Science.gov

Sample records for photosynthetic bacterium chlorobium

  1. Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum.

    PubMed

    Frigaard, Niels-Ulrik; Maresca, Julia A; Yunker, Colleen E; Jones, A Daniel; Bryant, Donald A

    2004-08-01

    The green sulfur bacterium Chlorobium tepidum is a strict anaerobe and an obligate photoautotroph. On the basis of sequence similarity with known enzymes or sequence motifs, nine open reading frames encoding putative enzymes of carotenoid biosynthesis were identified in the genome sequence of C. tepidum, and all nine genes were inactivated. Analysis of the carotenoid composition in the resulting mutants allowed the genes encoding the following six enzymes to be identified: phytoene synthase (crtB/CT1386), phytoene desaturase (crtP/CT0807), zeta-carotene desaturase (crtQ/CT1414), gamma-carotene desaturase (crtU/CT0323), carotenoid 1',2'-hydratase (crtC/CT0301), and carotenoid cis-trans isomerase (crtH/CT0649). Three mutants (CT0180, CT1357, and CT1416 mutants) did not exhibit a discernible phenotype. The carotenoid biosynthetic pathway in C. tepidum is similar to that in cyanobacteria and plants by converting phytoene into lycopene using two plant-like desaturases (CrtP and CrtQ) and a plant-like cis-trans isomerase (CrtH) and thus differs from the pathway known in all other bacteria. In contrast to the situation in cyanobacteria and plants, the construction of a crtB mutant completely lacking carotenoids demonstrates that carotenoids are not essential for photosynthetic growth of green sulfur bacteria. However, the bacteriochlorophyll a contents of mutants lacking colored carotenoids (crtB, crtP, and crtQ mutants) were decreased from that of the wild type, and these mutants exhibited a significant growth rate defect under all light intensities tested. Therefore, colored carotenoids may have both structural and photoprotection roles in green sulfur bacteria. The ability to manipulate the carotenoid composition so dramatically in C. tepidum offers excellent possibilities for studying the roles of carotenoids in the light-harvesting chlorosome antenna and iron-sulfur-type (photosystem I-like) reaction center. The phylogeny of carotenogenic enzymes in green sulfur

  2. Two genes encoding new carotenoid-modifying enzymes in the green sulfur bacterium Chlorobium tepidum.

    PubMed

    Maresca, Julia A; Bryant, Donald A

    2006-09-01

    The green sulfur bacterium Chlorobium tepidum produces chlorobactene as its primary carotenoid. Small amounts of chlorobactene are hydroxylated by the enzyme CrtC and then glucosylated and acylated to produce chlorobactene glucoside laurate. The genes encoding the enzymes responsible for these modifications of chlorobactene, CT1987, and CT0967, have been identified by comparative genomics, and these genes were insertionally inactivated in C. tepidum to verify their predicted function. The gene encoding chlorobactene glucosyltransferase (CT1987) has been named cruC, and the gene encoding chlorobactene lauroyltransferase (CT0967) has been named cruD. Homologs of these genes are found in the genomes of all sequenced green sulfur bacteria and filamentous anoxygenic phototrophs as well as in the genomes of several nonphotosynthetic bacteria that produce similarly modified carotenoids. The other bacteria in which these genes are found are not closely related to green sulfur bacteria or to one another. This suggests that the ability to synthesize modified carotenoids has been a frequently transferred trait.

  3. Menaquinone-7 in the reaction center complex of the green sulfur bacterium Chlorobium vibrioforme functions as the electron acceptor A1.

    PubMed

    Kjaer, B; Frigaard, N U; Yang, F; Zybailov, B; Miller, M; Golbeck, J H; Scheller, H V

    1998-03-10

    Photosynthetically active reaction center complexes were prepared from the green sulfur bacterium Chlorobium vibrioforme NCIMB 8327, and the content of quinones was determined by extraction and high-performance liquid chromatography. The analysis showed a stoichiometry of 1.7 molecules of menaquinone-7/reaction center. No other quinones were detected in the isolated reaction centers, whereas membrane preparations also contained chlorobiumquinone. The possible involvement of quinones in electron transport was investigated by electron paramagnetic resonance (EPR) spectroscopy. A highly anisotropic radical was detected by Q-band EPR spectroscopy in both membranes and isolated reaction centers following dark reduction with sodium dithionite and photoaccumulation at 205 K. At 34 GHz, the EPR spectrum is characterized by a g tensor with gxx = 2.0063, gyy = 2.0052, gzz = 2.0020 and delta B of 0.7 mT, consistent with its identification as a quinone. This spectrum is highly similar in terms of g values and line widths to photoaccumulated A1- in photosystem I of Synechococcus sp. PCC 7002. The results indicate that menaquinone-7 in the green sulfur bacterial reaction center is analogous to phylloquinone in photosystem I.

  4. Two exopolyphosphatases with distinct molecular architectures and substrate specificities from the thermophilic green-sulfur bacterium Chlorobium tepidum TLS.

    PubMed

    Albi, Tomás; Serrano, Aurelio

    2014-09-01

    The genome of the thermophilic green-sulfur bacterium Chlorobium tepidum TLS possesses two genes encoding putative exopolyphosphatases (PPX; EC 3.6.1.11), namely CT0099 (ppx1, 993 bp) and CT1713 (ppx2, 1557 bp). The predicted polypeptides of 330 and 518 aa residues are Ppx-GppA phosphatases of different domain architectures - the largest one has an extra C-terminal HD domain - which may represent ancient paralogues. Both ppx genes were cloned and overexpressed in Escherichia coli BL21(DE3). While CtPPX1 was validated as a monomeric enzyme, CtPPX2 was found to be a homodimer. Both PPX homologues were functional, K(+)-stimulated phosphohydrolases, with an absolute requirement for divalent metal cations and a marked preference for Mg(2+). Nevertheless, they exhibited remarkably different catalytic specificities with regard to substrate classes and chain lengths. Even though both enzymes were able to hydrolyse the medium-size polyphosphate (polyP) P13-18 (polyP mix with mean chain length of 13-18 phosphate residues), CtPPX1 clearly reached its highest catalytic efficiency with tripolyphosphate and showed substantial nucleoside triphosphatase (NTPase) activity, while CtPPX2 preferred long-chain polyPs (>300 Pi residues) and did not show any detectable NTPase activity. These catalytic features, taken together with the distinct domain architectures and molecular phylogenies, indicate that the two PPX homologues of Chl. tepidum belong to different Ppx-GppA phosphatase subfamilies that should play specific biochemical roles in nucleotide and polyP metabolisms. In addition, these results provide an example of the remarkable functional plasticity of the Ppx-GppA phosphatases, a family of proteins with relatively simple structures that are widely distributed in the microbial world.

  5. Two exopolyphosphatases with distinct molecular architectures and substrate specificities from the thermophilic green-sulfur bacterium Chlorobium tepidum TLS.

    PubMed

    Albi, Tomás; Serrano, Aurelio

    2014-09-01

    The genome of the thermophilic green-sulfur bacterium Chlorobium tepidum TLS possesses two genes encoding putative exopolyphosphatases (PPX; EC 3.6.1.11), namely CT0099 (ppx1, 993 bp) and CT1713 (ppx2, 1557 bp). The predicted polypeptides of 330 and 518 aa residues are Ppx-GppA phosphatases of different domain architectures - the largest one has an extra C-terminal HD domain - which may represent ancient paralogues. Both ppx genes were cloned and overexpressed in Escherichia coli BL21(DE3). While CtPPX1 was validated as a monomeric enzyme, CtPPX2 was found to be a homodimer. Both PPX homologues were functional, K(+)-stimulated phosphohydrolases, with an absolute requirement for divalent metal cations and a marked preference for Mg(2+). Nevertheless, they exhibited remarkably different catalytic specificities with regard to substrate classes and chain lengths. Even though both enzymes were able to hydrolyse the medium-size polyphosphate (polyP) P13-18 (polyP mix with mean chain length of 13-18 phosphate residues), CtPPX1 clearly reached its highest catalytic efficiency with tripolyphosphate and showed substantial nucleoside triphosphatase (NTPase) activity, while CtPPX2 preferred long-chain polyPs (>300 Pi residues) and did not show any detectable NTPase activity. These catalytic features, taken together with the distinct domain architectures and molecular phylogenies, indicate that the two PPX homologues of Chl. tepidum belong to different Ppx-GppA phosphatase subfamilies that should play specific biochemical roles in nucleotide and polyP metabolisms. In addition, these results provide an example of the remarkable functional plasticity of the Ppx-GppA phosphatases, a family of proteins with relatively simple structures that are widely distributed in the microbial world. PMID:24969471

  6. Electron transfer kinetics in purified reaction centers from the green sulfur bacterium Chlorobium tepidum studied by multiple-flash excitation.

    PubMed

    Kusumoto, N; Sétif, P; Brettel, K; Seo, D; Sakurai, H

    1999-09-14

    Reaction center preparations from the green sulfur bacterium Chlorobium tepidum, which contain monoheme cytochrome c, were studied by flash-absorption spectroscopy in the near-UV, visible, and near-infrared regions. The decay kinetics of the photooxidized primary donor P840(+), together with the amount of photooxidized cytochrome c, were analyzed along a series of four flashes spaced by 1 ms: 95% of the P840(+) was reduced by cytochrome c with a t(1/2) of approximately 65 micros after the first flash, 80% with a t(1/2) of approximately 100 micros after the second flash, and 23% with a t(1/2) of approximately 100 micros after the third flash; after the fourth flash, almost no cytochrome c oxidation occurred. The observed rates, the establishment of redox equilibrium after each flash, and the total amount of photooxidizable cytochrome c are consistent with the presence of two equivalent cytochrome c molecules per photooxidizable P840. The data are well fitted assuming a standard free energy change DeltaG degrees of -53 meV for electron transfer from one cytochrome c to P840(+), DeltaG degrees being independent of the oxidation state of the other cytochrome c. These observations support a model with two monoheme cytochromes c which are symmetrically arranged around the reaction center core. From the ratio of menaquinone-7 to the bacteriochlorophyll pigment absorbing at 663 nm, it was estimated that our preparations contain 0.6-1.2 menaquinone-7 molecules per reaction center. However, no transient signal due to menaquinone could be observed between 360 and 450 nm in the time window from 10 ns to 4 micros. No recombination reaction between the primary partners P840(+) and A(0)(-) could be detected under normal conditions. Such a recombination was observed (t(1/2) approximately 19 ns) under highly reducing conditions or after accumulation of three electrons on the acceptor side during a series of flashes, showing that the secondary acceptors can stabilize three electrons

  7. The three-dimensional structure of CsmA: a small antenna protein from the green sulfur bacterium Chlorobium tepidum.

    PubMed

    Pedersen, Marie Østergaard; Underhaug, Jarl; Dittmer, Jens; Miller, Mette; Nielsen, Niels Chr

    2008-08-20

    The structure of the chlorosome baseplate protein CsmA from Chlorobium tepidum in a 1:1 chloroform:methanol solution was determined using liquid-state NMR spectroscopy. The data reveal that the 59-residue protein is predominantly alpha-helical with a long helical domain extending from residues V6 to L36, containing a putative bacteriochlorophyll a binding domain, and a short helix in the C-terminal part extending from residues M41 to G49. These elements are compatible with a model of CsmA having the long N-terminal alpha-helical stretch immersed into the lipid monolayer confining the chlorosome and the short C-terminal helix protruding outwards, thus available for interaction with the Fenna-Matthews-Olson antenna protein.

  8. Triazine herbicide resistance in the photosynthetic bacterium Rhodopseudomonas sphaeroides

    SciTech Connect

    Brown, A.E.; Gilbert, C.W.; Guy, R.; Arntzen, C.J.

    1984-10-01

    The photoaffinity herbicide azidoatrazine (2-azido-4-ethylamino-6-isopropylamino-s-triazine) selectively labels the L subunit of the reaction center of the photosynthetic bacterium Rhodopseudomonas sphaeroides. Herbicide-resistant mutants retain the L subunit and have altered binding properties for methylthio- and chloro-substituted triazines as well as altered equilibrium constants for electron transfer between primary and secondary electron acceptors. We suggest that a subtle alteration in the L subunit is responsible for herbicide resistance and that the L subunit is the functional analog of the 32-kDa Q/sub B/ protein of chloroplast membranes. 42 references, 6 figures, 1 table.

  9. Genes involved in the biosynthesis of photosynthetic pigments in the purple sulfur photosynthetic bacterium Thiocapsa roseopersicina.

    PubMed

    Kovács, Akos T; Rákhely, Gábor; Kovács, Kornél L

    2003-06-01

    A pigment mutant strain of the purple sulfur photosynthetic bacterium Thiocapsa roseopersicina BBS was isolated by plasposon mutagenesis. Nineteen open reading frame, most of which are thought to be genes involved in the biosynthesis of carotenoids, bacteriochlorophyll, and the photosynthetic reaction center, were identified surrounding the plasposon in a 22-kb-long chromosomal locus. The general arrangement of the photosynthetic genes was similar to that in other purple photosynthetic bacteria; however, the locations of a few genes occurring in this region were unusual. Most of the gene products showed the highest similarity to the corresponding proteins in Rubrivivax gelatinosus. The plasposon was inserted into the crtD gene, likely inactivating crtC as well, and the carotenoid composition of the mutant strain corresponded to the aborted spirilloxanthin pathway. Homologous and heterologous complementation experiments indicated a conserved function of CrtC and CrtD in the purple photosynthetic bacteria. The crtDC and crtE genes were shown to be regulated by oxygen, and a role of CrtJ in aerobic repression was suggested.

  10. Revised Genome Sequence of the Purple Photosynthetic Bacterium Blastochloris viridis

    PubMed Central

    Faulkner, Matthew; Liu, Xuan; Huang, Fang; Darby, Alistair C.; Hall, Neil

    2016-01-01

    Blastochloris viridis is a unique anaerobic, phototrophic purple bacterium that produces bacteriochlorophyll b. Here we report an improved genome sequence of Blastochloris viridis DSM133, which is instrumental to the studies of photosynthesis, metabolic versatility, and genetic engineering of this microorganism. PMID:26798090

  11. Biological conversion of synthesis gas. [Chlorobium thiosulfatophilum, chlorobium phaeobacteroides, and Rhodospirillum rubrum

    SciTech Connect

    Not Available

    1992-01-06

    The anaerobic bacterium Rhodospirillum rubrum has been chosen for catalysis of the biological water gas shift reaction. Two bacteria, Chlorobium thiosulfatophilum and Chlorobium phaeobacteroides, are being evaluated as candidates for H{sub 2}S conversion to elemental sulfur. Since these latter two organisms both grow and convert H{sub 2}S in batch culture using standard basal medium, the choice of a suitable bacterium must be made in consideration of specific growth and uptake rates. Produced elemental sulfur stability against further oxidation to sulfate, and minimal use of H{sub 2} as a producing agent must also be considered. The effects of temperature on the performance of R. rubrum were evaluated. It was found that the cell concentration was highest at temperatures of 25 and 30{degree}C, and that the specific uptake rate was highest at temperatures of 30, 32 and 34{degree}C. No growth was observed at 37{degree}C. Also, temperature did not affect the yield of H{sub 2} from CO. Thus, R. rubrum may be used for biological rates gas shift at any temperature between 30 and 34{degree}C, although growth is maximized at lower temperatures. Preliminary studies with C. thiosulfatophilum showed rapid utilization of H{sub 2}S from the gas and liquid phases with subsequent production of elemental sulfur. Elemental sulfur production interfered with cell concentrations measurements, although a technique has been developed to rectify this problem.

  12. Development of a gene cloning system for the hydrogen-producing marine photosynthetic bacterium Rhodopseudomonas sp

    SciTech Connect

    Matsunaga, T.; Matsunaga, N.; Tsubaki, K.; Tanaka, T.

    1986-10-01

    Seventy-six strains of marine photosynthetic bacteria were analyzed by agarose gel electrophoresis for plasmid DNA content. Among these strains, 12 carried two to four different plasmids with sizes ranging from 3.1 to 11.0 megadaltons. The marine photosynthetic bacterium Rhodopseudomonas sp. NKPB002106 had two plasmids, pRD06S and pRD06L. The smaller plasmid, pRD06S, had a molecular weight of 3.8 megadaltons and was cut at a single site by restriction endonucleases SalI, SmaI, PstI, XhoI, and BglII. Moreover, the marine photosynthetic bacterium Rhodopseudomonas sp. NKPB002106 containing plasmid pRD06 had a satisfactory growth rate (doubling time, 7.5 h), a hydrogen-producing rate of 0.96 ..mu..mol/mg (dry weight) of cells per h, and nitrogen fixation capability. Plasmid pRD06S, however, had neither drug resistance nor heavy-metal resistance, and its copy number was less than 10. Therefore, a recombinant plasmid consisting of pRD06S and Escherichia coli cloning vector pUC13 was constructed and cloned in E. coli. The recombinant plasmid was transformed into Rhodopseudomonas sp. NKPB002106. As a result, Rhodopseudomonas sp. NKPB002106 developed ampicillin resistance. Thus, a shuttle vector for gene transfer was constructed for marine photosynthetic bacteria.

  13. Development of a gene cloning system for the hydrogen-producing marine photosynthetic bacterium Rhodopseudomonas sp.

    PubMed Central

    Matsunaga, T; Matsunaga, N; Tsubaki, K; Tanaka, T

    1986-01-01

    Seventy-six strains of marine photosynthetic bacteria were analyzed by agarose gel electrophoresis for plasmid DNA content. Among these strains, 12 carried two to four different plasmids with sizes ranging from 3.1 to 11.0 megadaltons. The marine photosynthetic bacterium Rhodopseudomonas sp. NKPB002106 had two plasmids, pRD06S and pRD06L. The smaller plasmid, pRD06S, had a molecular weight of 3.8 megadaltons and was cut at a single site by restriction endonucleases SalI, SmaI, PstI, XhoI, and BglII. Moreover, the marine photosynthetic bacterium Rhodopseudomonas sp. NKPB002106 containing plasmid pRD06 had a satisfactory growth rate (doubling time, 7.5 h), a hydrogen-producing rate of 0.96 mumol/mg (dry weight) of cells per h, and nitrogen fixation capability. Plasmid pRD06S, however, had neither drug resistance nor heavy-metal resistance, and its copy number was less than 10. Therefore, a recombinant plasmid consisting of pRD06S and Escherichia coli cloning vector pUC13 was constructed and cloned in E. coli. The recombinant plasmid was transformed into Rhodopseudomonas sp. NKPB002106. As a result, Rhodopseudomonas sp. NKPB002106 developed ampicillin resistance. Thus, a shuttle vector for gene transfer was constructed for marine photosynthetic bacteria. PMID:3020006

  14. Final Report - "CO2 Sequestration in Cell Biomass of Chlorobium Thiosulfatophilum"

    SciTech Connect

    James L. Gaddy, PhD; Ching-Whan Ko, PhD

    2009-05-04

    World carbon dioxide emissions from the combustion of fossil fuels have increased at a rate of about 3 percent per year during the last 40 years to over 24 billion tons today. While a number of methods have been proposed and are under study for dealing with the carbon dioxide problem, all have advantages as well as disadvantages which limit their application. The anaerobic bacterium Chlorobium thiosulfatophilum uses hydrogen sulfide and carbon dioxide to produce elemental sulfur and cell biomass. The overall objective of this project is to develop a commercial process for the biological sequestration of carbon dioxide and simultaneous conversion of hydrogen sulfide to elemental sulfur. The Phase I study successfully demonstrated the technical feasibility of utilizing this bacterium for carbon dioxide sequestration and hydrogen sulfide conversion to elemental sulfur by utilizing the bacterium in continuous reactor studies. Phase II studies involved an advanced research and development to develop the engineering and scale-up parameters for commercialization of the technology. Tasks include culture isolation and optimization studies, further continuous reactor studies, light delivery systems, high pressure studies, process scale-up, a market analysis and economic projections. A number of anaerobic and aerobic microorgansims, both non-photosynthetic and photosynthetic, were examined to find those with the fastest rates for detailed study to continuous culture experiments. C. thiosulfatophilum was selected for study to anaerobically produce sulfur and Thiomicrospira crunogena waws selected for study to produce sulfate non-photosynthetically. Optimal conditions for growth, H2S and CO2 comparison, supplying light and separating sulfur were defined. The design and economic projections show that light supply for photosynthetic reactions is far too expensive, even when solar systems are considered. However, the aerobic non-photosynthetic reaction to produce sulfate with T

  15. Isolation of pigmentation mutants of the green filamentous photosynthetic bacterium Chloroflexus aurantiacus.

    PubMed

    Pierson, B K; Keith, L M; Leovy, J G

    1984-07-01

    Mutants deficient in the production of bacteriochlorophyll c (Bchl c) and one mutant lacking colored carotenoids were isolated from the filamentous gliding bacterium Chloroflexus aurantiacus. Mutagenesis was achieved by using UV radiation or N-methyl-N'-nitro-N-nitrosoguanidine. Several clones were isolated that were deficient in Bchl c synthesis. All reverted. One double mutant deficient both in Bchl c synthesis and in the synthesis of colored carotenoids under anaerobic conditions was isolated. Isolation of a revertant in Bchl c synthesis from this double mutant produced a mutant strain of Chloroflexus that grew photosynthetically under anaerobic conditions and lacked colored carotenoids. Analysis of pigment contents and growth rates of the mutants revealed a positive association between growth rate and content of Bchl c under light-limiting conditions.

  16. Purification and characterization of the alternative nitrogenase from the photosynthetic bacterium Rhodospirillum rubrum.

    PubMed Central

    Davis, R; Lehman, L; Petrovich, R; Shah, V K; Roberts, G P; Ludden, P W

    1996-01-01

    The alternative nitrogenase from a nifH mutant of the photosynthetic bacterium Rhodospirillum rubrum has been purified and characterized. The dinitrogenase protein (ANF1) contains three subunits in an apparent alpha2beta2gamma2 structure and contains Fe but no Mo or V. A factor capable of activating apo-dinitrogenase (lacking the FeMo cofactor) from Azotobacter vinelandii was extracted from the alternative dinitrogenase protein with N-methylformamide. The electron paramagnetic resonance (EPR) signal of the dinitrogenase protein is not characteristic of the EPR signals of molybdenum- or vanadium-containing dinitrogenases. The alternative dinitrogenase reductase (ANF2) was purified as an alpha2 dimer containing an Fe4S4 cluster and exhibited an EPR spectrum characteristic of dinitrogenase reductases. The enzyme complex reduces protons to H2 very well but reduces N2 to ammonium poorly. Acetylene is reduced to a mixture of ethylene and ethane. PMID:8631723

  17. Decoherence dynamics of coherent electronic excited states in the photosynthetic purple bacterium Rhodobacter sphaeroides.

    PubMed

    Liang, Xian-Ting; Zhang, Wei-Min; Zhuo, Yi-Zhong

    2010-01-01

    In this paper, we present a theoretical description to the quantum coherence and decoherence phenomena of energy transfer in photosynthesis observed in a recent experiment [Science 316, 1462 (2007)]. As a successive two-color laser pulses with selected frequencies cast on a sample of the photosynthetic purple bacterium Rb. sphaeroides two resonant excitations of electrons in chromophores can be generated. However, this effective two-level subsystem will interact with its protein environment and decoherence is inevitable. We describe this subsystem coupled with its environment as a dynamical spin-boson model. The non-Markovian decoherence dynamics is described using a quasiadiabatic propagator path integral (QUAPI) approach. With the photon-induced effective time-dependent level splitting energy and level flip coupling coefficient between the two excited states and the environment-induced non-Markovian decoherence dynamics, our theoretical result is in good agreement with the experimental data.

  18. Sorption of metals by Chlorobium spp.

    PubMed

    Garcia-Gil, J; Borrego, C

    1997-12-01

    The capacity of two species of green phototrophic sulfur bacteria, Chlorobium limicola and C. phaeobacteroides, to sorb several metal ions (Mn2+, Fe2+, Ni2+, Cu2+, Zn2+, Cd2+ and Pb2+) has been tested in laboratory batch cultures at increasing concentrations up to 2,000 mumol/l. Except for nickel--which was not sorbed to bacterial cells--the rest of metals tested were bound in a fast and passive process, which was mathematically described by means of Freundlich isotherms models. The sorption capacity of the two species studied were found to be dependent on the metal involved, whereas no differences were observed in the sorption intensity, suggesting that in all cases the sorption process proceeds in a similar way. Further, the comparison of the sorption intensity values as well as the metal recovery index (Ri), for both species, revealed that C. phaeobacteroides was more efficient that C. limicola to attach metal ions. The ecological significance of this ability in the water column of some stratified lakes, where coinciding maxima of ferrous iron and green photosynthetic sulfur bacteria are frequently found, is discussed.

  19. Native Mass Spectrometry Characterizes the Photosynthetic Reaction Center Complex from the Purple Bacterium Rhodobacter sphaeroides

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Harrington, Lucas B.; Lu, Yue; Prado, Mindy; Saer, Rafael; Rempel, Don; Blankenship, Robert E.; Gross, Michael L.

    2016-08-01

    Native mass spectrometry (MS) is an emerging approach to study protein complexes in their near-native states and to elucidate their stoichiometry and topology. Here, we report a native MS study of the membrane-embedded reaction center (RC) protein complex from the purple photosynthetic bacterium Rhodobacter sphaeroides. The membrane-embedded RC protein complex is stabilized by detergent micelles in aqueous solution, directly introduced into a mass spectrometer by nano-electrospray (nESI), and freed of detergents and dissociated in the gas phase by collisional activation. As the collision energy is increased, the chlorophyll pigments are gradually released from the RC complex, suggesting that native MS introduces a near-native structure that continues to bind pigments. Two bacteriochlorophyll a pigments remain tightly bound to the RC protein at the highest collision energy. The order of pigment release and their resistance to release by gas-phase activation indicates the strength of pigment interaction in the RC complex. This investigation sets the stage for future native MS studies of membrane-embedded photosynthetic pigment-protein and related complexes.

  20. The Protective Roles of the Antioxidant Enzymes Superoxide Dismutase and Catalase in the Green Photosynthetic Bacterium Chloroflexus Aurantiacus

    NASA Technical Reports Server (NTRS)

    Blankenship, Robert E.; Rothschild, Lynn (Technical Monitor)

    2004-01-01

    The purpose of this study was to examine the biochemical response of the green thermophilic photosynthetic bacterium Chloroflexus aurantiacus to oxidative stress. Lab experiments focused primarily on characterizing the antioxidant enzyme superoxide dismutase and the response of this organism to oxidative stress. Experiments in the field at the hotsprings in Yellowstone National Park focused on the changes in the level of these enzymes during the day in response to oxidants and to the different types of ultraviolet radiation.

  1. Characterisation of the LH2 spectral variants produced by the photosynthetic purple sulphur bacterium Allochromatium vinosum.

    PubMed

    Carey, Anne-Marie; Hacking, Kirsty; Picken, Nichola; Honkanen, Suvi; Kelly, Sharon; Niedzwiedzki, Dariusz M; Blankenship, Robert E; Shimizu, Yuuki; Wang-Otomo, Zheng-Yu; Cogdell, Richard J

    2014-11-01

    This study systematically investigated the different types of LH2 produced by Allochromatium (Alc.) vinosum, a photosynthetic purple sulphur bacterium, in response to variations in growth conditions. Three different spectral forms of LH2 were isolated and purified, the B800-820, B800-840 and B800-850 LH2 types, all of which exhibit an unusual split 800 peak in their low temperature absorption spectra. However, it is likely that more forms are also present. Relatively more B800-820 and B800-840 are produced under low light conditions, while relatively more B800-850 is produced under high light conditions. Polypeptide compositions of the three different LH2 types were determined by a combination of HPLC and TOF/MS. The B800-820, B800-840 and B800-850 LH2 types all have a heterogeneous polypeptide composition, containing multiple types of both α and β polypeptides, and differ in their precise polypeptide composition. They all have a mixed carotenoid composition, containing carotenoids of the spirilloxanthin series. In all cases the most abundant carotenoid is rhodopin; however, there is a shift towards carotenoids with a higher conjugation number in LH2 complexes produced under low light conditions. CD spectroscopy, together with the polypeptide analysis, demonstrates that these Alc. vinosum LH2 complexes are more closely related to the LH2 complex from Phs. molischianum than they are to the LH2 complexes from Rps. acidophila. PMID:25111749

  2. Characterisation of the LH2 spectral variants produced by the photosynthetic purple sulphur bacterium Allochromatium vinosum.

    PubMed

    Carey, Anne-Marie; Hacking, Kirsty; Picken, Nichola; Honkanen, Suvi; Kelly, Sharon; Niedzwiedzki, Dariusz M; Blankenship, Robert E; Shimizu, Yuuki; Wang-Otomo, Zheng-Yu; Cogdell, Richard J

    2014-11-01

    This study systematically investigated the different types of LH2 produced by Allochromatium (Alc.) vinosum, a photosynthetic purple sulphur bacterium, in response to variations in growth conditions. Three different spectral forms of LH2 were isolated and purified, the B800-820, B800-840 and B800-850 LH2 types, all of which exhibit an unusual split 800 peak in their low temperature absorption spectra. However, it is likely that more forms are also present. Relatively more B800-820 and B800-840 are produced under low light conditions, while relatively more B800-850 is produced under high light conditions. Polypeptide compositions of the three different LH2 types were determined by a combination of HPLC and TOF/MS. The B800-820, B800-840 and B800-850 LH2 types all have a heterogeneous polypeptide composition, containing multiple types of both α and β polypeptides, and differ in their precise polypeptide composition. They all have a mixed carotenoid composition, containing carotenoids of the spirilloxanthin series. In all cases the most abundant carotenoid is rhodopin; however, there is a shift towards carotenoids with a higher conjugation number in LH2 complexes produced under low light conditions. CD spectroscopy, together with the polypeptide analysis, demonstrates that these Alc. vinosum LH2 complexes are more closely related to the LH2 complex from Phs. molischianum than they are to the LH2 complexes from Rps. acidophila.

  3. High-level production of the industrial product lycopene by the photosynthetic bacterium Rhodospirillum rubrum.

    PubMed

    Wang, Guo-Shu; Grammel, Hartmut; Abou-Aisha, Khaled; Sägesser, Rudolf; Ghosh, Robin

    2012-10-01

    The biosynthesis of the major carotenoid spirilloxanthin by the purple nonsulfur bacterium Rhodospirillum rubrum is thought to occur via a linear pathway proceeding through phytoene and, later, lycopene as intermediates. This assumption is based solely on early chemical evidence (B. H. Davies, Biochem. J. 116:93-99, 1970). In most purple bacteria, the desaturation of phytoene, catalyzed by the enzyme phytoene desaturase (CrtI), leads to neurosporene, involving only three dehydrogenation steps and not four as in the case of lycopene. We show here that the chromosomal insertion of a kanamycin resistance cassette into the crtC-crtD region of the partial carotenoid gene cluster, whose gene products are responsible for the downstream processing of lycopene, leads to the accumulation of the latter as the major carotenoid. We provide spectroscopic and biochemical evidence that in vivo, lycopene is incorporated into the light-harvesting complex 1 as efficiently as the methoxylated carotenoids spirilloxanthin (in the wild type) and 3,4,3',4'-tetrahydrospirilloxanthin (in a crtD mutant), both under semiaerobic, chemoheterotrophic, and photosynthetic, anaerobic conditions. Quantitative growth experiments conducted in dark, semiaerobic conditions, using a growth medium for high cell density and high intracellular membrane levels, which are suitable for the conventional industrial production in the absence of light, yielded lycopene at up to 2 mg/g (dry weight) of cells or up to 15 mg/liter of culture. These values are comparable to those of many previously described Escherichia coli strains engineered for lycopene production. This study provides the first genetic proof that the R. rubrum CrtI produces lycopene exclusively as an end product. PMID:22865070

  4. High-Level Production of the Industrial Product Lycopene by the Photosynthetic Bacterium Rhodospirillum rubrum

    PubMed Central

    Wang, Guo-Shu; Grammel, Hartmut; Abou-Aisha, Khaled; Sägesser, Rudolf

    2012-01-01

    The biosynthesis of the major carotenoid spirilloxanthin by the purple nonsulfur bacterium Rhodospirillum rubrum is thought to occur via a linear pathway proceeding through phytoene and, later, lycopene as intermediates. This assumption is based solely on early chemical evidence (B. H. Davies, Biochem. J. 116:93–99, 1970). In most purple bacteria, the desaturation of phytoene, catalyzed by the enzyme phytoene desaturase (CrtI), leads to neurosporene, involving only three dehydrogenation steps and not four as in the case of lycopene. We show here that the chromosomal insertion of a kanamycin resistance cassette into the crtC-crtD region of the partial carotenoid gene cluster, whose gene products are responsible for the downstream processing of lycopene, leads to the accumulation of the latter as the major carotenoid. We provide spectroscopic and biochemical evidence that in vivo, lycopene is incorporated into the light-harvesting complex 1 as efficiently as the methoxylated carotenoids spirilloxanthin (in the wild type) and 3,4,3′,4′-tetrahydrospirilloxanthin (in a crtD mutant), both under semiaerobic, chemoheterotrophic, and photosynthetic, anaerobic conditions. Quantitative growth experiments conducted in dark, semiaerobic conditions, using a growth medium for high cell density and high intracellular membrane levels, which are suitable for the conventional industrial production in the absence of light, yielded lycopene at up to 2 mg/g (dry weight) of cells or up to 15 mg/liter of culture. These values are comparable to those of many previously described Escherichia coli strains engineered for lycopene production. This study provides the first genetic proof that the R. rubrum CrtI produces lycopene exclusively as an end product. PMID:22865070

  5. Induction and anisotropy of fluorescence of reaction center from photosynthetic bacterium Rhodobacter sphaeroides.

    PubMed

    Sipka, Gábor; Maróti, Péter

    2016-01-01

    Submillisecond dark-light changes of the yield (induction) and anisotropy of fluorescence under laser diode excitation were measured in the photosynthetic reaction center of the purple bacterium Rhodobacter sphaeroides. Narrow band (1-2 nm) laser diodes emitting at 808 and 865 nm were used to selectively excite the accessory bacteriochlorophyll (B, 800 nm) or the upper excitonic state of the bacteriochlorophyll dimer (P-, 810 nm) and the lower excitonic state of the dimer (P+, 865 nm), respectively. The fluorescence spectrum of the wild type showed two bands centered at 850 nm (B) and 910 nm (P-). While the monotonous decay of the fluorescence yield at 910 nm tracked the light-induced oxidation of the dimer, the kinetics of the fluorescence yield at 850 nm showed an initial rise before a decrease. The anisotropy of the fluorescence excited at 865 nm (P-) was very close to the limiting value (0.4) across the whole spectral range. The excitation of both B and P- at 808 nm resulted in wavelength-dependent depolarization of the fluorescence from 0.35 to 0.24 in the wild type and from 0.30 to 0.24 in the reaction center of triple mutant (L131LH-M160LH-M197FH). The additivity law of the anisotropies of the fluorescence species accounts for the wavelength dependence of the anisotropy. The measured fluorescence yields and anisotropies are interpreted in terms of very fast energy transfer from (1)B* to (1)P- (either directly or indirectly by internal conversion from (1)P+) and to the oxidized dimer.

  6. Functional Genomic Analysis of Three Nitrogenase Isozymes in the Photosynthetic Bacterium Rhodopseudomonas palustris‡

    PubMed Central

    Oda, Yasuhiro; Samanta, Sudip K.; Rey, Federico E.; Wu, Liyou; Liu, Xiudan; Yan, Tingfen; Zhou, Jizhong; Harwood, Caroline S.

    2005-01-01

    The photosynthetic bacterium Rhodopseudomonas palustris is one of just a few prokaryotes described so far that has vnf and anf genes for alternative vanadium cofactor (V) and iron cofactor (Fe) nitrogenases in addition to nif genes for a molybdenum cofactor (Mo) nitrogenase. Transcriptome data indicated that the 32 genes in the nif gene cluster, but not the anf or vnf genes, were induced in wild-type and Mo nitrogenase-expressing strains grown under nitrogen-fixing conditions in Mo-containing medium. Strains that were unable to express a functional Mo nitrogenase due to mutations in Mo nitrogenase structural genes synthesized functional V and Fe nitrogenases and expressed vnf and anf genes in nitrogen-fixing growth media that contained Mo and V at concentrations far in excess of those that repress alternative nitrogenase gene expression in other bacteria. Thus, not only does R. palustris have multiple enzymatic options for nitrogen fixation, but in contrast to reports on other nitrogen-fixing bacteria, the expression of its alternative nitrogenases is not repressed by transition metals. Between 95 and 295 genes that are not directly associated with nitrogenase synthesis and assembly were induced under nitrogen-fixing conditions, depending on which nitrogenase was being used by R. palustris. Genes for nitrogen acquisition were expressed at particularly high levels during alternative nitrogenase-dependent growth. This suggests that alternative nitrogenase-expressing cells are relatively starved for nitrogen and raises the possibility that fixed nitrogen availability may be the primary signal that controls the synthesis of the V and Fe nitrogenases. PMID:16267302

  7. High-level production of the industrial product lycopene by the photosynthetic bacterium Rhodospirillum rubrum.

    PubMed

    Wang, Guo-Shu; Grammel, Hartmut; Abou-Aisha, Khaled; Sägesser, Rudolf; Ghosh, Robin

    2012-10-01

    The biosynthesis of the major carotenoid spirilloxanthin by the purple nonsulfur bacterium Rhodospirillum rubrum is thought to occur via a linear pathway proceeding through phytoene and, later, lycopene as intermediates. This assumption is based solely on early chemical evidence (B. H. Davies, Biochem. J. 116:93-99, 1970). In most purple bacteria, the desaturation of phytoene, catalyzed by the enzyme phytoene desaturase (CrtI), leads to neurosporene, involving only three dehydrogenation steps and not four as in the case of lycopene. We show here that the chromosomal insertion of a kanamycin resistance cassette into the crtC-crtD region of the partial carotenoid gene cluster, whose gene products are responsible for the downstream processing of lycopene, leads to the accumulation of the latter as the major carotenoid. We provide spectroscopic and biochemical evidence that in vivo, lycopene is incorporated into the light-harvesting complex 1 as efficiently as the methoxylated carotenoids spirilloxanthin (in the wild type) and 3,4,3',4'-tetrahydrospirilloxanthin (in a crtD mutant), both under semiaerobic, chemoheterotrophic, and photosynthetic, anaerobic conditions. Quantitative growth experiments conducted in dark, semiaerobic conditions, using a growth medium for high cell density and high intracellular membrane levels, which are suitable for the conventional industrial production in the absence of light, yielded lycopene at up to 2 mg/g (dry weight) of cells or up to 15 mg/liter of culture. These values are comparable to those of many previously described Escherichia coli strains engineered for lycopene production. This study provides the first genetic proof that the R. rubrum CrtI produces lycopene exclusively as an end product.

  8. Isotope effects associated with the anaerobic oxidation of sulfite and thiosulfate by the photosynthetic bacterium, Chromatium vinosum

    NASA Technical Reports Server (NTRS)

    Fry, B.; Gest, H.; Hayes, J. M.

    1985-01-01

    The purple photosynthetic bacterium Chromatium vinosum, strain D, catalyzes several oxidations of reduced sulfur compounds under anaerobic conditions in the light: e.g., sulfide --> sulfur --> sulfate, sulfite --> sulfate, and thiosulfate --> sulfur + sulfate. Here it is shown that no sulfur isotope effect is associated with the last of these processes; isotopic compositions of the sulfur and sulfate produced can differ, however, if the sulfane and sulfonate positions within the thiosulfate have different isotopic compositions. In the second process, an observed change from an inverse to a normal isotope effect during oxidation of sulfite may indicate the operation of 2 enzymatic pathways. In contrast to heterotrophic anaerobic reduction of oxidized sulfur compounds, anaerobic oxidations of inorganic sulfur compounds by photosynthetic bacteria are characterized by relatively small isotope effects.

  9. Influence of organics and silica on Fe(II) oxidation rates and cell-mineral aggregate formation by the green-sulfur Fe(II)-oxidizing bacterium Chlorobium ferrooxidans KoFox - Implications for Fe(II) oxidation in ancient oceans

    NASA Astrophysics Data System (ADS)

    Gauger, Tina; Byrne, James M.; Konhauser, Kurt O.; Obst, Martin; Crowe, Sean; Kappler, Andreas

    2016-06-01

    Most studies on microbial phototrophic Fe(II) oxidation (photoferrotrophy) have focused on purple bacteria, but recent evidence points to the importance of green-sulfur bacteria (GSB). Their recovery from modern ferruginous environments suggests that these photoferrotrophs can offer insights into how their ancient counterparts grew in Archean oceans at the time of banded iron formation (BIF) deposition. It is unknown, however, how Fe(II) oxidation rates, cell-mineral aggregate formation, and Fe-mineralogy vary under environmental conditions reminiscent of the geological past. To address this, we studied the Fe(II)-oxidizer Chlorobium ferrooxidans KoFox, a GSB living in co-culture with the heterotrophic Geospirillum strain KoFum. We investigated the mineralogy of Fe(III) metabolic products at low/high light intensity, and in the presence of dissolved silica and/or fumarate. Silica and fumarate influenced the crystallinity and particle size of the produced Fe(III) minerals. The presence of silica also enhanced Fe(II) oxidation rates, especially at high light intensities, potentially by lowering Fe(II)-toxicity to the cells. Electron microscopic imaging showed no encrustation of either KoFox or KoFum cells with Fe(III)-minerals, though weak associations were observed suggesting co-sedimentation of Fe(III) with at least some biomass via these aggregates, which could support diagenetic Fe(III)-reduction. Given that GSB are presumably one of the most ancient photosynthetic organisms, and pre-date cyanobacteria, our findings, on the one hand, strengthen arguments for photoferrotrophic activity as a likely mechanism for BIF deposition on a predominantly anoxic early Earth, but, on the other hand, also suggest that preservation of remnants of Fe(II)-oxidizing GSB as microfossils in the rock record is unlikely.

  10. [Photosynthetic activity and components of the electron transport chain in the aerobic bacteriochlorophyll A-containing bacterium Roseinatronobacter thiooxidans].

    PubMed

    Stadnichuk, I N; Ianiushin, M F; Boĭchenko, V A; Lukashev, E P; Boldareva, E N; Solov'ev, A A; Gorlenko, V M

    2009-01-01

    Bioenergetics of the aerobic bacteriochlorophyll a-containing (BCl a) bacterium (ABC bacterium) Roseinatronobacter thiooxidans is a combination of photosynthesis, oxygen respiration, and oxidation of sulfur compounds under alkaliphilic conditions. The photosynthetic activity of Rna. thiooxidans cells was established by the photoinhibition of cell respiration and reversible photobleaching discoloration of the BCl a of reaction centers (RC), connected by the chain of electron transfer with cytochrome c551 oxidation. The species under study, like many purple bacteria and some of the known ABC bacteria, possesses a light-harvesting pigment-protein (LHI) complex with the average number of 30 molecules of antenna BCl a per one photosynthetic RC. Under microaerobic growth conditions, the cells contained bc1 complex and two terminal oxidases: cbb3-cytochrome oxidase and the alternative cytochrome oxidase of the a3 type. Besides, Rna. thiooxidans was shown to have several different soluble low- and high-potential cytochromes c, probably associated with the ability of utilizing sulfur compounds as additional electron donors.

  11. Breakdown of food waste by anaerobic fermentation and non-oxygen producing photosynthesis using a photosynthetic bacterium.

    PubMed

    Mekjinda, N; Ritchie, R J

    2015-01-01

    Large volumes of food waste are produced by restaurants, hotels, etc generating problems in its collection, processing and disposal. Disposal as garbage increases the organic matter in landfills and leachates. The photosynthetic bacterium Rhodopseudomonas palustris (CGA 009) easily broke down food waste. R. palustris produces H2 under anaerobic conditions and digests a very wide range of organic compounds. R. palustris reduced BOD by ≈70% and COD by ≈33%, starch, ammonia, nitrate, was removed but had little effect on reducing sugar or the total phosphorus, lipid, protein, total solid in a 7-day incubation. R. palustris produced a maximum of 80ml H2/g COD/day. A two-stage anaerobic digestion using yeast as the first stage, followed by a R. palustris digestion was tested but production of H2 was low.

  12. Breakdown of food waste by anaerobic fermentation and non-oxygen producing photosynthesis using a photosynthetic bacterium.

    PubMed

    Mekjinda, N; Ritchie, R J

    2015-01-01

    Large volumes of food waste are produced by restaurants, hotels, etc generating problems in its collection, processing and disposal. Disposal as garbage increases the organic matter in landfills and leachates. The photosynthetic bacterium Rhodopseudomonas palustris (CGA 009) easily broke down food waste. R. palustris produces H2 under anaerobic conditions and digests a very wide range of organic compounds. R. palustris reduced BOD by ≈70% and COD by ≈33%, starch, ammonia, nitrate, was removed but had little effect on reducing sugar or the total phosphorus, lipid, protein, total solid in a 7-day incubation. R. palustris produced a maximum of 80ml H2/g COD/day. A two-stage anaerobic digestion using yeast as the first stage, followed by a R. palustris digestion was tested but production of H2 was low. PMID:25465509

  13. Isolation, characterization, and amino acid sequences of auracyanins, blue copper proteins from the green photosynthetic bacterium Chloroflexus aurantiacus

    NASA Technical Reports Server (NTRS)

    McManus, J. D.; Brune, D. C.; Han, J.; Sanders-Loehr, J.; Meyer, T. E.; Cusanovich, M. A.; Tollin, G.; Blankenship, R. E.

    1992-01-01

    Three small blue copper proteins designated auracyanin A, auracyanin B-1, and auracyanin B-2 have been isolated from the thermophilic green gliding photosynthetic bacterium Chloroflexus aurantiacus. All three auracyanins are peripheral membrane proteins. Auracyanin A was described previously (Trost, J. T., McManus, J. D., Freeman, J. C., Ramakrishna, B. L., and Blankenship, R. E. (1988) Biochemistry 27, 7858-7863) and is not glycosylated. The two B forms are glycoproteins and have almost identical properties to each other, but are distinct from the A form. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis apparent monomer molecular masses are 14 (A), 18 (B-2), and 22 (B-1) kDa. The amino acid sequences of the B forms are presented. All three proteins have similar absorbance, circular dichroism, and resonance Raman spectra, but the electron spin resonance signals are quite different. Laser flash photolysis kinetic analysis of the reactions of the three forms of auracyanin with lumiflavin and flavin mononucleotide semiquinones indicates that the site of electron transfer is negatively charged and has an accessibility similar to that found in other blue copper proteins. Copper analysis indicates that all three proteins contain 1 mol of copper per mol of protein. All three auracyanins exhibit a midpoint redox potential of +240 mV. Light-induced absorbance changes and electron spin resonance signals suggest that auracyanin A may play a role in photosynthetic electron transfer. Kinetic data indicate that all three proteins can donate electrons to cytochrome c-554, the electron donor to the photosynthetic reaction center.

  14. Light-enhanced bioaccumulation of molybdenum by nitrogen-deprived recombinant anoxygenic photosynthetic bacterium Rhodopseudomonas palustris.

    PubMed

    Naito, Taki; Sachuronggui; Ueki, Masayoshi; Maeda, Isamu

    2016-01-01

    As molybdenum (Mo) is an indispensable metal for plant nitrogen metabolisms, accumulation of dissolved Mo into bacterial cells may connect to the development of bacterial fertilizers that promote plant growth. In order to enhance Mo bioaccumulation, nitrogen removal and light illumination were examined in anoxygenic photosynthetic bacteria (APB) because APB possess Mo nitrogenase whose synthesis is strictly regulated by ammonium ion concentration. In addition, an APB, Rhodopseudomonas palustris, transformed with a gene encoding Mo-responsive transcriptional regulator ModE was constructed. Mo content was most markedly enhanced by the removal of ammonium ion from medium and light illumination while their effects on other metal contents were limited. Increases in contents of trace metals including Mo by the genetic modification were observed. Thus, these results demonstrated an effective way to enrich Mo in the bacterial cells by the culture conditions and genetic modification.

  15. Triplet excited state spectra and dynamics of carotenoids from the thermophilic purple photosynthetic bacterium Thermochromatium tepidum

    SciTech Connect

    Niedzwiedzki, Dariusz; Kobayashi, Masayuki; Blankenship, R. E.

    2011-01-13

    Light-harvesting complex 2 from the anoxygenic phototrophic purple bacterium Thermochromatium tepidum was purified and studied by steady-state absorption, fluorescence and flash photolysis spectroscopy. Steady-state absorption and fluorescence measurements show that carotenoids play a negligible role as supportive energy donors and transfer excitation to bacteriochlorophyll-a with low energy transfer efficiency of ~30%. HPLC analysis determined that the dominant carotenoids in the complex are rhodopin and spirilloxanthin. Carotenoid excited triplet state formation upon direct (carotenoid) or indirect (bacteriochlorophyll-a Q{sub x} band) excitation shows that carotenoid triplets are mostly localized on spirilloxanthin. In addition, no triplet excitation transfer between carotenoids was observed. Such specific carotenoid composition and spectroscopic results strongly suggest that this organism optimized carotenoid composition in the light-harvesting complex 2 in order to maximize photoprotective capabilities of carotenoids but subsequently drastically suppressed their supporting role in light-harvesting process.

  16. Biohydrogen production in a continuous stirred tank bioreactor from synthesis gas by anaerobic photosynthetic bacterium: Rhodopirillum rubrum.

    PubMed

    Younesi, Habibollah; Najafpour, Ghasem; Ku Ismail, Ku Syahidah; Mohamed, Abdul Rahman; Kamaruddin, Azlina Harun

    2008-05-01

    Hydrogen may be considered a potential fuel for the future since it is carbon-free and oxidized to water as a combustion product. Bioconversion of synthesis gas (syngas) to hydrogen was demonstrated in continuous stirred tank bioreactor (CSTBR) utilizing acetate as a carbon source. An anaerobic photosynthetic bacterium, Rhodospirillum rubrum catalyzed water-gas shift reaction which was applied for the bioconversion of syngas to hydrogen. The continuous fermentation of syngas in the bioreactor was continuously operated at various gas flow rates and agitation speeds, for the period of two months. The gas flow rates were varied from 5 to 14 ml/min. The agitation speeds were increasingly altered in the range of 150-500 rpm. The pH and temperature of the bioreactor was set at 6.5 and 30 degrees C. The liquid flow rate was kept constant at 0.65 ml/min for the duration of 60 days. The inlet acetate concentration was fed at 4 g/l into the bioreactor. The hydrogen production rate and yield were 16+/-1.1 mmol g(-1)cell h(-1) and 87+/-2.4% at fixed agitation speed of 500 rpm and syngas flow rate of 14 ml/min, respectively. The mass transfer coefficient (KLa) at this condition was approximately 72.8h(-1). This new approach, using a biocatalyst was considered as an alternative method of conventional Fischer-Tropsch synthetic reactions, which were able to convert syngas into hydrogen.

  17. Production and consumption of hydrogen in hot spring microbial mats dominated by a filamentous anoxygenic photosynthetic bacterium.

    PubMed

    Otaki, Hiroyo; Everroad, R Craig; Matsuura, Katsumi; Haruta, Shin

    2012-01-01

    Microbial mats containing the filamentous anoxygenic photosynthetic bacterium Chloroflexus aggregans develop at Nakabusa hot spring in Japan. Under anaerobic conditions in these mats, interspecies interaction between sulfate-reducing bacteria as sulfide producers and C. aggregans as a sulfide consumer has been proposed to constitute a sulfur cycle; however, the electron donor utilized for microbial sulfide production at Nakabusa remains to be identified. In order to determine this electron donor and its source, ex situ experimental incubation of mats was explored. In the presence of molybdate, which inhibits biological sulfate reduction, hydrogen gas was released from mat samples, indicating that this hydrogen is normally consumed as an electron donor by sulfate-reducing bacteria. Hydrogen production decreased under illumination, indicating that C. aggregans also functions as a hydrogen consumer. Small amounts of hydrogen may have also been consumed for sulfur reduction. Clone library analysis of 16S rRNA genes amplified from the mats indicated the existence of several species of hydrogen-producing fermentative bacteria. Among them, the most dominant fermenter, Fervidobacterium sp., was successfully isolated. This isolate produced hydrogen through the fermentation of organic carbon. Dispersion of microbial cells in the mats resulted in hydrogen production without the addition of molybdate, suggesting that simultaneous production and consumption of hydrogen in the mats requires dense packing of cells. We propose a cyclic electron flow within the microbial mats, i.e., electron flow occurs through three elements: S (elemental sulfur, sulfide, sulfate), C (carbon dioxide, organic carbon) and H (di-hydrogen, protons).

  18. Inhibitor-complexed Structures of the Cytochrome bc[subscript 1] from the Photosynthetic Bacterium Rhodobacter sphaeroides

    SciTech Connect

    Esser, Lothar; Elberry, Maria; Zhou, Fei; Yu, Chang-An; Yu, Linda; Xia, Di

    2008-06-30

    The cytochrome bc{sub 1} complex (bc{sub 1}) is a major contributor to the proton motive force across the membrane by coupling electron transfer to proton translocation. The crystal structures of wild type and mutant bc{sub 1} complexes from the photosynthetic purple bacterium Rhodobacter sphaeroides (Rsbc{sub 1}), stabilized with the quinol oxidation (Q{sub P}) site inhibitor stigmatellin alone or in combination with the quinone reduction (Q{sub N}) site inhibitor antimycin, were determined. The high quality electron density permitted assignments of a new metal-binding site to the cytochrome c1 subunit and a number of lipid and detergent molecules. Structural differences between Rsbc{sub 1} and its mitochondrial counterparts are mostly extra membranous and provide a basis for understanding the function of the predominantly longer sequences in the bacterial subunits. Functional implications for the bc{sub 1} complex are derived from analyses of 10 independent molecules in various crystal forms and from comparisons with mitochondrial complexes.

  19. Role of Rhodobacter sp. Strain PS9, a Purple Non-Sulfur Photosynthetic Bacterium Isolated from an Anaerobic Swine Waste Lagoon, in Odor Remediation

    PubMed Central

    Do, Young S.; Schmidt, Thomas M.; Zahn, James A.; Boyd, Eric S.; de la Mora, Arlene; DiSpirito, Alan A.

    2003-01-01

    Temporal pigmentation changes resulting from the development of a purple color in anaerobic swine waste lagoons were investigated during a 4-year period. The major purple photosynthetic bacterium responsible for these color changes and the corresponding reductions in odor was isolated from nine photosynthetic lagoons. By using morphological, physiological, and phylogenetic characterization methods we identified the predominant photosynthetic bacterium as a new strain of Rhodobacter, designated Rhodobacter sp. strain PS9. Rhodobacter sp. strain PS9 is capable of photoorganotrophic growth on a variety of organic compounds, including all of the characteristic volatile organic compounds (VOC) responsible for the odor associated with swine production facilities (J. A. Zahn, A. A. DiSpirito, Y. S. Do, B. E. Brooks, E. E. Copper, and J. L. Hatfield, J. Environ. Qual. 30:624-634, 2001). The seasonal variations in airborne VOC emitted from waste lagoons showed that there was a 80 to 93% decrease in the concentration of VOC during a photosynthetic bloom. During the height of a bloom, the Rhodobacter sp. strain PS9 population accounted for 10% of the total community and up to 27% of the eubacterial community based on 16S ribosomal DNA signals. Additional observations based on seasonal variations in meteorological, biological, and chemical parameters suggested that the photosynthetic blooms of Rhodobacter sp. strain PS9 were correlated with lagoon water temperature and with the concentrations of sulfate and phosphate. In addition, the photosynthetic blooms of Rhodobacter sp. strain PS9 were inversely correlated with the concentrations of protein and fluoride. PMID:12620863

  20. Production and Consumption of Hydrogen in Hot Spring Microbial Mats Dominated by a Filamentous Anoxygenic Photosynthetic Bacterium

    PubMed Central

    Otaki, Hiroyo; Everroad, R. Craig; Matsuura, Katsumi; Haruta, Shin

    2012-01-01

    Microbial mats containing the filamentous anoxygenic photosynthetic bacterium Chloroflexus aggregans develop at Nakabusa hot spring in Japan. Under anaerobic conditions in these mats, interspecies interaction between sulfate-reducing bacteria as sulfide producers and C. aggregans as a sulfide consumer has been proposed to constitute a sulfur cycle; however, the electron donor utilized for microbial sulfide production at Nakabusa remains to be identified. In order to determine this electron donor and its source, ex situ experimental incubation of mats was explored. In the presence of molybdate, which inhibits biological sulfate reduction, hydrogen gas was released from mat samples, indicating that this hydrogen is normally consumed as an electron donor by sulfate-reducing bacteria. Hydrogen production decreased under illumination, indicating that C. aggregans also functions as a hydrogen consumer. Small amounts of hydrogen may have also been consumed for sulfur reduction. Clone library analysis of 16S rRNA genes amplified from the mats indicated the existence of several species of hydrogen-producing fermentative bacteria. Among them, the most dominant fermenter, Fervidobacterium sp., was successfully isolated. This isolate produced hydrogen through the fermentation of organic carbon. Dispersion of microbial cells in the mats resulted in hydrogen production without the addition of molybdate, suggesting that simultaneous production and consumption of hydrogen in the mats requires dense packing of cells. We propose a cyclic electron flow within the microbial mats, i.e., electron flow occurs through three elements: S (elemental sulfur, sulfide, sulfate), C (carbon dioxide, organic carbon) and H (di-hydrogen, protons). PMID:22446313

  1. A novel carotenoid 1,2-hydratase (CruF) from two species of the non-photosynthetic bacterium Deinococcus.

    PubMed

    Sun, Zongtao; Shen, Shaochuan; Wang, Chao; Wang, Hu; Hu, Yaping; Jiao, Jiandong; Ma, Tingting; Tian, Bing; Hua, Yuejin

    2009-08-01

    A novel carotenoid 1,2-hydratase (CruF) responsible for the C-1',2' hydration of gamma-carotene was identified in the non-photosynthetic bacteria Deinococcus radiodurans R1 and Deinococcus geothermalis DSM 11300. Gene expression and disruption experiments demonstrated that dr0091 and dgeo2309 encode CruF in D. radiodurans and D. geothermalis, respectively. Their homologues were also found in the genomes of cyanobacteria, and exhibited little homology to the hydroxyneurosporene synthase (CrtC) proteins found mainly in photosynthetic bacteria. Phylogenetic analysis showed that CruF homologues form a separate family, which is evolutionarily distant from the known CrtC family.

  2. Spectroscopic studies of two spectral variants of light-harvesting complex 2 (LH2) from the photosynthetic purple sulfur bacterium Allochromatium vinosum.

    PubMed

    Niedzwiedzki, Dariusz M; Bina, David; Picken, Nichola; Honkanen, Suvi; Blankenship, Robert E; Holten, Dewey; Cogdell, Richard J

    2012-09-01

    Two spectral forms of the peripheral light-harvesting complex (LH2) from the purple sulfur photosynthetic bacterium Allochromatium vinosum were purified and their photophysical properties characterized. The complexes contain bacteriochlorophyll a (BChl a) and multiple species of carotenoids. The composition of carotenoids depends on the light conditions applied during growth of the cultures. In addition, LH2 grown under high light has a noticeable split of the B800 absorption band. The influence of the change of carotenoid distribution as well as the spectral change of the excitonic absorption of the bacteriochlorophylls on the light-harvesting ability was studied using steady-state absorption, fluorescence and femtosecond time-resolved absorption at 77K. The results demonstrate that the change of the distribution of the carotenoids when cells were grown at low light adapts the absorptive properties of the complex to the light conditions and maintains maximum photon-capture performance. In addition, an explanation for the origin of the enigmatic split of the B800 absorption band is provided. This spectral splitting is also observed in LH2 complexes from other photosynthetic sulfur purple bacterial species. According to results obtained from transient absorption spectroscopy, the B800 band split originates from two spectral forms of the associated BChl a monomeric molecules bound within the same complex.

  3. A light-dependent mechanism for massive accumulation of manganese in the photosynthetic bacterium Synechocystis sp. PCC 6803.

    PubMed

    Keren, Nir; Kidd, Matthew J; Penner-Hahn, James E; Pakrasi, Himadri B

    2002-12-17

    Manganese is an essential micronutrient for many organisms. Because of its unique role in the water oxidizing activity of photosystem II, manganese is required for photosynthetic growth in plants and cyanobacteria. Here we report on the mechanism of manganese uptake in the cyanobacterium Synechocystis sp. PCC 6803. Cells grown in 9 microM manganese-containing medium accumulate up to 1 x 10(8) manganese atoms/cell, bound to the outer membrane (pool A). This pool could be released by EDTA treatment. Accumulation of manganese in pool A was energized by photosynthetic electron flow. Moreover, collapsing the membrane potential resulted in the immediate release of this manganese pool. The manganese in this pool is mainly Mn(II) in a six-coordinate distorted environment. A distinctly different pool of manganese, pool B ( approximately 1.5 x 10(6) atoms/cell), could not be extracted by EDTA. Transport into pool B was light-independent and could be detected only under limiting manganese concentrations (1 nM). Evidently, manganese uptake in Synechocystis 6803 cells occurs in two steps. First, manganese accumulates in the outer membrane (pool A) in a membrane potential-dependent process. Next, manganese is transported through the inner membrane into pool B. We propose that pool A serves as a store that allows the cells to overcome transient limitations in manganese in the environment. PMID:12475258

  4. Electromagnetic study of the chlorosome antenna complex of Chlorobium tepidum.

    PubMed

    Valleau, Stéphanie; Saikin, Semion K; Ansari-Oghol-Beig, Davood; Rostami, Masoud; Mossallaei, Hossein; Aspuru-Guzik, Alán

    2014-04-22

    Green sulfur bacteria are an iconic example of nature's adaptation: thriving in environments of extremely low photon density, the bacterium ranks itself among the most efficient natural light-harvesting organisms. The photosynthetic antenna complex of this bacterium is a self-assembled nanostructure, ≈60 × 150 nm, made of bacteriochlorophyll molecules. We study the system from a computational nanoscience perspective by using electrodynamic modeling with the goal of understanding its role as a nanoantenna. Three different nanostructures, built from two molecular packing moieties, are considered: a structure built of concentric cylinders of aggregated bacteriochlorophyll d monomers, a single cylinder of bacteriochlorophyll c monomers, and a model for the entire chlorosome. The theoretical model captures both coherent and incoherent components of exciton transfer. The model is employed to extract optical spectra, concentration and depolarization of electromagnetic fields within the chlorosome, and fluxes of energy transfer for the structures. The second model nanostructure shows the largest field enhancement. Further, field enhancement is found to be more sensitive to dynamic noise rather than structural disorder. Field depolarization, however, is similar for all structures. This indicates that the directionality of transfer is robust to structural variations, while on the other hand, the intensity of transfer can be tuned by structural variations.

  5. Ultrafast time-resolved spectroscopy of the light-harvesting complex 2 (LH2) from the photosynthetic bacterium Thermochromatium tepidum

    SciTech Connect

    Niedzwiedzki, Dariusz M.; Fuciman, Marcel; Kobayashi, Masayuki; Frank, Harry A.; Blankenship, Robert E.

    2011-10-08

    The light-harvesting complex 2 from the thermophilic purple bacterium Thermochromatium tepidum was purified and studied by steady-state absorption and fluorescence, sub-nanosecond-time-resolved fluorescence and femtosecond time-resolved transient absorption spectroscopy. The measurements were performed at room temperature and at 10 K. The combination of both ultrafast and steady-state optical spectroscopy methods at ambient and cryogenic temperatures allowed the detailed study of carotenoid (Car)-to-bacteriochlorophyll (BChl) as well BChl-to-BChl excitation energy transfer in the complex. The studies show that the dominant Cars rhodopin (N = 11) and spirilloxanthin (N = 13) do not play a significant role as supportive energy donors for BChl a. This is related with their photophysical properties regulated by long π-electron conjugation. On the other hand, such properties favor some of the Cars, particularly spirilloxanthin (N = 13) to play the role of the direct quencher of the excited singlet state of BChl.

  6. Structure analysis and comparative characterization of the cytochrome c' and flavocytochrome c from thermophilic purple photosynthetic bacterium Thermochromatium tepidum.

    PubMed

    Hirano, Yu; Kimura, Yukihiro; Suzuki, Hideaki; Miki, Kunio; Wang, Zheng-Yu

    2012-08-21

    The thermodynamic and spectroscopic properties of two soluble electron transport proteins, cytochrome (Cyt) c' and flavocytochrome c, isolated from thermophilic purple sulfur bacterium Thermochromatium (Tch.) tepidum were examined and compared with those of the corresponding proteins from a closely related mesophilic bacterium Allochromatium (Alc.) vinosum. These proteins share sequence identities of 82% for the cytochromes c' and 86% for the flavocytochromes c. Crystal structures of the two proteins have been determined at high resolutions. Differential scanning calorimetry and denaturing experiments show that both proteins from Tch. tepidum are thermally and structurally much more stable than their mesophilic counterparts. The denaturation temperature of Tch. tepidum Cyt c' was 22 °C higher than that of Alc. vinosum Cyt c', and the midpoints of denaturation using guanidine hydrochloride were 2.0 and 1.2 M for the Tch. tepidum and Alc. vinosum flavocytochromes c, respectively. The enhanced stabilities can be interpreted on the basis of the structural and sequence information obtained in this study: increased number of hydrogen bonds formed between main chain nitrogen and oxygen atoms, more compact structures and reduced number of glycine residues. Many residues with large side chains in Alc. vinosum Cyt c' are substituted by alanines in Tch. tepidum Cyt c'. Both proteins from Tch. tepidum exhibit high structural similarities to their counterparts from Alc. vinosum, and the different residues between the corresponding proteins are mainly located on the surface and exposed to the solvent. Water molecules are found in the heme vicinity of Tch. tepidum Cyt c' and form hydrogen bonds with the heme ligand and C-terminal charged residues. Similar bound waters are also found in the vicinity of one heme group in the diheme subunit of Tch. tepidum flavocytochrome c. Electron density map of the Tch. tepidum flavocytochrome c clearly revealed the presence of disulfur atoms

  7. Photosynthetic inhibition and oxidative stress to the toxic Phaeocystis globosa caused by a diketopiperazine isolated from products of algicidal bacterium metabolism.

    PubMed

    Tan, Shuo; Hu, Xiaoli; Yin, Pinghe; Zhao, Ling

    2016-05-01

    Algicidal bacteria have been turned out to be available for inhibiting Phaeocystis globosa which frequently caused harmful algal blooms and threatened to economic development and ecological balance. A marine bacterium Bacillus sp. Ts-12 exhibited significant algicidal activity against P. globosa by indirect attack. In present study, an algicidal compound was isolated by silica gel column, Sephadex G-15 column and HPLC, further identified as hexahydropyrrolo[1,2-a]pyrazine-1,4-dione, cyclo-(Pro-Gly), by GC-MS and (1)H-NMR. Cyclo-(Pro-Gly) significantly increased the level of reactive oxygen species (ROS) within P. globosa cells, further activating the enzymatic and non-enzymatic antioxidant systems, including superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and ascorbic acid (AsA). The increase in methane dicarboxylic aldehyde (MDA) content showed that the surplus ROS induced lipid peroxidation on membrane system. Transmission electron microscope (TEM) and flow cytometry (FCM) analysis revealed that cyclo-(Pro-Gly) caused reduction of Chl-a content, destruction of cell membrane integrity, chloroplasts and nuclear structure. Real-time PCR assay showed that the transcriptions of photosynthesis related genes (psbA, psbD, rbcL) were significantly inhibited. This study indicated that cyclo-(Pro-Gly) from marine Bacillus sp. Ts-12 exerted photosynthetic inhibition and oxidative stress to P. globosa and eventually led to the algal cells lysis. This algicidal compound might be potential bio-agent for controlling P. globosa red tide. PMID:27095455

  8. Energy migration in the light-harvesting antenna of the photosynthetic bacterium Rhodospirillum rubrum studied by time-resolved excitation annihilation at 77 K.

    PubMed Central

    Valkunas, L; Akesson, E; Pullerits, T; Sundström, V

    1996-01-01

    The intensity dependence of picosecond kinetics in the light-harvesting antenna of the photosynthetic bacterium Rhodospirillum rubrum is studied at 77 K. By changing either the average excitation intensity or the pulse intensity we have been able to discriminate singlet-singlet and singlet-triplet annihilation. It is shown that the kinetics of both annihilation types are well characterized by the concept of percolative excitation dynamics leading to the time-dependent annihilation rates. The time dependence of these two types of annihilation rates is qualitatively different, whereas the dependencies can be related through the same adjustable parameter-a spectral dimension of fractal-like structures. The theoretical dependencies give a good fit to the experimental kinetics if the spectral dimension is equal to 1.5 and the overall singlet-singlet annihilation rate is close to the value obtained at room temperature. The percolative transfer is a consequence of spectral inhomogeneous broadening. The effect is more pronounced at lower temperatures because of the narrowing of homogeneous spectra. PMID:9172762

  9. Coupling of cytochrome and quinone turnovers in the photocycle of reaction centers from the photosynthetic bacterium Rhodobacter sphaeroides.

    PubMed

    Osváth, S; Maróti, P

    1997-08-01

    A minimal kinetic model of the photocycle, including both quinone (Q-6) reduction at the secondary quinone-binding site and (mammalian) cytochrome c oxidation at the cytochrome docking site of isolated reaction centers from photosynthetic purple bacteria Rhodobacter sphaeroides, was elaborated and tested by cytochrome photooxidation under strong continuous illumination. The typical rate of photochemical excitation by a laser diode at 810 nm was 2.200 s-1, and the rates of stationary turnover of the reaction center (one-half of that of cytochrome photooxidation) were 600 +/- 70 s-1 at pH 6 and 400 +/- 50 s-1 at pH 8. The rate of turnover showed strong pH dependence, indicating the contribution of different rate-limiting processes. The kinetic limitation of the photocycle was attributed to the turnover of the cytochrome c binding site (pH < 6), light intensity and quinone/quinol exchange (6 < pH < 8), and proton-coupled second electron transfer in the quinone acceptor complex (pH > 8). The analysis of the double-reciprocal plot of the rate of turnover versus light intensity has proved useful in determining the light-independent (maximum) turnover rate of the reaction center (445 +/- 50 s-1 at pH 7.8).

  10. Local electrostatic field induced by the carotenoid bound to the reaction center of the purple photosynthetic bacterium Rhodobacter sphaeroides.

    PubMed

    Yanagi, Kazuhiro; Shimizu, Madoka; Hashimoto, Hideki; Gardiner, Alastair T; Roszak, Aleksander W; Cogdell, Richard J

    2005-01-20

    Electroabsorption (EA) spectra were recorded in the region of the reaction center (RC) Qy absorption bands of bacteriochlorophyll (Bchl) and bacteriopheophytin, to investigate the effect of carotenoid (Car) on the electrostatic environment of the RCs of the purple bacterium Rhodobacter (Rb.) sphaeroides. Two different RCs were prepared from Rb. sphaeroides strain R26.1 (R26.1-RC); R26.1 RC lacking Car and a reconstituted RC (R26.1-RC+ Car) prepared by incorporating a synthetic Car (3,4-dihydrospheroidene). Although there were no detectable differences between these two RCs in their near infrared (NIR) absorption spectra at 79 and 293 K, or in their EA spectra at 79 K, significant differences were detected in their EA spectra at 293 K. Three nonlinear optical parameters of each RC were determined in order to evaluate quantitatively these differences; transition dipole-moment polarizability and hyperpolarizability (D factor), the change in polarizability upon photoexcitation (Deltaalpha), and the change in dipole-moment upon photoexcitation (Deltamu). The value of D or Deltaalpha determined for each absorption band of the two RC samples showed similar values at 77 or 293 K. However, the Deltamu values of the special pair Bchls (P) and the monomer Bchls absorption bands showed significant differences between the two RCs at 293 K. X-ray crystallography of the two RCs has revealed that a single molecule of the solubilizing detergent LDAO occupies part of the carotenoid binding site in the absence of a carotenoid. The difference in the value of Deltamu therefore represents the differential effect of the detergent LDAO and the carotenoid on P. The change of electrostatic field around P induced by the presence of Car was determined to be 1.7 x 10(5) [V/cm], corresponding to a approximately 10% change in the electrostatic field around P.

  11. Coupling dark metabolism to electricity generation using photosynthetic cocultures.

    PubMed

    Badalamenti, Jonathan P; Torres, César I; Krajmalnik-Brown, Rosa

    2014-02-01

    We investigated the role of green sulfur bacteria inlight-responsive electricity generation in microbial electrochemical cells (MXCs). We operated MXCs containing either monocultures or defined cocultures of previously enriched phototrophic Chlorobium and anode-respiring Geobacter under anaerobic conditions in the absence of electron donor. Monoculture control MXCs containing Geobacter or Chlorobium neither responded to light nor produced current, respectively. Instead, light-responsive current generation occurred only in coculture MXCs. Current increased above background levels only in the dark and declined slowly over 96 h. This pattern suggested that Chlorobium exhausted intracellular glycogen reserves via dark fermentation to supply an electron donor, presumably acetate, to Geobacter. With medium containing sulfide as the sole photosynthetic electron donor, current generation had a similar and reproducible negative light response. To investigate whether this metabolic interaction also occurred without an electrode, we performed coculture experiments in batch serum bottles. In this setup, sulfide served as the sole electron donor, whose oxidation by Chlorobium was required to provide S(0) as the electron acceptor to Geobacter. Copies of Geobacter 16S rDNA increased approximately 14-fold in batch bottle cocultures containing sulfide compared to those lacking sulfide, and did not decline after termination of sulfide feeding. These results suggest that products of both photosynthesis and dark fermentation by Chlorobium were sufficient both to yield an electrochemical response by Geobacter biofilms, and to promote Geobacter growthin batch cocultures. Our work expands upon the fusion of MXCs with coculture techniques and reinforces the utility of microbial electrochemistry for sensitive, real-time monitoring of microbial interactions in which a metabolic intermediate can be converted to electrical current.

  12. Chlorobium aminolipid: a new membrane lipid from green sulfur bacteria

    SciTech Connect

    Olson, J.M.; Shaw, E.K.; Gaffney, J.S.; Scandella, C.J.

    1983-01-01

    A preliminary chemical characterization of the aminolipid from Chlorobium limicola f. thiosulfatophilum shows that this lipid contains no phosphorus, glycerol, sugar, ornithine or lysine. The lipid has an R/sub f/-value of 0.03 in chloroform-methanol-ammonia (13:5:1 v/v) on silica gel TLC plates. In chloroform-methanol-water (65:25:4) the R/sub f/- value is 0.16. The absorption spectrum indicates bands at 225 and 231 nm, and the fluorescence (maximum emission at 340 nm) shows excitation maxima at 232, 288, and approx. 325 nm. Acid hydrolysis of the lipid yields fluorescent substances A (ninhydrin positive) and B (negative) in addition to myristic acid (C 14:0). The fluorescence emission and excitation spectra of substance A are very similar to those of the intact lipid. Although these excitation spectra resemble the absorption spectra of 7,8-dihydropterins (bands at approx. 230, approx. 280, and 320-330 nm at pH 7), the weight of evidence appears to be against substance A being a pterin. Nevertheless the UV absorption and fluorescence spectra do indicate that the amino moiety (substance A) is an aromatic heterocyclic component.

  13. Unusually Stable Spinae from a Freshwater Chlorobium sp

    PubMed Central

    Brooke, J. S.; Koval, S. F.; Beveridge, T. J.

    1995-01-01

    A green Chlorobium sp. with spinae, strain JSB1, was isolated from an enrichment culture previously obtained from Fayetteville Green Lake, N.Y. (J. S. Brooke, J. B. Thompson, T. J. Beveridge, and S. F. Koval, Arch. Microbiol. 157:319-322, 1992). Cells were gram-negative, nonmotile rods which contained bacteriochlorophyll c and chlorosomes. Spinae were best seen by transmission electron microscopy in thin sections of cells fixed in the presence of tannic acid. High-resolution scanning electron microscopy showed the spinae randomly distributed at the cell surface and at the junctions between cells. Spinae were physically sheared from cells and isolated from the culture supernatant by ultrafiltration. As observed by electron microscopy, spinae demonstrated unusual structural stability when exposed for 1 h at 37 deg C to chemical treatments such as hydrogen bond-breaking agents, detergents, metal-chelating agents, proteases, and organic solvents. They were stable for 1 h at 37 deg C over the pH range 2.3 to 9.9 and in 1 M HCl and 1 M NaOH. The structural integrity of the spinae was also maintained when spinae were subjected to harsher treatments of autoclaving in 2% (wt/vol) sodium dodecyl sulfate and exposure to dithiothreitol at pH 9 for 1 h at 100 deg C. Partially dissociated spinae were obtained after 5 h at 100 deg C in 1 M HCl and 1 M NaOH. In acid, the tubular spinae became amorphous structures, with no helical striations visible. In alkali, the spinae had dissociated into irregular aggregates of disks. Since both high temperature and extremes of pH were required to achieve partial dissociation of the spinae, the strength of the structure presumably comes from covalent bonding. PMID:16534897

  14. Pump-probe anisotropies of Fenna-Matthews-Olson protein trimers from Chlorobium tepidum: a diagnostic for exciton localization?

