Science.gov

Sample records for photosynthetic membrane expression

  1. Chromatic adaptation of photosynthetic membranes.

    PubMed

    Scheuring, Simon; Sturgis, James N

    2005-07-15

    Many biological membranes adapt in response to environmental conditions. We investigated how the composition and architecture of photosynthetic membranes of a bacterium change in response to light, using atomic force microscopy. Despite large modifications in the membrane composition, the local environment of core complexes remained unaltered, whereas specialized paracrystalline light-harvesting antenna domains grew under low-light conditions. Thus, the protein mixture in the membrane shows eutectic behavior and can be mimicked by a simple model. Such structural adaptation ensures efficient photon capture under low-light conditions and prevents photodamage under high-light conditions.

  2. Photosynthetic gene expression in higher plants.

    PubMed

    Berry, James O; Yerramsetty, Pradeep; Zielinski, Amy M; Mure, Christopher M

    2013-11-01

    Within the chloroplasts of higher plants and algae, photosynthesis converts light into biological energy, fueling the assimilation of atmospheric carbon dioxide into biologically useful molecules. Two major steps, photosynthetic electron transport and the Calvin-Benson cycle, require many gene products encoded from chloroplast as well as nuclear genomes. The expression of genes in both cellular compartments is highly dynamic and influenced by a diverse range of factors. Light is the primary environmental determinant of photosynthetic gene expression. Working through photoreceptors such as phytochrome, light regulates photosynthetic genes at transcriptional and posttranscriptional levels. Other processes that affect photosynthetic gene expression include photosynthetic activity, development, and biotic and abiotic stress. Anterograde (from nucleus to chloroplast) and retrograde (from chloroplast to nucleus) signaling insures the highly coordinated expression of the many photosynthetic genes between these different compartments. Anterograde signaling incorporates nuclear-encoded transcriptional and posttranscriptional regulators, such as sigma factors and RNA-binding proteins, respectively. Retrograde signaling utilizes photosynthetic processes such as photosynthetic electron transport and redox signaling to influence the expression of photosynthetic genes in the nucleus. The basic C3 photosynthetic pathway serves as the default form used by most of the plant species on earth. High temperature and water stress associated with arid environments have led to the development of specialized C4 and CAM photosynthesis, which evolved as modifications of the basic default expression program. The goal of this article is to explain and summarize the many gene expression and regulatory processes that work together to support photosynthetic function in plants.

  3. Molecular crowding and order in photosynthetic membranes.

    PubMed

    Kirchhoff, Helmut

    2008-05-01

    The integrity and maintenance of the photosynthetic apparatus in thylakoid membranes of higher plants requires lateral mobility of their components between stacked grana thylakoids and unstacked stroma lamellae. Computer simulations based on realistic protein densities suggest serious problems for lateral protein and plastoquinone diffusion especially in grana membranes, owing to strong retardation by protein complexes. It has been suggested that three structural features of grana thylakoids ensure efficient lateral transport: the organization of protein complexes into supercomplexes; the arrangement of supercomplexes into structured assemblies, which facilitates diffusion process in crowded membranes; the limitation of the diameter of grana discs to less than approximately 500 nm, which keeps diffusion times short enough to support regulation of light harvesting and repair of photodamaged photosystem II.

  4. A Model for Prediction of Heat Stability of Photosynthetic Membranes

    USDA-ARS?s Scientific Manuscript database

    A previous study has revealed a positive correlation between heat-induced damage to photosynthetic membranes (thylakoid membranes) and chlorophyll loss. In this study, we exploited this correlation and developed a model for prediction of thermal damage to thylakoids. Prediction is based on estimat...

  5. Fluctuating Two-State Light Harvesting in a Photosynthetic Membrane

    SciTech Connect

    Pan, Duohai; Hu, Dehong; Liu, Ruchuan; Zeng, Xiaohua; Kaplan, Samuel; Lu, H. Peter

    2007-06-28

    How light is converted into chemical energy in a natural photosynthetic system is of great interest in energy sciences. Using single-molecule and single-vesicle fluorescence spectroscopy and imaging, we have observed fluctuating inter-molecular protein energy transfers in the photosynthetic membranes of R. sphaeroides. Our results suggest that there are dynamic coupled and non-coupled states in the light-harvesting protein assembly.

  6. Functional Implications of Photosystem II Crystal Formation in Photosynthetic Membranes*

    PubMed Central

    Tietz, Stefanie; Puthiyaveetil, Sujith; Enlow, Heather M.; Yarbrough, Robert; Wood, Magnus; Semchonok, Dmitry A.; Lowry, Troy; Li, Zhirong; Jahns, Peter; Boekema, Egbert J.; Lenhert, Steven; Niyogi, Krishna K.; Kirchhoff, Helmut

    2015-01-01

    The structural organization of proteins in biological membranes can affect their function. Photosynthetic thylakoid membranes in chloroplasts have the remarkable ability to change their supramolecular organization between disordered and semicrystalline states. Although the change to the semicrystalline state is known to be triggered by abiotic factors, the functional significance of this protein organization has not yet been understood. Taking advantage of an Arabidopsis thaliana fatty acid desaturase mutant (fad5) that constitutively forms semicrystalline arrays, we systematically test the functional implications of protein crystals in photosynthetic membranes. Here, we show that the change into an ordered state facilitates molecular diffusion of photosynthetic components in crowded thylakoid membranes. The increased mobility of small lipophilic molecules like plastoquinone and xanthophylls has implications for diffusion-dependent electron transport and photoprotective energy-dependent quenching. The mobility of the large photosystem II supercomplexes, however, is impaired, leading to retarded repair of damaged proteins. Our results demonstrate that supramolecular changes into more ordered states have differing impacts on photosynthesis that favor either diffusion-dependent electron transport and photoprotection or protein repair processes, thus fine-tuning the photosynthetic energy conversion. PMID:25897076

  7. Photosynthetic Membrane System in Anacystis nidulans

    PubMed Central

    Allen, Mary Mennes

    1968-01-01

    Cultures of Anacystis nidulans were grown under conditions of varying light intensity and temperature. Changes in pigment content were compared with changes in the fine structure of these cells. Pigment concentration and lamellar content varied inversely with the light intensity in cells grown with 100 and 1,000 foot candles of fluorescent light. Estimations of the relative area and volume of lamellae in cells showed that the amount of double membrane was directly proportional to the chlorophyll content of whole cells. Continuity of double membranes with cytoplasmic membrane was observed. Images PMID:5732512

  8. Regulation of photosynthetic membrane components in cyanobacteria

    SciTech Connect

    Sherman, L.A.

    1991-01-01

    The goals of this proposal were two-fold: (1) to analyze the impact of mutations in the Mn-stabilizing protein (MSP) on O{sub 2}- evolution; and (2) to analyze the effect of iron deficiency on membrane assembly in cyanobacteria. We have made important progress in both projects, and I will discuss each of them in turn. The mutations in the psbO gene were performed in the transformable and photoheterotrophic cyanobacterium Synechocystis sp. PCC6803; this strain allows PSII mutations to be propagated under nonphotosynthetic conditions. The research with iron deficiency was performed in the cyanobacterium Synechococcus sp. PCC7942, which is transformable and which has been used previously for all our nutritional-deficiency research. 5 figs.

  9. Photosynthetic Membranes of Porphyridium cruentum1

    PubMed Central

    Redlinger, Thomas; Gantt, Elisabeth

    1983-01-01

    Three chlorophyll-protein complexes (CP I, CP III, CP IV) were electrophoretically separated from thylakoids of the eukaryotic red alga Porphyridium cruentum. CP I contained the primary photochemical reaction center of photosystem I as judged by its light-induced reversible absorbance change at 700 nanometers, by its fluorescence emission maximum at 720 nanometers (−196°C), and by the molecular weight of its apoprotein (68,000 daltons). CP III and CP IV appeared to belong with photosystem II as suggested by the absence of light-reversible absorbance at 700 nanometers, by their fluorescence maximum at 690 nanometers (−196°C), and by the presence of a chlorophyll-binding polypeptide with a molecular weight of about 52,000 daltons. CP IV when completely denatured had two additional polypeptides of about 40,000 and 48,000 daltons. All three chlorophyll-protein complexes contained carotenoids: the chlorophyll/carotenoid molar ratio of 15:1 for CP I, and 20:1 for CP III and CP IV. The thylakoid membranes of P. cruentum contained four cytochromes, detected by heme-dependent peroxidase activity, but there was no observed association with the electrophoretically separated chlorophyll-protein complexes. Images Fig. 1 Fig. 2 Fig. 3 Fig. 7 PMID:16663181

  10. Probing the dynamics of photosynthetic membranes with fluorescence recovery after photobleaching.

    PubMed

    Mullineaux, Conrad W; Sarcina, Mary

    2002-06-01

    In the past few years, there has been remarkable progress in knowledge of the structures and organization of the protein complexes of photosynthetic membranes. However, static structures do not tell the whole story. Photosynthetic membranes, like other biological membranes, are dynamic systems. Recent technological advances are making it increasingly easy to probe the dynamics of photosynthetic membranes using fluorescence recovery after photobleaching. Here we explain the potential and the limitations of the technique.

  11. Sublocalization of Cytochrome b6f Complexes in Photosynthetic Membranes.

    PubMed

    Kirchhoff, Helmut; Li, Meng; Puthiyaveetil, Sujith

    2017-07-01

    It is well established that the majority of energy-converting photosynthetic protein complexes in plant thylakoid membrane are nonhomogenously distributed between stacked and unstacked membrane regions. Yet, the sublocalization of the central cytochrome b6f complex remains controversial. We present a structural model that explains the variation in cytochrome b6f sublocalization data. Small changes in the distance between adjacent membranes in stacked grana regions either allow or restrict access of cytochrome b6f complexes to grana. If the width of the gap falls below a certain threshold, then the steric hindrance prevents cytochrome b6f access to grana. Evidence is presented that the width of stromal gap is variable, demonstrating that the postulated mechanism can regulate the lateral distribution of the cytochrome b6f complexes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Structural constraints for protein repair in plant photosynthetic membranes.

    PubMed

    Kirchhoff, Helmut

    2013-04-01

    The thylakoid membrane system inside plants chloroplasts defines the structural framework for photosynthetic conversion of sunlight into metabolic energy forms (ATP, NADPH + H(+)). An architectural hallmark of these thylakoid membranes is the tight stacking of part of the membrane into cylindrical flat grana thylakoids, with a diameter of about 500 nm, that are interconnected by unstacked stroma lamellae forming a complex 3D network of alternating grana piles and stroma lamellae. The structural differentiation in the stacked and unstacked thylakoid regions is the basis for a pronounced spatial separation of multisubunit pigment-protein complexes that catalyze energy transformation. The main part of photosystem II (PSII) associated with light-harvesting complex II (LHCII) is concentrated in the grana thylakoids whereas PSI-LHCI and the ATPase complex are excluded from the stacked grana and accumulate in the unstacked thylakoid regions. The fifth protein complex, the cytochrome b 6f complex, is assumed to be homogenously distributed. It is important to recognize that this structural arrangement is not static but highly dynamic and responsive to environmental factors like light intensity and quality or temperature. Knowledge about the interplay between dynamic structural features of the intricate thylakoid architecture, and the functionality, regulation, repair and biogenesis of the photosynthetic machinery is essential for understanding the plasticity of energy conversion in plants living in a fluctuating multi-factorial environment.

  13. Biomaterials based on photosynthetic membranes as potential sensors for herbicides.

    PubMed

    Ventrella, Andrea; Catucci, Lucia; Placido, Tiziana; Longobardi, Francesco; Agostiano, Angela

    2011-08-15

    In this study, ultrathin film multilayers of Photosystem II-enriched photosynthetic membranes (BBY) were prepared and immobilized on quartz substrates by means of a Layer by Layer procedure exploiting electrostatic interactions with poly(ethylenimine) as polyelectrolyte. The biomaterials thus obtained were characterized by means of optical techniques and Atomic Force Microscopy, highlighting the fact that the Layer by Layer approach allowed the BBYs to be immobilized with satisfactory results. The activity of these hybrid materials was evaluated by means of optical assays based on the Hill Reaction, indicating that the biosamples, which preserved about 65% of their original activity even ten weeks after preparation, were both stable and active. Furthermore, an investigation of the biochips' sensitivity to the herbicide terbutryn, as a model analyte, gave interesting results: inhibition of photosynthetic activity was observed at terbutryn concentrations higher than 10(-7)M, thus evidencing the potential of such biomaterials in the environmental biosensor field. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Surface charge dynamics in photosynthetic membranes and the structural consequences.

    PubMed

    Puthiyaveetil, Sujith; van Oort, Bart; Kirchhoff, Helmut

    2017-03-06

    The strict stacking of plant photosynthetic membranes into granal structures plays a vital role in energy conversion. The molecular forces that lead to grana stacking, however, are poorly understood. Here we evaluate the interplay between repulsive electrostatic (Fel) and attractive van der Waals (FvdWaals) forces in grana stacking. In contrast to previous reports, we find that the physicochemical balance between attractive and repulsive forces fully explains grana stacking. Extending the force balance analysis to lateral interactions within the oxygen-evolving photosystem II (PSII)-light harvesting complex II (LHCII) supercomplex reveals that supercomplex stability is very sensitive to Fel changes. Fel is highly dynamic, increasing up to 1.7-fold on addition of negative charges by phosphorylation of grana-hosted proteins. We show that this leads to specific destabilization of the supercomplex, and that changes in Fel have contrasting effects on vertical stacking and lateral intramembrane organization. This enables discrete biological control of these central structural features.

  15. Elementary Energy Transfer Pathways in Allochromatium vinosum Photosynthetic Membranes

    PubMed Central

    Lüer, Larry; Carey, Anne-Marie; Henry, Sarah; Maiuri, Margherita; Hacking, Kirsty; Polli, Dario; Cerullo, Giulio; Cogdell, Richard J.

    2015-01-01

    Allochromatium vinosum (formerly Chromatium vinosum) purple bacteria are known to adapt their light-harvesting strategy during growth according to environmental factors such as temperature and average light intensity. Under low light illumination or low ambient temperature conditions, most of the LH2 complexes in the photosynthetic membranes form a B820 exciton with reduced spectral overlap with LH1. To elucidate the reason for this light and temperature adaptation of the LH2 electronic structure, we performed broadband femtosecond transient absorption spectroscopy as a function of excitation wavelength in A. vinosum membranes. A target analysis of the acquired data yielded individual rate constants for all relevant elementary energy transfer (ET) processes. We found that the ET dynamics in high-light-grown membranes was well described by a homogeneous model, with forward and backward rate constants independent of the pump wavelength. Thus, the overall B800→B850→B890→ Reaction Center ET cascade is well described by simple triexponential kinetics. In the low-light-grown membranes, we found that the elementary backward transfer rate constant from B890 to B820 was strongly reduced compared with the corresponding constant from B890 to B850 in high-light-grown samples. The ET dynamics of low-light-grown membranes was strongly dependent on the pump wavelength, clearly showing that the excitation memory is not lost throughout the exciton lifetime. The observed pump energy dependence of the forward and backward ET rate constants suggests exciton diffusion via B850→ B850 transfer steps, making the overall ET dynamics nonexponential. Our results show that disorder plays a crucial role in our understanding of low-light adaptation in A. vinosum. PMID:26536265

  16. Elementary Energy Transfer Pathways in Allochromatium vinosum Photosynthetic Membranes.

    PubMed

    Lüer, Larry; Carey, Anne-Marie; Henry, Sarah; Maiuri, Margherita; Hacking, Kirsty; Polli, Dario; Cerullo, Giulio; Cogdell, Richard J

    2015-11-03

    Allochromatium vinosum (formerly Chromatium vinosum) purple bacteria are known to adapt their light-harvesting strategy during growth according to environmental factors such as temperature and average light intensity. Under low light illumination or low ambient temperature conditions, most of the LH2 complexes in the photosynthetic membranes form a B820 exciton with reduced spectral overlap with LH1. To elucidate the reason for this light and temperature adaptation of the LH2 electronic structure, we performed broadband femtosecond transient absorption spectroscopy as a function of excitation wavelength in A. vinosum membranes. A target analysis of the acquired data yielded individual rate constants for all relevant elementary energy transfer (ET) processes. We found that the ET dynamics in high-light-grown membranes was well described by a homogeneous model, with forward and backward rate constants independent of the pump wavelength. Thus, the overall B800→B850→B890→ Reaction Center ET cascade is well described by simple triexponential kinetics. In the low-light-grown membranes, we found that the elementary backward transfer rate constant from B890 to B820 was strongly reduced compared with the corresponding constant from B890 to B850 in high-light-grown samples. The ET dynamics of low-light-grown membranes was strongly dependent on the pump wavelength, clearly showing that the excitation memory is not lost throughout the exciton lifetime. The observed pump energy dependence of the forward and backward ET rate constants suggests exciton diffusion via B850→ B850 transfer steps, making the overall ET dynamics nonexponential. Our results show that disorder plays a crucial role in our understanding of low-light adaptation in A. vinosum.

  17. Elementary Energy Transfer Pathways in Allochromatium vinosum Photosynthetic Membranes

    SciTech Connect

    Lüer, Larry; Carey, Anne-Marie; Henry, Sarah; Maiuri, Margherita; Hacking, Kirsty; Polli, Dario; Cerullo, Giulio; Cogdell, Richard J.

    2015-11-01

    Allochromatium vinosum (formerly Chromatium vinosum) purple bacteria are known to adapt their light-harvesting strategy during growth according to environmental factors such as temperature and average light intensity. Under low light illumination or low ambient temperature conditions, most of the LH2 complexes in the photosynthetic membranes form a B820 exciton with reduced spectral overlap with LH1. To elucidate the reason for this light and temperature adaptation of the LH2 electronic structure, we performed broadband femtosecond transient absorption spectroscopy as a function of excitation wavelength in A. vinosum membranes. A target analysis of the acquired data yielded individual rate constants for all relevant elementary energy transfer (ET) processes. We found that the ET dynamics in high-light-grown membranes was well described by a homogeneous model, with forward and backward rate constants independent of the pump wavelength. Thus, the overall B800→B850→B890→ Reaction Center ET cascade is well described by simple triexponential kinetics. In the low-light-grown membranes, we found that the elementary backward transfer rate constant from B890 to B820 was strongly reduced compared with the corresponding constant from B890 to B850 in high-light-grown samples. The ET dynamics of low-light-grown membranes was strongly dependent on the pump wavelength, clearly showing that the excitation memory is not lost throughout the exciton lifetime. The observed pump energy dependence of the forward and backward ET rate constants suggests exciton diffusion via B850→ B850 transfer steps, making the overall ET dynamics nonexponential. Our results show that disorder plays a crucial role in our understanding of low-light adaptation in A. vinosum.

  18. Architectural switch in plant photosynthetic membranes induced by light stress.

    PubMed

    Herbstová, Miroslava; Tietz, Stefanie; Kinzel, Christopher; Turkina, Maria V; Kirchhoff, Helmut

    2012-12-04

    Unavoidable side reactions of photosynthetic energy conversion can damage the water-splitting photosystem II (PSII) holocomplex embedded in the thylakoid membrane system inside chloroplasts. Plant survival is crucially dependent on an efficient molecular repair of damaged PSII realized by a multistep repair cycle. The PSII repair cycle requires a brisk lateral protein traffic between stacked grana thylakoids and unstacked stroma lamellae that is challenged by the tight stacking and low protein mobility in grana. We demonstrated that high light stress induced two main structural changes that work synergistically to improve the accessibility between damaged PSII in grana and its repair machinery in stroma lamellae: lateral shrinkage of grana diameter and increased protein mobility in grana thylakoids. It follows that high light stress triggers an architectural switch of the thylakoid network that is advantageous for swift protein repair. Studies of the thylakoid kinase mutant stn8 and the double mutant stn7/8 demonstrate the central role of protein phosphorylation for the structural alterations. These findings are based on the elaboration of mathematical tools for analyzing confocal laser-scanning microscopic images to study changes in the sophisticated thylakoid architecture in intact protoplasts.

  19. Revealing linear aggregates of light harvesting antenna proteins in photosynthetic membranes.

    PubMed

    He, Yufan; Zeng, Xiaohua; Mukherjee, Saptarshi; Rajapaksha, Suneth; Kaplan, Samuel; Lu, H Peter

    2010-01-05

    How light energy is harvested in a natural photosynthetic membrane through energy transfer is closely related to the stoichiometry and arrangement of light harvesting antenna proteins in the membrane. The specific photosynthetic architecture facilitates a rapid and efficient energy transfer among the light harvesting proteins (LH2 and LH1) and to the reaction center. Here we report the identification of linear aggregates of light harvesting proteins, LH2, in the photosynthetic membranes under ambient conditions by using atomic force microscopy (AFM) imaging and spectroscopic analysis. Our results suggest that the light harvesting protein, LH2, can exist as linear aggregates of 4 +/- 2 proteins in the photosynthetic membranes and that the protein distributions are highly heterogeneous. In the photosynthetic membranes examined in our measurements, the ratio of the aggregated to the nonaggregated LH2 proteins is about 3:1 to 5:1 depending on the intensity of the illumination used during sample incubation and on the bacterial species. AFM images further identify that the LH2 proteins in the linear aggregates are monotonically tilted at an angle 4 +/- 2 degrees from the plane of the photosynthetic membranes. The aggregates result in red-shifted absorption and emission spectra that are measured using various mutant membranes, including an LH2 knockout, LH1 knockout, and LH2 at different population densities. Measuring the fluorescence lifetimes of purified LH2 and LH2 in membranes, we have observed that the LH2 proteins in membranes exhibit biexponential lifetime decays whereas the purified LH2 proteins gave single exponential lifetime decays. We attribute that the two lifetime components originate from the existence of both aggregated and nonaggregated LH2 proteins in the photosynthetic membranes.

  20. Photosynthetic bacteria-based membrane bioreactor as post-treatment of an anaerobic membrane bioreactor effluent.

    PubMed

    González, E; Díaz, O; Ruigómez, I; de Vera, C R; Rodríguez-Gómez, L E; Rodríguez-Sevilla, J; Vera, L

    2017-09-01

    Anaerobic membrane bioreactors have attracted increasing interest in the field of wastewater treatment. However, significant amounts of organic matter, nitrogen and sulphide in the effluent may limit its reuse. A photosynthetic bacteria-based membrane bioreactor is proposed for the further treatment of this effluent. A pilot-scale unit was run outdoor for over 900h to assess the process performance at short hydraulic retention time. After an initial biomass development, simultaneous removal of soluble organic matter and nitrogen was achieved (65% and 39%, respectively). In addition, a significant concentration of sulphate was detected in the permeate, revealing an evident sulphide oxidation. Despite the accumulation of biopolymer clusters in the biological suspension, membrane fouling was effectively mitigated by air-aided backwashing, allowing a sustainable operation. Several strains of bacteria were identified including the photoheterotrophic bacteria Rhodopseudomonas sp. and the nitrifying and denitrifying bacteria Chryseobacterium sp. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effect of Chlamydomonas plastid terminal oxidase 1 expressed in tobacco on photosynthetic electron transfer.

    PubMed

    Feilke, Kathleen; Streb, Peter; Cornic, Gabriel; Perreau, François; Kruk, Jerzy; Krieger-Liszkay, Anja

    2016-01-01

    The plastid terminal oxidase PTOX is a plastohydroquinone:oxygen oxidoreductase that is important for carotenoid biosynthesis and plastid development. Its role in photosynthesis is controversially discussed. Under a number of abiotic stress conditions, the protein level of PTOX increases. PTOX is thought to act as a safety valve under high light protecting the photosynthetic apparatus against photodamage. However, transformants with high PTOX level were reported to suffer from photoinhibition. To analyze the effect of PTOX on the photosynthetic electron transport, tobacco expressing PTOX-1 from Chlamydomonas reinhardtii (Cr-PTOX1) was studied by chlorophyll fluorescence, thermoluminescence, P700 absorption kinetics and CO2 assimilation. Cr-PTOX1 was shown to compete very efficiently with the photosynthetic electron transport for PQH2 . High pressure liquid chromatography (HPLC) analysis confirmed that the PQ pool was highly oxidized in the transformant. Immunoblots showed that, in the wild-type, PTOX was associated with the thylakoid membrane only at a relatively alkaline pH value while it was detached from the membrane at neutral pH. We present a model proposing that PTOX associates with the membrane and oxidizes PQH2 only when the oxidation of PQH2 by the cytochrome b6 f complex is limiting forward electron transport due to a high proton gradient across the thylakoid membrane.

  2. VIPP1 Has a Disordered C-Terminal Tail Necessary for Protecting Photosynthetic Membranes against Stress1[OPEN

    PubMed Central

    Zhang, Lingang; Kondo, Hideki

    2016-01-01

    Integrity of biomembranes is vital to living organisms. In bacteria, PspA is considered to act as repairing damaged membrane by forming large supercomplexes in Arabidopsis (Arabidopsis thaliana). Vulnerable to oxidative stress, photosynthetic organisms also contain a PspA ortholog called VIPP1, which has an additional C-terminal tail (Vc). In this study, Vc was shown to coincide with an intrinsically disordered region, and the role of VIPP1 in membrane protection against stress was investigated. We visualized VIPP1 by fusing it to GFP (VIPP1-GFP that fully complemented lethal vipp1 mutations), and investigated its behavior in vivo with live imaging. The intrinsically disordered nature of Vc enabled VIPP1 to form what appeared to be functional particles along envelopes, whereas the deletion of Vc caused excessive association of the VIPP1 particles, preventing their active movement for membrane protection. Expression of VIPP1 lacking Vc complemented vipp1 mutation, but exhibited sensitivity to heat shock stress. Conversely, transgenic plants over-expressing VIPP1 showed enhanced tolerance against heat shock, suggesting that Vc negatively regulates VIPP1 particle association and acts in maintaining membrane integrity. Our data thus indicate that VIPP1 is involved in the maintenance of photosynthetic membranes. During evolution, chloroplasts have acquired enhanced tolerance against membrane stress by incorporating a disordered C-terminal tail into VIPP1. PMID:27208228

  3. Abiotic Stresses: Insight into Gene Regulation and Protein Expression in Photosynthetic Pathways of Plants

    PubMed Central

    Nouri, Mohammad-Zaman; Moumeni, Ali; Komatsu, Setsuko

    2015-01-01

    Global warming and climate change intensified the occurrence and severity of abiotic stresses that seriously affect the growth and development of plants, especially, plant photosynthesis. The direct impact of abiotic stress on the activity of photosynthesis is disruption of all photosynthesis components such as photosystem I and II, electron transport, carbon fixation, ATP generating system and stomatal conductance. The photosynthetic system of plants reacts to the stress differently, according to the plant type, photosynthetic systems (C3 or C4), type of the stress, time and duration of the occurrence and several other factors. The plant responds to the stresses by a coordinate chloroplast and nuclear gene expression. Chloroplast, thylakoid membrane, and nucleus are the main targets of regulated proteins and metabolites associated with photosynthetic pathways. Rapid responses of plant cell metabolism and adaptation to photosynthetic machinery are key factors for survival of plants in a fluctuating environment. This review gives a comprehensive view of photosynthesis-related alterations at the gene and protein levels for plant adaptation or reaction in response to abiotic stress. PMID:26343644

  4. Abiotic Stresses: Insight into Gene Regulation and Protein Expression in Photosynthetic Pathways of Plants.

    PubMed

    Nouri, Mohammad-Zaman; Moumeni, Ali; Komatsu, Setsuko

    2015-08-28

    Global warming and climate change intensified the occurrence and severity of abiotic stresses that seriously affect the growth and development of plants,especially, plant photosynthesis. The direct impact of abiotic stress on the activity of photosynthesis is disruption of all photosynthesis components such as photosystem I and II, electron transport, carbon fixation, ATP generating system and stomatal conductance. The photosynthetic system of plants reacts to the stress differently, according to the plant type, photosynthetic systems (C₃ or C₄), type of the stress, time and duration of the occurrence and several other factors. The plant responds to the stresses by a coordinate chloroplast and nuclear gene expression. Chloroplast, thylakoid membrane, and nucleus are the main targets of regulated proteins and metabolites associated with photosynthetic pathways. Rapid responses of plant cell metabolism and adaptation to photosynthetic machinery are key factors for survival of plants in a fluctuating environment. This review gives a comprehensive view of photosynthesis-related alterations at the gene and protein levels for plant adaptation or reaction in response to abiotic stress.

  5. Significance of protein crowding, order and mobility for photosynthetic membrane functions.

    PubMed

    Kirchhoff, Helmut

    2008-10-01

    Natural photosynthesis requires diffusion-based processes either for the functional communication of protein complexes or for the adaptation, maintenance and biogenesis of the photosynthetic apparatus. A conceptual problem with lateral diffusion in photosynthetic membranes arises from the fact that these membranes are densely packed with membrane integral protein complexes (molecular crowding). Theoretical analysis of PQ (plastoquinone) and protein diffusion in higher plant grana thylakoids reveal very inefficient lateral diffusion. In contrast, measurement of protein mobility in grana membranes shows that a fraction of protein complexes can move surprisingly fast. It is postulated that organization of protein complexes in supercomplexes and large-scale ordering of Photosystem II and light-harvesting complex II could be strategies for the optimization of diffusion in crowded thylakoid membranes.

  6. Supramolecular architecture of photosynthetic membrane in red algae in response to nitrogen starvation.

    PubMed

    Zhao, Long-Sheng; Su, Hai-Nan; Li, Kang; Xie, Bin-Bin; Liu, Lu-Ning; Zhang, Xi-Ying; Chen, Xiu-Lan; Huang, Feng; Zhou, Bai-Cheng; Zhang, Yu-Zhong

    2016-11-01

    The availability of nitrogen is one of the most important determinants that can limit the growth of photosynthetic organisms including plants and algae; however, direct observations on the supramolecular architecture of photosynthetic membranes in response to nitrogen stress are still lacking. Red algae are an important evolutionary group of algae which contain phycobilisomes (PBSs) on their thylakoid membranes, as do cyanobacteria. PBSs function not only as light-harvesting antennae but also as nitrogen storage. In this report, alterations of the supramolecular architecture of thylakoid membranes from red alga Porphyridium cruentum during nitrogen starvation were characterized. The morphology of the intact thylakoid membrane was observed to be round vesicles. Thylakoid membranes were reduced in content and PBSs were degraded during nitrogen starvation. The size and density of PBSs were both found to be reduced. PBS size decreased by less than one-half after 20days of nitrogen starvation, but their hemispherical morphology was retained. The density of PBSs on thylakoid membranes was more seriously affected as time proceeded. Upon re-addition of nitrogen led to increasing of PBSs on thylakoid membranes. This work reports the first direct observation on alterations in the supramolecular architecture of thylakoid membranes from a photosynthetic organism in response to nitrogen stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Membrane development in purple photosynthetic bacteria in response to alterations in light intensity and oxygen tension.

    PubMed

    Niederman, Robert A

    2013-10-01

    Studies on membrane development in purple bacteria during adaptation to alterations in light intensity and oxygen tension are reviewed. Anoxygenic phototrophic such as the purple α-proteobacterium Rhodobacter sphaeroides have served as simple, dynamic, and experimentally accessible model organisms for studies of the photosynthetic apparatus. A major landmark in photosynthesis research, which dramatically illustrates this point, was provided by the determination of the X-ray structure of the reaction center (RC) in Blastochloris viridis (Deisenhofer and Michel, EMBO J 8:2149-2170, 1989), once it was realized that this represented the general structure for the photosystem II RC present in all oxygenic phototrophs. This seminal advance, together with a considerable body of subsequent research on the light-harvesting (LH) and electron transfer components of the photosynthetic apparatus has provided a firm basis for the current understanding of how phototrophs acclimate to alterations in light intensity and quality. Oxygenic phototrophs adapt to these changes by extensive thylakoid membrane remodeling, which results in a dramatic supramolecular reordering to assure that an appropriate flow of quinone redox species occurs within the membrane bilayer for efficient and rapid electron transfer. Despite the high level of photosynthetic unit organization in Rba. sphaeroides as observed by atomic force microscopy (AFM), fluorescence induction/relaxation measurements have demonstrated that the addition of the peripheral LH2 antenna complex in cells adapting to low-intensity illumination results in a slowing of the rate of electron transfer turnover by the RC of up to an order of magnitude. This is ascribed to constraints in quinone redox species diffusion between the RC and cytochrome bc1 complexes arising from the increased packing density as the intracytoplasmic membrane (ICM) bilayer becomes crowded with LH2 rings. In addition to downshifts in light intensity as a paradigm

  8. Visualizing the dynamic structure of the plant photosynthetic membrane.

    PubMed

    Ruban, Alexander V; Johnson, Matthew P

    2015-11-03

    The chloroplast thylakoid membrane is the site for the initial steps of photosynthesis that convert solar energy into chemical energy, ultimately powering almost all life on earth. The heterogeneous distribution of protein complexes within the membrane gives rise to an intricate three-dimensional structure that is nonetheless extremely dynamic on a timescale of seconds to minutes. These dynamics form the basis for the regulation of photosynthesis, and therefore the adaptability of plants to different environments. High-resolution microscopy has in recent years begun to provide new insights into the structural dynamics underlying a number of regulatory processes such as membrane stacking, photosystem II repair, photoprotective energy dissipation, state transitions and alternative electron transfer. Here we provide an overview of the essentials of thylakoid membrane structure in plants, and consider how recent advances, using a range of microscopies, have substantially increased our knowledge of the thylakoid dynamic structure. We discuss both the successes and limitations of the currently available techniques and highlight newly emerging microscopic methods that promise to move the field beyond the current 'static' view of membrane organization based on frozen snapshots to a 'live' view of functional membranes imaged under native aqueous conditions at ambient temperature and responding dynamically to external stimuli.

  9. Inelastic neutron scattering study of light-induced dynamics of a photosynthetic membrane system

    SciTech Connect

    Furrer, A.; Stoeckli, A.

    2010-01-15

    Inelastic neutron scattering was employed to study photoeffects on the molecular dynamics of membranes of the photosynthetic bacterium Rhodopseudomonas viridis. The main photoactive parts of this biomolecular system are the chlorophyll molecules whose dynamics were found to be affected under illumination by visible light in a twofold manner. First, vibrational modes are excited at energies of 12(2) and 88(21) cm{sup -1}. Second, a partial 'freezing' of rotational modes is observed at energies of 1.2(3) and 2.9(5) cm{sup -1}. These results are attributed to a possible coupling between molecular motions and particular mechanisms in the photosynthetic process.

  10. [Membrane-based photochemical systems as models for photosynthetic cells

    SciTech Connect

    Hurst, J.K.

    1992-01-01

    The objectives of this research are to improve our conceptual view of the ways in which membranes and interfaces can be used to control chemical reactivity. We have focused on understanding three elementary processes that are central to developing membrane-based integrated chemical systems for water photolysis or related photoconversion/photostorage processes. Specifically, we have sought to identify: the influence of interfaces upon charge separation/recombination reactions, pathways for transmembrane charge separation across hydrocarbon bilayer membranes, and mechanisms of water oxidation catalyzed by transition metal coordination complexes. Historically, the chemical dynamics of each of these processes has been poorly understood, with numerous unresolved issues and conflicting viewpoints appearing in the literature. As described in this report our recent research has led to considerable clarification of the underlying reaction mechanisms.

  11. Biogenesis of cytochrome b6 in photosynthetic membranes.

    PubMed

    Saint-Marcoux, Denis; Wollman, Francis-André; de Vitry, Catherine

    2009-06-29

    In chloroplasts, binding of a c'-heme to cytochrome b(6) on the stromal side of the thylakoid membranes requires a specific mechanism distinct from the one at work for c-heme binding to cytochromes f and c(6) on the lumenal side of membranes. Here, we show that the major protein components of this pathway, the CCBs, are bona fide transmembrane proteins. We demonstrate their association in a series of hetero-oligomeric complexes, some of which interact transiently with cytochrome b(6) in the process of heme delivery to the apoprotein. In addition, we provide preliminary evidence for functional assembly of cytochrome b(6)f complexes even in the absence of c'-heme binding to cytochrome b(6). Finally, we present a sequential model for apo- to holo-cytochrome b(6) maturation integrated within the assembly pathway of b(6)f complexes in the thylakoid membranes.

  12. Biogenesis of cytochrome b6 in photosynthetic membranes

    PubMed Central

    Saint-Marcoux, Denis; Wollman, Francis-André

    2009-01-01

    In chloroplasts, binding of a c′-heme to cytochrome b6 on the stromal side of the thylakoid membranes requires a specific mechanism distinct from the one at work for c-heme binding to cytochromes f and c6 on the lumenal side of membranes. Here, we show that the major protein components of this pathway, the CCBs, are bona fide transmembrane proteins. We demonstrate their association in a series of hetero-oligomeric complexes, some of which interact transiently with cytochrome b6 in the process of heme delivery to the apoprotein. In addition, we provide preliminary evidence for functional assembly of cytochrome b6f complexes even in the absence of c′-heme binding to cytochrome b6. Finally, we present a sequential model for apo- to holo-cytochrome b6 maturation integrated within the assembly pathway of b6f complexes in the thylakoid membranes. PMID:19564403

  13. Simple Colorimetric Determination of the Manganese Content in Photosynthetic Membranes

    SciTech Connect

    Semin, B. K.; Seibert, M.

    2009-01-01

    The functional Mn content of intact photosystem II membrane fragments was measured as 4.06 {+-} 0.13 Mn/reaction center when determined using a simple, sensitive colorimetric assay that will also work with thylakoids and core complexes. This procedure requires minimal sample material, does not need expensive assay equipment, requires four simple steps, and only takes 20-30 min to perform. These include (a) removal of the adventitious Mn ions by CaCl{sub 2} treatment of the membranes, (b) extraction of the Mn from the O{sub 2}-evolving complex with hydrochloric acid, (c) purification of the extract by centrifugation followed by filtration of the supernatant through an Acrodisc syringe filter (0.2 {micro}m nylon membrane), and (d) colorimetric determination of Mn in the extract using the reaction of the chromogenic agent, 3,3',5,5'-tetramethylbenzidine, with previously oxidized Mn(II) cations carried out at high pH. The colorimetric assay itself has been used previously by Serrat (Mikrochim Acta 129:77-80, 1998) for assaying Mn concentrations in sea water and drinking water.

  14. Function and evolution of channels and transporters in photosynthetic membranes.

    PubMed

    Pfeil, Bernard E; Schoefs, Benoît; Spetea, Cornelia

    2014-03-01

    Chloroplasts from land plants and algae originated from an endosymbiotic event, most likely involving an ancestral photoautotrophic prokaryote related to cyanobacteria. Both chloroplasts and cyanobacteria have thylakoid membranes, harboring pigment-protein complexes that perform the light-dependent reactions of oxygenic photosynthesis. The composition, function and regulation of these complexes have thus far been the major topics in thylakoid membrane research. For many decades, we have also accumulated biochemical and electrophysiological evidence for the existence of solute transthylakoid transport activities that affect photosynthesis. However, research dedicated to molecular identification of the responsible proteins has only recently emerged with the explosion of genomic information. Here we review the current knowledge about channels and transporters from the thylakoid membrane of Arabidopsis thaliana and of the cyanobacterium Synechocystis sp. PCC 6803. No homologues of these proteins have been characterized in algae, although similar sequences could be recognized in many of the available sequenced genomes. Based on phylogenetic analyses, we hypothesize a host origin for most of the so far identified Arabidopsis thylakoid channels and transporters. Additionally, the shift from a non-thylakoid to a thylakoid location appears to have occurred at different times for different transport proteins. We propose that closer control of and provision for the thylakoid by products of the host genome has been an ongoing process, rather than a one-step event. Some of the proteins recruited to serve in the thylakoid may have been the result of the increased specialization of its pigment-protein composition and organization in green plants.

  15. Entropy and biological systems: Experimentally-investigated entropy-driven stacking of plant photosynthetic membranes

    NASA Astrophysics Data System (ADS)

    Jia, Husen; Liggins, John R.; Chow, Wah Soon

    2014-02-01

    According to the Second Law of Thermodynamics, an overall increase of entropy contributes to the driving force for any physicochemical process, but entropy has seldom been investigated in biological systems. Here, for the first time, we apply Isothermal Titration Calorimetry (ITC) to investigate the Mg2+-induced spontaneous stacking of photosynthetic membranes isolated from spinach leaves. After subtracting a large endothermic interaction of MgCl2 with membranes, unrelated to stacking, we demonstrate that the enthalpy change (heat change at constant pressure) is zero or marginally positive or negative. This first direct experimental evidence strongly suggests that an entropy increase significantly drives membrane stacking in this ordered biological structure. Possible mechanisms for the entropy increase include: (i) the attraction between discrete oppositely-charged areas, releasing counterions; (ii) the release of loosely-bound water molecules from the inter-membrane gap; (iii) the increased orientational freedom of previously-aligned water dipoles; and (iv) the lateral rearrangement of membrane components.

  16. Methods and constructs for expression of foreign proteins in photosynthetic organisms

    DOEpatents

    Laible, Philip D.; Hanson, Deborah K.

    2002-01-01

    A method for expressing and purifying foreign proteins in photosynthetic organisms comprising the simultaneous expression of both the heterologous protein and a means for compartmentalizing or sequestering of the protein.

  17. Photoproduction of hydrogen by membranes of green photosynthetic bacteria

    SciTech Connect

    Bernstein, J D; Olson, J M

    1980-01-01

    Photoproduction of H/sub 2/ from ascorbate by unit-membrane vesicles from Chlorobium limicola f. thiosulfatophilum was achieved with a system containing gramicidin D, tetramethyl-p-phenylenediamine, methyl viologen, dithioerythritol, Clostridium hydrogenase, and an oxygen-scavenging mixture of glucose, glucose oxidase, ethanol, and catalase. Maximum quantum yield was less than one percent. Half maximum rate of H/sub 2/ production occurred at a white-light intensity of approximately 0.15 cm/sup -2/. The reaction was inhibited completely by 0.3% sodium dodecylbenzene sulfonate, 1% Triton X-100, or preheating the vesicles at 100/sup 0/C for 5 minutes. Low concentrations (0.01 and 0.05%) of Triton X-100 about doubled the reaction rate.

  18. Data supporting the absence of FNR dynamic photosynthetic membrane recruitment in trol mutants.

    PubMed

    Vojta, Lea; Fulgosi, Hrvoje

    2016-06-01

    In photosynthesis, the flavoenzyme ferredoxin:NADP(+) oxidoreductase (FNR) catalyses the final electron transfer from ferredoxin to NADP(+), which is considered as the main pathway of high-energy electron partitioning in chloroplasts (DOI: 10.1111/j.1365-313X.2009.03999.x[1], DOI: 10.1038/srep10085[2]). Different detergents and pH treatments of photosynthetic membranes isolated from the Arabidopsis wild-type (WT) and the loss-of-function mutants of the thylakoid rhodanase-like protein TROL (trol), pre-acclimated to either dark, growth-light, or high-light conditions, were used to probe the strength of FNR-membrane associations. Detergents β-DM (decyl-β-D-maltopyranoside) or β-DDM (n-dodecyl-β-D-maltopyranoside) were used to test the stability of FNR binding to the thylakoid membranes, and to assess different membrane domains containing FNR. Further, the extraction conditions mimicked pH status of chloroplast stroma during changing light regimes. Plants without TROL are incapable of the dynamic FNR recruitment to the photosynthetic membranes.

  19. Data supporting the absence of FNR dynamic photosynthetic membrane recruitment in trol mutants

    PubMed Central

    Vojta, Lea; Fulgosi, Hrvoje

    2016-01-01

    In photosynthesis, the flavoenzyme ferredoxin:NADP+ oxidoreductase (FNR) catalyses the final electron transfer from ferredoxin to NADP+, which is considered as the main pathway of high-energy electron partitioning in chloroplasts (DOI: 10.1111/j.1365-313X.2009.03999.x[1], DOI: 10.1038/srep10085[2]). Different detergents and pH treatments of photosynthetic membranes isolated from the Arabidopsis wild-type (WT) and the loss-of-function mutants of the thylakoid rhodanase-like protein TROL (trol), pre-acclimated to either dark, growth-light, or high-light conditions, were used to probe the strength of FNR-membrane associations. Detergents β-DM (decyl-β-D-maltopyranoside) or β-DDM (n-dodecyl-β-D-maltopyranoside) were used to test the stability of FNR binding to the thylakoid membranes, and to assess different membrane domains containing FNR. Further, the extraction conditions mimicked pH status of chloroplast stroma during changing light regimes. Plants without TROL are incapable of the dynamic FNR recruitment to the photosynthetic membranes. PMID:26977444

  20. Energy transfer dynamics in an RC-LH1-PufX tubular photosynthetic membrane

    NASA Astrophysics Data System (ADS)

    Hsin, J.; Strümpfer, J.; Şener, M.; Qian, P.; Hunter, C. N.; Schulten, K.

    2010-08-01

    Light absorption and the subsequent transfer of excitation energy are the first two steps in the photosynthetic process, carried out by protein-bound pigments, mainly bacteriochlorophylls (BChls), in photosynthetic bacteria. BChls are anchored in light-harvesting (LH) complexes, such as light-harvesting complex I (LH1), which directly associates with the reaction center (RC), forming the RC-LH1 core complex. In Rhodobacter sphaeroides, RC-LH1 core complexes contain an additional protein, PufX, and assemble into dimeric RC-LH1-PufX core complexes. In the absence of LH complex II (LH2), the former complexes can aggregate into a helically ordered tubular photosynthetic membrane. We have examined the excitation transfer dynamics in a single RC-LH1-PufX core complex dimer using the hierarchical equations of motion for dissipative quantum dynamics that accurately, yet in a computationally costly manner, treat the coupling between BChls and their protein environment. A widely employed description, the generalized Förster (GF) theory, was also used to calculate the transfer rates of the same excitonic system in order to verify the accuracy of this computationally cheap method. Additionally, in light of the structural uncertainties in the Rba. sphaeroides RC-LH1-PufX core complex, geometrical alterations were introduced into the BChl organization. It is shown that the energy transfer dynamics are not affected by the considered changes in the BChl organization and that the GF theory provides accurate transfer rates. An all-atom model for a tubular photosynthetic membrane is then constructed on the basis of electron microscopy data, and the overall energy transfer properties of this membrane are computed.

  1. Atomic-level structural and functional model of a bacterial photosynthetic membrane vesicle.

    PubMed

    Sener, Melih K; Olsen, John D; Hunter, C Neil; Schulten, Klaus

    2007-10-02

    The photosynthetic unit (PSU) of purple photosynthetic bacteria consists of a network of bacteriochlorophyll-protein complexes that absorb solar energy for eventual conversion to ATP. Because of its remarkable simplicity, the PSU can serve as a prototype for studies of cellular organelles. In the purple bacterium Rhodobacter sphaeroides the PSU forms spherical invaginations of the inner membrane, approximately 70 nm in diameter, composed mostly of light-harvesting complexes, LH1 and LH2, and reaction centers (RCs). Atomic force microscopy studies of the intracytoplasmic membrane have revealed the overall spatial organization of the PSU. In the present study these atomic force microscopy data were used to construct three-dimensional models of an entire membrane vesicle at the atomic level by using the known structure of the LH2 complex and a structural model of the dimeric RC-LH1 complex. Two models depict vesicles consisting of 9 or 18 dimeric RC-LH1 complexes and 144 or 101 LH2 complexes, representing a total of 3,879 or 4,464 bacteriochlorophylls, respectively. The in silico reconstructions permit a detailed description of light absorption and electronic excitation migration, including computation of a 50-ps excitation lifetime and a 95% quantum efficiency for one of the model membranes, and demonstration of excitation sharing within the closely packed RC-LH1 dimer arrays.

  2. Oxonol dyes as monitors of membrane potential. Their behavior in photosynthetic bacteria.

    PubMed

    Bashford, C L; Chance, B; Prince, R C

    1979-01-11

    The reponses of oxonol dyes to single and multiple single turnovers of the photosynthetic apparatus of photosynthetic bacteria have been studied, and compared with the responses of the endogenous carotenoid pigments. The absorbance changes of the oxonols can be conveniently measured at 587 nm, because this is an isosbestic point in the 'light-minus-dark' difference spectrum of the chromatophores. The oxonols appear to respond to the light-induced 'energization' by shifting their absorption maxima. In the presence of K+, valinomycin abolished and nigericin enhanced such shifts, suggesting that the dyes, respond to the light-induced membrane potential. Since the dyes are anions at neutral pH values, they probably distribute across the membrane in accordance with the potential, which is positive inside the chromatophores. The accumulation of dye, which is indicated by a decrease in the carotenoid bandshift, poises the dye-membrane equilibrium in favor of increased dye binding and this might be the cause of the spectral shift. The dye response has an apparent second-order rate constant of approx. 2 . 10(6) M-1 . s-1 and so is always slower than the carotenoid bandshift. Thus the dyes cannot be used to monitor membrane potential on submillisecond timescales. Nevertheless, on a timescale of seconds the logarithm of the absorbance change at 587 nm is linear with respect to the membrane potential calibrated with the carotenoid bandshift. This suggests that under appropriate conditions the dyes can be used with confidence as indicators of membrane potential in energy-transducing membranes that do not possess intrinsic probes of potential.

  3. Time-resolved fluorescence spectroscopy of photosynthetic membranes: experiment and model simulations

    NASA Astrophysics Data System (ADS)

    Freiberg, Arvi; Pullerits, Tonu; Timpmann, Kou

    1990-05-01

    The singlet excitation transfer and trapping kinetics in photosynthetic membranes in case of low excitation intensities is studied by spectrally selective picosecond-time- domain fluorescence spectroscopy and by numerical integration of an appropriate system of equations. The essential features of our models are spectral heterogeneity of the light- harvesting antenna, inclusion of temperature effects, nonabsolute excitation traps, correlation between spectral and spatial parmeters. A reasonably good agreement between theoretical and experimental fluorescence decay kinetics for several purple photosynthetic bacteria has been achieved. This comparison gives several interesting numerical constants characterizing microscopic excitation transfer between different light-harvesting-antenna pigment-protein complexes towards the reaction centres. Some aspects of the experiment are also discussed.

  4. Surface potential dependence of the distribution of charged dye molecules onto photosynthetic membranes.

    PubMed

    Masamoto, K; Matsuura, K; Itoh, S; Nishimura, M

    1981-02-01

    Partition of merocyanine dyes, which have a negative charge, onto photosynthetic membranes of chloroplasts and bacteria was analyzed by measuring the fluorescence intensity change, absorbance change, and amount of dye in the supernatant after centrifugation. The partition depended on the surface potential, which is a function of valence and concentration of ions in the medium. The distribution of dyes between the membrane and aqueous phase was determined after centrifugation. The logarithm of the ratio of distribution was linearly related to the logarithm of salt concentration as predicted from the Gouy-Chapman theory and the Boltzmann distribution. Plots of the logarithm of fluorescence intensity against the logarithm of KCl and MgSO4 concentrations gave two straight lines with a slope ratio of about two. The absorbance change upon salt addition was also explained by the Gouy-Chapman theory. The use of these dyes as probes of the surface potential of membranes is discussed.

  5. Differential stability of photosynthetic membranes and fatty acid composition at elevated temperature in Symbiodinium

    NASA Astrophysics Data System (ADS)

    Díaz-Almeyda, E.; Thomé, P. E.; El Hafidi, M.; Iglesias-Prieto, R.

    2011-03-01

    Coral reefs are threatened by increasing surface seawater temperatures resulting from climate change. Reef-building corals symbiotic with dinoflagellates in the genus Symbiodinium experience dramatic reductions in algal densities when exposed to temperatures above the long-term local summer average, leading to a phenomenon called coral bleaching. Although the temperature-dependent loss in photosynthetic function of the algal symbionts has been widely recognized as one of the early events leading to coral bleaching, there is considerable debate regarding the actual damage site. We have tested the relative thermal stability and composition of membranes in Symbiodinium exposed to high temperature. Our results show that melting curves of photosynthetic membranes from different symbiotic dinoflagellates substantiate a species-specific sensitivity to high temperature, while variations in fatty acid composition under high temperature rather suggest a complex process in which various modifications in lipid composition may be involved. Our results do not support the role of unsaturation of fatty acids of the thylakoid membrane as being mechanistically involved in bleaching nor as being a dependable tool for the diagnosis of thermal susceptibility of symbiotic reef corals.

  6. Still Acting Green: Continued Expression of Photosynthetic Genes in the Heterotrophic Dinoflagellate Pfiesteria piscicida (Peridiniales, Alveolata)

    PubMed Central

    Kim, Gwang Hoon; Jeong, Hae Jin; Yoo, Yeong Du; Kim, Sunju; Han, Ji Hee; Han, Jong Won; Zuccarello, Giuseppe C.

    2013-01-01

    The loss of photosynthetic function should lead to the cessation of expression and finally loss of photosynthetic genes in the new heterotroph. Dinoflagellates are known to have lost their photosynthetic ability several times. Dinoflagellates have also acquired photosynthesis from other organisms, either on a long-term basis or as “kleptoplastids” multiple times. The fate of photosynthetic gene expression in heterotrophs can be informative into evolution of gene expression patterns after functional loss, and the dinoflagellates ability to acquire new photosynthetic function through additional endosymbiosis. To explore this we analyzed a large-scale EST database consisting of 151,091 unique sequences (29,170 contigs, 120,921 singletons) obtained from 454 pyrosequencing of the heterotrophic dinoflagellate Pfiesteria piscicida. About 597 contigs from P. piscicida showed significant homology (E-value photosynthetic function. Most of the genes involved in the Calvin-Benson cycle were found, genes of the light-dependent reaction were also identified. Also genes of associated pathways including the chorismate pathway and genes involved in starch metabolism were discovered. BLAST searches and phylogenetic analysis suggest that these plastid-associated genes originated from several different photosynthetic ancestors. The Calvin-Benson cycle genes are mostly associated with genes derived from the secondary plastids of peridinin-containing dinoflagellates, while the light-harvesting genes are derived from diatoms, or diatoms that are tertiary plastids in other dinoflagellates. The continued expression of many genes involved in photosynthetic pathways indicates that the loss of transcriptional regulation may occur well after plastid loss and could explain the organism's ability to “capture” new plastids (i.e. different secondary endosymbiosis or tertiary symbioses) to renew photosynthetic function. PMID:23874554

  7. Still acting green: continued expression of photosynthetic genes in the heterotrophic Dinoflagellate Pfiesteria piscicida (Peridiniales, Alveolata).

    PubMed

    Kim, Gwang Hoon; Jeong, Hae Jin; Yoo, Yeong Du; Kim, Sunju; Han, Ji Hee; Han, Jong Won; Zuccarello, Giuseppe C

    2013-01-01

    The loss of photosynthetic function should lead to the cessation of expression and finally loss of photosynthetic genes in the new heterotroph. Dinoflagellates are known to have lost their photosynthetic ability several times. Dinoflagellates have also acquired photosynthesis from other organisms, either on a long-term basis or as "kleptoplastids" multiple times. The fate of photosynthetic gene expression in heterotrophs can be informative into evolution of gene expression patterns after functional loss, and the dinoflagellates ability to acquire new photosynthetic function through additional endosymbiosis. To explore this we analyzed a large-scale EST database consisting of 151,091 unique sequences (29,170 contigs, 120,921 singletons) obtained from 454 pyrosequencing of the heterotrophic dinoflagellate Pfiesteria piscicida. About 597 contigs from P. piscicida showed significant homology (E-value photosynthetic function. Most of the genes involved in the Calvin-Benson cycle were found, genes of the light-dependent reaction were also identified. Also genes of associated pathways including the chorismate pathway and genes involved in starch metabolism were discovered. BLAST searches and phylogenetic analysis suggest that these plastid-associated genes originated from several different photosynthetic ancestors. The Calvin-Benson cycle genes are mostly associated with genes derived from the secondary plastids of peridinin-containing dinoflagellates, while the light-harvesting genes are derived from diatoms, or diatoms that are tertiary plastids in other dinoflagellates. The continued expression of many genes involved in photosynthetic pathways indicates that the loss of transcriptional regulation may occur well after plastid loss and could explain the organism's ability to "capture" new plastids (i.e. different secondary endosymbiosis or tertiary symbioses) to renew photosynthetic function.

  8. Energy transfer in light-adapted photosynthetic membranes: from active to saturated photosynthesis.

    PubMed

    Fassioli, Francesca; Olaya-Castro, Alexandra; Scheuring, Simon; Sturgis, James N; Johnson, Neil F

    2009-11-04

    In bacterial photosynthesis light-harvesting complexes, LH2 and LH1 absorb sunlight energy and deliver it to reaction centers (RCs) with extraordinarily high efficiency. Submolecular resolution images have revealed that both the LH2:LH1 ratio, and the architecture of the photosynthetic membrane itself, adapt to light intensity. We investigate the functional implications of structural adaptations in the energy transfer performance in natural in vivo low- and high-light-adapted membrane architectures of Rhodospirillum photometricum. A model is presented to describe excitation migration across the full range of light intensities that cover states from active photosynthesis, where all RCs are available for charge separation, to saturated photosynthesis where all RCs are unavailable. Our study outlines three key findings. First, there is a critical light-energy density, below which the low-light adapted membrane is more efficient at absorbing photons and generating a charge separation at RCs, than the high-light-adapted membrane. Second, connectivity of core complexes is similar in both membranes, suggesting that, despite different growth conditions, a preferred transfer pathway is through core-core contacts. Third, there may be minimal subareas on the membrane which, containing the same LH2:LH1 ratio, behave as minimal functional units as far as excitation transfer efficiency is concerned.

  9. Enhancing soybean photosynthetic CO2 assimilation using a cyanobacterial membrane protein, ictB.

    PubMed

    Hay, William T; Bihmidine, Saadia; Mutlu, Nedim; Hoang, Khang Le; Awada, Tala; Weeks, Donald P; Clemente, Tom E; Long, Stephen P

    2017-02-16

    Soybean C3 photosynthesis can suffer a severe loss in efficiency due to photorespiration and the lack of a carbon concentrating mechanism (CCM) such as those present in other plant species or cyanobacteria. Transgenic soybean (Glycine max cv. Thorne) plants constitutively expressing cyanobacterial ictB (inorganic carbon transporter B) gene were generated using Agrobacterium-mediated transformation. Although more recent data suggest that ictB does not actively transport HCO3-/CO2, there is nevertheless mounting evidence that transformation with this gene can increase higher plant photosynthesis. The hypothesis that expression of the ictB gene would improve photosynthesis, biomass production and seed yield in soybean was tested, in two independent replicated greenhouse and field trials. Results showed significant increases in photosynthetic CO2 uptake (Anet) and dry mass in transgenic relative to wild type (WT) control plants in both the greenhouse and field trials. Transgenic plants also showed increased photosynthetic rates and biomass production during a drought mimic study. The findings presented herein demonstrate that ictB, as a single-gene, contributes to enhancement in various yield parameters in a major commodity crop and point to the significant role that biotechnological approaches to increasing photosynthetic efficiency can play in helping to meet increased global demands for food.

  10. Photosynthetic solar cell using nanostructured proton exchange membrane for microbial biofilm prevention.

    PubMed

    Lee, Dong Hyun; Oh, Hwa Jin; Bai, Seoung Jae; Song, Young Seok

    2014-06-24

    Unwanted biofilm formation has a detrimental effect on bioelectrical energy harvesting in microbial cells. This issue still needs to be solved for higher power and longer durability and could be resolved with the help of nanoengineering in designing and manufacturing. Here, we demonstrate a photosynthetic solar cell (PSC) that contains a nanostructure to prevent the formation of biofilm by micro-organisms. Nanostructures were fabricated using nanoimprint lithography, where a film heater array system was introduced to precisely control the local wall temperature. To understand the heat and mass transfer phenomena behind the manufacturing and energy harvesting processes of PSC, we carried out a numerical simulation and experimental measurements. It revealed that the nanostructures developed on the proton exchange membrane enable PSC to produce enhanced output power due to the retarded microbial attachment on the Nafion membrane. We anticipate that this strategy can provide a pathway where PSC can ensure more renewable, sustainable, and efficient energy harvesting performance.

  11. Membrane potential is involved in regulation of photosynthetic reactions in the marine diatom Thalassiosira weissflogii.

    PubMed

    Antal, Taras K; Osipov, Vladimir; Matorin, Dmitriy N; Rubin, Andrey B

    2011-02-07

    High-intensity Chl fluorescence transients (OJIP transients) and light-induced kinetics of the delayed light emission were measured in diatom microalga Thalassiosira weissflogii in the presence of various uncouplers and photosynthetic inhibitors. The I step in the OJIP transients in T. weissflogii was essentially reduced or completely absent but was restored in the presence of uncouplers valinomycin, FCCP, and nigericin. Moreover, valinomycin enhanced ΔpH-dependent non-photochemical fluorescence quenching following the OJIP rise. In the presence of valinomycin, the transthylakoid membrane potential was significantly inhibited as evaluated by measurements of the delayed light emission. The results suggest a membrane potential control of the fluorescence yield in T. weissflogii. Possible mechanisms underlying the observed effects of uncouplers are discussed. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Electroporation of the photosynthetic membrane: structural changes in protein and lipid-protein domains.

    PubMed Central

    Rosemberg, Y; Rotenberg, M; Korenstein, R

    1994-01-01

    A biological membrane undergoes a reversible permeability increase through structural changes in the lipid domain when exposed to high external electric fields. The present study shows the occurrence of electric field-induced changes in the conductance of the proton channel of the H(+)-ATPase as well as electric field-induced structural changes in the lipid-protein domain of photosystem (PS) II in the photosynthetic membrane. The study was carried out by analyzing the electric field-stimulated delayed luminescence (EPL), which originates from charge recombination in the protein complexes of PS I and II of photosynthetic vesicles. We established that a small fraction of the total electric field-induced conductance change was abolished by N,N'-dicyclohexylcarbodiimide (DCCD), an inhibitor of the H(+)-ATPase. This reversible electric field-induced conductance change has characteristics of a small channel and possesses a lifetime < or = 1 ms. To detect electric field-induced changes in the lipid-protein domains of PS II, we examined the effects of phospholipase A2 (PLA2) on EPL. Higher values of EPL were observed from vesicles that were exposed in the presence of PLA2 to an electroporating electric field than to a nonelectroporating electric field. The effect of the electroporating field was a long-lived one, lasting for a period > or = 2 min. This effect was attributed to long-lived electric field-induced structural changes in the lipid-protein domains of PS II. PMID:7811916

  13. Entropy and biological systems: Experimentally-investigated entropy-driven stacking of plant photosynthetic membranes

    PubMed Central

    Jia, Husen; Liggins, John R.; Chow, Wah Soon

    2014-01-01

    According to the Second Law of Thermodynamics, an overall increase of entropy contributes to the driving force for any physicochemical process, but entropy has seldom been investigated in biological systems. Here, for the first time, we apply Isothermal Titration Calorimetry (ITC) to investigate the Mg2+-induced spontaneous stacking of photosynthetic membranes isolated from spinach leaves. After subtracting a large endothermic interaction of MgCl2 with membranes, unrelated to stacking, we demonstrate that the enthalpy change (heat change at constant pressure) is zero or marginally positive or negative. This first direct experimental evidence strongly suggests that an entropy increase significantly drives membrane stacking in this ordered biological structure. Possible mechanisms for the entropy increase include: (i) the attraction between discrete oppositely-charged areas, releasing counterions; (ii) the release of loosely-bound water molecules from the inter-membrane gap; (iii) the increased orientational freedom of previously-aligned water dipoles; and (iv) the lateral rearrangement of membrane components. PMID:24561561

  14. Photosynthetic pigment localization and thylakoid membrane morphology are altered in Synechocystis 6803 phycobilisome mutants.

    PubMed

    Collins, Aaron M; Liberton, Michelle; Jones, Howland D T; Garcia, Omar F; Pakrasi, Himadri B; Timlin, Jerilyn A

    2012-04-01

    Cyanobacteria are oxygenic photosynthetic prokaryotes that are the progenitors of the chloroplasts of algae and plants. These organisms harvest light using large membrane-extrinsic phycobilisome antenna in addition to membrane-bound chlorophyll-containing proteins. Similar to eukaryotic photosynthetic organisms, cyanobacteria possess thylakoid membranes that house photosystem (PS) I and PSII, which drive the oxidation of water and the reduction of NADP+, respectively. While thylakoid morphology has been studied in some strains of cyanobacteria, the global distribution of PSI and PSII within the thylakoid membrane and the corresponding location of the light-harvesting phycobilisomes are not known in detail, and such information is required to understand the functioning of cyanobacterial photosynthesis on a larger scale. Here, we have addressed this question using a combination of electron microscopy and hyperspectral confocal fluorescence microscopy in wild-type Synechocystis species PCC 6803 and a series of mutants in which phycobilisomes are progressively truncated. We show that as the phycobilisome antenna is diminished, large-scale changes in thylakoid morphology are observed, accompanied by increased physical segregation of the two photosystems. Finally, we quantified the emission intensities originating from the two photosystems in vivo on a per cell basis to show that the PSI:PSII ratio is progressively decreased in the mutants. This results from both an increase in the amount of photosystem II and a decrease in the photosystem I concentration. We propose that these changes are an adaptive strategy that allows cells to balance the light absorption capabilities of photosystems I and II under light-limiting conditions.

  15. PSII-LHCII supercomplex organizations in photosynthetic membrane by coarse-grained simulation.

    PubMed

    Lee, Cheng-Kuang; Pao, Chun-Wei; Smit, Berend

    2015-03-12

    Green plant photosystem II (PSII) and light-harvesting complex II (LHCII) in the stacked grana regions of thylakoid membranes can self-organize into various PSII-LHCII supercomplexes with crystalline or fluid-like supramolecular structures to adjust themselves with external stimuli such as high/low light and temperatures, rendering tunable solar light absorption spectrum and photosynthesis efficiencies. However, the mechanisms controlling the PSII-LHCII supercomplex organizations remain elusive. In this work, we constructed a coarse-grained (CG) model of the thylakoid membrane including lipid molecules and a PSII-LHCII supercomplex considering association/dissociation of moderately bound-LHCIIs. The CG interaction between CG beads were constructed based on electron microscope (EM) experimental results, and we were able to simulate the PSII-LHCII supramolecular organization of a 500 × 500 nm(2) thylakoid membrane, which is compatible with experiments. Our CGMD simulations can successfully reproduce order structures of PSII-LHCII supercomplexes under various protein packing fractions, free-LHCII:PSII ratios, and temperatures, thereby providing insights into mechanisms leading to PSII-LHCII supercomplex organizations in photosynthetic membranes.

  16. Interaction between photosynthetic and respiratory electron-transfer chains in the membranes of Anabaena variabilis.

    PubMed

    Abdourashitova, F D; Barsky, E L; Gusev, M V; Samuilov, V D

    1985-10-01

    The rate of CO2- and p-benzoquione-dependent photosynthetic O2 evolution by Anabaena variabilis cells remained unaltered and the rate of O2 uptake observed after switching off the light (endogenous respiration) was enhanced by a factor of 6-8 when the O2 concentration was increased from 200 to 400 μM. Photosystem-I-linked O2 uptake and respiration of the cells incubated with ascorbate and N,N,N'N'-tetramethyl-p-phenylenediamine was not appreciable influenced by the O2 concentration. 2-Iodo-6-isopropyl-3-methyl-2',4,4'-trinitrodiphenyl ether, blocking electron transfer at the plastoquinone level, suppressed O2 evolution and had no influence on endogenous respiration. 2-n-Heptyl-4-hydroxyquinoline-N-oxide, an inhibitor of electron transfer between photosystems II and I, as well as the cytochrome-oxidase inhibitors N 3 (-) , CN(-) and NH2OH, caused a 35-50% retardation of endogenous respiration and blocked photosynthetic O2 evolution. The molar ratio of cytochromes b6, f, c-553, aa3 and photosystem-I reaction centers in the isolated membranes equalled approx. 2:1:2:0.7:2. It is inferred that endogenous respiration of A. variabilis cells is inhibited by the light-induced electron flow through both photosystems at the level of the plastoquinone-plastocyanin-oxidoreductase complex.

  17. Optical Signatures of Quantum Delocalization over Extended Domains in Photosynthetic Membranes.

    PubMed

    Schroeder, Christopher A; Caycedo-Soler, Felipe; Huelga, Susana F; Plenio, Martin B

    2015-08-27

    The prospect of coherent dynamics and excitonic delocalization across several light-harvesting structures in photosynthetic membranes is of considerable interest, but challenging to explore experimentally. Here we demonstrate theoretically that the excitonic delocalization across extended domains involving several light-harvesting complexes can lead to unambiguous signatures in the optical response, specifically, linear absorption spectra. We characterize, under experimentally established conditions of molecular assembly and protein-induced inhomogeneities, the optical absorption in these arrays from polarized and unpolarized excitation, and demonstrate that it can be used as a diagnostic tool to determine the resonance coupling between iso-energetic light-harvesting structures. The knowledge of these couplings would then provide further insight into the dynamical properties of transfer, such as facilitating the accurate determination of Förster rates.

  18. Gain and loss of photosynthetic membranes during plastid differentiation in the shoot apex of Arabidopsis.

    PubMed

    Charuvi, Dana; Kiss, Vladimir; Nevo, Reinat; Shimoni, Eyal; Adam, Zach; Reich, Ziv

    2012-03-01

    Chloroplasts of higher plants develop from proplastids, which are undifferentiated plastids that lack photosynthetic (thylakoid) membranes. In flowering plants, the proplastid-chloroplast transition takes place at the shoot apex, which consists of the shoot apical meristem (SAM) and the flanking leaf primordia. It has been believed that the SAM contains only proplastids and that these become chloroplasts only in the primordial leaves. Here, we show that plastids of the SAM are neither homogeneous nor necessarily null. Rather, their developmental state varies with the specific region and/or layer of the SAM in which they are found. Plastids throughout the L1 and L3 layers of the SAM possess fairly developed thylakoid networks. However, many of these plastids eventually lose their thylakoids during leaf maturation. By contrast, plastids at the central, stem cell-harboring region of the L2 layer of the SAM lack thylakoid membranes; these appear only at the periphery, near the leaf primordia. Thus, plastids in the SAM undergo distinct differentiation processes that, depending on their lineage and position, lead to either development or loss of thylakoid membranes. These processes continue along the course of leaf maturation.

  19. Photosynthetic control of electron transport and the regulation of gene expression.

    PubMed

    Foyer, Christine H; Neukermans, Jenny; Queval, Guillaume; Noctor, Graham; Harbinson, Jeremy

    2012-02-01

    The term 'photosynthetic control' describes the short- and long-term mechanisms that regulate reactions in the photosynthetic electron transport (PET) chain so that the rate of production of ATP and NADPH is coordinated with the rate of their utilization in metabolism. At low irradiances these mechanisms serve to optimize light use efficiency, while at high irradiances they operate to dissipate excess excitation energy as heat. Similarly, the production of ATP and NADPH in ratios tailored to meet demand is finely tuned by a sophisticated series of controls that prevents the accumulation of high NAD(P)H/NAD(P) ratios and ATP/ADP ratios that would lead to potentially harmful over-reduction and inactivation of PET chain components. In recent years, photosynthetic control has also been extrapolated to the regulation of gene expression because mechanisms that are identical or similar to those that serve to regulate electron flow through the PET chain also coordinate the regulated expression of genes encoding photosynthetic proteins. This requires coordinated gene expression in the chloroplasts, mitochondria, and nuclei, involving complex networks of forward and retrograde signalling pathways. Photosynthetic control operates to control photosynthetic gene expression in response to environmental and metabolic changes. Mining literature data on transcriptome profiles of C(3) and C(4) leaves from plants grown under high atmospheric carbon dioxide (CO(2)) levels compared with those grown with ambient CO(2) reveals that the transition to higher photorespiratory conditions in C(3) plants enhances the expression of genes associated with cyclic electron flow pathways in Arabidopsis thaliana, consistent with the higher ATP requirement (relative to NADPH) of photorespiration.

  20. Novel conducting polymer-heteropoly acid hybrid material for artificial photosynthetic membranes.

    PubMed

    McDonald, Michael B; Freund, Michael S

    2011-04-01

    Artificial photosynthetic (AP) approaches to convert and store solar energy will require membranes capable of conducting both ions and electrons while remaining relatively transparent and chemically stable. A new approach is applied herein involving previously described in situ chemical polymerization of electronically conducting poly(3,4-ethylenedioxythiophene) (PEDOT) in the presence of proton conducting heteropoly acid (HPA) phosphomolybdic acid (PMA). The electrochemical behaviour of the PEDOT/PMA hybrid material was investigated and it was found that the conducting polymer (CP) is susceptible to irreversible oxidative processes at potentials where water is oxidized. This will be problematic in AP devices should the process occur in very close proximity to a conducting polymer-based membrane. It was found that PEDOT grants the system good electrical performance in terms of conductivity and stability over a large pH window; however, the presence of PMA was not found to provide sufficient proton conductivity. This was addressed in an additional study by tuning the ionic (and in turn, electronic) conductivity in creating composites with the proton-permselective polymer Nafion. It was found that a material of this nature with near-equal conductivity for optimal chemical conversion efficiency will consist of roughly three parts Nafion and one part PEDOT/PMA.

  1. Oxygen and light effects on the expression of the photosynthetic apparatus in Bradyrhizobium sp. C7T1 strain.

    PubMed

    Montecchia, M S; Pucheu, N L; Kerber, N L; García, A F

    2006-12-01

    Photosynthetic bradyrhizobia are nitrogen-fixing symbionts colonizing the stem and roots of some leguminous plants like Aeschynomene. The effect of oxygen and light on the formation of the photosynthetic apparatus of Bradyrhizobium sp. C7T1 strain is described here. Oxygen is required for growth, but at high concentration inhibits the synthesis of bacteriochlorophyll (BChl) and of the photosynthetic apparatus. However, we show that in vitro, aerobic photosynthetic electron transport occurred leading to ADP photophosphorylation. The expression of the photosynthetic apparatus was regulated by oxygen in a manner which did not agree with earlier results in other photosynthetic bradyrhizobia since BChl accumulation was the highest under microaerobic conditions. This strain produces photosynthetic pigments when grown under cyclic illumination or darkness. However, under continuous white light illumination, a Northern blot analysis of the puf operon showed that, the expression of the photosynthetic genes of the antenna was considerable. Under latter conditions BChl accumulation in the cells was dependent on the oxygen concentration. It was not detectable at high oxygen tensions but became accumulated under low oxygen (microaerobiosis). It is known that in photosynthetic bradyrhizobia bacteriophytochrome photoreceptor (BphP) partially controls the synthesis of the photosystem in response to light. In C7T1 strain far-red light illumination did not stimulate the synthesis of the photosynthetic apparatus suggesting the presence of a non-functional BphP-mediated light regulatory mechanism.

  2. Effects of grafting on key photosynthetic enzymes and gene expression in the citrus cultivar Huangguogan.

    PubMed

    Liao, L; Cao, S Y; Rong, Y; Wang, Z H

    2016-03-04

    Grafting influences scion photosynthetic capacity and fruit quality. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), which strongly affects photosynthetic rate, and Rubisco activase (RCA), which regulates Rubisco activity, are two key photosynthetic enzymes. However, little information is available regarding the effect of grafting on the concentration and expression of Rubisco and RCA in the citrus cultivar Huangguogan. The objective of this study was to investigate the effect of grafting Huangguogan plants onto trifoliate orange, tangerine, and orange on: 1) the concentration of Rubisco and RCA; 2) the mRNA levels of rbcL, rbcS, and rca; and 3) fruit quality. Overall, the results showed that when Huangguogan plants budded on tangerine and orange, they had better fruit quality, while on trifoliate orange they had higher Rubisco concentration. Tangerine and orange are probably the most suitable rootstocks for Huangguogan plants given the environmental conditions of Sichuan Province, China.

  3. Enhanced membrane protein expression by engineering increased intracellular membrane production

    PubMed Central

    2013-01-01

    Background Membrane protein research is frequently hampered by the low natural abundance of these proteins in cells and typically relies on recombinant gene expression. Different expression systems, like mammalian cells, insect cells, bacteria and yeast are being used, but very few research efforts have been directed towards specific host cell customization for enhanced expression of membrane proteins. Here we show that by increasing the intracellular membrane production by interfering with a key enzymatic step of lipid synthesis, enhanced expression of membrane proteins in yeast is achieved. Results We engineered the oleotrophic yeast, Yarrowia lipolytica, by deleting the phosphatidic acid phosphatase, PAH1, which led to massive proliferation of endoplasmic reticulum (ER) membranes. For all eight tested representatives of different integral membrane protein families, we obtained enhanced protein accumulation levels and in some cases enhanced proteolytic integrity in the ∆pah1 strain. We analysed the adenosine A2AR G-protein coupled receptor case in more detail and found that concomitant induction of the unfolded protein response in the ∆pah1 strain enhanced the specific ligand binding activity of the receptor. These data indicate an improved quality control mechanism for membrane proteins accumulating in yeast cells with proliferated ER. Conclusions We conclude that redirecting the metabolic flux of fatty acids away from triacylglycerol- and sterylester-storage towards membrane phospholipid synthesis by PAH1 gene inactivation, provides a valuable approach to enhance eukaryotic membrane protein production. Complementary to this improvement in membrane protein quantity, UPR co-induction further enhances the quality of the membrane protein in terms of its proper folding and biological activity. Importantly, since these pathways are conserved in all eukaryotes, it will be of interest to investigate similar engineering approaches in other cell types of

  4. Photobleaching of photosynthetic pigments in spinach thylakoid membranes. Effect of temperature, oxygen and DCMU.

    PubMed

    Velitchkova, M Y; Picorel, R

    2004-01-01

    The time dependence of photobleaching of photosynthetic pigments under high light illumination of isolated spinach thylakoid membranes at 22 and 4 degrees C was investigated. At 22 degrees C, the bleaching at 678, 472 and 436 nm was prominent but lowering the temperature up to 4 degrees C during illumination prevented the pigments from bleaching almost completely. The accelerating effect on pigment photobleaching by the presence of 3-(3,4 dichlorophenyl)-1,1-dimethyl-urea)-(DCMU), a well-known inhibitor of the electron transport and known to prevent photosystem I (PSI) and photosystem II (PSII) against photoinhibitory damage, was also suppressed at low temperature. At 22 degrees C in the presence and absence of DCMU, the decrease of the absorption at 678 and 472 nm was accompanied by a shift to the shorter wavelengths. To check the involvement of reactive oxygen species in the process, pigment photobleaching was followed in anaerobiosis. The effects of the three different environmental factors--light, temperature and DCMU--on the dynamics of photobleaching are discussed in terms of different susceptibility of the main pigment-protein complexes to photoinhibition.

