetohydrodynamic (MHD) waves propagating along magnetic flux tubes in the solar photosphere. We identified 20 isolated strong peaks (8 peaks for pores and 12 peaks for intergranular magnetic structure) in the power spectra of the line-of-sight (LOS) magnetic flux, the LOS velocity, and the intensity for 14 different magnetic concentrations. The observation is performed with the spectro-polarimeter of the Solar Optical Telescope aboard the Hinode satellite. The oscillation periods are located in 3-6 minutes for the pores and in 4-9 minutes for the intergranular magnetic elements. These peaks correspond to the magnetic, the velocity, and the intensity fluctuation in time domain with root-mean-square amplitudes of 4-17 G (0.3%-1.2%), 0.03-0.12 km s-1, and 0.1%-1%, respectively. Phase differences between the LOS magnetic flux (phi B ), the LOS velocity (phi v ), the intensities of the line core (phi I,core), and the continuum intensity (phi I,cont) have striking concentrations at around -90° for phi B - phi v and phi v - phi I,core, around 180° for phi I,core - phi B , and around 10° for phi I,core - phi I,cont. Here, for example, phi B - phi v ~ -90° means that the velocity leads the magnetic field by a quarter of cycle. The observed phase relation between the magnetic and the photometric intensity fluctuations would not be consistent with that caused by the opacity effect, if the magnetic field strength decreases with height along the oblique LOS. We suggest that the observed fluctuations are due to longitudinal (sausage-mode) and/or transverse (kink-mode) MHD waves. The observed phase relation between the fluctuations in the magnetic flux and the velocity is consistent with the superposition of the ascending wave and the descending wave reflected at chromosphere/corona boundary (standing wave). Even with such reflected waves, the residual upward Poynting flux is estimated to be 2.7 × 106 erg cm-2 s-1 for a case of the kink

  18. Hinode and IRIS Observations of the Magnetohydrodynamic Waves Propagating from the Photosphere to the Chromosphere in a Sunspot

    NASA Astrophysics Data System (ADS)

    Kanoh, Ryuichi; Shimizu, Toshifumi; Imada, Shinsuke

    2016-11-01

    Magnetohydrodynamic (MHD) waves have been considered as energy sources for heating the solar chromosphere and the corona. Although MHD waves have been observed in the solar atmosphere, there are a lack of quantitative estimates on the energy transfer and dissipation in the atmosphere. We performed simultaneous Hinode and Interface Region Imaging Spectrograph observations of a sunspot umbra to derive the upward energy fluxes at two different atmospheric layers (photosphere and lower transition region) and estimate the energy dissipation. The observations revealed some properties of the observed periodic oscillations in physical quantities, such as their phase relations, temporal behaviors, and power spectra, making a conclusion that standing slow-mode waves are dominant at the photosphere with their high-frequency leakage, which is observed as upward waves at the chromosphere and the lower transition region. Our estimates of upward energy fluxes are 2.0× {10}7 erg cm-2 s-1 at the photospheric level and 8.3× {10}4 erg cm-2 s-1 at the lower transition region level. The difference between the energy fluxes is larger than the energy required to maintain the chromosphere in the sunspot umbrae, suggesting that the observed waves can make a crucial contribution to the heating of the chromosphere in the sunspot umbrae. In contrast, the upward energy flux derived at the lower transition region level is smaller than the energy flux required for heating the corona, implying that we may need another heating mechanism. We should, however, note a possibility that the energy dissipated at the chromosphere might be overestimated because of the opacity effect.

  19. Flare-induced changes of the photospheric magnetic field in a δ-spot deduced from ground-based observations

    NASA Astrophysics Data System (ADS)

    Gömöry, P.; Balthasar, H.; Kuckein, C.; Koza, J.; Veronig, A. M.; González Manrique, S. J.; Kučera, A.; Schwartz, P.; Hanslmeier, A.

    2017-06-01

    Aims: Changes of the magnetic field and the line-of-sight velocities in the photosphere are being reported for an M-class flare that originated at a δ-spot belonging to active region NOAA 11865. Methods: High-resolution ground-based near-infrared spectropolarimetric observations were acquired simultaneously in two photospheric spectral lines, Fe i 10783 Å and Si i 10786 Å, with the Tenerife Infrared Polarimeter at the Vacuum Tower Telescope (VTT) in Tenerife on 2013 October 15. The observations covered several stages of the M-class flare. Inversions of the full-Stokes vector of both lines were carried out and the results were put into context using (extreme)-ultraviolet filtergrams from the Solar Dynamics Observatory (SDO). Results: The active region showed high flaring activity during the whole observing period. After the M-class flare, the longitudinal magnetic field did not show significant changes along the polarity inversion line (PIL). However, an enhancement of the transverse magnetic field of approximately 550 G was found that bridges the PIL and connects umbrae of opposite polarities in the δ-spot. At the same time, a newly formed system of loops appeared co-spatially in the corona as seen in 171 Å filtergrams of the Atmospheric Imaging Assembly (AIA) on board SDO. However, we cannot exclude that the magnetic connection between the umbrae already existed in the upper atmosphere before the M-class flare and became visible only later when it was filled with hot plasma. The photospheric Doppler velocities show a persistent upflow pattern along the PIL without significant changes due to the flare. Conclusions: The increase of the transverse component of the magnetic field after the flare together with the newly formed loop system in the corona support recent predictions of flare models and flare observations. The movie associated to Figs. 4 and 5 is available at http://www.aanda.org

  20. THE ABRUPT CHANGES IN THE PHOTOSPHERIC MAGNETIC AND LORENTZ FORCE VECTORS DURING SIX MAJOR NEUTRAL-LINE FLARES

    SciTech Connect

    Petrie, G. J. D.

    2012-11-01

    We analyze the spatial and temporal variations of the abrupt photospheric magnetic changes associated with six major flares using 12 minute, 0.''5 pixel{sup -1} vector magnetograms from NASA's Helioseismic and Magnetic Imager instrument on the Solar Dynamics Observatory satellite. The six major flares occurred near the main magnetic neutral lines of four active regions, NOAA 11158, 11166, 11283, and 11429. During all six flares the neutral-line field vectors became stronger and more horizontal, in each case almost entirely due to strengthening of the horizontal field components parallel to the neutral line. In all six cases the neutral-line pre-flare fields were more vertical than the reference potential fields, and collapsed abruptly and permanently closer to potential-field tilt angles during every flare, implying that the relaxation of magnetic stress associated with non-potential tilt angles plays a major role during major flares. The shear angle with respect to the reference potential field did not show such a pattern, demonstrating that flare processes do not generally relieve magnetic stresses associated with photospheric magnetic shear. The horizontal fields became significantly and permanently more aligned with the neutral line during the four largest flares, suggesting that the collapsing field is on average more aligned with the neutral line than the pre-flare neutral-line field. The vertical Lorentz force had a large, abrupt, permanent downward change during each of the flares, consistent with loop collapse. The horizontal Lorentz force changes acted mostly parallel to the neutral line in opposite directions on each side, a signature of the fields contracting during the flare, pulling the two sides of the neutral line toward each other. The greater effect of the flares on field tilt than on shear may be explained by photospheric line-tying.

  1. Evolution of Photospheric Flow and Magnetic Fields Associated with the 2015 June 22 M6.5 Flare

    NASA Astrophysics Data System (ADS)

    Wang, Jiasheng; Liu, Chang; Deng, Na; Wang, Haimin

    2017-08-01

    The evolution of photospheric flow and magnetic fields before and after flares can provide important information regarding the flare triggering and back reaction processes. However, such studies on the flow field are rare due to the paucity of high-resolution observations covering the entire flaring period. Here we study the structural evolution of penumbra and shear flows associated with the 2015 June 22 M6.5 flare in NOAA AR 12371, using high-resolution imaging observation in the TiO band taken by the 1.6 m New Solar Telescope at Big Bear Solar Observatory, with the aid of the differential affine velocity estimator(DAVE) method for flow tracking. The accompanied photospheric vector magnetic field changes are also analyzed using data from the Helioseismic and Magnetic Imager. As a result, we found, for a penumbral segment in the negative field adjacent to the magnetic polarity inversion line (PIL), an enhancement of penumbral flows (up to ~2 km s-1) and extension of penumbral fibrils after the first peak of the flare hard X-ray (HXR) emission. We also found a shear flow region at the PIL, which is co-spatial with a precursor brightening kernel and exhibits a gradual increase of shear flow velocity (up to ~0.9 km s-1) after the flare. The enhancing penumbral and shear flow regions are also accompanied by an increase of horizontal field and decrease of magnetic inclination angle. These results are discussed in the context of the theory of back reaction of coronal restructuring on the photosphere as a result of flare energy release.

  2. THE THREE-DIMENSIONAL STRUCTURE OF AN ACTIVE REGION FILAMENT AS EXTRAPOLATED FROM PHOTOSPHERIC AND CHROMOSPHERIC OBSERVATIONS

    SciTech Connect

    Yelles Chaouche, L.; Kuckein, C.; Martinez Pillet, V.; Moreno-Insertis, F.

    2012-03-20

    The three-dimensional structure of an active region filament is studied using nonlinear force-free field extrapolations based on simultaneous observations at a photospheric and a chromospheric height. To that end, we used the Si I 10827 A line and the He I 10830 A triplet obtained with the Tenerife Infrared Polarimeter at the Vacuum Tower Telescope (Tenerife). The two extrapolations have been carried out independently from each other and their respective spatial domains overlap in a considerable height range. This opens up new possibilities for diagnostics in addition to the usual ones obtained through a single extrapolation from, typically, a photospheric layer. Among those possibilities, this method allows the determination of an average formation height of the He I 10830 A signal of Almost-Equal-To 2 Mm above the surface of the Sun. It allows, as well, a cross-check of the obtained three-dimensional magnetic structures to verify a possible deviation from the force-free condition, especially at the photosphere. The extrapolations yield a filament formed by a twisted flux rope whose axis is located at about 1.4 Mm above the solar surface. The twisted field lines make slightly more than one turn along the filament within our field of view, which results in 0.055 turns Mm{sup -1}. The convex part of the field lines (as seen from the solar surface) constitutes dips where the plasma can naturally be supported. The obtained three-dimensional magnetic structure of the filament depends on the choice of the observed horizontal magnetic field as determined from the 180 Degree-Sign solution of the azimuth. We derive a method to check for the correctness of the selected 180 Degree-Sign ambiguity solution.

  3. Measurements of TRACE 171A Twisting Coronal Loop Fans about a Twisted Magnetic Flux Tube Originating From Below the Photosphere

    NASA Astrophysics Data System (ADS)

    Nightingale, R. W.; Ma, G.; Ji, E.

    2009-12-01

    In our previous studies of rotating sunspots about their umbral centers over the past decade, we have been measuring the rotation at the photosphere of the cross sections of large, twisted magnetic flux tubes passing through from below. Many such rotating sunspots have been found and reported in the literature and at earlier meetings [e.g., Brown et al., Sol. Phys. 216, 79, 2003; Yan et al., ApJ 682, L65, 2008; Nightingale et al., Fall AGU Mtg. 2007]. Here we are attempting to measure the rotation of 1 million degree K EUV loops seen in TRACE 171A images emerging from what may be a large 6000 deg K magnetic flux tube (invisible at EUV), which may be the extension of the associated rotating sunspot up in the corona, for active region 9114 on August 8 - 10, 2000. These nonpotential EUV loops appear to be attached at their other end to nonrotating opposite polarity magnetic flux regions and also appear to be flipping around like a twisted jump rope that is attached to a wall at one end. In movies of these twisted coronal loop fans the rotation appears obvious, but is difficult to measure, because of the constant motion and change of intensity of the fans, which tend to obscure each other and the apparent tube center. We will show movies over the 3 days of the twisted loop fans, and details and first results of our measurements, which appear to be similar to those previously found for the associated rotating sunspot down at the photosphere. We will discuss how the twisted magnetic flux tube energizes the corona, carrying energy up from beneath the photosphere. This work was supported by NASA under the TRACE contract NAS5-38099.

  4. Photospheric activity, rotation, and star-planet interaction of the planet-hosting star CoRoT-6

    NASA Astrophysics Data System (ADS)

    Lanza, A. F.; Bonomo, A. S.; Pagano, I.; Leto, G.; Messina, S.; Cutispoto, G.; Moutou, C.; Aigrain, S.; Alonso, R.; Barge, P.; Deleuil, M.; Fridlund, M.; Silva-Valio, A.; Auvergne, M.; Baglin, A.; Collier Cameron, A.

    2011-01-01

    Context. The CoRoT satellite has recently discovered a hot Jupiter that transits across the disc of a F9 main-sequence star called CoRoT-6 with a period of 8.886 days. Aims: We model the photospheric activity of the star and use the maps of the active regions to study stellar differential rotation and the star-planet interaction. Methods: We apply a maximum entropy spot model to fit the optical modulation as observed by CoRoT during a uninterrupted interval of ~ 140 days. Photospheric active regions are assumed to consist of spots and faculae in a fixed proportion with solar-like contrasts. Results: Individual active regions have lifetimes up to 30-40 days. Most of them form and decay within five active longitudes whose different migration rates are attributed to the stellar differential rotation for which a lower limit of ΔΩ/Ω = 0.12 ± 0.02 is obtained. Several active regions show a maximum of activity at a longitude lagging the subplanetary point by ~ 200° with the probability of a chance occurrence being smaller than 1 percent. Conclusions: Our spot modelling indicates that the photospheric activity of CoRoT-6 could be partially modulated by some kind of star-planet magnetic interaction, while an interaction related to tides is highly unlikely because of the weakness of the tidal force. Based on observations obtained with CoRoT, a space project operated by the French Space Agency, CNES, with partecipation of the Science Programme of ESA, ESTEC/RSSD, Austria, Belgium, Brazil, Germany, and Spain.

  5. SIMULATION OF MAGNETOHYDRODYNAMIC SHOCK WAVE GENERATION, PROPAGATION, AND HEATING IN THE PHOTOSPHERE AND CHROMOSPHERE USING A COMPLETE ELECTRICAL CONDUCTIVITY TENSOR

    SciTech Connect

    Goodman, Michael L.; Kazeminezhad, Farzad E-mail: fkazemin@earthlink.ne

    2010-01-01

    An electrical conductivity tensor is used in a 1.5D magnetohydrodynamic (MHD) simulation to describe how MHD shock waves may form, propagate, and heat the photosphere and chromosphere by compression and resistive dissipation. The spatial resolution is 1 km. A train of six shock waves is generated by a sinusoidal magnetic field driver in the photosphere with a period T = 30 s, mean of 500 G, and variation of 250 G. The duration of the simulation is 200 s. Waves generated in the photosphere evolve into shock waves at a height z approx 375 km above the photosphere. The transition of the atmosphere from weakly to strongly magnetized with increasing height causes the Pedersen resistivity eta{sub P} to increase to approx2000 times the Spitzer resistivity. This transition occurs over a height range of a few hundred kilometers near the temperature minimum of the initial state at z approx 500 km. The initial state is a model atmosphere derived by Fontenla et al., plus a background magnetic field. The increase in eta{sub P} is associated with an increase in the resistive heating rate Q. Shock layer thicknesses are approx10-20 km. They are nonzero due to the presence of resistive dissipation, so magnetization-induced resistivity plays a role in determining shock structure, and hence the compressive heating rate Q{sub c} . At t = 200 s the solution has the following properties. Within shock layers, Q{sub maximum} approx 1.4-7 erg cm{sup -3} s{sup -1}, and Q{sub c,maximum} approx 10-10{sup 3} Q{sub maximum}. Between shock waves, and at some points within shock layers, Q{sub c} < 0, indicating cooling by rarefaction. The integrals of Q and Q{sub c} over the shock wave train are F approx 4.6 x 10{sup 6} erg cm{sup -2} s{sup -1} and F{sub c} approx 1.24 x 10{sup 9} erg cm{sup -2} s{sup -1}. A method based on the thermal, mechanical, and electromagnetic energy conservation equations is presented for checking the accuracy of the numerical solution, and gaining insight into energy

  6. The photospheric spectrum of the pre-FUor V1331 CYG: Is it a star or a disk?

    NASA Astrophysics Data System (ADS)

    Petrov, P. P.; Babina, E. V.

    2014-06-01

    The T Tauri variable V1331 Cyg is characterized by an intensive emission spectrum, by signatures of a high rate of mass loss, and also by presence of a circular reflection nebula. According to these characteristics, the star can be considered as a possible pre-FUor star. Up to the present the photospheric spectrum of the star has not been recorded. In this work we analyze the high-resolution spectra of V1331 Cyg that were obtained by G.H. Herbig with the HIRES spectrograph at the Keck-1 telescope in 2004 and 2007. For the first time the numerous photospheric lines of the star have been detected and the spectral class has been estimated, viz., G7-K0 IV. It is revealed that the projection of the rotation velocity is lower than the width of instrumental profile ( vsin i < 6 km/s); this means that the angle between the stellar axis of rotation and the line of sight is small. The radial velocity of the star derived from the photospheric lines is RV = -15.0 ± 0.3 km/s. The difference in radial velocities for 2004 and 2007 is lower than the measurement error. The photospheric spectrum is veiled considerably, but the amount of veiling is not the same in different lines. This depends on the line strength in the template spectrum of the G7 IV star: in the weakest lines (EW = 5-10 mÅ in the template spectrum) VF ≈ 1 and it increases up to 4-5 in stronger lines. The Hα and Hβ lines demonstrate classical P Cyg profiles, which testifies to an intensive wind with a maximal velocity of about 400 km/s. In addition, the emission lines of Fe II, Mg I and K I and of several other elements are accompanied by a narrow blue-shifted absorption at -150...-250 km/s. The emission spectrum of V1331 Cyg is rich in the narrow (FWHM = 30-50 km/s) lines of neutral and ionized metals showing the excitation temperature T exc = 3800 ± 300 K. The stellar mass M* ≈ 2.8 M ⊙ and radius R* ≈ 5 R ⊙ are estimated.

  7. HMI Data Driven Magnetohydrodynamic Model Predicted Active Region Photospheric Heating Rates: Their Scale Invariant, Flare Like Power Law Distributions, and Their Possible Association With Flares

    NASA Technical Reports Server (NTRS)

    Goodman, Michael L.; Kwan, Chiman; Ayhan, Bulent; Shang, Eric L.

    2017-01-01

    There are many flare forecasting models. For an excellent review and comparison of some of them see Barnes et al. (2016). All these models are successful to some degree, but there is a need for better models. We claim the most successful models explicitly or implicitly base their forecasts on various estimates of components of the photospheric current density J, based on observations of the photospheric magnetic field B. However, none of the models we are aware of compute the complete J. We seek to develop a better model based on computing the complete photospheric J. Initial results from this model are presented in this talk. We present a data driven, near photospheric, 3 D, non-force free magnetohydrodynamic (MHD) model that computes time series of the total J, and associated resistive heating rate in each pixel at the photosphere in the neutral line regions (NLRs) of 14 active regions (ARs). The model is driven by time series of B measured by the Helioseismic & Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO) satellite. Spurious Doppler periods due to SDO orbital motion are filtered out of the time series of B in every AR pixel. Errors in B due to these periods can be significant.

  8. A New Technique For Measuring The Twist Of Photospheric Active Regions Without Recourse To The Force-Free-Field Equation: Reconfirming The Hemispheric Helicity Trend

    NASA Astrophysics Data System (ADS)

    Nandy, Dibyendu; Calhoun, A.; Windschitl, J.; Canfield, R. C.; Linton, M. G.

    2007-05-01

    The twist component of magnetic helicity in solar active regions is known to be an important indicator of sub-photospheric flux tube dynamics and solar eruptive activity. Traditionally, estimates of the parameter alpha -- appearing in the force-free-field equation -- has been used to infer the twist of photospheric active regions. However, the photosphere is not force-free and this has lead to recent concerns on the validity of using the alpha parameter for determining photospheric active region twist. We have devised a new flux-tube-fitting technique for determining the twist of active regions without recourse to the force-free-field equation. This method assumes that the underlying active region flux system is cylindrically symmetric and uniformly twisted. By using this new technique, on a statistically compelling number of photospheric active region vector magnetograms, we re-confirm the hemispheric helicity rule independent of the force-free-field assumption. This research has been supported in parts by a NASA Living With a Star grant NNG05GE47G. A.C. and J.W. were supported by a NSF Research Experience for Undergraduates grant ATM-0243923 to Montana State University. M.G.L. acknowledges support from NASA and the Office of Naval Research.

  9. The type IIP supernova 2012aw in M95: Hydrodynamical modeling of the photospheric phase from accurate spectrophotometric monitoring

    SciTech Connect

    Dall'Ora, M.; Botticella, M. T.; Della Valle, M.; Pumo, M. L.; Zampieri, L.; Tomasella, L.; Cappellaro, E.; Benetti, S.; Pignata, G.; Bufano, F.; Bayless, A. J.; Pritchard, T. A.; Taubenberger, S.; Benitez, S.; Kotak, R.; Inserra, C.; Fraser, M.; Elias-Rosa, N.; Haislip, J. B.; Harutyunyan, A.; and others

    2014-06-01

    We present an extensive optical and near-infrared photometric and spectroscopic campaign of the Type IIP supernova SN 2012aw. The data set densely covers the evolution of SN 2012aw shortly after the explosion through the end of the photospheric phase, with two additional photometric observations collected during the nebular phase, to fit the radioactive tail and estimate the {sup 56}Ni mass. Also included in our analysis is the previously published Swift UV data, therefore providing a complete view of the ultraviolet-optical-infrared evolution of the photospheric phase. On the basis of our data set, we estimate all the relevant physical parameters of SN 2012aw with our radiation-hydrodynamics code: envelope mass M {sub env} ∼ 20 M {sub ☉}, progenitor radius R ∼ 3 × 10{sup 13} cm (∼430 R {sub ☉}), explosion energy E ∼ 1.5 foe, and initial {sup 56}Ni mass ∼0.06 M {sub ☉}. These mass and radius values are reasonably well supported by independent evolutionary models of the progenitor, and may suggest a progenitor mass higher than the observational limit of 16.5 ± 1.5 M {sub ☉} of the Type IIP events.

  10. Real-Time Frame Selector and its Application to Observations of the Horizontal Velocity Field in the Solar Photosphere

    NASA Astrophysics Data System (ADS)

    Kitai, Reizaburo; Funakoshi, Yasuhiro; Ueno, Satoru; Ichimoto, Shusaku Sano Kiyoshi

    1997-08-01

    A real-time frame selector (RTFS), a new observational system, was developed at the Domeless Solar Telescope of Hida Observatory, Kyoto University. Our RTFS allows us to automatically select out a video frame with the highest spatial resolution in a series of live video images during a prescribed time span, and stores the selected one in digital format to a hard disk file. We applied the RTFS to observations of solar granulation in the G-band wavelength (lambda 4308 { Angstroms}, passband 20 { Angstroms}) and obtained a time series of data with a step of 15 seconds. By the method of local-correlation tracking, we derived the horizontal velocity field with the granulation pattern as tracers. In a quiet photosphere, we found the so-called mesogranulation flow field, clearly. Supergranular flow patterns were also detected and identified from a comparison with an Hα wing image. On the other hand, in a sunspot area, we found new evidence of horizontal inflow from penumbral areas to umbral areas as well as the presence of another circumferential inflow from the surrounding photosphere to the penumbral outer edge.