    PubMed Central

    Savikhin, S; Buck, D R; Struve, W S

    1997-01-01

    Exciton calculations on symmetric and asymmetric Fenna-Matthews-Olson (FMO) trimers, combined with absorption difference anisotropy measurements on FMO trimers from the green bacterium Chlorobium tepidum, suggest that real samples exhibit sufficient diagonal energy disorder so that their laser-excited exciton states are noticeably localized. Our observed anisotropies are clearly inconsistent with 21-pigment exciton simulations based on a threefold-symmetric FMO protein. They are more consistent with a 7-pigment model that assumes that the laser-prepared states are localized within a subunit of the trimer. Differential diagonal energy shifts of 50 cm(-1) between symmetry-related pigments in different subunits are large enough to cause sharp localization in the stationary states; these shifts are commensurate with the approximately 95 cm(-1) inhomogeneous linewidth of the lowest exciton levels. Experimental anisotropies (and by implication steady-state linear and circular dichroism) likely arise from statistical averaging over states with widely contrasting values of these observables, in consequence of their sensitivity to diagonal energy disorder. PMID:9336204

  15. Draft Genome Sequence of Lampenflora Chlorobium limicola Strain Frasassi in a Sulfidic Cave System.

    PubMed

    Mansor, Muammar; Macalady, Jennifer L

    2016-01-01

    The draft genome sequence of Chlorobium limicola strain Frasassi was assembled from metagenomic sequencing of a green mat in an artificially lighted aquarium inside the Frasassi caves in Italy. The genome is 2.08 Mbp in size and contains the necessary genes for anoxygenic photosynthesis and CO2 fixation. PMID:27174272

  16. Relaxation dynamics of the LH2 complex from a photosynthetic purple bacterium Thiorhodospira sibirica studied by the near-IR femtosecond pump-probe method

    SciTech Connect

    Razjivin, A P; Pishchal'nikov, R Yu; Kozlovskii, V S; Kompanets, V O; Chekalin, Sergei V; Moskalenko, A A; Makhneva, Z K

    2005-01-31

    Photoinduced changes in the absorption spectrum of the LH2 (B800-830-850) complex from a Thiorhodospira sibirica (Trs. sibirica) bacterium are studied by the pump-probe method. The complex has the anomalous absorption spectrum exhibiting three bands in the near-IR region at 793, 826.5, and 846.5 nm. At room temperature, the excitation energy transfer from the B800, B830, and B859 bands was detected with the time constants {tau}{sub 1{approx}}0.5 ps, {tau}{sub 2{approx}}2.5 ps, and {tau}{sub 3} of the order of a few hundreds of picoseconds, respectively. A rapid energy transfer from the B830 band compared to energy transfer from the B850 band ({tau}{sub 2}||{tau}{sub 3}) suggests that all the three bands belong to the same complex (i.e., that the LH2 complex from Trs. sibirica is homogeneous). A slower energy transfer (by three - five times) from the B830 band of the LH2 complex from Trs. sibirica compared to energy transfer from the B800 band of the LH2 complexes (B800-850 and especially B800-820) from other purple bacteria suggests that the electronic structures of ensembles of bacteriochlorophyll molecules in these complexes are substantially different. (laser applications and other topics in quantum electronics)

  17. Effects of acid pH and urea on the spectral properties of the LHII antenna complex from the photosynthetic bacterium Ectothiorhodospira sp.

    PubMed

    Buche, A; Ramirez, J M; Picorel, R

    2000-06-01

    The aim of this study was to investigate the spectral modifications of the LHII antenna complex from the purple bacterium Ectothiorhodospira sp. upon acid pH titration both in the presence and absence of urea. A blue shift specifically and reversibly affected the B850 band around pH 5.5-6.0 suggesting that a histidine residue most probably participated in the in vivo absorption red shifting mechanism. This transition was observed in the presence and absence of urea. Under strong chaotropic conditions, a second transition occurred around pH 2.0, affecting the B800 band irreversibly and the B850 reversibly. Under these conditions a blue shift from 856 to 842 nm occurred and a new and strong circular dichroism signal from the new 842 nm band was observed. Reverting to the original experimental conditions induced a red shift of the B850 band up to 856 nm but the circular dichroism signal remained mostly unaffected. Under the same experimental conditions, i.e. pH 2.1 in the presence of urea, part of the B800 band was irreversibly destroyed with concomitant appearance of a band around 770 nm due to monomeric bacteriochlorophyll from the disrupted B800. Furthermore, Gaussian deconvolution and second derivative of the reverted spectra at pH 8.0 after strong-acid treatment indicated that the new B850 band was actually composed of two bands centered at 843 and 858 nm. We ascribed the 858 nm band to bacteriochlorophylls that underwent reversible spectral shift and the 843 nm band to oligomeric bacteriopheophytin formed from a part of the B850 bacteriochlorophyll. This new oligomer would be responsible for the observed strong and mostly conservative circular dichroism signal. The presence of bacteriopheophytin in the reverted samples was definitively demonstrated by HPLC pigment analysis. The pheophytinization process progressed as the pH decreased below 2.1, and at a certain point (i.e. pH 1.5) all bacteriochlorophylls, including those from the B800 band, became converted to

  18. GlnD Is Essential for NifA Activation, NtrB/NtrC-Regulated Gene Expression, and Posttranslational Regulation of Nitrogenase Activity in the Photosynthetic, Nitrogen-Fixing Bacterium Rhodospirillum rubrum

    PubMed Central

    Zhang, Yaoping; Pohlmann, Edward L.; Roberts, Gary P.

    2005-01-01

    GlnD is a bifunctional uridylyltransferase/uridylyl-removing enzyme and is thought to be the primary sensor of nitrogen status in the cell. It plays an important role in nitrogen assimilation and metabolism by reversibly regulating the modification of PII proteins, which in turn regulate a variety of other proteins. We report here the characterization of glnD mutants from the photosynthetic, nitrogen-fixing bacterium Rhodospirillum rubrum and the analysis of the roles of GlnD in the regulation of nitrogen fixation. Unlike glnD mutations in Azotobacter vinelandii and some other bacteria, glnD deletion mutations are not lethal in R. rubrum. Such mutants grew well in minimal medium with glutamate as the sole nitrogen source, although they grew slowly with ammonium as the sole nitrogen source (MN medium) and were unable to fix N2. The slow growth in MN medium is apparently due to low glutamine synthetase activity, because a ΔglnD strain with an altered glutamine synthetase that cannot be adenylylated can grow well in MN medium. Various mutation and complementation studies were used to show that the critical uridylyltransferase activity of GlnD is localized to the N-terminal region. Mutants with intermediate levels of uridylyltransferase activity are differentially defective in nif gene expression, the posttranslational regulation of nitrogenase, and NtrB/NtrC function, indicating the complexity of the physiological role of GlnD. These results have implications for the interpretation of results obtained with GlnD in many other organisms. PMID:15687189

  19. Probing the effect of the binding site on the electrostatic behavior of a series of carotenoids reconstituted into the light-harvesting 1 complex from purple photosynthetic bacterium Rhodospirillum rubrum detected by stark spectroscopy.

    PubMed

    Nakagawa, Katsunori; Suzuki, Satoru; Fujii, Ritsuko; Gardiner, Alastair T; Cogdell, Richard J; Nango, Mamoru; Hashimoto, Hideki

    2008-08-01

    Reconstitutions of the LH1 complexes from the purple photosynthetic bacterium Rhodospirillum rubrum S1 were performed with a range of carotenoid molecules having different numbers of C=C conjugated double bonds. Since, as we showed previously, some of the added carotenoids tended to aggregate and then to remain with the reconstituted LH1 complexes (Nakagawa, K.; Suzuki, S.; Fujii, R.; Gardiner, A.T.; Cogdell, R.J.; Nango, M.; Hashimoto, H. Photosynth. Res. 2008, 95, 339-344), a further purification step using a sucrose density gradient centrifugation was introduced to improve purity of the final reconstituted sample. The measured absorption, fluorescence-excitation, and Stark spectra of the LH1 complex reconstituted with spirilloxanthin were identical with those obtained with the native, spirilloxanthin-containing, LH1 complex of Rs. rubrum S1. This shows that the electrostatic environments surrounding the carotenoid and bacteriochlorophyll a (BChl a) molecules in both of these LH1 complexes were essentially the same. In the LH1 complexes reconstituted with either rhodopin or spheroidene, however, the wavelength maximum at the BChl a Qy absorption band was slightly different to that of the native LH1 complexes. These differences in the transition energy of the BChl a Qy absorption band can be explained using the values of the nonlinear optical parameters of this absorption band, i.e., the polarizability change Tr(Deltaalpha) and the static dipole-moment change |Deltamu| upon photoexcitation, as determined using Stark spectroscopy. The local electric field around the BChl a in the native LH1 complex (ES) was determined to be approximately 3.0x10(6) V/cm. Furthermore, on the basis of the values of the nonlinear optical parameters of the carotenoids in the reconstituted LH1 complexes, it is possible to suggest that the conformations of carotenoids, anhydrorhodovibrin and spheroidene, in the LH1 complex were similar to that of rhodopin glucoside in crystal structure of

  20. Photosynthetic reaction center of green sulfur bacteria studied by EPR

    SciTech Connect

    Nitschke, W.; Rutherford, A.W. ); Fieler, U. )

    1990-04-24

    Membrane preparations of two species of the green sulfur bacteria Chlorobium have been studied be EPR. Three signals were detected which were attributed to iron-sulfur centers acting as electron acceptors in the photosynthetic reaction center. (1) A signal from a center designated F{sub B}, was photoinduced at 4K. (2) A similar signal, F{sub A}, was photoinduced in addition to the F{sub B} signal upon a short period of illumination at 200 K. (3) Further illumination at 200 K resulted in the appearance of a broad feature at g=1.78. This is attributed to the g{sub x} component of an iron-sulfur center designated F{sub X}. The designations of these signals as F{sub B}, F{sub A}, and F{sub X} are based on their spectroscopic similarities to signals in photosystem I (PS I). The orientation dependence of these EPR signals in ordered Chlorobium membrane multilayers is remarkably similar to that of their PS I homologues. A magnetic interaction between the reduced forms of F{sub B} and F{sub A} occurs, which is also very similar to that seen in PS I. The triplet state of P{sub 840}, the primary electron donor, could be photoinduced at 4 K in samples which had been preincubated with sodium dithionite and methyl viologen and then preilluminated at 200 K. The preillumination reduces the iron-sulfur centers while the preincubation is thought to result in the inactivation of an earlier electron acceptor. Orientation studies of the triplet signal in ordered multilayers indicate that the bacteriochlorophylls which act as the primary electron donor in Chlorobium are arranged with a structural geometry almost identical with that of the special pair in purple bacteria. The Chlorobium reaction center appears to be similar in some respects to both PS I and to the purple bacterial reaction center. This is discussed with regard to the evolution of the different types of reaction centers from a common ancestor.

  1. Exciton dynamics in the chlorosomal antennae of the green bacteria Chloroflexus aurantiacus and Chlorobium tepidum.

    PubMed Central

    Prokhorenko, V I; Steensgaard, D B; Holzwarth, A R

    2000-01-01

    The energy transfer processes in isolated chlorosomes from green bacteria Chlorobium tepidum and Chloroflexus aurantiacus have been studied at low temperatures (1.27 K) by two-pulse photon echo and one-color transient absorption techniques with approximately 100 fs resolution. The decay of the coherence in both types of chlorosomes is characterized by four different dephasing times stretching from approximately 100 fs up to 300 ps. The fastest component reflects dephasing that is due to interaction of bacteriochlorophylls with the phonon bath, whereas the other components correspond to dephasing due to different energy transfer processes such as distribution of excitation along the rod-like aggregates, energy exchange between different rods in the chlorosome, and energy transfer to the base plate. As a basis for the interpretation of the excitation dephasing and energy transfer pathways, a superlattice-like structural model is proposed based on recent experimental data and computer modeling of the Bchl c aggregates (1994. Photosynth. Res. 41:225-233.) This model predicts a fine structure of the Q(y) absorption band that is fully supported by the present photon echo data. PMID:11023914

  2. Hydrogen production by photosynthetic microorganisms

    SciTech Connect

    Akano, T.; Fukatsu, K.; Miyasaka, H. |

    1996-12-31

    Hydrogen is a clean energy alternative to the fossil fuels, the main source of greenhouse gas emissions. We developed a stable system for the conversion of solar energy into hydrogen using photosynthetic microorganisms. Our system consists of the following three stages: (1) Photosynthetic starch accumulation in green microalgae (400 L x2); (2) Dark anaerobic fermentation of the algal starch biomass to produce hydrogen and organic compounds (155 L x2); and (3) Further conversion of the organic compounds to produce hydrogen using photosynthetic bacteria (three types of reactors, parallel plate, raceway, and tubular). We constructed a test plant of this process at Nankoh power plant of Kansai Electric Power Company in Osaka, Japan, and carried out a series of tests using CO{sub 2} obtained from a chemical absorption pilot-plant. The photobiological hydrogen production process used a combination of a marine alga, Chlamydomonas sp. MGA 161 and marine photosynthetic bacterium, Rhodopseudomonas sp. W-1S. The dark anaerobic fermentation of algal starch biomass was also investigated. Sustained and stable starch accumulation, starch degradation in the algal cell, and hydrogen production from algal fermentation and photosynthetic bacteria in the light were demonstrated during several experiments. 3 refs., 12 figs., 1 tab.

  3. Photosynthetic units.

    PubMed

    Schmid, G H; Gaffron, H

    1968-08-01

    Leaf tissues of aurea mutants of tobacco and Lespedeza have been shown to have higher photosynthetic capacity per molecule of chlorophyll, a higher saturation intensity, a simpler lamellar structure, and the same quantum yield as their dark green parents. Here we report on the values of photosynthetic units for both types of plants and some algae. The unit has been assumed to be about as uniform and steady in the plant world as the quantum efficiency. The number on which all theoretical discussions have been based so far is 2400 per O(2) evolved or CO(2) reduced. With dark green plants and algae our determinations of units by means of 40 microsec flashes superimposed on a steady rate of background photosynthesis at 900 ergs cm(-2) sec(-1) of red light yielded mostly numbers between 2000 and 2700. However, the photosynthetic unit turned out to be very variable, even in these objects. In aurea mutants the unit was distinctly smaller, averaging 600 chl/CO(2). By choosing the right combination of colors for flash and background light, units as low as 300 chl/CO(2) or 40 chl/e(-) could be measured consistently. We found five well-defined groups of units composed of multiples of its smallest member. These new findings are discussed in terms of structural entities that double or divide under the influence of far-red light.

  4. Chirality-Based Signatures of Local Protein Environments in Two-Dimensional Optical Spectroscopy of Two Species Photosynthetic Complexes of Green Sulfur Bacteria: Simulation Study

    PubMed Central

    Voronine, Dmitri V.; Abramavicius, Darius; Mukamel, Shaul

    2008-01-01

    Two-dimensional electronic chirality-induced signals of excitons in the photosynthetic Fenna-Matthews-Olson complex from two species of green sulfur bacteria (Chlorobium tepidum and Prosthecochloris aestuarii) are compared. The spectra are predicted to provide sensitive probes of local protein environment of the constituent bacteriochlorophyll a chromophores and reflect electronic structure variations (site energies and couplings) of the two complexes. Pulse polarization configurations are designed that can separate the coherent and incoherent exciton dynamics contributions to the two-dimensional spectra. PMID:18676650

  5. Isolation of Rhp-PSP, a member of YER057c/YjgF/UK114 protein family with antiviral properties, from the photosynthetic bacterium Rhodopseudomonas palustris strain JSC-3b.

    PubMed

    Su, Pin; Feng, Tuizi; Zhou, Xuguo; Zhang, Songbai; Zhang, Yu; Cheng, Ju'e; Luo, Yuanhua; Peng, Jing; Zhang, Zhuo; Lu, Xiangyang; Zhang, Deyong; Liu, Yong

    2015-01-01

    Rhodopseudomonas palustris strain JSC-3b isolated from a water canal adjacent to a vegetable field produces a protein that was purified by bioactivity-guided fractionation based on ammonium sulfate precipitation, ion-exchange absorption and size exclusion. The protein was further identified as an endoribonuclease L-PSP (Liver-Perchloric acid-soluble protein) by shotgun mass spectrometry analysis and gene identification, and it is member of YER057c/YjgF/UK114 protein family. Herein, this protein is designated Rhp-PSP. Rhp-PSP exhibited significant inhibitory activities against tobacco mosaic virus (TMV) in vivo and in vitro. To our knowledge, this represents the first report on the antiviral activity of a protein of the YER057c/YjgF/UK114 family and also the first antiviral protein isolated from R. palustris. Our research provides insight into the potential of photosynthetic bacterial resources in biological control of plant virus diseases and sustainable agriculture.

  6. Effects of oxidants and reductants on the efficiency of excitation transfer in green photosynthetic bacteria.

    PubMed

    Wang, J; Brune, D C; Blankenship, R E

    1990-02-22

    The efficiency of energy transfer in chlorosome antennas in the green sulfur bacteria Chlorobium vibrioforme and Chlorobium limicola was found to be highly sensitive to the redox potential of the suspension. Energy transfer efficiencies were measured by comparing the absorption spectrum of the bacteriochlorophyll c or d pigments in the chlorosome to the excitation spectrum for fluorescence arising from the chlorosome baseplate and membrane-bound antenna complexes. The efficiency of energy transfer approaches 100% at low redox potentials induced by addition of sodium dithionite or other strong reductants, and is lowered to 10-20% under aerobic conditions or after addition of a variety of membrane-permeable oxidizing agents. The redox effect on energy transfer is observed in whole cells, isolated membranes and purified chlorosomes, indicating that the modulation of energy transfer efficiency arises within the antenna complexes and is not directly mediated by the redox state of the reaction center. It is proposed that chlorosomes contain a component that acts as a highly quenching center in its oxidized state, but is an inefficient quencher when reduced by endogenous or exogenous reductants. This effect may be a control mechanism that prevents cellular damage resulting from reaction of oxygen with reduced low-potential electron acceptors found in the green sulfur bacteria. The redox modulation effect is not observed in the green gliding bacterium Chloroflexus aurantiacus, which contains chlorosomes but does not contain low-potential electron acceptors.

  7. Effects of oxidants and reductants on the efficiency of excitation transfer in green photosynthetic bacteria

    NASA Technical Reports Server (NTRS)

    Wang, J.; Brune, D. C.; Blankenship, R. E.

    1990-01-01

    The efficiency of energy transfer in chlorosome antennas in the green sulfur bacteria Chlorobium vibrioforme and Chlorobium limicola was found to be highly sensitive to the redox potential of the suspension. Energy transfer efficiencies were measured by comparing the absorption spectrum of the bacteriochlorophyll c or d pigments in the chlorosome to the excitation spectrum for fluorescence arising from the chlorosome baseplate and membrane-bound antenna complexes. The efficiency of energy transfer approaches 100% at low redox potentials induced by addition of sodium dithionite or other strong reductants, and is lowered to 10-20% under aerobic conditions or after addition of a variety of membrane-permeable oxidizing agents. The redox effect on energy transfer is observed in whole cells, isolated membranes and purified chlorosomes, indicating that the modulation of energy transfer efficiency arises within the antenna complexes and is not directly mediated by the redox state of the reaction center. It is proposed that chlorosomes contain a component that acts as a highly quenching center in its oxidized state, but is an inefficient quencher when reduced by endogenous or exogenous reductants. This effect may be a control mechanism that prevents cellular damage resulting from reaction of oxygen with reduced low-potential electron acceptors found in the green sulfur bacteria. The redox modulation effect is not observed in the green gliding bacterium Chloroflexus aurantiacus, which contains chlorosomes but does not contain low-potential electron acceptors.

  8. Isolation of Rhp-PSP, a member of YER057c/YjgF/UK114 protein family with antiviral properties, from the photosynthetic bacterium Rhodopseudomonas palustris strain JSC-3b

    PubMed Central

    Su, Pin; Feng, Tuizi; Zhou, Xuguo; Zhang, Songbai; Zhang, Yu; Cheng, Ju’e; Luo, Yuanhua; Peng, Jing; Zhang, Zhuo; Lu, Xiangyang; Zhang, Deyong; Liu, Yong

    2015-01-01

    Rhodopseudomonas palustris strain JSC-3b isolated from a water canal adjacent to a vegetable field produces a protein that was purified by bioactivity-guided fractionation based on ammonium sulfate precipitation, ion-exchange absorption and size exclusion. The protein was further identified as an endoribonuclease L-PSP (Liver-Perchloric acid-soluble protein) by shotgun mass spectrometry analysis and gene identification, and it is member of YER057c/YjgF/UK114 protein family. Herein, this protein is designated Rhp-PSP. Rhp-PSP exhibited significant inhibitory activities against tobacco mosaic virus (TMV) in vivo and in vitro. To our knowledge, this represents the first report on the antiviral activity of a protein of the YER057c/YjgF/UK114 family and also the first antiviral protein isolated from R. palustris. Our research provides insight into the potential of photosynthetic bacterial resources in biological control of plant virus diseases and sustainable agriculture. PMID:26530252

  9. Albidovulum inexpectatum gen. nov., sp. nov., a nonphotosynthetic and slightly thermophilic bacterium from a marine hot spring that is very closely related to members of the photosynthetic genus Rhodovulum.

    PubMed

    Albuquerque, Luciana; Santos, João; Travassos, Pedro; Nobre, M Fernanda; Rainey, Fred A; Wait, Robin; Empadinhas, Nuno; Silva, Manuel T; da Costa, Milton S

    2002-09-01

    Several bacterial isolates, with an optimum growth temperature of about 50 degrees C, were recovered from the marine hot spring at Ferraria on the island of São Miguel in the Azores. The geothermal water emerged from a porous lava flow and rapidly cooled in contact with seawater except at low tide. The bacterial species represented by strains FRR-10(T) and FRR-11 was nonpigmented, strictly aerobic, and organotrophic. Several genes, bchZ, pufB, pufA, pufL, or pufM, encoding the photosynthetic reaction center proteins and the core light-harvesting complexes were not detected in these strains. The organism oxidized thiosulfate to sulfate with enhancement of growth. The organism did not require additional NaCl in the culture medium for growth, but NaCl at 1.0% enhanced growth. Phylogenetic analyses using the 16S rRNA gene sequence of strain FRR-10(T) indicated that the new organism represented a new species of the alpha-3 subclass of the Proteobacteria and that it branches within the species of the genus Rhodovulum. The contradiction of classifying an organism which branches within the radiation of the genus Rhodovulum but does not possess the hallmark characteristics of this genus is discussed. However, the absence of several of these characteristics, namely, the lack of photosynthesis and pigmentation, which could be related to colonization of dark environments, and growth at high temperatures, leads to our proposal that strains FRR-10(T) and FRR-11 should be classified as a new species of a novel genus, Albidovulum inexpectatum, representing, at present, the most thermophilic organism within the alpha-3 subclass of the Proteobacteria.

  10. Chlorobium limicola forma thiosulfatophilum: biocatalyst in the production of sulfur and organic carbon from a gas stream containing H/sub 2/O and CO/sub 2/

    SciTech Connect

    Cork, D.J.; Garunas, R.; Sajjad, A.

    1983-03-01

    Chlorobium limicola forma thiosulfatophilum (ATCC 17092) was grown in a 1-liter continuously stirred tank reactor (800-ml liquid volume) at pH 6.8, 30/sup 0/C, saturated light intensity, and gas flow rate of 23.6 ml/min from a gas cylinder blend consisting of 3.9 mol% H/sub 2/S, 9.2 mol% CO/sub 2/, 86.4 mol% N/sub 2/, and 0.5 mol% H/sub 2/. This is the first demonstration of photoautotrophic growth of a Chlorobium sp. on a continuous inorganic gas feed. A significant potential exists for applying this photoautotrophic process to desulfurization and CO/sub 2/ fixation of gases containing acidic components (H/sub 2/S and CO/sub 2/).

  11. Production of bioplastics and hydrogen gas by photosynthetic microorganisms

    NASA Astrophysics Data System (ADS)

    Yasuo, Asada; Masato, Miyake; Jun, Miyake

    1998-03-01

    Our efforts have been aimed at the technological basis of photosynthetic-microbial production of materials and an energy carrier. We report here accumulation of poly-(3-hydroxybutyrate) (PHB), a raw material of biodegradable plastics and for production of hydrogen gas, and a renewable energy carrier by photosynthetic microorganisms (tentatively defined as cyanobacteria plus photosynthetic bateria, in this report). A thermophilic cyanobacterium, Synechococcus sp. MA19 that accumulates PHB at more than 20% of cell dry wt under nitrogen-starved conditions was isolated and microbiologically identified. The mechanism of PHB accumulation was studied. A mesophilic Synechococcus PCC7942 was transformed with the genes encoding PHB-synthesizing enzymes from Alcaligenes eutrophus. The transformant accumulated PHB under nitrogen-starved conditions. The optimal conditions for PHB accumulation by a photosynthetic bacterium grown on acetate were studied. Hydrogen production by photosynthetic microorganisms was studied. Cyanobacteria can produce hydrogen gas by nitrogenase or hydrogenase. Hydrogen production mediated by native hydrogenase in cyanobacteria was revealed to be in the dark anaerobic degradation of intracellular glycogen. A new system for light-dependent hydrogen production was targeted. In vitro and in vivo coupling of cyanobacterial ferredoxin with a heterologous hydrogenase was shown to produce hydrogen under light conditions. A trial for genetic trasformation of Synechococcus PCC7942 with the hydrogenase gene from Clostridium pasteurianum is going on. The strong hydrogen producers among photosynthetic bacteria were isolated and characterized. Co-culture of Rhodobacter and Clostriumdium was applied to produce hydrogen from glucose. Conversely in the case of cyanobacteria, genetic regulation of photosynthetic proteins was intended to improve conversion efficiency in hydrogen production by the photosynthetic bacterium, Rhodobacter sphaeroides RV. A mutant acquired by

  12. Redox regulation of energy transfer efficiency in antennas of green photosynthetic bacteria

    NASA Technical Reports Server (NTRS)

    Blankenship, R. E.; Cheng, P.; Causgrove, T. P.; Brune, D. C.; Wang, J.

    1993-01-01

    The efficiency of energy transfer from the peripheral chlorosome antenna structure to the membrane-bound antenna in green sulfur bacteria depends strongly on the redox potential of the medium. The fluorescence spectra and lifetimes indicate that efficient quenching pathways are induced in the chlorosome at high redox potential. The midpoint redox potential for the induction of this effect in isolated chlorosomes from Chlorobium vibrioforme is -146 mV at pH 7 (vs the normal hydrogen electrode), and the observed midpoint potential (n = 1) decreases by 60 mV per pH unit over the pH range 7-10. Extraction of isolated chlorosomes with hexane has little effect on the redox-induced quenching, indicating that the component(s) responsible for this effect are bound and not readily extractable. We have purified and partially characterized the trimeric water-soluble bacteriochlorophyll a-containing protein from the thermophilic green sulfur bacterium Chlorobium tepidum. This protein is located between the chlorosome and the membrane. Fluorescence spectra of the purified protein indicate that it also contains groups that quench excitations at high redox potential. The results indicate that the energy transfer pathway in green sulfur bacteria is regulated by redox potential. This regulation appears to operate in at least two distinct places in the energy transfer pathway, the oligomeric pigments in the interior of the chlorosome and in the bacteriochlorophyll a protein. The regulatory effect may serve to protect the cell against superoxide-induced damage when oxygen is present. By quenching excitations before they reach the reaction center, reduction and subsequent autooxidation of the low potential electron acceptors found in these organisms is avoided.

  13. Redox regulation of energy transfer efficiency in antennas of green photosynthetic bacteria.

    PubMed

    Blankenship, R E; Cheng, P; Causgrove, T P; Brune, D C; Wang SH-H; Choh J-U; Wang, J

    1993-01-01

    The efficiency of energy transfer from the peripheral chlorosome antenna structure to the membrane-bound antenna in green sulfur bacteria depends strongly on the redox potential of the medium. The fluorescence spectra and lifetimes indicate that efficient quenching pathways are induced in the chlorosome at high redox potential. The midpoint redox potential for the induction of this effect in isolated chlorosomes from Chlorobium vibrioforme is -146 mV at pH 7 (vs the normal hydrogen electrode), and the observed midpoint potential (n = 1) decreases by 60 mV per pH unit over the pH range 7-10. Extraction of isolated chlorosomes with hexane has little effect on the redox-induced quenching, indicating that the component(s) responsible for this effect are bound and not readily extractable. We have purified and partially characterized the trimeric water-soluble bacteriochlorophyll a-containing protein from the thermophilic green sulfur bacterium Chlorobium tepidum. This protein is located between the chlorosome and the membrane. Fluorescence spectra of the purified protein indicate that it also contains groups that quench excitations at high redox potential. The results indicate that the energy transfer pathway in green sulfur bacteria is regulated by redox potential. This regulation appears to operate in at least two distinct places in the energy transfer pathway, the oligomeric pigments in the interior of the chlorosome and in the bacteriochlorophyll a protein. The regulatory effect may serve to protect the cell against superoxide-induced damage when oxygen is present. By quenching excitations before they reach the reaction center, reduction and subsequent autooxidation of the low potential electron acceptors found in these organisms is avoided.

  14. Photosynthetic water splitting

    SciTech Connect

    Greenbaum, E.

    1981-01-01

    The photosynthetic unit of hydrogen evolution, the turnover time of photosynthetic hydrogen production, and hydrogenic photosynthesis are discussed in the section on previous work. Recent results are given on simultaneous photoproduction of hydrogen and oxygen, kinetic studies, microscopic marine algae-seaweeds, and oxygen profiles.

  15. Theoretical Simulations and Ultrafast Pump-probe Spectroscopy Experiments in Pigment-protein Photosynthetic Complexes

    SciTech Connect

    Buck, D.R.

    2000-09-12

    Theoretical simulations and ultrafast pump-probe laser spectroscopy experiments were used to study photosynthetic pigment-protein complexes and antennae found in green sulfur bacteria such as Prosthecochloris aestuarii, Chloroflexus aurantiacus, and Chlorobium tepidum. The work focused on understanding structure-function relationships in energy transfer processes in these complexes through experiments and trying to model that data as we tested our theoretical assumptions with calculations. Theoretical exciton calculations on tubular pigment aggregates yield electronic absorption spectra that are superimpositions of linear J-aggregate spectra. The electronic spectroscopy of BChl c/d/e antennae in light harvesting chlorosomes from Chloroflexus aurantiacus differs considerably from J-aggregate spectra. Strong symmetry breaking is needed if we hope to simulate the absorption spectra of the BChl c antenna. The theory for simulating absorption difference spectra in strongly coupled photosynthetic antenna is described, first for a relatively simple heterodimer, then for the general N-pigment system. The theory is applied to the Fenna-Matthews-Olson (FMO) BChl a protein trimers from Prosthecochloris aestuarii and then compared with experimental low-temperature absorption difference spectra of FMO trimers from Chlorobium tepidum. Circular dichroism spectra of the FMO trimer are unusually sensitive to diagonal energy disorder. Substantial differences occur between CD spectra in exciton simulations performed with and without realistic inhomogeneous distribution functions for the input pigment diagonal energies. Anisotropic absorption difference spectroscopy measurements are less consistent with 21-pigment trimer simulations than 7-pigment monomer simulations which assume that the laser-prepared states are localized within a subunit of the trimer. Experimental anisotropies from real samples likely arise from statistical averaging over states with diagonal energies shifted by

  16. Phosphofructokinase Activities in Photosynthetic Organisms 1

    PubMed Central

    Carnal, Nancy Wieland; Black, Clanton C.

    1983-01-01

    A pyrophosphate-dependent phosphofructokinase (PPi-PFK) activity is detectable in extracts of a wide variety of primitive and advanced plants, the Charalean algae, and in the photosynthetic bacterium, Rhodospirillum rubrum. Angiosperms with extractable PPi-PFK activities 4- to 70-fold higher than the respective ATP-PFK activities tend to be succulent and to exhibit CAM. Even though PPi-PFK activity is not detected in crude extracts of some well known CAM plants, e.g. plants in the Crassulaceae, gel filtration of the extract and/or inclusion of the PPi-PFK activator, fructose 2,6-bisphosphate, in the assay reveals that a PPi-PFK activity is present in these species. Fructose 2,6-bisphosphate likewise activates PPi-PFK activities in extracts of C3 and C4 plants. C3 and C4 plant PPi-PFK activities are roughly equivalent to ATP-PFK activities in the same species. PPi-PFK activity is also detected in some bryophytes, lower vascular plants, ferns, and gymnosperms. The Charophytes, advanced algae presumed to be similar to species ancestral to vascular plants, exhibit at least 4-fold higher PPi-PFK than ATP-PFK activities. R. rubrum also exhibits a much higher PPi-PFK activity than ATP-PFK activity. These data indicate that PPi-PFK may serve as an alternate enzyme to ATP-PFK in glycolysis in a wide range of photosynthetic organisms. PMID:16662776

  17. Genes, Genomes, and Assemblages of Modern Anoxygenic Photosynthetic Cyanobacteria as Proxies for Ancient Cyanobacteria

    NASA Astrophysics Data System (ADS)

    Grim, S. L.; Dick, G.

    2015-12-01

    Oxygenic photosynthetic (OP) cyanobacteria were responsible for the production of O2 during the Proterozoic. However, the extent and degree of oxygenation of the atmosphere and oceans varied for over 2 Ga after OP cyanobacteria first appeared in the geologic record. Cyanobacteria capable of anoxygenic photosynthesis (AP) may have altered the trajectory of oxygenation, yet the scope of their role in the Proterozoic is not well known. Modern cyanobacterial populations from Middle Island Sinkhole (MIS), Michigan and a handful of cultured cyanobacterial strains, are capable of OP and AP. With their metabolic versatility, these microbes may approximate ancient cyanobacterial assemblages that mediated Earth's oxygenation. To better characterize the taxonomic and genetic signatures of these modern AP/OP cyanobacteria, we sequenced 16S rRNA genes and conducted 'omics analyses on cultured strains, lab mesocosms, and MIS cyanobacterial mat samples collected over multiple years from May to September. Diversity in the MIS cyanobacterial mat is low, with one member of Oscillatoriales dominating at all times. However, Planktothrix members are more abundant in the cyanobacterial community in late summer and fall. The shift in cyanobacterial community composition may be linked to seasonally changing light intensity. In lab mesocosms of MIS microbial mat, we observed a shift in dominant cyanobacterial groups as well as the emergence of Chlorobium, bacteria that specialize in AP. These shifts in microbial community composition and metabolism are likely in response to changing environmental parameters such as the availability of light and sulfide. Further research is needed to understand the impacts of the changing photosynthetic community on oxygen production and the entire microbial consortium. Our study connects genes and genomes of AP cyanobacteria to their environment, and improves understanding of cyanobacterial metabolic strategies that may have shaped Earth's redox evolution.

  18. Nonphotochemical Hole-Burning Studies of Energy Transfer Dynamics in Antenna Complexes of Photosynthetic Bacteria

    SciTech Connect

    Satoshi Matsuzaki

    2002-06-27

    This thesis contains the candidate's original work on excitonic structure and energy transfer dynamics of two bacterial antenna complexes as studied using spectral hole-burning spectroscopy. The general introduction is divided into two chapters (1 and 2). Chapter 1 provides background material on photosynthesis and bacterial antenna complexes with emphasis on the two bacterial antenna systems related to the thesis research. Chapter 2 reviews the underlying principles and mechanism of persistent nonphotochemical hole-burning (NPHB) spectroscopy. Relevant energy transfer theories are also discussed. Chapters 3 and 4 are papers by the candidate that have been published. Chapter 3 describes the application of NPHB spectroscopy to the Fenna-Matthews-Olson (FMO) complex from the green sulfur bacterium Prosthecochloris aestuarii; emphasis is on determination of the low energy vibrational structure that is important for understanding the energy transfer process associated within three lowest energy Q{sub y}-states of the complex. The results are compared with those obtained earlier on the FMO complex from Chlorobium tepidum. In Chapter 4, the energy transfer dynamics of the B800 molecules of intact LH2 and B800-deficient LH2 complexes of the purple bacterium Rhodopseudomonas acidophila are compared. New insights on the additional decay channel of the B800 ring of bacteriochlorophyll{sub a} (BChl{sub a}) molecules are provided. General conclusions are given in Chapter 5. A version of the hole spectrum simulation program written by the candidate for the FMO complex study (Chapter 3) is included as an appendix. The references for each chapter are given at the end of each chapter.

  19. Structure-function studies of the photosynthetic reaction center using herbicides that compete for the quinone binding site

    SciTech Connect

    Bylina, E.J.

    1995-12-31

    Certain classes of herbicides act as competitive inhibitors of the photosynthetic reaction center. Genetic engineering techniques can be used to generate photosynthetic reaction centers which contain altered quinone binding sites. A genetic system for rapidly screening herbicides developed in the photosynthetic bacterium Rhodobacter capsulatus has been used to examine the effect of different s-triazine herbicides on the growth of bacteria containing reaction centers with altered quinone binding sites. Structural insights into herbicide binding have been obtained by determining the level of resistance or sensitivity to structurally related herbicides in these modified reaction centers.

  20. Photosynthetic Pigments in Diatoms

    PubMed Central

    Kuczynska, Paulina; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz

    2015-01-01

    Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvesting pigments such as chlorophyll a, chlorophyll c, and fucoxanthin, there is a group of photoprotective carotenoids which includes β-carotene and the xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and zeaxanthin, which are engaged in the xanthophyll cycle. Additionally, some intermediate products of biosynthetic pathways have been identified in diatoms as well as unusual pigments, e.g., marennine. Marine algae have become widely recognized as a source of unique bioactive compounds for potential industrial, pharmaceutical, and medical applications. In this review, we summarize current knowledge on diatom photosynthetic pigments complemented by some new insights regarding their physico-chemical properties, biological role, and biosynthetic pathways, as well as the regulation of pigment level in the cell, methods of purification, and significance in industries. PMID:26389924

  1. The Photosynthetic Cycle

    DOE R&D Accomplishments Database

    Calvin, Melvin

    1955-03-21

    A cyclic sequence of transformations, including the carboxylation of RuDP (ribulose diphosphate) and its re-formation, has been deduced as the route for the creation of reduced carbon compounds in photosynthetic organisms. With the demonstration of RuDP as substrate for the carboxylation in a cell-free system, each of the reactions has now been carried out independently in vitro. Further purification of this last enzyme system has confirmed the deduction that the carboxylation of RuDP leads directly to the two molecules of PGA (phosphoglyceric acid) involving an internal dismutation and suggesting the name "carboxydismutase" for the enzyme. As a consequence of this knowledge of each of the steps in the photosynthetic CO{sub 2} reduction cycle, it is possible to define the reagent requirements to maintain it. The net requirement for the reduction of one molecule of CO{sub 2} is four equivalents of [H]and three molecules of ATP (adenine triphosphate). These must ultimately be supplied by the photochemical reaction. Some possible ways in which this may be accomplished are discussed.

  2. Complete Genome Sequence of the Filamentous Anoxygenic Phototrophic Bacterium Chloroflexus aurantiacus

    SciTech Connect

    Tang, Kuo-Hsiang; Barry, Kerrie; Chertkov, Olga; Dalin, Eileen; Han, Cliff; Hauser, Loren John; Honchak, Barbara M; Karbach, Lauren E; Land, Miriam L; Lapidus, Alla L.; Larimer, Frank W; Mikhailova, Natalia; Pitluck, Sam; Pierson, Beverly K

    2011-01-01

    Chloroflexus aurantiacus is a thermophilic filamentous anoxygenic phototrophic (FAP) bacterium, and can grow phototrophically under anaerobic conditions or chemotrophically under aerobic and dark conditions. According to 16S rRNA analysis, Chloroflexi species are the earliest branching bacteria capable of photosynthesis, and Cfl. aurantiacus has been long regarded as a key organism to resolve the obscurity of the origin and early evolution of photosynthesis. Cfl. aurantiacus contains a chimeric photosystem that comprises some characters of green sulfur bacteria and purple photosynthetic bacteria, and also has some unique electron transport proteins compared to other photosynthetic bacteria.

  3. Inelastic neutron scattering study of light-induced dynamics of a photosynthetic membrane system

    SciTech Connect

    Furrer, A.; Stoeckli, A.

    2010-01-15

    Inelastic neutron scattering was employed to study photoeffects on the molecular dynamics of membranes of the photosynthetic bacterium Rhodopseudomonas viridis. The main photoactive parts of this biomolecular system are the chlorophyll molecules whose dynamics were found to be affected under illumination by visible light in a twofold manner. First, vibrational modes are excited at energies of 12(2) and 88(21) cm{sup -1}. Second, a partial 'freezing' of rotational modes is observed at energies of 1.2(3) and 2.9(5) cm{sup -1}. These results are attributed to a possible coupling between molecular motions and particular mechanisms in the photosynthetic process.

  4. Studies on Hydrogen Production by Photosynthetic Bacteria after Anaerobic Fermentation of Starch by a Hyperthermophile, Pyrococcus furiosus

    NASA Astrophysics Data System (ADS)

    Sugitate, Toshihiro; Fukatsu, Makoto; Ishimi, Katsuhiro; Kohno, Hideki; Wakayama, Tatsuki; Nakamura, Yoshihiro; Miyake, Jun; Asada, Yasuo

    In order to establish the sequential hydrogen production from waste starch using a hyperthermophile, Pyrococcus furiosus, and a photosynthetic bacterium, basic studies were done. P. furiosus produced hydrogen and acetate by anaerobic fermentation at 90°C. A photosynthetic bacterium, Rhodobacter sphaeroides RV, was able to produce hydrogen from acetate under anaerobic and light conditions at 30°C. However, Rb. sphaeroides RV was not able to produce hydrogen from acetate in the presence of sodium chloride that was essential for the growth and hydrogen production of P. furiosus although it produced hydrogen from lactate at a reduced rate with 1% sodium chloride. A newly isolated strain, CST-8, from natural environment was, however, able to produce hydrogen from acetate, especially with 3 mM L-alanine and in the presence of 1% sodium chloride. The sequential hydrogen production with P. furiosus and salt-tolerant photosynthetic bacteria could be probable at least in the laboratory experiment scale.

  5. The crystal structure of ferritin from Chlorobium tepidum reveals a new conformation of the 4-fold channel for this protein family.

    PubMed

    Arenas-Salinas, Mauricio; Townsend, Philip D; Brito, Christian; Marquez, Valeria; Marabolli, Vanessa; Gonzalez-Nilo, Fernando; Matias, Cata; Watt, Richard K; López-Castro, Juan D; Domínguez-Vera, José; Pohl, Ehmke; Yévenes, Alejandro

    2014-11-01

    Ferritins are ubiquitous iron-storage proteins found in all kingdoms of life. They share a common architecture made of 24 subunits of five α-helices. The recombinant Chlorobium tepidum ferritin (rCtFtn) is a structurally interesting protein since sequence alignments with other ferritins show that this protein has a significantly extended C-terminus, which possesses 12 histidine residues as well as several aspartate and glutamic acid residues that are potential metal ion binding residues. We show that the macromolecular assembly of rCtFtn exhibits a cage-like hollow shell consisting of 24 monomers that are related by 4-3-2 symmetry; similar to the assembly of other ferritins. In all ferritins of known structure the short fifth α-helix adopts an acute angle with respect to the four-helix bundle. However, the crystal structure of the rCtFtn presented here shows that this helix adopts a new conformation defining a new assembly of the 4-fold channel of rCtFtn. This conformation allows the arrangement of the C-terminal region into the inner cavity of the protein shell. Furthermore, two Fe(III) ions were found in each ferroxidase center of rCtFtn, with an average FeA-FeB distance of 3 Å; corresponding to a diferric μ-oxo/hydroxo species. This is the first ferritin crystal structure with an isolated di-iron center in an iron-storage ferritin. The crystal structure of rCtFtn and the biochemical results presented here, suggests that rCtFtn presents similar biochemical properties reported for other members of this protein family albeit with distinct structural plasticity. PMID:25079050

  6. Photosynthetic approaches to chemical biotechnology.

    PubMed

    Desai, Shuchi H; Atsumi, Shota

    2013-12-01

    National interest and environmental advocates encourage alternatives to petroleum-based products. Besides biofuels, many other valuable chemicals used in every-day life are petroleum derivatives or require petroleum for their production. A plausible alternative to production using petroleum for chemical production is to harvest the abundant carbon dioxide resources in the environment to produce valuable hydrocarbons. Currently, efforts are being made to utilize a natural biological system, photosynthetic microorganisms, to perform this task. Photosynthetic microorganisms are attractive to use for biochemical production because they utilize economical resources for survival: sunlight and carbon dioxide. This review examines the various compounds produced by photosynthetic microorganisms.

  7. Photosynthetic proteins for technological applications.

    PubMed

    Giardi, Maria Teresa; Pace, Emanuela

    2005-05-01

    Photosynthetic proteins are a source of biological material well-suited to technological applications. They exhibit light-induced electron transfer across lipid membranes that can be exploited for the construction of photo-optical electrical devices. The structure and function of photosynthetic proteins differ across the photosynthetic evolutionary scale, allowing for their application in a range of technologies. Here we provide a general description of the basic and technical research in this sector and an overview of biochips and biosensors based on photochemical activity that have been developed for the bioassay of pollutants.

  8. Polarized pump--probe spectroscopy of electronic excitation transport in photosynthetic antennas

    SciTech Connect

    Struve, W.S. )

    1990-08-01

    Polarized pump--probe spectroscopy was performed with 1.5--2 psec resolution on the bacteriochlorophyll a protein antenna complex from the green sulfur bacterium Prosthecochloris aestuarii and on native and enriched photosystem I particles from spinach. The resulting photobleaching profiles reflect the details of singlet electronic-excitation transport in these photosynthetic antennas, in which the pigments are complexed by proteins into clusters of five or more chromophores.

  9. Ultrafast absorption difference spectra of the Fenna-Matthews-Olson protein at 19 K: experiment and simulations.

    PubMed

    Buck, D R; Savikhin, S; Struve, W S

    1997-01-01

    We describe simulations of absorption difference spectra in strongly coupled photosynthetic antennas. In the presence of large resonance couplings, distinctive features arise from excited-state absorption transitions between one- and two-exciton levels. We first outline the theory for the heterodimer and for the general N-pigment system, and we demonstrate the transition between the strong and weak coupling regimes. The theory is applied to Fenna-Matthews-Olson (FMO) bacteriochlorophyll a protein trimers from the green photosynthetic bacterium Prosthecochloris aestuarii and then compared with experimental low-temperature absorption difference spectra of FMO trimers from the green bacterium Chlorobium tepidum.

  10. Biochemistry and control of the reductive tricarboxylic acid pathway of CO2 fixation and physiological role of the Rubis CO-like protein

    SciTech Connect

    Tabita, F. Robert

    2008-12-04

    During the past years of this project we have made progress relative to the two major goals of the proposal: (1) to study the biochemistry and regulation of the reductive TCA cycle of CO2 fixation and (2) to probe the physiological role of a RubisCO-like protein (RLP). Both studies primarily employ the green sulfur bacterium Chlorobium tepidum as well as other photosynthetic bacteria including Rhodospirillum rubrum and Rhodopseudomonas palustris.

  11. The history of photosynthetic thermoluminescence.

    PubMed

    Vass, Imre

    2003-01-01

    A fundamental discovery of photosynthetis research in the 1950s was the detection of thermally stimulated light emission from preilluminated photosynthetic material [Arnold W and Sherwood H (1957) Proc Natl Acad Sci USA 43: 105-114]. This phenomenon, called thermoluminescence (TL), is characteristic of a wide range of materials (minerals, semiconductors, inorganic and organic crystals, and complex biological systems), which share the ability of storing radiant energy in thermally stabilized trap states. The original discovery of TL in dried chloroplasts later proved to be a phenomenon common to all photosynthetic organisms: photosynthetic bacteria, cyanobacteria, algae and higher plants, which can be observed in isolated membrane particles, intact chloroplasts and unicellular organisms, and whole leaves. Following the initial observations considerable effort has been devoted to the identification and characterization of photosynthetic TL components. This work has firmly established the participation of various oxidation states of the water-oxidizing complex, the redox-active tyrosines, and the quinone electron acceptors of Photosystem II (PS II) in the generation of photosynthetic glow curves. Since TL characteristics are very sensitive to subtle changes in the redox properties of the involved electron transport components, the TL method has become a powerful tool in probing a wide range of PS II redox reactions and their modifications by environmental stress effects. Here, the main milestones of research in photosynthetic TL are covered until the present day. PMID:16228589

  12. Modelling the bacterial photosynthetic reaction center. V. Assignment of the electronic transition observed at 2200 cm-1 in the special-pair radical-cation as a second-highest occupied molecular orbital to highest occupied molecular orbital transition

    NASA Astrophysics Data System (ADS)

    Reimers, Jeffrey R.; Shapley, Warwick A.; Hush, Noel S.

    2003-08-01

    Primary charge separation in photoexcited photosynthetic reaction centers produces the radical cation P+ of a bacteriochlorophyll dimer known as the special-pair P. P+ has an intense electronic transition in the vicinity of 1800-5000 cm-1 which is usually assigned to the interchromophore hole-transfer excitation of the dimer radical cation; in principle, this spectrum can give much insight into key steps of the solar-to-electrical energy-conversion process. The extent to which this transition is localized on one-half of the dimer or delocalized over both is of utmost importance; an authoritative deduction of this quantity from purely spectroscopic arguments requires the detailed assignment of the observed high to medium resolution spectra. For reaction centers containing bacteriochlorophylls a or b, a shoulder is observed at 2200 cm-1 on the low-energy side of the main hole-transfer absorption band, a band whose maximum is near 2700 cm-1. Before quantitative analysis of the hole-transfer absorption in these well-studied systems can be attempted, the nature of the processes leading to this shoulder must be determined. We interpret it as arising from an intrachromophore SHOMO to HOMO transition whose intensity arises wholly through vibronic coupling with the hole-transfer band. A range of ab initio and density-functional calculations are performed to estimate the energy of this transition both for monomeric cations and for P+ of Blastochloris viridis, Rhodobacter sphaeroides, Chlorobium limicola, Chlorobium tepidum, Chlamydomonas reinhardtii, Synochocystis S.6803, spinach photosystems I and II, Heliobacillus mobilis, and finally Heliobacterium modesticaldum, with the results found to qualitatively describe the available experimental data. Subsequent papers in this series provide quantitative analyses of the vibronic coupling and complete spectral simulations based on the model developed herein.

  13. Single Bacterium Detection Using Sers

    NASA Astrophysics Data System (ADS)

    Gonchukov, S. A.; Baikova, T. V.; Alushin, M. V.; Svistunova, T. S.; Minaeva, S. A.; Ionin, A. A.; Kudryashov, S. I.; Saraeva, I. N.; Zayarny, D. A.

    2016-02-01

    This work is devoted to the study of a single Staphylococcus aureus bacterium detection using surface-enhanced Raman spectroscopy (SERS) and resonant Raman spectroscopy (RS). It was shown that SERS allows increasing sensitivity of predominantly low frequency lines connected with the vibrations of Amide, Proteins and DNA. At the same time the lines of carotenoids inherent to this kind of bacterium are well-detected due to the resonance Raman scattering mechanism. The reproducibility and stability of Raman spectra strongly depend on the characteristics of nanostructured substrate, and molecular structure and size of the tested biological object.

  14. Arsenic biomethylation by photosynthetic organisms

    PubMed Central

    Ye, Jun; Rensing, Christopher; Rosen, Barry P.; Zhu, Yong-Guan

    2013-01-01

    Arsenic (As) is a ubiquitous element that is widespread in the environment and causes numerous health problems. Biomethylation of As has implications for its mobility and toxicity. Photosynthetic organisms may play a significant role in As geochemical cycling by methylating it to different As species, but little is known about the mechanisms of methylation. Methylated As species have been found in many photosynthetic organisms, and several arsenite S-adenosylmethionine (SAM) methyltransferases have been characterized in cyanobacteria and algae. However, higher plants may not have the ability to methylate As. Instead, methylated arsenicals in plants probably originate from microorganisms in soils and the rhizosphere. Here, we propose possible approaches for developing ‘smart’ photosynthetic organisms with an enhanced and sensitive biomethylation capacity for bioremediation and safer food. PMID:22257759

  15. Forster energy transfer in chlorosomes of green photosynthetic bacteria

    NASA Technical Reports Server (NTRS)

    Causgrove, T. P.; Brune, D. C.; Blankenship, R. E.

    1992-01-01

    Energy transfer properties of whole cells and chlorosome antenna complexes isolated from the green sulfur bacteria Chlorobium limicola (containing bacteriochlorophyll c), Chlorobium vibrioforme (containing bacteriochlorophyll d) and Pelodictyon phaeoclathratiforme (containing bacteriochlorophyll e) were measured. The spectral overlap of the major chlorosome pigment (bacteriochlorophyll c, d or, e) with the bacteriochlorophyll a B795 chlorosome baseplate pigment is greatest for bacteriochlorophyll c and smallest for bacteriochlorophyll e. The absorbance and fluorescence spectra of isolated chlorosomes were measured, fitted to gaussian curves and the overlap factors with B795 calculated. Energy transfer times from the bacteriochlorophyll c, d or e to B795 were measured in whole cells and the results interpreted in terms of the Forster theory of energy transfer.

  16. Role of an elliptical structure in photosynthetic energy transfer: Collaboration between quantum entanglement and thermal fluctuation.

    PubMed

    Oka, Hisaki

    2016-05-13

    Recent experiments have revealed that the light-harvesting complex 1 (LH1) in purple photosynthetic bacteria has an elliptical structure. Generally, symmetry lowering in a structure leads to a decrease in quantum effects (quantum coherence and entanglement), which have recently been considered to play a role in photosynthetic energy transfer, and hence, elliptical structure seems to work against efficient photosynthetic energy transfer. Here we analyse the effect of an elliptical structure on energy transfer in a purple photosynthetic bacterium and reveal that the elliptical distortion rather enhances energy transfer from peripheral LH2 to LH1 at room temperature. Numerical results show that quantum entanglement between LH1 and LH2 is formed over a wider range of high energy levels than would have been the case with circular LH1. Light energy absorbed by LH2 is thermally pumped via thermal fluctuation and is effectively transferred to LH1 through the entangled states at room temperature rather than at low temperature. This result indicates the possibility that photosynthetic systems adopt an elliptical structure to effectively utilise both quantum entanglement and thermal fluctuation at physiological temperature.

  17. Role of an elliptical structure in photosynthetic energy transfer: Collaboration between quantum entanglement and thermal fluctuation

    NASA Astrophysics Data System (ADS)

    Oka, Hisaki

    2016-05-01

    Recent experiments have revealed that the light-harvesting complex 1 (LH1) in purple photosynthetic bacteria has an elliptical structure. Generally, symmetry lowering in a structure leads to a decrease in quantum effects (quantum coherence and entanglement), which have recently been considered to play a role in photosynthetic energy transfer, and hence, elliptical structure seems to work against efficient photosynthetic energy transfer. Here we analyse the effect of an elliptical structure on energy transfer in a purple photosynthetic bacterium and reveal that the elliptical distortion rather enhances energy transfer from peripheral LH2 to LH1 at room temperature. Numerical results show that quantum entanglement between LH1 and LH2 is formed over a wider range of high energy levels than would have been the case with circular LH1. Light energy absorbed by LH2 is thermally pumped via thermal fluctuation and is effectively transferred to LH1 through the entangled states at room temperature rather than at low temperature. This result indicates the possibility that photosynthetic systems adopt an elliptical structure to effectively utilise both quantum entanglement and thermal fluctuation at physiological temperature.

  18. Role of an elliptical structure in photosynthetic energy transfer: Collaboration between quantum entanglement and thermal fluctuation

    PubMed Central

    Oka, Hisaki

    2016-01-01

    Recent experiments have revealed that the light-harvesting complex 1 (LH1) in purple photosynthetic bacteria has an elliptical structure. Generally, symmetry lowering in a structure leads to a decrease in quantum effects (quantum coherence and entanglement), which have recently been considered to play a role in photosynthetic energy transfer, and hence, elliptical structure seems to work against efficient photosynthetic energy transfer. Here we analyse the effect of an elliptical structure on energy transfer in a purple photosynthetic bacterium and reveal that the elliptical distortion rather enhances energy transfer from peripheral LH2 to LH1 at room temperature. Numerical results show that quantum entanglement between LH1 and LH2 is formed over a wider range of high energy levels than would have been the case with circular LH1. Light energy absorbed by LH2 is thermally pumped via thermal fluctuation and is effectively transferred to LH1 through the entangled states at room temperature rather than at low temperature. This result indicates the possibility that photosynthetic systems adopt an elliptical structure to effectively utilise both quantum entanglement and thermal fluctuation at physiological temperature. PMID:27173144

  19. Regulatory RNAs in photosynthetic cyanobacteria.

    PubMed

    Kopf, Matthias; Hess, Wolfgang R

    2015-05-01

    Regulatory RNAs play versatile roles in bacteria in the coordination of gene expression during various physiological processes, especially during stress adaptation. Photosynthetic bacteria use sunlight as their major energy source. Therefore, they are particularly vulnerable to the damaging effects of excess light or UV irradiation. In addition, like all bacteria, photosynthetic bacteria must adapt to limiting nutrient concentrations and abiotic and biotic stress factors. Transcriptome analyses have identified hundreds of potential regulatory small RNAs (sRNAs) in model cyanobacteria such as Synechocystis sp. PCC 6803 or Anabaena sp. PCC 7120, and in environmentally relevant genera such as Trichodesmium, Synechococcus and Prochlorococcus. Some sRNAs have been shown to actually contain μORFs and encode short proteins. Examples include the 40-amino-acid product of the sml0013 gene, which encodes the NdhP subunit of the NDH1 complex. In contrast, the functional characterization of the non-coding sRNA PsrR1 revealed that the 131 nt long sRNA controls photosynthetic functions by targeting multiple mRNAs, providing a paradigm for sRNA functions in photosynthetic bacteria. We suggest that actuatons comprise a new class of genetic elements in which an sRNA gene is inserted upstream of a coding region to modify or enable transcription of that region.

  20. Photosynthetic reaction centers in bacteria

    SciTech Connect

    Norris, J.R. Univ. of Chicago, IL ); Schiffer, M. )

    1990-07-30

    The photochemistry of photosynthesis begins in complexes called reaction centers. These have become model systems to study the fundamental process by which plants and bacteria convert and store solar energy as chemical free energy. In green plants, photosynthesis occurs in two systems, each of which contains a different reaction center, working in series. In one, known as photosystem 1, oxidized nicotinamide adenine dinucleotide phosphate (NADP[sup +]) is reduced to NADPH for use in a series of dark reactions called the Calvin cycle, named for Nobel Laureate Melvin Calvin, by which carbon dioxide is converted into useful fuels such as carbohydrates and sugars. In the other half of the photosynthetic machinery of green plants, called photosystem 2, water is oxidized to produce molecular oxygen. A different form of photosynthesis occurs in photosynthetic bacteria, which typically live at the bottom of ponds and feed on organic debris. Two main types of photosynthetic bacteria exist: purple and green. Neither type liberates oxygen from water. Instead, the bacteria feed on organic media or inorganic materials, such as sulfides, which are easier to reduce or oxidize than carbon dioxide or water. Perhaps in consequence, their photosynthetic machinery is simpler than that of green, oxygen-evolving plants and their primary photochemistry is better understood.

  1. Biological conversion of synthesis gas. Final report, August 31, 1990--September 3, 1993

    SciTech Connect

    Basu, R.; Klasson, K.T.; Johnson, E.R.; Takriff, M.; Clausen, E.C.; Gaddy, J.L.

    1993-09-01

    Based upon the results of this culture screening study, Rhodospirillum rubrum is recommended for biocatalysis of the water gas shift reaction and Chlorobium thiosulfatophilum is recommended for H{sub 2}S conversion to elemental sulfur. Both bacteria require tungsten light for growth and can be co-cultured together if H{sub 2}S conversion is not complete (required concentration of at least 1 ppM), thereby presenting H{sub 2} uptake by Chlorobium thiosulfatophilum. COS degradation may be accomplished by utilizing various CO-utilizing bacteria or by indirectly converting COS to elemental sulfur after the COS first undergoes reaction to H{sub 2} in water. The second alternative is probably preferred due to the low expected concentration of COS relative to H{sub 2}S. Mass transfer and kinetic studies were carried out for the Rhodospirillum rubrum and Chlorobium thiosulfatophilum bacterial systems. Rhodospirillum rubrum is a photosynthetic anaerobic bacterium which catalyzes the biological water gas shift reaction: CO + H{sub 2}O {yields} CO{sub 2} + H{sub 2}. Chlorobium thiosulfatophilum is also a photosynthetic anaerobic bacteria, and converts H{sub 2}S and COS to elemental sulfur.

  2. Photosynthetic gene expression in higher plants.

    PubMed

    Berry, James O; Yerramsetty, Pradeep; Zielinski, Amy M; Mure, Christopher M

    2013-11-01

    Within the chloroplasts of higher plants and algae, photosynthesis converts light into biological energy, fueling the assimilation of atmospheric carbon dioxide into biologically useful molecules. Two major steps, photosynthetic electron transport and the Calvin-Benson cycle, require many gene products encoded from chloroplast as well as nuclear genomes. The expression of genes in both cellular compartments is highly dynamic and influenced by a diverse range of factors. Light is the primary environmental determinant of photosynthetic gene expression. Working through photoreceptors such as phytochrome, light regulates photosynthetic genes at transcriptional and posttranscriptional levels. Other processes that affect photosynthetic gene expression include photosynthetic activity, development, and biotic and abiotic stress. Anterograde (from nucleus to chloroplast) and retrograde (from chloroplast to nucleus) signaling insures the highly coordinated expression of the many photosynthetic genes between these different compartments. Anterograde signaling incorporates nuclear-encoded transcriptional and posttranscriptional regulators, such as sigma factors and RNA-binding proteins, respectively. Retrograde signaling utilizes photosynthetic processes such as photosynthetic electron transport and redox signaling to influence the expression of photosynthetic genes in the nucleus. The basic C3 photosynthetic pathway serves as the default form used by most of the plant species on earth. High temperature and water stress associated with arid environments have led to the development of specialized C4 and CAM photosynthesis, which evolved as modifications of the basic default expression program. The goal of this article is to explain and summarize the many gene expression and regulatory processes that work together to support photosynthetic function in plants.

  3. The genetic basis of anoxygenic photosynthetic arsenite oxidation

    USGS Publications Warehouse

    Hernandez-Maldonado, Jamie; Sanchez-Sedillo, Benjamin; Stoneburner, Brendon; Boren, Alison; Miller, Laurence G.; McCann, Shelley; Rosen, Michael R.; Oremland, Ronald S.; Saltikov, Chad W.

    2016-01-01

    “Photoarsenotrophy”, the use of arsenite as an electron donor for anoxygenic photosynthesis, is thought to be an ancient form of phototrophy along with the photosynthetic oxidation of Fe(II), H2S, H2, and NO2-. Photoarsenotrophy was recently identified from Paoha Island's (Mono Lake, CA) arsenic-rich hot springs. The genomes of several photoarsenotrophs revealed a gene cluster, arxB2AB1CD, where arxA is predicted to encode for the sole arsenite oxidase. The role of arxA in photosynthetic arsenite oxidation was confirmed by disrupting the gene in a representative photoarsenotrophic bacterium, resulting in the loss of light-dependent arsenite oxidation. In situ evidence of active photoarsenotrophic microbes was supported by arxA mRNA detection for the first time, in red-pigmented microbial mats within the hot springs of Paoha Island. This work expands on the genetics for photosynthesis coupled to new electron donors and elaborates on known mechanisms for arsenic metabolism, thereby highlighting the complexities of arsenic biogeochemical cycling.

  4. SANS Investigation of the Photosynthetic Machinery of Chloroflexus Aurantiacus

    SciTech Connect

    Tang, Kuo-Hsiang; Urban, Volker S; Jianzhong, Wen; Yueyong, Xin; Blankenship, Robert E

    2010-01-01

    Green photosynthetic bacteria harvest light and perform photosynthesis in low light environments, and contain specialized antenna complexes to adapt to this condition. In this report, we present studies using small-angle neutron scattering (SANS) to elucidate structural information about the photosynthetic apparatus, including the peripheral light harvesting chlorosome complex, the integral membrane light-harvesting B808-866 complex and the reaction center (RC) in the thermophilic green phototrophic bacterium Chloroflexus aurantiacus. Using contract variation in SANS measurments, our studies suggest that the B808-866 comples is wrapped around the RC in Cfx. aurantiacus, and the overall size and conformation for the B808-866 complex of Cfx. aurantiacus is roughly comparable to the LH1 antenna complex of the purple bacteria. A similar size for the isolated B808-866 complex is also suggested via dynamic light scattering measurements. Alos, a smaller size of the RC of Cfx. aurantiacus that the RC of the purple bacteria is observed. Further, our SANS measurements indicate that the chlorosome is a lipid body with rod-like shape, and that the self-assembly of bacteriochlorophylls, the major component of the chlorosome, is lipid-like. Finally, two populations of chlorosome particles are suggested in our SANS measurements.

  5. Genome sequence of aerobic anoxygenic phototrophic bacterium Erythrobacter sp. JL475, isolated from the South China Sea.

    PubMed

    Zheng, Qiang; Liu, Yanting; Sun, Jia; Jiao, Nianzhi

    2015-06-01

    Erythrobacter sp. JL475 is a bacteriochlorophyll a-containing aerobic anoxygenic photo-heterotrophic bacterium. Here, we report the draft genome sequence of Erythrobacter sp. JL475 isolated from the South China Sea. It comprises ~3.26Mbp in 7 contigs with the G+C content of 61.7%. A total of 3042 protein-coding genes were obtained, and one complete photosynthetic gene cluster (~38Kbp) was found.

  6. Melatonin immunoreactivity in the photosynthetic prokaryote Rhodospirillum rubrum: implications for an ancient antioxidant system.

    PubMed

    Manchester, L C; Poeggeler, B; Alvares, F L; Ogden, G B; Reiter, R J

    1995-01-01

    Rhodospirillum rubrum is a spiral anoxygenic photosynthetic bacterium that can exist under either aerobic or anaerobic conditions. The organism thrives in the presence of light or complete darkness and represents one of the oldest species of living organisms, possibly 2-3.5 billion years old. The success of this prokaryotic species may be attributed to the evolution of certain indole compounds that offer protection against life-threatening oxygen radicals produced by an evolutionary harsh environment. Melatonin, N-acetyl-5-methoxytryptamine, is an indolic highly conserved molecule that exists in protists, plants, and animals. This study was undertaken to determine the presence of an immunoreactive melatonin in the kingdom Monera and particularly in the photosynthetic bacterium, R. rubrum, under conditions of prolonged darkness or prolonged light. Immunoreactive melatonin was measured during both the extended day and extended night. Significantly more melatonin was observed during the scotophase than the photophase. This study marks the first demonstration of melatonin in a bacterium. The high level of melatonin observed in bacteria may provide on-site protection of bacterial DNA against free radical attack.

  7. Phytochromes in photosynthetically competent plants

    SciTech Connect

    Pratt, L.H.

    1990-07-01

    Plants utilize light as a source of information in photomorphogenesis and of free energy in photosynthesis, two processes that are interrelated in that the former serves to increase the efficiency with which plants can perform the latter. Only one pigment involved in photomorphogenesis has been identified unequivocally, namely phytochrome. The thrust of this proposal is to investigate this pigment and its mode(s) of action in photosynthetically competent plants. Our long term objective is to characterize phytochrome and its functions in photosynthetically competent plants from molecular, biochemical and cellular perspectives. It is anticipated that others will continue to contribute indirectly to these efforts at the physiological level. The ultimate goal will be to develop this information from a comparative perspective in order to learn whether the different phytochromes have significantly different physicochemical properties, whether they fulfill independent functions and if so what these different functions are, and how each of the different phytochromes acts at primary molecular and cellular levels.

  8. Synergistic Effect of Photosynthetic Bacteria and Isolated Bacteria in Their Antifungal Activities against Root Rot Fungi.

    PubMed

    Wei, Hongyi; Okunishi, Suguru; Yoshikawa, Takeshi; Kamei, Yuto; Dawwoda, Mahmoud A O; Santander-DE Leon, Sheila Mae S; Nuñal, Sharon Nonato; Maeda, Hiroto

    2016-01-01

    Antifungal bacteria (AB) in root rot fungus (RRF)-contaminated sweet potato farms were isolated, and seven strains were initially chosen as antagonistic candidates. An antagonistic test by using the mycelial disk placement method revealed that one AB strain by itself could inhibit the RRF growth. This AB strain was identified as Bacillus polyfermenticus based on phylogeny of 16S ribosomal RNA genes. Two AB strains (Bacillus aerophilus) displayed high levels of antifungal activity when paired with photosynthetic bacterial strain A (a purple nonsulfur photosynthetic bacterium Rhodopseudomonas faecalis). The results suggest the possible use of the isolates as agents for the biological control of the RRF infection of agricultural products in fields of cultivation. PMID:27667522

  9. Isolation, characterization, and primary structure of rubredoxin from the photosynthetic bacterium, Heliobacillus mobilis

    NASA Technical Reports Server (NTRS)

    Lee, W. Y.; Brune, D. C.; LoBrutto, R.; Blankenship, R. E.

    1995-01-01

    Rubredoxin is a small nonheme iron protein that serves as an electron carrier in bacterial systems. Rubredoxin has now been isolated and characterized from the strictly anaerobic phototroph, Heliobacillus mobilis. THe molecular mass (5671.3 Da from the amino acid sequence) was confirmed and partial formylation of the N-terminal methionyl residue was established by matrix-assisted laser desorption mass spectroscopy. The complete 52-amino-acid sequence was determined by a combination of N-terminal sequencing by Edman degradation and C-terminal sequencing by a novel method using carboxypeptidase treatment in conjunction with amino acid analysis and laser desorption time of flight mass spectrometry. The molar absorption coefficient of Hc. mobilis rubredoxin at 490 nm is 6.9 mM-1 cm-1 and the midpoint redox potential at pH 8.0 is -46 mV. The EPR spectrum of the oxidized form shows resonances at g = 9.66 and 4.30 due to a high-spin ferric iron. The amino acid sequence is homologous to those of rubredoxins from other species, in particular, the gram-positive bacteria, and the phototrophic green sulfur bacteria, and the evolutionary implications of this are discussed.

  10. Light-driven carbon dioxide reduction to methane by nitrogenase in a photosynthetic bacterium.

    PubMed

    Fixen, Kathryn R; Zheng, Yanning; Harris, Derek F; Shaw, Sudipta; Yang, Zhi-Yong; Dean, Dennis R; Seefeldt, Lance C; Harwood, Caroline S

    2016-09-01

    Nitrogenase is an ATP-requiring enzyme capable of carrying out multielectron reductions of inert molecules. A purified remodeled nitrogenase containing two amino acid substitutions near the site of its FeMo cofactor was recently described as having the capacity to reduce carbon dioxide (CO2) to methane (CH4). Here, we developed the anoxygenic phototroph, Rhodopseudomonas palustris, as a biocatalyst capable of light-driven CO2 reduction to CH4 in vivo using this remodeled nitrogenase. Conversion of CO2 to CH4 by R. palustris required constitutive expression of nitrogenase, which was achieved by using a variant of the transcription factor NifA that is able to activate expression of nitrogenase under all growth conditions. Also, light was required for generation of ATP by cyclic photophosphorylation. CH4 production by R. palustris could be controlled by manipulating the distribution of electrons and energy available to nitrogenase. This work shows the feasibility of using microbes to generate hydrocarbons from CO2 in one enzymatic step using light energy. PMID:27551090

  11. Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris

    SciTech Connect

    Larimer, Frank W; Chain, Patrick S. G.; Hauser, Loren John; Lamerdin, Jane; Malfatti, Stephanie; Do, Long; Land, Miriam L; Pelletier, Dale A; Beatty, Thomas; Lang, Andrew S.; Tabita, F Robert; Gibson, Janet L.; Hanson, Thomas E.; Bobst, Cedric; Torres y Torres, Janelle L.; Peres, Caroline; Harrison, Faith H.; Gibson, Jane; Harwood, Caroline S

    2004-01-01

    Rhodopseudomonas palustris is among the most metabolically versatile bacteria known. It uses light, inorganic compounds, or organic compounds, for energy. It acquires carbon from many types of green plant-derived compounds or by carbon dioxide fixation, and it fixes nitrogen. Here we describe the genome sequence of R. palustris, which consists of a 5,459,213-base-pair (bp) circular chromosome with 4,836 predicted genes and a plasmid of 8,427 bp. The sequence reveals genes that confer a remarkably large number of options within a given type of metabolism, including three nitrogenases, five benzene ring cleavage pathways and four light harvesting 2 systems. R. palustris encodes 63 signal transduction histidine kinases and 79 response regulator receiver domains. Almost 15% of the genome is devoted to transport. This genome sequence is a starting point to use R. palustris as a model to explore how organisms integrate metabolic modules in response to environmental perturbations.

  12. Regulation of synthesis of pyruvate carboxylase in the photosynthetic bacterium Rhodobacter capsulatus.

    PubMed Central

    Yakunin, A F; Hallenbeck, P C

    1997-01-01

    The synthesis of pyruvate carboxylase (PC) was studied by using quantitative immunoblot analysis with an antibody raised against PC purified from Rhodobacter capsulatus and was found to vary 20-fold depending on the growth conditions. The PC content was high in cells grown on pyruvate or on carbon substrates metabolized via pyruvate (lactate, D-malate, glucose, or fructose) and low in cells grown on tricarboxylic acid (TCA) cycle intermediates or substrates metabolized without intermediate formation of pyruvate (acetate or glutamate). Under dark aerobic growth conditions with lactate as a carbon source, the PC content was approximately twofold higher than that found under light anaerobic growth conditions. The results of incubation experiments demonstrate that PC synthesis is induced by pyruvate and repressed by TCA cycle intermediates, with negative control dominating over positive control. The content of PC in R. capsulatus cells was also directly related to the growth rate in continuous cultures. The analysis of intracellular levels of pyruvate and TCA cycle intermediates in cells grown under different conditions demonstrated that the content of PC is directly proportional to the ratio between pyruvate and C4 dicarboxylates. These results suggest that the regulation of PC synthesis by oxygen and its direct correlation with growth rate may reflect effects on the balance of intracellular pyruvate and C4 dicarboxylates. Thus, this important enzyme is potentially regulated both allosterically and at the level of synthesis. PMID:9045800

  13. Light-driven carbon dioxide reduction to methane by nitrogenase in a photosynthetic bacterium

    PubMed Central

    Fixen, Kathryn R.; Zheng, Yanning; Harris, Derek F.; Shaw, Sudipta; Yang, Zhi-Yong; Dean, Dennis R.; Seefeldt, Lance C.

    2016-01-01

    Nitrogenase is an ATP-requiring enzyme capable of carrying out multielectron reductions of inert molecules. A purified remodeled nitrogenase containing two amino acid substitutions near the site of its FeMo cofactor was recently described as having the capacity to reduce carbon dioxide (CO2) to methane (CH4). Here, we developed the anoxygenic phototroph, Rhodopseudomonas palustris, as a biocatalyst capable of light-driven CO2 reduction to CH4 in vivo using this remodeled nitrogenase. Conversion of CO2 to CH4 by R. palustris required constitutive expression of nitrogenase, which was achieved by using a variant of the transcription factor NifA that is able to activate expression of nitrogenase under all growth conditions. Also, light was required for generation of ATP by cyclic photophosphorylation. CH4 production by R. palustris could be controlled by manipulating the distribution of electrons and energy available to nitrogenase. This work shows the feasibility of using microbes to generate hydrocarbons from CO2 in one enzymatic step using light energy. PMID:27551090

  14. Reconstruction and analysis of genome-scale metabolic model of a photosynthetic bacterium

    PubMed Central

    2010-01-01

    Background Synechocystis sp. PCC6803 is a cyanobacterium considered as a candidate photo-biological production platform - an attractive cell factory capable of using CO2 and light as carbon and energy source, respectively. In order to enable efficient use of metabolic potential of Synechocystis sp. PCC6803, it is of importance to develop tools for uncovering stoichiometric and regulatory principles in the Synechocystis metabolic network. Results We report the most comprehensive metabolic model of Synechocystis sp. PCC6803 available, iSyn669, which includes 882 reactions, associated with 669 genes, and 790 metabolites. The model includes a detailed biomass equation which encompasses elementary building blocks that are needed for cell growth, as well as a detailed stoichiometric representation of photosynthesis. We demonstrate applicability of iSyn669 for stoichiometric analysis by simulating three physiologically relevant growth conditions of Synechocystis sp. PCC6803, and through in silico metabolic engineering simulations that allowed identification of a set of gene knock-out candidates towards enhanced succinate production. Gene essentiality and hydrogen production potential have also been assessed. Furthermore, iSyn669 was used as a transcriptomic data integration scaffold and thereby we found metabolic hot-spots around which gene regulation is dominant during light-shifting growth regimes. Conclusions iSyn669 provides a platform for facilitating the development of cyanobacteria as microbial cell factories. PMID:21083885

  15. [Photosynthetic characteristics of Gynostemma pentaphyllum under shade].

