Science.gov

Sample records for photovoltaic concentrator module

  1. Photovoltaic solar concentrator module

    SciTech Connect

    Chiang, C.J.

    1991-05-16

    This invention consists of a planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation which includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

  2. Photovoltaic concentrator module improvements study

    SciTech Connect

    Levy, S.L.; Kerschen, K.A. ); Hutchison, G. ); Nowlan, M.J. )

    1991-08-01

    This report presents results of a project to design and fabricate an improved photovoltaic concentrator module. Using previous work as a baseline, this study conducted analyses and testing to select major module components and design features. The lens parquet and concentrator solar cell were selected from the highest performing, available components. A single 185X point-focus module was fabricated by the project team and tested at Sandia. Major module characteristics include a 6 by 4 compression-molded acrylic lens parquet (0.737 m{sup 2} area), twenty-four 0.2 ohms-cm, FZ, p-Si solar cells (1.56 cm{sup 2} area) soldered to ceramic substrates and copper heat spreaders, and an aluminized steel housing with corrugated bottom. This project marked the first attempt to use prismatic covers on solar cells in a high-concentration, point-focus application. Cells with 15 percent metallization were obtained, but problems with the fabrication and placement of prismatic covers on these cells lead to the decision not to use covers in the prototype module. Cell assembly fabrication, module fabrication, and module optical design activities are presented here. Test results are also presented for bare cells, cell assemblies, and module. At operating conditions of 981 watts/m{sup 2} DNI and an estimated cell temperature of 65{degrees}C, the module demonstrated an efficiency of 13.9 percent prior to stressed environmental exposure. 12 refs., 56 figs., 7 tabs.

  3. Planar photovoltaic solar concentrator module

    DOEpatents

    Chiang, C.J.

    1992-12-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.

  4. Planar photovoltaic solar concentrator module

    DOEpatents

    Chiang, Clement J.

    1992-01-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

  5. Development of a commercial photovoltaic concentrator module

    SciTech Connect

    Saifee, S.T.; Hutchison, G.

    1992-09-01

    The ojective of this work was to develop the design and prototype of a commercial high-concentration photovoltaic (PV) module. The design is for a 282-sun point-focus concentrating module. Most of the components, subassemblies, and design features incorporate simplifications and ease of manufacturing. The Solar Kinetics, Inc. (SKI) module is designed to incorporate high-efficiency, single-crystal silicon PV cells. The housing is made with aluminum laminated for voltage stand-off and simultaneously providing high thermal conductivity. The Fresnel lens injection molded by American Optical (AO) as singles. The cell assembly consists of a copper heat spreader, a photovoltaic cell soldered, a top and bottom contact, and a reflective secondary optical element (SOE). The cell assemblies passed all of the initial electrical characterization and high-potential tests. Under environmental cycling, the only bond that failed was the PV cell-to-heat spreader interface. The other components (top contact, bottom contact, SOE) passed all the environmental cycling tests. The cell assemblies were designed to be mounted onto the receiver section with a thermally conductive RTV. This geometry was subjected to environmental testing. There was no delamination of this bond nor was there electrical breakdown when the assemblies were subjected to the hi-pot test. A mock module was fabricated for environmental evaluation. This module was subjected to the humidity/freeze cycling to assess the performance of the lens mounting design. This module was also subjected to the rain test after the humidity/freeze cycling and checked for water leaks. The lens showed small displacement from its original position after the environmental cycling. One tablespoon of water did collect inside the module.

  6. Thin photovoltaic modules at ultra high concentration

    NASA Astrophysics Data System (ADS)

    Pérez-Higueras, Pedro; Ferrer-Rodríguez, Juan Pablo; Shanks, Katie; Almonacid, Florencia; Férnández, Eduardo F.

    2015-09-01

    A new design concept of high concentration photovoltaic (HCPV) module is studied both by ray-tracing simulation and by building a prototype. This set-up is based on the idea of concentrating sunlight from different optical units to a single commercial multi-junction solar cell, which is located in a different plane than that of the primary optics (e.g. Fresnel lenses). A two-optical-unit set-up, as a first approach, is built and measured with the solar simulator "Helios 3198". These results are compared to the measurement results of the single-unit of one Fresnel lens and the same solar cell. The feasibility of this new design has been confirmed theoretically and practically.

  7. High-concentration photovoltaic module design

    SciTech Connect

    Levy, S.L.; Stoddard, L.E.

    1986-08-01

    Over the past 3 years, Black and Veatch has been leading a team in the ongoing design of a high-concentration, high-performance photovoltaic (PV) module for the Electric Power Research Institute (EPRI). The current design consists of a deep-drawn aluminized steel housing containing 48 cell packages in a 4-row by 12-column matrix. Each cell package includes an anodized aluminum secondary optical element, a 27.5% efficient Stanford University/EPRI 500X concentration point contact silicon PV cell, an alumina substrate, and a copper heat spreader. Developmental efforts underway for a comolded glass/polymer Fresnel lens parquet indicate the potential for a substantial decrease in molding time and, thereby, cost, in comparison to more conventional compression molding of acrylic lenses. Further development is necessary to achieve comparable optical performance of the lens. Current activities have included the development of PVOPTICS, a Monte Carlo computer code particularly suited to the module optical design. The module is projected to produce 287 watts at an efficiency of 22%. The module cost, at large production rates, is estimated to be $275 ($0.96 per watt).

  8. Compatibility of Fresnel lenses and photovoltaic cells in concentrator modules

    SciTech Connect

    Stillwell, C.B.; Shafer, B.D.

    1981-01-01

    Test data are used to compare, for point focus photovoltaic concentrator modules, the relationship between Fresnel lens and module efficiency. The data shows that lenses designed for maximum optical efficiency may not produce the maximum module efficiency. Lenses designed with consideration for the photon flux distribution on the solar cell may improve module efficiency possibly at some loss in lens optical performance.

  9. Evaluation tests for photovoltaic concentrator receiver sections and modules

    SciTech Connect

    Woodworth, J.R.; Whipple, M.L.

    1992-06-01

    Sandia has developed a third-generation set of specifications for performance and reliability testing of photovoltaic concentrator modules. Several new requirements have been defined. The primary purpose of the tests is to screen new concentrator designs and new production runs for susceptibility to known failure mechanisms. Ultraviolet radiation testing of materials precedes receiver section and module performance and environmental tests. The specifications include the purpose, procedure, and requirements for each test. Recommendations for future improvements are presented.

  10. High Performance Concentrating Photovoltaic Module Designs Employing Reflective Lens Optics

    NASA Astrophysics Data System (ADS)

    Vasylyev, Sergey V.; Vasylyev, Viktor P.

    2011-12-01

    The present study is aimed at advancing the optical component as well as optimizing the design of concentrating photovoltaic (CPV) modules in order to increase the conversion efficiency and improve the utility of CPV while obtaining the prescribed concentration ratio. In this work, we turn to non-traditional concentrating optics, namely Reflective Lenses™ (RL), first introduced in early 2000s. The optical configuration of RLs is unique since it combines the very low F/D number (hence resulting in a very low profile of the unit) of mirrors with a rear-focus of lenses and uses only a single-stage reflection. A liner-focus version of RLs, the Slat-Array Concentrator (SAC), is a capable alternative to the parabolic troughs for mid-concentration CPV. A point-focus version called the Ring-Array Concentrator (RAC) is deemed suitable for high concentration photovoltaics.

  11. Photovoltaic manufacturing technology (PVMAT) improvements for ENTECH's concentrator module

    SciTech Connect

    O'Neill, M.J. , Dallas/Fort Worth Airport, Texas 75261-2246 )

    1994-06-30

    With significant assistance from the U. S. Department of Energy (DOE), Sandia National Labs (Sandia), and the National Renewable Energy Laboratory (NREL), our technical team has been developing, field-testing, refining, and commercializing linear Fresnel lens photovoltaic concentrator technology for the past 15 years (Table I). In 1991 we completed Phase 1 of a DOE-sponsored Photovoltaic Manufacturing Technology (PVMaT) project. We are now performing Phase 2A of our PVMaT project. The key objective of our PVMaT project is to design, develop, and implement improved manufacturing processes for our fourth-generation concentrator module. The improved processes are being engineered to simultaneously achieve enhanced product quality (i.e., improved module efficiency, reliability, and field lifetime), higher production volume (10 MV/year initial rate), and lower production costs ($1.25/W[sub peak] goal). Under our PVMaT project, we have made significant improvements in manufacturing technology for our fourth-generation concentrator module, and the key results to date are summarized in the following paragraphs.

  12. Solar kinetics` photovoltaic concentrator module and tracker development

    SciTech Connect

    White, D.L.; Howell, B.

    1995-11-01

    Solar Kinetics, Inc., has been developing a point-focus concentrating photovoltaic module and tracker system under contract to Sandia National Laboratories. The primary focus of the contract was to achieve a module design that was manufacturable and passed Sandia`s environmental testing. Nine modules of two variations were assembled, tested, and characterized in Phase 1, and results of these tests were promising, with module efficiency approaching the theoretical limit achievable with the components used. The module efficiency was 11.9% at a solar irradiance of 850 W/sq m and an extrapolated cell temperature of 25 C. Improvements in module performance are anticipated as cell efficiencies meet their expectations. A 2-kW tracker and controller accommodating 20 modules was designed, built, installed, and operated at Solar Kinetics` test site. The drive used many commercially available components in an innovative arrangement to reduce cost and increase reliability. Backlash and bearing play were controlled by use of preloaded, low slip-stick, synthetic slide bearings. The controller design used a standard industrial programmable logic controller to perform ephemeris calculations, operate the actuators, and monitor encoders.

  13. Solar kinetics` photovoltaic concentrator module and tracker development

    SciTech Connect

    White, D.L.; Howell, B.

    1995-11-01

    Solar Kinetics, Inc., has been developing a point-focus concentrating photovoltaic module and tracker system under contract to Sandia National Laboratories. The primary focus of the contract was to achieve a module design that was manufacturable and passed Sandia`s environmental testing. Nine modules of two variations were assembled, tested, and characterized in Phase 1, and results of these tests were promising, with module efficiency approaching the theoretical limit achievable with the components used. The module efficiency was 11.9% at a solar irradiance of 850 W/m{sup 2} and an extrapolated cell temperature of 25{degrees}C. Improvements in module performance are anticipated as cell efficiencies meet their expectations. A 2-kW tracker and controller accommodating 20 modules was designed, built, installed, and operated at Solar Kinetics` test site. The drive used many commercially available components in an innovative arrangement to reduce cost and increase reliability. Backlash and bearing play were controlled by use of preloaded, low slip-stick, synthetic slide bearings. The controller design used a standard industrial programmable logic controller to perform ephemeris calculations, operate the actuators, and monitor encoders.

  14. Concentrating Photovoltaic Module Testing at NREL's Concentrating Solar Radiation Users Facility

    SciTech Connect

    Bingham, C.; Lewandowski, A.; Stone, K.; Sherif, R.; Ortabasi, U.; Kusek, S.

    2003-05-01

    There has been much recent interest in photovoltaic modules designed to operate with concentrated sunlight (>100 suns). Concentrating photovoltaic (CPV) technology offers an exciting new opportunity as a viable alternative to dish Stirling engines. Advantages of CPV include potential for>40% cell efficiency in the long term (25% now), no moving parts, no intervening heat transfer surface, near-ambient temperature operation, no thermal mass, fast response, concentration reduces cost of cells relative to optics, and scalable to a range of sizes. Over the last few years, we have conducted testing of several CPV modules for DOEs Concentrating Solar Power (CSP) program. The testing facilities are located at the Concentrating Solar Radiation Users Facility (CRULF) and consist the 10 kW High-Flux Solar Furnace (HFSF) and a 14m2 Concentrating Technologies, LLC (CTEK) dish. This paper will primarily describe the test capabilities; module test results will be detailed in the presentation.