  11. Impulsive solar X-ray bursts. III - Polarization, directivity, and spectrum of the reflected and total bremsstrahlung radiation from a beam of electrons directed toward the photosphere

    NASA Technical Reports Server (NTRS)

    Langer, S. H.; Petrosian, V.

    1977-01-01

    The paper presents the spectrum, directivity, and state of polarization of the bremsstrahlung radiation expected from a beam of high-energy electrons spiraling along radial magnetic field lines toward the photosphere. A Monte Carlo method is then described for evaluation of the spectrum, directivity, and polarization of X-rays diffusely reflected from stellar photospheres. The accuracy of the technique is evaluated through comparison with analytic results. The calculated characteristics of the incident X-rays are used to evaluate the spectrum, directivity, and polarization of the reflected and total X-ray fluxes. The results are compared with observations.

  12. Impulsive solar X-ray bursts. III - Polarization, directivity, and spectrum of the reflected and total bremsstrahlung radiation from a beam of electrons directed toward the photosphere

    NASA Technical Reports Server (NTRS)

    Langer, S. H.; Petrosian, V.

    1977-01-01

    The paper presents the spectrum, directivity, and state of polarization of the bremsstrahlung radiation expected from a beam of high-energy electrons spiraling along radial magnetic field lines toward the photosphere. A Monte Carlo method is then described for evaluation of the spectrum, directivity, and polarization of X-rays diffusely reflected from stellar photospheres. The accuracy of the technique is evaluated through comparison with analytic results. The calculated characteristics of the incident X-rays are used to evaluate the spectrum, directivity, and polarization of the reflected and total X-ray fluxes. The results are compared with observations.

  13. Detection of a Fine-scale Discontinuity of Photospheric Magnetic Fields Associated with Solar Coronal Loop Brightenings

    NASA Astrophysics Data System (ADS)

    Song, Donguk; Chae, Jongchul; Park, Soyoung; Cho, Kyung-Suk; Lim, Eun-Kyung; Ahn, Kwangsu; Cao, Wenda

    2015-09-01

    We present the transient brightening of a coronal loop and an associated fine-scale magnetic discontinuity detected in the photosphere. Utilizing the high-resolution data taken with the Fast Imaging Solar Spectrograph and InfraRed Imaging Magnetograph of the New Solar Telescope at Big Bear Solar Observatory, we detect a narrow lane of intense horizontal magnetic field representing a magnetic discontinuity. It was visible as a dark lane partially encircling a pore in the continuum image, and was located near one of the footpoints of a small coronal loop that experienced transient brightenings. The horizontal field strength gradually increased before the loop brightening, and then rapidly decreased in the impulsive phase of the brightening, suggesting the increase of the magnetic non-potentiality at the loop footpoint and the sudden release of magnetic energy via magnetic reconnection. Our results support the nanoflare theory that coronal heating events are caused by magnetic reconnection events at fine-scale magnetic discontinuities.

  14. Photospheric flows around a quiescent filament at Large and small scale and their ffects on filament destabilization

    NASA Astrophysics Data System (ADS)

    Roudier, Th.; Malherbe, J. M.; Švanda, M.; Molodij, G.; Keil, S.; Sütterlin, P.; Schmieder, B.; Bommier, V.; Aulanier, G.; Meunier, N.; Rieutord, M.; Rondi, S.

    2008-11-01

    We study the influence of large and small scales photospheric motions on the destabilization of an eruptive filament, observed on October 6, 7, and 8, 2004 as part of an international observing campaign (JOP 178). Large-scale horizontal flows are invetigated from a series of MDI/SOHO full-disc Dopplergrams and magnetograms from THEMIS. Small-scale horizontal flows were derived using local correlation tracking on TRACE satellite, Dutch Open Telescope (DOT) and The Dunn Solar telescope (DST) data. The topology of the flow field changed significantly during the filament eruptive phase, suggesting a possible coupling between the surface flow field and the coronal magnetic field. We measured an increase of the shear below the point where the eruption starts and a decrease in shear after the eruption. We conclude that there is probably a link between changes in surface flow and the disappearance of the eruptive filament.

  15. The distances to five Type II supernovae using the expanding photosphere method, and the value of H(sub 0)

    NASA Technical Reports Server (NTRS)

    Schmidt, Brian P.; Kirshner, Robert P.; Eastman, Ronald G.; Phillips, Mark M.; Suntzeff, Nicholas B.; Hamuy, Mario; Maza, Jose; Aviles, Roberto

    1994-01-01

    We have used observations gathered at Cerro Tololo Inter-American Observatory (CTIO) to measure distances by the expanding photosphere method (EPM) to five Type II supernovae. These supernovae lie at redshifts from cz = 1100 km/s to cz = 5500 km/s, and increase to 18 the number of distances measured using EPM. We compare distances derived to 11 Type II supernovae with distances to their galaxies measured using the Tully-Fisher method. We find that the Tully-Fisher distances average 11% +/- 7% smaller. The comparison shows no significant evidence of any large distance-dependent bias in the Tully-Fisher distances. We employ the sample of EPM distances from 4.5 Mpc to 180 Mpc to derive a value for the Hubble constant. We find H(sub 0) = 73 +/- 6 (statistical) +/- 7 (systematic) km/s/Mpc.

  16. The dependence of coronal hole size on large scale magnetic field strength. [using a mathematical model of the photosphere

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Steinolfson, R. S.

    1980-01-01

    The importance of mathematical models of the coronal structure for studies of coronal energetics, to simulate global flows of the solar wind, and to obtain reliable solar terrestrial predictions is discussed. Previous coronal models, including an example of a coronal MHD flow model, are reviewed. The development of a coronal model which is a logical extension of earlier models and which allows a closer relationship to the photospheric magnetic field as it is observed daily is described. The calculations are outlined. The assumptions of the model are: axisymmetric flow with no rotation, resulting in two dimensional flow in a meridional plane; zero viscosity and infinite electrical conductivity; polytropic, single fluid flow; and no momentum addition.

  17. Reproducing the Photospheric Magnetic Field Evolution During the Rise of Cycle 24 with Flux Transport by Supergranules

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Upton, Lisa

    2012-01-01

    We simulate the transport of magnetic flux in the Sun s photosphere by an evolving pattern of cellular horizontal flows (supergranules). Characteristics of the simulated flow pattern match observed characteristics including the velocity power spectrum, cell lifetimes, and cell pattern motion in longitude and latitude. Simulations using an average, and north-south symmetric, meridional motion of the cellular pattern produce polar magnetic fields that are too weak in the North and too strong in the South. Simulations using cellular patterns with meridional motions that evolve with the observed changes in strength and north-south asymmetry will be analyzed to see if they reproduce the polar field evolution observed during the rise of Cycle 24.

  18. Reproducing the Photospheric Magnetic Field Evolution during the Rise of Cycle 24 with Flux Transport by Supergranules

    NASA Technical Reports Server (NTRS)

    Hathaway, David; Upton, Lisa

    2012-01-01

    We simulate the transport of magnetic flux in the Sun s photosphere by an evolving pattern of cellular horizontal flows (supergranules). Characteristics of the simulated flow pattern can match observed characteristics including the velocity power spectrum, cell lifetimes, and cell motions in longitude and latitude. Simulations using an average, and north-south symmetric, meridional motion of the cellular pattern produce polar magnetic fields that are too weak in the North and too strong in the South. Simulations using cellular patterns with meridional motions that evolve with the observed changes in strength and north-south asymmetry will be analyzed to see if they reproduce the polar field evolution observed during the rise of Cycle 24.

  19. Vector magnetic field evolution, energy storage, and associated photospheric velocity shear within a flare-productive active region

    NASA Technical Reports Server (NTRS)

    Krall, K. R.; Smith, J. B., Jr.; Hagyard, M. J.; West, E. A.; Cummings, N. P.

    1982-01-01

    Sheared photospheric velocity fields inferred from spot motions for April 5-7, 1980, are compared with both transverse magnetic field orientation changes and with the region's flare history. Rapid spot motions and high inferred velocity shear coincide with increased field alignment along the longitudinal neutral line and with increased flare activity, while a later decrease in velocity shear precedes a more relaxed magnetic configuration and decrease in flare activity. It is estimated that magnetic reconfiguration produced by the relative velocities of the spots could cause storage of about 10 to the 32nd erg/day, while flares occurring during this time expended no more than about 10 to the 31st erg/day.

  20. DETECTION OF A FINE-SCALE DISCONTINUITY OF PHOTOSPHERIC MAGNETIC FIELDS ASSOCIATED WITH SOLAR CORONAL LOOP BRIGHTENINGS

    SciTech Connect

    Song, Donguk; Chae, Jongchul; Park, Soyoung; Cho, Kyung-Suk; Lim, Eun-Kyung; Ahn, Kwangsu; Cao, Wenda

    2015-09-10

    We present the transient brightening of a coronal loop and an associated fine-scale magnetic discontinuity detected in the photosphere. Utilizing the high-resolution data taken with the Fast Imaging Solar Spectrograph and InfraRed Imaging Magnetograph of the New Solar Telescope at Big Bear Solar Observatory, we detect a narrow lane of intense horizontal magnetic field representing a magnetic discontinuity. It was visible as a dark lane partially encircling a pore in the continuum image, and was located near one of the footpoints of a small coronal loop that experienced transient brightenings. The horizontal field strength gradually increased before the loop brightening, and then rapidly decreased in the impulsive phase of the brightening, suggesting the increase of the magnetic non-potentiality at the loop footpoint and the sudden release of magnetic energy via magnetic reconnection. Our results support the nanoflare theory that coronal heating events are caused by magnetic reconnection events at fine-scale magnetic discontinuities.

  1. A comparison of photospheric electric current and ultraviolet and X-ray emission in a solar active region

    NASA Technical Reports Server (NTRS)

    Haisch, B. M.; Bruner, M. E.; Hagyard, M. J.; Bonnet, R. M.

    1986-01-01

    This paper presents an extensive set of coordinated observations of a solar active region, taking into account spectroheliograms obtained with the aid of the Solar Maximum Mission (SMM) Ultraviolet Spectrometer Polarimeter (UVSP) instrument, SMM soft X-ray polychromator (XRP) raster maps, and high spatial resolution ultraviolet images of the sun in Lyman-alpha and in the 1600 A continuum. These data span together the upper solar atmosphere from the temperature minimum to the corona. The data are compared to maps of the inferred photospheric electric current derived from the Marshall Space Flight Center (MSFC) vector magnetograph observations. Some empirical correlation is found between regions of inferred electric current density and the brightest features in the ultraviolet continuum and to a lesser extent those seen in Lyman-alpha within an active region.

  2. High resolution of fast-rotating stars across the H-R diagram: photosphere and circumstellar environment

    NASA Astrophysics Data System (ADS)

    Domiciano de Souza, Armando

    2014-12-01

    Rotation is a fundamental parameter that governs the physical structure and evolution of stars, for example by generating internal circulations of matter and angular momentum, which in turn change the stellar lifetime. Massive stars (spectral types OBA) are those presenting the highest rotation velocities and thus those for which the consequences of rotation are the strongest. On the external layers of the star, fast-rotation induces in particular (1) a flattening (equatorial radius higher than the polar radius) and (2) a gravity darkening (non-uniform distribution of flux, and thus effective temperature, between the poles and the equator). This important modification in the photospheric physical structure can also drive an anisotropic (axisymmetric) mass and angular momentum loss, originating for example the complex circumstellar environments around Be and supergiant B[e] stars. The techniques of high angular and high spectral resolution allow a detailed study of the effects of rotation on the stellar photosphere and circumstellar environment across the H-R diagram. Thanks to these techniques, and in particular to the optical/infrared long-baseline interferometry, our knowledge on the impact of rotation in stellar physics was highly deepened since the beginning of the XXI century. The results described in this Habilitation Thesis are placed in this context and are the fruit a double approach combining both (1) observation, mainly with the ESO-VLT(I) instruments (e.g. NACO, VISIR, MIDI, AMBER, PIONIER) and (2) astrophysical modeling with different codes, including also radiation transfer (CHARRON, HDUST, FRACS). I present, in particular, the results obtained on three fast-rotating stars: Altair (A7V; delta Scuti), Achernar (B6Ve; Be star), and CPD-57° 2874 (supergiant B[e] star).

  3. CONTINUUM INTENSITY AND [O i] SPECTRAL LINE PROFILES IN SOLAR 3D PHOTOSPHERIC MODELS: THE EFFECT OF MAGNETIC FIELDS

    SciTech Connect

    Fabbian, D.; Moreno-Insertis, F. E-mail: fmi@iac.es

    2015-04-01

    The importance of magnetic fields in three-dimensional (3D) magnetoconvection models of the Sun’s photosphere is investigated in terms of their influence on the continuum intensity at different viewing inclination angles and on the intensity profile of two [O i] spectral lines. We use the RH numerical radiative transfer code to perform a posteriori spectral synthesis on the same time series of magnetoconvection models used in our publications on the effect of magnetic fields on abundance determination. We obtain a good match of the synthetic disk-center continuum intensity to the absolute continuum values from the Fourier Transform Spectrometer (FTS) observational spectrum; the match of the center-to-limb variation synthetic data to observations is also good, thanks, in part, to the 3D radiation transfer capabilities of the RH code. The different levels of magnetic flux in the numerical time series do not modify the quality of the match. Concerning the targeted [O i] spectral lines, we find, instead, that magnetic fields lead to nonnegligible changes in the synthetic spectrum, with larger average magnetic flux causing both of the lines to become noticeably weaker. The photospheric oxygen abundance that one would derive if instead using nonmagnetic numerical models would thus be lower by a few to several centidex. The inclusion of magnetic fields is confirmed to be important for improving the current modeling of the Sun, here in particular in terms of spectral line formation and of deriving consistent chemical abundances. These results may shed further light on the still controversial issue regarding the precise value of the solar oxygen abundance.

  4. Obtaining Photospheric Electric Field Maps and Poynting Fluxes from vector magnetograms and Doppler data: Tests and Data Driving Applications

    NASA Astrophysics Data System (ADS)

    Kazachenko, Maria; Fisher, George; Welsch, Brian

    Quantitative studies of the flow of magnetic energy through the solar photosphere require a knowledge of the magnetic field vector B - and knowledge of the electric field E as well. We have modified and improved the technique Fisher et al. developed in 2012, which combines a poloidal-toroidal decomposition (PTD) to determine contributions to E from Faraday's law, with additional non-inductive contributions arising from flux emergence near polarity inversion lines, determined from Doppler measurements. The new technique, which we call the ``PTD Doppler FLCT Ideal'' (or PDFI) technique, incorporates Doppler information from non-normal viewing angles, and adopts the faster and more robust FISHPACK software for solutions of the two-dimensional Poisson equations. We demonstrate the performance using synthetic data from the anelastic pseudo-spectral ANMHD simulations that were used in the recent comparison of velocity inversion techniques (Welsch et al. 2007) and the PTD inversion (Fisher et al. 2012). We find that the PDFI method has roughly 10% reconstruction errors (it predicts roughly 100% of the photospheric Poynting flux and 110% of the helicity flux rate at normal viewing angles, consistent with Fisher et al. (2012) results, and 90% of Poynting flux and 110% helicity flux at theta=30 degrees). We conclude that the PDFI method can be routinely applied to observed magnetic field data and, as an example, apply it to the 6-day HMI/SDO vector magnetogram sequence centered at AR11158, where an X2.2 flare occurred. We discuss how our electric field maps are used to drive coronal magnetic field with a global evolutionary model, or CGEM, a collaborative effort from the UC Berkeley Space Sciences Laboratory (SSL), Stanford University, and Lockheed-Martin.

  5. Impulsive solar X-ray bursts. 3: Polarization and directivity of bremsstrahlung radiation from a beam of electrons directed toward the photosphere

    NASA Technical Reports Server (NTRS)

    Langer, S. H.; Petrosian, V.

    1976-01-01

    The spectrum, directivity and state of polarization is presented of the bremsstrahlung radiation expected from a beam of high energy electrons spiraling along radial magnetic field lines toward the photosphere. The results are used for calculation of the characteristics of the reflected plus direct flux.

  6. Nonlinear Propagation of Alfvén Waves Driven by Observed Photospheric Motions: Application to the Coronal Heating and Spicule Formation

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takuma; Shibata, Kazunari

    2010-02-01

    We have performed MHD simulations of Alfvén wave propagation along an open flux tube in the solar atmosphere. In our numerical model, Alfvén waves are generated by the photospheric granular motion. As the wave generator, we used a derived temporal spectrum of the photospheric granular motion from G-band movies of Hinode/Solar Optical Telescope. It is shown that the total energy flux at the corona becomes larger and the transition region's height becomes higher in the case when we use the observed spectrum rather than the white/pink noise spectrum as the wave generator. This difference can be explained by the Alfvén wave resonance between the photosphere and the transition region. After performing Fourier analysis on our numerical results, we have found that the region between the photosphere and the transition region becomes an Alfvén wave resonant cavity. We have confirmed that there are at least three resonant frequencies, 1, 3, and 5 mHz, in our numerical model. Alfvén wave resonance is one of the most effective mechanisms to explain the dynamics of the spicules and the sufficient energy flux to heat the corona.

  7. The magnetic field of active region 11158 during the 2011 February 12-17 flares: Differences between photospheric extrapolation and coronal forward-fitting methods

    SciTech Connect

    Aschwanden, Markus J.; Sun, Xudong; Liu, Yang E-mail: xudongs@stanford.edu

    2014-04-10

    We developed a coronal nonlinear force-free field (COR-NLFFF) forward-fitting code that fits an approximate nonlinear force-free field (NLFFF) solution to the observed geometry of automatically traced coronal loops. In contrast to photospheric NLFFF codes, which calculate a magnetic field solution from the constraints of the transverse photospheric field, this new code uses coronal constraints instead, and this way provides important information on systematic errors of each magnetic field calculation method, as well as on the non-force-freeness in the lower chromosphere. In this study we applied the COR-NLFFF code to NOAA Active Region 11158, during the time interval of 2011 February 12-17, which includes an X2.2 GOES-class flare plus 35 M- and C-class flares. We calculated the free magnetic energy with a 6 minute cadence over 5 days. We find good agreement between the two types of codes for the total nonpotential E{sub N} and potential energy E{sub P} but find up to a factor of 4 discrepancy in the free energy E {sub free} = E{sub N} – E{sub P} and up to a factor of 10 discrepancy in the decrease of the free energy ΔE {sub free} during flares. The coronal NLFFF code exhibits a larger time variability and yields a decrease of free energy during the flare that is sufficient to satisfy the flare energy budget, while the photospheric NLFFF code shows much less time variability and an order of magnitude less free-energy decrease during flares. The discrepancy may partly be due to the preprocessing of photospheric vector data but more likely is due to the non-force-freeness in the lower chromosphere. We conclude that the coronal field cannot be correctly calculated on the basis of photospheric data alone and requires additional information on coronal loop geometries.

  8. On the efficiency of plasma heating by Pedersen current dissipation from the photosphere to the lower corona

    NASA Astrophysics Data System (ADS)

    Goodman, M. L.

    2004-03-01

    A model is presented that uses the electrical conductivity tensor of a multi-species plasma to estimate the efficiency Q of plasma heating by Pedersen current dissipation as a function of height from the photosphere to the lower corona. The particle densities and temperature are given by FAL model CM. Q is the efficiency with which the electric field generates thermal energy by transferring energy to the current density J⊥ perpendicular to the magnetic field. The energy is then thermalized by collisions. The projection of J⊥ on the driving electric field is the Pedersen current density. Q is the ratio of the actual heating rate due to Pedersen current dissipation to the heating rate when J⊥ is entirely a Pedersen current, which is the maximum possible heating rate for given J⊥. It is found that Pedersen current dissipation is highly efficient throughout the chromosphere, but is highly inefficient in the transition region and corona on the spatial scales of FAL CM. In the photosphere, the electron magnetization, which is the product of the cyclotron frequency and the collision time is so small compared to unity that the conductivity tensor is almost isotropic, implying there is no essential difference between Pedersen current dissipation and magnetic field aligned current dissipation. It is the rapid increase with height of the magnetizations of electrons, protons and metallic ions from ≲ 1 to ≫ 1 beginning near the height of the FAL CM temperature minimum that causes Pedersen current dissipation to become essentially different from magnetic field aligned current dissipation, and that causes Q to rapidly increase from minimum values ˜ 0.1 near the temperature minimum to ˜ 1 in the lower chromosphere. Q remains ˜ 1 up to the transition region in which it precipitously decreases with height to values ≲ 10-10 in the corona. It is proposed that the rapidly increasing magnetization triggers the onset of heating by Pedersen current dissipation that causes

  9. Three-dimensional surface convection simulations of metal-poor stars. The effect of scattering on the photospheric temperature stratification

    NASA Astrophysics Data System (ADS)

    Collet, R.; Hayek, W.; Asplund, M.; Nordlund, Å.; Trampedach, R.; Gudiksen, B.

    2011-04-01

    Context. Three-dimensional (3D) radiative hydrodynamic model atmospheres of metal-poor late-type stars are characterized by cooler upper photospheric layers than their one-dimensional counterparts. This property of 3D model atmospheres can dramatically affect the determination of elemental abundances from temperature-sensitive spectral features, with profound consequences on galactic chemical evolution studies. Aims: We investigate whether the cool surface temperatures predicted by 3D model atmospheres of metal-poor stars can be ascribed to approximations in the treatment of scattering during the modelling phase. Methods: We use the Bifrost code to construct 3D model atmospheres of metal-poor stars and test three different ways to handle scattering in the radiative transfer equation. As a first approach, we solve iteratively the radiative transfer equation for the general case of a source function with a coherent scattering term, treating scattering in a correct and consistent way. As a second approach, we solve the radiative transfer equation in local thermodynamic equilibrium approximation, neglecting altogether the contribution of continuum scattering to extinction in the optically thin layers; this has been the default mode in our previous 3D modelling as well as in present Stagger-Code models. As our third and final approach, we treat continuum scattering as pure absorption everywhere, which is the standard case in the 3D modelling by the CO5BOLD collaboration. Results: For all simulations, we find that the second approach produces temperature structures with cool upper photospheric layers very similar to the case in which scattering is treated correctly. In contrast, treating scattering as pure absorption leads instead to significantly hotter and shallower temperature stratifications. The main differences in temperature structure between our published models computed with the Stagger- and Bifrost codes and those generated with the CO5BOLD code can be traced

  10. Photospheric Magnetic Field Properties of Flaring vs. Flare-Quiet Active Regions I: Data, General Approach, and Statistical Results

    NASA Astrophysics Data System (ADS)

    Leka, K. D.; Barnes, G.

    2003-05-01

    Photospheric vector magnetic field data from the U. Hawai`i Imaging Vector Magnetograph are examined for pre-event signatures unique to solar energetic phenomena. Parameters are constructed from B(x,y) to describe (for example) the distributions of the field, spatial gradients of the field, vertical current, current helicity, ''twist'' parameter α and magnetic shear angles. A quantitative statistical approach employing discriminant analysis and Hotelling's T2-test is applied to the magnitude and temporal evolution of parameters from 24 flare-event and flare-quiet epochs from seven active regions. We demonstrate that (1) when requiring a flare-unique signature, numerous candidate parameters are nullified by considering flare-quiet epochs, (2) a more robust method exists for estimating error rates than conventional ''truth tables'', (3) flaring and flare-quiet populations do not necessarily have low error rates for classification even when statistically distinguishable, and that (4) simultaneous consideration of a large number of variables is required to produce acceptable error rates. That is, when the parameters are considered individually, they show little ability to differentiate between the two populations; multi-variable combinations can discriminate the populations and/or result in perfect classification tables. In lieu of constructing a single all-variable discriminant function to quantify the flare-predictive power of the parameters considered, we devise a method whereby all permutations of the four-variable discriminant functions are ranked by Hotelling's T2. We present those parameters (e.g. the temporal increase of the kurtosis of the spatial distribution of the vertical current density) which consistently appear in the best combinations, indicating that they may play an important role in defining a pre-event photospheric state. While no single combination is clearly the best discriminator, we demonstrate here the requisite approach: include flare

  11. An Early Diagnostics of the Geoeffectiveness of Solar Eruptions from Photospheric Magnetic Flux Observations: The Transition from SOHO to SDO

    NASA Astrophysics Data System (ADS)

    Chertok, I. M.; Grechnev, V. V.; Abunin, A. A.