    PubMed

    Huang, Chenglin; Wu, Zemin; Yao, Yongkang; Xu, Xiaoniu

    2004-11-01

    The study showed that under summer shade condition, the diurnal variation of net photosynthetic rate of Gynostemma pentaphyllum presented nontypical double apex, the first apex being 13.8 micromol CO2 x m(-2) x s(-1) at 11:00, and the diurnal net photosynthetic rate was about 176.97 micromol CO2 x m(-2), 3.1 times of that under full sunlight. There was a positive correlation between net photosynthetic rate and photon flux density (PFD), and relative humidity had a small effect on net photosynthetic rate. Under full sunlight, the typical "midday depression" of photosynthesis was observed, and the diurnal variation of net photosynthetic rate presented double apex, with the first apex being 3.0 micromol CO2 x m(-2) x s(-1) at 10:00 and the second being 1.25 micromol CO2 x m(-2) x s(-1) at 14:00. There was a positive correlation between net photosynthetic rate and relative humidity, and the latter had a strong effect on net photosynthetic rate. When PFD was higher than 700 micromol CO2 x m(-2) x s(-1), it had a negative correlation with net photosynthetic rate. Stoma conductance was the main factor affecting the transpiration rate of Gynostemma pentaphyllum. Therefore, Gynostemma pentaphyllum was a typical sciophytic plant, and light factor should be considered firstly in its cultivation. PMID:15707321

  16. Structure and Excitation Transfer Pathways in the Chlorophyll-Carotenoid Aggregate of the Photosynthetic Unit of Purple Bacteria

    NASA Astrophysics Data System (ADS)

    Schulten, Klaus

    1998-03-01

    The absorption of light by light harvesting complexes and transfer of electronic excitation to the photosynthetic reaction center (RC) has been investigated on the basis of an atomic level model of the so-called photosynthetic unit of the photosynthetic bacterium Rb. sphaeroides. The photosynthetic unit combines in the intracytoplasmic membrane a nanometric (20-100 nm) assembly of three protein complexes: (i) the photosynthetic reaction center, (ii) a ring-shaped light harvesting complex LH-I, and (iii) multiple copies of a similar complex, LH-II. The unit has been modeled using the known structure of LH-II of Rs. molischianum. The lecture describes in detail the organization of chromophores involved in primary light absorption and excitation transfer: a hierarchy of ring-shaped chlorophyl aggregates with attached carotenoids. A quantum-mechanical description of the entire light harvesting process is developed employing electron structure calculations of individual and aggregated chlorophylls and carotenoids and associated effective Hamiltonian descriptions. The transfer times calculated, ranging between 100 fs and 100 ps for various processes, are found in close agreement with measured transfer rates. The results suggest that excitons are the key carriers of the excitation transfered. The photoprotection of chlorophylls by chlorophylls through triplet excitation transfer is also described.

  17. The death mechanism of the harmful algal bloom species Alexandrium tamarense induced by algicidal bacterium Deinococcus sp. Y35

    PubMed Central

    Li, Yi; Zhu, Hong; Lei, Xueqian; Zhang, Huajun; Cai, Guanjing; Chen, Zhangran; Fu, Lijun; Xu, Hong; Zheng, Tianling

    2015-01-01

    Harmful algal blooms (HABs) cause a variety of deleterious effects on aquatic ecosystems, especially the toxic dinoflagellate Alexandrium tamarense, which poses a serious threat to marine economic and human health based on releasing paralytic shellfish poison into the environment. The algicidal bacterium Deinococcus sp. Y35 which can induce growth inhibition on A. tamarense was used to investigate the functional mechanism. The growth status, reactive oxygen species (ROS) content, photosynthetic system and the nuclear system of algal cells were determined under algicidal activity. A culture of strain Y35 not only induced overproduction of ROS in algal cells within only 0.5 h of treatment, also decrease the total protein content as well as the response of the antioxidant enzyme. Meanwhile, lipid peroxidation was induced and cell membrane integrity was lost. Photosynthetic pigments including chlorophyll a and carotenoid decreased along with the photosynthetic efficiency being significantly inhibited. At the same time, photosynthesis-related gene expression showed down-regulation. More than, the destruction of cell nuclear structure and inhibition of proliferating cell nuclear antigen (PCNA) related gene expression were confirmed. The potential functional mechanism of the algicidal bacterium on A. tamarense was investigated and provided a novel viewpoint which could be used in HABs control. PMID:26441921

  18. The death mechanism of the harmful algal bloom species Alexandrium tamarense induced by algicidal bacterium Deinococcus sp. Y35.

    PubMed

    Li, Yi; Zhu, Hong; Lei, Xueqian; Zhang, Huajun; Cai, Guanjing; Chen, Zhangran; Fu, Lijun; Xu, Hong; Zheng, Tianling

    2015-01-01

    Harmful algal blooms (HABs) cause a variety of deleterious effects on aquatic ecosystems, especially the toxic dinoflagellate Alexandrium tamarense, which poses a serious threat to marine economic and human health based on releasing paralytic shellfish poison into the environment. The algicidal bacterium Deinococcus sp. Y35 which can induce growth inhibition on A. tamarense was used to investigate the functional mechanism. The growth status, reactive oxygen species (ROS) content, photosynthetic system and the nuclear system of algal cells were determined under algicidal activity. A culture of strain Y35 not only induced overproduction of ROS in algal cells within only 0.5 h of treatment, also decrease the total protein content as well as the response of the antioxidant enzyme. Meanwhile, lipid peroxidation was induced and cell membrane integrity was lost. Photosynthetic pigments including chlorophyll a and carotenoid decreased along with the photosynthetic efficiency being significantly inhibited. At the same time, photosynthesis-related gene expression showed down-regulation. More than, the destruction of cell nuclear structure and inhibition of proliferating cell nuclear antigen (PCNA) related gene expression were confirmed. The potential functional mechanism of the algicidal bacterium on A. tamarense was investigated and provided a novel viewpoint which could be used in HABs control. PMID:26441921

  19. The death mechanism of the harmful algal bloom species Alexandrium tamarense induced by algicidal bacterium Deinococcus sp. Y35.

    PubMed

    Li, Yi; Zhu, Hong; Lei, Xueqian; Zhang, Huajun; Cai, Guanjing; Chen, Zhangran; Fu, Lijun; Xu, Hong; Zheng, Tianling

    2015-01-01

    Harmful algal blooms (HABs) cause a variety of deleterious effects on aquatic ecosystems, especially the toxic dinoflagellate Alexandrium tamarense, which poses a serious threat to marine economic and human health based on releasing paralytic shellfish poison into the environment. The algicidal bacterium Deinococcus sp. Y35 which can induce growth inhibition on A. tamarense was used to investigate the functional mechanism. The growth status, reactive oxygen species (ROS) content, photosynthetic system and the nuclear system of algal cells were determined under algicidal activity. A culture of strain Y35 not only induced overproduction of ROS in algal cells within only 0.5 h of treatment, also decrease the total protein content as well as the response of the antioxidant enzyme. Meanwhile, lipid peroxidation was induced and cell membrane integrity was lost. Photosynthetic pigments including chlorophyll a and carotenoid decreased along with the photosynthetic efficiency being significantly inhibited. At the same time, photosynthesis-related gene expression showed down-regulation. More than, the destruction of cell nuclear structure and inhibition of proliferating cell nuclear antigen (PCNA) related gene expression were confirmed. The potential functional mechanism of the algicidal bacterium on A. tamarense was investigated and provided a novel viewpoint which could be used in HABs control.

  20. Genome Sequence of the Photoarsenotrophic Bacterium Ectothiorhodospira sp. Strain BSL-9, Isolated from a Hypersaline Alkaline Arsenic-Rich Extreme Environment

    PubMed Central

    Hernandez-Maldonado, Jaime; Stoneburner, Brendon; Boren, Alison; Miller, Laurence; Rosen, Michael; Oremland, Ronald S.

    2016-01-01

    The full genome sequence of Ectothiorhodospira sp. strain BSL-9 is reported here. This purple sulfur bacterium encodes an arxA-type arsenite oxidase within the arxB2AB1CD gene island and is capable of carrying out “photoarsenotrophy” anoxygenic photosynthetic arsenite oxidation. Its genome is composed of 3.5 Mb and has approximately 63% G+C content. PMID:27738045

  1. [Effects of light quality on photosynthetic pigment contents and photosynthetic characteristics of peanut seedling leaves].

    PubMed

    Yan, Meng-Meng; Wang, Ming-Lun; Wang, Hong-Bo; Wang, Yue-Fu; Zhao, Chang-Xing

    2014-02-01

    This study explored the effects of different light quality on photosynthetic pigment contents and photosynthetic characteristics of peanut (Qinhua 6) seedling leaves. The results showed that, compared with natural light, blue light (445-470 nm) could significantly improve the specific leaf area (SLA), chlorophyll a/b value and carotenoid content of peanut seedlings. Meanwhile, the net photosynthetic rate, stomatal conductance, and transpiration rate were higher, the intercellular CO2 content was lower, and the photosynthetic efficiency was improved significantly under blue light. Red light (610-660 nm) could improve the chlorophyll content significantly, and reduce SLA, chlorophyll a/b value and carotenoid content, with a lower photosynthetic efficiency than natural light. Green light (515-520 nm) and yellow light (590-595 nm) were not conducive to photosynthetic pigment accumulation of leaves, and significantly inhibited leaf photosynthesis of peanut seedlings.

  2. Genome sequence of Fulvimarina pelagi HTCC2506T, a Mn(II)-oxidizing alphaproteobacterium possessing an aerobic anoxygenic photosynthetic gene cluster and Xanthorhodopsin.

    PubMed

    Kang, Ilnam; Oh, Hyun-Myung; Lim, Seung-Il; Ferriera, Steve; Giovannoni, Stephen J; Cho, Jang-Cheon

    2010-09-01

    Fulvimarina pelagi is a Mn(II)-oxidizing marine heterotrophic bacterium in the order Rhizobiales. Here we announce the draft genome sequence of F. pelagi HTCC2506(T), which was isolated from the Sargasso Sea by using dilution-to-extinction culturing. The genome sequence contained a xanthorhodopsin gene as well as a photosynthetic gene cluster, which suggests the coexistence of two different phototrophic mechanisms in a single microorganism. PMID:20639329

  3. Phosphorylation stoichiometry determination in plant photosynthetic membranes.

    PubMed

    Ingelsson, Björn; Fristedt, Rikard; Turkina, Maria V

    2015-01-01

    This chapter describes different strategies for the study of phosphorylation dynamics and stoichiometry in photosynthetic membranes. Detailed procedures for the detection, large-scale identification, and quantification of phosphorylated proteins optimized for plant thylakoid proteins are given. PMID:25930698

  4. Regulation of Carotenoid Biosynthesis in Photosynthetic Organs.

    PubMed

    Llorente, Briardo

    2016-01-01

    A substantial proportion of the dazzling diversity of colors displayed by living organisms throughout the tree of life is determined by the presence of carotenoids, which most often provide distinctive yellow, orange and red hues. These metabolites play fundamental roles in nature that extend far beyond their importance as pigments. In photosynthetic lineages, carotenoids are essential to sustain life, since they have been exploited to maximize light harvesting and protect the photosynthetic machinery from photooxidative stress. Consequently, photosynthetic organisms have evolved several mechanisms that adjust the carotenoid metabolism to efficiently cope with constantly fluctuating light environments. This chapter will focus on the current knowledge concerning the regulation of the carotenoid biosynthetic pathway in leaves, which are the primary photosynthetic organs of most land plants. PMID:27485221

  5. Hybrid system of semiconductor and photosynthetic protein.

    PubMed

    Kim, Younghye; Shin, Seon Ae; Lee, Jaehun; Yang, Ki Dong; Nam, Ki Tae

    2014-08-29

    Photosynthetic protein has the potential to be a new attractive material for solar energy absorption and conversion. The development of semiconductor/photosynthetic protein hybrids is an example of recent progress toward efficient, clean and nanostructured photoelectric systems. In the review, two biohybrid systems interacting through different communicating methods are addressed: (1) a photosynthetic protein immobilized semiconductor electrode operating via electron transfer and (2) a hybrid of semiconductor quantum dots and photosynthetic protein operating via energy transfer. The proper selection of materials and functional and structural modification of the components and optimal conjugation between them are the main issues discussed in the review. In conclusion, we propose the direction of future biohybrid systems for solar energy conversion systems, optical biosensors and photoelectric devices.

  6. How to harvest solar energy with the photosynthetic reaction center

    NASA Astrophysics Data System (ADS)

    Balaeff, Alexander; Reyes, Justin

    Photosynthetic reaction center (PRC) is a protein complex that performs a key step in photosynthesis: the electron-hole separation driven by photon absorbtion. The PRC has a great promise for applications in solar energy harvesting and photosensing. Such applications, however, are hampered by the difficulty in extracting the photogenerated electric charge from the PRC. To that end, it was proposed to attach the PRC to a molecular wire through which the charge could be collected. In order to find the attachment point for the wire that would maximize the rate of charge outflow from the PRC, we performed a computational study of the PRC from the R. virdis bacterium. An ensemble of PRC structures generated by a molecular dynamics simulation was used to calculate the rate of charge transport from the site of initial charge separation to several trial sites on the protein surface. The Pathways model was used to calculate the charge transfer rate in each step of the network of heme co-factors through which the charge transport was presumed to proceed. A simple kinetic model was then used to determine the overall rate of the multistep charge transport. The calculations revealed several candidate sites for the molecular wire attachment, recommended for experimental verification.

  7. [Protein fluorescence of photosynthetic reaction centers from Rhodopseudomonas sphaeroides].

    PubMed

    Zakharova, N I; Permiakov, E A; Fabian, M; Kononenko, A A; Chamorovskiĭ, S K

    1984-01-01

    Luminescence emitted by tryptophan residues of reaction center (RC) preparations was studied. The RG preparations were isolated from the photosynthetic bacterium Rhodopseudomonas sphaeroides by treatment with lauryl dimethyl amine oxide (LDAO). After excitation at lambda 280 nm the quantum yield of luminescence is 0,02. It is shown that 60% of tryptophanyls are located inside the protein globule in the surrounding of relaxating polar groups and the rest approximately 40% on the outer surface of the globule--predominantly in the positively charged region of the LDAO-RC protein--in the surrounding of protein-bound water molecules. There is a correlation between the pH dependencies of the position of the peak of luminescence from tryptophanyls and effectivity of electron transfer from the primary (quinone) to secondary acceptor. The two parameters are invariant at pH from 7 to 9 and vary at pH less than 7 and pH greater than 9. The phenomena responsible for the observed correlation are discussed on the basis of pH-dependent changes in the RC protein which govern electron transport activity at the reaction center.

  8. Functional and structural analysis of the photosynthetic apparatus of Rhodobacter veldkampii.

    PubMed

    Gubellini, Francesca; Francia, Francesco; Busselez, Johan; Venturoli, Giovanni; Lévy, Daniel

    2006-09-01

    In the widely studied purple bacterium Rhodobacter sphaeroides, a small transmembrane protein, named PufX, is required for photosynthetic growth and is involved in the supramolecular dimeric organization of the core complex. We performed a structural and functional analysis of the photosynthetic apparatus of Rhodobacter veldkampii, a related species which evolved independently. Time-resolved optical spectroscopy of R. veldkampii chromatophores showed that the reaction center shares with R. sphaeroides spectral and redox properties and interacts with a cytochrome bc(1) complex through a Q-cycle mechanism. Kinetic analysis of flash-induced cytochrome b(561) reduction indicated a fast delivery of the reduced quinol produced by the reaction center to the cytochrome bc(1) complex. A core complex, along with two light-harvesting LH2 complexes significantly different in size, was purified and analyzed by sedimentation, size exclusion chromatography, mass spectroscopy, and electron microscopy. A PufX subunit identified by MALDI-TOF was found to be associated with the core complex. However, as shown by sedimentation and single-particle analysis by electron microscopy, the core complex is monomeric, suggesting that in R. veldkampii, PufX is involved in the photosynthetic growth but is unable to induce the dimerization of the core complex.

  9. Photosynthetic electron transfer from reaction center pigment-protein complex in silica nanopores.

    PubMed

    Oda, Ippei; Iwaki, Masayo; Fujita, Daiju; Tsutsui, Yasutaka; Ishizaka, Souji; Dewa, Makiko; Nango, Mamoru; Kajino, Tsutomu; Fukushima, Yoshiaki; Itoh, Shigeru

    2010-08-17

    A photosynthetic reaction center (RC) pigment-protein complex purified from a thermophilic purple photosynthetic bacterium, Thermochromatium tepidum, was adsorbed to a folded-sheet silica mesoporous material (FSM). The RC has a molecular structure with a 7.0 x 5.0 x 13 nm diameter. The amount of RC adsorbed to the FSM compound with an average internal pore diameter of 7.9 nm (FSM(7.9)) was high at 0.29 gRC/gFSM, while that to the FSM(2.7) (2.7 nm diameter) was low at 0.02 gRC/gFSM, suggesting the specific binding of the RC into the 7.9 nm pores of FSM(7.9). An N(2)-adsorption isotherm study indicated the incorporation of the RC into the 7.9 nm pores. The RC inside FSM(7.9) showed absorption spectra in the visible and infrared regions similar to those of the RC in solution, indicating almost no structural changes induced by the adsorption. The RC-FSM(7.9) conjugate showed the high photochemical activity with the increased thermal stability up to 50 degrees C in the measurements by laser spectroscopy. The conjugates rapidly provided electrons to a dye in the outer medium or showed electric current on the ITO electrode upon the illumination. The RC-FSM conjugate will be useful for the construction of artificial photosynthetic systems and new photodevices. PMID:20695584

  10. Picosecond fluorescence of simple photosynthetic membranes: Evidence of spectral inhomogeneity and directed energy transfer

    NASA Astrophysics Data System (ADS)

    Pullerits, Tōnu; Freiberg, Arvi

    1991-01-01

    The picosecond time-domain singlet excitation transfer and trapping kinetics in photosynthetic membranes in case of low excitation intensities is studied by numerical integration of the appropriate master equation. The essential features of our two-dimensional-lattice random walk model are spectral heterogeneity of the light-harvesting antenna, inclusion of temperature effects, nonabsolute excitation trap, correlation between spectral and spatial parameters. A reasonably good agreement between theoretical and experimental fluorescence decay kinetics for purple photosynthetic bacterium Rhodospirillum rubrum is achieved only by assuming relatively large spectral inhomogeneity. From this comparison the average excitation lifetime on the lattice site is estimated to be 5-8 ps at the effective nearest neighbour lattice distance of 32 Å. If the model is correct, the relatively slow hopping rate determines that excitation transfer and trapping in R. rubrum at active photosynthesis conditions is a diffusion-limited process. The invariably present spectral disorder of photosynthetic systems promoting directed energy transfer serves for higher light-utilizing efficiency.

  11. Process for photosynthetically splitting water

    SciTech Connect

    Greenbaum, E.

    1982-01-28

    In one form of the invention, hydrogen is produced by providing a reactor containing a body of water. The water contains photolytic material, i.e., photoactive material containing a hydrogen-catalyst. The interior of the reactor is isolated from atmosphere and includes a volume for receiving gases evolved from the body of water. The photolytic material is exposed to light to effect photosynthetic splitting of the water into gaseous hydrogen and oxygen. The gas-receiving volume is continuously evacuated by pumping to promote evolution of gaseous hydrogen and oxygen into that volume and to withdraw them therefrom. In another form of the invention, separation of the hydrogen and oxygen is effected by selectively diffusing the hydrogen through a heated semipermeable membrane in a separation zone while maintaining across the zone a magnetic field gradient biasing the oxygen away from the membrane. In a third form of the invention, the withdrawn gas is contacted with a membrane blocking flow of water vapor to the region for effecting recovery of the hydrogen. In a fourth embodiment, the invention comprises a process for selectively recovering hydrogen from a gas mixture comprising hydrogen and oxygen. The process is conducted in a separation zone and comprises contacting the mixture with a semipermeable membrane effecting selective diffusion of hydrogen while maintaining across the zone a magnetic field gradient effecting movement of oxygen in a direction away from the membrane.

  12. Photosynthetic reaction center complexes from heliobacteria

    NASA Technical Reports Server (NTRS)

    Trost, J. T.; Vermaas, W. F. J.; Blankenship, R. E.

    1991-01-01

    Photosynthetic reaction centers are pigment-protein complexes that are responsible for the transduction of light energy into chemical energy. Considerable evidence indicates that photosynthetic organisms were present very early in the evolution of life on Earth. The goal of this project is to understand the early evolutionary development of photosynthesis by examining the properties of reaction centers isolated from certain contemporary organisms that appear to contain the simplest photosynthetic reaction centers. The major focus is on the family of newly discovered strictly anaerobic photosynthetic organisms that are grouped with the gram-positive phylum of bacteria. The properties of these reactions centers suggest that they may be the descendants of an ancestor that also gave rise to Photosystem 1 found in oxygen-evolving photosynthetic organisms. Photoactive reaction center-core antenna complexes were isolated from the photosynthetic bacteria, Heliobacillus mobilis and Heliobacterium gestii, by extraction of membranes with Deriphat 160C followed by differential centrifugation and sucrose density gradient centrifugation. Other aspects of this investigation are briefly discussed.

  13. Effect of light intensity on the formation of the photochemical apparatus in the green bacterium Chloropseudomonas ethylicum.

    PubMed

    Holt, S C; Conti, S F; Fuller, R C

    1966-01-01

    Holt, Stanley C. (Dartmouth Medical School, Hanover, N.H.), S. F. Conti, and R. C. Fuller. Effect of light intensity on the formation of the photochemical apparatus in the green bacterium Chloropseudomonas ethylicum. J. Bacteriol. 91:349-355. 1966.-When the green bacterium Chloropseudomonas ethylicum was grown at various light intensities, the formation of the photosynthetic vesicles was found to be an inverse function of the light intensity at which the cells were grown. The specific chlorophyll content of isolated vesicles varied as the light intensity was changed over a wide range. Thus, the regulation of chlorophyll content in C. ethylicum in response to a change in light intensity is achieved both by a change in the number of vesicles that are formed and by a change in the specific chlorophyll content of these vesicles.

  14. Relevance of the photosynthetic reaction center from purple bacteria to the structure of photosystem II

    SciTech Connect

    Michel, H.; Deisenhofer, J.

    1988-01-12

    Photosynthetic organisms are able to oxidize organic or inorganic compounds upon the absorption of light, and they use the extracted electron for the fixation of carbon dioxide. The most important oxidation product is oxygen due to the splitting of water. In eukaryotes these processes occur in photosystem II of chloroplasts. Among prokaryotes photosynthetic oxygen evolution is restricted to cyanobacteria and prochloron-type organisms. How water is split in the oxygen-evolving complex of photosystem II belongs to the most important question to be answered. The primary charge separation occurs in the reaction center of photosystem II. This reaction center is a complex consisting of peripheral and integral membrane proteins, several chlorophyll A molecules, two pheophytin A molecules, two and three plastoquinone molecules, and one non-heme iron atom. The location of the photosystem II reaction center is still a matter of debate. Nakatani et al. (l984) concluded from fluorescence measurements that a protein of apparent molecular weight 47,000 (CP47) is the apoprotein of the photosystem II reaction center. A different view emerged from work with the photosynthetic reaction centers from the purple bacteria. The amino acid sequence of the M subunit of the reaction center from Phodopseudomonas (Rps.) sphaeroides has sequence homologies with the D1 protein from spinach. A substantial amount of structural information can be obtained with the reaction center from Rhodopseudomonas viridis, which can be crystallized. Here the authors discuss the structure of the photosynthetic reaction center from the purple bacterium Rps. viridis and describe the role of those amino acids that are conserved between the bacterial and photosystem II reaction center.

  15. Regulation of Photosynthetic Electron Transport and Photoinhibition

    PubMed Central

    Roach, Thomas; Krieger-Liszkay, Anja Krieger

    2014-01-01

    Photosynthetic organisms and isolated photosystems are of interest for technical applications. In nature, photosynthetic electron transport has to work efficiently in contrasting environments such as shade and full sunlight at noon. Photosynthetic electron transport is regulated on many levels, starting with the energy transfer processes in antenna and ending with how reducing power is ultimately partitioned. This review starts by explaining how light energy can be dissipated or distributed by the various mechanisms of non-photochemical quenching, including thermal dissipation and state transitions, and how these processes influence photoinhibition of photosystem II (PSII). Furthermore, we will highlight the importance of the various alternative electron transport pathways, including the use of oxygen as the terminal electron acceptor and cyclic flow around photosystem I (PSI), the latter which seem particularly relevant to preventing photoinhibition of photosystem I. The control of excitation pressure in combination with the partitioning of reducing power influences the light-dependent formation of reactive oxygen species in PSII and in PSI, which may be a very important consideration to any artificial photosynthetic system or technical device using photosynthetic organisms. PMID:24678670

  16. Oxygen concentration inside a functioning photosynthetic cell.

    PubMed

    Kihara, Shigeharu; Hartzler, Daniel A; Savikhin, Sergei

    2014-05-01

    The excess oxygen concentration in the photosynthetic membranes of functioning oxygenic photosynthetic cells was estimated using classical diffusion theory combined with experimental data on oxygen production rates of cyanobacterial cells. The excess oxygen concentration within the plesiomorphic cyanobacterium Gloeobactor violaceus is only 0.025 μM, or four orders of magnitude lower than the oxygen concentration in air-saturated water. Such a low concentration suggests that the first oxygenic photosynthetic bacteria in solitary form could have evolved ∼2.8 billion years ago without special mechanisms to protect them against reactive oxygen species. These mechanisms instead could have been developed during the following ∼500 million years while the oxygen level in the Earth's atmosphere was slowly rising. Excess oxygen concentrations within individual cells of the apomorphic cyanobacteria Synechocystis and Synechococcus are 0.064 and 0.25 μM, respectively. These numbers suggest that intramembrane and intracellular proteins in isolated oxygenic photosynthetic cells are not subjected to excessively high oxygen levels. The situation is different for closely packed colonies of photosynthetic cells. Calculations show that the excess concentration within colonies that are ∼40 μm or larger in diameter can be comparable to the oxygen concentration in air-saturated water, suggesting that species forming colonies require protection against reactive oxygen species even in the absence of oxygen in the surrounding atmosphere.

  17. Photosynthetic reaction center complexes from heliobacteria

    NASA Technical Reports Server (NTRS)

    Trost, J. T.; Vermaas, W. F. J.; Blankenship, R. E.

    1991-01-01

    The goal of this project is to understand the early evolutionary development of photosynthesis by examining the properties of reaction centers isolated from certain contemporary organisms that appear to contain the simplest photosynthetic reaction centers. The major focus of this project is the family of newly discovered strictly anaerobic photosynthetic organisms known as Heliobacteria. These organisms are the only known photosynthetic organisms that are grouped with the gram-positive phylum of bacteria. The properties of these reaction centers suggest that they might be the decendants of an ancestor that also gave rise to Photosystem 1 found in oxygen-evolving photosynthetic organisms. Photoactive reaction center-core antenna complexes have been isolated from the photosynthetic bacteria Heliobacillus mobilis and Heliobacterium gestii. The absorption and fluorescence properties of membranes and reaction centers are almost identical, suggesting that a single pigment-protein complex serves as both antenna and reaction center. Experiments in progress include sequence determination of the 48,000 Mr reaction center protein, and evolutionary comparisons with other reaction center proteins.

  18. BOREAS TE-10 Photosynthetic Response Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Papagno, Andrea (Editor); Middleton, Elizabeth; Sullivan, Joseph

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-10 (Terrestrial Ecology) team collected several data sets in support of its efforts to characterize and interpret information on the gas exchange, reflectance, transmittance, chlorophyll content, carbon content, hydrogen content, nitrogen content, and photosynthetic response of boreal vegetation. This data set contains measurements of quantitative parameters and leaf photosynthetic response to increases in light conducted in the SSA during the growing seasons of 1994 and 1996 using an oxygen electrode system. Leaf photosynthetic responses were not collected in 1996. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  19. Photosynthetic complex stoichiometry dynamics in higher plants: environmental acclimation and photosynthetic flux control

    PubMed Central

    Schöttler, Mark A.; Tóth, Szilvia Z.

    2014-01-01

    The composition of the photosynthetic apparatus of higher plants is dynamically adjusted to long-term changes in environmental conditions such as growth light intensity and light quality, and to changing metabolic demands for ATP and NADPH imposed by stresses and leaf aging. By changing photosynthetic complex stoichiometry, a long-term imbalance between the photosynthetic production of ATP and NADPH and their metabolic consumption is avoided, and cytotoxic side reactions are minimized. Otherwise, an excess capacity of the light reactions, relative to the demands of primary metabolism, could result in a disturbance of cellular redox homeostasis and an increased production of reactive oxygen species, leading to the destruction of the photosynthetic apparatus and the initiation of cell death programs. In this review, changes of the abundances of the different constituents of the photosynthetic apparatus in response to environmental conditions and during leaf ontogenesis are summarized. The contributions of the different photosynthetic complexes to photosynthetic flux control and the regulation of electron transport are discussed. PMID:24860580

  20. Factors Determining Annual Changes in Bacterial Photosynthetic Pigments in Holomictic Lake Cisó, Spain

    PubMed Central

    Pedrós-Alió, Carlos; Montesinos, Emilio; Guerrero, Ricardo

    1983-01-01

    The pigments and biomass of anoxygenic phototrophic bacteria were measured during a year cycle in Lake Cisó (Girona, Spain). Two genera, Chromatium and Chlorobium, accounted for most of the bacterial population. The bacteria were present throughout the year despite complete mixing of the lake during fall and winter. This was possible because the sulfide production in the sediment was high enough to make the lake anaerobic to the very surface. Solar radiation, temperature, and biomass of Chromatium sp. were found to be important in determining pigment concentrations by correlation analysis. Sulfide concentration and biomass of Chlorobium spp. were found to be unimportant. A path analysis was performed to determine what percentage of the variability of pigments could be explained by the variables studied. Since a high percentage could be explained, it was possible to conclude that solar radiation, temperature, and biomass of Chromatium sp. were the main variables. PMID:16346436

  1. Enhanced practical photosynthetic CO2 mitigation

    DOEpatents

    Bayless, David J.; Vis-Chiasson, Morgan L.; Kremer, Gregory G.

    2003-12-23

    This process is unique in photosynthetic carbon sequestration. An on-site biological sequestration system directly decreases the concentration of carbon-containing compounds in the emissions of fossil generation units. In this process, photosynthetic microbes are attached to a growth surface arranged in a containment chamber that is lit by solar photons. A harvesting system ensures maximum organism growth and rate of CO.sub.2 uptake. Soluble carbon and nitrogen concentrations delivered to the cyanobacteria are enhanced, further increasing growth rate and carbon utilization.

  2. Design criteria for optimal photosynthetic energy conversion

    NASA Astrophysics Data System (ADS)

    Fingerhut, Benjamin P.; Zinth, Wolfgang; de Vivie-Riedle, Regina

    2008-12-01

    Photochemical solar energy conversion is considered as an alternative of clean energy. For future light converting nano-machines photosynthetic reaction centers are used as prototypes optimized during evolution. We introduce a reaction scheme for global optimization and simulate the ultrafast charge separation in photochemical energy conversion. Multiple molecular charge carriers are involved in this process and are linked by Marcus-type electron transfer. In combination with evolutionary algorithms, we unravel the biological strategies for high quantum efficiency in photosynthetic reaction centers and extend these concepts to the design of artificial photochemical devices for energy conversion.

  3. Photoproduction of hydrogen by membranes of green photosynthetic bacteria

    SciTech Connect

    Bernstein, J D; Olson, J M

    1980-01-01

    Photoproduction of H/sub 2/ from ascorbate by unit-membrane vesicles from Chlorobium limicola f. thiosulfatophilum was achieved with a system containing gramicidin D, tetramethyl-p-phenylenediamine, methyl viologen, dithioerythritol, Clostridium hydrogenase, and an oxygen-scavenging mixture of glucose, glucose oxidase, ethanol, and catalase. Maximum quantum yield was less than one percent. Half maximum rate of H/sub 2/ production occurred at a white-light intensity of approximately 0.15 cm/sup -2/. The reaction was inhibited completely by 0.3% sodium dodecylbenzene sulfonate, 1% Triton X-100, or preheating the vesicles at 100/sup 0/C for 5 minutes. Low concentrations (0.01 and 0.05%) of Triton X-100 about doubled the reaction rate.

  4. Molecular Factors Controlling Photosynthetic Light-Harvesting by Carotenoids

    PubMed Central

    Polívka, Tomáš; Frank, Harry A.

    2010-01-01

    Carotenoids are naturally-occurring pigments that absorb light in the spectral region in which the sun irradiates maximally. These molecules transfer this energy to chlorophylls, initiating the primary photochemical events of photosynthesis. Carotenoids also regulate the flow of energy within the photosynthetic apparatus and protect it from photo-induced damage caused by excess light absorption. To carry out these functions in nature, carotenoids are bound in discrete pigment-protein complexes in close proximity to chlorophylls. A few 3D structures of these carotenoid complexes have been determined by X-ray crystallography. Thus, the stage is set for attempting to correlate the structural information with the spectroscopic properties of carotenoids to understand the molecular mechanism(s) of their function in photosynthetic systems. In this Account, we summarize current spectroscopic data describing the excited state energies and ultrafast dynamics of purified carotenoids in solution and bound in light-harvesting complexes from purple bacteria, marine algae, and green plants. Many of these complexes can be modified using mutagenesis or pigment exchange which facilitates making the correlations between structure and function. We describe the structural and electronic factors controlling the function of carotenoids as energy donors. We also discuss unresolved issues related to the nature of spectroscopically dark excited states, which could play a role in light-harvesting. To illustrate the interplay between structural determinations and spectroscopic investigations that exemplifies work in the field, we describe the spectroscopic properties of four light-harvesting complexes whose structures have been determined to atomic resolution. The first, the LH2 complex from the purple bacterium Rhodopseudomonas acidophila, contains the carotenoid, rhodopin glucoside. The second is the LHCII trimeric complex from higher plants which uses the carotenoids, lutein, neoxanthin

  5. Coral bleaching independent of photosynthetic activity.

    PubMed

    Tolleter, Dimitri; Seneca, François O; DeNofrio, Jan C; Krediet, Cory J; Palumbi, Stephen R; Pringle, John R; Grossman, Arthur R

    2013-09-23

    The global decline of reef-building corals is due in part to the loss of algal symbionts, or "bleaching," during the increasingly frequent periods of high seawater temperatures. During bleaching, endosymbiotic dinoflagellate algae (Symbiodinium spp.) either are lost from the animal tissue or lose their photosynthetic pigments, resulting in host mortality if the Symbiodinium populations fail to recover. The >1,000 studies of the causes of heat-induced bleaching have focused overwhelmingly on the consequences of damage to algal photosynthetic processes, and the prevailing model for bleaching invokes a light-dependent generation of toxic reactive oxygen species (ROS) by heat-damaged chloroplasts as the primary trigger. However, the precise mechanisms of bleaching remain unknown, and there is evidence for involvement of multiple cellular processes. In this study, we asked the simple question of whether bleaching can be triggered by heat in the dark, in the absence of photosynthetically derived ROS. We used both the sea anemone model system Aiptasia and several species of reef-building corals to demonstrate that symbiont loss can occur rapidly during heat stress in complete darkness. Furthermore, we observed damage to the photosynthetic apparatus under these conditions in both Aiptasia endosymbionts and cultured Symbiodinium. These results do not directly contradict the view that light-stimulated ROS production is important in bleaching, but they do show that there must be another pathway leading to bleaching. Elucidation of this pathway should help to clarify bleaching mechanisms under the more usual conditions of heat stress in the light.

  6. Enhanced Practical Photosynthetic CO2 Mitigation

    SciTech Connect

    Gregory Kremer; David J. Bayless; Morgan Vis; Michael Prudich; Keith Cooksey; Jeff Muhs

    2004-07-15

    This report highlights significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation Project for the period ending 06/30/2004. The major accomplishment was the modification of the header and harvesting work, with a system designed to distribute algae at startup, sustain operations and harvest in one unit.

  7. Longitudinal photosynthetic gradient in crust lichens' thalli.

    PubMed

    Wu, Li; Zhang, Gaoke; Lan, Shubin; Zhang, Delu; Hu, Chunxiang

    2014-05-01

    In order to evaluate the self-shading protection for inner photobionts, the photosynthetic activities of three crust lichens were detected using Microscope-Imaging-PAM. The false color images showed that longitudinal photosynthetic gradient was found in both the green algal lichen Placidium sp. and the cyanolichen Peltula sp. In longitudinal direction, all the four chlorophyll fluorescence parameters Fv/Fm, Yield, qP, and rETR gradually decreased with depth in the thalli of both of these two lichens. In Placidium sp., qN values decreased with depth, whereas an opposite trend was found in Peltula sp. However, no such photosynthetic heterogeneity was found in the thalli of Collema sp. in longitudinal direction. Microscope observation showed that photobiont cells are compactly arranged in Placidium sp. and Peltula sp. while loosely distributed in Collema sp. It was considered that the longitudinal photosynthetic heterogeneity was ascribed to the result of gradual decrease of incidence caused by the compact arrangement of photobiont cells in the thalli. The results indicate a good protection from the self-shading for the inner photobionts against high radiation in crust lichens.

  8. Photosynthetic strategies of two Mojave Desert shrubs

    SciTech Connect

    Kleinkopf, G.E.; Hartsock, T.L.; Wallace, A.; Romney, E.M.

    1980-01-01

    Photosynthetic production of two Mojave Desert shrubs was measured under natural growing conditions. Measurements of photosynthesis, transpiration, resistances to water vapor flux, soil moisture potential, and tissue water potential were made. Atriplex canescens (Pursh) Nutt., a member of the C/sub 4/ biochemical carbon dioxide fixation group was highly competitive in growth rate and production during conditions of adequate soil moisture. As soil moisture conditions declined to minus 40 bars, the net photosynthetic rate of Atriplex decreased to zero. However, the C/sub 3/ shrub species Larrea tridentata (Sesse and Moc. ex DC.) Cov. was able to maintain positive net photosynthetic production during conditions of high temperature and extreme low soil moisture through the major part of the season. The comparative advantages of the C/sub 4/ versus the C/sub 3/ pathway of carbon fixation was lost between these two species as the soil moisture potential declined to minus 40 bars. Desert plants have diffferent strategies for survival, one of the strategies being the C/sub 4/ biochemical carbon fixation pathway. However, many of the plants are members of the C/sub 3/ group. In this instance, the C/sub 4/ fixation pathway does not confer an added advantage to the productivity of the species in the Mojave Desert. Species distribution based on comparative photosynthetic production is discussed

  9. On the evolution of the photosynthetic pigments.

    PubMed

    Evstigneev, V B

    1975-07-01

    During the course of terrestrial evolution, some organisms developed the capability of capturing and utilizing solar radiation. Colored compounds were undoubtedly incorporated within living forms from the earliest times, but during the transition from heterotrophic to a photoautotrophic metabolism only those pigments were selected that were components of the evolving photosynthetic apparatus and were able to catalyze reactions involving storage of light energy in chemical bonds. In this communication, some properties of tetrapyrroles with a closed porphyrin ring containing a metal ion in the center are discussed. These compounds are present in all principal contemporary photosynthetic pigments, and their synthesis has been demonstrated from simpler compounds under prebiotic conditions. It is probable that during intermediate stages in the evolution of photosynthesis, pigments with oxidizing potentials lower than that of chlorophyll were utilized to store light energy although they were not capable of removing electrons from water. The evolution and function of multiple forms of a given photosynthetic pigment in vivo are discussed. 'Accessory' pigments may be regarded as rudiments of the evolutionary development of the photosynthetic apparatus.

  10. Hydrogen metabolism of photosynthetic bacteria and algae

    SciTech Connect

    Kumazawa, S.; Mitsui, A.

    1982-01-01

    The metabolism, metabolic pathways and biochemistry of hydrogen in photosynthetic bacteria and algae are reviewed. Detailed information on the occurrence and measurement of hydrogenase activity is presented. Hydrogen production rates for different species of algae and bacteria are presented. 173 references, 1 figure, 7 tables.

  11. Novel Waddlia Intracellular Bacterium in Artibeus intermedius Fruit Bats, Mexico

    PubMed Central

    Pierlé, Sebastián Aguilar; Morales, Cirani Obregón; Martínez, Leonardo Perea; Ceballos, Nidia Aréchiga; Rivero, Juan José Pérez; Díaz, Osvaldo López; Brayton, Kelly A.

    2015-01-01

    An intracellular bacterium was isolated from fruit bats (Artibeus intermedius) in Cocoyoc, Mexico. The bacterium caused severe lesions in the lungs and spleens of bats and intracytoplasmic vacuoles in cell cultures. Sequence analyses showed it is related to Waddlia spp. (order Chlamydiales). We propose to call this bacterium Waddlia cocoyoc. PMID:26583968

  12. Novel Waddlia Intracellular Bacterium in Artibeus intermedius Fruit Bats, Mexico.

    PubMed

    Pierlé, Sebastián Aguilar; Morales, Cirani Obregón; Martínez, Leonardo Perea; Ceballos, Nidia Aréchiga; Rivero, Juan José Pérez; Díaz, Osvaldo López; Brayton, Kelly A; Setién, Alvaro Aguilar

    2015-12-01

    An intracellular bacterium was isolated from fruit bats (Artibeus intermedius) in Cocoyoc, Mexico. The bacterium caused severe lesions in the lungs and spleens of bats and intracytoplasmic vacuoles in cell cultures. Sequence analyses showed it is related to Waddlia spp. (order Chlamydiales). We propose to call this bacterium Waddlia cocoyoc.

  13. Comparative analysis of plastid genomes of non-photosynthetic Ericaceae and their photosynthetic relatives.

    PubMed

    Logacheva, Maria D; Schelkunov, Mikhail I; Shtratnikova, Victoria Y; Matveeva, Maria V; Penin, Aleksey A

    2016-07-25

    Although plastid genomes of flowering plants are typically highly conserved regarding their size, gene content and order, there are some exceptions. Ericaceae, a large and diverse family of flowering plants, warrants special attention within the context of plastid genome evolution because it includes both non-photosynthetic and photosynthetic species with rearranged plastomes and putative losses of "essential" genes. We characterized plastid genomes of three species of Ericaceae, non-photosynthetic Monotropa uniflora and Hypopitys monotropa and photosynthetic Pyrola rotundifolia, using high-throughput sequencing. As expected for non-photosynthetic plants, M. uniflora and H. monotropa have small plastid genomes (46 kb and 35 kb, respectively) lacking genes related to photosynthesis, whereas P. rotundifolia has a larger genome (169 kb) with a gene set similar to other photosynthetic plants. The examined genomes contain an unusually high number of repeats and translocations. Comparative analysis of the expanded set of Ericaceae plastomes suggests that the genes clpP and accD that are present in the plastid genomes of almost all plants have not been lost in this family (as was previously thought) but rather persist in these genomes in unusual forms. Also we found a new gene in P. rotundifolia that emerged as a result of duplication of rps4 gene.

  14. Characterisation of antioxidants in photosynthetic and non-photosynthetic leaf tissues of variegated Pelargonium zonale plants.

    PubMed

    Vidović, M; Morina, F; Milić-Komić, S; Vuleta, A; Zechmann, B; Prokić, Lj; Veljović Jovanović, S

    2016-07-01

    Hydrogen peroxide is an important signalling molecule, involved in regulation of numerous metabolic processes in plants. The most important sources of H2 O2 in photosynthetically active cells are chloroplasts and peroxisomes. Here we employed variegated Pelargonium zonale to characterise and compare enzymatic and non-enzymatic components of the antioxidative system in autotrophic and heterotrophic leaf tissues at (sub)cellular level under optimal growth conditions. The results revealed that both leaf tissues had specific strategies to regulate H2 O2 levels. In photosynthetic cells, the redox regulatory system was based on ascorbate, and on the activities of thylakoid-bound ascorbate peroxidase (tAPX) and catalase. In this leaf tissue, ascorbate was predominantly localised in the nucleus, peroxisomes, plastids and mitochondria. On the other hand, non-photosynthetic cells contained higher glutathione content, mostly located in mitochondria. The enzymatic antioxidative system in non-photosynthetic cells relied on the ascorbate-glutathione cycle and both Mn and Cu/Zn superoxide dismutase. Interestingly, higher content of ascorbate and glutathione, and higher activities of APX in the cytosol of non-photosynthetic leaf cells compared to the photosynthetic ones, suggest the importance of this compartment in H2 O2 regulation. Together, these results imply different regulation of processes linked with H2 O2 signalling at subcellular level. Thus, we propose green-white variegated leaves as an excellent system for examination of redox signal transduction and redox communication between two cell types, autotrophic and heterotrophic, within the same organ.

  15. Comparative analysis of plastid genomes of non-photosynthetic Ericaceae and their photosynthetic relatives.

    PubMed

    Logacheva, Maria D; Schelkunov, Mikhail I; Shtratnikova, Victoria Y; Matveeva, Maria V; Penin, Aleksey A

    2016-01-01

    Although plastid genomes of flowering plants are typically highly conserved regarding their size, gene content and order, there are some exceptions. Ericaceae, a large and diverse family of flowering plants, warrants special attention within the context of plastid genome evolution because it includes both non-photosynthetic and photosynthetic species with rearranged plastomes and putative losses of "essential" genes. We characterized plastid genomes of three species of Ericaceae, non-photosynthetic Monotropa uniflora and Hypopitys monotropa and photosynthetic Pyrola rotundifolia, using high-throughput sequencing. As expected for non-photosynthetic plants, M. uniflora and H. monotropa have small plastid genomes (46 kb and 35 kb, respectively) lacking genes related to photosynthesis, whereas P. rotundifolia has a larger genome (169 kb) with a gene set similar to other photosynthetic plants. The examined genomes contain an unusually high number of repeats and translocations. Comparative analysis of the expanded set of Ericaceae plastomes suggests that the genes clpP and accD that are present in the plastid genomes of almost all plants have not been lost in this family (as was previously thought) but rather persist in these genomes in unusual forms. Also we found a new gene in P. rotundifolia that emerged as a result of duplication of rps4 gene. PMID:27452401

  16. Comparative analysis of plastid genomes of non-photosynthetic Ericaceae and their photosynthetic relatives

    PubMed Central

    Logacheva, Maria D.; Schelkunov, Mikhail I.; Shtratnikova, Victoria Y.; Matveeva, Maria V.; Penin, Aleksey A.

    2016-01-01

    Although plastid genomes of flowering plants are typically highly conserved regarding their size, gene content and order, there are some exceptions. Ericaceae, a large and diverse family of flowering plants, warrants special attention within the context of plastid genome evolution because it includes both non-photosynthetic and photosynthetic species with rearranged plastomes and putative losses of “essential” genes. We characterized plastid genomes of three species of Ericaceae, non-photosynthetic Monotropa uniflora and Hypopitys monotropa and photosynthetic Pyrola rotundifolia, using high-throughput sequencing. As expected for non-photosynthetic plants, M. uniflora and H. monotropa have small plastid genomes (46 kb and 35 kb, respectively) lacking genes related to photosynthesis, whereas P. rotundifolia has a larger genome (169 kb) with a gene set similar to other photosynthetic plants. The examined genomes contain an unusually high number of repeats and translocations. Comparative analysis of the expanded set of Ericaceae plastomes suggests that the genes clpP and accD that are present in the plastid genomes of almost all plants have not been lost in this family (as was previously thought) but rather persist in these genomes in unusual forms. Also we found a new gene in P. rotundifolia that emerged as a result of duplication of rps4 gene. PMID:27452401

  17. Atomic-level structural and functional model of a bacterial photosynthetic membrane vesicle

    PubMed Central

    Şener, Melih K.; Olsen, John D.; Hunter, C. Neil; Schulten, Klaus

    2007-01-01

    The photosynthetic unit (PSU) of purple photosynthetic bacteria consists of a network of bacteriochlorophyll–protein complexes that absorb solar energy for eventual conversion to ATP. Because of its remarkable simplicity, the PSU can serve as a prototype for studies of cellular organelles. In the purple bacterium Rhodobacter sphaeroides the PSU forms spherical invaginations of the inner membrane, ≈70 nm in diameter, composed mostly of light-harvesting complexes, LH1 and LH2, and reaction centers (RCs). Atomic force microscopy studies of the intracytoplasmic membrane have revealed the overall spatial organization of the PSU. In the present study these atomic force microscopy data were used to construct three-dimensional models of an entire membrane vesicle at the atomic level by using the known structure of the LH2 complex and a structural model of the dimeric RC–LH1 complex. Two models depict vesicles consisting of 9 or 18 dimeric RC–LH1 complexes and 144 or 101 LH2 complexes, representing a total of 3,879 or 4,464 bacteriochlorophylls, respectively. The in silico reconstructions permit a detailed description of light absorption and electronic excitation migration, including computation of a 50-ps excitation lifetime and a 95% quantum efficiency for one of the model membranes, and demonstration of excitation sharing within the closely packed RC–LH1 dimer arrays. PMID:17895378

  18. Developing Research Capabilities in Energy Biosciences: Design principles of photosynthetic biofuel production.

    SciTech Connect

    Donald D. Brown; David Savage

    2012-06-30

    The current fossil fuel-based energy infrastructure is not sustainable. Solar radiation is a plausible alternative, but realizing it as such will require significant technological advances in the ability to harvest light energy and convert it into suitable fuels. The biological system of photosynthesis can carry out these reactions, and in principle could be engineered using the tools of synthetic biology. One desirable implementation would be to rewire the reactions of a photosynthetic bacterium to direct the energy harvested from solar radiation into the synthesis of the biofuel H2. Proposed here is a series of experiments to lay the basic science groundwork for such an attempt. The goal is to elucidate the transcriptional network of photosynthesis using a novel driver-reporter screen, evolve more robust hydrogenases for improved catalysis, and to test the ability of the photosynthetic machinery to directly produce H2 in vivo. The results of these experiments will have broad implications for the understanding of photosynthesis, enzyme function, and the engineering of biological systems for sustainable energy production. The ultimate impact could be a fundamental transformation of the world's energy economy.

  19. Spiral tubular bioreactors for hydrogen production by photosynthetic microorganisms. Design and operation

    SciTech Connect

    Markov, S.A.; Weaver, P.F.; Seibert, M.

    1997-12-31

    Spiral tubular bioreactors were constructed out of transparent PVC tubing for H{sub 2} production applications. Both a cyanobacterial Anabaena variabilis mutant that lacks uptake hydrogenase activity and the photo-synthetic bacterium Rhodobacter sp. CBS were tested in the bioreactors. Continuous H{sub 2} photoproduction at an average rate of 19 mL {center_dot} min{sup -2} {center_dot} h{sup -1} was observed using the A. variabilis mutant under an air atmosphere (without argon sparging or application of a partial vacuum). The cyanobacterial photobioreactor was run continuously for over one month with an average efficiency of light energy conversion to H{sub 2} of 1.4%. Another H{sub 2}-producing approach employed a unique type of activity found in a strain of photosynthetic bacteria that shifts CO (and H{sub 2}O) into H{sub 2} (and CO{sub 2}) in darkness. Continuous dark H{sub 2} production by Rhodobacter sp. CBS from CO (in anticipation of using synthesis gas as the future substrate) at rates up to 140 mL {center_dot} g cdw{sup -1} {center_dot} h{sup -1} was observed in a bubble-train bioreactor for more than 10 d. 14 refs., 4 figs.

  20. Kinetic model of primary energy transfer and trapping in photosynthetic membranes.

    PubMed

    Pullerits, T; Freiberg, A

    1992-10-01

    The picosecond time-domain incoherent singlet excitation transfer and trapping kinetics in core antenna of photosynthetic bacteria are studied in case of low excitation intensities by numerical integration of the appropriate master equation in a wide temperature range of 4-300 K. The essential features of our two-dimensional-lattice model are as follows: Förster excitation transfer theory, spectral heterogeneity of both the light-harvesting antenna and the reaction center, treatment of temperature effects through temperature dependence of spectral bands, inclusion of inner structure of the trap, and transition dipole moment orientation. The fluorescence kinetics is analyzed in terms of distributions of various kinetic components, and the influence of different inhomogeneities (orientational, spectral) is studied.A reasonably good agreement between theoretical and experimental fluorescence decay kinetics for purple photosynthetic bacterium Rhodospirillum rubrum is achieved at high temperatures by assuming relatively large antenna spectral inhomogeneity: 20 nm at the whole bandwidth of 40 nm. The mean residence time in the antenna lattice site (it is assumed to be the aggregate of four bacteriochlorophyll a molecules bound to proteins) is estimated to be approximately 12 ps. At 4 K only qualitative agreement between model and experiment is gained. The failure of quantitative fitting is perhaps due to the lack of knowledge about the real structure of antenna or local heating and cooling effects not taken into account. PMID:19431849

  1. Cloning and characterization of nif structural and regulatory genes in the purple sulfur bacterium, Halorhodospira halophila.

    PubMed

    Tsuihiji, Hisayoshi; Yamazaki, Yoichi; Kamikubo, Hironari; Imamoto, Yasushi; Kataoka, Mikio

    2006-03-01

    Halorhodospira halophila is a halophilic photosynthetic bacterium classified as a purple sulfur bacterium. We found that H. halophila generates hydrogen gas during photoautotrophic growth as a byproduct of a nitrogenase reaction. In order to consider the applied possibilities of this photobiological hydrogen generation, we cloned and characterized the structural and regulatory genes encoding the nitrogenase, nifH, nifD and nifA, from H. halophila. This is the first description of the nif genes for a purple sulfur bacterium. The amino-acid sequences of NifH and NifD indicated that these proteins are an Fe protein and a part of a MoFe protein, respectively. The important residues are conserved completely. The sequence upstream from the nifH region and sequence similarities of nifH and nifD with those of the other organisms suggest that the regulatory system might be a NifL-NifA system; however, H. halophila lacks nifL. The amino-acid sequence of H. halophila NifA is closer to that of the NifA of the NifL-NifA system than to that of NifA without NifL. H. halophila NifA does not conserve either the residue that interacts with NifL or the important residues involved in NifL-independent regulation. These results suggest the existence of yet another regulatory system, and that the development of functional systems and their molecular counterparts are not necessarily correlated throughout evolution. All of these Nif proteins of H. halophila possess an excess of acidic residues, which acts as a salt-resistant mechanism.

  2. Biological conversion of synthesis gas

    SciTech Connect

    Ackerson, M.D.; Clausen, E.C.; Gaddy, J.L.

    1992-06-30

    Overall mass transfer coefficients for CO have been determined in a continuous stirred-tank reactor at agitation rates of 300--700 rpm using a biological system with the photosynthetic bacterium Rhodospirillum rubrum. A non-steady state approach was employed in order to separate mass transfer and kinetic limited regions of the fermentation. As a result, a kinetic model could be developed for specific CO uptake by the culture including the apparent CO inhibition. The maximum specific CO uptake rate found matched the earlier results obtained in batch culture and by other investigators. CO inhibition was more predominant in CSTR culture than in batch culture, perhaps due to CO acclimation. The growth of the photosynthetic bacterium Chlorobium thiosulfatophilum on CO[sub 2] has been studied at light intensities ranging from 27-1723 lux in batch culture. Modeling results indicate that growth is dependent upon light intensity according to a Monod type relationship.

  3. Biological conversion of synthesis gas. Project status report, April 1, 1992--June 30, 1992

    SciTech Connect

    Ackerson, M.D.; Clausen, E.C.; Gaddy, J.L.

    1992-06-30

    Overall mass transfer coefficients for CO have been determined in a continuous stirred-tank reactor at agitation rates of 300--700 rpm using a biological system with the photosynthetic bacterium Rhodospirillum rubrum. A non-steady state approach was employed in order to separate mass transfer and kinetic limited regions of the fermentation. As a result, a kinetic model could be developed for specific CO uptake by the culture including the apparent CO inhibition. The maximum specific CO uptake rate found matched the earlier results obtained in batch culture and by other investigators. CO inhibition was more predominant in CSTR culture than in batch culture, perhaps due to CO acclimation. The growth of the photosynthetic bacterium Chlorobium thiosulfatophilum on CO{sub 2} has been studied at light intensities ranging from 27-1723 lux in batch culture. Modeling results indicate that growth is dependent upon light intensity according to a Monod type relationship.

  4. Ultrafast absorption difference spectra of the Fenna-Matthews-Olson protein at 19 K: experiment and simulations.

    PubMed Central

    Buck, D R; Savikhin, S; Struve, W S

    1997-01-01

    We describe simulations of absorption difference spectra in strongly coupled photosynthetic antennas. In the presence of large resonance couplings, distinctive features arise from excited-state absorption transitions between one- and two-exciton levels. We first outline the theory for the heterodimer and for the general N-pigment system, and we demonstrate the transition between the strong and weak coupling regimes. The theory is applied to Fenna-Matthews-Olson (FMO) bacteriochlorophyll a protein trimers from the green photosynthetic bacterium Prosthecochloris aestuarii and then compared with experimental low-temperature absorption difference spectra of FMO trimers from the green bacterium Chlorobium tepidum. Images FIGURE 1 FIGURE 7 FIGURE 8 FIGURE 12 PMID:8994590

  5. Characterization of a novel extremely alkalophilic bacterium

    NASA Technical Reports Server (NTRS)

    Souza, K. A.; Deal, P. H.

    1977-01-01

    A new alkalophilic bacterium, isolated from a natural spring of high pH is characterized. It is a Gram-positive, non-sporulating, motile rod requiring aerobic and alkaline conditions for growth. The characteristics of this organism resemble those of the coryneform group of bacteria; however, there are no accepted genera within this group with which this organism can be closely matched. Therefore, a new genus may be warranted.

  6. Thioredoxin Is Involved in Oxygen-Regulated Formation of the Photosynthetic Apparatus of Rhodobacter sphaeroides

    PubMed Central

    Pasternak, Cecile; Haberzettl, Kerstin; Klug, Gabriele

    1999-01-01

    Thioredoxin, a redox active protein, has been previously demonstrated to be essential for growth of the anoxygenic photosynthetic bacterium Rhodobacter sphaeroides. In the present study, the involvement of thioredoxin in the formation of the photosynthetic apparatus of R. sphaeroides WS8 was investigated by construction and analysis of a mutant strain disrupted for the chromosomal trxA copy and carrying a plasmid-borne copy of trxA under the control of the hybrid ptrc promoter inducible by IPTG (isopropyl-β-d-thiogalactopyranoside). This strain was viable in the absence of IPTG but was affected in pigmentation. When shifted from high to low oxygen tension conditions, the trxA mutant showed a reduced bacteriochlorophyll content in comparison to that of the wild type. Although thioredoxin is able to regulate aminolevulinic acid (ALA) synthase (the first enzyme of the tetrapyrrole biosynthetic pathway) activity by a dithiol-disulfide exchange, our mutant strain exhibited a level of ALA synthase activity identical to that of the wild type, suggesting that thioredoxin is involved in other steps to regulate the synthesis of the photosynthetic apparatus. Accordingly, we showed that the trxA mutation affects the oxygen-regulated expression of the puf operon encoding the pigment-binding proteins of the light-harvesting and reaction center complexes. Upon transition from aerobic to semiaerobic growth conditions, the maximal puf mRNA level was found to be 40 to 50% lower in the mutant strain than in the wild type. The stability of the puf transcripts was identical in both strains grown under low oxygen tension, indicating that the role of thioredoxin in regulating puf expression occurs at the transcriptional level. PMID:9864318

  7. Genomic Analysis of Melioribacter roseus, Facultatively Anaerobic Organotrophic Bacterium Representing a Novel Deep Lineage within Bacteriodetes/Chlorobi Group

    PubMed Central

    Kadnikov, Vitaly V.; Mardanov, Andrey V.; Podosokorskaya, Olga A.; Gavrilov, Sergey N.; Kublanov, Ilya V.; Beletsky, Alexey V.; Bonch-Osmolovskaya, Elizaveta A.; Ravin, Nikolai V.

    2013-01-01

    Melioribacter roseus is a moderately thermophilic facultatively anaerobic organotrophic bacterium representing a novel deep branch within Bacteriodetes/Chlorobi group. To better understand the metabolic capabilities and possible ecological functions of M. roseus and get insights into the evolutionary history of this bacterial lineage, we sequenced the genome of the type strain P3M-2T. A total of 2838 open reading frames was predicted from its 3.30 Mb genome. The whole proteome analysis supported phylum-level classification of M. roseus since most of the predicted proteins had closest matches in Bacteriodetes, Proteobacteria, Chlorobi, Firmicutes and deeply-branching bacterium Caldithrix abyssi, rather than in one particular phylum. Consistent with the ability of the bacterium to grow on complex carbohydrates, the genome analysis revealed more than one hundred glycoside hydrolases, glycoside transferases, polysaccharide lyases and carbohydrate esterases. The reconstructed central metabolism revealed pathways enabling the fermentation of complex organic substrates, as well as their complete oxidation through aerobic and anaerobic respiration. Genes encoding the photosynthetic and nitrogen-fixation machinery of green sulfur bacteria, as well as key enzymes of autotrophic carbon fixation pathways, were not identified. The M. roseus genome supports its affiliation to a novel phylum Ignavibateriae, representing the first step on the evolutionary pathway from heterotrophic ancestors of Bacteriodetes/Chlorobi group towards anaerobic photoautotrophic Chlorobi. PMID:23301019

  8. Enhanced Practical Photosynthetic CO2 Mitigation

    SciTech Connect

    Gregory Kremer; David J. Bayless; Morgan Vis; Michael Prudich; Keith Cooksey; Jeff Muhs

    2004-10-13

    This report highlights significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation Project for the period ending 09/30/2004. The primary effort of this quarter was focused on mass transfer of carbon dioxide into the water film to study the potential effects on the photosynthetic organisms that depend on the carbon. Testing of the carbon dioxide scrubbing capability (mass transfer capability) of flowing water film appears to be relatively high and largely unaffected by transport of the gas through the bioreactor. The implications are that the transfer of carbon dioxide into the film is nearly at maximum and that it is sufficient to sustain photosynthesis at whatever rate the organisms can sustain. This finding is key to assuming that the process is an energy (photon) limited reaction and not a nutrient limited reaction.

  9. [Engineering photosynthetic cyanobacterial chassis: a review].

    PubMed

    Wu, Qin; Chen, Lei; Wang, Jiangxin; Zhang, Weiwen

    2013-08-01

    Photosynthetic cyanobacteria possess a series of good properties, such as their abilities to capture solar energy for CO2 fixation, low nutritional requirements for growth, high growth rate, and relatively simple genetic background. Due to the high oil price and increased concern of the global warming in recent years, cyanobacteria have attracted widespread attention because they can serve as an 'autotrophic microbial factory' for producing renewable biofuels and fine chemicals directly from CO2. Particularly, significant progress has been made in applying synthetic biology techniques and strategies to construct and optimize cyanobacteria chassis. In this article, we critically summarized recent advances in developing new methods to optimize cyanobacteria chassis, improving cyanobacteria photosynthetic efficiency, and in constructing cyanobacteria chassis tolerant to products or environmental stresses. In addition, various industrial applications of cyanobacteria chassis are also discussed.

  10. BOREAS TE-9 NSA Photosynthetic Response Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G.; Curd, Shelaine (Editor); Dang, Qinglai; Margolis, Hank; Coyea, Marie

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-9 (Terrestrial Ecology) team collected several data sets related to chemical and photosynthetic properties of leaves. This data set describes: (1) the response of leaf and shoot-level photosynthesis to ambient and intercellular CO2 concentration, temperature, and incident photosynthetically active radiation (PAR) for black spruce, jack pine, and aspen during the three intensive field campaigns (IFCs) in 1994 in the Northern Study Area (NSA); (2) the response of stomatal conductance to vapor pressure difference throughout the growing season of 1994; and (3) a range of shoot water potentials (controlled in the laboratory) for black spruce and jack pine. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  11. Photosynthetic hydrogen and oxygen production - Kinetic studies

    NASA Astrophysics Data System (ADS)

    Greenbaum, E.

    1982-01-01

    The simultaneous photoproduction of hydrogen and oxygen was measured in a study of the steady-state turnover times of two biological systems, by driving them into the steady state with repetitive, single-turnover flash illumination. The systems were: (1) in vitro, isolated chloroplasts, ferredoxin and hydrogenase; and (2) the anaerobically-adapted green alga Chlamydomonas reinhardtii. It is found that the turnover times for production of both oxygen and hydrogen in photosynthetic water splitting are in milliseconds, and either equal to, or less than, the turnover time for carbon dioxide reduction in intact algal cells. There is therefore mutual compatibility between hydrogen and oxygen turnover times, and partial compatibility with the excitation rate of the photosynthetic reaction centers under solar irradiation conditions.

  12. Nitric oxide in marine photosynthetic organisms.

    PubMed

    Kumar, Amit; Castellano, Immacolata; Patti, Francesco Paolo; Palumbo, Anna; Buia, Maria Cristina

    2015-05-01

    Nitric oxide is a versatile and powerful signaling molecule in plants. However, most of our understanding stems from studies on terrestrial plants and very little is known about marine autotrophs. This review summarizes current knowledge about the source of nitric oxide synthesis in marine photosynthetic organisms and its role in various physiological processes under normal and stress conditions. The interactions of nitric oxide with other stress signals and cross talk among secondary messengers are also highlighted.

  13. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    SciTech Connect

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2003-04-15

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 1/2/2003 through 4/01/2003. As indicated in the list of accomplishments below we are progressing with long-term model scale bioreactor tests and are completing final preparations for pilot scale bioreactor testing. Specific results and accomplishments for the first quarter of 2003 are included.

  14. Enhanced Practical Photosynthetic CO2 Mitigation

    SciTech Connect

    Gregory Kremer; David J. Bayless; Morgan Vis; Michael Prudich; Keith Cooksey; Jeff Muhs

    2005-01-13

    This report highlights significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation Project during the ending 12/31/2004. Specific results and accomplishments for the program include review of pilot scale testing and design of a new bioreactor. Testing confirmed that algae can be grown in a sustainable fashion in the pilot bioreactor, even with intermittent availability of sunlight. The pilot-scale tests indicated that algal growth rate followed photon delivery during productivity testing.

  15. Photosynthetic carbon metabolism in Enteromorpha compressa (Chlorophyta)

    SciTech Connect

    Beer, S.; Shragge, B.

    1987-12-01

    The intertidal macroalga Enteromorpha compressa showed the ability to use HCO/sub 3//sup -/, as an exogenous inorganic carbon (Ci) source for photosynthesis. However, although the natural sea water concentration of this carbon form was saturating, additional CO/sub 2/ above ambient Ci levels doubled net photosynthetic rates. Therefore, the productivity of this alga, when submerged, is likely to be limited by Ci. When plants were exposed to air, photosynthetic rates saturated at air-levels of CO/sub 2/ during mild desiccation. Based on carbon fixing enzyme activities and Ci pulse-chase incorporation patterns, it was found that Enteromorpha is a C/sub 3/ plant. However, this alga did not show O/sub 2/ inhibited photosynthetic rates at natural sea water Ci conditions. It is suggested that such a C/sub 4/-like gas exchange response is due to the HCO/sub 3//sup -/ utilization system concentrating CO/sub 2/ intracellularly, thus alleviating apparent photorespiration.

  16. Improving photosynthetic efficiency for greater yield.

    PubMed

    Zhu, Xin-Guang; Long, Stephen P; Ort, Donald R

    2010-01-01

    Increasing the yield potential of the major food grain crops has contributed very significantly to a rising food supply over the past 50 years, which has until recently more than kept pace with rising global demand. Whereas improved photosynthetic efficiency has played only a minor role in the remarkable increases in productivity achieved in the last half century, further increases in yield potential will rely in large part on improved photosynthesis. Here we examine inefficiencies in photosynthetic energy transduction in crops from light interception to carbohydrate synthesis, and how classical breeding, systems biology, and synthetic biology are providing new opportunities to develop more productive germplasm. Near-term opportunities include improving the display of leaves in crop canopies to avoid light saturation of individual leaves and further investigation of a photorespiratory bypass that has already improved the productivity of model species. Longer-term opportunities include engineering into plants carboxylases that are better adapted to current and forthcoming CO(2) concentrations, and the use of modeling to guide molecular optimization of resource investment among the components of the photosynthetic apparatus, to maximize carbon gain without increasing crop inputs. Collectively, these changes have the potential to more than double the yield potential of our major crops. PMID:20192734

  17. Tectonics and the photosynthetic habitable zone (Invited)

    NASA Astrophysics Data System (ADS)

    Sleep, N. H.

    2009-12-01

    The traditional habitable zone lies between an inner stellar radius where the surface of the planet becomes too hot for liquid water carbon-based life and on outer radius, where the surface freezes. It is effectively the zone where photosynthesis is feasible. The concept extends to putative life on objects with liquid methane at the surface, like Titan. As a practical matter, photosynthesis leaves detectable biosignatures in the geological record; black shale on the Earth indicates that sulfide and probably FeO based photosynthesis existed by 3.8 Ga. The hard crustal rocks and the mantle sequester numerous photosynthetic biosignatures. Photosynthesis can produce detectable free oxygen with ozone in the atmosphere of extrasolar planets. In contrast, there is no outer limit for subsurface life in large silicate objects. Pre-photosynthetic niches are dependable but meager and not very detectable at great antiquity or great distance, with global productivity less than 1e-3 of the photosynthetic ones. Photosynthetic organisms have bountiful energy that modifies their surface environment and even tectonics. For example, metamorphic rocks formed at the expense of thick black shale are highly radioactive and hence self-fluxing. Active tectonics with volcanism and metamorphism prevents volatiles from being sequestered in the subsurface as on Mars. A heat-pipe object, like a larger Io, differs from the Earth in that the volatiles return to the deep interior distributed within massive volcanic deposits rather than concentrated in the shallow oceanic crust. One the Earth, the return of water to the surface by arc volcanoes controls its mantle abundance at the transition between behaving as a trace element and behaving as a major element that affects melting. The ocean accumulates the water that the mantle and crust do not take. The Earth has the “right” amount of water that erosion/deposition and tectonics both tend to maintain near sea level surfaces. The mantle contains

  18. Characterisation of antioxidants in photosynthetic and non-photosynthetic leaf tissues of variegated Pelargonium zonale plants.

    PubMed

    Vidović, M; Morina, F; Milić-Komić, S; Vuleta, A; Zechmann, B; Prokić, Lj; Veljović Jovanović, S

    2016-07-01

    Hydrogen peroxide is an important signalling molecule, involved in regulation of numerous metabolic processes in plants. The most important sources of H2 O2 in photosynthetically active cells are chloroplasts and peroxisomes. Here we employed variegated Pelargonium zonale to characterise and compare enzymatic and non-enzymatic components of the antioxidative system in autotrophic and heterotrophic leaf tissues at (sub)cellular level under optimal growth conditions. The results revealed that both leaf tissues had specific strategies to regulate H2 O2 levels. In photosynthetic cells, the redox regulatory system was based on ascorbate, and on the activities of thylakoid-bound ascorbate peroxidase (tAPX) and catalase. In this leaf tissue, ascorbate was predominantly localised in the nucleus, peroxisomes, plastids and mitochondria. On the other hand, non-photosynthetic cells contained higher glutathione content, mostly located in mitochondria. The enzymatic antioxidative system in non-photosynthetic cells relied on the ascorbate-glutathione cycle and both Mn and Cu/Zn superoxide dismutase. Interestingly, higher content of ascorbate and glutathione, and higher activities of APX in the cytosol of non-photosynthetic leaf cells compared to the photosynthetic ones, suggest the importance of this compartment in H2 O2 regulation. Together, these results imply different regulation of processes linked with H2 O2 signalling at subcellular level. Thus, we propose green-white variegated leaves as an excellent system for examination of redox signal transduction and redox communication between two cell types, autotrophic and heterotrophic, within the same organ. PMID:26712503

  19. [Photosynthetic characteristics of five arbor species in Shenyang urban area].

    PubMed

    Li, Hai-Me; He, Xing-Yuan; Wang, Kui-Ling; Chen, Wei

    2007-08-01

    By using LI-6400 infrared gas analyzer, this paper studied the diurnal and seasonal variations of the photosynthetic rate of main arbor species (Populus alba x P. berolinensis, Salix matsudana, Ulmus pumila, Robinia pseudoacacia and Prunus davidiana) in Shenyang urban area. The correlations between net photosynthetic rate and environmental factors (photosynthetic active radiation, temperature, and stomatal conductance) were assessed by multivariate regression analysis, and related equations were constructed. The results showed that for test arbor species, the diurnal variation of photosynthetic rate mainly presented a single peak curve, and the seasonal variation was in the order of summer > autumn > spring. The major factors affecting the photosynthetic rate were photosynthetic active radiation, stomatal conductance, and intercellular CO2 concentration.

  20. Detection of Salmonella bacterium in drinking water using microring resonator.

    PubMed

    Bahadoran, Mahdi; Noorden, Ahmad Fakhrurrazi Ahmad; Mohajer, Faeze Sadat; Abd Mubin, Mohamad Helmi; Chaudhary, Kashif; Jalil, Muhammad Arif; Ali, Jalil; Yupapin, Preecha

    2016-01-01

    A new microring resonator system is proposed for the detection of the Salmonella bacterium in drinking water, which is made up of SiO2-TiO2 waveguide embedded inside thin film layer of the flagellin. The change in refractive index due to the binding of the Salmonella bacterium with flagellin layer causes a shift in the output signal wavelength and the variation in through and drop port's intensities, which leads to the detection of Salmonella bacterium in drinking water. The sensitivity of proposed sensor for detecting of Salmonella bacterium in water solution is 149 nm/RIU and the limit of detection is 7 × 10(-4)RIU.

  1. Isolation and partial characterization of a cytochrome-o complex from chromatophores of the photosynthetic bacterium Rhodospirillum rubrum FR1.

    PubMed

    Schrattenholz, A S; Nawroth, T; Dose, K

    1989-05-15

    A cytochrome-o complex was isolated from chromatophores of photoheterotrophically grown Rhodospirillum rubrum FR1. The enzyme was extracted with the non-denaturating detergent taurodeoxycholate and subsequently purified by sucrose-density-gradient centrifugation and gel-permeation HPLC. The complex contains two types of cytochromes, one of them cytochrome o, and two copper atoms. It catalyzes the reduction of molecular oxygen, when N,N,N',N'-tetramethyl-p-phenylenediamine or ubiquinol 10 are offered as electron donors. The oxidase activity is inhibited by cyanide, carbon monoxide and 2-heptyl-2-hydroxyquinoline N-oxide. The molecular mass of the protein is 136 +/- 15 kDa. The subunit analysis, by SDS continuous and gradient gels, revealed four subunits with molecular mass 66 kDa (subunit I), 36 kDa (subunit II), 20 kDa (subunit III) and 11 kDa (subunit IV). PMID:2659347

  2. Temperature response of Antarctic cryptoendolithic photosynthetic microorganisms

    NASA Technical Reports Server (NTRS)

    Ocampo-Friedmann, R.; Meyer, M. A.; Chen, M.; Friedmann, E. I.

    1988-01-01

    Growth responses to temperatures between 12.5 [degrees] C and 25 degrees C were determined for five photosynthetic microorganisms isolated from the Ross Desert cryptoendolithic community. Among eukaryotic algae, two strains of Trebouxia sp. have an upper temperature limit of 20 degrees C, and two strains of Hemichloris antarctica of 25 degrees C. The cyanobacterium Chroococcidiopsis sp., in contrast, grows at temperatures above 25 degrees C. These and earlier studies suggest that the eukaryotic algae of the Antarctic cryptoendolithic community have an upper temperature limit near 25 degrees C.

  3. Culturing photosynthetic bacteria through surface plasmon resonance

    SciTech Connect

    Ooms, Matthew D.; Bajin, Lauren; Sinton, David

    2012-12-17

    In this work, cultivation of photosynthetic microbes in surface plasmon enhanced evanescent fields is demonstrated. Proliferation of Synechococcus elongatus was obtained on gold surfaces excited with surface plasmons. Excitation over three days resulted in 10 {mu}m thick biofilms with maximum cell volume density of 20% vol/vol (2% more total accumulation than control experiments with direct light). Collectively, these results indicate the ability to (1) excite surface-bound cells using plasmonic light fields, and (2) subsequently grow thick biofilms by coupling light from the surface. Plasmonic light delivery presents opportunities for high-density optofluidic photobioreactors for microalgal analysis and solar fuel production.

  4. Engineering cyanobacteria as photosynthetic feedstock factories.

    PubMed

    Hays, Stephanie G; Ducat, Daniel C

    2015-03-01

    Carbohydrate feedstocks are at the root of bioindustrial production and are needed in greater quantities than ever due to increased prioritization of renewable fuels with reduced carbon footprints. Cyanobacteria possess a number of features that make them well suited as an alternative feedstock crop in comparison to traditional terrestrial plant species. Recent advances in genetic engineering, as well as promising preliminary investigations of cyanobacteria in a number of distinct production regimes have illustrated the potential of these aquatic phototrophs as biosynthetic chassis. Further improvements in strain productivities and design, along with enhanced understanding of photosynthetic metabolism in cyanobacteria may pave the way to translate cyanobacterial theoretical potential into realized application.

  5. Microspectroscopy of the photosynthetic compartment of algae.

    PubMed

    Evangelista, Valtere; Frassanito, Anna Maria; Passarelli, Vincenzo; Barsanti, Laura; Gualtieri, Paolo

    2006-01-01

    We performed microspectroscopic evaluation of the pigment composition of the photosynthetic compartments of algae belonging to different taxonomic divisions and higher plants. The feasibility of microspectroscopy for discriminating among species and/or phylogenetic groups was tested on laboratory cultures. Gaussian bands decompositions and a fitting algorithm, together with fourth-derivative transformation of absorbance spectra, provided a reliable discrimination among chlorophylls a, b and c, phycobiliproteins and carotenoids. Comparative analysis of absorption spectra highlighted the evolutionary grouping of the algae into three main lineages in accordance with the most recent endosymbiotic theories.

  6. Culturing photosynthetic bacteria through surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Ooms, Matthew D.; Bajin, Lauren; Sinton, David

    2012-12-01

    In this work, cultivation of photosynthetic microbes in surface plasmon enhanced evanescent fields is demonstrated. Proliferation of Synechococcus elongatus was obtained on gold surfaces excited with surface plasmons. Excitation over three days resulted in 10 μm thick biofilms with maximum cell volume density of 20% vol/vol (2% more total accumulation than control experiments with direct light). Collectively, these results indicate the ability to (1) excite surface-bound cells using plasmonic light fields, and (2) subsequently grow thick biofilms by coupling light from the surface. Plasmonic light delivery presents opportunities for high-density optofluidic photobioreactors for microalgal analysis and solar fuel production.