  5. Orientation of chlorophylls within chloroplasts as shown by optical and electrochromic properties of the photosynthetic membrane.

    PubMed

    Paillotin, G; Breton, J

    1977-04-01

    The effects on the optical properties of photosynthetic membranes caused by several types of chlorophyll differing in resonance frequency and in spatial disposition are theoretically analyzed. Using a method of moments and the linear dichroism spectrum of the lamellae, we evaluated the mean angle (phi) between the transition moment of each chlorophyll and the normal to the lamellae. We have confirmed that at about 695 nm the transition moment is in the plane of the lamellae, and outside it for chlorophyll b (phi approximately 48.6 degrees). By integrating over frequency the absorption variations affected by ionophores, we show that they may be ascribed to a Stark effect, and we analyze the dependence of this effect on the orientation of the chlorophylls. From this dependence and the degree of polarization of the Stark effect, we calculate the spatial fluctuations of the angle phi. The calculation shows that a definite value of phi corresponds to each resonance frequency of chlorophyl a found in vivo. This proves that the chlorophylls a are not oriented partly random. For chlorophylls b, on the other hand, phi may fluctuate by some 10 degrees about its mean value. The structural consequences of these results are discussed.

  6. State of manganese in the photosynthetic apparatus. 2. X-ray absorption edge studies on manganese in photosynthetic membrane

    SciTech Connect

    Kirby, J. A.; Goodin, D. B.; Wydrzynski, T.; Robertson, A. S.; Klein, M. P.

    1981-09-01

    X-ray absorption spectra at the Manganese K-edge are presented for spinach chloroplasts, and chloroplasts which have been Tris treated and hence unable to evolve oxygen. A significant change in the electronic environment of manganese is observed and is attributed to the release of manganese from the thylakoid membranes with a concomitant change in oxidation state. A correlation of the K-edge energy, defined as the energy at the first inflection point, with coordination charge has been established for a number of manganese compounds of known structure and oxidation state. In this study, comparison of the manganese K-edge energies of the chloroplast samples with the reference compounds places the average oxidation state of the chloroplasts between 2+ and 3+. Using the edge spectra for Tris treated membranes which were osmotically shocked to remove the released manganese, difference edge spectra were synthesized to approximate the active pool of manganese. Coordination charge predictions for this fraction are consistent with an average resting oxidation state higher than 2+. The shape at the edge is also indicative of heterogeneity of the manganese site, of low symmetry, or both.

  7. Suppression of Tla1 gene expression for improved solar conversion efficiency and photosynthetic productivity in plants and algae

    DOEpatents

    Melis, Anastasios; Mitra, Mautusi

    2010-06-29

    The invention provides method and compositions to minimize the chlorophyll antenna size of photosynthesis by decreasing TLA1 gene expression, thereby improving solar conversion efficiencies and photosynthetic productivity in plants, e.g., green microalgae, under bright sunlight conditions.

  8. Soluble variants of Rhodobacter capsulatus membrane-anchored cytochrome cy are efficient photosynthetic electron carriers.

    PubMed

    Oztürk, Yavuz; Lee, Dong-Woo; Mandaci, Sevnur; Osyczka, Artur; Prince, Roger C; Daldal, Fevzi

    2008-05-16

    Photosynthetic (Ps) electron transport pathways often contain multiple electron carriers with overlapping functions. Here we focus on two c-type cytochromes (cyt) in facultative phototrophic bacteria of the Rhodobacter genus: the diffusible cyt c2 and the membrane-anchored cyt c(y). In species like R. capsulatus, cyt c(y) functions in both Ps and respiratory electron transport chains, whereas in other species like R. sphaeroides, it does so only in respiration. The molecular bases of this difference was investigated by producing a soluble variant of cyt c(y) (S-c(y)), by fusing genetically the cyt c2 signal sequence to the cyt c domain of cyt c(y). This novel electron carrier was unable to support the Ps growth of R. capsulatus. However, strains harboring cyt S-c(y) regained Ps growth ability by acquiring mutations in its cyt c domain. They produced cyt S-c(y) variants at amounts comparable with that of cyt c2, and conferred Ps growth. Chemical titration indicated that the redox midpoint potential of cyt S-c(y) was about 340 mV, similar to that of cyts c2 or c(y). Remarkably, electron transfer kinetics from the cyt bc1 complex to the photochemical reaction center (RC) mediated by cyt S-c(y) was distinct from those seen with the cyt c2 or cyt c(y). The kinetics exhibited a pronounced slow phase, suggesting that cyt S-c(y) interacted with the RC less tightly than cyt c2. Comparison of structural models of cyts c2 and S-c(y) revealed that several of the amino acid residues implicated in long-range electrostatic interactions promoting binding of cyt c2 to the RC are not conserved in cyt c(y), whereas those supporting short-range hydrophobic interactions are conserved. These findings indicated that attaching electron carrier cytochromes to the membrane allowed them to weaken their interactions with their partners so that they could accommodate more rapid multiple turnovers.

  9. Eukaryotic behaviour of a prokaryotic energy-transducing membrane: fully detached vesicular organelles arise by budding from the Rhodobacter sphaeroides intracytoplasmic photosynthetic membrane.

    PubMed

    Niederman, Robert A

    2010-05-01

    A major feature that distinguishes prokaryotic organisms from eukaryotes is their less complex internal structure, in which all membrane-associated functions are thought to be present within a continuous lipid-protein bilayer, rather than with distinct organelles. Contrary to this notion, as described by Tucker and co-workers in this issue of Molecular Microbiology, the application of cryo-electron tomography to the purple bacterium Rhodobacter sphaeroides has demonstrated a heretofore unrecognized ultrastructural complexity within the intracytoplasmic membrane (ICM) housing the photosynthetic apparatus. In addition to distinguishing invaginations of the cytoplasmic membrane (CM) and interconnected vesicular structures still attached to the CM, a eukaryote-like ICM budding process was revealed, which results in the formation of fully detached vesicular structures. These bacterial organelles are able to carry out both the light-harvesting and light-driven energy transduction activities necessary for the cells to assume a photosynthetic lifestyle. Their formation is shown to represent the final stage in a membrane invagination and growth process, originating with small CM indentations, which after cell disruption give rise to a membrane fraction that can be separated from mature ICM vesicles by rate-zone sedimentation.

  10. Age-dependent changes in the functions and compositions of photosynthetic complexes in the thylakoid membranes of Arabidopsis thaliana.

    PubMed

    Nath, Krishna; Phee, Bong-Kwan; Jeong, Suyeong; Lee, Sun Yi; Tateno, Yoshio; Allakhverdiev, Suleyman I; Lee, Choon-Hwan; Nam, Hong Gil

    2013-11-01

    Photosynthetic complexes in the thylakoid membrane of plant leaves primarily function as energy-harvesting machinery during the growth period. However, leaves undergo developmental and functional transitions along aging and, at the senescence stage, these complexes become major sources for nutrients to be remobilized to other organs such as developing seeds. Here, we investigated age-dependent changes in the functions and compositions of photosynthetic complexes during natural leaf senescence in Arabidopsis thaliana. We found that Chl a/b ratios decreased during the natural leaf senescence along with decrease of the total chlorophyll content. The photosynthetic parameters measured by the chlorophyll fluorescence, photochemical efficiency (F v/F m) of photosystem II, non-photochemical quenching, and the electron transfer rate, showed a differential decline in the senescing part of the leaves. The CO2 assimilation rate and the activity of PSI activity measured from whole senescing leaves remained relatively intact until 28 days of leaf age but declined sharply thereafter. Examination of the behaviors of the individual components in the photosynthetic complex showed that the components on the whole are decreased, but again showed differential decline during leaf senescence. Notably, D1, a PSII reaction center protein, was almost not present but PsaA/B, a PSI reaction center protein is still remained at the senescence stage. Taken together, our results indicate that the compositions and structures of the photosynthetic complexes are differentially utilized at different stages of leaf, but the most dramatic change was observed at the senescence stage, possibly to comply with the physiological states of the senescence process.

  11. Heterologous expression of Arabidopsis phytochrome B in transgenic potato influences photosynthetic performance and tuber development

    SciTech Connect

    Thiele, A.; Herold, M.; Lenk, I.; Gatz, C. . Albrecht von Haller Inst. fuer Pflanzenwissenschaften); Quail, P.H. )

    1999-05-01

    Transgenic potato (Solanum tuberosum) plants expressing Arabidopsis phytochrome B were characterized morphologically and physiologically under white light in a greenhouse to explore their potential for improved photosynthesis and higher tuber yields. As expected, overexpression of functional phytochrome B caused pleiotropic effects such as semidwarfism, decreased apical dominance, a higher number of smaller but thicker leaves, and increased pigmentation. Because of increased numbers of chloroplasts in elongated palisade cells, photosynthesis per leaf area and in each individual plant increased. In addition, photosynthesis was less sensitive to photoinactivation under prolonged light stress. The beginning of senescence was not delayed, but deceleration of chlorophyll degradation extended the lifetime of photosynthetically active plants. Both the higher photosynthetic performance and the longer lifespan of the transgenic plants allowed greater biomass production, resulting in extended underground organs with increased tuber yields.

  12. cDNA cloning, expression levels and gene mapping of photosynthetic and non-photosynthetic ferredoxin genes in sunflower (Helianthus annuus L.).

    PubMed

    Venegas-Calerón, M; Zambelli, A; Ruiz-López, N; Youssar, L; León, A; Garcés, R; Martínez-Force, Enrique

    2009-03-01

    Fatty acid desaturation in plastids and chloroplasts depends on the electron-donor activity of ferredoxins. Using degenerate oligonucleotides designed from known photosynthetic and heterotrophic plant ferredoxin sequences, two full-length ferredoxin cDNAs were cloned from sunflower (Helianthus annuus L.) leaves and developing seeds, HaFd1 and HaFd2, homologous to photosynthetic and non-photosynthetic ferredoxins, respectively. Based on these cDNAs, the respective genomic sequences were obtained and the presence of DNA polymorphisms was investigated. Complete sequencing of the HaFd1 and HaFd2 genes in different lines indicated the presence of two haplotypes for HaFd2 and their alignment showed that sequence polymorphisms are restricted to the 5'-NTR intron. In addition, specific DNA markers for the HaFd1 and HaFd2 genes were developed that enabled the genes to be mapped. Accordingly, the HaFd1 locus maps to linkage group 10 of the public sunflower map, while the HaFd2 locus maps to linkage group 11. Both ferredoxins display different spatial-temporal patterns of expression. While HaFd2 is expressed at similar levels in all tissues tested (leaves, stem, roots, cotyledons and developing seeds), HaFd1 is more strongly expressed in green tissues than in all the other tissues tested. Both photosynthetic- and heterotrophic-ferredoxins are present in sunflower seeds and may contribute to fatty acid desaturation during oil accumulation. Nevertheless, the levels of HaFd2 expression during seed formation are distinct in lines that only varied in the HaFd2 haplotypes they expressed.

  13. Light harvesting, energy transfer and electron cycling of a native photosynthetic membrane adsorbed onto a gold surface.

    PubMed

    Magis, Gerhard J; den Hollander, Mart-Jan; Onderwaater, Willem G; Olsen, John D; Hunter, C Neil; Aartsma, Thijs J; Frese, Raoul N

    2010-03-01

    Photosynthetic membranes comprise a network of light harvesting and reaction center pigment-protein complexes responsible for the primary photoconversion reactions: light absorption, energy transfer and electron cycling. The structural organization of membranes of the purple bacterial species Rb. sphaeroides has been elucidated in most detail by means of polarized light spectroscopy and atomic force microscopy. Here we report a functional characterization of native and untreated membranes of the same species adsorbed onto a gold surface. Employing fluorescence confocal spectroscopy and light-induced electrochemistry we show that adsorbed membranes maintain their energy and electron transferring functionality. Gold-adsorbed membranes are shown to generate a steady high photocurrent of 10 microA/cm(2) for several minutes and to maintain activity for up to three days while continuously illuminated. The surface-adsorbed membranes exhibit a remarkable functionality under aerobic conditions, even when exposed to light intensities well above that of direct solar irradiation. The component at the interface of light harvesting and electron cycling, the LH1 complex, displays exceptional stability, likely contributing to the robustness of the membranes. Peripheral light harvesting LH2 complexes show a light intensity dependent decoupling from photoconversion. LH2 can act as a reversible switch at low-light, an increased emitter at medium light and photobleaches at high light.

  14. Localization of Membrane Proteins in the Cyanobacterium Synechococcus sp. PCC7942 (Radial Asymmetry in the Photosynthetic Complexes).

    PubMed

    Sherman, D. M.; Troyan, T. A.; Sherman, L. A.

    1994-09-01

    Localization of membrane proteins in the cyanobacterium Synechococcus sp. PCC7942 was determined by transmission electron microscopy utilizing immunocytochemistry with cells prepared by freeze-substitution. This preparation procedure maintained cellular morphology and permitted detection of cellular antigens with high sensitivity and low background. Synechococcus sp. PCC7942 is a unicellular cyanobacterium with thylakoids organized in concentric layers toward the periphery of the cell. Cytochrome oxidase was localized almost entirely in the cytoplasmic membrane, whereas a carotenoprotein (P35) was shown to be a cell wall component. The major photosystem II (PSII) proteins (D1, D2 CP43, and CP47) were localized throughout the thylakoids. Proteins of the Cyt b6/f complex were found to have a similar distribution. Thylakoid luminal proteins, such as the Mn-stabilizing protein, were located primarily in the thylakoid, but a small, reproducible fraction was found in the outer compartment. The photosystem I (PSI) reaction center proteins and the ATP synthase proteins were found associated mostly with the outermost thylakoid and with the cytoplasmic membrane. These results indicated that the photosynthetic apparatus is not evenly distributed throughout the thylakoids. Rather, there is a radial asymmetry such that much of the PSI and the ATPase synthase is located in the outermost thylakoid. The relationship of this structure to the photosynthetic mechanism is discussed. It is suggested that the photosystems are separated because of kinetic differences between PSII and PSI, as hypothesized by H.-W. Trissl and C. Wilhelm (Trends Biochem Sci [1993] 18:415-419).

  15. Unique role for translation initiation factor 3 in the light color regulation of photosynthetic gene expression.

    PubMed

    Gutu, Andrian; Nesbit, April D; Alverson, Andrew J; Palmer, Jeffrey D; Kehoe, David M

    2013-10-01

    Light-harvesting antennae are critical for collecting energy from sunlight and providing it to photosynthetic reaction centers. Their abundance and composition are tightly regulated to maintain efficient photosynthesis in changing light conditions. Many cyanobacteria alter their light-harvesting antennae in response to changes in ambient light-color conditions through the process of chromatic acclimation. The control of green light induction (Cgi) pathway is a light-color-sensing system that controls the expression of photosynthetic genes during chromatic acclimation, and while some evidence suggests that it operates via transcription attenuation, the components of this pathway have not been identified. We provide evidence that translation initiation factor 3 (IF3), an essential component of the prokaryotic translation initiation machinery that binds the 30S subunit and blocks premature association with the 50S subunit, is part of the control of green light induction pathway. Light regulation of gene expression has not been previously described for any translation initiation factor. Surprisingly, deletion of the IF3-encoding gene infCa was not lethal in the filamentous cyanobacterium Fremyella diplosiphon, and its genome was found to contain a second, redundant, highly divergent infC gene which, when deleted, had no effect on photosynthetic gene expression. Either gene could complement an Escherichia coli infC mutant and thus both encode bona fide IF3s. Analysis of prokaryotic and eukaryotic genome databases established that multiple infC genes are present in the genomes of diverse groups of bacteria and land plants, most of which do not undergo chromatic acclimation. This suggests that IF3 may have repeatedly evolved important roles in the regulation of gene expression in both prokaryotes and eukaryotes.

  16. Oxygen regulation of development of the photosynthetic membrane system in Chloroflexus aurantiacus

    SciTech Connect

    Foster, J.M.; Redlinger, T.E.; Blankenship, R.E.; Fuller, R.C.

    1986-08-01

    Oxygen levels which control induction of the assembly of the pigment-protein photosynthetic polypeptides in dark-grown Chloroflexus aurantiacus were determined. The induction signal by low-oxygen tension is not directly related to the respiratory competence of these photosynthetic cells. Cytochrome c/sub 554/, the primary electron donor to P865/sup +/ of the reaction center, is not present in dark-grown respiratory cells but is induced in parallel with bacteriochlorophylls a and c and at similar oxygen partial pressure. The development of these components of the photosynthetic apparatus and its electron transport chain is completely independent of the presence of any detectable light of bacteriochlorophyll c or a pigments in C. aurantiacus.

  17. Photosynthetic control of the plasma membrane H+-ATPase in Vallisneria leaves. I. Regulation of activity during light-induced membrane hyperpolarization.

    PubMed

    Harada, Akiko; Okazaki, Yoshiji; Takagi, Shingo

    2002-04-01

    In mesophyll cells of the aquatic angiosperm Vallisneria gigantea Graebner, red, blue, or blue plus far-red light induced a typical membrane hyperpolarization, whereas far-red light alone had little effect. Both N,N'-dicyclohexylcarbodiimide, a potent inhibitor of H+-ATPase, and carbonylcyanide m-chlorophenylhydrazone, an uncoupler, produced a considerable membrane depolarization in the dark-adapted cells and a complete suppression of the light-induced hyperpolarization. Although 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU), an inhibitor of photosynthetic electron transport, did not affect the membrane potential in darkness, it completely inhibited the light-induced membrane hyperpolarization. In vivo illumination of the leaves with red light caused a substantial decrease in the Km for ATP, not only of the vanadate-sensitive ATP-hydrolyzing activity in leaf homogenate, but also of the ATP-dependent H+-transporting activity in plasma membrane (PM) vesicles isolated from the leaves by aqueous polymer two-phase partitioning methods. The effects of red light were negated by the presence of DCMU during illumination. In vivo illumination with far-red light had no effect on the Km for ATP of H+-transporting activity. These results strongly suggest that an electrogenic component in the membrane potential of the mesophyll cell is generated by the PM H+-ATPase, and that photosynthesis-dependent modulation of the enzymatic activity of the PM H+-ATPase is involved in the light-induced membrane hyperpolarization.

  18. The thylakoid membrane proteome of two marine diatoms outlines both diatom-specific and species-specific features of the photosynthetic machinery.

    PubMed

    Grouneva, Irina; Rokka, Anne; Aro, Eva-Mari

    2011-12-02

    The thylakoid membrane of photoautotrophic organisms contains the main components of the photosynthetic electron transport chain. Detailed proteome maps of the thylakoid protein complexes of two marine diatoms, Thalassiosira pseudonana and Phaeodactylum tricornutum, were created by means of two-dimensional blue native (BN)/SDS-PAGE coupled with mass spectrometry analysis. One novel diatom-specific photosystem I (PS I)-associated protein was identified. A second plastid-targeted protein with possible PS I interaction was discovered to be restricted to the centric diatom species T. pseudonana. PGR5/PGRL homologues were found to be the only protein components of PS I-mediated cyclic electron transport common to both species. For the first time, evidence for a possible PS I localization of LI818-like light harvesting proteins (Lhcx) is presented. This study also advances the current knowledge on the light harvesting antenna composition and Lhcx expression in T. pseudonana on the protein level and presents details on the molecular distribution of Lhcx in diatoms. Above mentioned proteins and several others with unknown function provide a broad basis for further mutagenesis analysis, aiming toward further understanding of the composition and function of the photosynthetic apparatus of diatoms. The proteomics approach of this study further served as a tool to confirm and improve genome-derived protein models.

  19. Integral Membrane Protein Expression in Saccharomyces cerevisiae.

    PubMed

    Boswell-Casteel, Rebba C; Johnson, Jennifer M; Stroud, Robert M; Hays, Franklin A

    2016-01-01

    Eukaryotic integral membrane proteins are challenging targets for crystallography or functional characterization in a purified state. Since expression is often a limiting factor when studying this difficult class of biological macromolecules, the intent of this chapter is to focus on the expression of eukaryotic integral membrane proteins (IMPs) using the model organism Saccharomyces cerevisiae. S. cerevisiae is a prime candidate for the expression of eukaryotic IMPs because it offers the convenience of using episomal expression plasmids, selection of positive transformants, posttranslational modifications, and it can properly fold and target IMPs. Here we present a generalized protocol and insights based on our collective knowledge as an aid to overcoming the challenges faced when expressing eukaryotic IMPs in S. cerevisiae.

  20. Equilibration kinetics in isolated and membrane-bound photosynthetic reaction centers upon illumination: a method to determine the photoexcitation rate.

    PubMed

    Manzo, Anthony J; Goushcha, Alexander O; Barabash, Yuri M; Kharkyanen, Valery N; Scott, Gary W

    2009-07-01

    Kinetics of electron transfer, following variation of actinic light intensity, for photosynthetic reaction centers (RCs) of purple bacteria (isolated and membrane-bound) were analyzed by measuring absorbance changes in the primary photoelectron donor absorption band at 865 nm. The bleaching of the primary photoelectron donor absorption band in RCs, following a sudden increase of illumination from the dark to an actinic light intensity of I(exp), obeys a simple exponential law with the rate constant alphaI(exp) + k(rec), in which alpha is a parameter relating the light intensity, measured in mW/cm(2), to a corresponding theoretical rate in units of reciprocal seconds, and k(rec) is the effective rate constant of the charge recombination in the photosynthetic RCs. In this work, a method for determining the alpha parameter value is developed and experimentally verified for isolated and membrane-bound RCs, allowing for rigorous modeling of RC macromolecule dynamics under varied photoexcitation conditions. Such modeling is necessary for RCs due to alterations of the forward photoexcitation rates and relaxation rates caused by illumination history and intramolecular structural dynamics effects. It is demonstrated that the classical Bouguer-Lambert-Beer formalism can be applied for the samples with relatively low scattering, which is not necessarily the case with strongly scattering media or high light intensity excitation.

  1. Potential regulation of gene expression in photosynthetic cells by redox and energy state: approaches towards better understanding.

    PubMed

    Pfannschmidt, T; Bräutigam, K; Wagner, R; Dietzel, L; Schröter, Y; Steiner, S; Nykytenko, A

    2009-02-01

    Photosynthetic electron transport is performed by a chain of redox components that are electrochemically connected in series. Its efficiency depends on the balanced action of the photosystems and on the interaction with the dark reaction. Plants are sessile and cannot escape from environmental conditions such as fluctuating illumination, limitation of CO(2) fixation by low temperatures, salinity, or low nutrient or water availability, which disturb the homeostasis of the photosynthetic process. Photosynthetic organisms, therefore, have developed various molecular acclimation mechanisms that maintain or restore photosynthetic efficiency under adverse conditions and counteract abiotic stresses. Recent studies indicate that redox signals from photosynthetic electron transport and reactive oxygen species (ROS) or ROS-scavenging molecules play a central role in the regulation of acclimation and stress responses. The underlying signalling network of photosynthetic redox control is largely unknown, but it is already apparent that gene regulation by redox signals is of major importance for plants. Signalling cascades controlling the expression of chloroplast and nuclear genes have been identified and dissection of the different pathways is advancing. Because of the direction of information flow, photosynthetic redox signals can be defined as a distinct class of retrograde signals in addition to signals from organellar gene expression or pigment biosynthesis. They represent a vital signal of mature chloroplasts that report their present functional state to the nucleus. Here we describe possible problems in the elucidation of redox signalling networks and discuss some aspects of plant cell biology that are important for developing suitable experimental approaches. The photosynthetic function of chloroplasts represents an important sensor that integrates various abiotic changes in the environment into corresponding molecular signals, which, in turn, regulate cellular

  2. Atomic detail visualization of photosynthetic membranes with GPU-accelerated ray tracing

    SciTech Connect

    Stone, John E.; Sener, Melih; Vandivort, Kirby L.; Barragan, Angela; Singharoy, Abhishek; Teo, Ivan; Ribeiro, Joao V.; Isralewitz, Barry; Liu, Bo; Goh, Boon Chong; Phillips, James C.; MacGregor-Chatwin, Craig; Johnson, Matthew P.; Kourkoutis, Lena F.; Hunter, C. Neil; Schulten, Klaus

    2015-12-12

    The cellular process responsible for providing energy for most life on Earth, namely, photosynthetic light-harvesting, requires the cooperation of hundreds of proteins across an organelle, involving length and time scales spanning several orders of magnitude over quantum and classical regimes. Simulation and visualization of this fundamental energy conversion process pose many unique methodological and computational challenges. In this paper, we present, in two accompanying movies, light-harvesting in the photosynthetic apparatus found in purple bacteria, the so-called chromatophore. The movies are the culmination of three decades of modeling efforts, featuring the collaboration of theoretical, experimental, and computational scientists. Finally, we describe the techniques that were used to build, simulate, analyze, and visualize the structures shown in the movies, and we highlight cases where scientific needs spurred the development of new parallel algorithms that efficiently harness GPU accelerators and petascale computers.

  3. Atomic Detail Visualization of Photosynthetic Membranes with GPU-Accelerated Ray Tracing

    PubMed Central

    Vandivort, Kirby L.; Barragan, Angela; Singharoy, Abhishek; Teo, Ivan; Ribeiro, João V.; Isralewitz, Barry; Liu, Bo; Goh, Boon Chong; Phillips, James C.; MacGregor-Chatwin, Craig; Johnson, Matthew P.; Kourkoutis, Lena F.; Hunter, C. Neil

    2016-01-01

    The cellular process responsible for providing energy for most life on Earth, namely photosynthetic light-harvesting, requires the cooperation of hundreds of proteins across an organelle, involving length and time scales spanning several orders of magnitude over quantum and classical regimes. Simulation and visualization of this fundamental energy conversion process pose many unique methodological and computational challenges. We present, in two accompanying movies, light-harvesting in the photosynthetic apparatus found in purple bacteria, the so-called chromatophore. The movies are the culmination of three decades of modeling efforts, featuring the collaboration of theoretical, experimental, and computational scientists. We describe the techniques that were used to build, simulate, analyze, and visualize the structures shown in the movies, and we highlight cases where scientific needs spurred the development of new parallel algorithms that efficiently harness GPU accelerators and petascale computers. PMID:27274603

  4. Atomic detail visualization of photosynthetic membranes with GPU-accelerated ray tracing

    DOE PAGES

    Stone, John E.; Sener, Melih; Vandivort, Kirby L.; ...

    2015-12-12

    The cellular process responsible for providing energy for most life on Earth, namely, photosynthetic light-harvesting, requires the cooperation of hundreds of proteins across an organelle, involving length and time scales spanning several orders of magnitude over quantum and classical regimes. Simulation and visualization of this fundamental energy conversion process pose many unique methodological and computational challenges. In this paper, we present, in two accompanying movies, light-harvesting in the photosynthetic apparatus found in purple bacteria, the so-called chromatophore. The movies are the culmination of three decades of modeling efforts, featuring the collaboration of theoretical, experimental, and computational scientists. Finally, we describemore » the techniques that were used to build, simulate, analyze, and visualize the structures shown in the movies, and we highlight cases where scientific needs spurred the development of new parallel algorithms that efficiently harness GPU accelerators and petascale computers.« less

  5. Atomic detail visualization of photosynthetic membranes with GPU-accelerated ray tracing

    SciTech Connect

    Stone, John E.; Sener, Melih; Vandivort, Kirby L.; Barragan, Angela; Singharoy, Abhishek; Teo, Ivan; Ribeiro, João V.; Isralewitz, Barry; Liu, Bo; Goh, Boon Chong; Phillips, James C.; MacGregor-Chatwin, Craig; Johnson, Matthew P.; Kourkoutis, Lena F.; Hunter, C. Neil; Schulten, Klaus

    2016-07-01

    The cellular process responsible for providing energy for most life on Earth, namely, photosynthetic light-harvesting, requires the cooperation of hundreds of proteins across an organelle, involving length and time scales spanning several orders of magnitude over quantum and classical regimes. Simulation and visualization of this fundamental energy conversion process pose many unique methodological and computational challenges. We present, in two accompanying movies, light-harvesting in the photosynthetic apparatus found in purple bacteria, the so-called chromatophore. The movies are the culmination of three decades of modeling efforts, featuring the collaboration of theoretical, experimental, and computational scientists. We describe the techniques that were used to build, simulate, analyze, and visualize the structures shown in the movies, and we highlight cases where scientific needs spurred the development of new parallel algorithms that efficiently harness GPU accelerators and petascale computers.

  6. Atomic Detail Visualization of Photosynthetic Membranes with GPU-Accelerated Ray Tracing.

    PubMed

    Stone, John E; Sener, Melih; Vandivort, Kirby L; Barragan, Angela; Singharoy, Abhishek; Teo, Ivan; Ribeiro, João V; Isralewitz, Barry; Liu, Bo; Goh, Boon Chong; Phillips, James C; MacGregor-Chatwin, Craig; Johnson, Matthew P; Kourkoutis, Lena F; Hunter, C Neil; Schulten, Klaus

    2016-07-01

    The cellular process responsible for providing energy for most life on Earth, namely photosynthetic light-harvesting, requires the cooperation of hundreds of proteins across an organelle, involving length and time scales spanning several orders of magnitude over quantum and classical regimes. Simulation and visualization of this fundamental energy conversion process pose many unique methodological and computational challenges. We present, in two accompanying movies, light-harvesting in the photosynthetic apparatus found in purple bacteria, the so-called chromatophore. The movies are the culmination of three decades of modeling efforts, featuring the collaboration of theoretical, experimental, and computational scientists. We describe the techniques that were used to build, simulate, analyze, and visualize the structures shown in the movies, and we highlight cases where scientific needs spurred the development of new parallel algorithms that efficiently harness GPU accelerators and petascale computers.

  7. The effect of microgravity on proton permeability of thylakoid membranes and contribution of II and I photosystems in photosynthetic electron transport in pea chloroplasts.

    PubMed

    Zolotareva, E K; Onoiko, E B; Sytnik, S K; Podorvanov, V V

    1999-07-01

    According to a number investigations microgravity conditions affect membrane apparatus of photosynthesis in cells of higher plants and alga [for review, see Kordyum et al., 1994; Kordyum, 1997]. (see for review). Chloroplasts of space-grown pea plants showed disintegration of grana, shrinkage of the membrane constituting the grana stacks and other structural perturbance of the photosynthetic membranes. However there have been no studies on the effect of microgravity on proton permeability of thylakoid membranes and closely connected with this parameter their photochemical characteristics. The aim of the study is investigation of microgravity effects on protonic permeability of photosynthetic membrane and contribution of photosystem II (PSII) and photosystem I (PSI) in electron transfer from water to potassium ferrycianide (FeCy) in isolated pea chloroplasts. Pea.

  8. [Effects of exogenous salicylic acid on membrane lipid peroxidation and photosynthetic characteristics of Cucumis sativus seedlings under drought stress].

    PubMed

    Hao, Jing-Hong; Yi, Yang; Shang, Qing-Mao; Dong, Chun-Juan; Zhang, Zhi-Gang

    2012-03-01

    To approach the related mechanisms of exogenous salicylic acid (SA) in improving plant drought-resistance, this paper studied the effects of applying exogenous SA to the rhizosphere on the plant growth, membrane lipid peroxidation, proline accumulation, water use efficiency, net photosynthetic rate (Pn), and chlorophyll fluorescence parameters of cucumber (Cucumis sativus) seedlings under drought stresses (60% and 50% of saturated water capacity). Applying SA relieved the inhibitory effects of drought stress on plant growth, Pn, and water use efficiency, decreased membrane lipid peroxidation, and promoted proline accumulation. Meanwhile, the SA decreased the decrements of the maximum photochemical efficiency of PS II, actual photochemical efficiency of PS II, potential activity of PS II, effective photochemical efficiency of PS II, and photochemical quenching coefficient under drought stress significantly, and limited the increase of non-photochemical quenching coefficient. All the results suggested that applying exogenous SA could alleviate the oxidation damage of cell membrane resulted from the drought-caused membrane lipid peroxidation, improve the Pn by increasing PS II activity to benefit water utilization, enhance the regulation capability of osmosis to decrease water loss and increase water use efficiency, and thereby, improve the plant drought-resistance.

  9. Localization of Membrane Proteins in the Cyanobacterium Synechococcus sp. PCC7942 (Radial Asymmetry in the Photosynthetic Complexes).

    PubMed Central

    Sherman, D. M.; Troyan, T. A.; Sherman, L. A.

    1994-01-01

    Localization of membrane proteins in the cyanobacterium Synechococcus sp. PCC7942 was determined by transmission electron microscopy utilizing immunocytochemistry with cells prepared by freeze-substitution. This preparation procedure maintained cellular morphology and permitted detection of cellular antigens with high sensitivity and low background. Synechococcus sp. PCC7942 is a unicellular cyanobacterium with thylakoids organized in concentric layers toward the periphery of the cell. Cytochrome oxidase was localized almost entirely in the cytoplasmic membrane, whereas a carotenoprotein (P35) was shown to be a cell wall component. The major photosystem II (PSII) proteins (D1, D2 CP43, and CP47) were localized throughout the thylakoids. Proteins of the Cyt b6/f complex were found to have a similar distribution. Thylakoid luminal proteins, such as the Mn-stabilizing protein, were located primarily in the thylakoid, but a small, reproducible fraction was found in the outer compartment. The photosystem I (PSI) reaction center proteins and the ATP synthase proteins were found associated mostly with the outermost thylakoid and with the cytoplasmic membrane. These results indicated that the photosynthetic apparatus is not evenly distributed throughout the thylakoids. Rather, there is a radial asymmetry such that much of the PSI and the ATPase synthase is located in the outermost thylakoid. The relationship of this structure to the photosynthetic mechanism is discussed. It is suggested that the photosystems are separated because of kinetic differences between PSII and PSI, as hypothesized by H.-W. Trissl and C. Wilhelm (Trends Biochem Sci [1993] 18:415-419). PMID:12232325

  10. Expression and purification of membrane proteins.

    PubMed

    Kubicek, Jan; Block, Helena; Maertens, Barbara; Spriestersbach, Anne; Labahn, Jörg

    2014-01-01

    Approximately 30% of a genome encodes for membrane proteins. They are one of the most important classes of proteins in that they can receive, differentiate, and transmit intra- and intercellular signals. Some examples of classes of membrane proteins include cell-adhesion molecules, translocases, and receptors in signaling pathways. Defects in membrane proteins may be involved in a number of serious disorders such as neurodegenerative diseases (e.g., Alzheimer's) and diabetes. Furthermore, membrane proteins provide natural entry and anchoring points for the molecular agents of infectious diseases. Thus, membrane proteins constitute ~50% of known and novel drug targets. Progress in this area is slowed by the requirement to develop methods and procedures for expression and isolation that are tailored to characteristic properties of membrane proteins. A set of standard protocols for the isolation of the targets in quantities that allow for the characterization of their individual properties for further optimization is required. The standard protocols given below represent a workable starting point. If optimization of yields is desired, a variation of conditions as outlined in the theory section is recommended.

  11. Photosynthetic membrane-less microbial fuel cells to enhance microalgal biomass concentration.

    PubMed

    Uggetti, Enrica; Puigagut, Jaume

    2016-10-01

    The aim of this study was to quantitatively assess the net increase in microalgal biomass concentration induced by photosynthetic microbial fuel cells (PMFC). The experiment was conducted on six lab-scale PMFC constituted by an anodic chamber simulating an anaerobic digester connected to a cathodic chamber consisting of a mixed algae consortia culture. Three PMFC were operated at closed circuit (PMFC(+)) whereas three PMFC were left unconnected as control (PMFC(-)). PMFC(+) produced a higher amount of carbon dioxide as a product of the organic matter oxidation that resulted in 1.5-3 times higher biomass concentration at the cathode compartment when compared to PMFC(-).

  12. Studying the Supramolecular Organization of Photosynthetic Membranes within Freeze-fractured Leaf Tissues by Cryo-scanning Electron Microscopy.

    PubMed

    Charuvi, Dana; Nevo, Reinat; Kaplan-Ashiri, Ifat; Shimoni, Eyal; Reich, Ziv

    2016-06-23

    Cryo-scanning electron microscopy (SEM) of freeze-fractured samples allows investigation of biological structures at near native conditions. Here, we describe a technique for studying the supramolecular organization of photosynthetic (thylakoid) membranes within leaf samples. This is achieved by high-pressure freezing of leaf tissues, freeze-fracturing, double-layer coating and finally cryo-SEM imaging. Use of the double-layer coating method allows acquiring high magnification (>100,000X) images with minimal beam damage to the frozen-hydrated samples as well as minimal charging effects. Using the described procedures we investigated the alterations in supramolecular distribution of photosystem and light-harvesting antenna protein complexes that take place during dehydration of the resurrection plant Craterostigma pumilum, in situ.

  13. Gain and Loss of Photosynthetic Membranes during Plastid Differentiation in the Shoot Apex of Arabidopsis[W

    PubMed Central

    Charuvi, Dana; Kiss, Vladimir; Nevo, Reinat; Shimoni, Eyal; Adam, Zach; Reich, Ziv

    2012-01-01

    Chloroplasts of higher plants develop from proplastids, which are undifferentiated plastids that lack photosynthetic (thylakoid) membranes. In flowering plants, the proplastid-chloroplast transition takes place at the shoot apex, which consists of the shoot apical meristem (SAM) and the flanking leaf primordia. It has been believed that the SAM contains only proplastids and that these become chloroplasts only in the primordial leaves. Here, we show that plastids of the SAM are neither homogeneous nor necessarily null. Rather, their developmental state varies with the specific region and/or layer of the SAM in which they are found. Plastids throughout the L1 and L3 layers of the SAM possess fairly developed thylakoid networks. However, many of these plastids eventually lose their thylakoids during leaf maturation. By contrast, plastids at the central, stem cell–harboring region of the L2 layer of the SAM lack thylakoid membranes; these appear only at the periphery, near the leaf primordia. Thus, plastids in the SAM undergo distinct differentiation processes that, depending on their lineage and position, lead to either development or loss of thylakoid membranes. These processes continue along the course of leaf maturation. PMID:22438022

  14. Ionic liquids effects on the permeability of photosynthetic membranes probed by the electrochromic shift of endogenous carotenoids.

    PubMed

    Malferrari, Marco; Malferrari, Danilo; Francia, Francesco; Galletti, Paola; Tagliavini, Emilio; Venturoli, Giovanni

    2015-11-01

    Ionic liquids (ILs) are promising materials exploited as solvents and media in many innovative applications, some already used at the industrial scale. The chemical structure and physicochemical properties of ILs can differ significantly according to the specific applications for which they have been synthesized. As a consequence, their interaction with biological entities and toxicity can vary substantially. To select highly effective and minimally harmful ILs, these properties need to be investigated. Here we use the so called chromatophores--protein-phospholipid membrane vesicles obtained from the photosynthetic bacterium Rhodobacter sphaeroides--to assess the effects of imidazolinium and pyrrolidinium ILs, with chloride or dicyanamide as counter anions, on the ionic permeability of a native biological membrane. The extent and modalities by which these ILs affect the ionic conductivity can be studied in chromatophores by analyzing the electrochromic response of endogenous carotenoids, acting as an intramembrane voltmeter at the molecular level. We show that chromatophores represent an in vitro experimental model suitable to probe permeability changes induced in cell membranes by ILs differing in chemical nature, degree of oxygenation of the cationic moiety and counter anion.

  15. Optimal fold symmetry of LH2 rings on a photosynthetic membrane

    PubMed Central

    Cleary, Liam; Chen, Hang; Chuang, Chern; Silbey, Robert J.; Cao, Jianshu

    2013-01-01

    An intriguing observation of photosynthetic light-harvesting systems is the N-fold symmetry of light-harvesting complex 2 (LH2) of purple bacteria. We calculate the optimal rotational configuration of N-fold rings on a hexagonal lattice and establish two related mechanisms for the promotion of maximum excitation energy transfer (EET). (i) For certain fold numbers, there exist optimal basis cells with rotational symmetry, extendable to the entire lattice for the global optimization of the EET network. (ii) The type of basis cell can reduce or remove the frustration of EET rates across the photosynthetic network. We find that the existence of a basis cell and its type are directly related to the number of matching points S between the fold symmetry and the hexagonal lattice. The two complementary mechanisms provide selection criteria for the fold number and identify groups of consecutive numbers. Remarkably, one such group consists of the naturally occurring 8-, 9-, and 10-fold rings. By considering the inter-ring distance and EET rate, we demonstrate that this group can achieve minimal rotational sensitivity in addition to an optimal packing density, achieving robust and efficient EET. This corroborates our findings i and ii and, through their direct relation to S, suggests the design principle of matching the internal symmetry with the lattice order. PMID:23650366

  16. Identification of an Atypical Membrane Protein Involved in the Formation of Protein Disulfide Bonds in Oxygenic Photosynthetic Organisms*S⃞

    PubMed Central

    Singh, Abhay K.; Bhattacharyya-Pakrasi, Maitrayee; Pakrasi, Himadri B.

    2008-01-01

    The evolution of oxygenic photosynthesis in cyanobacteria nearly three billion years ago provided abundant reducing power and facilitated the elaboration of numerous oxygen-dependent reactions in our biosphere. Cyanobacteria contain an internal thylakoid membrane system, the site of photosynthesis, and a typical Gram-negative envelope membrane system. Like other organisms, the extracytoplasmic space in cyanobacteria houses numerous cysteine-containing proteins. However, the existence of a biochemical system for disulfide bond formation in cyanobacteria remains to be determined. Extracytoplasmic disulfide bond formation in non-photosynthetic organisms is catalyzed by coordinated interaction between two proteins, a disulfide carrier and a disulfide generator. Here we describe a novel gene, SyndsbAB, required for disulfide bond formation in the extracytoplasmic space of cyanobacteria. The SynDsbAB orthologs are present in most cyanobacteria and chloroplasts of higher plants with fully sequenced genomes. The SynDsbAB protein contains two distinct catalytic domains that display significant similarity to proteins involved in disulfide bond formation in Escherichia coli and eukaryotes. Importantly, SyndsbAB complements E. coli strains defective in disulfide bond formation. In addition, the activity of E. coli alkaline phosphatase localized to the periplasm of Synechocystis 6803 is dependent on the function of SynDsbAB. Deletion of SyndsbAB in Synechocystis 6803 causes significant growth impairment under photoautotrophic conditions and results in hyper-sensitivity to dithiothreitol, a reductant, whereas diamide, an oxidant had no effect on the growth of the mutant strains. We conclude that SynDsbAB is a critical protein for disulfide bond formation in oxygenic photosynthetic organisms and required for their optimal photoautotrophic growth. PMID:18413314

  17. Orientation and energy-transfer studies on chlorophyll in the photosynthetic membrane

    SciTech Connect

    Nairn, J.A.

    1981-12-01

    The two methods of study used for the light reactions of photosynthesis are orientation dependent spectroscopy and picosecond resolution of the fluorescence decay kinetics. Analysis of spectroscopic measurements on complex partially ordered ensembls, such as photosynthetic systems, is usually limited by knowledge of the orientational distribution function. A new method of parametrically representing the distribution function using a physical model of the partially ordered ensemble is described. The parametric representation of the distribution function is the density of states function. Many formulas are included which can be used to calculate density of state functions for a large range of problems. Fluorescence decay kinetics in chloroplasts from green plants and algae are investigated using a synchronously pumped, mode-locked dye laser as an excitation source.

  18. Robust Min-system oscillation in the presence of internal photosynthetic membranes in cyanobacteria.

    PubMed

    MacCready, Joshua S; Schossau, Jory; Osteryoung, Katherine W; Ducat, Daniel C

    2017-02-01

    The oscillatory Min system of Escherichia coli defines the cell division plane by regulating the site of FtsZ-ring formation and represents one of the best-understood examples of emergent protein self-organization in nature. The oscillatory patterns of the Min-system proteins MinC, MinD and MinE (MinCDE) are strongly dependent on the geometry of membranes they bind. Complex internal membranes within cyanobacteria could disrupt this self-organization by sterically occluding or sequestering MinCDE from the plasma membrane. Here, it was shown that the Min system in the cyanobacterium Synechococcus elongatus PCC 7942 oscillates from pole-to-pole despite the potential spatial constraints imposed by their extensive thylakoid network. Moreover, reaction-diffusion simulations predict robust oscillations in modeled cyanobacterial cells provided that thylakoid network permeability is maintained to facilitate diffusion, and suggest that Min proteins require preferential affinity for the plasma membrane over thylakoids to correctly position the FtsZ ring. Interestingly, in addition to oscillating, MinC exhibits a midcell localization dependent on MinD and the DivIVA-like protein Cdv3, indicating that two distinct pools of MinC are coordinated in S. elongatus. Our results provide the first direct evidence for Min oscillation outside of E. coli and have broader implications for Min-system function in bacteria and organelles with internal membrane systems. © 2016 John Wiley & Sons Ltd.

  19. Demonstration of thermal dissipation of absorbed quanta during energy-dependent quenching of chlorophyll fluorescence in photosynthetic membranes.

    PubMed

    Yahyaoui, W; Harnois, J; Carpentier, R

    1998-11-27

    When plant leaves or chloroplasts are exposed to illumination that exceeds their photosynthetic capacity, photoprotective mechanisms such as described by the energy-dependent (non-photochemical) quenching of chlorophyll fluorescence are involved. The protective action is attributed to an increased rate constant for thermal dissipation of absorbed quanta. We applied photoacoustic spectroscopy to monitor thermal dissipation in spinach thylakoid membranes together with simultaneous measurement of chlorophyll fluorescence in the presence of inhibitors of opposite action on the formation of delta pH across the thylakoid membrane (tentoxin and nigericin/valinomycin). A linear relationship between the appearance of fluorescence quenching during formation of the delta pH and the reciprocal variation of thermal dissipation was demonstrated. Dicyclohexylcarbodiimide, which is known to prevent protonation of the minor light-harvesting complexes of photosystem II, significantly reduced the formation of fluorescence quenching and the concurrent increase in thermal dissipation. However, the addition of exogenous ascorbate to activate the xanthophyll de-epoxidase increased non-photochemical fluorescence quenching without affecting the measured thermal dissipation. It is concluded that a portion of energy-dependent fluorescence quenching that is independent of de-epoxidase activity can be readily measured by photoacoustic spectroscopy as an increase in thermal deactivation processes.

  20. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae

    PubMed Central

    2013-01-01

    Background Xanthophylls, oxygenated derivatives of carotenes, play critical roles in photosynthetic apparatus of cyanobacteria, algae, and higher plants. Although the xanthophylls biosynthetic pathway of algae is largely unknown, it is of particular interest because they have a very complicated evolutionary history. Carotenoid hydroxylase (CHY) is an important protein that plays essential roles in xanthophylls biosynthesis. With the availability of 18 sequenced algal genomes, we performed a comprehensive comparative analysis of chy genes and explored their distribution, structure, evolution, origins, and expression. Results Overall 60 putative chy genes were identified and classified into two major subfamilies (bch and cyp97) according to their domain structures. Genes in the bch subfamily were found in 10 green algae and 1 red alga, but absent in other algae. In the phylogenetic tree, bch genes of green algae and higher plants share a common ancestor and are of non-cyanobacterial origin, whereas that of red algae is of cyanobacteria. The homologs of cyp97a/c genes were widespread only in green algae, while cyp97b paralogs were seen in most of algae. Phylogenetic analysis on cyp97 genes supported the hypothesis that cyp97b is an ancient gene originated before the formation of extant algal groups. The cyp97a gene is more closely related to cyp97c in evolution than to cyp97b. The two cyp97 genes were isolated from the green alga Haematococcus pluvialis, and transcriptional expression profiles of chy genes were observed under high light stress of different wavelength. Conclusions Green algae received a β-xanthophylls biosynthetic pathway from host organisms. Although red algae inherited the pathway from cyanobacteria during primary endosymbiosis, it remains unclear in Chromalveolates. The α-xanthophylls biosynthetic pathway is a common feature in green algae and higher plants. The origination of cyp97a/c is most likely due to gene duplication before divergence of

  1. An Evaluation of Sensor Performance for Harmful Compounds by Using Photo-Induced Electron Transfer from Photosynthetic Membranes to Electrodes

    PubMed Central

    Kasuno, Megumi; Kimura, Hiroki; Yasutomo, Hisataka; Torimura, Masaki; Murakami, Daisuke; Tsukatani, Yusuke; Hanada, Satoshi; Matsushita, Takayuki; Tao, Hiroaki

    2016-01-01

    Rapid, simple, and low-cost screening procedures are necessary for the detection of harmful compounds in the effluent that flows out of point sources such as industrial outfall. The present study investigated the effects on a novel sensor of harmful compounds such as KCN, phenol, and herbicides such as 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), 2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine (atrazine), and 2-N-tert-butyl-4-N-ethyl-6-methylsulfanyl-1,3,5-triazine-2,4-diamine (terbutryn). The sensor employed an electrode system that incorporated the photocurrent of intra-cytoplasmic membranes (so-called chromatophores) prepared from photosynthetic bacteria and linked using carbon paste electrodes. The amperometric curve (photocurrent-time curve) of photo-induced electron transfer from chromatophores of the purple photosynthetic bacterium Rhodobacter sphaeroides to the electrode via an exogenous electron acceptor was composed of two characteristic phases: an abrupt increase in current immediately after illumination (I0), and constant current over time (Ic). Compared with other redox compounds, 2,5-dichloro-1,4-benzoquinone (DCBQ) was the most useful exogenous electron acceptor in this system. Photo-reduction of DCBQ exhibited Michaelis-Menten-like kinetics, and reduction rates were dependent on the amount of DCBQ and the photon flux intensity. The Ic decreased in the presence of KCN at concentrations over 0.05 μM (=μmol·dm−3). The I0 decreased following the addition of phenol at concentrations over 20 μM. The Ic was affected by terbutryn at concentrations over 10 μM. In contrast, DCMU and atrazine had no effect on either I0 or Ic. The utility of this electrode system for the detection of harmful compounds is discussed. PMID:27023553

  2. Photosynthetic Membranes of Synechocystis or Plants Convert Sunlight to Photocurrent through Different Pathways due to Different Architectures

    PubMed Central

    Pinhassi, Roy I.; Larom, Shirley; Linkov, Artyom; Boulouis, Alix; Schöttler, Mark-Aurel; Bock, Ralph; Rothschild, Avner; Adir, Noam; Schuster, Gadi

    2015-01-01

    Thylakoid membranes contain the redox active complexes catalyzing the light-dependent reactions of photosynthesis in cyanobacteria, algae and plants. Crude thylakoid membranes or purified photosystems from different organisms have previously been utilized for generation of electrical power and/or fuels. Here we investigate the electron transferability from thylakoid preparations from plants or the cyanobacterium Synechocystis. We show that upon illumination, crude Synechocystis thylakoids can reduce cytochrome c. In addition, this crude preparation can transfer electrons to a graphite electrode, producing an unmediated photocurrent of 15 μA/cm2. Photocurrent could be obtained in the presence of the PSII inhibitor DCMU, indicating that the source of electrons is QA, the primary Photosystem II acceptor. In contrast, thylakoids purified from plants could not reduce cyt c, nor produced a photocurrent in the photocell in the presence of DCMU. The production of significant photocurrent (100 μA/cm2) from plant thylakoids required the addition of the soluble electron mediator DCBQ. Furthermore, we demonstrate that use of crude thylakoids from the D1-K238E mutant in Synechocystis resulted in improved electron transferability, increasing the direct photocurrent to 35 μA/cm2. Applying the analogous mutation to tobacco plants did not achieve an equivalent effect. While electron abstraction from crude thylakoids of cyanobacteria or plants is feasible, we conclude that the site of the abstraction of the electrons from the thylakoids, the architecture of the thylakoid preparations influence the site of the electron abstraction, as well as the transfer pathway to the electrode. This dictates the use of different strategies for production of sustainable electrical current from photosynthetic thylakoid membranes of cyanobacteria or higher plants. PMID:25915422

  3. Photosynthetic Membranes of Synechocystis or Plants Convert Sunlight to Photocurrent through Different Pathways due to Different Architectures.

    PubMed

    Pinhassi, Roy I; Kallmann, Dan; Saper, Gadiel; Larom, Shirley; Linkov, Artyom; Boulouis, Alix; Schöttler, Mark-Aurel; Bock, Ralph; Rothschild, Avner; Adir, Noam; Schuster, Gadi

    2015-01-01

    Thylakoid membranes contain the redox active complexes catalyzing the light-dependent reactions of photosynthesis in cyanobacteria, algae and plants. Crude thylakoid membranes or purified photosystems from different organisms have previously been utilized for generation of electrical power and/or fuels. Here we investigate the electron transferability from thylakoid preparations from plants or the cyanobacterium Synechocystis. We show that upon illumination, crude Synechocystis thylakoids can reduce cytochrome c. In addition, this crude preparation can transfer electrons to a graphite electrode, producing an unmediated photocurrent of 15 μA/cm2. Photocurrent could be obtained in the presence of the PSII inhibitor DCMU, indicating that the source of electrons is QA, the primary Photosystem II acceptor. In contrast, thylakoids purified from plants could not reduce cyt c, nor produced a photocurrent in the photocell in the presence of DCMU. The production of significant photocurrent (100 μA/cm2) from plant thylakoids required the addition of the soluble electron mediator DCBQ. Furthermore, we demonstrate that use of crude thylakoids from the D1-K238E mutant in Synechocystis resulted in improved electron transferability, increasing the direct photocurrent to 35 μA/cm2. Applying the analogous mutation to tobacco plants did not achieve an equivalent effect. While electron abstraction from crude thylakoids of cyanobacteria or plants is feasible, we conclude that the site of the abstraction of the electrons from the thylakoids, the architecture of the thylakoid preparations influence the site of the electron abstraction, as well as the transfer pathway to the electrode. This dictates the use of different strategies for production of sustainable electrical current from photosynthetic thylakoid membranes of cyanobacteria or higher plants.

  4. Nuclear Photosynthetic Gene Expression Is Synergistically Modulated by Rates of Protein Synthesis in Chloroplasts and Mitochondria[W

    PubMed Central

    Pesaresi, Paolo; Masiero, Simona; Eubel, Holger; Braun, Hans-Peter; Bhushan, Shashi; Glaser, Elzbieta; Salamini, Francesco; Leister, Dario

    2006-01-01

    Arabidopsis thaliana mutants prors1-1 and -2 were identified on the basis of a decrease in effective photosystem II quantum yield. Mutations were localized to the 5′-untranslated region of the nuclear gene PROLYL-tRNA SYNTHETASE1 (PRORS1), which acts in both plastids and mitochondria. In prors1-1 and -2, PRORS1 expression is reduced, along with protein synthesis in both organelles. PRORS1 null alleles (prors1-3 and -4) result in embryo sac and embryo development arrest. In mutants with the leaky prors1-1 and -2 alleles, transcription of nuclear genes for proteins involved in photosynthetic light reactions is downregulated, whereas genes for other chloroplast proteins are upregulated. Downregulation of nuclear photosynthetic genes is not associated with a marked increase in the level of reactive oxygen species in leaves and persists in the dark, suggesting that the transcriptional response is light and photooxidative stress independent. The mrpl11 and prpl11 mutants are impaired in the mitochondrial and plastid ribosomal L11 proteins, respectively. The prpl11 mrpl11 double mutant, but neither of the single mutants, resulted in strong downregulation of nuclear photosynthetic genes, like that seen in leaky mutants for PRORS1, implying that, when organellar translation is perturbed, signals derived from both types of organelles cooperate in the regulation of nuclear photosynthetic gene expression. PMID:16517761

  5. The mechanism of anthracene interaction with photosynthetic apparatus: a study using intact cells, thylakoid membranes and PS II complexes isolated from Chlamydomonas reinhardtii.

    PubMed

    Aksmann, Anna; Shutova, Tatiana; Samuelsson, Göran; Tukaj, Zbigniew

    2011-08-01

    Intact cells of Chlamydomonas reinhardtii as well as isolated thylakoid membranes and photosystem II complexes were used to examine a possible mechanism of anthracene (ANT) interaction with the photosynthetic apparatus. Since ANT concentrations above 1 mM were required to significantly inhibit the rate of oxygen evolution in PS II membrane fragments it may indicate that the toxicant did not directly interact with this photosystem. On the other hand, stimulation of oxygen uptake by ANT-treated thylakoids suggested that ANT could either act as an artificial electron acceptor in the photosynthetic electron transport chain or function as an uncoupler. Electron transfer from excited chlorophyll to ANT is impossible due to the very low reduction potential of ANT and therefore we propose that toxic concentrations of ANT increase the thylakoid membrane permeability and thereby function as an uncoupler, enhancing electron transport in vitro. Hence, its unspecific interference with photosynthetic membranes in vitro suggests that the inhibitory effect observed on intact cell photosynthesis is caused by uncoupling of phosphorylation. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Integration of energy and electron transfer processes in the photosynthetic membrane of Rhodobacter sphaeroides

    PubMed Central

    Cartron, Michaël L.; Olsen, John D.; Sener, Melih; Jackson, Philip J.; Brindley, Amanda A.; Qian, Pu; Dickman, Mark J.; Leggett, Graham J.; Schulten, Klaus; Hunter, C. Neil

    2014-01-01

    Photosynthesis converts absorbed solar energy to a protonmotive force, which drives ATP synthesis. The membrane network of chlorophyll–protein complexes responsible for light absorption, photochemistry and quinol (QH2) production has been mapped in the purple phototrophic bacterium Rhodobacter (Rba.) sphaeroides using atomic force microscopy (AFM), but the membrane location of the cytochrome bc1 (cytbc1) complexes that oxidise QH2 to quinone (Q) to generate a protonmotive force is unknown. We labelled cytbc1 complexes with gold nanobeads, each attached by a Histidine10 (His10)-tag to the C-terminus of cytc1. Electron microscopy (EM) of negatively stained chromatophore vesicles showed that the majority of the cytbc1 complexes occur as dimers in the membrane. The cytbc1 complexes appeared to be adjacent to reaction centre light-harvesting 1-PufX (RC-LH1-PufX) complexes, consistent with AFM topographs of a gold-labelled membrane. His-tagged cytbc1 complexes were retrieved from chromatophores partially solubilised by detergent; RC-LH1-PufX complexes tended to co-purify with cytbc1, whereas LH2 complexes became detached, consistent with clusters of cytbc1 complexes close to RC-LH1-PufX arrays, but not with a fixed, stoichiometric cytbc1-RC-LH1-PufX supercomplex. This information was combined with a quantitative mass spectrometry (MS) analysis of the RC, cytbc1, ATP synthase, cytaa3 and cytcbb3 membrane protein complexes, to construct an atomic-level model of a chromatophore vesicle comprising 67 LH2 complexes, 11 LH1-RC-PufX dimers & 2 RC-LH1-PufX monomers, 4 cytbc1 dimers and 2 ATP synthases. Simulation of the interconnected energy, electron and proton transfer processes showed a half-maximal ATP turnover rate for a light intensity equivalent to only 1% of bright sunlight. Thus, the photosystem architecture of the chromatophore is optimised for growth at low light intensities. PMID:24530865

  7. Integration of energy and electron transfer processes in the photosynthetic membrane of Rhodobacter sphaeroides

    DOE PAGES

    Cartron, Michaël L.; Olsen, John D.; Sener, Melih; ...

    2014-02-13

    Photosynthesis converts absorbed solar energy to a protonmotive force, which drives ATP synthesis. The membrane network of chlorophyll–protein complexes responsible for light absorption, photochemistry and quinol (QH2) production has been mapped in the purple phototrophic bacterium Rhodobacter (Rba.) sphaeroides using atomic force microscopy (AFM), but the membrane location of the cytochrome bc1 (cytbc1) complexes that oxidise QH2 to quinone (Q) to generate a protonmotive force is unknown. We labelled cytbc1 complexes with gold nanobeads, each attached by a Histidine10 (His10)-tag to the C-terminus of cytc1. Electron microscopy (EM) of negatively stained chromatophore vesicles showed that the majority of the cytbc1more » complexes occur as dimers in the membrane. The cytbc1 complexes appeared to be adjacent to reaction centre light-harvesting 1-PufX (RC-LH1-PufX) complexes, consistent with AFM topographs of a gold-labelled membrane. His-tagged cytbc1 complexes were retrieved from chromatophores partially solubilised by detergent; RC-LH1-PufX complexes tended to co-purify with cytbc1, whereas LH2 complexes became detached, consistent with clusters of cytbc1 complexes close to RC-LH1-PufX arrays, but not with a fixed, stoichiometric cytbc1-RC-LH1- PufX supercomplex. This information was combined with a quantitative mass spectrometry (MS) analysis of the RC, cytbc1, ATP synthase, cytaa3 and cytcbb3 membrane protein complexes, to construct an atomic-level model of a chromatophore vesicle comprising 67 LH2 complexes, 11 LH1-RC-PufX dimers & 2 RC-LH1-PufX monomers, 4 cytbc1 dimers and 2 ATP synthases. In conclusion, simulation of the interconnected energy, electron and proton transfer processes showed a halfmaximal ATP turnover rate for a light intensity equivalent to only 1% of bright sunlight. Thus, the photosystem architecture of the chromatophore is optimised for growth at low light intensities.« less

  8. Regulation of photosynthetic membrane components in cyanobacteria. Annual report, June 1, 1991 to May 31, 1992

    SciTech Connect

    Sherman, L.A.

    1992-12-31

    The goals of this proposal were two-fold: (1) to analyze the impact of mutations in the Mn-stabilizing protein (MSP) on O{sub 2}-evolution; and (2) to analyze the effect of iron deficiency on membrane assembly in cyanobacteria. The mutations in the psbO gene were performed in the transformable and photoheterotrophic cyanobacterium Synechococcus sp. PCC6803; this strain allows PSII mutations to be propagated under nonphotosynthetic conditions. The research with iron deficiency was performed in the cyanobacterium Synechococcus sp. PCC7942, which is transformable and which has been used previously for all of the authors nutritional-deficiency research. The Synechocystis psbO gene encodes the 33 kDa Mn-stabilizing protein (MSP) of PSII. MSP is an extrinsic protein situated on the lumenal face on the thylakoid membrane, and has been implicated in the stabilization of two of the four Mn atoms, which form the catalytic center of the H{sub 2}O-splitting reaction. There has been a long-standing controversy surrounding the problem. All previous genetic results indicated that MSP was required for O{sub 2}-evolution in vivo. In contrast, biochemical depletion/reconstitution studies suggested that MSP is not absolutely essential, but promotes optimal rates of O{sub 2}-evolving activity by accelerating certain catalytic steps of the reaction cycle.

  9. Tracking energy transfer between light harvesting complex 2 and 1 in photosynthetic membranes grown under high and low illumination.

    PubMed

    Lüer, Larry; Moulisová, Vladimíra; Henry, Sarah; Polli, Dario; Brotosudarmo, Tatas H P; Hoseinkhani, Sajjad; Brida, Daniele; Lanzani, Guglielmo; Cerullo, Giulio; Cogdell, Richard J

    2012-01-31

    Energy transfer (ET) between B850 and B875 molecules in light harvesting complexes LH2 and LH1/RC (reaction center) complexes has been investigated in membranes of Rhodopseudomonas palustris grown under high- and low-light conditions. In these bacteria, illumination intensity during growth strongly affects the type of LH2 complexes synthesized, their optical spectra, and their amount of energetic disorder. We used a specially built femtosecond spectrometer, combining tunable narrowband pump with broadband white-light probe pulses, together with an analytical method based on derivative spectroscopy for disentangling the congested transient absorption spectra of LH1 and LH2 complexes. This procedure allows real-time tracking of the forward (LH2 → LH1) and backward (LH2←LH1) ET processes and unambiguous determination of the corresponding rate constants. In low-light grown samples, we measured lower ET rates in both directions with respect to high-light ones, which is explained by reduced spectral overlap between B850 and B875 due to partial redistribution of oscillator strength into a higher energetic exciton transition. We find that the low-light adaptation in R. palustris leads to a reduced elementary backward ET rate, in accordance with the low probability of two simultaneous excitations reaching the same LH1/RC complex under weak illumination. Our study suggests that backward ET is not just an inevitable consequence of vectorial ET with small energetic offsets, but is in fact actively managed by photosynthetic bacteria.

  10. Fluorescence imaging of single molecules and photosynthetic membranes with two-photon excitation

    SciTech Connect

    Sanchez, E.J.; Novotny, L.; Xie, X.S.

    1997-12-31

    We report the imaging of single-molecule fluorescence induced by two-photon excitation in ambient conditions. Using an inverted fluorescence microscope, we obtained the two-photon images of different single fluorophores (Rhodamine B, Sulforhodamine 101, Coumarin 535 on poly-methyl methacrylate films) and biological membrane fragments by Faster scanning the sample with respect to a diffraction limited focus of a mode-locked Ti: sapphire laser beam. The signal to background ratio was as high as 50:1 and the full width at half maximum (250nm) of a single-molecule peak was significantly shorter than that for one photon excitation. With its high sensitivity and simplicity, the two-photon experiment offers a valuable approach for spectroscopic studies on individual immobilized molecules.

  11. Enhancing soybean photosynthetic CO2 assimilation using a cyanobacterial membrane protein, ictB

    USDA-ARS?s Scientific Manuscript database

    Soybean C3 photosynthesis can suffer a severe loss in efficiency due to photorespiration and the lack of a carbon concentrating mechanism (CCM) such as those present in other plant species or cyanobacteria. Transgenic soybean (Glycine max cv. Thorne) plants constitutively expressing cyanobacterial i...

  12. The isolation and characterization of a new iron-sulfur protein from photosynthetic membranes.

    PubMed

    Malkin, R; Aparicio, P J; Arnon, D I

    1974-06-01

    A new iron-sulfur protein, distinct from the soluble chloroplast ferredoxin, was isolated from chloroplast membranes. The isolated protein, purified to homogeneity, had a molecular weight of about 8000 and 4 atoms of iron and 4 inorganic sulfides per mole. Its absorption spectrum had a broad absorbance band in the 400 nm region, a shoulder at approximately 310 nm, and a peak around 280 nm. The absorbance ratio A(400) to A(280) was 0.55. The electron paramagnetic resonance spectrum (measured at 12 degrees K) of the reduced protein was similar to that of other reduced iron-sulfur proteins, showing a major resonance line at g = 1.94. The isolated protein, when photoreduced by spinach chloroplasts, can in turn transfer electrons to mammalian cytochrome c. However, the photoreduced protein cannot replace soluble ferredoxin in NADP(+) reduction because of its apparent inability to interact with the chloroplast enzyme, ferredoxin-NADP(+) reductase. The relation of the isolated iron-sulfur protein to the bound ferredoxin that acts as the primary electron acceptor in Photosystem I is discussed.

  13. The absence of chlorophyll b affects lateral mobility of photosynthetic complexes and lipids in grana membranes of Arabidopsis and barley chlorina mutants.

    PubMed

    Tyutereva, Elena V; Evkaikina, Anastasiia I; Ivanova, Alexandra N; Voitsekhovskaja, Olga V

    2017-04-05

    The lateral mobility of integral components of thylakoid membranes, such as plastoquinone, xanthophylls, and pigment-protein complexes, is critical for the maintenance of efficient light harvesting, high rates of linear electron transport, and successful repair of damaged photosystem II (PSII). The packaging of the photosynthetic pigment-protein complexes in the membrane depends on their size and stereometric parameters which in turn depend on the composition of the complexes. Chlorophyll b (Chlb) is an important regulator of antenna size and composition. In this study, the lateral mobility (the mobile fraction size) of pigment-protein complexes and lipids in grana membranes was analyzed in chlorina mutants of Arabidopsis and barley lacking Chlb. In the Arabidopsis ch1-3 mutant, diffusion of membrane lipids decreased as compared to wild-type plants, but the diffusion of photosynthetic complexes was not affected. In the barley chlorina f2 3613 mutant, the diffusion of pigment-protein complexes significantly decreased, while the diffusion of lipids increased, as compared to wild-type plants. We propose that the size of the mobile fractions of pigment-protein complexes in grana membranes in vivo is higher than reported previously. The data are discussed in the context of the protein composition of antennae, characteristics of the plastoquinone pool, and production of reactive oxygen species in leaves of chlorina mutants.

  14. Tracking energy transfer between light harvesting complex 2 and 1 in photosynthetic membranes grown under high and low illumination

    PubMed Central

    Lüer, Larry; Moulisová, Vladimíra; Henry, Sarah; Polli, Dario; Brotosudarmo, Tatas H. P.; Hoseinkhani, Sajjad; Brida, Daniele; Lanzani, Guglielmo; Cerullo, Giulio; Cogdell, Richard J.

    2012-01-01

    Energy transfer (ET) between B850 and B875 molecules in light harvesting complexes LH2 and LH1/RC (reaction center) complexes has been investigated in membranes of Rhodopseudomonas palustris grown under high- and low-light conditions. In these bacteria, illumination intensity during growth strongly affects the type of LH2 complexes synthesized, their optical spectra, and their amount of energetic disorder. We used a specially built femtosecond spectrometer, combining tunable narrowband pump with broadband white-light probe pulses, together with an analytical method based on derivative spectroscopy for disentangling the congested transient absorption spectra of LH1 and LH2 complexes. This procedure allows real-time tracking of the forward (LH2 → LH1) and backward (LH2←LH1) ET processes and unambiguous determination of the corresponding rate constants. In low-light grown samples, we measured lower ET rates in both directions with respect to high-light ones, which is explained by reduced spectral overlap between B850 and B875 due to partial redistribution of oscillator strength into a higher energetic exciton transition. We find that the low-light adaptation in R. palustris leads to a reduced elementary backward ET rate, in accordance with the low probability of two simultaneous excitations reaching the same LH1/RC complex under weak illumination. Our study suggests that backward ET is not just an inevitable consequence of vectorial ET with small energetic offsets, but is in fact actively managed by photosynthetic bacteria. PMID:22307601

  15. Light-dependent cold-induced fatty acid unsaturation, changes in membrane fluidity, and alterations in gene expression in Synechocystis.

    PubMed

    Mironov, Kirill S; Sidorov, Roman A; Trofimova, Marina S; Bedbenov, Vladimir S; Tsydendambaev, Vladimir D; Allakhverdiev, Suleyman I; Los, Dmitry A

    2012-08-01

    Cold stress causes unsaturation of the membrane lipids. This leads to adjustment of the membrane fluidity, which is necessary for cold acclimation of cells. Here we demonstrate that the cold-induced accumulation of PUFAs in the cyanobacterium Synechocystis is light-dependent. The desA(-)/desD(-) mutant, that lacks the genes for Δ12 and Δ6 desaturases, is still able to adjust the fluidity of its membranes in spite of its inability to synthesize PUFAs and modulate the fatty acid composition of the membrane lipids under cold stress. The expression of cold-induced genes, which are controlled by the cold sensor histidine kinase Hik33, depends on the fluidity of cell membranes and it is regulated by light, though it does not require the activity of the photosynthetic apparatus. The expression of cold-induced genes, which are not controlled by Hik33, does not depend on the membrane fluidity or light. Thus, membrane fluidity determines the temperature dependence of the expression of cold-induced genes that are under control of the Hik33, which might be the sensor of changes in the membrane fluidity. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Stability of integral membrane proteins under high hydrostatic pressure: the LH2 and LH3 antenna pigment-protein complexes from photosynthetic bacteria.

    PubMed

    Kangur, Liina; Timpmann, Kõu; Freiberg, Arvi

    2008-07-03

    The bacteriochlorophyll a-containing LH2 and LH3 antenna complexes are the integral membrane proteins that catalyze the photosynthetic process in purple photosynthetic bacteria. The LH2 complex from Rhodobacter sphaeroides shows characteristic strong absorbance at 800 and 850 nm due to the pigment molecules confined in two separate areas of the protein. In the LH3 complex from Rhodopesudomonas acidophila the corresponding bands peak at 800 and 820 nm. Using the bacteriochlorophyll a cofactors as intrinsic probes to monitor local changes in the protein structure, we investigate spectral responses of the antenna complexes to very high hydrostatic pressures up to 2.5 GPa when embedded into natural membrane environment or extracted with detergent. We first demonstrate that high pressure does induce significant alterations to the tertiary structure of the proteins not only in proximity of the 800 nm-absorbing bacteriochlorophyll a molecules known previously (Gall, A.; et al. Biochemistry 2003, 42, 13019) but also of the 850 nm- and 820 nm-absorbing molecules, including breakage of the hydrogen bond they are involved in. The membrane-protected complexes appear more resilient to damaging effects of the compression compared with the complexes extracted into mixed detergent-buffer environment. Increased resistance of the isolated complexes is observed at high protein concentration resulting aggregation as well as when cosolvent (glycerol) is added into the solution. These stability variations correlate with ability of penetration of the surrounding polar solvent (water) into the hydrophobic protein interiors, being thus the principal reason of the pressure-induced denaturation of the proteins. Considerable variability of elastic properties of the isolated complexes was also observed, tentatively assigned to heterogeneous protein packing in detergent micelles. While a number of the isolated complexes release most of their bacteriochlorophyll a content under high pressure

  17. Clade-Specific Quantitative Analysis of Photosynthetic Gene Expression in Prochlorococcus.

    PubMed

    Fernández-Pinos, María-Carmen; Casado, Marta; Caballero, Gemma; Zinser, Erik R; Dachs, Jordi; Piña, Benjamin

    2015-01-01

    Newly designed primers targeting rbcL (CO2 fixation), psbA (photosystem II) and rnpB (reference) genes were used in qRT-PCR assays to assess the photosynthetic capability of natural communities of Prochlorococcus, the most abundant photosynthetic organism on Earth and a major contributor to primary production in oligotrophic oceans. After optimizing sample collection methodology, we analyzed a total of 62 stations from the Malaspina 2010 circumnavigation (including Atlantic, Pacific and Indian Oceans) at three different depths. Sequence and quantitative analyses of the corresponding amplicons showed the presence of high-light (HL) and low-light (LL) Prochlorococcus clades in essentially all 182 samples, with a largely uniform stratification of LL and HL sequences. Synechococcus cross-amplifications were detected by the taxon-specific melting temperatures of the amplicons. Laboratory exposure of Prochlorococcus MED4 (HL) and MIT9313 (LL) strains to organic pollutants (PAHs and organochlorine compounds) showed a decrease of rbcL transcript abundances, and of the rbcL to psbA ratios for both strains. We propose this technique as a convenient assay to evaluate effects of environmental stressors, including pollution, on the oceanic Prochlorococcus photosynthetic function.

  18. Clade-Specific Quantitative Analysis of Photosynthetic Gene Expression in Prochlorococcus

    PubMed Central

    Fernández-Pinos, María-Carmen; Casado, Marta; Caballero, Gemma; Zinser, Erik R.; Dachs, Jordi; Piña, Benjamin

    2015-01-01

    Newly designed primers targeting rbcL (CO2 fixation), psbA (photosystem II) and rnpB (reference) genes were used in qRT-PCR assays to assess the photosynthetic capability of natural communities of Prochlorococcus, the most abundant photosynthetic organism on Earth and a major contributor to primary production in oligotrophic oceans. After optimizing sample collection methodology, we analyzed a total of 62 stations from the Malaspina 2010 circumnavigation (including Atlantic, Pacific and Indian Oceans) at three different depths. Sequence and quantitative analyses of the corresponding amplicons showed the presence of high-light (HL) and low-light (LL) Prochlorococcus clades in essentially all 182 samples, with a largely uniform stratification of LL and HL sequences. Synechococcus cross-amplifications were detected by the taxon-specific melting temperatures of the amplicons. Laboratory exposure of Prochlorococcus MED4 (HL) and MIT9313 (LL) strains to organic pollutants (PAHs and organochlorine compounds) showed a decrease of rbcL transcript abundances, and of the rbcL to psbA ratios for both strains. We propose this technique as a convenient assay to evaluate effects of environmental stressors, including pollution, on the oceanic Prochlorococcus photosynthetic function. PMID:26244890

  19. Analysis of Porphyra membrane transporters demonstrates gene transfer among photosynthetic eukaryotes and numerous sodium-coupled transport systems.