    2017-04-01

    In our previous articles (Chertok et al. in Solar Phys. 282, 175, 2013; Chertok et al. in Solar Phys. 290, 627, 2015), we presented a preliminary tool for the early diagnostics of the geoeffectiveness of solar eruptions based on the estimate of the total unsigned line-of-sight photospheric magnetic flux in accompanying extreme ultraviolet (EUV) arcades and dimmings. This tool was based on the analysis of eruptions observed during 1996 - 2005 with the Extreme-ultraviolet Imaging Telescope (EIT) and the Michelson Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory (SOHO). Empirical relationships were obtained to estimate the probable importance of upcoming space weather disturbances caused by an eruption, which just occurred, without data on the associated coronal mass ejections. In particular, it was possible to estimate the intensity of a non-recurrent geomagnetic storm (GMS) and Forbush decrease (FD), as well as their onset and peak times. After 2010 - 2011, data on solar eruptions are obtained with the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). We use relatively short intervals of overlapping EIT-AIA and MDI-HMI detailed observations, and additionally, a number of large eruptions over the next five years with the 12-hour cadence EIT images to adapt the SOHO diagnostic tool to SDO data. We show that the adopted brightness thresholds select practically the same areas of arcades and dimmings from the EIT 195 Å and AIA 193 Å image, with a cross-calibration factor of 3.6 - 5.8 (5.0 - 8.2) for the AIA exposure time of 2.0 s (2.9 s). We also find that for the same photospheric areas, the MDI line-of-sight magnetic flux systematically exceeds the HMI flux by a factor of 1.4. Based on these results, the empirical diagnostic relationships obtained from SOHO data are adjusted to SDO instruments. Examples of a post-diagnostics based on SDO data are presented. As before, the

  12. SMM observations of K-alpha radiation from fluorescence of photospheric iron by solar flare X-rays

    NASA Technical Reports Server (NTRS)

    Parmar, A. N.; Culhane, J. L.; Rapley, C. G.; Wolfson, C. J.; Acton, L. W.; Phillips, K. J. H.; Dennis, B. R.

    1984-01-01

    High-resolution Fe K-alpha spectra near 1.94 A observed during solar flares with the Bent Crystal Spectrometer on the Solar Maximum Mission are presented. The evidence for two possible excitation mechanisms, electron impact and fluorescence, is examined. It is found that the fluorescence mechanism satisfactorily describes the results, while the observations do not support electron collisional excitation of the Fe K-alpha transitions in low ionization stages (II-XII) of iron. Using Bai's model of the fluorescent excitation process, the photospheric iron abundance relative to that of hydrogen is estimated to be 5-6 x 10 to the -5th. The mean height of the soft X-ray source producing the K-alpha fluorescence is calculated on the basis of this model for about 40 large flares. The solar K-alpha lines are found to be about 25 percent wider than those measured in the laboratory. Weak line features observed at wavelengths shorter than that of the K-alpha lines are discussed.

  13. Signature of Temporary Burning Front Stalling from a Non-Photospheric Radius Expansion Double-Peaked Burst

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, Sudip; Strohmayer, Tod E.

    2006-01-01

    Non-photospheric-radius-expansion(non-PRE) double-peaked bursts may be explained in terms of spreading (and temporary stalling) of thermonuclear flames on the neutron star surface, as we argued in a previous study of a burst assuming polar ignition. Here we analyze Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) data of such a burst (but with a considerably different intensity profile from the previous one) from the low mass X-ray binary (LMXB) system 4U 1636-536, and show that this model can qualitatively explain the observed burst profile and spectral evolution, if we assume an off-polar, but high-latitude ignition, and burning front stalling at a higher latitude compared to that for the previous burst. The off-polar ignition can account for the millisecond period brightness oscillations detected from this burst. This is the first time oscillations have been seen from such a burst. Our model can qualitatively explain the oscillation amplitude measured during the first (weaker) peak, and the absence of oscillations during the second peak. The higher latitude front stalling facilitates the first clear detection of a signature of this stalling, which is the primary result of this work, and may be useful for understanding thermonuclear flame spreading on neutron stars.

  14. Predicting the near-Sun and Interplanetary Magnetic Field of CMEs using photospheric magnetograms and coronagraph images

    NASA Astrophysics Data System (ADS)

    Patsourakos, Spiros; Georgoulis, Manolis

    2016-04-01

    Earth-directed Coronal Mass Ejections (CMEs) containing a strong southward magnetic-field component upon arrival at 1 AU statistically account for the most powerful geomagnetic storms. Unfortunately, though, we currently lack routine diagnostics of the magnetic field of CMEs and its evolution in the inner heliosphere and the interplanetary (IP) medium. We hereby present a simple, yet powerful and easy-to-implement, method to deduce the near-Sun and IP magnetic field entrained in CMEs, by using photospheric magnetograms of the solar source regions and multi-viewpoint coronagraph images of the corresponding CMEs. The method relies on the principle of magnetic-helicity conservation in low plasma-beta, flux-rope CMEs and a power-law prescription of the radial evolution of the CME magnetic field in the IP medium. We outline a parametric study based on the observed statistics of input parameters to calculate a matrix of magnetic-field solutions for 10000 synthetic CMEs. The robustness and possible limitations / ramifications of the method are deduced by a comparison with the distributions of the predicted CME-ICME magnetic fields at 0.3 and 1 AU using actual Messenger and ACE published observations.

  15. THE INCOMPATIBILITY OF RAPID ROTATION WITH NARROW PHOTOSPHERIC X-RAY LINES IN EXO 0748-676

    SciTech Connect

    Lin Jinrong; Chakrabarty, Deepto; Oezel, Feryal; Psaltis, Dimitrios E-mail: deepto@mit.ed E-mail: dpsaltis@email.arizona.ed

    2010-11-10

    X-ray observations of EXO 0748-676 during thermonuclear bursts revealed a set of narrow ({Delta}{lambda}/{lambda} = 0.018) absorption lines that potentially originate from the stellar photosphere. The identification of these lines with particular atomic transitions led to the measurement of the surface gravitational redshift of the neutron star and to constraints on its mass and radius. However, the recent detection of 552 Hz oscillations at 15% rms amplitude revealed the spin frequency of the neutron star and brought into question the consistency of such a rapid spin with the narrow width of the absorption lines. Here, we calculate the amplitudes of burst oscillations and the width of absorption lines emerging from the surface of a rapidly rotating neutron star for a wide range of model parameters. We show that no combination of neutron star and geometric parameters can simultaneously reproduce the narrowness of the absorption lines, the high amplitude of the oscillations, and the observed flux at the time the oscillations were detected. We, therefore, conclude that the observed absorption lines are unlikely to originate from the surface of this neutron star.

  16. Photospheric models of solar active regions and the network based on the Mg II h and k line wings

    NASA Technical Reports Server (NTRS)

    Morrison, N. D.; Linsky, J. L.

    1978-01-01

    From a comparison between observed and computed wings of the Mg II resonance lines, distributions of temperature versus mass column density for solar photospheric layers in plages and in the chromospheric network are derived. The theoretical profiles are computed assuming partial coherent scattering. In the active regions, temperatures exceed those in the quiet sun by up to 200 K near the temperature minimum and up to 400 K in deeper layers. In the observed network structure, the temperature is enhanced by 200 K at the temperature minimum but is the same as that in the quiet sun at greater depths. The difference in the slope of the temperature distribution between the network and plages is real, but may refer only to long elements of the network rather than to the brightest portions. Adjacent to the network is a region in which the temperatures are similar to those in the quiet sun, except immediately below the temperature minimum, where the temperatures are depressed by 150 K.

  17. A Computational Analysis of the Expanding Photosphere Method and the Distances to Type II-P Supernovae

    NASA Astrophysics Data System (ADS)

    Mitchell, Robert C.; Didier, Brian

    2015-01-01

    We present the results of research into the Expanding Photosphere Method (EPM) and its use in determining the distance to a supernova and the epoch in which the explosion occurred. This research was part of a six-week summer program pairing faculty with undergraduate students, computationally determining the distance and explosion epoch through the EPM's assumption of blackbody luminosity with empirically-derived correction factors. This method was applied to a sampling of supernovae with data sets covering different post-explosion time periods. We compare our distance and explosion epoch calculations to those determined by other means, demonstrate which types of data sets can be more reliably applied to the EPM, and describe the uncertainties involved. Although it is inconclusive for now as to how effective the EPM is as an indicator of the explosion epoch, this research provides further evidence of its effectiveness as an indicator of distance, provided the data set is large enough and covers earlier post-explosion phases of the supernova.

  18. Photospheric Stratification of a Central Umbral Dot Using Stokes Profiles Recorded by Hinode: A Different Single-Case Study

    NASA Astrophysics Data System (ADS)

    Hamedivafa, H.

    2013-09-01

    We aim to study the physical nature of a central umbral dot (UD) close to disk center by analyzing full-Stokes spectra of the two Fe i lines at 630 nm recorded by the spectropolarimeter on Hinode. Thermal and magnetic properties of the UD were directly inferred from Stokes profiles. Then, we applied the inversion code SIR to retrieve a single-component magnetic model atmosphere that recovers the observed full-Stokes profiles. The inversion results and direct inferences from the iron line pair are consistent. The studied UD does not show any signatures of upflows, but tends to show downflows. At the deeper-half of the photosphere (log τ>-1.0), the UD exhibits rapid changes in temperature with respect to its surroundings. The UD has a large magnetic field strength of about 3000 G without significant reduction at its center. Magnetic field lines are more vertical and twisted in the UD area than in the magnetic field of its surroundings. To explain the observational findings, we propose that the UD perturbs the funnel magnetic field of the umbra, making a tilt-ankle-knee configuration. A new interesting inference, deduced from the blending spectral lines in the observed wavelength interval, is that the shape and surface span of the UD in normalized intensity filtergrams computed at the core of the blending lines differ from the UD area seen in continuum intensity and in the filtergrams computed at the core of the iron line pair.

  19. The Effects of Magnetic Field Morphology on the Determination of Oxygen and Iron Abundances in the Solar Photosphere

    NASA Astrophysics Data System (ADS)

    Moore, Christopher S.; Uitenbroek, Han; Rempel, Matthias; Criscuoli, Serena; Rast, Mark

    2016-01-01

    The solar chemical abundance (or a scaled version of it) is implemented in numerous astrophysical analyses. Thus, an accurate and precise estimation of the solar elemental abundance is crucial in astrophysics.We have explored the impact of magnetic fields on the determination of the solar photospheric oxygen andiron abundances using 3D radiation-magnetohydrodynamic (MHD) simulations of convection. Specifically, weexamined differences in abundance deduced from three classes of atmospheres simulated with the MURaM code: apure hydrodynamic (HD) simulation, an MHD simulation with a local dynamo magnetic field that has saturated withan unsigned vertical field strength of 80 G at the optical depth unity surface, and an MHD simulation with an initially imposed vertical mean field of 80 G. We use differential equivalent width analysis for diagnosing abundances derived from five oxygen and four iron spectral lines of differing wavelength, oscillator strength, excitation potential, and Lande g-factor, and find that the morphology of the magnetic field is important to the outcome of abundance determinations. The largest deduced abundance differences are found in the vertical mean field simulations and small scale unresolved field resulting from the local dynamo has a smaller impact on abundance determinations.

  20. EFFECTS OF THE NON-RADIAL MAGNETIC FIELD ON MEASURING MAGNETIC HELICITY TRANSPORT ACROSS THE SOLAR PHOTOSPHERE

    SciTech Connect

    Song, Y. L.; Zhang, M.

    2015-05-10

    It is generally believed that the evolution of magnetic helicity has a close relationship with solar activity. Before the launch of the Solar Dynamics Observatory (SDO), earlier studies had mostly used Michelson Doppler Imager/SOHO line of sight (LOS) magnetograms and assumed that magnetic fields are radial when calculating the magnetic helicity injection rate from photospheric magnetograms. However, this assumption is not necessarily true. Here we use the vector magnetograms and LOS magnetograms, both taken by the Helioseismic and Magnetic Imager on SDO, to estimate the effects of the non-radial magnetic field on measuring the magnetic helicity injection rate. We find that: (1) the effect of the non-radial magnetic field on estimating tangential velocity is relatively small; (2) when estimating the magnetic helicity injection rate, the effect of the non-radial magnetic field is strong when active regions are observed near the limb and is relatively weak when active regions are close to disk center; and (3) the effect of the non-radial magnetic field becomes minor if the amount of accumulated magnetic helicity is the only concern.

  1. Simultaneous soft and hard X-ray spectroscopy of AM Herculis with EXOSAT: Discovery of photospheric absorption features

    NASA Technical Reports Server (NTRS)

    Paerels, Frits; Heise, John; Teeseling, Andre Van

    1994-01-01

    We present 0.1-10 keV spectroscopic observations of AM Herculis obtained with the Transmission Grating Spectrometers and Medium Energy experiments on EXOSAT, taken when the object was in its 'reversed X-ray mode.' The observation covers over six binary orbits without interruption, enabling us to analyze the phase and intensity dependence of both the hard and the soft spectrum simultaneously. We resolve the optically thick soft X-ray spectrum, and find definite evidence for time- and phase-dependent photospheric absorption structure arising in the white dwarf atmosphere. We present a simple empirical analysis of the combined soft and hard X-ray spectra, to examine whether the effect of a better determination of the column density of neutral absorbing material, afforded by our data, would solve the problem of the large relative soft X-ray overluminosity previously observed in AM Her. We find that a single absorbing column fits the entire spectrum, and that the column densities implied are indeed substantially lower than previously estimated. However, during half the binary orbit we still determine a strong lower limit to the soft-to-hard luminosity ratio of L(sub soft)/L(sub hard) is greater than or approximately equal to 10, in conflict with the simple radiative shock models for the accretion region. We argue that this indicates the need to reexamine the luminosity problem using explicit models for the emission spectrum based on a full solution of the atmospheric radiative transfer problem.

  2. RADIATION-HYDRODYNAMICAL MODELING OF CORE-COLLAPSE SUPERNOVAE: LIGHT CURVES AND THE EVOLUTION OF PHOTOSPHERIC VELOCITY AND TEMPERATURE

    SciTech Connect

    Pumo, M. L.; Zampieri, L.

    2011-11-01

    We have developed a relativistic, radiation-hydrodynamics Lagrangian code, specifically tailored to simulate the evolution of the main observables (light curve and the evolution of photospheric velocity and temperature) in core-collapse supernova (CC-SN) events. The distinctive features of the code are an accurate treatment of radiative transfer coupled to relativistic hydrodynamics, a self-consistent treatment of the evolution of the innermost ejecta taking into account the gravitational effects of the central compact remnant, and a fully implicit Lagrangian approach to the solution of the coupled nonlinear finite difference system of equations. Our aim is to use it as a numerical tool to perform calculations of a grid of models to be compared with observations of CC-SNe. In this paper, we present some testcase simulations and a comparison with observations of SN 1987A, as well as with the results obtained with other numerical codes. We also briefly discuss the influence of the main physical parameters (ejected mass, progenitor radius, explosion energy, amount of {sup 56}Ni) on the evolution of the ejecta, and the implications of our results in connection with the possibility to 'standardize' hydrogen-rich CC-SNe for using them as candles to measure cosmological distances.

  3. UNRESOLVED MIXED POLARITY MAGNETIC FIELDS AT FLUX CANCELLATION SITE IN SOLAR PHOTOSPHERE AT 0.''3 SPATIAL RESOLUTION

    SciTech Connect

    Kubo, Masahito; Low, Boon Chye; Lites, Bruce W

    2014-09-20

    This is a follow-up investigation of a magnetic flux cancellation event at a polarity inversion line (PIL) on the Sun observed with the spectropolarimeter on board Hinode. Anomalous circular polarization (Stokes V) profiles are observed in the photosphere along the PIL at the cancellation sites. Kubo et al. previously reported that the theoretically expected horizontal fields between the canceling opposite-polarity magnetic elements in this event are not detected at granular scales. We show that the observed anomalous Stokes V profiles are reproduced successfully by adding the nearly symmetric Stokes V profiles observed at pixels immediately adjacent to the PIL. This result suggests that these observed anomalous Stokes V profiles are not indications of a flux removal process, but are the result of either a mixture of unresolved, opposite-polarity magnetic elements or the unresolved width of the PIL, at an estimated resolution element of about 0.''3. The hitherto undetected flux removal process accounting for the larger-scale disappearance of magnetic flux during the observing period is likely to also fall below resolution.

  4. Impulsive solar X-ray bursts. 4: Polarization, directivity and spectrum of the reflected and total bremsstrahlung radiation from a beam of electrons directed toward the photosphere

    NASA Technical Reports Server (NTRS)

    Langer, S. H.; Petrosian, V.

    1976-01-01

    A Monte Carlo method is described for evaluation of the spectrum, directivity and polarization of X-rays diffusely reflected from stellar photospheres. the accuracy of the technique is evaluated through comparison with analytic results. Using the characteristics of the incident X-rays of the model for solar X-ray flares, the spectrum, directivity and polarization of the reflected and the total X-ray fluxes are evaluated. The results are compared with observations.

  5. Photospheric, circumstellar, and interstellar features of HE, C, N. O, and Si in the HST spectra of four hot white dwarf stars

    NASA Technical Reports Server (NTRS)

    Shipman, Harry L.; Provencal, Judi; Roby, Scott W.; Barstow, Martin; Bond, Howard; Bruhweiler, Fred; Finley, David; Fontaine, Gilles; Holberg, Jay; Nousek, John

    1995-01-01

    This paper reports on the observations of four hot white dwarf stars with the spectrographs on the Hubble Space Telescope (HST). The higher resolving power and higher signal/noise, in comparison with IUE, reveals a very rich phenomomenology, including photospheric features from heavy elements, circumstellar features, and the first direct detection of accretion onto the white dwarf component of a binary system. Specific results include the following: Our observations of the ultrahot degenerate H1504+65 confirm that it has a photosphere which is depleted in both H and He, and reveals features of C IV and O VI. The spectrum fits previously published models extremely well. The intermediate-temperature DO star PG 1034+001 has an ultraviolet spectrum showing complex profiles of the well-known resonance doublets of C IV, N v, and Si IV. The O V 1371 line shows a clear separation into a photospheric and a circumstellar component, and it is likely that the same two components can explain the other lines as well. The cooler DA star GD 394 has an extensive system of heavy-element features, but their radial velocity is such that it is highly unlikely that they are formed in the stellar photosphere. Time-resolved spectra of the accreting white dwarf in the V 471 Tau binary system are briefly presented here; they do show the presence of C IV, Si IV, and He II. However, the C IV and He II lines are in emission, rather than in aborption as had been expected.

  6. Propagation of Torsional Alfvén Waves from the Photosphere to the Corona: Reflection, Transmission, and Heating in Expanding Flux Tubes

    NASA Astrophysics Data System (ADS)

    Soler, Roberto; Terradas, Jaume; Oliver, Ramón; Ballester, José Luis

    2017-05-01

    It has been proposed that Alfvén waves play an important role in the energy propagation through the solar atmospheric plasma and its heating. Here we theoretically investigate the propagation of torsional Alfvén waves in magnetic flux tubes expanding from the photosphere up to the low corona and explore the reflection, transmission, and dissipation of wave energy. We use a realistic variation of the plasma properties and the magnetic field strength with height. Dissipation by ion-neutral collisions in the chromosphere is included using a multifluid partially ionized plasma model. Considering the stationary state, we assume that the waves are driven below the photosphere and propagate to the corona, while they are partially reflected and damped in the chromosphere and transition region. The results reveal the existence of three different propagation regimes depending on the wave frequency: low frequencies are reflected back to the photosphere, intermediate frequencies are transmitted to the corona, and high frequencies are completely damped in the chromosphere. The frequency of maximum transmissivity depends on the magnetic field expansion rate and the atmospheric model, but is typically in the range of 0.04-0.3 Hz. Magnetic field expansion favors the transmission of waves to the corona and lowers the reflectivity of the chromosphere and transition region compared to the case with a straight field. As a consequence, the chromospheric heating due to ion-neutral dissipation systematically decreases when the expansion rate of the magnetic flux tube increases.

  7. Towards understanding magnetic field generation in relativistic shocks with GRB afterglow observations and the GRB radiation mechanism with photospheric simulations and the X-ray flare radiation mechanism

    NASA Astrophysics Data System (ADS)

    Santana, Rodolfo

    2015-12-01

    In this thesis, we present three projects on open questions in the Gammaray Burst (GRB) field. In the first project, we used X-ray and optical observations to determine the amount of amplification of the ISM magnetic field needed to explain the GRB afterglow observations. We determined that mild amplification is required, at a level stronger than shock-compression but weaker than predicted by the Weibel mechanism. In the second project, we present a Monte Carlo code we wrote from scratch to perform realistic simulations of the photospheric process, one of the mechanisms considered to explain the GRB gamma-ray emission. We determined that photospheric emission can explain the GRB gamma-ray spectrum above the peak-energy if the photons are taken to have a temperature much smaller than the electron temperature and if the interactions between photons and electrons take place at a large optical depth. In the third project, we used multi-wavelength observations to constrain the X-ray flare radiation mechanism. We determined that synchrotron from a Poynting jet and the Photospheric process are the best candidates to explain the X-ray flare observations.

  8. Study of the inner dust envelope and stellar photosphere of the AGB star R Doradus using SPHERE/ZIMPOL

    NASA Astrophysics Data System (ADS)

    Khouri, T.; Maercker, M.; Waters, L. B. F. M.; Vlemmings, W. H. T.; Kervella, P.; de Koter, A.; Ginski, C.; De Beck, E.; Decin, L.; Min, M.; Dominik, C.; O'Gorman, E.; Schmid, H.-M.; Lombaert, R.; Lagadec, E.