  7. Temperature response of Antarctic cryptoendolithic photosynthetic microorganisms.

    PubMed

    Ocampo-Friedmann, R; Meyer, M A; Chen, M; Friedmann, E I

    1988-01-01

    Growth responses to temperatures between 12.5 [degrees] C and 25 degrees C were determined for five photosynthetic microorganisms isolated from the Ross Desert cryptoendolithic community. Among eukaryotic algae, two strains of Trebouxia sp. have an upper temperature limit of 20 degrees C, and two strains of Hemichloris antarctica of 25 degrees C. The cyanobacterium Chroococcidiopsis sp., in contrast, grows at temperatures above 25 degrees C. These and earlier studies suggest that the eukaryotic algae of the Antarctic cryptoendolithic community have an upper temperature limit near 25 degrees C.

  8. The making of a photosynthetic animal

    PubMed Central

    Rumpho, Mary E.; Pelletreau, Karen N.; Moustafa, Ahmed; Bhattacharya, Debashish

    2011-01-01

    Symbiotic animals containing green photobionts challenge the common perception that only plants are capable of capturing the sun's rays and converting them into biological energy through photoautotrophic CO2 fixation (photosynthesis). ‘Solar-powered’ sacoglossan molluscs, or sea slugs, have taken this type of symbiotic association one step further by solely harboring the photosynthetic organelle, the plastid (=chloroplast). One such sea slug, Elysia chlorotica, lives as a ‘plant’ when provided with only light and air as a result of acquiring plastids during feeding on its algal prey Vaucheria litorea. The captured plastids (kleptoplasts) are retained intracellularly in cells lining the digestive diverticula of the sea slug, a phenomenon sometimes referred to as kleptoplasty. Photosynthesis by the plastids provides E. chlorotica with energy and fixed carbon for its entire lifespan of ∼10 months. The plastids are not transmitted vertically (i.e. are absent in eggs) and do not undergo division in the sea slug. However, de novo protein synthesis continues, including plastid- and nuclear-encoded plastid-targeted proteins, despite the apparent absence of algal nuclei. Here we discuss current data and provide hypotheses to explain how long-term photosynthetic activity is maintained by the kleptoplasts. This fascinating ‘green animal’ provides a unique model to study the evolution of photosynthesis in a multicellular heterotrophic organism. PMID:21177950

  9. Thermal responses of Symbiodinium photosynthetic carbon assimilation

    NASA Astrophysics Data System (ADS)

    Oakley, Clinton A.; Schmidt, Gregory W.; Hopkinson, Brian M.

    2014-06-01

    The symbiosis between hermatypic corals and their dinoflagellate endosymbionts, genus Symbiodinium, is based on carbon exchange. This symbiosis is disrupted by thermally induced coral bleaching, a stress response in which the coral host expels its algal symbionts as they become physiologically impaired. The disruption of the dissolved inorganic carbon (DIC) supply or the thermal inactivation of Rubisco have been proposed as sites of initial thermal damage that leads to the bleaching response. Symbiodinium possesses a highly unusual Form II ribulose bisphosphate carboxylase/oxygenase (Rubisco), which exhibits a lower CO2:O2 specificity and may be more thermally unstable than the Form I Rubiscos of other algae and land plants. Components of the CO2 concentrating mechanism (CCM), which supplies inorganic carbon for photosynthesis, may also be temperature sensitive. Here, we examine the ability of four cultured Symbiodinium strains to acquire and fix DIC across a temperature gradient. Surprisingly, the half-saturation constant of photosynthesis with respect to DIC concentration ( K P), an index of CCM function, declined with increasing temperature in three of the four strains, indicating a greater potential for photosynthetic carbon acquisition at elevated temperatures. In the fourth strain, there was no effect of temperature on K P. Finding no evidence for thermal inhibition of the CCM, we conclude that CCM components are not likely to be the primary sites of thermal damage. Reduced photosynthetic quantum yields, a hallmark of thermal bleaching, were observed at low DIC concentrations, leaving open the possibility that reduced inorganic carbon availability is involved in bleaching.

  10. Laser remote monitoring of plant photosynthetic activity

    NASA Astrophysics Data System (ADS)

    Barbini, Roberto; Colao, Francesco; Fantoni, Roberta; Palucci, Antonio; Ribezzo, Sergio

    1995-11-01

    Laboratory measurements of laser induced chlorophyll fluorescence kinetics (Kautsky effect) on dark-adapted vegetation targets (maize, pine-tree) have been performed with a lidar fluorosensor by superimposing probe pulses upon an actinic light. The collected induction curves (fast rise and slow decline) have been used to reveal the occurrence of stresses and the damage produced by a pine-tree parasite. A new two-pulse LIF (laser induced fluorescence) methodology has been investigated both theoretically and experimentally, in view of remotely monitoring the plant photosynthetic activity. This technique may yield information upon the in-vivo photosynthetic processes of plants, revealing a possible stress status (nutrients depletion, presence of herbicides, photoinhibition, etc.). The lidar apparatus used contains two laser sources in order to differentially measure the chlorophyll fluorescence by means of a laser pump-and-probe technique. In fact LIF signals in the red chlorophyll band 690 nm may provide in-vivo information upon photosynthesis process in high order plants and algae. Laser pump-and-probe experimental tests, with excitation 355 nm or 532 nm, already detect the presence of herbicides, and the effects of plant exposure to thermal stresses and to low levels of gaseous pollutants. Laser measured fluorescence yields (Y) have been found to be consistent with those obtained by an in-situ fluorimeter (PAM). With proper choices of experimental parameters (pump and probe laser intensities), Y approaches the theoretical value expected for a healthy dark-adapted plant.

  11. Non-photosynthetic pigments as potential biosignatures

    NASA Astrophysics Data System (ADS)

    Schwieterman, E. W.; Cockell, C. S.; Meadows, V. S.

    2014-03-01

    Photosynthetic organisms on Earth produce potentially detectable surface reflectance biosignatures due in part to the spectral location and strength of pigment absorption. However, life on Earth uses pigments for a multitude of purposes other than photosynthesis, including coping with extreme environments. Macroscopic environments exist on Earth where the surface reflectance is significantly altered by a nonphotosynthetic pigment, such as the case of hypersaline lakes and ponds (Oren et al. 1992). Here we explore the nature and potential detectability of non-photosynthetic pigments in disk-averaged planetary observations using a combination of laboratory measurements and archival reflectance spectra, along with simulated broadband photometry and spectra. The in vivo visible reflectance spectra of a cross section of pigmented microorganisms are presented to illustrate the spectral diversity of biologically produced pigments. Synthetic broadband colors are generated to show a significant spread in color space. A 1D radiative transfer model (Meadows & Crisp 1996; Crisp 1997) is used to approximate the spectra of scenarios where pigmented organisms are widespread on planets with Earth-like atmospheres. Broadband colors are revisited to show that colors due to surface reflectivity are not robust to the addition of scattering and absorption effects from the atmosphere. We consider a èbest case' plausible scenario for the detection of nonphotosynthetic pigments by using the Virtual Planetary Laboratory's 3D spectral Earth model (Robinson et al. 2011) to explore the detectability of the surface biosignature produced by pigmented halophiles that are widespread on an Earth-analog planet.

  12. Redox regulation of photosynthetic gene expression

    PubMed Central

    Queval, Guillaume; Foyer, Christine H.

    2012-01-01

    Redox chemistry and redox regulation are central to the operation of photosynthesis and respiration. However, the roles of different oxidants and antioxidants in the regulation of photosynthetic or respiratory gene expression remain poorly understood. Leaf transcriptome profiles of a range of Arabidopsis thaliana genotypes that are deficient in either hydrogen peroxide processing enzymes or in low molecular weight antioxidant were therefore compared to determine how different antioxidant systems that process hydrogen peroxide influence transcripts encoding proteins targeted to the chloroplasts or mitochondria. Less than 10 per cent overlap was observed in the transcriptome patterns of leaves that are deficient in either photorespiratory (catalase (cat)2) or chloroplastic (thylakoid ascorbate peroxidase (tapx)) hydrogen peroxide processing. Transcripts encoding photosystem II (PSII) repair cycle components were lower in glutathione-deficient leaves, as were the thylakoid NAD(P)H (nicotinamide adenine dinucleotide (phosphate)) dehydrogenases (NDH) mRNAs. Some thylakoid NDH mRNAs were also less abundant in tAPX-deficient and ascorbate-deficient leaves. Transcripts encoding the external and internal respiratory NDHs were increased by low glutathione and low ascorbate. Regulation of transcripts encoding specific components of the photosynthetic and respiratory electron transport chains by hydrogen peroxide, ascorbate and glutathione may serve to balance non-cyclic and cyclic electron flow pathways in relation to oxidant production and reductant availability. PMID:23148274

  13. Respiratory processes in non-photosynthetic plastids

    PubMed Central

    Renato, Marta; Boronat, Albert; Azcón-Bieto, Joaquín

    2015-01-01

    Chlororespiration is a respiratory process located in chloroplast thylakoids which consists in an electron transport chain from NAD(P)H to oxygen. This respiratory chain involves the NAD(P)H dehydrogenase complex, the plastoquinone pool and the plastid terminal oxidase (PTOX), and it probably acts as a safety valve to prevent the over-reduction of the photosynthetic machinery in stress conditions. The existence of a similar respiratory activity in non-photosynthetic plastids has been less studied. Recently, it has been reported that tomato fruit chromoplasts present an oxygen consumption activity linked to ATP synthesis. Etioplasts and amyloplasts contain several electron carriers and some subunits of the ATP synthase, so they could harbor a similar respiratory process. This review provides an update on the study about respiratory processes in chromoplasts, identifying the major gaps that need to be addressed in future research. It also reviews the proteomic data of etioplasts and amyloplasts, which suggest the presence of a respiratory electron transport chain in these plastids. PMID:26236317

  14. Photosynthetic water splitting: 1987 annual report

    SciTech Connect

    Greenbaum, E.

    1988-01-01

    This document is an annual report of photosynthetic water splitting for the production of hydrogen and oxygen. Unicellular green algae are capable of evolving molecular hydrogen in the presence of carbon dioxide. Controlling factors that determine hydrogen evolution are either temperature or light intensity. Also, mutants of the green alga Chlamydomonas are capable of evolving hydrogen in the presence of carbon dioxide. The significance of these discoveries is that the presence of carbon dioxide (or bicarbonate) is a key factor in determining the activity of the Photosystem II water splitting complex. Second, a new advance in oxygen sensor technology has been made that, for the first time, allows the absolute measurement of photosynthetically evolved oxygen from a single colony of microalgae growing on a solidified agar medium. The key aspect of this electrochemical sensor is the utilization of ultra-pure potassium hydroxide as the electrolyte and a recognition of the role that electrolyte impurities play in contributing to base line noise. 9 refs., 8 figs., 2 tabs.

  15. Micromachined microbial and photosynthetic fuel cells

    NASA Astrophysics Data System (ADS)

    Chiao, Mu; Lam, Kien B.; Lin, Liwei

    2006-12-01

    This paper presents two types of fuel cells: a miniature microbial fuel cell (µMFC) and a miniature photosynthetic electrochemical cell (µPEC). A bulk micromachining process is used to fabricate the fuel cells, and the prototype has an active proton exchange membrane area of 1 cm2. Two different micro-organisms are used as biocatalysts in the anode: (1) Saccharomyces cerevisiae (baker's yeast) is used to catalyze glucose and (2) Phylum Cyanophyta (blue-green algae) is used to produce electrons by a photosynthetic reaction under light. In the dark, the µPEC continues to generate power using the glucose produced under light. In the cathode, potassium ferricyanide is used to accept electrons and electric power is produced by the overall redox reactions. The bio-electrical responses of µMFCs and µPECs are characterized with the open-circuit potential measured at an average value of 300-500 mV. Under a 10 ohm load, the power density is measured as 2.3 nW cm-2 and 0.04 nW cm-2 for µMFCs and µPECs, respectively.

  16. Respiratory processes in non-photosynthetic plastids.

    PubMed

    Renato, Marta; Boronat, Albert; Azcón-Bieto, Joaquín

    2015-01-01

    Chlororespiration is a respiratory process located in chloroplast thylakoids which consists in an electron transport chain from NAD(P)H to oxygen. This respiratory chain involves the NAD(P)H dehydrogenase complex, the plastoquinone pool and the plastid terminal oxidase (PTOX), and it probably acts as a safety valve to prevent the over-reduction of the photosynthetic machinery in stress conditions. The existence of a similar respiratory activity in non-photosynthetic plastids has been less studied. Recently, it has been reported that tomato fruit chromoplasts present an oxygen consumption activity linked to ATP synthesis. Etioplasts and amyloplasts contain several electron carriers and some subunits of the ATP synthase, so they could harbor a similar respiratory process. This review provides an update on the study about respiratory processes in chromoplasts, identifying the major gaps that need to be addressed in future research. It also reviews the proteomic data of etioplasts and amyloplasts, which suggest the presence of a respiratory electron transport chain in these plastids.

  17. Engineered photosynthetic bacteria, method of manufacture of biofuels

    DOEpatents

    Laible, Philip D.; Snyder, Seth W.

    2016-09-13

    The invention provides for a novel type of biofuel; a method for cleaving anchors from photosynthetic organisms; and a method for producing biofuels using photosynthetic organisms, the method comprising identifying photosynthesis co-factors and their anchors in the organisms; modifying the organisms to increase production of the anchors; accumulating biomass of the organisms in growth media; and harvesting the anchors.

  18. Determination of photosynthetic parameters in two seawater-tolerant vegetables

    NASA Astrophysics Data System (ADS)

    Qiu, Nianwei; Zhou, Feng; Liu, Qian; Zhao, Wenqian

    2016-03-01

    It is difficult to determine the photosynthetic parameters of non-flat leaves/green stems using photosynthetic instruments, due to the unusual morphology of both organs, especially for Suaeda salsa and Salicornia bigelovii as two seawater-tolerant vegetables. To solve the problem, we developed a simple, practical, and effective method to measure and calculate the photosynthetic parameters (such as P N, g s, E) based on unit fresh mass, instead of leaf area. The light/CO2/temperature response curves of the plants can also be measured by this method. This new method is more effective, stable, and reliable than conventional methods for plants with non-flat leaves. In addition, the relative notes on measurements and calculation of photosynthetic parameters were discussed in this paper. This method solves technical difficulties in photosynthetic parameter determination of the two seawater-tolerant vegetables and similar plants.

  19. Agrobacterium tumefaciens Is a Diazotrophic Bacterium

    PubMed Central

    Kanvinde, Lalita; Sastry, G. R. K.

    1990-01-01

    This is the first report that Agrobacterium tumefaciens can fix nitrogen in a free-living condition as shown by its abilities to grow on nitrogen-free medium, reduce acetylene to ethylene, and incorporate 15N supplied as 15N2. As with most other well-characterized diazotrophic bacteria, the presence of NH4+ in the medium and aerobic conditions repress nitrogen fixation by A. tumefaciens. The system requires molybdenum. No evidence for nodulation was found with pea, peanut, or soybean plants. Further understanding of the nitrogen-fixing ability of this bacterium, which has always been considered a pathogen, should cast new light on the evolution of a pathogenic versus symbiotic relationship. Images PMID:16348237

  20. Agrobacterium tumefaciens is a diazotrophic bacterium

    SciTech Connect

    Kanvinde, L.; Sastry, G.R.K. )

    1990-07-01

    This is the first report that Agrobacterium tumefaciens can fix nitrogen in a free-living condition as shown by its abilities to grown on nitrogen-free medium, reduce acetylene to ethylene, and incorporate {sup 15}N supplied as {sup 15}N{sub 2}. As with most other well-characterized diazotrophic bacteria, the presence of NH{sub 4}{sup +} in the medium and aerobic conditions repress nitrogen fixation by A. tumefaciens. The system requires molybdenum. No evidence for nodulation was found with pea, peanut, or soybean plants. Further understanding of the nitrogen-fixing ability of this bacterium, which has always been considered a pathogen, should cast new light on the evolution of a pathogenic versus symbiotic relationship.

  1. Immobilization of the Methanogenic bacterium methanosarcina barkeri

    SciTech Connect

    Scherer, P.; Kluge, M.; Klein, J.; Sahm, H.

    1981-05-01

    Whole cells of the methanogen Methanosarcina barkeri were immobilized in an alginate network which was crosslinked with Ca/sup 2+/ calcium ions. The rates of methanol conversion to methane of entrapped cells were found to be in the same range as the corresponding rates of free cells. Furthermore, immobilized cells were active for a longer period than free cells. The particle size of the spherical alginate beads and thus diffusion has no obvious influence on the turnover of methanol. The half-value period for methanol conversion activity determined in a buffer medium was approximately 4 days at 37/degree/C for entrapped cells. The high rates of methanol degradation indicated that the immobilization technique preserved the cellular functions of this methanogenic bacterium. 24 refs.

  2. The chemical formula of a magnetotactic bacterium.

    PubMed

    Naresh, Mohit; Das, Sayoni; Mishra, Prashant; Mittal, Aditya

    2012-05-01

    Elucidation of the chemical logic of life is one of the grand challenges in biology, and essential to the progress of the upcoming field of synthetic biology. Treatment of microbial cells explicitly as a "chemical" species in controlled reaction (growth) environments has allowed fascinating discoveries of elemental formulae of a few species that have guided the modern views on compositions of a living cell. Application of mass and energy balances on living cells has proved to be useful in modeling of bioengineering systems, particularly in deriving optimized media compositions for growing microorganisms to maximize yields of desired bio-derived products by regulating intra-cellular metabolic networks. In this work, application of elemental mass balance during growth of Magnetospirillum gryphiswaldense in bioreactors has resulted in the discovery of the chemical formula of the magnetotactic bacterium. By developing a stoichiometric equation characterizing the formation of a magnetotactic bacterial cell, coupled with rigorous experimental measurements and robust calculations, we report the elemental formula of M. gryphiswaldense cell as CH(2.06)O(0.13)N(0.28)Fe(1.74×10(-3)). Remarkably, we find that iron metabolism during growth of this magnetotactic bacterium is much more correlated individually with carbon and nitrogen, compared to carbon and nitrogen with each other, indicating that iron serves more as a nutrient during bacterial growth rather than just a mineral. Magnetotactic bacteria have not only invoked some interest in the field of astrobiology for the last two decades, but are also prokaryotes having the unique ability of synthesizing membrane bound intracellular organelles. Our findings on these unique prokaryotes are a strong addition to the limited repertoire, of elemental compositions of living cells, aimed at exploring the chemical logic of life.

  3. Diversity and abundance of photosynthetic sponges in temperate Western Australia

    PubMed Central

    Lemloh, Marie-Louise; Fromont, Jane; Brümmer, Franz; Usher, Kayley M

    2009-01-01

    Background Photosynthetic sponges are important components of reef ecosystems around the world, but are poorly understood. It is often assumed that temperate regions have low diversity and abundance of photosynthetic sponges, but to date no studies have investigated this question. The aim of this study was to compare the percentages of photosynthetic sponges in temperate Western Australia (WA) with previously published data on tropical regions, and to determine the abundance and diversity of these associations in a range of temperate environments. Results We sampled sponges on 5 m belt transects to determine the percentage of photosynthetic sponges and identified at least one representative of each group of symbionts using 16S rDNA sequencing together with microscopy techniques. Our results demonstrate that photosynthetic sponges are abundant in temperate WA, with an average of 63% of sponge individuals hosting high levels of photosynthetic symbionts and 11% with low to medium levels. These percentages of photosynthetic sponges are comparable to those found on tropical reefs and may have important implications for ecosystem function on temperate reefs in other areas of the world. A diverse range of symbionts sometimes occurred within a small geographic area, including the three "big" cyanobacterial clades, Oscillatoria spongeliae, "Candidatus Synechococcus spongiarum" and Synechocystis species, and it appears that these clades all occur in a wide range of sponges. Additionally, spongin-permeating red algae occurred in at least 7 sponge species. This study provides the first investigation of the molecular phylogeny of rhodophyte symbionts in sponges. Conclusion Photosynthetic sponges are abundant and diverse in temperate WA, with comparable percentages of photosynthetic to non-photosynthetic sponges to tropical zones. It appears that there are three common generalist clades of cyanobacterial symbionts of sponges which occur in a wide range of sponges in a wide range

  4. [Influence of photosynthetic parameters on leaf longevity].

    PubMed

    Vasfilov, S P

    2015-01-01

    Higher plants show a wide range of leaf lifespan (LL) variability. LL is calculated as a sum of functional LL(f) (corresponding to the time of active photosynthesis and CO2 accumulation in the leaf) and nonfunctional LL(n) (the time of photosynthetic activity absence). For evergreen species of boreal zones, LL(n) corresponds to the period of winter rest. Photosynthetic potential of leaf (PPL), interpreted as the maximum possible amount of CO2 that can be fixed during its life, can be estimated on the basis of maximum photosynthesis rate (P(a)) dynamics during LL(f); the maximum (P(a max)) being achieved in mature leaf. Photosynthetic potential depends on LL(f) more strongly than on P(a max). The PPL/LL(f) ratio is indicative of the rate of PPL realization over leaf lifespan. As LL(f) shows strong positive correlation with LL, the latter parameter can also characterize the rate of PPL realization. Long LL(f) in evergreen species provides higher PPL, which is advantageous by comparison with deciduous ones. In evergreen species, the PPL itself is realized slower than in deciduous ones. The increase in LL(f) and LL is accompanied by the increase in leaf constructional cost (LCC(a)) as well as the decrease in photosynthesis rate. At that, photosynthesis rate per unit of dry weight (P(m)) decreases much faster than that per unit of leaf area (P(a)). Apparently, when considering dry leaf weight, the apoplast share seems to be much higher in long-living leaves of evergreen species than in short-living leaves of deciduous species. The leaf payback (LP) may be stabilized by unidirectional shifts in PPL and LCC(a). Species with short/long LL(f) and high/low PPL realization rate are typical for early/late succession stages and for habitats with the environmental conditions favorable/adverse for photosynthesis and growth. If the conditions for photosynthesis and growth are favorable, high PPL realization rate provides advantage in competition. The PPL realization rate is

  5. Synthetic Antenna Functioning As Light Harvester in the Whole Visible Region for Enhanced Hybrid Photosynthetic Reaction Centers.

    PubMed

    Hassan Omar, Omar; la Gatta, Simona; Tangorra, Rocco Roberto; Milano, Francesco; Ragni, Roberta; Operamolla, Alessandra; Argazzi, Roberto; Chiorboli, Claudio; Agostiano, Angela; Trotta, Massimo; Farinola, Gianluca M

    2016-07-20

    The photosynthetic reaction center (RC) from the Rhodobacter sphaeroides bacterium has been covalently bioconjugated with a NIR-emitting fluorophore (AE800) whose synthesis was specifically tailored to act as artificial antenna harvesting light in the entire visible region. AE800 has a broad absorption spectrum with peaks centered in the absorption gaps of the RC and its emission overlaps the most intense RC absorption bands, ensuring a consistent increase of the protein optical cross section. The covalent hybrid AE800-RC is stable and fully functional. The energy collected by the artificial antenna is transferred to the protein via FRET mechanism, and the hybrid system outperforms by a noteworthy 30% the overall photochemical activity of the native protein under the entire range of visible light. This improvement in the optical characteristic of the photoenzyme demonstrates the effectiveness of the bioconjugation approach as a suitable route to new biohybrid materials for energy conversion, photocatalysis, and biosensing. PMID:27245093

  6. Synthetic Antenna Functioning As Light Harvester in the Whole Visible Region for Enhanced Hybrid Photosynthetic Reaction Centers.

    PubMed

    Hassan Omar, Omar; la Gatta, Simona; Tangorra, Rocco Roberto; Milano, Francesco; Ragni, Roberta; Operamolla, Alessandra; Argazzi, Roberto; Chiorboli, Claudio; Agostiano, Angela; Trotta, Massimo; Farinola, Gianluca M

    2016-07-20

    The photosynthetic reaction center (RC) from the Rhodobacter sphaeroides bacterium has been covalently bioconjugated with a NIR-emitting fluorophore (AE800) whose synthesis was specifically tailored to act as artificial antenna harvesting light in the entire visible region. AE800 has a broad absorption spectrum with peaks centered in the absorption gaps of the RC and its emission overlaps the most intense RC absorption bands, ensuring a consistent increase of the protein optical cross section. The covalent hybrid AE800-RC is stable and fully functional. The energy collected by the artificial antenna is transferred to the protein via FRET mechanism, and the hybrid system outperforms by a noteworthy 30% the overall photochemical activity of the native protein under the entire range of visible light. This improvement in the optical characteristic of the photoenzyme demonstrates the effectiveness of the bioconjugation approach as a suitable route to new biohybrid materials for energy conversion, photocatalysis, and biosensing.

  7. Structural basis of photosynthetic water-splitting

    SciTech Connect

    Shen, Jian-Ren; Kawakami, Keisuke; Kamiya, Nobuo

    2013-12-10

    Photosynthetic water-splitting takes place in photosystem II (PSII), a membrane protein complex consisting of 20 subunits with an overall molecular mass of 350 kDa. The light-induced water-splitting reaction catalyzed by PSII not only converts light energy into biologically useful chemical energy, but also provides us with oxygen indispensible for sustaining oxygenic life on the earth. We have solved the structure of PSII at a 1.9 Å resolution, from which, the detailed structure of the Mn{sub 4}CaO{sub 5}-cluster, the catalytic center for water-splitting, became clear. Based on the structure of PSII at the atomic resolution, possible mechanism of light-induced water-splitting was discussed.

  8. Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Sun, Jianhua; Zhang, Jinshui; Zhang, Mingwen; Antonietti, Markus; Fu, Xianzhi; Wang, Xinchen

    2012-10-01

    Natural photosynthesis occurs in the thylakoid membrane where functional proteins and electron carriers are precisely arranged to efficiently convert sunlight into a chemical potential between the two membrane sides, via charge separation and electron transport chains, for use in oxygen generation and CO2 fixation. These light-harvesting complexes and cofactors have been actively mimicked using dyes, semiconductors and catalytic nanoparticles. However, the photosynthetic scaffold that optimizes both the capture and distribution of light and separates both the oxidative and reductive species has been mimicked much less often, especially using polymer substances. Here we report the synthesis of hollow nanospheres sized in the optical range and made of a robust semiconductor, melon or carbon-nitride polymer. These hollow nanospheres are shown to function as both light-harvesting antennae and nanostructured scaffolds that improve photoredox catalysis, which was determined to have a 7.5% apparent quantum yield via a hydrogen-generation assay.

  9. Photosynthetic Machineries in Nano-Systems

    PubMed Central

    Nagy, László; Magyar, Melinda; Szabó, Tibor; Hajdu, Kata; Giotta, Livia; Dorogi, Márta; Milano, Francesco

    2014-01-01

    Photosynthetic reaction centres are membrane-spanning proteins, found in several classes of autotroph organisms, where a photoinduced charge separation and stabilization takes place with a quantum efficiency close to unity. The protein remains stable and fully functional also when extracted and purified in detergents thereby biotechnological applications are possible, for example, assembling it in nano-structures or in optoelectronic systems. Several types of bionanocomposite materials have been assembled by using reaction centres and different carrier matrices for different purposes in the field of light energy conversion (e.g., photovoltaics) or biosensing (e.g., for specific detection of pesticides). In this review we will summarize the current status of knowledge, the kinds of applications available and the difficulties to be overcome in the different applications. We will also show possible research directions for the close future in this specific field. PMID:24678673

  10. Natural strategies for photosynthetic light harvesting.

    PubMed

    Croce, Roberta; van Amerongen, Herbert

    2014-07-01

    Photosynthetic organisms are crucial for life on Earth as they provide food and oxygen and are at the basis of most energy resources. They have a large variety of light-harvesting strategies that allow them to live nearly everywhere where sunlight can penetrate. They have adapted their pigmentation to the spectral composition of light in their habitat, they acclimate to slowly varying light intensities and they rapidly respond to fast changes in light quality and quantity. This is particularly important for oxygen-producing organisms because an overdose of light in combination with oxygen can be lethal. Rapid progress is being made in understanding how different organisms maximize light harvesting and minimize deleterious effects. Here we summarize the latest findings and explain the main design principles used in nature. The available knowledge can be used for optimizing light harvesting in both natural and artificial photosynthesis to improve light-driven production processes.

  11. Photosynthetic machineries in nano-systems.

    PubMed

    Nagy, László; Magyar, Melinda; Szabó, Tibor; Hajdu, Kata; Giotta, Livia; Dorogi, Márta; Milano, Francesco

    2014-01-01

    Photosynthetic reaction centres are membrane-spanning proteins, found in several classes of autotroph organisms, where a photoinduced charge separation and stabilization takes place with a quantum efficiency close to unity. The protein remains stable and fully functional also when extracted and purified in detergents thereby biotechnological applications are possible, for example, assembling it in nano-structures or in optoelectronic systems. Several types of bionanocomposite materials have been assembled by using reaction centres and different carrier matrices for different purposes in the field of light energy conversion (e.g., photovoltaics) or biosensing (e.g., for specific detection of pesticides). In this review we will summarize the current status of knowledge, the kinds of applications available and the difficulties to be overcome in the different applications. We will also show possible research directions for the close future in this specific field.

  12. Hydrogen productivity by photosynthetic water splitting

    SciTech Connect

    Greenbaum, E.

    1990-01-01

    This paper reviews recent progress in the field of hydrogen production by photosynthetic water splitting for both in vitro and in vivo systems. Absolute thermodynamic efficiencies of conversion of light energy into energy of molecular hydrogen by intact microalgae have been measured with an original physical measuring technique using a tin-oxide semiconducting gas sensor. Thin films of microalgae comprising 5-20 cellular monolayers have been entrapped on filter paper, thereby constraining them in a well-defined circular geometry. Based on absolute light absorption of visible polychromatic illumination in the low-intensity region of the light saturation curve, conversion efficiencies of 6 to 24% have been obtained. These values are the highest ever measured for hydrogen evolution by green algae. 34 refs., 7 figs., 1 tab.

  13. Phytoplankton Strategies for Photosynthetic Energy Allocation

    NASA Astrophysics Data System (ADS)

    Halsey, Kimberly H.; Jones, Bethan M.

    2015-01-01

    Phytoplankton physiology is dynamic and highly responsive to the environment. Phytoplankton acclimate to changing environmental conditions by a complex reallocation of carbon and energy through metabolic pathways to optimize growth. Considering the tremendous diversity of phytoplankton, it is not surprising that different phytoplankton taxa use different strategies to partition carbon and energy resources. It has therefore been satisfying to discover that general principles of energetic stoichiometry appear to govern these complex processes and can be broadly applied to interpret phytoplankton distributions, productivity, and food web dynamics. The expectation of future changes in aquatic environments brought on by climate change warrants gathering knowledge about underlying patterns of photosynthetic energy allocation and their impacts on community structure and ecosystem productivity.

  14. Mapping the spectral variability in photosynthetic and non-photosynthetic vegetation, soils, and shade using AVIRIS

    NASA Technical Reports Server (NTRS)

    Roberts, Dar A.; Smith, Milton O.; Sabol, Donald E.; Adams, John B.; Ustin, Susan L.

    1992-01-01

    The primary objective of this research was to map as many spectrally distinct types of green vegetation (GV), non-photosynthetic vegetation (NPV), shade, and soil (endmembers) in an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) scene as is warranted by the spectral variability of the data. Once determined, a secondary objective was to interpret these endmembers and their abundances spatially and spectrally in an ecological context.

  15. Blue-light-regulated transcription factor, Aureochrome, in photosynthetic stramenopiles.

    PubMed

    Takahashi, Fumio

    2016-03-01

    During the course of evolution through various endosymbiotic processes, diverse photosynthetic eukaryotes acquired blue light (BL) responses that do not use photosynthetic pathways. Photosynthetic stramenopiles, which have red algae-derived chloroplasts through secondary symbiosis, are principal primary producers in aquatic environments, and play important roles in ecosystems and aquaculture. Through secondary symbiosis, these taxa acquired BL responses, such as phototropism, chloroplast photo-relocation movement, and photomorphogenesis similar to those which green plants acquired through primary symbiosis. Photosynthetic stramenopile BL receptors were undefined until the discovery in 2007, of a new type of BL receptor, the aureochrome (AUREO), from the photosynthetic stramenopile alga, Vaucheria. AUREO has a bZIP domain and a LOV domain, and thus BL-responsive transcription factor. AUREO orthologs are only conserved in photosynthetic stramenopiles, such as brown algae, diatoms, and red tide algae. Here, a brief review is presented of the role of AUREOs as photoreceptors for these diverse BL responses and their biochemical properties in photosynthetic stramenopiles.

  16. Carbon Gain and Photosynthetic Response of Chrysanthemum to Photosynthetic Photon Flux Density Cycles 1

    PubMed Central

    Stoop, Johan M. H.; Willits, Dan H.; Peet, Mary M.; Nelson, Paul V.

    1991-01-01

    Most models of carbon gain as a function of photosynthetic irradiance assume an instantaneous response to increases and decreases in irradiance. High- and low-light-grown plants differ, however, in the time required to adjust to increases and decreases in irradiance. In this study the response to a series of increases and decreases in irradiance was observed in Chrysanthemum × morifolium Ramat. “Fiesta” and compared with calculated values assuming an instantaneous response. There were significant differences between high- and low-light-grown plants in their photosynthetic response to four sequential photosynthetic photon flux density (PPFD) cycles consisting of 5-minute exposures to 200 and 400 micromoles per square meter per second (μmol m−2s−1). The CO2 assimilation rate of high-light-grown plants at the cycle peak increased throughout the PPFD sequence, but the rate of increase was similar to the increase in CO2 assimilation rate observed under continuous high-light conditions. Low-light leaves showed more variability in their response to light cycles with no significant increase in CO2 assimilation rate at the cycle peak during sequential cycles. Carbon gain and deviations from actual values (percentage carbon gain over- or underestimation) based on assumptions of instantaneous response were compared under continuous and cyclic light conditions. The percentage carbon gain overestimation depended on the PPFD step size and growth light level of the leaf. When leaves were exposed to a large PPFD increase, the carbon gain was overestimated by 16 to 26%. The photosynthetic response to 100 μmol m−2 s−1 PPFD increases and decreases was rapid, and the small overestimation of the predicted carbon gain, observed during photosynthetic induction, was almost entirely negated by the carbon gain underestimation observed after a decrease. If the PPFD cycle was 200 or 400 μmol m−2 s−1, high- and low-light leaves showed a carbon gain overestimation of 25

  17. Photoinhibition of Phaeocystis globosa resulting from oxidative stress induced by a marine algicidal bacterium Bacillus sp. LP-10.

    PubMed

    Guan, Chengwei; Guo, Xiaoyun; Li, Yi; Zhang, Huajun; Lei, Xueqian; Cai, Guanjing; Guo, Jiajia; Yu, Zhiming; Zheng, Tianling

    2015-01-01

    Harmful algal blooms caused by Phaeocystis globosa have resulted in staggering losses to coastal countries because of their world-wide distribution. Bacteria have been studied for years to control the blooms of harmful alga, however, the action mechanism of them against harmful algal cells is still not well defined. Here, a previously isolated algicidal bacterium Bacillus sp. LP-10 was used to elucidate the potential mechanism involved in the dysfunction of P. globosa algal cells at physiological and molecular levels. Our results showed Bacillus sp. LP-10 induced an obvious rise of reactive oxygen species (ROS), which was supposed to be major reason for algal cell death. Meanwhile, the results revealed a significant decrease of photosynthetic physiological indexes and apparent down-regulated of photosynthesis-related genes (psbA and rbcS) and protein (PSII reaction center protein D1), after treated by Bacillus sp. LP-10 filtrates, suggesting photoinhibition occurred in the algal cells. Furthermore, our results indicated that light played important roles in the algal cell death. Our work demonstrated that the major lethal reason of P. globosa cells treated by the algicidal bacterium was the photoinhibition resulted from oxidative stress induced by Bacillus sp. LP-10. PMID:26601700

  18. Photoinhibition of Phaeocystis globosa resulting from oxidative stress induced by a marine algicidal bacterium Bacillus sp. LP-10.

    PubMed

    Guan, Chengwei; Guo, Xiaoyun; Li, Yi; Zhang, Huajun; Lei, Xueqian; Cai, Guanjing; Guo, Jiajia; Yu, Zhiming; Zheng, Tianling

    2015-11-25

    Harmful algal blooms caused by Phaeocystis globosa have resulted in staggering losses to coastal countries because of their world-wide distribution. Bacteria have been studied for years to control the blooms of harmful alga, however, the action mechanism of them against harmful algal cells is still not well defined. Here, a previously isolated algicidal bacterium Bacillus sp. LP-10 was used to elucidate the potential mechanism involved in the dysfunction of P. globosa algal cells at physiological and molecular levels. Our results showed Bacillus sp. LP-10 induced an obvious rise of reactive oxygen species (ROS), which was supposed to be major reason for algal cell death. Meanwhile, the results revealed a significant decrease of photosynthetic physiological indexes and apparent down-regulated of photosynthesis-related genes (psbA and rbcS) and protein (PSII reaction center protein D1), after treated by Bacillus sp. LP-10 filtrates, suggesting photoinhibition occurred in the algal cells. Furthermore, our results indicated that light played important roles in the algal cell death. Our work demonstrated that the major lethal reason of P. globosa cells treated by the algicidal bacterium was the photoinhibition resulted from oxidative stress induced by Bacillus sp. LP-10.

  19. Photoinhibition of Phaeocystis globosa resulting from oxidative stress induced by a marine algicidal bacterium Bacillus sp. LP-10

    PubMed Central

    Guan, Chengwei; Guo, Xiaoyun; Li, Yi; Zhang, Huajun; Lei, Xueqian; Cai, Guanjing; Guo, Jiajia; Yu, Zhiming; Zheng, Tianling

    2015-01-01

    Harmful algal blooms caused by Phaeocystis globosa have resulted in staggering losses to coastal countries because of their world-wide distribution. Bacteria have been studied for years to control the blooms of harmful alga, however, the action mechanism of them against harmful algal cells is still not well defined. Here, a previously isolated algicidal bacterium Bacillus sp. LP-10 was used to elucidate the potential mechanism involved in the dysfunction of P. globosa algal cells at physiological and molecular levels. Our results showed Bacillus sp. LP-10 induced an obvious rise of reactive oxygen species (ROS), which was supposed to be major reason for algal cell death. Meanwhile, the results revealed a significant decrease of photosynthetic physiological indexes and apparent down-regulated of photosynthesis-related genes (psbA and rbcS) and protein (PSII reaction center protein D1), after treated by Bacillus sp. LP-10 filtrates, suggesting photoinhibition occurred in the algal cells. Furthermore, our results indicated that light played important roles in the algal cell death. Our work demonstrated that the major lethal reason of P. globosa cells treated by the algicidal bacterium was the photoinhibition resulted from oxidative stress induced by Bacillus sp. LP-10. PMID:26601700

  20. Augmenting iron accumulation in cassava by the beneficial soil bacterium Bacillus subtilis (GBO3).

    PubMed

    Freitas, Mônica A; Medeiros, Flavio H V; Carvalho, Samuel P; Guilherme, Luiz R G; Teixeira, William D; Zhang, Huiming; Paré, Paul W

    2015-01-01

    Cassava (Manihot esculenta), a major staple food in the developing world, provides a basic carbohydrate diet for over half a billion people living in the tropics. Despite the iron abundance in most soils, cassava provides insufficient iron for humans as the edible roots contain 3-12 times less iron than other traditional food crops such as wheat, maize, and rice. With the recent identification that the beneficial soil bacterium Bacillus subtilis (strain GB03) activates iron acquisition machinery to increase metal ion assimilation in Arabidopsis, the question arises as to whether this plant-growth promoting rhizobacterium also augments iron assimilation to increase endogenous iron levels in cassava. Biochemical analyses reveal that shoot-propagated cassava with GB03-inoculation exhibit elevated iron accumulation after 140 days of plant growth as determined by X-ray microanalysis and total foliar iron analysis. Growth promotion and increased photosynthetic efficiency were also observed for greenhouse-grown plants with GB03-exposure. These results demonstrate the potential of microbes to increase iron accumulation in an important agricultural crop and is consistent with idea that microbial signaling can regulate plant photosynthesis. PMID:26300897

  1. Chitoporin from the Marine Bacterium Vibrio harveyi

    PubMed Central

    Chumjan, Watcharin; Winterhalter, Mathias; Schulte, Albert; Benz, Roland; Suginta, Wipa

    2015-01-01

    VhChiP is a sugar-specific porin present in the outer membrane of the marine bacterium Vibrio harveyi. VhChiP is responsible for the uptake of chitin oligosaccharides, with particular selectivity for chitohexaose. In this study, we employed electrophysiological and biochemical approaches to demonstrate that Trp136, located at the mouth of the VhChiP pore, plays an essential role in controlling the channel's ion conductivity, chitin affinity, and permeability. Kinetic analysis of sugar translocation obtained from single channel recordings indicated that the Trp136 mutations W136A, W136D, W136R, and W136F considerably reduce the binding affinity of the protein channel for its best substrate, chitohexaose. Liposome swelling assays confirmed that the Trp136 mutations decreased the rate of bulk chitohexaose permeation through the VhChiP channel. Notably, all of the mutants show increases in the off-rate for chitohexaose of up to 20-fold compared with that of the native channel. Furthermore, the cation/anion permeability ratio Pc/Pa is decreased in the W136R mutant and increased in the W136D mutant. This demonstrates that the negatively charged surface at the interior of the protein lumen preferentially attracts cationic species, leading to the cation selectivity of this trimeric channel. PMID:26082491

  2. Characterizations of intracellular arsenic in a bacterium

    NASA Astrophysics Data System (ADS)

    Wolfe-Simon, F.; Yannone, S. M.; Tainer, J. A.

    2011-12-01

    Life requires a key set of chemical elements to sustain growth. Yet, a growing body of literature suggests that microbes can alter their nutritional requirements based on the availability of these chemical elements. Under limiting conditions for one element microbes have been shown to utilize a variety of other elements to serve similar functions often (but not always) in similar molecular structures. Well-characterized elemental exchanges include manganese for iron, tungsten for molybdenum and sulfur for phosphorus or oxygen. These exchanges can be found in a wide variety of biomolecules ranging from protein to lipids and DNA. Recent evidence suggested that arsenic, as arsenate or As(V), was taken up and incorporated into the cellular material of the bacterium GFAJ-1. The evidence was interpreted to support As(V) acting in an analogous role to phosphate. We will therefore discuss our ongoing efforts to characterize intracellular arsenate and how it may partition among the cellular fractions of the microbial isolate GFAJ-1 when exposed to As(V) in the presence of various levels of phosphate. Under high As(V) conditions, cells express a dramatically different proteome than when grown given only phosphate. Ongoing studies on the diversity and potential role of proteins and metabolites produced in the presence of As(V) will be reported. These investigations promise to inform the role and additional metabolic potential for As in biology. Arsenic assimilation into biomolecules contributes to the expanding set of chemical elements utilized by microbes in unusual environmental niches.

  3. Hydrogen Biogeochemistry in Anaerobic and Photosynthetic Ecosystems

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    culture studies. Our recent work has extended the study of hydrogen to cyanobacterial mat communities. The large amounts of reducing power generated during photosynthetic activity carry the potential to contribute a swamping term to the H2 economy of the anaerobic microbial populations within the mat - and thereby to alter the population structure and biogeochemical function of the mat as a whole. In hypersaline microbial mats, we observe a distinct diel cycle in H2 production and a substantial corresponding flux. On an early Earth dominated by microbial mats, this transmission of photosynthetic reducing power may have carried important implications for both biospheric and atmospheric evolution.

  4. Cultivar variation in cotton photosynthetic performance under different temperature regimes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton (Gossypium hirsutum L.) yields are impacted by overall photosynthetic production. Factors that influence crop photosynthesis are the plants genetic makeup and the environmental conditions. This study investigated cultivar variation in photosynthesis when plants were grown in the field under...

  5. Towards autotrophic tissue engineering: Photosynthetic gene therapy for regeneration.

    PubMed

    Chávez, Myra Noemi; Schenck, Thilo Ludwig; Hopfner, Ursula; Centeno-Cerdas, Carolina; Somlai-Schweiger, Ian; Schwarz, Christian; Machens, Hans-Günther; Heikenwalder, Mathias; Bono, María Rosa; Allende, Miguel L; Nickelsen, Jörg; Egaña, José Tomás

    2016-01-01

    The use of artificial tissues in regenerative medicine is limited due to hypoxia. As a strategy to overcome this drawback, we have shown that photosynthetic biomaterials can produce and provide oxygen independently of blood perfusion by generating chimeric animal-plant tissues during dermal regeneration. In this work, we demonstrate the safety and efficacy of photosynthetic biomaterials in vivo after engraftment in a fully immunocompetent mouse skin defect model. Further, we show that it is also possible to genetically engineer such photosynthetic scaffolds to deliver other key molecules in addition to oxygen. As a proof-of-concept, biomaterials were loaded with gene modified microalgae expressing the angiogenic recombinant protein VEGF. Survival of the algae, growth factor delivery and regenerative potential were evaluated in vitro and in vivo. This work proposes the use of photosynthetic gene therapy in regenerative medicine and provides scientific evidence for the use of engineered microalgae as an alternative to deliver recombinant molecules for gene therapy. PMID:26474040

  6. Towards autotrophic tissue engineering: Photosynthetic gene therapy for regeneration.

    PubMed

    Chávez, Myra Noemi; Schenck, Thilo Ludwig; Hopfner, Ursula; Centeno-Cerdas, Carolina; Somlai-Schweiger, Ian; Schwarz, Christian; Machens, Hans-Günther; Heikenwalder, Mathias; Bono, María Rosa; Allende, Miguel L; Nickelsen, Jörg; Egaña, José Tomás

    2016-01-01

    The use of artificial tissues in regenerative medicine is limited due to hypoxia. As a strategy to overcome this drawback, we have shown that photosynthetic biomaterials can produce and provide oxygen independently of blood perfusion by generating chimeric animal-plant tissues during dermal regeneration. In this work, we demonstrate the safety and efficacy of photosynthetic biomaterials in vivo after engraftment in a fully immunocompetent mouse skin defect model. Further, we show that it is also possible to genetically engineer such photosynthetic scaffolds to deliver other key molecules in addition to oxygen. As a proof-of-concept, biomaterials were loaded with gene modified microalgae expressing the angiogenic recombinant protein VEGF. Survival of the algae, growth factor delivery and regenerative potential were evaluated in vitro and in vivo. This work proposes the use of photosynthetic gene therapy in regenerative medicine and provides scientific evidence for the use of engineered microalgae as an alternative to deliver recombinant molecules for gene therapy.

  7. Reengineering the optical absorption cross-section of photosynthetic reaction centers.

    PubMed

    Dutta, Palash K; Lin, Su; Loskutov, Andrey; Levenberg, Symon; Jun, Daniel; Saer, Rafael; Beatty, J Thomas; Liu, Yan; Yan, Hao; Woodbury, Neal W

    2014-03-26

    Engineered cysteine residues near the primary electron donor (P) of the reaction center from the purple photosynthetic bacterium Rhodobacter sphaeroides were covalently conjugated to each of several dye molecules in order to explore the geometric design and spectral requirements for energy transfer between an artificial antenna system and the reaction center. An average of 2.5 fluorescent dye molecules were attached at specific locations near P. The enhanced absorbance cross-section afforded by conjugation of Alexa Fluor 660 dyes resulted in a 2.2-fold increase in the formation of reaction center charge-separated state upon intensity-limited excitation at 650 nm. The effective increase in absorbance cross-section resulting from the conjugation of two other dyes, Alexa Fluor 647 and Alexa Fluor 750, was also investigated. The key parameters that dictate the efficiency of dye-to-reaction center energy transfer and subsequent charge separation were examined using both steady-state and time-resolved fluorescence spectroscopy as well as transient absorbance spectroscopy techniques. An understanding of these parameters is an important first step toward developing more complex model light-harvesting systems integrated with reaction centers. PMID:24568563

  8. Efficient behavior of photosynthetic organelles via Pareto optimality, identifiability, and sensitivity analysis.

    PubMed

    Carapezza, Giovanni; Umeton, Renato; Costanza, Jole; Angione, Claudio; Stracquadanio, Giovanni; Papini, Alessio; Lió, Pietro; Nicosia, Giuseppe

    2013-05-17

    In this work, we develop methodologies for analyzing and cross comparing metabolic models. We investigate three important metabolic networks to discuss the complexity of biological organization of organisms, modeling, and system properties. In particular, we analyze these metabolic networks because of their biotechnological and basic science importance: the photosynthetic carbon metabolism in a general leaf, the Rhodobacter spheroides bacterium, and the Chlamydomonas reinhardtii alga. We adopt single- and multi-objective optimization algorithms to maximize the CO 2 uptake rate and the production of metabolites of industrial interest or for ecological purposes. We focus both on the level of genes (e.g., finding genetic manipulations to increase the production of one or more metabolites) and on finding concentration enzymes for improving the CO 2 consumption. We find that R. spheroides is able to absorb an amount of CO 2 until 57.452 mmol h (-1) gDW (-1) , while C. reinhardtii obtains a maximum of 6.7331. We report that the Pareto front analysis proves extremely useful to compare different organisms, as well as providing the possibility to investigate them with the same framework. By using the sensitivity and robustness analysis, our framework identifies the most sensitive and fragile components of the biological systems we take into account, allowing us to compare their models. We adopt the identifiability analysis to detect functional relations among enzymes; we observe that RuBisCO, GAPDH, and FBPase belong to the same functional group, as suggested also by the sensitivity analysis.

  9. Fluctuating Two-State Light Harvesting in a Photosynthetic Membrane

    SciTech Connect

    Pan, Duohai; Hu, Dehong; Liu, Ruchuan; Zeng, Xiaohua; Kaplan, Samuel; Lu, H. Peter

    2007-06-28

    How light is converted into chemical energy in a natural photosynthetic system is of great interest in energy sciences. Using single-molecule and single-vesicle fluorescence spectroscopy and imaging, we have observed fluctuating inter-molecular protein energy transfers in the photosynthetic membranes of R. sphaeroides. Our results suggest that there are dynamic coupled and non-coupled states in the light-harvesting protein assembly.

  10. Taxonomic characterization of the cellulose-degrading bacterium NCIB 10462

    SciTech Connect

    Dees, C.; Ringleberg, D.; Scott, T.C.; Phelps, T.

    1994-06-01

    The gram negative cellulase-producing bacterium NCIB 10462 has been previously named Pseudomonas fluorescens subsp. or var. cellulosa. Since there is renewed interest in cellulose-degrading bacteria for use in bioconversion of cellulose to chemical feed stocks and fuels, we re-examined the characteristics of this microorganism to determine its proper taxonomic characterization and to further define it`s true metabolic potential. Metabolic and physical characterization of NCIB 10462 revealed that this was an alkalophilic, non-fermentative, gram negative, oxidase positive, motile, cellulose-degrading bacterium. The aerobic substrate utilization profile of this bacterium was found to have few characteristics consistent with a classification of P. fluorescens with a very low probability match with the genus Sphingomonas. Total lipid analysis did not reveal that any sphingolipid bases are produced by this bacterium. NCIB 10462 was found to grow best aerobically but also grows well in complex media under reducing conditions. NCIB 10462 grew slowly under full anaerobic conditions on complex media but growth on cellulosic media was found only under aerobic conditions. Total fatty acid analysis (MIDI) of NCIB 10462 failed to group this bacterium with a known pseudomonas species. However, fatty acid analysis of the bacteria when grown at temperatures below 37{degrees}C suggest that the organism is a pseudomonad. Since a predominant characteristic of this bacterium is it`s ability to degrade cellulose, we suggest it be called Pseudomonas cellulosa.

  11. Dynamic Environmental Photosynthetic Imaging Reveals Emergent Phenotypes.

    PubMed

    Cruz, Jeffrey A; Savage, Linda J; Zegarac, Robert; Hall, Christopher C; Satoh-Cruz, Mio; Davis, Geoffry A; Kovac, William Kent; Chen, Jin; Kramer, David M

    2016-06-22

    Understanding and improving the productivity and robustness of plant photosynthesis requires high-throughput phenotyping under environmental conditions that are relevant to the field. Here we demonstrate the dynamic environmental photosynthesis imager (DEPI), an experimental platform for integrated, continuous, and high-throughput measurements of photosynthetic parameters during plant growth under reproducible yet dynamic environmental conditions. Using parallel imagers obviates the need to move plants or sensors, reducing artifacts and allowing simultaneous measurement on large numbers of plants. As a result, DEPI can reveal phenotypes that are not evident under standard laboratory conditions but emerge under progressively more dynamic illumination. We show examples in mutants of Arabidopsis of such "emergent phenotypes" that are highly transient and heterogeneous, appearing in different leaves under different conditions and depending in complex ways on both environmental conditions and plant developmental age. These emergent phenotypes appear to be caused by a range of phenomena, suggesting that such previously unseen processes are critical for plant responses to dynamic environments. PMID:27336966

  12. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    SciTech Connect

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2001-07-25

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 4/03/2001 through 7/02/2001. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives. Note that this version of the quarterly technical report is a revision to add the reports from subcontractors Montana State and Oak Ridge National Laboratories The significant accomplishments for this quarter include: Development of an experimental plan and initiation of experiments to create a calibration curve that correlates algal chlorophyll levels with carbon levels (to simplify future experimental procedures); Completion of debugging of the slug flow reactor system, and development of a plan for testing the pressure drop of the slug flow reactor; Design and development of a new bioreactor screen design which integrates the nutrient delivery drip system and the harvesting system; Development of an experimental setup for testing the new integrated drip system/harvesting system; Completion of model-scale bioreactor tests examining the effects of CO{sub 2} concentration levels and lighting levels on Nostoc 86-3 growth rates; Completion of the construction of a larger model-scale bioreactor to improve and expand testing capabilities and initiation of tests; Substantial progress on construction of a pilot-scale bioreactor; and Preliminary economic analysis of photobioreactor deployment. Plans for next quarter's work are included in the conclusions. A preliminary economic analysis is included as an appendix.

  13. Photosynthetic light harvesting: excitons and coherence

    PubMed Central

    Fassioli, Francesca; Dinshaw, Rayomond; Arpin, Paul C.; Scholes, Gregory D.

    2014-01-01

    Photosynthesis begins with light harvesting, where specialized pigment–protein complexes transform sunlight into electronic excitations delivered to reaction centres to initiate charge separation. There is evidence that quantum coherence between electronic excited states plays a role in energy transfer. In this review, we discuss how quantum coherence manifests in photosynthetic light harvesting and its implications. We begin by examining the concept of an exciton, an excited electronic state delocalized over several spatially separated molecules, which is the most widely available signature of quantum coherence in light harvesting. We then discuss recent results concerning the possibility that quantum coherence between electronically excited states of donors and acceptors may give rise to a quantum coherent evolution of excitations, modifying the traditional incoherent picture of energy transfer. Key to this (partially) coherent energy transfer appears to be the structure of the environment, in particular the participation of non-equilibrium vibrational modes. We discuss the open questions and controversies regarding quantum coherent energy transfer and how these can be addressed using new experimental techniques. PMID:24352671

  14. Renewable hydrogen production by photosynthetic water splitting

    SciTech Connect

    Greenbaum, E.; Lee, J.W.

    1998-06-01

    This mission-oriented research project is focused on the production of renewable hydrogen. The authors have demonstrated that certain unicellular green algae are capable of sustained simultaneous photoproduction of hydrogen and oxygen by light-activated photosynthetic water splitting. It is the goal of this project to develop a practical chemical engineering system for the development of an economic process that can be used to produce renewable hydrogen. There are several fundamental problems that need to be solved before the application of this scientific knowledge can be applied to the development a practical process: (I) maximizing net thermodynamic conversion efficiency of light energy into hydrogen energy, (2) development of oxygen-sensitive hydrogenase-containing mutants, and (3) development of bioreactors that can be used in a real-world chemical engineering process. The authors are addressing each of these problems here at ORNL and in collaboration with their research colleagues at the National Renewable Energy Laboratory, the University of California, Berkeley, and the University of Hawaii. This year the authors have focused on item 1 above. In particular, they have focused on the question of how many light reactions are required to split water to molecular hydrogen and oxygen.

  15. Photosynthetic light harvesting: excitons and coherence.

    PubMed

    Fassioli, Francesca; Dinshaw, Rayomond; Arpin, Paul C; Scholes, Gregory D

    2014-03-01

    Photosynthesis begins with light harvesting, where specialized pigment-protein complexes transform sunlight into electronic excitations delivered to reaction centres to initiate charge separation. There is evidence that quantum coherence between electronic excited states plays a role in energy transfer. In this review, we discuss how quantum coherence manifests in photosynthetic light harvesting and its implications. We begin by examining the concept of an exciton, an excited electronic state delocalized over several spatially separated molecules, which is the most widely available signature of quantum coherence in light harvesting. We then discuss recent results concerning the possibility that quantum coherence between electronically excited states of donors and acceptors may give rise to a quantum coherent evolution of excitations, modifying the traditional incoherent picture of energy transfer. Key to this (partially) coherent energy transfer appears to be the structure of the environment, in particular the participation of non-equilibrium vibrational modes. We discuss the open questions and controversies regarding quantum coherent energy transfer and how these can be addressed using new experimental techniques.

  16. Virtual intermediates in photosynthetic electron transfer.

    PubMed Central

    Joseph, J S; Bialek, W

    1992-01-01

    We explore the possibility of virtual transfer in the primary charge separation of photosynthetic bacteria within the context of several types of experimental data. We show that the peak that might be expected in the virtual rate as electric fields vary the intermediate state energy is severely broadened by coupling to high-frequency modes. The Stark absorption kinetics data are thus consistent with virtual transfer in the primary charge separation. High-frequency coupling also makes the temperature dependence weak over a wide range of parameters. We demonstrate that Stark fluorescence anisotropy data, usually taken as evidence of virtual transfer, can in fact be consistent with two-step transfer. We suggest a two-pulse excitation experiment to quantify the contributions from two-step and virtual transfer. We show that virtual absorption into a charge transfer state can make a substantial contribution to the Stark absorption spectrum in a way that is not related to any derivative of the absorption spectrum. PMID:1420886

  17. Multiantenna artificial photosynthetic reaction center complex.

    PubMed

    Terazono, Yuichi; Kodis, Gerdenis; Liddell, Paul A; Garg, Vikas; Moore, Thomas A; Moore, Ana L; Gust, Devens

    2009-05-21

    In order to ensure efficient utilization of the solar spectrum, photosynthetic organisms use a variety of antenna chromophores to absorb light and transfer excitation to a reaction center, where photoinduced charge separation occurs. Reported here is a synthetic molecular heptad that features two bis(phenylethynyl)anthracene and two borondipyrromethene antennas linked to a hexaphenylbenzene core that also bears two zinc porphyrins. A fullerene electron acceptor self-assembles to both porhyrins via dative bonds. Excitation energy is transferred very efficiently from all four antennas to the porphyrins. Singlet-singlet energy transfer occurs both directly and by a stepwise funnel-like pathway wherein excitation moves down a thermodynamic gradient. The porphyrin excited states donate an electron to the fullerene with a time constant of 3 ps to generate a charge-separated state with a lifetime of 230 ps. The overall quantum yield is close to unity. In the absence of the fullerene, the porphyrin excited singlet state donates an electron to a borondipyrromethene on a slower time scale. This molecule demonstrates that by incorporating antennas, it is possible for a molecular system to harvest efficiently light throughout the visible from ultraviolet wavelengths out to approximately 650 nm.

  18. Supramolecular structures modeling photosynthetic reaction center function

    SciTech Connect

    Wasielewski, M.R.; Gaines, G.L. III; Gosztola, D.; Niemczyk, M.P.; Svec, W.A.

    1992-08-20

    Work in our laboratory has focused on the influence of solvent motion on the rates and energetics of photochemical charge separation in glassy solids. The efficiencies of many nonadiabatic electron transfer reactions involving photochemical electron donors with relatively low excited state energies, such as porphyrins and chlorophylls, are poor in the solid state. Recent work has shown that placing a porphyrin-acceptor system in a glassy solid at low temperature significantly raises the energy of ks ion-pair state. This destabilization can be as much as 0.8 eV relative to the ion pair state energy in a polar liquid. This contrasts sharply with photosynthetic reaction centers, which maintain medium-independent electron transfer rates with relatively small free energies of charge separation. Using this information we have set out to design photochemical systems that produce long-lived radical ion pairs in glassy solids with high quantum efficiency. These systems maintain their efficiency when placed in other glassy matrices, such as polymers. An important consequence of this effort is the design of molecules that minimize the electronic interaction between the oxidized donor and reduced acceptor. This minimization can be attained by careful design of the spacer groups linking the donor and acceptor and by using more than a single electron transfer step to increase the distance between the separated charges as is done in natural photosynthesis.

  19. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    SciTech Connect

    Dr. David J. Bayless; Dr. Morgan Vis; Dr. Gregory Kremer; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2001-01-16

    This is the first quarterly report of the project Enhanced Practical Photosynthetic CO{sub 2} Mitigation. The official project start date, 10/02/2000, was delayed until 10/31/2000 due to an intellectual property dispute that was resolved. However, the delay forced a subsequent delay in subcontracting with Montana State University, which then delayed obtaining a sampling permit from Yellowstone National Park. However, even with these delays, the project moved forward with some success. Accomplishments for this quarter include: Culturing of thermophilic organisms from Yellowstone; Testing of mesophilic organisms in extreme CO{sub 2} conditions; Construction of a second test bed for additional testing; Purchase of a total carbon analyzer dedicated to the project; Construction of a lighting container for Oak Ridge National Laboratory optical fiber testing; Modified lighting of existing test box to provide more uniform distribution; Testing of growth surface adhesion and properties; Experimentation on water-jet harvesting techniques; and Literature review underway regarding uses of biomass after harvesting. Plans for next quarter's work and an update on the project's web page are included in the conclusions.

  20. Supplemental photosynthetic lighting for greenhouse tomato production

    SciTech Connect

    Godfriaux, B.L.; Wittman, W.K. ); Janes, H.W.; McAvoy, R.J.; Putman, J.; Logendra, S. . Dept. of Horticulture and Forestry); Mears, D.R.; Giacommelli, G.; Giniger, M. . Dept. of Biological and Agricultural Engineering)

    1989-12-01

    The influence of supplemental light on the growth and productivity of greenhouse tomatoes grown to a single cluster on movable benches is examined, and the economic feasibility of such a system is evaluated. Experiments were conducted to quantify the tomato plants' response to various levels of supplemental light in terms of growth rate and yield at various stages in their development (e.g., seedling, flowering plant, etc.). The 1984--85 experiments showed that supplemental photosynthetic lighting nearly doubled tomato yields, from 0.48 to 0.86 lbs/plant. Subsequent experiments in 1985--86 identified the best tomato varieties for this treatment and further increased yields to 1.3 lbs/plant. In addition, the use of supplemental lighting was found to hasten tomato crop maturity. An economic analysis was performed on the 1985--86 empirical data using the tax rates and provisions then in force. It indicated that a 10-acre greenhouse could provide an after-tax internal rate of return of 10% to 12% using only equity financing. This return could likely be increased to 15--18% with the use of combined debt/equity financing. Using supplemental lighting on 10,000 acres of greenhouse production would require an estimated 7.5 billion kWh of additional electricity per year and, at 4.7 cents/kWh, generate an estimated $350 million in additional utility revenues. 48 refs., 34 figs., 24 tabs.

  1. Photocurrent of a single photosynthetic protein

    NASA Astrophysics Data System (ADS)

    Gerster, Daniel; Reichert, Joachim; Bi, Hai; Barth, Johannes V.; Kaniber, Simone M.; Holleitner, Alexander W.; Visoly-Fisher, Iris; Sergani, Shlomi; Carmeli, Itai

    2012-10-01

    Photosynthesis is used by plants, algae and bacteria to convert solar energy into stable chemical energy. The initial stages of this process--where light is absorbed and energy and electrons are transferred--are mediated by reaction centres composed of chlorophyll and carotenoid complexes. It has been previously shown that single small molecules can be used as functional components in electric and optoelectronic circuits, but it has proved difficult to control and probe individual molecules for photovoltaic and photoelectrochemical applications. Here, we show that the photocurrent generated by a single photosynthetic protein--photosystem I--can be measured using a scanning near-field optical microscope set-up. One side of the protein is anchored to a gold surface that acts as an electrode, and the other is contacted by a gold-covered glass tip. The tip functions as both counter electrode and light source. A photocurrent of ~10 pA is recorded from the covalently bound single-protein junctions, which is in agreement with the internal electron transfer times of photosystem I.

  2. Rice photosynthetic productivity and PSII photochemistry under nonflooded irrigation.

    PubMed

    He, Haibing; Yang, Ru; Jia, Biao; Chen, Lin; Fan, Hua; Cui, Jing; Yang, Dong; Li, Menglong; Ma, Fu-Yu

    2014-01-01

    Nonflooded irrigation is an important water-saving rice cultivation technology, but little is known on its photosynthetic mechanism. The aims of this work were to investigate photosynthetic characteristics of rice during grain filling stage under three nonflooded irrigation treatments: furrow irrigation with plastic mulching (FIM), furrow irrigation with nonmulching (FIN), and drip irrigation with plastic mulching (DI). Compared with the conventional flooding (CF) treatment, those grown in the nonflooded irrigation treatments showed lower net photosynthetic rate (PN), lower maximum quantum yield (Fv/Fm), and lower effective quantum yield of PSII photochemistry (ΦPSII). And the poor photosynthetic characteristics in the nonflooded irrigation treatments were mainly attributed to the low total nitrogen content (TNC). Under non-flooded irrigation, the PN, Fv/Fm, and ΦPSII significantly decreased with a reduction in the soil water potential, but these parameters were rapidly recovered in the DI and FIM treatments when supplementary irrigation was applied. Moreover, The DI treatment always had higher photosynthetic productivity than the FIM and FIN treatments. Grain yield, matter translocation, and dry matter post-anthesis (DMPA) were the highest in the CF treatment, followed by the DI, FIM, and FIN treatments in turn. In conclusion, increasing nitrogen content in leaf of rice plants could be a key factor to improve photosynthetic capacity in nonflooded irrigation.

  3. Hydraulic basis for the evolution of photosynthetic productivity.

    PubMed

    Scoffoni, Christine; Chatelet, David S; Pasquet-Kok, Jessica; Rawls, Michael; Donoghue, Michael J; Edwards, Erika J; Sack, Lawren

    2016-05-27

    Clarifying the evolution and mechanisms for photosynthetic productivity is a key to both improving crops and understanding plant evolution and habitat distributions. Current theory recognizes a role for the hydraulics of water transport as a potential determinant of photosynthetic productivity based on comparative data across disparate species. However, there has never been rigorous support for the maintenance of this relationship during an evolutionary radiation. We tested this theory for 30 species of Viburnum, diverse in leaf shape and photosynthetic anatomy, grown in a common garden. We found strong support for a fundamental requirement for leaf hydraulic capacity (Kleaf) in determining photosynthetic capacity (Amax), as these traits diversified across this lineage in tight coordination, with their proportionality modulated by the climate experienced in the species' range. Variation in Kleaf arose from differences in venation architecture that influenced xylem and especially outside-xylem flow pathways. These findings substantiate an evolutionary basis for the coordination of hydraulic and photosynthetic physiology across species, and their co-dependence on climate, establishing a fundamental role for water transport in the evolution of the photosynthetic rate.

  4. Regulation of the photosynthetic apparatus under fluctuating growth light.

    PubMed

    Tikkanen, Mikko; Grieco, Michele; Nurmi, Markus; Rantala, Marjaana; Suorsa, Marjaana; Aro, Eva-Mari

    2012-12-19

    Safe and efficient conversion of solar energy to metabolic energy by plants is based on tightly inter-regulated transfer of excitation energy, electrons and protons in the photosynthetic machinery according to the availability of light energy, as well as the needs and restrictions of metabolism itself. Plants have mechanisms to enhance the capture of energy when light is limited for growth and development. Also, when energy is in excess, the photosynthetic machinery slows down the electron transfer reactions in order to prevent the production of reactive oxygen species and the consequent damage of the photosynthetic machinery. In this opinion paper, we present a partially hypothetical scheme describing how the photosynthetic machinery controls the flow of energy and electrons in order to enable the maintenance of photosynthetic activity in nature under continual fluctuations in white light intensity. We discuss the roles of light-harvesting II protein phosphorylation, thermal dissipation of excess energy and the control of electron transfer by cytochrome b(6)f, and the role of dynamically regulated turnover of photosystem II in the maintenance of the photosynthetic machinery. We present a new hypothesis suggesting that most of the regulation in the thylakoid membrane occurs in order to prevent oxidative damage of photosystem I.

  5. Electrochemical and optical studies of model photosynthetic systems

    SciTech Connect

    Not Available

    1992-01-15

    The objective of this research is to obtain a better understanding of the relationship between the structural organization of photosynthetic pigments and their spectroscopic and electrochemical properties. Defined model systems were studied first. These included the least ordered (solutions) through the most highly ordered (Langmuir-Blodgett (LB) monolayers and self-assembled monolayers) systems containing BChl, BPheo, and UQ. Molecules other than the photosynthetic pigments and quinones were also examined, including chromophores (i.e. surface active cyanine dyes and phtahlocyanines) an redox active compounds (methyl viologen (MV) and surfactant ferrocenes), in order to develop the techniques needed to study the photosynthetic components. Because the chlorophylls are photosensitive and labile, it was easier first to develop procedures using stable species. Three different techniques were used to characterize these model systems. These included electrochemical techniques for determining the standard oxidation and reduction potentials of the photosynthetic components as well as methods for determining the heterogeneous electron transfer rate constants for BChl and BPheo at metal electrodes (Pt and Au). Resonance Raman (RR) and surface enhanced resonance Raman (SERR) spectroscopy were used to determine the spectra of the photosynthetic pigments and model compounds. SERRS was also used to study several types of photosynthetic preparations.

  6. Rice Photosynthetic Productivity and PSII Photochemistry under Nonflooded Irrigation

    PubMed Central

    He, Haibing; Yang, Ru; Jia, Biao; Chen, Lin; Fan, Hua; Cui, Jing; Yang, Dong; Li, Menglong; Ma, Fu-Yu

    2014-01-01

    Nonflooded irrigation is an important water-saving rice cultivation technology, but little is known on its photosynthetic mechanism. The aims of this work were to investigate photosynthetic characteristics of rice during grain filling stage under three nonflooded irrigation treatments: furrow irrigation with plastic mulching (FIM), furrow irrigation with nonmulching (FIN), and drip irrigation with plastic mulching (DI). Compared with the conventional flooding (CF) treatment, those grown in the nonflooded irrigation treatments showed lower net photosynthetic rate (PN), lower maximum quantum yield (Fv/Fm), and lower effective quantum yield of PSII photochemistry (ΦPSII). And the poor photosynthetic characteristics in the nonflooded irrigation treatments were mainly attributed to the low total nitrogen content (TNC). Under non-flooded irrigation, the PN, Fv/Fm, and ΦPSII significantly decreased with a reduction in the soil water potential, but these parameters were rapidly recovered in the DI and FIM treatments when supplementary irrigation was applied. Moreover, The DI treatment always had higher photosynthetic productivity than the FIM and FIN treatments. Grain yield, matter translocation, and dry matter post-anthesis (DMPA) were the highest in the CF treatment, followed by the DI, FIM, and FIN treatments in turn. In conclusion, increasing nitrogen content in leaf of rice plants could be a key factor to improve photosynthetic capacity in nonflooded irrigation. PMID:24741364

  7. Pangenome Evolution in the Marine Bacterium Alteromonas

    PubMed Central

    López-Pérez, Mario; Rodriguez-Valera, Francisco

    2016-01-01

    We have examined a collection of the free-living marine bacterium Alteromonas genomes with cores diverging in average nucleotide identities ranging from 99.98% to 73.35%, i.e., from microbes that can be considered members of a natural clone (like in a clinical epidemiological outbreak) to borderline genus level. The genomes were largely syntenic allowing a precise delimitation of the core and flexible regions in each. The core was 1.4 Mb (ca. 30% of the typical strain genome size). Recombination rates along the core were high among strains belonging to the same species (37.7–83.7% of all nucleotide polymorphisms) but they decreased sharply between species (18.9–5.1%). Regarding the flexible genome, its main expansion occurred within the boundaries of the species, i.e., strains of the same species already have a large and diverse flexible genome. Flexible regions occupy mostly fixed genomic locations. Four large genomic islands are involved in the synthesis of strain-specific glycosydic receptors that we have called glycotypes. These genomic regions are exchanged by homologous recombination within and between species and there is evidence for their import from distant taxonomic units (other genera within the family). In addition, several hotspots for integration of gene cassettes by illegitimate recombination are distributed throughout the genome. They code for features that give each clone specific properties to interact with their ecological niche and must flow fast throughout the whole genus as they are found, with nearly identical sequences, in different species. Models for the generation of this genomic diversity involving phage predation are discussed. PMID:27189983

  8. Pangenome Evolution in the Marine Bacterium Alteromonas.

    PubMed

    López-Pérez, Mario; Rodriguez-Valera, Francisco

    2016-01-01

    We have examined a collection of the free-living marine bacterium Alteromonas genomes with cores diverging in average nucleotide identities ranging from 99.98% to 73.35%, i.e., from microbes that can be considered members of a natural clone (like in a clinical epidemiological outbreak) to borderline genus level. The genomes were largely syntenic allowing a precise delimitation of the core and flexible regions in each. The core was 1.4 Mb (ca. 30% of the typical strain genome size). Recombination rates along the core were high among strains belonging to the same species (37.7-83.7% of all nucleotide polymorphisms) but they decreased sharply between species (18.9-5.1%). Regarding the flexible genome, its main expansion occurred within the boundaries of the species, i.e., strains of the same species already have a large and diverse flexible genome. Flexible regions occupy mostly fixed genomic locations. Four large genomic islands are involved in the synthesis of strain-specific glycosydic receptors that we have called glycotypes. These genomic regions are exchanged by homologous recombination within and between species and there is evidence for their import from distant taxonomic units (other genera within the family). In addition, several hotspots for integration of gene cassettes by illegitimate recombination are distributed throughout the genome. They code for features that give each clone specific properties to interact with their ecological niche and must flow fast throughout the whole genus as they are found, with nearly identical sequences, in different species. Models for the generation of this genomic diversity involving phage predation are discussed. PMID:27189983

  9. Differential allocation to photosynthetic and non-photosynthetic nitrogen fractions among native and invasive species.

    PubMed

    Funk, Jennifer L; Glenwinkel, Lori A; Sack, Lawren

    2013-01-01

    Invasive species are expected to cluster on the "high-return" end of the leaf economic spectrum, displaying leaf traits consistent with higher carbon assimilation relative to native species. Intra-leaf nitrogen (N) allocation should support these physiological differences; however, N biochemistry has not been examined in more than a few invasive species. We measured 34 leaf traits including seven leaf N pools for five native and five invasive species from Hawaii under low irradiance to mimic the forest understory environment. We found several trait differences between native and invasive species. In particular, invasive species showed preferential N allocation to metabolism (amino acids) rather than photosynthetic light reactions (membrane-bound protein) by comparison with native species. The soluble protein concentration did not vary between groups. Under these low irradiance conditions, native species had higher light-saturated photosynthetic rates, possibly as a consequence of a greater investment in membrane-bound protein. Invasive species may succeed by employing a wide range of N allocation mechanisms, including higher amino acid production for fast growth under high irradiance or storage of N in leaves as soluble protein or amino acids.

  10. Photosynthetic and molecular markers of CO₂-mediated photosynthetic downregulation in nodulated alfalfa.

    PubMed

    Sanz-Sáez, Alvaro; Erice, Gorka; Aranjuelo, Iker; Aroca, Ricardo; Ruíz-Lozano, Juan Manuel; Aguirreolea, Jone; Irigoyen, Juan José; Sanchez-Diaz, Manuel

    2013-08-01

    Elevated CO₂ leads to a decrease in potential net photosynthesis in long-term experiments and thus to a reduction in potential growth. This process is known as photosynthetic downregulation. There is no agreement on the definition of which parameters are the most sensitive for detecting CO₂ acclimation. In order to investigate the most sensitive photosynthetic and molecular markers of CO₂ acclimation, the effects of elevated CO₂, and associated elevated temperature were analyzed in alfalfa plants inoculated with different Sinorhizobium meliloti strains. Plants (Medicago sativa L. cv. Aragón) were grown in summer or autumn in temperature gradient greenhouses (TGG). At the end of the experiment, all plants showed acclimation in both seasons, especially under elevated summer temperatures. This was probably due to the lower nitrogen (N) availability caused by decreased N₂-fixation under higher temperatures. Photosynthesis measured at growth CO₂ concentration, rubisco in vitro activity and maximum rate of carboxylation were the most sensitive parameters for detecting downregulation. Severe acclimation was also related with decreases in leaf nitrogen content associated with declines in rubisco content (large and small subunits) and activity that resulted in a drop in photosynthesis. Despite the sensitivity of rubisco content as a marker of acclimation, it was not coordinated with gene expression, possibly due to a lag between gene transcription and protein translation.