    PubMed

    Chan, Cheong Xin; Zäuner, Simone; Wheeler, Glen; Grossman, Arthur R; Prochnik, Simon E; Blouin, Nicolas A; Zhuang, Yunyun; Benning, Christoph; Berg, Gry Mine; Yarish, Charles; Eriksen, Renée L; Klein, Anita S; Lin, Senjie; Levine, Ira; Brawley, Susan H; Bhattacharya, Debashish

    2012-04-01

    Membrane transporters play a central role in many cellular processes that rely on the movement of ions and organic molecules between the environment and the cell, and between cellular compartments. Transporters have been well characterized in plants and green algae, but little is known about transporters or their evolutionary histories in the red algae. Here we examined 482 expressed sequence tag contigs that encode putative membrane transporters in the economically important red seaweed Porphyra (Bangiophyceae, Rhodophyta). These contigs are part of a comprehensive transcriptome dataset from Porphyra umbilicalis and Porphyra purpurea. Using phylogenomics, we identified 30 trees that support the expected monophyly of red and green algae/plants (i.e. the Plantae hypothesis) and 19 expressed sequence tag contigs that show evidence of endosymbiotic/horizontal gene transfer involving stramenopiles. The majority (77%) of analyzed contigs encode transporters with unresolved phylogenies, demonstrating the difficulty in resolving the evolutionary history of genes. We observed molecular features of many sodium-coupled transport systems in marine algae, and the potential for coregulation of Porphyra transporter genes that are associated with fatty acid biosynthesis and intracellular lipid trafficking. Although both the tissue-specific and subcellular locations of the encoded proteins require further investigation, our study provides red algal gene candidates associated with transport functions and novel insights into the biology and evolution of these transporters.

  20. Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus.

    PubMed

    Xia, Xiao-Jian; Huang, Li-Feng; Zhou, Yan-Hong; Mao, Wei-Hua; Shi, Kai; Wu, Jian-Xiang; Asami, Tadao; Chen, Zhixiang; Yu, Jing-Quan

    2009-11-01

    Brassinosteroids (BRs) are a new group of plant growth substances that promote plant growth and productivity. We showed in this study that improved growth of cucumber (Cucumis sativus) plants after treatment with 24-epibrassinolide (EBR), an active BR, was associated with increased CO(2) assimilation and quantum yield of PSII (Phi(PSII)). Treatment of brassinazole (Brz), a specific inhibitor for BR biosynthesis, reduced plant growth and at the same time decreased CO(2) assimilation and Phi(PSII). Thus, the growth-promoting activity of BRs can be, at least partly, attributed to enhanced plant photosynthesis. To understand how BRs enhance photosynthesis, we have analyzed the effects of EBR and Brz on a number of photosynthetic parameters and their affecting factors, including the contents and activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Northern and Western blotting demonstrated that EBR upregulated, while Brz downregulated, the expressions of rbcL, rbcS and other photosynthetic genes. In addition, EBR had a positive effect on the activation of Rubisco based on increased maximum Rubisco carboxylation rates (V (c,max)), total Rubisco activity and, to a greater extent, initial Rubisco activity. The accumulation patterns of Rubisco activase (RCA) based on immunogold-labeling experiments suggested a role of RCA in BR-regulated activation state of Rubisco. Enhanced expression of genes encoding other Calvin cycle genes after EBR treatment may also play a positive role in RuBP regeneration (J (max)), thereby increasing maximum carboxylation rate of Rubisco (V (c,max)). Thus, BRs promote photosynthesis and growth by positively regulating synthesis and activation of a variety of photosynthetic enzymes including Rubisco in cucumber.

  1. Advancing Rhodobacter sphaeroides as a platform for expression of functional membrane proteins.

    PubMed

    Erbakan, Mustafa; Curtis, Brandon S; Nixon, B Tracy; Kumar, Manish; Curtis, Wayne R

    2015-11-01

    Membrane protein overexpression is often hindered by toxic effects on the expression host, limiting achievable volumetric productivity. Moreover, protein structure and function may be impaired due to inclusion body formation and proteolytic degradation. To address these challenges, we employed the photosynthetic bacterium, Rhodobacter sphaeroides for expression of challenging membrane proteins including human aquaporin 9 (hAQP9), human tight junction protein occludin (Occ), Escherichia coli toxin peptide GhoT, cellulose synthase enzyme complex (BcsAB) of R. sphaeroides and cytochrome-cy (Cyt-cy) from Rhodobacter capsulatus. Titers of 47 mg/L for Cyt-cy, 7.5 mg/L for Occ, 1.5 mg/L for BcsAB and 0.5 mg/L for hAQP9 were achieved from affinity purification. While purification of GhoT was not successful, transformants displayed a distinct growth phenotype that correlated with GhoT expression. We also evaluated the functionality of these proteins by performing water transport studies for hAQP9, peroxidase activity for cytochrome-cy, and in vitro cellulose synthesis activity assay for BcsAB. While previous studies with Rhodobacter have utilized oxygen-limited semi-aerobic growth for membrane protein expression, substantial titer improvements are achieved as a result of a 3-fold increase in biomass yield using the anaerobic photoheterotrophic growth regime, which utilizes the strong native puc promoter. This versatile platform is shown to enable recovery of a wide variety of difficult-to-express membrane proteins in functional form.

  2. Short-term UV-B radiation affects photosynthetic performance and antioxidant gene expression in highbush blueberry leaves.

    PubMed

    Inostroza-Blancheteau, Claudio; Acevedo, Patricio; Loyola, Rodrigo; Arce-Johnson, Patricio; Alberdi, Miren; Reyes-Díaz, Marjorie

    2016-10-01

    The impact of increased artificial UV-B radiation on photosynthetic performance, antioxidant and SOD activities and molecular antioxidant metabolism responses in leaves of two highbush blueberry (Vaccinium corymbosum L. cv. Brigitta and Bluegold) genotypes was studied. Plants were grown in a solid substrate and exposed to 0, 0.07, 0.12 and 0.19 W m(-2) of biologically-effective UV-B irradiance for 0-72 h. Our findings show that net photosynthesis (Pn) decreased significantly in Bluegold, accompanied by a reduction in the effective quantum yield (ФPSII) and electron transport rate (ETR), especially at the highest UV-B irradiation. On the other hand, Brigitta showed a better photosynthetic performance, as well as a clear increment in the antioxidant activity response that could be associated with increased superoxide dismutase activity (SOD) in the early hours of induced UV-B stress in all treatments. At the molecular level, the expression of the three antioxidant genes evaluated in both genotypes had a similar tendency. However, ascorbate peroxidase (APX) expression was significantly increased (6-fold) in Bluegold compared to Brigitta. Thus, the reduction of Pn concomitant with a lower photochemical performance and a reduced response of antioxidant metabolism suggest that the Bluegold genotype is more sensitive to UV-B radiation, while Brigitta appears to tolerate better moderate UV-B irradiance in a short-term experiment.

  3. Enhanced cytokinin synthesis in tobacco plants expressing PSARK::IPT prevents the degradation of photosynthetic protein complexes during drought.

    PubMed

    Rivero, Rosa M; Gimeno, Jacinta; Van Deynze, Allen; Walia, Harkamal; Blumwald, Eduardo

    2010-11-01

    To identify genes associated with the cytokinin-induced enhanced drought tolerance, we analyzed the transcriptome of wild-type and transgenic tobacco (Nicotiana tabacum 'SR1') plants expressing P(SARK)::IPT (for senescence-associated receptor kinase::isopentenyltransferase) grown under well-watered and prolonged water deficit conditions using the tomato GeneChip. During water deficit, the expression of genes encoding components of the carotenoid pathway leading to ABA biosynthesis was enhanced in the wild-type plants, but repressed in the transgenic plants. On the other hand, transgenic plants displayed higher transcript abundance of genes involved in the brassinosteroid biosynthetic pathways. Several genes coding for proteins associated with Chl synthesis, light reactions, the Calvin-Benson cycle and photorespiration were induced in the transgenic plants. Notably, increased transcript abundance of genes associated with PSII, the cytochrome b(6)/f complex, PSI, NADH oxidoreductase and the ATP complex was found in the P(SARK)::IPT plants. The increased transcript abundance was assessed by quantitative PCR and the increased protein levels were confirmed by Western blots. Our results indicated that while the photosynthetic apparatus in the wild-type plants was degraded, photosynthesis in the transgenic plants was not affected and photosynthetic proteins were not degraded. During water deficit, wild-type plants displayed a significant reduction in electron transfer and photochemical quenching, with a marked increase in non-photochemical quenching, suggesting a decrease in energy transfer to the PSII core complexes and an increase in cyclic electron transfer reactions.

  4. Expression, Solubilization, and Purification of Bacterial Membrane Proteins.

    PubMed

    Jeffery, Constance J

    2016-02-02

    Bacterial integral membrane proteins play many important roles, including sensing changes in the environment, transporting molecules into and out of the cell, and in the case of commensal or pathogenic bacteria, interacting with the host organism. Working with membrane proteins in the lab can be more challenging than working with soluble proteins because of difficulties in their recombinant expression and purification. This protocol describes a standard method to express, solubilize, and purify bacterial integral membrane proteins. The recombinant protein of interest with a 6His affinity tag is expressed in E. coli. After harvesting the cultures and isolating cellular membranes, mild detergents are used to solubilize the membrane proteins. Protein-detergent complexes are then purified using IMAC column chromatography. Support protocols are included to help select a detergent for protein solubilization and for use of gel filtration chromatography for further purification.

  5. The role of membrane surface charge in the control of photosynthetic processes and the involvement of electrostatic screening.

    PubMed

    Rubin, B T; Barber, J

    1980-08-05

    Calculations of changes of the integrated space charge density within the diffuse layer adjacent to a negatively charged membrane surface have been made using analytical expressions derived from the full non-linear Poisson-Boltzmann equation of the Gouy-Chapman theory. This electrostatic screening parameter has been examined for mixed electrolytes of valency type Z1+/Z1- and Z2+/Z1- and concentration ranges were chosen so as to compare with experimental data obtained with thylakoid membranes. The results of the analysis are consistent with previous arguments (Barber, J., Mills, J.D. and Love, A. (1977) FEBS Letts. 74, 174-181) that this screening parameter is involved in the control of salt induced chlorophyll fluorescence and thylakoid stacking changes. Phenomenological equations suggesting the origin of the variations in the integrated space charge density for various salt conditions are presented. Overall the integrated space charge density (sigma chi) is shown to be a more satisfactory measure of both short and long range effects associated with electrostatic screening and double layer repulsion of charged surfaces than the planar space charge density (rho chi).

  6. Expression of basement membrane antigens in spindle cell melanoma.

    PubMed

    Prieto, V G; Woodruff, J M

    1998-07-01

    Spindle cell melanoma (SCM) is an uncommon form of melanoma that may be confused histologically with other tumors, including malignant peripheral nerve sheath tumors (MPNST). Tumors with neural differentiation and melanocytic nevi may both show basement membrane immunohistochemically and at the ultrastructural level. However, most ultrastructural studies of melanoma have failed to demonstrate well formed basement membrane around tumor cells. The presence of basement membrane has been used by some authors as evidence favoring MPNST, as opposed to SCM. To evaluate this distinction immunohistochemically, 22 primary and metastatic cutaneous melanomas having a spindle cell component (SCM) were studied using monoclonal antibodies against laminin and Type IV collagen. S100 protein and HMB45 antigen expression were also studied. All but one of the SCM were reactive for S100 protein in at least 25% of the cells. Thirteen of 20 tumors (65%) were focally reactive with HMB45. Laminin was expressed in 42% of the tumors (only membranous pattern in 3; cytoplasmic and membranous in 5). Seventeen tumors (77%) expressed type IV collagen (only membranous pattern in 7; cytoplasmic and membranous pattern in 10). Laminin and type IV collagen, known components of basement membrane, are often found in SCM. Therefore, their detection cannot be used to distinguish SCM from MPNST.

  7. Thrombospondin expression in myofibers stabilizes muscle membranes

    PubMed Central

    Vanhoutte, Davy; Schips, Tobias G; Kwong, Jennifer Q; Davis, Jennifer; Tjondrokoesoemo, Andoria; Brody, Matthew J; Sargent, Michelle A; Kanisicak, Onur; Yi, Hong; Gao, Quan Q; Rabinowitz, Joseph E; Volk, Talila; McNally, Elizabeth M; Molkentin, Jeffery D

    2016-01-01

    Skeletal muscle is highly sensitive to mutations in genes that participate in membrane stability and cellular attachment, which often leads to muscular dystrophy. Here we show that Thrombospondin-4 (Thbs4) regulates skeletal muscle integrity and its susceptibility to muscular dystrophy through organization of membrane attachment complexes. Loss of the Thbs4 gene causes spontaneous dystrophic changes with aging and accelerates disease in 2 mouse models of muscular dystrophy, while overexpression of mouse Thbs4 is protective and mitigates dystrophic disease. In the myofiber, Thbs4 selectively enhances vesicular trafficking of dystrophin-glycoprotein and integrin attachment complexes to stabilize the sarcolemma. In agreement, muscle-specific overexpression of Drosophila Tsp or mouse Thbs4 rescues a Drosophila model of muscular dystrophy with augmented membrane residence of βPS integrin. This functional conservation emphasizes the fundamental importance of Thbs’ as regulators of cellular attachment and membrane stability and identifies Thbs4 as a potential therapeutic target for muscular dystrophy. DOI: http://dx.doi.org/10.7554/eLife.17589.001 PMID:27669143

  8. Influence of heat stress on leaf ultrastructure, photosynthetic performance, and ascorbate peroxidase gene expression of two pear cultivars (Pyrus pyrifolia).

    PubMed

    Liu, Dong-feng; Zhang, Dong; Liu, Guo-qin; Hussain, Sayed; Teng, Yuan-wen

    2013-12-01

    Plants encounter a variety of stresses in natural environments. One-year-old pot-grown trees of pear (Pyrus pyrifolia Nakai cv. Cuiguan and Wonhwang) were exposed to two heat stress regimes. Under constant short-term heat stress, chloroplasts and mitochondria were visibly damaged. Relative chlorophyll content and maximum photochemical efficiency of photosystem II were significantly decreased, which indicated that the leaf photosynthetic capability declined. Under chronic heat stress, mesophyll cell ultrastructure was not obviously damaged, but leaf photosynthetic capability was still restrained. As chronic heat stress was a simulation of the natural environment in summer, further study of the responses under this stress regime was undertaken. Ascorbate peroxidase (APX) activity was increased in 'Cuiguan', but not in 'Wonhwang'. Inducible expression of PpAPX genes in the cytoplasm, chloroplasts and peroxisomes was consistent with increased APX activity in 'Cuiguan', whereas only weak induction of PpAPX genes was observed in 'Wonhwang'. The isoenzymes cytosolic APX1 (cAPX1) and stromal APX (sAPX) were confirmed to be localized in the cytoplasm and chloroplasts, respectively.

  9. Constitutive and dark-induced expression of Solanum tuberosum phosphoenolpyruvate carboxylase enhances stomatal opening and photosynthetic performance of Arabidopsis thaliana.

    PubMed

    Kebeish, Rashad; Niessen, Markus; Oksaksin, Mehtap; Blume, Christian; Peterhaensel, Christoph

    2012-02-01

    The effect of constitutive and dark-induced expression of Solanum tuberosum phosphoenolpyruvate carboxylase (PEPC) on the opening state of stomata and photosynthetic performance in Arabidopsis thaliana plants was studied. Transcript accumulation analyses of the A. thaliana dark-induced (Din10 and Din6) and the Pisum sativum asparagine synthetase 2 promoters (Asn2) in transiently transformed tobacco leaves showed that Din10 promoter induced more DsRed accumulation in the dark compared to the other din genes. Overexpression of PEPC under the control of the constitutive enhanced CaMV 35S (p35SS) and dark-induced Din10 promoter in stably transformed A. thaliana plants increased the number of opened stomata in dark adapted leaves. Gas exchange measurements using A. thaliana plants transgenic for p35SS-PEPC and Din10-PEPC revealed a marked increase in stomatal conductance, transpiration, and dark respiration rates measured in the dark compared to wild-type plants. Moreover, measurement of CO(2) assimilation rates at different external CO(2) concentrations (C(a) ) and different light intensities shows an increase in the CO(2) assimilation rates in transgenic Arabidopsis lines compared to wild-type plants. This is considered as first step towards transferring the aspects of Crassulacean acid metabolism-like photosynthetic mechanism into C3 plants.

  10. Effects of exogenous spermidine on photosynthetic capacity and expression of Calvin cycle genes in salt-stressed cucumber seedlings.

    PubMed

    Shu, Sheng; Chen, Lifang; Lu, Wei; Sun, Jin; Guo, Shirong; Yuan, Yinhui; Li, Jun

    2014-11-01

    We investigated the effects of exogenous spermidine (Spd) on growth, photosynthesis and expression of the Calvin cycle-related genes in cucumber seedlings (Cucumis sativus L.) exposed to NaCl stress. Salt stress reduced net photosynthetic rates (PN), actual photochemical efficiency of PSII (ΦPSII) and inhibited plant growth. Application of exogenous Spd to salinized nutrient solution alleviated salinity-induced the inhibition of plant growth, together with an increase in PN and ΦPSII. Salinity markedly reduced the maximum carboxylase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Vcmax), the maximal velocity of RuBP regeneration (Jmax), triose-phosphate utilization capacity (TPU) and carboxylation efficiency (CE). Spd alleviated the negative effects on CO2 assimilation induced by salt stress. Moreover, Spd significantly increased the activities and contents of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and fructose-1,6-biphosphate aldolase (ALD; aldolase) in the salt-stressed cucumber leaves. On the other hand, salinity up-regulated the transcriptional levels of ribulose-1,5-bisphosphate (RCA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribrokinase (PRK) and down-regulated the transcriptional levels of ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (RbcL), ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (RbcS), ALD, triose-3-phosphate isomerase (TPI), fructose-1,6-bisphosphate phosphatase (FBPase) and 3-phosphoglyceric acid kinase (PGK). However, Spd application to salt-stressed plant roots counteracted salinity-induced mRNA expression changes in most of the above-mentioned genes. These results suggest that Spd could improve photosynthetic capacity through regulating gene expression and activity of key enzymes for CO2 fixation, thus confers tolerance to salinity on cucumber plants.

  11. Improving membrane protein expression by optimizing integration efficiency.

    PubMed

    Niesen, Michiel J M; Marshall, Stephen S; Miller, Thomas F; Clemons, William M

    2017-09-16

    The heterologous overexpression of integral membrane proteins in Escherichia coli often yields insufficient quantities of purifiable protein for applications of interest. The current study leverages a recently demonstrated link between co-translational membrane integration efficiency and protein expression levels to predict protein sequence modifications that improve expression. Membrane integration efficiencies, obtained using a coarse-grained simulation approach, robustly predicted effects on expression of the integral membrane protein TatC for a set of 140 sequence modifications, including loop-swap chimeras and single-residue mutations distributed throughout the protein sequence. Mutations that improve simulated integration efficiency were four-fold enriched with respect to improved experimentally observed expression levels. Furthermore, the effect of double mutations, on both simulated integration efficiency and experimentally observed expression levels were cumulative and largely independent, suggesting that multiple mutations can be introduced to yield higher levels of purifiable protein. This work provides a foundation for a general method for the rational overexpression of integral membrane proteins based on computationally simulated membrane integration efficiencies. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  12. Light-harvesting mutants show differential gene expression upon shift to high light as a consequence of photosynthetic redox and reactive oxygen species metabolism.

    PubMed

    Tikkanen, Mikko; Gollan, Peter J; Mekala, Nageswara Rao; Isojärvi, Janne; Aro, Eva-Mari

    2014-04-19

    The amount of light energy that is harvested and directed to the photosynthetic machinery is regulated in order to control the production of reactive oxygen species (ROS) in leaf tissues. ROS have important roles as signalling factors that instigate and mediate a range of cellular responses, suggesting that the mechanisms regulating light-harvesting and photosynthetic energy transduction also affect cell signalling. In this study, we exposed wild-type (WT) Arabidopsis and mutants impaired in the regulation of photosynthetic light-harvesting (stn7, tap38 and npq4) to transient high light (HL) stress in order to study the role of these mechanisms for up- and downregulation of gene expression under HL stress. The mutants, all of which have disturbed regulation of excitation energy transfer and distribution, responded to transient HL treatment with surprising similarity to the WT in terms of general 'abiotic stress-regulated' genes associated with hydrogen peroxide and 12-oxo-phytodienoic acid signalling. However, we identified distinct expression profiles in each genotype with respect to induction of singlet oxygen and jasmonic acid-dependent responses. The results of this study suggest that the control of excitation energy transfer interacts with hormonal regulation. Furthermore, the photosynthetic pigment-protein complexes appear to operate as receptors that sense the energetic balance between the photosynthetic light reactions and downstream metabolism.

  13. Direct visualization of membrane architecture of myelinating cells in transgenic mice expressing membrane-anchored EGFP.

    PubMed

    Deng, Yaqi; Kim, BongWoo; He, Xuelian; Kim, Sunja; Lu, Changqing; Wang, Haibo; Cho, Ssang-Goo; Hou, Yiping; Li, Jianrong; Zhao, Xianghui; Lu, Q Richard

    2014-04-01

    Myelinogenesis is a complex process that involves substantial and dynamic changes in plasma membrane architecture and myelin interaction with axons. Highly ramified processes of oligodendrocytes in the central nervous system (CNS) make axonal contact and then extrapolate to wrap around axons and form multilayer compact myelin sheathes. Currently, the mechanisms governing myelin sheath assembly and axon selection by myelinating cells are not fully understood. Here, we generated a transgenic mouse line expressing the membrane-anchored green fluorescent protein (mEGFP) in myelinating cells, which allow live imaging of details of myelinogenesis and cellular behaviors in the nervous systems. mEGFP expression is driven by the promoter of 2'-3'-cyclic nucleotide 3'-phosphodiesterase (CNP) that is expressed in the myelinating cell lineage. Robust mEGFP signals appear in the membrane processes of oligodendrocytes in the CNS and Schwann cells in the peripheral nervous system (PNS), wherein mEGFP expression defines the inner layers of myelin sheaths and Schmidt-Lanterman incisures in adult sciatic nerves. In addition, mEGFP expression can be used to track the extent of remyelination after demyelinating injury in a toxin-induced demyelination animal model. Taken together, the membrane-anchored mEGFP expression in the new transgenic line would facilitate direct visualization of dynamic myelin membrane formation and assembly during development and process remodeling during remyelination after various demyelinating injuries.

  14. Changes in Photosynthetic Rates and Gene Expression of Leaves during a Source–Sink Perturbation in Sugarcane

    PubMed Central

    McCormick, A. J.; Cramer, M. D.; Watt, D. A.

    2008-01-01

    Background and Aims In crops other than sugarcane there is good evidence that the size and activity of carbon sinks influence source activity via sugar-related regulation of the enzymes of photosynthesis, an effect that is partly mediated through coarse regulation of gene expression. Methods In the current study, leaf shading treatments were used to perturb the source–sink balance in 12-month-old Saccharum spp. hybrid ‘N19’ (N19) by restricting source activity to a single mature leaf. Changes in leaf photosynthetic gas exchange variables and leaf and culm sugar concentrations were subsequently measured over a 14 d period. In addition, the changes in leaf gene response to the source–sink perturbation were measured by reverse northern hybridization analysis of an array of 128 expressed sequence tags (ESTs) related to photosynthetic and carbohydrate metabolism. Key Results Sucrose concentrations in immature culm tissue declined significantly over the duration of the shading treatment, while a 57 and 88% increase in the assimilation rate (A) and electron transport rate (ETR), respectively, was observed in the source leaf. Several genes (27) in the leaf displayed a >2-fold change in expression level, including the upregulation of several genes associated with C4 photosynthesis, mitochondrial metabolism and sugar transport. Changes in gene expression levels of several genes, including Rubisco (EC 4·1·1·39) and hexokinase (HXK; EC 2·7·1·1), correlated with changes in photosynthesis and tissue sugar concentrations that occurred subsequent to the source–sink perturbation. Conclusions These results are consistent with the notion that sink demand may limit source activity through a kinase-mediated sugar signalling mechanism that correlates to a decrease in source hexose concentrations, which, in turn, correlate with increased expression of genes involved in photosynthesis and metabolite transport. The signal feedback system reporting sink sufficiency and

  15. The Lack of Lutein Accelerates the Extent of Light-induced Bleaching of Photosynthetic Pigments in Thylakoid Membranes of Arabidopsis thaliana.

    PubMed

    Dobrev, Konstantin; Stanoeva, Daniela; Velitchkova, Maya; Popova, Antoaneta V

    2016-05-01

    The high light-induced bleaching of photosynthetic pigments and the degradation of proteins of light-harvesting complexes of PSI and PSII were investigated in isolated thylakoid membranes of Arabidopsis thaliana, wt and lutein-deficient mutant lut2, with the aim of unraveling the role of lutein for the degree of bleaching and degradation. By the means of absorption spectroscopy and western blot analysis, we show that the lack of lutein leads to a higher extent of pigment photobleaching and protein degradation in mutant thylakoid membranes in comparison with wt. The highest extent of bleaching is suffered by chlorophyll a and carotenoids, while chlorophyll b is bleached in lut2 thylakoids during long periods at high illumination. The high light-induced degradation of Lhca1, Lhcb2 proteins and PsbS was followed and it is shown that Lhca1 is more damaged than Lhcb2. The degradation of analyzed proteins is more pronounced in lut2 mutant thylakoid membranes. The lack of lutein influences the high light-induced alterations in organization of pigment-protein complexes as revealed by 77 K fluorescence.

  16. Photosynthetic plasticity in Flaveria brownii: Growth irradiance and the expression of C sub 4 photosynthesis

    SciTech Connect

    Cheng, Shuhua; Moore, B.D.; Wu, Jingrui; Edwards, G.E.; Ku, M.S.B. )

    1989-04-01

    Photosynthesis was examined in leaves of Flaveria brownii A. M. Powell, grown under either 14% or 100% full sunlight. In leaves of high light grown plants, the CO{sub 2} compensation point and the inhibition of photosynthesis by 21% O{sub 2} were significantly lower, while activities of ribulose 1,5-bisphosphate carboxylase/oxygenase and various C{sub 4} cycle enzymes were considerably higher than those in leaves grown in low light. Both the CO{sub 2} compensation point and the degree of O{sub 2} inhibition of apparent photosynthesis were relatively insensitive to the light intensity used during measurements with plants from either growth conditions. Partitioning of atmospheric CO{sub 2} between Rubisco of the C{sub 3} pathway and phosphoenolpyruvate carboxylase of the C{sub 4} cycle was determined by exposing leaves to {sup 14}CO{sub 2} for 3 to 16 seconds, and extrapolating the labeling curves of initial products to zero time. Results indicated that {approximately}94% of the CO{sub 2} was fixed by the C{sub 4} cycle in high light grown plants, versus {approximately}78% in low light grown plants. Consistent with the carbon partitioning patterns, photosynthetic enzyme activities (on a chlorophyll basis) in protoplasts from leaves of high light grown plants showed a more C{sub 4}-like pattern of compartmentation. Pyruvate,Pi dikinase and phosphoenolpyruvate carboxylase were more enriched in the mesophyll cells, while NADP-malic enzyme and ribulose 1,5-bisphosphate carboxylase/oxygenase were relatively more abundant in the bundle sheath cells of high light than of low light grown plants.

  17. Dephosphorylation of photosystem II proteins and phosphorylation of CP29 in barley photosynthetic membranes as a response to water stress.

    PubMed

    Liu, Wen-Juan; Chen, Yang-Er; Tian, Wen-Juan; Du, Jun-Bo; Zhang, Zhong-Wei; Xu, Fei; Zhang, Fan; Yuan, Shu; Lin, Hong-Hui

    2009-10-01

    Kinetic studies of protein dephosphorylation in barley thylakoid membranes revealed accelerated dephosphorylation of photosystem II (PSII) proteins, and meanwhile rapidly induced phosphorylation of a light-harvesting complex (LHCII) b4, CP29 under water stress. Inhibition of dephosphorylation aggravates stress damages and hampers photosystem recovery after rewatering. This increased dephosphorylation is catalyzed by both intrinsic and extrinsic membrane protein phosphatase. Water stress did not cause any thylakoid destacking, and the lateral migration from granum membranes to stroma-exposed lamellae was only found to CP29, but not other PSII proteins. Activation of plastid proteases and release of TLP40, an inhibitor of the membrane phosphatases, were also enhanced during water stress. Phosphorylation of CP29 may facilitate disassociation of LHCII from PSII complex, disassembly of the LHCII trimer and its subsequent degradation, while general dephosphorylation of PSII proteins may be involved in repair cycle of PSII proteins and stress-response-signaling.

  18. Expression of Prokaryotic Integral Membrane Proteins in E. coli.

    PubMed

    Love, James D

    2017-01-01

    Production of prokaryotic membrane proteins for structural and functional studies in E. coli can be parallelized and miniaturized. All stages from cloning, expression, purification to detergent selection can be investigated using high-throughput techniques to rapidly and economically find tractable targets.

  19. [Membrane-based photochemical systems as models for photosynthetic cells]. Progress report, February 15, 1990--August 31, 1992

    SciTech Connect

    Hurst, J.K.

    1992-12-31

    The objectives of this research are to improve our conceptual view of the ways in which membranes and interfaces can be used to control chemical reactivity. We have focused on understanding three elementary processes that are central to developing membrane-based integrated chemical systems for water photolysis or related photoconversion/photostorage processes. Specifically, we have sought to identify: the influence of interfaces upon charge separation/recombination reactions, pathways for transmembrane charge separation across hydrocarbon bilayer membranes, and mechanisms of water oxidation catalyzed by transition metal coordination complexes. Historically, the chemical dynamics of each of these processes has been poorly understood, with numerous unresolved issues and conflicting viewpoints appearing in the literature. As described in this report our recent research has led to considerable clarification of the underlying reaction mechanisms.

  20. Expression of major photosynthetic and salt-resistance genes in invasive reed lineages grown under elevated CO2 and temperature

    PubMed Central

    Eller, Franziska; Lambertini, Carla; Nielsen, Mette W; Radutoiu, Simona; Brix, Hans

    2014-01-01

    It is important to investigate the molecular causes of the variation in ecologically important traits to fully understand phenotypic responses to climate change. In the Mississippi River Delta, two distinct, sympatric invasive lineages of common reed (Phragmites australis) are known to differ in several ecophysiological characteristics and are expected to become more salt resistant due to increasing atmospheric CO2 and temperature. We investigated whether different patterns of gene expression can explain their ecophysiological differences and increased vigor under future climatic conditions. We compared the transcript abundance of photosynthetic genes of the Calvin cycle (Rubisco small subunit, RbcS; Phosphoglycerate kinase, PGK; Phosphoribulokinase, PRK), genes related with salt transport (Na+/H+ antiporter, PhaNHA) and oxidative stress response genes (Manganese Superoxide dismutase, MnSOD; Glutathione peroxidase, GPX), and the total aboveground biomass production between two genotypes representing the two lineages. The two genotypes (Delta-type, Mediterranean lineage, and EU-type, Eurasian lineage) were grown under an ambient and a future climate scenario with simultaneously elevated CO2 and temperature, and under two different soil salinities (0‰ or 20‰). We found neither differences in the aboveground biomass production nor the transcript abundances of the two genotypes, but soil salinity significantly affected all the investigated parameters, often interacting with the climatic conditions. At 20‰ salinity, most genes were higher expressed in the future than in the ambient climatic conditions. Higher transcription of the genes suggests higher abundance of the protein they code for, and consequently increased photosynthate production, improved stress responses, and salt exclusion. Therefore, the higher expression of these genes most likely contributed to the significantly ameliorated salinity impact on the aboveground biomass production of both P

  1. Expression of major photosynthetic and salt-resistance genes in invasive reed lineages grown under elevated CO2 and temperature.

    PubMed

    Eller, Franziska; Lambertini, Carla; Nielsen, Mette W; Radutoiu, Simona; Brix, Hans

    2014-11-01

    It is important to investigate the molecular causes of the variation in ecologically important traits to fully understand phenotypic responses to climate change. In the Mississippi River Delta, two distinct, sympatric invasive lineages of common reed (Phragmites australis) are known to differ in several ecophysiological characteristics and are expected to become more salt resistant due to increasing atmospheric CO2 and temperature. We investigated whether different patterns of gene expression can explain their ecophysiological differences and increased vigor under future climatic conditions. We compared the transcript abundance of photosynthetic genes of the Calvin cycle (Rubisco small subunit, RbcS; Phosphoglycerate kinase, PGK; Phosphoribulokinase, PRK), genes related with salt transport (Na(+)/H(+) antiporter, PhaNHA) and oxidative stress response genes (Manganese Superoxide dismutase, MnSOD; Glutathione peroxidase, GPX), and the total aboveground biomass production between two genotypes representing the two lineages. The two genotypes (Delta-type, Mediterranean lineage, and EU-type, Eurasian lineage) were grown under an ambient and a future climate scenario with simultaneously elevated CO2 and temperature, and under two different soil salinities (0‰ or 20‰). We found neither differences in the aboveground biomass production nor the transcript abundances of the two genotypes, but soil salinity significantly affected all the investigated parameters, often interacting with the climatic conditions. At 20‰ salinity, most genes were higher expressed in the future than in the ambient climatic conditions. Higher transcription of the genes suggests higher abundance of the protein they code for, and consequently increased photosynthate production, improved stress responses, and salt exclusion. Therefore, the higher expression of these genes most likely contributed to the significantly ameliorated salinity impact on the aboveground biomass production of both P

  2. Multidimensional proteomic analysis of photosynthetic membrane proteins by liquid extraction-ultracentrifugation-liquid chromatography-mass spectrometry.

    PubMed

    Huber, Christian G; Walcher, Wolfgang; Timperio, Anna-Maria; Troiani, Sonia; Porceddu, Andrea; Zolla, Lello

    2004-12-01

    The membrane protein components of photosystem I (PSI) and II (PSII) from different species were prefractionated by liquid extraction and sucrose gradient ultracentrifugation and subsequently analyzed by reversed-phase high-performance liquid chromatography-electrospray ionization-mass spectrometry (RP-HPLC-ESI-MS) using poly-(styrene-divinylbenzene)-based monolithic capillary columns. The analytical method was shown to be very flexible and enabled the identification of antenna proteins as well as most of the proteins of the reaction center from PSI and PSII in various plant species with few RP-HPLC-ESI-MS analyses necessitating only minor adaptations in the gradients of acetonitrile in 0.05% aqueous trifluoroacetic acid. The membrane proteins, ranging in molecular mass (Mr) from 4196 (I protein) to more than 80,000 (PSI A/B) as well as isoforms were identified on the basis of their intact Mr and comparison with Mr deduced from known DNA or protein sequences. High quality mass spectra enabled the identification and quantitation of the nonphosphorylated and phosphorylated reaction center subunits D1, D2, and CP43 of PSII, containing five to seven membrane-spanning alpha-helices. Because of its high flexibility and suitability for proteins having a very wide range of Mr and hydrophobicities, the method is generally applicable to the analysis of complex mixtures of membrane proteins.

  3. Constitutive expression of a plant ferredoxin-like protein (pflp) enhances capacity of photosynthetic carbon assimilation in rice (Oryza sativa).

    PubMed

    Chang, Hsiang; Huang, Hsiang-En; Cheng, Chin-Fu; Ho, Mei-Hsuan; Ger, Mang-Jye

    2017-04-01

    The plant ferredoxin-like protein (PFLP) gene, cloned from sweet peppers predicted as an electron carrier in photosynthesis, shows high homology to the Fd-I sequence of Arabidopsis thaliana, Lycopersicon esculentum, Oryza sativa and Spinacia oleracea. Most of pflp related studies focused on anti-pathogenic effects, while less understanding for the effects in photosynthesis with physiological aspects, such as photosynthesis rate, and levels of carbohydrate metabolites. This project focuses on the effects of pflp overexpression on photosynthesis by physiological evaluations of carbon assimilation with significant higher levels of carbohydrates with higher photosynthesis efficiency. In this report, two independent transgenic lines of rice plants (designated as pflp-1 and pflp-2) were generated from non-transgenic TNG67 rice plant (WT). Both transgenic pflp rice plants exhibited enhanced photosynthesis efficiency, and gas exchange rates of photosynthesis were 1.3- and 1.2-fold higher for pflp-1 and pflp-2 than WT respectively. Significantly higher electron transport rates of pflp rice plants were observed. Moreover, photosynthetic products, such as fructose, glucose, sucrose and starch contents of pflp transgenic lines were increased accordingly. Molecular evidences of carbohydrate metabolism related genes activities (osHXK5, osHXK6, osAGPL3, osAGPS2α, osSPS, ospFBPase, oscFBPase, and osSBPase) in transgenic lines were higher than those of WT. For performance of crop production, 1000-grain weight for pflp-1 and pflp-2 rice plants were 52.9 and 41.1 g that were both significantly higher than 31.6 g for WT, and panicles weights were 1.4- and 1.2-fold higher than WT. Panicle number, tiller number per plants for pflp rice plants were all significantly higher compared with those of WT where there was no significant difference observed between two pflp rice plants. Taken altogether; this study demonstrated that constitutive pflp expression can improve rice production by

  4. Differential regulation of Arabidopsis plastid gene expression and RNA editing in non-photosynthetic tissues.

    PubMed

    Tseng, Ching-Chih; Lee, Chih-Jen; Chung, Yi-Ting; Sung, Tzu-Ying; Hsieh, Ming-Hsiun

    2013-07-01

    RNA editing is one of the post-transcriptional processes that commonly occur in plant plastids and mitochondria. In Arabidopsis, 34 C-to-U RNA editing events, affecting transcripts of 18 plastid genes, have been identified. Here, we examined the editing and expression of these transcripts in different organs, and in green and non-green seedlings (etiolated, cia5-2, ispF and ispG albino mutants, lincomycin-, and norflurazon-treated). The editing efficiency of Arabidopsis plastid transcripts varies from site to site, and may be specifically regulated in different tissues. Steady state levels of plastid transcripts are low or undetectable in etiolated seedlings, but most editing sites are edited with efficiencies similar to those observed in green seedlings. By contrast, the editing of some sites is completely lost or significantly reduced in other non-green tissues; for instance, the editing of ndhB-149, ndhB-1255, and ndhD-2 is completely lost in roots and in lincomycin-treated seedlings. The editing of ndhD-2 is also completely lost in albino mutants and norflurazon-treated seedlings. However, matK-640 is completely edited, and accD-794, atpF-92, psbE-214, psbF-77, psbZ-50, and rps14-50 are completely or highly edited in both green and non-green tissues. In addition, the expression of nucleus-encoded RNA polymerase dependent transcripts is specifically induced by lincomycin, and the splicing of ndhB transcripts is significantly reduced in the albino mutants and inhibitor-treated seedlings. Our results indicate that plastid gene expression, and the splicing and editing of plastid transcripts are specifically and differentially regulated in various types of non-green tissues.

  5. Membrane channel gene expression in human costal and articular chondrocytes

    PubMed Central

    Asmar, A.; Barrett-Jolley, R.; Werner, A.; Kelly, R.; Stacey, M.

    2016-01-01

    ABSTRACT Chondrocytes are the uniquely resident cells found in all types of cartilage and key to their function is the ability to respond to mechanical loads with changes of metabolic activity. This mechanotransduction property is, in part, mediated through the activity of a range of expressed transmembrane channels; ion channels, gap junction proteins, and porins. Appropriate expression of ion channels has been shown essential for production of extracellular matrix and differential expression of transmembrane channels is correlated to musculoskeletal diseases such as osteoarthritis and Albers-Schönberg. In this study we analyzed the consistency of gene expression between channelomes of chondrocytes from human articular and costal (teenage and fetal origin) cartilages. Notably, we found 14 ion channel genes commonly expressed between articular and both types of costal cartilage chondrocytes. There were several other ion channel genes expressed only in articular (6 genes) or costal chondrocytes (5 genes). Significant differences in expression of BEST1 and KCNJ2 (Kir2.1) were observed between fetal and teenage costal cartilage. Interestingly, the large Ca2+ activated potassium channel (BKα, or KCNMA1) was very highly expressed in all chondrocytes examined. Expression of the gap junction genes for Panx1, GJA1 (Cx43) and GJC1 (Cx45) was also observed in chondrocytes from all cartilage samples. Together, this data highlights similarities between chondrocyte membrane channel gene expressions in cells derived from different anatomical sites, and may imply that common electrophysiological signaling pathways underlie cellular control. The high expression of a range of mechanically and metabolically sensitive membrane channels suggest that chondrocyte mechanotransduction may be more complex than previously thought. PMID:27116676

  6. A study on the membrane potential and pH gradient in chromatophores and intact cells of photosynthetic bacteria.

    PubMed

    Barsky, E L; Bonch-Osmolovskaya, E A; Ostroumov, S A; Samuilov, V D; Skulachev, V P

    1975-05-15

    Generation of membrane potential (delta psi) and transmembrane pH difference (delta pH) was studied in PPi-energized chromatophores of Rhodospirillum rubrum by means of measurements of carotenoid and bacteriochlorophyll absorption changes, atebrin and 8-anilinonaphthalene-1-sulphonate fluorescence responses, and phenyldicarbaundecaborane transport. The data obtained are consistent with the suggestion that carotenoid, bacteriochlorophyll and phenyldicarbaundecaborane responses are indicators of delta psi, while an atebrin response is an indicator of delta pH. The fluorescence of 8-anilinonaphthalene-1-sulphonate is affected both by delta psi and delta pH.

  7. Directed assembly of defined oligomeric photosynthetic reaction centres through adaptation with programmable extra-membrane coiled-coil interfaces.

    PubMed

    Swainsbury, David J K; Harniman, Robert L; Di Bartolo, Natalie D; Liu, Juntai; Harper, William F M; Corrie, Alexander S; Jones, Michael R

    2016-12-01

    A challenge associated with the utilisation of bioenergetic proteins in new, synthetic energy transducing systems is achieving efficient and predictable self-assembly of individual components, both natural and man-made, into a functioning macromolecular system. Despite progress with water-soluble proteins, the challenge of programming self-assembly of integral membrane proteins into non-native macromolecular architectures remains largely unexplored. In this work it is shown that the assembly of dimers, trimers or tetramers of the naturally monomeric purple bacterial reaction centre can be directed by augmentation with an α-helical peptide that self-associates into extra-membrane coiled-coil bundle. Despite this induced oligomerisation the assembled reaction centres displayed normal spectroscopic properties, implying preserved structural and functional integrity. Mixing of two reaction centres modified with mutually complementary α-helical peptides enabled the assembly of heterodimers in vitro, pointing to a generic strategy for assembling hetero-oligomeric complexes from diverse modified or synthetic components. Addition of two coiled-coil peptides per reaction centre monomer was also tolerated despite the challenge presented to the pigment-protein assembly machinery of introducing multiple self-associating sequences. These findings point to a generalised approach where oligomers or longer range assemblies of multiple light harvesting and/or redox proteins can be constructed in a manner that can be genetically-encoded, enabling the construction of new, designed bioenergetic systems in vivo or in vitro.

  8. Bioengineering of photosynthetic membranes. Requirement of magnesium for the conversion of chlorophyllide a to chlorophyll a during the greening of etiochloroplasts in vitro

    SciTech Connect

    Daniell, H.; Rebeiz, C.A.

    1984-01-01

    The massive conversion of delta-aminolevulinic acid (ALA) to protochlorophyllide (Pchlide) and the massive conversion of chlorophyllide a (Chlide a) to chlorophyll a (Chl a) are two essential conditions for the ALA-dependent assembly of photosynthetic membranes in vitro. In this work, the authors describe the development of a cell-free system capable of the forementioned biosynthetic activities at rates higher than in vivo, for the first 2 h of dark-incubation. The cell-free system consisted of 1) etiochloroplasts prepared from kinetin and gibberellic-acid-pretreated cucumber cotyledons, and 2) cofactors and additives described elsewhere and which are needed for the massive conversion of ALA to Pchlide, 3) high concentrations of ATP, MgCl/sub 2/, and an isoprenol alcohol such as phytol, were required for the massive conversion of Chlide a to Chl a. An absolute and novel requirement of Mg/sup 2 +/ for the conversion of Chlide a to Chl a was also demonstrated. In addition to the role of phytol as a substrate for the conversion of Chlide a to Chl a, the data suggested that this alcohol may also be involved in the regulation of the reactions between ALA and Pchlide. It is proposed that during greening, the conversion of Chlide a to Chl a may follow different biosynthetic rates, having different substrate and cofactor requirements, depending on the stage of plastid development.

  9. Effects of paraquat on photosynthetic pigments, antioxidant enzymes, and gene expression in Chlorella pyrenoidosa under mixotrophic compared with autotrophic conditions.

    PubMed

    Zhang, Weiguo; Liu, Min; Zhang, Peiliang; Yu, Fugen; Lu, Shan; Li, Pengfu; Zhou, Junying

    2014-11-01

    Only limited information is available on herbicide toxicity to algae under mixotrophic conditions. In the present study, we studied the effects of the herbicide paraquat on growth, photosynthetic pigments, antioxidant enzymes, and gene expression in Chlorella pyrenoidosa under mixotrophic compared with autotrophic conditions. The mean measured exposure concentrations of paraquat under mixotrophic and autotrophic conditions were in the range of 0.3-3.4 and 0.6-3.6 μM, respectively. Exposure to paraquat for 72 h under both autotrophic and mixotrophic conditions induced decreased growth and chlorophyll (Chl) content, increased superoxide dismutase and peroxidase activities, and decreased transcript abundances of three photosynthesis-related genes (light-independent protochlorophyllide reductase subunit, photosystem II protein D1, and ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit [rbcL]). Compared with autotrophic conditions, the inhibition percentage of growth rate under mixotrophic conditions was lower at 0.8 μM paraquat, whereas it was greater at 1.8 and 3.4 μM paraquat. With exposure to 0.8-3.4 μM paraquat, the inhibition rates of Chl a and b content under mixotrophic conditions (43.1-52.4% and 54.6-59.7%, respectively) were greater compared with autotrophic conditions, whereas the inhibition rate of rbcL gene transcription under mixotrophic conditions (35.7-44.0%) was lower. These data showed that similar to autotrophic conditions, paraquat affected the activities of antioxidant enzymes and decreased Chl synthesis and transcription of photosynthesis-related genes in C. pyrenoidosa under mixotrophic conditions, but a differential susceptibility to paraquat toxicity occurred between autotrophically versus mixotrophically grown cells.

  10. Heterologous Expression of Membrane Proteins: Choosing the Appropriate Host

    PubMed Central

    Pochon, Nathalie; Dementin, Sébastien; Hivin, Patrick; Boutigny, Sylvain; Rioux, Jean-Baptiste; Salvi, Daniel; Seigneurin-Berny, Daphné; Richaud, Pierre; Joyard, Jacques; Pignol, David; Sabaty, Monique; Desnos, Thierry; Pebay-Peyroula, Eva; Darrouzet, Elisabeth; Vernet, Thierry; Rolland, Norbert

    2011-01-01

    Background Membrane proteins are the targets of 50% of drugs, although they only represent 1% of total cellular proteins. The first major bottleneck on the route to their functional and structural characterisation is their overexpression; and simply choosing the right system can involve many months of trial and error. This work is intended as a guide to where to start when faced with heterologous expression of a membrane protein. Methodology/Principal Findings The expression of 20 membrane proteins, both peripheral and integral, in three prokaryotic (E. coli, L. lactis, R. sphaeroides) and three eukaryotic (A. thaliana, N. benthamiana, Sf9 insect cells) hosts was tested. The proteins tested were of various origins (bacteria, plants and mammals), functions (transporters, receptors, enzymes) and topologies (between 0 and 13 transmembrane segments). The Gateway system was used to clone all 20 genes into appropriate vectors for the hosts to be tested. Culture conditions were optimised for each host, and specific strategies were tested, such as the use of Mistic fusions in E. coli. 17 of the 20 proteins were produced at adequate yields for functional and, in some cases, structural studies. We have formulated general recommendations to assist with choosing an appropriate system based on our observations of protein behaviour in the different hosts. Conclusions/Significance Most of the methods presented here can be quite easily implemented in other laboratories. The results highlight certain factors that should be considered when selecting an expression host. The decision aide provided should help both newcomers and old-hands to select the best system for their favourite membrane protein. PMID:22216205

  11. Heterologous expression of membrane proteins: choosing the appropriate host.

    PubMed

    Bernaudat, Florent; Frelet-Barrand, Annie; Pochon, Nathalie; Dementin, Sébastien; Hivin, Patrick; Boutigny, Sylvain; Rioux, Jean-Baptiste; Salvi, Daniel; Seigneurin-Berny, Daphné; Richaud, Pierre; Joyard, Jacques; Pignol, David; Sabaty, Monique; Desnos, Thierry; Pebay-Peyroula, Eva; Darrouzet, Elisabeth; Vernet, Thierry; Rolland, Norbert

    2011-01-01

    Membrane proteins are the targets of 50% of drugs, although they only represent 1% of total cellular proteins. The first major bottleneck on the route to their functional and structural characterisation is their overexpression; and simply choosing the right system can involve many months of trial and error. This work is intended as a guide to where to start when faced with heterologous expression of a membrane protein. The expression of 20 membrane proteins, both peripheral and integral, in three prokaryotic (E. coli, L. lactis, R. sphaeroides) and three eukaryotic (A. thaliana, N. benthamiana, Sf9 insect cells) hosts was tested. The proteins tested were of various origins (bacteria, plants and mammals), functions (transporters, receptors, enzymes) and topologies (between 0 and 13 transmembrane segments). The Gateway system was used to clone all 20 genes into appropriate vectors for the hosts to be tested. Culture conditions were optimised for each host, and specific strategies were tested, such as the use of Mistic fusions in E. coli. 17 of the 20 proteins were produced at adequate yields for functional and, in some cases, structural studies. We have formulated general recommendations to assist with choosing an appropriate system based on our observations of protein behaviour in the different hosts. Most of the methods presented here can be quite easily implemented in other laboratories. The results highlight certain factors that should be considered when selecting an expression host. The decision aide provided should help both newcomers and old-hands to select the best system for their favourite membrane protein. © 2011 Bernaudat et al.

  12. Epithelial membrane protein 1 expression in ovarian serous tumors.

    PubMed

    Demirag, Guzin Gonullu; Kefeli, Mehmet; Kemal, Yasemin; Yucel, Idris

    2016-03-01

    The present study aimed to analyze the clinical significance of epithelial membrane protein 1 (EMP1) expression in ovarian serous tumors. A total of 84 cases of ovarian serous tumor (50 patients with malignant ovarian serous tumors and 34 patients with borderline and benign serous tumors) were retrospectively analyzed. Differences in the expression levels of EMP1 between the malignant and non-malignant tumor groups were evaluated by immunohistochemical staining. In addition, the association between EMP1 expression and prognostic factors in malignant ovarian serous tumors was investigated. The expression levels of EMP1 were significantly reduced in all the 50 malignant ovarian serous tumors, compared with the 34 non-malignant ovarian serous tumors (P<0.000). Reduced expression of EMP1 was correlated with high grade (P=0.009) and stage (P<0.000) of malignant tumors. EMP1 expression was not observed to be correlated with any other investigated parameters, including surgery, type of operation and chemotherapy response (P>0.005). These results indicated that EMP1 may have a significant role as a negative regulator in ovarian serous tumors, and reduced EMP1 expression in serous tumors may be associated with increased disease severity.

  13. Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in Spinacia oleracea seedlings

    PubMed Central

    Chen, Juan; Wu, Fei-Hua; Wang, Wen-Hua; Zheng, Chen-Juan; Lin, Guang-Hui; Dong, Xue-Jun; He, Jun-Xian; Pei, Zhen-Ming; Zheng, Hai-Lei

    2011-01-01

    Hydrogen sulphide (H2S) is emerging as a potential messenger molecule involved in modulation of physiological processes in animals and plants. In this report, the role of H2S in modulating photosynthesis of Spinacia oleracea seedlings was investigated. The main results are as follows. (i) NaHS, a donor of H2S, was found to increase the chlorophyll content in leaves. (ii) Seedlings treated with different concentrations of NaHS for 30 d exhibited a significant increase in seedling growth, soluble protein content, and photosynthesis in a dose-dependent manner, with 100 μM NaHS being the optimal concentration. (iii) The number of grana lamellae stacking into the functional chloroplasts was also markedly increased by treatment with the optimal NaHS concentration. (iv) The light saturation point (Lsp), maximum net photosynthetic rate (Pmax), carboxylation efficiency (CE), and maximal photochemical efficiency of photosystem II (Fv/Fm) reached their maximal values, whereas the light compensation point (Lcp) and dark respiration (Rd) decreased significantly under the optimal NaHS concentration. (v) The activity of ribulose-1,5-bisphosphate carboxylase (RuBISCO) and the protein expression of the RuBISCO large subunit (RuBISCO LSU) were also significantly enhanced by NaHS. (vi) The total thiol content, glutathione and cysteine levels, internal concentration of H2S, and O-acetylserine(thiol)lyase and L-cysteine desulphydrase activities were increased to some extent, suggesting that NaHS also induced the activity of thiol redox modification. (vii) Further studies using quantitative real-time PCR showed that the gene encoding the RuBISCO large subunit (RBCL), small subunit (RBCS), ferredoxin thioredoxin reductase (FTR), ferredoxin (FRX), thioredoxin m (TRX-m), thioredoxin f (TRX-f), NADP-malate dehydrogenase (NADP-MDH), and O-acetylserine(thiol)lyase (OAS) were up-regulated, but genes encoding serine acetyltransferase (SERAT), glycolate oxidase (GYX), and cytochrome oxidase

  14. Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in Spinacia oleracea seedlings.

    PubMed

    Chen, Juan; Wu, Fei-Hua; Wang, Wen-Hua; Zheng, Chen-Juan; Lin, Guang-Hui; Dong, Xue-Jun; He, Jun-Xian; Pei, Zhen-Ming; Zheng, Hai-Lei

    2011-08-01

    Hydrogen sulphide (H(2)S) is emerging as a potential messenger molecule involved in modulation of physiological processes in animals and plants. In this report, the role of H(2)S in modulating photosynthesis of Spinacia oleracea seedlings was investigated. The main results are as follows. (i) NaHS, a donor of H(2)S, was found to increase the chlorophyll content in leaves. (ii) Seedlings treated with different concentrations of NaHS for 30 d exhibited a significant increase in seedling growth, soluble protein content, and photosynthesis in a dose-dependent manner, with 100 μM NaHS being the optimal concentration. (iii) The number of grana lamellae stacking into the functional chloroplasts was also markedly increased by treatment with the optimal NaHS concentration. (iv) The light saturation point (Lsp), maximum net photosynthetic rate (Pmax), carboxylation efficiency (CE), and maximal photochemical efficiency of photosystem II (F(v)/F(m)) reached their maximal values, whereas the light compensation point (Lcp) and dark respiration (Rd) decreased significantly under the optimal NaHS concentration. (v) The activity of ribulose-1,5-bisphosphate carboxylase (RuBISCO) and the protein expression of the RuBISCO large subunit (RuBISCO LSU) were also significantly enhanced by NaHS. (vi) The total thiol content, glutathione and cysteine levels, internal concentration of H(2)S, and O-acetylserine(thiol)lyase and L-cysteine desulphydrase activities were increased to some extent, suggesting that NaHS also induced the activity of thiol redox modification. (vii) Further studies using quantitative real-time PCR showed that the gene encoding the RuBISCO large subunit (RBCL), small subunit (RBCS), ferredoxin thioredoxin reductase (FTR), ferredoxin (FRX), thioredoxin m (TRX-m), thioredoxin f (TRX-f), NADP-malate dehydrogenase (NADP-MDH), and O-acetylserine(thiol)lyase (OAS) were up-regulated, but genes encoding serine acetyltransferase (SERAT), glycolate oxidase (GYX), and cytochrome

  15. Enzymatic activity, gene expression and posttranslational modifications of photosynthetic and non-photosynthetic phosphoenolpyruvate carboxylase in ammonium-stressed sorghum plants.

    PubMed

    Arias-Baldrich, Cirenia; de la Osa, Clara; Bosch, Nadja; Ruiz-Ballesta, Isabel; Monreal, José A; García-Mauriño, Sofía

    2017-07-01

    Sorghum plants grown with 5mM (NH4)2SO4 showed symptoms of stress, such as reduced growth and photosynthesis, leaf chlorosis, and reddish roots. Phosphoenolpyruvate carboxylase (PEPC) activity, by supplying carbon skeletons for ammonium assimilation, plays a pivotal role in tolerance to ammonium stress. This work investigated the effect of ammonium nutrition on PPC and PPCK gene expression, on PEPC activity, and on post-translational modifications (PTMs) of PEPC in leaves and roots of sorghum plants. Ammonium increased PEPC kinase (PEPCk) activity and the phosphorylation state of PEPC in leaves, both in light and in the dark, due to increased PPCK1 expression in leaves. This result resembled the effect of salinity on sorghum leaf PEPC and PEPCk, which is thought to allow a better functioning of PEPC in conditions that limit the income of reduced C. In roots, ammonium increased PEPC activity and the amount of monoubiquitinated PEPC. The first effect was related to increased PPC3 expression in roots. These results highlight the relevance of this specific isoenzyme (PPC3) in sorghum responses to ammonium stress. Although the role of monoubiquitination is not fully understood, it also increased in germinating seeds along with massive mobilization of reserves, a process in which the anaplerotic function of PEPC is of major importance. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Effect of light and oxygen and adaptation to changing light conditions in a photosynthetic mutant in which the LHII complex of Rhv. sulfidophilum was heterologously expressed in a strain of Rb. capsulatus whose puc operon was deleted.

    PubMed

    Barbieri Md, María del Rosario; Kerber, Norma L; Pucheu, Norma L; Tadros, Monier H; García, Augusto F

    2002-09-01

    In this paper we show the effect of oxygen and light on the expression of the photosynthetic apparatus of a mutant heterologously expressing the puc operon. This mutant was obtained by introducing in trans an expression plasmid, bearing the puc A, B, and C genes of Rhv. sulfidophilum, as well as its own promoter, in an LHII(-) mutant of Rb. capsulatus. The results showed that oxygen and light repressed LHII expression. Even low-light intensities lowered the LHII content to undetectable levels by spectrophotometry or by SDS-PAGE. In high-light grown cells, where the relative ratios of LHI and LHII complexes were significantly diminished, we were able to detect LHII complexes. Under the latter condition, the absorption spectrum showed that some pigment accumulated in the membrane even in the absence of cell division. These pigments were used in a later step to assemble LHII complexes, when the high-light grown cells were transferred to semiaerobiosis in the dark. Transition of high-light grown cells to low-light conditions allowed us to study the adaptability of these heterologous mutant cells. We observed that adaptation never occurred, in part probably owing to energy limitation.

  17. Increased expression of lysosome membrane protein 2 in glomeruli of patients with idiopathic membranous nephropathy.

    PubMed

    Rood, Ilse M; Merchant, Michael L; Wilkey, Daniel W; Zhang, Terry; Zabrouskov, Vlad; van der Vlag, Johan; Dijkman, Henry B; Willemsen, Brigith K; Wetzels, Jack F; Klein, Jon B; Deegens, Jeroen K

    2015-11-01

    Urinary microvesicles constitute a rich source of membrane-bound and intracellular proteins that may provide important clues of pathophysiological mechanisms in renal disease. In the current study, we analyzed and compared the proteome of urinary microvesicles from patients with idiopathic membranous nephropathy (iMN), idiopathic focal segmental glomerulosclerosis (iFSGS), and normal controls using an approach that combined both proteomics and pathology analysis. Lysosome membrane protein-2 (LIMP-2) was increased greater than twofold in urinary microvesicles obtained from patients with iMN compared to microvesicles of patients with iFSGS and normal controls. Immunofluorescence analysis of renal biopsies confirmed our proteomics findings that LIMP-2 was upregulated in glomeruli from patients with iMN but not in glomeruli of diseased patients (iFSGS, minimal change nephropathy, IgA nephropathy, membranoproliferative glomerulonephritis) and normal controls. Confocal laser microscopy showed co-localization of LIMP-2 with IgG along the glomerular basement membrane. Serum antibodies against LIMP-2 could not be detected. In conclusion, our data show the value of urinary microvesicles in biomarker discovery and provide evidence for de novo expression of LIMP-2 in glomeruli of patients with iMN.

  18. The photosynthetic apparatus and its regulation in the aerobic gammaproteobacterium Congregibacter litoralis gen. nov., sp. nov.

    PubMed

    Spring, Stefan; Lünsdorf, Heinrich; Fuchs, Bernhard M; Tindall, Brian J

    2009-01-01

    There is accumulating evidence that in some marine environments aerobic bacteriochlorophyll a-producing bacteria represent a significant part of the microbial population. The interaction of photosynthesis and carbon metabolism in these interesting bacteria is still largely unknown and requires further investigation in order to estimate their contribution to the marine carbon cycle. Here, we analyzed the structure, composition and regulation of the photosynthetic apparatus in the obligately aerobic marine gammaproteobacterium KT71(T). Photoheterotrophically grown cells were characterized by a poorly developed lamellar intracytoplasmic membrane system, a type 1 light-harvesting antenna complex and a photosynthetic reaction center associated with a tetraheme cytochrome c. The only photosynthetic pigments produced were bacteriochlorophyll a and spirilloxanthin. Under semiaerobic conditions KT71(T) cells expressing a photosynthetic apparatus showed a light-dependent increase of growth yield in the range of 1.3-2.5 fold. The expression level of the photosynthetic apparatus depended largely on the utilized substrate, the intermediary carbon metabolism and oxygen tension. In addition, pigment synthesis was strongly influenced by light, with blue light exerting the most significant effect, implicating that proteins containing a BLUF domain may be involved in regulation of the photosynthetic apparatus. Several phenotypic traits in KT71(T) could be identified that correlated with the assumed redox state of growing cells and thus could be used to monitor the cellular redox state under various incubation conditions. In a hypothetical model that explains the regulation of the photosynthetic apparatus in strain KT71(T) we propose that the expression of photosynthesis genes depends on the cellular redox state and is maximal under conditions that allow a balanced membrane redox state. So far, bacteria capable of an obligately aerobic, photosynthetic metabolism constitute a unique

  19. An integrated study of photochemical function and expression of a key photochemical gene (psbA) in photosynthetic communities of Lake Bonney (McMurdo Dry Valleys, Antarctica).

    PubMed

    Kong, Weidong; Li, Wei; Romancova, Ingrid; Prášil, Ondřej; Morgan-Kiss, Rachael M

    2014-08-01

    Lake Bonney is one of several permanently ice-covered lakes in the McMurdo Dry Valleys, Antarctica, which maintain the only year-round biological activity on the Antarctic continent. Vertically stratified populations of autotrophic microorganisms occupying the water columns are adapted to numerous extreme conditions, including very low light, hypersalinity, ultra-oligotrophy and low temperatures. In this study, we integrated molecular biology, microscopy, flow cytometry, and functional photochemical analyses of the photosynthetic communities residing in the east and west basins of dry valley Lake Bonney. Diversity and abundance of the psbA gene encoding a major protein of the photosystem II reaction center were monitored during the seasonal transition between Antarctic summer (24-h daylight) to winter (24-h darkness). Vertical trends through the photic zone in psbA abundance (DNA and mRNA) closely matched that of primary production in both lobes. Seasonal trends in psbA transcripts differed between the two lobes, with psbA expression in the west basin exhibiting a transient rise in early Fall. Last, using spectroscopic and flow cytometric analyses, we provide the first evidence that the Lake Bonney photosynthetic community is dominated by picophytoplankton that possess photosynthetic apparatus adapted to extreme shade. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  20. Expression and purification of integral membrane metallopeptidase HtpX.

    PubMed

    Arolas, Joan L; García-Castellanos, Raquel; Goulas, Theodoros; Akiyama, Yoshinori; Gomis-Rüth, F Xavier

    2014-07-01

    Little is known about the catalytic mechanism of integral membrane (IM) peptidases. HtpX is an IM metallopeptidase that plays a central role in protein quality control by preventing the accumulation of misfolded proteins in the membrane. Here we report the recombinant overexpression and purification of a catalytically ablated form of HtpX from Escherichia coli. Several E. coli strains, expression vectors, detergents, and purification strategies were tested to achieve maximum yields of pure and well-folded protein. HtpX was successfully overexpressed in E. coli BL21(DE3) cells using a pET-derived vector attaching a C-terminal His8-tag, extracted from the membranes using octyl-β-d-glucoside, and purified to homogeneity in the presence of this detergent in three consecutive steps: cobalt-affinity, anion-exchange, and size-exclusion chromatography. The production of HtpX in milligram amounts paves the way for structural studies, which will be essential to understand the catalytic mechanism of this IM peptidase and related family members.

  1. Phorbol esters alter the expression of lymphocyte membrane proteins

    SciTech Connect

    Reder, A.T.; Antel, J.P.

    1986-03-01

    T cell activation via the T cell receptor (T3-Ti complex) by OKT3 results in modulation of the T3-Ti complex, but does not affect T4, T8, or T11 antigen expression. To study the effect of other T cell activators on these T cell membrane antigens, the authors incubated mononuclear cells for 0-3 days with lectins or pharmacologic agents and stained with monoclonal antibodies to their antigens. The median fluorescence intensity (MFI) was measured with a fluorescence activated cell sorter. Activation of PBL with Con A, PHA, calcium ionophore A23187, or with dbcAMP, isoproterenol, or theophyllin had minimal effects on the MFI of T3, T4, T8, or T11. Phorbol myristate acetate (PMA), a protein kinase C activator which stimulates PBL though an alternate pathway, caused a 90-100% reduction of T3 and T4 MFI, a 25% reduction in T8 MFI, and a 400% increase in T11 MFI after 2 days. Addition of A23187 slightly increased these effects. PMA induced a 2-3-fold increase in cell diameter concomitant with the alterations in membrane antigens. These data suggest that T cell activation through pathways not directly linked to the T cell antigen receptor can result in surface antigen expression different from that which follows activation via the T cell receptor.

  2. Heterologous expression and purification of membrane-bound pyrophosphatases.

    PubMed

    Kellosalo, J; Kajander, T; Palmgren, M G; Lopéz-Marqués, R L; Goldman, A

    2011-09-01

    Membrane-bound pyrophosphatases (M-PPases) are enzymes that couple the hydrolysis of inorganic pyrophosphate to pumping of protons or sodium ions. In plants and bacteria they are important for relieving stress caused by low energy levels during anoxia, drought, nutrient deficiency, cold and low light intensity. While they are completely absent in mammalians, they are key players in the survival of disease-causing protozoans making these proteins attractive pharmacological targets. In this work, we aimed at the purification of M-PPases in amounts suitable for crystallization as a first step to obtain structural information for drug design. We have tested the expression of eight integral membrane pyrophosphatases in Saccharomyces cerevisiae, six from bacterial and archaeal sources and two from protozoa. Two proteins originating from hyperthermophilic organisms were purified in dimeric and monodisperse active states. To generate M-PPases with an increased hydrophilic surface area, which potentially should facilitate formation of crystal contacts, phage T4 lysozyme was inserted into different extramembraneous loops of one of these M-PPases. Two of these fusion proteins were active and expressed at levels that would allow their purification for crystallization purposes.

  3. Pyramiding expression of maize genes encoding phosphoenolpyruvate carboxylase (PEPC) and pyruvate orthophosphate dikinase (PPDK) synergistically improve the photosynthetic characteristics of transgenic wheat.

    PubMed

    Zhang, HuiFang; Xu, WeiGang; Wang, HuiWei; Hu, Lin; Li, Yan; Qi, XueLi; Zhang, Lei; Li, ChunXin; Hua, Xia

    2014-09-01

    Using particle bombardment transformation, we introduced maize pepc cDNA encoding phosphoenolpyruvate carboxylase (PEPC) and ppdk cDNA encoding pyruvate orthophosphate dikinase (PPDK) into the C3 crop wheat to generate transgenic wheat lines carrying cDNA of pepc (PC lines), ppdk (PK lines) or both (PKC lines). The integration, transcription, and expression of the foreign genes were confirmed by Southern blot, Real-time quantitative reverse transcription PCR (Q-RT-PCR), and Western blot analysis. Q-RT-PCR results indicated that the average relative expression levels of pepc and ppdk in the PKC lines reached 10 and 4.6, respectively, compared to their expressions in untransformed plants (set to 1). The enzyme activities of PEPC and PPDK in the PKC lines were 4.3- and 2.1-fold higher, respectively, than in the untransformed control. The maximum daily net photosynthetic rates of the PKC, PC, and PK lines were enhanced by 26.4, 13.3, and 4.5%, respectively, whereas the diurnal accumulations of photosynthesis were 21.3, 13.9, and 6.9%, respectively, higher than in the control. The Fv/Fm of the transgenic plants decreased less than in the control under high temperature and high light conditions (2 weeks after anthesis), suggesting that the transgenic wheat transports more absorbed light energy into a photochemical reaction. The exogenous maize C4-specific pepc gene was more effective than ppdk at improving the photosynthetic performance and yield characteristics of transgenic wheat, while the two genes showed a synergistic effect when they were transformed into the same genetic background, because the PKC lines exhibited improved photosynthetic and physiological traits.

  4. Expression of the Minor Isoform Pea Ferredoxin in Tobacco Alters Photosynthetic Electron Partitioning and Enhances Cyclic Electron Flow1[W

    PubMed Central

    Blanco, Nicolás E.; Ceccoli, Romina D.; Vía, María V. Dalla; Voss, Ingo; Segretin, María E.; Bravo-Almonacid, Fernando F.; Melzer, Michael; Hajirezaei, Mohammad-Reza; Scheibe, Renate; Hanke, Guy T.

    2013-01-01

    Ferredoxins (Fds) are ferrosulfoproteins that function as low-potential electron carriers in plants. The Fd family is composed of several isoforms that share high sequence homology but differ in functional characteristics. In leaves, at least two isoforms conduct linear and cyclic photosynthetic electron transport around photosystem I, and mounting evidence suggests the existence of at least partial division of duties between these isoforms. To evaluate the contribution of different kinds of Fds to the control of electron fluxes along the photosynthetic electron transport chain, we overexpressed a minor pea (Pisum sativum) Fd isoform (PsFd1) in tobacco (Nicotiana tabacum) plants. The transplastomic OeFd1 plants exhibited variegated leaves and retarded growth and developmental rates. Photosynthetic studies of these plants indicated a reduction in carbon dioxide assimilation rates, photosystem II photochemistry, and linear electron flow. However, the plants showed an increase in nonphotochemical quenching, better control of excitation pressure at photosystem II, and no evidence of photoinhibition, implying a better dynamic regulation to remove excess energy from the photosynthetic electron transport chain. Finally, analysis of P700 redox status during illumination confirmed that the minor pea Fd isoform promotes enhanced cyclic flow around photosystem I. The two novel features of this work are: (1) that Fd levels achieved in transplastomic plants promote an alternative electron partitioning even under greenhouse light growth conditions, a situation that is exacerbated at higher light intensity measurements; and (2) that an alternative, minor Fd isoform has been overexpressed in plants, giving new evidence of labor division among Fd isoforms. PMID:23370717

  5. Bacteriophage membrane protein P9 as a fusion partner for the efficient expression of membrane proteins in Escherichia coli.

    PubMed

    Jung, Yuna; Jung, Hyeim; Lim, Dongbin

    2015-12-01

    Despite their important roles and economic values, studies of membrane proteins have been hampered by the difficulties associated with obtaining sufficient amounts of protein. Here, we report a novel membrane protein expression system that uses the major envelope protein (P9) of phage φ6 as an N-terminal fusion partner. Phage membrane protein P9 facilitated the synthesis of target proteins and their integration into the Escherichia coli cell membrane. This system was used to produce various multi-pass transmembrane proteins, including G-protein-coupled receptors, transporters, and ion channels of human origin. Green fluorescent protein fusion was used to confirm the correct folding of the expressed proteins. Of the 14 membrane proteins tested, eight were highly expressed, three were moderately expressed, and three were barely expressed in E. coli. Seven of the eight highly expressed proteins could be purified after extraction with the mild detergent lauryldimethylamine-oxide. Although a few proteins have previously been developed as fusion partners to augment membrane protein production, we believe that the major envelope protein P9 described here is better suited to the efficient expression of eukaryotic transmembrane proteins in E. coli.

  6. Vaccinia virus virion membrane biogenesis protein A11 associates with viral membranes in a manner that requires the expression of another membrane biogenesis protein, A6.

    PubMed

    Wu, Xiang; Meng, Xiangzhi; Yan, Bo; Rose, Lloyd; Deng, Junpeng; Xiang, Yan

    2012-10-01

    A group of vaccinia virus (VACV) proteins, including A11, L2, and A6, are required for biogenesis of the primary envelope of VACV, specifically, for the acquisition of viral membrane precursors. However, the interconnection among these proteins is unknown and, with the exception of L2, the connection of these proteins with membranes is also unknown. In this study, prompted by the findings that A6 coprecipitated A11 and that the cellular distribution of A11 was dramatically altered by repression of A6 expression, we studied the localization of A11 in cells by using immunofluorescence and cell fractionation analysis. A11 was found to associate with membranes and colocalize with virion membrane proteins in viral replication factories during normal VACV replication. A11 partitioned almost equally between the detergent and aqueous phases upon Triton X-114 phase separation, demonstrating an intrinsic affinity with lipids. However, in the absence of infection or VACV late protein synthesis, A11 did not associate with cellular membranes. Furthermore, when A6 expression was repressed, A11 did not colocalize with any viral membrane proteins or associate with membranes. In contrast, when virion envelope formation was blocked at a later step by repression of A14 expression or by rifampin treatment, A11 colocalized with virion membrane proteins in the factories. Altogether, our data showed that A11 associates with viral membranes during VACV replication, and this association requires A6 expression. This study provides a physical connection between A11 and viral membranes and suggests that A6 regulates A11 membrane association.

  7. New examples of membrane protein expression and purification using the yeast based Pdr1-3 expression strategy.

    PubMed

    Gupta, Rakeshkumar P; Kueppers, Petra; Schmitt, Lutz

    2014-12-10

    Overexpression and purification of membrane proteins has been a bottleneck for their functional and structural study for a long time. Both homologous and heterologous expression of membrane proteins with suitable tags for purification presents unique challenges for cloning and expression. Saccharomyces cerevisiae is a potential host system with significant closeness to higher eukaryotes and provides opportunity for attempts to express membrane proteins. In the past, bakers yeast containing mutations within the transcriptional regulator Pdr1 has been used to overexpress various membrane proteins including for example the ABC transporters Pdr5 and Yor1, respectively. In this study we exploited this system and tried to express and purify 3 membrane proteins in yeast along with Pdr5 and Yor1 viz. Rsb1, Mdl1 and Drs2 by virtue of an N-terminal 14-histidine affinity tag. Out of these five, we could express all membrane proteins although at different levels. Satisfactory yields were obtained for three examples i.e. Pdr5, Yor1 and Drs2. Rsb1 expression was comparatively low and Mdl1 was rather unsatisfactory. Thus, we demonstrate here the application of this yeast based expression system that is suitable for cloning, expression and purification of a wide variety of membrane proteins.

  8. The Photosynthetic Reaction Center from the Purple Bacterium Rhodopseudomonas viridis

    NASA Astrophysics Data System (ADS)

    Deisenhofer, Johann; Michel, Hartmut

    1989-09-01

    The history and methods of membrane protein crystallization are described. The solution of the structure of the photosynthetic reaction center from the bacterium Rhodopseudomonas viridis is described, and the structure of this membrane protein complex is correlated with its function as a light-driven electron pump across the photosynthetic membrane. Conclusions about the structure of the photosystem II reaction center from plants are drawn, and aspects of membrane protein structure are discussed.

  9. Lipids in photosynthetic reaction centres: structural roles and functional holes.

    PubMed

    Jones, Michael R

    2007-01-01

    Photosynthetic proteins power the biosphere. Reaction centres, light harvesting antenna proteins and cytochrome b(6)f (or bc(1)) complexes are expressed at high levels, have been subjected to an intensive spectroscopic, biochemical and mutagenic analysis, and several have been characterised to an informatively high resolution by X-ray crystallography. In addition to revealing the structural basis for the transduction of light energy, X-ray crystallography has brought molecular insights into the relationships between these multicomponent membrane proteins and their lipid environment. Lipids resolved in the X-ray crystal structures of photosynthetic proteins bind light harvesting cofactors, fill intra-protein cavities through which quinones can diffuse, form an important part of the monomer-monomer interface in multimeric structures and may facilitate structural flexibility in complexes that undergo partial disassembly and repair. It has been proposed that individual lipids influence the biophysical properties of reaction centre cofactors, and so affect the rate of electron transfer through the complex. Lipids have also been shown to be important for successful crystallisation of photosynthetic proteins. Comparison of the three types of reaction centre that have been structurally characterised reveals interesting similarities in the position of bound lipids that may point towards a generic requirement to reinforce the structure of the core electron transfer domain. The crystallographic data are also providing new opportunities to find molecular explanations for observed effects of different types of lipid on the structure, mechanism and organisation of reaction centres and other photosynthetic proteins.

  10. Clades of Photosynthetic Bacteria Belonging to the Genus Rhodopseudomonas Show Marked Diversity in Light-Harvesting Antenna Complex Gene Composition and Expression

    SciTech Connect

    Fixen, Kathryn R.; Oda, Yasuhiro; Harwood, Caroline S.; Eisen, Jonathan

    2015-12-22

    Many photosynthetic bacteria have peripheral light-harvesting (LH) antenna complexes that increase the efficiency of light energy capture. The purple nonsulfur photosynthetic bacteriumRhodopseudomonas palustrisproduces different types of LH complexes under high light intensities (LH2 complex) and low light intensities (LH3 and LH4 complexes). There are multiplepucBAoperons that encode the α and β peptides that make up these complexes. But, low-resolution structures, amino acid similarities between the complexes, and a lack of transcription analysis have made it difficult to determine the contributions of differentpucBAoperons to the composition and function of different LH complexes. It was also unclear how much diversity of LH complexes exists inR. palustrisand affiliated strains. To address this, we undertook an integrative genomics approach using 20 sequenced strains. Gene content analysis revealed that even closely related strains have differences in theirpucBAgene content. Transcriptome analyses of the strains grown under high light and low light revealed that the patterns of expression of thepucBAoperons varied among strains grown under the same conditions. We also found that one set of LH2 complex proteins compensated for the lack of an LH4 complex under low light intensities but not under extremely low light intensities, indicating that there is functional redundancy between some of the LH complexes under certain light intensities. The variation observed in LH gene composition and expression inRhodopseudomonasstrains likely reflects how they have evolved to adapt to light conditions in specific soil and water microenvironments.