    2016-06-01

    Context. On the asymptotic giant branch (AGB) low- and intermediate-mass stars eject a large fraction of their envelope, but the mechanism driving these outflows is still poorly understood. For oxygen-rich AGB stars, the wind is thought to be driven by radiation pressure caused by scattering of radiation off dust grains. Aims: We study the photosphere, the warm molecular layer, and the inner wind of the close-by oxygen-rich AGB star R Doradus. We focus on investigating the spatial distribution of the dust grains that scatter light and whether these grains can be responsible for driving the outflow of this star. Methods: We use high-angular-resolution images obtained with SPHERE/ZIMPOL to study R Dor and its inner envelope in a novel way. We present observations in filters V, cntHα, and cnt820 and investigate the surface brightness distribution of the star and of the polarised light produced in the inner envelope. Thanks to second-epoch observations in cntHα, we are able to see variability on the stellar photosphere. We study the polarised-light data using a continuum-radiative-transfer code that accounts for direction-dependent scattering of photons off dust grains. Results: We find that in the first epoch the surface brightness of R Dor is asymmetric in V and cntHα, the filters where molecular opacity is stronger, while in cnt820 the surface brightness is closer to being axisymmetric. The second-epoch observations in cntHα show that the morphology of R Dor has changed completely in a timespan of 48 days to a more axisymmetric and compact configuration. This variable morphology is probably linked to changes in the opacity provided by TiO molecules in the extended atmosphere. The observations show polarised light coming from a region around the central star. The inner radius of the region from where polarised light is seen varies only by a small amount with azimuth. The value of the polarised intensity, however, varies by between a factor of 2.3 and 3.7 with

  9. MODELING THE ROSSITER–MCLAUGHLIN EFFECT: IMPACT OF THE CONVECTIVE CENTER-TO-LIMB VARIATIONS IN THE STELLAR PHOTOSPHERE

    SciTech Connect

    Cegla, H. M.; Watson, C. A.; Oshagh, M.; Figueira, P.; Santos, N. C.; Shelyag, S.

    2016-03-01

    Observations of the Rossiter–McLaughlin (RM) effect provide information on star–planet alignments, which can inform planetary migration and evolution theories. Here, we go beyond the classical RM modeling and explore the impact of a convective blueshift that varies across the stellar disk and non-Gaussian stellar photospheric profiles. We simulated an aligned hot Jupiter with a four-day orbit about a Sun-like star and injected center-to-limb velocity (and profile shape) variations based on radiative 3D magnetohydrodynamic simulations of solar surface convection. The residuals between our modeling and classical RM modeling were dependent on the intrinsic profile width and v sin i; the amplitude of the residuals increased with increasing v sin i and with decreasing intrinsic profile width. For slowly rotating stars the center-to-limb convective variation dominated the residuals (with amplitudes of 10 s of cm s{sup −1} to ∼1 m s{sup −1}); however, for faster rotating stars the dominant residual signature was due a non-Gaussian intrinsic profile (with amplitudes from 0.5 to 9 m s{sup −1}). When the impact factor was 0, neglecting to account for the convective center-to-limb variation led to an uncertainty in the obliquity of ∼10°–20°, even though the true v sin i was known. Additionally, neglecting to properly model an asymmetric intrinsic profile had a greater impact for more rapidly rotating stars (e.g., v sin i = 6 km s{sup −1}) and caused systematic errors on the order of ∼20° in the measured obliquities. Hence, neglecting the impact of stellar surface convection may bias star–planet alignment measurements and consequently theories on planetary migration and evolution.

  10. The photospheric abundances of active binaries. II. Atmospheric parameters and abundance patterns for 6 single-lined RS CVn systems

    NASA Astrophysics Data System (ADS)

    Morel, T.; Micela, G.; Favata, F.; Katz, D.; Pillitteri, I.

    2003-12-01

    Photospheric parameters and abundances are presented for a sample of single-lined chromospherically active binaries from a differential LTE analysis of high-resolution spectra. Abundances have been derived for 13 chemical species, including several key elements such as Li, Mg, and Ca. Two methods have been used. The effective temperatures, surface gravities and microturbulent velocities were first derived from a fully self-consistent analysis of the spectra, whereby the temperature is determined from the excitation equilibrium of the Fe I lines. The second approach relies on temperatures derived from the (B-V) colour index. These two methods give broadly consistent results for the stars in our sample, suggesting that the neutral iron lines are formed under conditions close to LTE. We discuss the reliability in the context of chromospherically active stars of various colour indices used as temperature indicators, and conclude that the (V-R) and (V-I) colours are likely to be significantly affected by activity processes. Irrespective of the method used, our results indicate that the X-ray active binaries studied are not as metal poor as previously claimed, but are at most mildly iron-depleted relative to the Sun (-0.41protect <~ [Fe/H]protect la +0.11). A significant overabundance of several chemical species is observed (e.g., the alpha -synthezised elements). These abundance patterns are discussed in relation to stellar activity. Based on observations collected at ESO (La Silla, Chile). Table A.1 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/412/495

  11. Brown dwarf photospheres are patchy: A Hubble space telescope near-infrared spectroscopic survey finds frequent low-level variability

    SciTech Connect

    Buenzli, Esther; Apai, Dániel; Radigan, Jacqueline; Reid, I. Neill; Flateau, Davin

    2014-02-20

    Condensate clouds strongly impact the spectra of brown dwarfs and exoplanets. Recent discoveries of variable L/T transition dwarfs argued for patchy clouds in at least some ultracool atmospheres. This study aims to measure the frequency and level of spectral variability in brown dwarfs and to search for correlations with spectral type. We used Hubble Space Telescope/Wide Field Camera 3 to obtain spectroscopic time series for 22 brown dwarfs of spectral types ranging from L5 to T6 at 1.1-1.7 μm for ≈40 minutes per object. Using Bayesian analysis, we find six brown dwarfs with confident (p > 95%) variability in the relative flux in at least one wavelength region at sub-percent precision, and five brown dwarfs with tentative (p > 68%) variability. We derive a minimum variability fraction f{sub min}=27{sub −7}{sup +11}% over all covered spectral types. The fraction of variables is equal within errors for mid-L, late-L, and mid-T spectral types; for early-T dwarfs we do not find any confident variable but the sample is too small to derive meaningful limits. For some objects, the variability occurs primarily in the flux peak in the J or H band, others are variable throughout the spectrum or only in specific absorption regions. Four sources may have broadband peak-to-peak amplitudes exceeding 1%. Our measurements are not sensitive to very long periods, inclinations near pole-on and rotationally symmetric heterogeneity. The detection statistics are consistent with most brown dwarf photospheres being patchy. While multiple-percent near-infrared variability may be rare and confined to the L/T transition, low-level heterogeneities are a frequent characteristic of brown dwarf atmospheres.

  12. Hinode Observation of Photospheric Magnetic Activities Triggering X-ray Microflares Around a Well-developed Sunspot

    NASA Astrophysics Data System (ADS)

    Kano, R.; Shimizu, T.; Tarbell, T. D.

    2010-09-01

    Microflares, which are small energetic events in the solar corona, are an example of dynamical phenomena suitable for understanding energy release processes in the solar corona. We identified 55 microflares around a well-developed sunspot surrounded by a moat with high-cadence X-ray images from the Hinode X-ray Telescope, and searched for their photospheric counterparts in line-of-sight magnetograms taken with the Hinode Solar Optical Telescope. We found opposite magnetic polarities encountering each other around the footpoints of 28 microflares, while we could not find such encounters around the footpoints of the other 27 microflares. Emerging magnetic fluxes in the moat were the dominant origin causing the encounters of opposite polarities (21 of 28 events). Unipolar moving magnetic features (MMFs) with negative polarities the same as the sunspot definitely caused the encounters of opposite polarities for five microflares. The decrease of magnetic flux, i.e., magnetic flux cancellation, was confirmed at the encountering site in typical examples of microflares. Microflares were not isotropically distributed around the spot; the microflares with emerging magnetic fluxes (EMFs) were observed in the direction where magnetic islands with the same polarity as the spot were located at the outer boundary of the moat, while the microflares with negative MMFs were observed in the direction where magnetic islands with polarity opposite to the spot were located at the outer boundary of the moat. We also found that EMFs in the moat had a unique orientation in which those with the same polarity as the spot is closer to the spot than the other one that had the opposite polarity to the spot. These observational results lead to two magnetic configurations including magnetic reconnection for triggering energy release at least in half of the microflares around the spot, and suggest that the global magnetic structures around the spot strongly affect what kinds of polarity encounters

  13. Modeling the Rossiter-McLaughlin Effect: Impact of the Convective Center-to-limb Variations in the Stellar Photosphere

    NASA Astrophysics Data System (ADS)

    Cegla, H. M.; Oshagh, M.; Watson, C. A.; Figueira, P.; Santos, N. C.; Shelyag, S.

    2016-03-01

    Observations of the Rossiter-McLaughlin (RM) effect provide information on star-planet alignments, which can inform planetary migration and evolution theories. Here, we go beyond the classical RM modeling and explore the impact of a convective blueshift that varies across the stellar disk and non-Gaussian stellar photospheric profiles. We simulated an aligned hot Jupiter with a four-day orbit about a Sun-like star and injected center-to-limb velocity (and profile shape) variations based on radiative 3D magnetohydrodynamic simulations of solar surface convection. The residuals between our modeling and classical RM modeling were dependent on the intrinsic profile width and v sin i; the amplitude of the residuals increased with increasing v sin i and with decreasing intrinsic profile width. For slowly rotating stars the center-to-limb convective variation dominated the residuals (with amplitudes of 10 s of cm s-1 to ˜1 m s-1) however, for faster rotating stars the dominant residual signature was due a non-Gaussian intrinsic profile (with amplitudes from 0.5 to 9 m s-1). When the impact factor was 0, neglecting to account for the convective center-to-limb variation led to an uncertainty in the obliquity of ˜10°-20°, even though the true v sin i was known. Additionally, neglecting to properly model an asymmetric intrinsic profile had a greater impact for more rapidly rotating stars (e.g., v sin i = 6 km s-1) and caused systematic errors on the order of ˜20° in the measured obliquities. Hence, neglecting the impact of stellar surface convection may bias star-planet alignment measurements and consequently theories on planetary migration and evolution.

  14. Photosphere emission in the X-ray flares of swift gamma-ray bursts and implications for the fireball properties

    SciTech Connect

    Peng, Fang-Kun; Liang, En-Wei; Xi, Shao-Qiang; Lu, Rui-Jing; Zhang, Bing; Wang, Xiang-Yu; Hou, Shu-Jin; Zhang, Jin E-mail: xywang@nju.edu.cn

    2014-11-10

    X-ray flares of gamma-ray bursts (GRBs) are usually observed in the soft X-ray range and the spectral coverage is limited. In this paper, we present an analysis of 32 GRB X-ray flares that are simultaneously observed by both Burst Alert Telescope and X-Ray Telescope on board the Swift mission, so that a joint spectral analysis with a wider spectral coverage is possible. Our results show that the joint spectra of 19 flares are fitted with the absorbed single power law or the Band function models. More interestingly, the joint spectra of the other 13 X-ray flares are fitted with the absorbed single power-law model plus a blackbody component. Phenomenally, the observed spectra of these 13 flares are analogous to several GRBs with a thermal component, but only with a much lower temperature of kT = 1 ∼ 3 keV. Assuming that the thermal emission is the photosphere emission of the GRB fireball, we derive the fireball properties of the 13 flares that have redshift measurements, such as the bulk Lorentz factor Γ{sub ph} of the outflow. The derived Γ{sub ph} range from 50 to 150 and a relation of Γ{sub ph} to the thermal emission luminosity is found. It is consistent with the Γ{sub 0} – L {sub iso} relations that are derived for the prompt gamma-ray emission. We discuss the physical implications of these results within the content of jet composition and the radiation mechanism of GRBs and X-ray flares.

  15. THE EFFECTS OF MAGNETIC FIELD MORPHOLOGY ON THE DETERMINATION OF OXYGEN AND IRON ABUNDANCES IN THE SOLAR PHOTOSPHERE

    SciTech Connect

    Moore, Christopher S.; Uitenbroek, Han; Criscuoli, Serena; Rempel, Matthias; Rast, Mark P.

    2015-02-01

    We have explored the impact of magnetic fields on the determination of the solar photospheric oxygen and iron abundances using three-dimensional radiation-magnetohydrodynamic (MHD) simulations of convection. Specifically, we examined differences in abundance deduced from three classes of atmospheres simulated with the MURaM code: a pure hydrodynamic (HD) simulation, an MHD simulation with a local dynamo magnetic field that has saturated with an unsigned vertical field strength of 80 G at τ = 1, and an MHD simulation with an initially imposed vertical mean field of 80 G. We use differential equivalent width analysis for diagnosing abundances derived from five oxygen and four iron lines of differing wavelength, oscillator strength, excitation potential, and Landé g-factor, and find that the morphology of the magnetic field is important to the outcome of abundance determinations. The largest deduced abundance differences are found in the vertical mean field simulations, where the O I and Fe I abundance corrections compared to the pure HD case are ∼+0.011 dex and +0.065 dex respectively. Small scale unresolved field resulting from the local dynamo has a smaller impact on abundance determinations, with corrections of –0.0001 dex and +0.0044 dex in the magnetized compared to the pure HD simulations. While the overall influence of magnetic field on abundance estimates is found to be small, we stress that such estimates are sensitive not only to the magnitude of magnetic field but also to its morphology.

  16. Photospheric magnetic fields

    NASA Technical Reports Server (NTRS)

    Howard, R.

    1972-01-01

    Knowledge on the nature of magnetic fields on the solar surface is reviewed. At least a large part of the magnetic flux in the solar surface is confined to small bundles of lines of force within which the field strength is of the order of 500 gauss. Magnetic fields are closely associated with all types of solar activity. Magnetic flux appears at the surface at the clearly defined birth or regeneration of activity of an active region. As the region ages, the magnetic flux migrates to form large-scale patterns and the polar fields. Some manifestations of the large-scale distribution are discussed.

  17. Segmentation of photospheric magnetic elements corresponding to coronal features to understand the EUV and UV irradiance variability

    NASA Astrophysics Data System (ADS)

    Zender, J. J.; Kariyappa, R.; Giono, G.; Bergmann, M.; Delouille, V.; Damé, L.; Hochedez, J.-F.; Kumara, S. T.

    2017-09-01

    Context. The magnetic field plays a dominant role in the solar irradiance variability. Determining the contribution of various magnetic features to this variability is important in the context of heliospheric studies and Sun-Earth connection. Aims: We studied the solar irradiance variability and its association with the underlying magnetic field for a period of five years (January 2011-January 2016). We used observations from the Large Yield Radiometer (LYRA), the Sun Watcher with Active Pixel System detector and Image Processing (SWAP) on board PROBA2, the Atmospheric Imaging Assembly (AIA), and the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Methods: The Spatial Possibilistic Clustering Algorithm (SPoCA) is applied to the extreme ultraviolet (EUV) observations obtained from the AIA to segregate coronal features by creating segmentation maps of active regions (ARs), coronal holes (CHs) and the quiet sun (QS). Further, these maps are applied to the full-disk SWAP intensity images and the full-disk (FD) HMI line-of-sight (LOS) magnetograms to isolate the SWAP coronal features and photospheric magnetic counterparts, respectively. We then computed full-disk and feature-wise averages of EUV intensity and line of sight (LOS) magnetic flux density over ARs/CHs/QS/FD. The variability in these quantities is compared with that of LYRA irradiance values. Results: Variations in the quantities resulting from the segmentation, namely the integrated intensity and the total magnetic flux density of ARs/CHs/QS/FD regions, are compared with the LYRA irradiance variations. We find that the EUV intensity over ARs/CHs/QS/FD is well correlated with the underlying magnetic field. In addition, variations in the full-disk integrated intensity and magnetic flux density values are correlated with the LYRA irradiance variations. Conclusions: Using the segmented coronal features observed in the EUV wavelengths as proxies to isolate the underlying

  18. HMI Data Driven Magnetohydrodynamic Model Predicted Active Region Photospheric Heating Rates: Their Scale Invariant, Flare Like Power Law Distributions, and Their Possible Association With Flares

    NASA Technical Reports Server (NTRS)

    Goodman, Michael L.; Kwan, Chiman; Ayhan, Bulent; Shang, Eric L.

    2017-01-01

    A data driven, near photospheric, 3 D, non-force free magnetohydrodynamic model pre- dicts time series of the complete current density, and the resistive heating rate Q at the photosphere in neutral line regions (NLRs) of 14 active regions (ARs). The model is driven by time series of the magnetic field B observed by the Helioseismic & Magnetic Imager on the Solar Dynamics Observatory (SDO) satellite. Spurious Doppler periods due to SDO orbital motion are filtered out of the time series for B in every AR pixel. Errors in B due to these periods can be significant. The number of occurrences N(q) of values of Q > or = q for each AR time series is found to be a scale invariant power law distribution, N(Q) / Q-s, above an AR dependent threshold value of Q, where 0.3952 < or = s < or = 0.5298 with mean and standard deviation of 0.4678 and 0.0454, indicating little variation between ARs. Observations show that the number of occurrences N(E) of coronal flares with a total energy released > or = E obeys the same type of distribution, N(E) / E-S, above an AR dependent threshold value of E, with 0.38 < or approx. S < or approx. 0.60, also with little variation among ARs. Within error margins the ranges of s and S are nearly identical. This strong similarity between N(Q) and N(E) suggests a fundamental connection between the process that drives coronal flares and the process that drives photospheric NLR heating rates in ARs. In addition, results suggest it is plausible that spikes in Q, several orders of magnitude above background values, are correlated with times of the subsequent occurrence of M or X flares.

  19. HMI Data Driven Magnetohydrodynamic Model Predicted Active Region Photospheric Heating Rates: Their Scale Invariant, Flare Like Power Law Distributions, and Their Possible Association With Flares

    NASA Technical Reports Server (NTRS)

    Goodman, Michael L.; Kwan, Chiman; Ayhan, Bulent; Shang, Eric L.

    2017-01-01

    A data driven, near photospheric, 3 D, non-force free magnetohydrodynamic model predicts time series of the complete current density, and the resistive heating rate Q at the photosphere in neutral line regions (NLRs) of 14 active regions (ARs). The model is driven by time series of the magnetic field B observed by the Helioseismic and Magnetic Imager on the Solar Dynamics Observatory (SDO) satellite. Spurious Doppler periods due to SDO orbital motion are filtered out of the time series for B in every AR pixel. Errors in B due to these periods can be significant. The number of occurrences N(q) of values of Q > or = q for each AR time series is found to be a scale invariant power law distribution, N(Q) / Q-s, above an AR dependent threshold value of Q, where 0.3952 < or = s < or = 0.5298 with mean and standard deviation of 0.4678 and 0.0454, indicating little variation between ARs. Observations show that the number of occurrences N(E) of coronal flares with a total energy released > or = E obeys the same type of distribution, N(E) / E-S, above an AR dependent threshold value of E, with 0.38 < or approx. S < or approx. 0.60, also with little variation among ARs. Within error margins the ranges of s and S are nearly identical. This strong similarity between N(Q) and N(E) suggests a fundamental connection between the process that drives coronal flares and the process that drives photospheric NLR heating rates in ARs. In addition, results suggest it is plausible that spikes in Q, several orders of magnitude above background values, are correlated with times of the subsequent occurrence of M or X flares.

  20. 3D Collision of Active Region-Sized Emerging Flux Tubes in the Solar Convection Zone and its Manifestation in the Photospheric Surface

    NASA Astrophysics Data System (ADS)

    Chintzoglou, Georgios; Cheung, Mark; Rempel, Matthias D.

    2017-08-01

    We present observations obtained with the Solar Dynamics Observatory’s Helioseismic Magnetic Imager (SDO/HMI) of target NOAA Active Regions (AR) 12017 and 12644, which initially were comprised of a simple bipole and later on became quadrupolar via parasitic bipole emergence right next to their leading polarities. Once these ARs became quadrupolar, they spewed multiple Coronal Mass Ejections (CMEs) and a multitude of highly energetic flares (a large number of M class flares). The proximity of the parasitic bipole to one of the two pre-existing sunspots forms a compact polarity inversion line (PIL). This type of quadrupolar ARs are known to be very flare- and CME-productive due to the continuous interaction of newly emerging non-potential flux with pre-existing flux in the photosphere. We show that well before the emergence of the parasitic bipole, the pre-existing polarity (typically a well-developed sunspot) undergoes interesting precursor dynamic evolution, namely (a) displacement of pre-existing sunspot’s position, (b) progressive and significant oblateness of its initially nearly-circular shape, and (c) opposite polarity enhancement in the divergent moat flow around the sunspot. We employ high-resolution radiative-convective 3D MHD simulations of an emerging parasitic bipole to show that all these activity aspects seen in the photosphere are associated with the collision of a parasitic bipole with the nearby pre-existing polarity below the photospheric surface. Given the rich flare and CME productivity of this class of ARs and the precursor-like dynamic evolution of the pre-existing polarity, this work presents the potential for predicting inclement space weather.

  1. Photospheric Magnetic Field Properties of Flaring vs. Flare-Quiet Active Regions II: A Magnetic Charge Topology Model and Statistical Results

    NASA Astrophysics Data System (ADS)

    Barnes, G.; Leka, K. D.; Longcope, D. W.

    2003-05-01

    The complexity of the coronal magnetic field extrapolated from a Magnetic Charge Topology (MCT) model, is examined for pre-event signatures unique to solar energetic phenomena. Although extensive use has been made of quantities measured at the photosphere, it is important to consider the magnetic field in the corona, where (for example) the hard X-ray signatures of energy release in solar flares are observed. By quantifying the inferred coronal magnetic topology we are no longer limited to considering solely the magnetic state of the photosphere. MCT is applied to temporally sampled photospheric magnetic data from the U. Hawai`i Imaging Vector Magnetograph, for 24 flare-event and flare-quiet epochs from seven active regions. We outline the methodology employed for automating the application of MCT to large data sets of complex active regions: partitioning the observed Bz at the photosphere, assigning a charge to each partition, and using this charge distribution to extrapolate the field in the corona. From the resulting field we compute the connectivity matrix ψ ij, the location of null points and the intersection of separatrix surfaces, i.e. separator field lines. Parameters are constructed to describe, for example, the magnetic connectivities, the magnetic flux in those connections, and the number of separators. Examining particular events results in no obvious trends in the magnitude and temporal evolution of the parameters just prior to flare events. Thus, we employ the same quantitative statistical approach outlined in Leka and Barnes [this session], i.e. applying discriminant analysis and Hotelling's T2-test, and ranking all four-variable discriminant functions as a proxy for a single all-variable discriminant function. We present those parameters which consistently appear in the best combinations, indicating that they may play an important role in defining a pre-event coronal state. This work was performed under Air Force Office of Scientific Research

  2. Solar winds driven by nonlinear low-frequency Alfvén waves from the photosphere: Parametric study for fast/slow winds and disappearance of solar winds

    NASA Astrophysics Data System (ADS)

    Suzuki, Takeru K.; Inutsuka, Shu-Ichiro

    2006-06-01

    We investigate how properties of the corona and solar wind in open coronal holes depend on properties of magnetic fields and their footpoint motions at the surface. We perform one-dimensional magnetohydrodynamical (MHD) simulations for the heating and the acceleration in coronal holes by low-frequency Alfvén waves from the photosphere to 0.3 or 0.1 AU. We impose low-frequency (≲0.05 Hz) transverse fluctuations of the field lines at the photosphere with various amplitude, spectrum, and polarization in the open flux tubes with different photospheric field strength, Br,0, and superradial expansion of the cross section, fmax. We find that transonic solar winds are universal consequences. The atmosphere is also stably heated up to ≳106 K by the dissipation of the Alfvén waves through compressive-wave generation and wave reflection in the cases of the sufficient wave input with photospheric amplitude, ≳ 0.7 km s-1. The density, and accordingly the mass flux, of solar winds show a quite sensitive dependence on because of an unstable aspect of the heating by the nonlinear Alfvén waves. A case with = 0.4 km s-1 gives ≃50 times smaller mass flux than the fiducial case for the fast wind with = 0.7 km s-1; solar wind virtually disappears only if becomes ≃1/2. We also find that the solar wind speed has a positive correlation with Br,0/fmax, which is consistent with recent observations by Kojima et al. On the basis of these findings, we show that both fast and slow solar winds can be explained by the single process, the dissipation of the low-frequency Alfvén waves, with different sets of and Br,0/fmax. Our simulations naturally explain the observed (1) anticorrelation of the solar wind speed and the coronal temperature and (2) larger amplitude of Alfvénic fluctuations in the fast wind. In Appendix A, we also explain our implementation of the outgoing boundary condition of the MHD waves with some

  3. NONLINEAR FORCE-FREE FIELD EXTRAPOLATION OF A CORONAL MAGNETIC FLUX ROPE SUPPORTING A LARGE-SCALE SOLAR FILAMENT FROM A PHOTOSPHERIC VECTOR MAGNETOGRAM

    SciTech Connect

    Jiang, Chaowei; Wu, S. T.; Hu, Qiang; Feng, Xueshang E-mail: wus@uah.edu E-mail: fengx@spaceweather.ac.cn

    2014-05-10

    Solar filaments are commonly thought to be supported in magnetic dips, in particular, in those of magnetic flux ropes (FRs). In this Letter, based on the observed photospheric vector magnetogram, we implement a nonlinear force-free field (NLFFF) extrapolation of a coronal magnetic FR that supports a large-scale intermediate filament between an active region and a weak polarity region. This result is a first, in the sense that current NLFFF extrapolations including the presence of FRs are limited to relatively small-scale filaments that are close to sunspots and along main polarity inversion lines (PILs) with strong transverse field and magnetic shear, and the existence of an FR is usually predictable. In contrast, the present filament lies along the weak-field region (photospheric field strength ≲ 100 G), where the PIL is very fragmented due to small parasitic polarities on both sides of the PIL and the transverse field has a low signal-to-noise ratio. Thus, extrapolating a large-scale FR in such a case represents a far more difficult challenge. We demonstrate that our CESE-MHD-NLFFF code is sufficient for the challenge. The numerically reproduced magnetic dips of the extrapolated FR match observations of the filament and its barbs very well, which strongly supports the FR-dip model for filaments. The filament is stably sustained because the FR is weakly twisted and strongly confined by the overlying closed arcades.