  15. Results of testing a development module of the second-generation E-Systems concentrating photovoltaic-thermal module

    SciTech Connect

    Harrison, T D

    1982-04-01

    An actively-cooled linear Fresnel lens concentrating photovoltaic and thermal module, designed and built by E-Systems, was tested in the Photovoltaic Advanced Systems Test Facility. Physical, electrical, and thermal characteristics of the module are presented. Module performance is characterized through the use of multiple linear regression techniques.

  16. Photovoltaic concentrators

    NASA Astrophysics Data System (ADS)

    Boes, E. C.

    1980-01-01

    A status report on photovoltaic (PV) concentrators technology is presented. The major topics covered are as follows: (1) current PV concentrator arrays; designs, performances, and costs; (2) current PV concentrator array components; cells and cell assemblies, optical concentrators, support structures, tracking, and drive; (3) design of PV concentrator arrays; and (4) array manufacturing technology.

  17. Solder fatigue reduction in point focus photovoltaic concentrator modules

    SciTech Connect

    Hund, T.D.; Burchett, S.N.

    1991-01-01

    Solder fatigue tests have been conducted on point focus photovoltaic concentration cell assemblies to identify a baseline fatigue life and to quantify the fatigue life improvements that result using a copper-molybdenum-copper low-expansion insert between the solar cell and copper heat spreader. Solder microstructural changes and fatigue crack growth were identified using cross sections and ultrasonic scans of the fatigue solder joints. The Coffin-Manson and Total Strain fatigue models for low-cycle fatigue were evaluated for use in fatigue life predictions. Since both of these models require strain calculations, two strain calculation methods were compared: hand-calculated shear strain and a finite element method shear strain. At present, the available theoretical models for low-cycle solder fatigue are limited in their ability to predict failure; consequently, extensive thermal cycling is continuing to define the fatigue life for point focus photovoltaic cell assemblies. 9 refs., 9 figs., 2 tabs.

  18. Results of the PRDA 35 qualification tests of the Motorola concentrating photovoltaic module

    SciTech Connect

    Pritchard, D.A.

    1981-10-01

    A passively-cooled, Fresnel lens, concentrating photovoltaic module, designed and built by Motorola, Incorporated, was tested to the PRDA 35 specifications. The PRDA 35 module test program is described. Physical, electrical, and thermal characteristics of the module are presented. Module performance is shown using multiple linear regression techniques: some change was measured after environmental exposure. In addition, sample cell assemblies were evaluated for effects of severe environmental conditions. Results presented herein show the module has met the qualification goals.

  19. Recycling WEEE: Extraction and concentration of silver from waste crystalline silicon photovoltaic modules.

    PubMed

    Dias, Pablo; Javimczik, Selene; Benevit, Mariana; Veit, Hugo; Bernardes, Andréa Moura

    2016-11-01

    Photovoltaic modules (or panels) are important power generators with limited lifespans. The modules contain known pollutants and valuable materials such as silicon, silver, copper, aluminum and glass. Thus, recycling such waste is of great importance. To date, there have been few published studies on recycling silver from silicon photovoltaic panels, even though silicon technology represents the majority of the photovoltaic market. In this study, the extraction of silver from waste modules is justified and evaluated. It is shown that the silver content in crystalline silicon photovoltaic modules reaches 600g/t. Moreover, two methods to concentrate silver from waste modules were studied, and the use of pyrolysis was evaluated. In the first method, the modules were milled, sieved and leached in 64% nitric acid solution with 99% sodium chloride; the silver concentration yield was 94%. In the second method, photovoltaic modules were milled, sieved, subjected to pyrolysis at 500°C and leached in 64% nitric acid solution with 99% sodium chloride; the silver concentration yield was 92%. The first method is preferred as it consumes less energy and presents a higher yield of silver. This study shows that the use of pyrolysis does not assist in the extraction of silver, as the yield was similar for both methods with and without pyrolysis.

  20. Optimized design and research of secondary microprism for dense array concentrating photovoltaic module

    NASA Astrophysics Data System (ADS)

    Yang, Guanghui; Chen, Bingzhen; Liu, Youqiang; Guo, Limin; Yao, Shun; Wang, Zhiyong

    2015-10-01

    As the critical component of concentrating photovoltaic module, secondary concentrators can be effective in increasing the acceptance angle and incident light, as well as improving the energy uniformity of focal spots. This paper presents a design of transmission-type secondary microprism for dense array concentrating photovoltaic module. The 3-D model of this design is established by Solidworks and important parameters such as inclination angle and component height are optimized using Zemax. According to the design and simulation results, several secondary microprisms with different parameters are fabricated and tested in combination with Fresnel lens and multi-junction solar cell. The sun-simulator IV test results show that the combination has the highest output power when secondary microprism height is 5mm and top facet side length is 7mm. Compared with the case without secondary microprism, the output power can improve 11% after the employment of secondary microprisms, indicating the indispensability of secondary microprisms in concentrating photovoltaic module.

  1. Fabricating high-concentration GaAs cell photovoltaic modules

    SciTech Connect

    Kaminar, N.R.; Hamaker, H.C.

    1986-04-01

    This program comprises the design and manufacture of components of a GaAs-cell, passively-cooled concentrator. A Fresnel lens, 5.44-inches square, was used in conjunction with a solid glass, domed-top secondary optical element to concentrate the light on single-junction GaAs cells. The cell had an active area 0.2 inches in diameter and was soldered directly to the copper heatspreader. The heatspreader was bonded with heat-conductive RTV to an aluminum dissipator, which formed the module housing. The module was designed to be attached to a tracker at the center. Obtained were 26% cell efficiency in flash tests and 19.2% combined lens/cell efficiency outdoors. Optical transmission was lower than expected due to higher than expected losses in the secondary. The secondaries were made using a molding technique applicable to mass production.

  2. Concentrating photovoltaic solar panel

    DOEpatents

    Cashion, Steven A; Bowser, Michael R; Farrelly, Mark B; Hines, Braden E; Holmes, Howard C; Johnson, Jr., Richard L; Russell, Richard J; Turk, Michael F

    2014-04-15

    The present invention relates to photovoltaic power systems, photovoltaic concentrator modules, and related methods. In particular, the present invention features concentrator modules having interior points of attachment for an articulating mechanism and/or an articulating mechanism that has a unique arrangement of chassis members so as to isolate bending, etc. from being transferred among the chassis members. The present invention also features adjustable solar panel mounting features and/or mounting features with two or more degrees of freedom. The present invention also features a mechanical fastener for secondary optics in a concentrator module.

  3. Advanced photovoltaic concentrator system low-cost prototype module

    SciTech Connect

    Kaminar, N.R.; McEntee, J.; Curchod, D. )

    1991-09-01

    This report describes the continued development of an extruded lens and the development of a PV receiver, both of which will be used in the Solar Engineering Applications Corporation (SEA) 10X concentrator. These efforts were pare of a pre-Concentrator Initiative Program. The 10X concentrator consists of an inexpensive, extruded linear Fresnel lens which focuses on one-sun cells which are adhesive-bonded to an anodized aluminum heat sink. Module sides are planned to be molded along with the lens and are internally reflective for improved on- and off-track performance. End caps with molded-in bearings complete the module. Ten modules are mounted in a stationary frame for simple, single-axis tracking in the east-west direction. This configuration an array, is shipped completely assembled and requires only setting on a reasonably flat surface, installing 4 fasteners, and hooking up the wires. Development of the 10-inch wide extruded lens involved one new extrusion die and a series of modifications to this die. Over 76% lens transmission was measured which surpassed the program goal of 75%. One-foot long receiver sections were assembled and subjected to evaluation tests at Sandia National Laboratories. A first group had some problem with cell delamination and voids but a second group performed very well, indicating that a full size receiver would pass the full qualification test. Cost information was updated and presented in the report. The cost study indicated that the Solar Engineering Applications Corporation concentrator system can exceed the DOE electricity cost goals of less than 6cents per KW-hr. 33 figs., 11 tabs.

  4. Russian Activities in Space Photovoltaic Power Modules with Concentrators

    NASA Technical Reports Server (NTRS)

    Andreev, Vyacheslav M.; Rumyantsev, Valeri D.

    2004-01-01

    Space concentrator modules with point-and line-focus Fresnel lenses and with reflective parabolic troughs have been developed recently at Ioffe Physico-Technical Institute. PV receivers for these modules are based: on the single junction LPE and MOCVD AlGaAs/GaAs solar cells characterized by AM0 efficiencies of 23.5 - 24% at 20 - 50 suns and 24 - 24.75 at 50 - 200 suns; on the mechanically stacked tandem AlGaAs/GaAs-GaSb cells with efficiency of 27 - 28 at 20 - 100 suns. MOCVD AlGaAs/GaAs cells with internal Bragg reflector have shown a higher radiation resistance as compared to a traditional structure. Monolithic two-terminal tandems AlGaAs (top)-GaAs (bottom) for space application and GaSb (top) - InGaAsSb (bottom) for TRV application are under development as well.

  5. MISPS: Module integrated solar position sensor for concentration photovoltaics

    NASA Astrophysics Data System (ADS)

    Pardell, Ricard

    2012-10-01

    This paper describes a new device, the MISPS (Module Integrated. Solar Position Sensor) for CPV systems. Its main innovation lies in it being module integrated, so that the sensor is a constituent part of the module and uses its optics. The MISPS has been designed within the scope of the CPVRS project, but it can be used in any refractive optics CPV system.

  6. TwinFocus, a concentrated photovoltaic module based on mature technologies

    NASA Astrophysics Data System (ADS)

    Antonini, Piergiorgio; Centro, Sandro; Golfetto, Stelvio; Saccà, Alessandro

    2014-12-01

    Among solar power generation, concentrated photovoltaics (CPV) based on multijunction (MJ) solar cells, is one of the most promising technology for hot climates. The fact that multijunction solar cells based on direct band gap semiconductors demonstrate lower dependence on temperature than silicon solar cells boosted their use in concentrated photovoltaics modules. Departing from the mainstream design of Fresnel lenses, the CPV module based on TwinFocus design with off-axis quasi parabolic mirrors differentiates itself for its compactness and the possibility of easy integration also in roof-top applications. A detailed description of the module and of the systems will be given together with measured performances, and expectations for the next release.

  7. Photovoltaic Manufacturing Technology (PVMaT) improvements for ENTECH's concentrator module

    SciTech Connect

    O'Neill, M.J.; McDanal, A.J.; Perry, J.L.; Jackson, M.C.; Walters, R.R. )

    1991-11-01

    This final technical report documents ENTECH's Phase 1 contract with Photovoltaic Manufacturing Technology (PVMaT) project. Under this project we prepared a detailed description of our current manufacturing process for making our unique linear Fresnel lens photovoltaic concentrator modules. In addition, we prepared a detailed description of an improved manufacturing process, which will simultaneously increase module production rates, enhance module quality, and substantially reduce module costs. We also identified potential problems in implementing the new manufacturing process, and we proposed solutions to these anticipated problems. Before discussing the key results of our program, however, we present a brief description of our unique photovoltaic technology. The key conclusion of our PVMAT Phase 1 study is that our module technology, without further breakthroughs, can realistically meet the near-term DOE goal of 12 cents/kWh levelized electricity cost, provided that we successfully implement the new manufacturing process at a production volume of at least 10 megawatts per year. The key recommendation from our Phase 1 study is to continue our PVMaT project into Phase 2A, which is directed toward the actual manufacturing technology development required for our new module production process. 15 refs.