    ImportanceRhodopseudomonas palustrisis a phototrophic purple nonsulfur bacterium that adapts its photosystem to allow growth at a range of light intensities. It does this by

  11. Clades of Photosynthetic Bacteria Belonging to the Genus Rhodopseudomonas Show Marked Diversity in Light-Harvesting Antenna Complex Gene Composition and Expression

    DOE PAGES

    Fixen, Kathryn R.; Oda, Yasuhiro; Harwood, Caroline S.; ...

    2015-12-22

    Many photosynthetic bacteria have peripheral light-harvesting (LH) antenna complexes that increase the efficiency of light energy capture. The purple nonsulfur photosynthetic bacteriumRhodopseudomonas palustrisproduces different types of LH complexes under high light intensities (LH2 complex) and low light intensities (LH3 and LH4 complexes). There are multiplepucBAoperons that encode the α and β peptides that make up these complexes. But, low-resolution structures, amino acid similarities between the complexes, and a lack of transcription analysis have made it difficult to determine the contributions of differentpucBAoperons to the composition and function of different LH complexes. It was also unclear how much diversity of LHmore » complexes exists inR. palustrisand affiliated strains. To address this, we undertook an integrative genomics approach using 20 sequenced strains. Gene content analysis revealed that even closely related strains have differences in theirpucBAgene content. Transcriptome analyses of the strains grown under high light and low light revealed that the patterns of expression of thepucBAoperons varied among strains grown under the same conditions. We also found that one set of LH2 complex proteins compensated for the lack of an LH4 complex under low light intensities but not under extremely low light intensities, indicating that there is functional redundancy between some of the LH complexes under certain light intensities. The variation observed in LH gene composition and expression inRhodopseudomonasstrains likely reflects how they have evolved to adapt to light conditions in specific soil and water microenvironments. ImportanceRhodopseudomonas palustrisis a phototrophic purple nonsulfur bacterium that adapts its photosystem to allow growth at a range of light intensities. It does this by adjusting the amount and composition of peripheral light-harvesting (LH) antenna complexes that it synthesizes.Rhodopseudomonasstrains are notable for

  12. [The heterologous expression and purification of membrane protein from Mycobacterium tuberculosis].

    PubMed

    Liao, Dan; Xie, Jian-Ping; Wang, Hong-Hai

    2007-10-01

    Membrane proteins fulfill a wide range of central functions in the cell, but their structure determination remains one of the great challenges in structural biology. The heterologous overexpression is a demanding task. Here, we provide an overview of recent advance to heterologous expression and purification of membrane protein from Mycobacterium tuberculosis, whose membrane proteins represent the majority of the new potential drug targets in this bacillus, which is ranked as the number1 cause of infectious disease mortality in the world. A detailed structural and functional understanding of the membranes protein of Mycobacterium tuberculosis will be critical both for an understanding of the biology of infection and for the rational development of novel therapeutics. The procedures for functional expression followed by purification of membranes protein are reviewed here together with nonfunctional expression in inclusion bodies and subsequent refolding to produce functional proteins. The new expression systems, new approaches to soluble expression of recombinant proteins, new methods for membrane protein folding in vitro and new purification technology will provide a basis for choosing the best expression and purification protocol for a given membrane protein. The goal of this review is to aid researchers in the choice of a suitable expression system for their favourite proteins and make overproduction of functional membrane proteins becomes easier.

  13. Over-expression of gsh1 in the cytosol affects the photosynthetic apparatus and improves the performance of transgenic poplars on heavy metal-contaminated soil.

    PubMed

    Ivanova, L A; Ronzhina, D A; Ivanov, L A; Stroukova, L V; Peuke, A D; Rennenberg, H

    2011-07-01

    Recent studies of transgenic poplars over-expressing the genes gsh1 and gsh2 encoding γ-glutamylcysteine synthetase (γ-ECS) and glutathione synthetase, respectively, provided detailed information on regulation of GSH synthesis, enzymes activities and mRNA expression. In this experiment, we studied quantitative parameters of leaves, assimilating tissues, cells and chloroplasts, mesophyll resistance for CO(2) diffusion, chlorophyll and carbohydrate content in wild-type poplar and transgenic plants over-expressing gsh1 in the cytosol after 3 years of growth in relatively clean (control) or heavy metal-contaminated soil in the field. Over-expression of gsh1 in the cytosol led to a twofold increase of intrafoliar GSH concentration and influenced the photosynthetic apparatus at different levels of organisation, i.e., leaves, photosynthetic cells and chloroplasts. At the control site, transgenic poplars had a twofold smaller total leaf area per plant and a 1.6-fold leaf area per leaf compared to wild-type controls. Annual aboveground biomass gain was reduced by 50% in the transgenic plants. The reduction of leaf area of the transformants was accompanied by a significant decline in total cell number per leaf, indicating suppression of cell division. Over-expression of γ-ECS in the cytosol also caused changes in mesophyll structure, i.e., a 20% decrease in cell and chloroplast number per leaf area, but also an enhanced volume share of chloroplasts and intercellular airspaces in the leaves. Transgenic and wild poplars did not exhibit differences in chlorophyll and carotenoid content of leaves, but transformants had 1.3-fold fewer soluble carbohydrates. Cultivation on contaminated soil caused a reduction of palisade cell volume and chloroplast number, both per cell and leaf area, in wild-type plants but not in transformants. Biomass accumulation of wild-type poplars decreased in contaminated soil by more than 30-fold, whereas transformants showed a twofold decrease

  14. Hydrostatic pressure decreases membrane fluidity and lipid desaturase expression in chondrocyte progenitor cells.

    PubMed

    Montagne, Kevin; Uchiyama, Hiroki; Furukawa, Katsuko S; Ushida, Takashi

    2014-01-22

    Membrane biomechanical properties are critical in modulating nutrient and metabolite exchange as well as signal transduction. Biological membranes are predominantly composed of lipids, cholesterol and proteins, and their fluidity is tightly regulated by cholesterol and lipid desaturases. To determine whether such membrane fluidity regulation occurred in mammalian cells under pressure, we investigated the effects of pressure on membrane lipid order of mouse chondrogenic ATDC5 cells and desaturase gene expression. Hydrostatic pressure linearly increased membrane lipid packing and simultaneously repressed lipid desaturase gene expression. We also showed that cholesterol mimicked and cholesterol depletion reversed those effects, suggesting that desaturase gene expression was controlled by the membrane physical state itself. This study demonstrates a new effect of hydrostatic pressure on mammalian cells and may help to identify the molecular mechanisms involved in hydrostatic pressure sensing in chondrocytes.

  15. Not changes in membrane fluidity but proteotoxic stress triggers heat shock protein expression in Chlamydomonas reinhardtii.

    PubMed

    Rütgers, Mark; Muranaka, Ligia Segatto; Schulz-Raffelt, Miriam; Thoms, Sylvia; Schurig, Juliane; Willmund, Felix; Schroda, Michael

    2017-09-06

    A conserved reaction of all organisms exposed to heat stress is an increased expression of heat shock proteins (HSPs). Several studies have proposed that HSP expression in heat-stressed plant cells is triggered by an increased fluidity of the plasma membrane. Among the main lines of evidence in support of this model are (i) the degree of membrane lipid saturation was higher in cells grown at elevated temperatures and correlated with a lower amplitude of HSP expression upon a temperature upshift; (ii) membrane fluidizers induce HSP expression at physiological temperatures; (iii) membrane rigidifier dimethylsulfoxide dampens heat-induced HSP expression. Here we tested whether this holds also for Chlamydomonas reinhardtii. We show that heat-induced HSP expression in cells grown at elevated temperatures was reduced because they already contained elevated levels of cytosolic HSP70A/90A that apparently act as negative regulators of heat shock factor 1. We find that membrane rigidifier dimethylsulfoxide impaired translation under heat stress conditions and that membrane fluidizer benzyl alcohol induced HSP expression, but also caused protein aggregation. These findings support the classical model for the cytosolic unfolded protein response, according to which HSP expression is induced by the accumulation of unfolded proteins. Hence, the membrane fluidity model should be reconsidered. This article is protected by copyright. All rights reserved.

  16. Surface expression, single-channel analysis and membrane topology of recombinant Chlamydia trachomatis Major Outer Membrane Protein

    PubMed Central

    Findlay, Heather E; McClafferty, Heather; Ashley, Richard H

    2005-01-01

    Background Chlamydial bacteria are obligate intracellular pathogens containing a cysteine-rich porin (Major Outer Membrane Protein, MOMP) with important structural and, in many species, immunity-related roles. MOMP forms extensive disulphide bonds with other chlamydial proteins, and is difficult to purify. Leaderless, recombinant MOMPs expressed in E. coli have yet to be refolded from inclusion bodies, and although leadered MOMP can be expressed in E. coli cells, it often misfolds and aggregates. We aimed to improve the surface expression of correctly folded MOMP to investigate the membrane topology of the protein, and provide a system to display native and modified MOMP epitopes. Results C. trachomatis MOMP was expressed on the surface of E. coli cells (including "porin knockout" cells) after optimizing leader sequence, temperature and medium composition, and the protein was functionally reconstituted at the single-channel level to confirm it was folded correctly. Recombinant MOMP formed oligomers even in the absence of its 9 cysteine residues, and the unmodified protein also formed inter- and intra-subunit disulphide bonds. Its topology was modeled as a (16-stranded) β-barrel, and specific structural predictions were tested by removing each of the four putative surface-exposed loops corresponding to highly immunogenic variable sequence (VS) domains, and one or two of the putative transmembrane strands. The deletion of predicted external loops did not prevent folding and incorporation of MOMP into the E. coli outer membrane, in contrast to the removal of predicted transmembrane strands. Conclusions C. trachomatis MOMP was functionally expressed on the surface of E. coli cells under newly optimized conditions. Tests of its predicted membrane topology were consistent with β-barrel oligomers in which major immunogenic regions are displayed on surface-exposed loops. Functional surface expression, coupled with improved understanding of MOMP's topology, could provide

  17. Trans-membrane Signaling in Photosynthetic State Transitions: REDOX- AND STRUCTURE-DEPENDENT INTERACTION IN VITRO BETWEEN STT7 KINASE AND THE CYTOCHROME b6f COMPLEX.

    PubMed

    Singh, Sandeep K; Hasan, S Saif; Zakharov, Stanislav D; Naurin, Sejuti; Cohn, Whitaker; Ma, Jia; Whitelegge, Julian P; Cramer, William A

    2016-10-07

    Trans-membrane signaling involving a serine/threonine kinase (Stt7 in Chlamydomonas reinhardtii) directs light energy distribution between the two photosystems of oxygenic photosynthesis. Oxidation of plastoquinol mediated by the cytochrome b6f complex on the electrochemically positive side of the thylakoid membrane activates the kinase domain of Stt7 on the trans (negative) side, leading to phosphorylation and redistribution ("state transition") of the light-harvesting chlorophyll proteins between the two photosystems. The molecular description of the Stt7 kinase and its interaction with the cytochrome b6f complex are unknown or unclear. In this study, Stt7 kinase has been cloned, expressed, and purified in a heterologous host. Stt7 kinase is shown to be active in vitro in the presence of reductant and purified as a tetramer, as determined by analytical ultracentrifugation, electron microscopy, and electrospray ionization mass spectrometry, with a molecular weight of 332 kDa, consisting of an 83.41-kDa monomer. Far-UV circular dichroism spectra show Stt7 to be mostly α-helical and document a physical interaction with the b6f complex through increased thermal stability of Stt7 secondary structure. The activity of wild-type Stt7 and its Cys-Ser mutant at positions 68 and 73 in the presence of a reductant suggest that the enzyme does not require a disulfide bridge for its activity as suggested elsewhere. Kinase activation in vivo could result from direct interaction between Stt7 and the b6f complex or long-range reduction of Stt7 by superoxide, known to be generated in the b6f complex by quinol oxidation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress.

    PubMed Central

    Karpinski, S; Escobar, C; Karpinska, B; Creissen, G; Mullineaux, P M

    1997-01-01

    Exposure of Arabidopsis plants that were maintained under low light (200 mumol of photons m-2 sec-1) to excess light (2000 mumol of photons m-2 sec-1) for 1 hr caused reversible photoinhibition of photosynthesis. Measurements of photosynthetic parameters and the use of electron transport inhibitors indicated that a novel signal transduction pathway was initiated at plastoquinone and regulated, at least in part, by the redox status of the plastoquinone pool. This signal, which preceded the photooxidative burst of hydrogen peroxide (H2O2) associated with photoinhibition of photosynthesis, resulted in a rapid increase (within 15 min) in mRNA levels of two cytosolic ascorbate peroxidase genes (APX1 and APX2). Treatment of leaves with exogenous reduced glutathione abolished this signal, suggesting that glutathione or the redox status of the glutathione pool has a regulatory impact on this signaling pathway. During recovery from photooxidative stress, transcripts for cytosolic glutathione reductase (GOR2) increased, emphasizing the role of glutathione in this stress. PMID:9144965

  19. CO2 reduction and organic compounds production by photosynthetic bacteria with surface displayed carbonic anhydrase and inducible expression of phosphoenolpyruvate carboxylase.

    PubMed

    Park, Ju-Yong; Kim, Yang-Hoon; Min, Jiho

    2017-01-01

    In Rhodobacter sphaeroides, carbonic anhydrase (CA; EC 4.2.1.1) is a zinc-containing metalloenzyme that catalyzes the reversible hydration of CO2 to HCO3(-) while phosphoenolpyruvate carboxylase (PEPC; 4.1.1.31), an enzyme involved in the carbon metabolism that catalyzed the fixation of CO2 to PEP, is a key factor for biological fixation of CO2 and enhances the production of organic compounds. In this study, the recombinant R. sphaeroides with highly-expressed CA was developed based on a surface displayed system of CA (pJY-OmpCA) on the outer membrane of R. sphaeroides using outer membrane protein (Omp) in R. sphaeroides, Finally, two more different recombinant R. sphaeroides were developed, which transformed with a two-vector system harboring cytosolic expressed CA (pJY-OmpCA-CA)or PEPC (pJY-OMPCA-PEPC) in R. sphaeroides with surface displayed CA on the outer membrane. In case of recombinant R. sphaeroides with the pJY-OmpCA-PEPC, it has shown the highest CO2 reduction efficiency and the production of several organic compounds (carotenoids, polyhydroxybutyrate, malic acid, succinic acid). It means that the surface displayed CA on the R. sphaeroides would accelerate the CO2-bicabonate conversion on the bacterial outer membrane. Moreover, inducible over-expression of PEPC with surface-displayed CA was successfully used to facilitate a rapider CO2 reduction and quicker production of organic compounds.

  20. Ribulose-1,5-bisphosphate Carboxylase/oxygenase (RubisCO) Gene Expression and Photosynthetic Activity in Nutrient-enriched Mesocosm Experiments

    NASA Astrophysics Data System (ADS)

    Wyman, M.; Davies, J. T.; Weston, K.; Crawford, D. W.; Purdie, D. A.

    1998-02-01

    The temporal variability in carbon dioxide fixation rates and the relative abundance ofrbcLSmRNA (encoding the large subunit of the Calvin cycle enzyme, RubisCO) was determined for nutrient-stimulated populations of marine phytoplankton enclosed in diatom-dominated and coccolithophorid-dominated mesocosms. Both mesocosms were characterized by successive bloom events that were preceded by marked increases in the level of RubisCO gene expression. In general, maxima inrbcLmRNA abundance showed the strongest temporal covariation with peaks in the value of the photosynthetic parameter PBmax, the chlorophyll-specific maximum rate of CO2fixation. Somewhat looser temporal co-variations were observed between peaks in transcript levels and maxima in chlorophyll concentrations or phytoplankton biomass. The specific contribution of the haptophyteEmiliania huxleyito the overall level of gene expression in the diatom-dominated enclosure was investigated using an homologousrbcLgene probe. The results were compared to data obtained at lower hybridization stringency using a generalrbcLprobe originating from the oceanic cyanobacteriumSynechococcusWH8103. The comparative data suggest that, whereas diatoms made a substantial contribution to the mRNA signal during the initial part of the experiment, the contribution ofE. huxleyito the overall level of gene expression increased as the experiment progressed.

  1. Expression of Trans-Membrane Proteins in vitro Using a Cell Free System

    NASA Astrophysics Data System (ADS)

    Weisse, Natalie; Noireaux, Vincent; Chalmeau, Jerome

    2010-10-01

    Trans-membrane proteins represent a significant portion of the proteins expressed by cells. The expression of proteins in vitro, however, remains a challenge. Numerous expression approaches have been developed with cell free expression (CFE) being one of the most promising. CFE is based on a transcription-translation system that has been extracted from E. coli bacteria. Adding the desired DNA allows expression of a selected protein, and in the presence of phospholipids the expression of trans-membrane proteins becomes possible. In order to express trans-membrane proteins in a closed native environment, the cell free system (CFS) is encapsulated with a phospholipid bilayer, creating an artificial cell. To verify protein expression, AquaporinZ (AqpZ), a well-known trans-membrane protein tagged with a green fluorescent protein (eGFP), was used so the expressed proteins could be seen under a fluorescent microscope. These artificial cells will serve as an experimental platform for testing the viability of the expressed trans-membrane proteins. Results from the manipulation of these artificial cells by attaching them to the slide surface through streptavidin-biotin bonding will be presented.

  2. Functional expression of mammalian receptors and membrane channels in different cells.

    PubMed

    Eifler, Nora; Duckely, Myriam; Sumanovski, Lazar T; Egan, Terrance M; Oksche, Alexander; Konopka, James B; Lüthi, Anita; Engel, Andreas; Werten, Paul J L

    2007-08-01

    In native tissues, the majority of medically important membrane proteins is only present at low concentrations, making their overexpression in recombinant systems a prerequisite for structural studies. Here, we explore the commonly used eukaryotic expression systems-yeast, baculovirus/insect cells (Sf9) and Semliki Forest Virus (SFV)/mammalian cells-for the expression of seven different eukaryotic membrane proteins from a variety of protein families. The expression levels, quality, biological activity, localization and solubility of all expressed proteins are compared in order to identify the advantages of one system over the other. SFV-transfected mammalian cell lines provide the closest to native environment for the expression of mammalian membrane proteins, and they exhibited the best overall performance. But depending on the protein, baculovirus-infected Sf9 cells performed almost as well as mammalian cells. The lowest expression levels for the proteins tested here were obtained in yeast.

  3. Rational design of a fusion partner for membrane protein expression in E. coli

    PubMed Central

    Luo, Jianying; Choulet, Julie; Samuelson, James C

    2009-01-01

    We have designed a novel protein fusion partner (P8CBD) to utilize the co-translational SRP pathway in order to target heterologous proteins to the E. coli inner membrane. SRP-dependence was demonstrated by analyzing the membrane translocation of P8CBD-PhoA fusion proteins in wt and SRP-ffh77 mutant cells. We also demonstrate that the P8CBD N-terminal fusion partner promotes over-expression of a Thermotoga maritima polytopic membrane protein by replacement of the native signal anchor sequence. Furthermore, the yeast mitochondrial inner membrane protein Oxa1p was expressed as a P8CBD fusion and shown to function within the E. coli inner membrane. In this example, the mitochondrial targeting peptide was replaced by P8CBD. Several practical features were incorporated into the P8CBD expression system to aid in protein detection, purification, and optional in vitro processing by enterokinase. The basis of membrane protein over-expression toxicity is discussed and solutions to this problem are presented. We anticipate that this optimized expression system will aid in the isolation and study of various recombinant forms of membrane-associated protein. PMID:19530231

  4. Cell-free Expression and In Meso Crystallisation of an Integral Membrane Kinase for Structure Determination

    PubMed Central

    Shah, Syed Tasadaque Ali; Haberstock, Stefan; Dötsch, Volker; Bernhard, Frank; Caffrey, Martin

    2014-01-01

    Membrane proteins are key elements in cell physiology and drug targeting, but getting a high-resolution structure by crystallographic means is still enormously challenging. Novel strategies are in big demand to facilitate the structure determination process that will ultimately hasten the day when sequence information alone can provide a 3-dimensional model. Cell-free or in vitro expression enables rapid access to large quantities of high quality membrane proteins suitable for an array of applications. Despite its impressive efficiency, to date only two membrane proteins produced by the in vitro approach have yielded crystal structures. Here, we have analysed synergies of cell-free expression and crystallisation in lipidic mesophases for generating an X-ray structure of the integral membrane enzyme diacylglycerol kinase to 2.28 Å resolution. The quality of cellular and cell-free expressed kinase samples have been evaluated systematically by comparing i) spectroscopic properties, ii) purity and oligomer formation, iii) lipid content and iv) functionality. DgkA is the first membrane enzyme crystallised based on cell-free expression. The study provides a basic standard for the crystallisation of cell-free expressed membrane proteins and the methods detailed here should prove generally useful and contribute to accelerating the pace at which membrane protein structures are solved. PMID:25012698

  5. The expression pattern of two novel cytokines (IL-24 and IL-29) in human fetal membranes.

    PubMed

    Nace, Judith; Fortunato, Stephen J; Maul, Holger; Menon, Ramkumar

    2010-11-01

    interleukin (IL)-24 and -29 are novel cytokines, produced by immune cells in response to microbial antigens. The functions of these cytokines in the reproductive system are unknown. We examined the expression pattern of IL-24 and IL-29 in human fetal membranes from preterm and term births and in in vitro in response to microbial antigens. fetal membranes collected from cesarean sections at term (normal, not in labor) were placed in culture for 48 h. These membranes were then stimulated with bacterial lipopolysaccharide (LPS) or viral antigen poly-inosinic and cytidylic acid (polyIC) for an additional 24 h. Amniotic fluids (AF) and fetal membranes were also collected from preterm and term deliveries. IL-24 and IL-29 expressions were studied by RT-PCR. ELISA documented culture media and AF cytokine concentrations. IL-24 and IL-29 expressions were seen in cultured fetal membranes regardless of stimulation. Expressions were also found in preterm and term labor membranes, but not in non-labor tissues at term. IL-24 concentrations were higher after LPS stimulation whereas IL-29 concentrations were higher after polyIC-stimulation. AF analysis did not detect either of the cytokines either preterm or term. this is the first study to report IL-24 and IL-29 expressions in human fetal membranes. Higher concentrations of these cytokines in response to distinct infectious stimuli suggest different pathways for fetal immune response during infection.

  6. Response of plasma membrane H+-ATPase in rice (Oryza sativa) seedlings to simulated acid rain.

    PubMed

    Liang, Chanjuan; Ge, Yuqing; Su, Lei; Bu, Jinjin

    2015-01-01

    Understanding the adaptation of plants to acid rain is important to find feasible approaches to alleviate such damage to plants. We studied effects of acid rain on plasma membrane H(+)-ATPase activity and transcription, intracellular H(+), membrane permeability, photosynthetic efficiency, and relative growth rate during stress and recovery periods. Simulated acid rain at pH 5.5 did not affect plasma membrane H(+)-ATPase activity, intracellular H(+), membrane permeability, photosynthetic efficiency, and relative growth rate. Plasma membrane H(+)-ATPase activity and transcription in leaves treated with acid rain at pH 3.5 was increased to maintain ion homeostasis by transporting excessive H(+) out of cells. Then intracellular H(+) was close to the control after a 5-day recovery, alleviating damage on membrane and sustaining photosynthetic efficiency and growth. Simulated acid rain at pH 2.5 inhibited plasma membrane H(+)-ATPase activity by decreasing the expression of H(+)-ATPase at transcription level, resulting in membrane damage and abnormal intracellular H(+), and reduction in photosynthetic efficiency and relative growth rate. After a 5-day recovery, all parameters in leaves treated with pH 2.5 acid rain show alleviated damage, implying that the increased plasma membrane H(+)-ATPase activity and its high expression were involved in repairing process in acid rain-stressed plants. Our study suggests that plasma membrane H(+)-ATPase can play a role in adaptation to acid rain for rice seedlings.

  7. Expression of mammalian membrane proteins in mammalian cells using Semliki Forest virus vectors.

    PubMed

    Lundstrom, Kenneth

    2010-01-01

    One of the major bottlenecks in drug screening and structural biology on membrane proteins has for a long time been the expression of recombinant protein in sufficient quality and quantity. The expression has been evaluated in all existing expression systems, from cell-free translation and bacterial systems to expression in animal cells. In contrast to soluble proteins, the expression levels have been relatively low due to the following reasons: The topology of membrane proteins requires special, posttranslational processing, folding, and insertion into membranes, which often are mammalian cell specific. Despite these strict demands, functional membrane proteins (G protein-coupled receptors, ion channels, and transporters) have been successfully expressed in bacterial, yeast, and insect cells. A general drawback observed in prokaryotic cells is that accumulation of foreign protein in membranes is toxic and results in growth arrest and therefore low yields of recombinant protein.In this chapter, the focus is on expression of recombinant mammalian membrane proteins in mammalian host cells, particularly applying Semliki Forest virus (SFV) vectors. Replication-deficient SFV vectors are rapidly generated at high titers in BHK-21 (Baby Hamster Kidney) cells, which then are applied for a broad range of mammalian and nonmammalian cells. The SFV system has provided high expression levels of topologically different proteins, especially for membrane proteins. Robust ligand-binding assays and functional coupling to G proteins and electrophysiological recordings have made the SFV system an attractive tool in drug discovery. Furthermore, the high susceptibility of SFV vectors to primary neurons has allowed various applications in neuroscience. Establishment of large-scale production in mammalian adherent and suspension cultures has allowed production of hundreds of milligrams of membrane proteins that has allowed their submission to serious structural biology approaches. In this

  8. Trypanosoma cruzi modulates gene expression of plasma membrane repair-related proteins.

    PubMed

    Brígido, Rebecca Tavares E Silva; Tavares, Paula Cristina Brígido; Santos, Marlus Alves Dos; Santos, Júlia de Gouveia; Souza, Maria Aparecida de; Goulart, Isabela Maria Bernardes; Silva, Claudio Vieira da

    2017-10-01

    Plasma membrane injury and repair is particularly prevalent in muscle cells. Here, we aimed to verify dysferlin, acid sphingomyelinase and transcriptional factor EB gene expression during Trypanosoma cruzi infection in vitro and in vivo. Our results showed that the parasite modulates gene expression of these proteins in a way dependent on the number of plasma membrane interacting parasites and in a rapamycin-sensitive manner. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Time-dependent changes in antioxidative enzyme expression and photosynthetic activity of Chlamydomonas reinhardtii cells under acute exposure to cadmium and anthracene.

    PubMed

    Aksmann, Anna; Pokora, Wojciech; Baścik-Remisiewicz, Agnieszka; Dettlaff-Pokora, Agnieszka; Wielgomas, Bartosz; Dziadziuszko, Małgorzata; Tukaj, Zbigniew

    2014-12-01

    Heavy metals (HM) and polycyclic aromatic hydrocarbons (PAHs) are present in the freshwater environment at concentrations that can be hazardous to the biota. Among HMs and PAHs, cadmium (Cd) and anthracene (ANT) are the most prevalent and toxic ones. The response of Chlamydomonas cells to Cd and ANT at concentrations that markedly reduced the growth of algal population was investigated in this study. At such concentrations, both cadmium and anthracene were recognized as oxidative stress inducers, since high concentration of H2O2 in treated cultures was observed. Therefore, as a part of the "molecular phase" of the cell response to this stress, we examined the time-dependent expression of genes encoding the main antioxidative enzymes: superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX), as well as the activity of these enzymes in cells, with special attention paid to chloroplastic and mitochondrial isoforms of SOD. To characterize the cell response at the "physiological level", we examined the photosynthetic activity of stressed cells via analysis of chlorophyll a fluorescence in vivo. In contrast to standard ecotoxicity studies in which the growth end-points are usually determined, herein we present time-dependent changes in algal cell response to Cd- and ANT-induced stress. The most significant effect(s) of the toxicants on photosynthetic activity was observed in the 6th hour, when strong depression of PI parameter value, an over 50 percent reduction of the active reaction center fraction (RC0) and a 3-fold increase in non-photochemical energy dissipation (DI0/RC) were noted. At the same time, the increase (up to 2.5-fold) in mRNA transcript of SOD and CAT genes, followed by the enhancement in the enzyme activity was observed. The high expression of the Msd 3 gene in treated Chlamydomonas cells probably complements the partial loss of chloroplast Fe-SOD and APX activity, while catalase and Mn-SOD 5 seem to be the major enzymes responsible for

  10. Analysis of Membrane Topology of Prestin Expressing in CHO Cells

    NASA Astrophysics Data System (ADS)

    Murakoshi, Michio; Kawase, Tomohiro; Kumano, Shun; Wada, Hiroshi

    2011-11-01

    Outer hair cell (OHC) motility is thought to be based on the voltage-dependent conformational changes of the motor protein prestin. However, little is known about its structure and function. In this study, the membrane topology of prestin was investigated by single molecule force spectroscopy using an atomic force microscope (AFM). The C-terminus of prestin was tagged with an Avi-tag and biotinylated. Prestin was then connected with a streptavidin-coated AFM cantilever via biotin-streptavidin binding. The prestin was pulled out from the plasma membrane by retracting the cantilever and force curves were obtained. Obtained force curves suggested the existence of 12 transmembrane domains of prestin.

  11. Photosynthetic control of the plasma membrane H+-ATPase in Vallisneria leaves. II. Presence of putative isogenes and a protein equipped with a C-terminal autoinhibitory domain.

    PubMed

    Harada, Akiko; Fukuhara, Toshiyuki; Takagi, Shingo

    2002-04-01

    In vitro treatment with trypsin of plasma membrane (PM) vesicles isolated from the leaves of Vallisneria gigantea Graebner, an aquatic monocot, produced a marked decrease in the Km for ATP and an increase in the Vmax of H+-transporting activity. Concomitantly, the removal of 8 kDa of the C-terminal domain from the 94-kDa PM H+-ATPase was confirmed by immunoblotting using different kinds of polyclonal antibody. Three partial clones of putative PM H+-ATPase genes (Vga1, 2, and 3) were isolated from leaves by reverse transcription polymerase chain reaction. Northern blotting analysis revealed that the expression level of Vga3 was high and that of the other two genes was much lower. The H+-transporting activity of PM vesicles was substantially suppressed in the presence of inorganic phosphate (Pi), which has been supposed to be a noncompetitive inhibitor of the PM H+-ATPase, coincident with an increase in the Km for ATP and a decrease in the Vmax. After treatment of the isolated PM vesicles with trypsin, the inhibitory effect of Pi was no longer evident. This result indicates that Pi inhibited the activity through the C-terminal autoinhibitory domain of the PM H+-ATPase. Furthermore, Pi increased the Km for ATP of the H+-transporting activity in the PM vesicles isolated from both dark-adapted and red-light-irradiated leaves. The results suggest that regulation of the Km for ATP through the operation of photosynthesis is independent of regulation through the cytoplasmic level of Pi.

  12. Expression of nuclear membrane proteins in normal, hyperplastic, and neoplastic thyroid epithelial cells.

    PubMed

    Wang, Jieying; Kondo, Tetsuo; Yamane, Tetsu; Nakazawa, Tadao; Oish, Naoki; Mochizuki, Kunio; Katoh, Ryohei

    2015-10-01

    Emerin, lamin A/C, lamin B, and lamin-associated polypeptide 2 (LAP2) are nuclear membrane proteins that play an important role in maintaining nuclear structure and coordinating cell activity. We studied the expression and significance of nuclear membrane proteins in neoplastic thyroid cells by immunohistochemistry, RT-PCR, and real-time PCR. In papillary carcinomas (PCs), the nuclear proteins most frequently expressed at high levels were emerin (82 % positive), lamin A/C (64 %), and LAP2 (82 %). Follicular carcinomas (FCs) most frequently expressed lamin B, while none of the undifferentiated carcinomas (UCs) showed strong expression of emerin or lamin A/C. In all medullary carcinomas (MCs), intermediate to high levels of expression of lamin A/C and LAP2 were found. By RT-PCR analysis, messenger RNA (mRNA) expression of all nuclear membrane proteins except emerin was higher in PC than in normal tissue. Real-time PCR analysis showed that mRNA expression of nuclear membrane protein varied between cell lines. Our findings suggest that expression of nuclear membrane proteins may be related to follicular function in normal and hyperplastic follicles, and we hypothesize that they are also involved in the proliferation and differentiation of neoplastic thyroid cells. We suggest that they reflect the biological nature and/or function of normal, hyperplastic, and neoplastic thyroid cells and may have some value in diagnosing thyroid tumors.

  13. Comparative analysis and "expression space" coverage of the production of prokaryotic membrane proteins for structural genomics.

    PubMed

    Surade, Sachin; Klein, Markus; Stolt-Bergner, Peggy C; Muenke, Cornelia; Roy, Ankita; Michel, Hartmut

    2006-09-01

    Membrane proteins comprise up to one-third of prokaryotic and eukaryotic genomes, but only a very small number of membrane protein structures are known. Membrane proteins are challenging targets for structural biology, primarily due to the difficulty in producing and purifying milligram quantities of these proteins. We are evaluating different methods to produce and purify large numbers of prokaryotic membrane proteins for subsequent structural and functional analysis. Here, we present the comparative expression data for 37 target proteins, all of them secondary transporters, from the mesophilic organism Salmonella typhimurium and the two hyperthermophilic organisms Aquifex aeolicus and Pyrococcus furiosus in three different Escherichia coli expression vectors. In addition, we study the use of Lactococcus lactis as a host for integral membrane protein expression. Overall, 78% of the targets were successfully produced under at least one set of conditions. Analysis of these results allows us to assess the role of different variables in increasing "expression space" coverage for our set of targets. This analysis implies that to maximize the number of nonhomologous targets that are expressed, orthologous targets should be chosen and tested in two vectors with different types of promoters, using C-terminal tags. In addition, E. coli is shown to be a robust host for the expression of prokaryotic transporters, and is superior to L. lactis. These results therefore suggest appropriate strategies for high-throughput heterologous overproduction of membrane proteins.

  14. Mimicking photosynthetic solar energy transduction.

    PubMed

    Gust, D; Moore, T A; Moore, A L

    2001-01-01

    Increased understanding of photosynthetic energy conversion and advances in chemical synthesis and instrumentation have made it possible to create artificial nanoscale devices and semibiological hybrids that carry out many of the functions of the natural process. Artificial light-harvesting antennas can be synthesized and linked to artificial reaction centers that convert excitation energy to chemical potential in the form of long-lived charge separation. Artificial reaction centers can form the basis for molecular-level optoelectronic devices. In addition, they may be incorporated into the lipid bilayer membranes of artificial vesicles, where they function as components of light-driven proton pumps that generate transmembrane proton motive force. The proton gradient may be used to synthesize adenosine triphosphate via an ATP synthase enzyme. The overall energy transduction process in the liposomal system mimics the solar energy conversion system of a photosynthetic bacterium. The results of this research illustrate the advantages of designing functional nanoscale devices based on biological paradigms.

  15. A Link Between Integral Membrane Protein Expression and Simulated Integration Efficiency

    PubMed Central

    Müller, Axel; Tiemann, Katrin; Saladi, Shyam M.; Galimidi, Rachel P.; Zhang, Bin; Clemons, William M.; Miller, Thomas F.

    2016-01-01

    Integral membrane proteins (IMP) control the flow of information and nutrients across cell membranes, yet IMP mechanistic studies are hindered by difficulties in expression. We investigate this issue by addressing the connection between IMP sequence and observed expression levels. For homologs of the IMP TatC, observed expression levels widely vary and are affected by small changes in protein sequence. The effect of sequence changes on experimentally observed expression levels strongly correlates with the simulated integration efficiency obtained from coarse-grained modeling, which is directly confirmed using an in vivo assay. Furthermore, mutations that improve the simulated integration efficiency likewise increase the experimentally observed expression levels. Demonstration of these trends in both Escherichia coli and Mycobacterium smegmatis suggests that the results are general to other expression systems. This work suggests that IMP integration is a determinant for successful expression, raising the possibility of controlling IMP expression via rational design. PMID:27524616

  16. Expression patterns of genes encoding plasma membrane aquaporins during fruit development in cucumber (Cucumis sativus L.).

    PubMed

    Shi, Jin; Wang, Jinfang; Li, Ren; Li, Dianbo; Xu, Fengfeng; Sun, Qianqian; Zhao, Bin; Mao, Ai-Jun; Guo, Yang-Dong

    2015-11-01

    Aquaporins are membrane channels precisely regulating water movement through cell membranes in most living organisms. Despite the advances in the physiology of fruit development, their participation during fruit development in cucumber still barely understood. In this paper, the expressions of 12 genes encoding plasma membrane intrinsic proteins (PIPs) were analyzed during cucumber fruit development in our work. Based on the homology search with known PIPs from rice, Arabidopsis and strawberry, 12 cucumber PIP genes subfamily members were identified. Cellular localization assays indicated that CsPIPs were localized in the plasma membrane. The qRT-PCR analysis of CsPIPs showed that 12 CsPIPs were differentially expressed during fruit development. These results suggest that 12 genes encoding plasma membrane intrinsic proteins (CsPIPs) play very important roles in cucumber life cycle and the data generated will be helpful in understanding their precise roles during fruit development in cucumber.

  17. Practical aspects in expression and purification of membrane proteins for structural analysis.

    PubMed

    Vinothkumar, Kutti R; Edwards, Patricia C; Standfuss, Joerg

    2013-01-01

    A surge of membrane protein structures in the last few years can be attributed to advances in technologies starting at the level of genomes, to highly efficient expression systems, stabilizing conformational flexibility, automation of crystallization and data collection for screening large numbers of crystals and the microfocus beam lines at synchrotrons. The substantial medical importance of many membrane proteins provides a strong incentive to understand them at the molecular level. It is becoming obvious that the major bottleneck in many of the membrane projects is obtaining sufficient amount of stable functional proteins in a detergent micelle for structural studies. Naturally, large effort has been spent on optimizing and advancing multiple expression systems and purification strategies that have started to yield sufficient protein and structures. We describe in this chapter protocols to refold membrane proteins from inclusion bodies, purification from inner membranes of Escherichia coli and from mammalian cell lines.

  18. Science review: Cell membrane expression (connectivity) regulates neutrophil delivery, function and clearance

    PubMed Central

    Seely, Andrew JE; Pascual, José L; Christou, Nicolas V

    2003-01-01

    As the principal cellular component of the inflammatory host defense and contributor to host injury after severe physiologic insult, the neutrophil is inherently coupled to patient outcome in both health and disease. Extensive research has focused on the mechanisms that regulate neutrophil delivery, function, and clearance from the inflammatory microenvironment. The neutrophil cell membrane mediates the interaction of the neutrophil with the extracellular environment; it expresses a complex array of adhesion molecules and receptors for various ligands, including mediators, cytokines, immunoglobulins, and membrane molecules on other cells. This article presents a review and analysis of the evidence that the neutrophil membrane plays a central role in regulating neutrophil delivery (production, rolling, adhesion, diapedesis, and chemotaxis), function (priming and activation, microbicidal activity, and neutrophil-mediated host injury), and clearance (apoptosis and necrosis). In addition, we review how change in neutrophil membrane expression is synonymous with change in neutrophil function in vivo. Employing a complementary analysis of the neutrophil as a complex system, neutrophil membrane expression may be regarded as a measure of neutrophil connectivity, with altered patterns of connectivity representing functionally distinct neutrophil states. Thus, not only does the neutrophil membrane mediate the processes that characterize the neutrophil lifecycle, but characterization of neutrophil membrane expression represents a technology with which to evaluate neutrophil function. PMID:12930553

  19. Progesterone receptor membrane component 1 (PGRMC1) expression in fetal membranes among women with preterm premature rupture of the membranes (PPROM).

    PubMed

    Feng, L; Antczak, B C; Lan, L; Grotegut, C A; Thompson, J L; Allen, T K; Murtha, A P

    2014-05-01

    PGRMC1 function is implicated in maintaining fetal membrane (FM) integrity. PGRMC1 was detectable primarily in the cytoplasm of FM cells and was actively regulated in FMs and relevant for PGRMC1-mediated progesterone action. By cell type, PGRMC1 expression was higher in amnion and chorion compared with decidua. By clinical phenotype, PGRMC1 expression was higher among preterm-no-labor and term-no-labor subjects compared to PPROM. PGRMC1 expression appears to be diminished in PPROM subjects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. High-throughput Cloning and Expression of Integral Membrane Proteins in Escherichia coli

    PubMed Central

    Bruni, Renato

    2014-01-01

    Recently, several structural genomics centers have been established and a remarkable number of three-dimensional structures of soluble proteins have been solved. For membrane proteins, the number of structures solved has been significantly trailing those for their soluble counterparts, not least because over-expression and purification of membrane proteins is a much more arduous process. By using high throughput technologies, a large number of membrane protein targets can be screened simultaneously and a greater number of expression and purification conditions can be employed, leading to a higher probability of successfully determining the structure of membrane proteins. This unit describes the cloning, expression and screening of membrane proteins using high throughput methodologies developed in our laboratory. Basic Protocol 1 deals with the cloning of inserts into expression vectors by ligation-independent cloning. Basic Protocol 2 describes the expression and purification of the target proteins on a miniscale. Lastly, for the targets that express at the miniscale, basic protocols 3 and 4 outline the methods employed for the expression and purification of targets at the midi-scale, as well as a procedure for detergent screening and identification of detergent(s) in which the target protein is stable. PMID:24510647

  1. Screening for lipid requirements of membrane proteins by combining cell-free expression with nanodiscs.

    PubMed

    Henrich, Erik; Dötsch, Volker; Bernhard, Frank

    2015-01-01

    Cell-free (CF) protein expression has emerged as one of the most efficient production platforms for membrane proteins. Central bottlenecks prevalent in conventional cell-based expression systems such as mistargeting, inclusion body formation, degradation as well as product toxicity can be addressed by taking advantage of the reduced complexity of CF expression systems. However, the open accessibility of CF reactions offers the possibility to design customized artificial expression environments by supplying synthetic hydrophobic compounds such as micelles or membranes of defined composition. The open nature of CF systems therefore generally allows systematic screening approaches for the identification of efficient cotranslational solubilization environments of membrane proteins. Synergies exist in particular with the recently developed nanodisc (ND) technology enabling the synthesis of stable and highly soluble particles containing membrane discs of defined composition. Specific types of lipids frequently modulate folding, stability, and activity of integrated membrane proteins. One recently reported example are phospho-MurNAc-pentapeptide (MraY) translocases that catalyze a crucial step in bacterial peptidoglycan biosynthesis making them interesting as future drug targets. Production of functionally active MraY homologues from most human pathogens in conventional cellular production systems was so far not successful due to their obviously strict lipid dependency for functionally folding. We demonstrate that the combination of CF expression with ND technologies is an efficient strategy for the production of folded MraY translocases, and we present a general protocol for the rapid screening of lipid specificities of membrane proteins. © 2015 Elsevier Inc. All rights reserved.

  2. Bacterial expression, correct membrane targeting and functional folding of the HIV-1 membrane protein Vpu using a periplasmic signal peptide.

    PubMed

    Deb, Arpan; Johnson, William A; Kline, Alexander P; Scott, Boston J; Meador, Lydia R; Srinivas, Dustin; Martin-Garcia, Jose M; Dörner, Katerina; Borges, Chad R; Misra, Rajeev; Hogue, Brenda G; Fromme, Petra; Mor, Tsafrir S

    2017-01-01

    Viral protein U (Vpu) is a type-III integral membrane protein encoded by Human Immunodeficiency Virus-1 (HIV- 1). It is expressed in infected host cells and plays several roles in viral progeny escape from infected cells, including down-regulation of CD4 receptors. But key structure/function questions remain regarding the mechanisms by which the Vpu protein contributes to HIV-1 pathogenesis. Here we describe expression of Vpu in bacteria, its purification and characterization. We report the successful expression of PelB-Vpu in Escherichia coli using the leader peptide pectate lyase B (PelB) from Erwinia carotovora. The protein was detergent extractable and could be isolated in a very pure form. We demonstrate that the PelB signal peptide successfully targets Vpu to the cell membranes and inserts it as a type I membrane protein. PelB-Vpu was biophysically characterized by circular dichroism and dynamic light scattering experiments and was shown to be an excellent candidate for elucidating structural models.

  3. Bacterial expression, correct membrane targeting and functional folding of the HIV-1 membrane protein Vpu using a periplasmic signal peptide

    PubMed Central

    Deb, Arpan; Johnson, William A.; Kline, Alexander P.; Scott, Boston J.; Meador, Lydia R.; Srinivas, Dustin; Martin-Garcia, Jose M.; Dörner, Katerina; Borges, Chad R.; Misra, Rajeev; Hogue, Brenda G.; Fromme, Petra

    2017-01-01

    Viral protein U (Vpu) is a type-III integral membrane protein encoded by Human Immunodeficiency Virus-1 (HIV- 1). It is expressed in infected host cells and plays several roles in viral progeny escape from infected cells, including down-regulation of CD4 receptors. But key structure/function questions remain regarding the mechanisms by which the Vpu protein contributes to HIV-1 pathogenesis. Here we describe expression of Vpu in bacteria, its purification and characterization. We report the successful expression of PelB-Vpu in Escherichia coli using the leader peptide pectate lyase B (PelB) from Erwinia carotovora. The protein was detergent extractable and could be isolated in a very pure form. We demonstrate that the PelB signal peptide successfully targets Vpu to the cell membranes and inserts it as a type I membrane protein. PelB-Vpu was biophysically characterized by circular dichroism and dynamic light scattering experiments and was shown to be an excellent candidate for elucidating structural models. PMID:28225803

  4. The Photosynthetic Apparatus and Its Regulation in the Aerobic Gammaproteobacterium Congregibacter litoralis gen. nov., sp. nov

    PubMed Central

    Spring, Stefan; Lünsdorf, Heinrich; Fuchs, Bernhard M.; Tindall, Brian J.

    2009-01-01

    Background There is accumulating evidence that in some marine environments aerobic bacteriochlorophyll a-producing bacteria represent a significant part of the microbial population. The interaction of photosynthesis and carbon metabolism in these interesting bacteria is still largely unknown and requires further investigation in order to estimate their contribution to the marine carbon cycle. Methodology/Principal Findings Here, we analyzed the structure, composition and regulation of the photosynthetic apparatus in the obligately aerobic marine gammaproteobacterium KT71T. Photoheterotrophically grown cells were characterized by a poorly developed lamellar intracytoplasmic membrane system, a type 1 light-harvesting antenna complex and a photosynthetic reaction center associated with a tetraheme cytochrome c. The only photosynthetic pigments produced were bacteriochlorophyll a and spirilloxanthin. Under semiaerobic conditions KT71T cells expressing a photosynthetic apparatus showed a light-dependent increase of growth yield in the range of 1.3–2.5 fold. The expression level of the photosynthetic apparatus depended largely on the utilized substrate, the intermediary carbon metabolism and oxygen tension. In addition, pigment synthesis was strongly influenced by light, with blue light exerting the most significant effect, implicating that proteins containing a BLUF domain may be involved in regulation of the photosynthetic apparatus. Several phenotypic traits in KT71T could be identified that correlated with the assumed redox state of growing cells and thus could be used to monitor the cellular redox state under various incubation conditions. Conclusions/Significance In a hypothetical model that explains the regulation of the photosynthetic apparatus in strain KT71T we propose that the expression of photosynthesis genes depends on the cellular redox state and is maximal under conditions that allow a balanced membrane redox state. So far, bacteria capable of an

  5. Green fluorescent protein-based expression screening of membrane proteins in Escherichia coli.

    PubMed

    Bird, Louise E; Rada, Heather; Verma, Anil; Gasper, Raphael; Birch, James; Jennions, Matthew; Lӧwe, Jan; Moraes, Isabel; Owens, Raymond J

    2015-01-06

    The production of recombinant membrane proteins for structural and functional studies remains technically challenging due to low levels of expression and the inherent instability of many membrane proteins once solubilized in detergents. A protocol is described that combines ligation independent cloning of membrane proteins as GFP fusions with expression in Escherichia coli detected by GFP fluorescence. This enables the construction and expression screening of multiple membrane protein/variants to identify candidates suitable for further investment of time and effort. The GFP reporter is used in a primary screen of expression by visualizing GFP fluorescence following SDS polyacrylamide gel electrophoresis (SDS-PAGE). Membrane proteins that show both a high expression level with minimum degradation as indicated by the absence of free GFP, are selected for a secondary screen. These constructs are scaled and a total membrane fraction prepared and solubilized in four different detergents. Following ultracentrifugation to remove detergent-insoluble material, lysates are analyzed by fluorescence detection size exclusion chromatography (FSEC). Monitoring the size exclusion profile by GFP fluorescence provides information about the mono-dispersity and integrity of the membrane proteins in different detergents. Protein: detergent combinations that elute with a symmetrical peak with little or no free GFP and minimum aggregation are candidates for subsequent purification. Using the above methodology, the heterologous expression in E. coli of SED (shape, elongation, division, and sporulation) proteins from 47 different species of bacteria was analyzed. These proteins typically have ten transmembrane domains and are essential for cell division. The results show that the production of the SEDs orthologues in E. coli was highly variable with respect to the expression levels and integrity of the GFP fusion proteins. The experiment identified a subset for further investigation.

  6. Membrane Prestin Expression Correlates with the Magnitude of Prestin-Associated Charge Movement

    PubMed Central

    Seymour, Michelle L.; Rajagopalan, Lavanya; Duret, Guillaume; Volk, Matthew J.; Liu, Haiying; Brownell, William E.; Pereira, Fred A.

    2016-01-01

    Full expression of electromotility, generation of non-linear capacitance (NLC), and high-acuity mammalian hearing require prestin function in the lateral wall of cochlear outer hair cells (OHCs). Estimates of the number of prestin molecules in the OHC membrane vary, and a consensus has not emerged about the correlation between prestin expression and prestin-associated charge movement in the OHC. Using an inducible prestin-expressing cell line, we demonstrate that the charge density, but not the voltage at peak capacitance, directly correlates with the amount of prestin in the plasma membrane. This correlation is evident in studies involving a controlled increase of prestin expression with time after induction and inducer dose-response. Conversely, membrane prestin levels and charge density gradually decline together following the reduction of prestin levels from a steady state by removal of the inducer. Thus, charge density directly correlates with the level of membrane prestin expression, whereas changing membrane levels of prestin have no effect on the voltage at peak capacitance in this inducible prestin-expressing cell line. PMID:27262187

  7. Genetic selection system for improving recombinant membrane protein expression in E. coli

    PubMed Central

    Massey-Gendel, Elizabeth; Zhao, Anni; Boulting, Gabriella; Kim, Hye-Yeon; Balamotis, Michael A; Seligman, Len M; Nakamoto, Robert K; Bowie, James U

    2009-01-01

    A major barrier to the physical characterization and structure determination of membrane proteins is low yield in recombinant expression. To address this problem, we have designed a selection strategy to isolate mutant strains of Escherichia coli that improve the expression of a targeted membrane protein. In this method, the coding sequence of the membrane protein of interest is fused to a C-terminal selectable marker, so that the production of the selectable marker and survival on selective media is linked to expression of the targeted membrane protein. Thus, mutant strains with improved expression properties can be directly selected. We also introduce a rapid method for curing isolated strains of the plasmids used during the selection process, in which the plasmids are removed by in vivo digestion with the homing endonuclease I-CreI. We tested this selection system on a rhomboid family protein from Mycobacterium tuberculosis (Rv1337) and were able to isolate mutants, which we call EXP strains, with up to 75-fold increased expression. The EXP strains also improve the expression of other membrane proteins that were not the target of selection, in one case roughly 90-fold. PMID:19165721

  8. Quantification of cells expressing mesenchymal stem cell markers in healthy and osteoarthritic synovial membranes.

    PubMed

    Hermida-Gómez, Tamara; Fuentes-Boquete, Isaac; Gimeno-Longas, Maria José; Muiños-López, Emma; Díaz-Prado, Silvia; de Toro, Francisco Javier; Blanco, Francisco Javier

    2011-02-01

    To quantify cells expressing mesenchymal stem cell (MSC) markers in synovial membranes from human osteoarthritic (OA) and healthy joints. Synovial membranes from OA and healthy joints were digested with collagenase and the isolated cells were cultured. Synovial membrane-derived cells were phenotypically characterized for differentiation experiments using flow cytometry to detect the expression of mesenchymal markers (CD29, CD44, CD73, CD90, CD105, CD117, CD166, and STRO-1) and hematopoietic markers (CD34 and CD45). Chondrogenesis was assessed by staining for proteoglycans and collagen type II, adipogenesis by using a stain for lipids, and osteogenesis by detecting calcium deposits. Coexpression of CD44, CD73, CD90, and CD105 was determined using immunofluorescence. Cells expressing MSC markers were diffusely distributed in OA synovial membranes; in healthy synovial membrane these cells were localized in the subintimal zone. More numerous MSC markers in OA synovial membranes were observed in cells also expressing the CD90 antigen. FACS analysis showed that more than 90% of OA synovial membrane-derived cells were positive for CD44, CD73, and CD90, and negative for CD34 and CD45. OA synovial membrane-derived cells were also positive for CD29 (85.23%), CD117 (72.35%), CD105 (45.5%), and STRO-1 (49.46%). Micropellet analyses showed that the culture of cells with transforming growth factor-ß3 stimulated proteoglycan and collagen type II synthesis. Synovial membranes from patients with OA contain more cells positive for CD44, CD90, and CD105 antigens than those from joints with undamaged cartilage.

  9. Conformational antibody binding to a native, cell-free expressed GPCR in block copolymer membranes.

    PubMed

    de Hoog, Hans-Peter M; Lin JieRong, Esther M; Banerjee, Sourabh; Décaillot, Fabien M; Nallani, Madhavan

    2014-01-01

    G-protein coupled receptors (GPCRs) play a key role in physiological processes and are attractive drug targets. Their biophysical characterization is, however, highly challenging because of their innate instability outside a stabilizing membrane and the difficulty of finding a suitable expression system. We here show the cell-free expression of a GPCR, CXCR4, and its direct embedding in diblock copolymer membranes. The polymer-stabilized CXCR4 is readily immobilized onto biosensor chips for label-free binding analysis. Kinetic characterization using a conformationally sensitive antibody shows the receptor to exist in the correctly folded conformation, showing binding behaviour that is commensurate with heterologously expressed CXCR4.

  10. An Approach to Heterologous Expression of Membrane Proteins. The Case of Bacteriorhodopsin.

    PubMed

    Bratanov, Dmitry; Balandin, Taras; Round, Ekaterina; Shevchenko, Vitaly; Gushchin, Ivan; Polovinkin, Vitaly; Borshchevskiy, Valentin; Gordeliy, Valentin

    2015-01-01

    Heterologous overexpression of functional membrane proteins is a major bottleneck of structural biology. Bacteriorhodopsin from Halobium salinarum (bR) is a striking example of the difficulties in membrane protein overexpression. We suggest a general approach with a finite number of steps which allows one to localize the underlying problem of poor expression of a membrane protein using bR as an example. Our approach is based on constructing chimeric proteins comprising parts of a protein of interest and complementary parts of a homologous protein demonstrating advantageous expression. This complementary protein approach allowed us to increase bR expression by two orders of magnitude through the introduction of two silent mutations into bR coding DNA. For the first time the high quality crystals of bR expressed in E. Coli were obtained using the produced protein. The crystals obtained with in meso nanovolume crystallization diffracted to 1.67 Å.

  11. Advanced method for high-throughput expression of mutated eukaryotic membrane proteins in Saccharomyces cerevisiae

    SciTech Connect

    Ito, Keisuke; Sugawara, Taishi; Shiroishi, Mitsunori; Tokuda, Natsuko; Kurokawa, Azusa; Misaka, Takumi; Makyio, Hisayoshi; Yurugi-Kobayashi, Takami; Shimamura, Tatsuro; Nomura, Norimichi; Murata, Takeshi; Abe, Keiko; Iwata, So

    2008-07-11

    Crystallization of eukaryotic membrane proteins is a challenging, iterative process. The protein of interest is often modified in an attempt to improve crystallization and diffraction results. To accelerate this process, we took advantage of a GFP-fusion yeast expression system that uses PCR to direct homologous recombination and gene cloning. We explored the possibility of employing more than one PCR fragment to introduce various mutations in a single step, and found that when up to five PCR fragments were co-transformed into yeast, the recombination frequency was maintained as the number of fragments was increased. All transformants expressed the model membrane protein, while the resulting plasmid from each clone contained the designed mutations only. Thus, we have demonstrated a technique allowing the expression of mutant membrane proteins within 5 days, combining a GFP-fusion expression system and yeast homologous recombination.

  12. An Approach to Heterologous Expression of Membrane Proteins. The Case of Bacteriorhodopsin

    PubMed Central

    Round, Ekaterina; Shevchenko, Vitaly; Gushchin, Ivan; Polovinkin, Vitaly; Borshchevskiy, Valentin; Gordeliy, Valentin

    2015-01-01

    Heterologous overexpression of functional membrane proteins is a major bottleneck of structural biology. Bacteriorhodopsin from Halobium salinarum (bR) is a striking example of the difficulties in membrane protein overexpression. We suggest a general approach with a finite number of steps which allows one to localize the underlying problem of poor expression of a membrane protein using bR as an example. Our approach is based on constructing chimeric proteins comprising parts of a protein of interest and complementary parts of a homologous protein demonstrating advantageous expression. This complementary protein approach allowed us to increase bR expression by two orders of magnitude through the introduction of two silent mutations into bR coding DNA. For the first time the high quality crystals of bR expressed in E. Coli were obtained using the produced protein. The crystals obtained with in meso nanovolume crystallization diffracted to 1.67 Å. PMID:26046789

  13. Expression of functional neurotransmitter receptors in Xenopus oocytes after injection of human brain membranes

    PubMed Central

    Miledi, Ricardo; Eusebi, Fabrizio; Martínez-Torres, Ataúlfo; Palma, Eleonora; Trettel, Flavia

    2002-01-01

    The Xenopus oocyte is a very powerful tool for studies of the structure and function of membrane proteins, e.g., messenger RNA extracted from the brain and injected into oocytes leads to the synthesis and membrane incorporation of many types of functional receptors and ion channels, and membrane vesicles from Torpedo electroplaques injected into oocytes fuse with the oocyte membrane and cause the appearance of functional Torpedo acetylcholine receptors and Cl− channels. This approach was developed further to transplant already assembled neurotransmitter receptors from human brain cells to the plasma membrane of Xenopus oocytes. Membranes isolated from the temporal neocortex of a patient, operated for intractable epilepsy, were injected into oocytes and, within a few hours, the oocyte membrane acquired functional neurotransmitter receptors to γ-aminobutyric acid, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, kainate, and glycine. These receptors were also expressed in the plasma membrane of oocytes injected with mRNA extracted from the temporal neocortex of the same patient. All of this makes the Xenopus oocyte a more useful model than it already is for studies of the structure and function of many human membrane proteins and opens the way to novel pathophysiological investigations of some human brain disorders. PMID:12237406

  14. Expression of functional neurotransmitter receptors in Xenopus oocytes after injection of human brain membranes

    NASA Astrophysics Data System (ADS)

    Miledi, Ricardo; Eusebi, Fabrizio; Martínez-Torres, Ataúlfo; Palma, Eleonora; Trettel, Flavia

    2002-10-01

    The Xenopus oocyte is a very powerful tool for studies of the structure and function of membrane proteins, e.g., messenger RNA extracted from the brain and injected into oocytes leads to the synthesis and membrane incorporation of many types of functional receptors and ion channels, and membrane vesicles from Torpedo electroplaques injected into oocytes fuse with the oocyte membrane and cause the appearance of functional Torpedo acetylcholine receptors and Cl channels. This approach was developed further to transplant already assembled neurotransmitter receptors from human brain cells to the plasma membrane of Xenopus oocytes. Membranes isolated from the temporal neocortex of a patient, operated for intractable epilepsy, were injected into oocytes and, within a few hours, the oocyte membrane acquired functional neurotransmitter receptors to -aminobutyric acid, -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, kainate, and glycine. These receptors were also expressed in the plasma membrane of oocytes injected with mRNA extracted from the temporal neocortex of the same patient. All of this makes the Xenopus oocyte a more useful model than it already is for studies of the structure and function of many human membrane proteins and opens the way to novel pathophysiological investigations of some human brain disorders.

  15. A Guide to Transient Expression of Membrane Proteins in HEK-293 Cells for Functional Characterization

    PubMed Central

    Ooi, Amanda; Wong, Aloysius; Esau, Luke; Lemtiri-Chlieh, Fouad; Gehring, Chris

    2016-01-01

    The human embryonic kidney 293 (HEK-293) cells are commonly used as host for the heterologous expression of membrane proteins not least because they have a high transfection efficiency and faithfully translate and process proteins. In addition, their cell size, morphology and division rate, and low expression of native channels are traits that are particularly attractive for current-voltage measurements. Nevertheless, the heterologous expression of complex membrane proteins such as receptors and ion channels for biological characterization and in particular for single-cell applications such as electrophysiology remains a challenge. Expression of functional proteins depends largely on careful step-by-step optimization that includes the design of expression vectors with suitable identification tags, as well as the selection of transfection methods and detection parameters appropriate for the application. Here, we use the heterologous expression of a plant potassium channel, the Arabidopsis thaliana guard cell outward-rectifying K+ channel, AtGORK (At5G37500) in HEK-293 cells as an example, to evaluate commonly used transfection reagents and fluorescent detection methods, and provide a detailed methodology for optimized transient transfection and expression of membrane proteins for in vivo studies in general and for single-cell applications in particular. This optimized protocol will facilitate the physiological and cellular characterization of complex membrane proteins. PMID:27486406

  16. A Guide to Transient Expression of Membrane Proteins in HEK-293 Cells for Functional Characterization.

    PubMed

    Ooi, Amanda; Wong, Aloysius; Esau, Luke; Lemtiri-Chlieh, Fouad; Gehring, Chris

    2016-01-01

    The human embryonic kidney 293 (HEK-293) cells are commonly used as host for the heterologous expression of membrane proteins not least because they have a high transfection efficiency and faithfully translate and process proteins. In addition, their cell size, morphology and division rate, and low expression of native channels are traits that are particularly attractive for current-voltage measurements. Nevertheless, the heterologous expression of complex membrane proteins such as receptors and ion channels for biological characterization and in particular for single-cell applications such as electrophysiology remains a challenge. Expression of functional proteins depends largely on careful step-by-step optimization that includes the design of expression vectors with suitable identification tags, as well as the selection of transfection methods and detection parameters appropriate for the application. Here, we use the heterologous expression of a plant potassium channel, the Arabidopsis thaliana guard cell outward-rectifying K(+) channel, AtGORK (At5G37500) in HEK-293 cells as an example, to evaluate commonly used transfection reagents and fluorescent detection methods, and provide a detailed methodology for optimized transient transfection and expression of membrane proteins for in vivo studies in general and for single-cell applications in particular. This optimized protocol will facilitate the physiological and cellular characterization of complex membrane proteins.

  17. Membrane-targeted HrpNEa can modulate apple defense gene expression.

    PubMed

    Vergne, E; de Bernonville, T Dugé; Dupuis, F; Sourice, S; Cournol, R; Berthelot, P; Barny, M A; Brisset, M N; Chevreau, E

    2014-02-01

    Fire blight caused by Erwinia amylovora is the major bacterial disease of tribe Maleae, including apple. Among the proteins secreted by this bacterium, HrpNEa, also called harpin, is known to induce hypersensitive response in nonhost plants and to form amyloid oligomers leading to pore opening in the plasma membrane and alteration of membrane homeostasis. To better understand the physiological effects of HrpNEa in the host plant, we produced transgenic apple plants expressing HrpNEa with or without a secretion signal peptide (SP). HrpNEa expressed with a SP was found to be associated within the membrane fraction, in accordance with amyloidogenic properties and the presence of transmembrane domains revealed by in silico analysis. Expression analysis of 28 apple defense-related genes revealed gene modulations in the transgenic line expressing membrane-targeted HrpNEa. While apple transgenic trees displaying a high constitutive expression level of SP-HrpNEa showed a slight reduction of infection frequency after E. amylovora inoculation, there was no decrease in the disease severity. Thus HrpNEa seems to act as an elicitor of host defenses, when localized in the host membrane.

  18. 1-methylcyclopropene (1-MCP)-induced alteration in leaf photosynthetic rate, chlorophyll fluorescence, respiration and membrane damage in rice (Oryza sativa L.) under high night temperature

    USDA-ARS?s Scientific Manuscript database

    High night temperature (HNT) can induce ethylene-triggered reactive oxygen species production, which can cause premature leaf senescence and membrane damage, thereby affecting production, consumption and transfer of photosynthates, and yield. The 1-methylcyclopropene (1-MCP) can competitively bind w...

  19. Quantitative affinity chromatographic studies of mitochondrial cytochrome c binding to bacterial photosynthetic reaction center, reconstituted in liposome membranes and immobilized by detergent dialysis and avidin--biotin binding.

    PubMed

    Yang, Q; Liu, X Y; Hara, M; Lundahl, P; Miyake, J

    2000-04-10

    In order to study the affinity binding of c-type cytochromes to the photosynthetic reaction center (RC) by quantitative affinity chromatography (QAC), RC from Rhodobacter sphaeroides was reconstituted into liposomes composed of egg phosphatidylcholine (EPC) and 2 mol% of biotinyl phosphatidylethanolamine simultaneously as the liposomes were formed and immobilized in (strept)avidin-coupled gel beads by rotary detergent dialysis. The immobilized amount was up to 80 nmol of RC and 33 micromol of lipid/g of moist gel in streptavidin-coupled Sephacryl S-1000 gel. By QAC frontal runs, retardation of mitochondrial cyt c on immobilized RC liposome columns was demonstrated. The dissociation constant for the RC-cyt c interaction was determined to be 0.20-0.57 microM. QAC studies also allowed evaluation of the orientation of reconstituted RC in immobilized liposomes by comparison of the total amount of cyt c binding sites with the amount of available binding sites obtained by QAC. It seems that the RC proteoliposomes immobilized in Sephacryl S-1000 gel exposed the cyt c binding sites on the outer surface of the liposomes due to effects of the gel network pore size and the resulting liposomal size.

  20. Photosynthetic reaction center complexes from heliobacteria

    NASA Technical Reports Server (NTRS)

    Trost, J. T.; Vermaas, W. F. J.; Blankenship, R. E.

    1991-01-01

    Photosynthetic reaction centers are pigment-protein complexes that are responsible for the transduction of light energy into chemical energy. Considerable evidence indicates that photosynthetic organisms were present very early in the evolution of life on Earth. The goal of this project is to understand the early evolutionary development of photosynthesis by examining the properties of reaction centers isolated from certain contemporary organisms that appear to contain the simplest photosynthetic reaction centers. The major focus is on the family of newly discovered strictly anaerobic photosynthetic organisms that are grouped with the gram-positive phylum of bacteria. The properties of these reactions centers suggest that they may be the descendants of an ancestor that also gave rise to Photosystem 1 found in oxygen-evolving photosynthetic organisms. Photoactive reaction center-core antenna complexes were isolated from the photosynthetic bacteria, Heliobacillus mobilis and Heliobacterium gestii, by extraction of membranes with Deriphat 160C followed by differential centrifugation and sucrose density gradient centrifugation. Other aspects of this investigation are briefly discussed.

  1. Expression of membrane-bound burst-promoting activity is mediated by allogeneic effector cells.

    PubMed

    Guha, A; Tuck, D; Sorba, S; Dainiak, N

    1993-09-01

    To investigate whether "self" and "non-self" recognition processes are involved in murine erythropoiesis, the expression of membrane-bound burst-promoting activity (mBPA) was determined for B lymphocytes purified from spleens of CF-1, C57 BL/6J, B6021-7115, and CAF-1J mice using syngeneic and allogeneic bone marrow cultures. Addition of B lymphocyte conditioned medium (LCM), shed membrane-derived vesicles, or intact plasma membranes prepared from syngeneic murine cells stimulated erythroid burst-forming unit (BFU-E) proliferation by two- to three-fold above control levels. BFU-E proliferation was increased by six- to eight-fold, however, when LCM, shed membrane vesicles, or plasma membranes purified from allogenic B lymphocytes were used as sources of growth-stimulatory activity. Bioactivity was immunoprecipitated from detergent extracts of membranes purified from both allogeneic and syngeneic lymphocytes with a monoclonal antibody that specifically recognizes mBPA, suggesting that the factors expressed by these cells share antigenic determinants. The results indicate that allogeneic effector cells are a more potent source of mBPA-like molecules than are syngeneic cells, suggesting that immune mechanisms may be involved in inducing erythroid growth factor expression at the B cell surface.

  2. Expression and purification of membrane protein diacylglycerol acyltransferase

    USDA-ARS?s Scientific Manuscript database

    Diacylglycerol acyltransferases (DGATs) catalyze the last and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. Plants and animals deficient in DGATs accumulate less TAG. Over-expression of DGATs increases TAG in seeds and other tissues. DGAT knockout mice are resista...

  3. Tumor necrosis factor-alpha is expressed by glomerular visceral epithelial cells in human membranous nephropathy.

    PubMed Central

    Neale, T. J.; Rüger, B. M.; Macaulay, H.; Dunbar, P. R.; Hasan, Q.; Bourke, A.; Murray-McIntosh, R. P.; Kitching, A. R.

    1995-01-01

    The role of tumor necrosis factor alpha (TNF-alpha) was examined in biopsy-proven glomerulonephritis by immunohistochemistry, in situ hybridization, immunogold electron microscopy, immunoassay in serum and urine, and urinary immunoblot. Striking glomerular capillary wall and visceral glomerular epithelial cell TNF-alpha protein staining was observed in all cases of membranous nephropathy and membranous lupus nephropathy. Staining was less frequently observed in crescentic glomerulonephritis and in isolated cases of other histological subtypes of glomerulonephritis, usually in association with glomerular macrophages. By immunogold electron microscopy TNF-alpha was localized in membranous nephropathy within the visceral glomerular epithelial cells, and also in the glomerular basement membrane, especially in relation to immune deposits. In situ hybridization localized TNF-alpha mRNA exclusively to glomerular epithelial cells in all biopsies with membranous morphology but not in other histological subtypes. Concentrations of TNF-alpha were significantly increased compared with normal controls in the urine of patients with membranous nephropathy and with crescentic glomerulonephritis. The expression of TNF-alpha by glomerular epithelial cells exclusively and universally in biopsies showing a membranous morphology strongly suggests this cytokine has a role in the pathogenesis of membranous nephropathy. Images Figure 1 Figure 2 Figure 3 Figure 5 PMID:7778683

  4. Expression of cyclo-oxygenase types-1 and -2 in human fetal membranes throughout pregnancy.

    PubMed

    Slater, D; Dennes, W; Sawdy, R; Allport, V; Bennett, P

    1999-04-01

    Human labour is associated with increased prostaglandin synthesis within the fetal membranes. We have studied the expression of the two isoforms of the central prostaglandin synthetic enzyme, cyclo-oxygenase (COX-1 and COX-2), in human fetal membranes throughout pregnancy, at mRNA, protein and activity levels. COX-1 mRNA expression was low in human amnion and chorion-decidua and did not change with gestational age. COX-2 mRNA expression in fetal membranes increased with gestational age, with significant up-regulation prior to the onset of labour and in association with labour. Protein concentrations of COX-1 did not change, whilst concentrations of COX-2 increased from the first to the third trimester. COX activity increased with gestational age and in association with labour, although prostaglandin production in fetal membranes collected after labour was reduced, suggesting reduced substrate supply. These data suggest that it is up-regulation of COX-2, rather than of COX-1, which mediates increased prostaglandin synthesis within the fetal membranes at term. Much of the increase in COX-2 expression precedes the onset of labour, suggesting that it is a cause, rather than a consequence, of labour.

  5. Photosynthetic water splitting

    SciTech Connect

    Greenbaum, E.

    1981-01-01

    The photosynthetic unit of hydrogen evolution, the turnover time of photosynthetic hydrogen production, and hydrogenic photosynthesis are discussed in the section on previous work. Recent results are given on simultaneous photoproduction of hydrogen and oxygen, kinetic studies, microscopic marine algae-seaweeds, and oxygen profiles.

  6. The expression of nuclear and membrane estrogen receptors in the European eel throughout spermatogenesis.

    PubMed

    Morini, Marina; Peñaranda, David S; Vílchez, M Carmen; Tveiten, Helge; Lafont, Anne-Gaëlle; Dufour, Sylvie; Pérez, Luz; Asturiano, Juan F

    2017-01-01

    Estradiol (E2) can bind to nuclear estrogen receptors (ESR) or membrane estrogen receptors (GPER). While mammals possess two nuclear ESRs and one membrane GPER, the European eel, like most other teleosts, has three nuclear ESRs and two membrane GPERs, as the result of a teleost specific genome duplication. In the current study, the expression of the three nuclear ESRs (ESR1, ESR2a and ESR2b) and the two membrane GPERs (GPERa and GPERb) in the brain-pituitary-gonad (BPG) axis of the European eel was measured, throughout spermatogenesis. The eels were first transferred from freshwater (FW) to seawater (SW), inducing parallel increases in E2 plasma levels and the expression of ESRs. This indicates that salinity has a stimulatory effect on the E2 signalling pathway along the BPG axis. Stimulation of sexual maturation by weekly injections of human chorionic gonadotropin (hCG) induced a progressive decrease in E2 plasma levels, and different patterns of expression of ESRs and GPERs in the BPG axis. The expression of nuclear ESRs increased in some parts of the brain, suggesting a possible upregulation due to a local production of E2. In the testis, the highest expression levels of the nuclear ESRs were observed at the beginning of spermatogenesis, possibly mediating the role of E2 as spermatogonia renewal factor, followed by a sharply decrease in the expression of ESRs. Conversely, there was a marked increase observed in the expression of both membrane GPERs throughout spermatogenesis, suggesting they play a major role in the final stages of spermatogenesis.

  7. Importance of luminal membrane mesothelin expression in intraductal papillary mucinous neoplasms.

    PubMed

    Einama, Takahiro; Kamachi, Hirofumi; Nishihara, Hiroshi; Homma, Shigenori; Kanno, Hiromi; Ishikawa, Marin; Kawamata, Futoshi; Konishi, Yuji; Sato, Masanori; Tahara, Munenori; Okada, Kuniaki; Muraoka, Shunji; Kamiyama, Toshiya; Taketomi, Akinobu; Matsuno, Yoshihiro; Furukawa, Hiroyuki; Todo, Satoru

    2015-04-01

    The present study demonstrated that luminal membrane mesothelin expression is a reliable prognostic factor in gastric cancer. Intraductal papillary mucinous neoplasms (IPMNs) often exhibit a spectrum of dysplasia, ranging between adenoma and carcinoma. Therefore, an immunohistochemical analysis of mesothelin expression in IPMN was performed in the present study, focusing on the localization of mesothelin. IPMNs were classified into two groups, IPMNs associated with invasive carcinoma and low-high (L-H) grade dysplasias. The tumors were classified as mesothelin-positive or -negative and in the mesothelin-positive cases, the localization of mesothelin was evaluated as luminal membrane- or cytoplasmic-positive. Among the 37 IPMNs, mesothelin expression was observed in 21 samples (56.8%), including 46.2% (12 out of 26) of the L-H dysplasia and 81.8% (9 out of 11) of the invasive carcinoma samples (P=0.071). Luminal membrane localization was observed in 10 samples (27%), including 15.4% (4/26) of the L-H dysplasia samples and 54.5% (6 out of 11) of the invasive carcinoma samples (P=0.022). Six patients experienced post-operative recurrence, with five of the recurrent tumors exhibiting mesothelin expression and all six exhibiting luminal membrane localization. It was concluded that immunohistochemical examinations for mesothelin expression and localization are clinically useful for prognostic assessments and decision making regarding further treatment subsequent to surgical procedures in patients with IPMN.