  4. A High S/N View of the Photosphere of the Hot White Dwarf G191-B2B from STIS

    NASA Astrophysics Data System (ADS)

    Holberg, J. B.; Barstow, M. A.; Hubeny, I.; Sahu, M. S.; Bruhweiler, F. C.; Landsman, W. B.

    2002-05-01

    We have assembled a unique, high signal-to-noise (S/N) spectrum of the hot metal-rich DA white dwarf, G191-B2B, from a coaddition of 22 E140H and 40 E230H STIS calibration spectra. This superb data set fully covers the wavelength range from 1155 A to 3169 A with S/N ranging from over 100 to 30; affording an unprecedentedly detailed view of the UV stellar absorption lines in a white dwarf star. We use this spectrum to search for a number of previously undiscovered heavy elements in the G191-B2B photosphere and to estimate elemental abundances and place upper limits on the abundances of a number of key species. An accurate photospheric inventory of heavy elements in hot degenerate stars is basic to our understanding of the chemical diffusion in these stars. These observations highlight the wealth of information present in echelle resolution spectra of white dwarfs such as G191-B2B and the need for a succeeding generation of UV instrumentation capable of providing data of this type for other degenerate stars. This work funded by STScI Grant AR 9202.

  5. The generation of magnetic field via convective motions in the photosphere, Alvén waves, and the origin of chromospheric spicules

    NASA Astrophysics Data System (ADS)

    Kropotkin, A. P.

    2011-12-01

    The basis is laid out for a theory relating various phenomena in the solar atmosphere, including localized concentrations of magnetic field at the bases of coronal magnetic arches, chromospheric spicules, twisted coronal magnetic flux tubes, and flows of energy carried by Alfvén waves propagating upward into the corona. The structure of photospheric currents localized in the vicinity of supergranule boundaries and excited by convective motions is studied. These currents exist primarily in a "dynamo layer" of sharply enhanced transverse conductivity, which forms in the weakly ionized thermal photospheric plasma located in the solar gravitational field. The motions of the electrons and ions in this layer have appreciably different characters: the ions are collisionly driven by the flows of neutral atoms, while the electrons drift in the crossed electric and magnetic fields. The electric field supporting the current arises due to the polarization of the electrons and ions. This field also gives rise to Alfvén perturbations that propagate upward into the corona, together with their associated longitudinal currents. The character of this "loading" makes the system of fields and currents uniquely defined. Moreover, the momentum flux carried by these Alfvén waves should be transferred to the cool chromospheric gas, facilitating the vertical ejection of this gas in the form of spicules, as was first proposed in 1992 by Haerendel.

  6. How dusty is α Centauri?. Excess or non-excess over the infrared photospheres of main-sequence stars

    NASA Astrophysics Data System (ADS)

    Wiegert, J.; Liseau, R.; Thébault, P.; Olofsson, G.; Mora, A.; Bryden, G.; Marshall, J. P.; Eiroa, C.; Montesinos, B.; Ardila, D.; Augereau, J. C.; Bayo Aran, A.; Danchi, W. C.; del Burgo, C.; Ertel, S.; Fridlund, M. C. W.; Hajigholi, M.; Krivov, A. V.; Pilbratt, G. L.; Roberge, A.; White, G. J.; Wolf, S.

    2014-03-01

    Context. Debris discs around main-sequence stars indicate the presence of larger rocky bodies. The components of the nearby, solar-type binary α Centauri have metallicities that are higher than solar, which is thought to promote giant planet formation. Aims: We aim to determine the level of emission from debris around the stars in the α Cen system. This requires knowledge of their photospheres. Having already detected the temperature minimum, Tmin, of α Cen A at far-infrared wavelengths, we here attempt to do the same for the more active companion α Cen B. Using the α Cen stars as templates, we study the possible effects that Tmin may have on the detectability of unresolved dust discs around other stars. Methods: We used Herschel-PACS, Herschel-SPIRE, and APEX-LABOCA photometry to determine the stellar spectral energy distributions in the far infrared and submillimetre. In addition, we used APEX-SHeFI observations for spectral line mapping to study the complex background around α Cen seen in the photometric images. Models of stellar atmospheres and of particulate discs, based on particle simulations and in conjunction with radiative transfer calculations, were used to estimate the amount of debris around these stars. Results: For solar-type stars more distant than α Cen, a fractional dust luminosity fd ≡ Ldust/Lstar 2 × 10-7 could account for SEDs that do not exhibit the Tmin effect. This is comparable to estimates of fd for the Edgeworth-Kuiper belt of the solar system. In contrast to the far infrared, slight excesses at the 2.5σ level are observed at 24 μm for both α Cen A and B, which, if interpreted as due to zodiacal-type dust emission, would correspond to fd (1-3) × 10-5, i.e. some 102 times that of the local zodiacal cloud. Assuming simple power-law size distributions of the dust grains, dynamical disc modelling leads to rough mass estimates of the putative Zodi belts around the α Cen stars, viz. ≲4 × 10-6 M≤ftmoon of 4 to 1000 μm size

  7. How Dusty Is Alpha Centauri? Excess or Non-excess over the Infrared Photospheres of Main-sequence Stars

    NASA Technical Reports Server (NTRS)

    Wiegert, J.; Liseau, R.; Thebault, P.; Olofsson, G.; Mora, A.; Bryden, G.; Marshall, J. P.; Eiroa, C.; Montesinos, B.; Ardila, D.; Augereau, J. C.; Aran, A. Bayo; Danchi, W. C.; del Burgo, C.; Ertel, S.; Fridlund, M. C. W.; Hajigholi, M.; Krivov, A. V.; Pilbratt, G. L.; Roberge, A.; White, G. J.; Wolf, S.

    2014-01-01

    Context. Debris discs around main-sequence stars indicate the presence of larger rocky bodies. The components of the nearby, solar-type binary Centauri have metallicities that are higher than solar, which is thought to promote giant planet formation. Aims. We aim to determine the level of emission from debris around the stars in the Cen system. This requires knowledge of their photospheres.Having already detected the temperature minimum, Tmin, of CenA at far-infrared wavelengths, we here attempt to do the same for the moreactive companion Cen B. Using the Cen stars as templates, we study the possible eects that Tmin may have on the detectability of unresolveddust discs around other stars. Methods.We used Herschel-PACS, Herschel-SPIRE, and APEX-LABOCA photometry to determine the stellar spectral energy distributions in thefar infrared and submillimetre. In addition, we used APEX-SHeFI observations for spectral line mapping to study the complex background around Cen seen in the photometric images. Models of stellar atmospheres and of particulate discs, based on particle simulations and in conjunctionwith radiative transfer calculations, were used to estimate the amount of debris around these stars. Results. For solar-type stars more distant than Cen, a fractional dust luminosity fd LdustLstar 2 107 could account for SEDs that do not exhibit the Tmin eect. This is comparable to estimates of fd for the Edgeworth-Kuiper belt of the solar system. In contrast to the far infrared,slight excesses at the 2:5 level are observed at 24 m for both CenA and B, which, if interpreted as due to zodiacal-type dust emission, wouldcorrespond to fd (13) 105, i.e. some 102 times that of the local zodiacal cloud. Assuming simple power-law size distributions of the dustgrains, dynamical disc modelling leads to rough mass estimates of the putative Zodi belts around the Cen stars, viz.4106 M$ of 4 to 1000 msize grains, distributed according to n(a) a3:5. Similarly, for filled-in Tmin

  8. EVIDENCE FOR A PHOTOSPHERIC COMPONENT IN THE PROMPT EMISSION OF THE SHORT GRB 120323A AND ITS EFFECTS ON THE GRB HARDNESS-LUMINOSITY RELATION

    SciTech Connect

    Guiriec, S.; McEnery, J.; Gehrels, N.; Daigne, F.; Hascoeet, R.; Mochkovitch, R.; Vianello, G.; Ryde, F.; Kouveliotou, C.; Foley, S.; McGlynn, S.; Gruber, D.

    2013-06-10

    The short GRB 120323A had the highest flux ever detected with the Gamma-Ray Burst Monitor on board the Fermi Gamma-Ray Space Telescope. Here we study its remarkable spectral properties and their evolution using two spectral models: (1) a single emission component scenario, where the spectrum is modeled by the empirical Band function (a broken power law), and (2) a two-component scenario, where thermal (a Planck-like function) emission is observed simultaneously with a non-thermal component (a Band function). We find that the latter model fits the integrated burst spectrum significantly better than the former, and that their respective spectral parameters are dramatically different: when fit with a Band function only, the E{sub peak} of the event is unusually soft for a short gamma-ray burst (GRB; 70 keV compared to an average of 300 keV), while adding a thermal component leads to more typical short GRB values (E{sub peak} {approx} 300 keV). Our time-resolved spectral analysis produces similar results. We argue here that the two-component model is the preferred interpretation for GRB 120323A based on (1) the values and evolution of the Band function parameters of the two component scenario, which are more typical for a short GRB, and (2) the appearance in the data of a significant hardness-intensity correlation, commonly found in GRBs, when we employee two-component model fits; the correlation is non-existent in the Band-only fits. GRB 110721A, a long burst with an intense photospheric emission, exhibits the exact same behavior. We conclude that GRB 120323A has a strong photospheric emission contribution, observed for the first time in a short GRB. Magnetic dissipation models are difficult to reconcile with these results, which instead favor photospheric thermal emission and fast cooling synchrotron radiation from internal shocks. Finally, we derive a possibly universal hardness-luminosity relation in the source frame using a larger set of GRBs (L{sub i}{sup Band

  9. One- and multi-component models of the upper photosphere based on molecular spectra. I - The violet system of CN /0, 0/

    NASA Technical Reports Server (NTRS)

    Mount, G. H.; Linsky, J. L.; Shine, R. A.

    1973-01-01

    Spectroheliograms taken in the CN (0, 0) violet band near 3883 A show very small scale network and cell structures with high contrast. The bandhead itself, which is a broad feature due to overlap of several CN lines, allows the diagnostic simplicity of a continuum since motions, magnetic fields, and broadening mechanisms are unimportant. We have obtained spectroheliograms in the bandhead and center-to-limb photoelectric spectra of CN (0, 0) at Kitt Peak National Observatory. From the photoelectric spectra and a detailed analysis of the formation of the CN (0, 0) spectrum we derive a best-fit one-component upper photospheric model differing from that of the HSRA and recommend a change in solar carbon abundance from the HSRA value.

  10. First results from the Goddard High-Resolution Spectrograph - Evidence for photospheric microturbulence in early O stars - Are surface gravities systematically underestimated?

    NASA Technical Reports Server (NTRS)

    Hubeny, I.; Heap, S. R.; Altner, B.

    1991-01-01

    GHRS spectra of two very hot stars provide evidence for the presence of microturbulence in their photospheres. In attempting to reproduce the observed spectra, theoretical models have been built in which the microturbulence is allowed to modify not only the Doppler line widths (classical 'spectroscopic' microturbulence), but also the turbulent pressure (thus mimicking a 'physical' turbulence). It is found that a corresponding modification of the temperature-pressure stratification influences the hydrogen and helium line profiles to the extent that the surface gravities of early O stars determined without considering microturbulence are too low by 0.1-0.15 dex. Thus, including microturbulence would reduce, or resolve completely, a long-standing discrepancy between evolutionary and spectroscopic stellar masses.

  11. Coupling of the Photosphere to the Solar Corona: A laboratory and observational study of Alfvén wave interaction with a neutral gas

    SciTech Connect

    watts, Christopher

    2010-01-31

    The grant funded a three year project to investigate the role of Alfvén waves as a possible mechanism heating plasmas, with relevance to solar coronal heating. Evidence suggests that there is strong coupling between the solar photosphere, corona and solar wind through Alfvén wave interaction with the neutral gas particles. A laboratory experimental and solar observational plan was designed to investigate in detail this interaction. Although many of the original research goals were met, difficulties in detecting the Alfvén wave signature meant that much of the research was stymied. This report summaries the work during the grant period, the challenges encountered and overcome, and the future research directions.

  12. The photospheric solar oxygen project. III. Investigation of the centre-to-limb variation of the 630 nm [O I]-Ni I blend

    NASA Astrophysics Data System (ADS)

    Caffau, E.; Ludwig, H.-G.; Steffen, M.; Livingston, W.; Bonifacio, P.; Malherbe, J.-M.; Doerr, H.-P.; Schmidt, W.

    2015-07-01

    Context. The solar photospheric abundance of oxygen is still a matter of debate. For about ten years some determinations have favoured a low oxygen abundance which is at variance with the value inferred by helioseismology. Among the oxygen abundance indicators, the forbidden line at 630 nm has often been considered the most reliable even though it is blended with a Ni i line. In Papers I and II of this series we reported a discrepancy in the oxygen abundance derived from the 630 nm and the subordinate [O I] line at 636 nm in dwarf stars, including the Sun. Aims: Here we analyse several, in part new, solar observations of the centre-to-limb variation of the spectral region including the blend at 630 nm in order to separate the individual contributions of oxygen and nickel. Methods: We analyse intensity spectra observed at different limb angles in comparison with line formation computations performed on a CO5BOLD 3D hydrodynamical simulation of the solar atmosphere. Results: The oxygen abundances obtained from the forbidden line at different limb angles are inconsistent if the commonly adopted nickel abundance of 6.25 is assumed in our local thermodynamic equilibrium computations. With a slightly lower nickel abundance, A(Ni) ≈ 6.1, we obtain consistent fits indicating an oxygen abundance of A(O) = 8.73 ± 0.05. At this value the discrepancy with the subordinate oxygen line remains. Conclusions: The derived value of the oxygen abundance supports the notion of a rather low oxygen abundance in the solar photosphere. However, it is disconcerting that the forbidden oxygen lines at 630 and 636 nm give noticeably different results, and that the nickel abundance derived here from the 630 nm blend is lower than expected from other nickel lines.

  13. Photospheric and chromospheric magnetic activity of seismic solar analogs. Observational inputs on the solar-stellar connection from Kepler and Hermes

    NASA Astrophysics Data System (ADS)

    Salabert, D.; García, R. A.; Beck, P. G.; Egeland, R.; Pallé, P. L.; Mathur, S.; Metcalfe, T. S.; do Nascimento, J.-D., Jr.; Ceillier, T.; Andersen, M. F.; Triviño Hage, A.

    2016-11-01

    We identify a set of 18 solar analogs among the seismic sample of solar-like stars observed by the Kepler satellite rotating between 10 and 40 days. This set is constructed using the asteroseismic stellar properties derived using either the global oscillation properties or the individual acoustic frequencies. We measure the magnetic activity properties of these stars using observations collected by the photometric Kepler satellite and by the ground-based, high-resolution Hermes spectrograph mounted on the Mercator telescope. The photospheric (Sph) and chromospheric (S index) magnetic activity levels of these seismic solar analogs are estimated and compared in relation to the solar activity. We show that the activity of the Sun is comparable to the activity of the seismic solar analogs, within the maximum-to-minimum temporal variations of the 11-yr solar activity cycle 23. In agreement with previous studies, the youngest stars and fastest rotators in our sample are actually the most active. The activity of stars older than the Sun seems to not evolve much with age. Furthermore, the comparison of the photospheric, Sph, with the well-established chromospheric, S index, indicates that the Sph index can be used to provide a suitable magnetic activity proxy which can be easily estimated for a large number of stars from space photometric observations. Based on observations collected by the NASA Kepler space telescope and the Hermes spectrograph mounted on the 1.2 m Mercator telescope at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  14. Improved Co I log(gf) & hfs data and Abundance Determinations in the Photospheres of the Sun & Metal-poor Star HD 84937

    NASA Astrophysics Data System (ADS)

    Lawler, James E.; Sneden, Chris; Cowan, John J.

    2016-01-01

    New emission branching fraction measurements for 898 lines of the first spectrum of cobalt (Co I) from hollow cathode lamp spectra recorded with a 1m Fourier transform spectrometer (FTS) and a high resolution echelle spectrometer are reported. Radiative lifetimes from laser induced fluorescence measurements are combined with the branching fractions to determine accurate log(gf)s for the 898 lines. Selected published hyperfine structure (hfs) constants for levels of neutral Co are used to generate complete hfs component patterns for 195 transitions of Co I. These new laboratory data are applied to determine the Co abundance in the Sun and metal-poor star HD 84937, yielding log eps(Co) = 4.955 ± 0.007 (sigma = 0.059) based on 82 Co I lines and log eps(Co) = 2.785 ± 0.008 (sigma = 0.065) based on 66 Co I lines respectively. A Saha balance test on the photosphere of HD 84937 is performed using 16 UV lines of Co II, and good agreement is found with the Co I result in this metal-poor ([Fe I /H] = -2.32, [Fe II /H] = -2.32) dwarf star. The resulting value of [Co/Fe] = +0.14 supports a rise of Co/Fe at low metallicity that has been suggested in other studies. These new Co I data are part of a continuing effort to explore the limits of 1D/LTE photospheric models in metal-poor stars and to determine the relative abundance of Fe-group elements at low metallicity. This work is supported in part by NASA grant NNX10AN93G (J.E.L.), by NSF grant AST-1211055 (J.E.L.), and by NSF grant AST-1211585 (C.S.).

  15. Improved log(gf) Values Of Selected Lines In Mn I And Mn II For Studies Of Non-equilibrium Effects In Stellar Photospheres

    NASA Astrophysics Data System (ADS)

    Den Hartog, Elizabeth; Lawler, J. E.; Sobeck, J.; Sneden, C.; Cowan, J. J.; Asplund, M.

    2010-01-01

    The work presents transition probabilities with very low uncertainties for a selected set of multiplets of Mn I and Mn II. Multiplets are chosen which are accessible to ground-based observation, are relatively unblended and unsaturated in stellar spectra and which are amenable to accurate branching fraction determination. These lab measurements provide a foundation for studies of non-LTE and 3-dimensional effects in stellar photospheres. We report on new radiative lifetime measurements for 22 levels of Mn I from the e8D, z6P, z6D, z4F, e8S and e6S multiplets and 3 levels of Mn II from the z5P multiplet using time-resolved laser-induced fluorescence on a slow atomic beam. New branching fractions for transitions from these levels, measured using a Fourier-transform spectrometer, are also reported. When combined, these measurements yield transition probabilities for 47 transitions of Mn I and 12 transitions of Mn II. Comparisons are made to data from the literature and to simple Russell-Saunders or LS theory. Final recommended values, which are weighted averages of all available modern measurements and in some cases LS theory, are given for the transition probabilities. These recommended log(gf) values are accurate to +/- 0.02 dex with high ( 2 sigma) confidence. The companion paper applies these new lab results to studies of departures from both LTE in Mn I and Saha equilibrium between Mn I and Mn II on a variety of stellar photospheres. This research is supported in part by NASA Grant NNX08AQ09G and NSF Grant AST-0907732.

  16. Applying the expanding photosphere and standardized candle methods to Type II-Plateau supernovae at cosmologically significant redshifts . The distance to SN 2013eq

    NASA Astrophysics Data System (ADS)

    Gall, E. E. E.; Kotak, R.; Leibundgut, B.; Taubenberger, S.; Hillebrandt, W.; Kromer, M.

    2016-08-01

    Based on optical imaging and spectroscopy of the Type II-Plateau SN 2013eq, we present a comparative study of commonly used distance determination methods based on Type II supernovae. The occurrence of SN 2013eq in the Hubble flow (z = 0.041 ± 0.001) prompted us to investigate the implications of the difference between "angular" and "luminosity" distances within the framework of the expanding photosphere method (EPM) that relies upon a relation between flux and angular size to yield a distance. Following a re-derivation of the basic equations of the EPM for SNe at non-negligible redshifts, we conclude that the EPM results in an angular distance. The observed flux should be converted into the SN rest frame and the angular size, θ, has to be corrected by a factor of (1 + z)2. Alternatively, the EPM angular distance can be converted to a luminosity distance by implementing a modification of the angular size. For SN 2013eq, we find EPM luminosity distances of DL = 151 ± 18 Mpc and DL = 164 ± 20 Mpc by making use of different sets of dilution factors taken from the literature. Application of the standardized candle method for Type II-P SNe results in an independent luminosity distance estimate (DL = 168 ± 16 Mpc) that is consistent with the EPM estimate. Spectra of SN 2013eq are available in the Weizmann Interactive Supernova data REPository (WISeREP): http://wiserep.weizmann.ac.il

  17. First Synoptic Maps of Photospheric Vector Magnetic Field from SOLIS/VSM: Non-radial Magnetic Fields and Hemispheric Pattern of Helicity

    NASA Astrophysics Data System (ADS)

    Gosain, S.; Pevtsov, A. A.; Rudenko, G. V.; Anfinogentov, S. A.

    2013-07-01

    We use daily full-disk vector magnetograms from Vector Spectromagnetograph on Synoptic Optical Long-term Investigations of the Sun system to synthesize the first Carrington maps of the photospheric vector magnetic field. We describe these maps and make a comparison of the observed radial field with the radial field estimate from line-of-sight magnetograms. Furthermore, we employ these maps to study the hemispheric pattern of current helicity density, Hc , during the rising phase of solar cycle 24. The longitudinal average over the 23 consecutive solar rotations shows a clear signature of the hemispheric helicity rule, i.e., Hc is predominantly negative in the north and positive in the south. Although our data include the early phase of cycle 24, there appears to be no evidence for a possible (systematic) reversal of the hemispheric helicity rule at the beginning of the cycle as predicted by some dynamo models. Furthermore, we compute the hemispheric pattern in active region latitudes (-30° <= θ <= 30°) separately for weak (100 G < |Br | < 500 G) and strong (|Br | > 1000 G) radial magnetic fields. We find that while the current helicity of strong fields follows the well-known hemispheric rule (i.e., θ · Hc < 0), Hc of weak fields exhibits an inverse hemispheric behavior (i.e., θ · Hc > 0), albeit with large statistical scatter. We discuss two plausible scenarios to explain the opposite hemispheric trend of helicity in weak and strong field regions.