  8. Intermediate-band dynamics of quantum dots solar cell in concentrator photovoltaic modules

    PubMed Central

    Sogabe, Tomah; Shoji, Yasushi; Ohba, Mitsuyoshi; Yoshida, Katsuhisa; Tamaki, Ryo; Hong, Hwen-Fen; Wu, Chih-Hung; Kuo, Cherng-Tsong; Tomić, Stanko; Okada, Yoshitaka

    2014-01-01

    We report for the first time a successful fabrication and operation of an InAs/GaAs quantum dot based intermediate band solar cell concentrator photovoltaic (QD-IBSC-CPV) module to the IEC62108 standard with recorded power conversion efficiency of 15.3%. Combining the measured experimental results at Underwriters Laboratory (UL®) licensed testing laboratory with theoretical simulations, we confirmed that the operational characteristics of the QD-IBSC-CPV module are a consequence of the carrier dynamics via the intermediate-band at room temperature. PMID:24762433

  9. Benchmarking concentrating photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Duerr, Fabian; Muthirayan, Buvaneshwari; Meuret, Youri; Thienpont, Hugo

    2010-08-01

    Integral to photovoltaics is the need to provide improved economic viability. To achieve this goal, photovoltaic technology has to be able to harness more light at less cost. A large variety of concentrating photovoltaic concepts has provided cause for pursuit. To obtain a detailed profitability analysis, a flexible evaluation is crucial for benchmarking the cost-performance of this variety of concentrating photovoltaic concepts. To save time and capital, a way to estimate the cost-performance of a complete solar energy system is to use computer aided modeling. In this work a benchmark tool is introduced based on a modular programming concept. The overall implementation is done in MATLAB whereas Advanced Systems Analysis Program (ASAP) is used for ray tracing calculations. This allows for a flexible and extendable structuring of all important modules, namely an advanced source modeling including time and local dependence, and an advanced optical system analysis of various optical designs to obtain an evaluation of the figure of merit. An important figure of merit: the energy yield for a given photovoltaic system at a geographical position over a specific period, can be calculated.

  10. Integration of new hybrid flat concentrating solar modules into the experimental photovoltaic power plant TISO

    NASA Astrophysics Data System (ADS)

    Camani, M.; Ceppi, P.; Salvade, G.; Spinedi, C.

    The first part of the experimental, utility interactive photovoltaic plant TISO started operation on May 1982 with an array field of flat plate modules (10 kW peak) and a dedicated inverter unit. During the spring of 1983, a new hybrid flat concentrating array, with a peak electrical power of 3.1 kW and a thermal maximum output of 30 kW, was added to the installation. A high efficiency inverter unit with maximum power tracking feeds back the produced power to the utility lines. Heat is recuperated from the hybrid absorbers by forced water circulation. Some experiences and first operation results are presented.

  11. Development and fabrication of photovoltaic concentrator modules for a point-focus Fresnel lens array

    SciTech Connect

    Broadbent, S.; Sanders, J.A.

    1985-06-01

    Design of the second generation photovoltaic concentrator module originally developed by Martin Marietta under Contract 46-3018 was improved. Module efficiency was improved from 14.4% to 15.5% and numerous detailed design enhancements were incorporated to facilitate fabrication and improve cost effectiveness. Sixty modules were manufactured to populate the second generation structure already installed at the Sandia National Laboratories test site in Albuquerque, NM, plus 10 spares and test units. To further improve the life capability and facilitate installation of the design, additional design development was authorized for (1) cell interconnect research to provide greater stress relief at the cell-interconncet and substrate-interconnect interfaces; and (2) incorporation of a reflective secondary to relieve tracking accuracy and initial alignment accuracy requirements.

  12. Concentrating photovoltaic technology

    SciTech Connect

    Edenburn, M.W.

    1984-01-01

    This paper will summarize the status and discuss likely future directions of photovoltaic concentrator technology. A current commercial Si cell module has a peak efficiency of 15.5%, and 17% has been reached with an experimental module. Advanced cells and module design improvements offer still higher efficiencies. Concentrator Fresnel lens array fields installed several years ago have all demonstrated very good electrical performance with little performance degradation. Fresnel lens arrays were commercially available and prices of $7/watt for installed one megawatt systems have been quoted. Cost projections predict that current technology concentrating PV arrays can be installed for less than $2/watt if they are manufactured in large, steady quantities. More advanced designs may cost even less.

  13. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation.

    PubMed

    Lee, Kyu-Tae; Yao, Yuan; He, Junwen; Fisher, Brent; Sheng, Xing; Lumb, Matthew; Xu, Lu; Anderson, Mikayla A; Scheiman, David; Han, Seungyong; Kang, Yongseon; Gumus, Abdurrahman; Bahabry, Rabab R; Lee, Jung Woo; Paik, Ungyu; Bronstein, Noah D; Alivisatos, A Paul; Meitl, Matthew; Burroughs, Scott; Hussain, Muhammad Mustafa; Lee, Jeong Chul; Nuzzo, Ralph G; Rogers, John A

    2016-12-20

    Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV(+) scheme ("+" denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV(+) modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.

  14. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation

    NASA Astrophysics Data System (ADS)

    Lee, Kyu-Tae; Yao, Yuan; He, Junwen; Fisher, Brent; Sheng, Xing; Lumb, Matthew; Xu, Lu; Anderson, Mikayla A.; Scheiman, David; Han, Seungyong; Kang, Yongseon; Gumus, Abdurrahman; Bahabry, Rabab R.; Lee, Jung Woo; Paik, Ungyu; Bronstein, Noah D.; Alivisatos, A. Paul; Meitl, Matthew; Burroughs, Scott; Mustafa Hussain, Muhammad; Lee, Jeong Chul; Nuzzo, Ralph G.; Rogers, John A.

    2016-12-01

    Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III–V semiconductor technologies. In this CPV+ scheme (“+” denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV+ modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.

  15. Photovoltaic module and interlocked stack of photovoltaic modules

    DOEpatents

    Wares, Brian S.

    2014-09-02

    One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame. A plurality of individual male alignment features and a plurality of individual female alignment features are included on each frame. Adjacent photovoltaic modules are interlocked by multiple individual male alignment features on a first module of the adjacent photovoltaic modules fitting into and being surrounded by corresponding individual female alignment features on a second module of the adjacent photovoltaic modules. Other embodiments, features and aspects are also disclosed.

  16. Concentrating photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Dupas, A.

    1982-11-01

    Various configurations for concentrating photovoltaic systems are described and their operating principles are explained. The effects of temperature and series resistance on system efficiency are discussed. As an example, the french family of photovoltaic concentrating systems, SOPHOCLE, is described. The SOPHOCLE family of generators is characterized by the use of a heliostat with altazimuth mounting and by the choice of medium concentration (C=45) by fresnel lenses on silicon cells.

  17. Photovoltaic module reliability workshop

    NASA Astrophysics Data System (ADS)

    Mrig, L.

    The paper and presentations compiled in this volume form the Proceedings of the fourth in a series of Workshops sponsored by Solar Energy Research Institute (SERI/DOE) under the general theme of photovoltaic module reliability during the period 1986 to 1990. The reliability photovoltaic (PV) modules/systems is exceedingly important along with the initial cost and efficiency of modules if the PV technology has to make a major impact in the power generation market, and for it to compete with the conventional electricity producing technologies. The reliability of photovoltaic modules has progressed significantly in the last few years as evidenced by warrantees available on commercial modules of as long as 12 years. However, there is still need for substantial research and testing required to improve module field reliability to levels of 30 years or more. Several small groups of researchers are involved in this research, development, and monitoring activity around the world. In the U.S., PV manufacturers, DOE laboratories, electric utilities and others are engaged in the photovoltaic reliability research and testing. This group of researchers and others interested in this field were brought together under SERI/DOE sponsorship to exchange the technical knowledge and field experience as related to current information in this important field. The papers presented here reflect this effort.

  18. A 24.4% solar to hydrogen energy conversion efficiency by combining concentrator photovoltaic modules and electrochemical cells

    NASA Astrophysics Data System (ADS)

    Nakamura, Akihiro; Ota, Yasuyuki; Koike, Kayo; Hidaka, Yoshihide; Nishioka, Kensuke; Sugiyama, Masakazu; Fujii, Katsushi

    2015-10-01

    The highest efficiency of 24.4% for the solar-to-hydrogen (STH) energy conversion was obtained in an outdoor field test by combining concentrator photovoltaic (CPV) modules with InGaP/GaAs/Ge three-junction cells and polymer-electrolyte electrochemical (EC) cells. The high efficiency was obtained by using the high-efficiency CPV modules (∼31% under the present operation conditions) and the direct connection between the CPV modules and the EC cells with an almost optimized number of elements in series. The STH efficiency bottleneck was clarified to be the efficiency of the CPV modules, the over-potential of the EC cells, and matching of the operation point to the maximal-power point of the CPV modules.

  19. Photovoltaics. III - Concentrators

    NASA Astrophysics Data System (ADS)

    Backus, C. E.

    1980-02-01

    Photovoltaic concentration systems that redirect sunlight falling on a surface to a smaller solar-cell surface concentrating the intensity of sunlight many times are examined. It is noted that solar cells for concentrating systems must be designed for low internal resistance as well as for high sunlight intensities. Two designs of silicon cells are presented that perform well at high concentrations; these are interdigitated back-contact cells and vertical multijunction cells. Attention is given to heat tapping of reemitted light.

  20. Formed photovoltaic module busbars

    DOEpatents

    Rose, Douglas; Daroczi, Shan; Phu, Thomas

    2015-11-10

    A cell connection piece for a photovoltaic module is disclosed herein. The cell connection piece includes an interconnect bus, a plurality of bus tabs unitarily formed with the interconnect bus, and a terminal bus coupled with the interconnect bus. The plurality of bus tabs extend from the interconnect bus. The terminal bus includes a non-linear portion.

  1. Bracket for photovoltaic modules

    SciTech Connect

    Ciasulli, John; Jones, Jason

    2014-06-24

    Brackets for photovoltaic ("PV") modules are described. In one embodiment, a saddle bracket has a mounting surface to support one or more PV modules over a tube, a gusset coupled to the mounting surface, and a mounting feature coupled to the gusset to couple to the tube. The gusset can have a first leg and a second leg extending at an angle relative to the mounting surface. Saddle brackets can be coupled to a torque tube at predetermined locations. PV modules can be coupled to the saddle brackets. The mounting feature can be coupled to the first gusset and configured to stand the one or more PV modules off the tube.

  2. Photovoltaic module reliability workshop

    SciTech Connect

    Mrig, L.

    1990-01-01

    The paper and presentations compiled in this volume form the Proceedings of the fourth in a series of Workshops sponsored by Solar Energy Research Institute (SERI/DOE) under the general theme of photovoltaic module reliability during the period 1986--1990. The reliability Photo Voltaic (PV) modules/systems is exceedingly important along with the initial cost and efficiency of modules if the PV technology has to make a major impact in the power generation market, and for it to compete with the conventional electricity producing technologies. The reliability of photovoltaic modules has progressed significantly in the last few years as evidenced by warranties available on commercial modules of as long as 12 years. However, there is still need for substantial research and testing required to improve module field reliability to levels of 30 years or more. Several small groups of researchers are involved in this research, development, and monitoring activity around the world. In the US, PV manufacturers, DOE laboratories, electric utilities and others are engaged in the photovoltaic reliability research and testing. This group of researchers and others interested in this field were brought together under SERI/DOE sponsorship to exchange the technical knowledge and field experience as related to current information in this important field. The papers presented here reflect this effort.

  3. Photovoltaic module and interlocked stack of photovoltaic modules

    DOEpatents

    Wares, Brian S.

    2012-09-04

    One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame having at least a top member and a bottom member. A plurality of alignment features are included on the top member of each frame, and a plurality of alignment features are included on the bottom member of each frame. Adjacent photovoltaic modules are interlocked by the alignment features on the top member of a lower module fitting together with the alignment features on the bottom member of an upper module. Other embodiments, features and aspects are also disclosed.

  4. Advanced photovoltaic power systems using tandem GaAs/GaSb concentrator modules

    NASA Technical Reports Server (NTRS)

    Fraas, L. M.; Kuryla, M. S.; Pietila, D. A.; Sundaram, V. S.; Gruenbaum, P. E.; Avery, J. E.; Dihn, V.; Ballantyne, R.; Samuel, C.