  11. Differential Allocation to Photosynthetic and Non-Photosynthetic Nitrogen Fractions among Native and Invasive Species

    PubMed Central

    Funk, Jennifer L.; Glenwinkel, Lori A.; Sack, Lawren

    2013-01-01

    Invasive species are expected to cluster on the “high-return” end of the leaf economic spectrum, displaying leaf traits consistent with higher carbon assimilation relative to native species. Intra-leaf nitrogen (N) allocation should support these physiological differences; however, N biochemistry has not been examined in more than a few invasive species. We measured 34 leaf traits including seven leaf N pools for five native and five invasive species from Hawaii under low irradiance to mimic the forest understory environment. We found several trait differences between native and invasive species. In particular, invasive species showed preferential N allocation to metabolism (amino acids) rather than photosynthetic light reactions (membrane-bound protein) by comparison with native species. The soluble protein concentration did not vary between groups. Under these low irradiance conditions, native species had higher light-saturated photosynthetic rates, possibly as a consequence of a greater investment in membrane-bound protein. Invasive species may succeed by employing a wide range of N allocation mechanisms, including higher amino acid production for fast growth under high irradiance or storage of N in leaves as soluble protein or amino acids. PMID:23700483

  12. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    SciTech Connect

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2002-10-15

    This report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 10/2/2001 through 10/01/2002. This report marks the end of year 2 of a three-year project as well as the milestone date for completion of Phase I activities. This report includes our current status and defines the steps being taken to ensure that we meet the project goals by the end of year 3. As indicated in the list of accomplishments below our current efforts are focused on evaluating candidate organisms and growth surfaces, preparing to conduct long-term tests in the bench-scale bioreactor test systems, and scaling-up the test facilities from bench scale to pilot scale. Specific results and accomplishments for the third quarter of 2002 include: Organisms and Growth Surfaces: (1) Test results continue to indicate that thermophilic cyanobacteria have significant advantages as agents for practical photosynthetic CO{sub 2} mitigation before mesophilic forms. (2) Additional thermal features with developed cyanobacterial mats, which might be calcium resistant, were found in YNP. (3) Back to back tests show that there is no detectable difference in the growth of isolate 1.2 s.c. (2) in standard and Ca-modified BG-11 medium. The doubling time for both cases was about 12 hours. (4) The cultivation of cyanobacteria in Ca-BG medium should proceed in the pH range between 7 and 7.4, but this suggestion requires additional experiments. (5) Cyanobacteria can be grown in media where sodium is present at trace levels. (6) Ca{sup 2+} enriched medium can be used as a sink for CO{sub 2} under alkaline conditions. (7) Cyanobacteria are able to generate cones of filaments on travertine surfaces. [Travertine is a mixture of CaCO{sub 3} and CaSO{sub 4}]. We hypothesize that SO{sub 4}{sup 2-} stimulates the generation of such cones, because they are not almost generated on CaCO3 surface. On the other hand, we know that plant gas contains elevated

  13. Anaerobic energy metabolism in unicellular photosynthetic eukaryotes.

    PubMed

    Atteia, Ariane; van Lis, Robert; Tielens, Aloysius G M; Martin, William F

    2013-02-01

    Anaerobic metabolic pathways allow unicellular organisms to tolerate or colonize anoxic environments. Over the past ten years, genome sequencing projects have brought a new light on the extent of anaerobic metabolism in eukaryotes. A surprising development has been that free-living unicellular algae capable of photoautotrophic lifestyle are, in terms of their enzymatic repertoire, among the best equipped eukaryotes known when it comes to anaerobic energy metabolism. Some of these algae are marine organisms, common in the oceans, others are more typically soil inhabitants. All these species are important from the ecological (O(2)/CO(2) budget), biotechnological, and evolutionary perspectives. In the unicellular algae surveyed here, mixed-acid type fermentations are widespread while anaerobic respiration, which is more typical of eukaryotic heterotrophs, appears to be rare. The presence of a core anaerobic metabolism among the algae provides insights into its evolutionary origin, which traces to the eukaryote common ancestor. The predicted fermentative enzymes often exhibit an amino acid extension at the N-terminus, suggesting that these proteins might be compartmentalized in the cell, likely in the chloroplast or the mitochondrion. The green algae Chlamydomonas reinhardtii and Chlorella NC64 have the most extended set of fermentative enzymes reported so far. Among the eukaryotes with secondary plastids, the diatom Thalassiosira pseudonana has the most pronounced anaerobic capabilities as yet. From the standpoints of genomic, transcriptomic, and biochemical studies, anaerobic energy metabolism in C. reinhardtii remains the best characterized among photosynthetic protists. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems.

  14. Enhanced Practical Photosynthetic CO2 Mitigation

    SciTech Connect

    Gregory Kremer; David J. Bayless; Morgan Vis; Michael Prudich; Keith Cooksey; Jeff Muhs

    2003-10-15

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 7/2/2003 through 10/01/2003. As indicated in the list of accomplishments below we are preparing for the final tests necessary to meet our project goals. Specific results and accomplishments for the third quarter of 2003 include: (1) Bioreactor support systems and test facilities: (A) The solar collector used in the light delivery system showed signs of degradation and hence had to be replaced by ORNL. A set of light readings were taken after the new solar collector was installed. The readings showed an acceptable light profile. (B) The CRF-2 test system has undergone major improvements to produce the high flow rates needed for harvesting (as determined by previous experiments). The main changes to the system are new stainless steel header/frame units with increased flow capacity and a modified pipe end sealing method to improve flow uniformity, and installation and plumbing for a new high flow harvesting pump. The improvements have been completed and the system is ready for testing. (C) The pilot scale bioreactor is ready for testing pending some information from the CRF-2 tests. (2) Organisms and Growth Surfaces: (A) The shape of the Chlorogloeopsis sp. cells (cyanobacteria) was found to be affected by environmental pH, which may be useful in culture quality control. Besides, the further investigation of this phenomenon suggested that the rate of cell adhesion to glass surface decreases upon medium alkalinization. Thus, harvesting effectiveness may be improved by increasing medium pH up to 9 before harvesting of cyanobacteria from a substratum.

  15. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    SciTech Connect

    Dr. David J. Bayless; Dr. Morgan Vis; Dr. Gregory Kremer; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2001-04-16

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 1/03/2001 through 4/02/2001. Many of the activities and accomplishments are continuations of work initiated and reported in last quarter's status report. Major activities and accomplishments for this quarter include: Three sites in Yellowstone National Park have been identified that may contain suitable organisms for use in a bioreactor; Full-scale culturing of one thermophilic organism from Yellowstone has progressed to the point that there is a sufficient quantity to test this organism in the model-scale bioreactor; The effects of the additive monoethanolamine on the growth of one thermophilic organism from Yellowstone has been tested; Testing of growth surface adhesion and properties is continuing; Construction of a larger model-scale bioreactor to improve and expand testing capabilities is completed and the facility is undergoing proof tests; Model-scale bioreactor tests examining the effects of CO{sub 2} concentration levels and lighting levels on organism growth rates are continuing; Alternative fiber optic based deep-penetration light delivery systems for use in the pilot-scale bioreactor have been designed, constructed and tested; An existing slug flow reactor system has been modified for use in this project, and a proof-of-concept test plan has been developed for the slug flow reactor; Research and testing of water-jet harvesting techniques is continuing, and a harvesting system has been designed for use in the model-scale bioreactor; and The investigation of comparative digital image analysis as a means for determining the ''density'' of algae on a growth surface is continuing Plans for next quarter's work and an update on the project's web page are included in the conclusions.

  16. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    SciTech Connect

    Gregory Kremer; David J. Bayless; Morgan Vis; Michael Prudich; Keith Cooksey; Jeff Muhs

    2004-01-30

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 10/2/2003 through 1/1/2004. As indicated in the list of accomplishments below we have seen very encouraging results from the model scale tests in terms of organism growth rates and we have begun the final tests necessary to meet our project goals. Specific results and accomplishments for the fourth quarter of 2003 include: (1) Bioreactor support systems and test facilities--(A) The solar collector is working well and has survived the winter weather. (B) The improved high-flow CRF-2 test system has been used successfully to run several long-term growth tests with periodic harvesting events. The high flow harvesting system performed well. The mass measurement results after a 4-week test show 275% growth over the initial mass loading. This figure would have been higher had there been no leakage and handling losses. Carbon dating of biomass from this test is planned for carbon uptake estimation. The next test will include direct measurement of carbon uptake in addition to organism mass measurements. (C) Qualitative organism growth testing has begun in the pilot scale bioreactor. Some issues with uniformity of organism loading, fluid leakage and evaporation have surfaced and are currently being addressed, and quantitative testing will begin as soon as these problems are resolved. (2) Organisms and Growth Surfaces--(A) Montana State University (Subcontracted to do organism studies) submitted their final (3-year) project report. An abstract of the report in included in this quarterly report.

  17. Functional assembly of the foreign carotenoid lycopene into the photosynthetic apparatus of Rhodobacter sphaeroides, achieved by replacement of the native 3-step phytoene desaturase with its 4-step counterpart from Erwinia herbicola.

    PubMed

    Garcia-Asua, Guillermo; Cogdell, Richard J; Hunter, C Neil

    2002-04-01

    Photosynthetic organisms synthesize a diverse range of carotenoids. These pigments are important for the assembly, function and stability of photosynthetic pigment-protein complexes, and they are used to quench harmful radicals. The photosynthetic bacterium Rhodobacter sphaeroides was used as a model system to explore the origin of carotenoid diversity. Replacing the native 3-step phytoene desaturase (CrtI) with the 4-step enzyme from Erwinia herbicola results in significant flux down the spirilloxanthin pathway for the first time in Rb. sphaeroides. In Rb. sphaeroides, the completion of four desaturations to lycopene by the Erwinia CrtI appears to require the absence of CrtC and, in a crtC background, even the native 3-step enzyme can synthesize a significant amount (13%) of lycopene, in addition to the expected neurosporene. We suggest that the CrtC hydroxylase can intervene in the sequence of reactions catalyzed by phytoene desaturase. We investigated the properties of the lycopene-synthesizing strain of Rb. sphaeroides. In the LH2 light-harvesting complex, lycopene transfers absorbed light energy to the bacteriochlorophylls with an efficiency of 54%, which compares favourably with other LH2 complexes that contain carotenoids with 11 conjugated double bonds. Thus, lycopene can join the assembly pathway for photosynthetic complexes in Rb. sphaeroides, and can perform its role as an energy donor to bacteriochlorophylls.

  18. Growth and photosynthetic responses of wheat plants grown in space.

    PubMed Central

    Tripathy, B C; Brown, C S; Levine, H G; Krikorian, A D

    1996-01-01

    Growth and photosynthesis of wheat (Triticum aestivum L. cv Super Dwarf) plants grown onboard the space shuttle Discovery for 10 d were examined. Compared to ground control plants, the shoot fresh weight of space-grown seedlings decreased by 25%. Postflight measurements of the O2 evolution/photosynthetic photon flux density response curves of leaf samples revealed that the CO2-saturated photosynthetic rate at saturating light intensities in space-grown plants declined 25% relative to the rate in ground control plants. The relative quantum yield of CO2-saturated photosynthetic O2 evolution measured at limiting light intensities was not significantly affected. In space-grown plants, the light compensation point of the leaves increased by 33%, which likely was due to an increase (27%) in leaf dark-respiration rates. Related experiments with thylakoids isolated from space-grown plants showed that the light-saturated photosynthetic electron transport rate from H2O through photosystems II and I was reduced by 28%. These results demonstrate that photosynthetic functions are affected by the microgravity environment. PMID:8819868

  19. Photosynthetic biomaterials: a pathway towards autotrophic tissue engineering.

    PubMed

    Schenck, Thilo Ludwig; Hopfner, Ursula; Chávez, Myra Noemi; Machens, Hans-Günther; Somlai-Schweiger, Ian; Giunta, Riccardo Enzo; Bohne, Alexandra Viola; Nickelsen, Jörg; Allende, Miguel L; Egaña, José Tomás

    2015-03-01

    Engineered tissues are highly limited by poor vascularization in vivo, leading to hypoxia. In order to overcome this challenge, we propose the use of photosynthetic biomaterials to provide oxygen. Since photosynthesis is the original source of oxygen for living organisms, we suggest that this could be a novel approach to provide a constant source of oxygen supply independently of blood perfusion. In this study we demonstrate that bioartificial scaffolds can be loaded with a solution containing the photosynthetic microalgae Chlamydomonas reinhardtii, showing high biocompatibility and photosynthetic activity in vitro. Furthermore, when photosynthetic biomaterials were engrafted in a mouse full skin defect, we observed that the presence of the microalgae did not trigger a native immune response in the host. Moreover, the analyses showed that the algae survived for at least 5 days in vivo, generating chimeric tissues comprised of algae and murine cells. The results of this study represent a crucial step towards the establishment of autotrophic tissue engineering approaches and suggest the use of photosynthetic cells to treat a broad spectrum of hypoxic conditions. PMID:25536030

  20. Principles of light harvesting from single photosynthetic complexes

    PubMed Central

    Schlau-Cohen, G. S.

    2015-01-01

    Photosynthetic systems harness sunlight to power most life on Earth. In the initial steps of photosynthetic light harvesting, absorbed energy is converted to chemical energy with near-unity quantum efficiency. This is achieved by an efficient, directional and regulated flow of energy through a network of proteins. Here, we discuss the following three key principles of this flow and of photosynthetic light harvesting: thermal fluctuations of the protein structure; intrinsic conformational switches with defined functional consequences; and environmentally triggered conformational switches. Through these principles, photosynthetic systems balance two types of operational costs: metabolic costs, or the cost of maintaining and running the molecular machinery, and opportunity costs, or the cost of losing any operational time. Understanding how the molecular machinery and dynamics are designed to balance these costs may provide a blueprint for improved artificial light-harvesting devices. With a multi-disciplinary approach combining knowledge of biology, this blueprint could lead to low-cost and more effective solar energy conversion. Photosynthetic systems achieve widespread light harvesting across the Earth's surface; in the face of our growing energy needs, this is functionality we need to replicate, and perhaps emulate. PMID:26052423

  1. Principles of light harvesting from single photosynthetic complexes.

    PubMed

    Schlau-Cohen, G S

    2015-06-01

    Photosynthetic systems harness sunlight to power most life on Earth. In the initial steps of photosynthetic light harvesting, absorbed energy is converted to chemical energy with near-unity quantum efficiency. This is achieved by an efficient, directional and regulated flow of energy through a network of proteins. Here, we discuss the following three key principles of this flow and of photosynthetic light harvesting: thermal fluctuations of the protein structure; intrinsic conformational switches with defined functional consequences; and environmentally triggered conformational switches. Through these principles, photosynthetic systems balance two types of operational costs: metabolic costs, or the cost of maintaining and running the molecular machinery, and opportunity costs, or the cost of losing any operational time. Understanding how the molecular machinery and dynamics are designed to balance these costs may provide a blueprint for improved artificial light-harvesting devices. With a multi-disciplinary approach combining knowledge of biology, this blueprint could lead to low-cost and more effective solar energy conversion. Photosynthetic systems achieve widespread light harvesting across the Earth's surface; in the face of our growing energy needs, this is functionality we need to replicate, and perhaps emulate. PMID:26052423

  2. Growth and photosynthetic responses of wheat plants grown in space

    NASA Technical Reports Server (NTRS)

    Tripathy, B. C.; Brown, C. S.; Levine, H. G.; Krikorian, A. D.

    1996-01-01

    Growth and photosynthesis of wheat (Triticum aestivum L. cv Super Dwarf) plants grown onboard the space shuttle Discovery for 10 d were examined. Compared to ground control plants, the shoot fresh weight of space-grown seedlings decreased by 25%. Postflight measurements of the O2 evolution/photosynthetic photon flux density response curves of leaf samples revealed that the CO2-saturated photosynthetic rate at saturating light intensities in space-grown plants declined 25% relative to the rate in ground control plants. The relative quantum yield of CO2-saturated photosynthetic O2 evolution measured at limiting light intensities was not significantly affected. In space-grown plants, the light compensation point of the leaves increased by 33%, which likely was due to an increase (27%) in leaf dark-respiration rates. Related experiments with thylakoids isolated from space-grown plants showed that the light-saturated photosynthetic electron transport rate from H2O through photosystems II and I was reduced by 28%. These results demonstrate that photosynthetic functions are affected by the microgravity environment.

  3. Growth and photosynthetic responses of wheat plants grown in space.

    PubMed

    Tripathy, B C; Brown, C S; Levine, H G; Krikorian, A D

    1996-03-01

    Growth and photosynthesis of wheat (Triticum aestivum L. cv Super Dwarf) plants grown onboard the space shuttle Discovery for 10 d were examined. Compared to ground control plants, the shoot fresh weight of space-grown seedlings decreased by 25%. Postflight measurements of the O2 evolution/photosynthetic photon flux density response curves of leaf samples revealed that the CO2-saturated photosynthetic rate at saturating light intensities in space-grown plants declined 25% relative to the rate in ground control plants. The relative quantum yield of CO2-saturated photosynthetic O2 evolution measured at limiting light intensities was not significantly affected. In space-grown plants, the light compensation point of the leaves increased by 33%, which likely was due to an increase (27%) in leaf dark-respiration rates. Related experiments with thylakoids isolated from space-grown plants showed that the light-saturated photosynthetic electron transport rate from H2O through photosystems II and I was reduced by 28%. These results demonstrate that photosynthetic functions are affected by the microgravity environment.

  4. Photosynthetic terpene hydrocarbon production for fuels and chemicals.

    PubMed

    Wang, Xin; Ort, Donald R; Yuan, Joshua S

    2015-02-01

    Photosynthetic hydrocarbon production bypasses the traditional biomass hydrolysis process and represents the most direct conversion of sunlight energy into the next-generation biofuels. As a major class of biologically derived hydrocarbons with diverse structures, terpenes are also valuable in producing a variety of fungible bioproducts in addition to the advanced 'drop-in' biofuels. However, it is highly challenging to achieve the efficient redirection of photosynthetic carbon and reductant into terpene biosynthesis. In this review, we discuss four major scientific and technical barriers for photosynthetic terpene production and recent advances to address these constraints. Collectively, photosynthetic terpene production needs to be optimized in a systematic fashion, in which the photosynthesis improvement, the optimization of terpene biosynthesis pathway, the improvement of key enzymes and the enhancement of sink effect through terpene storage or secretion are all important. New advances in synthetic biology also offer a suite of potential tools to design and engineer photosynthetic terpene platforms. The systemic integration of these solutions may lead to 'disruptive' technologies to enable biofuels and bioproducts with high efficiency, yield and infrastructure compatibility.

  5. Plastid genes in a non-photosynthetic dinoflagellate.

    PubMed

    Sanchez-Puerta, M Virginia; Lippmeier, J Casey; Apt, Kirk E; Delwiche, Charles F

    2007-01-01

    Dinoflagellates are a diverse group of protists, comprising photosynthetic and heterotrophic free-living species, as well as parasitic ones. About half of them are photosynthetic with peridinin-containing plastids being the most common. It is uncertain whether non-photosynthetic dinoflagellates are primitively so, or have lost photosynthesis. Studies of heterotrophic species from this lineage may increase our understanding of plastid evolution. We analyzed an EST project of the early-diverging heterotrophic dinoflagellate Crypthecodinium cohnii looking for evidence of past endosymbiosis. A large number of putative genes of cyanobacterial or algal origin were identified using BLAST, and later screened by metabolic function. Phylogenetic analyses suggest that several proteins could have been acquired from a photosynthetic endosymbiont, arguing for an earlier plastid acquisition in dinoflagellates. In addition, intact N-terminal plastid-targeting peptides were detected, indicating that C. cohnii may contain a reduced plastid and that some of these proteins are imported into this organelle. A number of metabolic pathways, such as heme and isoprenoid biosynthesis, seem to take place in the plastid. Overall, these data indicate that C. cohnii is derived from a photosynthetic ancestor and provide a model for loss of photosynthesis in dinoflagellates and their relatives. This represents the first extensive genomic analysis of a heterotrophic dinoflagellate.

  6. Photosynthetic terpene hydrocarbon production for fuels and chemicals

    SciTech Connect

    Wang, X; Ort, DR; Yuan, JS

    2015-01-28

    Photosynthetic hydrocarbon production bypasses the traditional biomass hydrolysis process and represents the most direct conversion of sunlight energy into the next-generation biofuels. As a major class of biologically derived hydrocarbons with diverse structures, terpenes are also valuable in producing a variety of fungible bioproducts in addition to the advanced drop-in' biofuels. However, it is highly challenging to achieve the efficient redirection of photosynthetic carbon and reductant into terpene biosynthesis. In this review, we discuss four major scientific and technical barriers for photosynthetic terpene production and recent advances to address these constraints. Collectively, photosynthetic terpene production needs to be optimized in a systematic fashion, in which the photosynthesis improvement, the optimization of terpene biosynthesis pathway, the improvement of key enzymes and the enhancement of sink effect through terpene storage or secretion are all important. New advances in synthetic biology also offer a suite of potential tools to design and engineer photosynthetic terpene platforms. The systemic integration of these solutions may lead to disruptive' technologies to enable biofuels and bioproducts with high efficiency, yield and infrastructure compatibility.

  7. Carotenoid Photoprotection in Artificial Photosynthetic Antennas

    SciTech Connect

    Kloz, Miroslav; Pillai, Smitha; Kodis, Gerdenis; Gust, Devens; Moore, Thomas A.; Moore, Ana L.; van Grondelle, Rienk; Kennis, John T. M.

    2011-04-14

    . These synthetic systems are providing a deeper understanding of structural and environmental effects on the interactions between carotenoids and tetrapyrroles and thereby better defining their role in controlling natural photosynthetic systems.

  8. Biological optimization systems for enhancing photosynthetic efficiency and methods of use

    DOEpatents

    Hunt, Ryan W.; Chinnasamy, Senthil; Das, Keshav C.; de Mattos, Erico Rolim

    2012-11-06

    Biological optimization systems for enhancing photosynthetic efficiency and methods of use. Specifically, methods for enhancing photosynthetic efficiency including applying pulsed light to a photosynthetic organism, using a chlorophyll fluorescence feedback control system to determine one or more photosynthetic efficiency parameters, and adjusting one or more of the photosynthetic efficiency parameters to drive the photosynthesis by the delivery of an amount of light to optimize light absorption of the photosynthetic organism while providing enough dark time between light pulses to prevent oversaturation of the chlorophyll reaction centers are disclosed.

  9. Coiled to diffuse: Brownian motion of a helical bacterium.

    PubMed

    Butenko, Alexander V; Mogilko, Emma; Amitai, Lee; Pokroy, Boaz; Sloutskin, Eli

    2012-09-11

    We employ real-time three-dimensional confocal microscopy to follow the Brownian motion of a fixed helically shaped Leptospira interrogans (LI) bacterium. We extract from our measurements the translational and the rotational diffusion coefficients of this bacterium. A simple theoretical model is suggested, perfectly reproducing the experimental diffusion coefficients, with no tunable parameters. An older theoretical model, where edge effects are neglected, dramatically underestimates the observed rates of translation. Interestingly, the coiling of LI increases its rotational diffusion coefficient by a factor of 5, compared to a (hypothetical) rectified bacterium of the same contour length. Moreover, the translational diffusion coefficients would have decreased by a factor of ~1.5, if LI were rectified. This suggests that the spiral shape of the spirochaete bacteria, in addition to being employed for their active twisting motion, may also increase the ability of these bacteria to explore the surrounding fluid by passive Brownian diffusion.

  10. Hydrogen Production by the Thermophilic Bacterium Thermotoga neapolitana

    PubMed Central

    Pradhan, Nirakar; Dipasquale, Laura; d’Ippolito, Giuliana; Panico, Antonio; Lens, Piet N. L.; Esposito, Giovanni; Fontana, Angelo

    2015-01-01

    As the only fuel that is not chemically bound to carbon, hydrogen has gained interest as an energy carrier to face the current environmental issues of greenhouse gas emissions and to substitute the depleting non-renewable reserves. In the last years, there has been a significant increase in the number of publications about the bacterium Thermotoga neapolitana that is responsible for production yields of H2 that are among the highest achievements reported in the literature. Here we present an extensive overview of the most recent studies on this hyperthermophilic bacterium together with a critical discussion of the potential of fermentative production by this bacterium. The review article is organized into sections focused on biochemical, microbiological and technical issues, including the effect of substrate, reactor type, gas sparging, temperature, pH, hydraulic retention time and organic loading parameters on rate and yield of gas production. PMID:26053393

  11. Hydrogen Production by the Thermophilic Bacterium Thermotoga neapolitana.

    PubMed

    Pradhan, Nirakar; Dipasquale, Laura; d'Ippolito, Giuliana; Panico, Antonio; Lens, Piet N L; Esposito, Giovanni; Fontana, Angelo

    2015-06-04

    As the only fuel that is not chemically bound to carbon, hydrogen has gained interest as an energy carrier to face the current environmental issues of greenhouse gas emissions and to substitute the depleting non-renewable reserves. In the last years, there has been a significant increase in the number of publications about the bacterium Thermotoga neapolitana that is responsible for production yields of H2 that are among the highest achievements reported in the literature. Here we present an extensive overview of the most recent studies on this hyperthermophilic bacterium together with a critical discussion of the potential of fermentative production by this bacterium. The review article is organized into sections focused on biochemical, microbiological and technical issues, including the effect of substrate, reactor type, gas sparging, temperature, pH, hydraulic retention time and organic loading parameters on rate and yield of gas production.

  12. Understanding the detailed motion of a model bacterium

    NASA Astrophysics Data System (ADS)

    Thawani, Akanksha; Tirumkudulu, Mahesh

    2014-11-01

    Inspired by the motion of flagellated bacteria such as Escherichia coli and Bacillus subtilis, we have built a macroscopic model bacterium, in order to investigate the intricate aspects of their motion which cannot be visualized under a microscope. The flagellated rod shaped cells were approximated with a spherical head attached to a rigid metal helix, via a plastic hook. The motion of model bacterium was observed in a high viscosity silicone oil to replicate the low Reynolds number flow conditions. A significant wobble was observed even in the absence of an off-axis flagellum. We suspect that the flexibility in the hook connecting the head and flagellum is the cause for wobble, since wobble was observed to increase significantly with hook-flexibility. The motion of the model bacterium was predicted using the Slender Body theory of Lighthill, and was compared with the measured trajectories.

  13. Extreme Ionizing-Radiation-Resistant Bacterium

    NASA Technical Reports Server (NTRS)

    Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Schwendner, Petra

    2012-01-01

    potential for transfer, and subsequent proliferation, on another solar body such as Mars and Europa. These organisms are more likely to escape planetary protection assays, which only take into account presence of spores. Hence, presences of extreme radiation-resistant Deinococcus in the cleanroom facility where spacecraft are assembled pose a serious risk for integrity of life-detection missions. The microorganism described herein was isolated from the surfaces of the cleanroom facility in which the Phoenix Lander was assembled. The isolated bacterial strain was subjected to a comprehensive polyphasic analysis to characterize its taxonomic position. This bacterium exhibits very low 16SrRNA similarity with any other environmental isolate reported to date. Both phenotypic and phylogenetic analyses clearly indicate that this isolate belongs to the genus Deinococcus and represents a novel species. The name Deinococcus phoenicis was proposed after the Phoenix spacecraft, which was undergoing assembly, testing, and launch operations in the spacecraft assembly facility at the time of isolation. D. phoenicis cells exhibited higher resistance to ionizing radiation (cobalt-60; 14 kGy) than the cells of the D. radiodurans (5 kGy). Thus, it is in the best interest of NASA to thoroughly characterize this organism, which will further assess in determining the potential for forward contamination. Upon the completion of genetic and physiological characteristics of D. phoenicis, it will be added to a planetary protection database to be able to further model and predict the probability of forward contamination.

  14. Extreme Ionizing-Radiation-Resistant Bacterium

    NASA Technical Reports Server (NTRS)

    Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Schwendner, Petra

    2013-01-01

    potential for transfer, and subsequent proliferation, on another solar body such as Mars and Europa. These organisms are more likely to escape planetary protection assays, which only take into account presence of spores. Hence, presences of extreme radiation-resistant Deinococcus in the cleanroom facility where spacecraft are assembled pose a serious risk for integrity of life-detection missions. The microorganism described herein was isolated from the surfaces of the cleanroom facility in which the Phoenix Lander was assembled. The isolated bacterial strain was subjected to a comprehensive polyphasic analysis to characterize its taxonomic position. This bacterium exhibits very low 16SrRNA similarity with any other environmental isolate reported to date. Both phenotypic and phylogenetic analyses clearly indicate that this isolate belongs to the genus Deinococcus and represents a novel species. The name Deinococcus phoenicis was proposed after the Phoenix spacecraft, which was undergoing assembly, testing, and launch operations in the spacecraft assembly facility at the time of isolation. D. phoenicis cells exhibited higher resistance to ionizing radiation (cobalt-60; 14 kGy) than the cells of the D. radiodurans (5 kGy). Thus, it is in the best interest of NASA to thoroughly characterize this organism, which will further assess in determining the potential for forward contamination. Upon the completion of genetic and physiological characteristics of D. phoenicis, it will be added to a planetary protection database to be able to further model and predict the probability of forward contamination.

  15. Photosynthetic light reactions: integral to chloroplast retrograde signalling.

    PubMed

    Gollan, Peter J; Tikkanen, Mikko; Aro, Eva-Mari

    2015-10-01

    Chloroplast retrograde signalling is ultimately dependent on the function of the photosynthetic light reactions and not only guides the acclimation of the photosynthetic apparatus to changing environmental and metabolic cues, but has a much wider influence on the growth and development of plants. New information generated during the past few years about regulation of photosynthetic light reactions and identification of the underlying regulatory proteins has paved the way towards better understanding of the signalling molecules produced in chloroplasts upon changes in the environment. Likewise, the availability of various mutants lacking regulatory functions has made it possible to address the role of excitation energy distribution and electron flow in the thylakoid membrane in inducing the retrograde signals from chloroplasts to the nucleus. Such signalling molecules also induce and interact with hormonal signalling cascades to provide comprehensive information from chloroplasts to the nucleus.

  16. Clinorotation affects mesophyll photosynthetic cells in leaves of pea seedlings.

    PubMed

    Adamchuk, N I

    1998-07-01

    Experiments with autotrophs in altered gravity condition have a grate significant for development of space biology. The main results of investigation in the photosynthetic apparatus state under microgravity condition have based on the experiments with maturity plants and their differentiated cells. The structural and functional organization of photosynthetic cells in seedlings is poor understandable still. Along with chloroplasts preserving a native membrane system in palisade parenchyma cells of the 29-day pea plant leaves in microgravity, chloroplasts with fribly packed or damaged granae, whose thylakoids appeared as vesicles with an electrontransparent content, were also observed. The investigation of preceding process induced these effects have a sense. That is why, the goal of our experiments was to perform the study of a structural organization of the photosynthetic cells of 3-d pair of pea seedlings leaves under the influence of clinorotation.

  17. Tracking photosynthetic efficiency with narrow-band spectroradiometry

    NASA Technical Reports Server (NTRS)

    Gamon, John A.; Field, Christopher B.

    1992-01-01

    Narrow-waveband spectroradiometry presents the possibility of detecting subtle signals closely related to the current physiological state of vegetation. One such signal related to the epoxidation state of the xanthophyll cycle pigments, violaxanthin, antheraxanthin, and zeaxanthin is discussed. Recent advances in plant ecophysiology demonstrated a close relationship between these pigments and the regulatory state of photosystem 2 in photosynthesis. Our recent field studies of sunflower (Helianthus annuus) and oak (Quercus agrifolia) demonstrated that a 'xanthophyll signal' can be isolated from the diurnal reflectance spectra of intact canopies. Furthermore, the xanthophyll signal can be used to derive a 'physiological reflectance index' (PRI) that closely correlates with the actual photosynthetic efficiency (defined as the photosynthetic rate divided by the incident PAR) in closed canopies. If these signals were detectable in Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) images, they could lead to improved remote estimates of photosynthetic fluxes.

  18. Nuclear quantum beats observed from photosynthetic charge separation

    SciTech Connect

    Weber, S.; Werst, M.; Thurnauer, M.

    1995-12-31

    In natural photosynthesis, efficient photoinduced charge-separation is achieved because of the unique structural and energetic relationships between the co-factors involved in this process. In turn, these unique properties give rise to unusual magnetic resonance responses when monitoring the charge-separation process with time-resolved electron paramagnetic resonance (epr). We have observed (at low temperatures) photo-induced low frequency oscillations in the transient epr responses from cyanobacterial Photosystem I (PSI) and pure photosynthetic bacteria. By comparing the signals from fully deuterated photosynthetic material having {sup 14}N or {sup 15}N we have identified these oscillations as nuclear quantum beats associated with the non-adiabatic change of the spin Hamiltonian at the instant of the laser pulse. The nuclear quantum beats can provide details of the electronic structures of the photo-oxidized primary electron donors in PSI and purple photosynthetic bacteria.

  19. Cyanobacteria as photosynthetic biocatalysts: a systems biology perspective.

    PubMed

    Gudmundsson, Steinn; Nogales, Juan

    2015-01-01

    The increasing need to replace oil-based products and to address global climate change concerns has triggered considerable interest in photosynthetic microorganisms. Cyanobacteria, in particular, have great potential as biocatalysts for fuels and fine-chemicals. During the last few years the biotechnological applications of cyanobacteria have experienced an unprecedented increase and the use of these photosynthetic organisms for chemical production is becoming a tangible reality. However, the field is still immature and many concerns about the economic feasibility of the biotechnological potential of cyanobacteria remain. In this review we describe recent successes in biofuel and fine-chemical production using cyanobacteria. We discuss the role of the photosynthetic metabolism and highlight the need for systems-level metabolic optimization in order to achieve the true potential of cyanobacterial biocatalysts.

  20. Superradiance Transition and Nonphotochemical Quenching in Photosynthetic Complexes

    SciTech Connect

    Berman, Gennady Petrovich; Nesterov, Alexander; Lopez, Gustavo; Sayre, Richard Thomas

    2015-04-23

    Photosynthetic organisms have evolved protective strategies to allow them to survive in cases of intense sunlight fluctuation with the development of nonphotochemical quenching (NPQ). This process allows light harvesting complexes to transfer the excess sunlight energy to non-damaging quenching channels. This report compares the NPQ process with the superradiance transition (ST). We demonstrated that the maximum of the NPQ efficiency is caused by the ST to the sink associated with the CTS. However, experimental verifications are required in order to determine whether or not the NPQ regime is associated with the ST transition for real photosynthetic complexes. Indeed, it can happen that, in the photosynthetic apparatus, the NPQ regime occurs in the “non-optimal” region of parameters, and it could be independent of the ST.

  1. Microcalorimetric Measurements of Glucose Metabolism by Marine Bacterium Vibrio alginolyticus

    PubMed Central

    Gordon, Andrew S.; Millero, Frank J.; Gerchakov, Sol M.

    1982-01-01

    Microcalorimetric measurements of heat production from glucose by Vibrio alginolyticus were made to assess the viability of calorimetry as a technique for studying the metabolism of marine bacteria at organic nutrient concentrations found in marine waters. The results show that the metabolism of glucose by this bacterium can be measured by calorimetry at submicromolar concentrations. A linear correlation between glucose concentration and total heat production was observed over a concentration range of 8 mM to 0.35 μM. It is suggested that these data indicate a constant efficiency of metabolism for this bacterium over the wide range of glucose concentrations studied. PMID:16346131

  2. Global-scale environmental control of plant photosynthetic capacity.

    PubMed

    Ali, Ashehad A; Xu, Chonggang; Rogers, Alistair; McDowell, Nathan G; Medlyn, Belinda E; Fisher, Rosie A; Wullschleger, Stan D; Reich, Peter B; Vrugt, Jasper A; Bauerle, William L; Santiago, Louis S; Wilson, Cathy J

    2015-12-01

    Photosynthetic capacity, determined by light harvesting and carboxylation reactions, is a key plant trait that determines the rate of photosynthesis; however, in Earth System Models (ESMs) at a reference temperature, it is either a fixed value for a given plant functional type or derived from a linear function of leaf nitrogen content. In this study, we conducted a comprehensive analysis that considered correlations of environmental factors with photosynthetic capacity as determined by maximum carboxylation (V(cm)) rate scaled to 25 degrees C (i.e., V(c),25; μmol CO2 x m(-2)x s(-1)) and maximum electron transport rate (J(max)) scaled to 25 degrees C (i.e., J25; μmol electron x m(-2) x s(-1)) at the global scale. Our results showed that the percentage of variation in observed V(c),25 and J25 explained jointly by the environmental factors (i.e., day length, radiation, temperature, and humidity) were 2-2.5 times and 6-9 times of that explained by area-based leaf nitrogen content, respectively. Environmental factors influenced photosynthetic capacity mainly through photosynthetic nitrogen use efficiency, rather than through leaf nitrogen content. The combination of leaf nitrogen content and environmental factors was able to explain -56% and -66% of the variation in V(c),25 and J25 at the global scale, respectively. Our analyses suggest that model projections of plant photosynthetic capacity and hence land-atmosphere exchange under changing climatic conditions could be substantially improved if environmental factors are incorporated into algorithms used to parameterize photosynthetic capacity in ESMs.

  3. Global scale environmental control of plant photosynthetic capacity

    SciTech Connect

    Ali, Ashehad; Xu, Chonggang; Rogers, Alistair; McDowell, Nathan G.; Medlyn, Belinda E.; Fisher, Rosie A.; Wullschleger, Stan D.; Reich, Peter B.; Bauerle, William L.; Wilson, Cathy J.; Vrugt, Jasper A.; Santiago, Louis S.

    2015-12-01

    Photosynthetic capacity, determined by light harvesting and carboxylation reactions, is a key plant trait that determines the rate of photosynthesis; however, in Earth System Models (ESMs) at a reference temperature, it is either a fixed value for a given plant functional type or derived from a linear function of leaf nitrogen content. In this study, we conducted a comprehensive analysis that considered correlations of environmental factors with photosynthetic capacity as determined by maximum carboxylation (Vc,m) rate scaled to 25°C (i.e., Vc,25; μmol CO2·m–2·s–1) and maximum electron transport rate (Jmax) scaled to 25°C (i.e., J25; μmol electron·m–2·s–1) at the global scale. Our results showed that the percentage of variation in observed Vc,25 and J25 explained jointly by the environmental factors (i.e., day length, radiation, temperature, and humidity) were 2–2.5 times and 6–9 times of that explained by area-based leaf nitrogen content, respectively. Environmental factors influenced photosynthetic capacity mainly through photosynthetic nitrogen use efficiency, rather than through leaf nitrogen content. The combination of leaf nitrogen content and environmental factors was able to explain ~56% and ~66% of the variation in Vc,25 and J25 at the global scale, respectively. As a result, our analyses suggest that model projections of plant photosynthetic capacity and hence land–atmosphere exchange under changing climatic conditions could be substantially improved if environmental factors are incorporated into algorithms used to parameterize photosynthetic capacity in ESMs.

  4. Global scale environmental control of plant photosynthetic capacity

    DOE PAGES

    Ali, Ashehad; Xu, Chonggang; Rogers, Alistair; McDowell, Nathan G.; Medlyn, Belinda E.; Fisher, Rosie A.; Wullschleger, Stan D.; Reich, Peter B.; Bauerle, William L.; Wilson, Cathy J.; et al

    2015-12-01

    Photosynthetic capacity, determined by light harvesting and carboxylation reactions, is a key plant trait that determines the rate of photosynthesis; however, in Earth System Models (ESMs) at a reference temperature, it is either a fixed value for a given plant functional type or derived from a linear function of leaf nitrogen content. In this study, we conducted a comprehensive analysis that considered correlations of environmental factors with photosynthetic capacity as determined by maximum carboxylation (Vc,m) rate scaled to 25°C (i.e., Vc,25; μmol CO2·m–2·s–1) and maximum electron transport rate (Jmax) scaled to 25°C (i.e., J25; μmol electron·m–2·s–1) at the global scale.more » Our results showed that the percentage of variation in observed Vc,25 and J25 explained jointly by the environmental factors (i.e., day length, radiation, temperature, and humidity) were 2–2.5 times and 6–9 times of that explained by area-based leaf nitrogen content, respectively. Environmental factors influenced photosynthetic capacity mainly through photosynthetic nitrogen use efficiency, rather than through leaf nitrogen content. The combination of leaf nitrogen content and environmental factors was able to explain ~56% and ~66% of the variation in Vc,25 and J25 at the global scale, respectively. As a result, our analyses suggest that model projections of plant photosynthetic capacity and hence land–atmosphere exchange under changing climatic conditions could be substantially improved if environmental factors are incorporated into algorithms used to parameterize photosynthetic capacity in ESMs.« less

  5. Energy transfer in real and artificial photosynthetic systems

    SciTech Connect

    Hindman, J.C.; Hunt, J.E.; Katz, J.J.

    1995-02-01

    Fluorescence emission from the photosynthetic organisms Tribonema aequale, Anacystis nidulau, and Chlorelia vulgais and from some chlorophyll model systems have been recorded as a function of excitation wavelength and temperature. Considerable similarity was observed in the effects of excitation wavelength and temperature on the fluorescence from intact photosynthetic organisms and the model systems. The parallelism in behavior suggest that self-assembly processes may occur in both the in vivo and in vitro systems that give rise to chlorophyll species at low temperature that may differ significantly from those present at ambient temperatures.

  6. Stigmatellin Probes the Electrostatic Potential in the QB Site of the Photosynthetic Reaction Center

    PubMed Central

    Gerencsér, László; Boros, Bogáta; Derrien, Valerie; Hanson, Deborah K.; Wraight, Colin A.; Sebban, Pierre; Maróti, Péter

    2015-01-01

    The electrostatic potential in the secondary quinone (QB) binding site of the reaction center (RC) of the photosynthetic bacterium Rhodobacter sphaeroides determines the rate and free energy change (driving force) of electron transfer to QB. It is controlled by the ionization states of residues in a strongly interacting cluster around the QB site. Reduction of the QB induces change of the ionization states of residues and binding of protons from the bulk. Stigmatellin, an inhibitor of the mitochondrial and photosynthetic respiratory chain, has been proven to be a unique voltage probe of the QB binding pocket. It binds to the QB site with high affinity, and the pK value of its phenolic group monitors the local electrostatic potential with high sensitivity. Investigations with different types of detergent as a model system of isolated RC revealed that the pK of stigmatellin was controlled overwhelmingly by electrostatic and slightly by hydrophobic interactions. Measurements showed a high pK value (>11) of stigmatellin in the QB pocket of the dark-state wild-type RC, indicating substantial negative potential. When the local electrostatics of the QB site was modulated by a single mutation, L213Asp→Ala, or double mutations, L213Asp-L212Glu→Ala-Ala (AA), the pK of stigmatellin dropped to 7.5 and 7.4, respectively, which corresponds to a >210 mV increase in the electrostatic potential relative to the wild-type RC. This significant pK drop (ΔpK > 3.5) decreased dramatically to (ΔpK > 0.75) in the RC of the compensatory mutant (AA+M44Asn→AA+M44Asp). Our results indicate that the L213Asp is the most important actor in the control of the electrostatic potential in the QB site of the dark-state wild-type RC, in good accordance with conclusions of former studies using theoretical calculations or light-induced charge recombination assay. PMID:25606686

  7. Enhanced Practical Photosynthetic CO2 Mitigation

    SciTech Connect

    Gregory Kremer; David J. Bayless; Morgan Vis; Michael Prudich; Keith Cooksey; Jeff Muhs

    2003-07-22

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 4/2/2003 through 7/01/2003. As indicated in the list of accomplishments below we have completed some long-term model scale bioreactor tests and are prepared to begin pilot scale bioreactor testing. Specific results and accomplishments for the second quarter of 2003 include: (1) Bioreactor support systems and test facilities: (a) Qualitative long-term survivability tests for S.C.1.2(2) on Omnisil have been successfully completed and results demonstrate a growth rate that appears to be acceptable. (b) Quantitative tests of long-term growth productivity for S.C.1.2(2) on Omnisil have been completed and initial results are promising. Initial results show that the mass of organisms doubled (from 54.9 grams to 109.8 grams) in about 5 weeks. Full results will be available as soon as all membranes and filters are completely dried. The growth rate should increase significantly with the initiation of weekly harvesting during the long term tests. (c) The phase 1 construction of the pilot scale bioreactor has been completed, including the solar collector and light distribution system. We are now in the phase of system improvement as we wait for CRF-2 results in order to be able to finalize the design and construction of the pilot scale system. (d) A mass transfer experimental setup was constructed in order to measure the mass transfer rate from the gas to the liquid film flowing over a membrane and to study the hydrodynamics of the liquid film flowing over a membrane in the bioreactor. Results were reported for mass transfer coefficient, film thickness, and fluid velocity over an Omnisil membrane with a ''drilled hole'' header pipe design. (2) Organisms and Growth Surfaces: (a) A selectivity approach was used to obtain a cyanobacterial culture with elevated resistance to acid pH. Microlonies of ''3.2.2 S.C.1 Positive'' migrated

  8. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    SciTech Connect

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2001-10-15

    This report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 10/03/2000 through 10/02/2001. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives. This is the fourth quarterly report for this project, so it also serves as a year-1 project review. We have made significant progress on our Phase I objectives, and our current efforts are focused on fulfilling these research objectives ''on time'' relative to the project timeline. Overall, we believe that we are on schedule to complete Phase I activities by 10/2002, which is the milestone date from the original project timeline. Our results to date concerning the individual factors which have the most significant effect on CO{sub 2} uptake are inconclusive, but we have gathered useful information about the effects of lighting, temperature and CO{sub 2} concentration on one particular organism (Nostoc) and significant progress has been made in identifying other organisms that are more suitable for use in the bioreactor due to their better tolerance for the high temperatures likely to be encountered in the flue gas stream. Our current tests are focused on one such thermophilic organism (Cyanidium), and an enlarged bioreactor system (CRF-2) has been prepared for testing this organism. Tests on the enhanced mass transfer CO{sub 2} absorption technique are underway and useful information is currently being collected concerning pressure drop. The solar collectors for the deep-penetration hybrid solar lighting system have been designed and a single solar collector tracking unit is being prepared for installation in the pilot scale bioreactor system currently under construction. Much progress has been made in designing the fiber optic light delivery system, but final selection of the ''optimum'' delivery system design depends on many factors, most significantly the

  9. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    SciTech Connect

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2002-01-15

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 10/3/2001 through 1/02/2002. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives. Our research team has made significant progress towards completion of our Phase I objectives, and our current efforts remain focused on fulfilling these research objectives in accordance with the project timeline. Overall, we believe that we are on schedule to complete Phase I activities by 10/2002, which is the milestone date from the original project timeline. Specific results and accomplishments for the fourth quarter of 2001 include: (1) New procedures and protocols have been developed to increase the chances of successful implementation in the bioreactor of organisms that perform well in the lab. The new procedures include pre-screening of organisms for adhesion characteristics and a focus on identifying the organisms with maximum growth rate potential. (2) Preliminary results show an increase in adhesion to glass and a decrease in overall growth rates when using growth media prepared with tap water rather than distilled water. (3) Several of the organisms collected from Yellowstone National Park using the new procedures are currently being cultured in preparation for bioreactor tests. (4) One important result from a test of growth surface temperature distribution as a function of gas stream and drip-fluid temperatures showed a high dependence of membrane temperature on fluid temperature, with gas stream temperature having minimal effect. This result indicates that bioreactor growth surface temperatures can be controlled using fluid delivery temperature. The possible implications for implementation of the bioreactor concept are encouraging, since it may be possible to use the bioreactor with very high gas stream temperatures by controlling the temperature

  10. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    SciTech Connect

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2002-07-15

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 4/2/2001 through 7/01/2002. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives, and we are currently on schedule to complete Phase I activities by 10/2002, the milestone date from the original project timeline. As indicated in the list of accomplishments below, our efforts are focused on improving the design of the bioreactor test system, evaluating candidate organisms and growth surfaces, and scaling-up the test facilities from bench scale to pilot scale. Specific results and accomplishments for the second quarter of 2002 include: Organisms and Growth Surfaces: (1) Our collection of cyanobacteria, isolated in YNP was increased to 15 unialgal cultures. (2) Illumination rate about 50 {micro}E/m{sup 2}/sec is not saturated for the growth of 1.2 s.c. (2) isolate. The decrease of illumination rate led to the decrease of doubling time of this isolate. (3) The positive effect of Ca{sup 2+} on the growth of isolate 1.2 s.c. (2) without Omnisil was revealed, though Ca{sup 2+} addition was indifferent for the growth of this isolate at the presence of Omnisil. (4) Calcium addition had a positive effect on the generation of cyanobacterial biofilm on Omnisil surface. (5) The survivability problems with the Tr9.4 organism on Omnisil screens in the CRF2 model-scale bioreactor have been solved. The problems were related to the method used to populate the growth surfaces. When pre-populated screens were placed in the bioreactor the microalgae died within 72 hours, but when the microalgae were cultured while in place in the bioreactor using a continuous-population method they grew well inside of the CRF2 test system and survived for the full 7-day test duration. CRF2 tests will continue as soon as the new combined drip system/harvesting system header pipe

  11. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    SciTech Connect

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2002-04-15

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 1/3/2001 through 4/02/2002. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives, and we are currently on schedule to complete Phase I activities by 10/2002, the milestone date from the original project timeline. As indicated in the list of accomplishments below, we are continuing to evaluate candidate organisms and growth surfaces, and we are expanding the test facilities in preparation for scaled up system-level testing. Specific results and accomplishments for the first quarter of 2002 include: Organisms and Growth Surfaces: (1) Isolate 1.2 s.c. (2) has been selected for further investigations because of its favorable growth properties. (2) Research on optimal conditions for the growth of cyanobacterial isolates from YNP should be carried out using distilled water which has more stable chemical parameters, although tap water use may be permissible during full scale operations (at the cost of longer organism doubling times). (3) Tr. 9.4 WF is able to generate a biofilm on an Omnisil surface. Over the long term Omnisil does not inhibit the growth of TR 9.4 isolate, though it does elongate the lag phase of growth of this isolate. (4) Initial survivability tests for the TR 9.4 organism on Omnisil screens in the CRF2 modelscale bioreactor are underway. We have experienced problems keeping the organisms alive for more than three days, but we are currently investigating several possible causes for this unexpected result. (5) Accelerated materials testing have shown that Omnisil fabric has acceptable strength properties for use in a practical bioreactor system. Bioreactor support systems and test facilities: (1) Several CO{sub 2} scrubbing experiments have been completed in the translating slug flow test system, however the error introduced by the

  12. Gut bacterium of Dendrobaena veneta (Annelida: Oligochaeta) possesses antimycobacterial activity.

    PubMed

    Fiołka, Marta J; Zagaja, Mirosław P; Piersiak, Tomasz D; Wróbel, Marek; Pawelec, Jarosław

    2010-09-01

    The new bacterial strain with antimycobacterial activity has been isolated from the midgut of Dendrobaena veneta (Annelida). Biochemical and molecular characterization of isolates from 18 individuals identified all as Raoultella ornithinolytica genus with 99% similarity. The bacterium is a possible symbiont of the earthworm D. veneta. The isolated microorganism has shown the activity against four strains of fast-growing mycobacteria: Mycobacterium butiricum, Mycobacterium jucho, Mycobacterium smegmatis and Mycobacterium phlei. The multiplication of the gut bacterium on plates with Sauton medium containing mycobacteria has caused a lytic effect. After the incubation of the cell free extract prepared from the gut bacterium with four strains of mycobacteria in liquid Sauton medium, the cells of all tested strains were deformed and divided to small oval forms and sometimes created long filaments. The effect was observed by the use of light, transmission and scanning microscopy. Viability of all examined species of mycobacteria was significantly decreased. The antimycobacterial effect was probably the result of the antibiotic action produced by the gut bacterium of the earthworm. The application of ultrafiltration procedure allowed to demonstrate that antimicrobial substance with strong antimycobacterial activity from bacterial culture supernatant, is a protein with the molecular mass above 100 kDa.

  13. Complete Genome of the Cellulolytic Ruminal Bacterium Ruminococcus albus 7

    SciTech Connect

    Suen, Garret; Stevenson, David M; Bruce, David; Chertkov, Olga; Copeland, A; Cheng, Jan-Fang; Detter, J. Chris; Goodwin, Lynne A.; Han, Cliff; Hauser, Loren John; Ivanova, N; Kyrpides, Nikos C; Land, Miriam L; Lapidus, Alla L.; Lucas, Susan; Ovchinnikova, Galina; Pitluck, Sam; Tapia, Roxanne; Woyke, Tanja; Boyum, Julie; Mead, David; Weimer, Paul J

    2011-01-01

    Ruminococcus albus 7 is a highly cellulolytic ruminal bacterium that is a member of the phylum Firmicutes. Here, we describe the complete genome of this microbe. This genome will be useful for rumen microbiology and cellulosome biology and in biofuel production, as one of its major fermentation products is ethanol.

  14. Protein structure, electron transfer and evolution of prokaryotic photosynthetic reaction centers

    NASA Technical Reports Server (NTRS)

    Blankenship, R. E.

    1994-01-01

    Photosynthetic reaction centers from a variety of organisms have been isolated and characterized. The groups of prokaryotic photosynthetic organisms include the purple bacteria, the filamentous green bacteria, the green sulfur bacteria and the heliobacteria as anoxygenic representatives as well as the cyanobacteria and prochlorophytes as oxygenic representatives. This review focuses on structural and functional comparisons of the various groups of photosynthetic reaction centers and considers possible evolutionary scenarios to explain the diversity of existing photosynthetic organisms.

  15. Hydraulic constraints modify optimal photosynthetic profiles in giant sequoia trees.

    PubMed

    Ambrose, Anthony R; Baxter, Wendy L; Wong, Christopher S; Burgess, Stephen S O; Williams, Cameron B; Næsborg, Rikke R; Koch, George W; Dawson, Todd E

    2016-11-01

    Optimality theory states that whole-tree carbon gain is maximized when leaf N and photosynthetic capacity profiles are distributed along vertical light gradients such that the marginal gain of nitrogen investment is identical among leaves. However, observed photosynthetic N gradients in trees do not follow this prediction, and the causes for this apparent discrepancy remain uncertain. Our objective was to evaluate how hydraulic limitations potentially modify crown-level optimization in Sequoiadendron giganteum (giant sequoia) trees up to 90 m tall. Leaf water potential (Ψ l ) and branch sap flow closely followed diurnal patterns of solar radiation throughout each tree crown. Minimum leaf water potential correlated negatively with height above ground, while leaf mass per area (LMA), shoot mass per area (SMA), leaf nitrogen content (%N), and bulk leaf stable carbon isotope ratios (δ(13)C) correlated positively with height. We found no significant vertical trends in maximum leaf photosynthesis (A), stomatal conductance (g s), and intrinsic water-use efficiency (A/g s), nor in branch-averaged transpiration (E L), stomatal conductance (G S), and hydraulic conductance (K L). Adjustments in hydraulic architecture appear to partially compensate for increasing hydraulic limitations with height in giant sequoia, allowing them to sustain global maximum summer water use rates exceeding 2000 kg day(-1). However, we found that leaf N and photosynthetic capacity do not follow the vertical light gradient, supporting the hypothesis that increasing limitations on water transport capacity with height modify photosynthetic optimization in tall trees. PMID:27553681

  16. Effect of Pb2+ ions on photosynthetic apparatus.

    PubMed

    Sersen, Frantisek; Kralova, Katarina; Pesko, Matus; Cigan, Marek

    2014-01-01

    Using model lead compounds Pb(NO3)2 and Pb(CH3CHOO)2, the mechanism and the site of action of Pb2+ ions in the photosynthetic apparatus of spinach chloroplasts were studied. Both compounds inhibited photosynthetic electron transport (PET) through photosystem 1 (PS1) and photosystem 2 (PS2), while Pb(NO3)2 was found to be more effective PET inhibitor. Using EPR spectroscopy the following sites of Pb2+ action in the photosynthetic apparatus were determined: the water-splitting complex and the Z•/D• intermediates on the donor side of PS2 and probably also the ferredoxin on the acceptor side of PS1, because cyclic electron flow in chloroplasts was impaired by treatment with Pb2+ ions. Study of chlorophyll fluorescence in suspension of spinach chloroplasts in the presence of Pb2+ ions confirmed their site of action in PS2. Using fluorescence spectroscopy also formation of complexes between Pb2+ and amino acid residues in photosynthetic proteins was confirmed and constants of complex formation among Pb2+ and aromatic amino acids were calculated for both studied lead compounds. PMID:24177022

  17. Assessing Photosynthetic Oxygen Liberation Using a BBC Microcomputer.

    ERIC Educational Resources Information Center

    Love, Annette J. W.; Spragg, Robert M.

    1986-01-01

    Describes a technique which gives an automatic and accurate assessment of photosynthetic oxygen liberation with graphical results available immediately. This program takes readings from an oxygen electrode and a photocell simultaneously. The types of results and unique features of the technique are discussed. (ML)

  18. Hydraulic constraints modify optimal photosynthetic profiles in giant sequoia trees.

    PubMed

    Ambrose, Anthony R; Baxter, Wendy L; Wong, Christopher S; Burgess, Stephen S O; Williams, Cameron B; Næsborg, Rikke R; Koch, George W; Dawson, Todd E

    2016-11-01

    Optimality theory states that whole-tree carbon gain is maximized when leaf N and photosynthetic capacity profiles are distributed along vertical light gradients such that the marginal gain of nitrogen investment is identical among leaves. However, observed photosynthetic N gradients in trees do not follow this prediction, and the causes for this apparent discrepancy remain uncertain. Our objective was to evaluate how hydraulic limitations potentially modify crown-level optimization in Sequoiadendron giganteum (giant sequoia) trees up to 90 m tall. Leaf water potential (Ψ l ) and branch sap flow closely followed diurnal patterns of solar radiation throughout each tree crown. Minimum leaf water potential correlated negatively with height above ground, while leaf mass per area (LMA), shoot mass per area (SMA), leaf nitrogen content (%N), and bulk leaf stable carbon isotope ratios (δ(13)C) correlated positively with height. We found no significant vertical trends in maximum leaf photosynthesis (A), stomatal conductance (g s), and intrinsic water-use efficiency (A/g s), nor in branch-averaged transpiration (E L), stomatal conductance (G S), and hydraulic conductance (K L). Adjustments in hydraulic architecture appear to partially compensate for increasing hydraulic limitations with height in giant sequoia, allowing them to sustain global maximum summer water use rates exceeding 2000 kg day(-1). However, we found that leaf N and photosynthetic capacity do not follow the vertical light gradient, supporting the hypothesis that increasing limitations on water transport capacity with height modify photosynthetic optimization in tall trees.

  19. Systemic regulation of photosynthetic function in field-grown sorghum.

    PubMed

    Li, Tao; Liu, Yujun; Shi, Lei; Jiang, Chuangdao

    2015-09-01

    The photosynthetic characteristics of developing leaves of plants grown under artificial conditions are, to some extent, regulated systemically by mature leaves; however, whether systemic regulation of photosynthesis occurs in field-grown crops is unclear. To explore this question, we investigated the effects of planting density on growth characteristics, gas exchange, leaf nitrogen concentration and chlorophyll a fluorescence in field-grown sorghum (Sorghum bicolor L.). Our results showed that close planting resulted in a marked decline in light intensity in lower canopy. Sorghum plants grown at a high planting density had lower net photosynthetic rate (Pn), stomatal conductance (Gs), and transpiration rate (E) than plants grown at a low planting density. Moreover, in the absence of mineral deficiency, close planting induced a slight increase in leaf nitrogen concentration. The decreased photosynthesis in leaves of the lower canopy at high planting density was caused mainly by the low light. However, newly developed leaves exposed to high light in the upper canopy of plants grown at high planting density also exhibited a distinct decline in photosynthesis relative to plants grown at low planting density. Based on these results, the photosynthetic function of the newly developed leaves in the upper canopy was not determined fully by their own high light environment. Accordingly, we suggest that the photosynthetic function of newly developed leaves in the upper canopy of field-grown sorghum plants is regulated systemically by the lower canopy leaves. The differences in systemic regulation of photosynthesis were also discussed between field conditions and artificial conditions.

  20. Predicting Photosynthetic Fluxes from Spectral Reflectance of Leaves and Canopies

    NASA Technical Reports Server (NTRS)

    Gamon, John A.

    1997-01-01

    The central hypothesis of this study has been that photosynthetic efficiency and capacity can be predicted from 'physiological reflectance indices' derived from spectral reflectance of leaves and canopies. I have approached this topic with a combination of laboratory and field experiments, and have also explored the potential of deriving a meaningful physiological index from imaging spectrometry (e.g. AVIRIS). A few highlights are presented below. The main emphasis has been on the 'Photochemical Reflectance Index' (PRI), derived from reflectance at 531 nm and 570 nm. Unlike most 'conventional' vegetation indices (e.g. NDVI), PRI changes rapidly both with illumination and physiological state, because it detects the interconversion of xanthophyll cycle pigments, which serve as photoregulatory pigments and control energy distribution for the photosynthetic system. This approach has differed dramatically from most remote sensing in that it has emphasized temporal variation in narrow-band spectral signatures, instead of spatial patterns of broadband indices. Our primary conclusion has been that PRI works well as an index of photosynthetic light-use efficiency at the leaf scale, much in the same way as the fluorescence index DeltaF/Fm. However, unlike DeltaF/Fm which must be measured at close scales, PRI can be sampled at a range of spatial scales, presenting the possibility of monitoring photosynthetic fluxes remotely.

  1. Modeling the dynamic modulation of light energy in photosynthetic algae.

    PubMed

    Papadakis, Ioannis A; Kotzabasis, Kiriakos; Lika, Konstadia

    2012-05-01

    An integrated cell-based dynamic mathematical model that take into account the role of the photon absorbing process, the partition of excitation energy, and the photoinactivation and repair of photosynthetic units, under variable light and dissolved inorganic carbon (DIC) availability is proposed. The modeling of the photon energy absorption and the energy dissipation is based on the photoadaptive changes of the underlying mechanisms. The partition of the excitation energy is based on the relative availability of light and DIC to the cell. The modeling of the photoinactivation process is based on the common aspect that it occurs under any light intensity and the modeling of the repair process is based on the evidence that it is controlled by chloroplast and nuclear-encoded enzymes. The present model links the absorption of photons and the partitioning of excitation energy to the linear electron flow and other quenchers with chlorophyll fluorescence emission parameters, and the number of the functional photosynthetic units with the photosynthetic oxygen production rate. The energy allocation to the LEF increases as DIC availability increases and/or light intensity decreases. The rate of rejected energy increases with light intensity and with DIC availability. The resulting rate coefficient of photoinactivation increases as light intensity and/or as DIC concentration increases. We test the model against chlorophyll fluorescence induction and photosynthetic oxygen production rate measurements, obtained from cultures of the unicellular green alga Scenedesmus obliquus, and find a very close quantitative and qualitative correspondence between predictions and data.

  2. Photosynthetic terpene hydrocarbon production for fuels and chemicals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Photosynthetic terpene production[ED1] represents an energy and carbon-efficient route for hydrocarbon fuel production. Diverse terpene structures also provide the potential to produce next-generation 'drop-in' hydrocarbon fuel molecules. However, it is highly challenging to achieve efficient redire...

  3. A Model for Prediction of Heat Stability of Photosynthetic Membranes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A previous study has revealed a positive correlation between heat-induced damage to photosynthetic membranes (thylakoid membranes) and chlorophyll loss. In this study, we exploited this correlation and developed a model for prediction of thermal damage to thylakoids. Prediction is based on estimat...

  4. Functional Implications of Photosystem II Crystal Formation in Photosynthetic Membranes.

    PubMed

    Tietz, Stefanie; Puthiyaveetil, Sujith; Enlow, Heather M; Yarbrough, Robert; Wood, Magnus; Semchonok, Dmitry A; Lowry, Troy; Li, Zhirong; Jahns, Peter; Boekema, Egbert J; Lenhert, Steven; Niyogi, Krishna K; Kirchhoff, Helmut

    2015-05-29

    The structural organization of proteins in biological membranes can affect their function. Photosynthetic thylakoid membranes in chloroplasts have the remarkable ability to change their supramolecular organization between disordered and semicrystalline states. Although the change to the semicrystalline state is known to be triggered by abiotic factors, the functional significance of this protein organization has not yet been understood. Taking advantage of an Arabidopsis thaliana fatty acid desaturase mutant (fad5) that constitutively forms semicrystalline arrays, we systematically test the functional implications of protein crystals in photosynthetic membranes. Here, we show that the change into an ordered state facilitates molecular diffusion of photosynthetic components in crowded thylakoid membranes. The increased mobility of small lipophilic molecules like plastoquinone and xanthophylls has implications for diffusion-dependent electron transport and photoprotective energy-dependent quenching. The mobility of the large photosystem II supercomplexes, however, is impaired, leading to retarded repair of damaged proteins. Our results demonstrate that supramolecular changes into more ordered states have differing impacts on photosynthesis that favor either diffusion-dependent electron transport and photoprotection or protein repair processes, thus fine-tuning the photosynthetic energy conversion.

  5. Functional Implications of Photosystem II Crystal Formation in Photosynthetic Membranes*

    PubMed Central

    Tietz, Stefanie; Puthiyaveetil, Sujith; Enlow, Heather M.; Yarbrough, Robert; Wood, Magnus; Semchonok, Dmitry A.; Lowry, Troy; Li, Zhirong; Jahns, Peter; Boekema, Egbert J.; Lenhert, Steven; Niyogi, Krishna K.; Kirchhoff, Helmut

    2015-01-01

    The structural organization of proteins in biological membranes can affect their function. Photosynthetic thylakoid membranes in chloroplasts have the remarkable ability to change their supramolecular organization between disordered and semicrystalline states. Although the change to the semicrystalline state is known to be triggered by abiotic factors, the functional significance of this protein organization has not yet been understood. Taking advantage of an Arabidopsis thaliana fatty acid desaturase mutant (fad5) that constitutively forms semicrystalline arrays, we systematically test the functional implications of protein crystals in photosynthetic membranes. Here, we show that the change into an ordered state facilitates molecular diffusion of photosynthetic components in crowded thylakoid membranes. The increased mobility of small lipophilic molecules like plastoquinone and xanthophylls has implications for diffusion-dependent electron transport and photoprotective energy-dependent quenching. The mobility of the large photosystem II supercomplexes, however, is impaired, leading to retarded repair of damaged proteins. Our results demonstrate that supramolecular changes into more ordered states have differing impacts on photosynthesis that favor either diffusion-dependent electron transport and photoprotection or protein repair processes, thus fine-tuning the photosynthetic energy conversion. PMID:25897076

  6. Effect of photosynthetic photon flux density on carboxylation efficiency.

    PubMed

    Weber, J A; Tenhunen, J D; Gates, D M; Lange, O L

    1987-09-01

    The effect of photosynthetic photon flux density (PPFD) on photosynthetic response (A) to CO(2) partial pressures between 35 pascals and CO(2) compensation point (Gamma) was investigated, especially below PPFD saturation. Spinacia oleracea cv ;Atlanta,' Glycine max cv ;Clark,' and Arbutus unedo were studied in detail. The initial slope of the photosynthetic response to CO(2) ( partial differentialA/ partial differentialC[Gamma]) was constant above a PPFD of about 500 to 600 micromoles per square meter per second for all three species; but declined rapidly with PPFD below this critical level. For Gamma there was also a critical PPFD (approximately 200 micromoles per square meter per second for S. oleracea and G. max; 100 for A. unedo) above which Gamma was essentially constant, but below which Gamma increased with decreasing PPFD. All three species showed a dependence of partial differentialA/ partial differentialC(Gamma) on PPFD at low PPFD. Simulated photosynthetic responses obtained with a biochemically based model of whole-leaf photosynthesis were similar to measured responses. PMID:16665640

  7. Relationship between leaf temperature and photosynthetic ratio of cherry tree

    NASA Astrophysics Data System (ADS)

    Nakashima, Atsushi; Ogura, Yasushi; Fujigaki, Motoharu; Tanikawa, Hiroki; Miwa, Masafumi

    2003-03-01

    We investigated the relations between leaf-air temperature and photosynthetic ratio of cherry trees in order to obtain the fundamental data for applying the biological information to the remote sensing system. Some branches of Prunus jamasakura were cut and put into the water pot prompt once per month from May to October 2001. We measured the surface temperature of ten leaves and photosynthetic ratio every five second for ten minutes every measurement air temperature condition at 20, 25, 30 and 35°C with 1000 PAR light intensity. Result as, there was recognized the small significantly relation between leaf temperature and photosynthetic ratio because leaf temperature is usually changed with air temperature. Although, there was recognized large significantly correlations between the difference of the leaf temperature and air temperature and photosynthetic ratio. It is thought that transpiring in healthy plants are active for absorption of water and it cause to drop the leaf temperature. This research showed that the health of cherry trees could be diagnosed for measurement of the difference of leaf and air temperature.

  8. Evolution of heliobacteria: implications for photosynthetic reaction center complexes

    NASA Technical Reports Server (NTRS)

    Vermaas, W. F.; Blankenship, R. E. (Principal Investigator)

    1994-01-01

    The evolutionary position of the heliobacteria, a group of green photosynthetic bacteria with a photosynthetic apparatus functionally resembling Photosystem I of plants and cyanobacteria, has been investigated with respect to the evolutionary relationship to Gram-positive bacteria and cyanobacteria. On the basis of 16S rRNA sequence analysis, the heliobacteria appear to be most closely related to Gram-positive bacteria, but also an evolutionary link to cyanobacteria is evident. Interestingly, a 46-residue domain including the putative sixth membrane-spanning region of the heliobacterial reaction center protein show rather strong similarity (33% identity and 72% similarity) to a region including the sixth membrane-spanning region of the CP47 protein, a chlorophyll-binding core antenna polypeptide of Photosystem II. The N-terminal half of the heliobacterial reaction center polypeptide shows a moderate sequence similarity (22% identity over 232 residues) with the CP47 protein, which is significantly more than the similarity with the Photosystem I core polypeptides in this region. An evolutionary model for photosynthetic reaction center complexes is discussed, in which an ancestral homodimeric reaction center protein (possibly resembling the heliobacterial reaction center protein) with 11 membrane-spanning regions per polypeptide has diverged to give rise to the core of Photosystem I, Photosystem II, and of the photosynthetic apparatus in green, purple, and heliobacteria.

  9. An Improved Method for Extraction and Separation of Photosynthetic Pigments

    ERIC Educational Resources Information Center

    Katayama, Nobuyasu; Kanaizuka, Yasuhiro; Sudarmi, Rini; Yokohama, Yasutsugu

    2003-01-01

    The method for extracting and separating hydrophobic photosynthetic pigments proposed by Katayama "et al." ("Japanese Journal of Phycology," 42, 71-77, 1994) has been improved to introduce it to student laboratories at the senior high school level. Silica gel powder was used for removing water from fresh materials prior to extracting pigments by a…

  10. Structural insight into photoactivation of an adenylate cyclase from a photosynthetic cyanobacterium

    PubMed Central

    Ohki, Mio; Sugiyama, Kanako; Kawai, Fumihiro; Tanaka, Hitomi; Nihei, Yuuki; Unzai, Satoru; Takebe, Masumi; Matsunaga, Shigeru; Adachi, Shin-ichi; Shibayama, Naoya; Zhou, Zhiwen; Koyama, Ryuta; Takahashi, Tetsuo; Tame, Jeremy R. H.; Iseki, Mineo; Park, Sam-Yong

    2016-01-01

    Cyclic-AMP is one of the most important second messengers, regulating many crucial cellular events in both prokaryotes and eukaryotes, and precise spatial and temporal control of cAMP levels by light shows great promise as a simple means of manipulating and studying numerous cell pathways and processes. The photoactivated adenylate cyclase (PAC) from the photosynthetic cyanobacterium Oscillatoria acuminata (OaPAC) is a small homodimer eminently suitable for this task, requiring only a simple flavin chromophore within a blue light using flavin (BLUF) domain. These domains, one of the most studied types of biological photoreceptor, respond to blue light and either regulate the activity of an attached enzyme domain or change its affinity for a repressor protein. BLUF domains were discovered through studies of photo-induced movements of Euglena gracilis, a unicellular flagellate, and gene expression in the purple bacterium Rhodobacter sphaeroides, but the precise details of light activation remain unknown. Here, we describe crystal structures and the light regulation mechanism of the previously undescribed OaPAC, showing a central coiled coil transmits changes from the light-sensing domains to the active sites with minimal structural rearrangement. Site-directed mutants show residues essential for signal transduction over 45 Å across the protein. The use of the protein in living human cells is demonstrated with cAMP-dependent luciferase, showing a rapid and stable response to light over many hours and activation cycles. The structures determined in this study will assist future efforts to create artificial light-regulated control modules as part of a general optogenetic toolkit. PMID:27247413

  11. Development and dynamics of the photosynthetic apparatus in purple phototrophic bacteria.

    PubMed

    Niederman, Robert A

    2016-03-01

    The purple bacterium Rhodobacter sphaeroides provides a useful model system for studies of the assembly and dynamics of bacterial photosynthetic membranes. For the nascent developing membrane, proteomic analyses showed an ~2-fold enrichment in general membrane assembly factors, compared to chromatophores. When the protonophore carbonyl-cyanide m-chlorophenyl-hydrazone (CCCP) was added to an ICM inducing culture, an ~2-fold elevation in spectral counts vs. the control was seen for the SecA translocation ATPase, the preprotein translocase SecY, SecD and SecF insertion components, and chaperonins DnaJ and DnaK, which act early in the assembly process. It is suggested that these factors accumulated with their nascent polypeptides, as putative assembly intermediates in a functionally arrested state. Since in Synechocystis PCC 6803, a link has been established between Chl delivery involving the high-light HilD protein and the SecY/YidC-requiring cotranslational insertion of nascent polypeptides, such a connection between BChl biosynthesis and insertion and folding of nascent Rba. sphaeroides BChl binding proteins is likely to also occur. AFM imaging studies of the formation of the reaction center (RC)-light harvesting 1 (LH1) complex suggested a cooperative assembly mechanism in which, following the association between the RC template and the initial LH1 unit, addition of successive LH1 units to the RC drives the assembly process to completion. Alterations in membrane dynamics as the developing membrane becomes filled with LH2-rings were assessed by fluorescence induction/relaxation kinetics, which showed a slowing in RC electron transfer rate thought to mainly reflect alterations in donor side electron transfer. This was attributed to an increased distance for electron flow in cytochrome c2 between the RC and cytochrome bc1 complexes, as suggested in the current structural models. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic

  12. Structural insight into photoactivation of an adenylate cyclase from a photosynthetic cyanobacterium.

    PubMed

    Ohki, Mio; Sugiyama, Kanako; Kawai, Fumihiro; Tanaka, Hitomi; Nihei, Yuuki; Unzai, Satoru; Takebe, Masumi; Matsunaga, Shigeru; Adachi, Shin-Ichi; Shibayama, Naoya; Zhou, Zhiwen; Koyama, Ryuta; Ikegaya, Yuji; Takahashi, Tetsuo; Tame, Jeremy R H; Iseki, Mineo; Park, Sam-Yong

    2016-06-14

    Cyclic-AMP is one of the most important second messengers, regulating many crucial cellular events in both prokaryotes and eukaryotes, and precise spatial and temporal control of cAMP levels by light shows great promise as a simple means of manipulating and studying numerous cell pathways and processes. The photoactivated adenylate cyclase (PAC) from the photosynthetic cyanobacterium Oscillatoria acuminata (OaPAC) is a small homodimer eminently suitable for this task, requiring only a simple flavin chromophore within a blue light using flavin (BLUF) domain. These domains, one of the most studied types of biological photoreceptor, respond to blue light and either regulate the activity of an attached enzyme domain or change its affinity for a repressor protein. BLUF domains were discovered through studies of photo-induced movements of Euglena gracilis, a unicellular flagellate, and gene expression in the purple bacterium Rhodobacter sphaeroides, but the precise details of light activation remain unknown. Here, we describe crystal structures and the light regulation mechanism of the previously undescribed OaPAC, showing a central coiled coil transmits changes from the light-sensing domains to the active sites with minimal structural rearrangement. Site-directed mutants show residues essential for signal transduction over 45 Å across the protein. The use of the protein in living human cells is demonstrated with cAMP-dependent luciferase, showing a rapid and stable response to light over many hours and activation cycles. The structures determined in this study will assist future efforts to create artificial light-regulated control modules as part of a general optogenetic toolkit. PMID:27247413

  13. An Evaluation of Sensor Performance for Harmful Compounds by Using Photo-Induced Electron Transfer from Photosynthetic Membranes to Electrodes

    PubMed Central

    Kasuno, Megumi; Kimura, Hiroki; Yasutomo, Hisataka; Torimura, Masaki; Murakami, Daisuke; Tsukatani, Yusuke; Hanada, Satoshi; Matsushita, Takayuki; Tao, Hiroaki

    2016-01-01

    Rapid, simple, and low-cost screening procedures are necessary for the detection of harmful compounds in the effluent that flows out of point sources such as industrial outfall. The present study investigated the effects on a novel sensor of harmful compounds such as KCN, phenol, and herbicides such as 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), 2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine (atrazine), and 2-N-tert-butyl-4-N-ethyl-6-methylsulfanyl-1,3,5-triazine-2,4-diamine (terbutryn). The sensor employed an electrode system that incorporated the photocurrent of intra-cytoplasmic membranes (so-called chromatophores) prepared from photosynthetic bacteria and linked using carbon paste electrodes. The amperometric curve (photocurrent-time curve) of photo-induced electron transfer from chromatophores of the purple photosynthetic bacterium Rhodobacter sphaeroides to the electrode via an exogenous electron acceptor was composed of two characteristic phases: an abrupt increase in current immediately after illumination (I0), and constant current over time (Ic). Compared with other redox compounds, 2,5-dichloro-1,4-benzoquinone (DCBQ) was the most useful exogenous electron acceptor in this system. Photo-reduction of DCBQ exhibited Michaelis-Menten-like kinetics, and reduction rates were dependent on the amount of DCBQ and the photon flux intensity. The Ic decreased in the presence of KCN at concentrations over 0.05 μM (=μmol·dm−3). The I0 decreased following the addition of phenol at concentrations over 20 μM. The Ic was affected by terbutryn at concentrations over 10 μM. In contrast, DCMU and atrazine had no effect on either I0 or Ic. The utility of this electrode system for the detection of harmful compounds is discussed. PMID:27023553

  14. An Evaluation of Sensor Performance for Harmful Compounds by Using Photo-Induced Electron Transfer from Photosynthetic Membranes to Electrodes.