  18. IMPROVED V II log(gf) VALUES, HYPERFINE STRUCTURE CONSTANTS, AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937

    SciTech Connect

    Wood, M. P.; Lawler, J. E.; Den Hartog, E. A.; Sneden, C.; Cowan, J. J. E-mail: jelawler@wisc.edu E-mail: chris@verdi.as.utexas.edu

    2014-10-01

    New experimental absolute atomic transition probabilities are reported for 203 lines of V II. Branching fractions are measured from spectra recorded using a Fourier transform spectrometer and an echelle spectrometer. The branching fractions are normalized with radiative lifetime measurements to determine the new transition probabilities. Generally good agreement is found between this work and previously reported V II transition probabilities. Two spectrometers, independent radiometric calibration methods, and independent data analysis routines enable a reduction in systematic uncertainties, in particular those due to optical depth errors. In addition, new hyperfine structure constants are measured for selected levels by least squares fitting line profiles in the FTS spectra. The new V II data are applied to high resolution visible and UV spectra of the Sun and metal-poor star HD 84937 to determine new, more accurate V abundances. Lines covering a range of wavelength and excitation potential are used to search for non-LTE effects. Very good agreement is found between our new solar photospheric V abundance, log ε(V) = 3.95 from 15 V II lines, and the solar-system meteoritic value. In HD 84937, we derive [V/H] = –2.08 from 68 lines, leading to a value of [V/Fe] = 0.24.

  19. Photospheric Acne at The Bottom of the Main-Sequence: Doppler Images of M4.5 - M9V Stars

    NASA Astrophysics Data System (ADS)

    Barnes, John R.; Haswell, Carole A.; Jeffers, Sandra V.; Jones, Hugh R. A.; Pavlenko, Yakiv V.; Lohr, Marcus E.; Jenkins, James S.

    2016-07-01

    Starspots are an important manifestation of stellar activity and yet their distribution patterns on the lowest mass stars is notwell known. Time series spectra of fullyconvective M dwarfs taken in the red-optical with UVES reveal numerous line profiledistortions which are interpreted as starspots. New Doppler images of HU Del (GJ 791.2A; M4.5V), BL Ceti (GJ 65A; M5.5V)and UV Ceti (GJ 65B; M6V) attwoepochs separated by three nights are presented. We find that contrastratioscorrespondingto photosphere-spot temperature differences of only 100-400 Kare sufficient to model the time series spectra of M4.5V - M9Vstars. Starspotsare reconstructed at a range of phases and latitudes with mean spot filling factors of only a few per cent.The distribution and low-contrast of the spots/spot-groups that we recover are likely to be responsible for the low amplitudephotometric variability seen in late-M dwarfs. The stability of the spot patterns in the two sets of timeseries observationsenables us to measure the latitude dependent differential rotation, which we find to be consistent with zero.

  20. IMPROVED Co i log(gf) VALUES AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937

    SciTech Connect

    Lawler, J. E.; Sneden, C.; Cowan, J. J. E-mail: chris@verdi.as.utexas.edu

    2015-09-15

    New emission branching fraction measurements for 898 lines of the first spectrum of cobalt (Co i) are determined from hollow cathode lamp spectra recorded with the National Solar Observatory 1 m Fourier transform spectrometer on Kitt Peak, AZ and a high-resolution echelle spectrometer. Published radiative lifetimes from laser induced fluorescence measurements are combined with the branching fractions to determine accurate absolute atomic transition probabilities for the 898 lines. Hyperfine structure (hfs) constants for levels of neutral Co in the literature are surveyed and selected values are used to generate complete hfs component patterns for 195 transitions of Co i. These new laboratory data are applied to determine the Co abundance in the Sun and metal-poor star HD 84937, yielding log ϵ(Co) = 4.955 ± 0.007 (σ = 0.059) based on 82 Co i lines and log ϵ(Co) = 2.785 ± 0.008 (σ = 0.065) based on 66 Co i lines, respectively. A Saha or ionization balance test on the photosphere of HD 84937 is performed using 16 UV lines of Co ii, and good agreement is found with the Co i result in this metal-poor ([Fe i/H] = −2.32, [Fe ii/H] = −2.32) dwarf star. The resulting value of [Co/Fe] = +0.14 supports a rise of Co/Fe at low metallicity that has been suggested in other studies.

  1. The Photospheric Properties of the Underlying White Dwarf in the Nova-like Variable TT ARIETIS during its 1983 Low State

    NASA Astrophysics Data System (ADS)

    Fabian, D.; Nguyen, Q.; Belle, K.; Haung, M.; Sion, E. M.

    1995-12-01

    During 1983, TT Arietis entered a low state of visual magnitude 16 during which accretion declined to an extremely low level and the underlying white dwarf accreter was exposed both in the optical (e.g. the Stark-broadened wings of He II 4686dot {A}) and in the far ultraviolet (Shafter et al. 1985, ApJ, 290, 707). We have analyzed the low resolution IUE SWP spectra of TT Ari obtained during this low state with a grid of high gravity, solar composition model atmospheres convolved with IUE resolution, constructed with TLUSTY and SYNSPEC (Hubeny 1988, Comput.Phys.Comm. 52, 103; Hubeny 1995, TLUSTY and SYNSPEC USERS MANUAL, in press). We present the resulting photospheric parameters of the hot white dwarf, preliminary abundances of its accreted atmosphere, and a quantitative constraint on its global rotational velocity. This work has been supported by NASA LTSA grant NAGW-3726 and by a summer research grant from the NASA Delaware Space Grant Colleges Consortium.

  2. First Synoptic Maps of Photospheric Vector Magnetic Field from SOLIS/VSM: Non-radial Magnetic Fields and Hemispheric Pattern of Helicity

    NASA Astrophysics Data System (ADS)

    Gusain, Sanjay; Pevtsov, A. A.; Rudenko, G. V.; Anfinogentov, S. A.; Pevtsov, A. A.; Rudenko, G. V.; Anfinogentov, S. A.

    2013-07-01

    We use daily full-disk vector magnetograms from Vector Spectromagnetograph (VSM) on Solar Optical Long-term Investigations of the Sun (SOLIS) system to synthesize the first Carrington maps of the photospheric vector magnetic field. We describe these maps and make a comparison of observed radial field with the radial field estimate from LOS magnetograms. Further, we employ these maps to study the hemispheric pattern of current helicity density, Hc, during the rising phase of the solar cycle 24. Longitudinal average over the 23 consecutive solar rotations shows a clear signature of the hemispheric helicity rule, i.e. Hc is predominantly negative in the North and positive in South. The hemispheric pattern for individual Carrington rotations is statistically weak, consistent with previous studies of active regions’ helicity. Although our data include the early phase of cycle 24, there appears no evidence for a possible (systematic) reversal of the hemispheric helicity rule at the beginning of cycle as predicted by some dynamo models. Further, we compute the hemispheric pattern in active region latitudes (-30 ≤ θ ≤ 30) separately for weak (100< |Br| <500 G)and strong (|Br| >1000 G) radial magnetic fields. We find that while the current helicity of strong fields follows the well-known hemispheric rule (i.e., θ.Hc < 0), Hc of weak fields exhibits an inverse hemispheric behavior (i.e., θ.Hc > 0) albeit with large statistical scatter.Abstract (2,250 Maximum Characters): We use daily full-disk vector magnetograms from Vector Spectromagnetograph (VSM) on Solar Optical Long-term Investigations of the Sun (SOLIS) system to synthesize the first Carrington maps of the photospheric vector magnetic field. We describe these maps and make a comparison of observed radial field with the radial field estimate from LOS magnetograms. Further, we employ these maps to study the hemispheric pattern of current helicity density, Hc, during the rising phase of the solar cycle 24

  3. Improved Cr II log(gf) Values and Abundance Determinations in the Photospheres of the Sun and Metal-poor Star HD 84937

    NASA Astrophysics Data System (ADS)

    Lawler, J. E.; Sneden, C.; Nave, G.; Den Hartog, E. A.; Emrahoğlu, N.; Cowan, J. J.

    2017-01-01

    New emission branching fraction (BF) measurements for 183 lines of the second spectrum of chromium (Cr ii) and new radiative lifetime measurements from laser-induced fluorescence for 8 levels of Cr+ are reported. The goals of this study are to improve transition probability measurements in Cr ii and reconcile solar and stellar Cr abundance values based on Cr i and Cr ii lines. Eighteen spectra from three Fourier Transform Spectrometers supplemented with ultraviolet spectra from a high-resolution echelle spectrometer are used in the BF measurements. Radiative lifetimes from this study and earlier publications are used to convert the BFs into absolute transition probabilities. These new laboratory data are applied to determine the Cr abundance log ε in the Sun and metal-poor star HD 84937. The mean result in the Sun is < {log}\\varepsilon ({Cr} {{II}})> = 5.624 ± 0.009 compared to < {log}\\varepsilon ({Cr} {{I}})> = 5.644 ± 0.006 on a scale with the hydrogen abundance log ε(H) = 12 and with the uncertainty representing only line-to-line scatter. A Saha (ionization balance) test on the photosphere of HD 84937 is also performed, yielding < {log}\\varepsilon ({Cr} {{II}})> = 3.417 ± 0.006 and 0 eV)> = 3.374 ± 0.011 for this dwarf star. We find a correlation of Cr with the iron-peak element Ti, suggesting an associated nucleosynthetic production. Four iron-peak elements (Cr along with Ti, V, and Sc) appear to have a similar (or correlated) production history—other iron-peak elements appear not to be associated with Cr.

  4. IMPROVED Cr II log(gf ) VALUES AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937

    PubMed Central

    Lawler, J. E.; Sneden, C.; Nave, G.; Den Hartog, E. A.; Emrahođlu, N.; Cowan, J. J.

    2017-01-01

    New emission branching fraction (BF) measurements for 183 lines of the second spectrum of chromium (Cr II) and new radiative lifetime measurements from laser-induced fluorescence for 8 levels of Cr+ are reported. The goals of this study are to improve transition probability measurements in Cr II and reconcile solar and stellar Cr abundance values based on Cr I and Cr II lines. Eighteen spectra from three Fourier Transform Spectrometers supplemented with ultraviolet spectra from a high-resolution echelle spectrometer are used in the BF measurements. Radiative lifetimes from this study and earlier publications are used to convert the BFs into absolute transition probabilities. These new laboratory data are applied to determine the Cr abundance log ε in the Sun and metal-poor star HD 84937. The mean result in the Sun is 〈logε (Cr II)〉 = 5.624±0.009 compared to 〈logε(Cr I)〉 = 5.644 ± 0.006 on a scale with the hydrogen abundance log ε(H) = 12 and with the uncertainty representing only line-to-line scatter. A Saha (ionization balance) test on the photosphere of HD 84937 is also performed, yielding 〈logε(Cr II)〉 = 3.417 ± 0.006 and 〈log ε(Cr I, lower level excitation potential E. P. >30 eV)〉 = 3.3743±30.011 for this dwarf star. We find a correlation of Cr with the iron-peak element Ti, suggesting an associated nucleosynthetic production. Four iron-peak elements (Cr along with Ti, V, and Sc) appear to have a similar (or correlated) production history—other iron-peak elements appear not to be associated with Cr. PMID:28579650

  5. FIRST SYNOPTIC MAPS OF PHOTOSPHERIC VECTOR MAGNETIC FIELD FROM SOLIS/VSM: NON-RADIAL MAGNETIC FIELDS AND HEMISPHERIC PATTERN OF HELICITY

    SciTech Connect

    Gosain, S.; Pevtsov, A. A.; Rudenko, G. V.; Anfinogentov, S. A.

    2013-07-20

    We use daily full-disk vector magnetograms from Vector Spectromagnetograph on Synoptic Optical Long-term Investigations of the Sun system to synthesize the first Carrington maps of the photospheric vector magnetic field. We describe these maps and make a comparison of the observed radial field with the radial field estimate from line-of-sight magnetograms. Furthermore, we employ these maps to study the hemispheric pattern of current helicity density, H{sub c} , during the rising phase of solar cycle 24. The longitudinal average over the 23 consecutive solar rotations shows a clear signature of the hemispheric helicity rule, i.e., H{sub c} is predominantly negative in the north and positive in the south. Although our data include the early phase of cycle 24, there appears to be no evidence for a possible (systematic) reversal of the hemispheric helicity rule at the beginning of the cycle as predicted by some dynamo models. Furthermore, we compute the hemispheric pattern in active region latitudes (-30 Degree-Sign {<=} {theta} {<=} 30 Degree-Sign ) separately for weak (100 G < |B{sub r} | < 500 G) and strong (|B{sub r} | > 1000 G) radial magnetic fields. We find that while the current helicity of strong fields follows the well-known hemispheric rule (i.e., {theta} {center_dot} H{sub c} < 0), H{sub c} of weak fields exhibits an inverse hemispheric behavior (i.e., {theta} {center_dot} H{sub c} > 0), albeit with large statistical scatter. We discuss two plausible scenarios to explain the opposite hemispheric trend of helicity in weak and strong field regions.

  6. IMPROVED Cr II log(gf ) VALUES AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937.

    PubMed

    Lawler, J E; Sneden, C; Nave, G; Den Hartog, E A; Emrahođlu, N; Cowan, J J

    2017-01-01

    New emission branching fraction (BF) measurements for 183 lines of the second spectrum of chromium (Cr II) and new radiative lifetime measurements from laser-induced fluorescence for 8 levels of Cr(+) are reported. The goals of this study are to improve transition probability measurements in Cr II and reconcile solar and stellar Cr abundance values based on Cr I and Cr II lines. Eighteen spectra from three Fourier Transform Spectrometers supplemented with ultraviolet spectra from a high-resolution echelle spectrometer are used in the BF measurements. Radiative lifetimes from this study and earlier publications are used to convert the BFs into absolute transition probabilities. These new laboratory data are applied to determine the Cr abundance log ε in the Sun and metal-poor star HD 84937. The mean result in the Sun is 〈logε (Cr II)〉 = 5.624±0.009 compared to 〈logε(Cr I)〉 = 5.644 ± 0.006 on a scale with the hydrogen abundance log ε(H) = 12 and with the uncertainty representing only line-to-line scatter. A Saha (ionization balance) test on the photosphere of HD 84937 is also performed, yielding 〈logε(Cr II)〉 = 3.417 ± 0.006 and 〈log ε(Cr I, lower level excitation potential E. P. >30 eV)〉 = 3.3743±30.011 for this dwarf star. We find a correlation of Cr with the iron-peak element Ti, suggesting an associated nucleosynthetic production. Four iron-peak elements (Cr along with Ti, V, and Sc) appear to have a similar (or correlated) production history-other iron-peak elements appear not to be associated with Cr.

  7. Improved Cr II log(gf)s and Cr Abundances in the Photospheres of the Sun and Metal-Poor Star HD 84937

    NASA Astrophysics Data System (ADS)

    Lawler, James E.; Sneden, Chris; Nave, Gillian; Den Hartog, Elizabeth; Emrahoglu, Nuri; Cowan, John J.

    2017-01-01

    New laser induced fluorescence (LIF) data for eight levels of singly ionized chromium (Cr) and emission branching fraction (BF) measurements for 183 lines of the second spectrum of chromium (Cr II) are reported. A goal of this study is to reconcile Solar and stellar Cr abundance values based on Cr I and Cr II lines. Analyses of eighteen spectra from three Fourier Transform Spectrometers supplemented with ultraviolet spectra from a high resolution echelle spectrometer yield the BF measurements. Radiative lifetimes from LIF measurements are used to convert the BFs to absolute transition probabilities. These new laboratory data are applied to determine the Cr abundance log eps in the Sun and metal-poor star HD 84937. The mean result in the Sun is = 5.624 ± 0.009 compared to = 5.644 ± 0.006 on a scale with the H abundance log eps(H) = 12. Similarily the photosphere of HD 84937 is found to be in Saha balance with = 3.417 ± 0.006 and 0 eV) > = 3.374 ± 0.011 for this dwarf star. The resonance (E.P. = 0 eV) lines of Cr I reveal overionization of the ground level of neutral Cr. We find a correlation of Cr with the iron-peak element Ti, suggesting an associated or related nucleosynthetic production. Four iron-peak elements (Cr along with Ti, V and Sc) appear to have a similar (or correlated) production history - other iron-peak elements appear not to be associated with Cr.This work is supported in part by NASA grant NNX16AE96G (J.E.L.), by NSF grant AST-1516182 (J.E.L. & E.D.H.), by NASA interagency agreement NNH10AN381 (G.N.), and NSF grant AST-1211585 (C.S.). Postdoctoral research support for N. E. is from the Technological and Scientific Research Council of Turkey (TUBITAK).

  8. Magnetic activity in the photosphere of CoRoT-Exo-2a. Active longitudes and short-term spot cycle in a young Sun-like star

    NASA Astrophysics Data System (ADS)

    Lanza, A. F.; Pagano, I.; Leto, G.; Messina, S.; Aigrain, S.; Alonso, R.; Auvergne, M.; Baglin, A.; Barge, P.; Bonomo, A. S.; Boumier, P.; Collier Cameron, A.; Comparato, M.; Cutispoto, G.; de Medeiros, J. R.; Foing, B.; Kaiser, A.; Moutou, C.; Parihar, P. S.; Silva-Valio, A.; Weiss, W. W.

    2009-01-01

    Context: The space experiment CoRoT has recently detected transits by a hot Jupiter across the disc of an active G7V star (CoRoT-Exo-2a) that can be considered as a good proxy for the Sun at an age of approximately 0.5 Gyr. Aims: We present a spot modelling of the optical variability of the star during 142 days of uninterrupted observations performed by CoRoT with unprecedented photometric precision. Methods: We apply spot modelling approaches previously tested in the case of the Sun by modelling total solar irradiance variations, a good proxy for the optical flux variations of the Sun as a star. The best results in terms of mapping of the surface brightness inhomogeneities are obtained by means of maximum entropy regularized models. To model the light curve of CoRoT-Exo-2a, we take into account the photometric effects of both cool spots and solar-like faculae, adopting solar analogy. Results: Two active longitudes initially on opposite hemispheres are found on the photosphere of CoRoT-Exo-2a with a rotation period of 4.522 ± 0.024 days. Their separation changes by ≈80° during the time span of the observations. From this variation, a relative amplitude of the surface differential rotation lower than ~1 percent is estimated. Individual spots form within the active longitudes and show an angular velocity ~1 percent lower than that of the longitude pattern. The total spotted area shows a cyclic oscillation with a period of 28.9 ± 4.3 days, which is close to 10 times the synodic period of the planet as seen by the rotating active longitudes. We discuss the effects of solar-like faculae on our models, finding indications of a facular contribution to the optical flux variations of CoRoT-Exo-2a being significantly smaller than in the present Sun. Conclusions: The implications of such results for the internal rotation of CoRoT-Exo-2a are discussed, based on solar analogy. A possible magnetic star-planet interaction is suggested by the cyclic variation of the spotted

  9. 3-D MHD Model of the Solar Wind-Interplanetary Space Combining System 1:Variation of Solar Wind Speed Associated with the Photospheric Magnetic Field

    NASA Astrophysics Data System (ADS)

    Nakamizo, A.; Tanaka, T.

    2006-12-01

    Existing global models of the solar-wind/IMF expanding to the Earth's orbit are basically grounded in the idea of "source surface." It is widely accepted that the sector structure and the solar wind speed are primarily controlled by the magnetic field at the source surface and the so-called "expansion factor." On the other hand, 3-D MHD model is still off from practical use because both of scientific and technical problems. One of the former problems is the reproduction of supersonic solar-wind. From the viewpoint of the physics of the solar wind, coronal heating and outward acceleration mechanisms are invoked to explain the supersonic evolution of the solar wind. Since the mechanism responsible for the heating/acceleration is still one of the primary subjects of the physics of the solar wind, many MHD models have taken into account their effects by incorporating additional source terms corresponding to promising candidates such as thermal conductions, radiation losses and wave pressures. However there are few MHD models considering the effect of the expansion factor, which determines the solar-wind speed in the series of source surface models. In this study we newly incorporate the flux tube expansion rate into the MHD equation system including heat source function in the energy equation. Appling the unstructured grid system, we achieved the dense grid spacing at the inner boundary, which enable us to adopt realistic solar magnetic fields, and a size of simulation space of 1AU. Photospheric magnetic field data is used as the inner boundary condition.The simulation results are summarized as: (1) The variation of solar wind speed is well controlled by the structure of magnetic fields at and little above the solar surface and (2) Far above the solar surface, the interface between high and low speed flows evolves to a structure suggestive of CIRs. Comparing the data from simulation with the actual solar wind data obtained by spacecrafts, we will discuss the future

  10. Improved Log(gf) Values for Lines of Ti I and Abundance Determinations in the Photospheres of the Sun and Metal-Poor Star HD 84937 (Accurate Transition Probabilities for Ti I)

    NASA Astrophysics Data System (ADS)

    Lawler, J. E.; Guzman, A.; Wood, M. P.; Sneden, C.; Cowan, J. J.

    2013-04-01

    New atomic transition probability measurements for 948 lines of Ti I are reported. Branching fractions from Fourier transform spectra and from spectra recorded using a 3 m echelle spectrometer are combined with published radiative lifetimes from laser-induced fluorescence measurements to determine these transition probabilities. Generally good agreement is found in comparisons to the NIST Atomic Spectra Database. The new Ti I data are applied to re-determine the Ti abundance in the photospheres of the Sun and metal-poor star HD 84937 using many lines covering a range of wavelength and excitation potential to explore possible non-local thermal equilibrium effects. The variation of relative Ti/Fe abundance with metallicity in metal-poor stars observed in earlier studies is supported in this study.

  11. IMPROVED log(gf) VALUES FOR LINES OF Ti I AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937 (ACCURATE TRANSITION PROBABILITIES FOR Ti I)

    SciTech Connect

    Lawler, J. E.; Guzman, A.; Wood, M. P.; Sneden, C.; Cowan, J. J. E-mail: adrianaguzman2014@u.northwestern.edu E-mail: chris@verdi.as.utexas.edu

    2013-04-01

    New atomic transition probability measurements for 948 lines of Ti I are reported. Branching fractions from Fourier transform spectra and from spectra recorded using a 3 m echelle spectrometer are combined with published radiative lifetimes from laser-induced fluorescence measurements to determine these transition probabilities. Generally good agreement is found in comparisons to the NIST Atomic Spectra Database. The new Ti I data are applied to re-determine the Ti abundance in the photospheres of the Sun and metal-poor star HD 84937 using many lines covering a range of wavelength and excitation potential to explore possible non-local thermal equilibrium effects. The variation of relative Ti/Fe abundance with metallicity in metal-poor stars observed in earlier studies is supported in this study.