    1992-01-01

    In 1989, Boeing announced the fabrication of a tandem gallium concentrator solar cell with an energy conversion efficiency of 30 percent. This research breakthrough has now led to panels which are significantly smaller, lighter, more radiation resistant, and potentially less expensive than the traditional silicon flat plate electric power supply. The new Boeing tandem concentrator (BTC) module uses an array of lightweight silicone Fresnel lenses mounted on the front side of a light weight aluminum honeycomb structure to focus sunlight onto small area solar cells mounted on a thin back plane. This module design is shown schematically. The tandem solar cell in this new module consists of a gallium arsenide light sensitive cell with a 24 percent energy conversion efficiency stacked on top of a gallium antimonide infrared sensitive cell with a conversion efficiency of 6 percent. This gives a total efficiency 30 percent for the cell-stack. The lens optical efficiency is typically 85 percent. Discounting for efficiency losses associated with lens packing, cell wiring, and cell operating temperature still allows for a module efficiency of 22 percent which leads to a module power density of 300 Watts/sq. m. This performance provides more than twice the power density available from a single crystal silicon flat plate module and at least four times the power density available from amorphous silicon modules. The fact that the lenses are only 0.010 ft. thick and the aluminum foil back plane is only 0.003 ft. thick leads to a very lightweight module. Although the cells are an easy to handle thickness of 0.020 ft., the fact that they are small, occupying one-twenty-fifth of the module area, means that they add little to the module weight. After summing all the module weights and given the high module power, we find that we are able to fabricate BTC modules with specific power of 100 watts/kg.

  5. Photovoltaic solar concentrator

    DOEpatents

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  6. Low-concentration photovoltaic module with reflective compound parabolic concentrator fabricated by roll-to-roll slot-die coating and 3D printing.

    PubMed

    Lee, Hyungman; Lim, Heonkwang; Park, Sungsik; Lee, Dongjin

    2016-12-26

    We fabricate a low-concentration photovoltaic (LCPV) module with a reflective compound parabolic concentrator (CPC) using roll-to-roll (R2R) slot-die coating and 3D printing technologies. A highly reflective silver thin-film is coated on a flexible plastic substrate, and the CPC frame is manufactured via 3D printing. The slot-die-coated silver film with thickness of more than 100 nm stably exhibits 95% reflectivity at 550 nm. Further, CPC concentrators with concentration ratios of 4X and 3X are assembled into silicon solar cells and characterized. Although the fill factor and maximum voltage slightly decrease, power and efficiency increase by factors of 3.51 and 2.63 with respect to the no-CPC-module case. Our approach can be used to optimize the design of various engineering products.

  7. Photovoltaic module and module arrays

    DOEpatents

    Botkin, Jonathan [El Cerrito, CA; Graves, Simon [Berkeley, CA; Lenox, Carl J. S. [Oakland, CA; Culligan, Matthew [Berkeley, CA; Danning, Matt [Oakland, CA

    2012-07-17

    A photovoltaic (PV) module including a PV device and a frame. The PV device has a PV laminate defining a perimeter and a major plane. The frame is assembled to and encases the laminate perimeter, and includes leading, trailing, and side frame members, and an arm that forms a support face opposite the laminate. The support face is adapted for placement against a horizontal installation surface, to support and orient the laminate in a non-parallel or tilted arrangement. Upon final assembly, the laminate and the frame combine to define a unitary structure. The frame can orient the laminate at an angle in the range of 3.degree.-7.degree. from horizontal, and can be entirely formed of a polymeric material. Optionally, the arm incorporates integral feature(s) that facilitate interconnection with corresponding features of a second, identically formed PV module.

  8. Photovoltaic module and module arrays

    DOEpatents

    Botkin, Jonathan; Graves, Simon; Lenox, Carl J. S.; Culligan, Matthew; Danning, Matt

    2013-08-27

    A photovoltaic (PV) module including a PV device and a frame, The PV device has a PV laminate defining a perimeter and a major plane. The frame is assembled to and encases the laminate perimeter, and includes leading, trailing, and side frame members, and an arm that forms a support face opposite the laminate. The support face is adapted for placement against a horizontal installation surface, to support and orient the laminate in a non-parallel or tilted arrangement. Upon final assembly, the laminate and the frame combine to define a unitary structure. The frame can orient the laminate at an angle in the range of 3.degree.-7.degree. from horizontal, and can be entirely formed of a polymeric material. Optionally, the arm incorporates integral feature(s) that facilitate interconnection with corresponding features of a second, identically formed PV module.

  9. Photovoltaic solar concentrator

    DOEpatents

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2016-03-15

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  10. Photovoltaic solar concentrator

    DOEpatents

    Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis

    2012-12-11

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  11. Durability of Poly(Methyl Methacrylate) Lenses Used in Concentrating Photovoltaic Modules: Preprint

    SciTech Connect

    Miller, D. C.; Gedvilas, L. M.; To, B.; Kennedy, C. E.; Kurtz, S. R.

    2010-08-01

    Concentrating photovoltaic (CPV) technology has recently gained interest based on their expected low levelized cost of electricity, high efficiency, and scalability. Many CPV systems use Fresnel lenses made of poly(methyl methacrylate)(PMMA) to obtain a high optical flux density. The optical and mechanical durability of such components, however, are not well established relative to the desired service life of 30 years. Specific reliability issues may include: reduced optical transmittance, discoloration, hazing, surface erosion, embrittlement, crack growth, physical aging, shape setting (warpage), and soiling. The initial results for contemporary lens- and material-specimens aged cumulatively to 6 months are presented. The study here uses an environmental chamber equipped with a xenon-arc lamp to age specimens at least 8x the nominal field rate. A broad range in the affected characteristics (including optical transmittance, yellowness index, mass loss, and contact angle) has been observed to date, depending on the formulation of PMMA used. The most affected specimens are further examined in terms of their visual appearance, surface roughness (examined via atomic force microscopy), and molecular structure (via Fourier transform infrared spectroscopy).

  12. Utility-scale photovoltaic concentrators

    SciTech Connect

    None, None

    2009-01-18

    The photovoltaics concentrators section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  13. Integrated organic photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Potscavage, William J.; Yoo, Seunghyup; Domercq, Benoit; Kim, Jungbae; Holt, Joe; Kippelen, Bernard

    2007-09-01

    Methods for scalable output voltage and encapsulation of organic photovoltaic cells are addressed in this paper. To obtain scalable output voltages, integrated photovoltaic modules comprised of a bulk heterojunction of poly(3- hexylthiophene) (P3HT) and a soluble C 70 derivative, [6,6]-phenyl C 71 butyric acid methyl ester (PCBM-70), were fabricated. Power conversion efficiency of individual P3HT/PCBM-70 cells was estimated to be 4.1 % for AM1.5 G illumination. Modules of one to four cells connected in series produced open-circuit voltages V OC that linearly depend on the number of cells N as V OC = N × 0.621 V with a nearly constant short-circuit current of 1.4 +/- 0.1 mA. Separately, shelf lifetimes of more than one year were achieved for pentacene/C 60 solar cells by encapsulation with a 200-nm-thick layer of Al IIO 3 deposited by atomic layer deposition (ALD). In addition, the ALD process improved the open-circuit voltage and power conversion efficiency of the solar cells by thermal annealing that occurs during the process.

  14. Photovoltaic module mounting system

    SciTech Connect

    Miros, Robert H. J.; Mittan, Margaret Birmingham; Seery, Martin N; Holland, Rodney H

    2012-04-17

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  15. Photovoltaic module mounting system

    SciTech Connect

    Miros, Robert H. J.; Mittan, Margaret Birmingham; Seery, Martin N; Holland, Rodney H

    2012-09-18

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  16. Flammability of photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Sugimura, R. S.; Otth, D. H.; Ross, R. G., Jr.; Lewis, K. J.; Arnett, J. C.

    1984-01-01

    A series of Class B burning-brand tests were performed on experimental modules using high-temperature, back-surface materials to develop the technology base required to construct fire-ratable modules. Results indicate the existence of synergistic relationships between hydrocarbon encapsulation materials and the experimental module configurations that provide increased fire resistance. These configurations use Kapton, fiberglass, neoprene rubber, stainless-steel foil or aluminum foil as the back surface. Successful test results occur when the structural integrity of the module back surface is maintained. Test failures of these modules always occur for one of three reasons: the outermost back cover melts, rips, or is too porous. In each case flammable molten encapsulant, its gaseous byproducts, or both, penetrates the back surface of the module and bursts into flame. Future efforts to complete the technology base will concentrate on the spread-of-flame test, focusing on the more promising configurations identified in the initial series of tests.

  17. Flammability of photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Sugimura, R. S.; Otth, D. H.; Ross, R. G., Jr.; Lewis, K. J.; Arnett, J. C.

    A series of Class B burning-brand tests were performed on experimental modules using high-temperature, back-surface materials to develop the technology base required to construct fire-ratable modules. Results indicate the existence of synergistic relationships between hydrocarbon encapsulation materials and the experimental module configurations that provide increased fire resistance. These configurations use Kapton, fiberglass, neoprene rubber, stainless-steel foil or aluminum foil as the back surface. Successful test results occur when the structural integrity of the module back surface is maintained. Test failures of these modules always occur for one of three reasons: the outermost back cover melts, rips, or is too porous. In each case flammable molten encapsulant, its gaseous byproducts, or both, penetrates the back surface of the module and bursts into flame. Future efforts to complete the technology base will concentrate on the spread-of-flame test, focusing on the more promising configurations identified in the initial series of tests.

  18. Photovoltaic module with adhesion promoter

    SciTech Connect

    Xavier, Grace

    2013-10-08

    Photovoltaic modules with adhesion promoters and methods for fabricating photovoltaic modules with adhesion promoters are described. A photovoltaic module includes a solar cell including a first surface and a second surface, the second surface including a plurality of interspaced back-side contacts. A first glass layer is coupled to the first surface by a first encapsulating layer. A second glass layer is coupled to the second surface by a second encapsulating layer. At least a portion of the second encapsulating layer is bonded directly to the plurality of interspaced back-side contacts by an adhesion promoter.

  19. Vacuum lamination of photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Burger, D. R.

    1982-01-01

    Vacuum lamination of terrestrial photovoltaic modules is a new high volume process requiring new equipment and newly develop materials. Equipment development, materials research, and some research in related fields and testing methods are discussed.

  20. Photovoltaic Manufacturing Technology (PVMaT) improvements for ENTECH`s concentrator module. Final technical report, 9 January 1991--14 April 1991

    SciTech Connect

    O`Neill, M.J.; McDanal, A.J.; Perry, J.L.; Jackson, M.C.; Walters, R.R.

    1991-11-01

    This final technical report documents ENTECH`s Phase 1 contract with Photovoltaic Manufacturing Technology (PVMaT) project. Under this project we prepared a detailed description of our current manufacturing process for making our unique linear Fresnel lens photovoltaic concentrator modules. In addition, we prepared a detailed description of an improved manufacturing process, which will simultaneously increase module production rates, enhance module quality, and substantially reduce module costs. We also identified potential problems in implementing the new manufacturing process, and we proposed solutions to these anticipated problems. Before discussing the key results of our program, however, we present a brief description of our unique photovoltaic technology. The key conclusion of our PVMAT Phase 1 study is that our module technology, without further breakthroughs, can realistically meet the near-term DOE goal of 12 cents/kWh levelized electricity cost, provided that we successfully implement the new manufacturing process at a production volume of at least 10 megawatts per year. The key recommendation from our Phase 1 study is to continue our PVMaT project into Phase 2A, which is directed toward the actual manufacturing technology development required for our new module production process. 15 refs.

  1. Space Station Photovoltaic power modules

    NASA Technical Reports Server (NTRS)

    Tatro, Charles A.

    1988-01-01

    Silicon cell Photovoltaic (PV) power modules are key components of the Space Station Electrical Power System (EPS) scheduled to begin deployment in 1994. Four PV power modules, providing 75 KWe of user ac power, form the cornerstone of the EPS; which is comprised of Photovoltaic (PV) power modules, Solar Dynamic (SD) power modules, and the Power Management and Distribution (PMAD) system. The PV modules are located on rotating outboard sections of the Space Station (SS) structure and each module incorporates its own nickel-hydrogen energy storage batteries, its own thermal control system, and some autonomous control features. The PV modules are a cost-effective and technologically mature approach for providing reliable SS electrical power and are a solid base for EPS growth, which is expected to reach 300 KWe by the end of the Space Station's 30-year design lifetime.