    PubMed

    Kasuno, Megumi; Kimura, Hiroki; Yasutomo, Hisataka; Torimura, Masaki; Murakami, Daisuke; Tsukatani, Yusuke; Hanada, Satoshi; Matsushita, Takayuki; Tao, Hiroaki

    2016-01-01

    Rapid, simple, and low-cost screening procedures are necessary for the detection of harmful compounds in the effluent that flows out of point sources such as industrial outfall. The present study investigated the effects on a novel sensor of harmful compounds such as KCN, phenol, and herbicides such as 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), 2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine (atrazine), and 2-N-tert-butyl-4-N-ethyl-6-methylsulfanyl-1,3,5-triazine-2,4-diamine (terbutryn). The sensor employed an electrode system that incorporated the photocurrent of intra-cytoplasmic membranes (so-called chromatophores) prepared from photosynthetic bacteria and linked using carbon paste electrodes. The amperometric curve (photocurrent-time curve) of photo-induced electron transfer from chromatophores of the purple photosynthetic bacterium Rhodobacter sphaeroides to the electrode via an exogenous electron acceptor was composed of two characteristic phases: an abrupt increase in current immediately after illumination (I₀), and constant current over time (Ic). Compared with other redox compounds, 2,5-dichloro-1,4-benzoquinone (DCBQ) was the most useful exogenous electron acceptor in this system. Photo-reduction of DCBQ exhibited Michaelis-Menten-like kinetics, and reduction rates were dependent on the amount of DCBQ and the photon flux intensity. The Ic decreased in the presence of KCN at concentrations over 0.05 μM (=μmol·dm(-3)). The I₀ decreased following the addition of phenol at concentrations over 20 μM. The Ic was affected by terbutryn at concentrations over 10 μM. In contrast, DCMU and atrazine had no effect on either I₀ or Ic. The utility of this electrode system for the detection of harmful compounds is discussed. PMID:27023553

  15. Enhanced Practical Photosynthetic CO2 Mitigation

    SciTech Connect

    Gregory Kremer; David J. Bayless; Morgan Vis; Michael Prudich; Keith Cooksey; Jeff Muhs

    2006-01-15

    This final report highlights significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation Project during the period from 10/1/2001 through 01/02/2006. As indicated in the list of accomplishments below, our efforts during this project were focused on the selection of candidate organisms and growth surfaces and initiating long-term tests in the bench-scale and pilot-scale bioreactor test systems. Specific results and accomplishments for the program include: (1) CRF-2 test system: (a) Sampling test results have shown that the initial mass of algae loaded into the Carbon Recycling Facility Version 2 (CRF-2) system can be estimated with about 3% uncertainty using a statistical sampling procedure. (b) The pressure shim header pipe insert design was shown to have better flow for harvesting than the drilled-hole design. (c) The CRF-2 test system has undergone major improvements to produce the high flow rates needed for harvesting (as determined by previous experiments). The main changes to the system are new stainless steel header/frame units, with increased flow capacity and a modified pipe-end-sealing method to improve flow uniformity, and installation and plumbing for a new high flow harvesting pump. Qualitative system tests showed that the harvesting system performed wonderfully, cleaning the growth surfaces within a matter of seconds. (d) Qualitative tests have shown that organisms can be repopulated on a harvested section of a bioreactor screen, demonstrating that continuous bioreactor operation is feasible, with continuous cycles of harvesting and repopulating screens. (e) Final preparations are underway for quantitative, long-term tests in the CRF-2 with weekly harvesting. (2) Pilot-scale test system: (a) The construction of the pilot-scale bioreactor was completed, including the solar collector and light distribution system. Over the course of the project, the solar collector used in the light delivery system showed some degradation, but

  16. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    SciTech Connect

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2003-01-15

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 10/2/2001 through 1/01/2003. As indicated in the list of accomplishments below our current efforts are focused on evaluating candidate organisms and growth surfaces, preparing to conduct long-term tests in the bench-scale bioreactor test systems, and scaling-up the test facilities from bench scale to pilot scale. Specific results and accomplishments for the first quarter of 2003 include: Organisms and Growth Surfaces: (1) Additional thermal features with developed cyanobacterial mats, which might be calcium resistant, were found in the West Thumb area of YNP. New samples were isolated and are being cultured in glass tubes. (2) We checked the motile ability of 8.2.1 Synechococcus s.c. (10) and 3.2.2 Synechococcus s.c. 6. It was found that unicellular isolates 8.2.1 Synechococcus s.c. (10) and 3.2.2 Synechococcus s.c. 1 are phototaxic. Isolate 3.2.2 Synechococcus s.c. 1 currently consists of two populations: one population appears to be positive phototaxic, and second population appears negative phototaxis to the same level of light. This means that the character of screen illumination should be uniform and reasonable for cyanobacterial cells. (3) The aeration of growth media with 5% CO{sub 2} in air stimulates cyanobacterial growth 10-20 times over that with air alone. It is possible the rate of the stimulation of cyanobacterial growth in CRF will be higher because cyanobacteria will be grown as a biofilm. We plan to increase the concentration to 15% CO{sub 2} in air. (4) We are continuing the organizing of our collection of the thermophilic cyanobacteria isolated from Yellowstone National Park. During this reporting period we transferred about 160 samples and discarded about 80 samples with weak growth in standard media as BG-11, D or DH. As result of this work we currently have 13 unialgal cultures of thermophilic

  17. [Spatial heterogeneity of photosynthetic characteristics of Castanopsis fargesii canopy].

    PubMed

    Meng, Chen; Xu, Ming-Ce; Li, Jun-Xiang; Gao, San-Ping

    2007-09-01

    The vertical and horizontal differences in the energy transmission, photosynthetically active radiation, and micrometeorological characteristics of forest canopy can lead to a considerable heterogeneity, which should be analyzed when estimating forest primary productivity. With Castanopsis fargesii, the dominant species in the subtropical evergreen broad-leaved forest in Tiantong National Forest Park of Zhejiang Province as test object, this paper studied the vertical and horizontal variations of photosynthetic characteristics of its canopy. Vertically, the photosynthetic indices such as maximum photosynthetic rate (Amax), light saturation point (LSP), and carboxylation efficiency (CCE) of north-facing leaves in the canopy all declined in the sequence of top canopy > mid-canopy > bottom canopy. The mean values of light compensation point (LCP), respiration in light (Rd), and Amax from top canopy to bottom canopy reduced by 19.4% , 18.1% and 37.1% , respectively. The LSP and CCE of south-facing leaves followed the pattern of top canopy > bottom canopy > mid-canopy. These two indices decreased by 12.3% in bottom canopy and 71.4% in mid-canopy, compared with those in top canopy. The apparent quantum yield (AQY) of leaves followed the sequence of bottom canopy > top canopy > mid-canopy, being 1.1 and 1.3 times higher at bottom canopy than at top- and mid-canopy, respectively. Horizontally, the Amax, LSP and CCE of south-facing leaves at top- and bottom canopy were 0.9%-31.5% higher than those of north-facing leaves. In mid-canopy however, the values of test six indices of north-facing leaves were 9.6%-63.2% higher than those of south-facing leaves. It was suggested that in order to estimate and model forest primary productivity accurately, the vertical and horizontal heterogeneity of photosynthetic characteristics of forest canopy should be analyzed.

  18. Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae).

    PubMed

    Melis, Anastasios

    2007-10-01

    Unicellular green algae have the ability to operate in two distinctly different environments (aerobic and anaerobic), and to photosynthetically generate molecular hydrogen (H2). A recently developed metabolic protocol in the green alga Chlamydomonas reinhardtii permitted separation of photosynthetic O2-evolution and carbon accumulation from anaerobic consumption of cellular metabolites and concomitant photosynthetic H2-evolution. The H2 evolution process was induced upon sulfate nutrient deprivation of the cells, which reversibly inhibits photosystem-II and O2-evolution in their chloroplast. In the absence of O2, and in order to generate ATP, green algae resorted to anaerobic photosynthetic metabolism, evolved H2 in the light and consumed endogenous substrate. This study summarizes recent advances on green algal hydrogen metabolism and discusses avenues of research for the further development of this method. Included is the mechanism of a substantial tenfold starch accumulation in the cells, observed promptly upon S-deprivation, and the regulated starch and protein catabolism during the subsequent H2-evolution. Also discussed is the function of a chloroplast envelope-localized sulfate permease, and the photosynthesis-respiration relationship in green algae as potential tools by which to stabilize and enhance H2 metabolism. In addition to potential practical applications of H2, approaches discussed in this work are beginning to address the biochemistry of anaerobic H2 photoproduction, its genes, proteins, regulation, and communication with other metabolic pathways in microalgae. Photosynthetic H2 production by green algae may hold the promise of generating a renewable fuel from nature's most plentiful resources, sunlight and water. The process potentially concerns global warming and the question of energy supply and demand. PMID:17721788

  19. Ferrochelatase activity in the photosynthetic alga Cyanidium caldarium. Development of the enzyme during biosynthesis of photosynthetic pigments.

    PubMed Central

    Brown, S B; Holroyd, J A; Vernon, D I; Jones, O T

    1984-01-01

    Dark-grown cells of the photosynthetic alga Cyanidium caldarium were shown to contain ferrochelatase activity, which increased markedly when the cells were induced to form pigments by exposure to light. Km values for the crude enzyme preparation were 14.8 microM and 6.5 microM for binding of Co2+ and deuteroporphyrin IX respectively. PMID:6466309

  20. Fructose metabolism of the purple non-sulfur bacterium Rhodospirillum rubrum: effect of carbon dioxide on growth, and production of bacteriochlorophyll and organic acids.

    PubMed

    Rudolf, Christiane; Grammel, Hartmut

    2012-04-01

    During fermentative metabolism, carbon dioxide fixation plays a key role in many bacteria regarding growth and production of organic acids. The present contribution, dealing with the facultative photosynthetic bacterium Rhodospirillum rubrum, reveals not only the strong influence of ambient carbon dioxide on the fermentative break-down of fructose but also a high impact on aerobic growth with fructose as sole carbon source. Both growth rates and biomass yield increased with increasing carbon dioxide supply in chemoheterotrophic aerobic cultures. Furthermore, intracellular metabolite concentration measurements showed almost negligible concentrations of the tricarboxylic acid cycle intermediates succinate, fumarate and malate under aerobic growth, in contrast to several metabolites of the glycolysis. In addition, we present a dual phase fed-batch process, where an aerobic growth phase is followed by an anaerobic production phase. The biosynthesis of bacteriochlorophyll and the secretion of organic acids were both affected by the carbon dioxide supply, the pH value and by the cell density at the time of switching from aerobic to anaerobic conditions. The formation of pigmented photosynthetic membranes and the amount of bacteriochlorophyll were inversely correlated to the secretion of succinate. Accounting the high biotechnological potential of R. rubrum, optimization of carbon dioxide supply is important because of the favored application of fructose-containing fermentable feedstock solutions in bio-industrial processes.

  1. Photosynthetic response of Nodularia spumigena to UV and photosynthetically active radiation depends on nutrient (N and P) availability.

    PubMed

    Roleda, Michael Y; Mohlin, Malin; Pattanaik, Bagmi; Wulff, Angela

    2008-11-01

    Biomass of N. spumigena is distributed within the dynamic photic zone that changes in both light quantity and quality. This study was designed to determine whether nutrient status can mitigate the negative impacts of experimental radiation treatments on the photosynthetic performance of N. spumigena. Cyanobacterial suspensions were exposed to radiation consisting of photosynthetically active radiation (PAR=400-700 nm), PAR+UV-A (=PA, 320-700 nm), and PAR+UV-A+UV-B (=PAB, 280-700 nm) under different nutrient media either replete with external dissolved nitrate (N) and orthophosphate (P; designated as +N/+P), replete with P only (-N/+P), or replete with N only (+N/-P). Under low PAR (75 micromol photons m(-2) s(-1)), nutrient status had no significant effect on the photosynthetic performance of N. spumigena in terms of rETRmax, alpha, and E(k). Nodularia spumigena was able to acclimate to high PAR (300 micromol photons m(-2) s(-1)), with a corresponding increase in rETRmax and E(k). The photosynthetic performance of N. spumigena cultured with supplemental nitrogen was more susceptible to experimental PAR irradiance. Under UVR, P-enrichment in the absence of additional external N (-N/+P) induced lower photoinhibition of photosynthesis compared with +N/-P cultures. However, the induction of NPQ may have provided PSII protection under P-deplete and PAR+UVR conditions. Because N. spumigena are able to fix nitrogen, access to available P can render them less susceptible to photoinhibition, effectively promoting blooms. Under a P-deficient condition, N. spumigena were more susceptible to radiation but were capable of photosynthetic recovery immediately after removal of radiation stress. In the presence of an internal P pool in the Baltic Sea, which may be seasonally available to the diazotrophic cyanobacteria, summer blooms of the resilient N. spumigena will persist. PMID:18754779

  2. Exploration of the antioxidant system and photosynthetic system of a marine algicidal Bacillus and its effect on four harmful algal bloom species.

    PubMed

    Hou, Shaoling; Shu, Wanjiao; Tan, Shuo; Zhao, Ling; Yin, Pinghe

    2016-01-01

    A novel marine bacterium, strain B1, initially showed 96.4% algicidal activity against Phaeocystis globosa. Under this situation, 3 other harmful algal species (Skeletonema costatum, Heterosigma akashiwo, and Prorocentrum donghaiense) were chosen to study the algicidal effects of strain B1, and the algicidal activities were 91.4%, 90.7%, and 90.6%, respectively. To explore the algicidal mechanism of strain B1 on these 4 harmful algal species, the characteristics of the antioxidant system and photosynthetic system were studied. Sensitivity to strain B1 supernatant, enzyme activity, and gene expression varied with algal species, while the algicidal patterns were similar. Strain B1 supernatant increased malondialdehyde contents; decreased chlorophyll a contents; changed total antioxidant and superoxide dismutase activity; and restrained psbA, psbD, and rbcL genes expression, which eventually resulted in the algal cells death. The algicidal procedure was observed using field emission scanning electron microscopy, which indicated that algal cells were lysed and cellular substances were released. These findings suggested that the antioxidant and photosynthetic system of these 4 algal species was destroyed under strain B1 supernatant stress. This is the first report to explore and compare the mechanism of a marine Bacillus against harmful algal bloom species of covered 4 phyla. PMID:26634608

  3. High Efficiency Light Harvesting by Carotenoids in the LH2 Complex from Photosynthetic Bacteria: Unique Adaptation to Growth under Low-Light Conditions

    PubMed Central

    2015-01-01

    Rhodopin, rhodopinal, and their glucoside derivatives are carotenoids that accumulate in different amounts in the photosynthetic bacterium, Rhodoblastus (Rbl.) acidophilus strain 7050, depending on the intensity of the light under which the organism is grown. The different growth conditions also have a profound effect on the spectra of the bacteriochlorophyll (BChl) pigments that assemble in the major LH2 light-harvesting pigment–protein complex. Under high-light conditions the well-characterized B800-850 LH2 complex is formed and accumulates rhodopin and rhodopin glucoside as the primary carotenoids. Under low-light conditions, a variant LH2, denoted B800-820, is formed, and rhodopinal and rhodopinal glucoside are the most abundant carotenoids. The present investigation compares and contrasts the spectral properties and dynamics of the excited states of rhodopin and rhodopinal in solution. In addition, the systematic differences in pigment composition and structure of the chromophores in the LH2 complexes provide an opportunity to explore the effect of these factors on the rate and efficiency of carotenoid-to-BChl energy transfer. It is found that the enzymatic conversion of rhodopin to rhodopinal by Rbl. acidophilus 7050 grown under low-light conditions results in nearly 100% carotenoid-to-BChl energy transfer efficiency in the LH2 complex. This comparative analysis provides insight into how photosynthetic systems are able to adapt and survive under challenging environmental conditions. PMID:25171303

  4. High efficiency light harvesting by carotenoids in the LH2 complex from photosynthetic bacteria: unique adaptation to growth under low-light conditions.

    PubMed

    Magdaong, Nikki M; LaFountain, Amy M; Greco, Jordan A; Gardiner, Alastair T; Carey, Anne-Marie; Cogdell, Richard J; Gibson, George N; Birge, Robert R; Frank, Harry A

    2014-09-25

    Rhodopin, rhodopinal, and their glucoside derivatives are carotenoids that accumulate in different amounts in the photosynthetic bacterium, Rhodoblastus (Rbl.) acidophilus strain 7050, depending on the intensity of the light under which the organism is grown. The different growth conditions also have a profound effect on the spectra of the bacteriochlorophyll (BChl) pigments that assemble in the major LH2 light-harvesting pigment-protein complex. Under high-light conditions the well-characterized B800-850 LH2 complex is formed and accumulates rhodopin and rhodopin glucoside as the primary carotenoids. Under low-light conditions, a variant LH2, denoted B800-820, is formed, and rhodopinal and rhodopinal glucoside are the most abundant carotenoids. The present investigation compares and contrasts the spectral properties and dynamics of the excited states of rhodopin and rhodopinal in solution. In addition, the systematic differences in pigment composition and structure of the chromophores in the LH2 complexes provide an opportunity to explore the effect of these factors on the rate and efficiency of carotenoid-to-BChl energy transfer. It is found that the enzymatic conversion of rhodopin to rhodopinal by Rbl. acidophilus 7050 grown under low-light conditions results in nearly 100% carotenoid-to-BChl energy transfer efficiency in the LH2 complex. This comparative analysis provides insight into how photosynthetic systems are able to adapt and survive under challenging environmental conditions.

  5. RpoH2 sigma factor controls the photooxidative stress response in a non-photosynthetic rhizobacterium, Azospirillum brasilense Sp7.

    PubMed

    Kumar, Santosh; Rai, Ashutosh Kumar; Mishra, Mukti Nath; Shukla, Mansi; Singh, Pradhyumna Kumar; Tripathi, Anil Kumar

    2012-12-01

    Bacteria belonging to the Alphaproteobacteria normally harbour multiple copies of the heat shock sigma factor (known as σ(32), σ(H) or RpoH). Azospirillum brasilense, a non-photosynthetic rhizobacterium, harbours five copies of rpoH genes, one of which is an rpoH2 homologue. The genes around the rpoH2 locus in A. brasilense show synteny with that found in rhizobia. The rpoH2 of A. brasilense was able to complement the temperature-sensitive phenotype of the Escherichia coli rpoH mutant. Inactivation of rpoH2 in A. brasilense results in increased sensitivity to methylene blue and to triphenyl tetrazolium chloride (TTC). Exposure of A. brasilense to TTC and the singlet oxygen-generating agent methylene blue induced several-fold higher expression of rpoH2. Comparison of the proteome of A. brasilense with its rpoH2 deletion mutant and with an A. brasilense strain overexpressing rpoH2 revealed chaperone GroEL, elongation factors (Ef-Tu and EF-G), peptidyl prolyl isomerase, and peptide methionine sulfoxide reductase as the major proteins whose expression was controlled by RpoH2. Here, we show that the RpoH2 sigma factor-controlled photooxidative stress response in A. brasilense is similar to that in the photosynthetic bacterium Rhodobacter sphaeroides, but that RpoH2 is not involved in the detoxification of methylglyoxal in A. brasilense.

  6. Exploration of the antioxidant system and photosynthetic system of a marine algicidal Bacillus and its effect on four harmful algal bloom species.

    PubMed

    Hou, Shaoling; Shu, Wanjiao; Tan, Shuo; Zhao, Ling; Yin, Pinghe

    2016-01-01

    A novel marine bacterium, strain B1, initially showed 96.4% algicidal activity against Phaeocystis globosa. Under this situation, 3 other harmful algal species (Skeletonema costatum, Heterosigma akashiwo, and Prorocentrum donghaiense) were chosen to study the algicidal effects of strain B1, and the algicidal activities were 91.4%, 90.7%, and 90.6%, respectively. To explore the algicidal mechanism of strain B1 on these 4 harmful algal species, the characteristics of the antioxidant system and photosynthetic system were studied. Sensitivity to strain B1 supernatant, enzyme activity, and gene expression varied with algal species, while the algicidal patterns were similar. Strain B1 supernatant increased malondialdehyde contents; decreased chlorophyll a contents; changed total antioxidant and superoxide dismutase activity; and restrained psbA, psbD, and rbcL genes expression, which eventually resulted in the algal cells death. The algicidal procedure was observed using field emission scanning electron microscopy, which indicated that algal cells were lysed and cellular substances were released. These findings suggested that the antioxidant and photosynthetic system of these 4 algal species was destroyed under strain B1 supernatant stress. This is the first report to explore and compare the mechanism of a marine Bacillus against harmful algal bloom species of covered 4 phyla.

  7. Apparatus and method for measuring single cell and sub-cellular photosynthetic efficiency

    DOEpatents

    Davis, Ryan Wesley; Singh, Seema; Wu, Huawen

    2013-07-09

    Devices for measuring single cell changes in photosynthetic efficiency in algal aquaculture are disclosed that include a combination of modulated LED trans-illumination of different intensities with synchronized through objective laser illumination and confocal detection. Synchronization and intensity modulation of a dual illumination scheme were provided using a custom microcontroller for a laser beam block and constant current LED driver. Therefore, single whole cell photosynthetic efficiency, and subcellular (diffraction limited) photosynthetic efficiency measurement modes are permitted. Wide field rapid light scanning actinic illumination is provided for both by an intensity modulated 470 nm LED. For the whole cell photosynthetic efficiency measurement, the same LED provides saturating pulses for generating photosynthetic induction curves. For the subcellular photosynthetic efficiency measurement, a switched through objective 488 nm laser provides saturating pulses for generating photosynthetic induction curves. A second near IR LED is employed to generate dark adapted states in the system under study.

  8. Humitalea rosea gen. nov., sp. nov., an aerobic bacteriochlorophyll-containing bacterium of the family Acetobacteraceae isolated from soil.

    PubMed

    Margesin, Rosa; Zhang, De-Chao

    2013-04-01

    A Gram-staining-negative, pale-pink-pigmented, non-motile, obligately aerobic and rod-shaped bacterium, designated strain W37(T), was isolated from soil and subjected to a taxonomic investigation using a polyphasic approach. The strain grew at 1-30 °C, oxidized thiosulfate and accumulated polyhydroxyalkanoates. Photosynthetic pigments were represented by bacteriochlorophyll a and carotenoids. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain W37(T) was most closely related to members of the genera Roseococcus and Rubritepida (with sequence similarities of <92.8 %) but formed a distinct lineage in the family Acetobacteraceae. The polar lipid profile comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, three unidentified aminolipids and one other unidentified lipid. The predominant cellular fatty acids were C18 : 1ω7c and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH). The DNA G+C content of strain W37(T) was 68.2 mol%. On the basis of phenotypic characteristics and phylogenetic analysis, strain W37(T) represents a novel species of a new genus in the family Acetobacteraceae, for which the name Humitalea rosea gen. nov., sp. nov. is proposed. The type strain of the type species is W37(T) ( = CIP 110261(T) = LMG 26243(T)).

  9. Isolation of a Bacterium Capable of Degrading Peanut Hull Lignin

    PubMed Central

    Kerr, Thomas J.; Kerr, Robert D.; Benner, Ronald

    1983-01-01

    Thirty-seven bacterial strains capable of degrading peanut hull lignin were isolated by using four types of lignin preparations and hot-water-extracted peanut hulls. One of the isolates, tentatively identified as Arthrobacter sp., was capable of utilizing all four lignin preparations as well as extracted peanut hulls as a sole source of carbon. The bacterium was also capable of degrading specifically labeled [14C]lignin-labeled lignocellulose and [14C]cellulose-labeled lignocellulose from the cordgrass Spartina alterniflora and could also degrade [14C]Kraft lignin from slash pine. After 10 days of incubation with [14C]cellulose-labeled lignocellulose or [14C]lignin-labeled lignocellulose from S. alterniflora, the bacterium mineralized 6.5% of the polysaccharide component and 2.9% of the lignin component. Images PMID:16346424

  10. A Streamlined Strategy for Biohydrogen Production with an Alkaliphilic Bacterium

    SciTech Connect

    Elias, Dwayne A; Wall, Judy D.; Mormile, Dr. Melanie R.; Begemann, Matthew B

    2012-01-01

    Biofuels are anticipated to enable a shift from fossil fuels for renewable transportation and manufacturing fuels, with biohydrogen considered attractive since it could offer the largest reduction of global carbon budgets. Currently, biohydrogen production remains inefficient and heavily fossil fuel-dependent. However, bacteria using alkali-treated biomass could streamline biofuel production while reducing costs and fossil fuel needs. An alkaliphilic bacterium, Halanaerobium strain sapolanicus, is described that is capable of biohydrogen production at levels rivaling neutrophilic strains, but at pH 11 and hypersaline conditions. H. sapolanicus ferments a variety of 5- and 6- carbon sugars derived from hemicellulose and cellulose including cellobiose, and forms the end products hydrogen and acetate. Further, it can also produce biohydrogen from switchgrass and straw pretreated at temperatures far lower than any previously reported and in solutions compatible with growth. Hence, this bacterium can potentially increase the efficiency and efficacy of biohydrogen production from renewable biomass resources.

  11. Isolation of the Legionnaires' disease bacterium from environmental samples.

    PubMed

    Morris, G K; Patton, C M; Feeley, J C; Johnson, S E; Gorman, G; Martin, W T; Skaliy, P; Mallison, G F; Politi, B D; Mackel, D C

    1979-04-01

    We analyzed 24 environmental samples collected in or near the Indiana Memorial Union, where an epidemic of Legionnaires' disease occurred in early 1978. We conducted fluorescent antibody analyses and culture on F-G and charcoal yeast extract agars of each sample directly; splenic tissue of guinea pigs inoculated with the sample; and yolk sacs from embryonated eggs inoculated with splenic tissue of guinea pigs injected with the sample. Legionnaires' disease (LD) bacterium was isolated from seven of the 24 samples: one water sample from the air-conditioner cooling tower of the Union; three water samples from a stream near the Union; and three mud samples from the same stream. The LD bacterium strains were of three different serotypes. These findings indicate that LD bacteria may be widespread in nature. PMID:373549

  12. Isolation of a bacterium capable of degrading peanut hull lignin

    SciTech Connect

    Kerr, T.A.; Kerr, R.D.; Benner, R.

    1983-11-01

    Thirty-seven bacterial strains capable of degrading peanut hull lignin were isolated by using four types of lignin preparations and hot-water-extracted peanut hulls. One of the isolates, tentatively identified as Arthrobacter species, was capable of utilizing all four lignin preparations as well as extracted peanut hulls as a sole source of carbon. The bacterium was also capable of degrading specifically labeled (/sup 14/C) lignin-labeled lignocellulose and (/sup 14/C)cellulose-labeled lignocellulose from the cordgrass Spartina alterniflora and could also degrade (/sup 14/C) Kraft lignin from slash pine. After 10 days of incubation with (/sup 14/C) cellulose-labeled lignocellulose or (/sup 14/C) lignin-labeled lignocellulose from S. alterniflora, the bacterium mineralized 6.5% of the polysaccharide component and 2.9% of the lignin component. (Refs. 24).

  13. Trichloroethylene Biodegradation by a Methane-Oxidizing Bacterium

    PubMed Central

    Little, C. Deane; Palumbo, Anthony V.; Herbes, Stephen E.; Lidstrom, Mary E.; Tyndall, Richard L.; Gilmer, Penny J.

    1988-01-01

    Trichloroethylene (TCE), a common groundwater contaminant, is a suspected carcinogen that is highly resistant to aerobic biodegradation. An aerobic, methane-oxidizing bacterium was isolated that degrades TCE in pure culture at concentrations commonly observed in contaminated groundwater. Strain 46-1, a type I methanotrophic bacterium, degraded TCE if grown on methane or methanol, producing CO2 and water-soluble products. Gas chromatography and 14C radiotracer techniques were used to determine the rate, methane dependence, and mechanism of TCE biodegradation. TCE biodegradation by strain 46-1 appears to be a cometabolic process that occurs when the organism is actively metabolizing a suitable growth substrate such as methane or methanol. It is proposed that TCE biodegradation by methanotrophs occurs by formation of TCE epoxide, which breaks down spontaneously in water to form dichloroacetic and glyoxylic acids and one-carbon products. Images PMID:16347616

  14. Thermostable purified endoglucanase from thermophilic bacterium acidothermus cellulolyticus

    DOEpatents

    Tucker, Melvin P.; Grohmann, Karel; Himmel, Michael E.; Mohagheghi, Ali

    1992-01-01

    A substantially purified high molecular weight cellulase enzyme having a molecular weight of between about 156,000 to about 203,400 daltons isolated from the bacterium Acidothermus cellulolyticus (ATCC 43068) and a method of producing it are disclosed. The enzyme is water soluble, possesses both C.sub.1 and C.sub.x types of enzymatic activity, has a high degree of stability toward heat and exhibits both a high optimum temperature activity and high inactivation characteristics.

  15. An on-bacterium flow cytometric immunoassay for protein quantification.

    PubMed

    Lan, Wen-Jun; Lan, Wei; Wang, Hai-Yan; Yan, Lei; Wang, Zhe-Li

    2013-09-01

    The polystyrene bead-based flow cytometric immunoassay has been widely reported. However, the preparation of functional polystyrene bead is still inconvenient. This study describes a simple and easy on-bacterium flow cytometric immunoassay for protein quantification, in which Staphylococcus aureus (SAC) is used as an antibody-antigen carrier to replace the polystyrene bead. The SAC beads were prepared by carboxyfluorescein diacetate succinimidyl ester (CFSE) labeling, paraformaldehyde fixation and antibody binding. Carcinoembryonic antigen (CEA) and cytokeratin-19 fragment (CYFRA 21-1) proteins were used as models in the test system. Using prepared SAC beads, biotinylated proteins, and streptavidin-phycoerythrin (SA-PE), the on-bacterium flow cytometric immunoassay was validated by quantifying CEA and CYFRA 21-1 in sample. Obtained data demonstrated a concordant result between the logarithm of the protein concentration and the logarithm of the PE mean fluorescence intensity (MFI). The limit of detection (LOD) in this immunoassay was at least 0.25 ng/ml. Precision and accuracy assessments appeared that either the relative standard deviation (R.S.D.) or the relative error (R.E.) was <10%. The comparison between this immunoassay and a polystyrene bead-based flow cytometric immunoassay showed a correlation coefficient of 0.998 for serum CEA or 0.996 for serum CYFRA 21-1. In conclusion, the on-bacterium flow cytometric immunoassay may be of use in the quantification of serum protein. PMID:23739299

  16. Ion antiport accelerates photosynthetic acclimation in fluctuating light environments

    PubMed Central

    Armbruster, Ute; Carrillo, L. Ruby; Venema, Kees; Pavlovic, Lazar; Schmidtmann, Elisabeth; Kornfeld, Ari; Jahns, Peter; Berry, Joseph A.; Kramer, David M.; Jonikas, Martin C.

    2014-01-01

    Many photosynthetic organisms globally, including crops, forests and algae, must grow in environments where the availability of light energy fluctuates dramatically. How photosynthesis maintains high efficiency despite such fluctuations in its energy source remains poorly understood. Here we show that Arabidopsis thaliana K+ efflux antiporter (KEA3) is critical for high photosynthetic efficiency under fluctuating light. On a shift from dark to low light, or high to low light, kea3 mutants show prolonged dissipation of absorbed light energy as heat. KEA3 localizes to the thylakoid membrane, and allows proton efflux from the thylakoid lumen by proton/potassium antiport. KEA3’s activity accelerates the downregulation of pH-dependent energy dissipation after transitions to low light, leading to faster recovery of high photosystem II quantum efficiency and increased CO2 assimilation. Our results reveal a mechanism that increases the efficiency of photosynthesis under fluctuating light. PMID:25451040

  17. Ion antiport accelerates photosynthetic acclimation in fluctuating light environments.

    PubMed

    Armbruster, Ute; Carrillo, L Ruby; Venema, Kees; Pavlovic, Lazar; Schmidtmann, Elisabeth; Kornfeld, Ari; Jahns, Peter; Berry, Joseph A; Kramer, David M; Jonikas, Martin C

    2014-11-13

    Many photosynthetic organisms globally, including crops, forests and algae, must grow in environments where the availability of light energy fluctuates dramatically. How photosynthesis maintains high efficiency despite such fluctuations in its energy source remains poorly understood. Here we show that Arabidopsis thaliana K(+) efflux antiporter (KEA3) is critical for high photosynthetic efficiency under fluctuating light. On a shift from dark to low light, or high to low light, kea3 mutants show prolonged dissipation of absorbed light energy as heat. KEA3 localizes to the thylakoid membrane, and allows proton efflux from the thylakoid lumen by proton/potassium antiport. KEA3's activity accelerates the downregulation of pH-dependent energy dissipation after transitions to low light, leading to faster recovery of high photosystem II quantum efficiency and increased CO2 assimilation. Our results reveal a mechanism that increases the efficiency of photosynthesis under fluctuating light.

  18. Influence of thermal light correlations on photosynthetic structures

    NASA Astrophysics Data System (ADS)

    de Mendoza, Adriana; Manrique, Pedro; Caycedo-Soler, Felipe; Johnson, Neil F.; Rodríguez, Ferney J.; Quiroga, Luis

    2014-03-01

    The thermal light from the sun is characterized by both classical and quantum mechanical correlations. These correlations have left a fingerprint on the natural harvesting structures developed through five billion years of evolutionary pressure, specially in photosynthetic organisms. In this work, based upon previous extensive studies of spatio-temporal correlations of light fields, we hypothesize that structures involving photosensitive pigments like those present in purple bacteria vesicles emerge as an evolutionary response to the different properties of incident light. By using burstiness and memory as measures that quantify higher moments of the photon arrival statistics, we generate photon-time traces. They are used to simulate absorption on detectors spatially extended over regions comparable to these light fields coherence length. Finally, we provide some insights into the connection between these photo-statistical features with the photosynthetic membrane architecture and the lights' spatial correlation. Facultad de Ciencias Uniandes.

  19. Perspective: Detecting and measuring exciton delocalization in photosynthetic light harvesting

    SciTech Connect

    Scholes, Gregory D. Smyth, Cathal

    2014-03-21

    Photosynthetic units perform energy transfer remarkably well under a diverse range of demanding conditions. However, the mechanism of energy transfer, from excitation to conversion, is still not fully understood. Of particular interest is the possible role that coherence plays in this process. In this perspective, we overview photosynthetic light harvesting and discuss consequences of excitons for energy transfer and how delocalization can be assessed. We focus on challenges such as decoherence and nuclear-coordinate dependent delocalization. These approaches complement conventional spectroscopy and delocalization measurement techniques. New broadband transient absorption data may help uncover the difference between electronic and vibrational coherences present in two-dimensional electronic spectroscopy data. We describe how multipartite entanglement from quantum information theory allows us to formulate measures that elucidate the delocalization length of excitation and the details of that delocalization even from highly averaged information such as the density matrix.

  20. BOREAS TE-9 NSA Photosynthetic Capacity and Foliage Nitrogen Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Dang, Qinglai; Margolis, Hank; Coyea, Marie

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-9 (Terrestrial Ecology) team collected several data sets related to chemical and photosynthetic properties of leaves in boreal forest tree species. This data set describes the spatial and temporal relationship between foliage nitrogen concentration and photosynthetic capacity in the canopies of black spruce, jack pine, and aspen located within the Northern Study Area (NSA). The data were collected from June to September 1994 and are useful for modeling the vertical distribution of carbon fixation for different forest types in the boreal forest. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  1. Engineering photosynthetic organisms for the production of biohydrogen.

    PubMed

    Dubini, Alexandra; Ghirardi, Maria L

    2015-03-01

    Oxygenic photosynthetic organisms such as green algae are capable of absorbing sunlight and converting the chemical energy into hydrogen gas. This process takes advantage of the photosynthetic apparatus of these organisms which links water oxidation to H2 production. Biological H2 has therefore the potential to be an alternative fuel of the future and shows great promise for generating large scale sustainable energy. Microalgae are able to produce H2 under light anoxic or dark anoxic condition by activating 3 different pathways that utilize the hydrogenases as catalysts. In this review, we highlight the principal barriers that prevent hydrogen production in green algae and how those limitations are being addressed, through metabolic and genetic engineering.  We also discuss the major challenges and bottlenecks facing the development of future commercial algal photobiological systems for H2 production. Finally we provide suggestions for future strategies and potential new techniques to be developed towards an integrated system with optimized hydrogen production. PMID:24671643

  2. C4 photosynthetic machinery: insights from maize chloroplast proteomics

    PubMed Central

    Zhao, Qi; Chen, Sixue; Dai, Shaojun

    2013-01-01

    C4 plants exhibit much higher CO2 assimilation rates than C{}3 plants under certain conditions. The specialized differentiation of mesophyll cell and bundle sheath cell type chloroplasts is unique to C4 plants and improves photosynthetic efficiency. Maize (Zea mays) is an important crop and model with C4 photosynthetic machinery. 2DE and high-throughput quantitative proteomics approaches (e.g., isobaric tags for relative and absolute quantitation and shotgun proteomics) have been employed to investigate maize chloroplast structure and function. These proteomics studies have provided valuable information on C4 chloroplast protein components, photosynthesis, and other metabolic mechanisms underlying chloroplast biogenesis, stromal, and membrane differentiation, as well as response to salinity, high/low temperature, and light stress. This review presents an overview of proteomics advances in maize chloroplast biology. PMID:23596450

  3. Detecting extraterrestrial life with the Colossus telescope using photosynthetic biosignatures

    NASA Astrophysics Data System (ADS)

    Berdyugina, S.; Kuhn, J.; Harrington, D.; Moretto, G.; Langlois, M.; Halliday, D.; Harlingten, C.

    2014-03-01

    We propose to search for life on Earth-like planets in habitable zones using photosynthesis biosignatures. Many life forms on Earth process the solar light and utilize it to support their own activity and to provide a valuable energy source for other life forms. We expect therefore that photosynthesis is very likely to arise on another planet and can produce conspicuous biosignatures. We have recently identified biological polarization effects, e.g., selective light absorption or scattering by photosynthetic molecules which can be used for remote detection of extraterrestrial life. Here we present synthetic spectra and polarization of Earth-like planets with photosynthetic life and evaluate the sensitivity of the Colossus telescope for their remote detection in the solar neighborhood.

  4. The altered photosynthetic machinery during compatible virus infection.

    PubMed

    Li, Yinzi; Cui, Hongguang; Cui, Xiaoyan; Wang, Aiming

    2016-04-01

    As an organelle only found in plant cells and some protists, the chloroplast is not only the main metabolic energy originator, but also the abiotic/biotic stress sensor and defense signal generator. For a long time, chloroplasts have been recognized as a common target by many plant viruses. Viruses may directly modify chloroplast membranes to assemble their replication complex for viral genome replication. Viruses may downregulate chloroplast-related and photosynthesis-related genes via an as yet unknown mechanism to support their infection. Viruses may also interrupt functionality of the photosynthetic machinery through protein-protein interactions. This review briefly summarizes current knowledge about modifications of the photosynthetic machinery by plant viruses, highlights the important role of chloroplasts in the infection process and discusses chloroplast-associated pathogenesis.

  5. Ion antiport accelerates photosynthetic acclimation in fluctuating light environments.

    PubMed

    Armbruster, Ute; Carrillo, L Ruby; Venema, Kees; Pavlovic, Lazar; Schmidtmann, Elisabeth; Kornfeld, Ari; Jahns, Peter; Berry, Joseph A; Kramer, David M; Jonikas, Martin C

    2014-01-01

    Many photosynthetic organisms globally, including crops, forests and algae, must grow in environments where the availability of light energy fluctuates dramatically. How photosynthesis maintains high efficiency despite such fluctuations in its energy source remains poorly understood. Here we show that Arabidopsis thaliana K(+) efflux antiporter (KEA3) is critical for high photosynthetic efficiency under fluctuating light. On a shift from dark to low light, or high to low light, kea3 mutants show prolonged dissipation of absorbed light energy as heat. KEA3 localizes to the thylakoid membrane, and allows proton efflux from the thylakoid lumen by proton/potassium antiport. KEA3's activity accelerates the downregulation of pH-dependent energy dissipation after transitions to low light, leading to faster recovery of high photosystem II quantum efficiency and increased CO2 assimilation. Our results reveal a mechanism that increases the efficiency of photosynthesis under fluctuating light. PMID:25451040

  6. Photosynthetic carbon reduction by seagrasses exposed to ultraviolet A radiation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The seagrasses Halophila engelmannii, Halodule wrightii, and Syringodium filiforme were examined for their intrinsic sensitivity to ultraviolet-A-UV-A and ultraviolet-B-UV-B radiation. The effect of UV-A on photosynthetically active radiation (PAR) was also determined. Ultraviolet-A and ultraviolet-B were studied with emphasis on the greater respective environmental consequence in terms of seagrass distribution and abundance. Results indicate that an intrinsic sensitivity to UV-A alone is apparent only in Halophila, while net photosynthesis in Halodule and Syringodium seems unaffected by the level of UV-A provided. The sensitivity of Halophila to UV-A in the absense of (PAR) indicates that the photosynthetic reaction does not need to be in operation for damage to occur. Other significant results are reported.

  7. An allosteric photoredox catalyst inspired by photosynthetic machinery.

    PubMed

    Lifschitz, Alejo M; Young, Ryan M; Mendez-Arroyo, Jose; Stern, Charlotte L; McGuirk, C Michael; Wasielewski, Michael R; Mirkin, Chad A

    2015-03-30

    Biological photosynthetic machinery allosterically regulate light harvesting via conformational and electronic changes at the antenna protein complexes as a response to specific chemical inputs. Fundamental limitations in current approaches to regulating inorganic light-harvesting mimics prevent their use in catalysis. Here we show that a light-harvesting antenna/reaction centre mimic can be regulated by utilizing a coordination framework incorporating antenna hemilabile ligands and assembled via a high-yielding, modular approach. As in nature, allosteric regulation is afforded by coupling the conformational changes to the disruptions in the electrochemical landscape of the framework upon recognition of specific coordinating analytes. The hemilabile ligands enable switching using remarkably mild and redox-inactive inputs, allowing one to regulate the photoredox catalytic activity of the photosynthetic mimic reversibly and in situ. Thus, we demonstrate that bioinspired regulatory mechanisms can be applied to inorganic light-harvesting arrays displaying switchable catalytic properties and with potential uses in solar energy conversion and photonic devices.

  8. Challenges and Perspectives in Designing Artificial Photosynthetic Systems.

    PubMed

    Zhou, Han; Yan, Runyu; Zhang, Di; Fan, Tongxiang

    2016-07-11

    The development of artificial photosynthetic systems for water splitting and CO2 reduction on a large scale for practical applications is the ultimate goal towards worldwide sustainability. This Concept highlights the state-of-the-art research trends of artificial photosynthesis concepts and designs from some new perspectives. Particularly, it is focused on five important aspects for the design of promising artificial photosynthetic systems: 1) catalyst development, 2) architecture design, 3) device buildup 4) mechanism exploration, and 5) theoretical investigations. Some typical progress and challenges, the most significant milestones achieved to date, as well as possible future directions are illustrated and discussed. This Concept article presents a selection of new developments to highlight new trends and possibilities, main barriers, or challenges; with this, we hope to inspire more advances in the field of artificial photosynthesis.

  9. Pigment oligomers as natural and artificial photosynthetic antennas

    SciTech Connect

    Blankenship, R.E.

    1996-12-31

    Green photosynthetic bacteria contain antenna complexes known as chlorosomes. These complexes are appressed to the cytoplasmic side of the inner cell membrane and function to absorb light and transfer the energy to the photochemical reaction center, where photochemical energy storage takes place. Chlorosomes differ from all other known photosynthetic antenna complexes in that the geometrical arrangement of pigments is determined primarily by pigment-pigment interactions instead of pigment-protein interactions. The bacteriochlorophyll c, d or e pigments found in chlorosomes form large oligomers with characteristic spectral properties significantly perturbed from those exhibited by monomeric pigments. Because of their close spatial interaction, the pigments are thought to be strongly coupled electronically, and many of the optical properties result from exciton interactions. This presentation will summarize existing knowledge on the chemical composition and properties of chlorosomes, the evidence for the oligomeric nature of chlorosome pigment organization and proposed structures for the oligomers, and the kinetics and mechanisms of energy transfer in chlorosomes.

  10. Detection of circular polarization in light scattered from photosynthetic microbes

    PubMed Central

    Sparks, William B.; Hough, James; Germer, Thomas A.; Chen, Feng; DasSarma, Shiladitya; DasSarma, Priya; Robb, Frank T.; Manset, Nadine; Kolokolova, Ludmilla; Reid, Neill; Macchetto, F. Duccio; Martin, William

    2009-01-01

    The identification of a universal biosignature that could be sensed remotely is critical to the prospects for success in the search for life elsewhere in the universe. A candidate universal biosignature is homochirality, which is likely to be a generic property of all biochemical life. Because of the optical activity of chiral molecules, it has been hypothesized that this unique characteristic may provide a suitable remote sensing probe using circular polarization spectroscopy. Here, we report the detection of circular polarization in light scattered by photosynthetic microbes. We show that the circular polarization appears to arise from circular dichroism of the strong electronic transitions of photosynthetic absorption bands. We conclude that circular polarization spectroscopy could provide a powerful remote sensing technique for generic life searches. PMID:19416893

  11. Nitrogen fixation by photosynthetic bacteria in lowland rice culture.

    PubMed

    Habte, M; Alexander, M

    1980-02-01

    Propanil (3',4'-dichloropropionanilide) was a potent inhibitor of the nitrogenase activity of blue-green algae (cyanobacteria) in flooded soil, but the herbicide at comparable concentrations was not toxic to rice, protozoa, and nitrogen-fixing bacteria. Ethanol-amended flooded soils treated with propanil exhibited higher rates of nitrogenase activity than those not treated with the herbicide. The enhanced nitrogenase activity in propanil-treated soils was associated with a rise in the population of purple sulfur bacteria, especially of cells resembling Chromatium and Thiospirillum. By employing propanil and a means of excluding light from the floodwater to prevent the development of phototrophs during rice growth under lowland conditions, the relative activities of blue-green algae, photosynthetic bacteria, and the rhizosphere microflora were determined. The results suggest that the potential contribution of photosynthetic bacteria may be quite high. PMID:16345507

  12. Nitrogen Fixation by Photosynthetic Bacteria in Lowland Rice Culture

    PubMed Central

    Habte, M.; Alexander, M.

    1980-01-01

    Propanil (3′,4′-dichloropropionanilide) was a potent inhibitor of the nitrogenase activity of blue-green algae (cyanobacteria) in flooded soil, but the herbicide at comparable concentrations was not toxic to rice, protozoa, and nitrogen-fixing bacteria. Ethanol-amended flooded soils treated with propanil exhibited higher rates of nitrogenase activity than those not treated with the herbicide. The enhanced nitrogenase activity in propanil-treated soils was associated with a rise in the population of purple sulfur bacteria, especially of cells resembling Chromatium and Thiospirillum. By employing propanil and a means of excluding light from the floodwater to prevent the development of phototrophs during rice growth under lowland conditions, the relative activities of blue-green algae, photosynthetic bacteria, and the rhizosphere microflora were determined. The results suggest that the potential contribution of photosynthetic bacteria may be quite high. PMID:16345507

  13. Ionic liquids effects on the permeability of photosynthetic membranes probed by the electrochromic shift of endogenous carotenoids.

    PubMed

    Malferrari, Marco; Malferrari, Danilo; Francia, Francesco; Galletti, Paola; Tagliavini, Emilio; Venturoli, Giovanni

    2015-11-01

    Ionic liquids (ILs) are promising materials exploited as solvents and media in many innovative applications, some already used at the industrial scale. The chemical structure and physicochemical properties of ILs can differ significantly according to the specific applications for which they have been synthesized. As a consequence, their interaction with biological entities and toxicity can vary substantially. To select highly effective and minimally harmful ILs, these properties need to be investigated. Here we use the so called chromatophores--protein-phospholipid membrane vesicles obtained from the photosynthetic bacterium Rhodobacter sphaeroides--to assess the effects of imidazolinium and pyrrolidinium ILs, with chloride or dicyanamide as counter anions, on the ionic permeability of a native biological membrane. The extent and modalities by which these ILs affect the ionic conductivity can be studied in chromatophores by analyzing the electrochromic response of endogenous carotenoids, acting as an intramembrane voltmeter at the molecular level. We show that chromatophores represent an in vitro experimental model suitable to probe permeability changes induced in cell membranes by ILs differing in chemical nature, degree of oxygenation of the cationic moiety and counter anion.

  14. Photosynthetic electron transport system promotes synthesis of Au-nanoparticles.

    PubMed

    Shabnam, Nisha; Pardha-Saradhi, P

    2013-01-01

    In this communication, a novel, green, efficient and economically viable light mediated protocol for generation of Au-nanoparticles using most vital organelle, chloroplasts, of the plant system is portrayed. Thylakoids/chloroplasts isolated from Potamogeton nodosus (an aquatic plant) and Spinacia oleracea (a terrestrial plant) turned Au³⁺ solutions purple in presence of light of 600 µmol m⁻² s⁻¹ photon flux density (PFD) and the purple coloration intensified with time. UV-Vis spectra of these purple colored solutions showed absorption peak at ∼545 nm which is known to arise due to surface plasmon oscillations specific to Au-nanoparticles. However, thylakoids/chloroplasts did not alter color of Au³⁺ solutions in dark. These results clearly demonstrated that photosynthetic electron transport can reduce Au³⁺ to Au⁰ which nucleate to form Au-nanoparticles in presence of light. Transmission electron microscopic studies revealed that Au-nanoparticles generated by light driven photosynthetic electron transport system of thylakoids/chloroplasts were in range of 5-20 nm. Selected area electron diffraction and powder X-ray diffraction indicated crystalline nature of these nanoparticles. Energy dispersive X-ray confirmed that these nanoparticles were composed of Au. To confirm the potential of light driven photosynthetic electron transport in generation of Au-nanoparticles, thylakoids/chloroplasts were tested for their efficacy to generate Au-nanoparticles in presence of light of PFD ranging from 60 to 600 µmol m⁻² s⁻¹. The capacity of thylakoids/chloroplasts to generate Au-nanoparticles increased remarkably with increase in PFD, which further clearly demonstrated potential of light driven photosynthetic electron transport in reduction of Au³⁺ to Au⁰ to form nanoparticles. The light driven donation of electrons to metal ions by thylakoids/chloroplasts can be exploited for large scale production of nanoparticles. PMID:23976990

  15. Prochlorococcus, a Marine Photosynthetic Prokaryote of Global Significance

    PubMed Central

    Partensky, F.; Hess, W. R.; Vaulot, D.

    1999-01-01

    The minute photosynthetic prokaryote Prochlorococcus, which was discovered about 10 years ago, has proven exceptional from several standpoints. Its tiny size (0.5 to 0.7 μm in diameter) makes it the smallest known photosynthetic organism. Its ubiquity within the 40°S to 40°N latitudinal band of oceans and its occurrence at high density from the surface down to depths of 200 m make it presumably the most abundant photosynthetic organism on Earth. Prochlorococcus typically divides once a day in the subsurface layer of oligotrophic areas, where it dominates the photosynthetic biomass. It also possesses a remarkable pigment complement which includes divinyl derivatives of chlorophyll a (Chl a) and Chl b, the so-called Chl a2 and Chl b2, and, in some strains, small amounts of a new type of phycoerythrin. Phylogenetically, Prochlorococcus has also proven fascinating. Recent studies suggest that it evolved from an ancestral cyanobacterium by reducing its cell and genome sizes and by recruiting a protein originally synthesized under conditions of iron depletion to build a reduced antenna system as a replacement for large phycobilisomes. Environmental constraints clearly played a predominant role in Prochlorococcus evolution. Its tiny size is an advantage for its adaptation to nutrient-deprived environments. Furthermore, genetically distinct ecotypes, with different antenna systems and ecophysiological characteristics, are present at depth and in surface waters. This vertical species variation has allowed Prochlorococcus to adapt to the natural light gradient occurring in the upper layer of oceans. The present review critically assesses the basic knowledge acquired about Prochlorococcus both in the ocean and in the laboratory. PMID:10066832

  16. Water flow influences oxygen transport and photosynthetic efficiency in corals

    NASA Astrophysics Data System (ADS)

    Finelli, Christopher M.; Helmuth, Brian S. T.; Pentcheff, N. Dean; Wethey, David S.

    2006-03-01

    Recent studies indicate that the incidence and persistence of damage from coral reef bleaching are often highest in areas of restricted water motion, and that resistance to and recovery from bleaching is increased by enhanced water motion. We examined the hypothesis that water motion increases the efflux of oxygen from coral tissue thereby reducing oxidative stress on the photosynthetic apparatus of endosymbiotic zooxanthellae. We experimentally exposed colonies of Montastrea annularis and Agaricia agaricites to manipulations of water flow, light intensity, and oxygen concentration in the field using a novel mini-flume. We measured photosynthetic efficiency using a pulse amplitude modulated fluorometer to test the short-term response of corals to our manipulations. Under normal oxygen concentrations, A. agaricites showed a significant 8% increase in photosynthetic efficiency from 0.238 (± 0.032) in still water to 0.256 (± 0.037) in 15 cm s-1 flow, while M. annularis exhibited no detectable change. Under high-ambient oxygen concentrations, the observed effect of flow on A. agaricites was reversed: photosynthetic efficiencies showed a significant 11% decrease from 0.236 (± 0.056) in still water to 0.211 (± 0.048) in 15 cm s-1 flow. These results support the hypothesis that water motion helps to remove oxygen from coral tissues during periods of maximal photosynthesis. Flow mitigation of oxidative stress may at least partially explain the increased incidence and severity of coral bleaching in low flow areas and observations of enhanced recovery in high-flow areas.

  17. Photosynthetic responses to phytoplasma infection in Chinese jujube.

    PubMed

    Liu, Zhiguo; Zhao, Jin; Liu, Mengjun

    2016-08-01

    Phytoplasma is one of the most devastating plant pathogens. Jujube witches' broom (JWB) is a typical and highly fatal phytoplasma disease of Chinese jujube (Ziziphus jujuba Mill.), which is widely cultivated in Asia. To further elucidate the mechanism of plant-phytoplasma interaction, we first compared the effects of phytoplasma infection on photosynthetic pigments and activities between a JWB-resistant cultivar (Xingguang) and a susceptible cultivar (Pozao). Total chlorophyll and carotenoid levels were significantly decreased in the susceptible cultivar at later stages of infection, but were remarkably increased in the resistant cultivar at the earlier stages. Compared to uninfected plant, a significant decrease in the main photochemical parameters (Fv/Fm, ΦPSII and qP) was recorded at the initial stages of infection in the resistant cultivar, but occurred at later stages in the susceptible cultivar. Meanwhile, the qRT-PCR results of four key photosynthesis-related genes (ZjGluTR, ZjCBP, ZjRubisco and ZjRCA2) demonstrated that the expression patterns were similar in uninfected cultivars, but up-regulated in resistant cultivar and down-regulated in the susceptible one at 12 wks after grafting inoculation. Collectively, our data indicated that the resistant cultivar 'Xingguang' undergoes a decrease in initial stage (inhibiting phytoplasma multiplication) and then a rapid enhancement of photosynthetic activity (helping jujube recovery) in response to phytoplasma infection, while the susceptible cultivar 'Pozao' displays a later decrease in photosynthetic activity. The novel photosynthetic response pattern of the resistant cultivar may contribute to its stronger immunity to phytoplasma infection, which provides new insights into plant-phytoplasma interactions.

  18. Photosynthetic Characteristics of Photoautotrophically Grown Tobacco Callus Cells 1

    PubMed Central

    Berlyn, Mary B.; Zelitch, Israel; Beaudette, Pamela D.

    1978-01-01

    Haploid callus cells of tobacco (Nicotiana tabacum) were grown photoautotrophically on a solid agar medium in the absence of sucrose in Petri plates in an atmosphere of 1% or 3% CO2 in air. The averages of dry weight increases for four to five consecutive passages were 2.3- to 3.6-fold per 3-week passage for different subclones. Photosynthetic 14CO2 assimilation was maximum at about 1% CO2 with half-maximal rates obtained at 0.2% CO2. At saturating CO2 concentration the average rate of CO2 fixation was about 5 μmole per gram fresh weight per hour or about 125 μmole per mg of chlorophyll per hour. The existence of an active photorespiratory system in these tissues was established in a number of independent ways. The photosynthetic rate in 0.18% CO2 was inhibited 38 to 50% in 100% O2 compared with 21% O2. Glycolate accumulated at a constant rate in the presence of 5 mm α-hydroxy-2-pyridinemethanesulfonic acid for 20 minutes in light. This rate was rapid relative to the photosynthetic rate. Glycolate synthesis was three times faster in autotrophic than in heterotrophic cells. [1-14C]Glycolate was rapidly metabolized and the products included 14CO2, [14C]glycine, and [14C]serine, thus demonstrating an active glycolate pathway. Photorespiration was demonstrated directly by measurement of an O2-dependent release of 14CO2 in the light from callus that fixed 14CO2 for about 22 hours. Autotrophic growth in 60% O2 and 0.03% CO2 was slowed and ceased entirely after two or three passages, while heterotrophic growth was unaffected by 60% O2 in the atmosphere. The method of growing autotrophic callus which has an active photorespiratory system should facilitate the selection and analysis of photosynthetic mutants in which photorespiration is regulated. PMID:16660346

  19. Iron-mediated changes in phytoplankton photosynthetic competence during SOIREE

    NASA Astrophysics Data System (ADS)

    Boyd, P. W.; Abraham, E. R.

    Active fluorescence (fast repetition rate fluorometry, FRRF) was used to follow the photosynthetic response of the phytoplankton community during the 13-day Southern Ocean Iron RElease Experiment (SOIREE). This in situ iron enrichment was conducted in the polar waters of the Australasian-Pacific sector of the Southern Ocean in February 1999. Iron fertilisation of these high nitrate low chlorophyll (HNLC) waters resulted in an increase in the photosynthetic competence ( Fv/ Fm) of the resident cells from around 0.20 to greater than 0.60 (i.e. close to the theoretical maximum) by 10/11 days after the first enrichment. Although a significant iron-mediated response in Fv/ Fm was detected as early as 24 h after the initial fertilisation, the increase in Fv/ Fm to double ambient levels took 6 days. This response was five-fold slower than observed in iron enrichments (in situ and in vitro) in the HNLC waters of the subarctic and equatorial Pacific. Although little is known about the relationship between water temperature and Fv/ Fm, it is likely that low water temperatures — and possibly the deep mixed layer — were responsible for this slow response time. During SOIREE, the photosynthetic competence of the resident phytoplankton in iron-enriched waters increased at dissolved iron levels above 0.2 nM, suggesting that iron limitation was alleviated at this concentration. Increases in Fv/ Fm of cells within four algal size classes suggested that all taxa displayed a photosynthetic response to iron enrichment. Other physiological proxies of algal iron stress (such as flavodoxin levels in diatoms) exhibited different temporal trends to iron-enrichment than Fv/ Fm during the time-course of SOIREE. The relationship between Fv/ Fm, algal growth rate and such proxies in Southern Ocean waters is discussed.

  20. Quantifying reflectance anisotropy of photosynthetically active radiation in grasslands

    NASA Technical Reports Server (NTRS)

    Middleton, Elizabeth M.

    1992-01-01

    Quantifying the vegetative surface's reflectance anisotropy was an important part of the First ISLSCP Field Experiment, as its major objectives focused on retrieval of surface parameters from satellite-derived reflectances. The explicit remote measurements for approximating the bidirectional reflectance distribution function (BRDF) of photosynthetically active radiation had not been previously undertaken. In this paper the proper expression of reflectance for BRDFs for retrieval of canopy parameters is assessed.

  1. Photosynthetic electron transport system promotes synthesis of Au-nanoparticles.

    PubMed

    Shabnam, Nisha; Pardha-Saradhi, P

    2013-01-01

    In this communication, a novel, green, efficient and economically viable light mediated protocol for generation of Au-nanoparticles using most vital organelle, chloroplasts, of the plant system is portrayed. Thylakoids/chloroplasts isolated from Potamogeton nodosus (an aquatic plant) and Spinacia oleracea (a terrestrial plant) turned Au³⁺ solutions purple in presence of light of 600 µmol m⁻² s⁻¹ photon flux density (PFD) and the purple coloration intensified with time. UV-Vis spectra of these purple colored solutions showed absorption peak at ∼545 nm which is known to arise due to surface plasmon oscillations specific to Au-nanoparticles. However, thylakoids/chloroplasts did not alter color of Au³⁺ solutions in dark. These results clearly demonstrated that photosynthetic electron transport can reduce Au³⁺ to Au⁰ which nucleate to form Au-nanoparticles in presence of light. Transmission electron microscopic studies revealed that Au-nanoparticles generated by light driven photosynthetic electron transport system of thylakoids/chloroplasts were in range of 5-20 nm. Selected area electron diffraction and powder X-ray diffraction indicated crystalline nature of these nanoparticles. Energy dispersive X-ray confirmed that these nanoparticles were composed of Au. To confirm the potential of light driven photosynthetic electron transport in generation of Au-nanoparticles, thylakoids/chloroplasts were tested for their efficacy to generate Au-nanoparticles in presence of light of PFD ranging from 60 to 600 µmol m⁻² s⁻¹. The capacity of thylakoids/chloroplasts to generate Au-nanoparticles increased remarkably with increase in PFD, which further clearly demonstrated potential of light driven photosynthetic electron transport in reduction of Au³⁺ to Au⁰ to form nanoparticles. The light driven donation of electrons to metal ions by thylakoids/chloroplasts can be exploited for large scale production of nanoparticles.

  2. Photosynthetic water splitting: A biotechnological approach to gaseous fuel synthesis

    SciTech Connect

    Greenbaum, E.; Reeves, M.

    1986-01-01

    Photosynthesis research in the Chemical Technology Division of Oak Ridge National Laboratory is focused on understanding the physicochemical aspects of photosynthesis, with specific application to developing a biotechnological process for production of gaseous fuels from renewable inorganic materials. This paper provides a general review of photosynthetic water splitting by intact microalgae and platinum-modified chloroplasts for the simultaneous photoproduction of molecular hydrogen and oxygen. 9 refs.

  3. Photosynthetic capacity peaks at intermediate size in temperate deciduous trees.

    PubMed

    Thomas, Sean C

    2010-05-01

    Studies of age-related changes in leaf functional biology have generally been based on dichotomous comparisons of young and mature individuals (e.g., saplings and mature canopy trees), with little data available to describe changes through the entire ontogeny of trees, particularly of broadleaf angiosperms. Leaf-level gas-exchange and morphological parameters were quantified in situ in the upper canopy of trees acclimated to high light conditions, spanning a wide range of ontogenetic stages from saplings (approximately 1 cm in stem diameter) to trees >60 cm d.b.h. and nearing their maximum lifespan, in three temperate deciduous tree species in central Ontario, Canada. Traits associated with growth performance, including leaf photosynthetic capacity (expressed on either an area, mass or leaf N basis), stomatal conductance, leaf size and leaf N content, generally showed a unimodal ('hump-shaped') pattern, with peak values at an intermediate ontogenetic stage. In contrast, leaf mass per area (LMA) and related morphological parameters (leaf thickness, leaf tissue density, leaf C content) increased monotonically with tree size, as did water-use efficiency; these monotonic relationships were well described by simple allometric functions of the form Y = aX(b). For traits showing unimodal patterns, tree size corresponding to the trait maximum differed markedly among traits: all three species showed a similar pattern in which the peak for leaf size occurred in trees approximately 2-6 cm d.b.h., followed by leaf chemical traits and photosynthetic capacity on a mass or leaf N basis and finally by photosynthetic capacity on a leaf area basis, which peaked approximately at the size of reproductive onset. It is argued that ontogenetic increases in photosynthetic capacity and related traits early in tree ontogeny are general among relatively shade-tolerant tree species that have a low capacity for leaf-level acclimation, as are declines in this set of traits late in tree ontogeny.

  4. Automated systems to monitor space radiation effect on photosynthetic organisms

    NASA Astrophysics Data System (ADS)

    Esposito, D.; di Costa, F.; Faraloni, C.; Fasolo, F.; Pace, E.; Perosino, M.; Torzillo, G.; Touloupakis, E.; Zanini, A.; Giardi, M. T.

    We developed automated biodevices to obtain, automatically, measures about the space radiation effect on living photosynthetic organisms, which can be used as biomass and oxygen-producing system on shuttles or ISS. Vitality measurements were performed by optical devices (fluorimeters) measuring fluorescence emission. Fluorescence methodology is a well known applied technique for studying photosynthetic activity, and in particular the oxygen-evolving process of photosynthetic organisms. Different strains of unicellular green algae are properly immobilized on agar growth medium and kept under survial light. The biodevices are characterised by the sensibility and selectivity of the biological component response, together with easy use, versatility, miniature size and low cost. We performed experiments in some facilities, in order to understand separately the effect of radiation of different LET, on the biochemical activity (gamma rays at Joint Research Centre -Varese, Italy; fast neutrons at CERF -- SPS beam at CERN -Geneva, Switzerland). The exposure to different radiation beams of the automatic devices, allowed us to test them under stress condition. In one year, these instrument are expected to be sent to space, inside a spacecraft, in order to study the effect of ionising cosmic radiation during an ESA flight.

  5. A global scale mechanistic model of the photosynthetic capacity

    NASA Astrophysics Data System (ADS)

    Xu, C.; Ali, A. A.; Fisher, R.; Wullschleger, S. D.; Rogers, A.; McDowell, N. G.; Wilson, C. J.

    2015-12-01

    Although plant photosynthetic capacity as determined by the maximum carboxylation rate (i.e., Vc,max25) and the maximum electron transport rate (i.e., Jmax25) at a reference temperature (generally 25oC) is known to vary substantially in space and time in response to environmental conditions, it is typically parameterized in Earth system models (ESMs) with tabulated values associated to plant functional types. In this study, we developed a mechanistic model of leaf utilization of nitrogen for assimilation (LUNA V1.0) to predict the photosynthetic capacity at the global scale under different environmental conditions, based on the optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The LUNA model was able to reasonably well capture the observed patterns of photosynthetic capacity in view that it explained approximately 55% of the variation in observed Vc,max25 and 65% of the variation in observed Jmax25 across the globe. Our model simulations under current and future climate conditions indicated that Vc,max25 could be most affected in high-latitude regions under a warming climate and that ESMs using a fixed Vc,max25 or Jmax25 by plant functional types were likely to substantially overestimate future global photosynthesis.

  6. Continuous cultivation of photosynthetic microorganisms: Approaches, applications and future trends.

    PubMed

    Fernandes, Bruno D; Mota, Andre; Teixeira, Jose A; Vicente, Antonio A

    2015-11-01

    The possibility of using photosynthetic microorganisms, such as cyanobacteria and microalgae, for converting light and carbon dioxide into valuable biochemical products has raised the need for new cost-efficient processes ensuring a constant product quality. Food, feed, biofuels, cosmetics and pharmaceutics are among the sectors that can profit from the application of photosynthetic microorganisms. Biomass growth in a photobioreactor is a complex process influenced by multiple parameters, such as photosynthetic light capture and attenuation, nutrient uptake, photobioreactor hydrodynamics and gas-liquid mass transfer. In order to optimize productivity while keeping a standard product quality, a permanent control of the main cultivation parameters is necessary, where the continuous cultivation has shown to be the best option. However it is of utmost importance to recognize the singularity of continuous cultivation of cyanobacteria and microalgae due to their dependence on light availability and intensity. In this sense, this review provides comprehensive information on recent breakthroughs and possible future trends regarding technological and process improvements in continuous cultivation systems of microalgae and cyanobacteria, that will directly affect cost-effectiveness and product quality standardization. An overview of the various applications, techniques and equipment (with special emphasis on photobioreactors) in continuous cultivation of microalgae and cyanobacteria are presented. Additionally, mathematical modeling, feasibility, economics as well as the applicability of continuous cultivation into large-scale operation, are discussed. PMID:25777495

  7. Continuous cultivation of photosynthetic microorganisms: Approaches, applications and future trends.

    PubMed

    Fernandes, Bruno D; Mota, Andre; Teixeira, Jose A; Vicente, Antonio A

    2015-11-01

    The possibility of using photosynthetic microorganisms, such as cyanobacteria and microalgae, for converting light and carbon dioxide into valuable biochemical products has raised the need for new cost-efficient processes ensuring a constant product quality. Food, feed, biofuels, cosmetics and pharmaceutics are among the sectors that can profit from the application of photosynthetic microorganisms. Biomass growth in a photobioreactor is a complex process influenced by multiple parameters, such as photosynthetic light capture and attenuation, nutrient uptake, photobioreactor hydrodynamics and gas-liquid mass transfer. In order to optimize productivity while keeping a standard product quality, a permanent control of the main cultivation parameters is necessary, where the continuous cultivation has shown to be the best option. However it is of utmost importance to recognize the singularity of continuous cultivation of cyanobacteria and microalgae due to their dependence on light availability and intensity. In this sense, this review provides comprehensive information on recent breakthroughs and possible future trends regarding technological and process improvements in continuous cultivation systems of microalgae and cyanobacteria, that will directly affect cost-effectiveness and product quality standardization. An overview of the various applications, techniques and equipment (with special emphasis on photobioreactors) in continuous cultivation of microalgae and cyanobacteria are presented. Additionally, mathematical modeling, feasibility, economics as well as the applicability of continuous cultivation into large-scale operation, are discussed.

  8. Variation potential influence on photosynthetic cyclic electron flow in pea

    PubMed Central

    Sukhov, Vladimir; Surova, Lyubov; Sherstneva, Oksana; Katicheva, Lyubov; Vodeneev, Vladimir

    2015-01-01

    Cyclic electron flow is an important component of the total photosynthetic electron flow and participates in adaptation to the action of stressors. Local leaf stimulation induces electrical signals, including variation potential (VP), which inactivate photosynthesis; however, their influence on cyclic electron flow has not been investigated. The aim of this study was to investigate VP's influence on cyclic electron flow in pea (Pisum sativum L.). VP was induced in pea seedling leaves by local heating and measured in an adjacent, undamaged leaf by extracellular electrodes. CO2 assimilation was measured using a portable gas exchange measuring system. Photosystem I and II parameters were investigated using a measuring system for simultaneous assessment of P700 oxidation and chlorophyll fluorescence. Heating-induced VP reduced CO2 assimilation and electron flow through photosystem II. In response, cyclic electron flow rapidly decreased and subsequently slowly increased. Slow increases in cyclic flow were caused by decreased electron flow through photosystem II, which was mainly connected with VP-induced photosynthetic dark stage inactivation. However, direct influence by VP on photosystem I also participated in activation of cyclic electron flow. Thus, VP, induced by local leaf-heating, activated cyclic electron flow in undamaged leaves. This response was similar to photosynthetic changes observed under the direct action of stressors. Possible mechanisms of VP's influence on cyclic flow were discussed. PMID:25610447

  9. Bio-optical modeling of photosynthetic pigments in corals

    NASA Astrophysics Data System (ADS)

    Hochberg, Eric J.; Apprill, Amy M.; Atkinson, Marlin J.; Bidigare, Robert R.

    2006-03-01

    The spectral reflectance of coral is inherently related to the amounts of photosynthetic pigments present in the zooxanthellae. There are no studies, however, showing that the suite of major photosynthetic pigments can be predicted from optical reflectance spectra. In this study, we measured cm-scale in vivo and in situ spectral reflectance for several colonies of the massive corals Porites lobata and Porites lutea, two colonies of the branching coral Porites compressa, and one colony of the encrusting coral Montipora flabellata in Kaneohe Bay, Oahu, Hawaii. For each reflectance spectrum, we collected a tissue sample and utilized high-performance liquid chromatography to quantify six major photosynthetic pigments, located in the zooxanthellae. We used multivariate multiple regression analysis with cross-validation to build and test an empirical linear model for predicting pigment concentrations from optical reflectance spectra. The model accurately predicted concentrations of chlorophyll a, chlorophyll c 2, peridinin, diadinoxanthin, diatoxanthin and β-carotene, with correlation coefficients of 0.997, 0.941, 0.995, 0.996, 0.980 and 0.984, respectively. The relationship between predicted and actual concentrations was 1:1 for each pigment, except chlorophyll c 2. This simple empirical model demonstrates the potential for routine, rapid, non-invasive monitoring of coral-zooxanthellae status, and ultimately for remote sensing of reef biogeochemical processes.

  10. Counting Viruses and Bacteria in Photosynthetic Microbial Mats

    PubMed Central

    Staal, Marc; Middelboe, Mathias; Brussaard, Corina P. D.

    2015-01-01

    Viral abundances in benthic environments are the highest found in aquatic systems. Photosynthetic microbial mats represent benthic environments with high microbial activity and possibly high viral densities, yet viral abundances have not been examined in such systems. Existing extraction procedures typically used in benthic viral ecology were applied to the complex matrix of microbial mats but were found to inefficiently extract viruses. Here, we present a method for extraction and quantification of viruses from photosynthetic microbial mats using epifluorescence microscopy (EFM) and flow cytometry (FCM). A combination of EDTA addition, probe sonication, and enzyme treatment applied to a glutaraldehyde-fixed sample resulted in a substantially higher viral (5- to 33-fold) extraction efficiency and reduced background noise compared to previously published methods. Using this method, it was found that in general, intertidal photosynthetic microbial mats harbor very high viral abundances (2.8 × 1010 ± 0.3 × 1010 g−1) compared with benthic habitats (107 to 109 g−1). This procedure also showed 4.5- and 4-fold-increased efficacies of extraction of viruses and bacteria, respectively, from intertidal sediments, allowing a single method to be used for the microbial mat and underlying sediment. PMID:25595761

  11. The origin of cytosolic ATP in photosynthetic cells.

    PubMed

    Gardeström, Per; Igamberdiev, Abir U

    2016-07-01

    In photosynthetically active cells, both chloroplasts and mitochondria have the capacity to produce ATP via photophosphorylation and oxidative phosphorylation, respectively. Thus, theoretically, both organelles could provide ATP for the cytosol, but the extent, to which they actually do this, and how the process is regulated, both remain unclear. Most of the evidence discussed comes from experiments with rapid fractionation of isolated protoplasts subjected to different treatments in combination with application of specific inhibitors. The results obtained indicate that, under conditions where ATP demand for photosynthetic CO2 fixation is sufficiently high, the mitochondria supply the bulk of ATP for the cytosol. In contrast, under stress conditions where CO2 fixation is severely limited, ATP will build up in chloroplasts and it can then be exported to the cytosol, by metabolite shuttle mechanisms. Thus, depending on the conditions, either mitochondria or chloroplasts can supply the bulk of ATP for the cytosol. This supply of ATP is discussed in relation to the idea that mitochondrial functions may be tuned to provide an optimal environment for the chloroplast. By balancing cellular redox states, mitochondria can contribute to an optimal photosynthetic capacity. PMID:27087668

  12. Photosynthetic lesions can trigger accelerated senescence in Arabidopsis thaliana.

    PubMed

    Wang, Jing; Leister, Dario; Bolle, Cordelia

    2015-11-01

    Senescence is a highly regulated process characterized by the active breakdown of cells, which ultimately leads to the death of plant organs or whole plants. In annual plants such as Arabidopsis thaliana senescence can be observed in each individual leaf. Whether deficiencies in photosynthesis promote the induction of senescence was investigated by monitoring chlorophyll degradation, photosynthetic parameters, and reactive oxygen species accumulation in photosynthetic mutants. Several mutations affecting components of the photosynthetic apparatus, including psal-2, psan-2, and psbs, were found to lead to premature or faster senescence, as did simultaneous inactivation of the STN7 and STN8 kinases. Premature senescence is apparently not directly linked to an overall reduction in photosynthesis but to perturbations in specific aspects of the process. Dark-induced senescence is accelerated in mutants affected in linear electron flow, especially psad2-1, psan-2, and pete2-1, as well as in stn7 and stn8 mutants and STN7 and STN8 overexpressor lines. Interestingly, no direct link with ROS production could be observed. PMID:26272903

  13. Photosynthetic reaction center as a quantum heat engine.

    PubMed

    Dorfman, Konstantin E; Voronine, Dmitri V; Mukamel, Shaul; Scully, Marlan O

    2013-02-19

    Two seemingly unrelated effects attributed to quantum coherence have been reported recently in natural and artificial light-harvesting systems. First, an enhanced solar cell efficiency was predicted and second, population oscillations were measured in photosynthetic antennae excited by sequences of coherent ultrashort laser pulses. Because both systems operate as quantum heat engines (QHEs) that convert the solar photon energy to useful work (electric currents or chemical energy, respectively), the question arises whether coherence could also enhance the photosynthetic yield. Here, we show that both effects arise from the same population-coherence coupling term which is induced by noise, does not require coherent light, and will therefore work for incoherent excitation under natural conditions of solar excitation. Charge separation in light-harvesting complexes occurs in a pair of tightly coupled chlorophylls (the special pair) at the heart of photosynthetic reaction centers of both plants and bacteria. We show the analogy between the energy level schemes of the special pair and of the laser/photocell QHEs, and that both population oscillations and enhanced yield have a common origin and are expected to coexist for typical parameters. We predict an enhanced yield of 27% in a QHE motivated by the reaction center. This suggests nature-mimicking architectures for artificial solar energy devices. PMID:23365138

  14. Photosynthetic hydrogen and oxygen production by green algae

    SciTech Connect

    Greenbaum, E.; Lee, J.W.