  12. THE FRONTIER BETWEEN SMALL-SCALE BIPOLES AND EPHEMERAL REGIONS IN THE SOLAR PHOTOSPHERE: EMERGENCE AND DECAY OF AN INTERMEDIATE-SCALE BIPOLE OBSERVED WITH SUNRISE/IMaX

    SciTech Connect

    Guglielmino, S. L.; Martinez Pillet, V.; Bonet, J. A.; Del Toro Iniesta, J. Carlos; Bellot Rubio, L. R.; Solanki, S. K.; Gandorfer, A.; Barthol, P.; Schmidt, W.; Knoelker, M.

    2012-02-01

    We report on the photospheric evolution of an intermediate-scale ( Almost-Equal-To 4 Mm footpoint separation) magnetic bipole, from emergence to decay, observed in the quiet Sun at high spatial (0.''3) and temporal (33 s) resolution. The observations were acquired by the Imaging Magnetograph Experiment imaging magnetograph during the first science flight of the SUNRISE balloon-borne solar observatory. The bipole flux content is 6 Multiplication-Sign 10{sup 17} Mx, representing a structure bridging the gap between granular scale bipoles and the smaller ephemeral regions. Footpoints separate at a speed of 3.5 km s{sup -1} and reach a maximum distance of 4.5 Mm before the field dissolves. The evolution of the bipole is revealed to be very dynamic: we found a proper motion of the bipole axis and detected a change of the azimuth angle of 90 Degree-Sign in 300 s, which may indicate the presence of some writhe in the emerging structure. The overall morphology and behavior are in agreement with previous analyses of bipolar structures emerging at the granular scale, but we also found several similarities with emerging flux structures at larger scales. The flux growth rate is 2.6 Multiplication-Sign 10{sup 15} Mx s{sup -1}, while the mean decay rate is one order of magnitude smaller. We describe in some detail the decay phase of the bipole footpoints that includes break up into smaller structures, and interaction with preexisting fields leading to cancellation, but it appears to be dominated by an as-yet unidentified diffusive process that removes most of the flux with an exponential flux decay curve. The diffusion constant (8 Multiplication-Sign 10{sup 2} km{sup 2} s{sup -1}) associated with this decay is similar to the values used to describe the large-scale diffusion in flux transport models.

  13. Determination of solar flare accelerated ion angular distributions from SMM gamma ray and neutron measurements and determination of the He-3/H ratio in the solar photosphere from SMM gamma ray measurements

    NASA Technical Reports Server (NTRS)

    Lingenfelter, Richard E.

    1989-01-01

    Comparisons of Solar Maximum Mission (SMM) observations of gamma-ray line and neutron emission with theoretical calculation of their expected production by flare accelerated ion interactions in the solar atmosphere have led to significant advances in the understanding of solar flare particle acceleration and interaction, as well as the flare process itself. These comparisons have enabled the determination of, not only the total number and energy spectrum of accelerated ions trapped at the sun, but also the ion angular distribution as they interact in the solar atmosphere. The Monte Carlo program was modified to include in the calculations of ion trajectories the effects of both mirroring in converging magnetic fields and of pitch angle scattering. Comparing the results of these calculations with the SMM observations, not only the angular distribution of the interacting ions can be determined, but also the initial angular distribution of the ions at acceleration. The reliable determination of the solar photospheric He-3 abundance is of great importance for understanding nucleosynthesis in the early universe and its implications for cosmology, as well as for the study of the evolution of the sun. It is also essential for the determinations of the spectrum and total number of flare accelerated ions from the SMM/GRS gamma-ray line measurements. Systematic Monte Carlo calculations of the time dependence were made as a function of the He-3 abundance and other variables. A new series of calculations were compared for the time-dependent flux of 2.223 MeV neutron capture line emission and the ratio of the time-integrated flux in the 2.223 MeV line to that in the 4.1 to 6.4 MeV nuclear deexcitation band.

  14. Vorticity and divergence in the solar photosphere

    NASA Technical Reports Server (NTRS)

    Wang, YI; Noyes, Robert W.; Tarbell, Theodore D.; Title, Alan M.

    1995-01-01

    We have studied an outstanding sequence of continuum images of the solar granulation from Pic du Midi Observatory. We have calculated the horizontal vector flow field using a correlation tracking algorithm, and from this determined three scalar field: the vertical component of the curl; the horizontal divergence; and the horizontal flow speed. The divergence field has substantially longer coherence time and more power than does the curl field. Statistically, curl is better correlated with regions of negative divergence - that is, the vertical vorticity is higher in downflow regions, suggesting excess vorticity in intergranular lanes. The average value of the divergence is largest (i.e., outflow is largest) where the horizontal speed is large; we associate these regions with exploding granules. A numerical simulation of general convection also shows similar statistical differences between curl and divergence. Some individual small bright points in the granulation pattern show large local vorticities.

  15. Pixel Dynamics Analysis of Photospheric Spectral Data

    DTIC Science & Technology

    2014-11-13

    solar magnetism. Since then, solar magnetic fields have been extensively observed by remote sensing using the Zeeman effect. In particular, the circu - lar...field structures above the surface. Two vertical lines representing oppositely directed field structures are shown. The sense of Zeeman-induced circular

  16. Photospheric origins of chromospheric and coronal activity

    NASA Technical Reports Server (NTRS)

    Tarbell, Theodore

    1994-01-01

    This contract is for a two-year research study of the origins of activity in the upper atmosphere of the sun. The approach is to collect high resolution images of the lower atmosphere on observing runs at the Swedish Solar Observatory on La Palma, Canary Islands, Spain. The best observations are analyzed and compared with data from other telescopes and/or theoretical models, to study magnetic flux emergence, coronal heating, and various dynamic phenomena and transients. Software for analysis and visualization of the data is developed as needed. The contract is being performed by the Solar and Astrophysics Laboratory, part of the Lockheed Palo Alto Research Laboratory (LPARL) of the Research and Development Division (RDD) of Lockheed Missiles and Space Co., Inc. (LMSC).

  17. Dynamics of photospheric bright points in G-band derived from two fully automated algorithms. (Slovak Title: Dynamika fotosférických jasných bodov v G-páse odvodená použitím dvoch plne automatických algoritmov)

    NASA Astrophysics Data System (ADS)

    Bodnárová, M.; Rybák, J.; Hanslmeier, A.; Utz, D.

    2010-12-01

    Concentrations of small-scale magnetic field in the solar photosphere can be identified in the G-band of the solar spectrum as bright points. Studying the dynamics of the bright points in the G-band (BPGBs) can also help in addressing many issues related to the problem of the solar corona heating. In this work, we have used a set of 142 specled images in the G-band taken by the Dutch Open Telescope (DOT) on 19 October 2005 to make a comparison of two fully automated algorithms identifying BPGBs: an algorithm developed by Utz et al. (2009, 2010), and an algorithm developed following the work of Berger et al. (1995, 1998). We then followed in time and space motion of the BPGBs identified by both algorithms and constructed the distributions of their lifetimes, sizes and speeds. The results show that both algorithms give very similar results for the BPGB lifetimes and speeds, but their results vary significantly for the sizes of the identified BPGBs. This difference is due to the fact that in the case of the Berger et al. identification algorithm no additional criteria were applied to constrain the allowed BPGB sizes. As a result in further studies of the BPGB dynamics we will prefer to use the Utz algorithm to identify and track BPGBs.

  18. Photospheric and Subphotospheric Dynamics of Emerging Magnetic Flux

    NASA Astrophysics Data System (ADS)

    Kosovichev, A. G.

    Magnetic fields emerging from the Sun's interior carry information about physical processes of magnetic field generation and transport in the convection zone. Soon after appearance on the solar surface the magnetic flux gets concentrated in sunspot regions and causes numerous active phenomena on the Sun. This paper discusses some properties of the emerging magnetic flux observed on the solar surface and in the interior. A statistical analysis of variations of the tilt angle of bipolar magnetic regions during the emergence shows that the systematic tilt with respect to the equator (the Joy's law) is most likely established below the surface. However, no evidence of the dependence of the tilt angle on the amount of emerging magnetic flux, predicted by the rising magnetic flux rope theories, is found. Analysis of surface plasma flows in a large emerging active region reveals strong localized upflows and downflows at the initial phase of emergence but finds no evidence for large-scale flows indicating future appearance a large-scale magnetic structure. Local helioseismology provides important tools for mapping perturbations of the wave speed and mass flows below the surface. Initial results from SOHO/MDI and GONG reveal strong diverging flows during the flux emergence, and also localized converging flows around stable sunspots. The wave speed images obtained during the process of formation of a large active region, NOAA 10488, indicate that the magnetic flux gets concentrated in strong field structures just below the surface. Further studies of magnetic flux emergence require systematic helioseismic observations from the ground and space, and realistic MHD simulations of the subsurface dynamics.

  19. Photospheric and Subphotospheric Dynamics of Emerging Magnetic Flux

    NASA Astrophysics Data System (ADS)

    Kosovichev, A. G.

    2009-04-01

    Magnetic fields emerging from the Sun’s interior carry information about physical processes of magnetic field generation and transport in the convection zone. Soon after appearance on the solar surface the magnetic flux gets concentrated in sunspot regions and causes numerous active phenomena on the Sun. This paper discusses some properties of the emerging magnetic flux observed on the solar surface and in the interior. A statistical analysis of variations of the tilt angle of bipolar magnetic regions during the emergence shows that the systematic tilt with respect to the equator (the Joy’s law) is most likely established below the surface. However, no evidence of the dependence of the tilt angle on the amount of emerging magnetic flux, predicted by the rising magnetic flux rope theories, is found. Analysis of surface plasma flows in a large emerging active region reveals strong localized upflows and downflows at the initial phase of emergence but finds no evidence for large-scale flows indicating future appearance a large-scale magnetic structure. Local helioseismology provides important tools for mapping perturbations of the wave speed and mass flows below the surface. Initial results from SOHO/MDI and GONG reveal strong diverging flows during the flux emergence, and also localized converging flows around stable sunspots. The wave speed images obtained during the process of formation of a large active region, NOAA 10488, indicate that the magnetic flux gets concentrated in strong field structures just below the surface. Further studies of magnetic flux emergence require systematic helioseismic observations from the ground and space, and realistic MHD simulations of the subsurface dynamics.

  20. Study of environment and photosphere of 51 Oph

    NASA Astrophysics Data System (ADS)

    Jamialahmadi, N.; Berio, Ph.; Lopez, B.; Meilland, A.; Stee, Ph.

    2015-01-01

    The main objective of this work is to improve our understanding of young fast-rotating stars evolving from the Herbig Ae/Be class to the Vega-like one. We observed with the VEGA instrument on CHARA one object so-called 51 Oph that is probably in such an evolutionary phase, allowing us to measure a mean stellar radius for the first time for this star and to show that the Hα emission was produced in a Keplerian rotating disc. However, additional observations are needed to improve our (u,v) plan coverage in order to measure the flattening of this close-to-critically rotating star and to probe the inner region of its circumstellar gaseous disc. These studies will help to disentangle the gas and dust emission around this late young star and will finally improve our understanding of the planet formation conditions in the inner regions of protoplanetary discs.

  1. Magnetic modulation of solar luminosity by photospheric activity

    SciTech Connect

    Foukal, P.; Lean, J.

    1988-05-01

    The behavior of slow changes in solar irradiance S is studied using measurements obtained with radiometers on the SMM and Nimbus 7 spacecraft. The general downtrend in the radiometer readings is examined by removing the influence of sunspot blocking and comparing the residual irradiance variations with changes in facular and network radiation as indicated by the He I 10830 and CaK indices. The time-integrated sunspot and facular contributions to irradiance variation and its implications for active region energetics are considered. The magnetic activity modulation of S over solar cycle 21 from daily data on sunspot blocking and the He I index are simulated, and this simulated irradiance variation is compared to radiometry since 1978. Other recent evidence for an irradiance modulation by magnetic activity is discussed. 38 references.

  2. The nature of microturbulence in the solar photosphere

    NASA Technical Reports Server (NTRS)

    Wilson, A. M.; Guidry, F. J.

    1974-01-01

    It is shown that the increase in apparent Doppler width as the limb is approached is a natural consequence of the fact that the solar atmosphere is not homogeneous. The work on the sodium D line cores which assumes the solar atmosphere to be homogeneous is reviewed. It appears that the cores of the sodium D lines have been distorted by fluctuations in the solar atmosphere in a systematic manner. It is concluded that the increase in apparent Doppler width observed in the sodium D line is a natural consequence of the temperature fluctuations in the solar atmosphere. The presence of a velocity field is not required to produce this effect.

  3. Radiative Diagnostics in the Solar Photosphere and Chromosphere

    NASA Astrophysics Data System (ADS)

    de la Cruz Rodríguez, J.; van Noort, M.

    2017-09-01

    Magnetic fields on the surface of the Sun and stars in general imprint or modify the polarization state of the electromagnetic radiation that is leaving from the star. The inference of solar/stellar magnetic fields is performed by detecting, studying and modeling polarized light from the target star. In this review we present an overview of techniques that are used to study the atmosphere of the Sun, and particularly those that allow to infer magnetic fields. We have combined a small selection of theory on polarized radiative transfer, inversion techniques and we discuss a number of results from chromospheric inversions.

  4. Investigating The Reliability Of Solar Photospheric Eruptivity Proxies.

    NASA Astrophysics Data System (ADS)

    Guennou, C.; Pariat, E.; Vilmer, N.

    2016-12-01

    Solar flares and coronal mass ejections (CMEs) are among the most energetic events in the solar system, impacting the near-Earth environment and thus our technologies. The European H2020 research project FLARECAST (Flare Likelihood and Region Eruption Forecasting) aims to develop a fully automated solar flare forecasting system with unmatched accuracy compared to existing facilities. FLARECAST will automatically extract magnetic-field parameters of solar active regions from solar magnetogram and white-light images to produce accurate predictions using the state-of-the-art forecasting techniques based on data-mining and machine learning. Flare productivity is empirically known to be correlated with the size and complexity of active regions. Several parameters, based on magnetic-field data from active regions have been tested in recent years. None of these parameters, or combination of thereof, have yet demonstrated an unambiguous eruption criterion. However, the predictability of these parameters has so far only been tested on observational data and never on controlled-cases, e.g., originating from numerical datasets. In the framework of the FLARECAST explorative research component, we use MHD numerical simulations of the formation of stable and unstable magnetic flux ropes (Leake et al. 2013, 2014) to evaluate the predictive potential of different magnetic parameters. Time series of magnetograms are used from parametric simulations of stable and unstable flux emergence, to compute a list of about 111 different parameters. This list includes parameters previously used for forecasting, as well as parameters used for the first time for this purpose. Our results indicate that only parameters measuring the total non-potentiality of active regions, such as Lssm and Lsgm and WLsg and the total length of the inversion line present significant preflare signatures, probably making them successful flare predictors.

  5. Photospheric emission throughout GRB 100507 detected by Fermi

    NASA Astrophysics Data System (ADS)

    Ghirlanda, G.; Pescalli, A.; Ghisellini, G.

    2013-07-01

    Gamma-ray bursts with blackbody spectra are only a few and in most cases this spectral component is accompanied by a dominating non-thermal one. Only four bursts detected by Burst And Transient Source Experiment have a pure blackbody spectrum throughout their duration. We present the new case of GRB 100507 detected by the Gamma Burst Monitor on board the Fermi satellite. GRB 100507 has a blackbody spectrum for the entire duration (˜30 s) of the prompt emission. The blackbody temperature varies between 25 and 40 keV. The flux varies between 10-7 and 4 × 10-7 erg cm-2 s. There is no clear evidence of a correlation between the temperature and the blackbody flux. If the thermal emission in GRB 100507 is due to the fireballs becoming transparent, we can estimate the radius RT and bulk Lorentz factor ΓT corresponding to this transition and the radius R0 where the fireballs are created. We compare these parameters with those derived for the other four bursts with a pure blackbody spectrum. In all but one burst, for fiducial assumptions on the radiative efficiency and distance of the sources, R0 ˜ 109-1010 cm, i.e. much larger than the gravitational radius of a few solar mass black hole. Possible solutions of this apparent inconsistency are tentatively discussed considering the dependence of R0 on the unknown parameters. Alternatively, such a large R0 could be where the fireball, still opaque, converts most of its kinetic energy into internal energy (due to the impact with some material left over by the progenitor star) and starts to re-accelerate.

  6. SPIN: An Inversion Code for the Photospheric Spectral Line

    NASA Astrophysics Data System (ADS)

    Yadav, Rahul; Mathew, Shibu K.; Tiwary, Alok Ranjan

    2017-08-01

    Inversion codes are the most useful tools to infer the physical properties of the solar atmosphere from the interpretation of Stokes profiles. In this paper, we present the details of a new Stokes Profile INversion code (SPIN) developed specifically to invert the spectro-polarimetric data of the Multi-Application Solar Telescope (MAST) at Udaipur Solar Observatory. The SPIN code has adopted Milne-Eddington approximations to solve the polarized radiative transfer equation (RTE) and for the purpose of fitting a modified Levenberg-Marquardt algorithm has been employed. We describe the details and utilization of the SPIN code to invert the spectro-polarimetric data. We also present the details of tests performed to validate the inversion code by comparing the results from the other widely used inversion codes (VFISV and SIR). The inverted results of the SPIN code after its application to Hinode/SP data have been compared with the inverted results from other inversion codes.

  7. Analysis of Photospheric Convection Cells with SDO/HMI

    NASA Technical Reports Server (NTRS)

    Williams, Peter E.; Pesnell, William Dean

    2010-01-01

    Supergranulation is a component of solar convection that assists in the outward transportation of internal energy. Supergranule cells are approximately 35 Mm across, have lifetimes on the order of a day and have divergent horizontal velocities of around 300 m/s, a factor of 10 higher than their central radial components. While they have been observed using Doppler methods for around half a century, their existence is also observed in other datasets such as magnetograms and Ca II K images. These datasets clearly show the influence of supergranulation on solar magnetism and how the local field is organized by the flows of supergranule cells. The Heliospheric and Magnetic Imager (HMI) aboard SDO is making fresh observations of convection phenomena at a higher cadence and a higher resolution that should make granular features visible. Granulation and supergranulation characteristics can now be compared within the same datasets, which may lead to further understanding of any mutual influences. The temporal and spatial enhancements of HMI will also reduce the noise level within studies of convection so that more detailed studies of their characteristics may be made. We present analyses of SDO/HMI Dopplergrams that provide new estimates of convection cell sizes, lifetimes, and velocity flows, as well as the rotation rates of the convection patterns across the solar disk. We make comparisons with previous data produced by MDI, as well as from data simulations.

  8. Analysis of Photospheric Convection Cells with SDO/HMI

    NASA Technical Reports Server (NTRS)

    Williams, Peter E.; Pesnell, William Dean

    2010-01-01

    Supergranulation is a component of solar convection that assists in the outward transportation of internal energy. Supergranule cells are approximately 35 Mm across, have lifetimes on the order of a day and have divergent horizontal velocities of around 300 m/s, a factor of 10 higher than their central radial components. While they have been observed using Doppler methods for around half a century, their existence is also observed in other datasets such as magnetograms and Ca II K images. These datasets clearly show the influence of supergranulation on solar magnetism and how the local field is organized by the flows of supergranule cells. The Heliospheric and Magnetic Imager (HMI) aboard SDO is making fresh observations of convection phenomena at a higher cadence and a higher resolution that should make granular features visible. Granulation and supergranulation characteristics can now be compared within the same datasets, which may lead to further understanding of any mutual influences. The temporal and spatial enhancements of HMI will also reduce the noise level within studies of convection so that more detailed studies of their characteristics may be made. We present analyses of SDO/HMI Dopplergrams that provide new estimates of convection cell sizes, lifetimes, and velocity flows, as well as the rotation rates of the convection patterns across the solar disk. We make comparisons with previous data produced by MDI, as well as from data simulations.

  9. Dynamical behaviour of photospheric bright points during merging

    NASA Astrophysics Data System (ADS)

    Criscuoli, S.; Stangalini, M.; Ermolli, I.; Zuccarello, F.; Cristaldi, A.; Falco, M.; Guglielmino, S.; Giorgi, F.

    2014-12-01

    We investigate the merging of bright points observed at high spatial and temporal resolution with CRISP/SST in a quiet region region. We analyze the MHD perturbations excited during the merging, their role in the energy budget of the magnetic structure and the potential role that they can play in heating the upper layers of the Sun's atmosphere.

  10. Infrared Imaging of Faculae at the Deepest Photospheric Layers

    DTIC Science & Technology

    1990-09-30

    heliostat of the National Solar Observatory McMath telescope at Kitt Peak. In place of the usual image-forming mirror, a 20 cm objective lens of 9 m focal...faculae put forward by Schatten et al. (1986). In that model, the faculae are interpreted as the sites of increased advection of heat from below by...systematic upflows. This increased local heat input is considered to cause heating of the facular subphotospheric layers and to increase their pressure

  11. Magnetic modulation of solar luminosity by photospheric activity

    NASA Technical Reports Server (NTRS)

    Foukal, P.; Lean, J.

    1988-01-01

    The behavior of slow changes in solar irradiance S is studied using measurements obtained with radiometers on the SMM and Nimbus 7 spacecraft. The general downtrend in the radiometer readings is examined by removing the influence of sunspot blocking and comparing the residual irradiance variations with changes in facular and network radiation as indicated by the He I 10830 and CaK indices. The time-integrated sunspot and facular contributions to irradiance variation and its implications for active region energetics are considered. The magnetic activity modulation of S over solar cycle 21 from daily data on sunspot blocking and the He I index are simulated, and this simulated irradiance variation is compared to radiometry since 1978. Other recent evidence for an irradiance modulation by magnetic activity is discussed.

  12. Location of energy source for coronal heating on the photosphere

    NASA Astrophysics Data System (ADS)

    Hong, Zhen-Xiang; Yang, Xu; Wang, Ya; Ji, Kai-Fan; Ji, Hai-Sheng; Cao, Wen-Da

    2017-02-01

    It is reported that ultra-fine dynamic ejections along magnetic loops of an active region originate from intergranular lanes and they are associated with subsequent heating in the corona. As continuing work, we analyze the same set of data but focus on a quiet region and the overlying EUV/UV emission as observed by the Atmospheric Imaging Assembly (AIA) on board Solar Dynamics Observatory (SDO). We find that there appear to be dark patches scattered across the quiet region and the dark patches always stay along intergranular lanes. Over the dark patches, the average UV/EUV emission at 131, 171, 304 and 1600 Å (middle temperature) is more intense than that of other regions and EUV brightness is negatively correlated with 10830 Å intensity, though, such a trend does not exist for high temperature lines at 94, 193, 211 and 335 Å. For the same quiet region, where both TiO 7057 Å broad band images and 10830 Å filtergrams are available, contours for the darkest lane areas on TiO images and dark patches on 10830 Å filtergrams frequently differ in space. The results suggest that the dark patches do not simply reflect the areas with the darkest lanes but are associated with a kind of enhanced absorption (EA) at 10830 Å. A strict definition for EA with narrow band 10830 Å filtergrams is found to be difficult. In this paper, we define enhanced absorption patches (EAPs) of a quiet region as the areas where emission is less than ∼90% of the mean intensity of the region. The value is equivalent to the average intensity along thin dark loops connecting two moss regions of the active region. A more strict definition for EAPs, say 88%, gives even more intense UV/EUV emission over those in the middle temperature range. The results provide further observational evidence that energy for heating the upper solar atmosphere comes from the intergranular lane area where the magnetic field is constantly brought in by convection motion in granules.