  8. Comparison of Gene Expression Profile of Epiretinal Membranes Obtained from Eyes with Proliferative Vitreoretinopathy to That of Secondary Epiretinal Membranes

    PubMed Central

    Asato, Ryo; Yoshida, Shigeo; Ogura, Atsushi; Nakama, Takahito; Ishikawa, Keijiro; Nakao, Shintaro; Sassa, Yukio; Enaida, Hiroshi; Oshima, Yuji; Ikeo, Kazuho; Gojobori, Takashi; Kono, Toshihiro; Ishibashi, Tatsuro

    2013-01-01

    Background Proliferative vitreoretinopathy (PVR) is a destructive complication of retinal detachment and vitreoretinal surgery which can lead to severe vision reduction by tractional retinal detachments. The purpose of this study was to determine the gene expression profile of epiretinal membranes (ERMs) associated with a PVR (PVR-ERM) and to compare it to the expression profile of less-aggressive secondary ERMs. Methodology/Principal Findings A PCR-amplified complementary DNA (cDNA) library was constructed using the RNAs isolated from ERMs obtained during vitrectomy. The sequence from the 5′ end was obtained for randomly selected clones and used to generate expressed sequence tags (ESTs). We obtained 1116 nonredundant clusters representing individual genes expressed in PVR-ERMs, and 799 clusters representing the genes expressed in secondary ERMs. The transcriptome of the PVR-ERMs was subdivided by functional subsets of genes related to metabolism, cell adhesion, cytoskeleton, signaling, and other functions, by FatiGo analysis. The genes highly expressed in PVR-ERMs were compared to those expressed in the secondary ERMs, and these were subdivided by cell adhesion, proliferation, and other functions. Querying 10 cell adhesion-related genes against the STRING database yielded 70 possible physical relationships to other genes/proteins, which included an additional 60 genes that were not detected in the PVR-ERM library. Of these, soluble CD44 and soluble vascular cellular adhesion molecule-1 were significantly increased in the vitreous of patients with PVR. Conclusions/Significance Our results support an earlier hypothesis that a PVR-ERM, even from genomic points of view, is an aberrant form of wound healing response. Genes preferentially expressed in PVR-ERMs may play an important role in the progression of PVR and could be served as therapeutic targets. PMID:23372684

  9. Cloning, Expression, and Purification of Brucella suis Outer Membrane Proteins

    DTIC Science & Technology

    2005-01-01

    with Brucella melitensis WR201(16MDeltapurEK), immunized intramuscularly with dialyzed cell lysate of Infect. Immun. 67 (1999) 5877-5884. B. melitensis ...bacterioferritin gene of Brucella melitensis 16M strain, FEBS Lett. 361 (2-3) (1995) 238-242. serum and derived IgG had strong reaction to the Bru- [7] L.E. Lindler...detection by the antiserum. The pro- nucleotide sequence, and expression of the Brucella melitensis tein samples were prepared by treatment of WRR51 omp31

  10. Production of Computationally Designed Small Soluble- and Membrane-Proteins: Cloning, Expression, and Purification.

    PubMed

    Tripathy, Barsa; Acharya, Rudresh

    2017-01-01

    This book chapter focuses on expression and purification of computationally designed small soluble proteins and membrane proteins that are ordinarily difficult to express in good amounts for experiments. Over-expression of such proteins can be achieved by using the solubility tag such as maltose binding protein (MBP), Thioredoxin (Trx), and Gultathione-S-transferase (GST) fused to the protein of interest. Here, we describe and provide the protocols for cloning, expression and purification of such proteins using the solubility tag.

  11. In-Situ Observation of Membrane Protein Folding during Cell-Free Expression

    PubMed Central

    Fitter, Jörg; Büldt, Georg; Heberle, Joachim; Schlesinger, Ramona; Ataka, Kenichi

    2016-01-01

    Proper insertion, folding and assembly of functional proteins in biological membranes are key processes to warrant activity of a living cell. Here, we present a novel approach to trace folding and insertion of a nascent membrane protein leaving the ribosome and penetrating the bilayer. Surface Enhanced IR Absorption Spectroscopy selectively monitored insertion and folding of membrane proteins during cell-free expression in a label-free and non-invasive manner. Protein synthesis was performed in an optical cell containing a prism covered with a thin gold film with nanodiscs on top, providing an artificial lipid bilayer for folding. In a pilot experiment, the folding pathway of bacteriorhodopsin via various secondary and tertiary structures was visualized. Thus, a methodology is established with which the folding reaction of other more complex membrane proteins can be observed during protein biosynthesis (in situ and in operando) at molecular resolution. PMID:26978519

  12. Isoprene Produced by Leaves Protects the Photosynthetic Apparatus against Ozone Damage, Quenches Ozone Products, and Reduces Lipid Peroxidation of Cellular Membranes1

    PubMed Central

    Loreto, Francesco; Velikova, Violeta

    2001-01-01

    Many plants invest carbon to form isoprene. The role of isoprene in plants is unclear, but many experiments showed that isoprene may have a role in protecting plants from thermal damage. A more general antioxidant action has been recently hypothesized on the basis of the protection offered by exogenous isoprene in nonemitting plants exposed to acute ozone doses. We inhibited the synthesis of endogenous isoprene by feeding fosmidomycin and observed that Phragmites australis leaves became more sensitive to ozone than those leaves forming isoprene. Photosynthesis, stomatal conductance, and fluorescence parameters were significantly affected by ozone only in leaves on which isoprene was not formed. The protective effect of isoprene was more evident when the leaves were exposed for a long time (8 h) to relatively low (100 nL L−1) ozone levels than when the exposure was short and acute (3 h at 300 nL L−1). Isoprene quenched the amount of H2O2 formed in leaves and reduced lipid peroxidation of cellular membranes caused by ozone. These results indicate that isoprene may exert its protective action at the membrane level, although a similar effect could be obtained if isoprene reacted with ozone before forming active oxygen species. Irrespective of the mechanism, our results suggest that endogenous isoprene has an important antioxidant role in plants. PMID:11743121

  13. Expression and membrane localization of MCT isoforms along the length of the human intestine.

    PubMed

    Gill, Ravinder K; Saksena, Seema; Alrefai, Waddah A; Sarwar, Zaheer; Goldstein, Jay L; Carroll, Robert E; Ramaswamy, Krishnamurthy; Dudeja, Pradeep K

    2005-10-01

    Recent studies from our laboratory and others have demonstrated the involvement of monocarboxylate transporter (MCT)1 in the luminal uptake of short-chain fatty acids (SCFAs) in the human intestine. Functional studies from our laboratory previously demonstrated kinetically distinct SCFA transporters on the apical and basolateral membranes of human colonocytes. Although apical SCFA uptake is mediated by the MCT1 isoform, the molecular identity of the basolateral membrane SCFA transporter(s) and whether this transporter is encoded by another MCT isoform is not known. The present studies were designed to assess the expression and membrane localization of different MCT isoforms in human small intestine and colon. Immunoblotting was performed with the purified apical and basolateral membranes from human intestinal mucosa obtained from organ donor intestine. Immunohistochemistry studies were done on paraffin-embedded sections of human colonic biopsy samples. Immunoblotting studies detected a protein band of approximately 39 kDa for MCT1, predominantly in the apical membranes. The relative abundance of MCT1 mRNA and protein increased along the length of the human intestine. MCT4 (54 kDa) and MCT5 (54 kDa) isoforms showed basolateral localization and were highly expressed in the distal colon. Immunohistochemical studies confirmed that human MCT1 antibody labeling was confined to the apical membranes, whereas MCT5 antibody staining was restricted to the basolateral membranes of the colonocytes. We speculate that distinct MCT isoforms may be involved in SCFA transport across the apical or basolateral membranes in polarized colonic epithelial cells.

  14. Scylla serrata reovirus p35 protein expressed in Escherichia coli cells alters membrane permeability.

    PubMed

    Zhang, Zhao; Yuan, Yangyang; Fan, Dongyang; Yang, Jifang; Mao, Zhijuan; Yan, Yan; Chen, Jigang

    2015-08-01

    To promote viral entry, replication, release, and spread to neighboring cells, many cytolytic animal viruses encode proteins responsible for modification of host cell membrane permeability and for formation of ion channels in host cell membranes. Scylla serrata reovirus (SsRV) is a major pathogen that can severely damage mud crab (S. serrata) aquaculture. Protein p35, which is encoded by segment 10 of SsRV, contains two transmembrane domains. In this study, we found that SsRV p35 can induce membrane permeability changes when expressed in Escherichia coli. SsRV p35 expressed in bacterial cells existed as monomers under reducing conditions but formed homodimers and homotrimers under non-reducing conditions. These findings demonstrate that p35 may act as a viroporin; further studies are needed to elucidate the detailed structure-function relationships of this protein.

  15. Tissue specificity of a baculovirus expressed, basement membrane-degrading protease in larvae of Heliothis virescens

    USDA-ARS?s Scientific Manuscript database

    ScathL is a cathepsin L-like cysteine protease from flesh fly Sarcophaga peregrina, which digests components of the basement membrane during insect metamorphosis. A recombinant baculovirus (AcMLF9.ScathL) expressing ScathL kills larvae of the tobacco budworm, Heliothis virescens, significantly faste...

  16. In vivo detection of membrane protein expression using surface plasmon enhanced fluorescence spectroscopy (SPFS).

    PubMed

    Krupka, Simone S; Wiltschi, Birgit; Reuning, Ute; Hölscher, Kerstin; Hara, Masahiko; Sinner, Eva-Kathrin

    2006-08-15

    Surface plasmon enhanced fluorescence spectroscopy (SPFS) was applied for the detection of expression and functional incorporation of integral membrane proteins into plasma membranes of living cells in real time. A vesicular stomatitis virus (VSV) tagged mutant of photoreceptor bovine rhodopsin was generated for high level expression with the semliki forest virus (SFV) system. Adherent baby hamster kidney (BHK-21) cells were cultivated on fibronectin-coated gold surfaces and infected with genetically engineered virus driving the expression of rhodopsin. Using premixed fluorescently (Alexa Fluor 647) labeled anti-mouse secondary antibody and monoclonal anti-VSV primary antibody, expression of rhodopsin in BHK-21 cells was monitored by SPFS. Fluorescence enhancement by surface plasmons occurs exclusively in the close vicinity of the gold surface. Thus, only the Alexa Fluor 647 labeled antibodies binding to the VSV-tag at rhodopsin molecules exposed on the cell surface experienced fluorescence enhancement, whereas, unbound antibody molecules in the bulk solution were negligibly excited. With this novel technique, we successfully recorded an increase of fluorescence with proceeding rhodopsin expression. Thus, we were able to observe the incorporation of heterologously expressed rhodopsin in the plasma membrane of living cells in real time using a relatively simple and rapid method. We confirmed our results by comparison with conventional wide field fluorescence microscopy.

  17. Fibroblast circadian rhythms of PER2 expression depend on membrane potential and intracellular calcium.

    PubMed

    Noguchi, Takako; Wang, Connie W; Pan, Haiyun; Welsh, David K

    2012-07-01

    The suprachiasmatic nucleus (SCN) of the hypothalamus synchronizes circadian rhythms of cells and tissues throughout the body. In SCN neurons, rhythms of clock gene expression are suppressed by manipulations that hyperpolarize the plasma membrane or lower intracellular Ca(2+). However, whether clocks in other cells also depend on membrane potential and calcium is unknown. In this study, the authors investigate the effects of membrane potential and intracellular calcium on circadian rhythms in mouse primary fibroblasts. Rhythms of clock gene expression were monitored using a PER2::LUC knockin reporter. Rhythms were lost or delayed at lower (hyperpolarizing) K(+) concentrations. Bioluminescence imaging revealed that this loss of rhythmicity in cultures was due to loss of rhythmicity of single cells rather than loss of synchrony among cells. In lower Ca(2+) concentrations, rhythms were advanced or had shorter periods. Buffering intracellular Ca(2+) by the calcium chelator 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis acetoxymethyl ester (BAPTA-AM) or manipulation of inositol triphosphate (IP(3))-sensitive intracellular calcium stores by thapsigargin delayed rhythms. These results suggest that the circadian clock in fibroblasts, as in SCN neurons, is regulated by membrane potential and Ca(2+). Changes in intracellular Ca(2+) may mediate the effects of membrane potential observed in this study.

  18. Fibroblast Circadian Rhythms of PER2 Expression Depend on Membrane Potential and Intracellular Calcium

    PubMed Central

    Noguchi, Takako; Wang, Connie W.; Pan, Haiyun

    2012-01-01

    The suprachiasmatic nucleus (SCN) of the hypothalamus synchronizes circadian rhythms of cells and tissues throughout the body. In SCN neurons, rhythms of clock gene expression are suppressed by manipulations that hyperpolarize the plasma membrane or lower intracellular Ca2+. However, whether clocks in other cells also depend on membrane potential and calcium is unknown. In this study, we investigate the effects of membrane potential and intracellular calcium on circadian rhythms in mouse primary fibroblasts. Rhythms of clock gene expression were monitored using a PER2::LUC knockin reporter. We found that rhythms were lost or delayed at lower (hyperpolarizing) K+ concentrations. Bioluminescence imaging revealed that this loss of rhythmicity in cultures was due to loss of rhythmicity of single cells rather than desynchrony among cells. In lower Ca2+ concentrations, rhythms were advanced or had shorter periods. Buffering intracellular Ca2+ by the calcium chelator 1,2-Bis(2-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid tetrakis acetoxymethyl ester (BAPTA-AM) or manipulation of IP3-sensitive intracellular calcium stores by thapsigargin delayed rhythms. These results suggest that the circadian clock in fibroblasts, as in SCN neurons, is regulated by membrane potential and Ca2+. Changes in intracellular Ca2+ may mediate the effects of membrane potential that we observed. PMID:22734566

  19. Photosynthetic reaction center complexes from heliobacteria

    NASA Technical Reports Server (NTRS)

    Trost, J. T.; Vermaas, W. F. J.; Blankenship, R. E.

    1991-01-01

    The goal of this project is to understand the early evolutionary development of photosynthesis by examining the properties of reaction centers isolated from certain contemporary organisms that appear to contain the simplest photosynthetic reaction centers. The major focus of this project is the family of newly discovered strictly anaerobic photosynthetic organisms known as Heliobacteria. These organisms are the only known photosynthetic organisms that are grouped with the gram-positive phylum of bacteria. The properties of these reaction centers suggest that they might be the decendants of an ancestor that also gave rise to Photosystem 1 found in oxygen-evolving photosynthetic organisms. Photoactive reaction center-core antenna complexes have been isolated from the photosynthetic bacteria Heliobacillus mobilis and Heliobacterium gestii. The absorption and fluorescence properties of membranes and reaction centers are almost identical, suggesting that a single pigment-protein complex serves as both antenna and reaction center. Experiments in progress include sequence determination of the 48,000 Mr reaction center protein, and evolutionary comparisons with other reaction center proteins.

  20. Oxygen concentration inside a functioning photosynthetic cell.

    PubMed

    Kihara, Shigeharu; Hartzler, Daniel A; Savikhin, Sergei

    2014-05-06

    The excess oxygen concentration in the photosynthetic membranes of functioning oxygenic photosynthetic cells was estimated using classical diffusion theory combined with experimental data on oxygen production rates of cyanobacterial cells. The excess oxygen concentration within the plesiomorphic cyanobacterium Gloeobactor violaceus is only 0.025 μM, or four orders of magnitude lower than the oxygen concentration in air-saturated water. Such a low concentration suggests that the first oxygenic photosynthetic bacteria in solitary form could have evolved ∼2.8 billion years ago without special mechanisms to protect them against reactive oxygen species. These mechanisms instead could have been developed during the following ∼500 million years while the oxygen level in the Earth's atmosphere was slowly rising. Excess oxygen concentrations within individual cells of the apomorphic cyanobacteria Synechocystis and Synechococcus are 0.064 and 0.25 μM, respectively. These numbers suggest that intramembrane and intracellular proteins in isolated oxygenic photosynthetic cells are not subjected to excessively high oxygen levels. The situation is different for closely packed colonies of photosynthetic cells. Calculations show that the excess concentration within colonies that are ∼40 μm or larger in diameter can be comparable to the oxygen concentration in air-saturated water, suggesting that species forming colonies require protection against reactive oxygen species even in the absence of oxygen in the surrounding atmosphere. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Oxygen Concentration Inside a Functioning Photosynthetic Cell

    PubMed Central

    Kihara, Shigeharu; Hartzler, Daniel A.; Savikhin, Sergei

    2014-01-01

    The excess oxygen concentration in the photosynthetic membranes of functioning oxygenic photosynthetic cells was estimated using classical diffusion theory combined with experimental data on oxygen production rates of cyanobacterial cells. The excess oxygen concentration within the plesiomorphic cyanobacterium Gloeobactor violaceus is only 0.025 μM, or four orders of magnitude lower than the oxygen concentration in air-saturated water. Such a low concentration suggests that the first oxygenic photosynthetic bacteria in solitary form could have evolved ∼2.8 billion years ago without special mechanisms to protect them against reactive oxygen species. These mechanisms instead could have been developed during the following ∼500 million years while the oxygen level in the Earth’s atmosphere was slowly rising. Excess oxygen concentrations within individual cells of the apomorphic cyanobacteria Synechocystis and Synechococcus are 0.064 and 0.25 μM, respectively. These numbers suggest that intramembrane and intracellular proteins in isolated oxygenic photosynthetic cells are not subjected to excessively high oxygen levels. The situation is different for closely packed colonies of photosynthetic cells. Calculations show that the excess concentration within colonies that are ∼40 μm or larger in diameter can be comparable to the oxygen concentration in air-saturated water, suggesting that species forming colonies require protection against reactive oxygen species even in the absence of oxygen in the surrounding atmosphere. PMID:24806920

  2. Photosynthetic system in Blastochloris viridis revisited.

    PubMed

    Konorty, Marina; Brumfeld, Vlad; Vermeglio, Andre; Kahana, Nava; Medalia, Ohad; Minsky, Abraham

    2009-06-09

    The bacterium Blastochloris viridis carries one of the simplest photosynthetic systems, which includes a single light-harvesting complex that surrounds the reaction center, membrane soluble quinones, and a soluble periplasmic protein cytochrome c(2) that shuttle between the reaction center and the bc(1) complex and act as electron carriers, as well as the ATP synthase. The close arrangement of the photosynthetic membranes in Bl. viridis, along with the extremely tight arrangement of the photosystems within these membranes, raises a fundamental question about the diffusion of the electron carriers. To address this issue, we analyzed the structure and response of the Bl. viridis photosynthetic system to various light conditions, by using a combination of electron microscopy, whole-cell cryotomography, and spectroscopic methods. We demonstrate that in response to high light intensities, the ratio of both cytochrome c(2) and bc(1) complexes to the reaction centers is increased. The shorter membrane stacks, along with the notion that the bc(1) complex is located at the highly curved edges of these stacks, result in a smaller average distance between the reaction centers and the bc(1) complexes, leading to shorter pathways of cytochrome c(2) between the two complexes. Under anaerobic conditions, the slow diffusion rate is further mitigated by keeping most of the quinone pool reduced, resulting in a concentration gradient of quinols that allows for a constant supply of theses electron carriers to the bc(1) complex.

  3. Expression of SPARC during development of the chicken chorioallantoic membrane: evidence for regulated proteolysis in vivo.

    PubMed Central

    Iruela-Arispe, M L; Lane, T F; Redmond, D; Reilly, M; Bolender, R P; Kavanagh, T J; Sage, E H

    1995-01-01

    SPARC is a secreted glycoprotein that has been shown to disrupt focal adhesions and to regulate the proliferation of endothelial cells in vitro. Moreover, peptides resulting from the proteolysis of SPARC exhibit angiogenic activity. Here we describe the temporal synthesis, turnover, and angiogenic potential of SPARC in the chicken chorioallantoic membrane. Confocal immunofluorescence microscopy revealed specific expression of SPARC protein in endothelial cells, and significantly higher levels of SPARC were observed in smaller newly formed blood vessels in comparison to larger, developmentally older vessels. SPARC mRNA was detected at the earliest stages of chorioallantoic membrane morphogenesis and reached maximal levels at day 13 of embryonic development. Interestingly, steady-state levels of SPARC mRNA did not correlate directly with protein accumulation; moreover, the protein appeared to undergo limited degradation during days 10-15. Incubation of [125I]-SPARC with chorioallantoic membranes of different developmental ages confirmed that extracellular proteolysis occurred during days 9-15, but not at later stages (e.g., days 17-21). Comparison of peptides produced by incubation with chorioallantoic membranes with those generated by plasmin showed an identical pattern of proteolysis. Plasmin activity was present throughout development, and in situ zymography identified sites of plasminogen activator activity that corresponded to areas exhibiting high levels of SPARC expression. Synthetic peptides from a plasmin-sensitive region of SPARC, between amino acids 113-130, stimulated angiogenesis in the chorioallantoic membrane in a dose-dependent manner; in contrast, intact SPARC was inactive in similar assays. We have shown that SPARC is expressed in endothelial cells of newly formed blood vessels in a manner that is both temporally and spatially restricted. Between days 9 and 15 of chorioallantoic membrane development, the protein undergoes proteolytic cleavage that

  4. Polarized expression of the membrane ASP protein derived from HIV-1 antisense transcription in T cells

    PubMed Central

    2011-01-01

    Background Retroviral gene expression generally depends on a full-length transcript that initiates in the 5' LTR, which is either left unspliced or alternatively spliced. We and others have demonstrated the existence of antisense transcription initiating in the 3' LTR in human lymphotropic retroviruses, including HTLV-1, HTLV-2, and HIV-1. Such transcripts have been postulated to encode antisense proteins important for the establishment of viral infections. The antisense strand of the HIV-1 proviral DNA contains an ORF termed asp, coding for a highly hydrophobic protein. However, although anti-ASP antibodies have been described to be present in HIV-1-infected patients, its in vivo expression requires further support. The objective of this present study was to clearly demonstrate that ASP is effectively expressed in infected T cells and to provide a better characterization of its subcellular localization. Results We first investigated the subcellular localization of ASP by transfecting Jurkat T cells with vectors expressing ASP tagged with the Flag epitope to its N-terminus. Using immunofluorescence microscopy, we found that ASP localized to the plasma membrane in transfected Jurkat T cells, but with different staining patterns. In addition to an entire distribution to the plasma membrane, ASP showed an asymmetric localization and could also be detected in membrane connections between two cells. We then infected Jurkat T cells with NL4.3 virus coding for ASP tagged with the Flag epitope at its C-terminal end. By this approach, we were capable of showing that ASP is effectively expressed from the HIV-1 3' LTR in infected T cells, with an asymmetric localization of the viral protein at the plasma membrane. Conclusion These results demonstrate for the first time that ASP can be detected when expressed from full-length HIV-1 proviral DNA and that its localization is consistent with Jurkat T cells overexpressing ASP. PMID:21929758

  5. Polarized expression of the membrane ASP protein derived from HIV-1 antisense transcription in T cells.

    PubMed

    Clerc, Isabelle; Laverdure, Sylvain; Torresilla, Cynthia; Landry, Sébastien; Borel, Sophie; Vargas, Amandine; Arpin-André, Charlotte; Gay, Bernard; Briant, Laurence; Gross, Antoine; Barbeau, Benoît; Mesnard, Jean-Michel

    2011-09-19

    Retroviral gene expression generally depends on a full-length transcript that initiates in the 5' LTR, which is either left unspliced or alternatively spliced. We and others have demonstrated the existence of antisense transcription initiating in the 3' LTR in human lymphotropic retroviruses, including HTLV-1, HTLV-2, and HIV-1. Such transcripts have been postulated to encode antisense proteins important for the establishment of viral infections. The antisense strand of the HIV-1 proviral DNA contains an ORF termed asp, coding for a highly hydrophobic protein. However, although anti-ASP antibodies have been described to be present in HIV-1-infected patients, its in vivo expression requires further support. The objective of this present study was to clearly demonstrate that ASP is effectively expressed in infected T cells and to provide a better characterization of its subcellular localization. We first investigated the subcellular localization of ASP by transfecting Jurkat T cells with vectors expressing ASP tagged with the Flag epitope to its N-terminus. Using immunofluorescence microscopy, we found that ASP localized to the plasma membrane in transfected Jurkat T cells, but with different staining patterns. In addition to an entire distribution to the plasma membrane, ASP showed an asymmetric localization and could also be detected in membrane connections between two cells. We then infected Jurkat T cells with NL4.3 virus coding for ASP tagged with the Flag epitope at its C-terminal end. By this approach, we were capable of showing that ASP is effectively expressed from the HIV-1 3' LTR in infected T cells, with an asymmetric localization of the viral protein at the plasma membrane. These results demonstrate for the first time that ASP can be detected when expressed from full-length HIV-1 proviral DNA and that its localization is consistent with Jurkat T cells overexpressing ASP.

  6. Mycorrhizal fungi influence on silver uptake and membrane protein gene expression following silver nanoparticle exposure

    NASA Astrophysics Data System (ADS)

    Noori, Azam; White, Jason C.; Newman, Lee A.

    2017-02-01

    The rapid growth of nanotechnology and the high demand for nanomaterial use have greatly increased the risk of particle release into the environment. Understanding nanomaterial interactions with crop species and their associated microorganisms is critical to food safety and security. In the current study, tomato was inoculated with mycorrhizal fungi and subsequently exposed to 12, 24, or 36 mg/kg of 2- or 15-nm silver nanoparticles (Ag-NPs). Mycorrhizal (M) and non-mycorrhizal (NM) tomatoes exposed to 36 mg/kg of 2-nm Ag-NPs accumulated 1300 and 1600 μg/g silver in their tissues, respectively. Mycorrhizal plants accumulated 14% less silver compared to non-mycorrhizal plants. To begin to understand the mechanisms by which plants accumulate NPs, the expression of two aquaporin channel genes, the plasma membrane intrinsic protein (PIP) and the tonoplast membrane intrinsic protein (TIP), and one potassium channel (KC) gene were studied. In non-mycorrhizal plants, the expression of KC, PIP, and TIP was eight, five, and nine times higher than the control, respectively. These expressions for mycorrhizal plants were 5.8, 3.5, and 2 times higher than controls, respectively. The expression of KC and PIP, which are located on the plasma membrane, was 3.5 and 2.5, respectively, times higher than TIP, which is located on the tonoplast. PIP expression was significantly higher in NM tomatoes exposed to 12 mg/kg of 2-nm Ag-NPs compared to M plants. These results show that mycorrhizal colonization decreases Ag accumulation in NP-exposed plants and also moderates changes in expression level of membrane transport proteins.

  7. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies

    PubMed Central

    Goehring, April; Lee, Chia-Hsueh; Wang, Kevin H.; Michel, Jennifer Carlisle; Claxton, Derek P.; Baconguis, Isabelle; Althoff, Thorsten; Fischer, Suzanne; Garcia, K. Christopher; Gouaux, Eric

    2014-01-01

    Structural, biochemical and biophysical studies of eukaryotic membrane proteins are often hampered by difficulties in over-expression of the candidate molecule. Baculovirus transduction of mammalian cells (BacMam), although a powerful method to heterologously express membrane proteins, can be cumbersome for screening and expression of multiple constructs. We therefore developed plasmid Eric Gouaux (pEG) BacMam, a vector optimized for use in screening assays, as well as for efficient production of baculovirus and robust expression of the target protein. In this protocol we show how to use small-scale transient transfection and fluorescence-detection, size-exclusion chromatography (FSEC) experiments using a GFP-His8 tagged candidate protein to screen for monodispersity and expression level. Once promising candidates are identified, we describe how to generate baculovirus, transduce HEK293S GnTI− (N-acetylglucosaminyltransferase I-negative) cells in suspension culture, and over-express the candidate protein. We have used these methods to prepare pure samples of chicken acid-sensing ion channel 1a (cASIC1) and Caenorhabditis elegans glutamate-gated chloride channel (GluCl), for X-ray crystallography, demonstrating how to rapidly and efficiently screen hundreds of constructs and accomplish large-scale expression in 4-6 weeks. PMID:25299155

  8. Expression of membrane progesterone receptors (mPRs) in rat peripheral glial cell membranes and their potential role in the modulation of cell migration and protein expression.

    PubMed

    Castelnovo, Luca F; Magnaghi, Valerio; Thomas, Peter

    2017-09-26

    The role played by progestogens in modulating Schwann cell pathophysiology is well established. Progestogens exert their effects in these cells through both classical genomic and non-genomic mechanisms, the latter mediated by the GABA-A receptor. However, there is evidence that other receptors may be involved. Membrane progesterone receptors (mPRs) are novel 7-transmembrane receptors coupled to G proteins that have been characterized in different tissues and cells, including the central nervous system (CNS). The mPRs were shown to mediate some of progestogens' neuroprotective effects in the CNS, and to be upregulated in glial cells after traumatic brain injury. Based on this evidence, this paper investigated the possible involvement of mPRs in mediating progestogen actions in S42 Schwann cells. All five mPR isoforms and progesterone receptor membrane component 1 (PGRMC1) were detected in Schwann cells, and were present on the cell membrane. Progesterone and the mPR-specific agonist, Org-OD-02-0 (02) bound to these membranes, indicating the presence of functional mPRs. The mPR agonist 02 rapidly increased cell migration in an in vitro assay, suggesting a putative role of mPRs in the nerve regeneration process. Treatment with pertussis toxin, and 8-Br-cAMP blocked 02-induced cell migration, suggesting this progestogen action is mediated by activation of an inhibitory G protein leading to a decrease in intracellular cAMP levels. In contrast, long-term mPR activation led to increased expression levels of myelin associated glycoprotein (MAG). Taken together, these findings show that mPRs are present and active in Schwann cells and have a role in modulating their physiological processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Alterations of membrane protein expression in red blood cells of Alzheimer's disease patients.

    PubMed

    Várady, György; Szabó, Edit; Fehér, Ágnes; Németh, Adrienn; Zámbó, Boglárka; Pákáski, Magdolna; Janka, Zoltán; Sarkadi, Balázs

    2015-09-01

    Preventive measures, prognosis, or selected therapy in multifactorial maladies, including Alzheimer's disease (AD), require the application of a wide range of diagnostic assays. There is a large unmet need for relatively simple, blood-based biomarkers in this regard. We have recently developed a rapid and reliable flow cytometry and antibody-based method for the quantitative measurement of various red blood cell (RBC) membrane proteins from a drop of blood. Here, we document that the RBC expression of certain membrane proteins, especially that of the GLUT1 transporter and the insulin receptor (INSR), is significantly higher in AD patients than in age-matched healthy subjects. The observed differences may reflect long-term metabolic alterations relevant in the development of AD. These findings may pave the way for a diagnostic application of RBC membrane proteins as relatively stable and easily accessible personalized biomarkers in AD.

  10. Gene cloning and prokaryotic expression of recombinant outer membrane protein from Vibrio parahaemolyticus

    NASA Astrophysics Data System (ADS)

    Yuan, Ye; Wang, Xiuli; Guo, Sheping; Qiu, Xuemei

    2011-06-01

    Gram-negative Vibrio parahaemolyticus is a common pathogen in humans and marine animals. The outer membrane protein of bacteria plays an important role in the infection and pathogenicity to the host. Thus, the outer membrane proteins are an ideal target for vaccines. We amplified a complete outer membrane protein gene (ompW) from V. parahaemolyticus ATCC 17802. We then cloned and expressed the gene into Escherichia coli BL21 (DE3) cells. The gene coded for a protein that was 42.78 kDa. We purified the protein using Ni-NTA affinity chromatography and Anti-His antibody Western blotting, respectively. Our results provide a basis for future application of the OmpW protein as a vaccine candidate against infection by V. parahaemolyticus. In addition, the purified OmpW protein can be used for further functional and structural studies.

  11. Role of membrane depolarization and extracellular calcium in increased complement receptor expression during neutrophil (PMN) activation

    SciTech Connect

    Berger, M.; Wetzler, E.; Birx, D.L.

    1986-03-05

    During PMN activation the surface expression of receptors (R) for C3b and C3bi increases rapidly. This is necessary for optimal cell adhesion, migration, and phagocytosis. Following stimulation with fMLP or LTB-4, the increased expression of C3bR depends only on the Ca/sup + +/ released from intracellular stores and is not inhibited by 5mM EDTA, while the increase in C3biR also requires extracellular Ca/sup + +/. CR expression also increases when the PMN are depolarized with 140 mM K/sup +/, but with this stimulus, EDTA inhibits C3bR by 67% and C3biR 100%, suggesting that intracellular Ca/sup + +/ stores may not be released. Pertussis toxin caused dose-dependent inhibition of both CR responses to fMLP and also inhibited the increases in both CR induced by K/sup +/. Membrane depolarization (monitored by di-O-C5 fluorescence) due to fMLP was similarly inhibited by toxin but the depolarization due to K/sup +/ was not. The dose of phorbol myristate acetate that maximally increased CR expression, 0.1 ng/ml, did not depolarize the membrane. These results suggest that membrane depolarization is neither necessary nor sufficient for increased CR expression. A Ca/sup + +/ and GTP binding protein-dependent enzyme such as phospholipase C is necessary to the amplify initial signals generated either by release of Ca/sup + +/ stores or by opening voltage dependent Ca/sup + +/ channels following membrane depolarization.

  12. Expression of a Translationally Fused TAP-Tagged Plasma Membrane Proton Pump in Arabidopsis thaliana

    PubMed Central

    2015-01-01

    The Arabidopsis thaliana plasma membrane proton ATPase genes, AHA1 and AHA2, are the two most highly expressed isoforms of an 11 gene family and are collectively essential for embryo development. We report the translational fusion of a tandem affinity-purification tag to the 5′ end of the AHA1 open reading frame in a genomic clone. Stable expression of TAP-tagged AHA1 in Arabidopsis rescues the embryonic lethal phenotype of endogenous double aha1/aha2 knockdowns. Western blots of SDS-PAGE and Blue Native gels show enrichment of AHA1 in plasma membrane fractions and indicate a hexameric quaternary structure. TAP-tagged AHA1 rescue lines exhibited reduced vertical root growth. Analysis of the plasma membrane and soluble proteomes identified several plasma membrane-localized proteins with alterred abundance in TAP-tagged AHA1 rescue lines compared to wild type. Using affinity-purification mass spectrometry, we uniquely identified two additional AHA isoforms, AHA9 and AHA11, which copurified with TAP-tagged AHA1. In conclusion, we have generated transgenic Arabidopsis lines in which a TAP-tagged AHA1 transgene has complemented all essential endogenous AHA1 and AHA2 functions and have shown that these plants can be used to purify AHA1 protein and to identify in planta interacting proteins by mass spectrometry. PMID:24397334

  13. Cloning, expression, purification, and characterization of the membrane protein UncI from Escherichia coli.

    PubMed

    Hartmann, Claudia; Engel, Andreas

    2011-10-01

    The Escherichia coli unc-operon encodes the genes for the subunits of the F0F1-ATP synthase and an integral membrane protein of unknown function called UncI. UncI influences the cell-growth and activity of F0F1, but its exact function is still unknown. The expression level is too low to extract milligram amounts of UncI from E. coli membranes and the existing purification protocol based on methanol/chloroform is not suitable for structural and functional studies. Here we present protocols to increase the expression level, to purify UncI in a detergent where UncI is monodisperse, and we characterize its oligomeric state.

  14. Plasma Membrane Expression of Heat Shock Protein 60 In Vivo in Response to Infection

    PubMed Central

    Belles, Cindy; Kuhl, Alicia; Nosheny, Rachel; Carding, Simon R.

    1999-01-01

    Heat shock protein 60 (hsp60) is constitutively expressed in the mitochondria of eukaryotic cells. However, it has been identified in other subcellular compartments in several disease states and in transformed cells, and it is an immunogenic molecule in various infectious and autoimmune diseases. To better understand the factors that influence expression of hsp60 in normal cells in vivo, we analyzed its cellular and subcellular distribution in mice infected with the intracellular bacterium Listeria monocytogenes. Western blotting of subcellular fractionated spleen cells showed that although endogenous hsp60 was restricted to the mitochondria in noninfected animals, it was associated with the plasma membrane as a result of infection. The low levels of plasma membrane-associated hsp60 seen in the livers in noninfected animals subsequently increased during infection. Plasma membrane hsp60 expression did not correlate with bacterial growth, being most evident during or after bacterial clearance and persisting at 3 weeks postinfection. Using flow cytometry, we determined that Mac-1+, T-cell receptor γδ+, and B220+ cells represented the major Hsp60+ populations in spleens of infected mice. By contrast, B220+ cells were the predominant hsp60+ population in livers of infected mice. Of the immune cells analyzed, the kinetic profile of the γδ T-cell response most closely matched that of hsp60 expression in both the spleen and liver. Collectively, these findings show that during infection hsp60 can be localized to the plasma membrane of viable cells, particularly antigen-presenting cells, providing a means by which hsp60-reactive lymphocytes seen in various infectious disease and autoimmune disorders may be generated and maintained. PMID:10417191

  15. Synovial membrane protein expression differs between juvenile idiopathic arthritis subtypes in early disease

    PubMed Central

    2014-01-01

    Introduction Juvenile idiopathic arthritis (JIA) is the most common rheumatological disease of childhood with a prevalence of around 1 in 1,000. Without appropriate treatment it can have devastating consequences including permanent disability from joint destruction and growth deformities. Disease aetiology remains unknown. Investigation of disease pathology at the level of the synovial membrane is required if we want to begin to understand the disease at the molecular and biochemical level. The synovial membrane proteome from early disease-stage, treatment naive JIA patients was compared between polyarticular and oligoarticular subgroups. Methods Protein was extracted from 15 newly diagnosed, treatment naive JIA synovial membrane biopsies and separated by two dimensional fluorescent difference in-gel electrophoresis. Proteins displaying a two-fold or greater change in expression levels between the two subgroups were identified by matrix assisted laser desorption ionization-time of flight mass spectrometry with expression further verified by Western blotting and immunohistochemistry. Results Analysis of variance analysis (P ≤ 0.05) revealed 25 protein spots with a two-fold or greater difference in expression levels between polyarticular and oligoarticular patients. Hierarchical cluster analysis with Pearson ranked correlation revealed two distinctive clusters of proteins. Some of the proteins that were differentially expressed included: integrin alpha 2b (P = 0.04); fibrinogen D fragment (P = 0.005); collagen type VI (P = 0.03); fibrinogen gamma chain (P = 0.05) and peroxiredoxin 2 (P = 0.02). The identified proteins are involved in a number of different processes including platelet activation and the coagulation system. Conclusions The data indicate distinct synovial membrane proteome profiles between JIA subgroups at an early stage in the disease process. The identified proteins also provide insight into differentially perturbed pathways

  16. [Expression and immunogenicity of equine infectious anemia virus membrane protein GP90].

    PubMed

    Dai, Chuan-bin; Xiao, Yao; Lu, Hong; Shen, Rong-xian; Shao, Yi-ming

    2003-03-01

    Membrane protein GP90 of China equine infectious anemia virus (EIAV) vaccine strain (DLV) and its parental wild type LN strain were expressed with Bac-to-Bac baculovirus expression system and BALB/c mice were inoculated with purified protein, thereby to explore the availability of protein for differential diagnosis and potential for preparing genetically engineered vaccine. The authors infected donkey PBMC culture with China EIAV vaccine strain (DLV) and its parental wild type LN strain, extracted its proviral DNA as template, amplified the GP90 of DLV and LN, respectively, and expressed with Bac-to-Bac baculovirus expression system. The sf9 insect cells were infected with the recombinant baculovirus and the expressed proteins were purified by IMAC. BALB/c mice were inoculated with purified protein. The specific binding Abs generated in the immunized mice were determined by ELISA method. The neutralizing assay was set up to determine the neutralizing capability of the antigens generated in immunized animals. The recombinant virus expressing viral antigens was determined by Western blot. The expressed proteins were purified by IMAC resulting in the protein purity of 87%(DLV) and 82%(LN), respectively. The antibody titer of the groups with and without adjuvant was 1 600 and 800, respectively. Serial 2 fold dilutions of the immunized mice sera were reacted with 100 TCID50 of EIAV. The end point of immunization assay was to protect 50% cells form CPE caused by EIAV in donkey skin cells. The neutralizing antibody titer was in the range 40 to 80 from animal immunized with and without adjuvant. Membrane proteins of EIAV vaccine strain and wild type strain were successfully expressed in eukaryotic cell expression system according to the scheduled plan. The proteins showed strong immunogenicity and could activate animals to produce anti-EIAV specific antibody including neutralizing antibody to EIAV.

  17. Improving Escherichia coli membrane integrity and fatty acid production by expression tuning of FadL and OmpF.

    PubMed

    Tan, Zaigao; Black, William; Yoon, Jong Moon; Shanks, Jacqueline V; Jarboe, Laura R

    2017-02-28

    Construction of microbial biocatalysts for the production of biorenewables at economically viable yields and titers is frequently hampered by product toxicity. Membrane damage is often deemed as the principal mechanism of this toxicity, particularly in regards to decreased membrane integrity. Previous studies have attempted to engineer the membrane with the goal of increasing membrane integrity. However, most of these works focused on engineering of phospholipids and efforts to identify membrane proteins that can be targeted to improve fatty acid production have been unsuccessful. Here we show that deletion of outer membrane protein ompF significantly increased membrane integrity, fatty acid tolerance and fatty acid production, possibly due to prevention of re-entry of short chain fatty acids. In contrast, deletion of fadL resulted in significantly decreased membrane integrity and fatty acid production. Consistently, increased expression of fadL remarkably increased membrane integrity and fatty acid tolerance while also increasing the final fatty acid titer. This 34% increase in the final fatty acid titer was possibly due to increased membrane lipid biosynthesis. Tuning of fadL expression showed that there is a positive relationship between fadL abundance and fatty acid production. Combinatorial deletion of ompF and increased expression of fadL were found to have an additive role in increasing membrane integrity, and was associated with a 53% increase the fatty acid titer, to 2.3 g/L. These results emphasize the importance of membrane proteins for maintaining membrane integrity and production of biorenewables, such as fatty acids, which expands the targets for membrane engineering.

  18. [Cloning and expression of the prokaryotic expression vectors of phytoplasma immunodominant membrane protein A and preparation of its antiserum].

    PubMed

    Liang, Nannan; Zhang, Lijun; Zhao, Haiquan; Liu, Zhongjian; Luo, Huanliang; Lin, Yanxing; Liu, Xiaoxiao

    2013-06-01

    To construct the prokaryotic expression vector of phytoplasma immunodominant membrane protein A (IdpA) in prokaryotic cell, express and purify the IdpA and prepare its antiserum. With the recombinant plasmid pMD18-T-IdpA as templates, IdpA gene was amplified by PCR and cloned into prokaryotic expression vector pET-28a(+) by endonuclease reaction and T4 DNA ligase reaction. Then the recombinant plasmid pET-28a(+)-IdpA was transformed into E.coli BL21 (DE3). After confirmed by PCR and double enzyme digestion, the recombinant protein IdpA was expressed under IPTG induction and purified. The purified product was used to immunize BALB/c mice to prepare its antiserum. IdpA-specific mouse antiserum was identified by ELISA and Westerrn blotting. The prokaryotic vectors of pET-28a(+)-IdpA were constructed successfully and the recombinant protein IdpA was induced to express stably in the E.coli BL21. The purity of IdpA was up to over 90%. In the BALB/c mice immunized by the purified IdpA, the titre of IdpA-specific antiserum was as high as 1:320 000. The recombinant protein IdpA was expressed successfully in E.coli and the IdpA-specific antiserum was prepared.

  19. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies.

    PubMed

    Goehring, April; Lee, Chia-Hsueh; Wang, Kevin H; Michel, Jennifer Carlisle; Claxton, Derek P; Baconguis, Isabelle; Althoff, Thorsten; Fischer, Suzanne; Garcia, K Christopher; Gouaux, Eric

    2014-11-01

    Structural, biochemical and biophysical studies of eukaryotic membrane proteins are often hampered by difficulties in overexpression of the candidate molecule. Baculovirus transduction of mammalian cells (BacMam), although a powerful method to heterologously express membrane proteins, can be cumbersome for screening and expression of multiple constructs. We therefore developed plasmid Eric Gouaux (pEG) BacMam, a vector optimized for use in screening assays, as well as for efficient production of baculovirus and robust expression of the target protein. In this protocol, we show how to use small-scale transient transfection and fluorescence-detection size-exclusion chromatography (FSEC) experiments using a GFP-His8-tagged candidate protein to screen for monodispersity and expression level. Once promising candidates are identified, we describe how to generate baculovirus, transduce HEK293S GnTI(-) (N-acetylglucosaminyltransferase I-negative) cells in suspension culture and overexpress the candidate protein. We have used these methods to prepare pure samples of chicken acid-sensing ion channel 1a (cASIC1) and Caenorhabditis elegans glutamate-gated chloride channel (GluCl) for X-ray crystallography, demonstrating how to rapidly and efficiently screen hundreds of constructs and accomplish large-scale expression in 4-6 weeks.

  20. Expression of membrane glycoproteins in normal keratinocytes and squamous carcinoma cell lines

    SciTech Connect

    Rayter, Z. ); McIlhinney, R. ); Gusterson, B. )

    1989-08-01

    Con A acceptor glycoproteins were analyzed by 2D-PAGE and {sup 125}I-Con A overlay in three squamous carcinoma cell lines and compared with those in the simian virus (SV40)-transformed keratinocyte cell line SVK-14 and in normal keratinocytes. The majority of the glycoproteins identified by this technique were expressed at similar levels in all of the cells examined, independent of the culture conditions used. A cell surface glycoprotein gp34 was increased in the tumor cells compared with normal keratinocytes and expression varied with the culture density. Another glycoprotein, gp21, was found to be increased in expression in normal keratinocytes and stratified hyperconfluent cultures of squamous carcinoma cell lines. This paper describes the potential of this technique to identify membrane glycoproteins which may be expressed as a function of proliferation or differentiation.

  1. Photosynthetic Light-Harvesting

    NASA Astrophysics Data System (ADS)

    Pullerits, T.; Polivka, T.; Sundström, V.

    Photosynthetic organisms utilize (bacterio) chlorophylls and carotenoids as main light-harvesting pigments. In this chapter, we review bacteriochlorophyll light-harvesting in photosynthetic purple bacteria; we discuss intra- and intercomplex energy transfer processes as well as energy trapping by reaction centers. From the viewpoint of light-harvesting, in most organisms carotenoids are accessory pigments absorbing in the blue-green region of the solar spectrum, where chlorophylls and bacteriochlorophylls have weak absorption. Here, we discuss carotenoid light-harvesting in a pigment-protein complex having carotenoids as main lightharvesting pigment, the peridinin chlorophyll protein (PCP).

  2. Rab4GTPase modulates CFTR function by impairing channel expression at plasma membrane

    SciTech Connect

    Saxena, Sunil K. . E-mail: ssaxena@stevens.edu; Kaur, Simarna; George, Constantine

    2006-03-03

    Cystic fibrosis (CF), an autosomal recessive disorder, is caused by the disruption of biosynthesis or the function of a membrane cAMP-activated chloride channel, CFTR. CFTR regulatory mechanisms include recruitment of channel proteins to the cell surface from intracellular pools and by protein-protein interactions. Rab proteins are small GTPases involved in regulated trafficking controlling vesicle docking and fusion. Rab4 controls recycling events from endosome to the plasma membrane, fusion, and degradation. The colorectal cell line HT-29 natively expresses CFTR and responds to cAMP stimulation with an increase in CFTR-mediated currents. Rab4 over-expression in HT-29 cells inhibits both basal and cAMP-stimulated CFTR-mediated currents. GTPase-deficient Rab4Q67L and GDP locked Rab4S22N both inhibit channel activity, which appears characteristically different. Active status of Rab4 was confirmed by GTP overlay assay, while its expression was verified by Western blotting. The pull-down and immunoprecipitation experiments suggest that Rab4 physically interacts with CFTR through protein-protein interaction. Biotinylation with cell impermeant NHS-Sulfo-SS-Biotin implies that Rab4 impairs CFTR expression at cell surface. The enhanced cytosolic CFTR indicates that Rab4 expression restrains CFTR appearance at the cell membrane. The study suggests that Rab4 regulates the channel through multiple mechanisms that include protein-protein interaction, GTP/GDP exchange, and channel protein trafficking. We propose that Rab4 is a dynamic molecule with a significant role in CFTR function.

  3. Expression, Stability, and Membrane Integration of Truncation Mutants of Bovine Rhodopsin

    NASA Astrophysics Data System (ADS)

    Heymann, Jurgen A. W.; Subramaniam, Sriram

    1997-05-01

    Premature termination of protein synthesis by nonsense mutations is at the molecular origin of a number of inherited disorders in the family of G protein-coupled seven-helix receptor proteins. To understand how such truncated polypeptides are processed by the cell, we have carried out COS-1 cell expression studies of mutants of bovine rhodopsin truncated at the first 1, 1.5, 2, 3, or 5 transmembrane segments (TMS) of the seven present in wild-type opsin. Our experiments show that successful completion of different stages in the cellular processing of the protein [membrane insertion, N-linked glycosylation, stability to proteolytic degradation, and transport from the endoplasmic reticulum (ER) membrane] requires progressively longer lengths of the polypeptide chain. Thus, none of the truncations affected the ability of the polypeptides to be integral membrane proteins. C-terminal truncations that generated polypeptides with fewer than two TMS resulted in misorientation and prevented glycosylation at the N terminus, whereas truncations that generated polypeptides with fewer than five TMS greatly destabilized the protein. However, all of the truncations prevented exit of the polypeptide from the ER. We conclude that during the biogenesis of rhodopsin, proper integration into the ER membrane occurs only after the synthesis of at least two TMS is completed. Synthesis of the next three TMS confers a gradual increase in stability, whereas the presence of more than five TMS is necessary for exit from the ER.

  4. Osteopontin expression in vitreous and proliferative retinal membranes of patients with proliferative vitreous retinopathy

    PubMed Central

    Liu, Xiao-Yi; Li, Lei; Yao, Jia-Qi; Chen, Xi; Liu, Qing-Huai

    2011-01-01

    AIM To analyze osteopontin (OPN) expression in vitreous and proliferative retinal membranes of patients with proliferative vitreous retinopathy (PVR). METHODS A total of 54 vitreous fluid samples were obtained between 2009 and 2010, which contained 45 with PVR (group A) and 9 without PVR (group B). Enzyme-linked immunosorbent assay was applied to quantify the OPN concentrations in vitreous fluid. Four samples of proliferative retinal membrane were also obtained at the time of vitrectomy, and their contents of OPN were measured by Real-time RT-PCR. RESULTS The OPN levels in the vitreous fluid were 778.48±62.06ng/mL in group A and 452.99±32.52ng/mL in group B. The vitreous OPN levels in group A were significantly higher than those in group B and to rise by time in the early stages of PVR. The average OPN levels in the proliferative retinal membranes (F=0.14) were also higher than those in the retinal pigment cells (F=0) using Real-time RT-PCR. CONCLUSION The high vitreous and proliferative retinal membrane OPN levels in PVR suggest that OPN might promote the development of PVR. The vitreous OPN concentrations are rising by the time in the early phases of PVR. PMID:22553691

  5. Chromatin Architecture and Transcription Factor Binding Regulate Expression of Erythrocyte Membrane Protein Genes▿ †

    PubMed Central

    Steiner, Laurie A.; Maksimova, Yelena; Schulz, Vincent; Wong, Clara; Raha, Debasish; Mahajan, Milind C.; Weissman, Sherman M.; Gallagher, Patrick G.

    2009-01-01

    Erythrocyte membrane protein genes serve as excellent models of complex gene locus structure and function, but their study has been complicated by both their large size and their complexity. To begin to understand the intricate interplay of transcription, dynamic chromatin architecture, transcription factor binding, and genomic organization in regulation of erythrocyte membrane protein genes, we performed chromatin immunoprecipitation (ChIP) coupled with microarray analysis and ChIP coupled with massively parallel DNA sequencing in both erythroid and nonerythroid cells. Unexpectedly, most regions of GATA-1 and NF-E2 binding were remote from gene promoters and transcriptional start sites, located primarily in introns. Cooccupancy with FOG-1, SCL, and MTA-2 was found at all regions of GATA-1 binding, with cooccupancy of SCL and MTA-2 also found at regions of NF-E2 binding. Cooccupancy of GATA-1 and NF-E2 was found frequently. A common signature of histone H3 trimethylation at lysine 4, GATA-1, NF-E2, FOG-1, SCL, and MTA-2 binding and consensus GATA-1-E-box binding motifs located 34 to 90 bp away from NF-E2 binding motifs was found frequently in erythroid cell-expressed genes. These results provide insights into our understanding of membrane protein gene regulation in erythropoiesis and the regulation of complex genetic loci in erythroid and nonerythroid cells and identify numerous candidate regions for mutations associated with membrane-linked hemolytic anemia. PMID:19687298

  6. Expression of MAEG, a novel basement membrane protein, in mouse hair follicle morphogenesis.

    PubMed

    Osada, Aki; Kiyozumi, Daiji; Tsutsui, Ko; Ono, Yuichi; Weber, Charles N; Sugimoto, Nagisa; Imai, Toshio; Okada, Akiko; Sekiguchi, Kiyotoshi

    2005-02-01

    We screened for genes specifically expressed in the mesenchymes of developing hair follicles using representational differential analysis; one gene identified was MAEG, which encodes a protein consisting of five EGF-like repeats, a linker segment containing a cell-adhesive Arg-Gly-Asp (RGD) motif, and a MAM domain. Immunohistochemistry showed that MAEG protein was localized at the basement membrane of embryonic skin and developing hair follicles, while MAEG expression diminished at the tip of the hair bud. A recombinant MAEG fragment containing the RGD motif was active in mediating adhesion of keratinocytes to the substratum in an RGD-dependent manner. One of the adhesion receptors recognizing the RGD motif was found to be the alpha8beta1 integrin, the expression of which was detected in the placode close to MAEG-positive mesenchymal cells, but later became restricted to the tip of the developing hair bud. Given its localized expression at the basement membrane in developing hair follicles and the RGD-dependent cell-adhesive activity, MAEG may play a role as a mediator regulating epithelial-mesenchymal interaction through binding to RGD-binding integrins including alpha8beta1 during hair follicle development.

  7. Photosynthetic characteristics of an amphibious plant, Eleocharis vivipara: Expression of C sub 4 and C sub 3 modes in contrasting environments

    SciTech Connect

    Ueno, Osamu; Samejima, Muneaki; Muto, Shoshi; Miyachi, Shigetoh )

    1988-09-01

    Eleocharis vivipara Link, a freshwater amphibious leafless plant belonging to the Cyperaceae can grow in both terrestrial and submersed aquatic conditions. Two forms of E. vivipara obtained from these contrasting environments were examined for the characteristics associated with C{sub 4} and C{sub 3} photosynthesis. In the terrestrial form, the culms, which are photosynthetic organs, possess a Kranz-type anatomy typical of C{sub 4} plants, and well-developed bundle-sheath cells contain numerous large chloroplasts. In the submersed form, the culms possess anatomical features characteristic of submersed aquatic plants, and the reduced bundle-sheath cells contain only a few small chloroplasts. {sup 14}C pulse-{sup 12}C chase experiments showed that the terrestrial form and the submersed form fix carbon by way of the C{sub 4} pathway, with aspartate (40%) and malate (35%) as the main primary products, and by way of the C{sub 3} pathway, with 3-phosphoglyceric acid (53%) and sugar phosphates (14%) as the main primary products, respectively. The terrestrial form showed photosynthetic enzyme activities typical of the NAD-malic enzyme-C{sub 4} subtype, whereas the submersed form showed decreased activities of key C{sub 4} enzymes and an increased ribulose 1,5-bisphosphate carboxylase activity. These data suggest that this species can differentiate into the C{sub 4} mode under terrestrial conditions and into the C{sub 3} mode under submersed conditions.

  8. [Effect of API 0134 on platelet membrane glycoprotein expression in patients with hyperlipemia].

    PubMed

    Wang, Hong-wei; Li, Shu-sheng; Wang, Guo-ping

    2004-05-01

    By observing the effect of API 0134, an active ingredient of green chiretta, on platelet membrane glycoprotein (GP) in patients with hyperlipemia to explore the mechanism of the anti-platelet aggregation effect of API. The mean immunofluorescent intensity (MFI) of the platelet membrane glycoprotein GP II b/III a, GPIb, P-selectin (GMP-140) and von Willebrand's factor (vWF) in resting platelet, activated platelet (untreated or treated with API 0134 of different concentrations) were detected in 30 randomly selected patients with hyperlipemia, using immunofluorescent marker and flow cytometry. API of all concentrations (25 mg/L, 50 mg/L and 100 mg/L) could significantly decrease the MFI of GP II b/III a in a positive dose-dependent manner, as compared with that in activated platelet untreated with API; API of 50 mg/L and 100 mg/L could also reduce the MFI of GMP-140 and vWF in activated platelet (P < 0.01); but API of 100 mg/L showed insignificant influence on GPIb expression in activated platelet membrane. API 0134 exerts obvious anti-platelet GP II b/III a effect on activated platelets, middle or large dose of API also shows inhibiting effect on GMP-140 and vWF expression in platelet.

  9. Galactolipids not associated with the photosynthetic apparatus in phosphate-deprived plants.

    PubMed

    Härtel, H; Dörmann, P; Benning, C

    2001-08-15

    The galactolipid digalactosyldiacylglycerol (DGGD) is one of the major constituents of thylakoids, accounting for about 25% of polar lipids found in these membranes. Although the presence of DGDG has frequently been correlated with the structural and functional integrity of the photosynthetic apparatus, it is still a matter of debate of what the in-vivo function of DGDG actually might be. To further the understanding of the role of DGDG within the photosynthetic apparatus, experiments were conducted on different Arabidopsis thaliana lines with altered DGDG content. The dgd1 mutant is characterized by a 90% reduction in the DGDG content, resulting in a severe dwarfism during growth. Complementation of the dgd1 mutant with a DGD1 cDNA completely restored the wild-type characteristics, while photosynthesis-related parameters were intermediate in transgenic plants with a partial reduction in DGD1 activity caused by post-transcription gene silencing due to over-expression of a DGD1 cDNA in wild-type plants. These data provide clear evidence for a causal relationship between the DGDG content, and the structure and function of the photosynthetic apparatus. However, a significant DGDG accumulation in the dgd1/pho1 double mutant was without any detectable effect on photosynthetic activity, indicating that the molecular DGDG species synthesized upon phosphate deprivation in leaves cannot substitute for the DGDG species present under normal nutrient supply of plants. It is suggested that depending on the environmental growth conditions different pools of DGDG species exist in plants of which one is not associated with the photosynthetic apparatus.

  10. Cholesterol depletion in cell membranes of human airway epithelial cells suppresses MUC5AC gene expression.

    PubMed

    Song, Kee Jae; Kim, Na Hyun; Lee, Gi Bong; Kim, Ji Hoon; Kwon, Jin Ho; Kim, Kyung-Su

    2013-05-01

    If cholesterol in the cell membrane is depleted by treating cells with methyl-β-cyclodextrin (MβCD), the activities of transmembrane receptors are altered in a cell-specific and/or receptor-specific manner. The proinflammatory cytokines, IL-1β is potent inducers of MUC5AC mRNA and protein synthesis in human airway epithelial cells. Cells activated by IL-1β showed increased phosphorylation of extracellular signal regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK). Thus, we investigated the effects of cholesterol depletion on the expression of MUC5AC in human airway epithelial cells and whether these alterations to MUC5AC expression were related to MAPK activity. After NCI-H292 cells were pretreated with 1% MβCD before adding IL-1β for 24 hours, MUC5AC mRNA expression was determined by reverse transcription- polymerase chain reaction (RT-PCR) and real time-PCR. Cholesterol depletion by MβCD was measured by modified microenzymatic fluorescence assay and filipin staining. The phosphorylation of IL-1 receptor, ERK and p38 MAPK, was analyzed by western blot. Cholesterol in the cell membrane was significantly depleted by treatment with MβCD on cells. IL-1β-induced MUC5AC mRNA expression was decreased by MβCD and this decrease occurred IL-1-receptor- specifically. Moreover, we have shown that MβCD suppressed the activation of ERK1/2 and p38 MAPK in cells activated with IL-1β. This result suggests that MβCD-mediated suppression of IL-1β-induced MUC5AC mRNA operated via the ERK- and p38 MAPK-dependent pathway. Cholesterol depletion in NCI-H292 cell membrane may be considered an anti-hypersecretory method since it effectively inhibits mucus secretion of respiratory epithelial cells.

  11. Placental development and expression of calcium transporting proteins in the extraembryonic membranes of a placentotrophic lizard.

    PubMed

    Stinnett, Haley K; Stewart, James R; Ecay, Tom W; Pyles, Rebecca A; Herbert, Jacquie F; Thompson, Michael B

    2012-03-01

    Pseudemoia pagenstecheri is a viviparous Australian scincid lizard in which the maternal-embryonic placental interface is differentiated into structurally distinct regions. The chorioallantoic placenta contains an elliptical-shaped region, the placentome, characterized by hypertrophied uterine and embryonic epithelial cells supported by dense vascular networks. The remainder of the chorioallantoic placenta, the paraplacentome, is also highly vascularized but uterine and chorionic epithelia are thin. An omphaloplacenta with hypertrophied epithelia is located in the abembryonic hemisphere of the egg. There is extensive placental transport of organic and inorganic nutrients, e.g., 85-90% of neonatal calcium is received via placental transfer. Calcium uptake by extraembryonic membranes of squamates correlates with expression of the intracellular calcium binding protein, calbindin-D(28K) , and plasma membrane calcium ATPase (PMCA) is a marker for active calcium transport. We estimated expression of calbindin-D(28K) and PMCA in the chorioallantoic membrane in a developmental series of embryos using immunoblotting and used immunohistochemistry to define the cellular localization of calbindin-D(28K) to test the hypotheses that 1) expression of calcium transporting proteins is coincident with placental transport of calcium and 2) the placenta is functionally specialized for calcium transport in regions of structural differentiation. Calbindin-D(28K) and PMCA were detected at low levels in early stages of development and increased significantly prior to birth, when embryonic calcium uptake peaks. These data support the hypothesis that placental calcium secretion occurs over an extended interval of gestation, with increasing activity as embryonic demand escalates in late development. In addition, calbindin-D(28K) expression is localized in chorionic epithelial cells of the placentome and in the epithelium of the omphalopleure of the omphaloplacenta, which supports the

  12. Expression of a dominant allele of human ARF1 inhibits membrane traffic in vivo

    PubMed Central

    1994-01-01

    ADP-ribosylation factor (ARF) proteins and inhibitory peptides derived from ARFs have demonstrated activities in a number of in vitro assays that measure ER-to-Golgi and intra-Golgi transport and endosome fusion. To better understand the roles of ARF proteins in vivo, stable cell lines were obtained from normal rat kidney (NRK) cells transfected with either wild-type or a dominant activating allele ([Q71L]) of the human ARF1 gene under the control of the interferon-inducible mouse Mx1 promoter. Upon addition of interferon, expression of ARF1 proteins increased with a half-time of 7-8 h, as determined by immunoblot analysis. Induction of mutant ARF1, but not wild-type ARF1, led to an inhibition of protein secretion with kinetics similar to that observed for induction of protein expression. Examination of the Golgi apparatus and the ER by indirect immunofluorescence or transmission electron microscopy revealed that expression of low levels of mutant ARF1 protein correlated with a dramatic increase in vesiculation of the Golgi apparatus and expansion of the ER lumen, while expression of substantially higher levels of wild-type ARF1 had no discernible effect. Endocytosis was also inhibited by expression of mutant ARF1, but not by the wild-type protein. Finally, the expression of [Q71L]ARF1, but not wild-type ARF1, antagonized the actions of brefeldin A, as determined by the delayed loss of ARF and beta-COP from Golgi membranes and disruption of the Golgi apparatus. General models for the actions of ARF1 in membrane traffic events are discussed. PMID:8294513

  13. Expression and Characterization of a Mycoplasma genitalium Glycosyltransferase in Membrane Glycolipid Biosynthesis

    PubMed Central

    Andrés, Eduardo; Martínez, Núria; Planas, Antoni

    2011-01-01

    Mycoplasmas contain glycoglycerolipids in their plasma membrane as key structural components involved in bilayer properties and stability. A membrane-associated glycosyltransferase (GT), GT MG517, has been identified in Mycoplasma genitalium, which sequentially produces monoglycosyl- and diglycosyldiacylglycerols. When recombinantly expressed in Escherichia coli, the enzyme was functional in vivo and yielded membrane glycolipids from which Glcβ1,6GlcβDAG was identified as the main product. A chaperone co-expression system and extraction with CHAPS detergent afforded soluble protein that was purified by affinity chromatography. GT MG517 transfers glucosyl and galactosyl residues from UDP-Glc and UDP-Gal to dioleoylglycerol (DOG) acceptor to form the corresponding β-glycosyl-DOG, which then acts as acceptor to give β-diglycosyl-DOG products. The enzyme (GT2 family) follows Michaelis-Menten kinetics. kcat is about 5-fold higher for UDP-Gal with either DOG or monoglucosyldioleoylglycerol acceptors, but it shows better binding for UDP-Glc than UDP-Gal, as reflected by the lower Km, which results in similar kcat/Km values for both donors. Although sequentially adding glycosyl residues with β-1,6 connectivity, the first glycosyltransferase activity (to DOG) is about 1 order of magnitude higher than the second (to monoglucosyldioleoylglycerol). Because the ratio between the non-bilayer-forming monoglycosyldiacylglycerols and the bilayer-prone diglycosyldiacylglycerols contributes to regulate the properties of the plasma membrane, both synthase activities are probably regulated. Dioleoylphosphatidylglycerol (anionic phospholipid) activates the enzyme, kcat linearly increasing with dioleoylphosphatidylglycerol concentration. GT MG517 is shown to be encoded by an essential gene, and the addition of GT inhibitors results in cell growth inhibition. It is proposed that glycolipid synthases are potential targets for drug discovery against infections by mycoplasmas. PMID

  14. A C-terminal di-leucine motif controls plasma membrane expression of PMCA4b.

    PubMed

    Antalffy, Géza; Pászty, Katalin; Varga, Karolina; Hegedűs, Luca; Enyedi, Agnes; Padányi, Rita

    2013-12-01

    Recent evidences show that the localization of different plasma membrane Ca(2+) ATPases (PMCAs) is regulated in various complex, cell type-specific ways. Here we show that in low-density epithelial and endothelial cells PMCA4b localized mostly in intracellular compartments and its plasma membrane localization was enhanced upon increasing density of cells. In good correlation with the enhanced plasma membrane localization a significantly more efficient Ca(2+) clearance was observed in confluent versus non-confluent HeLa cell cultures expressing mCherry-PMCA4b. We analyzed the subcellular localization and function of various C-terminally truncated PMCA4b variants and found that a truncated mutant PMCA4b-ct24 was mostly intracellular while another mutant, PMCA4b-ct48, localized more to the plasma membrane, indicating that a protein sequence corresponding to amino acid residues 1158-1181 contained a signal responsible for the intracellular retention of PMCA4b in non-confluent cultures. Alteration of three leucines to alanines at positions 1167-1169 resulted in enhanced cell surface expression and an appropriate Ca(2+) transport activity of both wild type and truncated pumps, suggesting that the di-leucine-like motif (1167)LLL was crucial in targeting PMCA4b. Furthermore, upon loss of cell-cell contact by extracellular Ca(2+) removal, the wild-type pump was translocated to the early endosomal compartment. Targeting PMCA4b to early endosomes was diminished by the L(1167-69)A mutation, and the mutant pump accumulated in long tubular cytosolic structures. In summary, we report a di-leucine-like internalization signal at the C-tail of PMCA4b and suggest an internalization-mediated loss of function of the pump upon low degree of cell-cell contact.

  15. Detection of microRNA Expression in Peritoneal Membrane of Rats Using Quantitative Real-time PCR.

    PubMed

    Hirai, Keiji; Yoshizawa, Hiromichi; Imai, Toshimi; Igarashi, Yusuke; Hirahara, Ichiro; Ookawara, Susumu; Ishibashi, Kenichi; Morishita, Yoshiyuki

    2017-06-27

    MicroRNAs (miRNAs) are small noncoding RNAs that regulate messenger RNA expression post-transcriptionally. The miRNA expression profile has been investigated in various organs and tissues in rat. However, standard methods for the purification of miRNAs and detection of their expression in rat peritoneal membrane have not been well established. We have developed an effective and reliable method to purify and quantify miRNAs using quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR) in rat peritoneal membrane. This protocol consists of four steps: 1) purification of peritoneal membrane sample; 2) purification of total RNA including miRNA from peritoneal membrane sample; 3) reverse transcription of miRNA to produce cDNA; and 4) qRT-PCR to detect miRNA expression. Using this protocol, we successfully determined that the expression of six miRNAs (miRNA-142-3p, miRNA-21-5p, miRNA-221-3p, miRNA-223-3p, miRNA-327, and miRNA-34a-5p) increased significantly in the peritoneal membrane of a rat peritoneal fibrosis model compared with those in control groups. This protocol can be used to study the profile of miRNA expression in the peritoneal membrane of rats in many pathological conditions.

  16. Expression and function of membrane regulators of complement on rat astrocytes in culture.

    PubMed Central

    Rogers, C A; Gasque, P; Piddlesden, S J; Okada, N; Holers, V M; Morgan, B P

    1996-01-01

    Human astrocytes express CD59, decay accelerating factor and membrane cofactor protein to restrict the damaging effect of complement (C) activation on their cell surface. 5I2 antigen (5I2 Ag) is the functional analogue of the latter two proteins in rats. We here demonstrate the surface expression on rat astrocytes of CD59 and 5I2 Ag and use sodium dodecyl sulphate-polyacrylamide gel electrophoresis and Western blotting to confirm their identity and to quantify expression. Rat CD59 (MW 20,000) was expressed at 720 x 10(3) molecules per cell and 5I2 Ag (MW 58,000 and 64,000) at 625 x 10(3) molecules per cell. Reverse transcription-polymerase chain reaction using specific oligonucleotide primers demonstrated expression of mRNA for each protein. Twenty-four-hour stimulation with inflammatory cytokines (interferon-gamma, tumour necrosis factor-alpha, interleukins-1 beta, -2 and -6) or phorbol myristate acetate had no significant effect on the level of expression of either protein as determined by Western blotting. Lysis caused by classical pathway activation of C in human or rat serum was enhanced by blocking the function of CD59 and 5I2 Ag on rat astrocytes with monoclonal antibodies. Images Figure 2 Figure 3 Figure 4 PMID:8707343

  17. Expression of BMP and Actin Membrane Bound Inhibitor Is Increased during Terminal Differentiation of MSCs

    PubMed Central

    Karl, Alexandra; Berner, Arne; Schmitz, Paul; Koch, Matthias; Nerlich, Michael; Mueller, Michael B.

    2016-01-01

    Chondrogenic differentiating mesenchymal stem cells (MSCs) are mimicking embryonal endochondral ossification and become hypertrophic. BMP (bone morphogenetic protein) and Activin Membrane Bound Inhibitor (BAMBI) is a pseudoreceptor that regulates the activity of transforming growth factor-β (TGF-β) and BMP signalling during chondrogenesis. Both TGF-β and BMP signalling are regulators of chondrogenic cell differentiation. Human bone marrow derived MSCs were chondrogenically predifferentiated in aggregate culture for 14 days. Thereafter, one group was subjected to hypertrophy enhancing media conditions while controls were kept in chondrogenic medium until day 28. Histological evaluation, gene expression by PCR, and Western blot analysis were carried out at days 1, 3, 7, 14, 17, 21, and 28. A subset of cultures was treated with the BMP inhibitor Noggin to test for BMP dependent expression of BAMBI. Hypertrophic differentiated pellets showed larger cells with increased collagen 10 and alkaline phosphatase staining. There was significantly increased expression of BAMBI on gene expression and protein level in hypertrophic cultures compared to the chondrogenic control and increased BMP4 gene expression. Immunohistochemistry showed intense staining of BAMBI in hypertrophic cells. BAMBI expression was dose-dependently downregulated by Noggin. The pseudoreceptor BAMBI is upregulated upon enhancement of hypertrophy in MSC chondrogenic differentiation by a BMP dependent mechanism. PMID:27843458

  18. Expression of BMP and Actin Membrane Bound Inhibitor Is Increased during Terminal Differentiation of MSCs.

    PubMed

    Pfeifer, Christian G; Karl, Alexandra; Berner, Arne; Zellner, Johannes; Schmitz, Paul; Loibl, Markus; Koch, Matthias; Angele, Peter; Nerlich, Michael; Mueller, Michael B

    2016-01-01

    Chondrogenic differentiating mesenchymal stem cells (MSCs) are mimicking embryonal endochondral ossification and become hypertrophic. BMP (bone morphogenetic protein) and Activin Membrane Bound Inhibitor (BAMBI) is a pseudoreceptor that regulates the activity of transforming growth factor-β (TGF-β) and BMP signalling during chondrogenesis. Both TGF-β and BMP signalling are regulators of chondrogenic cell differentiation. Human bone marrow derived MSCs were chondrogenically predifferentiated in aggregate culture for 14 days. Thereafter, one group was subjected to hypertrophy enhancing media conditions while controls were kept in chondrogenic medium until day 28. Histological evaluation, gene expression by PCR, and Western blot analysis were carried out at days 1, 3, 7, 14, 17, 21, and 28. A subset of cultures was treated with the BMP inhibitor Noggin to test for BMP dependent expression of BAMBI. Hypertrophic differentiated pellets showed larger cells with increased collagen 10 and alkaline phosphatase staining. There was significantly increased expression of BAMBI on gene expression and protein level in hypertrophic cultures compared to the chondrogenic control and increased BMP4 gene expression. Immunohistochemistry showed intense staining of BAMBI in hypertrophic cells. BAMBI expression was dose-dependently downregulated by Noggin. The pseudoreceptor BAMBI is upregulated upon enhancement of hypertrophy in MSC chondrogenic differentiation by a BMP dependent mechanism.

  19. Proteomic analysis of Lawsonia intracellularis reveals expression of outer membrane proteins during infection.

    PubMed

    Watson, Eleanor; Alberdi, M Pilar; Inglis, Neil F; Lainson, Alex; Porter, Megan E; Manson, Erin; Imrie, Lisa; Mclean, Kevin; Smith, David G E

    2014-12-05

    Lawsonia intracellularis is the aetiological agent of the commercially significant porcine disease, proliferative enteropathy. Current understanding of host-pathogen interaction is limited due to the fastidious microaerophilic obligate intracellular nature of the bacterium. In the present study, expression of bacterial proteins during infection was investigated using a mass spectrometry approach. LC-ESI-MS/MS analysis of two isolates of L. intracellularis from heavily-infected epithelial cell cultures and database mining using fully annotated L. intracellularis genome sequences identified 19 proteins. According to the Clusters of Orthologous Groups (COG) functional classification, proteins were identified with roles in cell metabolism, protein synthesis and oxidative stress protection; seven proteins with putative or unknown function were also identified. Detailed bioinformatic analyses of five uncharacterised proteins, which were expressed by both isolates, identified domains and motifs common to other outer membrane-associated proteins with important roles in pathogenesis including adherence and invasion. Analysis of recombinant proteins on Western blots using immune sera from L. intracellularis-infected pigs identified two proteins, LI0841 and LI0902 as antigenic. The detection of five outer membrane proteins expressed during infection, including two antigenic proteins, demonstrates the potential of this approach to interrogate L. intracellularis host-pathogen interactions and identify novel targets which may be exploited in disease control.

  20. Expression, detergent solubilization, and purification of a membrane transporter, the MexB multidrug resistance protein.

    PubMed

    Bhatt, Forum H; Jeffery, Constance J

    2010-12-03

    Multidrug resistance (MDR), the ability of a cancer cell or pathogen to be resistant to a wide range of structurally and functionally unrelated anti-cancer drugs or antibiotics, is a current serious problem in public health. This multidrug resistance is largely due to energy-dependent drug efflux pumps. The pumps expel anti-cancer drugs or antibiotics into the external medium, lowering their intracellular concentration below a toxic threshold. We are studying multidrug resistance in Pseudomonas aeruginosa, an opportunistic bacterial pathogen that causes infections in patients with many types of injuries or illness, for example, burns or cystic fibrosis, and also in immuno-compromised cancer, dialysis, and transplantation patients. The major MDR efflux pumps in P. aeruginosa are tripartite complexes comprised of an inner membrane proton-drug antiporter (RND), an outer membrane channel (OMF), and a periplasmic linker protein (MFP). The RND and OMF proteins are transmembrane proteins. Transmembrane proteins make up more than 30% of all proteins and are 65% of current drug targets. The hydrophobic transmembrane domains make the proteins insoluble in aqueous buffer. Before a transmembrane protein can be purified, it is necessary to find buffer conditions containing a mild detergent that enable the protein to be solubilized as a protein detergent complex (PDC). In this example, we use an RND protein, the P. aeruginosa MexB transmembrane transporter, to demonstrate how to express a recombinant form of a transmembrane protein, solubilize it using detergents, and then purify the protein detergent complexes. This general method can be applied to the expression, purification, and solubilization of many other recombinantly expressed membrane proteins. The protein detergent complexes can later be used for biochemical or biophysical characterization including X-ray crystal structure determination or crosslinking studies.

  1. Over-expressing the C(3) photosynthesis cycle enzyme Sedoheptulose-1-7 Bisphosphatase improves photosynthetic carbon gain and yield under fully open air CO(2) fumigation (FACE).

    PubMed

    Rosenthal, David M; Locke, Anna M; Khozaei, Mahdi; Raines, Christine A; Long, Stephen P; Ort, Donald R

    2011-08-31

    Biochemical models predict that photosynthesis in C(3) plants is most frequently limited by the slower of two processes, the maximum capacity of the enzyme Rubisco to carboxylate RuBP (V(c,max)), or the regeneration of RuBP via electron transport (J). At current atmospheric [CO(2)] levels Rubisco is not saturated; consequently, elevating [CO(2)] increases the velocity of carboxylation and inhibits the competing oxygenation reaction which is also catalyzed by Rubisco. In the future, leaf photosynthesis (A) should be increasingly limited by RuBP regeneration, as [CO(2)] is predicted to exceed 550 ppm by 2050. The C(3) cycle enzyme sedoheptulose-1,7 bisphosphatase (SBPase, EC 3.1.3.17) has been shown to exert strong metabolic control over RuBP regeneration at light saturation. We tested the hypothesis that tobacco transformed to overexpressing SBPase will exhibit greater stimulation of A than wild type (WT) tobacco when grown under field conditions at elevated [CO(2)] (585 ppm) under fully open air fumigation. Growth under elevated [CO(2)] stimulated instantaneous A and the diurnal photosynthetic integral (A') more in transformants than WT. There was evidence of photosynthetic acclimation to elevated [CO(2)] via downregulation of V(c,max) in both WT and transformants. Nevertheless, greater carbon assimilation and electron transport rates (J and J(max)) for transformants led to greater yield increases than WT at elevated [CO(2)] compared to ambient grown plants. These results provide proof of concept that increasing content and activity of a single photosynthesis enzyme can enhance carbon assimilation and yield of C(3) crops grown at [CO(2)] expected by the middle of the 21st century.