  2. Linear Fresnel lens photovoltaic concentrator program

    SciTech Connect

    Kull, J.; Maraschin, R.; Rafinejad, D.; Spencer, R.; Sutton, G.

    1983-08-01

    This report describes Acurex Corporation's design of a linear Fresnel lens Photovoltaic Concentrator Panel. The panel consists of four concentrator modules in an integrated structure. Each module is 10 ft long and has a 39.85 in aperture. The solar cell's active width is 0.90 in. and the cell-lens edge spacing is 23.39 in. There are 58 cells per module. A prototype panel was built and tested. Test results showed a peak electrical efficiency of 10.5% at the operating conditions of 800 W/m/sup 2/ insolation and 90/sup 0/F coolant temperature. The prototype exhibits the manufacturing and assembly concepts developed.

  3. Reliability Research for Photovoltaic Modules

    NASA Technical Reports Server (NTRS)

    Ross, Ronald J., Jr.

    1986-01-01

    Report describes research approach used to improve reliability of photovoltaic modules. Aimed at raising useful module lifetime to 20 to 30 years. Development of cost-effective solutions to module-lifetime problem requires compromises between degradation rates, failure rates, and lifetimes, on one hand, and costs of initial manufacture, maintenance, and lost energy, on other hand. Life-cycle costing integrates disparate economic terms, allowing cost effectiveness to be quantified, allowing comparison of different design alternatives.

  4. Mounting support for a photovoltaic module

    DOEpatents

    Brandt, Gregory Michael; Barsun, Stephan K.; Coleman, Nathaniel T.; Zhou, Yin

    2013-03-26

    A mounting support for a photovoltaic module is described. The mounting support includes a foundation having an integrated wire-way ledge portion. A photovoltaic module support mechanism is coupled with the foundation.

  5. AC photovoltaic module magnetic fields

    SciTech Connect

    Jennings, C.; Chang, G.J.; Reyes, A.B.; Whitaker, C.M.

    1997-12-31

    Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.

  6. Photovoltaic Cz Silicon Module Improvements

    SciTech Connect

    Jester, T. L.

    1998-09-01

    Work focused on reducing the cost per watt of Cz silicon photovoltaic modules under Phase II of Siemens Solar Industries' DOE/NREL PVMaT 4A subcontract is described in this report. New module designs were deployed in this phase of the contract, improvements in yield of over 10% were realized, and further implementation of Statistical Process Control was achieved during this phase. Module configurations representing a 12% cost reduction per watt were implemented in small scale production under Phase II of this contract. Yield improvements are described in detail, yield sensitivity to wafer thickness is quantified, and the deployment of SPC in critical process steps is reported here.

  7. Ballasted photovoltaic module and module arrays

    DOEpatents

    Botkin, Jonathan [El Cerrito, CA; Graves, Simon [Berkeley, CA; Danning, Matt [Oakland, CA

    2011-11-29

    A photovoltaic (PV) module assembly including a PV module and a ballast tray. The PV module includes a PV device and a frame. A PV laminate is assembled to the frame, and the frame includes an arm. The ballast tray is adapted for containing ballast and is removably associated with the PV module in a ballasting state where the tray is vertically under the PV laminate and vertically over the arm to impede overt displacement of the PV module. The PV module assembly can be installed to a flat commercial rooftop, with the PV module and the ballast tray both resting upon the rooftop. In some embodiments, the ballasting state includes corresponding surfaces of the arm and the tray being spaced from one another under normal (low or no wind) conditions, such that the frame is not continuously subjected to a weight of the tray.

  8. Micro-concentrators for a microsystems-enabled photovoltaic system.

    PubMed

    Jared, Bradley H; Saavedra, Michael P; Anderson, Ben J; Goeke, Ron S; Sweatt, William C; Nielson, Gregory N; Okandan, Murat; Elisberg, Brenton; Snively, Dave; Duncan, John; Gu, Tian; Agrawal, Gautam; Haney, Michael W

    2014-03-10

    A 100X magnification, ± 2.5° field of view micro-concentrating optical system has been developed for a microsystems-enabled photovoltaic (MEPV) prototype module using 250 µm diameter multi-junction "stacked" PV cells.

  9. Photovoltaic manufacturing technology (PVMaT) improvements for ENTECH's concentrator module. Final subcontract report, 17 February 1992--14 June 1995

    SciTech Connect

    O'Neill, M.J.; McDanal, A.J.

    1995-11-01

    Since 1978, the ENTECH technical team has been developing, field testing, refining, and commercializing photovoltaic concentrator systems based on a patented arched Fresnel lens optical concentrator, which provides maximum optical efficiency coupled with exceptional real-world error tolerance. First- through third-generation systems were deployed from the early 1980s to the early 1990s. In 1991, ENTECH was awarded a contract by Sandia National Laboratories to develop a fourth-generation concentrator module. In 1992, ENTECH was funded by NREL under the PVMaT Phase 2A procurement to develop and implement the manufacturing process for the new module. This report documents the work performed by ENTECH, Inc. under this PVMAT Phase 2A program.

  10. Solar simulator for concentrator photovoltaic systems.

    PubMed

    Domínguez, César; Antón, Ignacio; Sala, Gabriel

    2008-09-15

    A solar simulator for measuring performance of large area concentrator photovoltaic (CPV) modules is presented. Its illumination system is based on a Xenon flash light and a large area collimator mirror, which simulates natural sun light. Quality requirements imposed by the CPV systems have been characterized: irradiance level and uniformity at the receiver, light collimation and spectral distribution. The simulator allows indoor fast and cost-effective performance characterization and classification of CPV systems at the production line as well as module rating carried out by laboratories.

  11. Photovoltaic module parameters acquisition model

    NASA Astrophysics Data System (ADS)

    Cibira, Gabriel; Koščová, Marcela

    2014-09-01

    This paper presents basic procedures for photovoltaic (PV) module parameters acquisition using MATLAB and Simulink modelling. In first step, MATLAB and Simulink theoretical model are set to calculate I-V and P-V characteristics for PV module based on equivalent electrical circuit. Then, limited I-V data string is obtained from examined PV module using standard measurement equipment at standard irradiation and temperature conditions and stated into MATLAB data matrix as a reference model. Next, the theoretical model is optimized to keep-up with the reference model and to learn its basic parameters relations, over sparse data matrix. Finally, PV module parameters are deliverable for acquisition at different realistic irradiation, temperature conditions as well as series resistance. Besides of output power characteristics and efficiency calculation for PV module or system, proposed model validates computing statistical deviation compared to reference model.

  12. Recent trends in concentrated photovoltaics concentrators' architecture

    NASA Astrophysics Data System (ADS)

    Buljan, Marina; Mendes-Lopes, João; Benítez, Pablo; Miñano, Juan Carlos

    2014-01-01

    The field of concentrated photovoltaics (CPV) has met some remarkable advances in recent years. The continuous increase in conversion efficiency of multijunction solar cells and new advancements in optics have led to new demands and opportunities for optical design in CPV. This paper is a mini-review on current requirements for CPV optical design, and it presents some of the main trends in recent years on CPV systems architecture.

  13. An overview of photovoltaic concentrator technology

    NASA Astrophysics Data System (ADS)

    Arvizu, D. E.; Edenburn, M. W.

    1984-12-01

    Conclusions drawn after several years of testing first generation concentrator photovoltaic modules in operational conditions are reported. Concentrator modules are of interest due to the ability to use fewer - and smaller - cells, although research then must concentrate more on cell efficiency than cost. Point focus and linear focus Fresnel lenses, both mounted on tracking arrays, are the systems receiving the most attention, as are crystalline Si cells, which have exhibited performance decrements of as little as 2 percent over several years of use. Parabolic trough systems have exhibited worrisome reliability problems. Efficiencies exceeding 24 percent are now being attained with GaAs cells at 70-200 suns, and further improvements are expected with a spectrum splitting, multijunction approach. Costs are noted to have dropped to $7/W with a 1 MW order.

  14. Design and development of a high-concentration photovoltaic concentrator

    SciTech Connect

    Hodge, R C

    1982-04-01

    The design and development of a high concentration photovoltaic concentrator module is discussed. The design concept described herein incorporates a curved groove domed Fresnel lens, a high concentration etched multiple vertical junction (EMVJ) solar cell and a passively cooled direct-bonded copper cell mount all packaged in a plastic module. Two seven inch diameter 1200x domed Fresnel lenses were fabricated using single point diamond turning technology. Testing at both GE and Sandia confirmed optical transmission efficiencies of over 83%. Samples of the latest available EMVJ cells were mounted and installed, with a domed Fresnel lens, into a prototype module. Subsequent testing demonstrated net lens-cell efficiencies of 10 to 13%. As a result of this program, salient conclusions have been formulated as to this technology.

  15. Photovoltaic Array Space Power flight experiment plus diagnostics (PASP+) modules

    NASA Technical Reports Server (NTRS)

    Cooley, William T.; Adams, Steven F.; Reinhardt, Kitt C.; Piszczor, Michael F.

    1992-01-01

    The Photovoltaic Array Space Power Plus Diagnostics flight experiment (PASP+) subsumes twelve solar array modules which represent the state of the art in the space photovoltaic array industry. Each of the twelve modules individually feature specific photovoltaic technologies such as advanced semiconductor materials, multi-bandgap structures, lightweight array designs, advanced interconnect technologies, or concentrator array designs. This paper will describe each module in detail including the configuration, components, materials, anticipated on orbit performance, and some of the aspects of each array technology. The layout of each module and the photovoltaic cells or array cross section will be presented graphically. A discussion on the environmental constraints and materials selection will be included as well as a delineation of the differences between the modules and the baseline array configuration in its intended application.

  16. Printed interconnects for photovoltaic modules

    SciTech Connect

    Fields, J. D.; Pach, G.; Horowitz, K. A. W.; Stockert, T. R.; Woodhouse, M.; van Hest, M. F. A. M.

    2017-01-01

    Film-based photovoltaic modules employ monolithic interconnects to minimize resistance loss and enhance module voltage via series connection. Conventional interconnect construction occurs sequentially, with a scribing step following deposition of the bottom electrode, a second scribe after deposition of absorber and intermediate layers, and a third following deposition of the top electrode. This method produces interconnect widths of about 300 um, and the area comprised by interconnects within a module (generally about 3%) does not contribute to power generation. The present work reports on an increasingly popular strategy capable of reducing the interconnect width to less than 100 um: printing interconnects. Cost modeling projects a savings of about $0.02/watt for CdTe module production through the use of printed interconnects, with savings coming from both reduced capital expense and increased module power output. Printed interconnect demonstrations with copper-indium-gallium-diselenide and cadmium-telluride solar cells show successful voltage addition and miniaturization down to 250 um. Material selection guidelines and considerations for commercialization are discussed.

  17. Apparatus for encapsulating a photovoltaic module

    SciTech Connect

    Albright, S.P.; Dugan, L.M.

    1995-10-24

    The subject inventions concern various photovoltaic module designs to protect the module from horizontal and vertical impacts and degradation of solar cell efficiency caused by moisture. In one design, a plurality of panel supports that are positioned adjacent to the upper panel in a photovoltaic module absorb vertical forces exerted along an axis perpendicular to the upper panel. Other designs employ layers of glass and tempered glass, respectively, to protect the module from vertical impacts. A plurality of button-shaped channels is used around the edges of the photovoltaic module to absorb forces applied to the module along an axis parallel to the module and direct moisture away from the module that could otherwise penetrate the module and adversely affect the cells within the module. A spacer is employed between the upper and lower panels that has a coefficient of thermal expansion substantially equivalent to the coefficient of thermal expansion of at least one of the panels. 6 figs.

  18. Apparatus for encapsulating a photovoltaic module

    DOEpatents

    Albright, Scot P.; Dugan, Larry M.