  13. Connecting Photospheric Magnetic Fields and Transition Temperature Plasma Emission

    NASA Astrophysics Data System (ADS)

    Schmit, Donald

    2016-05-01

    The connectivity of quiet sun magnetic fields is not well understood. One observational obstacle to probe this question has been the sparse spectral observations spanning the transition temperatures (3×104 K< T < 1×105K) between the chromosphere and corona. The Si IV lines observed by IRIS provide a rich dataset to address the structure of the cool quiet sun. We use over 900 deep exposures from IRIS to map the correlation between transition-temperature emission structures and magnetic field concentrations. Ultimately, our aim is to discern the topology and energetic equilibrium of the magnetic structures that span the quiet sun. We use both a potential field model and a snapshot of the Bifrost 3D MHD simulation to interpret our emission data. In a broad sense, we find there is a clear correlation between magnetic fields and strong Si IV emission. However, more pointed statistics suggest that the relationship is quite complex. We do not find evidence for cool loops longer than 3 Mm in length, but we see ubiquitous, smooth emission nearly everywhere in the quiet sun. Emission voids on scales larger than 8 Mm cannot be well explained by their proximity to magnetic fields. This evidence suggests that weak-field transition-temperature loops contribute significantly to quiet sun transition-temperature emission measure, and evolutionary effects likely play a role in structuring the magnetic atmosphere.

  14. Kinematics of Magnetic Bright Features in the Solar Photosphere

    NASA Astrophysics Data System (ADS)

    Jafarzadeh, S.; Solanki, S. K.; Cameron, R. H.; Barthol, P.; Blanco Rodríguez, J.; del Toro Iniesta, J. C.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Knölker, M.; Martínez Pillet, V.; Orozco Suárez, D.; Riethmüller, T. L.; Schmidt, W.; van Noort, M.

    2017-03-01

    Convective flows are known as the prime means of transporting magnetic fields on the solar surface. Thus, small magnetic structures are good tracers of turbulent flows. We study the migration and dispersal of magnetic bright features (MBFs) in intergranular areas observed at high spatial resolution with Sunrise/IMaX. We describe the flux dispersal of individual MBFs as a diffusion process whose parameters are computed for various areas in the quiet-Sun and the vicinity of active regions from seeing-free data. We find that magnetic concentrations are best described as random walkers close to network areas (diffusion index, γ =1.0), travelers with constant speeds over a supergranule (γ =1.9{--}2.0), and decelerating movers in the vicinity of flux emergence and/or within active regions (γ =1.4{--}1.5). The three types of regions host MBFs with mean diffusion coefficients of 130 km2 s‑1, 80–90 km2 s‑1, and 25–70 km2 s‑1, respectively. The MBFs in these three types of regions are found to display a distinct kinematic behavior at a confidence level in excess of 95%.

  15. Multi-wavelength Observations of Photospheric Vortex Flows in the Photosphere Using Ground-based and Space-borne Telescopes

    NASA Astrophysics Data System (ADS)

    Palacios, J.; Vargas Domínguez, S.; Balmaceda, L. A.; Cabello, I.; Domingo, V.

    2016-04-01

    In this work we follow a series of papers on high-resolution observations of small-scale structures in the solar atmosphere (Balmaceda et al. 2009, 2010; Vargas Domínguez et al. 2011; Palacios et al. 2012; Domingo et al. 2012; Vargas Domínguez et al. 2015, Cabello et al., in prep), combining several multi-wavelength data series. These were acquired by both ground-based (SST) and space-borne (Hinode) instruments during the joint campaign of the Hinode Operation Program 14, in September 2007. Diffraction-limited SST data were taken in the G-band and G-cont, and were restored by the MFBD technique. Hinode instruments, on the other hand, provided multispectral data from SOT-FG in the CN band, and Mg I and Ca II lines, as well as from SOT-SP in the Fe I line. In this series of works we have thoroughly studied vortex flows and their statistical occurrences, horizontal velocity fields by means of Local Correlation Tracking (LCT), divergence and vorticity. Taking advantage of the high-cadence and high spatial resolution data, we have also studied bright point statistics and magnetic field intensification, highlighting the importance of the smallest-scale magnetic element observations.

  16. GRB110721A: An Extreme Peak Energy and Signatures of the Photosphere

    NASA Technical Reports Server (NTRS)

    Axelsson, M.; Baldini, L.; Barbiellini, G.; Baring, M. G.; Bellazzini, R.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Caliandro, G. A.; hide

    2012-01-01

    GRB110721A was observed by the Fermi Gamma-ray Space Telescope using its two instruments, the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). The burst consisted of one major emission episode which lasted for approximately 24.5 s (in the GBM) and had a peak flux of (5.7 +/- 0.2) 10(exp -5) erg s(exp -1) cm(exp -2). The time-resolved emission spectrum is best modeled with a combination of a Band function and a blackbody spectrum. The peak energy of the Band component was initially 15 +/- 2 MeV, which is the highest value ever detected in a GRB. This measurement was made possible by combining GBM/BGO data with LAT Low Energy events to achieve continuous 10-100 MeV coverage. The peak energy later decreased as a power law in time with an index of -1.89 +/- 0.10. The temperature of the blackbody component also decreased, starting from approximately 80 keV, and the decay showed a significant break after approximately 2s. The spectrum provides strong constraints on the standard synchrotron model, indicating that alternative mechanisms may give rise to the emission at these energies.

  17. ON THE PROPERTIES OF SLOW MHD SAUSAGE WAVES WITHIN SMALL-SCALE PHOTOSPHERIC MAGNETIC STRUCTURES

    SciTech Connect

    Freij, N.; Ruderman, M. S.; Erdélyi, R.; Dorotovič, I.; Morton, R. J.; Karlovský, V. E-mail: ivan.dorotovic@suh.sk E-mail: m.s.ruderman@sheffield.ac.uk E-mail: robertus@sheffield.ac.uk

    2016-01-20

    The presence of magnetoacoustic waves in magnetic structures in the solar atmosphere is well-documented. Applying the technique of solar magneto-seismology (SMS) allows us to infer the background properties of these structures. Here, we aim to identify properties of the observed magnetoacoustic waves and study the background properties of magnetic structures within the lower solar atmosphere. Using the Dutch Open Telescope and Rapid Oscillations in the Solar Atmosphere instruments, we captured two series of high-resolution intensity images with short cadences of two isolated magnetic pores. Combining wavelet analysis and empirical mode decomposition (EMD), we determined characteristic periods within the cross-sectional (i.e., area) and intensity time series. Then, by applying the theory of linear magnetohydrodynamics (MHD), we identified the mode of these oscillations within the MHD framework. Several oscillations have been detected within these two magnetic pores. Their periods range from 3 to 20 minutes. Combining wavelet analysis and EMD enables us to confidently find the phase difference between the area and intensity oscillations. From these observed features, we concluded that the detected oscillations can be classified as slow sausage MHD waves. Furthermore, we determined several key properties of these oscillations such as the radial velocity perturbation, the magnetic field perturbation, and the vertical wavenumber using SMS. The estimated range of the related wavenumbers reveals that these oscillations are trapped within these magnetic structures. Our results suggest that the detected oscillations are standing harmonics, and this allows us to estimate the expansion factor of the waveguides by employing SMS. The calculated expansion factor ranges from 4 to 12.

  18. Ubiquitous Horizontal Magnetic Fields in the Quiet Solar Photosphere as Revealed by HINODE Meaurements

    NASA Astrophysics Data System (ADS)

    Lites, Bruce W.; Socas Navarro, H.; Berger, T.; Frank, Z.; Shine, R.; Tarbell, T.; Title, A.; Ichimoto, K.; Katsukawa, Y.; Tsuneta, S.; Suematsu, Y.; Kubo, M.; Shimizu, T.; Nagata, S.; Hinode Team

    2007-05-01

    Measurements with the HINODE Spectro-Polarimeter (SP) of the quiet Sun allow characterization of the weak, mixed-polarity magnetic flux at the highest angular resolution to date (0.3"), and with good polarimetric sensitivity(0.025% relative to the continuum). The image stabilization of the HINODE spacecraft allows long integrations with degradation of the image quality only by the evolution of the solar granulation. From the Stokes V profile measurements we find an average solar "Apparent Flux Density" of 14 Mx cm-2, with significant Stokes V signals at every position on the disk at all times. However, there are patches of meso-granular size (5-15") where the flux is very weak. At this high sensitivity, transverse fields produce measurable Stokes Q,U linear polarization signals over a majority of the area, with apparent transverse flux densities in the internetwork significantly larger than the corresponding longitudinal flux densities. When viewed at the center of the solar disk, the Stokes V signals (longitudinal fields) show a preference for occurrence in the intergranular lanes, and the Q,U signals occur preferably over the granule interiors, but neither association is exclusive. Hinode is an international project supported by JAXA, NASA, PPARC and ESA. We are grateful to the Hinode team for all their efforts in the design, build and operation of the mission.

  19. The dark side of solar photospheric G-band bright points

    NASA Astrophysics Data System (ADS)

    Riethmüller, T. L.; Solanki, S. K.

    2017-02-01

    Bright, small-scale magnetic elements found mainly in intergranular lanes at the solar surface are named bright points (BPs). They show high contrasts in Fraunhofer G-band observations and are described by nearly vertical slender flux tubes or sheets. A recent comparison between BP observations in the ultraviolet (UV) and visible spectral range recorded with the balloon-borne observatory Sunrise and state-of-the-art magnetohydrodynamical (MHD) simulations revealed a kilogauss magnetic field for 98% of the synthetic BPs. Here we address the opposite question, namely which fraction of pixels hosting kilogauss fields coincides with an enhanced G-band brightness. We carried out 3D radiation MHD simulations for three magnetic activity levels (corresponding to the quiet Sun, weak and strong plage) and performed a full spectral line synthesis in the G-band. Only 7% of the kilogauss pixels in our quiet-Sun simulation coincide with a brightness lower than the mean quiet-Sun intensity, while 23% of the pixels in the weak-plage simulation and even 49% in the strong-plage simulation are associated with a local darkening. Dark strong-field regions are preferentially found in the cores of larger flux patches that are rare in the quiet Sun, but more common in plage regions, often in the vertices of granulation cells. The significant brightness shortfall in the core of larger flux patches coincides with a slight magnetic field weakening. Kilogauss elements in the quiet Sun are, on average, brighter than similar features in plage regions. Almost all strong-field pixels display a more or less vertical magnetic field orientation. Hence, in the quiet Sun, G-band BPs correspond almost one-to-one with kilogauss elements. In weak plage, the correspondence is still very good, but not perfect.

  20. Centre-to-limb properties of small, photospheric quiet-Sun jets

    NASA Astrophysics Data System (ADS)

    Rubio da Costa, F.; Solanki, S. K.; Danilovic, S.; Hizberger, J.; Martínez-Pillet, V.

    2015-02-01

    Context. Strongly Doppler-shifted Stokes V profiles have been detected in the quiet Sun with the IMaX instrument on-board the SUNRISE stratospheric balloon-borne telescope. High velocities are required to produce such signals, hence these events have been interpreted as jets, although other sources are also possible. Aims: We aim to characterize the variation of the main properties of these events (occurrence rate, lifetime, size, and velocities) with their position on the solar disk between disk centre and the solar limb. Methods: These events were identified in SUNRISE/IMaX data according to the same objective criteria at all available positions on the solar disk. Their properties were determined using standard techniques. Results: Our study yielded a number of new insights into this phenomenon. Most importantly, the number density of these events is independent of the heliocentric angle, meaning that the investigated supersonic flows are nearly isotropically distributed. Size and lifetime are also nearly independent of the heliocentric angle, while their intensity contrast increases towards the solar limb. The Stokes V jets are associated with upflow velocities deduced from Stokes I, which are stronger towards the limb. Their intensity decreases with time, while their line-of-sight velocity does not display a clear temporal evolution. Their association with linear polarization signals decreases towards the limb. Conclusions: The density of events appears to be independent of heliocentric angle, establishing that they are directed nearly randomly. If these events are jets triggered by magnetic reconnection between emerging magnetic flux and the ambient field, then our results suggest that there is no preferred geometry for the reconnection process.

  1. Evolution of the photospheric magnetic field and coronal null points before solar flares

    NASA Astrophysics Data System (ADS)

    Oreshina, I. V.; Somov, B. V.

    2009-03-01

    Based on a topological model for the magnetic field of a solar active region (AR), we suggest a criterion for the existence of magnetic null points on the separators in the corona. With the problem of predicting solar flares in mind, we have revealed a model parameter whose decrease means that the AR evolves toward a major eruptive flare. We analyze the magnetic field evolution for AR 9077 within two days before the Bastille Day flare on July 14, 2000. The coronal conditions are shown to have become more favorable for magnetic reconnection, which led to a 3B/X5.7 eruptive flare.

  2. On the temperature and velocity through the photosphere of a sunspot penumbra

    NASA Astrophysics Data System (ADS)

    del Toro Iniesta, J. C.; Tarbell, T. D.; Ruiz Cobo, B.

    1994-11-01

    We investigate the structure in depth of a sunspot penumbra by means of the inversion code of the radiative transfer equation proposed by Ruiz Cobo & del Toro Iniesta (1992), applied to a set of filtergrams of a sunspot, scanning the Fe I line at 5576.1 A, with a sampling interval of 30 mA, from -120 to 120 mA from line center (data previously analyzed by Title et al. 1993). The temperature structure of this penumbra is obtained for each of the 801 pixels selected (0.32 sec x 0.32 sec). On the average, the temperatures seem to decrease as we move inward, but the differences are of the order of the rms values (approximately equal 100-200 K) at a given distance to sunspot center. The outer parts of the penumbra have also a bigger curvature in the T versus log tau5 relation than the inner parts. We realize, however, that these differences might be influenced by possible stray light effects. Compared to the quiet Sun, penumbral temperatures are cooler at deep layers and hotter at high layers. A mean penumbral model atmosphere is presented. The asymmetries observed in the intensity profile (the line is magnetically insensitive) are deduced to be produced by strong gradients of the line-of-sight velocity that sharply vary spatially along slices of almost constant distance to sunspot center. These variations suggest that such gradients are not only needed to explain the broadband circular polarization observed in sunspots (see Sanchez Almeida & Lites 1992) but are a main characteristic of the fine-scale penumbra. The results are compatible with an Evershed flow present everywhere, but its gradient with depth turns out to vary so that the flow seems to be mainly concentrated in some penumbral fibrils when studied through Dopplergrams. Finally, as by-products of this study, we put constraints to the practical usefulness of the Eddington-Barbier relation, and we explain the values of the Fourier Dopplergrams to be carrying information of layers around the centroid of the generalized response function of Dopplergrams to velocity fluctuations.

  3. On the temperature and velocity through the photosphere of a sunspot penumbra

    NASA Technical Reports Server (NTRS)

    Del Toro Iniesta, J. C.; Tarbell, T. D.; Cobo, B. Ruiz

    1994-01-01

    We investigate the structure in depth of a sunspot penumbra by means of the inversion code of the radiative transfer equation proposed by Ruiz Cobo & del Toro Iniesta (1992), applied to a set of filtergrams of a sunspot, scanning the Fe I line at 5576.1 A, with a sampling interval of 30 mA, from -120 to 120 mA from line center (data previously analyzed by Title et al. 1993). The temperature structure of this penumbra is obtained for each of the 801 pixels selected (0.32 sec x 0.32 sec). On the average, the temperatures seem to decrease as we move inward, but the differences are of the order of the rms values (approximately equal 100-200 K) at a given distance to sunspot center. The outer parts of the penumbra have also a bigger curvature in the T versus log tau(sub 5) relation than the inner parts. We realize, however, that these differences might be influenced by possible stray light effects. Compared to the quiet Sun, penumbral temperatures are cooler at deep layers and hotter at high layers. A mean penumbral model atmosphere is presented. The asymmetries observed in the intensity profile (the line is magnetically insensitive) are deduced to be produced by strong gradients of the line-of-sight velocity that sharply vary spatially along slices of almost constant distance to sunspot center. These variations suggest that such gradients are not only needed to explain the broadband circular polarization observed in sunspots (see Sanchez Almeida & Lites 1992) but are a main characteristic of the fine-scale penumbra. The results are compatible with an Evershed flow present everywhere, but its gradient with depth turns out to vary so that the flow seems to be mainly concentrated in some penumbral fibrils when studied through Dopplergrams. Finally, as by-products of this study, we put constraints to the practical usefulness of the Eddington-Barbier relation, and we explain the values of the Fourier Dopplergrams to be carrying information of layers around the centroid of the generalized response function of Dopplergrams to velocity fluctuations.

  4. Trend of photospheric helicity flux in active regions generating halo CMEs

    NASA Astrophysics Data System (ADS)

    Smyrli, Aimilia; Zuccarello, Francesco; Zuccarello, Francesca; Romano, Paolo; Guglielmino, Salvatore Luigi; Spadaro, Daniele; Hood, Alan; Mackay, Duncan

    Coronal Mass Ejections (CMEs) are very energetic events initiated in the solar atmosphere, re-sulting in the expulsion of magnetized plasma clouds that propagate into interplanetary space. It has been proposed that CMEs can play an important role in shedding magnetic helicity, avoiding its endless accumulation in the corona. We therefore investigated the behavior of magnetic helicity accumulation in sites where the initiation of CMEs occurred, in order to de-termine whether and how changes in magnetic helicity accumulation are temporally correlated with CME occurrence. After identifying the active regions (AR) where the CMEs were ini-tiated by means of a double cross-check based on the flaring-eruptive activity and the use of SOHO/EIT difference images, we used MDI magnetograms to calculate magnetic flux evolu-tion, magnetic helicity injection rate and magnetic helicity injection in 10 active regions that gave rise to 12 halo CMEs observed during the period February 2000 -June 2003. No unique behavior in magnetic helicity injection accompanying halo CME occurrence is found. In fact, in some cases there is an abrupt change in helicity injection timely correlated with the CME event, while in some others no significant variation is recorded. However, our analysis show that the most significant changes in magnetic flux and magnetic helicity injection are associated with impulsive CMEs rather than gradual CMEs. Moreover, the most significant changes in mag-netic helicity are observed when X-class flares or eruptive filaments occur, while the occurrence of flares of class C or M seems not to affect significantly the magnetic helicity accumulation.

  5. Center-to-limb variations in the two-dimensional contrast of photospheric faculae

    NASA Astrophysics Data System (ADS)

    Chapman, G. A.; Gingell, T. W.

    1984-04-01

    The center-to-limb appearance of a facular flux tube is presently sought by means of the semiempirical model of Osherovich et al. (1983), which is in magnetohydrostatic equilibrium and includes tension forces. The results of this model's application are presented as contour maps, cross sections of the contrast on axis, and integrated contrast as a function of viewing angle. It is noted that these results are in keeping with those of Caccin and Severino (1979), but not with the observations of Chapman and Klabunde (1982).

  6. Solar photospheric and coronal abundances from solar energetic particle measurements. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Breneman, H.

    1985-01-01

    Observations of solar energetic particles (SEP) from 22 solar flares in the 1977 to 1982 time period are reported. SEP abundances were obtained for all elements with 3 approximately less than Z approximately less than 30 except Li, Be, B, F, Sc, v, Co and Cu for which upper limits were obtained. Statistically meaningful abundances of several rare elements (P, Cl, K, Ti, and Mn) were determined for the first time, and the average abundance of the more abundant elements were determined with improved precision.

  7. On the temperature and velocity through the photosphere of a sunspot penumbra

    NASA Technical Reports Server (NTRS)

    Del Toro Iniesta, J. C.; Tarbell, T. D.; Cobo, B. Ruiz

    1994-01-01

    We investigate the structure in depth of a sunspot penumbra by means of the inversion code of the radiative transfer equation proposed by Ruiz Cobo & del Toro Iniesta (1992), applied to a set of filtergrams of a sunspot, scanning the Fe I line at 5576.1 A, with a sampling interval of 30 mA, from -120 to 120 mA from line center (data previously analyzed by Title et al. 1993). The temperature structure of this penumbra is obtained for each of the 801 pixels selected (0.32 sec x 0.32 sec). On the average, the temperatures seem to decrease as we move inward, but the differences are of the order of the rms values (approximately equal 100-200 K) at a given distance to sunspot center. The outer parts of the penumbra have also a bigger curvature in the T versus log tau(sub 5) relation than the inner parts. We realize, however, that these differences might be influenced by possible stray light effects. Compared to the quiet Sun, penumbral temperatures are cooler at deep layers and hotter at high layers. A mean penumbral model atmosphere is presented. The asymmetries observed in the intensity profile (the line is magnetically insensitive) are deduced to be produced by strong gradients of the line-of-sight velocity that sharply vary spatially along slices of almost constant distance to sunspot center. These variations suggest that such gradients are not only needed to explain the broadband circular polarization observed in sunspots (see Sanchez Almeida & Lites 1992) but are a main characteristic of the fine-scale penumbra. The results are compatible with an Evershed flow present everywhere, but its gradient with depth turns out to vary so that the flow seems to be mainly concentrated in some penumbral fibrils when studied through Dopplergrams. Finally, as by-products of this study, we put constraints to the practical usefulness of the Eddington-Barbier relation, and we explain the values of the Fourier Dopplergrams to be carrying information of layers around the centroid of the generalized response function of Dopplergrams to velocity fluctuations.

  8. White-light movies of the solar photosphere from the SOUP instrument on Spacelab

    NASA Astrophysics Data System (ADS)

    Title, A. M.; Tarbell, T. D.; Acton, L.; Duncan, D.; Simon, G. W.

    Initial results are presented on solar granulation, pores and sunspots from the white-light films obtained by the Solar Optical Universal Polarimeter (SOUP) instrument in Spacelab 2. Several hours of movies were taken at various disk and limb positions in quiet and active regions. The images are diffraction-limited at 0.5 arcsec resolution and are, of course, free of atmospheric seeing and distortion. Properties of the granulation in magnetic and nonmagnetic regions are compared and are found to differ significantly in size, rate of intensity variation, and lifetime. In quiet sun, on the order of fifty-percent of the area has at least one 'exploding granule' occurring in it during a 25-min period. Local correlation tracking has detected several types of transverse flows, including systematic outflow from the penumbral boundary of a spot, motion of penumbral filaments, and cellular flow patterns of supergranular and mesogranular size. Feature tracking has shown that, in the quiet sun, the average granule fragment has a velocity of about one kilometer/second.

  9. The modeling of the solar upper photosphere and lower chromosphere based upon ATM data

    NASA Technical Reports Server (NTRS)

    Heasley, J. N.

    1982-01-01

    The use of the solar H I Lyman spectral line as a diagnostic of the lower to middle chromosphere is discussed. Quiet sun Lyman profiles from the photographic spectra were subjected to data reduction and appropriate theoretical modelling was accomplished. Apollo telescope mount data was utilized.

  10. An Effective Geometry Treatment of General-Relativistic Radiative Transfer Inside Stellar Photospheres

    NASA Astrophysics Data System (ADS)

    Fumeron, S.

    The aim of this paper is to determine how the gravitational field inside a massive star affects the propagation of photons, and to investigate the consequences for the radiation field. The chosen approach consists in modeling the curved metric by an effective refractive medium: from this very simple perspective, the energy transport problem is investigated and the new form of the radiative transfer is derived. Then, the main effects of curvature on the energy balance are discussed and, in particular, it is shown that these effects influence the radiative flux emitted by the star.

  11. Empirical NLTE analyses of solar spectral lines. III - Iron lines v