  2. Impact of light intensity and quality on chromatophore and nuclear gene expression in Paulinella chromatophora, an amoeba with nascent photosynthetic organelles.

    PubMed

    Zhang, Ru; Nowack, Eva C M; Price, Dana C; Bhattacharya, Debashish; Grossman, Arthur R

    2017-04-01

    Plastid evolution has been attributed to a single primary endosymbiotic event that occurred about 1.6 billion years ago (BYA) in which a cyanobacterium was engulfed and retained by a eukaryotic cell, although early steps in plastid integration are poorly understood. The photosynthetic amoeba Paulinella chromatophora represents a unique model for the study of plastid evolution because it contains cyanobacterium-derived photosynthetic organelles termed 'chromatophores' that originated relatively recently (0.09-0.14 BYA). The chromatophore genome is about a third the size of the genome of closely related cyanobacteria, but 10-fold larger than most plastid genomes. Several genes have been transferred from the chromatophore genome to the host nuclear genome through endosymbiotic gene transfer (EGT). Some EGT-derived proteins could be imported into chromatophores for function. Two photosynthesis-related genes (psaI and csos4A) are encoded by both the nuclear and chromatophore genomes, suggesting that EGT in Paulinella chromatophora is ongoing. Many EGT-derived genes encode proteins that function in photosynthesis and photoprotection, including an expanded family of high-light-inducible (ncHLI) proteins. Cyanobacterial hli genes are high-light induced and required for cell viability under excess light. We examined the impact of light on Paulinella chromatophora and found that this organism is light sensitive and lacks light-induced transcriptional regulation of chromatophore genes and most EGT-derived nuclear genes. However, several ncHLI genes have reestablished light-dependent regulation, which appears analogous to what is observed in cyanobacteria. We postulate that expansion of the ncHLI gene family and its regulation may reflect the light/oxidative stress experienced by Paulinella chromatophora as a consequence of the as yet incomplete integration of host and chromatophore metabolisms.

  3. Over-expressing the C3 photosynthesis cycle enzyme Sedoheptulose-1-7 Bisphosphatase improves photosynthetic carbon gain and yield under fully open air CO2 fumigation (FACE)

    PubMed Central

    2011-01-01

    Background Biochemical models predict that photosynthesis in C3 plants is most frequently limited by the slower of two processes, the maximum capacity of the enzyme Rubisco to carboxylate RuBP (Vc,max), or the regeneration of RuBP via electron transport (J). At current atmospheric [CO2] levels Rubisco is not saturated; consequently, elevating [CO2] increases the velocity of carboxylation and inhibits the competing oxygenation reaction which is also catalyzed by Rubisco. In the future, leaf photosynthesis (A) should be increasingly limited by RuBP regeneration, as [CO2] is predicted to exceed 550 ppm by 2050. The C3 cycle enzyme sedoheptulose-1,7 bisphosphatase (SBPase, EC 3.1.3.17) has been shown to exert strong metabolic control over RuBP regeneration at light saturation. Results We tested the hypothesis that tobacco transformed to overexpressing SBPase will exhibit greater stimulation of A than wild type (WT) tobacco when grown under field conditions at elevated [CO2] (585 ppm) under fully open air fumigation. Growth under elevated [CO2] stimulated instantaneous A and the diurnal photosynthetic integral (A') more in transformants than WT. There was evidence of photosynthetic acclimation to elevated [CO2] via downregulation of Vc,max in both WT and transformants. Nevertheless, greater carbon assimilation and electron transport rates (J and Jmax) for transformants led to greater yield increases than WT at elevated [CO2] compared to ambient grown plants. Conclusion These results provide proof of concept that increasing content and activity of a single photosynthesis enzyme can enhance carbon assimilation and yield of C3 crops grown at [CO2] expected by the middle of the 21st century. PMID:21884586

  4. The Pseudomonas aeruginosa secreted protein PA2934 decreases apical membrane expression of the cystic fibrosis transmembrane conductance regulator.

    PubMed

    MacEachran, Daniel P; Ye, Siying; Bomberger, Jennifer M; Hogan, Deborah A; Swiatecka-Urban, Agnieszka; Stanton, Bruce A; O'Toole, George A

    2007-08-01

    We previously reported that Pseudomonas aeruginosa PA14 secretes a protein that can reduce the apical membrane expression of the cystic fibrosis transmembrane conductance regulator (CFTR) protein. Here we report that we have used a proteomic approach to identify this secreted protein as PA2934 [corrected], and we have named the gene cif, for CFTR inhibitory factor. We demonstrate that Cif is a secreted protein and is found associated with outer membrane-derived vesicles. Expression of Cif in Escherichia coli and purification of the C-terminal six-His-tagged Cif protein showed that Cif is necessary and sufficient to mediate the reduction in apical membrane expression of CFTR and a concomitant reduction in CFTR-mediated Cl(-) ion secretion. Cif demonstrates epoxide hydrolase activity in vitro and requires a highly conserved histidine residue identified in alpha/beta hydrolase family enzymes to catalyze this reaction. Mutating this histidine residue also abolishes the ability of Cif to reduce apical membrane CFTR expression. Finally, we demonstrate that the cif gene is expressed in the cystic fibrosis (CF) lung and that nonmucoid isolates of P. aeruginosa show greater expression of the gene than do mucoid isolates. We propose a model in which the Cif-mediated decrease in apical membrane expression of CFTR by environmental isolates of P. aeruginosa facilitates the colonization of the CF lung by this microbe.

  5. Placenta expresses anti-Müllerian hormone and its receptor: Sex-related difference in fetal membranes.

    PubMed

    Novembri, R; Funghi, L; Voltolini, C; Belmonte, G; Vannuccini, S; Torricelli, M; Petraglia, F

    2015-07-01

    Anti-Müllerian hormone (AMH) is a member of the transforming growth factor-β superfamily, playing a role in sexual differentiation and recruitment. Since a correlation exists between AMH serum levels in cord blood and fetal sex, the present study aimed to identify mRNA and protein expression of AMH and AMHRII in placenta and fetal membranes according to fetal sex. Placenta and fetal membranes samples (n = 40) were collected from women with singleton uncomplicated pregnancies at term. Identification of AMH protein in placenta and fetal membranes was carried out by immunohistochemistry and AMH and AMHRII protein localization by immunofluorescence, while mRNA expression was assessed by quantitative real-time PCR. AMH and AMHRII mRNAs were expressed by placenta and fetal membranes at term, without any significant difference between males and females. Placental immunostaining showed a syncytial localization of AMH without sex-related differences; while fetal membranes immunostaining was significantly more intense in male than in female fetuses (p < 0,01). Immunofluorescence showed an intense co-localization of AMH and AMHRII in placenta and fetal membranes. The present study for the first time demonstrated that human placenta and fetal membranes expresses and co-localizes AMH and AMHRII. Although no sex-related difference was found for the mRNA expression both in placenta and fetal membranes, a most intense staining for AMH in male fetal membranes supports AMH as a gender specific hormone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Increased expression of the integral membrane proteins EGFR and FGFR3 in anti-apoptotic Chinese hamster ovary cell lines.

    PubMed

    Ohsfeldt, Erika; Huang, Szu-Han; Baycin-Hizal, Deniz; Kristoffersen, Linda; Le, Thuy-My T; Li, Edwin; Hristova, Kalina; Betenbaugh, Michael J

    2012-01-01

    Membrane proteins such as receptor tyrosine kinases (RTKs) have a vital role in many cellular functions, making them potential targets for therapeutic research. In this study, we investigated the coexpression of the anti-apoptosis gene Bcl-x(L) with model membrane proteins as a means of increasing membrane protein expression in mammalian cells. Chinese hamster ovary (CHO) cells expressing heterologous Bcl-x(L) and wild-type CHO cells were transfected with either epidermal growth factor receptor or fibroblast growth factor receptor 3. The CHO-Bcl-x(L) cell lines showed increased expression of both RTK proteins as compared with the wild-type CHO cell lines in transient expression analysis, as detected by Western blot and flow cytometry after 15 days of antibiotic selection in stable expression pools. Increased expression was also seen in clonal isolates from the CHO-Bcl-x(L) cell lines, whereas the clonal cell line expression was minimal in wild-type CHO cell lines. Our results demonstrate that application of the anti-apoptosis gene Bcl-x(L) can increase expression of RTK proteins in CHO cells. This approach may be applied to improve stable expression of other membrane proteins in the future using mammalian cell lines with Bcl-x(L) or perhaps other anti-apoptotic genes.

  7. Gene Expression Analysis of the Irrigation Solution Samples Collected during Vitrectomy for Idiopathic Epiretinal Membrane

    PubMed Central

    Myojin, Sayaka; Yoshida, Shigeo; Takeda, Atsunobu; Murakami, Yusuke; Kawano, Yoichi; Oshima, Yuji; Ishibashi, Tatsuro; Sonoda, Koh-Hei

    2016-01-01

    Purpose The analysis of gene expression in idiopathic epiretinal membranes (iERMs) may help elucidate ERM formation and its pathology. Here, we conducted a case-control study, in order to determine the expression levels of cytokines and other genes in eyes with macular hole (MH) or iERM. Methods Twenty eyes, obtained from seven male and 13 female patients, were included in the study. The average age of the study subjects was 69.1 ± 7.67 years, and 15 eyes had iERM, while five eyes had MH. Irrigation solution samples were collected during vitrectomy, centrifuged, and the levels of cytokine and other mRNAs in the sediment were assessed using real-time PCR. The expression level of 11 cytokine genes, four transcription factor genes, two cytoskeletal genes, and genes encoding two extracellular matrix proteins in eyes with MH or iERM were determined and compared. Results The expression levels of interleukin 6 (IL6), tumor growth factor B2 (TGFB2), vascular endothelial growth factor A (VEGFA), chemokine C-X-C motif ligand 1 (CXCL1), v-rel avian reticuloendotheliosis viral oncogene homolog A (RELA), glial fibrillary acidic protein (GFAP), and tenascin C (TNC) were significantly higher in eyes with iERM than in eyes with MH. The expression of these genes was not associated with the preoperative visual acuity of the investigated patients. Conclusions The obtained results indicate that real-time PCR analysis of irrigation solution samples collected during vitrectomy can help assess the expression levels of several genes, and that iERM is associated with the expression of pro-inflammatory genes and the genes expressed during angiogenesis and wound healing process (IL6, TGFB2, VEGFA, CXCL1, RELA, GFAP, and TNC). PMID:27736918

  8. Interleukin 4 induces membrane Thy-1 expression on normal murine B cells.

    PubMed Central

    Snapper, C M; Hornbeck, P V; Atasoy, U; Pereira, G M; Paul, W E

    1988-01-01

    Thy-1, a cell-surface glycoprotein of undetermined function, is expressed in relatively large amounts on mouse thymocytes, peripheral T cells, and neurons. It is widely used as a marker to distinguish peripheral T cells from B cells in mice. We show here that, in five distinct mouse strains, recombinant interleukin 4 (IL-4/B-cell stimulatory factor 1) strikingly induces membrane expression of Thy-1 on the vast majority of lipopolysaccharide (LPS)-stimulated normal murine B cells. Thy-1+ B cells are precursors for immunoglobulin-secreting cells. RNA blot analysis indicates that B cells express a Thy-1 mRNA of 1.8 kilobases, the same size as that found in T cells. Cell mixing experiments show that only cells derived from Thy-1.2+ donors express Thy-1.2, indicating that B cells expressing Thy-1 have not passively absorbed the glycoprotein from another cell source. Recombinant interferon-gamma inhibits Thy-1 induction by B cells stimulated with LPS and IL-4. Thy-1 is also induced on B cells that have been stimulated as a result of the specific activation of an IL-4-producing T-helper clone. Anti-IL-4 monoclonal antibody inhibits the induction of B-cell Thy-1 in this T-cell-B-cell interaction. Images PMID:2901096

  9. Cell-Specific Expression of Plasma Membrane Calcium ATPase Isoforms in Retinal Neurons

    PubMed Central

    Krizaj, David; Demarco, Steven J.; Johnson, Juliette; Strehler, Emanuel E.; Copenhagen, David R.

    2007-01-01

    Ca2+ extrusion by high-affinity plasma membrane calcium ATPases (PMCAs) is a principal mechanism for the clearance of Ca2+ from the cytosol. The PMCA family consists of four isoforms (PMCA1–4). Little is known about the selective expression of these isoforms in brain tissues or about the physiological function conferred upon neurons by any given isoform. We investigated the cellular and subcellular distribution of PMCA isoforms in a mammalian retina. Mouse photoreceptors, cone bipolar cells and horizontal cells, which respond to light with a graded polarization, express isoform 1 (PMCA1) of the PMCA family. PMCA2 is localized to rod bipolar cells, horizontal cells, amacrine cells, and ganglion cells, and PMCA3 is predominantly expressed in spiking neurons, including both amacrine and ganglion cells but is also found in horizontal cells. PMCA4 was found to be selectively expressed in both synaptic layers. Optical measurements of Ca2+ clearance showed that PMCAs mediate Ca2+ extrusion in both rod and cone bipolar cells. In addition, we found that rod bipolar cells, but not cone bipolar cells possess a prominent Na+/Ca2+ exchange mechanism. We conclude that PMCA isoforms are selectively expressed in retinal neurons and that processes of Ca2+ clearance are different in rod and cone bipolar cells. PMID:12209837

  10. An expression tag toolbox for microbial production of membrane bound plant cytochromes P450.

    PubMed

    Vazquez-Albacete, Dario; Cavaleiro, Ana Mafalda; Christensen, Ulla; Seppälä, Susanna; Møller, Birger Lindberg; Nørholm, Morten H H

    2017-04-01

    Membrane-associated Cytochromes P450 (P450s) are one of the most important enzyme families for biosynthesis of plant-derived medicinal compounds. However, the hydrophobic nature of P450s makes their use in robust cell factories a challenge. Here, we explore a small library of N-terminal expression tag chimeras of the model plant P450 CYP79A1 in different Escherichia coli strains. Using a high-throughput screening platform based on C-terminal GFP fusions, we identify several highly expressing and robustly performing chimeric designs. Analysis of long-term cultures by flow cytometry showed homogeneous populations for some of the conditions. Three chimeric designs were chosen for a more complex combinatorial assembly of a multigene pathway consisting of two P450s and a redox partner. Cells expressing these recombinant enzymes catalyzed the conversion of the substrate to highly different ratios of the intermediate and the final product of the pathway. Finally, the effect of a robustly performing expression tag was explored with a library of 49 different P450s from medicinal plants and nearly half of these were improved in expression by more than twofold. The developed toolbox serves as a platform to tune P450 performance in microbial cells, thereby facilitating recombinant production of complex plant P450-derived biochemicals. Biotechnol. Bioeng. 2017;114: 751-760. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Evolving a photosynthetic organelle.

    PubMed

    Nakayama, Takuro; Archibald, John M

    2012-04-24

    The evolution of plastids from cyanobacteria is believed to represent a singularity in the history of life. The enigmatic amoeba Paulinella and its 'recently' acquired photosynthetic inclusions provide a fascinating system through which to gain fresh insight into how endosymbionts become organelles.The plastids, or chloroplasts, of algae and plants evolved from cyanobacteria by endosymbiosis. This landmark event conferred on eukaryotes the benefits of photosynthesis--the conversion of solar energy into chemical energy--and in so doing had a huge impact on the course of evolution and the climate of Earth 1. From the present state of plastids, however, it is difficult to trace the evolutionary steps involved in this momentous development, because all modern-day plastids have fully integrated into their hosts. Paulinella chromatophora is a unicellular eukaryote that bears photosynthetic entities called chromatophores that are derived from cyanobacteria and has thus received much attention as a possible example of an organism in the early stages of organellogenesis. Recent studies have unlocked the genomic secrets of its chromatophore 23 and provided concrete evidence that the Paulinella chromatophore is a bona fide photosynthetic organelle 4. The question is how Paulinella can help us to understand the process by which an endosymbiont is converted into an organelle.

  12. Heterologous Expression and Purification Systems for Structural Proteomics of Mammalian Membrane Proteins

    PubMed Central

    2002-01-01

    Membrane proteins (MPs) are responsible for the interface between the exterior and the interior of the cell. These proteins are implicated in numerous diseases, such as cancer, cystic fibrosis, epilepsy, hyperinsulinism, heart failure, hypertension and Alzheimer's disease. However, studies on these disorders are hampered by a lack of structural information about the proteins involved. Structural analysis requires large quantities of pure and active proteins. The majority of medically and pharmaceutically relevant MPs are present in tissues at very low concentration, which makes heterologous expression in large-scale production-adapted cells a prerequisite for structural studies. Obtaining mammalian MP structural data depends on the development of methods that allow the production of large quantities of MPs. This review focuses on the different heterologous expression systems, and the purification strategies, used to produce large amounts of pure mammalian MPs for structural proteomics. PMID:18629259

  13. Chondrogenic potential of subpopulations of cells expressing mesenchymal stem cell markers derived from human synovial membranes.

    PubMed

    Arufe, M C; De la Fuente, A; Fuentes, I; de Toro, F J; Blanco, F J

    2010-11-01

    In this study we analyzed the chondrogenic potential of subpopulations of mesenchymal stem cells (MSCs) derived from human synovial membranes enriched for CD73, CD106, and CD271 markers. Subpopulations of human synovial membrane MSCs enriched for CD73, CD106, and CD271 markers were isolated using a cytometry sorter and characterized by flow cytometry for MSC markers. The expression of Sox9, Nanog, and Runx2 genes by these cells was measured by reverse transcriptase-polymerase chain reaction. The chondrogenesis of each subpopulation was assessed by culturing the cells in a defined medium to produce spontaneous spheroid formation and differentiation towards chondrocyte-like cells. The examination of the spheroids by histological and immunohistochemical analyses for collagen type II (COL2), aggrecan, collagen type I (COL1), metalloprotease 13 (MMP13), and collagen type X (COLX) levels were performed to assess their chondrogenesis capacity. The adipogenesis and osteogenesis potential of each subpopulation was determined using commercial media; the resulting cells were stained with oil red O or red alizarin to test the degree of differentiation. The subpopulations had different profiles of cells positive for the MSC markers CD44, CD69, CD73, CD90, and CD105 and showed different expression levels of the genes Sox9, Nanog, and Runx2 involved in chondrogenesis, undifferentiation, and osteoblastogenesis, respectively. Immunohistochemical analysis demonstrated that COL1, COL2, COLX, MMP13, and aggrecan were expressed in the spheroids as soon as 14 days of culture. The CD271(+) subpopulation expressed the highest levels of COL2 staining compared to the other subpopulations. CD105 and Runx2 were shown by immunohistochemistry and genetic analysis to have significantly higher expression CD271(+) subpopulation than the other subpopulations. Spheroids formed from CD271-enriched and CD73-enriched MSCs from normal human synovial membranes mimic the native cartilage extracellular

  14. TNFR1 mediates increased neuronal membrane EAAT3 expression after in vivo cerebral ischemic preconditioning.

    PubMed

    Pradillo, J M; Hurtado, O; Romera, C; Cárdenas, A; Fernández-Tomé, P; Alonso-Escolano, D; Lorenzo, P; Moro, M A; Lizasoain, I

    2006-01-01

    A short ischemic event (ischemic preconditioning) can result in subsequent resistance to severe ischemic injury (ischemic tolerance). Glutamate is released after ischemia and produces cell death. It has been described that after ischemic preconditioning, the release of glutamate is reduced. We have shown that an in vitro model of ischemic preconditioning produces upregulation of glutamate transporters which mediates brain tolerance. We have now decided to investigate whether ischemic preconditioning-induced glutamate transporter upregulation takes also place in vivo, its cellular localization and the mechanisms by which this upregulation is controlled. A period of 10 min of temporary middle cerebral artery occlusion was used as a model of ischemic preconditioning in rat. EAAT1, EAAT2 and EAAT3 glutamate transporters were found in brain from control animals. Ischemic preconditioning produced an up-regulation of EAAT2 and EAAT3 but not of EAAT1 expression. Ischemic preconditioning-induced increase in EAAT3 expression was reduced by the TNF-alpha converting enzyme inhibitor BB1101. Intracerebral administration of either anti-TNF-alpha antibody or of a TNFR1 antisense oligodeoxynucleotide also inhibited ischemic preconditioning-induced EAAT3 up-regulation. Immunohistochemical studies suggest that, whereas the expression of EAAT3 is located in both neuronal cytoplasm and plasma membrane, ischemic preconditioning-induced up-regulation of EAAT3 is mainly localized at the plasma membrane level. In summary, these results demonstrate that in vivo ischemic preconditioning increases the expression of EAAT2 and EAAT3 glutamate transporters the upregulation of the latter being at least partly mediated by TNF-alpha converting enzyme/TNF-alpha/TNFR1 pathway.

  15. Targeting the Warburg Effect That Arises in Tumor Cells Expressing Membrane Type-1 Matrix Metalloproteinase*

    PubMed Central

    Sakamoto, Takeharu; Niiya, Daigo; Seiki, Motoharu

    2011-01-01

    Hypoxia inducible factor-1 (HIF-1) is a key transcription factor required for cellular adaptation to hypoxia, although its physiological roles and activation mechanisms during normoxia have not been studied sufficiently. The Warburg effect, which is a hallmark of malignant tumors that is characterized by increased activity of aerobic glycolysis, accompanies activation of HIF-1 during normoxia. Besides tumor cells that have multiple genetic and epigenetic alterations, normal macrophages also use glycolysis for ATP production by depending upon elevated HIF-1 activity even during normoxia. We recently found that activity of factor inhibiting HIF-1 (FIH-1) is specifically suppressed in macrophages by a nonproteolytic activity of membrane type-1 matrix metalloproteinase (MT1-MMP/MMP-14). Thus, MT1-MMP expressed in macrophages plays a significant role in regulating HIF-1 activity during normoxia. In the light of this finding, we examined here whether MT1-MMP contributes to the Warburg effect of tumor cells. All the tumor cell lines that express MT1-MMP exhibit increased glycolytic activity, and forced expression of MT1-MMP in MT1-MMP-negative tumor cells is sufficient to induce the Warburg effect. The cytoplasmic tail of MT1-MMP mediates the stimulation of aerobic glycolysis by increasing the expression of HIF-1 target genes. Specific intervention of the MT1-MMP-mediated activation of HIF-1 in tumor cells retarded tumor growth in mice. Systemic administration of a membrane-penetrating form of the cytoplasmic tail peptide in mice to inhibit HIF-1 activation competitively also exhibited a therapeutic effect on tumors. PMID:21372132

  16. Expression and immunolocalization of membrane progesterone receptors in the bovine oviduct.

    PubMed

    Kowalik, M K; Martyniak, M; Rekawiecki, R; Kotwica, J

    2016-04-01

    The oviduct plays a crucial role in the transport and maturation of gametes and ensures suitable conditions for fertility and early embryo development. One regulator of oviduct function is progesterone (P4), which affects the cell by interacting with nuclear progesterone receptors (PGRs) and through nongenomic mechanisms, presumably involving membrane PGRs. The aim of this study was to evaluate the expression of messenger RNAS (mRNAs) and proteins for progesterone receptor membrane component (PGRMC) 1 and 2 and membrane progestin receptors (mPR) α, β, and γ and to use immunohistochemistry to demonstrate their cell-specific localization in the bovine oviduct. Oviducts ipsilateral and contralateral to the corpus luteum or to the dominant follicle were collected from cows on days 6 to 12 (midluteal stage) and 18 to 20 (follicular stage) of the estrous cycle and divided into 3 parts (infundibulum, ampulla, and isthmus). There were no differences (P > 0.05) in the PGRMC1, PGRMC2, mPRα, β, and γ mRNA expression between ipsi- and contralateral oviducts. However, the same parts of the oviduct collected during the different stages of the estrous cycle showed higher (P < 0.05) mRNA levels of PGRMC1, PGRMC2, and mPRα on days 18 to 20 than on days 6 to 12 of the estrous cycle. mPRα and mPRβ mRNA levels were higher (P < 0.05) in the infundibulum than in the isthmus, whereas PGRMC1 expression was higher (P < 0.05) in the infundibulum than in ampulla. Immunohistochemistry was used to detect PGRMC1, PGRMC2, PRα, β, and γ proteins in all parts of both oviducts from days 6 to 12 and 18 to 20 of the estrous cycle. There were no differences in the staining intensity and cellular localization of the studied proteins between the ipsi- and contralateral oviducts and between the studied stages of the estrous cycle. A strong positive reaction was observed in luminal cells, but this reaction was less evident in myocytes and stromal cells. All proteins were also localized to the

  17. Antenna organization in green photosynthetic bacteria

    SciTech Connect

    Blankenship, R.E.

    1987-01-01

    This project is concerned with the structure and function of the unique antenna system found in the green photosynthetic bacteria. The antenna system in these organisms is contained within a vesicle known as a chlorosome, which is attached to the cytoplasmic side of the cell membrane. Additional antenna pigments and reaction centers are contained in integral membrane proteins. Energy absorbed by the bacteriochlorophyll c (BChl c) pigments in the chlorosome is transferred via a baseplate'' array of BChl a antenna pigments into the membrane and to the reaction center. A schematic model of chlorosome structure is shown. This project is aimed at increasing our understanding of the organization of the pigments in the chlorosome and how the antenna system functions.

  18. Teicoplanin-resistant Staphylococcus aureus expresses a novel membrane protein and increases expression of penicillin-binding protein 2 complex.

    PubMed Central

    Shlaes, D M; Shlaes, J H; Vincent, S; Etter, L; Fey, P D; Goering, R V

    1993-01-01

    In the recent clinical trials of teicoplanin therapy of endocarditis caused by Staphylococcus aureus, at least one instance of the emergence of teicoplanin-resistant strains during therapy has been reported (G.W. Kaatz, S. M. Seo, N. J. Dorman, and S. A. Lerner, J. Infect. Dis 162:103-108, 1990). We have confirmed, using conventional electrophoresis of EcoRI-digested chromosomal DNA and pulsed-field gel electrophoresis of SmaI-digested chromosomal DNA, that the resistant strain (12873) (MIC, 16 micrograms/ml) is genetically very similar to the susceptible parent (12871) (MIC, 4 micrograms/ml). Kaatz et al. were able to select spontaneous teicoplanin-resistant mutants (10(-9)), suggesting that a single gene might be involved. We have shown that the mutation is highly stable during growth in the absence of teicoplanin. Using Tn551, we have selected insertion mutants of 12873 that become teicoplanin susceptible. We have examined a number of aspects of cell wall physiology in strains 12871 and 12873 and the teicoplanin-susceptible Tn551 mutants of 12873. 12873 was more susceptible to lysostaphin lysis than 12871 and the susceptible Tn551 derivatives of 12873. Autolysis in phosphate buffer (pH 7.5) and cell wall turnover rates were similar in 12871 and 12873. An analysis of membrane proteins revealed the expression of a ca. 35-kDa protein and increased expression of both polypeptides of penicillin-binding protein (PBP) 2 (PBP2) in 12873 relative to 12871 and the Tn551 mutants of 12873. This increased expression was not related to PBP2', since both strains were susceptible to oxacillin in 2% NaCl (MIC, < or = 0.25 microgram/ml) and cellular DNA from neither strain hybridized with a specific mec gene probe. Two independent Tn551 inserts have been mapped to a ca. 117-kb SmaI fragment of the chromosome. These data suggest the possibility that the mutation resulting in resistance to teicoplanin involves the regulation of expression of both polypeptides of PBP2 and a 35-k

  19. Ankyrin and band 3 differentially affect expression of membrane glycoproteins but are not required for erythroblast enucleation

    SciTech Connect

    Ji, Peng; Lodish, Harvey F.

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer Ankyrin and band 3 are not required for erythroblasts enucleation. Black-Right-Pointing-Pointer Loss of ankyrin does not affect erythroid membrane glycoprotein expression. Black-Right-Pointing-Pointer Loss of band 3 influences erythroid membrane glycoprotein expression. -- Abstract: During late stages of mammalian erythropoiesis the nucleus undergoes chromatin condensation, migration to the plasma membrane, and extrusion from the cytoplasm surrounded by a segment of plasma membrane. Since nuclear condensation occurs in all vertebrates, mammalian erythroid membrane and cytoskeleton proteins were implicated as playing important roles in mediating the movement and extrusion of the nucleus. Here we use erythroid ankyrin deficient and band 3 knockout mouse models to show that band 3, but not ankyrin, plays an important role in regulating the level of erythroid cell membrane proteins, as evidenced by decreased cell surface expression of glycophorin A in band 3 knockout mice. However, neither band 3 nor ankyrin are required for enucleation. These results demonstrate that mammalian erythroblast enucleation does not depend on the membrane integrity generated by the ankyrin-band 3 complex.

  20. Cell-based capacitance sensor for analysis of EGFR expression on cell membrane

    NASA Astrophysics Data System (ADS)

    Shin, Dong-Myeong; Shin, Yong-Cheol; Ha, Ji Hye; Lee, Jong-Ho; Han, Dong-Wook; Kim, Jong-Man; Kim, Hyung Kook; Hwang, Yoon-Hwae

    2013-02-01

    Cancer cells have many kinds of cancer biomarkers. Among them, the epidermal growth factor (EGF) receptors can show a possibility for a cancer marker because the over-expression of EGF receptor is related with fibrous, colorectal, cervical and gastric tumorigenesis. We fabricated the capacitance sensor with a gap area of 50 μm × 200 μm by using photolithography and lift-off method. Using the capacitance sensor, we investigated the time dependent capacitance changes of different kinds of fibrous cells, such as HT1080 fibrosarcoma, L-929 fibroblast cell line and nHDF dermal fibroblast primary cell. We found that when we put the EGF, the capacitance decreased due to the immobilization of EGF to EGF receptor on the cell membrane. The quantitative determination of EGF receptor level for various fibrous cells was carried out and the results showed good correlation with conventional method. Based on our results, we suggest that the capacitance sensor can measure the expression level of the EGF receptor on cell membrane and be a good candidate as a cancer diagnosis.

  1. A specific role of AGS3 in the surface expression of plasma membrane proteins.

    PubMed

    Groves, B; Gong, Q; Xu, Z; Huntsman, C; Nguyen, C; Li, D; Ma, D

    2007-11-13

    Activator of G protein signaling 3 (AGS3), originally identified in a functional screen for mammalian proteins that activate heterotrimeric G protein signaling, is known to be involved in drug-seeking behavior and is up-regulated during cocaine withdrawal in animal models. These observations indicate a potential role for AGS3 in the formation or maintenance of neural plasticity. We have found that the overexpression of AGS3 alters the surface-to-total ratios of a subset of heterologously expressed plasma membrane receptors and channels. Further analysis of the endocytic trafficking of one such protein by a biotin-based internalization assay suggests that overexpression of AGS3 moderately affects the internalization or recycling of surface proteins. Moreover, AGS3 overexpression and siRNA-mediated knockdown of AGS3 both result in the dispersal of two endogenously expressed trans-Golgi network (TGN)-associated cargo proteins without influencing those in the cis- or medial-Golgi compartments. Finally, adding a TGN-localization signal to a CD4-derived reporter renders the trafficking of fusion protein sensitive to AGS3. Taken together, our data support a model wherein AGS3 modulates the protein trafficking along the TGN/plasma membrane/endosome loop.

  2. In silico studies of outer membrane of Neisseria meningitidis por a: its expression and immunogenic properties.

    PubMed

    Behrouzi, Ava; Bouzari, Saeid; Siadat, Seyed Davar; Irani, Shiva

    2014-01-01

    Neisseria meningitidis is a major causative agent of bacterial septicemia and meningitis in humans. Currently, there are no vaccines to prevent disease caused by strains of N.meningitidis serogroup B. The Class 1 Outer Membrane Protein (OMP) has been named porA which is a cation selective transmembrane protein of 45 KDa that forms trimeric pore in the meningococcal outer membrane. PorA from serogroup B N. meningitidis was cloned into prokaryotic expression vector pBAD-gIIIA. Recombinant protein was expressed with arabinose and affinity purified by Ni-NTA agarose, SDS-PAGE and western blotting were performed for protein determination and verification. BALB/c mice were immunized subcutaneously with purified rPorA together with alum adjuvant. Serum antibody responses to serogroups B N.meningitidis were determined by ELISA. Serum IgG response significantly increased in the group immunized with rPorA together with alum adjuvant in comparison with control groups. These results suggest that rPorA can be a potential vaccine candidate for serogroup B N.meningitidis.

  3. Potassium-dependent changes in the expression of membrane-associated proteins in barley roots

    SciTech Connect

    Fernando, M.; Kulpa, J.; Siddiqi, M.Y.; Glass, A.D.M. )

    1990-04-01

    Barley (Hordeum vulgare L. cv Halcyon) seedlings which has been grown in full strength complete inorganic nutrient media (containing 6 millimolar K{sup +}) had high internal K{sup +} concentrations and low values of K{sup +} ({sup 86}Rb{sup +}) influx when influx was measured from solutions containing 100 micromolar K{sup +}. Transfer of these plants to solutions lacking K{sup +} resulted in significant reductions of root and shoot K{sup +} concentrations and values of K{sup +} ({sup 86}Rb{sup +}) influx increased by greater than 10-fold within 3 days. When plants treated in this way were returned to complete solutions, containing K{sup +}, the changes induced by K{sup +} deprivation were reversed. Parallel studies of microsomal membranes by means of SDS-PAGE demonstrated that the expression of a group of polypeptides increased or decreased in parallel with changes of K{sup +} ({sup 86}Rb{sup +}) influx. Most prominent of these were 45 and 34 kilodalton polypeptides which specifically responded to K{sup +} status of the barley plants; their expression was not enhanced by N or P deprivation. The 45 kilodalton polypeptide was susceptible to degradation by a membrane associated protease when microsomes were washing in buffer containing 0.2 millimolar PMSF. This loss was prevented by increasing PMSF concentration to 2 millimolar.

  4. In Silico Studies of Outer Membrane of Neisseria Meningitidis Por A: Its Expression and Immunogenic Properties

    PubMed Central

    Behrouzi, Ava; Bouzari, Saeid; Siadat, Seyed Davar; Irani, Shiva

    2014-01-01

    Neisseria meningitidis is a major causative agent of bacterial septicemia and meningitis in humans. Currently, there are no vaccines to prevent disease caused by strains of N.meningitidis serogroup B. The Class 1 Outer Membrane Protein (OMP) has been named porA which is a cation selective transmembrane protein of 45 KDa that forms trimeric pore in the meningococcal outer membrane. PorA from serogroup B N. meningitidis was cloned into prokaryotic expression vector pBAD-gIIIA. Recombinant protein was expressed with arabinose and affinity purified by Ni-NTA agarose, SDS-PAGE and western blotting were performed for protein determination and verification. BALB/c mice were immunized subcutaneously with purified rPorA together with alum adjuvant. Serum antibody responses to serogroups B N.meningitidis were determined by ELISA. Serum IgG response significantly increased in the group immunized with rPorA together with alum adjuvant in comparison with control groups. These results suggest that rPorA can be a potential vaccine candidate for serogroup B N.meningitidis. PMID:25317403

  5. Differential effects of antipsychotics on expression of antioxidant enzymes and membrane lipid peroxidation in rat brain.

    PubMed

    Parikh, Vinay; Khan, Mohammad M; Mahadik, Sahebarao P

    2003-01-01

    Typical and atypical antipsychotics significantly differ in their neurotransmitter receptor affinity profiles, and their efficacy and side effects in schizophrenic patients. Typical antipsychotics have been found to increase the oxidative (i.e. free radical-mediated) cellular injury in rats. Since schizophrenia also involves oxidative injury, the understanding of differential effects of these antipsychotics on expression of antioxidant enzymes and oxidative injury may be very critical. The effect of chronic exposure of haloperidol (HAL), a typical antipsychotic, was compared to effects of risperidone (RIS) or clozapine (CLZ) or olanzapine (OLZ), atypical antipsychotics on antioxidant defense enzymes and lipid peroxidation in the rat brain. The levels of antioxidant enzymes and hydroxyalkenals (HAEs) were measured in rat brain cytosol and fatty acids were measured in brain cell membranes. Chronic HAL treatment for both 45 and 90 days significantly decreased manganese-superoxide dismutase (MnSOD), copper-zinc superoxide dismutase (CuZnSOD) and catalase (CAT) activity with parallel marked increase in (HAEs), a marker of lipid peroxidation in rat brain. The levels of enzymatic activity very well correlated with the levels of enzyme proteins indicating that the changes were probably in the expression of net protein. However, RIS, CLZ and OLZ treatments did not produce any alterations in the levels of antioxidant enzymes and HAEs, both after 45 and 90 days. There were no alterations in the levels of saturated as well as polyunsaturated fatty acids in brain membranes. These findings indicate that chronic administration of HAL, but none of the studied atypicals induce oxidative stress by persistent changes in the levels of antioxidant enzymes and cause membrane lipid peroxidation.

  6. Differential expression of microRNAs with progression of gestation and inflammation in the human chorioamniotic membranes

    PubMed Central

    Montenegro, Daniel; Romero, Roberto; Pineles, Beth L.; Tarca, Adi L.; Kim, Yeon Mee; Draghici, Sorin; Kusanovic, Juan Pedro; Kim, Jung-Sun; Erez, Offer; Mazaki-Tovi, Shali; Hassan, Sonia; Espinoza, Jimmy; Kim, Chong Jai

    2010-01-01

    Objective The aim of this study was to identify differential expression of microRNAs (miRNAs) in chorioamniotic membranes with advancing gestation, labor, and inflammation. Study design Expression profiles of 157 miRNAs in the chorioamniotic membranes were obtained from patients in the following groups: 1) term not in labor (n=10); 2) term in labor (n=10); 3) preterm labor with histologic chorioamnionitis (n=9); and 4) without histologic chorioamnionitis (n=10). Results More than 95% of the miRNAs screened were expressed. Gestational age-dependent changes in expression were observed for 13 miRNAs. No differences in miRNA expression were observed between women without labor and women in labor. Membranes with chorioamnionitis displayed increased expression of miR-223 and miR-338. Gene Ontology analysis of genes targeted by differentially expressed miRNAs revealed enrichment for specific biological process categories. Conclusion Chorioamniotic membranes with advancing gestational age and chorioamnionitis are associated with the differential expression of a subset of miRNAs. PMID:17826424

  7. [Cloning and prokaryotic expression of the outer membrane protein gene PorB of Neisseria gonorrhoeae].

    PubMed

    Wang, Yan; Zhang, Lei; Zhang, Li; Wang, Han

    2011-07-01

    To construct a fused expression vector of the outer membrane protein gene PorB of Neisseria gonorrhoeae, express the fusion protein in the prokaryotic system, and obtain a gene recombination protein, for the purpose of preparing the ground for further research on the pathopoiesis and immune protective response of PorB. A pair of primers were designed according to the known sequence of the PorB gene, and the PorB gene was amplified by PCR from the genome of Neisseria gonorrhoeae 29403 and cloned into the prokaryotic expression plasmid pGEX-4T-1 to generate pGEX-4T-PorB recombinants. The recombinant plasmid pGEX4T-PorB was transferred into competent cells E. coli BL21. After confirmed by restriction endonuclease digestion, PCR and DNA sequencing analysis, the recombinant protein was induced to express by isopropyl-beta-D-thiogalactoside (IPTG), and examined by SDS-PAGE and Western blotting. Restriction endonuclease digestion, PCR amplification and DNA sequencing analysis showed that the PorB gene of 1 047 bp was amplified from Neisseria gonorrhoeae DNA, and the recombinant plasmid pGEX-4T-PorB was successfully constructed and highly expressed in E. coli. The prokaryotic expression vector of pGEX-4T-PorB was successfully constructed and efficiently expressed in the prokaryotic system, which has provided a basis for further study on the biological activity of the PorB protein, as well as animal immune experiment and detection of Neisseria gonorrhoeae, and its application as a mucosal immune vaccine.

  8. Decreased hepatocyte membrane potential differences and GABAA-beta3 expression in human hepatocellular carcinoma.

    PubMed

    Minuk, Gerald Y; Zhang, Manna; Gong, Yuewen; Minuk, Leonard; Dienes, Hans; Pettigrew, Norman; Kew, Michael; Lipschitz, Jeremy; Sun, Dongfeng

    2007-03-01

    To determine whether hepatocyte membrane potential differences (PDs) are depolarized in human HCC and whether depolarization is associated with changes in GABAA receptor expression, hepatocyte PDs and gamma-aminobutyric acid (GABA)A receptor messenger RNA (mRNA) and protein expression were documented in HCC tissues via microelectrode impalement, real-time reverse-transcriptase polymerase chain reaction, and Western blot analysis, respectively. HCC tissues were significantly depolarized (-19.8+/-1.3 versus -25.9+/-3.2 mV, respectively [P<0.05]), and GABAA-beta3 expression was down-regulated (GABAA-beta3 mRNA and protein expression in HCC; 5,693+/-1,385 and 0.29+/-0.11 versus 11,046+/-4,979 copies/100 mg RNA and 0.62+/-0.16 optical density in adjacent tumor tissues, respectively [P=0.002 and P<0.0001, respectively]) when compared with adjacent nontumor tissues. To determine the physiological relevance of the down-regulation, human malignant hepatocytes deficient in GABAA-beta3 receptor expression (Huh-7 cells) were transfected with GABAA-beta3 complementary DNA (cDNA) or vector alone and injected into nu/nu nude mice (n=16-17 group). Tumors developed after a mean (+/-SD) of 51+/-6 days (range: 41-60 days) in 7/16 (44%) mice injected with vector-transfected cells and 70+/-12 days (range: 59-86 days) in 4/17 (24%) mice injected with GABAA-beta3 cDNA-transfected cells (P<0.005). The results of this study indicate that (1) human HCC tissues are depolarized compared with adjacent nontumor tissues, (2) hepatic GABAA-beta3 receptor expression is down-regulated in human HCC, and (3) restoration of GABAA-beta3 receptor expression results in attenuated in vivo tumor growth in nude mice.

  9. Estrogens Induce Expression of Membrane-Associated Estrogen Receptor α Isoforms in Lactotropes

    PubMed Central

    Zárate, Sandra; Jaita, Gabriela; Ferraris, Jimena; Eijo, Guadalupe; Magri, María L.; Pisera, Daniel; Seilicovich, Adriana

    2012-01-01

    Estrogens are key to anterior pituitary function, stimulating hormone release and controlling cell fate to achieve pituitary dynamic adaptation to changing physiological conditions. In addition to their classical mechanism of action through intracellular estrogen receptors (ERs), estrogens exert rapid actions via cell membrane-localized ERs (mERs). We previously showed that E2 exerts a rapid pro-apoptotic action in anterior pituitary cells, especially in lactotropes and somatotropes, through activation of mERs. In the present study, we examined the involvement of mERα in the rapid pro-apoptotic action of estradiol by TUNEL in primary cultures of anterior pituitary cells from ovariectomized rats using a cell-impermeable E2 conjugate (E2-BSA) and an ERα selective antagonist (MPP dihydrochloride). We studied mERα expression during the estrous cycle and its regulation by gonadal steroids in vivo by flow cytometry. We identified ERα variants in the plasma membrane of anterior pituitary cells during the estrous cycle and studied E2 regulation of these mERα variants in vitro by surface biotinylation and Western Blot. E2-BSA-induced apoptosis was abrogated by MPP in total anterior pituitary cells and lactotropes. In cycling rats, we detected a higher number of lactotropes and a lower number of somatotropes expressing mERα at proestrus than at diestrus. Acute E2 treatment increased the percentage of mERα-expressing lactotropes whereas it decreased the percentage of mERα-expressing somatotropes. We detected three mERα isoforms of 66, 39 and 22 kDa. Expression of mERα66 and mERα39 was higher at proestrus than at diestrus, and short-term E2 incubation increased expression of these two mERα variants. Our results indicate that the rapid apoptotic action exerted by E2 in lactotropes depends on mERα, probably full-length ERα and/or a 39 kDa ERα variant. Expression and activation of mERα variants in lactotropes could be one of the mechanisms through which E2

  10. Development of the photosynthetic apparatus of Cunninghamia lanceolata in light and darkness.

    PubMed

    Xue, Xian; Wang, Qi; Qu, Yanli; Wu, Hongyang; Dong, Fengqin; Cao, Haoyan; Wang, Hou-Ling; Xiao, Jianwei; Shen, Yingbai; Wan, Yinglang

    2017-01-01

    Here, we compared the development of dark- and light-grown Chinese fir (Cunninghamia lanceolata) cotyledons, which synthesize chlorophyll in the dark, representing a different phenomenon from angiosperm model plants. We determined that the grana lamellar membranes were well developed in both chloroplasts and etiochloroplasts. The accumulation of thylakoid membrane protein complexes was similar between chloroplasts and etiochloroplasts. Measurement of chlorophyll fluorescence parameters indicated that photosystem II (PSII) had low photosynthetic activities, whereas the photosystem I (PSI)-driven cyclic electron flow (CEF) rate exceeded the rate of PSII-mediated photon harvesting in etiochloroplasts. Analysis of the protein contents in etiochloroplasts indicated that the light-harvesting complex II remained mostly in its monomeric conformation. The ferredoxin NADP(+) oxidoreductase and NADH dehydrogenase-like complexes were relatively abundantly expressed in etiochloroplasts for Chinese fir. Our transcriptome analysis contributes a global expression database for Chinese fir cotyledons, providing background information on the regulatory mechanisms of different genes involved in the development of dark- and light-grown cotyledons. In conclusion, we provide a novel description of the early developmental status of the light-dependent and light-independent photosynthetic apparatuses in gymnosperms.

  11. Differential expression of epithelial basement membrane components nidogens and perlecan in corneal stromal cells in vitro.

    PubMed

    Santhanam, Abirami; Torricelli, Andre A M; Wu, Jiahui; Marino, Gustavo K; Wilson, Steven E

    2015-01-01

    The purpose of this study was to examine the expression of corneal epithelial basement membrane (EBM) components in different corneal stromal cell types. In vitro model systems were used to explore the expression of EBM components nidogen-1, nidogen-2, and perlecan that are the primary components in the lamina lucida and the lamina densa that defectively regenerate in corneas with stromal opacity after in -9.0 D photorefractive keratectomy (PRK). Primary rabbit corneal stromal cells were cultured using varying serum concentrations and exogenous growth factors, including fibroblast growth factor (FGF)-2 and transforming growth factor (TGF)-β1, to optimize the growth of each cell type of interest. The expression of the keratocyte-specific marker keratocan and the myofibroblast-specific marker α-smooth muscle actin (α-SMA) were analyzed with real-time PCR, western blot, and immunocytochemical staining to evaluate the specificity of the cell types and select optimal conditions (high keratocan and low α-SMA for keratocytes; low keratocan and high α-SMA for myofibroblasts; low keratocan and low α-SMA for corneal fibroblasts). The expression of the EBM components nidogen-1, nidogen-2, and perlecan was evaluated in each corneal cell type using real-time PCR, immunostaining, and western blotting. In agreement with previous studies, serum-free DMEM was found to be optimal for keratocytes, DMEM with 10% serum and 40 ng/ml FGF-2 yielded the best marker profile for corneal fibroblasts, and DMEM with 1% serum and 2 ng/ml TGF-β1 was found to be optimal for myofibroblasts. Nidogen-1 and nidogen-2 mRNAs were highly expressed in keratocytes, whereas perlecan was highly expressed in myofibroblasts. In keratocytes, nidogen-2 and perlecan proteins were expressed predominantly in intracellular compartments, whereas in myofibroblasts expression of both EBM components was observed diffusely throughout the cell. Although the perlecan mRNA levels were high in the myofibroblasts, the

  12. Tunable Control of an Escherichia coli Expression System for the Overproduction of Membrane Proteins by Titrated Expression of a Mutant lac Repressor.

    PubMed

    Kim, Seong Keun; Lee, Dae-Hee; Kim, Oh Cheol; Kim, Jihyun F; Yoon, Sung Ho

    2017-09-15

    Most inducible expression systems suffer from growth defects, leaky basal induction, and inhomogeneous expression levels within a host cell population. These difficulties are most prominent with the overproduction of membrane proteins that are toxic to host cells. Here, we developed an Escherichia coli inducible expression system for membrane protein production based on titrated expression of a mutant lac repressor (mLacI). Performance of the mLacI inducible system was evaluated in conjunction with commonly used lac operator-based expression vectors using a T7 or tac promoter. Remarkably, expression of a target gene can be titrated by the dose-dependent addition of l-rhamnose, and the expression levels were homogeneous in the cell population. The developed system was successfully applied to overexpress three membrane proteins that were otherwise difficult to produce in E. coli. This gene expression control system can be easily applied to a broad range of existing protein expression systems and should be useful in constructing genetic circuits that require precise output signals.

  13. Integrated profiling of microRNA expression in membranous nephropathy using high-throughput sequencing technology.

    PubMed

    Chen, Wenbiao; Lin, Xiaocong; Huang, Jianrong; Tan, Kuibi; Chen, Yuyu; Peng, Wujian; Li, Wuxian; Dai, Yong

    2014-01-01

    The present study analyzed microRNA (miRNA) expression profiles in peripheral blood lymphocyte cells (PBLCs) from patients with membranous nephropathy (MN) and normal controls (NC), in an effort to improve the understanding of the pathogenesis of MN. High-throughput sequencing was performed on 30 MN patients and 30 healthy individuals (NC group). Known and novel miRNAs were analyzed and the results were confirmed by quantitative reverse transcription PCR (qRT-PCR). In total, 326 miRNAs showed a significant difference in expression between the MN and NC groups. This included 286 downregulated miRNAs and 40 upregulated miRNAs. In addition, there were 6 novel miRNAs that presented differential levels of expression between the MN and NC groups. The miRNAs were mapped to the genome, using a short oligonucleotide alignment program (SOAP), to analyze their expression and distribution. Twenty-five percent of the unique miRNAs in the MN group and 52.1% in the NC group were mapped to the genome. One hundred and eight mismatches were identified. Seventy-seven mismatches were detected in a higher proportion of the MN samples, compared with the NC samples. Twenty-five mismatches were detected in a higher proportion of the NC samples than the MN samples. Differential miRNA expression was also detected between 10 randomly selected pair groups, as depicted in a cluster analysis diagram. These data indicate that differential miRNA expression may be involved in the pathogenesis of MN. In addition, the discrepancies between the MN and NC groups, in the mismatched miRNAs that were mapped to the genome, strongly suggest that miRNAs play an important role in the pathogenesis of human disorders. miRNAs may provide a potential breakthrough in the research of MN and may provide a novel biomarker for the diagnosis and treatment of the disease.

  14. Prostate specific membrane antigen (PSMA) expression in primary gliomas and breast cancer brain metastases

    PubMed Central

    2014-01-01

    Background Primary and secondary brain cancers are highly treatment resistant, and their marked angiogenesis attracts interest as a potential therapeutic target. Recent observations reveal that the microvascular endothelium of primary high-grade gliomas expresses prostate specific membrane antigen (PSMA). Breast cancers express PSMA and they frequently form secondary brain tumors. Hence we report here our pilot study addressing the feasibility of PSMA targeting in brain and metastatic breast tumors, by examining PSMA levels in all glioma grades (19 patients) and in breast cancer brain metastases (5 patients). Methods Tumor specimens were acquired from archival material and normal brain tissues from autopsies. Tissue were stained and probed for PSMA, and the expression levels imaged and quantified using automated hardware and software. PSMA staining intensities of glioma subtypes, breast tumors, and breast tumor brain metastases were compared statistically versus normals. Results Normal brain microvessels (4 autopsies) did not stain for PSMA, while a small proportion (<5%) of healthy neurons stained, and were surrounded by an intact blood brain barrier. Tumor microvessels of the highly angiogenic grade IV gliomas showed intense PSMA staining which varied between patients and was significantly higher (p < 0.05) than normal brain. Grade I gliomas showed moderate vessel staining, while grade II and III gliomas had no vessel staining, but a few (<2%) of the tumor cells stained. Both primary breast cancer tissues and the associated brain metastases exhibited vascular PSMA staining, although the intensity of staining was generally less for the metastatic lesions. Conclusions Our results align with and extend previous data showing PSMA expression in blood vessels of gliomas and breast cancer brain metastases. These results provide a rationale for more comprehensive studies to explore PSMA targeted agents for treating secondary brain tumors with PSMA expressing

  15. Ankyrin and band 3 differentially affect expression of membrane glycoproteins but are not required for erythroblast enucleation.

    PubMed

    Ji, Peng; Lodish, Harvey F

    2012-01-27

    During late stages of mammalian erythropoiesis the nucleus undergoes chromatin condensation, migration to the plasma membrane, and extrusion from the cytoplasm surrounded by a segment of plasma membrane. Since nuclear condensation occurs in all vertebrates, mammalian erythroid membrane and cytoskeleton proteins were implicated as playing important roles in mediating the movement and extrusion of the nucleus. Here we use erythroid ankyrin deficient and band 3 knockout mouse models to show that band 3, but not ankyrin, plays an important role in regulating the level of erythroid cell membrane proteins, as evidenced by decreased cell surface expression of glycophorin A in band 3 knockout mice. However, neither band 3 nor ankyrin are required for enucleation. These results demonstrate that mammalian erythroblast enucleation does not depend on the membrane integrity generated by the ankyrin-band 3 complex.

  16. Proteomic Analysis of the Rat Canalicular Membrane Reveals Expression of a Complex System of P4-ATPases in Liver

    PubMed Central

    Chaubey, Pururawa Mayank; Hofstetter, Lia; Roschitzki, Bernd; Stieger, Bruno

    2016-01-01

    Transport processes in the canalicular membrane are key elements in bile formation and are the driving force of the enterohepatic circulation of bile salts. The canalicular membrane is constantly exposed to the detergent action of bile salts. One potential element protecting the canalicular membrane from the high canalicular bile salt concentrations may be bile salt resistant microdomains, however additional factors are likely to play a role. To obtain more insights into the molecular composition of the canalicular membrane, the proteome of highly purified rat canalicular membrane vesicles was determined. Isolated rat canalicular membrane vesicles were stripped from adhering proteins, deglycosylated and protease digested before subjecting the samples to shot gun proteomic analysis. The expression of individual candidates was studied by PCR, Western blotting and immunohistochemistry. A total of 2449 proteins were identified, of which 1282 were predicted to be membrane proteins. About 50% of the proteins identified here were absent from previously published liver proteomes. In addition to ATP8B1, four more P4-ATPases were identified. ATP8A1 and ATP9A showed expression specific to the canalicular membrane, ATP11C at the bLPM and ATP11A in an intracellular vesicular compartment partially colocalizing with RAB7A and EEA1 as markers of the endosomal compartment. This study helped to identify additional P4-ATPases from rat liver particularly in the canalicular membrane, previously not known to be expressed in liver. These P4-ATPases might be contributing for maintaining transmembrane lipid homeostasis in hepatocytes. PMID:27347675

  17. Brassica napus responses to short-term excessive copper treatment with decrease of photosynthetic pigments, differential expression of heavy metal homeostasis genes including activation of gene NRAMP4 involved in photosystem II stabilization.

    PubMed

    Zlobin, I E; Kholodova, V P; Rakhmankulova, Z F; Kuznetsov, Vl V

    2015-08-01

    In the present study, the influence of 50 and 100 µM CuSO4 was investigated starting from 3 h till 72 h treatment of 4-weeks Brassica napus plants. High CuSO4 concentrations in nutrient medium resulted in the rapid copper accumulation in plants, especially in roots, much slower and to lower degree in leaves. Copper excess induced early decrease in the leaf water content and temporary leaf wilting. The decrease in content of photosynthetic pigments became significant to 24 h of excessive copper treatments and reached 35 % decrease to 72 h, but there were no significant changes in maximum quantum efficiency of photosystem II photochemistry. The copper excess affected the expression of ten genes involved in heavy metal homeostasis and copper detoxification. The results showed the differential and organ-specific expression of most genes. The potential roles of copper-activated genes encoding heavy metal transporters (ZIP5, NRAMP4, YSL2, and MRP1), metallothioneins (MT1a and MT2b), low-molecular chelator synthesis enzymes (PCS1 and NAS2), and metallochaperones (CCS and HIPP06) in heavy metal homeostasis and copper ion detoxification were discussed. The highest increase in gene expression was shown for NRAMP4 in leaves in spite of relatively moderate Cu accumulation there. The opinion was advanced that the NRAMP4 activation can be considered among the early reactions in the defense of the photosystem II against copper excess.

  18. A Novel R2R3-MYB Transcription Factor BpMYB106 of Birch (Betula platyphylla) Confers Increased Photosynthesis and Growth Rate through Up-regulating Photosynthetic Gene Expression.

    PubMed

    Zhou, Chenguang; Li, Chenghao

    2016-01-01

    We isolated a R2R3-MYB transcription factor BpMYB106, which regulates photosynthesis in birch (Betula platyphylla Suk.). BpMYB106 mainly expresses in the leaf and shoot tip of birch, and its protein is localized in the nucleus. We further fused isolated a 1588 bp promoter of BpMYB106 and analyzed it by PLACE, which showed some cis-acting elements related to photosynthesis. BpMYB106 promoter β-glucuronidase (GUS) reporter fusion studies gene, the result, showed the GUS reporter gene in transgenic birch with BpMYB106 promoter showed strong activities in shoot tip, cotyledon margins, and mature leaf trichomes. The overexpression of BpMYB106 in birch resulted in significantly increased trichome density, net photosynthetic rate, and growth rate as compared with the wild-type birch. RNA-Seq profiling revealed the upregulation of several photosynthesis-related genes in the photosynthesis and oxidative phosphorylation pathways in the leaves of transgenic plants. Yeast one-hybrid analysis, coupled with transient assay in tobacco, revealed that BpMYB106 binds a MYB binding site MYB2 in differentially expressed gene promoters. Thus, BpMYB106 may directly activate the expression of a range of photosynthesis related genes through interacting with the MYB2 element in their promoters. Our study demonstrating the overexpression of BpMYB106-a R2R3-MYB transcription factor-upregulates the genes of the photosynthesis and oxidative phosphorylation pathways to improve photosynthesis.

  19. Membrane Systems in Cyanobacteria

    SciTech Connect

    Liberton, Michelle L.; Pakrasi, Himadri B.

    2008-01-01

    Cyanobacteria are photosynthetic prokaryotes with highly differentiated membrane systems. In addition to a Gram-negative-type cell envelope with plasma membrane and outer membrane separated by a periplasmic space, cyanobacteria have an internal system of thylakoid membranes where the fully functional electron transfer chains of photosynthesis and respiration reside. The presence of different membrane systems lends these cells a unique complexity among bacteria. Cyanobacteria must be able to reorganize the membranes, synthesize new membrane lipids, and properly target proteins to the correct membrane system. The outer membrane, plasma membrane, and thylakoid membranes each have specialized roles in the cyanobacterial cell. Understanding the organization, functionality, protein composition and dynamics of the membrane systems remains a great challenge in cyanobacterial cell biology.

  20. Photosynthetic Photovoltaic Cells

    DTIC Science & Technology

    2007-06-21

    PHOTOSYNTHETIC PHOTOVOLTAIC CELLS 5b. GRANT NUMBER F49620-02-1-0399 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER MARC A. BALDO 5e. TASK...building an ’antenna’ on top of a conventional solar cell. Biomimetic organic solar cells operate as follows: The antenna absorbs the light, and acts to...no longer must absorb all the light. Thus, its quantum efficiency can approach 100% potentially doubling the performance of organic solar cells. 15

  1. The role of putrescine in the regulation of proteins and fatty acids of thylakoid membranes under salt stress.

    PubMed

    Shu, Sheng; Yuan, Yinghui; Chen, Jie; Sun, Jin; Zhang, Wenhua; Tang, Yuanyuan; Zhong, Min; Guo, Shirong

    2015-10-05

    Polyamines can alleviate the inhibitory effects of salinity on plant growth by regulating photosynthetic efficiency. However, little information is available to explain the specific mechanisms underlying the contribution of polyamines to salt tolerance of the photosynthetic apparatus. Here, we investigated the role of putrescine (Put) on the photosynthetic apparatus of cucumber seedlings under salt stress. We found that NaCl stress resulted in severe ion toxicity and oxidative stress in cucumber chloroplasts. In addition, salinity caused a significant increase in the saturated fatty acid contents of thylakoid membranes. Put altered unsaturated fatty acid content, thereby alleviating the disintegration of thylakoid grana lamellae and reducing the number of plastoglobuli in thylakoid membranes. BN-PAGE revealed Put up-regulated the expression of ATP synthase, CP47, D1, Qb, and psbA proteins and down-regulated CP24, D2, and LHCII type III in NaCl-stressed thylakoid membranes. qRT-PCR analysis of gene expression was used to compare transcript and protein accumulation among 10 candidate proteins. For five of these proteins, induced transcript accumulation was consistent with the pattern of induced protein accumulation. Our results suggest that Put regulates protein expression at transcriptional and translational levels by increasing endogenous polyamines levels in thylakoid membranes, which may stabilise photosynthetic apparatus under salt stress.

  2. The role of putrescine in the regulation of proteins and fatty acids of thylakoid membranes under salt stress

    PubMed Central

    Shu, Sheng; Yuan, Yinghui; Chen, Jie; Sun, Jin; Zhang, Wenhua; Tang, Yuanyuan; Zhong, Min; Guo, Shirong

    2015-01-01

    Polyamines can alleviate the inhibitory effects of salinity on plant growth by regulating photosynthetic efficiency. However, little information is available to explain the specific mechanisms underlying the contribution of polyamines to salt tolerance of the photosynthetic apparatus. Here, we investigated the role of putrescine (Put) on the photosynthetic apparatus of cucumber seedlings under salt stress. We found that NaCl stress resulted in severe ion toxicity and oxidative stress in cucumber chloroplasts. In addition, salinity caused a significant increase in the saturated fatty acid contents of thylakoid membranes. Put altered unsaturated fatty acid content, thereby alleviating the disintegration of thylakoid grana lamellae and reducing the number of plastoglobuli in thylakoid membranes. BN-PAGE revealed Put up-regulated the expression of ATP synthase, CP47, D1, Qb, and psbA proteins and down-regulated CP24, D2, and LHCII type III in NaCl-stressed thylakoid membranes. qRT-PCR analysis of gene expression was used to compare transcript and protein accumulation among 10 candidate proteins. For five of these proteins, induced transcript accumulation was consistent with the pattern of induced protein accumulation. Our results suggest that Put regulates protein expression at transcriptional and translational levels by increasing endogenous polyamines levels in thylakoid membranes, which may stabilise photosynthetic apparatus under salt stress. PMID:26435404

  3. Nerve growth cones isolated from fetal rat brain. IV. Preparation of a membrane subfraction and identification of a membrane glycoprotein expressed on sprouting neurons

    PubMed Central

    1985-01-01

    This study describes the preparation of a membrane subfraction from isolated nerve growth cone particles (GCPs) (see Pfenninger, K. H., L. Ellis, M. P. Johnson, L. B. Friedman, and S. Somlo, 1983, Cell, 35:573- 584) and the identification in this fraction of a glycoprotein expressed during neurite growth. While approximately 40 major polypeptides are visible in Coomassie Blue-stained SDS polyacrylamide gels of pelleted (partially disrupted) GCPs, a salt-washed membrane fraction prepared from lysed, detergent-permeabilized GCPs contains only 14% of this protein and has an unusually simple polypeptide pattern of seven major bands. Monoclonal antibodies have been generated to GCP membranes isolated from fetal rat brain. These antibodies have been screened differentially with synaptosomes from adult rat brain in order to identify those which recognize antigens expressed selectively during neurite growth. One such antibody (termed 5B4) recognizes a developmentally regulated membrane glycoprotein that is enriched in GCP membranes and expressed in fetal neurons sprouting in vitro. The 5B4 antigen in fetal brain migrates in SDS polyacrylamide gels as a diffuse band of approximately 185-255 kD, is rich in sialic acid, and consists of a small family of isoelectric variants. Freezing-thawing and neuraminidase digestion result in the cleavage of the native antigen into two new species migrating diffusely around 200 and 160 kD. Prolonged neuraminidase digestion sharpens these bands at about 180 and 135 kD, respectively. In the mature brain, antibody 5B4 recognizes a sparse polypeptide migrating at approximately 140 kD. As shown in the following paper (Wallis, I., L. Ellis, K. Suh, and K. H. Pfenninger, 1985, J. Cell Biol., 101:1990-1998), the fetal antigen is specifically associated with regions of neuronal sprouting and, therefore, can be used as a molecular marker of neurite growth. PMID:3902858

  4. Structural study of the membrane protein MscL using cell-free expression and solid-state NMR.

    PubMed

    Abdine, Alaa; Verhoeven, Michiel A; Park, Kyu-Ho; Ghazi, Alexandre; Guittet, Eric; Berrier, Catherine; Van Heijenoort, Carine; Warschawski, Dror E

    2010-05-01

    High-resolution structures of membrane proteins have so far been obtained mostly by X-ray crystallography, on samples where the protein is surrounded by detergent. Recent developments of solid-state NMR have opened the way to a new approach for the study of integral membrane proteins inside a membrane. At the same time, the extension of cell-free expression to the production of membrane proteins allows for the production of proteins tailor made for NMR. We present here an in situ solid-state NMR study of a membrane protein selectively labeled through the use of cell-free expression. The sample consists of MscL (mechano-sensitive channel of large conductance), a 75kDa pentameric alpha-helical ion channel from Escherichia coli, reconstituted in a hydrated lipid bilayer. Compared to a uniformly labeled protein sample, the spectral crowding is greatly reduced in the cell-free expressed protein sample. This approach may be a decisive step required for spectral assignment and structure determination of membrane proteins by solid-state NMR. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Expressed genes for plant-type ribulose 1,5-bisphosphate carboxylase/oxygenase in the photosynthetic bacterium Chromatium vinosum, which possesses two complete sets of the genes.

    PubMed Central

    Viale, A M; Kobayashi, H; Akazawa, T

    1989-01-01

    Two sets of genes for the large and small subunits of ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) were detected in the photosynthetic purple sulfur bacterium Chromatium vinosum by hybridization analysis with RuBisCO gene probes, cloned by using the lambda Fix vector, and designated rbcL-rbcS and rbcA-rbcB. rbcL and rbcA encode the large subunits, and rbcS and rbcB encode the small subunits. rbcL-rbcS was the same as that reported previously (A. M. Viale, H. Kobayashi, T. Takabe, and T. Akazawa, FEBS Lett. 192:283-288, 1985). A DNA fragment bearing rbcA-rbcB was subcloned in plasmid vectors and sequenced. We found that rbcB was located 177 base pairs downstream of the rbcA coding region, and both genes were preceded by plausible procaryotic ribosome-binding sites. rbcA and rbcD encoded polypeptides of 472 and 118 amino acids, respectively. Edman degradation analysis of the subunits of RuBisCO isolated from C. vinosum showed that rbcA-rbcB encoded the enzyme present in this bacterium. The large- and small-subunit polypeptides were posttranslationally processed to remove 2 and 1 amino acid residues from their N-termini, respectively. Among hetero-oligomeric RuBisCOs, the C. vinosum large subunit exhibited higher homology to that from cyanobacteria, eucaryotic algae, and higher plants (71.6 to 74.2%) than to that from the chemolithotrophic bacterium Alcaligenes eutrophus (56.6%). A similar situation has been observed for the C. vinosum small subunit, although the homology among small subunits from different organisms was lower than that among the large subunits. Images PMID:2708310

  6. Molecular cloning and expression in photosynthetic bacteria of a soybean cDNA coding for phytoene desaturase, an enzyme of the carotenoid biosynthesis pathway.

    PubMed Central

    Bartley, G E; Viitanen, P V; Pecker, I; Chamovitz, D; Hirschberg, J; Scolnik, P A

    1991-01-01

    Carotenoids are orange, yellow, or red photo-protective pigments present in all plastids. The first carotenoid of the pathway is phytoene, a colorless compound that is converted into colored carotenoids through a series of desaturation reactions. Genes coding for carotenoid desaturases have been cloned from microbes but not from plants. We report the cloning of a cDNA for pds1, a soybean (Glycine max) gene that, based on a complementation assay using the photosynthetic bacterium Rhodobacter capsulatus, codes for an enzyme that catalyzes the two desaturation reactions that convert phytoene into zeta-carotene, a yellow carotenoid. The 2281-base-pair cDNA clone analyzed contains an open reading frame with the capacity to code for a 572-residue protein of predicted Mr 63,851. Alignment of the deduced Pds1 peptide sequence with the sequences of fungal and bacterial carotenoid desaturases revealed conservation of several amino acid residues, including a dinucleotide-binding motif that could mediate binding to FAD. The Pds1 protein is synthesized in vitro as a precursor that, upon import into isolated chloroplasts, is processed to a smaller mature form. Hybridization of the pds1 cDNA to genomic blots indicated that this gene is a member of a low-copy-number gene family. One of these loci was genetically mapped using restriction fragment length polymorphisms between Glycine max and Glycine soja. We conclude that pds1 is a nuclear gene encoding a phytoene desaturase enzyme that, as its microbial counterparts, contains sequence motifs characteristic of flavoproteins. Images PMID:1862081

  7. Expression of the lysosomal-associated membrane protein-1 (LAMP-1) in astrocytomas.

    PubMed

    Jensen, Stine S; Aaberg-Jessen, Charlotte; Christensen, Karina G; Kristensen, Bjarne

    2013-01-01

    Targeting of lysosomes is a novel therapeutic anti-cancer strategy for killing the otherwise apoptosis-resistant cancer cells. Such strategies are urgently needed for treatment of brain tumors, especially the glioblastoma, which is the most frequent and most malignant type. The aim of the present study was to investigate the presence of lysosomes in astrocytic brain tumors focussing also on the therapy resistant tumor stem cells. Expression of the lysosomal marker LAMP-1 (lysosomal-associated membrane protein-1) was investigated by immunohistochemistry in 112 formalin fixed paraffin embedded astrocytomas and compared with tumor grade and overall patient survival. Moreover, double immunofluorescence stainings were performed with LAMP-1 and the astrocytic marker GFAP and the putative stem cell marker CD133 on ten glioblastomas. Most tumors expressed the LAMP-1 protein in the cytoplasm of the tumor cells, while the blood vessels were positive in all tumors. The percentage of LAMP-1 positive tumor cells and staining intensities increased with tumor grade but variations in tumors of the same grade were also found. No association was found between LAMP-1 expression and patient overall survival in the individual tumor grades. LAMP-1/GFAP showed pronounced co-expression and LAMP-1/CD133 was co-expressed as well suggesting that tumor cells including the proposed tumor stem cells contain lysosomes. The results suggest that high amounts of lysosomes are present in glioblastomas and in the proposed tumor stem cells. Targeting of lysosomes may be a promising novel therapeutic strategy against this highly malignant neoplasm.

  8. Expression of the major outer membrane protein of Chlamydia trachomatis in Escherichia coli.

    PubMed Central

    Manning, D S; Stewart, S J

    1993-01-01

    The major outer membrane protein (MOMP) of Chlamydia trachomatis was expressed in Escherichia coli. To assess whether it assembled into a conformationally correct structure at the cell surface, we characterized the recombinant MOMP (rMOMP) by Western immunoblot analysis, indirect immunofluorescence, and immunoprecipitation with monoclonal antibodies (MAbs) that recognize contiguous and conformational MOMP epitopes. Western blot analysis showed that most of the rMOMP comigrated with authentic monomer MOMP, indicating that its signal peptide was recognized and cleaved by E. coli. The rMOMP could not be detected on the cell surface of viable or formalin-killed E. coli organisms by indirect immunofluorescence staining with a MAb specific for a MOMP contiguous epitope. In contrast, the same MAb readily stained rMOMP-expressing E. coli cells that had been permeabilized by methanol fixation. A MAb that recognizes a conformational MOMP epitope and reacted strongly with formalin- or methanol-fixed elementary bodies failed to stain formalin- or methanol-fixed E. coli expressing rMOMP. Moreover, this MAb did not immunoprecipitate rMOMP from expressing E. coli cells even though it precipitated the authentic protein from lysates of C. trachomatis elementary bodies. Therefore we concluded that rMOMP was not localized to the E. coli cell surface and was not recognizable by a conformation-dependent antibody. These results indicate that rMOMP expressed by E. coli is unlikely to serve as an accurate model of MOMP structure and function. They also question the utility of rMOMP as a source of immunogen for eliciting neutralizing antibodies against conformational antigenic sites of the protein. Images PMID:8406797

  9. Immunohistochemical expression of basement membrane proteins of verrucous carcinoma of the oral mucosa.

    PubMed

    Arduino, Paolo G; Carrozzo, Marco; Pagano, Marco; Broccoletti, Roberto; Scully, Crispian; Gandolfo, Sergio

    2010-06-01

    Squamous cell carcinoma (SCC) of the oral cavity is an extremely invasive tumour of stratified squamous epithelium that spreads throughout degradation of the basement membrane (BM) and extra-cellular matrix. Oral verrucous carcinoma (VC) is a rare low-grade variant of oral SCC that penetrates into the subepithelial connective tissue. It also has a different clinical behaviour from classical oral SCC. We investigated the immunohistochemical expression of laminin, laminin-5, collagen IV and fibronectin in VC, severe epithelial dysplasia (SED) and SCC in order to analyse if the pattern of these molecules expression contributes to the differences in the biological behaviour of these diseases. The staining pattern of laminin was less intensive in SCC compared with SED and VC, and collagen IV expression was increased in VC compared with SED. Discontinuities of laminin, collagen IV and fibronectin were more evident in SED than in VC. This study indicates that VC has a biological behaviour different from SED or SCC, observable by immunohistochemistry in the BM zone.

  10. Heterologous Expression of Tulip Petal Plasma Membrane Aquaporins in Pichia pastoris for Water Channel Analysis▿

    PubMed Central

    Azad, Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi

    2009-01-01

    Water channels formed by aquaporins (AQPs) play an important role in the control of water homeostasis in individual cells and in multicellular organisms. Plasma membrane intrinsic proteins (PIPs) constitute a subclass of plant AQPs. TgPIP2;1 and TgPIP2;2 from tulip petals are members of the PIP family. In this study, we overexpressed TgPIP2;1 and TgPIP2;2 in Pichia pastoris and monitored their water channel activity (WCA) either by an in vivo spheroplast-bursting assay performed after hypo-osmotic shock or by growth assay. Osmolarity, pH, and inhibitors of AQPs, protein kinases (PKs), and protein phosphatases (PPs) affect the WCA of heterologous AQPs in this expression system. The WCA of TgPIP2;2-expressing spheroplasts was affected by inhibitors of PKs and PPs, which indicates that the water channel of this homologue is regulated by phosphorylation in P. pastoris. From the results reported herein, we suggest that P. pastoris can be employed as a heterologous expression system to assay the WCA of PIPs and to monitor the AQP-mediated channel gating mechanism, and it can be developed to screen inhibitors/effectors of PIPs. PMID:19251885

  11. Heterologous expression of tulip petal plasma membrane aquaporins in Pichia pastoris for water channel analysis.

    PubMed

    Azad, Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi

    2009-05-01

    Water channels formed by aquaporins (AQPs) play an important role in the control of water homeostasis in individual cells and in multicellular organisms. Plasma membrane intrinsic proteins (PIPs) constitute a subclass of plant AQPs. TgPIP2;1 and TgPIP2;2 from tulip petals are members of the PIP family. In this study, we overexpressed TgPIP2;1 and TgPIP2;2 in Pichia pastoris and monitored their water channel activity (WCA) either by an in vivo spheroplast-bursting assay performed after hypo-osmotic shock or by growth assay. Osmolarity, pH, and inhibitors of AQPs, protein kinases (PKs), and protein phosphatases (PPs) affect the WCA of heterologous AQPs in this expression system. The WCA of TgPIP2;2-expressing spheroplasts was affected by inhibitors of PKs and PPs, which indicates that the water channel of this homologue is regulated by phosphorylation in P. pastoris. From the results reported herein, we suggest that P. pastoris can be employed as a heterologous expression system to assay the WCA of PIPs and to monitor the AQP-mediated channel gating mechanism, and it can be developed to screen inhibitors/effectors of PIPs.

  12. Regulation of the photosynthetic apparatus under fluctuating growth light.

    PubMed

    Tikkanen, Mikko; Grieco, Michele; Nurmi, Markus; Rantala, Marjaana; Suorsa, Marjaana; Aro, Eva-Mari

    2012-12-19

    Safe and efficient conversion of solar energy to metabolic energy by plants is based on tightly inter-regulated transfer of excitation energy, electrons and protons in the photosynthetic machinery according to the availability of light energy, as well as the needs and restrictions of metabolism itself. Plants have mechanisms to enhance the capture of energy when light is limited for growth and development. Also, when energy is in excess, the photosynthetic machinery slows down the electron transfer reactions in order to prevent the production of reactive oxygen species and the consequent damage of the photosynthetic machinery. In this opinion paper, we present a partially hypothetical scheme describing how the photosynthetic machinery controls the flow of energy and electrons in order to enable the maintenance of photosynthetic activity in nature under continual fluctuations in white light intensity. We discuss the roles of light-harvesting II protein phosphorylation, thermal dissipation of excess energy and the control of electron transfer by cytochrome b(6)f, and the role of dynamically regulated turnover of photosystem II in the maintenance of the photosynthetic machinery. We present a new hypothesis suggesting that most of the regulation in the thylakoid membrane occurs in order to prevent oxidative damage of photosystem I.