    1995-10-24

    The subject inventions concern various photovoltaic module designs to protect the module from horizontal and vertical impacts and degradation of solar cell efficiency caused by moisture. In one design, a plurality of panel supports that are positioned adjacent to the upper panel in a photovoltaic module absorb vertical forces exerted along an axis perpendicular to the upper panel. Other designs employ layers of glass and tempered glass, respectively, to protect the module from vertical impacts. A plurality of button-shaped channels is used around the edges of the photovoltaic module to absorb forces applied to the module along an axis parallel to the module and direct moisture away from the module that could otherwise penetrate the module and adversely affect the cells within the module. A spacer is employed between the upper and lower panels that has a coefficient of thermal expansion substantially equivalent to the coefficient of thermal expansion of at least one of the panels.

  19. Recent results for concentrator photovoltaics in Japan

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Masafumi; Takamoto, Tatsuya; Araki, Kenji; Kojima, Nobuaki

    2016-04-01

    We summarize the Europe-Japan Collaborative Research Project on Concentrator Photovoltaics (CPV); NGCPV Project (a New Generation of Concentrator PhotoVoltaic cells, modules and systems). The aim of this project was to accelerate the move to very high efficiency and lower cost CPV technologies and to enhance the widespread deployment of CPV systems. Seven European partners and nine Japanese partners have contributed to this international collaboration. The following objectives have been reached: 1) a CPV cell with InGaP/GaAs/InGaAs three-junction world-record efficiency of 44.4% has been developed by Sharp, 2) 50 kW and 15 kW CPV plant operations with an average DC efficiency of 27.8% have been demonstrated in Spain (since mid-2012), 3) a new “Intrepid” CPV module with 31.3% efficiency has been developed by Daido Steel, 4) standard measurement of CPV cells has been established by FhG-ISE and AIST, and 46.0% efficiency has been confirmed for the direct-bonded GaInP/GaAs/GaInAsP/GaInAs four-junction solar cell under this project, 5) the fundamental research on novel materials and structures for CPV has also been conducted.

  20. Residential photovoltaic module and array requirements study

    NASA Technical Reports Server (NTRS)

    Nearhoof, S. L.; Oster, J. R.

    1979-01-01

    Design requirements for photovoltaic modules and arrays used in residential applications were identified. Building codes and referenced standards were reviewed for their applicability to residential photovoltaic array installations. Four installation types were identified - integral (replaces roofing), direct (mounted on top of roofing), stand-off (mounted away from roofing), and rack (for flat or low slope roofs, or ground mounted). Installation costs were developed for these mounting types as a function of panel/module size. Studies were performed to identify optimum module shapes and sizes and operating voltage cost drivers. It is concluded that there are no perceived major obstacles to the use of photovoltaic modules in residential arrays. However, there is no applicable building code category for residential photovoltaic modules and arrays and additional work with standards writing organizations is needed to develop residential module and array requirements.

  1. Tracking-integrated systems for concentrating photovoltaics

    NASA Astrophysics Data System (ADS)

    Apostoleris, Harry; Stefancich, Marco; Chiesa, Matteo

    2016-04-01

    Concentrating photovoltaic (CPV) systems, which use optical elements to focus light onto small-area solar cells, have the potential to minimize the costs, while improving efficiency, of photovoltaic technology. However, CPV is limited by the need to track the apparent motion of the Sun. This is typically accomplished using high-precision mechanical trackers that rotate the entire module to maintain normal light incidence. These machines are large, heavy and expensive to build and maintain, deterring commercial interest and excluding CPV from the residential market. To avoid this issue, some attention has recently been devoted to the development of tracking-integrated systems, in which tracking is performed inside the CPV module itself. This creates a compact system geometry that could be less expensive and more suitable for rooftop installation than existing CPV trackers. We review the basic tracking principles and concepts exploited in these systems, describe and categorize the existing designs, and discuss the potential impact of tracking integration on CPV cost models and commercial potential.

  2. Modelling of Photovoltaic Module Using Matlab Simulink

    NASA Astrophysics Data System (ADS)

    Afiqah Zainal, Nurul; Ajisman; Razlan Yusoff, Ahmad

    2016-02-01

    Photovoltaic (PV) module consists of numbers of photovoltaic cells that are connected in series and parallel used to generate electricity from solar energy. The characteristics of PV module are different based on the model and environment factors. In this paper, simulation of photovoltaic module using Matlab Simulink approach is presented. The method is used to determine the characteristics of PV module in various conditions especially in different level of irradiations and temperature. By having different values of irradiations and temperature, the results showed the output power, voltage and current of PV module can be determined. In addition, all results from Matlab Simulink are verified with theoretical calculation. This proposed model helps in better understanding of PV module characteristics in various environment conditions.

  3. Analysis techniques used on field degraded photovoltaic modules

    SciTech Connect

    Hund, T.D.; King, D.L.

    1995-09-01

    Sandia National Laboratory`s PV System Components Department performs comprehensive failure analysis of photovoltaic modules after extended field exposure at various sites around the world. A full spectrum of analytical techniques are used to help identify the causes of degradation. The techniques are used to make solder fatigue life predictions for PV concentrator modules, identify cell damage or current mismatch, and measure the adhesive strength of the module encapsulant.

  4. Tests Of Amorphous-Silicon Photovoltaic Modules

    NASA Technical Reports Server (NTRS)

    Ross, Ronald G., Jr.

    1988-01-01

    Progress in identification of strengths and weaknesses of amorphous-silicon technology detailed. Report describes achievements in testing reliability of solar-power modules made of amorphous-silicon photovoltaic cells. Based on investigation of modules made by U.S. manufacturers. Modules subjected to field tests, to accelerated-aging tests in laboratory, and to standard sequence of qualification tests developed for modules of crystalline-silicon cells.

  5. Evaluation of high-concentration photovoltaic power plants

    SciTech Connect

    Stolte, W.J. ); Whisnant, R.A. ); McGowin, C.R. )

    1991-01-01

    This paper describes the conceptual design, and estimated cost and performance of two high-concentration, 50 MW photovoltaic power plants. Both designs are based on a similar advanced back-contact silicon concentrator cell. The first design uses Fresnel lens/glass silo modules mounted on two-axis tracking arrays. The second design has all of the cells mounted on a central receiver on top of a single tower, with heliostats concentrating sunlight onto the receiver.

  6. Photovoltaic concentrator assembly with optically active cover

    DOEpatents

    Plesniak, Adam P

    2014-01-21

    A photovoltaic concentrator assembly that includes a housing that defines an internal volume and includes a rim, wherein the rim defines an opening into the internal volume, a photovoltaic cell positioned in the internal volume, and an optical element that includes an optically active body and a flange extending outward from the body, wherein the flange is sealingly engaged with the rim of the housing to enclose the internal volume.

  7. Alpha Solarco`s Photovoltaic Concentrator Development program

    SciTech Connect

    Anderson, A.; Bailor, B.; Carroll, D.

    1995-10-01

    This report details the work done under Sandia`s Photovoltaic Concentrator Development contract, funded jointly by Alpha Solarco and the US Department of Energy. It discusses improvements made to the cell assembly and module design of Alpha Solarco`s point-focus, high-concentration photovoltaic module. The goals of this effort were to increase the module efficiency, reduce the manufacturing cost of the cell assembly, and increase product reliability. Redesign of the secondary optical element achieved a 4 percent increase in efficiency due to better cell fill factors and offtrack performance. New, lower cost materials were identified for the secondary optical element, the optical couple between the secondary optical element and the cell, and the cell assembly electrical insulator. Manufacturing process improvements and test equipment are also discussed.

  8. Hole-thru-laminate mounting supports for photovoltaic modules

    DOEpatents

    Wexler, Jason; Botkin, Jonathan; Culligan, Matthew; Detrick, Adam

    2015-02-17

    A mounting support for a photovoltaic module is described. The mounting support includes a pedestal having a surface adaptable to receive a flat side of a photovoltaic module laminate. A hole is disposed in the pedestal, the hole adaptable to receive a bolt or a pin used to couple the pedestal to the flat side of the photovoltaic module laminate.

  9. Photovoltaic module with light reflecting backskin

    DOEpatents

    Gonsiorawski, Ronald C.

    2007-07-03

    A photovoltaic module comprises electrically interconnected and mutually spaced photovoltaic cells that are encapsulated by a light-transmitting encapsulant between a light-transparent front cover and a back cover, with the back cover sheet being an ionomer/nylon alloy embossed with V-shaped grooves running in at least two directions and coated with a light reflecting medium so as to provide light-reflecting facets that are aligned with the spaces between adjacent cells and oriented so as to reflect light falling in those spaces back toward said transparent front cover for further internal reflection onto the solar cells, whereby substantially all of the reflected light will be internally reflected from said cover sheet back to the photovoltaic cells, thereby increasing the current output of the module. The internal reflector improves power output by as much as 67%.

  10. Solar Photovoltaic Cell/Module Shipments Report

    EIA Publications

    2016-01-01

    Summary data for the photovoltaic industry in the United States. Data includes manufacturing, imports, and exports of modules in the United States and its territories. Summary data include volumes in peak kilowatts and average prices. Where possible, imports and exports are listed by country, and shipments to the United States are listed by state.

  11. Proposed first edition of the standard for flat-plate photovoltaic modules and panels, UL 1703

    SciTech Connect

    Not Available

    1984-09-12

    The tentative requirements provided cover flat-plate photovoltaic modules and panels intended for installation on or integral with buildings or to be freestanding (that is, not attached to buildings). Modules and panels intended for use in systems with a maximum system voltage of 1000 volts or less are covered. Also covered are components intended to provide electrical connection to and mounting facilities for flat-plate photovoltaic modules and panels. The requirements do not cover equipment intended to accept the electrical output from the array (such as inverters and batteries), tracking mechanisms, cell assemblies intended to operate under concentrated sunlight, optical concentrators, or combination photovoltaic-thermal modules or panels. (LEW)

  12. Photovoltaic concentrator technology development project. Sixth project integration meeting

    SciTech Connect

    1980-10-01

    Thirty-three abstracts and short papers are presented which describe the current status of research, development, and demonstration of concentrator solar cell technology. Solar concentrators discussed include the parabolic trough, linear focus Fresnel lens, point focus Fresnel lens, and the parabolic dish. Solar cells studied include silicon, GaAs, and AlGaAs. Research on multiple junction cells, combined photovoltaic/thermal collectors, back contact solar cells, and beam splitter modules is described. Concentrator solar cell demonstration programs are reported. Contractor status summaries are given for 33 US DOE concentrator solar cell contracts; a description of the project, project status, and key results to date is included. (WHK)

  13. Recovering valuable metals from recycled photovoltaic modules.

    PubMed

    Yi, Youn Kyu; Kim, Hyun Soo; Tran, Tam; Hong, Sung Kil; Kim, Myong Jun

    2014-07-01

    Recovering valuable metals such as Si, Ag, Cu, and Al has become a pressing issue as end-of-life photovoltaic modules need to be recycled in the near future to meet legislative requirements in most countries. Of major interest is the recovery and recycling of high-purity silicon (> 99.9%) for the production of wafers and semiconductors. The value of Si in crystalline-type photovoltaic modules is estimated to be -$95/kW at the 2012 metal price. At the current installed capacity of 30 GW/yr, the metal value in the PV modules represents valuable resources that should be recovered in the future. The recycling of end-of-life photovoltaic modules would supply > 88,000 and 207,000 tpa Si by 2040 and 2050, respectively. This represents more than 50% of the required Si for module fabrication. Experimental testwork on crystalline Si modules could recover a > 99.98%-grade Si product by HNO3/NaOH leaching to remove Al, Ag, and Ti and other metal ions from the doped Si. A further pyrometallurgical smelting at 1520 degrees C using CaO-CaF2-SiO2 slag mixture to scavenge the residual metals after acid leaching could finally produce > 99.998%-grade Si. A process based on HNO3/NaOH leaching and subsequent smelting is proposed for recycling Si from rejected or recycled photovoltaic modules. Implications: The photovoltaic industry is considering options of recycling PV modules to recover metals such as Si, Ag, Cu, Al, and others used in the manufacturing of the PV cells. This is to retain its "green" image and to comply with current legislations in several countries. An evaluation of potential resources made available from PV wastes and the technologies used for processing these materials is therefore of significant importance to the industry. Of interest are the costs of processing and the potential revenues gained from recycling, which should determine the viability of economic recycling of PV modules in the future.