    1997-12-31

    An overview of photosynthetic hydrogen and oxygen production by green algae in the context of its potential as a renewable chemical feed stock and energy carrier is presented. Beginning with its discovery by Gaffron and Rubin in 1942, motivated by curiosity-driven laboratory research, studies were initiated in the early 1970s that focused on photosynthetic hydrogen production from an applied perspective. From a scientific and technical point of view, current research is focused on optimizing net thermodynamic conversion efficiencies represented by the Gibbs Free Energy of molecular hydrogen. The key research questions of maximizing hydrogen and oxygen production by light-activated water splitting in green algae are (1) removing the oxygen sensitivity of algal hydrogenases; (2) linearizing the light saturation curves of photosynthesis throughout the entire range of terrestrial solar irradiance--including the role of bicarbonate and carbon dioxide in optimization of photosynthetic electron transport and (3) the minimum number of light reactions that are required to split water to elemental hydrogen and oxygen. Each of these research topics is being actively addressed by the photobiological hydrogen research community.

  15. Improvement of Photosynthetic Efficiency Through Reduction of Chlorophyll Antenna Size

    SciTech Connect

    Blankinship, S.L.; Greenbaum, E.; Lee, J.W.; Mets, L.

    1999-05-03

    We have previously presented a graphical illustration of a strategy to improve photosynthetic conversion efficiencies by a reduction of the antenna size in photosynthetic reaction centers. During the current reporting period, we have made progress in demonstrating the conceptual correctness of this idea. Light-saturation studies for CO, in air were performed with an antenna-deficient mutant of Chlamydomonas (DS521) and the wild type (DES15). The light-saturated rate for CO(2), assimilation in mutant DS521 was about two times higher (187 Mu-mol.h(-1).mg chl(-1)) than that of the wild type, DES15 (95 Mu-mol.h(-1).mg chl(-1). Significantly, a partial linearization of the light-saturation curve was also observed. The light intensities that give half-saturation of the photosynthetic rate were 276 and 152 Mu-E.m(-2).s(-1) in DS521 and DES15, respectively. These results confirmed that DS521 has a smaller chlorophyll antenna size and demonstrated that the reduction of antenna size can indeed improve the overall efficiency of photon utilization. Corresponding experiments were also performed with CO(2), in helium. Under this anaerobic condition, no photoinhibition was observed, even at elevated light intensities. Photoinhibition occurs under aerobic conditions. The antenna-deficient mutant DS521 can also provide significant resistance to photoinhibition, in addition to the improvement in the overall efficiency in CO(2), fixation.

  16. Spatial Variability in Instantaneous Photosynthetic Carbon and Oxygen Isotope Discrimination

    NASA Astrophysics Data System (ADS)

    Barbour, M. M.

    2007-12-01

    Stable carbon and oxygen isotope ratios of CO2 are useful tracers in studies of carbon and water cycling between the terrestrial biosphere and the atmosphere. Interpretation of variation in 13CO2 and C16O18O relies on models describing physical and biochemical processes and their associated fractionations. A layer of complexity not currently quantified or accounted for in canopy models is spatial variation in photosynthetic discrimination within a single leaf. A new measurement technique, employing tunable diode laser absorption spectrometry coupled to an open gas exchange system, enables online measurement of photosynthetic discrimination at high temporal resolution. Using this system, photosynthetic 13C and 18O discrimination was measured along leaves of a C3 monocot. For the forage cereal Triticale, 13C discrimination increased by 2‰ and 18O by 20‰ from the base to the tip of mature leaves when measured at saturating irradiance. The increase in 13C discrimination was associated with an increase in the leaf internal conductance of CO2, and 18O discrimination with carry-forward of evaporative enrichment along the leaf. When numerical averages are compared to flux- and area-weighted averages, the portion of the leaf approximately one third of the way from the base can be shown to provide the most representative area for scaling up.

  17. Environmentally modulated phosphorylation and dynamics of proteins in photosynthetic membranes.

    PubMed

    Vener, Alexander V

    2007-06-01

    Recent advances in vectorial proteomics of protein domains exposed to the surface of photosynthetic thylakoid membranes of plants and the green alga Chlamydomonas reinhardtii allowed mapping of in vivo phosphorylation sites in integral and peripheral membrane proteins. In plants, significant changes of thylakoid protein phosphorylation are observed in response to stress, particularly in photosystem II under high light or high temperature stress. Thylakoid protein phosphorylation in the algae is much more responsive to the ambient redox and light conditions, as well as to CO(2) availability. The light-dependent multiple and differential phosphorylation of CP29 linker protein in the green algae is suggested to control photosynthetic state transitions and uncoupling of light harvesting proteins from photosystem II under high light. The similar role for regulation of the dynamic distribution of light harvesting proteins in plants is proposed for the TSP9 protein, which together with other recently discovered peripheral proteins undergoes specific environment- and redox-dependent phosphorylation at the thylakoid surface. This review focuses on the environmentally modulated reversible phosphorylation of thylakoid proteins related to their membrane dynamics and affinity towards particular photosynthetic protein complexes. PMID:17184728

  18. Photosynthetic Physiological Characteristics of Gazania rigens L. Under Drought Stress

    NASA Astrophysics Data System (ADS)

    Gao, T. T.; Zheng, S. W.; Zhou, X. H.; Wang, D. X.; Lu, X. P.

    2016-08-01

    To investigate the responses of photosynthetic physiological characteristics of Gazania rigens L. to drought stress, the changes of three cultivars (‘Xingbai’, ‘XH’ and ‘Hongwen’) photosynthetic values under drought stress were determined via LI-6400 portable photosynthesis analyzer (LI-COR, USA), and the relationships between photosynthesis and drought resistance of each cultivar were analyzed. The results showed that, three cultivars net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), and light use efficiency (LUE) value indicated the trend of decreasing gradually and there existed significant reduction in Pn and Gs values. There were extremely negative significant correlations between drought stress treatment days and Pn, Gs, Tr, water use efficiency (WUE) and LUE values. A small amount of leaves began to turn soft and yellow after drought stress treatment for 10 days, but they could recover to grow quickly after rehydration. The Pn values of ‘Hongwen’ decreased quickly and changed in a large range, so it had a poor resistance; the Pn values of ‘Xingbai’ decreased slowly and changed in a small range, so it had a strong resistance; while the changes of their hybrids -‘XH’ were between its parents. This research would provide a theoretical basis for gazania resistance cultivar breeding and application in landscape.

  19. The Photosynthetic Action Spectrum of the Bean Plant 1

    PubMed Central

    Balegh, S. E.; Biddulph, O.

    1970-01-01

    The photosynthetic action spectrum of the bean plant leaf, Phaseolus vulgaris L. (variety Red Kidney), has been determined with a diffraction grating illuminated by a 6500-watt xenon arc. An infrared CO2 analyzer was used to determine the gross photosynthetic rate of the terminal leaflet of the first trifoliate leaf. The rate was measured as a function of the light intensity at steps of 12.5 nanometers which approximates the length of the leaflet used. Twenty-five curves between 400 and 700 nanometers were used to establish the action spectrum. All light curves were some linear function of the incident intensity, and all were extrapolated to zero. The action spectrum shows the following features. (a) there are two peaks (i.e., at about 670 and 630 nanometers) and a shoulder between 600 and 612 nanometers in the red region where the highest rate of photosynthesis is found. Lower peaks in descending order are found in the blue (at about 437 nanometers) and the green (at about 500 nanometers) regions. (b) There are two small minima at about 650 nanometers and between 470 and 480 nanometers, and a broad minimum is found between 540 and 530 nanometers. (c) The photosynthetic rate declines rapidly above 680 nanometers, reaching the lowest value at 700 nanometers. (d) At wave lengths below the blue maximum, the rate decreases progressively to 400 nanometers. PMID:16657397

  20. Tangled evolutionary processes with commonality and diversity in plastidial glycolipid synthesis in photosynthetic organisms.

    PubMed

    Hori, Koichi; Nobusawa, Takashi; Watanabe, Tei; Madoka, Yuka; Suzuki, Hideyuki; Shibata, Daisuke; Shimojima, Mie; Ohta, Hiroyuki

    2016-09-01

    In photosynthetic organisms, the photosynthetic membrane constitutes a scaffold for light-harvesting complexes and photosynthetic reaction centers. Three kinds of glycolipids, namely monogalactosyldiacylglycerol, digalactosyldiacylglycerol, and sulfoquinovosyldiacylglycerol, constitute approximately 80-90% of photosynthetic membrane lipids and are well conserved from tiny cyanobacteria to the leaves of huge trees. These glycolipids perform a wide variety of functions beyond biological membrane formation. In particular, the capability of adaptation to harsh environments through regulation of membrane glycolipid composition is essential for healthy growth and development of photosynthetic organisms. The genome analysis and functional genetics of the model seed plant Arabidopsis thaliana have yielded many new findings concerning the biosynthesis, regulation, and functions of glycolipids. Nevertheless, it remains to be clarified how the complex biosynthetic pathways and well-organized functions of glycolipids evolved in early and primitive photosynthetic organisms, such as cyanobacteria, to yield modern photosynthetic organisms like land plants. Recently, genome data for many photosynthetic organisms have been made available as the fruit of the rapid development of sequencing technology. We also have reported the draft genome sequence of the charophyte alga Klebsormidium flaccidum, which is an intermediate organism between green algae and land plants. Here, we performed a comprehensive phylogenic analysis of glycolipid biosynthesis genes in oxygenic photosynthetic organisms including K. flaccidum. Based on the results together with membrane lipid analysis of this alga, we discuss the evolution of glycolipid synthesis in photosynthetic organisms. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.

  1. Tangled evolutionary processes with commonality and diversity in plastidial glycolipid synthesis in photosynthetic organisms.

    PubMed

    Hori, Koichi; Nobusawa, Takashi; Watanabe, Tei; Madoka, Yuka; Suzuki, Hideyuki; Shibata, Daisuke; Shimojima, Mie; Ohta, Hiroyuki

    2016-09-01

    In photosynthetic organisms, the photosynthetic membrane constitutes a scaffold for light-harvesting complexes and photosynthetic reaction centers. Three kinds of glycolipids, namely monogalactosyldiacylglycerol, digalactosyldiacylglycerol, and sulfoquinovosyldiacylglycerol, constitute approximately 80-90% of photosynthetic membrane lipids and are well conserved from tiny cyanobacteria to the leaves of huge trees. These glycolipids perform a wide variety of functions beyond biological membrane formation. In particular, the capability of adaptation to harsh environments through regulation of membrane glycolipid composition is essential for healthy growth and development of photosynthetic organisms. The genome analysis and functional genetics of the model seed plant Arabidopsis thaliana have yielded many new findings concerning the biosynthesis, regulation, and functions of glycolipids. Nevertheless, it remains to be clarified how the complex biosynthetic pathways and well-organized functions of glycolipids evolved in early and primitive photosynthetic organisms, such as cyanobacteria, to yield modern photosynthetic organisms like land plants. Recently, genome data for many photosynthetic organisms have been made available as the fruit of the rapid development of sequencing technology. We also have reported the draft genome sequence of the charophyte alga Klebsormidium flaccidum, which is an intermediate organism between green algae and land plants. Here, we performed a comprehensive phylogenic analysis of glycolipid biosynthesis genes in oxygenic photosynthetic organisms including K. flaccidum. Based on the results together with membrane lipid analysis of this alga, we discuss the evolution of glycolipid synthesis in photosynthetic organisms. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. PMID:27108062

  2. Calculation of the radiative properties of photosynthetic microorganisms

    NASA Astrophysics Data System (ADS)

    Dauchet, Jérémi; Blanco, Stéphane; Cornet, Jean-François; Fournier, Richard

    2015-08-01

    A generic methodological chain for the predictive calculation of the light-scattering and absorption properties of photosynthetic microorganisms within the visible spectrum is presented here. This methodology has been developed in order to provide the radiative properties needed for the analysis of radiative transfer within photobioreactor processes, with a view to enable their optimization for large-scale sustainable production of chemicals for energy and chemistry. It gathers an electromagnetic model of light-particle interaction along with detailed and validated protocols for the determination of input parameters: morphological and structural characteristics of the studied microorganisms as well as their photosynthetic-pigment content. The microorganisms are described as homogeneous equivalent-particles whose shape and size distribution is characterized by image analysis. The imaginary part of their refractive index is obtained thanks to a new and quite extended database of the in vivo absorption spectra of photosynthetic pigments (that is made available to the reader). The real part of the refractive index is then calculated by using the singly subtractive Kramers-Krönig approximation, for which the anchor point is determined with the Bruggeman mixing rule, based on the volume fraction of the microorganism internal-structures and their refractive indices (extracted from a database). Afterwards, the radiative properties are estimated using the Schiff approximation for spheroidal or cylindrical particles, as a first step toward the description of the complexity and diversity of the shapes encountered within the microbial world. Finally, these predictive results are confronted to experimental normal-hemispherical transmittance spectra for validation. This entire procedure is implemented for Rhodospirillum rubrum, Arthrospira platensis and Chlamydomonas reinhardtii, each representative of the main three kinds of photosynthetic microorganisms, i.e. respectively

  3. A reverse KREBS cycle in photosynthesis: consensus at last.

    PubMed

    Buchanan, B B; Arnon, D I

    1990-01-01

    The Krebs cycle (citric acid or tricarboxylic acid cycle), the final common pathway in aerobic metabolism for the oxidation of carbohydrates, fatty acids and amino acids, is known to be irreversible. It liberates CO2 and generates NADH whose aerobic oxidation yields ATP but it does not operate in reverse as a biosynthetic pathway for CO2 assimilation. In 1966, our laboratory described a cyclic pathway for CO2 assimilation (Evans, Buchanan and Arnon 1966) that was unusual in two respects: (i) it provided the first instance of an obligate photoautotroph that assimilated CO2 by a pathway different from Calvin's reductive pentose phosphate cycle (Calvin 1962) and (ii) in its overall effect the new cycle was a reversal of the Krebs cycle. Named the 'reductive carboxylic acid cycle' (sometimes also called the reductive tricarboxylic acid cycle) the new cycle appeared to be the sole CO2 assimilation pathway in Chlorobium thiosulfatophilum (Evans et al. 1966) (now known as Chlorobium limicola forma thiosulfatophilum). Chlorobium is a photosynthetic green sulfur bacterium that grows anaerobically in an inorganic medium with sulfide and thiosulfate as electron donors and CO2 as an obligatory carbon source. In the ensuing years, the new cycle was viewed with skepticism. Not only was it in conflict with the prevailing doctrine that the 'one important property ... shared by all (our emphasis) autotrophic species is the assimilation of CO2 via the Calvin cycle' (McFadden 1973) but also some of its experimental underpinnings were challenged. It is only now that in the words of one of its early skeptics (Tabita 1988) 'a long and tortuous controversy' has ended with general acceptance of the reductive carboxylic acid cycle as a photosynthetic CO2 assimilation pathway distinct from the pentose cycle. (Henceforth, to minimize repetitiveness, the reductive pentose phosphate cycle will often be referred to as the pentose cycle and the reductive carboxylic acid cycle as the carboxylic

  4. A reverse KREBS cycle in photosynthesis: consensus at last

    NASA Technical Reports Server (NTRS)

    Buchanan, B. B.; Arnon, D. I.

    1990-01-01

    The Krebs cycle (citric acid or tricarboxylic acid cycle), the final common pathway in aerobic metabolism for the oxidation of carbohydrates, fatty acids and amino acids, is known to be irreversible. It liberates CO2 and generates NADH whose aerobic oxidation yields ATP but it does not operate in reverse as a biosynthetic pathway for CO2 assimilation. In 1966, our laboratory described a cyclic pathway for CO2 assimilation (Evans, Buchanan and Arnon 1966) that was unusual in two respects: (i) it provided the first instance of an obligate photoautotroph that assimilated CO2 by a pathway different from Calvin's reductive pentose phosphate cycle (Calvin 1962) and (ii) in its overall effect the new cycle was a reversal of the Krebs cycle. Named the 'reductive carboxylic acid cycle' (sometimes also called the reductive tricarboxylic acid cycle) the new cycle appeared to be the sole CO2 assimilation pathway in Chlorobium thiosulfatophilum (Evans et al. 1966) (now known as Chlorobium limicola forma thiosulfatophilum). Chlorobium is a photosynthetic green sulfur bacterium that grows anaerobically in an inorganic medium with sulfide and thiosulfate as electron donors and CO2 as an obligatory carbon source. In the ensuing years, the new cycle was viewed with skepticism. Not only was it in conflict with the prevailing doctrine that the 'one important property ... shared by all (our emphasis) autotrophic species is the assimilation of CO2 via the Calvin cycle' (McFadden 1973) but also some of its experimental underpinnings were challenged. It is only now that in the words of one of its early skeptics (Tabita 1988) 'a long and tortuous controversy' has ended with general acceptance of the reductive carboxylic acid cycle as a photosynthetic CO2 assimilation pathway distinct from the pentose cycle. (Henceforth, to minimize repetitiveness, the reductive pentose phosphate cycle will often be referred to as the pentose cycle and the reductive carboxylic acid cycle as the carboxylic

  5. Direct extraction of photosynthetic electrons from single algal cells by nanoprobing system.

    PubMed

    Ryu, WonHyoung; Bai, Seoung-Jai; Park, Joong Sun; Huang, Zubin; Moseley, Jeffrey; Fabian, Tibor; Fasching, Rainer J; Grossman, Arthur R; Prinz, Fritz B

    2010-04-14

    There are numerous sources of bioenergy that are generated by photosynthetic processes, for example, lipids, alcohols, hydrogen, and polysaccharides. However, generally only a small fraction of solar energy absorbed by photosynthetic organisms is converted to a form of energy that can be readily exploited. To more efficiently use the solar energy harvested by photosynthetic organisms, we evaluated the feasibility of generating bioelectricity by directly extracting electrons from the photosynthetic electron transport chain before they are used to fix CO(2) into sugars and polysaccharides. From a living algal cell, Chlamydomonas reinhardtii, photosynthetic electrons (1.2 pA at 6000 mA/m(2)) were directly extracted without a mediator electron carrier by inserting a nanoelectrode into the algal chloroplast and applying an overvoltage. This result may represent an initial step in generating "high efficiency" bioelectricity by directly harvesting high energy photosynthetic electrons. PMID:20201533

  6. Fast Neutron Irradiation of the Highly Radioresistant Bacterium Deinococcus Radiodurans

    NASA Astrophysics Data System (ADS)

    Case, Diane Louise

    Fast neutron dose survival curves were generated for the bacterium Deinococcus radiodurans, which is renowned for its unusually high resistance to gamma, x-ray, and ultraviolet radiation, but for which fast neutron response was unknown. The fast neutrons were produced by the University of Massachusetts Lowell 5.5-MV, type CN Van de Graaff accelerator through the ^7Li(p,n)^7 Be reaction by bombarding a thick metallic lithium target with a 4-MeV proton beam. The bacteria were uniformly distributed on 150-mm agar plates and were exposed to the fast neutron beam under conditions of charged particle equilibrium. The plates were subdivided into concentric rings of increasing diameter from the center to the periphery of the plate, within which the average neutron dose was calculated as the product of the precisely known neutron fluence at the average radius of the ring and the neutron energy dependent kerma factor. The neutron fluence and dose ranged from approximately 3 times 1013 n cm^ {-2} to 1 times 1012 n cm^ {-2}, and 200 kilorad to 5 kilorad, respectively, from the center to the periphery of the plate. Percent survival for Deinococcus radiodurans as a function of fast neutron dose was derived from the ability of the irradiated cells to produce visible colonies within each ring compared to that of a nonirradiated control population. The bacterium Escherichia coli B/r (CSH) was irradiated under identical conditions for comparative purposes. The survival response of Deinococcus radiodurans as a result of cumulative fast neutron exposures was also investigated. The quantification of the ability of Deinococcus radiodurans to survive cellular insult from secondary charged particles, which are produced by fast neutron interactions in biological materials, will provide valuable information about damage and repair mechanisms under extreme cellular stress, and may provide new insight into the origin of this bacterium's unprecedented radiation resistance.

  7. Factors Affecting Zebra Mussel Kill by the Bacterium Pseudomonas fluorescens

    SciTech Connect

    Daniel P. Molloy

    2004-02-24

    The specific purpose of this research project was to identify factors that affect zebra mussel kill by the bacterium Pseudomonas fluorescens. Test results obtained during this three-year project identified the following key variables as affecting mussel kill: treatment concentration, treatment duration, mussel siphoning activity, dissolved oxygen concentration, water temperature, and naturally suspended particle load. Using this latter information, the project culminated in a series of pipe tests which achieved high mussel kill inside power plants under once-through conditions using service water in artificial pipes.

  8. CORNEAL REACTIONS TO BACTERIUM GRANULOSIS AND OTHER MICROORGANISMS

    PubMed Central

    Olitsky, Peter K.; Knutti, Ralph E.; Tyler, Joseph R.

    1932-01-01

    The conclusions which may be drawn from the results of the experiments here presented are: 1. The cornea of the rabbit is highly sensitive to the action of various injected bacteria. The lesions vary from insignificant, transient changes to severe, destructive panophthalmitis, with fine gradations from the mildest to the violent form of inflammation. Moreover, animals that receive the same organisms show like changes. 2. The varying degree of inflammatory reaction is related to the pathogenicity of the special culture employed; as, for example, is shown by the reactions to Type I pneumococci and to Bacterium granulosis. It is evident that when a microorganism having a certain degree of virulence is used, a lesion of localized vasculonebulous keratitis resembling pannus tenuis or vasculosus of human trachoma can be induced. Thus Bacterium granulosis, Bacillus xerosis, Hemophilus influenzae, Pneumococcus Type II, Streptococcus viridans, and gonococcus can cause the pannus-like corneal changes in the rabbit. Of these organisms, however, only Bacterium granulosis induces early, uncomplicated and enduring keratitic lesions; the others cause first, diffuse keratitis with suppurative lesions; then, as a residual effect, transient, localized, vasculonebulous changes in the cornea. These changes, in contradistinction to the granulosis lesions, are, therefore delayed, complicated, and transient. When, on the other hand, the invasiveness and infecting power of the organisms are low, as is the case with the filtrable, Gram-negative bacillus and the small, Gram-negative bacilli ultimately derived from cases of folliculosis, no marked effect is produced by their intracorneal inoculation. If the pathogenicity of bacteria is high (as shown by Pneumococcus Type I, hemolytic streptococcus, and the remaining bacteria), intracorneal inoculation of the microorganisms leads to serious suppurative or destructive changes. 3. The results of experiments with monkeys indicate that while

  9. Magnetic guidance of the magnetotactic bacterium Magnetospirillum gryphiswaldense.

    PubMed

    Loehr, Johannes; Pfeiffer, Daniel; Schüler, Dirk; Fischer, Thomas M

    2016-04-21

    Magnetospirillum gryphiswaldense is a magnetotactic bacterium with a permanent magnetic moment capable of swimming using two bipolarly located flagella. In their natural environment these bacteria swim along the field lines of the homogeneous geomagnetic field in a typical run and reversal pattern and thereby create non-differentiable trajectories with sharp edges. In the current work we nevertheless achieve stable guidance along curved lines of mechanical instability by using a heterogeneous magnetic field of a garnet film. The successful guidance of the bacteria depends on the right balance between motility and the magnetic moment of the magnetosome chain. PMID:26972517

  10. Effects of ultraviolet radiation (UVA+UVB) on young gametophytes of Gelidium floridanum: growth rate, photosynthetic pigments, carotenoids, photosynthetic performance, and ultrastructure.

    PubMed

    Simioni, Carmen; Schmidt, Eder C; Felix, Marthiellen R de L; Polo, Luz Karime; Rover, Ticiane; Kreusch, Marianne; Pereira, Debora T; Chow, Fungyi; Ramlov, Fernanda; Maraschin, Marcelo; Bouzon, Zenilda L

    2014-01-01

    This study investigated the effects of radiation (PAR+UVA+UVB) on the development and growth rates (GRs) of young gametophytes of Gelidium floridanum. In addition, photosynthetic pigments were quantified, carotenoids identified, and photosynthetic performance assessed. Over a period of 3 days, young gametophytes were cultivated under laboratory conditions and exposed to photosynthetically active radiation (PAR) at 80 μmol photons m(-2) s(-1) and PAR+UVA (0.70 W m(-2))+UVB (0.35 W m(-2)) for 3 h per day. The samples were processed for light and electron microscopy to analyze the ultrastructure features, as well as carry out metabolic studies of GRs, quantify the content of photosynthetic pigments, identify carotenoids and assess photosynthetic performance. PAR+UVA+UVB promoted increase in cell wall thickness, accumulation of floridean starch grains in the cytoplasm and disruption of chloroplast internal organization. Algae exposed to PAR+UVA+UVB also showed a reduction in GR of 97%. Photosynthetic pigments, in particular, phycoerythrin and allophycocyanin contents, decreased significantly from UV radiation exposure. This result agrees with the decrease in photosynthetic performance observed after exposure to ultraviolet radiation, as measured by a decrease in the electron transport rate (ETR), where values of ETRmax declined approximately 44.71%. It can be concluded that radiation is a factor that affects the young gametophytes of G. floridanum at this stage of development.

  11. Potential for Preservation of Biosignatures from Endolithic Photosynthetic Communities in a Mars Analog Fumarole Environment

    NASA Astrophysics Data System (ADS)

    McCollom, T. M.; Hynek, B. M.; Rogers, K. L.

    2016-05-01

    Thermophilic photosynthetic communities inhabit the moist interiors of mineral deposits in volcanic fumaroles. Contemporaneous mineral precipitation provides a high potential for preservation of morphological and chemical biosignatures.

  12. Hybridization of cloned Rhodopseudomonas capsulata photosynthesis genes with DNA from other photosynthetic bacteria.

    PubMed Central

    Beatty, J T; Cohen, S N

    1983-01-01

    The homology of Rhodopseudomonas capsulata DNA segments carrying photosynthesis genes with sequences present in total DNA from certain other photosynthetic and non-photosynthetic bacterial species was determined by hybridization. R. capsulata DNA fragments that carry loci for production of peptide components of the photosynthetic reaction center and light-harvesting I antenna complex were found to hybridize to DNA from some photosynthetic species. However, fragments that carry carotenoid or bacteriochlorophyll biosynthesis genes showed either weak or undetectable heterospecific hybridization under the conditions employed. Images PMID:6406432

  13. PS2013 Satellite Workshop on Photosynthetic Light-Harvesting Systems

    SciTech Connect

    Niederman, Robert A.; Blankenship, Robert E.; Frank, Harry A.

    2015-02-07

    These funds were used for partial support of the PS2013 Satellite Workshop on Photosynthetic Light-Harvesting Systems, that was held on 8-11 August, 2013, at Washington University, St. Louis, MO. This conference, held in conjunction with the 16th International Congress on Photosynthesis/St. Louis, continued a long tradition of light-harvesting satellite conferences that have been held prior to the previous six international photosynthesis congresses. In this Workshop, the basis was explored for the current interest in replacing fossil fuels with energy sources derived form direct solar radiation, coupled with light-driven electron transport in natural photosynthetic systems and how they offer a valuable blueprint for conversion of sunlight to useful energy forms. This was accomplished through sessions on the initial light-harvesting events in the biological conversion of solar energy to chemically stored energy forms, and how these natural photosynthetic processes serve as a guide to the development of robust bio-hybrid and artificial systems for solar energy conversion into both electricity or chemical fuels. Organized similar to a Gordon Research Conference, a lively, informal and collegial setting was established, highlighting the exchange of exciting new data and unpublished results from ongoing studies. A significant amount of time was set aside for open discussion and interactive poster sessions, with a special session devoted to oral presentations by talented students and postdoctoral fellows judged to have the best posters. This area of research has seen exceptionally rapid progress in recent years, with the availability of a number of antenna protein structures at atomic resolution, elucidation of the molecular surface architecture of native photosynthetic membranes by atomic force microscopy and the maturing of ultrafast spectroscopic and molecular biological techniques for the investigation and manipulation of photosynthetic systems. The conferees

  14. Draft Genome Sequences of Two Heat-Resistant Mutant Strains (A52 and B41) of the Photosynthetic Hydrogen-Producing Bacterium Rhodobacter capsulatus.

    PubMed

    Gokce, Abdulmecit; Cakar, Zeynep Petek; Yucel, Meral; Ozcan, Orhan; Sencan, Sevde; Sertdemir, Ibrahim; Erguner, Bekir; Yuceturk, Betul; Sarac, Aydan; Yuksel, Bayram; Ozturk, Yavuz

    2016-01-01

    The draft genome sequences of two heat-resistant mutant strains, A52 and B41, derived from Rhodobacter capsulatus DSM 1710, and with different hydrogen production levels, are reported here. These sequences may help understand the molecular basis of heat resistance and hydrogen production in R. capsulatus.

  15. Draft Genome Sequences of Two Heat-Resistant Mutant Strains (A52 and B41) of the Photosynthetic Hydrogen-Producing Bacterium Rhodobacter capsulatus

    PubMed Central

    Gokce, Abdulmecit; Cakar, Zeynep Petek; Yucel, Meral; Ozcan, Orhan; Sencan, Sevde; Sertdemir, Ibrahim; Erguner, Bekir; Yuceturk, Betul; Sarac, Aydan; Yuksel, Bayram

    2016-01-01

    The draft genome sequences of two heat-resistant mutant strains, A52 and B41, derived from Rhodobacter capsulatus DSM 1710, and with different hydrogen production levels, are reported here. These sequences may help understand the molecular basis of heat resistance and hydrogen production in R. capsulatus. PMID:27284151

  16. The light intensity under which cells are grown controls the type of peripheral light-harvesting complexes that are assembled in a purple photosynthetic bacterium.

    PubMed

    Brotosudarmo, Tatas H P; Collins, Aaron M; Gall, Andrew; Roszak, Aleksander W; Gardiner, Alastair T; Blankenship, Robert E; Cogdell, Richard J

    2011-11-15

    The differing composition of LH2 (peripheral light-harvesting) complexes present in Rhodopseudomonas palustris 2.1.6 have been investigated when cells are grown under progressively decreasing light intensity. Detailed analysis of their absorption spectra reveals that there must be more than two types of LH2 complexes present. Purified HL (high-light) and LL (low-light) LH2 complexes have mixed apoprotein compositions. The HL complexes contain PucAB(a) and PucAB(b) apoproteins. The LL complexes contain PucAB(a), PucAB(d) and PucB(b)-only apoproteins. This mixed apoprotein composition can explain their resonance Raman spectra. Crystallographic studies and molecular sieve chromatography suggest that both the HL and the LL complexes are nonameric. Furthermore, the electron-density maps do not support the existence of an additional Bchl (bacteriochlorophyll) molecule; rather the density is attributed to the N-termini of the α-polypeptide.

  17. The light intensity under which cells are grown controls the type of peripheral light-harvesting complexes that are assembled in a purple photosynthetic bacterium

    SciTech Connect

    Brotosudarmo, Tatas H. P.; Collins, Aaron M.; Gall, Andrew; Roszak, Aleksander W.; Gardiner, Alastair T.; Blankenship, Robert E.; Cogdell, Richard J.

    2011-11-15

    The differing composition of LH2 (peripheral light-harvesting) complexes present in Rhodopseudomonas palustris 2.1.6 have been investigated when cells are grown under progressively decreasing light intensity. Analysis of the absorption spectra reveals there must be more than two types of LH2 complexes present. Purified HL (high-light) and LL (low-light) LH2 complexes have mixed apoprotein compositions. The HL complexes contain PucABa and PucABb apoproteins. The LL complexes contain PucABa, PucABd and PucBb-only apoproteins. This mixed apoprotein composition can explain their resonance Raman spectra.

  18. Chemical nature of protein complex of photoreaction unit including reaction center in chromatophores of photosynthetic bacterium, Rhodospirillum rubrum, as detected by successive dissociation method.

    PubMed

    Tanaka, K; Kakuno, T; Yamashita, J; Horio, T

    1983-12-01

    Reaction center of chromatophores of Rhodospirillum rubrum consists of three kinds of protein, H-, M-, and L-subunit, and is bound with many other kinds of protein to form a larger protein complex (PRU; photoreaction unit), which contains all the bacteriochlorophyll. In the present study, purified PRU was dissociated in a stepwise manner in the presence of various mixtures of lithium dodecyl sulfate, sodium cholate and/or sodium deoxycholate, and separated into five, smaller protein complexes (PL1, PL2, PL3, PL4, and PL4') by high-speed molecular-sieve chromatography. The protein complexes were analyzed for molecular mass (Mm), protein composition, and molecular weights of the constituent proteins by the chromatography described above and by lithium or sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The results suggest that PRU consisted of 1 molecule each of 40K, 39K, 31K (H-subunit), 25K (M-subunit), and 22K (L-subunit), about 12 molecules each of 12K (light-harvesting bacteriochlorophyll-protein) and 11K, and about 6 molecules each of 10K and 9K (the protein nomenclature refers to the apparent molecular weights); the measured and calculated Mm values were 650K and 547K, respectively. The compositions of the other protein complexes were as follows. PL1 = PRU-10K-9K (measured & calculated Mm, 520K & 409K); PL2 = PL1-39K (340K & 267K); PL3 = PL2-40K (160K & 147K); PL4 = PL3-31K-25K (90K & 82K); PL4' = 31K + 25K + 22K (inactivated reaction center) (90K & 78K). The molar ratios of 12K and 11K to 25K were lower in the dissociated protein complexes than in PRU, and they differed from one complex to another. The locations of the constituent proteins in PRU are discussed. PMID:6423620

  19. Alternating electron and proton transfer steps in photosynthetic water oxidation.

    PubMed

    Klauss, André; Haumann, Michael; Dau, Holger

    2012-10-01

    Water oxidation by cyanobacteria, algae, and plants is pivotal in oxygenic photosynthesis, the process that powers life on Earth, and is the paradigm for engineering solar fuel-production systems. Each complete reaction cycle of photosynthetic water oxidation requires the removal of four electrons and four protons from the catalytic site, a manganese-calcium complex and its protein environment in photosystem II. In time-resolved photothermal beam deflection experiments, we monitored apparent volume changes of the photosystem II protein associated with charge creation by light-induced electron transfer (contraction) and charge-compensating proton relocation (expansion). Two previously invisible proton removal steps were detected, thereby filling two gaps in the basic reaction-cycle model of photosynthetic water oxidation. In the S(2) → S(3) transition of the classical S-state cycle, an intermediate is formed by deprotonation clearly before electron transfer to the oxidant (Y Z OX). The rate-determining elementary step (τ, approximately 30 µs at 20 °C) in the long-distance proton relocation toward the protein-water interface is characterized by a high activation energy (E(a) = 0.46 ± 0.05 eV) and strong H/D kinetic isotope effect (approximately 6). The characteristics of a proton transfer step during the S(0) → S(1) transition are similar (τ, approximately 100 µs; E(a) = 0.34 ± 0.08 eV; kinetic isotope effect, approximately 3); however, the proton removal from the Mn complex proceeds after electron transfer to . By discovery of the transient formation of two further intermediate states in the reaction cycle of photosynthetic water oxidation, a temporal sequence of strictly alternating removal of electrons and protons from the catalytic site is established.

  20. Photosynthetic characteristics of sinking microalgae under the sea ice

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shinya; Michel, Christine; Gosselin, Michel; Demers, Serge; Fukuchi, Mitsuo; Taguchi, Satoru

    2014-12-01

    The photosynthetic characteristics of sinking a microalgal community were studied to compare with the ice algal community in the sea ice and the phytoplankton community in the water column under the sea ice at the beginning of the light season in the first-year sea ice ecosystem on the Mackenzie Shelf, in the western Canadian Arctic. The phytoplankton community was collected using a water bottle, whereas the sinking algal community was collected using particle collectors, and the ice algal community was obtained by using an ice-core sampler from the bottom portion of ice core. Photosynthesis versus irradiance (P-E) incubation experiments were conducted on deck to obtain the initial slope (αB) and the maximum photosynthetic rate (PmB) of the three algal communities. The αB and the PmB of the light saturation curve, and chlorophyll a (Chl a) specific absorption coefficient (āph*) between the sinking microalgal community and the ice algal community were similar and were distinctly different from the phytoplankton community. The significant linear relationship between αB and PmB, which was obtained among the three groups, may suggest that a photo-acclimation strategy is common for all algal communities under the low light regime of the early season. Although the sinking algal community could be held for the entire duration of deployment at maximum, this community remained photosynthetically active once exposed to light. This response suggests that sinking algal communities can be the seed population, which results in a subsequent phytoplankton bloom under the sea ice or in a surface layer, as well as representing food for the higher trophic level consumers in the Arctic Ocean even before the receding of the sea ice.

  1. Advances in Metabolic Engineering of Cyanobacteria for Photosynthetic Biochemical Production

    PubMed Central

    Lai, Martin C.; Lan, Ethan I.

    2015-01-01

    Engineering cyanobacteria into photosynthetic microbial cell factories for the production of biochemicals and biofuels is a promising approach toward sustainability. Cyanobacteria naturally grow on light and carbon dioxide, bypassing the need of fermentable plant biomass and arable land. By tapping into the central metabolism and rerouting carbon flux towards desirable compound production, cyanobacteria are engineered to directly convert CO2 into various chemicals. This review discusses the diversity of bioproducts synthesized by engineered cyanobacteria, the metabolic pathways used, and the current engineering strategies used for increasing their titers. PMID:26516923

  2. Water oxidation reaction in natural and artificial photosynthetic systems

    SciTech Connect

    Yano, Junko; Yachandra, Vittal

    2013-12-10

    Understanding the structure and mechanism of water oxidation catalysts is an essential component for developing artificial photosynthetic devices. In the natural water oxidation catalyst, the geometric and electronic structure of its inorganic core, the Mn{sub 4}CaO{sub 5} cluster, has been studied by spectroscopic and diffraction measurements. In inorganic systems, metal oxides seem to be good candidates for water oxidation catalysts. Understanding the reaction mechanism in both natural and oxide-based catalysts will helpin further developing efficient and robust water oxidation catalysts.

  3. Advances in Metabolic Engineering of Cyanobacteria for Photosynthetic Biochemical Production.

    PubMed

    Lai, Martin C; Lan, Ethan I

    2015-01-01

    Engineering cyanobacteria into photosynthetic microbial cell factories for the production of biochemicals and biofuels is a promising approach toward sustainability. Cyanobacteria naturally grow on light and carbon dioxide, bypassing the need of fermentable plant biomass and arable land. By tapping into the central metabolism and rerouting carbon flux towards desirable compound production, cyanobacteria are engineered to directly convert CO₂ into various chemicals. This review discusses the diversity of bioproducts synthesized by engineered cyanobacteria, the metabolic pathways used, and the current engineering strategies used for increasing their titers. PMID:26516923

  4. Vector potential of houseflies for the bacterium Aeromonas caviae.

    PubMed

    Nayduch, D; Noblet, G Pittman; Stutzenberger, F J

    2002-06-01

    Houseflies, Musca domestica Linnaeus (Diptera: Muscidae), have been implicated as vectors or transporters of numerous gastrointestinal pathogens encountered during feeding and ovipositing on faeces. The putative enteropathogen Aeromonas caviae (Proteobacteria: Aeromonadaceae) may be present in faeces of humans and livestock. Recently A. caviae was detected in houseflies by PCR and isolated by culture methods. In this study, we assessed the vector potential of houseflies for A. caviae relative to multiplication and persistence of the bacterium in the fly and to contamination of other flies and food materials. In experimentally fed houseflies, the number of bacteria increased up to 2 days post-ingestion (d PI) and then decreased significantly 3 d PI. A large number of bacteria was detected in the vomitus and faeces of infected flies at 2-3 d PI. The bacteria persisted in flies for up to 8 d PI, but numbers were low. Experimentally infected flies transmitted A. caviae to chicken meat, and transmissibility was directly correlated with exposure time. Flies contaminated the meat for up to 7 d PI; however, a significant decrease in contamination was observed 2-3 d PI. In the fly-to-fly transmission experiments, the transmission of A. caviae was observed and was apparently mediated by flies sharing food. These results support houseflies as potential vectors for A. caviae because the bacterium multiplied, persisted in flies for up to 8 d PI, and could be transmitted to human food items.

  5. Polysaccharide degradation systems of the saprophytic bacterium Cellvibrio japonicus

    DOE PAGES

    Gardner, Jeffrey G.

    2016-06-04

    Study of recalcitrant polysaccharide degradation by bacterial systems is critical for understanding biological processes such as global carbon cycling, nutritional contributions of the human gut microbiome, and the production of renewable fuels and chemicals. One bacterium that has a robust ability to degrade polysaccharides is the Gram-negative saprophyte Cellvibrio japonicus. A bacterium with a circuitous history, C. japonicus underwent several taxonomy changes from an initially described Pseudomonas sp. Most of the enzymes described in the pre-genomics era have also been renamed. Furthermore, this review aims to consolidate the biochemical, structural, and genetic data published on C. japonicus and its remarkablemore » ability to degrade cellulose, xylan, and pectin substrates. Initially, C. japonicus carbohydrate-active enzymes were studied biochemically and structurally for their novel polysaccharide binding and degradation characteristics, while more recent systems biology approaches have begun to unravel the complex regulation required for lignocellulose degradation in an environmental context. Also included is a discussion for the future of C. japonicus as a model system, with emphasis on current areas unexplored in terms of polysaccharide degradation and emerging directions for C. japonicus in both environmental and biotechnological applications.« less

  6. Molybdate Reduction to Molybdenum Blue by an Antarctic Bacterium

    PubMed Central

    Ahmad, S. A.; Shukor, M. Y.; Shamaan, N. A.; Mac Cormack, W. P.; Syed, M. A.

    2013-01-01

    A molybdenum-reducing bacterium from Antarctica has been isolated. The bacterium converts sodium molybdate or Mo6+ to molybdenum blue (Mo-blue). Electron donors such as glucose, sucrose, fructose, and lactose supported molybdate reduction. Ammonium sulphate was the best nitrogen source for molybdate reduction. Optimal conditions for molybdate reduction were between 30 and 50 mM molybdate, between 15 and 20°C, and initial pH between 6.5 and 7.5. The Mo-blue produced had a unique absorption spectrum with a peak maximum at 865 nm and a shoulder at 710 nm. Respiratory inhibitors such as antimycin A, sodium azide, potassium cyanide, and rotenone failed to inhibit the reducing activity. The Mo-reducing enzyme was partially purified using ion exchange and gel filtration chromatography. The partially purified enzyme showed optimal pH and temperature for activity at 6.0 and 20°C, respectively. Metal ions such as cadmium, chromium, copper, silver, lead, and mercury caused more than 95% inhibition of the molybdenum-reducing activity at 0.1 mM. The isolate was tentatively identified as Pseudomonas sp. strain DRY1 based on partial 16s rDNA molecular phylogenetic assessment and the Biolog microbial identification system. The characteristics of this strain would make it very useful in bioremediation works in the polar and temperate countries. PMID:24381945

  7. Molybdate reduction to molybdenum blue by an Antarctic bacterium.

    PubMed

    Ahmad, S A; Shukor, M Y; Shamaan, N A; Mac Cormack, W P; Syed, M A

    2013-01-01

    A molybdenum-reducing bacterium from Antarctica has been isolated. The bacterium converts sodium molybdate or Mo⁶⁺ to molybdenum blue (Mo-blue). Electron donors such as glucose, sucrose, fructose, and lactose supported molybdate reduction. Ammonium sulphate was the best nitrogen source for molybdate reduction. Optimal conditions for molybdate reduction were between 30 and 50 mM molybdate, between 15 and 20°C, and initial pH between 6.5 and 7.5. The Mo-blue produced had a unique absorption spectrum with a peak maximum at 865 nm and a shoulder at 710 nm. Respiratory inhibitors such as antimycin A, sodium azide, potassium cyanide, and rotenone failed to inhibit the reducing activity. The Mo-reducing enzyme was partially purified using ion exchange and gel filtration chromatography. The partially purified enzyme showed optimal pH and temperature for activity at 6.0 and 20°C, respectively. Metal ions such as cadmium, chromium, copper, silver, lead, and mercury caused more than 95% inhibition of the molybdenum-reducing activity at 0.1 mM. The isolate was tentatively identified as Pseudomonas sp. strain DRY1 based on partial 16s rDNA molecular phylogenetic assessment and the Biolog microbial identification system. The characteristics of this strain would make it very useful in bioremediation works in the polar and temperate countries. PMID:24381945

  8. [Pigment composition and photosynthetic activity of pea chlorophyll mutants].

    PubMed

    Ladygin, V G

    2003-01-01

    Pea chlorophyll mutants chlorotica 2004 and 2014 have been studied. The mutants differ from the initial form (pea cultivar Torsdag) in stem and leaf color (light green in the mutant 2004 and yellow-green in the mutant 2014), relative chlorophyll content (approximately 80 and 50%, respectively), and the composition of carotenoids: the mutant 2004 contains a significantly smaller amount of carotene but accumulates more lutein and violaxanthine; in the mutant 2014, the contents of all carotenoids are decreased proportionally to the decrease in chlorophyll content. It is shown that the rates of CO2 assimilation and oxygen production in the mutant chlorotica 2004 and 2014 plants are reduced. The quantum efficiency of photosynthesis in the mutants is 29-30% lower than in the control plants; in their hybrids, however, it is 1.5-2 higher. It is proposed that both the greater role of dark respiration in gas exchange and the reduced photosynthetic activity in chlorotica mutants are responsible for the decreased phytomass increment in these plants. On the basis of these results, the conclusion is drawn that the mutations chlorotica 2004 and 2014 affect the genes controlling the formation and functioning of various components of the photosynthetic apparatus.

  9. State of Brassica rapa photosynthetic membranes in microgravity.

    PubMed

    Adamchuk, N I; Guikema, J A; Jialo, S; Hilaire, E

    2002-07-01

    The structural characteristics of the photosynthetic apparatus of Brassica rapa plants grown on board the space shuttle Columbia (STS-87) for 15 days were examined using the methods of transmission electron microscopy and statistic programme STAT. Maintaining of the same growth conditions for control plants was realized with great accuracy using the Orbiter Environmental simulator in Kennedy Space Center. A grana number per a medial section 1.8 times decreased in microgravity. Considerable changes were also revealed in the grana structure in microgravity in comparison with th ground control, namely: 1/a greater diversity in the thylakoid length with granae and 2/ lateral shifting of the thylakoids lateral shifting of the thylakoids relative one to another. The previous mentioned pheomenon was found for 64% of the invested granae. Shifting of the thylakoids in the granae in microgravity led to increasing of the grana thylakoid surface exposed to a stroma. In addition, the volume of stromal thylakoids increased. The peculiarities in the photosynthetic apparatus structure in microgravity are supposed to be an evidence of decreasing in the light harvesting complex amount of photosystem II (PSII).

  10. Role of interference in the photosynthetic heat engine

    NASA Astrophysics Data System (ADS)

    Xu, Y. Y.; Liu, J.

    2014-11-01

    The observation of quantum coherence in pigment-protein complexes has attracted considerable interest. One such endeavor entails applying a quantum heat engine to model the photosynthetic reaction center, but the definition of work used is inconsistent with that defined in quantum thermodynamics. Using the definition of work proposed in Weimer et al. [Europhys. Lett. 83, 30008 (2008), 10.1209/0295-5075/83/30008], we investigated two proposals for enhancing the performance of the photosynthetic reaction center. In proposal A, which is similar to that in Dorfman et al. [Proc. Natl. Acad. Sci. USA 110, 2746 (2013), 10.1073/pnas.1212666110], we found that the power and current-voltage characteristic of the heat engine can be increased by Fano interference but the efficiency cannot. In proposal B, which is similar to that in Creatore et al. [Phys. Rev. Lett. 111, 253601 (2013), 10.1103/PhysRevLett.111.253601], we found that the mechanism of strengthening the performance of the heat engine is invalid; i.e., the dipole-dipole interaction between two electron donors could not increase the power, efficiency, or current-voltage characteristic.

  11. Engineering photosynthetic organisms for the production of biohydrogen

    DOE PAGES

    Dubini, Alexandra; Ghirardi, Maria L.

    2014-03-27

    Oxygenic photosynthetic organisms such as green algae are capable of absorbing sunlight and converting the chemical energy into hydrogen gas. This process takes advantage of the photosynthetic apparatus of these organisms which links water oxidation to H2 production. Biological H2 has therefore the potential to be an alternative fuel of the future and shows great promise for generating large scale sustainable energy. Microalgae are able to produce H2 under light anoxic or dark anoxic condition by activating 3 different pathways that utilize the hydrogenases as catalysts. In this review, we highlight the principal barriers that prevent hydrogen production in greenmore » algae and how those limitations are being addressed, through metabolic and genetic engineering. We also discuss the major challenges and bottlenecks facing the development of future commercial algal photobiological systems for H2 production. Lastly we provide suggestions for future strategies and potential new techniques to be developed towards an integrated system with optimized hydrogen production.« less

  12. Photosynthetic oxygen evolution is not reversed at high oxygen pressures

    PubMed Central

    Kolling, Derrick R. J.; Brown, Tyler S.; Ananyev, Gennady; Dismukes, G. Charles

    2009-01-01

    We investigated the effects of elevated O2 pressure on the production of O2 by photosynthetic organisms in several species of plants, algae, and a cyanobacterium. Using a non-invasive fluorometry technique to monitor sequential turnover of the Photosystem II (PSII) reaction center as a function of O2 pressures, we showed that none of the reactions of water oxidation are affected by elevated O2 pressures up to 50-fold greater than atmospheric conditions. Thus, the terminal step of O2 release from the water oxidation complex (S4 → S0 + O2 + nH+) is not reversible in whole cells, leaves, or isolated thylakoid membranes containing PSII, in contrast to reports using detergent-extracted PSII complexes. This implies that there is no thermodynamically accessible intermediate that can be populated by preventing or reversing the O2 release step with atmospheric O2. To assess the sensitivity of PSII charge recombination to O2 pressure we quantitatively modeled the consequences of two putative perturbations to the catalytic cycle of water oxidation within the framework of the Kok model. Based on the breadth of oxygenic phototrophs examined in this study, we conclude that O2 accumulation in cells or the atmosphere does not suppress photosynthetic productivity through the reversal of water oxidation in contemporary phototrophs, and would have been unlikely to influence the evolution of oxygenic photosynthesis. PMID:19166323

  13. Discovery of the photosynthetic relatives of the "Maltese mushroom" Cynomorium

    PubMed Central

    Nickrent, Daniel L; Der, Joshua P; Anderson, Frank E

    2005-01-01

    Background Although recent molecular phylogenetic studies have identified the photosynthetic relatives of several enigmatic holoparasitic angiosperms, uncertainty remains for the last parasitic plant order, Balanophorales, often considered to include two families, Balanophoraceae and Cynomoriaceae. The nonphotosynthetic (holoparasitic) flowering plant Cynomorium coccineum has long been known to the Muslim world as "tarthuth" and to Europeans as the "Maltese mushroom"; C. songaricum is known in Chinese medicine as "suo yang." Interest in these plants is increasing and they are being extensively collected from wild populations for use in herbal medicines. Results Here we report molecular phylogenetic analyses of nuclear ribosomal DNA and mitochondrial matR sequence data that strongly support the independent origin of Balanophoraceae and Cynomoriaceae. Analyses of single gene and combined gene data sets place Cynomorium in Saxifragales, possibly near Crassulaceae (stonecrop family). Balanophoraceae appear related to Santalales (sandalwood order), a position previously suggested from morphological characters that are often assumed to be convergent. Conclusion Our work shows that Cynomorium and Balanophoraceae are not closely related as indicated in all past and present classifications. Thus, morphological features, such as inflorescences bearing numerous highly reduced flowers, are convergent and were attained independently by these two holoparasite lineages. Given the widespread harvest of wild Cynomorium species for herbal medicines, we here raise conservation concerns and suggest that further molecular phylogenetic work is needed to identify its photosynthetic relatives. These relatives, which will be easier to cultivate, should then be examined for phytochemical activity purported to be present in the more sensitive Cynomorium. PMID:15969755

  14. Toward a photosynthetic microbial platform for terpenoid engineering.

    PubMed

    Davies, Fiona K; Jinkerson, Robert E; Posewitz, Matthew C

    2015-03-01

    Plant terpenoids are among the most diverse group of naturally-occurring organic compounds known, and several are used in contemporary consumer products. Terpene synthase enzymes catalyze complex rearrangements of carbon skeleton precursors to yield thousands of unique chemical structures that range in size from the simplest five carbon isoprene unit to the long polymers of rubber. Such chemical diversity has established plant terpenoids as valuable commodity chemicals with applications in the pharmaceutical, neutraceutical, cosmetic, and food industries. More recently, terpenoids have received attention as a renewable alternative to petroleum-derived fuels and as the building blocks of synthetic biopolymers. However, the current plant- and petrochemical-based supplies of commodity terpenoids have major limitations. Photosynthetic microorganisms provide an opportunity to generate terpenoids in a renewable manner, employing a single consolidated host organism that is able to use solar energy, H2O and CO2 as the primary inputs for terpenoid biosynthesis. Advances in synthetic biology have seen important breakthroughs in microbial terpenoid engineering, traditionally via fermentative pathways in yeast and Escherichia coli. This review draws on the knowledge obtained from heterotrophic microbial engineering to propose strategies for the development of microbial photosynthetic platforms for industrial terpenoid production. The importance of utilizing the wealth of genetic information provided by nature to unravel the regulatory mechanisms of terpenoid biosynthesis is highlighted.

  15. Synergistic Two-Photon Absorption Enhancement in Photosynthetic Light Harvesting

    NASA Astrophysics Data System (ADS)

    Chen, Kuo-Mei; Chen, Yu-Wei; Gao, Ting-Fong

    2012-06-01

    The grand scale fixation of solar energies into chemical substances by photosynthetic reactions of light-harvesting organisms provides Earth's other life forms a thriving environment. Scientific explorations in the past decades have unraveled the fundamental photophysical and photochemical processes in photosynthesis. Higher plants, green algae, and light-harvesting bacteria utilize organized pigment-protein complexes to harvest solar power efficiently and the resultant electronic excitations are funneled into a reaction center, where the first charge separation process takes place. Here we show experimental evidences that green algae (Chlorella vulgaris) in vivo display a synergistic two-photon absorption enhancement in their photosynthetic light harvesting. Their absorption coefficients at various wavelengths display dramatic dependence on the photon flux. This newly found phenomenon is attributed to a coherence-electronic-energy-transfer-mediated (CEETRAM) photon absorption process of light-harvesting pigment-protein complexes of green algae. Under the ambient light level, algae and higher plants can utilize this quantum mechanical mechanism to create two entangled electronic excitations adjacently in their light-harvesting networks. Concerted multiple electron transfer reactions in the reaction centers and oxygen evolving complexes can be implemented efficiently by the coherent motion of two entangled excitons from antennae to the charge separation reaction sites. To fabricate nanostructured, synthetic light-harvesting apparatus, the paramount role of the CEETRAM photon absorption mechanism should be seriously considered in the strategic guidelines.

  16. Role of interference in the photosynthetic heat engine.

    PubMed

    Xu, Y Y; Liu, J

    2014-11-01

    The observation of quantum coherence in pigment-protein complexes has attracted considerable interest. One such endeavor entails applying a quantum heat engine to model the photosynthetic reaction center, but the definition of work used is inconsistent with that defined in quantum thermodynamics. Using the definition of work proposed in Weimer et al. [Europhys. Lett. 83, 30008 (2008)EULEEJ0295-507510.1209/0295-5075/83/30008], we investigated two proposals for enhancing the performance of the photosynthetic reaction center. In proposal A, which is similar to that in Dorfman et al. [Proc. Natl. Acad. Sci. USA 110, 2746 (2013)PNASA60027-842410.1073/pnas.1212666110], we found that the power and current-voltage characteristic of the heat engine can be increased by Fano interference but the efficiency cannot. In proposal B, which is similar to that in Creatore et al. [Phys. Rev. Lett. 111, 253601 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.253601], we found that the mechanism of strengthening the performance of the heat engine is invalid; i.e., the dipole-dipole interaction between two electron donors could not increase the power, efficiency, or current-voltage characteristic.

  17. Mechanisms Underlying Carotenoid Absorption in Oxygenic Photosynthetic Proteins*

    PubMed Central

    Mendes-Pinto, Maria M.; Galzerano, Denise; Telfer, Alison; Pascal, Andrew A.; Robert, Bruno; Ilioaia, Cristian

    2013-01-01

    The electronic properties of carotenoid molecules underlie their multiple functions throughout biology, and tuning of these properties by their in vivo locus is of vital importance in a number of cases. This is exemplified by photosynthetic carotenoids, which perform both light-harvesting and photoprotective roles essential to the photosynthetic process. However, despite a large number of scientific studies performed in this field, the mechanism(s) used to modulate the electronic properties of carotenoids remain elusive. We have chosen two specific cases, the two β-carotene molecules in photosystem II reaction centers and the two luteins in the major photosystem II light-harvesting complex, to investigate how such a tuning of their electronic structure may occur. Indeed, in each case, identical molecular species in the same protein are seen to exhibit different electronic properties (most notably, shifted absorption peaks). We assess which molecular parameters are responsible for this in vivo tuning process and attempt to assign it to specific molecular events imposed by their binding pockets. PMID:23720734

  18. Mechanisms underlying carotenoid absorption in oxygenic photosynthetic proteins.

    PubMed

    Mendes-Pinto, Maria M; Galzerano, Denise; Telfer, Alison; Pascal, Andrew A; Robert, Bruno; Ilioaia, Cristian

    2013-06-28

    The electronic properties of carotenoid molecules underlie their multiple functions throughout biology, and tuning of these properties by their in vivo locus is of vital importance in a number of cases. This is exemplified by photosynthetic carotenoids, which perform both light-harvesting and photoprotective roles essential to the photosynthetic process. However, despite a large number of scientific studies performed in this field, the mechanism(s) used to modulate the electronic properties of carotenoids remain elusive. We have chosen two specific cases, the two β-carotene molecules in photosystem II reaction centers and the two luteins in the major photosystem II light-harvesting complex, to investigate how such a tuning of their electronic structure may occur. Indeed, in each case, identical molecular species in the same protein are seen to exhibit different electronic properties (most notably, shifted absorption peaks). We assess which molecular parameters are responsible for this in vivo tuning process and attempt to assign it to specific molecular events imposed by their binding pockets.

  19. [Primary study on photosynthetic characteristics of Dendrobium nobile].

    PubMed

    Su, Wenhua; Zhang, Guangfei

    2003-03-01

    With LiCor-6400 Portable Photosynthesis System, carbon dioxide exchange pattern for leaves of Dendrobium nobile during 24 hours were studied in sunny day and rainy day, and the variation of CO2 exchange rate to light intensity was analysed. The results showed that in sunny day D. nobile absorbed CO2 in all day except at midday, at noon photorespiration took place. The CO2 exchange pattern was similar to Crassulacean Acid Metabolism(CAM). In rainy day CO2 uptake was in all day, at night CO2 uptake was monitored at 21:00, then CO2 released from 23:00 to dawn. Light saturation point was 1000 mumol/m2s. Over light saturation point photosynthesis, photoinhibition of photosynthesis will be induced by high-light. Exposed to high-light, the light saturation point and the CO2 uptake velocity would be decreased. With variation of environmental factors, photosynthetic pathway in D. nobile could change from CAM to C3 photosynthetic metabolism. It may be one of main reasons for D. nobile to adapt to the shade-requiring environment, the slow growth and rareness in nature. PMID:12856465

  20. Does Chloroplast Size Influence Photosynthetic Nitrogen Use Efficiency?

    PubMed Central

    Li, Yong; Ren, Binbin; Ding, Lei; Shen, Qirong; Peng, Shaobing; Guo, Shiwei

    2013-01-01

    High nitrogen (N) supply frequently results in a decreased photosynthetic N-use efficiency (PNUE), which indicates a less efficient use of accumulated Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Chloroplasts are the location of Rubisco and the endpoint of CO2 diffusion, and they play a vital important role in photosynthesis. However, the effects of chloroplast development on photosynthesis are poorly explored. In the present study, rice seedlings (Oryza sativa L., cv. ‘Shanyou 63’, and ‘Yangdao 6’) were grown hydroponically with three different N levels, morphological characteristics, photosynthetic variables and chloroplast size were measured. In Shanyou 63, a negative relationship between chloroplast size and PNUE was observed across three different N levels. Here, plants with larger chloroplasts had a decreased ratio of mesophyll conductance (gm) to Rubisco content (gm/Rubisco) and a lower Rubisco specific activity. In Yangdao 6, there was no change in chloroplast size and no decline in PNUE or gm/Rubisco ratio under high N supply. It is suggested that large chloroplasts under high N supply is correlated with the decreased Rubisco specific activity and PNUE. PMID:23620801

  1. Function and distribution of bilin biosynthesis enzymes in photosynthetic organisms.

    PubMed

    Dammeyer, Thorben; Frankenberg-Dinkel, Nicole

    2008-10-01

    Bilins are open-chain tetrapyrrole molecules essential for light-harvesting and/or sensing in many photosynthetic organisms. While they serve as chromophores in phytochrome-mediated light-sensing in plants, they additionally function in light-harvesting in cyanobacteria, red algae and cryptomonads. Associated to phycobiliproteins a variety of bile pigments is responsible for the specific light-absorbance properties of the organisms enabling efficient photosynthesis under different light conditions. The initial step of bilin biosynthesis is the cleavage of heme by heme oxygenases (HO) to afford the first linear molecule biliverdin. This reaction is ubiquitously found also in non-photosynthetic organisms. Biliverdin is then further reduced by site specific reductases most of them belonging to the interesting family of ferredoxin-dependent bilin reductases (FDBRs)-a new family of radical oxidoreductases. In recent years much progress has been made in the field of heme oxygenases but even more in the widespread family of FDBRs, revealing novel biochemical FDBR activities, new crystal structures and new ecological aspects, including the discovery of bilin biosynthesis genes in wild marine phage populations. The aim of this review is to summarize and discuss the recent progress in this field and to highlight the new and remaining questions.

  2. Photosynthetic responses and accumulation of mesotrione in two freshwater algae.

    PubMed

    Ni, Yan; Lai, Jinhu; Wan, Jinbao; Chen, Lianshui

    2014-01-01

    Mesotrione is a herbicide used for killing annual grasses and broad-leaved weeds in maize. A recent investigation has shown that mesotrione has been detected as an organic contaminant in aquatic environments and may have a negative impact on aquatic organisms. To evaluate the eco-toxicity of mesotrione to algae, experiments focusing on photosynthetic responses and mesotrione accumulation in Microcystis sp. and Scenedesmus quadricauda were carried out. Both algae treated with mesotrione at 0.05-10 mg L(-1) for 7 days reduced the photosynthetic capacity. The fluorescence of chlorophyll a, the maximal PSII activity (Fv/Fm), and the parameters (Ik, α and ETRmax) of rapid light curves (RLCs) in both algae were decreased under mesotrione exposure. The 96 h EC50 values for mesotrione on S. quadricauda and Microcystis sp. were 4.41 and 6.19 mg L(-1), respectively. The latter shows more tolerance to mesotrione. Mesotrione was shown to be readily accumulated by both species. Such uptake of mesotrione led to the rapid removal of mesotrione from the medium. Overall, this study represents the initial comprehensive analyses of Microcystis sp. and S. quadricauda in adaptation to the mesotrione contaminated aquatic ecosystems. PMID:25059419

  3. [Primary study on photosynthetic characteristics of Dendrobium nobile].

    PubMed

    Su, Wenhua; Zhang, Guangfei

    2003-03-01

    With LiCor-6400 Portable Photosynthesis System, carbon dioxide exchange pattern for leaves of Dendrobium nobile during 24 hours were studied in sunny day and rainy day, and the variation of CO2 exchange rate to light intensity was analysed. The results showed that in sunny day D. nobile absorbed CO2 in all day except at midday, at noon photorespiration took place. The CO2 exchange pattern was similar to Crassulacean Acid Metabolism(CAM). In rainy day CO2 uptake was in all day, at night CO2 uptake was monitored at 21:00, then CO2 released from 23:00 to dawn. Light saturation point was 1000 mumol/m2s. Over light saturation point photosynthesis, photoinhibition of photosynthesis will be induced by high-light. Exposed to high-light, the light saturation point and the CO2 uptake velocity would be decreased. With variation of environmental factors, photosynthetic pathway in D. nobile could change from CAM to C3 photosynthetic metabolism. It may be one of main reasons for D. nobile to adapt to the shade-requiring environment, the slow growth and rareness in nature.

  4. Primary Photosynthetic Energy Conversion in Bacterial Reaction Centers

    NASA Astrophysics Data System (ADS)

    Zinth, Wolfgang; Wachtveitl, J.

    The development of human societies is strongly influenced by the available energetic resources. In a period where the limitations of conventional fossil energy carriers become as evident as the often uncontrollable dangers of nuclear energy, one has to reconsider regenerative energy resources. Here photovoltaic or photochemical use of solar energy is an important approach. Since the early days of evolution some two billion years ago, the dominant energetic input into the life system on earth occurs via the conversion of solar energy performed in photosynthetic organisms. The fossil energy carriers that we use and waste today have been produced by photosynthesis over millions of years. In the race for an extended and versatile use of solar energy, semiconductorbased photovoltaic devices have been developed. However, even after decades of intense engineering they cannot serve as a competitive alternative to fossil energy. Under these circumstances new alternatives are required. One line of scientific development may use the operational principles of photosynthesis since photosynthesis is still our main energy source. In this respect, we will present results on the basic concepts of energy conversion in photosynthetic bacteria, which could be used as a guideline to alternative light energy conversion systems.

  5. Towards quantification of vibronic coupling in photosynthetic antenna complexes

    PubMed Central

    Singh, V. P.; Westberg, M.; Wang, C.; Dahlberg, P. D.; Gellen, T.; Gardiner, A. T.; Cogdell, R. J.

    2015-01-01

    Photosynthetic antenna complexes harvest sunlight and efficiently transport energy to the reaction center where charge separation powers biochemical energy storage. The discovery of existence of long lived quantum coherence during energy transfer has sparked the discussion on the role of quantum coherence on the energy transfer efficiency. Early works assigned observed coherences to electronic states, and theoretical studies showed that electronic coherences could affect energy transfer efficiency—by either enhancing or suppressing transfer. However, the nature of coherences has been fiercely debated as coherences only report the energy gap between the states that generate coherence signals. Recent works have suggested that either the coherences observed in photosynthetic antenna complexes arise from vibrational wave packets on the ground state or, alternatively, coherences arise from mixed electronic and vibrational states. Understanding origin of coherences is important for designing molecules for efficient light harvesting. Here, we give a direct experimental observation from a mutant of LH2, which does not have B800 chromophores, to distinguish between electronic, vibrational, and vibronic coherence. We also present a minimal theoretical model to characterize the coherences both in the two limiting cases of purely vibrational and purely electronic coherence as well as in the intermediate, vibronic regime. PMID:26049466

  6. Towards quantification of vibronic coupling in photosynthetic antenna complexes

    SciTech Connect

    Singh, V. P.; Westberg, M.; Wang, C.; Gellen, T.; Engel, G. S.; Dahlberg, P. D.; Gardiner, A. T.; Cogdell, R. J.

    2015-06-07

    Photosynthetic antenna complexes harvest sunlight and efficiently transport energy to the reaction center where charge separation powers biochemical energy storage. The discovery of existence of long lived quantum coherence during energy transfer has sparked the discussion on the role of quantum coherence on the energy transfer efficiency. Early works assigned observed coherences to electronic states, and theoretical studies showed that electronic coherences could affect energy transfer efficiency—by either enhancing or suppressing transfer. However, the nature of coherences has been fiercely debated as coherences only report the energy gap between the states that generate coherence signals. Recent works have suggested that either the coherences observed in photosynthetic antenna complexes arise from vibrational wave packets on the ground state or, alternatively, coherences arise from mixed electronic and vibrational states. Understanding origin of coherences is important for designing molecules for efficient light harvesting. Here, we give a direct experimental observation from a mutant of LH2, which does not have B800 chromophores, to distinguish between electronic, vibrational, and vibronic coherence. We also present a minimal theoretical model to characterize the coherences both in the two limiting cases of purely vibrational and purely electronic coherence as well as in the intermediate, vibronic regime.

  7. Photosynthetic responses to 30 years of atmospheric change

    NASA Astrophysics Data System (ADS)

    Lunch, C. K.

    2009-12-01

    Plant physiological studies of responses to atmospheric CO2 concentration most frequently involve artificially increasing local CO2 concentration. However, CO2 levels in the atmosphere have already risen by more than 100 ppm over pre-industrial levels, and the response to that increase should also be considered. I measured changes in leaf-level photosynthesis over the most recent 50-60 ppm rise in atmospheric CO2, using photosynthetic studies from the late 1970s and early 1980s as a baseline. The study encompassed 17 plant species at three sites in California. The sites covered a rainfall range of 40 to 1000 mm year-1, and a mean annual temperature range of 12 to 24 oC. Species included annual forbs, perennial shrubs, and trees. Over the 30 years since the previous studies were carried out, leaf-level photosynthesis at ambient CO2 has risen by an average of 0.8 μmol m-2 s-1, a nonsignificant change. Stomatal conductance has declined, such that water use efficiency has increased by an average of 12.7%. The largest changes in photosynthetic characteristics were observed at the desert site.

  8. Artificial photosynthetic reaction centers coupled to light-harvesting antennas.

    PubMed

    Ghosh, Pulak Kumar; Smirnov, Anatoly Yu; Nori, Franco

    2011-12-01

    We analyze a theoretical model for energy and electron transfer in an artificial photosynthetic system. The photosystem consists of a molecular triad (i.e., with a donor, a photosensitive unit, and an acceptor) coupled to four accessory light-harvesting-antenna pigments. The resonant energy transfer from the antennas to the artificial reaction center (the molecular triad) is described here by the Förster mechanism. We consider two different kinds of arrangements of the accessory light-harvesting pigments around the reaction center. The first arrangement allows direct excitation transfer to the reaction center from all the surrounding pigments. The second configuration transmits energy via a cascade mechanism along a chain of light-harvesting chromophores, where only one chromophore is connected to the reaction center. We show that the artificial photosynthetic system using the cascade energy transfer absorbs photons in a broader wavelength range and converts their energy into electricity with a higher efficiency than the system based on direct couplings between all the antenna chromophores and the reaction center.

  9. Photosynthetic Hydrogen and Oxygen Production by Green Algae

    SciTech Connect

    Greenbaum, E.; Lee, J.W.

    1999-08-22

    Photosynthesis research at Oak Ridge National Laboratory is focused on hydrogen and oxygen production by green algae in the context of its potential as a renewable fuel and chemical feed stock. Beginning with its discovery by Gaffron and Rubin in 1942, motivated by curiosity-driven laboratory research, studies were initiated in the early 1970s that focused on photosynthetic hydrogen production from an applied perspective. From a scientific and technical point of view, current research is focused on optimizing net thermodynamic conversion efficiencies represented by the Gibbs Free Energy of molecular hydrogen. The key research questions of maximizing hydrogen and oxygen production by light-activated water splitting in green algae are: (1) removing the oxygen sensitivity of algal hydrogenases; (2) linearizing the light saturation curves of hotosynthesis throughout the entire range of terrestrial solar irradiance-including the role of bicarbonate and carbon dioxide in optimization of photosynthetic electron transpor;t and (3) constructing real-world bioreactors, including the generation of hydrogen and oxygen against workable back pressures of the photoproduced gases.

  10. Photosynthetic leaf area modulates tiller bud outgrowth in sorghum.

    PubMed

    Kebrom, Tesfamichael H; Mullet, John E

    2015-08-01

    Shoot branches or tillers develop from axillary buds. The dormancy versus outgrowth fates of buds depends on genetic, environmental and hormonal signals. Defoliation inhibits bud outgrowth indicating the role of leaf-derived metabolic factors such as sucrose in bud outgrowth. In this study, the sensitivity of bud outgrowth to selective defoliation was investigated. At 6 d after planting (6 DAP), the first two leaves of sorghum were fully expanded and the third was partially emerged. Therefore, the leaves were selectively defoliated at 6 DAP and the length of the bud in the first leaf axil was measured at 8 DAP. Bud outgrowth was inhibited by defoliation of only 2 cm from the tip of the second leaf blade. The expression of dormancy and sucrose-starvation marker genes was up-regulated and cell cycle and sucrose-inducible genes was down-regulated during the first 24 h post-defoliation of the second leaf. At 48 h, the expression of these genes was similar to controls as the defoliated plant recovers. Our results demonstrate that small changes in photosynthetic leaf area affect the propensity of tiller buds for outgrowth. Therefore, variation in leaf area and photosynthetic activity should be included when integrating sucrose into models of shoot branching.

  11. Characterization of photosynthetic supramolecular assemblies using small angle neutron scattering

    SciTech Connect

    Tiede, D.M.; Marone, P.; Wagner, A.M.; Thiyagarajan, P.

    1995-12-31

    We are using small angle neutron scattering (SANS) to resolve structural features of supramolecular assemblies of photosynthetic proteins in liquid and frozen solutions. SANS resolves the size, shape, and structural homogeneity of macromolecular assemblies in samples identical to those used for spectroscopic assays of photosynthetic function. Likely molecular structures of the supramolecular assemblies can be identified by comparing experimental scattering data with scattering profiles calculated for model supramolecular assemblies built from crystal structures of the individual proteins. SANS studies of the Rhodobacter sphaeroides reaction center, RC, presented here, show that the detergent solubilized RC exists in a variety of monomeric and aggregation states. The distribution between monomer and aggregate was found to depend strongly upon detergent, temperature and nature of additives, such as ethylene glycol used for low temperature spectroscopy and polyethylene glycol used for crystallization. Likely aggregate structures are being identified by fitting the experimental scattering profiles with those calculated for model aggregates built-up using the RC crystal structure. This work establishes the foundation for using SANS to identify intermediates in the RC crystallization pathways, and for determining likely structures of complexes formed between the RC and its physiological reaction partners, cytochrome c, and the LHI antenna complex.

  12. Changes of Photosynthetic Behaviors in Kappaphycus alvarezii Infected by Epiphyte

    PubMed Central

    Pang, Tong; Liu, Jianguo; Liu, Qian; Lin, Wei

    2011-01-01

    Epiphytic filamentous algae (EFA) were noted as a serious problem to reduce the production and quality of K. alvarezii. The morphological studies revealed that the main epiphyte on K. alvarezii was Neosiphonia savatieri in China. Though the harmful effects of EFA on the production of K. alvarezii have been reported, the detailed mechanism of the N. savatieri in limiting the production of K. alvarezii has not been studied yet. The present paper studied the effects of N. savatieri infection on photosynthetic behaviors in K. alvarezii by detecting chlorophyll fluorescence transient in vivo. The results revealed that damage of oxygen-evolving complex (OEC), decrease of active reaction centers (RCs), and the plastoquinone (PQ) pool as well as significant reduction in the performance indexes (PI) of PSII were caused by the infection of N. savatieri. The influence of N. savatieri on photosynthetic activity of K. alvarezii should be one of the important reasons to reduce the production of K. alvarezii infected by N. savatieri. PMID:21845201

  13. An allosteric photoredox catalyst inspired by photosynthetic machinery

    PubMed Central

    Lifschitz, Alejo M.; Young, Ryan M.; Mendez-Arroyo, Jose; Stern, Charlotte L.; McGuirk, C. Michael; Wasielewski, Michael R.; Mirkin, Chad A.

    2015-01-01

    Biological photosynthetic machinery allosterically regulate light harvesting via conformational and electronic changes at the antenna protein complexes as a response to specific chemical inputs. Fundamental limitations in current approaches to regulating inorganic light-harvesting mimics prevent their use in catalysis. Here we show that a light-harvesting antenna/reaction centre mimic can be regulated by utilizing a coordination framework incorporating antenna hemilabile ligands and assembled via a high-yielding, modular approach. As in nature, allosteric regulation is afforded by coupling the conformational changes to the disruptions in the electrochemical landscape of the framework upon recognition of specific coordinating analytes. The hemilabile ligands enable switching using remarkably mild and redox-inactive inputs, allowing one to regulate the photoredox catalytic activity of the photosynthetic mimic reversibly and in situ. Thus, we demonstrate that bioinspired regulatory mechanisms can be applied to inorganic light-harvesting arrays displaying switchable catalytic properties and with potential uses in solar energy conversion and photonic devices. PMID:25817586

  14. Photosynthetic diversity meets biodiversity: the C4 plant example.

    PubMed

    Sage, Rowan F; Stata, Matt

    2015-01-01

    Physiological diversification reflects adaptation for specific environmental challenges. As the major physiological process that provides plants with carbon and energy, photosynthesis is under strong evolutionary selection that gives rise to variability in nearly all parts of the photosynthetic apparatus. Here, we discuss how plants, notably those using C4 photosynthesis, diversified in response to environmental challenges imposed by declining atmospheric CO2 content in recent geological time. This reduction in atmospheric CO2 increases the rate of photorespiration and reduces photosynthetic efficiency. While plants have evolved numerous mechanisms to compensate for low CO2, the most effective are the carbon concentration mechanisms of C4, C2, and CAM photosynthesis; and the pumping of dissolved inorganic carbon, mainly by algae. C4 photosynthesis enables plants to dominate warm, dry and often salinized habitats, and to colonize areas that are too stressful for most plant groups. Because C4 lineages generally lack arborescence, they cannot form forests. Hence, where they predominate, C4 plants create a different landscape than would occur if C3 plants were to predominate. These landscapes (mostly grasslands and savannahs) present unique selection environments that promoted the diversification of animal guilds able to graze upon the C4 vegetation. Thus, the rise of C4 photosynthesis has made a significant contribution to the origin of numerous biomes in the modern biosphere.