  13. Chorioamnionitis and increased galectin-1 expression in PPROM –an anti-inflammatory response in the fetal membranes?

    PubMed Central

    Than, Nandor Gabor; Kim, Sung-Su; Abbas, Asad; Han, Yu Mi; Hotra, John; Tarca, Adi L.; Erez, Offer; Wildman, Derek E.; Kusanovic, Juan Pedro; Pineles, Beth; Montenegro, Daniel; Edwin, Samuel S.; Mazaki-Tovi, Shali; Gotsch, Francesca; Espinoza, Jimmy; Hassan, Sonia S.; Papp, Zoltan; Romero, Roberto

    2008-01-01

    Problem Galectin-1 can regulate immune responses upon infection and inflammation. We determined galectin-1 expression in the chorioamniotic membranes and its changes during histological chorioamnionitis. Methods of Study Chorioamniotic membranes were obtained from women with normal pregnancy (n=5) and from patients with pre-term pre-labor rupture of the membranes (PPROM) with (n=8) and without histological chorioamnionitis (n=8). Galectin-1 mRNA and protein were localized by in situ hybridization and immunohistochemistry. Galectin-1 mRNA expression was also determined by quantitative RT-PCR. Results Galectin-1 mRNA and protein were detected in the amnion epithelium, chorioamniotic fibroblasts/myofibroblasts and macrophages, chorionic trophoblasts, and decidual stromal cells. In patients with PPROM, galectin-1 mRNA expression in the fetal membranes was higher (2.07-fold, p=0.002) in those with chorioamnionitis than in those without. Moreover, chorioamionitis was associated with a strong galectin-1 immunostaining in amniotic epithelium, chorioamniotic mesodermal cells, and apoptotic bodies. Conclusions Chorioamnionitis is associated with an increased galectin-1 mRNA expression and strong immunoreactivity of the chorioamniotic membranes; thus, galectin-1 may be involved in the regulation of the inflammatory responses to chorioamniotic infection. PMID:18691335

  14. Studies on the expression of outer membrane protein 2 in escherichia coli.

    PubMed

    Fralick, J A; Diedrich, D L

    1982-01-01

    The relative level of protein 2 expressed in the outer membrane of strains of Escherichia coli K-12 lysogenized with bacteriophage PA-2 was found to be influenced by both the growth temperature and lc+ gene dosage. An increase in either of these parameters was accompanied by an increase in the level of protein 2 up to an apparent saturation level. Any increase in the amount of protein 2 was accompanied by a concomittant decrease in the amount of OmpF and OmpC porins. This inverse relationship led to the maintenance of an approximately constant protein mass per unit of peptidoglycan. Our results are discussed in light of recent genetic studies on the regulation of the OmpF and OmpC porins and can be explained through the competition of these three matrix proteins for a common export or insertion site.

  15. The expression of select genes necessary for membrane-associated estrogen receptor signaling differ by sex in adult rat hippocampus.

    PubMed

    Meitzen, John; Britson, Kyla A; Tuomela, Krista; Mermelstein, Paul G

    2017-09-28

    17β-estradiol can rapidly modulate neuron function via membrane estrogen receptors (ERs) in a sex-specific manner. For example, female rat hippocampal neurons express palmitoylated versions of ERα and ERβ that associate with the plasma membrane. These membrane-associated ERs are organized by caveolin proteins into functional signaling microdomains with metabotropic glutamate receptors (mGluRs). ER/mGluR signaling mediates several sex-specific estradiol actions on hippocampal neuron function. An important unanswered question regards the mechanism by which sex-specific membrane-associated ER signaling is generated, especially since it has been previously demonstrated that mGluR action is not sex-specific. One possibility is that the genes necessary for the ER membrane complex are differentially expressed between males and females, including genes that encode ERα and β, caveolin 1 and 3, and/or the palmitoylacyltransferases DHHC-7 and -21. Thus we used qPCR to test the hypothesis that these genes show sex differences in expression in neonatal and adult rat hippocampus. As an additional control we tested the expression of the 20 other DHHC palmitoylacyltransferases with no known connections to ER. In neonatal hippocampus, no sex differences were detected in gene expression. In adult hippocampus, the genes that encode caveolin 1 and DHHC-7 showed decreased expression in females compared to males. Thus, select genes differ by sex at specific developmental stages, arguing for a more nuanced model than simple widespread perinatal emergence of sex differences in all genes enabling sex-specific estradiol action. These findings enable the generation of new hypotheses regarding the mechanisms by which sex differences in membrane-associated ER signaling are programmed. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Photosynthetic Pigments in Diatoms.

    PubMed

    Kuczynska, Paulina; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz

    2015-09-16

    Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvesting pigments such as chlorophyll a, chlorophyll c, and fucoxanthin, there is a group of photoprotective carotenoids which includes β-carotene and the xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and zeaxanthin, which are engaged in the xanthophyll cycle. Additionally, some intermediate products of biosynthetic pathways have been identified in diatoms as well as unusual pigments, e.g., marennine. Marine algae have become widely recognized as a source of unique bioactive compounds for potential industrial, pharmaceutical, and medical applications. In this review, we summarize current knowledge on diatom photosynthetic pigments complemented by some new insights regarding their physico-chemical properties, biological role, and biosynthetic pathways, as well as the regulation of pigment level in the cell, methods of purification, and significance in industries.

  17. The Photosynthetic Cycle

    DOE R&D Accomplishments Database

    Calvin, Melvin

    1955-03-21

    A cyclic sequence of transformations, including the carboxylation of RuDP (ribulose diphosphate) and its re-formation, has been deduced as the route for the creation of reduced carbon compounds in photosynthetic organisms. With the demonstration of RuDP as substrate for the carboxylation in a cell-free system, each of the reactions has now been carried out independently in vitro. Further purification of this last enzyme system has confirmed the deduction that the carboxylation of RuDP leads directly to the two molecules of PGA (phosphoglyceric acid) involving an internal dismutation and suggesting the name "carboxydismutase" for the enzyme. As a consequence of this knowledge of each of the steps in the photosynthetic CO{sub 2} reduction cycle, it is possible to define the reagent requirements to maintain it. The net requirement for the reduction of one molecule of CO{sub 2} is four equivalents of [H]and three molecules of ATP (adenine triphosphate). These must ultimately be supplied by the photochemical reaction. Some possible ways in which this may be accomplished are discussed.

  18. Photosynthetic Pigments in Diatoms

    PubMed Central

    Kuczynska, Paulina; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz

    2015-01-01

    Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvesting pigments such as chlorophyll a, chlorophyll c, and fucoxanthin, there is a group of photoprotective carotenoids which includes β-carotene and the xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and zeaxanthin, which are engaged in the xanthophyll cycle. Additionally, some intermediate products of biosynthetic pathways have been identified in diatoms as well as unusual pigments, e.g., marennine. Marine algae have become widely recognized as a source of unique bioactive compounds for potential industrial, pharmaceutical, and medical applications. In this review, we summarize current knowledge on diatom photosynthetic pigments complemented by some new insights regarding their physico-chemical properties, biological role, and biosynthetic pathways, as well as the regulation of pigment level in the cell, methods of purification, and significance in industries. PMID:26389924

  19. Decreased expression of two key enzymes in the sucrose biosynthesis pathway, cytosolic fructose-1,6-bisphosphatase and sucrose phosphate synthase, has remarkably different consequences for photosynthetic carbon metabolism in transgenic Arabidopsis thaliana.

    PubMed

    Strand, A; Zrenner, R; Trevanion, S; Stitt, M; Gustafsson, P; Gardeström, P

    2000-09-01

    Photosynthetic carbon metabolism was investigated in antisense Arabidopsis lines with decreased expression of sucrose phosphate synthase (SPS) and cytosolic fructose-1,6-bisphosphatase (cFBPase). In the light, triose phosphates are exported from the chloroplast and converted to sucrose via cFBPase and SPS. At night, starch is degraded to glucose, exported and converted to sucrose via SPS. cFBPase therefore lies upstream and SPS downstream of the point at which the pathways for sucrose synthesis in the day and night converge. Decreased cFBPase expression led to inhibition of sucrose synthesis; accumulation of phosphorylated intermediates; Pi-limitation of photosynthesis; and stimulation of starch synthesis. The starch was degraded to maintain higher levels of sugars and a higher rate of sucrose export during the night. This resembles the response in other species when expression of enzymes in the upper part of the sucrose biosynthesis pathway is reduced. Decreased expression of SPS inhibited sucrose synthesis, but phosphorylated intermediates did not accumulate and carbon partitioning was not redirected towards starch. Sugar levels and sucrose export was decreased during the night as well as during the day. Although ribulose-1,5-bisphosphate regeneration and photosynthesis were inhibited, the PGA/triose-P ratio remained low and the ATP/ADP ratio high, showing that photosynthesis was not limited by the rate at which Pi was recycled during end-product synthesis. Two novel responses counteracted the decrease in SPS expression and explain why phosphorylated intermediates did not accumulate, and why allocation was not altered in the antisense SPS lines. Firstly, a threefold decrease of PPi and a shift of the UDP-glucose/hexose phosphate ratio favoured sucrose synthesis and prevented the accumulation of phosphorylated intermediates. Secondly, there was no increase of AGPase activity relative to cFBPase activity, which would prevent a shift in carbon allocation towards

  20. Membrane biogenesis during B cell differentiation: most endoplasmic reticulum proteins are expressed coordinately

    PubMed Central

    1990-01-01

    The induction of high-rate protein secretion entails increased biogenesis of secretory apparatus organelles. We examined the biogenesis of the secretory apparatus in the B cell line CH12 because it can be induced in vitro to secrete immunoglobulin (Ig). Upon stimulation with lipopolysaccharide (LPS), CH12 cells increased secretion of IgM 12-fold. This induced secretion was accompanied by preferential expansion of the ER and the Golgi complex. Three parameters of the rough ER changed: its area and volume increased 3.3- and 3.7-fold, respectively, and the density of membrane-bound ribosomes increased 3.5-fold. Similarly, the area of the Golgi stack increased 3.3-fold, and its volume increased 4.1-fold. These changes provide sufficient biosynthetic capacity to account for the increased secretory activity of CH12. Despite the large increase in IgM synthesis, and because of the expansion of the ER, the concentration of IgM within the ER changed less than twofold during the differentiation process. During the amplification of the rough ER, the expression of resident proteins changed according to one of two patterns. The majority (75%) of rough microsomal (RM) proteins increased in proportion to the increase in rough ER size. Included in this group were both lumenal proteins such as Ig binding protein (BiP), and membrane proteins such as ribophorins I and II. In addition, the expression of a minority (approximately 9%) of RM polypeptides increased preferentially, such that their abundance within the RM of secreting CH12 cells was increased. Thus, the expansion of ER during CH12 differentiation involves preferential increases in the abundance of a few resident proteins, superimposed upon proportional increases in most ER proteins. PMID:2335560

  1. Mitochondrial manganese superoxide dismutase mRNA expression in human chorioamniotic membranes and its association with labor, inflammation, and infection.

    PubMed

    Than, Nandor Gabor; Romero, Roberto; Tarca, Adi L; Draghici, Sorin; Erez, Offer; Chaiworapongsa, Tinnakorn; Kim, Yeon Mee; Kim, Sun Kwon; Vaisbuch, Edi; Tromp, Gerard

    2009-11-01

    Human parturition is characterized by the activation of genes involved in acute inflammatory responses in the fetal membranes. Manganese superoxide dismutase (Mn SOD) is a mitochondrial enzyme that scavenges reactive oxygen species (ROS). Mn SOD is up-regulated in sites of inflammation and has an important role in the down-regulation of acute inflammatory processes. Therefore, the aim of this study was to determine the differences in Mn SOD mRNA expression in the fetal membranes in patients with term and preterm labor (PTL) as well as in acute chorioamnionitis. Fetal membranes were obtained from patients in the following groups: (1) term not in labor (n = 29); (2) term in labor (n = 29); (3) spontaneous PTL with intact mebranes (n = 16); (4) PTL with histological chorioamnionitis (n = 12); (5) preterm prelabor rupture of the membranes (PPROM; n = 17); and (6) PPROM with histological chorioamnionitis (n = 21). Mn SOD mRNA expression in the membranes was determined by quantitative real-time reverse transcription-polymerase chain reaction. (1) Mn SOD mRNA expression was higher in the fetal membranes of patients at term in labor than those not in labor (2.4-fold; p = 0.02); (2) the amount of Mn SOD mRNA in the fetal membranes was higher in PTL than in term labor or in PPROM (7.2-fold, p = 0.03; 3.2-fold, p = 0.03, respectively); (3) Mn SOD mRNA expression was higher when histological chorioamnionitis was present both among patients with PPROM (3.8-fold, p = 0.02) and with PTL (5.4-fold, p = 0.02) than in patients with these conditions without histological chorioamnionitis; (4) expression of Mn SOD mRNA was higher in PTL with chorioamnionitis than in PPROM with chorioamnionitis (4.3-fold, p = 0.03). The increase in Mn SOD mRNA expression by fetal membranes in term labor and in histological chorioamnionitis in PTL and PPROM suggests that the fetus deploys anti-oxidant mechanisms to constrain the inflammatory processes in the chorioamniotic membranes.

  2. Mitochondrial MnSOD mRNA expression in human chorioamniotic membranes and its association with labor, inflammation and infection

    PubMed Central

    Than, Nandor Gabor; Romero, Roberto; Tarca, Adi L.; Draghici, Sorin; Erez, Offer; Chaiworapongsa, Tinnakorn; Kim, Yeon Mee; Kim, Sun Kwon; Vaisbuch, Edi; Tromp, Gerard

    2010-01-01

    Objective Human parturition is characterized by the activation of genes involved in acute inflammatory in the fetal membranes. Manganese superoxide dismutase (MnSOD) is a mitochondrial enzyme that scavenges reactive oxygen species (ROS). MnSOD is up-regulated in sites of inflammation and has an important role in the down-regulation of acute inflammatory processes. Therefore, the aim of this study was to determine the differences in MnSOD mRNA expression in the fetal membranes in patients with term and preterm labor as well as in acute chorioamnionitis. Study design Fetal membranes were obtained from patients in the following groups: 1) term not in labor (n=29); 2) term in labor (n=29); 3) spontaneous preterm labor with intact mebranes (n=16); 4) PTL with histological chorioamnionitis (n=12); 5) preterm prelabor rupture of membranes (PPROM; n=17); and 6) PPROM with histological chorioamnionitis (n=21). MnSOD mRNA expression in the membranes was determined by quantitative real-time RT-PCR. Results 1) MnSOD mRNA expression was higher in the fetal membranes of patients at term in labor than those not in labor (2.4-fold; p=0.02); 2) the amount of MnSOD mRNA in the fetal membranes was higher in PTL than in term labor or in PPROM (7.2-fold, p=0.03; 3.2-fold, p=0.03, respectively); 3) MnSOD mRNA expression was higher when histological chorioamnionitis was present both among patients with PPROM (3.8-fold, p=0.02) and with PTL (5.4-fold, p=0.02) than in patients with these conditions without histological chorioamnionitis; 4) expression of MnSOD mRNA was higher in PTL with chorioamnionitis than in PPROM with chorioamnionitis (4.3-fold, p=0.03); Conclusion The increase in MnSOD mRNA expression by fetal membranes in term labor and in histological chorioamnionitis in PTL and PPROM suggests that the fetus deploys anti-oxidant mechanisms to constrain the inflammatory processes in the chorioamniotic membranes. PMID:19900038

  3. Effects of changes in membrane sodium flux on virulence gene expression in Vibrio cholerae

    PubMed Central

    Häse, Claudia C.; Mekalanos, John J.

    1999-01-01

    The expression of several virulence factors of Vibrio cholerae is coordinately regulated by the ToxT molecule and the membrane proteins TcpP/H and ToxR/S, which are required for toxT transcription. To identify proteins that negatively affect toxT transcription, we screened transposon mutants of V. cholerae carrying a chromosomally integrated toxT∷lacZ reporter construct for darker blue colonies on media containing 5-bromo-4-chlor-3-indolyl β-d galactoside (X-gal). Two mutants had transposon insertions in a region homologous to the nqr gene cluster of Vibrio alginolyticus, encoding a sodium-translocating NADH–ubiquinone oxidoreductase (NQR). In V. alginolyticus, NQR is a respiration-linked Na+ extrusion pump generating a sodium motive force that can be used for solute import, ATP synthesis, and flagella rotation. Inhibition of NQR enzyme function in V. cholerae by the specific inhibitor 2-n-heptyl-4-hydroxyquinoline N-oxide (HQNO) resulted in elevated toxT∷lacZ activity. Increased toxT∷lacZ expression in an nqr mutant strain compared with the parental strain was observed when the TcpP/H molecules alone were strongly expressed, suggesting that the negative effect of the NQR complex on toxT transcription is mediated through TcpP/H. However, the ability of the TcpP/H proteins to activate the toxT∷lacZ reporter construct was greatly diminished in the presence of high NaCl concentrations in the growth medium. The flagellar motor of V. cholerae appears to be driven by a sodium motive force, and modulation of flagella rotation by inhibitory drugs, high media viscosity, or specific mutations resulted in increases of toxT∷lacZ expression. Thus, the regulation of the main virulence factors of V. cholerae appears to be modulated by endogenous and exogenous sodium levels in a complex way. PMID:10077658

  4. [Prokaryotic expression of S2 extracellular domain of SARS coronavirus spike protein and its fusion with Hela cell membrane].

    PubMed

    Liu, Yun; Liu, Ai-Hua; Deng, Peng; Wu, Xiang-Ling; Li, Tao; Liu, Ya-Wei; Xu, Jia; Jiang, Yong

    2009-03-01

    To construct the expression plasmid of S2 extracellular domain (S2ED) of SARS-coronavirus (SARS- Cov) spike protein (S protein) and enhanced green fluorescent protein (EGFP) to obtain the fusion protein expressed in prokaryotic cells. S2ED based on bioinformatics prediction and EGFP sequence were amplified by PCR and inserted into pET-14b plasmid. The recombinant protein His-S2ED-EGFP was expressed in E. coli by IPTG induction. After purification by Ni-NTA agarose beads, the soluble fractions of the fusion protein were collected and identified by SDS-PAGE and Western blotting. The fusion of S2ED with Hela cell membranes was observed with fluorescent microscope. The pET-14b-S2ED-EGFP plasmid was correctly constructed and highly expressed in BL21 (DE3). When incubated with Hela cells, the purified protein could not internalize through membrane fusion. The expression plasmid containing S2ED of SARS-Cov S protein and EGFP sequence is constructed successfully. Although the recombinant protein obtained has not shown the expected fusion effect with Hela cell membrane, this work may enrich the understanding of the process of membrane fusion mediated by S2 protein and lay the foundation for future study of targeting cell transport system based on cell-specific binding peptide.

  5. Ectopic expression of Arabidopsis thaliana plasma membrane intrinsic protein 2 aquaporins in lily pollen increases the plasma membrane water permeability of grain but not of tube protoplasts

    PubMed Central

    Sommer, Aniela; Geist, Birgit; Da Ines, Olivier; Gehwolf, Renate; Schäffner, Anton R.; Obermeyer, Gerhard

    2010-01-01

    Summary To investigate the role of aquaporin-mediated water transport during pollen grain germination and tube growth, Arabidopsis thaliana plasma membrane intrinsic proteins (PIPs) were expressed in pollen of Lilium longiflorum (lily). Successful expression of AtPIPs in particle-bombarded lily pollen grains was monitored by co-expression with fluorescent proteins and single-cell RT-PCR, and by measuring the water permeability coefficient (Pos) in swelling assays using protoplasts prepared from transformed pollen grains and tubes. Expression of AtPIP1;1 and AtPIP1;2 in pollen grains resulted in Pos values similar to those measured in nontransformed pollen grain protoplasts (6.65 ± 2.41 μm s−1), whereas expression of AtPIP2 significantly increased Pos (AtPIP2;1, 13.79 ± 6.38; AtPIP2;2, 10.16 ± 3.30 μm s−1). Transformation with combinations of AtPIP1 and AtPIP2 did not further enhance Pos. Native pollen tube protoplasts showed higher Pos values (13.23 ± 4.14 μm s−1) than pollen grain protoplasts but expression of AtPIP2;1 (18.85 ± 7.60 μm s−1) did not significantly increase their Pos values. Expression of none of the tested PIPs had any effect on pollen tube growth rates. The ectopic expression of AtPIP2s in lily pollen increased the water permeability of the plasma membrane in pollen grains, but not in pollen tubes. The measured endogenous water permeability does not limit water uptake during tube growth, but has to be regulated to prevent tube bursting. PMID:18761636

  6. Evolution of heliobacteria: implications for photosynthetic reaction center complexes

    NASA Technical Reports Server (NTRS)

    Vermaas, W. F.; Blankenship, R. E. (Principal Investigator)

    1994-01-01

    The evolutionary position of the heliobacteria, a group of green photosynthetic bacteria with a photosynthetic apparatus functionally resembling Photosystem I of plants and cyanobacteria, has been investigated with respect to the evolutionary relationship to Gram-positive bacteria and cyanobacteria. On the basis of 16S rRNA sequence analysis, the heliobacteria appear to be most closely related to Gram-positive bacteria, but also an evolutionary link to cyanobacteria is evident. Interestingly, a 46-residue domain including the putative sixth membrane-spanning region of the heliobacterial reaction center protein show rather strong similarity (33% identity and 72% similarity) to a region including the sixth membrane-spanning region of the CP47 protein, a chlorophyll-binding core antenna polypeptide of Photosystem II. The N-terminal half of the heliobacterial reaction center polypeptide shows a moderate sequence similarity (22% identity over 232 residues) with the CP47 protein, which is significantly more than the similarity with the Photosystem I core polypeptides in this region. An evolutionary model for photosynthetic reaction center complexes is discussed, in which an ancestral homodimeric reaction center protein (possibly resembling the heliobacterial reaction center protein) with 11 membrane-spanning regions per polypeptide has diverged to give rise to the core of Photosystem I, Photosystem II, and of the photosynthetic apparatus in green, purple, and heliobacteria.

  7. Evolution of heliobacteria: implications for photosynthetic reaction center complexes

    NASA Technical Reports Server (NTRS)

    Vermaas, W. F.; Blankenship, R. E. (Principal Investigator)

    1994-01-01

    The evolutionary position of the heliobacteria, a group of green photosynthetic bacteria with a photosynthetic apparatus functionally resembling Photosystem I of plants and cyanobacteria, has been investigated with respect to the evolutionary relationship to Gram-positive bacteria and cyanobacteria. On the basis of 16S rRNA sequence analysis, the heliobacteria appear to be most closely related to Gram-positive bacteria, but also an evolutionary link to cyanobacteria is evident. Interestingly, a 46-residue domain including the putative sixth membrane-spanning region of the heliobacterial reaction center protein show rather strong similarity (33% identity and 72% similarity) to a region including the sixth membrane-spanning region of the CP47 protein, a chlorophyll-binding core antenna polypeptide of Photosystem II. The N-terminal half of the heliobacterial reaction center polypeptide shows a moderate sequence similarity (22% identity over 232 residues) with the CP47 protein, which is significantly more than the similarity with the Photosystem I core polypeptides in this region. An evolutionary model for photosynthetic reaction center complexes is discussed, in which an ancestral homodimeric reaction center protein (possibly resembling the heliobacterial reaction center protein) with 11 membrane-spanning regions per polypeptide has diverged to give rise to the core of Photosystem I, Photosystem II, and of the photosynthetic apparatus in green, purple, and heliobacteria.

  8. Mechanism of GABAB receptor-induced BDNF secretion and promotion of GABAA receptor membrane expression.

    PubMed

    Kuczewski, Nicola; Fuchs, Celine; Ferrand, Nadine; Jovanovic, Jasmina N; Gaiarsa, Jean-Luc; Porcher, Christophe

    2011-08-01

    Recent studies have shown that GABA(B) receptors play more than a classical inhibitory role and can function as an important synaptic maturation signal early in life. In a previous study, we reported that GABA(B) receptor activation triggers secretion of brain-derived neurotrophic factor (BDNF) and promotes the functional maturation of GABAergic synapses in the developing rat hippocampus. To identify the signalling pathway linking GABA(B) receptor activation to BDNF secretion in these cells, we have now used the phosphorylated form of the cAMP response element-binding protein as a biological sensor for endogenous BDNF release. In the present study, we show that GABA(B) receptor-induced secretion of BDNF relies on the activation of phospholipase C, followed by the formation of diacylglycerol, activation of protein kinase C, and the opening of L-type voltage-dependent Ca(2+) channels. We further show that once released by GABA(B) receptor activation, BDNF increases the membrane expression of β(2/3) -containing GABA(A) receptors in neuronal cultures. These results reveal a novel function of GABA(B) receptors in regulating the expression of GABA(A) receptor through BDNF-tropomyosin-related kinase B receptor dependent signalling pathway.

  9. The expression, processing and localization of polymorphic membrane proteins in Chlamydia pneumoniae strain CWL029.

    PubMed

    Vandahl, Brian Berg; Pedersen, Anna Sofie; Gevaert, Kris; Holm, Arne; Vandekerckhove, Joël; Christiansen, Gunna; Birkelund, Svend

    2002-11-26

    Chlamydiae are obligate intracellular bacteria, which are important human pathogens. Genome sequences of C. trachomatis and C. pneumoniae have revealed the presence of a Chlamydia specific gene family encoding polymorphic outer membrane proteins, Pmps. In C. pneumoniae the family comprises twenty-one members, which are all transcribed. In the present study, the expression, processing and localisation of the sixteen full-length Pmps in C. pneumoniae strain CWL029 have been further investigated by two-dimensional gel electrophoresis and immunofluorescence microscopy. Ten Pmps were identified in elementary bodies (EBs). Eight of these were investigated with respect to time dependent expression and all were found to be up-regulated between 36 and 48 hours post infection. Antibodies against Pmp6, 8, 10, 11 and 21 reacted with chlamydiae when infected cells were formalin fixed. Pmp6, Pmp20 and Pmp21 were found in cleaved forms, and the cleavage sites of Pmp6 and Pmp21 were identified. The Pmps are heavily up-regulated at the time of conversion of RB to EB, and at least ten Pmps are present in EBs. Due to their reaction in formalin fixation it is likely that Pmp6, 8, 10, 11 and 21 are surface exposed. The identified cleavage sites of Pmp6 and Pmp21 are in agreement with the theory that the Pmps are autotransporters.

  10. The expression, processing and localization of polymorphic membrane proteins in Chlamydia pneumoniae strain CWL029

    PubMed Central

    Vandahl, Brian Berg; Pedersen, Anna Sofie; Gevaert, Kris; Holm, Arne; Vandekerckhove, Joël; Christiansen, Gunna; Birkelund, Svend

    2002-01-01

    Background Chlamydiae are obligate intracellular bacteria, which are important human pathogens. Genome sequences of C. trachomatis and C. pneumoniae have revealed the presence of a Chlamydia specific gene family encoding polymorphic outer membrane proteins, Pmps. In C. pneumoniae the family comprises twenty-one members, which are all transcribed. In the present study, the expression, processing and localisation of the sixteen full-length Pmps in C. pneumoniae strain CWL029 have been further investigated by two-dimensional gel electrophoresis and immunofluorescence microscopy. Results Ten Pmps were identified in elementary bodies (EBs). Eight of these were investigated with respect to time dependent expression and all were found to be up-regulated between 36 and 48 hours post infection. Antibodies against Pmp6, 8, 10, 11 and 21 reacted with chlamydiae when infected cells were formalin fixed. Pmp6, Pmp20 and Pmp21 were found in cleaved forms, and the cleavage sites of Pmp6 and Pmp21 were identified. Conclusions The Pmps are heavily up-regulated at the time of conversion of RB to EB, and at least ten Pmps are present in EBs. Due to their reaction in formalin fixation it is likely that Pmp6, 8, 10, 11 and 21 are surface exposed. The identified cleavage sites of Pmp6 and Pmp21 are in agreement with the theory that the Pmps are autotransporters. PMID:12453305

  11. Pseudomonas aeruginosa outer membrane lipoprotein I gene: molecular cloning, sequence, and expression in Escherichia coli.

    PubMed Central

    Duchêne, M; Barron, C; Schweizer, A; von Specht, B U; Domdey, H

    1989-01-01

    Lipoprotein I (OprI) is one of the major proteins of the outer membrane of Pseudomonas aeruginosa. Like porin protein F (OprF), it is a vaccine candidate because it antigenically cross-reacts with all serotype strains of the International Antigenic Typing Scheme. Since lipoprotein I was expressed in Escherichia coli under the control of its own promoter, we were able to isolate the gene by screening a lambda EMBL3 phage library with a mouse monoclonal antibody directed against lipoprotein I. The monocistronic OprI mRNA encodes a precursor protein of 83 amino acid residues including a signal peptide of 19 residues. The mature protein has a molecular weight of 6,950, not including bound glycerol and lipid. Although the amino acid sequences of protein I of P. aeruginosa and Braun's lipoprotein of E. coli differ considerably (only 30.1% identical amino acid residues), peptidoglycan in E. coli, are identical. Using lipoprotein I expressed in E. coli, it can now be tested whether this protein alone, without P. aeruginosa lipopolysaccharide contaminations, has a protective effect against P. aeruginosa infections. Images PMID:2502533

  12. Organic micropollutants in aerobic and anaerobic membrane bioreactors: Changes in microbial communities and gene expression.

    PubMed

    Harb, Moustapha; Wei, Chun-Hai; Wang, Nan; Amy, Gary; Hong, Pei-Ying

    2016-10-01

    Organic micro-pollutants (OMPs) are contaminants of emerging concern in wastewater treatment due to the risk of their proliferation into the environment, but their impact on the biological treatment process is not well understood. The purpose of this study is to examine the effects of the presence of OMPs on the core microbial populations of wastewater treatment. Two nanofiltration-coupled membrane bioreactors (aerobic and anaerobic) were subjected to the same operating conditions while treating synthetic municipal wastewater spiked with OMPs. Microbial community dynamics, gene expression levels, and antibiotic resistance genes were analyzed using molecular-based approaches. Results showed that presence of OMPs in the wastewater feed had a clear effect on keystone bacterial populations in both the aerobic and anaerobic sludge while also significantly impacting biodegradation-associated gene expression levels. Finally, multiple antibiotic-type OMPs were found to have higher removal rates in the anaerobic MBR, while associated antibiotic resistance genes were lower. Copyright © 2016. Published by Elsevier Ltd.

  13. Progesterone receptor membrane component 1 (PGRMC1) expression in murine retina

    PubMed Central

    Shanmugam, Arul K.; Mysona, Barbara A.; Wang, Jing; Zhao, Jing; Tawfik, Amany; Sanders, A.; Markand, Shanu; Zorrilla, Eric; Ganapathy, Vadivel; Bollinger, Kathryn E.; Smith, Sylvia B.

    2015-01-01

    Purpose Sigma receptor 1 (σR1) and 2 (σR2) are thought to be two distinct proteins which share the ability to bind multiple ligands, several of which are common to both receptors. Whether σR1 and σR2 share overlapping biological functions is unknown. Recently, progesterone receptor membrane component 1 (PGRMC1) was shown to contain the putative σR2 binding site. PGRMC1 has not been studied in retina. We hypothesize that biological interactions between σR1 and PGRMC1 will be evidenced by compensatory upregulation of PGRMC1 in σR1−/− mice. Methods Immunofluorescence, RT-PCR, and immunoblotting methods were used to analyze expression of PGRMC1 in wild type mouse retina. Tissues from σR1−/− mice were used to investigate whether a biological interaction exists between σR1 and PGRMC1. Results In the eye, PGRMC1 is expressed in corneal epithelium, lens, ciliary body epithelium, and retina. In retina, PGRMC1 is present in Müller cells and retinal pigment epithelium. This expression pattern is similar, but not identical to σR1. PGRMC1 protein levels in neural retina and eye cup from σR1−/− mice did not differ from wild type mice. Nonocular tissues, lung, heart, and kidney showed similar Pgrmc1 gene expression in wild type and σR1−/− mice. In contrast, liver, brain and intestine showed increased Pgrmc1 gene expression in σR1−/− mice. Conclusion Despite potential biological overlap, deletion of σR1 did not result in a compensatory change in PGRMC1 protein levels in σR1−/− mouse retina. Increased Pgrmc1 gene expression in organs with high lipid content such as liver, brain, and intestine indicate a possible tissue specific interaction between σR1 and PGRMC1. The current studies establish the presence of PGRMC1 in retina and lay the foundation for analysis of its biological function. PMID:26642738

  14. Using Haloarcula marismortui bacteriorhodopsin as a fusion tag for enhancing and visible expression of integral membrane proteins in Escherichia coli.

    PubMed

    Hsu, Min-Feng; Yu, Tsung-Fu; Chou, Chia-Cheng; Fu, Hsu-Yuan; Yang, Chii-Shen; Wang, Andrew H J

    2013-01-01

    Membrane proteins are key targets for pharmacological intervention because of their vital functions. Structural and functional studies of membrane proteins have been severely hampered because of the difficulties in producing sufficient quantities of properly folded and biologically active proteins. Here we generate a high-level expression system of integral membrane proteins in Escherichia coli by using a mutated bacteriorhodopsin (BR) from Haloarcula marismortui (HmBRI/D94N) as a fusion partner. A purification strategy was designed by incorporating a His-tag on the target membrane protein for affinity purification and an appropriate protease cleavage site to generate the final products. The fusion system can be used to detect the intended target membrane proteins during overexpression and purification either with the naked eye or by directly monitoring their characteristic optical absorption. In this study, we applied this approach to produce two functional integral membrane proteins, undecaprenyl pyrophosphate phosphatase and carnitine/butyrobetaine antiporter with significant yield enhancement. This technology could facilitate the development of a high-throughput strategy to screen for conditions that improve the yield of correctly folded target membrane proteins. Other robust BRs can also be incorporated in this system.

  15. Using Haloarcula marismortui Bacteriorhodopsin as a Fusion Tag for Enhancing and Visible Expression of Integral Membrane Proteins in Escherichia coli

    PubMed Central

    Hsu, Min-Feng; Yu, Tsung-Fu; Chou, Chia-Cheng; Fu, Hsu-Yuan; Yang, Chii-Shen; Wang, Andrew H. J.

    2013-01-01

    Membrane proteins are key targets for pharmacological intervention because of their vital functions. Structural and functional studies of membrane proteins have been severely hampered because of the difficulties in producing sufficient quantities of properly folded and biologically active proteins. Here we generate a high-level expression system of integral membrane proteins in Escherichia coli by using a mutated bacteriorhodopsin (BR) from Haloarcula marismortui (HmBRI/D94N) as a fusion partner. A purification strategy was designed by incorporating a His-tag on the target membrane protein for affinity purification and an appropriate protease cleavage site to generate the final products. The fusion system can be used to detect the intended target membrane proteins during overexpression and purification either with the naked eye or by directly monitoring their characteristic optical absorption. In this study, we applied this approach to produce two functional integral membrane proteins, undecaprenyl pyrophosphate phosphatase and carnitine/butyrobetaine antiporter with significant yield enhancement. This technology could facilitate the development of a high-throughput strategy to screen for conditions that improve the yield of correctly folded target membrane proteins. Other robust BRs can also be incorporated in this system. PMID:23457558

  16. Expression, crystallization and preliminary X-ray analysis of an outer membrane protein from Thermus thermophilus HB27

    PubMed Central

    Brosig, Alexander; Nesper, Jutta; Welte, Wolfram; Diederichs, Kay

    2008-01-01

    The cell envelope of the thermophilic bacterium Thermus thermophilus is multilayered and includes an outer membrane with integral outer membrane proteins that are not well characterized. The hypothetical protein TTC0834 from T. thermophilus HB27 was identified as a 22 kDa outer membrane protein containing eight predicted β-strands. TTC0834 was expressed with an N-­terminal His tag in T. thermophilus HB8 and detected in the S-layer/outer membrane envelope fraction. His-TTC0834 was purified and crystallized under various conditions. Native data sets were collected to 3.2 Å resolution and the best diffracting crystals belonged to space group P3121 or P3221, with unit-cell parameters a = b = 166.67, c = 97.53 Å. PMID:18540069

  17. Expression, crystallization and preliminary X-ray analysis of an outer membrane protein from Thermus thermophilus HB27.

    PubMed

    Brosig, Alexander; Nesper, Jutta; Welte, Wolfram; Diederichs, Kay

    2008-06-01

    The cell envelope of the thermophilic bacterium Thermus thermophilus is multilayered and includes an outer membrane with integral outer membrane proteins that are not well characterized. The hypothetical protein TTC0834 from T. thermophilus HB27 was identified as a 22 kDa outer membrane protein containing eight predicted beta-strands. TTC0834 was expressed with an N-terminal His tag in T. thermophilus HB8 and detected in the S-layer/outer membrane envelope fraction. His-TTC0834 was purified and crystallized under various conditions. Native data sets were collected to 3.2 A resolution and the best diffracting crystals belonged to space group P3(1)21 or P3(2)21, with unit-cell parameters a = b = 166.67, c = 97.53 A.

  18. WY14,643, a PPARα ligand, attenuates expression of anti-glomerular basement membrane disease

    PubMed Central

    Archer, D C; Frkanec, J T; Cromwell, J; Clopton, P; Cunard, R

    2007-01-01

    Peroxisome proliferator-activated receptor alpha (PPARα) ligands are medications used to treat hyperlipidaemia and atherosclerosis. Increasing evidence suggests that these agents are immunosuppressive. In the following studies we demonstrate that WY14,643, a PPARα ligand, attenuates expression of anti-glomerular basement membrane disease (AGBMD). C57BL/6 mice were fed 0·05% WY14,643 or control food and immunized with the non-collagenous domain of the α3 chain of Type IV collagen [α3(IV) NC1] in complete Freund's adjuvant (CFA). WY14,643 reduced proteinuria and greatly improved glomerular and tubulo-interstitial lesions. However, the PPARα ligand did not alter the extent of IgG-binding to the GBM. Immunohistochemical studies revealed that the prominent tubulo-interstitial infiltrates in the control-fed mice consisted predominately of F4/80+ macrophages and WY14,643-feeding decreased significantly the number of renal macrophages. The synthetic PPARα ligand also reduced significantly expression of the chemokine, monocyte chemoattractant protein (MCP)-1/CCL2. Sera from mice immunized with AGBMD were also evaluated for antigen-specific IgGs. There was a significant increase in the IgG1 : IgG2c ratio and a decline in the intrarenal and splenocyte interferon (IFN)-γ mRNA expression in the WY14,643-fed mice, suggesting that the PPARα ligand could skew the immune response to a less inflammatory T helper 2-type of response. These studies suggest that PPARα ligands may be a novel treatment for inflammatory renal disease. PMID:17888025

  19. Expression of three topologically distinct membrane proteins elicits unique stress response pathways in the yeast Saccharomyces cerevisiae

    PubMed Central

    Buck, Teresa M.; Jordan, Rick; Lyons-Weiler, James; Adelman, Joshua L.; Needham, Patrick G.; Kleyman, Thomas R.

    2015-01-01

    Misfolded membrane proteins are retained in the endoplasmic reticulum (ER) and are subject to ER-associated degradation, which clears the secretory pathway of potentially toxic species. While the transcriptional response to environmental stressors has been extensively studied, limited data exist describing the cellular response to misfolded membrane proteins. To this end, we expressed and then compared the transcriptional profiles elicited by the synthesis of three ER retained, misfolded ion channels: The α-subunit of the epithelial sodium channel, ENaC, the cystic fibrosis transmembrane conductance regulator, CFTR, and an inwardly rectifying potassium channel, Kir2.1, which vary in their mass, membrane topologies, and quaternary structures. To examine transcriptional profiles in a null background, the proteins were expressed in yeast, which was previously used to examine the degradation requirements for each substrate. Surprisingly, the proteins failed to induce a canonical unfolded protein response or heat shock response, although messages encoding several cytosolic and ER lumenal protein folding factors rose when αENaC or CFTR was expressed. In contrast, the levels of these genes were unaltered by Kir2.1 expression; instead, the yeast iron regulon was activated. Nevertheless, a significant number of genes that respond to various environmental stressors were upregulated by all three substrates, and compared with previous microarray data we deduced the existence of a group of genes that reflect a novel misfolded membrane protein response. These data indicate that aberrant proteins in the ER elicit profound yet unique cellular responses. PMID:25759377

  20. Nuclear and membrane progestin receptors in the European eel: Characterization and expression in vivo through spermatogenesis.

    PubMed

    Morini, Marina; Peñaranda, David S; Vílchez, María C; Nourizadeh-Lillabadi, Rasoul; Lafont, Anne-Gaëlle; Dufour, Sylvie; Asturiano, Juan F; Weltzien, Finn-Arne; Pérez, Luz

    2017-05-01

    Characterization of all the progestin receptor genes (PRs) found in the European eel has been performed. There were five membrane PRs (mPRs): mPRα (alpha), mPRAL1 (alpha-like1), mPRAL2 (alpha-like2), mPRγ (gamma), mPRδ (delta) and two nuclear PRs (nPRs or PGRs): pgr1 and pgr2. In silico studies showed that the C and E(F) domains of Pgr are well conserved among vertebrates whereas the A/B domain is not. Phylogeny and synteny analyses suggest that eel duplicated pgr (pgr1 and pgr2) originated from the teleost-specific third whole genome duplication (3R). mPR phylogeny placed three eel mPRs together with the mPRα clade, being termed mPRα, mPRAL1 and mPRAL2, while the other two eel mPRs clustered with mPRγ and mPRδ clades, respectively. The in vivo study showed differential expression patterns along the brain-pituitary-gonad axis. An increase in nPR transcripts was observed in brain (in pgr1) and pituitary (in pgr1 and pgr2) through the spermatogenesis, from the spermatogonia B/spermatocyte stage to the spermiation stage. In the testis, mPRγ, mPRδ and pgr2 transcripts showed the highest levels in testis with A spermatogonia as dominant germ cell, while the highest mPRα, mPRAL1 and mPRAL2 transcripts were observed in testis from spermiating males, where the dominant germ cell were spermatozoa. Further studies should elucidate the role of both nuclear and membrane progestin receptors on eel spermatogenesis.

  1. Dietary K+ regulates apical membrane expression of maxi-K channels in rabbit cortical collecting duct.

    PubMed

    Najjar, Fadi; Zhou, Hao; Morimoto, Tetsuji; Bruns, James B; Li, Hai-Sheng; Liu, Wen; Kleyman, Thomas R; Satlin, Lisa M

    2005-10-01

    The cortical collecting duct (CCD) is a final site for regulation of K(+) homeostasis. CCD K(+) secretion is determined by the electrochemical gradient and apical permeability to K(+). Conducting secretory K(+) (SK/ROMK) and maxi-K channels are present in the apical membrane of the CCD, the former in principal cells and the latter in both principal and intercalated cells. Whereas SK channels mediate baseline K(+) secretion, maxi-K channels appear to participate in flow-stimulated K(+) secretion. Chronic dietary K(+) loading enhances the CCD K(+) secretory capacity due, in part, to an increase in SK channel density (Palmer et al., J Gen Physiol 104: 693-710, 1994). Long-term exposure of Ambystoma tigrinum to elevated K(+) increases renal K(+) excretion due to an increase in apical maxi-K channel density in their CDs (Stoner and Viggiano, J Membr Biol 162: 107-116, 1998). The purpose of the present study was to test whether K(+) adaptation in the mammalian CCD is associated with upregulation of maxi-K channel expression. New Zealand White rabbits were fed a low (LK), control (CK), or high (HK) K(+) diet for 10-14 days. Real-time PCR quantitation of message encoding maxi-K alpha- and beta(2-4)-subunits in single CCDs from HK animals was greater than that detected in CK and LK animals (P < 0.05); beta(1)-subunit was not detected in any CCD sample but was present in whole kidney. Indirect immunofluorescence microscopy revealed a predominantly intracellular distribution of alpha-subunits in LK kidneys. In contrast, robust apical labeling was detected primarily in alpha-intercalated cells in HK kidneys. In summary, K(+) adaptation is associated with an increase in steady-state abundance of maxi-K channel subunit-specific mRNAs and immunodetectable apical alpha-subunit, the latter observation consistent with redistribution from an intracellular pool to the plasma membrane.

  2. PTK6/BRK is expressed in the normal mammary gland and activated at the plasma membrane in breast tumors.

    PubMed

    Peng, Maoyu; Emmadi, Rajyasree; Wang, Zebin; Wiley, Elizabeth L; Gann, Peter H; Khan, Seema A; Banerji, Nilanjana; McDonald, William; Asztalos, Szilard; Pham, Thao N D; Tonetti, Debra A; Tyner, Angela L

    2014-08-15

    Protein Tyrosine kinase 6 (PTK6/BRK) is overexpressed in the majority of human breast tumors and breast tumor cell lines. It is also expressed in normal epithelial linings of the gastrointestinal tract, skin, and prostate. To date, expression of PTK6 has not been extensively examined in the normal human mammary gland. We detected PTK6 mRNA and protein expression in the immortalized normal MCF-10A human mammary gland epithelial cell line, and examined PTK6 expression and activation in a normal human breast tissue microarray, as well as in human breast tumors. Phosphorylation of tyrosine residue 342 in the PTK6 activation loop corresponds with its activation. Similar to findings in the prostate, we detect nuclear and cytoplasmic PTK6 in normal mammary gland epithelial cells, but no phosphorylation of tyrosine residue 342. However, in human breast tumors, striking PTK6 expression and phosphorylation of tyrosine 342 is observed at the plasma membrane. PTK6 is expressed in the normal human mammary gland, but does not appear to be active and may have kinase-independent functions that are distinct from its cancer promoting activities at the membrane. Understanding consequences of PTK6 activation at the plasma membrane may have implications for developing novel targeted therapies against this kinase.

  3. PTK6/BRK is expressed in the normal mammary gland and activated at the plasma membrane in breast tumors

    PubMed Central

    Peng, Maoyu; Emmadi, Rajyasree; Wang, Zebin; Wiley, Elizabeth L.; Gann, Peter H.; Khan, Seema A.; Banerji, Nilanjana; McDonald, William; Asztalos, Szilard; Pham, Thao N.D.; Tonetti, Debra A.; Tyner, Angela L.

    2014-01-01

    Protein Tyrosine kinase 6 (PTK6/BRK) is overexpressed in the majority of human breast tumors and breast tumor cell lines. It is also expressed in normal epithelial linings of the gastrointestinal tract, skin, and prostate. To date, expression of PTK6 has not been extensively examined in the normal human mammary gland. We detected PTK6 mRNA and protein expression in the immortalized normal MCF-10A human mammary gland epithelial cell line, and examined PTK6 expression and activation in a normal human breast tissue microarray, as well as in human breast tumors. Phosphorylation of tyrosine residue 342 in the PTK6 activation loop corresponds with its activation. Similar to findings in the prostate, we detect nuclear and cytoplasmic PTK6 in normal mammary gland epithelial cells, but no phosphorylation of tyrosine residue 342. However, in human breast tumors, striking PTK6 expression and phosphorylation of tyrosine 342 is observed at the plasma membrane. PTK6 is expressed in the normal human mammary gland, but does not appear to be active and may have kinase-independent functions that are distinct from its cancer promoting activities at the membrane. Understanding consequences of PTK6 activation at the plasma membrane may have implications for developing novel targeted therapies against this kinase. PMID:25153721

  4. Statin therapy and the expression of genes that regulate calcium homeostasis and membrane repair in skeletal muscle.

    PubMed

    Draeger, Annette; Sanchez-Freire, Verónica; Monastyrskaya, Katia; Hoppeler, Hans; Mueller, Matthias; Breil, Fabio; Mohaupt, Markus G; Babiychuk, Eduard B

    2010-07-01

    In skeletal muscle of patients with clinically diagnosed statin-associated myopathy, discrete signs of structural damage predominantly localize to the T-tubular region and are suggestive of a calcium leak. The impact of statins on skeletal muscle of non-myopathic patients is not known. We analyzed the expression of selected genes implicated in the molecular regulation of calcium and membrane repair, in lipid homeostasis, myocyte remodeling and mitochondrial function. Microscopic and gene expression analyses were performed using validated TaqMan custom arrays on skeletal muscle biopsies of 72 age-matched subjects who were receiving statin therapy (n = 38), who had discontinued therapy due to statin-associated myopathy (n = 14), and who had never undergone statin treatment (n = 20). In skeletal muscle, obtained from statin-treated, non-myopathic patients, statins caused extensive changes in the expression of genes of the calcium regulatory and the membrane repair machinery, whereas the expression of genes responsible for mitochondrial function or myocyte remodeling was unaffected. Discontinuation of treatment due to myopathic symptoms led to a normalization of gene expression levels, the genes encoding the ryanodine receptor 3, calpain 3, and dystrophin being the most notable exceptions. Hence, even in clinically asymptomatic (non-myopathic) patients, statin therapy leads to an upregulation in the expression of genes that are concerned with skeletal muscle regulation and membrane repair.

  5. Membrane fluidity controls redox-regulated cold stress responses in cyanobacteria.

    PubMed

    Maksimov, Eugene G; Mironov, Kirill S; Trofimova, Marina S; Nechaeva, Natalya L; Todorenko, Daria A; Klementiev, Konstantin E; Tsoraev, Georgy V; Tyutyaev, Eugene V; Zorina, Anna A; Feduraev, Pavel V; Allakhverdiev, Suleyman I; Paschenko, Vladimir Z; Los, Dmitry A

    2017-09-01

    Membrane fluidity is the important regulator of cellular responses to changing ambient temperature. Bacteria perceive cold by the transmembrane histidine kinases that sense changes in thickness of the cytoplasmic membrane due to its rigidification. In the cyanobacterium Synechocystis, about a half of cold-responsive genes is controlled by the light-dependent transmembrane histidine kinase Hik33, which also partially controls the responses to osmotic, salt, and oxidative stress. This implies the existence of some universal, but yet unknown signal that triggers adaptive gene expression in response to various stressors. Here we selectively probed the components of photosynthetic machinery and functionally characterized the thermodynamics of cyanobacterial photosynthetic membranes with genetically altered fluidity. We show that the rate of oxidation of the quinone pool (PQ), which interacts with both photosynthetic and respiratory electron transport chains, depends on membrane fluidity. Inhibitor-induced stimulation of redox changes in PQ triggers cold-induced gene expression. Thus, the fluidity-dependent changes in the redox state of PQ may universally trigger cellular responses to stressors that affect membrane properties.

  6. A Novel R2R3-MYB Transcription Factor BpMYB106 of Birch (Betula platyphylla) Confers Increased Photosynthesis and Growth Rate through Up-regulating Photosynthetic Gene Expression

    PubMed Central

    Zhou, Chenguang; Li, Chenghao

    2016-01-01

    We isolated a R2R3-MYB transcription factor BpMYB106, which regulates photosynthesis in birch (Betula platyphylla Suk.). BpMYB106 mainly expresses in the leaf and shoot tip of birch, and its protein is localized in the nucleus. We further fused isolated a 1588 bp promoter of BpMYB106 and analyzed it by PLACE, which showed some cis-acting elements related to photosynthesis. BpMYB106 promoter β-glucuronidase (GUS) reporter fusion studies gene, the result, showed the GUS reporter gene in transgenic birch with BpMYB106 promoter showed strong activities in shoot tip, cotyledon margins, and mature leaf trichomes. The overexpression of BpMYB106 in birch resulted in significantly increased trichome density, net photosynthetic rate, and growth rate as compared with the wild-type birch. RNA-Seq profiling revealed the upregulation of several photosynthesis-related genes in the photosynthesis and oxidative phosphorylation pathways in the leaves of transgenic plants. Yeast one-hybrid analysis, coupled with transient assay in tobacco, revealed that BpMYB106 binds a MYB binding site MYB2 in differentially expressed gene promoters. Thus, BpMYB106 may directly activate the expression of a range of photosynthesis related genes through interacting with the MYB2 element in their promoters. Our study demonstrating the overexpression of BpMYB106—a R2R3-MYB transcription factor—upregulates the genes of the photosynthesis and oxidative phosphorylation pathways to improve photosynthesis. PMID:27047502

  7. Construction and expression of bivalent membrane-anchored DNA vaccine encoding Sjl4FABP and Sj26GST genes.

    PubMed

    Guo, Ping; Dai, Wuxing; Liu, Shuojie; Yang, Ping; Cheng, Jizhong; Liang, Liang; Chen, Zhihao; Gao, Hong

    2006-01-01

    In order to construct a eukaryotic co-expression plasmid containing membrane-anchored Sjcl4FABP and Sjc26GST genes and identify their expression in vitro, Sj14 and Sj26 genes were obtained by RT-PCR with total RNA of Schistosoma japonicum adult worms as the template and cloned into eukaryotic expression plasmid pVAC to construct recombinant plasmids pVAC-Sj14 and pVAC-Sj26. Then a 23 amino-acid signal peptide of human interleukin-2 (IL-2) upstream Sj14 or Sj26 gene and a membrane-anchored sequence containing 32 amino-acids of carboxyl-terminal of human placental alkaline phosphatase (PLAP) downstream were amplified by PCR as the template of plasmid pVAC-Sj14 or pVAC-Sj26 only to get two gene fragments including Sj14 gene and Sj26 gene. The two modified genes were altogether cloned into a eukaryotic co-expression plasmid pIRES, resulting in another new recombinant plasmid pIRES-Sj26-Sj14. The expression of Sj14 and Sj26 genes was detected by RT-PCR and indirect immunofluorescent assays (IFA) when the plasmid pIRES-Sj26-Sj14 was transfected into eukaryotic Hela cells. Restriction enzyme analysis, PCR and sequencing results revealed that the recombinant plasmids pVAC-Sj14, pVAC-Sj26 and plRES-Sj26-Sj14 were successfully constructed and the expression of modified Sj14 and Sj26 genes could be detected by RT-PCR and IFA. A bivalent membrane-anchored DNA vaccine encoding Sj14 and Sj26 genes was acquired and expressed proteins were proved to be mostly anchored in cellular membranes.

  8. Intrinsic mitochondrial membrane potential and associated tumor phenotype are independent of MUC1 over-expression.

    PubMed

    Houston, Michele A; Augenlicht, Leonard H; Heerdt, Barbara G

    2011-01-01

    We have established previously that minor subpopulations of cells with stable differences in their intrinsic mitochondrial membrane potential (Δψm) exist within populations of mammary and colonic carcinoma cells and that these differences in Δψm are linked to tumorigenic phenotypes consistent with increased probability of participating in tumor progression. However, the mechanism(s) involved in generating and maintaining stable differences in intrinsic Δψm and how they are linked to phenotype are unclear. Because the mucin 1 (MUC1) oncoprotein is over-expressed in many cancers, with the cytoplasmic C-terminal fragment (MUC1 C-ter) and its integration into the outer mitochondrial membrane linked to tumorigenic phenotypes similar to those of cells with elevated intrinsic Δψm, we investigated whether endogenous differences in MUC1 levels were linked to stable differences in intrinsic Δψm and/or to the tumor phenotypes associated with the intrinsic Δψm. We report that levels of MUC1 are significantly higher in subpopulations of cells with elevated intrinsic Δψm derived from both mammary and colonic carcinoma cell lines. However, using siRNA we found that down-regulation of MUC1 failed to significantly affect either the intrinsic Δψm or the tumor phenotypes associated with increased intrinsic Δψm. Moreover, whereas pharmacologically mediated disruption of the Δψm was accompanied by attenuation of tumor phenotype, it had no impact on MUC1 levels. Therefore, while MUC1 over-expression is associated with subpopulations of cells with elevated intrinsic Δψm, it is not directly linked to the generation or maintenance of stable alterations in intrinsic Δψm, or to intrinsic Δψm associated tumor phenotypes. Since the Δψm is the focus of chemotherapeutic strategies, these data have important clinical implications in regard to effectively targeting those cells within a tumor cell population that exhibit stable elevations in intrinsic Δψm and are most

  9. Photosynthetic light reactions: integral to chloroplast retrograde signalling.

    PubMed

    Gollan, Peter J; Tikkanen, Mikko; Aro, Eva-Mari

    2015-10-01

    Chloroplast retrograde signalling is ultimately dependent on the function of the photosynthetic light reactions and not only guides the acclimation of the photosynthetic apparatus to changing environmental and metabolic cues, but has a much wider influence on the growth and development of plants. New information generated during the past few years about regulation of photosynthetic light reactions and identification of the underlying regulatory proteins has paved the way towards better understanding of the signalling molecules produced in chloroplasts upon changes in the environment. Likewise, the availability of various mutants lacking regulatory functions has made it possible to address the role of excitation energy distribution and electron flow in the thylakoid membrane in inducing the retrograde signals from chloroplasts to the nucleus. Such signalling molecules also induce and interact with hormonal signalling cascades to provide comprehensive information from chloroplasts to the nucleus.

  10. Evolution of photosynthetic and respiratory prokaryotes and organelles

    SciTech Connect

    Olson, J.M.

    1981-02-28

    Common ancestors for mitochondria, chloroplasts, and photosynthetic bacteria (including cyanobacteria) probably existed more than three billion years ago. One ancestral prokaryote may have contained P(chl) Chloroplast a in photochemical reaction centers that drove cyclic electron flow and phosphorylation through membrane-bound components including cytochromes and quinones. Substitution of Chl a for Pchl a and the development of linear electron-transport chains permitted the reduction of NAD/sup +/ and/or NADP/sup +/ for carbon-dioxide fixation. Evolution of photosystem II from photosystem I enabled one prokaryote to evolve oxygen as a byproduct of carbon-dioxide fixation. This organism was the common ancestor of cyanobacteria, Prochloron, and various chloroplasts. A photosynthetic bacterium containing Bchl a appears to have branched off from the Chl a line. This bacterium was the common ancestor of extant respiring bacteria, mitochondria, and purple and green photosynthetic bacteria.

  11. Clinorotation affects mesophyll photosynthetic cells in leaves of pea seedlings.

    PubMed

    Adamchuk, N I

    1998-07-01

    Experiments with autotrophs in altered gravity condition have a grate significant for development of space biology. The main results of investigation in the photosynthetic apparatus state under microgravity condition have based on the experiments with maturity plants and their differentiated cells. The structural and functional organization of photosynthetic cells in seedlings is poor understandable still. Along with chloroplasts preserving a native membrane system in palisade parenchyma cells of the 29-day pea plant leaves in microgravity, chloroplasts with fribly packed or damaged granae, whose thylakoids appeared as vesicles with an electrontransparent content, were also observed. The investigation of preceding process induced these effects have a sense. That is why, the goal of our experiments was to perform the study of a structural organization of the photosynthetic cells of 3-d pair of pea seedlings leaves under the influence of clinorotation.

  12. Photosynthetic approaches to chemical biotechnology.

    PubMed

    Desai, Shuchi H; Atsumi, Shota

    2013-12-01

    National interest and environmental advocates encourage alternatives to petroleum-based products. Besides biofuels, many other valuable chemicals used in every-day life are petroleum derivatives or require petroleum for their production. A plausible alternative to production using petroleum for chemical production is to harvest the abundant carbon dioxide resources in the environment to produce valuable hydrocarbons. Currently, efforts are being made to utilize a natural biological system, photosynthetic microorganisms, to perform this task. Photosynthetic microorganisms are attractive to use for biochemical production because they utilize economical resources for survival: sunlight and carbon dioxide. This review examines the various compounds produced by photosynthetic microorganisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Diffusion of molecules and macromolecules in thylakoid membranes.

    PubMed

    Kirchhoff, Helmut

    2014-04-01

    The survival and fitness of photosynthetic organisms is critically dependent on the flexible response of the photosynthetic machinery, harbored in thylakoid membranes, to environmental changes. A central element of this flexibility is the lateral diffusion of membrane components along the membrane plane. As demonstrated, almost all functions of photosynthetic energy conversion are dependent on lateral diffusion. The mobility of both small molecules (plastoquinone, xanthophylls) as well as large protein supercomplexes is very sensitive to changes in structural boundary conditions. Knowledge about the design principles that govern the mobility of photosynthetic membrane components is essential to understand the dynamic response of the photosynthetic machinery. This review summarizes our knowledge about the factors that control diffusion in thylakoid membranes and bridges structural membrane alterations to changes in mobility and function. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Iron-regulated expression and membrane localization of the magA protein in Magnetospirillum sp. strain AMB-1.

    PubMed

    Nakamura, C; Kikuchi, T; Burgess, J G; Matsunaga, T

    1995-07-01

    The magA gene from Magnetospirillum sp. strain AMB-1 is required for the synthesis of bacterial magnetic particles (BMPs). This gene has been cloned, sequenced and found to encode a protein which is homologous to the Escherichia coli potassium efflux membrane-binding protein, KefC. By using the firefly luciferase gene (luc) cloned downstream of the magA promoter, the effect of iron on regulation of magA expression was investigated, and transcription of magA was found to be enhanced by low concentrations of iron. Intracellular localization of the MagA protein was studied using magA-luc fusion proteins. The luc gene was cloned downstream of the magA hydrophilic C-terminal domain. Detection of luciferase activity in the cytoplasm, cell membrane, and magnetic particle membrane subcellular fractions confirmed that the MagA fusion protein was localized in the cell membrane. The fusion protein was also detected on the surface of the lipid bilayer covering the magnetic particles. These results suggest that MagA is a membrane-bound protein, the expression of which is enhanced at low iron concentrations.

  15. Generation and evaluation of mammalian secreted and membrane protein expression libraries for high-throughput target discovery.

    PubMed

    Panavas, Tadas; Lu, Jin; Liu, Xuesong; Winkis, Ann-Marie; Powers, Gordon; Naso, Michael F; Amegadzie, Bernard

    2011-09-01

    Expressed protein libraries are becoming a critical tool for new target discovery in the pharmaceutical industry. In order to get the most meaningful and comprehensive results from protein library screens, it is essential to have library proteins in their native conformation with proper post-translation modifications. This goal is achieved by expressing untagged human proteins in a human cell background. We optimized the transfection and cell culture conditions to maximize protein expression in a 96-well format so that the expression levels were comparable with the levels observed in shake flasks. For detection purposes, we engineered a 'tag after stop codon' system. Depending on the expression conditions, it was possible to express either native or tagged proteins from the same expression vector set. We created a human secretion protein library of 1432 candidates and a small plasma membrane protein set of about 500 candidates. Utilizing the optimized expression conditions, we expressed and analyzed both libraries by SDS-PAGE gel electrophoresis and Western blotting. Two thirds of secreted proteins could be detected by Western-blot analyses; almost half of them were visible on Coomassie stained gels. In this paper, we describe protein expression libraries that can be easily produced in mammalian expression systems in a 96-well format, with one protein expressed per well. The libraries and methods described allow for the development of robust, high-throughput functional screens designed to assay for protein specific functions associated with a relevant disease-specific activity.

  16. The archaebacterial membrane protein bacterio-opsin is expressed and N-terminally processed in the yeast Saccharomyces cerevisiae.

    PubMed

    Lang-Hinrichs, C; Queck, I; Büldt, G; Stahl, U; Hildebrandt, V

    1994-07-25

    The bop gene codes for the membrane protein bacterio-opsin (BO), which on binding all-trans-retinal, constitutes the light-driven proton pump bacteriorhodopsin (BR) in the archaebacterium Halobacterium salinarium. This gene was cloned in a yeast multi-copy vector and expressed in Saccharomyces cerevisiae under the control of the constitutive ADH1 promoter. Both the authentic gene and a modified form lacking the precursor sequence were expressed in yeast. Both proteins are incorporated into the membrane in S. cerevisiae. The presequence is thus not required for membrane targeting and insertion of the archaebacterial protein in budding yeast, or in the fission yeast Schizosaccharomyces pombe, as has been shown previously. However, in contrast to S. pombe transformants, which take on a reddish colour when all-trans-retinal is added to the culture medium as a result of the in vivo regeneration of the pigment, S. cerevisiae cells expressing BO do not take on a red colour. The precursor of BO is processed to a protein identical in size to the mature BO found in the purple membrane of Halobacterium. The efficiency of processing in S. cerevisiae is dependent on growth phase, as well as on the composition of the medium and on the strain used. The efficiency of processing of BR is reduced in S. pombe and in a retinal-deficient strain of H. salinarium, when retinal is present in the medium.

  17. Cytochrome c oxidase is regulated by modulations in protein expression and mitochondrial membrane phospholipid composition in estivating African lungfish.

    PubMed

    Frick, N T; Bystriansky, J S; Ip, Y K; Chew, S F; Ballantyne, J S

    2010-03-01

    We examined some of the potential mechanisms lungfish (Protopterus dolloi) use to regulate cytochrome c oxidase (CCO), during metabolic depression. CCO activity was reduced by 67% in isolated liver mitochondria of estivating fish. This was likely accomplished, in part, by the 46% reduction in CCO subunit I protein expression in the liver. No change in the mRNA expression levels of CCO subunits I, II, III, and IV were found in the liver, suggesting CCO is under translational regulation; however, in the kidney, messenger limitation may be a factor as the expression of subunits I and II were depressed ( approximately 10-fold) during estivation, suggesting tissue-specific mechanisms of regulation. CCO is influenced by mitochondrial membrane phospholipids, particularly cardiolipin (CL). In P. dolloi, the phospholipid composition of the liver mitochondrial membrane changed during estivation, with a approximately 2.3-fold reduction in the amount of CL. Significant positive correlations were found between CCO activity and the amount of CL and phosphatidylethanolamine within the mitochondrial membrane. It appears CCO activity is regulated through multiple mechanisms in P. dolloi, and individual subunits of CCO are regulated independently, and in a tissue-specific manner. It is proposed that altering the amount of CL within the mitochondrial membrane may be a means of regulating CCO activity during metabolical depression in the African lungfish, P. dolloi.

  18. Light gradients in spherical photosynthetic vesicles.

    PubMed

    Paillotin, G; Leibl, W; Gapiński, J; Breton, J; Dobek, A

    1998-07-01

    Light-gradient photovoltage measurements were performed on EDTA-treated thylakoids and on osmotically swollen thylakoids (blebs), both of spherical symmetry but of different sizes. In the case of EDTA vesicles, a negative polarity (due to the normal light gradient) was observed in the blue range of the absorption spectrum, and a positive polarity, corresponding to an inverse light gradient, was observed at lambda = 530 and lambda = 682 nm. The sign of the photovoltage polarity measured in large blebs (swollen thylakoids) is the same as that obtained for whole chloroplasts, although differences in the amplitudes are observed. An approach based on the use of polar coordinates was adapted for a theoretical description of these membrane systems of spherical symmetry. The light intensity distribution and the photovoltage in such systems were calculated. Fits to the photovoltage amplitudes, measured as a function of light wavelength, made it possible to derive the values of the dielectric constant of the protein, epsilons = 3, and the refractive index of the photosynthetic membrane for light propagating perpendicular and parallel to the membrane surface, nt = 1.42 and nn = 1.60, respectively. The latter two values determine the birefringence of the biological membrane, Deltan = nn - nt = 0.18.

  19. Analysis of Shewanella oneidensis Membrane Protein Expression in Response to Electron Acceptor Availability

    SciTech Connect

    Giometti, Carol S.; Khare, Tripti; Verberkmoes, Nathan; O'Loughlin, Ed; Lindberg, Carl; Thompson, Melissa; Hettich, Robert

    2006-04-05

    Shewanella oneidensis MR-1, a gram negative metal-reducing bacterium, can utilize a large number of electron acceptors. In the natural environment, S. oneidensis utilizes insoluble metal oxides as well as soluble terminal electron acceptors. The purpose of this ERSP project is to identify differentially expressed proteins associated with the membranes of S. oneidensis MR-1 cells grown with different electron acceptors, including insoluble metal oxides. We hypothesize that through the use of surface labeling, subcellular fractionation, and a combination of proteome analysis tools, proteins involved in the reduction of different terminal electron acceptors will be elucidated. We are comparing the protein profiles from cells grown with the soluble electron acceptors oxygen and fumarate and with those from cells grown with the insoluble iron oxides goethite, ferrihydrite and lepidocrocite. Comparison of the cell surface proteins isolated from cells grown with oxygen or anaerobically with fumarate revealed an increase in the abundance of over 25 proteins in anaerobic cells, including agglutination protein and flagellin proteins along with the several hypothetical proteins. In addition, the surface protein composition of cells grown with the insoluble iron oxides varies considerably from the protein composition observed with either soluble electron acceptor as well as between the different insoluble acceptors.

  20. Influence of perfluorooctanoic acid on proteomic expression and cell membrane fatty acid of Escherichia coli.

    PubMed

    Yang, Meng; Ye, Jinshao; Qin, Huaming; Long, Yan; Li, Yi

    2017-01-01

    Perfluorooctanoic acid (PFOA) has received an increasing attention in the agricultural and food industries due to its risk to human health. To facilitate the development of novel biomarkers of Escherichia coli against PFOA through multi-omics technologies, and to reveal the resistance mechanism of E. coli against PFOA at protein levels, the interactions among pollutant stress, protein expression and cell metabolism was investigated by using iTRAQ-based quantitative proteomic analysis. The results revealed that the 63 up-regulated proteins mainly involved in tricarboxylic acid cycle, glyoxylate and dicarboxylate metabolism and fatty acid biosynthesis, whereas, the 69 down-regulated proteins related to oxidative phosphorylation, pyruvate metabolism and the cell cycle-caulobacter pathway, were also associated with the increase of membrane permeability, excessive expenditure of ATP, disruption of fatty acid biosynthesis under PFOA stress. The results provide novel insights into the influence mechanisms of PFOA on fatty acid and protein networks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Mechanical Stress Downregulates MHC Class I Expression on Human Cancer Cell Membrane

    PubMed Central

    Talib Hassan, Almosawy; Das, Gobind; Tadepally, Lakshmikanth; Matteucci, Marco; Liberale, Carlo; Mesuraca, Maria; Scumaci, Domenica; Gentile, Francesco; Cojoc, Gheorghe; Perozziello, Gerardo; Ammendolia, Antonio; Gallo, Adriana; Kärre, Klas; Cuda, Giovanni; Candeloro, Patrizio; Di Fabrizio, Enzo; Carbone, Ennio

    2014-01-01

    In our body, cells are continuously exposed to physical forces that can regulate different cell functions such as cell proliferation, differentiation and death. In this work, we employed two different strategies to mechanically stress cancer cells. The cancer and healthy cell populations were treated either with mechanical stress delivered by a micropump (fabricated by deep X-ray nanolithography) or by ultrasound wave stimuli. A specific down-regulation of Major Histocompatibility Complex (MHC) class I molecules expression on cancer cell membrane compared to different kinds of healthy cells (fibroblasts, macrophages, dendritic and lymphocyte cells) was observed, stimulating the cells with forces in the range of nano-newton, and pressures between 1 and 10 bar (1 bar = 100.000 Pascal), depending on the devices used. Moreover, Raman spectroscopy analysis, after mechanical treatment, in the range between 700–1800 cm−1, indicated a relative concentration variation of MHC class I. PCA analysis was also performed to distinguish control and stressed cells within different cell lines. These mechanical induced phenotypic changes increase the tumor immunogenicity, as revealed by the related increased susceptibility to Natural Killer (NK) cells cytotoxic recognition. PMID:25541692

  2. Expression of vascular antigens by bone cells during bone regeneration in a membranous bone distraction system.

    PubMed

    Lewinson, D; Maor, G; Rozen, N; Rabinovich, I; Stahl, S; Rachmiel, A

    2001-11-01

    An in vivo system of membranous bone formation during distraction has been investigated in order to follow cells that express vascular markers with the objective of understanding the neovascularization process. Concomitantly, sustained proliferation of preskeletal cells was achieved through the application of mechanical force. New capillaries and leading edges that arose by angiogenesis from the periosteal and mucosal surfaces and invaded the central zone of the regenerating distraction tissue temporally preceded the growth of delicate woven bone trabeculae from both edges of the cut bone. Concentrically arranged 'onion-like' configurations were abundant in paracentral zones and in association with mesenchymal condensations, suggesting their de novo formation in situ. Vascular specific markers, the angiopoietin receptor Tie-2 and factor VIII-related antigen (FVIIIrAg), were localized immunohistochemically in order to follow cells of vascular origin. Endothelial cells of the new capillaries, centrally located cells of the concentric configurations, pericytes, and most of the adjacent polygonal mesenchymal cells stained positively with specific antibodies to both antigens. Moreover, preosteoblasts and osteoblasts that lie adjacent to or already embedded in the osteiod of the newly formed trabeculae were also FVIIIrAg and Tie-2 immunopositive. As the source of the bone-forming cells in regenerating tissue during distraction is not yet fully understood, this observation might support the possibility of their vascular origin.

  3. Recombinant Phospholipase A1 of the Outer Membrane of Psychrotrophic Yersinia pseudotuberculosis: Expression, Purification, and Characterization.

    PubMed

    Bakholdina, S I; Tischenko, N M; Sidorin, E V; Isaeva, M P; Likhatskaya, G N; Dmitrenok, P S; Kim, N Yu; Chernikov, O V; Solov'eva, T F

    2016-01-01

    The pldA gene encoding membrane-bound phospholipase A1 of Yersinia pseudotuberculosis was cloned and expressed in Escherichia coli cells. Recombinant phospholipase A1 (rPldA) was isolated from inclusion bodies dissolved in 8 M urea by two-stage chromatography (ion-exchange and gel-filtration chromatography) as an inactive monomer. The molecular mass of the rPldA determined by MALDI-TOF MS was 31.7 ± 0.4 kDa. The highly purified rPldA was refolded by 10-fold dilution with buffer containing 10 mM Triton X-100 and subsequent incubation at room temperature for 16 h. The refolded rPldA hydrolyzed 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine in the presence of calcium ions. The enzyme exhibited maximal activity at 37°C and nearly 40% of maximal activity at 15°C. The phospholipase A1 was active over a wide range of pH from 4 to 11, exhibiting maximal activity at pH 10. Spatial structure models of the monomer and the dimer of Y. pseudotuberculosis phospholipase A1 were constructed, and functionally important amino acid residues of the enzyme were determined. Structural differences between phospholipases A1 from Y. pseudotuberculosis and E. coli, which can affect the functional activity of the enzyme, were revealed.

  4. Two plasma membrane H(+)-ATPase genes are differentially expressed in iron-deficient cucumber plants.

    PubMed

    Santi, Simonetta; Cesco, Stefano; Varanini, Zeno; Pinton, Roberto

    2005-03-01

    Aim of the present work was to investigate the involvement of plasma membrane (PM) H(+)-ATPase (E.C. 3.6.3.6) isoforms of cucumber (Cucumis sativus L.) in the response to Fe deficiency. Two PM H(+)-ATPase cDNAs (CsHA1 and CsHA2) were isolated from cucumber and their expression analysed as a function of Fe nutritional status. Semi-quantitative reverse transcriptase (RT)-PCR and quantitative real-time RT-PCR revealed in Fe-deficient roots an enhanced accumulation of CsHA1 gene transcripts, which were hardly detectable in leaves. Supply of iron to deficient plants caused a decrease in the transcript level of CsHA1. In contrast, CsHA2 transcripts, detected both in roots and leaves, appeared to be unaffected by Fe. This work shows for the first time that a transcriptional regulation of PM H(+)-ATPase involving a specific isoform occurs in the response to Fe deficiency.

  5. Identification, sequencing and expression of an integral membrane protein of the trans-Golgi network (TGN38).

    PubMed Central

    Luzio, J P; Brake, B; Banting, G; Howell, K E; Braghetta, P; Stanley, K K

    1990-01-01

    Organelle-specific integral membrane proteins were identified by a novel strategy which gives rise to monospecific antibodies to these proteins as well as to the cDNA clones encoding them. A cDNA expression library was screened with a polyclonal antiserum raised against Triton X-114-extracted organelle proteins and clones were then grouped using antibodies affinity-purified on individual fusion proteins. The identification, molecular cloning and sequencing are described of a type 1 membrane protein (TGN38) which is located specifically in the trans-Golgi network. Images Fig. 1. Fig. 3. PMID:2204342

  6. Differential Expression of Growth Factor Receptors and Membrane-Bound Tumor Markers for Imaging in Male and Female Breast Cancer

    PubMed Central

    Vermeulen, Jeroen F.; Kornegoor, Robert; van der Wall, Elsken; van der Groep, Petra; van Diest, Paul J.

    2013-01-01

    Introduction Male breast cancer accounts for 0.5–1% of all breast cancers and is generally diagnosed at higher stage than female breast cancers and therefore might benefit from earlier detection and targeted therapy. Except for HER2 and EGFR, little is known about expression of growth factor receptors in male breast cancer. We therefore investigated expression profiles of growth factor receptors and membrane-bound tumor markers in male breast cancer and gynecomastia, in comparison with female breast cancer. Methods Tissue microarrays containing 133 male breast cancer and 32 gynecomastia cases were stained by immunohistochemistry for a panel of membrane-bound targets and compared with data on 266 female breast cancers. Results Growth factor receptors were variably expressed in 4.5% (MET) up to 38.5% (IGF1-R) of male breast cancers. Compared to female breast cancer, IGF1-R and carbonic anhydrase 12 (CAXII) were more frequently and CD44v6, MET and FGFR2 less frequently expressed in male breast cancer. Expression of EGFR, HER2, CAIX, and GLUT1 was not significantly different between male and female breast cancer. Further, 48.1% of male breast cancers expressed at least one and 18.0% expressed multiple growth factor receptors. Since individual membrane receptors are expressed in only half of male breast cancers, a panel of membrane markers will be required for molecular imaging strategies to reach sensitivity. A potential panel of markers for molecular imaging, consisting of EGFR, IGF1-R, FGFR2, CD44v6, CAXII, GLUT1, and CD44v6 was positive in 77% of male breast cancers, comparable to female breast cancers. Conclusions Expression patterns of growth factor receptors and hypoxia membrane proteins in male breast cancer are different from female breast cancer. For molecular imaging strategies, a putative panel consisting of markers for EGFR, IGF1-R, FGFR2, GLUT1, CAXII, CD44v6 was positive in 77% of cases and might be considered for development of molecular tracers for

  7. Differential expression of growth factor receptors and membrane-bound tumor markers for imaging in male and female breast cancer.