  14. Photovoltaic applications of Compound Parabolic Concentrator (CPC)

    NASA Technical Reports Server (NTRS)

    Winston, R.

    1975-01-01

    The use of a compound parabolic concentrator as field collector, in conjunction with a primary focusing concentrator for photovoltaic applications is studied. The primary focusing concentrator can be a parabolic reflector, an array of Fresnel mirrors, a Fresnel lens or some other lens. Silicon solar cell grid structures are proposed that increase efficiency with concentration up to 10 suns. A ray tracing program has been developed to determine energy distribution at the exit of a compound parabolic concentrator. Projected total cost of a CPC/solar cell system will be between 4 and 5 times lower than for flat plate silicon cell arrays.

  15. Field failure mechanisms for photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Dumas, L. N.; Shumka, A.

    1981-01-01

    Beginning in 1976, Department of Energy field centers have installed and monitored a number of field tests and application experiments using current state-of-the-art photovoltaic modules. On-site observations of module physical and electrical degradation, together with in-depth laboratory analysis of failed modules, permits an overall assessment of the nature and causes of early field failures. Data on failure rates are presented, and key failure mechanisms are analyzed with respect to origin, effect, and prospects for correction. It is concluded that all failure modes identified to date are avoidable or controllable through sound design and production practices.

  16. Cell shunt resistance and photovoltaic module performance

    SciTech Connect

    McMahon, T.J.; Basso, T.S.; Rummel, S.R.

    1996-09-01

    Shunt resistance of cells in photovoltaic modules can affect module power output and could indicate flawed manufacturing processes and reliability problems. The authors describe a two-terminal diagnostic method to directly measure the shunt resistance of individual cells in a series-connected module non-intrusively, without deencapsulation. Peak power efficiency vs. light intensity was measured on a 12-cell, series-connected, single crystalline module having relatively high cell shunt resistances. The module was remeasured with 0.5-, 1-, and 2-ohm resistors attached across each cell to simulate shunt resistances of several emerging technologies. Peak power efficiencies decreased dramatically at lower light levels. Using the PSpice circuit simulator, they verified that cell shunt and series resistances can indeed be responsible for the observed peak power efficiency vs. intensity behavior. They discuss the effect of basic cell diode parameters, i.e., shunt resistance, series resistance, and recombination losses, on PV module performance as a function of light intensity.

  17. Photovoltaic concentrator initiative: Concentrator cell development

    SciTech Connect

    Wohlgemuth, J.H.; Narayanan, S.

    1993-05-01

    This project involves the development of a large-area, low-cost, high-efficiency concentrator solar cell for use in the Entech 22-sun linear-focus Fresnel lens concentrator system. The buried contact solar cell developed at the University of New South Wales was selected for this project. Both Entech and the University of New South Wales are subcontractors. This annual report presents the program efforts from November 1990 through December 1991, including the design of the cell, development of a baseline cell process, and presentation of the results of preliminary cell processing. Important results include a cell designed for operation in a real concentrator system and substitution of mechanical grooving for the previously utilized laser scribing.

  18. Photovoltaic Module Qualification Plus Testing

    SciTech Connect

    Kurtz, S.; Wohlgemuth, J.; Kempe, M.; Bosco, N.; Hacke, P.; Jordan, D.; Miller, D. C.; Silverman, T. J.; Phillips, N.; Earnest, T.; Romero, R.

    2013-12-01

    This report summarizes a set of test methods that are in the midst of being incorporated into IEC 61215 for certification of a module design or other tests that go beyond certification to establish bankability.

  19. The Air Force concentrating photovoltaic array program

    NASA Technical Reports Server (NTRS)

    Geis, Jack W.

    1987-01-01

    A summary is given of Air Force solar concentrator projects beginning with the Rockwell International study program in 1977. The Satellite Materials Hardening Programs (SMATH) explored and developed techniques for hardening planar solar cell array power systems to the combined nuclear and laser radiation threat environments. A portion of program dollars was devoted to developing a preliminary design for a hardened solar concentrator. The results of the Survivable Concentrating Photovoltaic Array (SCOPA) program, and the design, fabrication and flight qualification of a hardened concentrator panel are discussed.

  20. Microinverters for employment in connection with photovoltaic modules

    DOEpatents

    Lentine, Anthony L.; Nielson, Gregory N.; Okandan, Murat; Johnson, Brian Benjamin; Krein, Philip T.

    2015-09-22

    Microinverters useable in association with photovoltaic modules are described. A three phase-microinverter receives direct current output generated by a microsystems-enabled photovoltaic cell and converts such direct current output into three-phase alternating current out. The three-phase microinverter is interleaved with other three-phase-microinverters, wherein such microinverters are integrated in a photovoltaic module with the microsystems-enabled photovoltaic cell.

  1. Photovoltaic module bypass diode encapsulation

    NASA Technical Reports Server (NTRS)

    Shepard, N. J., Jr.

    1983-01-01

    The design and processing techniques necessary to incorporate bypass diodes within the module encapsulant are presented. The Semicon PN junction diode cells were selected. Diode junction to heat spreader thermal resistance measurements, performed on a variety of mounted diode chip types and sizes, have yielded values which are consistently below 1 deg C per watt, but show some instability when thermally cycled over the temperature range from -40 to 150 deg C. Three representative experimental modules, each incorporating integral bypass diode/heat spreader assemblies of various sizes, were designed. Thermal testing of these modules enabled the formulation of a recommended heat spreader plate sizing relationship. The production cost of three encapsulated bypass diode/heat spreader assemblies were compared with similarly rated externally mounted packaged diodes. It is concluded that, when proper designed and installed, these bypass diode devices will improve the overall reliability of a terrestrial array over a 20 year design lifetime.

  2. Durability of Polymeric Encapsulation Materials for Concentrating Photovoltaic Systems (Poster)

    SciTech Connect

    Miller, D. C.; Kempe, M. D.; Araki, K.; Kennedy, C. E.; Kurtz, S. R.

    2011-02-01

    Polymeric encapsulation materials are typically used in concentrating photovoltaic (CPV) modules to protect the cell from the field environment. Because it is physically located adjacent to the cell, the encapsulation is exposed to a high optical flux, often including light in the ultraviolet (UV) and infrared (IR) wavelengths. The durability of encapsulants used in CPV modules is critical to the technology, but is presently not well understood. This work seeks to identify the appropriate material types, field-induced failure mechanisms, and factors of influence (if possible) of polymeric encapsulation. These results will ultimately be weighed against those of future qualification and accelerated life test procedures.

  3. White butterflies as solar photovoltaic concentrators.

    PubMed

    Shanks, Katie; Senthilarasu, S; Ffrench-Constant, Richard H; Mallick, Tapas K

    2015-07-31

    Man's harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies' wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies' thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off.

  4. White butterflies as solar photovoltaic concentrators

    NASA Astrophysics Data System (ADS)

    Shanks, Katie; Senthilarasu, S.; Ffrench-Constant, Richard H.; Mallick, Tapas K.

    2015-07-01

    Man’s harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies’ wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies’ thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off.

  5. White butterflies as solar photovoltaic concentrators

    PubMed Central

    Shanks, Katie; Senthilarasu, S.; ffrench-Constant, Richard H.; Mallick, Tapas K.

    2015-01-01

    Man’s harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies’ wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies’ thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off. PMID:26227341

  6. Photovoltaic concentrators: performance and reliability data and future design directions

    SciTech Connect

    Edenburn, M.W.; Boes, E.C.

    1984-05-01

    This paper will summarize the status and discuss likely future directions of photovoltaic concentrator technology. A current commercial Si cell module has a peak efficiency of 15.5%, and 17% has been reached for an experimental module. Advanced cells and module design improvements offer still higher efficiencies. Concentrator Fresnel lens array fields installed several years ago have all demonstrated very good electrical performance with little performance degradation. Fresnel lens arrays are commercially available and prices of $7/watt for installed one megawatt systems have been quoted. Cost projections predict that current technology concentrating PV arrays can be installed for less than $2/watt if they are manufactured in large, steady quantities. More advanced designs may cost even less.

  7. Photovoltaic concentrators: Performance and reliability data and future design directions

    SciTech Connect

    Edenbrum, M.

    1984-05-01

    This paper will summarize the status and discuss likely future directions of photovoltaic concentrator technology. A current commercial Si cell module has a peak efficiency of 15.5%, and 17% has been reached for an experimental module. Advanced cells and module design improvements offer still higher efficiencies. Concentrator Fresnel lens array fields installed several years ago have all demonstrated very good electrical performance with little performance degradation. Fresnel lens arrays are commercially available and prices of $7/watt for installed one megawatt systems have been quoted. Cost projections predict that current technology concentrating PV arrays can be installed for less than $2/watt if they are manufactured in large, steady quantities. More advanced designs may cost even less.

  8. Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics.

    PubMed

    Price, Jared S; Sheng, Xing; Meulblok, Bram M; Rogers, John A; Giebink, Noel C

    2015-02-05

    Concentrating photovoltaics offer a way to lower the cost of solar power. However, the existing paradigm based on precise orientation of large-area concentrator modules towards the Sun limits their deployment to large, open land areas. Here, we explore an alternate approach using high-efficiency microcell photovoltaics embedded between a pair of plastic lenslet arrays to demonstrate quasi-static concentrating photovoltaic panels <1 cm thick that accomplish full-day tracking with >200x flux concentration ratio through small (<1 cm) lateral translation at fixed latitude tilt. Per unit of installed land area, cosine projection loss for fixed microtracking concentrating photovoltaic panels is ultimately offset by improved ground coverage relative to their conventional dual-axis counterparts, enabling a ~1.9x increase in daily energy output that may open up a new opportunity for compact, high-efficiency concentrating photovoltaics to be installed on rooftops and other limited-space urban environments.

  9. Wide-angle planar microtracking for quasi-static microcell concentrating photovoltaics

    NASA Astrophysics Data System (ADS)

    Price, Jared S.; Sheng, Xing; Meulblok, Bram M.; Rogers, John A.; Giebink, Noel C.

    2015-02-01

    Concentrating photovoltaics offer a way to lower the cost of solar power. However, the existing paradigm based on precise orientation of large-area concentrator modules towards the Sun limits their deployment to large, open land areas. Here, we explore an alternate approach using high-efficiency microcell photovoltaics embedded between a pair of plastic lenslet arrays to demonstrate quasi-static concentrating photovoltaic panels <1 cm thick that accomplish full-day tracking with >200x flux concentration ratio through small (<1 cm) lateral translation at fixed latitude tilt. Per unit of installed land area, cosine projection loss for fixed microtracking concentrating photovoltaic panels is ultimately offset by improved ground coverage relative to their conventional dual-axis counterparts, enabling a ~1.9x increase in daily energy output that may open up a new opportunity for compact, high-efficiency concentrating photovoltaics to be installed on rooftops and other limited-space urban environments.

  10. Non-destructive evaluation of water ingress in photovoltaic modules

    DOEpatents

    Bora, Mihail; Kotovsky, Jack

    2017-03-07

    Systems and techniques for non-destructive evaluation of water ingress in photovoltaic modules include and/or are configured to illuminate a photovoltaic module comprising a photovoltaic cell and an encapsulant with at least one beam of light having a wavelength in a range from about 1400 nm to about 2700 nm; capture one or more images of the illuminated photovoltaic module, each image relating to a water content of the photovoltaic module; and determine a water content of the photovoltaic module based on the one or more images. Systems preferably include one or more of a light source, a moving mirror, a focusing lens, a beam splitter, a stationary mirror, an objective lens and an imaging module.