  15. Toward a photosynthetic microbial platform for terpenoid engineering.

    PubMed

    Davies, Fiona K; Jinkerson, Robert E; Posewitz, Matthew C

    2015-03-01

    Plant terpenoids are among the most diverse group of naturally-occurring organic compounds known, and several are used in contemporary consumer products. Terpene synthase enzymes catalyze complex rearrangements of carbon skeleton precursors to yield thousands of unique chemical structures that range in size from the simplest five carbon isoprene unit to the long polymers of rubber. Such chemical diversity has established plant terpenoids as valuable commodity chemicals with applications in the pharmaceutical, neutraceutical, cosmetic, and food industries. More recently, terpenoids have received attention as a renewable alternative to petroleum-derived fuels and as the building blocks of synthetic biopolymers. However, the current plant- and petrochemical-based supplies of commodity terpenoids have major limitations. Photosynthetic microorganisms provide an opportunity to generate terpenoids in a renewable manner, employing a single consolidated host organism that is able to use solar energy, H2O and CO2 as the primary inputs for terpenoid biosynthesis. Advances in synthetic biology have seen important breakthroughs in microbial terpenoid engineering, traditionally via fermentative pathways in yeast and Escherichia coli. This review draws on the knowledge obtained from heterotrophic microbial engineering to propose strategies for the development of microbial photosynthetic platforms for industrial terpenoid production. The importance of utilizing the wealth of genetic information provided by nature to unravel the regulatory mechanisms of terpenoid biosynthesis is highlighted. PMID:24510550

  16. Engineering photosynthetic organisms for the production of biohydrogen

    SciTech Connect

    Dubini, Alexandra; Ghirardi, Maria L.

    2014-03-27

    Oxygenic photosynthetic organisms such as green algae are capable of absorbing sunlight and converting the chemical energy into hydrogen gas. This process takes advantage of the photosynthetic apparatus of these organisms which links water oxidation to H2 production. Biological H2 has therefore the potential to be an alternative fuel of the future and shows great promise for generating large scale sustainable energy. Microalgae are able to produce H2 under light anoxic or dark anoxic condition by activating 3 different pathways that utilize the hydrogenases as catalysts. In this review, we highlight the principal barriers that prevent hydrogen production in green algae and how those limitations are being addressed, through metabolic and genetic engineering. We also discuss the major challenges and bottlenecks facing the development of future commercial algal photobiological systems for H2 production. Lastly we provide suggestions for future strategies and potential new techniques to be developed towards an integrated system with optimized hydrogen production.

  17. Photosynthetic circadian rhythmicity patterns of Symbiodium, the coral endosymbiotic algae

    PubMed Central

    Sorek, Michal; Yacobi, Yosef Z.; Roopin, Modi; Berman-Frank, Ilana; Levy, Oren

    2013-01-01

    Biological clocks are self-sustained endogenous timers that enable organisms (from cyanobacteria to humans) to anticipate daily environmental rhythms, and adjust their physiology and behaviour accordingly. Symbiotic corals play a central role in the creation of biologically rich ecosystems based on mutualistic symbioses between the invertebrate coral and dinoflagellate protists from the genus Symbiodinium. In this study, we experimentally establish that Symbiodinium photosynthesis, both as a free-living unicellular algae and as part of the symbiotic association with the coral Stylophora pistillata, is ‘wired’ to the circadian clock mechanism with a ‘free-run’ cycle close to 24 h. Associated photosynthetic pigments also showed rhythmicity under light/dark conditions and under constant light conditions, while the expression of the oxygen-evolving enhancer 1 gene (within photosystem II) coincided with photosynthetically evolved oxygen in Symbiodinium cultures. Thus, circadian regulation of the Symbiodinium photosynthesis is, however, complicated as being linked to the coral/host that have probably profound physiochemical influence on the intracellular environment. The temporal patterns of photosynthesis demonstrated here highlight the physiological complexity and interdependence of the algae circadian clock associated in this symbiosis and the plasticity of algae regulatory mechanisms downstream of the circadian clock. PMID:23554392

  18. An Inexpensive Apparatus for Growing Photosynthetic Microorganisms in Exotic Atmospheres

    NASA Astrophysics Data System (ADS)

    Thomas, David J.; Herbert, Stephen K.

    2005-02-01

    Given the need for a light source, cyanobacteria and other photosynthetic microorganisms can be difficult and expensive to grow in large quantities. Lighted growth chambers and incubators typically cost 50-100% more than standard microbiological incubators. Self-shading of cells in liquid cultures prevents the growth of dense suspensions. Growing liquid cultures on a shaker table or lighted shaker incubator achieves greater cell densities, but adds considerably to the cost. For experiments in which gases other than air are required, the cost for conventional incubators increases even more. We describe an apparatus for growing photosynthetic organisms in exotic atmospheres that can be built relatively inexpensively (approximately $100 U.S.) using parts available from typical hardware or department stores (e.g., Wal-mart or K-mart). The apparatus uses microfiltered air (or other gases) to aerate, agitate, and mix liquid cultures, thus achieving very high cell densities (A750 > 3). Because gases are delivered to individual culture tubes, a variety of gas mixes can be used without the need for enclosed chambers. The apparatus works with liquid cultures of unicellular and filamentous species, and also works with agar slants.

  19. An inexpensive apparatus for growing photosynthetic microorganisms in exotic atmospheres.

    PubMed

    Thomas, David J; Herbert, Stephen K

    2005-02-01

    Given the need for a light source, cyanobacteria and other photosynthetic microorganisms can be difficult and expensive to grow in large quantities. Lighted growth chambers and incubators typically cost 50-100% more than standard microbiological incubators. Self-shading of cells in liquid cultures prevents the growth of dense suspensions. Growing liquid cultures on a shaker table or lighted shaker incubator achieves greater cell densities, but adds considerably to the cost. For experiments in which gases other than air are required, the cost for conventional incubators increases even more. We describe an apparatus for growing photosynthetic organisms in exotic atmospheres that can be built relatively inexpensively (approximately 100 dollars U.S.) using parts available from typical hardware or department stores (e.g., Wal-mart or K-mart). The apparatus uses microfiltered air (or other gases) to aerate, agitate, and mix liquid cultures, thus achieving very high cell densities (A750 > 3). Because gases are delivered to individual culture tubes, a variety of gas mixes can be used without the need for enclosed chambers. The apparatus works with liquid cultures of unicellular and filamentous species, and also works with agar slants. PMID:15711171

  20. Towards quantification of vibronic coupling in photosynthetic antenna complexes

    NASA Astrophysics Data System (ADS)

    Singh, V. P.; Westberg, M.; Wang, C.; Dahlberg, P. D.; Gellen, T.; Gardiner, A. T.; Cogdell, R. J.; Engel, G. S.

    2015-06-01

    Photosynthetic antenna complexes harvest sunlight and efficiently transport energy to the reaction center where charge separation powers biochemical energy storage. The discovery of existence of long lived quantum coherence during energy transfer has sparked the discussion on the role of quantum coherence on the energy transfer efficiency. Early works assigned observed coherences to electronic states, and theoretical studies showed that electronic coherences could affect energy transfer efficiency—by either enhancing or suppressing transfer. However, the nature of coherences has been fiercely debated as coherences only report the energy gap between the states that generate coherence signals. Recent works have suggested that either the coherences observed in photosynthetic antenna complexes arise from vibrational wave packets on the ground state or, alternatively, coherences arise from mixed electronic and vibrational states. Understanding origin of coherences is important for designing molecules for efficient light harvesting. Here, we give a direct experimental observation from a mutant of LH2, which does not have B800 chromophores, to distinguish between electronic, vibrational, and vibronic coherence. We also present a minimal theoretical model to characterize the coherences both in the two limiting cases of purely vibrational and purely electronic coherence as well as in the intermediate, vibronic regime.

  1. Structure and morphology of magnetite anaerobically-produced by a marine magnetotactic bacterium and a dissimilatory iron-reducing bacterium

    NASA Astrophysics Data System (ADS)

    Sparks, N. H. C.; Mann, S.; Bazylinski, D. A.; Lovley, D. R.; Jannasch, H. W.; Frankel, R. B.

    1990-04-01

    Intracellular crystals of magnetite synthesized by cells of the magnetotactic vibroid organism, MV-1, and extracellular crystals of magnetite produced by the non-magnetotactic dissimilatory iron-reducing bacterium strain GS-15, were examined using high-resolution transmission electron microscopy, electron diffraction and 57Fe Mo¨ssbauer spectroscopy. The magnetotactic bacterium contained a single chain of approximately 10 crystals aligned along the long axis of the cell. The crystals were essentially pure stoichiometric magnetite. When viewed along the crystal long axis the particles had a hexagonal cross-section whereas side-on they appeared as rectangules or truncated rectangles of average dimension, 53 × 35 nm. These findings are explained in terms of a three-dimensional morphology comprising a hexagonal prism of 110 faces which are capped and truncated by 111 end faces. Electron diffraction and lattice imaging studies indicated that the particles were structurally well-defined single crystals. In contrast, magnetite particles produced by the strain, GS-15 were irregular in shape and had smaller mean dimensions (14 nm). Single crystals were imaged but these were not of high structural perfection. These results highlight the influence of intracellular control on the crystallochemical specificity of bacterial magnetites. The characterization of these crystals is important in aiding the identification of biogenic magnetic materials in paleomagnetism and in studies of sediment magnetization.

  2. Structure and morphology of magnetite anaerobically-produced by a marine magnetotactic bacterium and a dissimilatory iron-reducing bacterium

    USGS Publications Warehouse

    Sparks, N.H.C.; Mann, S.; Bazylinski, D.A.; Lovley, D.R.; Jannasch, H.W.; Frankel, R.B.

    1990-01-01

    Intracellular crystals of magnetite synthesized by cells of the magnetotactic vibroid organism, MV-1, and extracellular crystals of magnetite produced by the non-magnetotactic dissimilatory iron-reducing bacterium strain GS-15, were examined using high-resolution transmission electron microscopy, electron diffraction and 57Fe Mo??ssbauer spectroscopy. The magnetotactic bacterium contained a single chain of approximately 10 crystals aligned along the long axis of the cell. The crystals were essentially pure stoichiometric magnetite. When viewed along the crystal long axis the particles had a hexagonal cross-section whereas side-on they appeared as rectangules or truncated rectangles of average dimension, 53 ?? 35 nm. These findings are explained in terms of a three-dimensional morphology comprising a hexagonal prism of {110} faces which are capped and truncated by {111} end faces. Electron diffraction and lattice imaging studies indicated that the particles were structurally well-defined single crystals. In contrast, magnetite particles produced by the strain, GS-15 were irregular in shape and had smaller mean dimensions (14 nm). Single crystals were imaged but these were not of high structural perfection. These results highlight the influence of intracellular control on the crystallochemical specificity of bacterial magnetites. The characterization of these crystals is important in aiding the identification of biogenic magnetic materials in paleomagnetism and in studies of sediment magnetization. ?? 1990.

  3. Maximum photosynthetic efficiency of biomass growth: a criticism of some measurements

    SciTech Connect

    Lee, Y.K.; Pirt, S.J.

    1982-02-01

    The yield of biomass produced in a photosynthetic culture is an expression of the photosynthetic efficiency. Microbial cells consume energy for both growth and for maintenance. The bioenergetics of Chlorella cultures and the maximum growth yields obtained by various researchers are examined in this paper.

  4. Chlorophylls d and f and Their Role in Primary Photosynthetic Processes of Cyanobacteria.

    PubMed

    Allakhverdiev, S I; Kreslavski, V D; Zharmukhamedov, S K; Voloshin, R A; Korol'kova, D V; Tomo, T; Shen, J-R

    2016-03-01

    The finding of unique Chl d- and Chl f-containing cyanobacteria in the last decade was a discovery in the area of biology of oxygenic photosynthetic organisms. Chl b, Chl c, and Chl f are considered to be accessory pigments found in antennae systems of photosynthetic organisms. They absorb energy and transfer it to the photosynthetic reaction center (RC), but do not participate in electron transport by the photosynthetic electron transport chain. However, Chl d as well as Chl a can operate not only in the light-harvesting complex, but also in the photosynthetic RC. The long-wavelength (Qy) Chl d and Chl f absorption band is shifted to longer wavelength (to 750 nm) compared to Chl a, which suggests the possibility for oxygenic photosynthesis in this spectral range. Such expansion of the photosynthetically active light range is important for the survival of cyanobacteria when the intensity of light not exceeding 700 nm is attenuated due to absorption by Chl a and other pigments. At the same time, energy storage efficiency in photosystem 2 for cyanobacteria containing Chl d and Chl f is not lower than that of cyanobacteria containing Chl a. Despite great interest in these unique chlorophylls, many questions related to functioning of such pigments in primary photosynthetic processes are still not elucidated. This review describes the latest advances in the field of Chl d and Chl f research and their role in primary photosynthetic processes of cyanobacteria.

  5. [Leaf morphology and photosynthetic characteristics of wild Ussurian pear in China].

    PubMed

    Dong, Xing-guang; Cao, Yu-fen; Tian, Lu-ming; Wang, Kun; Zhang, Ying; Qi, Dan

    2015-05-01

    The wild Ussurian pear was the most important wild pear resource in northern China, belonging to the most hardiness species. Taking 48 accessions of wild Ussurian pear and 2 accessions of cultivated Ussurian pear as test materials, this paper studied the morphology of leaves, chlorophyll content, and photosynthetic characteristics. We compared the difference between the wild and cultivated Ussurian pear, analyzed the photosynthetic characteristics of wild Ussurian pear, clarified the interrelationships between the indices, and established significant linear equations of photosynthesis and water-related physiological indices. The results showed that the leaf morphological index, chlorophyll content and photosynthetic indices for cultivated Ussurian pear were significantly lower than their average values for wild Ussurian pear. The specific leaf area (SLA), leaf dry matter content ( LDMC) , and intercellular CO2 concentration had low coefficients of variation, and the other 8 indices had variation coefficient indices between 0.12-0.41. So, the level of diversity was high, indicating obvious difference in photosynthetic characteristic of wild pear resources in China. The photosynthetic indices were significantly correlated with chlorophyll composition (Chl a/b) and LDMC. The photosynthetic rate had significant exponential correlation with the intercellular CO2 concentration, transpiration rate, and stomatal conductance. The photosynthetic rate was mainly affected by stomatal limitation. The wild variety 'Jinzhoushanli' was selected as high photosynthetic genetic resource.

  6. [Leaf morphology and photosynthetic characteristics of wild Ussurian pear in China].

    PubMed

    Dong, Xing-guang; Cao, Yu-fen; Tian, Lu-ming; Wang, Kun; Zhang, Ying; Qi, Dan

    2015-05-01

    The wild Ussurian pear was the most important wild pear resource in northern China, belonging to the most hardiness species. Taking 48 accessions of wild Ussurian pear and 2 accessions of cultivated Ussurian pear as test materials, this paper studied the morphology of leaves, chlorophyll content, and photosynthetic characteristics. We compared the difference between the wild and cultivated Ussurian pear, analyzed the photosynthetic characteristics of wild Ussurian pear, clarified the interrelationships between the indices, and established significant linear equations of photosynthesis and water-related physiological indices. The results showed that the leaf morphological index, chlorophyll content and photosynthetic indices for cultivated Ussurian pear were significantly lower than their average values for wild Ussurian pear. The specific leaf area (SLA), leaf dry matter content ( LDMC) , and intercellular CO2 concentration had low coefficients of variation, and the other 8 indices had variation coefficient indices between 0.12-0.41. So, the level of diversity was high, indicating obvious difference in photosynthetic characteristic of wild pear resources in China. The photosynthetic indices were significantly correlated with chlorophyll composition (Chl a/b) and LDMC. The photosynthetic rate had significant exponential correlation with the intercellular CO2 concentration, transpiration rate, and stomatal conductance. The photosynthetic rate was mainly affected by stomatal limitation. The wild variety 'Jinzhoushanli' was selected as high photosynthetic genetic resource. PMID:26571648

  7. Photoperiodic Regulation of the Seasonal Pattern of Photosynthetic Capacity and the Implications for Carbon Cycling

    SciTech Connect

    Bauerle, William L.; Oren, Ram; Way, Danielle A.; Qian, Song S.; Stoy, Paul C.; Thornton, Peter E; Bowden, Joseph D.; Hoffman, Forrest M; Reynolds, Robert F.

    2012-01-01

    Although temperature is an important driver of seasonal changes in photosynthetic physiology, photoperiod also regulates leaf activity. Climate change will extend growing seasons if temperature cues predominate, but photoperiod-controlled species will show limited responsiveness to warming. We show that photoperiod explains more seasonal variation in photosynthetic activity across 23 tree species than temperature. Although leaves remain green, photosynthetic capacity peaks just after summer solstice and declines with decreasing photoperiod, before air temperatures peak. In support of these findings, saplings grown at constant temperature but exposed to an extended photoperiod maintained high photosynthetic capacity, but photosynthetic activity declined in saplings experiencing a naturally shortening photoperiod; leaves remained equally green in both treatments. Incorporating a photoperiodic correction of photosynthetic physiology into a global-scale terrestrial carbon-cycle model significantly improves predictions of seasonal atmospheric CO{sub 2} cycling, demonstrating the benefit of such a function in coupled climate system models. Accounting for photoperiod-induced seasonality in photosynthetic parameters reduces modeled global gross primary production 2.5% ({approx}4 PgC y{sup -1}), resulting in a >3% ({approx}2 PgC y{sup -1}) decrease of net primary production. Such a correction is also needed in models estimating current carbon uptake based on remotely sensed greenness. Photoperiod-associated declines in photosynthetic capacity could limit autumn carbon gain in forests, even if warming delays leaf senescence.

  8. Chlorophylls d and f and Their Role in Primary Photosynthetic Processes of Cyanobacteria.

    PubMed

    Allakhverdiev, S I; Kreslavski, V D; Zharmukhamedov, S K; Voloshin, R A; Korol'kova, D V; Tomo, T; Shen, J-R

    2016-03-01

    The finding of unique Chl d- and Chl f-containing cyanobacteria in the last decade was a discovery in the area of biology of oxygenic photosynthetic organisms. Chl b, Chl c, and Chl f are considered to be accessory pigments found in antennae systems of photosynthetic organisms. They absorb energy and transfer it to the photosynthetic reaction center (RC), but do not participate in electron transport by the photosynthetic electron transport chain. However, Chl d as well as Chl a can operate not only in the light-harvesting complex, but also in the photosynthetic RC. The long-wavelength (Qy) Chl d and Chl f absorption band is shifted to longer wavelength (to 750 nm) compared to Chl a, which suggests the possibility for oxygenic photosynthesis in this spectral range. Such expansion of the photosynthetically active light range is important for the survival of cyanobacteria when the intensity of light not exceeding 700 nm is attenuated due to absorption by Chl a and other pigments. At the same time, energy storage efficiency in photosystem 2 for cyanobacteria containing Chl d and Chl f is not lower than that of cyanobacteria containing Chl a. Despite great interest in these unique chlorophylls, many questions related to functioning of such pigments in primary photosynthetic processes are still not elucidated. This review describes the latest advances in the field of Chl d and Chl f research and their role in primary photosynthetic processes of cyanobacteria. PMID:27262189

  9. Mimicry of the radical pair and triplet states in photosynthetic reaction centers with a synthetic model

    SciTech Connect

    Wasielewski, M.R.; Greenfield, S.R.; Svec, W.A.

    1997-08-01

    Results are presented on a photosynthetic model system that closely mimics the spin dynamics of triplet state formation found in photosynthetic reaction centers. This research will make it possible to design new models to probe the mechanism of the primary events of photosynthesis.

  10. Draft Genome Sequence of Ensifer adhaerens M78, a Mineral-Weathering Bacterium Isolated from Soil

    PubMed Central

    Wang, Yuanli; Chen, Wei; He, Linyan; Wang, Qi

    2016-01-01

    Ensifer adhaerens M78, a bacterium isolated from soil, can weather potash feldspar and release Fe, Si, and Al from rock under nutrient-poor conditions. Here, we report the draft genome sequence of strain M78, which may facilitate a better understanding of the molecular mechanism involved in mineral weathering by the bacterium. PMID:27609930

  11. Genome Sequence of the Mycorrhizal Helper Bacterium Pseudomonas fluorescens BBc6R8

    PubMed Central

    Gross, H.; Morin, E.; Karpinets, T.; Utturkar, S.; Mehnaz, S.; Martin, F.; Frey-Klett, P.; Labbé, J.

    2014-01-01

    We report the draft genome sequence of the mycorrhizal helper bacterium Pseudomonas fluorescens strain BBc6R8. This is the first genome of a mycorrhizal helper bacterium. The draft genome contains 6,952,353 bp and is predicted to encode 6,317 open reading frames. Comparative genomic analyses will help to identify helper traits. PMID:24407649

  12. Draft Genome Sequence of Ensifer adhaerens M78, a Mineral-Weathering Bacterium Isolated from Soil.

    PubMed

    Wang, Yuanli; Chen, Wei; He, Linyan; Wang, Qi; Sheng, Xia-Fang

    2016-01-01

    Ensifer adhaerens M78, a bacterium isolated from soil, can weather potash feldspar and release Fe, Si, and Al from rock under nutrient-poor conditions. Here, we report the draft genome sequence of strain M78, which may facilitate a better understanding of the molecular mechanism involved in mineral weathering by the bacterium. PMID:27609930

  13. Draft Genome Sequence of Pseudomonas aeruginosa Strain RB, a Bacterium Capable of Synthesizing Cadmium Selenide Nanoparticles.

    PubMed

    Ayano, Hiroyuki; Kuroda, Masashi; Soda, Satoshi; Ike, Michihiko

    2014-01-01

    Pseudomonas aeruginosa strain RB is a bacterium capable of synthesizing cadmium selenide (CdSe) nanoparticles and was isolated from a soil sample. Here, we present the draft genome sequence of P. aeruginosa strain RB. To the best of our knowledge, this is the first report of a draft genome of a CdSe-synthesizing bacterium.

  14. Kinetic study of trichloroethylene and toluene degradation by a bioluminescent reporter bacterium

    SciTech Connect

    Kelly, C.J.; Sanseverino, J.; Bienkowski, P.R.; Sayler, G.S.

    1995-12-31

    A constructed bioluminescent reporter bacterium, Pseudomonas putida B2, is very briefly described in this paper. The bacterium degrades toluene and trichloroethylene (TCE), and produces light in the presence of toluene. The light response is an indication of cellular viability and expression of the genes encoding toluene and TCE degrading enzymes.

  15. Near-complete genome sequence of the cellulolytic Bacterium Bacteroides (Pseudobacteroides) cellulosolvens ATCC 35603

    DOE PAGES

    Dassa, Bareket; Utturkar, Sagar M.; Hurt, Richard A.; Klingeman, Dawn Marie; Keller, Martin; Xu, Jian; Reddy, Harish Kumar; Borovok, Ilya; Grinberg, Inna Rozman; Lamed, Raphael; et al

    2015-09-24

    We report the single-contig genome sequence of the anaerobic, mesophilic, cellulolytic bacterium, Bacteroides cellulosolvens. The bacterium produces a particularly elaborate cellulosome system, whereas the types of cohesin-dockerin interactions are opposite of other known cellulosome systems: cell-surface attachment is thus mediated via type-I interactions whereas enzymes are integrated via type-II interactions.

  16. Draft Genome Sequence of Ensifer adhaerens M78, a Mineral-Weathering Bacterium Isolated from Soil.

    PubMed

    Wang, Yuanli; Chen, Wei; He, Linyan; Wang, Qi; Sheng, Xia-Fang

    2016-01-01

    Ensifer adhaerens M78, a bacterium isolated from soil, can weather potash feldspar and release Fe, Si, and Al from rock under nutrient-poor conditions. Here, we report the draft genome sequence of strain M78, which may facilitate a better understanding of the molecular mechanism involved in mineral weathering by the bacterium.

  17. Genome Sequence of the Antarctic Psychrophile Bacterium Planococcus antarcticus DSM 14505

    PubMed Central

    Margolles, Abelardo; Gueimonde, Miguel

    2012-01-01

    Planococcus antarcticus DSM 14505 is a psychrophile bacterium that was isolated from cyanobacterial mat samples, originally collected from ponds in McMurdo, Antarctica. This orange-pigmented bacterium grows at 4°C and may possess interesting enzymatic activities at low temperatures. Here we report the first genomic sequence of P. antarcticus DSM 14505. PMID:22843594

  18. Growth, photosynthetic and respiratory responses to sub-lethal copper concentrations in Scenedesmus incrassatulus (Chlorophyceae).

    PubMed

    Perales-Vela, Hugo Virgilio; González-Moreno, Sergio; Montes-Horcasitas, Carmen; Cañizares-Villanueva, Rosa Olivia

    2007-05-01

    In the present paper we investigated the effects of sub-lethal concentrations of Cu2+ in the growth and metabolism of Scenedesmus incrassatulus. We found that the effect of Cu2+ on growth, photosynthetic pigments (chlorophylls and carotenoids) and metabolism do not follow the same pattern. Photosynthesis was more sensitive than respiration. The analysis of chlorophyll a fluorescence transient shows that the effect of sub-lethal Cu2+ concentration in vivo, causes a reduction of the active PSII reaction centers and the primary charge separation, decreasing the quantum yield of PSII, the electron transport rate and the photosynthetic O2 evolution. The order of sensitivity found was: Growth>photosynthetic pigments content=photosynthetic O2 evolution>photosynthetic electron transport>respiration. The uncoupled relationship between growth and metabolism is discussed.

  19. Growth, photosynthetic and respiratory responses to sub-lethal copper concentrations in Scenedesmus incrassatulus (Chlorophyceae).

    PubMed

    Perales-Vela, Hugo Virgilio; González-Moreno, Sergio; Montes-Horcasitas, Carmen; Cañizares-Villanueva, Rosa Olivia

    2007-05-01

    In the present paper we investigated the effects of sub-lethal concentrations of Cu2+ in the growth and metabolism of Scenedesmus incrassatulus. We found that the effect of Cu2+ on growth, photosynthetic pigments (chlorophylls and carotenoids) and metabolism do not follow the same pattern. Photosynthesis was more sensitive than respiration. The analysis of chlorophyll a fluorescence transient shows that the effect of sub-lethal Cu2+ concentration in vivo, causes a reduction of the active PSII reaction centers and the primary charge separation, decreasing the quantum yield of PSII, the electron transport rate and the photosynthetic O2 evolution. The order of sensitivity found was: Growth>photosynthetic pigments content=photosynthetic O2 evolution>photosynthetic electron transport>respiration. The uncoupled relationship between growth and metabolism is discussed. PMID:17267014

  20. Dependence of Photosynthetic Capacity, Photosynthetic Pigment Allocation, and Carbon Storage on Nitrogen Levels in Foliage of Aspen Stands

    NASA Technical Reports Server (NTRS)

    Middleton, Elizabeth M.; Sullivan, Joseph H.; Papagno, Andrea J.

    2000-01-01

    The role of foliar nitrogen (N) in the seasonal dynamics and vertical canopy distribution of photosynthetic pigments, photosynthetic capacity, and carbon (C) storage was investigated in boreal broadleaved species. The study was conducted at two different aged stands (60 y and 15 y) in 1994 and 1996 in Saskatchewan, Canada as part of the Boreal Ecosystem-Atmosphere Study (BOREAS). Foliage in upper and lower strata was examined for aspen (Populus tremuloides Michx.) and its associated hazelnut shrub (Corylus americana Walt.). We determined that C accumulation, expressed as dry mass per unit leaf area (mg C cm (exp -2)), was linearly dependent on N content (approximately 0.3- 3.5 mg N cm (exp -2))(r (exp 2) = 0.93, n=383, P less than 0.001) when eleven foliage groups were defined according to species, site, and developmental stage. C assembly was greatest in the upper aspen strata of both sites (seasonal average, 40.1 plus or minus 0.6 mg C cm (exp -2)), intermediate in the lower aspen strata (32.7 plus or minus 0.6), and considerably lower, and similar, in the hazelnut shrub layers (23.7 plus or minus 0.6) and in expanding aspen leaves (23.8 plus or minus 0.5); the lowest C assembly per unit N occurred in the two youngest, emerging leaf groups (17.1 plus or minus 0.6). Other relationships among physiological and biochemical variables were typically non-linear and were confounded by inclusion of the three groups of young (i.e., emerging or expanding) leaves, unless these were separately identified. Net C uptake, measured as photosynthetic capacity (A (sub max), micromole CO2 m (exp -2) s (exp -1)), was greater in aspen throughout the season, and optimal in mid-summer at a C:N ratio of approximately 18 (approximately 2.3 %N). When young leaves were excluded and logarithms of both variables were used, A (sub max) was approximately linearly dependent on N (mg N cm (exp-2) (r (exp 2) = 0.85, n= 193, P less than 0.001), attributed to incorporation of N into photosynthetic

  1. Mechanism of anaerobic degradation of triethanolamine by a homoacetogenic bacterium

    SciTech Connect

    Speranza, Giovanna . E-mail: giovanna.speranza@unimi.it; Morelli, Carlo F.; Cairoli, Paola; Mueller, Britta; Schink, Bernhard

    2006-10-20

    Triethanolamine (TEA) is converted into acetate and ammonia by a strictly anaerobic, gram-positive Acetobacterium strain LuTria3. Fermentation experiments with resting cell suspensions and specifically deuterated substrates indicate that in the acetate molecule the carboxylate and the methyl groups correspond to the alcoholic function and to its adjacent methylene group, respectively, of the 2-hydroxyethyl unit of TEA. A 1,2 shift of a hydrogen (deuterium) atom from -CH{sub 2} -O- to =N-CH{sub 2} - without exchange with the medium was observed. This fact gives evidence that a radical mechanism occurs involving the enzyme and/or coenzyme molecule as a hydrogen carrier. Such a biodegradation appears analogous to the conversion of 2-phenoxyethanol into acetate mediated by another strain of the anaerobic homoacetogenic bacterium Acetobacterium.

  2. Characterisation of an unusual bacterium isolated from genital ulcers.

    PubMed

    Ursi, J P; van Dyck, E; Ballard, R C; Jacob, W; Piot, P; Meheus, A Z

    1982-02-01

    The preliminary characterisation of an unusual gram-negative bacillus isolated from genital ulcers in Swaziland is reported. Like Haemophilus ducreyi, it is an oxidase positive, nitrate-reductase-positive gram-negative rod that forms streptobacillary chains in some circumstances; it was therefore called the "ducreyi-like bacterium" (DLB). Distinguishing features of DLB are production of alpha-haemolysis on horse-blood agar, stimulation of growth by a microaerophilic atmosphere and by a factor produced by Staphylococcus aureus, a strongly positive porphyrin test, and a remarkable ability to undergo autolysis. DLB had a guanine + cytosine value of c. 50 mole% but it cannot be classified, even at the genus level, until more taxonomic data are obtained.

  3. Genome analysis of the Anerobic Thermohalophilic bacterium Halothermothrix orenii

    SciTech Connect

    Mavromatis, Konstantinos; Ivanova, Natalia; Anderson, Iain; Lykidis, Athanasios; Hooper, Sean D.; Sun, Hui; Kunin, Victor; Lapidus, Alla; Hugenholtz, Philip; Patel, Bharat; Kyrpides, Nikos C.

    2008-11-03

    Halothermothirx orenii is a strictly anaerobic thermohalophilic bacterium isolated from sediment of a Tunisian salt lake. It belongs to the order Halanaerobiales in the phylum Firmicutes. The complete sequence revealed that the genome consists of one circular chromosome of 2578146 bps encoding 2451 predicted genes. This is the first genome sequence of an organism belonging to the Haloanaerobiales. Features of both Gram positive and Gram negative bacteria were identified with the presence of both a sporulating mechanism typical of Firmicutes and a characteristic Gram negative lipopolysaccharide being the most prominent. Protein sequence analyses and metabolic reconstruction reveal a unique combination of strategies for thermophilic and halophilic adaptation. H. orenii can serve as a model organism for the study of the evolution of the Gram negative phenotype as well as the adaptation under thermohalophilic conditions and the development of biotechnological applications under conditions that require high temperatures and high salt concentrations.

  4. A bacterium that degrades and assimilates poly(ethylene terephthalate).

    PubMed

    Yoshida, Shosuke; Hiraga, Kazumi; Takehana, Toshihiko; Taniguchi, Ikuo; Yamaji, Hironao; Maeda, Yasuhito; Toyohara, Kiyotsuna; Miyamoto, Kenji; Kimura, Yoshiharu; Oda, Kohei

    2016-03-11

    Poly(ethylene terephthalate) (PET) is used extensively worldwide in plastic products, and its accumulation in the environment has become a global concern. Because the ability to enzymatically degrade PET has been thought to be limited to a few fungal species, biodegradation is not yet a viable remediation or recycling strategy. By screening natural microbial communities exposed to PET in the environment, we isolated a novel bacterium, Ideonella sakaiensis 201-F6, that is able to use PET as its major energy and carbon source. When grown on PET, this strain produces two enzymes capable of hydrolyzing PET and the reaction intermediate, mono(2-hydroxyethyl) terephthalic acid. Both enzymes are required to enzymatically convert PET efficiently into its two environmentally benign monomers, terephthalic acid and ethylene glycol. PMID:26965627

  5. A bacterium that degrades and assimilates poly(ethylene terephthalate).

    PubMed

    Yoshida, Shosuke; Hiraga, Kazumi; Takehana, Toshihiko; Taniguchi, Ikuo; Yamaji, Hironao; Maeda, Yasuhito; Toyohara, Kiyotsuna; Miyamoto, Kenji; Kimura, Yoshiharu; Oda, Kohei

    2016-03-11

    Poly(ethylene terephthalate) (PET) is used extensively worldwide in plastic products, and its accumulation in the environment has become a global concern. Because the ability to enzymatically degrade PET has been thought to be limited to a few fungal species, biodegradation is not yet a viable remediation or recycling strategy. By screening natural microbial communities exposed to PET in the environment, we isolated a novel bacterium, Ideonella sakaiensis 201-F6, that is able to use PET as its major energy and carbon source. When grown on PET, this strain produces two enzymes capable of hydrolyzing PET and the reaction intermediate, mono(2-hydroxyethyl) terephthalic acid. Both enzymes are required to enzymatically convert PET efficiently into its two environmentally benign monomers, terephthalic acid and ethylene glycol.

  6. Mechanism of anaerobic degradation of triethanolamine by a homoacetogenic bacterium.

    PubMed

    Speranza, Giovanna; Morelli, Carlo F; Cairoli, Paola; Müller, Britta; Schink, Bernhard

    2006-10-20

    Triethanolamine (TEA) is converted into acetate and ammonia by a strictly anaerobic, gram-positive Acetobacterium strain LuTria3. Fermentation experiments with resting cell suspensions and specifically deuterated substrates indicate that in the acetate molecule the carboxylate and the methyl groups correspond to the alcoholic function and to its adjacent methylene group, respectively, of the 2-hydroxyethyl unit of TEA. A 1,2 shift of a hydrogen (deuterium) atom from -CH2-O- to =N-CH2- without exchange with the medium was observed. This fact gives evidence that a radical mechanism occurs involving the enzyme and/or coenzyme molecule as a hydrogen carrier. Such a biodegradation appears analogous to the conversion of 2-phenoxyethanol into acetate mediated by another strain of the anaerobic homoacetogenic bacterium Acetobacterium.

  7. Seasonal photosynthetic activity in evergreen conifer leaves monitored with spectral reflectance

    NASA Astrophysics Data System (ADS)

    Wong, C. Y.; Gamon, J. A.

    2013-12-01

    Boreal evergreen conifers must maintain photosynthetic systems in environments where temperatures vary greatly across seasons from high temperatures in the summer to freezing levels in the winter. This involves seasonal downregulation and photoprotection during periods of extreme temperatures. To better understand this downregulation, seasonal dynamics of photosynthesis of lodgepole (Pinus contorta D.) and ponderosa pine (Pinus ponderosa D.) were monitored in Edmonton, Canada over two years. Spectral reflectance at the leaf and stand scales was measured weekly and the Photochemical Reflectance Index (PRI), often used as a proxy for chlorophyll and carotenoid pigment levels and photosynthetic light-use efficiency (LUE), was used to track the seasonal dynamics of photosynthetic activity. Additional physiological measurements included leaf pigment content, chlorophyll fluorescence, and gas exchange. All the metrics indicate large seasonal changes in photosynthetic activity, with a sharp transition from winter downregulation to active photosynthesis in the spring and a more gradual fall transition into winter. The PRI was a good indicator of several other variables including seasonally changing photosynthetic activity, chlorophyll fluorescence, photosynthetic LUE, and pigment pool sizes. Over the two-year cycle, PRI was primarily driven by changes in constitutive (chlorophyll:carotenoid) pigment levels correlated with seasonal photosynthetic activity, with a much smaller variation caused by diurnal changes in xanthophyll cycle activity (conversion between violaxanthin & zeaxanthin). Leaf and canopy scale PRI measurements exhibited parallel responses during the winter-spring transition. Together, our findings indicate that evergreen conifers photosynthetic system possesses a remarkable degree of resilience in response to large temperature changes across seasons, and that optical remote sensing can be used to observe the seasonal effects on photosynthesis and

  8. Biogeography of Photosynthetic Light-Harvesting Genes in Marine Phytoplankton

    PubMed Central

    Bibby, Thomas S.; Zhang, Yinan; Chen, Min

    2009-01-01

    Background Photosynthetic light-harvesting proteins are the mechanism by which energy enters the marine ecosystem. The dominant prokaryotic photoautotrophs are the cyanobacterial genera Prochlorococcus and Synechococcus that are defined by two distinct light-harvesting systems, chlorophyll-bound protein complexes or phycobilin-bound protein complexes, respectively. Here, we use the Global Ocean Sampling (GOS) Project as a unique and powerful tool to analyze the environmental diversity of photosynthetic light-harvesting genes in relation to available metadata including geographical location and physical and chemical environmental parameters. Methods All light-harvesting gene fragments and their metadata were obtained from the GOS database, aligned using ClustalX and classified phylogenetically. Each sequence has a name indicative of its geographic location; subsequent biogeographical analysis was performed by correlating light-harvesting gene budgets for each GOS station with surface chlorophyll concentration. Conclusion/Significance Using the GOS data, we have mapped the biogeography of light-harvesting genes in marine cyanobacteria on ocean-basin scales and show that an environmental gradient exists in which chlorophyll concentration is correlated to diversity of light-harvesting systems. Three functionally distinct types of light-harvesting genes are defined: (1) the phycobilisome (PBS) genes of Synechococcus; (2) the pcb genes of Prochlorococcus; and (3) the iron-stress-induced (isiA) genes present in some marine Synechococcus. At low chlorophyll concentrations, where nutrients are limited, the Pcb-type light-harvesting system shows greater genetic diversity; whereas at high chlorophyll concentrations, where nutrients are abundant, the PBS-type light-harvesting system shows higher genetic diversity. We interpret this as an environmental selection of specific photosynthetic strategy. Importantly, the unique light-harvesting system isiA is found in the iron

  9. Photosynthetic flexibility in maize exposed to salinity and shade

    PubMed Central

    Sharwood, Robert E.; Sonawane, Balasaheb V.; Ghannoum, Oula

    2014-01-01

    C4 photosynthesis involves a close collaboration of the C3 and C4 metabolic cycles across the mesophyll and bundle-sheath cells. This study investigated the coordination of C4 photosynthesis in maize plants subjected to two salinity (50 and 100mM NaCl) treatments and one shade (20% of full sunlight) treatment. Photosynthetic efficiency was probed by combining leaf gas-exchange measurements with carbon isotope discrimination and assaying the key carboxylases [ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC)] and decarboxylases [nicotinamide adenine dinucleotide phosphate malic enzyme (NADP-ME) and phosphoenolpyruvate carboxykinase (PEP-CK)] operating in maize leaves. Generally, salinity inhibited plant growth and photosynthesis to a lesser extent than shade. Salinity reduced photosynthesis primarily by reducing stomatal conductance and secondarily by equally reducing Rubisco and PEPC activities; the decarboxylases were inhibited more than the carboxylases. Salinity increased photosynthetic carbon isotope discrimination (Δp) and reduced leaf dry-matter carbon isotope composition (13δ) due to changes in p i/p a (intercellular to ambient CO2 partial pressure), while CO2 leakiness out of the bundle sheath (ϕ) was similar to that in control plants. Acclimation to shade was underpinned by a greater downregulation of PEPC relative to Rubisco activity, and a lesser inhibition of NADP-ME (primary decarboxylase) relative to PEP-CK (secondary decarboxylase). Shade reduced Δp and ɸ without significantly affecting leaf 13δ or p i/p a relative to control plants. Accordingly, shade perturbed the balance between the C3 and C4 cycles during photosynthesis in maize, and demonstrated the flexible partitioning of C4 acid decarboxylation activity between NADP-ME and PEP-CK in response to the environment. This study highlights the need to improve our understanding of the links between leaf 13δ and photosynthetic Δp, and the role

  10. Relationship between photosynthetic pigments and chlorophyll fluorescence in soybean under varying phosphorus nutrition at ambient and elevated CO2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Photosynthetic pigments such as chlorophyll (Chl) a, Chl b and carotenoids concentration, and chlorophyll fluorescence (CF) have widely been used as indicators of stress and photosynthetic performance in plants. Although photosynthetic pigments and CF are partly interdependent due to absorption and ...

  11. Multiple Scattering X-Ray Absorption Studies of Zn2+ Binding Sites in Bacterial Photosynthetic Reaction Centers

    PubMed Central

    Giachini, Lisa; Francia, Francesco; Mallardi, Antonia; Palazzo, Gerardo; Carpenè, Emilio; Boscherini, Federico; Venturoli, Giovanni

    2005-01-01

    Binding of transition metal ions to the reaction center (RC) protein of the photosynthetic bacterium Rhodobacter sphaeroides has been previously shown to slow light-induced electron and proton transfer to the secondary quinone acceptor molecule, QB. On the basis of x-ray diffraction at 2.5 Å resolution a site, formed by AspH124, HisH126, and HisH128, has been identified at the protein surface which binds Cd2+ or Zn2+. Using Zn K-edge x-ray absorption fine structure spectroscopy we report here on the local structure of Zn2+ ions bound to purified RC complexes embedded into polyvinyl alcohol films. X-ray absorption fine structure data were analyzed by combining ab initio simulations and multiparameter fitting; structural contributions up to the fourth coordination shell and multiple scattering paths (involving three atoms) have been included. Results for complexes characterized by a Zn to RC stoichiometry close to one indicate that Zn2+ binds two O and two N atoms in the first coordination shell. Higher shell contributions are consistent with a binding cluster formed by two His, one Asp residue, and a water molecule. Analysis of complexes characterized by ∼2 Zn ions per RC reveals a second structurally distinct binding site, involving one O and three N atoms, not belonging to a His residue. The local structure obtained for the higher affinity site nicely fits the coordination geometry proposed on the basis of x-ray diffraction data, but detects a significant contraction of the first shell. Two possible locations of the second new binding site at the cytoplasmic surface of the RC are proposed. PMID:15613631

  12. BIOGEOCHEMICAL STUDIES OF PHOTOSYNTHETIC MICROBIAL MATS AND THEIR BIOTA

    NASA Technical Reports Server (NTRS)

    DesMarais, David; Discipulo, M.; Turk, K.; Londry, K. L.

    2005-01-01

    Photosynthetic microbial mats offer an opportunity to define holistic functionality at the millimeter scale. At the same time. their biogeochemistry contributes to environmental processes on a planetary scale. These mats are possibly direct descendents of the most ancient biological communities; communities in which oxygenic photosynthesis might have been invented. Mats provide one of the best natural systems to study how microbial populations associate to control dynamic biogeochemical gradients. These are self- sustaining, complete ecosystems in which light energy absorbed over a dial (24 hour) cycle drives the synthesis of spatially-organized, diverse biomass. Tightly-coupled microorganisms in the mat have specialized metabolisms that catalyze transformations of carbon, nitrogen, sulfur, and a host of other elements.

  13. Metal ion modulated electron transfer in photosynthetic proteins.

    SciTech Connect

    Utschig, L. M.; Thurnauer, M. C.; Chemistry

    2004-07-01

    Photosynthetic purple bacterial reaction center (RC) proteins are ideal native systems for addressing basic questions regarding the nature of biological electron transfer because both the protein structure and the electron-transfer reactions are well-characterized. Metal ion binding to the RC can affect primary photochemistry and provides a probe for understanding the involvement of local protein environments in electron transfer. The RC has two distinct transition metal ion binding sites, the well-known non-heme Fe{sup 2+} site buried in the protein interior and a recently discovered Zn{sup 2+} site located on the surface of the protein. Fe{sup 2+} removal and Zn{sup 2+} binding systematically affect different electron-transfer steps in the RC. Factors involved in the metal ion alteration of RC electron transfer may provide a paradigm for other biological systems involved in electron transfer.

  14. Dispersed Polaron Simulations of Electron Transfer in Photosynthetic Reaction Centers

    NASA Astrophysics Data System (ADS)

    Warshel, A.; Chu, Z. T.; Parson, W. W.

    1989-10-01

    A microscopic method for simulating quantum mechanical, nuclear tunneling effects in biological electron transfer reactions is presented and applied to several electron transfer steps in photosynthetic bacterial reaction centers. In this ``dispersed polaron'' method the fluctuations of the protein and the electron carriers are projected as effective normal modes onto an appropriate reaction coordinate and used to evaluate the quantum mechanical rate constant. The simulations, based on the crystallographic structure of the reaction center from Rhodopseudomonas viridis, focus on electron transfer from a bacteriopheophytin to a quinone and the subsequent back-reaction. The rates of both of these reactions are almost independent of temperature or even increase with decreasing temperature. The simulations reproduce this unusual temperature dependence in a qualitative way, without the use of adjustable parameters for the protein's Franck-Condon factors. The observed dependence of the back-reaction on the free energy of the reaction also is reproduced, including the special behavior in the ``inverted region.''

  15. RNA function and phosphorus use by photosynthetic organisms.

    PubMed

    Raven, John A

    2013-12-26

    Phosphorus (P) in RNA accounts for half or more of the total non-storage P in oxygenic photolithotrophs grown in either P-replete or P-limiting growth conditions. Since many natural environments are P-limited for photosynthetic primary productivity, and peak phosphorus fertilizer production is inevitable, the paper analyses what economies in P allocation to RNA could, in principle, increase P-use efficiency of growth (rate of dry matter production per unit organism P). The possibilities of decreasing P allocation to RNA without decreasing growth rate include (1) more widespread down-regulation of RNA production in P-limited organisms, (2) optimal allocation of P to RNA, both spatially among cell compartments and organs, and temporally depending on the stage of growth, and (3) a constant rate of protein synthesis through the diel cycle. Acting on these suggestions would, however, be technically demanding.

  16. Full transcription of the chloroplast genome in photosynthetic eukaryotes

    PubMed Central

    Shi, Chao; Wang, Shuo; Xia, En-Hua; Jiang, Jian-Jun; Zeng, Fan-Chun; Gao, Li-Zhi

    2016-01-01

    Prokaryotes possess a simple genome transcription system that is different from that of eukaryotes. In chloroplasts (plastids), it is believed that the prokaryotic gene transcription features govern genome transcription. However, the polycistronic operon transcription model cannot account for all the chloroplast genome (plastome) transcription products at whole-genome level, especially regarding various RNA isoforms. By systematically analyzing transcriptomes of plastids of algae and higher plants, and cyanobacteria, we find that the entire plastome is transcribed in photosynthetic green plants, and that this pattern originated from prokaryotic cyanobacteria — ancestor of the chloroplast genomes that diverged about 1 billion years ago. We propose a multiple arrangement transcription model that multiple transcription initiations and terminations combine haphazardly to accomplish the genome transcription followed by subsequent RNA processing events, which explains the full chloroplast genome transcription phenomenon and numerous functional and/or aberrant pre-RNAs. Our findings indicate a complex prokaryotic genome regulation when processing primary transcripts. PMID:27456469

  17. RNA function and phosphorus use by photosynthetic organisms

    PubMed Central

    Raven, John A.

    2013-01-01

    Phosphorus (P) in RNA accounts for half or more of the total non-storage P in oxygenic photolithotrophs grown in either P-replete or P-limiting growth conditions. Since many natural environments are P-limited for photosynthetic primary productivity, and peak phosphorus fertilizer production is inevitable, the paper analyses what economies in P allocation to RNA could, in principle, increase P-use efficiency of growth (rate of dry matter production per unit organism P). The possibilities of decreasing P allocation to RNA without decreasing growth rate include (1) more widespread down-regulation of RNA production in P-limited organisms, (2) optimal allocation of P to RNA, both spatially among cell compartments and organs, and temporally depending on the stage of growth, and (3) a constant rate of protein synthesis through the diel cycle. Acting on these suggestions would, however, be technically demanding. PMID:24421782

  18. Responses of the photosynthetic flagellate, Euglena gracilis, to microgravity.

    PubMed

    Hader, D P; Vogel, K; Schafer, J

    1990-09-01

    Motility and orientation have been studied in the unicellular photosynthetic flagellate. Euglena gracilis, using real time image analysis capable of tracking up to 200 cells simultaneously before, during and after a sounding rocket (TEXUS) experiment. The cells orient negative gravitactically under 1 g conditions and the degree of orientation increases with time when kept in a closed system. Under micro-g conditions the cells orient randomly and display no cooperativity between the individuals. Under 1 g conditions the velocity, which has been determined simultaneously to the orientation vectors, depends on the direction of swimming with respect to the gravity vector. Under micro-g conditions the cells swim significantly faster. After retrieval of the rocket the cells returned to normal gravitaxis and motility as observed before the space flight.

  19. Quantifying reflectance anisotropy of photosynthetically active radiation in grasslands

    SciTech Connect

    Middleton, E.M. )

    1992-11-30

    This work is part of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), an international land-surface-atmosphere experiment aimed at improving the way climate models represent energy, water, heat, and carbon exchanges, and improving the utilization of satellite based remote sensing to monitor such parameters. This paper reports on a study to quantify the reflectance anisotropy of the photosynthetically active radiation (PAR) for grasslands. PAR falls in the wavelength range 0.4 to 0.7[mu]m. The study looks at the variation of PAR with illumination and vegetative canopy conditions. It uses bidirectional reflectance distribution function data, and measures of anisotropy derived from reflectance factor and reflectance fraction data to aid in the analysis. The data used for this analysis came from an intense effort mounted to measure diurnal changes in the anisotropy of surface reflectance from prairie grassland as a function of the vegetative canopy.

  20. Intercepted photosynthetically active radiation estimated by spectral reflectance

    NASA Technical Reports Server (NTRS)

    Hatfield, J. L.; Asrar, G.; Kanemasu, E. T.

    1984-01-01

    Interception of photosynthetically active radiation (PAR) was evaluated relative to greenness and normalized difference (MSS (7-5)/(7+5) for five planting dates of wheat for 1978-79 and 1979-80 at Phoenix, Arizona. Intercepted PAR was calculated from leaf area index and stage of growth. Linear relatinships were found with greeness and normalized difference with separate relatinships describing growth and senescence of the crop. Normalized difference was significantly better than greenness for all planting dates. For the leaf area growth portion of the season the relation between PAR interception and normalized difference was the same over years and planting dates. For the leaf senescence phase the relationships showed more variability due to the lack of data on light interception in sparse and senescing canopies. Normalized difference could be used to estimate PAR interception throughout a growing season.

  1. Full transcription of the chloroplast genome in photosynthetic eukaryotes.

    PubMed

    Shi, Chao; Wang, Shuo; Xia, En-Hua; Jiang, Jian-Jun; Zeng, Fan-Chun; Gao, Li-Zhi

    2016-01-01

    Prokaryotes possess a simple genome transcription system that is different from that of eukaryotes. In chloroplasts (plastids), it is believed that the prokaryotic gene transcription features govern genome transcription. However, the polycistronic operon transcription model cannot account for all the chloroplast genome (plastome) transcription products at whole-genome level, especially regarding various RNA isoforms. By systematically analyzing transcriptomes of plastids of algae and higher plants, and cyanobacteria, we find that the entire plastome is transcribed in photosynthetic green plants, and that this pattern originated from prokaryotic cyanobacteria - ancestor of the chloroplast genomes that diverged about 1 billion years ago. We propose a multiple arrangement transcription model that multiple transcription initiations and terminations combine haphazardly to accomplish the genome transcription followed by subsequent RNA processing events, which explains the full chloroplast genome transcription phenomenon and numerous functional and/or aberrant pre-RNAs. Our findings indicate a complex prokaryotic genome regulation when processing primary transcripts. PMID:27456469

  2. Modeling charge transfer in the photosynthetic reaction center

    NASA Astrophysics Data System (ADS)

    Pudlak, Michal; Pinčak, Richard

    2003-12-01

    In this work, we present a model to elucidate the unidirectionality of the primary charge-separation process in the bacterial reaction centers. We have used a model of three sites/molecules with electron transfer beginning at site 1 with an option to proceed to site 2 or site 3. We used a stochastic model with arbitrary correlation functions. We get the quantum yields of electron escape via the sites 2,3 in two limiting cases that correspond to a spectral density of underdamped and overdamped Brownian oscillator. In the fast modulation limit of an overdamped regime we get the effect, which was named “fear of death,” in which for strong enough sink parameters the electron has a tendency to avoid the place with greater sink. The presented model was used to provide a plausible explanation of the temperature dependence of the quantum yields of the Rhodobacter sphaeroides photosynthetic reaction center in the high-temperature regime.

  3. Photosynthetic biomineralization of radioactive Sr via microalgal CO2 absorption.

    PubMed

    Lee, Seung Yeop; Jung, Kwang-Hwan; Lee, Ju Eun; Lee, Keon Ah; Lee, Sang-Hyo; Lee, Ji Young; Lee, Jae Kwang; Jeong, Jong Tae; Lee, Seung-Yop

    2014-11-01

    Water-soluble radiostrontium ((90)Sr) was efficiently removed as a carbonate form through microalgal photosynthetic process. The immobilization of soluble (90)Sr radionuclide and production of highly-precipitable radio-strontianite ((90)SrCO3) biomineral are achieved by using Chlorella vulgaris, and the biologically induced mineralization drastically decreased the (90)Sr radioactivity in water to make the highest (90)Sr removal ever reported. The high-resolution microscopy revealed that the short-term removal of soluble (90)Sr by C. vulgaris was attributable to the rapid and selective carbonation of (90)Sr together with the consumption of dissolved CO2 during photosynthesis. A small amount of carbonate in water could act as Sr(2+) sinks through the particular ability of the microalga to make the carbonate mineral of Sr stabilized firmly at the surface site. PMID:25262456

  4. Some characteristics of photosynthetic apparatus under conditions of spaceflight.

    PubMed

    Volovik, O I; Kordyum, E L; Guikema, J A

    1999-07-01

    During colonization of space by humans, the bioregenerative life-support systems on board the space ships will require the plants with a highly efficient photosynthesis, a process producing food and O2 and removing CO2-Therefore, in recent years the scientists increasingly focus the their attention to study on photosynthetic apparatus of plants grown in space. Although the available data are quite scanty and, at times, controversial, it is Considered that the space grown plants differ from around control plants by growth and development, many structural and functional indices and metabolism. Data exist showing changes in the chlorophyll (Chl) content, structure and number of chloroplasts in the cell, swelling of thylakoids and decrease in the number and size of starch grains in the chloroplasts (for reviews, see Halstead and Dutcher, 1987; Kordyum, 1997). The decrease of shoot fresh weight and reduction of CO2-saturated photosynthetic rate at saturating light intensities in space grown wheat plants in comparison with ground control have been reported by Tripathy et al. (1996). The thylakoids isolated from space grown plants displayed lower rates of electron transport through photosystems I and II (PSI and PSII) and in a whole chain. This study aimed to examine the electron transport rates through PSI and PSII in the isolated thylakoids, to elucidate if there are any differences in accumulation of thylakoid membranes between space grown Brassica rapa plants and ground control plants (based on Chl quantity) and to measure the Chl a/b ratio in isolated thylakoids. These studies were part of the Collaborative US/Ukrainian program during the STS-87 mission (1997).

  5. Flash spectroscopic characterization of photosynthetic electron transport in isolated heterocysts

    SciTech Connect

    Houchins, J.P.; Hind, G.

    1983-07-01

    Electron transport was studied in heterocysts of the filamentous cyanobacterium Anabaena 7120 using spectral and kinetic analysis of absorbance transients elicited by single turnover flashes. Consistent photosynthetic turnovers were observed only in the presence of an exogenous source of reductant; therefore measurements were routinely made under a gas phase containing H2. Prominent absorbance changes corresponding to the oxidation of cytochrome c (554 nm) and the reduction of cytochrome b563 (563 nm) were observed. Under the most reducing conditions (99% H2/1% O2) cytochrome b563 was partially reduced between flashes in a slow, dark reaction. At 10-15% O2, the slow, dark reduction of cytochrome b563 was eliminated. Cytochrome turnover ceased entirely at high O2 concentrations (30%) but was restored by the addition of 25 microM KCN, demonstrating an interaction between the photosynthetic and respiratory electron transfer chains. Strobilurin A slowed the re-reduction of cytochrome c and eliminated the appearance of reduced cytochrome b563 by blocking electron transfer between reduced plastoquinone and the cytochrome b/f complex. Inhibition at a second site was apparent with 2-(n-heptyl)-4-hydroxyquinoline N-oxide, which blocked the reoxidation of cytochrome b563 but had little effect on cytochrome c relaxation. In uncoupled heterocysts, the rates of cytochrome c re-reduction and cytochrome b563 reduction were equal. Additional unassigned absorbance changes at 475 nm, 515 nm, and 572 nm were partially characterized. No absorbance change corresponding to an electrochromic shift was observed.

  6. Complete fluorescent fingerprints of extremophilic and photosynthetic microbes

    NASA Astrophysics Data System (ADS)

    Dartnell, Lewis R.; Storrie-Lombardi, Michael C.; Ward, John M.

    2010-10-01

    The work reported here represents a study into the total fluorescence exhibited by a broad selection of model, extremophilic and photosynthetic bacterial strains, over a great range of excitation and emission wavelengths from ultraviolet (UV) through visible to near infrared. The aim is to identify distinctive fluorescent features that may serve as detectable biosignatures of remnant microbial life on the Martian surface. A lab-bench fluorescence spectrometer was used to generate an excitation-emission matrix (EEM) for the unpigmented Escherichia coli, radiation-resistant Deinococcus radiodurans, Antarctic Dry Valley isolates Brevundimonas sp. MV.7 and Rhodococcus sp. MV.10, and the cyanobacterium Synechocystis sp. PCC 6803. Detailed EEMs, representing the fluorescence signature of each organism, are presented, and the most significant features suitable for biosignature surveys are identified, including small-molecule cellular metabolites, light-harvesting photosynthetic pigments and extracellular UV-screening compounds. E. coli exhibits the most intense emission from tryptophan, presumably due to the absence of UV-screening pigments that would shield the organism from short-wavelength light-exciting intracellular fluorescence. The efficacy of commonly available laser diodes for exciting cellular fluorescence is treated, along with the most appropriate filter wavelengths for imaging systems. The best combination of available laser diodes and PanCam filters aboard the ExoMars probe is proposed. The possibility of detecting fluorescence excited by solar UV radiation in freshly exposed surface samples by imaging when both sunlit and shadowed, perhaps by the body of the rover itself, is discussed. We also study how these biological fluorophore molecules may be degraded, and thus the potential biosignatures erased, by the high flux of far-ultraviolet light on Mars.

  7. Photosynthetic adaptation strategy of Ulva prolifera floating on the sea surface to environmental changes.

    PubMed

    Zhao, Xinyu; Tang, Xuexi; Zhang, Huanxin; Qu, Tongfei; Wang, Ying

    2016-10-01

    For 8 consecutive years, a green tide has originated in the southern Yellow Sea and spread to the Qingdao offshore area. The causative species, Ulva prolifera, always forms a very thick thallus mat that is capable of drifting long distances over long periods. During this process, although the thalli face disturbance by complex environmental factors, they maintain high biomass and proliferation. We hypothesized that some form of photosynthetic adaptation strategy must exist to protect the thalli. Therefore, we studied the different photosynthetic response characteristics of the surface and lower layers of the floating thallus mats, and investigated the physiological and molecular-level adaptation mechanisms. The results showed that: (1) U. prolifera has strong photosynthetic capability that ensures it can gain sufficient energy to increase its biomass and adapt to long-distance migration. (2) Surface layer thalli adapt to the complex environment by dissipating excess energy via photosynthetic quantum control (energy quenching and energy redistribution between PSII/PSI) to avoid irreversible damage to the photosynthetic system. (3) Lower layer thalli increase their contents of Chlorophyll a (Chl a) and Chlorophyll b (Chl b) and decrease their Chl a/Chl b ratio to improve their ability to use light energy. (4) U. prolifera has strong photosynthetic plasticity and can adapt to frequent exchange between the surface and lower layer environments because of wave disturbance. Pigment component changes, energy quenching, and energy redistribution between PSII/PSI contribute to this photosynthetic plasticity.

  8. Identification of Associations between Bacterioplankton and Photosynthetic Picoeukaryotes in Coastal Waters.

    PubMed

    Farnelid, Hanna M; Turk-Kubo, Kendra A; Zehr, Jonathan P

    2016-01-01

    Photosynthetic picoeukaryotes are significant contributors to marine primary productivity. Associations between marine bacterioplankton and picoeukaryotes frequently occur and can have large biogeochemical impacts. We used flow cytometry to sort cells from seawater to identify non-eukaryotic phylotypes that are associated with photosynthetic picoeukaryotes. Samples were collected at the Santa Cruz wharf on Monterey Bay, CA, USA during summer and fall, 2014. The phylogeny of associated microbes was assessed through 16S rRNA gene amplicon clone and Illumina MiSeq libraries. The most frequently detected bacterioplankton phyla within the photosynthetic picoeukaryote sorts were Proteobacteria (Alphaproteobacteria and Gammaproteobacteria) and Bacteroidetes. Intriguingly, the presence of free-living bacterial genera in the photosynthetic picoeukaryote sorts could suggest that some of the photosynthetic picoeukaryotes were mixotrophs. However, the occurrence of bacterial sequences, which were not prevalent in the corresponding bulk seawater samples, indicates that there was also a selection for specific OTUs in association with photosynthetic picoeukaryotes suggesting specific functional associations. The results show that diverse bacterial phylotypes are found in association with photosynthetic picoeukaryotes. Taxonomic identification of these associations is a prerequisite for further characterizing and to elucidate their metabolic pathways and ecological functions.

  9. Identification of Associations between Bacterioplankton and Photosynthetic Picoeukaryotes in Coastal Waters.

    PubMed

    Farnelid, Hanna M; Turk-Kubo, Kendra A; Zehr, Jonathan P

    2016-01-01

    Photosynthetic picoeukaryotes are significant contributors to marine primary productivity. Associations between marine bacterioplankton and picoeukaryotes frequently occur and can have large biogeochemical impacts. We used flow cytometry to sort cells from seawater to identify non-eukaryotic phylotypes that are associated with photosynthetic picoeukaryotes. Samples were collected at the Santa Cruz wharf on Monterey Bay, CA, USA during summer and fall, 2014. The phylogeny of associated microbes was assessed through 16S rRNA gene amplicon clone and Illumina MiSeq libraries. The most frequently detected bacterioplankton phyla within the photosynthetic picoeukaryote sorts were Proteobacteria (Alphaproteobacteria and Gammaproteobacteria) and Bacteroidetes. Intriguingly, the presence of free-living bacterial genera in the photosynthetic picoeukaryote sorts could suggest that some of the photosynthetic picoeukaryotes were mixotrophs. However, the occurrence of bacterial sequences, which were not prevalent in the corresponding bulk seawater samples, indicates that there was also a selection for specific OTUs in association with photosynthetic picoeukaryotes suggesting specific functional associations. The results show that diverse bacterial phylotypes are found in association with photosynthetic picoeukaryotes. Taxonomic identification of these associations is a prerequisite for further characterizing and to elucidate their metabolic pathways and ecological functions. PMID:27148165

  10. Identification of Associations between Bacterioplankton and Photosynthetic Picoeukaryotes in Coastal Waters

    PubMed Central

    Farnelid, Hanna M.; Turk-Kubo, Kendra A.; Zehr, Jonathan P.

    2016-01-01

    Photosynthetic picoeukaryotes are significant contributors to marine primary productivity. Associations between marine bacterioplankton and picoeukaryotes frequently occur and can have large biogeochemical impacts. We used flow cytometry to sort cells from seawater to identify non-eukaryotic phylotypes that are associated with photosynthetic picoeukaryotes. Samples were collected at the Santa Cruz wharf on Monterey Bay, CA, USA during summer and fall, 2014. The phylogeny of associated microbes was assessed through 16S rRNA gene amplicon clone and Illumina MiSeq libraries. The most frequently detected bacterioplankton phyla within the photosynthetic picoeukaryote sorts were Proteobacteria (Alphaproteobacteria and Gammaproteobacteria) and Bacteroidetes. Intriguingly, the presence of free-living bacterial genera in the photosynthetic picoeukaryote sorts could suggest that some of the photosynthetic picoeukaryotes were mixotrophs. However, the occurrence of bacterial sequences, which were not prevalent in the corresponding bulk seawater samples, indicates that there was also a selection for specific OTUs in association with photosynthetic picoeukaryotes suggesting specific functional associations. The results show that diverse bacterial phylotypes are found in association with photosynthetic picoeukaryotes. Taxonomic identification of these associations is a prerequisite for further characterizing and to elucidate their metabolic pathways and ecological functions. PMID:27148165

  11. Needle longevity, photosynthetic rate and nitrogen concentration of eight spruce taxa planted in northern Japan.

    PubMed

    Kayama, Masazumi; Kitaoka, Satoshi; Wang, Wenjie; Choi, Dongsu; Koike, Takayoshi

    2007-11-01

    Growth characteristics of Picea glehnii Masters, P. jezoensis (Sieb. et Zucc) Carr., P. jezoensis var. hondoensis (Mayr) Rehder and P. shirasawae Hayashi from Japan, P. abies (L.) Karst. from Europe and P. glauca Voss, P. mariana Britt., Sterns and Pogg. and P. rubens Sarg. from North America were compared. The trees were grown in similar conditions at the Tomakomai Experimental Forest of Hokkaido University in northern Japan. Tree growth, needle biomass, longevity, photosynthetic rate, nitrogen concentration and specific leaf area (SLA) were measured, and photosynthetic nitrogen-use efficiency was calculated. Picea jezoensis, P. jezoensis var. hondoensis, P. abies and P. glauca had high growth rates, high photosynthetic rates in young needles, high needle nitrogen concentrations and short needle life spans. In contrast, P. glehnii, P. shirasawae, P. mariana and P. rubens had low growth and photosynthetic rates, low needle nitrogen concentrations, long needle life spans and maintained a high photosynthetic nitrogen-use efficiency in older needles. Examination of relationships between several growth parameters of the eight taxa revealed positive correlations between SLA and mass-based photosynthetic rate and between SLA and mass-based nitrogen concentration, whereas mass-based photosynthetic rate and mass-based nitrogen concentration were negatively correlated with needle longevity. The species differed greatly in growth characteristics despite being grown in similar conditions.

  12. Photosynthetic adaptation strategy of Ulva prolifera floating on the sea surface to environmental changes.

    PubMed

    Zhao, Xinyu; Tang, Xuexi; Zhang, Huanxin; Qu, Tongfei; Wang, Ying

    2016-10-01

    For 8 consecutive years, a green tide has originated in the southern Yellow Sea and spread to the Qingdao offshore area. The causative species, Ulva prolifera, always forms a very thick thallus mat that is capable of drifting long distances over long periods. During this process, although the thalli face disturbance by complex environmental factors, they maintain high biomass and proliferation. We hypothesized that some form of photosynthetic adaptation strategy must exist to protect the thalli. Therefore, we studied the different photosynthetic response characteristics of the surface and lower layers of the floating thallus mats, and investigated the physiological and molecular-level adaptation mechanisms. The results showed that: (1) U. prolifera has strong photosynthetic capability that ensures it can gain sufficient energy to increase its biomass and adapt to long-distance migration. (2) Surface layer thalli adapt to the complex environment by dissipating excess energy via photosynthetic quantum control (energy quenching and energy redistribution between PSII/PSI) to avoid irreversible damage to the photosynthetic system. (3) Lower layer thalli increase their contents of Chlorophyll a (Chl a) and Chlorophyll b (Chl b) and decrease their Chl a/Chl b ratio to improve their ability to use light energy. (4) U. prolifera has strong photosynthetic plasticity and can adapt to frequent exchange between the surface and lower layer environments because of wave disturbance. Pigment component changes, energy quenching, and energy redistribution between PSII/PSI contribute to this photosynthetic plasticity. PMID:27262405

  13. A photosynthetic-plasmonic-voltaic cell: Excitation of photosynthetic bacteria and current collection through a plasmonic substrate

    SciTech Connect

    Samsonoff, Nathan; Ooms, Matthew D.; Sinton, David

    2014-01-27

    Excitation of photosynthetic biofilms using surface-confined evanescent light fields enables energy dense photobioreactors, while electrode-adhered biofilms can provide electricity directly. Here, we demonstrate concurrent light delivery and electron transport through a plasmonically excited metal film. Biofilms of cyanobacterium Synechococcus bacillaris on 50-nm gold films are excited via the Kretschmann configuration at λ = 670 nm. Cells show light/dark response to plasmonic excitation and grow denser biofilms, closer to the electrode surface, as compared to the direct irradiated case. Directly irradiated biofilms produced average electrical powers of 5.7 μW/m{sup 2} and plasmonically excited biofilms produced average electrical powers of 5.8 μW/m{sup 2}, with individual biofilms producing as much as 12 μW/m{sup 2}.

  14. Genome Sequence of the Haloalkaliphilic Methanotrophic Bacterium Methylomicrobium alcaliphilum 20Z

    PubMed Central

    Vuilleumier, Stéphane; Khmelenina, Valentina N.; Bringel, Françoise; Reshetnikov, Alexandr S.; Lajus, Aurélie; Mangenot, Sophie; Rouy, Zoé; Op den Camp, Huub J. M.; Jetten, Mike S. M.; Dispirito, Alan A.; Dunfield, Peter; Klotz, Martin G.; Semrau, Jeremy D.; Stein, Lisa Y.; Barbe, Valérie; Médigue, Claudine; Trotsenko, Yuri A.

    2012-01-01

    Methylomicrobium strains are widespread in saline environments. Here, we report the complete genome sequence of Methylomicrobium alcaliphilum 20Z, a haloalkaliphilic methanotrophic bacterium, which will provide the basis for detailed characterization of the core pathways of both single-carbon metabolism and responses to osmotic and high-pH stresses. Final assembly of the genome sequence revealed that this bacterium contains a 128-kb plasmid, making M. alcaliphilum 20Z the first methanotrophic bacterium of known genome sequence for which a plasmid has been reported. PMID:22207753

  15. Ecology and metabolism of the beneficial intestinal commensal bacterium Faecalibacterium prausnitzii

    PubMed Central

    Miquel, Sylvie; Martín, Rebeca; Bridonneau, Chantal; Robert, Véronique; Sokol, Harry; Bermúdez-Humarán, Luis G; Thomas, Muriel; Langella, Philippe

    2014-01-01

    Faecalibacterium prausnitzii is a major commensal bacterium, and its prevalence is often decreased in conditions of intestinal dysbiosis. The phylogenic identity of this bacterium was described only recently. It is still poorly characterized, and its specific growth requirements in the human gastrointestinal tract are not known. In this review, we consider F. prausnitzii metabolism, its ecophysiology in both humans and animals, and the effects of drugs and nutrition on its population. We list important questions about this beneficial and ubiquitous commensal bacterium that it would be valuable to answer. PMID:24637606

  16. Ecology and metabolism of the beneficial intestinal commensal bacterium Faecalibacterium prausnitzii.

    PubMed

    Miquel, Sylvie; Martín, Rebeca; Bridonneau, Chantal; Robert, Véronique; Sokol, Harry; Bermúdez-Humarán, Luis G; Thomas, Muriel; Langella, Philippe

    2014-01-01

    Faecalibacterium prausnitzii is a major commensal bacterium, and its prevalence is often decreased in conditions of intestinal dysbiosis. The phylogenic identity of this bacterium was described only recently. It is still poorly characterized, and its specific growth requirements in the human gastrointestinal tract are not known. In this review, we consider F. prausnitzii metabolism, its ecophysiology in both humans and animals, and the effects of drugs and nutrition on its population. We list important questions about this beneficial and ubiquitous commensal bacterium that it would be valuable to answer.

  17. Role of various hormones in photosynthetic responses of green plants under environmental stresses.

    PubMed

    Poonam; Bhardwaj, Renu; Kaur, Ravdeep; Bali, Shagun; Kaur, Parminder; Sirhindi, Geetika; Thukral, Ashwani K; Ohri, Puja; Vig, Adarsh P

    2015-01-01

    Environmental stress includes adverse factors like water deficit, high salinity, enhanced temperature and heavy metals etc. These stresses alter the normal growth and metabolic processes of plants including photosynthesis. Major photosynthetic responses under various stresses include inhibition of photosystems (I and II), changes in thylakoid complexes, decreased photosynthetic activity and modifications in structure and functions of chloroplasts etc. Various defense mechanisms are triggered inside the plants in response to these stresses that are regulated by plant hormones or plant growth regulators. These phytohormones include abscisic acid, auxins, cytokinins, ethylene, brassinosteroids, jasmonates and salicylic acid etc. The present review focuses on stress protective effects of plants hormones on the photosynthetic responses.

  18. Application of photosynthetic N(2)-fixing cyanobacteria to the CELSS program

    NASA Technical Reports Server (NTRS)

    Fry, Ian V.; Hrabeta, Jana; Dsouza, Joe; Packer, Lester

    1987-01-01

    The feasibility of using photosynthetic microalgae (cyanobacteria) as a subsystem component for the closed ecological life support system program, with particular emphasis on the manipulation of the biomass (protein/carbohydrate) was addressed. Using factors which retard growth rates, but not photosynthetic electron flux, the partitioning of photosynthetically derived reductant may be dictated towards CO2 fixation (carbohydrate formation) and away from N2 fixation (protein formation). Cold shock treatment of fairly dense cultures markedly increases the glycogen content from 1 to 35 percent (dry weight), and presents a useful technique to change the protein/carbohydrate ratio of these organisms to a more nutritionally acceptable form.

  19. Final technical report: Molecular, genetic and physiological analysis of photoinhibition and photosynthetic performance

    SciTech Connect

    Boynton, John E.; Gillham, Nicholas W.

    2002-06-01

    Photoinhibition results in a reduction in photosynthetic efficiency, and occurs when plants receive too high a light intensity. The research supported by this grant has focused in recent years on the characterization of mutants of the green alga Chlamydomonas reinhardtii resistant to photoinhibitory light intensities in an effort to identify the photosynthetic (or other) cellular components important in photoinhibition. The results obtained thus far with four nuclear mutants resistant to very high light suggest that the products of genes involved in controlling chlorophyll antenna components and photosynthetic stoichiometries are important in the photoinhibitory process.

  20. Photosynthetic water oxidation: insights from manganese model chemistry.

    PubMed

    Young, Karin J; Brennan, Bradley J; Tagore, Ranitendranath; Brudvig, Gary W

    2015-03-17

    Catalysts for light-driven water oxidation are a critical component for development of solar fuels technology. The multielectron redox chemistry required for this process has been successfully deployed on a global scale in natural photosynthesis by green plants and cyanobacteria using photosystem II (PSII). PSII employs a conserved, cuboidal Mn4CaOX cluster called the O2-evolving complex (OEC) that offers inspiration for artificial O2-evolution catalysts. In this Account, we describe our work on manganese model chemistry relevant to PSII, particularly the functional model [Mn(III/IV)2(terpy)2(μ-O)2(OH2)2](NO3)3 complex (terpy = 2,2';6',2″-terpyridine), a mixed-valent di-μ-oxo Mn dimer with two terminal aqua ligands. In the presence of oxo-donor oxidants such as HSO5(-), this complex evolves O2 by two pathways, one of which incorporates solvent water in an O-O bond-forming reaction. Deactivation pathways of this catalyst include comproportionation to form an inactive Mn(IV)Mn(IV) dimer and also degradation to MnO2, a consequence of ligand loss when the oxidation state of the complex is reduced to labile Mn(II) upon release of O2. The catalyst's versatility has been shown by its continued catalytic activity after direct binding to the semiconductor titanium dioxide. In addition, after binding to the surface of TiO2 via a chromophoric linker, the catalyst can be oxidized by a photoinduced electron-transfer mechanism, mimicking the natural PSII process. Model oxomanganese complexes have also aided in interpreting biophysical and computational studies on PSII. In particular, the μ-oxo exchange rates of the Mn-terpy dimer have been instrumental in establishing that the time scale for μ-oxo exchange of high-valent oxomanganese complexes with terminal water ligands is slower than O2 evolution in the natural photosynthetic system. Furthermore, computational studies on the Mn-terpy dimer and the OEC point to similar Mn(IV)-oxyl intermediates in the O-O bond