    PubMed

    Vermeulen, Jeroen F; Kornegoor, Robert; van der Wall, Elsken; van der Groep, Petra; van Diest, Paul J

    2013-01-01

    Male breast cancer accounts for 0.5-1% of all breast cancers and is generally diagnosed at higher stage than female breast cancers and therefore might benefit from earlier detection and targeted therapy. Except for HER2 and EGFR, little is known about expression of growth factor receptors in male breast cancer. We therefore investigated expression profiles of growth factor receptors and membrane-bound tumor markers in male breast cancer and gynecomastia, in comparison with female breast cancer. Tissue microarrays containing 133 male breast cancer and 32 gynecomastia cases were stained by immunohistochemistry for a panel of membrane-bound targets and compared with data on 266 female breast cancers. Growth factor receptors were variably expressed in 4.5% (MET) up to 38.5% (IGF1-R) of male breast cancers. Compared to female breast cancer, IGF1-R and carbonic anhydrase 12 (CAXII) were more frequently and CD44v6, MET and FGFR2 less frequently expressed in male breast cancer. Expression of EGFR, HER2, CAIX, and GLUT1 was not significantly different between male and female breast cancer. Further, 48.1% of male breast cancers expressed at least one and 18.0% expressed multiple growth factor receptors. Since individual membrane receptors are expressed in only half of male breast cancers, a panel of membrane markers will be required for molecular imaging strategies to reach sensitivity. A potential panel of markers for molecular imaging, consisting of EGFR, IGF1-R, FGFR2, CD44v6, CAXII, GLUT1, and CD44v6 was positive in 77% of male breast cancers, comparable to female breast cancers. Expression patterns of growth factor receptors and hypoxia membrane proteins in male breast cancer are different from female breast cancer. For molecular imaging strategies, a putative panel consisting of markers for EGFR, IGF1-R, FGFR2, GLUT1, CAXII, CD44v6 was positive in 77% of cases and might be considered for development of molecular tracers for male breast cancer.

  8. Photosynthetic characteristics and organization of chlorophyll in marine dinoflagellates

    PubMed Central

    Prézelin, Barbara B.; Alberte, Randall S.

    1978-01-01

    The photosystem I reaction center complex, the P-700-chlorophyll a-protein, has been isolated from the photosynthetic membranes of two marine dinoflagellates, Gonyaulax polyedra and Glenodinium sp., by detergent solubilization with Triton X-100. The complexes isolated from the two species were indistinguishable, exhibiting identical absorption properties (400-700 nm) at both room (300 K) and low (77 K) temperature. The room temperature, red wavelength maximum was at 675 nm. The absorption properties, kinetics of photobleaching, sodium dodecyl sulfate electrophoretic mobilities, and chlorophyll a/P-700 ratio (50 ± 10) of the P-700-chlorophyll a-protein complexes from the two species also were essentially the same and similar to those properties characterizing P-700-chlorophyll a-protein complexes of higher plants and green algae. Photosynthetic unit sizes were determined for cells grown at 1000 μW/cm2. Both dinoflagellates had unit sizes (total chlorophyll/P-700 ratios) of about 600, even though the distribution of chlorophyll a, chlorophyll c, and peridinin in the light-harvesting components differed in Gonyaulax and Glenodinium. The number of photosynthetic units per cell in the two species correlates directly with their photosynthetic activities. A model is presented for the distribution of chlorophyll in the photosynthetic apparatus of these dinoflagellates which accounts for the known role of the isolated pigment-protein complexes and for the known photoadaptive physiology in pigmentation and photosynthesis for these species. PMID:16592518

  9. Inhibition of Kv channel expression by NSAIDs depolarizes membrane potential and inhibits cell migration by disrupting calpain signaling

    PubMed Central

    Silver, Kristopher; Littlejohn, Alaina; Thomas, Laurel; Marsh, Elizabeth; Lillich, James D.

    2015-01-01

    Clinical use of non-steroidal anti-inflammatory drugs (NSAIDs) is well known to cause gastrointestinal ulcer formation via several mechanisms that include inhibiting epithelial cell migration and mucosal restitution. The drug-affected signaling pathways that contribute to inhibition of migration by NSAIDs are poorly understood, though previous studies have shown that NSAIDs depolarize membrane potential and suppress expression of calpain proteases and voltage-gated potassium (Kv) channel subunits. Kv channels play significant roles in cell migration and are targets of NSAID activity in white blood cells, but the specific functional effects of NSAID-induced changes in Kv channel expression, particularly on cell migration, are unknown in intestinal epithelial cells. Accordingly, we investigated the effects of NSAIDs on expression of Kv1.3, 1.4, and 1.6 in vitro and/or in vivo and evaluated the functional significance of loss of Kv subunit expression. Indomethacin or NS-398 reduced total and plasma membrane protein expression of Kv1.3 in cultured intestinal epithelial cells (IEC-6). Additionally, depolarization of membrane potential with margatoxin (MgTx), 40 mM K+, or silencing of Kv channel expression with siRNA significantly reduced IEC-6 cell migration and disrupted calpain activity. Furthermore, in rat small intestinal epithelia, indomethacin and NS-398 had significant, yet distinct, effects on gene and protein expression of Kv1.3, 1.4, or 1.6, suggesting that these may be clinically relevant targets. Our results show that inhibition of epithelial cell migration by NSAIDs is associated with decreased expression of Kv channel subunits, and provide a mechanism through which NSAIDs inhibit cell migration and may contribute to NSAID-induced gastrointestinal (GI) toxicity. PMID:26549367

  10. Inhibition of Kv channel expression by NSAIDs depolarizes membrane potential and inhibits cell migration by disrupting calpain signaling.

    PubMed

    Silver, Kristopher; Littlejohn, Alaina; Thomas, Laurel; Marsh, Elizabeth; Lillich, James D

    2015-12-15

    Clinical use of non-steroidal anti-inflammatory drugs (NSAIDs) is well known to cause gastrointestinal ulcer formation via several mechanisms that include inhibiting epithelial cell migration and mucosal restitution. The drug-affected signaling pathways that contribute to inhibition of migration by NSAIDs are poorly understood, though previous studies have shown that NSAIDs depolarize membrane potential and suppress expression of calpain proteases and voltage-gated potassium (Kv) channel subunits. Kv channels play significant roles in cell migration and are targets of NSAID activity in white blood cells, but the specific functional effects of NSAID-induced changes in Kv channel expression, particularly on cell migration, are unknown in intestinal epithelial cells. Accordingly, we investigated the effects of NSAIDs on expression of Kv1.3, 1.4, and 1.6 in vitro and/or in vivo and evaluated the functional significance of loss of Kv subunit expression. Indomethacin or NS-398 reduced total and plasma membrane protein expression of Kv1.3 in cultured intestinal epithelial cells (IEC-6). Additionally, depolarization of membrane potential with margatoxin (MgTx), 40mM K(+), or silencing of Kv channel expression with siRNA significantly reduced IEC-6 cell migration and disrupted calpain activity. Furthermore, in rat small intestinal epithelia, indomethacin and NS-398 had significant, yet distinct, effects on gene and protein expression of Kv1.3, 1.4, or 1.6, suggesting that these may be clinically relevant targets. Our results show that inhibition of epithelial cell migration by NSAIDs is associated with decreased expression of Kv channel subunits, and provide a mechanism through which NSAIDs inhibit cell migration and may contribute to NSAID-induced gastrointestinal (GI) toxicity.

  11. Abnormal gene expression of proinflammatory cytokines and their membrane-bound receptors in the lymphocytes of depressed patients.

    PubMed

    Rizavi, Hooriyah S; Ren, Xinguo; Zhang, Hui; Bhaumik, Runa; Pandey, Ghanshyam N

    2016-06-30

    Abnormalities of protein levels of proinflammatory cytokines and their soluble receptors have been reported in plasma of depressed patients. In this study, we examined the role of cytokines and their membrane-bound receptors in major depressive disorder (MDD). We determined the protein and mRNA expression of proinflammatory cytokines, interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and mRNA expression of their membrane-bound receptors in the lymphocytes from 31 hospitalized MDD patients and 30 non-hospitalized normal control (NC) subjects. The subjects were diagnosed according to DSM-IV criteria. Protein levels of cytokines were determined by ELISA, and mRNA levels in lymphocytes were determined by the qPCR method. We found that the mean mRNA levels of the proinflammatory cytokines IL-1β, IL-6, TNF-α, their receptors, TNFR1, TNFR2, IL-1R1 and the antagonist IL-1RA were significantly increased in the lymphocytes of MDD patients compared with NC. No significant differences in the lymphocyte mRNA levels of IL-1R2, IL-6R, and Gp130 were observed between MDD patients and NC. These studies suggest abnormal gene expression of these cytokines and their membrane-bound receptors in the lymphocytes of MDD patients, and that their mRNA expression levels in the lymphocytes could be a useful biomarker for depression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Immunochemical Analysis of the Temporal and Tissue-Specific Expression of an Avena sativa Plasma Membrane Determinant 1

    PubMed Central

    Lynes, Michael A.

    1992-01-01

    An immunoglobulin Mk monoclonal (F8IVE9) antibody raised against oat (Avena sativa cv Garry) root homogenate has been produced and characterized. The predominant target bound by this antibody is a 62-kilodalton protein (p62) that is expressed in both oat root and oat shoot cells. Treatment of the oat antigen with periodate, or with recombinant N-glycanase, affects the F8IVE9 binding to the antigen, suggesting that the specific epitope for this monoclonal antibody involves a carbohydrate determinant. Levels of p62 present in cells of the oat root increase approximately twofold as the root tissue matures during the first 11 days postgermination. In contrast, levels of expression in shoot tissue remain relatively constant during the same period. The p62 antigen has been shown to be expressed at the plasma membrane by immunohistochemical means, by immunofluorescent labeling of protoplasts, and by enzyme-linked immunosorbent assay analysis of purified plasma membrane. The F8IVE9 antigenic target appears to be uniformly distributed through root tissue but is differentially expressed in specific sections of the shoot. F8IVE9 antibody also binds to antigens expressed in a number of other species, including clover, corn, pea, broccoli, mustard, and bean, and has been shown to bind to Samanea protoplast plasma membranes. This monoclonal antibody may prove to be useful for a variety of investigations, including an analysis of the specific patterns of cellular differentiation that occur during early morphogenesis, and the characterization of plasma membrane-associated elements in plants. ImagesFigure 3Figure 5Figure 7 PMID:16668621

  13. Differential rubisco content and photosynthetic efficiency of rol gene integrated Vinca minor transgenic plant: Correlating factors associated with morpho-anatomical changes, gene expression and alkaloid productivity.

    PubMed

    Verma, Priyanka; Khan, Shamshad Ahmad; Masood, Nusrat; Manika, N; Sharma, Abhishek; Verma, Neha; Luqman, Suaib; Mathur, Ajay K

    2017-09-20

    Transgenic plants obtained from a hairy root line (PVG) of Vinca minor were characterized in relation to terpenoid indole alkaloids (TIAs) pathway gene expression and vincamine production. The hairy roots formed callus with green nodular protuberances when transferred onto agar-gelled MS medium containing 3.0mg/l zeatin. These meristematic zones developed into shoot buds on medium with 1.0mg/l 2, 4-dichlorophenoxyacetic acid and 40mg/l ascorbic acid. These shoot buds subsequently formed rooted plants when shifted onto a hormone-free MS medium with 6% sucrose. Transgenic nature of the plants was confirmed by the presence of rol genes of the Ri plasmid in them. The transgenic plants (TP) had elongated internodes and a highly proliferating root system. During glass house cultivation TP consistently exhibited slower growth rate, low chlorophyll content (1.02±0.08mg/gm fr. wt.), reduced carbon exchange rate (2.67±0.16μmolm(-2)s(-1)), less transpiration rate (2.30±0.20mmolm(-2) s(-1)) and poor stomatal conductance (2.21±0.04mmolm(-2) s(-1)) when compared with non-transgenic population. The activity of rubisco enzyme in the leaves of TP was nearly two folds less in comparison to non-transgenic controls (1.80milliunitsml(-1)mgprotein(-1) against 3.61milliunits ml(-1)mgprotein(-1), respectively). Anatomically, the TP had a distinct tetarch arrangement of vascular bundles in their stem and roots against a typical ployarched pattern in the non-transgenic plants. Significantly, the transgenic plants accumulated 35% higher amount of total TIAs (3.10±0.21% dry wt.) along with a 0.03% dry wt. content of its vasodilatory and nootropic alkaloid vincamine in their leaves. Higher productivity of alkaloids in TP was corroborated with more than four (RQ=4.60±0.30) and five (RQ=5.20±0.70) times over-expression of TIAs pathway genes tryptophan decarboxylase (TDC) and strictosidine synthase (STR) that are responsible for pushing the metabolic flux towards TIAs synthesis in this

  14. Membrane-attached Cytokines Expressed by mRNA Electroporation Act as Potent T-Cell Adjuvants.

    PubMed

    Weinstein-Marom, Hadas; Pato, Aviad; Levin, Noam; Susid, Keren; Itzhaki, Orit; Besser, Michal J; Peretz, Tamar; Margalit, Alon; Lotem, Michal; Gross, Gideon

    2016-01-01

    Proinflammatory cytokines are widely explored in different adoptive cell therapy protocols for enhancing survival and function of the transferred T cells, but their systemic administration is often associated with severe toxicity which limits their clinical use. To confine cytokine availability to the therapeutic T cells, we expressed 3 key cytokines, IL-2, IL-12, and IL-15, as integral T-cell membrane proteins. To prevent permanent activation of growth signaling pathways, we delivered these genes to T cells through mRNA electroporation. The engineered cytokines could be detected on the surface of mRNA-transfected cells and binding to their cell-surface receptors mainly occurred in cis. The 3 human cytokines supported the ex vivo growth of activated human CD8 and CD4 T cells for at least 6 days posttransfection, comparably to high-dose soluble IL-2. Similarly, membrane IL-2, membrane IL-12, and, to a lesser extent, membrane IL-15, were comparable with their soluble counterparts in supporting proliferation of splenic mouse CD8 T cells. Following electroporation of human CD8 T cells and antimelanoma tumor-infiltrating lymphocytes, membrane cytokines synergized with constitutively active toll-like receptor 4 in inducing interferon-γ secretion. Efficient cooperation with TLR4 was also evident in the upregulation of the activation molecules CD25, CD69, CD137 (4-1BB), and CD134 (OX40). Taken together, membrane cytokines expressed through mRNA transfection emerge as effective tools for enhancing T-cell proliferation and function and may have potential use in adoptive T-cell therapy.

  15. Maximum photosynthetic efficiency of biomass growth: a criticism of some measurements

    SciTech Connect

    Lee, Y.K.; Pirt, S.J.

    1982-02-01

    The yield of biomass produced in a photosynthetic culture is an expression of the photosynthetic efficiency. Microbial cells consume energy for both growth and for maintenance. The bioenergetics of Chlorella cultures and the maximum growth yields obtained by various researchers are examined in this paper.

  16. Reduced plasma membrane expression of dysferlin mutants is attributed to accelerated endocytosis via a syntaxin-4-associated pathway.

    PubMed

    Evesson, Frances J; Peat, Rachel A; Lek, Angela; Brilot, Fabienne; Lo, Harriet P; Dale, Russell C; Parton, Robert G; North, Kathryn N; Cooper, Sandra T

    2010-09-10

    Ferlins are an ancient family of C2 domain-containing proteins, with emerging roles in vesicular trafficking and human disease. Dysferlin mutations cause inherited muscular dystrophy, and dysferlin also shows abnormal plasma membrane expression in other forms of muscular dystrophy. We establish dysferlin as a short-lived (protein half-life approximately 4-6 h) and transitory transmembrane protein (plasma membrane half-life approximately 3 h), with a propensity for rapid endocytosis when mutated, and an association with a syntaxin-4 endocytic route. Dysferlin plasma membrane expression and endocytic rate is regulated by the C2B-FerI-C2C motif, with a critical role identified for C2C. Disruption of C2C dramatically reduces plasma membrane dysferlin (by 2.5-fold), due largely to accelerated endocytosis (by 2.5-fold). These properties of reduced efficiency of plasma membrane expression due to accelerated endocytosis are also a feature of patient missense mutant L344P (within FerI, adjacent to C2C). Importantly, dysferlin mutants that demonstrate accelerated endocytosis also display increased protein lability via endosomal proteolysis, implicating endosomal-mediated proteolytic degradation as a novel basis for dysferlin-deficiency in patients with single missense mutations. Vesicular labeling studies establish that dysferlin mutants rapidly transit from EEA1-positive early endosomes through to dextran-positive lysosomes, co-labeled by syntaxin-4 at multiple stages of endosomal transit. In summary, our studies define a transient biology for dysferlin, relevant to emerging patient therapeutics targeting dysferlin replacement. We introduce accelerated endosomal-directed degradation as a basis for lability of dysferlin missense mutants in dysferlinopathy, and show that dysferlin and syntaxin-4 similarly transit a common endosomal pathway in skeletal muscle cells.

  17. Reduced Plasma Membrane Expression of Dysferlin Mutants Is Attributed to Accelerated Endocytosis via a Syntaxin-4-associated Pathway*

    PubMed Central

    Evesson, Frances J.; Peat, Rachel A.; Lek, Angela; Brilot, Fabienne; Lo, Harriet P.; Dale, Russell C.; Parton, Robert G.; North, Kathryn N.; Cooper, Sandra T.

    2010-01-01

    Ferlins are an ancient family of C2 domain-containing proteins, with emerging roles in vesicular trafficking and human disease. Dysferlin mutations cause inherited muscular dystrophy, and dysferlin also shows abnormal plasma membrane expression in other forms of muscular dystrophy. We establish dysferlin as a short-lived (protein half-life ∼4–6 h) and transitory transmembrane protein (plasma membrane half-life ∼3 h), with a propensity for rapid endocytosis when mutated, and an association with a syntaxin-4 endocytic route. Dysferlin plasma membrane expression and endocytic rate is regulated by the C2B-FerI-C2C motif, with a critical role identified for C2C. Disruption of C2C dramatically reduces plasma membrane dysferlin (by 2.5-fold), due largely to accelerated endocytosis (by 2.5-fold). These properties of reduced efficiency of plasma membrane expression due to accelerated endocytosis are also a feature of patient missense mutant L344P (within FerI, adjacent to C2C). Importantly, dysferlin mutants that demonstrate accelerated endocytosis also display increased protein lability via endosomal proteolysis, implicating endosomal-mediated proteolytic degradation as a novel basis for dysferlin-deficiency in patients with single missense mutations. Vesicular labeling studies establish that dysferlin mutants rapidly transit from EEA1-positive early endosomes through to dextran-positive lysosomes, co-labeled by syntaxin-4 at multiple stages of endosomal transit. In summary, our studies define a transient biology for dysferlin, relevant to emerging patient therapeutics targeting dysferlin replacement. We introduce accelerated endosomal-directed degradation as a basis for lability of dysferlin missense mutants in dysferlinopathy, and show that dysferlin and syntaxin-4 similarly transit a common endosomal pathway in skeletal muscle cells. PMID:20595382

  18. Caveolin-1 Expression and Membrane Cholesterol Content Modulate N-Type Calcium Channel Activity in NG108-15 Cells

    PubMed Central

    Toselli, M.; Biella, G.; Taglietti, V.; Cazzaniga, E.; Parenti, M.

    2005-01-01

    Caveolins are the main structural proteins of glycolipid/cholesterol-rich plasmalemmal invaginations, termed caveolae. In addition, caveolin-1 isoform takes part in membrane remodelling as it binds and transports newly synthesized cholesterol from endoplasmic reticulum to the plasma membrane. Caveolin-1 is expressed in many cell types, including hippocampal neurons, where an abundant SNAP25-caveolin-1 complex is detected after induction of persistent synaptic potentiation. To ascertain whether caveolin-1 influences neuronal voltage-gated Ca2+ channel basal activity, we stably expressed caveolin-1 into transfected neuroblastoma × glioma NG108-15 hybrid cells [cav1(+) clone] that lack endogenous caveolins but express N-type Ca2+ channels upon cAMP-induced neuronal differentiation. Whole-cell patch-clamp recordings of cav1(+) cells demonstrated that N-type current density was reduced in size by ∼70% without any significant change in the time course of activation and inactivation and voltage dependence. Moreover, the cav1(+) clone exhibited a significantly increased proportion of membrane cholesterol compared to wild-type NG108-15 cells. To gain insight into the mechanism underlying caveolin-1 lowering of N-current density, and more precisely to test whether this was indirectly caused by caveolin-1-induced enhancement of membrane cholesterol, we compared single N-type channel activities in cav1(+) clone and wild-type NG108-15 cells enriched with cholesterol after exposure to a methyl-β-cyclodextrin-cholesterol complex. A lower Ca2+ channel activity was recorded from cell-attached patches of both cell types, thus supporting the view that the increased proportion of membrane cholesterol is ultimately responsible for the effect. This is due to a reduction in the probability of channel opening caused by a significant decrease of channel mean open time and by an increase of the frequency of null sweeps. PMID:16040758

  19. Phenotype expression of gingival fibroblasts cultured on membranes used in guided tissue regeneration.

    PubMed

    Locci, P; Calvitti, M; Belcastro, S; Pugliese, M; Guerra, M; Marinucci, L; Staffolani, N; Becchetti, E

    1997-09-01

    Human gingival fibroblasts were cultured in vitro using as substrates an extracellular matrix (matrix) and polytetrafluoride (PTFE) membranes, which are used in guided tissue regeneration. To test the degree of biocompatibility of these membranes, the cellular proliferation and the accumulation of extracellular matrix (ECM) macromolecules were considered as parameters. The fibroblasts were cultured in vitro for 24 and 48 hours without serum on plastic, matrix, and PTFE membranes in the presence of 3H-thymidine, 3H-glucosamine, and 3H-proline to study the neo-synthesis of DNA, glycosaminoglycans (GAG), and collagen proteins, respectively. Studies on cell proliferation showed that fibroblasts grown on matrix membrane significantly increased 3H-thymidine incorporation, while fibroblasts grown on PTFE membrane decreased 3H-thymidine incorporation, compared to plastic used as a control. Moreover, the PTFE membrane induced a marked decrease of collagen and GAG accumulation both in the cellular and extracellular pool, while the matrix membrane provoked a decrease of the two macromolecules in the cellular pool and an increase in the extracellular one, compared to the control. The data we obtained demonstrate that matrix membranes are the most suitable to stimulate both cellular proliferation and ECM macromolecule accumulation.

  20. Differential expression in Phanerochaete chrysosporium of membrane- associated proteins relevant to lignin degradation

    Treesearch

    Semarjit Shary; Alexander N. Kapich; Ellen A. Panisko; Jon K. Magnuson; Daniel Cullen; Kenneth E. Hammel

    2008-01-01

    Fungal lignin-degrading systems likely include membrane-associated proteins that participate in diverse processes such as uptake and oxidation of lignin fragments, production of ligninolytic secondary metabolites, and defense of the mycelium against ligninolytic oxidants. Little is known about the nature or regulation of these membrane-associated components. We grew...

  1. Enhanced expression and secretion of an epithelial membrane antigen (MA5) in a human mucinous breast tumor line (BT549).

    PubMed

    Williams, C J; Major, P P; Dion, A S

    1990-01-01

    The mouse monoclonal antibody MA5, generated versus a membrane-enriched extract of breast cancer metastatic to liver, detects one or two high molecular weight species (greater than 200 kD) in breast tumor membranes, human milk fat globule membranes, and various breast tumor cell lines. From comparative studies of five breast carcinoma lines (BT20, BT549, MCF-7, T47D, and ZR75-1), as well as an epithelial line established from milk (HBL-100), we report the stimulation of expression of MA5-reactive antigen in a mucinous breast tumor cell line (BT549) through the use of a culture medium supplemented with charcoal-absorbed fetal calf serum, insulin, and hydrocortisone. Large amounts of aggregated MA5-reactive antigen are secreted into the culture medium and can be recovered from the media for further purification by centrifugation. These findings suggest that BT549 cells, grown in the special nutritive medium, may be useful in providing an ample source of epithelial membrane antigen (also termed polymorphic epithelial mucin) for standardization of clinical assay protocols, as well as provide a model system for studies of the regulation of expression for this class of antigens in breast carcinoma.

  2. Expression, Functional Characterization, and Solid-State NMR Investigation of the G Protein-Coupled GHS Receptor in Bilayer Membranes

    PubMed Central

    Schrottke, Stefanie; Kaiser, Anette; Vortmeier, Gerrit; Els-Heindl, Sylvia; Worm, Dennis; Bosse, Mathias; Schmidt, Peter; Scheidt, Holger A.; Beck-Sickinger, Annette G.; Huster, Daniel

    2017-01-01

    The expression, functional reconstitution and first NMR characterization of the human growth hormone secretagogue (GHS) receptor reconstituted into either DMPC or POPC membranes is described. The receptor was expressed in E. coli. refolded, and reconstituted into bilayer membranes. The molecule was characterized by 15N and 13C solid-state NMR spectroscopy in the absence and in the presence of its natural agonist ghrelin or an inverse agonist. Static 15N NMR spectra of the uniformly labeled receptor are indicative of axially symmetric rotational diffusion of the G protein-coupled receptor in the membrane. In addition, about 25% of the 15N sites undergo large amplitude motions giving rise to very narrow spectral components. For an initial quantitative assessment of the receptor mobility, 1H-13C dipolar coupling values, which are scaled by molecular motions, were determined quantitatively. From these values, average order parameters, reporting the motional amplitudes of the individual receptor segments can be derived. Average backbone order parameters were determined with values between 0.56 and 0.69, corresponding to average motional amplitudes of 40–50° of these segments. Differences between the receptor dynamics in DMPC or POPC membranes were within experimental error. Furthermore, agonist or inverse agonist binding only insignificantly influenced the average molecular dynamics of the receptor. PMID:28387359

  3. Expression of interferon regulatory factor 7 correlates with the expression of Epstein-Barr Virus latent membrane protein 1 and cervical lymph node metastasis in nasopharyngeal cancer.

    PubMed

    Kondo, Satoru; Endo, Kazuhira; Wakisaka, Naohiro; Aga, Mitsuharu; Kano, Makoto; Seishima, Noriko; Imoto, Tomoko; Kobayashi, Eiji; Moriyama-Kita, Makiko; Nakanishi, Yosuke; Murono, Shigeyuki; Pagano, Joseph S; Yoshizaki, Tomokazu

    2017-09-01

    Interferon regulatory factor 7 (IRF7) has oncogenic properties in several malignancies such as Epstein-Barr virus (EBV)-associated lymphoma. However, there is no evidence whether IRF7 is associated with the oncogenesis of nasopharyngeal cancer (NPC), the pathogenesis of which is closely associated with EBV. Herein, we report that expression of IRF7 was increased in normal nasopharyngeal cells that expressed the EBV principal oncoprotein, latent membrane protein 1 (LMP1). In addition, IRF7 was mainly expressed in the nucleus in both normal nasopharyngeal cells and nasopharyngeal cancer cells that expresses LMP1. On immunohistochemical analysis, IRF7 was predominantly localized in the nucleus in biopsy samples of NPC tissues. In total, IRF7 expression was detected with 36 of 49 specimens of these tissues. Furthermore, the expression score of IRF7 correlated with the expression score of LMP1. Moreover, the expression score of IRF7 is associated with cervical lymph-node metastasis, which reflects the highly metastatic nature of this cancer. Taken together, our results suggest that expression of IRF7 is one of the metastatic effectors of LMP1 signalling in EBV-associated NPC. © 2017 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  4. The exposure of cancer cells to hyperthermia, iron oxide nanoparticles, and mitomycin C influences membrane multidrug resistance protein expression levels

    PubMed Central

    Franke, Karolin; Kettering, Melanie; Lange, Kathleen; Kaiser, Werner A; Hilger, Ingrid

    2013-01-01

    Purpose The presence of multidrug resistance-associated protein (MRP) in cancer cells is known to be responsible for many therapeutic failures in current oncological treatments. Here, we show that the combination of different effectors like hyperthermia, iron oxide nanoparticles, and chemotherapeutics influences expression of MRP 1 and 3 in an adenocarcinoma cell line. Methods BT-474 cells were treated with magnetic nanoparticles (MNP; 1.5 to 150 μg Fe/cm2) or mitomycin C (up to 1.5 μg/cm2, 24 hours) in the presence or absence of hyperthermia (43°C, 15 to 120 minutes). Moreover, cells were also sequentially exposed to these effectors (MNP, hyperthermia, and mitomycin C). After cell harvesting, mRNA was extracted and analyzed via reverse transcription polymerase chain reaction. Additionally, membrane protein was isolated and analyzed via sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting. Results When cells were exposed to the effectors alone or to combinations thereof, no effects on MRP 1 and 3 mRNA expression were observed. In contrast, membrane protein expression was influenced in a selective manner. The effects on MRP 3 expression were less pronounced compared with MRP 1. Treatment with mitomycin C decreased MRP expression at high concentrations and hyperthermia intensified these effects. In contrast, the presence of MNP only increased MRP 1 and 3 expression, and hyperthermia reversed these effects. When combining hyperthermia, magnetic nanoparticles, and mitomycin C, no further suppression of MRP expression was observed in comparison with the respective dual treatment modalities. Discussion The different MRP 1 and 3 expression levels are not associated with de novo mRNA expression, but rather with an altered translocation of MRP 1 and 3 to the cell membrane as a result of reactive oxygen species production, and with shifting of intracellular MRP storage pools, changes in membrane fluidity, etc, at the protein level. Our

  5. Cav3 T-type channels: regulators for gating, membrane expression, and cation selectivity.

    PubMed

    Senatore, A; Guan, W; Spafford, J D

    2014-04-01

    Cav3 T-type channels are low-voltage-gated channels with rapid kinetics that are classified among the calcium-selective Cav1 and Cav2 type channels. Here, we outline the fundamental and unique regulators of T-type channels. An ubiquitous and proximally located "gating brake" works in concert with the voltage-sensor domain and S6 alpha-helical segment from domain II to set the canonical low-threshold and transient gating features of T-type channels. Gene splicing of optional exon 25c (and/or exon 26) in the short III-IV linker provides a developmental switch between modes of activity, such as activating in response to membrane depolarization, to channels requiring hyperpolarization input before being available to activate. Downstream of the gating brake in the I-II linker is a key region for regulating channel expression where alternative splicing patterns correlate with functional diversity of spike patterns, pacemaking rate (especially in the heart), stage of development, and animal size. A small but persistent window conductance depolarizes cells and boosts excitability at rest. T-type channels possess an ion selectivity that can resemble not only the calcium ion exclusive Cav1 and Cav2 channels but also the sodium ion selectivity of Nav1 sodium channels too. Alternative splicing in the extracellular turret of domain II generates highly sodium-permeable channels, which contribute to low-threshold sodium spikes. Cav3 channels are more ubiquitous among multicellular animals and more widespread in tissues than the more brain centric Nav1 sodium channels in invertebrates. Highly sodium-permeant Cav3 channels can functionally replace Nav1 channels in species where they are lacking, such as in Caenorhabditis elegans.

  6. The `heavy' subunit of the photosynthetic reaction centre from Rhodopseudomonas viridis: isolation of the gene, nucleotide and amino acid sequence

    PubMed Central

    Michel, H.; Weyer, K. A.; Gruenberg, H.; Lottspeich, F.

    1985-01-01

    The gene coding for the `heavy' subunit of the photosynthetic reaction centre from Rhodopseudomonas viridis was isolated in an expression vector. Expression of the heavy subunit in Escherichia coli was detected with antibodies raised against crystalline reaction centres. The entire subunit, and not a fusion protein, was expressed in E. coli. The protein coding region of the gene was sequenced and the amino acid sequence derived. Part of the amino acid sequence was confirmed by chemical sequence analysis of the protein. The heavy subunit consists of 258 amino acids and its mol. wt. is 28 345. It possesses one membrane-spanning α-helical segment, as was revealed by the concomitant X-ray structure analysis. ImagesFig. 1.Fig. 2. PMID:16453623

  7. Preparative scale expression of membrane proteins in Escherichia coli-based continuous exchange cell-free systems.

    PubMed

    Schwarz, Daniel; Junge, Friederike; Durst, Florian; Frölich, Nadine; Schneider, Birgit; Reckel, Sina; Sobhanifar, Solmaz; Dötsch, Volker; Bernhard, Frank

    2007-01-01

    Cell-free expression is emerging as a prime method for the rapid production of preparative quantities of high-quality membrane protein samples. The technology facilitates easy access to large numbers of proteins that have been extremely difficult to obtain. Most frequently used are cell-free systems based on extracts of Escherichia coli cells, and the reaction procedures are reliable and efficient. This protocol describes the preparation of all essential reaction components such as the E. coli cell extract, T7 RNA polymerase, DNA templates as well as the individual stock solutions. The setups of expression reactions in analytical and preparative scales, including a variety of reaction designs, are illustrated. We provide detailed reaction schemes that allow the preparation of milligram amounts of functionally folded membrane proteins of prokaryotic and eukaryotic origin in less than 24 h.

  8. Functional expression, purification, characterization, and membrane reconstitution of non-structural protein 2 from hepatitis C virus.

    PubMed

    Fogeron, Marie-Laure; Paul, David; Jirasko, Vlastimil; Montserret, Roland; Lacabanne, Denis; Molle, Jennifer; Badillo, Aurélie; Boukadida, Célia; Georgeault, Sonia; Roingeard, Philippe; Martin, Annette; Bartenschlager, Ralf; Penin, François; Böckmann, Anja

    2015-12-01

    Non-structural protein 2 (NS2) of the hepatitis C virus (HCV) is an integral membrane protein that contains a cysteine protease and that plays a central organizing role in assembly of infectious progeny virions. While the crystal structure of the protease domain has been solved, the NS2 full-length form remains biochemically and structurally uncharacterized because recombinant NS2 could not be prepared in sufficient quantities from cell-based systems. We show here that functional NS2 in the context of the NS2-NS3pro precursor protein, ensuring NS2-NS3 cleavage, can be efficiently expressed by using a wheat germ cell-free expression system. In this same system, we subsequently successfully produce and purify milligram amounts of a detergent-solubilized form of full-length NS2 exhibiting the expected secondary structure content. Furthermore, immuno-electron microscopy analyses of reconstituted proteoliposomes demonstrate NS2 association with model membranes.

  9. Analysis of P-glycoprotein expression in purified parasite plasma membrane and food vacuole from Plasmodium falciparum.

    PubMed

    Elandaloussi, Laurence M; Lindt, Meinrad; Collins, Malcolm; Smith, Peter J

    2006-11-01

    A P-glycoprotein homologue (Pgh1) is believed to play a role in modulating levels of chloroquine resistance in Plasmodium falciparum. To study the role of Pgh1 in the mechanism of chloroquine (CQ) resistance, antisera were raised against this protein. There was no direct association between the level of Pgh1 expression and chloroquine sensitivity. We also failed to detect phosphorylation of Pgh1 in the food vacuole (FV), suggesting that other mechanisms regulate the chloroquine-resistant (CQR) phenotype. Therefore, high levels of expression of Pgh1 or phosphorylation of this protein in the FV could not account for CQ sensitivity. In addition, the lack of inhibition of CQ accumulation by anti-Pgh1 antibodies suggests that Pgh1 is not involved as a CQ transporter in the plasma membrane of P. falciparum. Furthermore, resistance reversers do not appear to act at the plasma membrane level.

  10. Specific Interaction between Redox Phospholipid Polymers and Plastoquinone in Photosynthetic Electron Transport Chain.

    PubMed

    Tanaka, Kenya; Kaneko, Masahiro; Ishikawa, Masahito; Kato, Souichiro; Ito, Hidehiro; Kamachi, Toshiaki; Kamiya, Kazuhide; Nakanishi, Shuji

    2017-04-19

    Redox phospholipid polymers added in culture media are known to be capable of extracting electrons from living photosynthetic cells across bacterial cell membranes with high cytocompatibility. In the present study, we identify the intracellular redox species that transfers electrons to the polymers. The open-circuit electrochemical potential of an electrolyte containing the redox polymer and extracted thylakoid membranes shift to positive (or negative) under light irradiation, when an electron transport inhibitor specific to plastoquinone is added upstream (or downstream) in the photosynthetic electron transport chain. The same trend is also observed for a medium containing living photosynthetic cells of Synechococcus elongatus PCC7942. These results clearly indicate that the phospholipid redox polymers extract photosynthetic electrons mainly from plastoquinone. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Focus on membrane differentiation and membrane domains in the prokaryotic cell.

    PubMed

    Boekema, Egbert J; Scheffers, Dirk-Jan; van Bezouwen, Laura S; Bolhuis, Henk; Folea, I Mihaela

    2013-01-01

    A summary is presented of membrane differentiation in the prokaryotic cell, with an emphasis on the organization of proteins in the plasma/cell membrane. Many species belonging to the Eubacteria and Archaea have special membrane domains and/or membrane proliferation, which are vital for different cellular processes. Typical membrane domains are found in bacteria where a specific membrane protein is abundantly expressed. Lipid rafts form another example. Despite the rareness of conventional organelles as found in eukaryotes, some bacteria are known to have an intricate internal cell membrane organization. Membrane proliferation can be divided into curvature and invaginations which can lead to internal compartmentalization. This study discusses some of the clearest examples of bacteria with such domains and internal membranes. The need for membrane specialization is highest among the heterogeneous group of bacteria which harvest light energy, such as photosynthetic bacteria and halophilic archaea. Most of the highly specialized membranes and domains, such as the purple membrane, chromatophore and chlorosome, are found in these autotrophic organisms. Otherwise the need for membrane differentiation is lower and variable, except for those structures involved in cell division. Microscopy techniques have given essential insight into bacterial membrane morphology. As microscopy will further contribute to the unraveling of membrane organization in the years to come, past and present technology in electron microscopy and light microscopy is discussed. Electron microscopy was the first to unravel bacterial morphology because it can directly visualize membranes with inserted proteins, which no other technique can do. Electron microscopy techniques developed in the 1950s and perfected in the following decades involve the thin sectioning and freeze fractioning of cells. Several studies from the golden age of these techniques show amazing examples of cell membrane morphology

  12. Enhancement of Cell Surface Expression and Receptor Functions of Membrane Progestin Receptor α (mPRα) by Progesterone Receptor Membrane Component 1 (PGRMC1): Evidence for a Role of PGRMC1 as an Adaptor Protein for Steroid Receptors

    PubMed Central

    Pang, Yefei; Dong, Jing

    2014-01-01

    A variety of functions have been proposed for progesterone receptor membrane component 1 (PGRMC1), including acting as a component of a membrane progestin receptor and as an adaptor protein. Here we show that stable overexpression of human PGRMC1 in nuclear progesterone receptor (PR)-negative breast cancer cell lines causes increased expression of PGRMC1 and membrane progesterone receptor α (mPRα) on cell membranes that is associated with increased specific [3H]progesterone binding. The membrane progestin binding affinity and specificity were characteristic of mPRα, with a Kd of 4.7 nM and high affinity for the mPR-specific agonist, Org OD 02–0, and low affinity for corticosteroids. Progestin treatment caused activation of G proteins, further evidence for increased expression of functional mPRs on PGRMC1-transfected cell membranes. Immunocytochemical and coimmunoprecipitation studies showed a close association of PGRMC1 with mPRα in cell membranes. Transfection of PGRMC1 into spontaneously immortalized rat granulosa cells was associated with membrane expression of PGRMC1 and mPRα as well as antiapoptotic effects of progestins that were abolished after cotransfection with small interfering RNA for mPRα. These data demonstrate that PGRMC1 can act as an adaptor protein, transporting mPRα to the cell surface, and that the progestin binding and apoptotic functions previously ascribed to PGRMC1 are dependent on cell surface expression of mPRα. Collectively, the results suggest PGRMC1 and mPRα are components of a membrane progesterone receptor protein complex. Increased expression of estrogen receptor β was also observed in the membranes of PGRMC1-transfected cells, suggesting that PGRMC1 can act as an adaptor protein for multiple classes of steroid receptors. PMID:24424068

  13. Expression of a constitutively activated plasma membrane H(+)-ATPase in Nicotiana tabacum BY-2 cells results in cell expansion.

    PubMed

    Niczyj, Marta; Champagne, Antoine; Alam, Iftekhar; Nader, Joseph; Boutry, Marc

    2016-11-01

    Increased acidification of the external medium by an activated H (+) -ATPase results in cell expansion, in the absence of upstream activating signaling. The plasma membrane H(+)-ATPase couples ATP hydrolysis with proton transport outside the cell, and thus creates an electrochemical gradient, which energizes secondary transporters. According to the acid growth theory, this enzyme is also proposed to play a major role in cell expansion, by acidifying the external medium and so activating enzymes that are involved in cell wall-loosening. However, this theory is still debated. To challenge it, we made use of a plasma membrane H(+)-ATPase isoform from Nicotiana plumbaginifolia truncated from its C-terminal auto-inhibitory domain (ΔCPMA4), and thus constitutively activated. This protein was expressed in Nicotiana tabacum BY-2 suspension cells using a heat shock inducible promoter. The characterization of several independent transgenic lines showed that the expression of activated ΔCPMA4 resulted in a reduced external pH by 0.3-1.2 units, as well as in an increased H(+)-ATPase activity by 77-155 % (ATP hydrolysis), or 70-306 % (proton pumping) of isolated plasma membranes. In addition, ΔCPMA4-expressing cells were 17-57 % larger than the wild-type cells and displayed abnormal shapes. A proteomic comparison of plasma membranes isolated from ΔCPMA4-expressing and wild-type cells revealed the altered abundance of several proteins involved in cell wall synthesis, transport, and signal transduction. In conclusion, the data obtained in this work showed that H(+)-ATPase activation is sufficient to induce cell expansion and identified possible actors which intervene in this process.

  14. Expression of eosinophil target SNAREs as potential cognate receptors for vesicle-associated membrane protein-2 in exocytosis.

    PubMed

    Logan, Michael R; Lacy, Paige; Bablitz, Ben; Moqbel, Redwan

    2002-02-01

    Exocytosis of eosinophil granule-derived mediators is thought to be an important effector response contributing to allergic inflammation. Secretion from many cell types has been shown to be dependent on the formation of a docking complex composed of soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptors (SNAREs) located on the vesicle (v-SNAREs) and the target membrane (t-SNAREs). The SNARE isoforms VAMP-2, SNAP-23, and syntaxin-4 have been described in secretory processes in myeloid cells. Previously, we have demonstrated that the v-SNARE VAMP-2 is a candidate v-SNARE involved in eosinophil exocytosis and is localized to a pool of RANTES-positive vesicles that translocate to the cell periphery after IFN-gamma-induced degranulation. We sought to determine whether eosinophils express the t-SNARE isoforms SNAP-23 and syntaxin-4 as potential binding targets for VAMP-2 during exocytosis. Human peripheral blood eosinophils (>97%) from atopic subjects were subjected to RT-PCR and sequence analysis by using specific primers for SNAP-23 and syntaxin-4. Protein expression and localization was determined by means of Western blot analysis of eosinophil subcellular fractions and confirmed with confocal laser scanning microscopy. Nucleotide sequences obtained from PCR products exhibited nearly identical (>95%) homology with reported sequences for human SNAP-23 and syntaxin-4. Both SNAP-23 and syntaxin-4 were present in plasma membranes, with some staining in endoplasmic reticulum and Golgi membranes. Negligible expression was detected in crystalloid and small secretory granules. The plasma membrane-associated t-SNAREs SNAP-23 and syntaxin-4 are expressed in human eosinophils and are likely candidates for association with VAMP-2 during docking, which is followed by exocytosis. These findings support a role for SNARE molecules in eosinophil mediator release.

  15. Expression of multiple AQP4 pools in the plasma membrane and their association with the dystrophin complex.

    PubMed

    Nicchia, Grazia Paola; Cogotzi, Laura; Rossi, Andrea; Basco, Davide; Brancaccio, Andrea; Svelto, Maria; Frigeri, Antonio

    2008-06-01

    Altered aquaporin-4 (AQP4) expression has been reported in brain edema, tumors, muscular dystrophy, and neuromyelitis optica. However, the plasma membrane organization of AQP4 and its interaction with proteins such as the dystrophin-associated protein complex are not well understood. In this study, we used sucrose density gradient ultracentrifugation and 2D blue native/sodium dodecyl sulfate-polyacrylamide gel electrophoresis and showed the expression of several AQP4 multi-subunit complexes (pools) of different sizes, ranging from > 1 MDa to approximately 500 kDa and containing different ratios of the 30/32 kDa AQP4 isoforms, indicative of orthogonal arrays of particles of various sizes. A high molecular weight pool co-purified with dystrophin and beta-dystroglycan and was drastically reduced in the skeletal muscle of mdx3cv mice, which have no dystrophin. The number and size of the AQP4 pools were the same in the kidney where dystrophin is not expressed, suggesting the presence of dystrophin-like proteins for their expression. We found that AQP2 is expressed only in one major pool of approximately 500 kDa, indicating that the presence of different pools is a peculiarity of AQP4 rather than a widespread feature in the AQP family. Finally, in skeletal muscle caveolin-3 did not co-purify with any AQP4 pool, indicating the absence of interaction of the two proteins and confirming that caveolae and orthogonal arrays of particles are two independent plasma membrane microdomains. These results contribute to a better understanding of AQP4 membrane organization and raise the possibility that abnormal expression of specific AQP4 pools may be found in pathological states.

  16. Photosynthetic Machineries in Nano-Systems

    PubMed Central

    Nagy, László; Magyar, Melinda; Szabó, Tibor; Hajdu, Kata; Giotta, Livia; Dorogi, Márta; Milano, Francesco

    2014-01-01

    Photosynthetic reaction centres are membrane-spanning proteins, found in several classes of autotroph organisms, where a photoinduced charge separation and stabilization takes place with a quantum efficiency close to unity. The protein remains stable and fully functional also when extracted and purified in detergents thereby biotechnological applications are possible, for example, assembling it in nano-structures or in optoelectronic systems. Several types of bionanocomposite materials have been assembled by using reaction centres and different carrier matrices for different purposes in the field of light energy conversion (e.g., photovoltaics) or biosensing (e.g., for specific detection of pesticides). In this review we will summarize the current status of knowledge, the kinds of applications available and the difficulties to be overcome in the different applications. We will also show possible research directions for the close future in this specific field. PMID:24678673

  17. Structural basis of photosynthetic water-splitting

    SciTech Connect

    Shen, Jian-Ren; Kawakami, Keisuke; Kamiya, Nobuo

    2013-12-10

    Photosynthetic water-splitting takes place in photosystem II (PSII), a membrane protein complex consisting of 20 subunits with an overall molecular mass of 350 kDa. The light-induced water-splitting reaction catalyzed by PSII not only converts light energy into biologically useful chemical energy, but also provides us with oxygen indispensible for sustaining oxygenic life on the earth. We have solved the structure of PSII at a 1.9 Å resolution, from which, the detailed structure of the Mn{sub 4}CaO{sub 5}-cluster, the catalytic center for water-splitting, became clear. Based on the structure of PSII at the atomic resolution, possible mechanism of light-induced water-splitting was discussed.

  18. Voltage-dependent anion channels (VDACs, porin) expressed in the plasma membrane regulate the differentiation and function of human osteoclasts.

    PubMed

    Kotake, Shigeru; Yago, Toru; Kawamoto, Manabu; Nanke, Yuki

    2013-01-01

    Fewer molecules have been identified on human than murine osteoclasts, the former differing from murine osteoclasts in many ways. We show that voltage-dependent anion channels (VDACs, porin) are expressed in the plasma membrane of human osteoclasts. A search for novel proteins expressed in the plasma membrane of human osteoclasts identified VDAC. Anti-VDAC antibodies inhibited human osteoclastogenesis in vitro. VDAC expression was detected in membranes by immunoelectron microscopy and immunocytochemical double staining. The VDAC protein functions as a Cl(-) channel. VDACs regulate bone resorption, which show using Osteologic™ plates. The epitope of the antibody lay within a 10-amino acid sequence in the VDAC. The findings suggest that the VDAC is, at least partly, a novel Cl(-) channel regulating the differentiation and function of human osteoclasts. VDACs may play a crucial role in acidifying the resorption lacunae between osteoclasts and bone. Inhibitors of VDACs could be used to treat diseases involving increased resorption, such as osteoporosis, rheumatoid arthritis, and Paget's disease. © 2012 International Federation for Cell Biology.

  19. Membrane immunoglobulin expressed by retroviral vector gene transfer mimics partial function of the B-cell receptor in vivo.

    PubMed

    Lu, Jing; Chen, Feng; Xu, Zhen; Zhang, Lingling; Xu, Peng; Liu, Depei; Liang, Chihchuan

    2016-01-01

    Activation of B-cells is initiated by the ligation of B-cell receptors by its cognate antigen, inducing a series of signal cascades. Understanding the molecular mechanisms of these important events is a crucial goal for immunologists. Chimeric B cell receptors provide a powerful tool for analysis of B-cell signal function. However, this method can only be used in tool cells, but cannot be used for in vivo study. Here, we constructed a retroviral vector to encode both heavy chains and light chains of a membrane immunoglobulin, and expressed them in primary B-cells using retroviral gene transfer. Our results demonstrate that the membrane immunoglobulin expressed by retroviral vectors transfer can initiate B-cell receptor-mediated signaling, resulting in the phosphorylation of Syk and Erk1/2 proteins. The results showed that B-cells expressing membrane immunoglobulin can make proliferative responses to cognate antigen both in vitro and in vivo. Therefore, we provide a methodology for rapidly analyzing the downstream signals of B-cell receptors both in vitro and in vivo, which could expedite the identification of proteins involved in B-cell function.

  20. Plasmidless, photosynthetically incompetent mutants of Rhodospirillum rubrum.

    PubMed Central

    Kuhl, S A; Wimer, L T; Yoch, D C

    1984-01-01

    Ethyl methanesulfonate rendered a high percentage of Rhodospirillum rubrum cells plasmidless and photosynthetically incompetent (Kuhl et al., J. Bacteriol. 156:737-742, 1983). By probing restriction endonuclease-digested chromosomal DNA from these plasmidless strains with 32P-labeled R. rubrum plasmid DNA, we showed that no homology exists between the plasmid and the chromosomal DNA of the mutant. Loss of the plasmid in all the nonphotosynthetic isolates was accompanied by the synthesis of spirilloxanthin under aerobic growth conditions, resistance to cycloserine and HgCl2, and loss of ability to grow fermentatively on fructose. Changes in both the protein and lipid composition of the membranes and the impaired uptake of 203HgCl2 in the plasmidless strains (compared with the wild type) suggest either that membrane modification occurs as a result of plasmid loss, accounting for several of the acquired phenotype characteristics of the cured strains, or that both membrane modification and plasmid loss are part of the same pleiotropic mutation. Images PMID:6434514

  1. Differential allocation to photosynthetic and non-photosynthetic nitrogen fractions among native and invasive species.

    PubMed

    Funk, Jennifer L; Glenwinkel, Lori A; Sack, Lawren

    2013-01-01

    Invasive species are expected to cluster on the "high-return" end of the leaf economic spectrum, displaying leaf traits consistent with higher carbon assimilation relative to native species. Intra-leaf nitrogen (N) allocation should support these physiological differences; however, N biochemistry has not been examined in more than a few invasive species. We measured 34 leaf traits including seven leaf N pools for five native and five invasive species from Hawaii under low irradiance to mimic the forest understory environment. We found several trait differences between native and invasive species. In particular, invasive species showed preferential N allocation to metabolism (amino acids) rather than photosynthetic light reactions (membrane-bound protein) by comparison with native species. The soluble protein concentration did not vary between groups. Under these low irradiance conditions, native species had higher light-saturated photosynthetic rates, possibly as a consequence of a greater investment in membrane-bound protein. Invasive species may succeed by employing a wide range of N allocation mechanisms, including higher amino acid production for fast growth under high irradiance or storage of N in leaves as soluble protein or amino acids.

  2. Differential Allocation to Photosynthetic and Non-Photosynthetic Nitrogen Fractions among Native and Invasive Species

    PubMed Central

    Funk, Jennifer L.; Glenwinkel, Lori A.; Sack, Lawren

    2013-01-01

    Invasive species are expected to cluster on the “high-return” end of the leaf economic spectrum, displaying leaf traits consistent with higher carbon assimilation relative to native species. Intra-leaf nitrogen (N) allocation should support these physiological differences; however, N biochemistry has not been examined in more than a few invasive species. We measured 34 leaf traits including seven leaf N pools for five native and five invasive species from Hawaii under low irradiance to mimic the forest understory environment. We found several trait differences between native and invasive species. In particular, invasive species showed preferential N allocation to metabolism (amino acids) rather than photosynthetic light reactions (membrane-bound protein) by comparison with native species. The soluble protein concentration did not vary between groups. Under these low irradiance conditions, native species had higher light-saturated photosynthetic rates, possibly as a consequence of a greater investment in membrane-bound protein. Invasive species may succeed by employing a wide range of N allocation mechanisms, including higher amino acid production for fast growth under high irradiance or storage of N in leaves as soluble protein or amino acids. PMID:23700483

  3. Surface expression of influenza virus neuraminidase, an amino-terminally anchored viral membrane glycoprotein, in polarized epithelial cells.

    PubMed Central

    Jones, L V; Compans, R W; Davis, A R; Bos, T J; Nayak, D P

    1985-01-01

    We have investigated the site of surface expression of the neuraminidase (NA) glycoprotein of influenza A virus, which, in contrast to the hemagglutinin, is bound to membranes by hydrophobic residues near the NH2-terminus. Madin-Darby canine kidney or primary African green monkey kidney cells infected with influenza A/WSN/33 virus and subsequently labeled with monoclonal antibody to the NA and then with a colloidal gold- or ferritin-conjugated second antibody exhibited specific labeling of apical surfaces. Using simian virus 40 late expression vectors, we also studied the surface expression of the complete NA gene (SNC) and a truncated NA gene (SN10) in either primary or a polarized continuous line (MA104) of African green monkey kidney cells. The polypeptides encoded by the cloned NA cDNAs were expressed on the surface of both cell types. Analysis of [3H]mannose-labeled polypeptides from recombinant virus-infected MA104 cells showed that the products of cloned NA cDNA comigrated with glycosylated NA from influenza virus-infected cells. Both the complete and the truncated glycoproteins were found to be preferentially expressed on apical plasma membranes, as detected by immunogold labeling. These results indicate that the NA polypeptide contains structural features capable of directing the transport of the protein to apical cell surfaces and the first 10 amino-terminal residues of the NA polypeptide are not involved in this process. Images PMID:3016520

  4. Investigating the Production of Foreign Membrane Proteins in Tobacco Chloroplasts: Expression of an Algal Plastid Terminal Oxidase

    PubMed Central

    Ahmad, Niaz; Michoux, Franck; Nixon, Peter J.

    2012-01-01

    Chloroplast transformation provides an inexpensive, easily scalable production platform for expression of recombinant proteins in plants. However, this technology has been largely limited to the production of soluble proteins. Here we have tested the ability of tobacco chloroplasts to express a membrane protein, namely plastid terminal oxidase 1 from the green alga Chlamydomonas reinhardtii (Cr-PTOX1), which is predicted to function as a plastoquinol oxidase. A homoplastomic plant containing a codon-optimised version of the nuclear gene encoding PTOX1, driven by the 16S rRNA promoter and 5′UTR of gene 10 from phage T7, was generated using a particle delivery system. Accumulation of Cr-PTOX1 was shown by immunoblotting and expression in an enzymatically active form was confirmed by using chlorophyll fluorescence to measure changes in the redox state of the plastoquinone pool in leaves. Growth of Cr-PTOX1 expressing plants was, however, more sensitive to high light than WT. Overall our results confirm the feasibility of using plastid transformation as a means of expressing foreign membrane proteins in the chloroplast. PMID:22848578

  5. Expression of membrane-type 1 matrix metalloproteinase and activation of progelatinase A in human osteoarthritic cartilage.

    PubMed Central

    Imai, K.; Ohta, S.; Matsumoto, T.; Fujimoto, N.; Sato, H.; Seiki, M.; Okada, Y.

    1997-01-01

    Matrix metalloproteinases (MMPs) are expressed in osteoarthritic (OA) cartilage and are thought to be involved in the degradation of cartilage extracellular matrix (ECM). Among these proteinases, MMP-2 (gelatinase A) demonstrates a wide range of substrate specificity against the ECM present in cartilage. Although MMP-2 expression increases in OA cartilage, the activation mechanism of the corresponding zymogen (pro-MMP-2) in cartilage is unknown. In this study, we examined the expression pattern of membrane-type 1 MMP (MT1-MMP) in human OA articular cartilage and its correlation with the activation of pro-MMP-2. Immunohistochemical studies demonstrate that MT1-MMP localizes to the chondrocytes in the superficial and transitional zones in all of the samples examined directly correlating with cartilage degradation. Reverse transcription polymerase chain reaction confirmed the predominant expression of MT1-MMP mRNA in the OA cartilage. In situ hybridization revealed the site of expression of MT1-MMP in OA cartilage to be the chondrocytes. Through gelatin zymography and a sandwich enzyme immunoassay it was demonstrated that OA cartilage explants secrete significantly higher levels of pro-MMP-2 than normal samples. Pro-MMP-2 activation was enhanced in the OA cartilage samples and correlated with MT1-MMP expression in the cartilage. Plasma membranes prepared from cultured chondrocytes with MT1-MMP expression and those directly isolated from OA cartilage could activate pro-MMP-2. MT1-MMP gene expression in cultured chondrocytes was induced by treatment with interleukin-1 alpha and/or tumor necrosis factor-alpha. These data suggest that cytokine-induced MT1-MMP in the chondrocytes may play a key role in the activation of pro-MMP-2 in the OA articular cartilage, leading to cartilage destruction through ECM degradation. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 7 Figure 8 PMID:9212749

  6. Microsurgical anatomy of membranous layers of the pituitary gland and the expression of extracellular matrix collagenous proteins.

    PubMed

    Ceylan, Savas; Anik, Ihsan; Koc, Kenan; Kokturk, Sibel; Ceylan, Sureyya; Cine, Naci; Savli, Hakan; Sirin, Gozde; Sam, Bulent; Gazioglu, Nurperi

    2011-12-01

    There are several reports about the microanatomical and histological features of sellar and parasellar membranous structures and clinical studies about MMP proteinase as a predictive factor. However, studies on collagen contents of sellar and parasellar membranous structures are limited. We demonstrated the membranous structures surrounding the pituitary gland and defined extracellular matrix (ECM) collagenous proteins, collagen I-IV expression patterns of sellar and parasellar connective tissues. The study was carried out on ten fresh postmortem human bodies at the Forensic Medicine Institution. Cavernous sinuses were resected with sellar structures and were stored at -80°C liquid nitrogen tanks. Medial wall of the cavernous sinus, pituitary capsule and pituitary tissue samples were obtained for RT-PCR. Opposite side specimens were used for histological and immune staining studies. Collagens I-IV were studied by immunohistochemical and reverse transcription polymerase chain reaction (RT-PCR) methods. The pituitary capsule and medial wall were identified as two different structures. The fibrous membrane, as the third membrane, was identified as staying whole in eight of ten specimens. Increased type IV collagen was determined in the pituitary gland, medial wall and pituitary capsule, respectively, in both RT-PCR and immunhistochemical studies. Immunhistochemical studies revealed that collagen I was strongly expressed in both the medial wall and pituitary gland. Increased type IV collagen was detected especially in pituitary tissue, the medial wall and the pituitary capsule by immune staining and RT-PCR. Type IV collagen was considered to be an important factor in the progression of adenoma and invasion.

  7. Characterization of a multiple endogenously expressed adenosine triphosphate-binding cassette transporters using nuclear and cellular membrane affinity chromatography columns.

    PubMed

    Habicht, K-L; Singh, N S; Khadeer, M A; Shimmo, R; Wainer, I W; Moaddel, R

    2014-04-25

    Glioblastoma multiforme is an aggressive form of human astrocytoma, with poor prognosis due to multi-drug resistance to a number of anticancer drugs. The observed multi-drug resistance is primarily due to the efflux activity of ATP-Binding Cassette (ABC) efflux transporters such as Pgp, MRP1 and BCRP. The expression of these transporters has been demonstrated in nuclear and cellular membranes of the LN-229 human glioblastoma cell line. Nuclear membrane and cellular membrane fragments from LN-229 cells were immobilized on the IAM stationary phase to create nuclear and cellular membrane affinity chromatography columns, (NMAC(LN-229)) and (CMAC(LN-229)), respectively. Pgp, MRP1 and BCRP transporters co-immobilized on both columns were characterized and compared by establishing the binding affinities for estrone-3-sulfate (3.8 vs. 3.7μM), verapamil (0.6 vs. 0.7μM) and prazosin (0.099 vs. 0.033μM) on each column and no significant differences were observed. Since the marker ligands had overlapping selectivities, the selective characterization of each transporter was carried out by saturation of the binding sites of the non-targeted transporters. The addition of verapamil (Pgp and MRP1 substrate) to the mobile phase allowed the comparative screening of eight compounds at the nuclear and cellular BCRP using etoposide as the marker ligand. AZT increased the retention of etoposide (+15%), a positive allosteric interaction, on the CMAC(LN-229) column and decreased it (-5%) on the NMAC(LN-229), while the opposite effect was produced by rhodamine. The results indicate that there are differences between the cellular and nuclear membrane expressed BCRP and that NMAC and CMAC columns can be used to probe these differences.

  8. Differential expression profile of membrane proteins in Aplysia pleural–pedal ganglia under the stress of methyl parathion.

    PubMed

    Chen, Ying-Ying; Huang, Lin; Zhang, Yong; Ke, Cai-Huan; Huang, He-Qing

    2014-03-01

    This study was aimed to analyze the alteration of membrane protein profiles in Aplysia juliana Quoy & Gaimard (A. juliana) pleural–pedal ganglia under MP exposure. Both the results of GC–MS analysis and the activity assay of acetylcholinesterase (AChE), superoxide dismutase (SOD), catalase (CAT) reveal that MP toxicological effects on Aplysia left and right pleural–pedal ganglia are different under 7 and 14 days of exposure. Therefore, Aplysia were subjected for exposure at two concentrations (1 and 2 mg/l) of MP for 7 and 14 days for membrane proteomic study. As a result, 19 and 14 protein spots were differentially expressed in A. juliana left pleural–pedal ganglia under 7 and 14 days treatment, and 20 and 14 protein spots found with differential expressions in their right ganglia under the same treatment, respectively. Several proteins with expression variations were detected from both the left and right pleural–pedal ganglia; however, most proteins have distinctive expressions, indicating different mechanisms might be involved in initiating MP toxicology in left and right ganglia. Among the total differential protein spots obtained, 29 proteins were classed as membrane proteins. These proteins are mainly involved in the metabolism process, cell redox homeostasis, signal transduction, immunology, intracellular transport and catalysis, indicating MP toxicity in mollusks seems to be complex and diverse. Some differentially expressed proteins were further confirmed by Western blotting and quantitative real-time PCR. These results might provide renovated insights to reveal the mechanism of MP-induced neurotoxicity, and the novel candidate biomarkers might have potential application for environmental evaluation of MP pollution level.

  9. Cell-free expressed bacteriorhodopsin in different soluble membrane mimetics: biophysical properties and NMR accessibility.

    PubMed

    Etzkorn, Manuel; Raschle, Thomas; Hagn, Franz; Gelev, Vladimir; Rice, Amanda J; Walz, Thomas; Wagner, Gerhard

    2013-03-05

    Selecting a suitable membrane-mimicking environment is of fundamental importance for the investigation of membrane proteins. Nonconventional surfactants, such as amphipathic polymers (amphipols) and lipid bilayer nanodiscs, have been introduced as promising environments that may overcome intrinsic disadvantages of detergent micelle systems. However, structural insights into the effects of different environments on the embedded protein are limited. Here, we present a comparative study of the heptahelical membrane protein bacteriorhodopsin in detergent micelles, amphipols, and nanodiscs. Our results confirm that nonconventional environments can increase stability of functional bacteriorhodopsin, and demonstrate that well-folded heptahelical membrane proteins are, in principle, accessible by solution-NMR methods in amphipols and phospholipid nanodiscs. Our data distinguish regions of bacteriorhodopsin that mediate membrane/solvent contacts in the tested environments, whereas the protein's functional inner core remains almost unperturbed. The presented data allow comparing the investigated membrane mimetics in terms of NMR spectral quality and thermal stability required for structural studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Express incorporation of membrane proteins from various human cell types into phospholipid bilayer nanodiscs.

    PubMed

    Mak, Stefanie; Sun, Ruoyu; Schmalenberg, Michael; Peters, Carsten; Luppa, Peter B

    2017-04-04

    Analysis of membrane proteins is still inadequately represented in diagnostics despite their importance as drug targets and biomarkers. One main reason is the difficult handling caused by their insolubility in aqueous buffer solutions. The nanodisc technology was developed to circumvent this challenge and enables analysis of membrane proteins with standard research methods. However, existing nanodisc generation protocols rely on time-consuming membrane isolation and protein purification from overexpression systems. In the present study, we present a novel, simplified procedure for the rapid generation of nanodiscs directly from intact cells. Workflow and duration of the nanodisc preparation were shortened without reducing the reconstitution efficiency, and all the steps were modified for the use of only standard laboratory equipment. This protocol was successfully applied to various human cell types, such as cultivated human embryonic kidney 293 (HEK-293) cells, as well as freshly isolated human red blood cells and platelets. In addition, the reconstitution of membrane proteins from cell organelles was achieved. The use of endogenous lipids ensures a native-like environment, which promotes native protein (re)folding. Nanodisc generation was verified by size exclusion chromatography and EM, whereas incorporation of different membrane proteins was demonstrated by Western blot analysis. Our protocol enabled the rapid incorporation of endogenous membrane proteins from human cells into nanodiscs, which can be applied to analytical approaches. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  11. Expression of a Mitochondrial Progesterone Receptor (PR-M) in Leiomyomata and Association With Increased Mitochondrial Membrane Potential

    PubMed Central

    Feng, Quanling; Crochet, John R.; Dai, Qunsheng; Leppert, Phyllis C.

    2014-01-01

    Context: Clinical evidence supports a role for progestins in the growth of leiomyomata (fibroids). The mechanism(s) for this is thought to involve gene regulation via the nuclear progesterone receptors. Recently a mitochondrial progesterone receptor (PR-M) has been identified with evidence of a progesterone/progestin-dependent increase in cellular respiration. This observation raises a possible new mechanism whereby progesterone/progestin may affect the growth of fibroids. Objective: The goals of this research were to determine differential expression of PR-M in normal myometrium compared with the edge of a fibroid within the same uterus, to demonstrate a progestin-dependent increase in mitochondria membrane potential using an immortalized human myometrial cell line and to examine mitochondrial membrane potential in transfected cells expressing the complete coding sequence of PR-M. Design: Protein levels of PR-M, PR-B, PR-A, mitochondrial porin, and glyceraldehyde-3-phosphate dehydrogenase were determined in the myometrium and adjacent edge of a fibroid in 10 subjects undergoing hysterectomy for benign indications. Mitochondrial membrane potential was determined by fluorescent emission of 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolecarbocyanide iodine in hTERT-HM cells treated with R5020 and in transfected hTERT-HM cells determined by the fluorescent emission of tetramethylrhodamine methyl ester. Results: Higher levels of PR-M and mitochondrial porin were found in the fibroid edge compared with adjacent myometrium. Progestin increased mitochondrial membrane potential in hTERT-HM cells, which was not affected by a translation inhibitor. This effect was exaggerated in hTERT-HM cells expressing PR-M after transient transfection. Conclusion: These studies suggest a mechanism whereby progesterone/progestin may affect the growth of fibroids by altering mitochondrial activity. PMID:24423317

  12. Production of UCP1 a membrane protein from the inner mitochondrial membrane using the cell free expression system in the presence of a fluorinated surfactant.

    PubMed

    Blesneac, Iulia; Ravaud, Stéphanie; Juillan-Binard, Céline; Barret, Laure-Anne; Zoonens, Manuela; Polidori, Ange; Miroux, Bruno; Pucci, Bernard; Pebay-Peyroula, Eva

    2012-03-01

    Structural studies of membrane protein are still challenging due to several severe bottlenecks, the first being the overproduction of well-folded proteins. Several expression systems are often explored in parallel to fulfil this task, or alternately prokaryotic analogues are considered. Although, mitochondrial carriers play key roles in several metabolic pathways, only the structure of the ADP/ATP carrier purified from bovine heart mitochondria was determined so far. More generally, characterisations at the molecular level are restricted to ADP/ATP carrier or the uncoupling protein UCP1, another member of the mitochondrial carrier family, which is abundant in brown adipose tissues. Indeed, mitochondrial carriers have no prokaryotic homologues and very few efficient expression systems were described so far for these proteins. We succeeded in producing UCP1 using a cell free expression system based on E. coli extracts, in quantities that are compatible with structural approaches. The protein was synthesised in the presence of a fluorinated surfactant, which maintains the protein in a soluble form. Further biochemical and biophysical analysis such as size exclusion chromatography, circular dichroism and thermal stability, of the purified protein showed that the protein is non-aggregated, monodisperse and well-folded. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Restoration of caveolin-1 expression suppresses growth, membrane-type-4 metalloproteinase expression and metastasis-associated activities in colon cancer cells.

    PubMed

    Nimri, Lili; Barak, Hossei; Graeve, Lutz; Schwartz, Betty

    2013-11-01

    Caveolin-1 (cav-1) and flotillin-1 are two major structural proteins associated with lipid rafts in mammalian cells. The membrane-type matrix metalloproteinases (MT-MMPs) are expressed at the cell surface, hydrolyze extracellular matrix, and play an important role in cancer cell migration and metastasis. Expression of cav-1, flotillin-1, and MT4-MMP in lysates and lipid rafts of LS174T and HM-7 colon cancer cells was determined. The impact of restoration of cav-1 expression on proliferation, adhesion, motility in vitro, and growth of implanted tumors in vivo was characterized. Cav-1 is not expressed in lipid rafts of the highly metastatic colon cancer cell line (HM-7), but expressed in cytosolic fractions of the parental lower metastatic cell line (LS174T). In contrast, MT4-MMP was expressed in lipid rafts of HM-7 cells but not in LS174T cells. Overexpression of cav-1 in HM-7 cells down-regulate proliferation, viability, wound closure, adhesion to laminin, invasion, and development of filopodial and lamellipodial structures in a dose-dependent manner. Cav-1 positive HM-7 clones ceased to express MT4-MMP in their lipid rafts. Comparative proteomic analyses of lipid rafts from cav-1 positive and cav-1 negative cells demonstrated de novo expression of flotillin-1 only on the cells expressing cav-1. Xenografting control cells devoid of cav-1 in nude mice induced development of bigger tumors expressing higher levels of proliferating cell nuclear antigen as compared to mice injected with cells expressing the highest cav-1 levels. We conclude that cav-1 orchestrates and reorganize several proteins in lipid rafts, activities directly associated with reduced tumorigenic and metastatic ability of colon cancer cells.

  14. cDNA cloning and embryonic expression of mouse nuclear pore membrane glycoprotein 210 mRNA.

    PubMed

    Olsson, M; Ekblom, M; Fecker, L; Kurkinen, M; Ekblom, P

    1999-09-01

    In embryonic kidneys, mesenchymal cells convert into epithelium in response to an induction by the tip of the ureter bud. Metanephric mesenchyme can also be induced to convert into epithelium in vitro. It is a model system to identify genes that could be important for epithelial development. By differential screening of a cDNA library made from mesenchymes induced in transfilter cultures by embryonic spinal cord for 24 hours, we selected cDNA clones representing genes that were preferentially expressed in 24-hour-induced mesenchyme and not in uninduced mesenchyme. The sequence of one clone was determined and used to obtain the sequence of a complete open reading frame. By Northern blotting and in situ hybridization, the expression of the mRNA in embryonic kidneys was determined. We report the sequence and expression pattern of a marker for the 24-hour-induced state, mouse nuclear pore membrane glycoprotein 210 (mPOM210). The deduced 1886 amino acid sequence shows a 95% identity to the sequence of rat gp210. Northern blotting revealed a single 7.5 kb mRNA in 24-hour-induced mesenchyme, whereas message levels were fourfold to fivefold lower in uninduced mesenchyme. In situ hybridization of in vivo development confirmed the preferential expression of mPOM210 in epithelial cells. In the kidney, expression was seen in both the epithelium derived from the ureteric tree and the mesenchyme-derived epithelium. In other tissues of 13-day-old embryos, expression was also confined to the epithelium. In nervous tissues, the olfactory epithelium and walls of the lateral ventricle were the most prominently stained. Weak expression was seen in the heart. mPOM210 mRNA is an early marker for developing epithelial cells. Furthermore, our results suggest that nuclear pore membrane proteins could be more cell-type specific than previously anticipated.

  15. Increased expression of plasma membrane Ca(2+)ATPase 4b in platelets from hypertensives: a new sign of abnormal thrombopoiesis?

    PubMed

    Dally, Saoussen; Chaabane, Chiraz; Corvazier, Elisabeth; Bredoux, Raymonde; Bobe, Regis; Ftouhi, Bochra; Slimane, Hedia; Raies, Aly; Enouf, Jocelyne

    2007-11-01

    Platelet Ca(2+) homeostasis is controlled by a multi-Ca(2+)ATPase system including two PMCA (plasma membrane Ca(2+)ATPase) and seven SERCA (sarco/endoplasmic reticulum Ca(2+)ATPase) isoforms. Previous studies have shown similar platelet Ca(2+) abnormalities in diabetic and hypertensive patients, including an increase in intracellular [Ca(2+)](I), a possible modulation of PMCA activity and increased PMCA tyrosine phosphorylation. Very recently, we found that platelets from diabetic patients also exhibited increased PMCA4b expression. In the present study we looked for further similarities between diabetic and hypertensive patients. We first confirmed a decrease in Ca(2+)ATPase activity (mean 55 + 7%) in mixed platelet membranes isolated from 10 patients with hypertension compared with those from 10 healthy controls. In addition, the decreased Ca(2+)ATPase activity correlated with the DBP of the different patients, as expected for PMCA activity. Second, we performed a pilot study of six hypertensives to examine their expressions of PMCA and SERCA mRNA and proteins. Like the diabetic patients, 100% of hypertensives were found to present a major increase in PMCA4b expression (mean value of 218 +/- 21%). We thus determined that platelets from diabetic and hypertensive patients showed similar increased PMCA4b isoform. Since increased PMCA4b expression was recently found to be associated with a perturbation of megakaryocytopoiesis, these findings may also point to an abnormality in platelet maturation in hypertension.

  16. Optimization of Light-Harvesting Pigment Improves Photosynthetic Efficiency.

    PubMed

    Jin, Honglei; Li, Mengshu; Duan, Sujuan; Fu, Mei; Dong, Xiaoxiao; Liu, Bing; Feng, Dongru; Wang, Jinfa; Wang, Hong-Bin

    2016-11-01

    Maximizing light capture by light-harvesting pigment optimization represents an attractive but challenging strategy to improve photosynthetic efficiency. Here, we report that loss of a previously uncharacterized gene, HIGH PHOTOSYNTHETIC EFFICIENCY1 (HPE1), optimizes light-harvesting pigments, leading to improved photosynthetic efficiency and biomass production. Arabidopsis (Arabidopsis thaliana) hpe1 mutants show faster electron transport and increased contents of carbohydrates. HPE1 encodes a chloroplast protein containing an RNA recognition motif that directly associates with and regulates the splicing of target RNAs of plastid genes. HPE1 also interacts with other plastid RNA-splicing factors, including CAF1 and OTP51, which share common targets with HPE1. Deficiency of HPE1 alters the expression of nucleus-encoded chlorophyll-related genes, probably through plastid-to-nucleus signaling, causing decreased total content of chlorophyll (a+b) in a limited range but increased chlorophyll a/b ratio. Interestingly, this adjustment of light-harvesting pigment reduces antenna size, improves light capture, decreases energy loss, mitigates photodamage, and enhances photosynthetic quantum yield during photosynthesis. Our findings suggest a novel strategy to optimize light-harvesting pigments that improves photosynthetic efficiency and biomass production in higher plants.

  17. Proinflammatory and Anabolic Gene Expression Effects of Platelet-Rich Gel Supernatants on Equine Synovial Membrane Explants Challenged with Lipopolysaccharide.

    PubMed

    Carmona, Jorge U; Ríos, Diana L; López, Catalina; Álvarez, María E; Pérez, Jorge E

    2017-01-01

    Platelet-rich plasma (PRP) preparations are used in horses with osteoarthritis (OA). However, some controversies remain regarding the ideal concentration of platelets and leukocytes to produce an adequate anti-inflammatory and anabolic response in the synovial membrane. The aims of this study were to study the influence of leukoconcentrated platelet-rich gel (Lc-PRG) and leukoreduced platelet-rich gel (Lr-PRG) supernatants on the quantitative expression</