  11. Photovoltaic module with removable wind deflector

    DOEpatents

    Botkin, Jonathan; Graves, Simon; Danning, Matt; Culligan, Matthew

    2013-05-28

    A photovoltaic (PV) module assembly including a PV module, a deflector, and a clip. The PV module includes a PV device and a frame. A PV laminate is assembled to the frame, and the frame includes a support arm forming a seat. The deflector defines a front face and a rear face, with the clip extending from either the trailing frame member or the rear face of the deflector. In a mounted state, the deflector is nested within the seat and is releasably mounted to the trailing frame member via the clip. In some embodiments, the support arm forms a second seat, with the PV module assembly providing a second mounted state in which the deflector is in a differing orientation/slope, nested within the second seat and releasably mounted to the trailing frame member via the clip.

  12. Photovoltaic module with removable wind deflector

    DOEpatents

    Botkin, Jonathan [El Cerrito, CA; Graves, Simon [Berkeley, CA; Danning, Matt [Oakland, CA; Culligan, Matthew [Berkeley, CA

    2012-08-07

    A photovoltaic (PV) module assembly including a PV module, a deflector, and a clip. The PV module includes a PV device and a frame. A PV laminate is assembled to the frame, and the frame includes a support arm forming a seat. The deflector defines a front face and a rear face, with the clip extending from either the trailing frame member or the rear face of the deflector. In a mounted state, the deflector is nested within the seat and is releasably mounted to the trailing frame member via the clip. In some embodiments, the support arm forms a second seat, with the PV module assembly providing a second mounted state in which the deflector is in a differing orientation/slope, nested within the second seat and releasably mounted to the trailing frame member via the clip.

  13. Photovoltaic module with removable wind deflector

    DOEpatents

    Botkin, Jonathan; Graves, Simon; Danning, Matt; Culligan, Matthew

    2014-02-18

    A photovoltaic (PV) module assembly including a PV module, a deflector, and a clip. The PV module includes a PV device and a frame. A PV laminate is assembled to the frame, and the frame includes a support arm forming a seat. The deflector defines a front face and a rear face, with the clip extending from either the trailing frame member or the rear face of the deflector. In a mounted state, the deflector is nested within the seat and is releasably mounted to the trailing frame member via the clip. In some embodiments, the support arm forms a second seat, with the PV module assembly providing a second mounted state in which the deflector is in a differing orientation/slope, nested within the second seat and releasably mounted to the trailing frame member via the clip.

  14. Chemical bonding technology for terrestrial photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Coulter, D. R.; Cuddihy, E. F.; Plueddeman, E. P.

    1983-01-01

    Encapsulated photovoltaic modules must hold together for 20 years, reliably resisting delamination and separation of any of the component materials. Delamination of encapsulation materials from each other, or from solar cells and interconnects, can create voids for accumulation of water, promoting corrosive failure. Delamination of silicone elastomers from unprimed surfaces was a common occurrence with early modules, but the incidences of silicone delamination with later modules decreased when adhesion promoters recommended by silicone manufacturers were used. An investigation of silicone delamination from unprimed surfaces successfully identified the mechanism, which was related to atmospheric oxygen and moisture. This early finding indicated that reliance on physical bonding of encapsulation interfaces for long life in an outdoor environment would be risky. For long outdoor life, the material components of a module must therefore be held together by weather-stable adhesion promoters that desirably form strong, interfacial chemical bonds.

  15. Endurance Tests Of Amorphous-Silicon Photovoltaic Modules

    NASA Technical Reports Server (NTRS)

    Ross, Ronald G., Jr.; Sugimura, Russell S.

    1989-01-01

    Failure mechanisms in high-power service studied. Report discusses factors affecting endurance of amorphous-silicon solar cells. Based on field tests and accelerated aging of photovoltaic modules. Concludes that aggressive research needed if amorphous-silicon modules to attain 10-year life - value U.S. Department of Energy established as goal for photovoltaic modules in commercial energy-generating plants.

  16. Microsystem enabled photovoltaic modules and systems

    DOEpatents

    Nielson, Gregory N; Sweatt, William C; Okandan, Murat

    2015-05-12

    A microsystem enabled photovoltaic (MEPV) module including: an absorber layer; a fixed optic layer coupled to the absorber layer; a translatable optic layer; a translation stage coupled between the fixed and translatable optic layers; and a motion processor electrically coupled to the translation stage to controls motion of the translatable optic layer relative to the fixed optic layer. The absorber layer includes an array of photovoltaic (PV) elements. The fixed optic layer includes an array of quasi-collimating (QC) micro-optical elements designed and arranged to couple incident radiation from an intermediate image formed by the translatable optic layer into one of the PV elements such that it is quasi-collimated. The translatable optic layer includes an array of focusing micro-optical elements corresponding to the QC micro-optical element array. Each focusing micro-optical element is designed to produce a quasi-telecentric intermediate image from substantially collimated radiation incident within a predetermined field of view.

  17. Topics in electrochemical degradation of photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Mon, G. R.

    1984-01-01

    Electrochemical degradation of photovoltaic modules was examined. It is found that the extent of electrochemical damage is dependent on the integrated leakage current. The PV electrochemical degradation mechanisms in the two polarities are different: (1) degradation rates in the two polarities are of the same order of magnitude; (2) center tapped grounded arrays are a preferred system configuration to minimize electrochemical degradation. The use of thicker pottant layers and polymer substrate films to reduce equilibrium leakage current values is suggested. A metallized substrate layer, if used, should be isolated from the pottant and the frame by polyester layers, and EVA modules appear to be consistent with 30 year life allocation levels for electrochemical damage. Temperature acceleration factors are well behaved and moderately well understood; humidity acceleration factors vary radically with module construction and materials and require additional research.

  18. 77 FR 14732 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-13

    ... International Trade Administration Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules... of crystalline silicon photovoltaic cells, whether or not assembled into modules, from the People's.... \\1\\ See Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From...

  19. Cell shunt resistance and photovoltaic module performance

    SciTech Connect

    McMahon, T.J.; Basso, T.S.; Rummel, S.R.

    1996-05-01

    Shunt resistance of cells in photovoltaic modules can affect module power output and could indicate flawed manufacturing processes and reliability problems. The authors describe a two-terminal diagnostic method to directly measure the shunt resistance of individual cells in a series-connected module non-intrusively, without deencapsulation. Peak power efficiency vs. light intensity was measured on a 12-cell, series-connected, single crystalline module having relatively high cell shunt resistances. The module was remeasured with 0.5-, 1-, and 2-ohm resistors attached across each cell to simulate shunt resistances of several emerging technologies. Peak power efficiencies decreased dramatically at lower light levels. Using the PSpice circuit simulator, the authors verified that cell shunt and series resistances can indeed be responsible for the observed peak power efficiency vs. intensity behavior. The authors discuss the effect of basic cell diode parameters, i.e., shunt resistance, series resistance, and recombination losses, on PV module performance as a function of light intensity.

  20. Research Opportunities in Reliability of Photovoltaic Modules (Presentation)

    SciTech Connect

    Hacke, P.

    2010-05-01

    The motivation for an increased scope and a more proactive effort in reliability research of photovoltaic modules and systems includes reducing the levelized cost of energy and gaining better confidence in the energy and financial payback for photovoltaic systems. This increased reliability and confidence will lead to greater penetration of photovoltaics in the energy portfolio and greater employment in photovoltaics and related industries. Present research needs include the fundamental degradation mechanisms of polymers, connectors and other module components, mapping of failure mechanisms observed in the field to those in accelerated lifetime tests, determining the acceleration factors, and improving standards for modules such that tests can appropriately be assigned to evaluate their long term durability. Specific mechanisms discussed are corrosion in module components, metastability in thin-film active layers, delamination and loss of elastic properties in module polymeric materials, and inverter failure. Presently, there is hiring of reliability scientists and engineers at many levels of the value chain for photovoltaics.

  1. 64 kW concentrator Photovoltaics Application Test Center. Volume. Final report

    SciTech Connect

    Jardine, D.M.; Jones, D.W.

    1980-06-01

    Kaman Sciences Corporation has designed a 64 kW Concentrating Photovoltaic Applications Test Center (APTEC). The APTEC employs a combined concentrating photovoltaic array in a total energy system application for load sharing the electric and thermal demands of a large computer center with the interfaced electric and natural gas utility. The photovoltaic array is composed of two-axis tracking heliostats of Fresnel lens concentrating, silicon solar cell modules. The modules are cooled with a fluid which transfers heat to a ground coupled heat sink/storage unit for subsequent use in meeting the computer center's thermal load demand. The combined photovoltaic power system shares basic components - a power conditioning unit, batteries and thermal conditioning equipment - with the electric and natural gas utility service, improving the computer center's operating availability time and displacing a portion of the fossil fuel required to power the computer center with solar energy. The detailed system design is reported.

  2. Design of fault-tolerant circuits for photovoltaic concentrators

    NASA Astrophysics Data System (ADS)

    Gonzalez, C. C.; Ross, R. G., Jr.

    1988-07-01

    A methodology for fault-tolerant design of photovoltaic concentrator module and array circuitry presented. Results are provided in the form of example analyses and a complete set of curves giving array power loss versus fraction of open-circuit failures for a broad variety of series-parallel configurations with bypass diodes. Specific curves are provided for single, four, eight, and sixteen-parallel-string source circuits with varying bypass diode frequencies. An example case is presented in a step-by-step fashion to assist the module or array designer in using the above mentioned curves to calculate expected power loss for other concentrator designs. Optimum circuit configurations must also reflect the costs of incorporating circuit redundancy features and the life-cycle tradeoffs associated with repair and replacement of failed modules. To this end, module replacement strategies are also investigated based on a set of projected module and array costs. The results highlight circuit design configurations and module replacement strategies that maximize the array benefit to cost ratio.

  3. Method of manufacturing a large-area segmented photovoltaic module

    DOEpatents

    Lenox, Carl

    2013-11-05

    One embodiment of the invention relates to a segmented photovoltaic (PV) module which is manufactured from laminate segments. The segmented PV module includes rectangular-shaped laminate segments formed from rectangular-shaped PV laminates and further includes non-rectangular-shaped laminate segments formed from rectangular-shaped and approximately-triangular-shaped PV laminates. The laminate segments are mechanically joined and electrically interconnected to form the segmented module. Another embodiment relates to a method of manufacturing a large-area segmented photovoltaic module from laminate segments of various shapes. Other embodiments relate to processes for providing a photovoltaic array for installation at a site. Other embodiments and features are also disclosed.

  4. 76 FR 70966 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ... International Trade Administration Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules... photovoltaic cells, whether or not assembled into modules (solar cells), from the People's Republic of China... Imposition of Antidumping and Countervailing Duties Against Crystalline Silicon Photovoltaic Cells,...

  5. Development of the SEA Corporation Powergrid{trademark} photovoltaic concentrator

    SciTech Connect

    Kaminar, N.; Curchod, D.; Daroczi, S.; Walpert, M.; Sahagian, J.; Pepper, J.

    1998-03-01

    This report covers the three phase effort to bring the SEA Corporation`s Powergrid{trademark} from the concept stage to pilot production. The three phases of this contract covered component development, prototype module development, and pilot line production. The Powergrid is a photovoltaic concentrator that generates direct current electricity directly from sunlight using a linear Fresnel lens. Analysis has shown that the Powergrid has the potential to be very low cost in volume production. Before the start of the project, only proof of concept demonstrations of the components had been completed. During the project, SEA Corporation developed a low cost extruded Fresnel lens, a low cost receiver assembly using one sun type cells, a low cost plastic module housing, a single axis tracking system and frame structure, and pilot production equipment and techniques. In addition, an 800 kW/yr pilot production rate was demonstrated and two 40 kW systems were manufactured and installed.

  6. Fourth-generation photovoltaic concentrator system development

    SciTech Connect

    O`Neill, M.J.; McDanal, A.J.

    1995-10-01

    In 1991, under a contract with Sandia for the Concentrator Initiative, the ENTECH team initiated the design and development of a fourth-generation concentrator module. In 1992, Sandia also contracted with ENTECH to develop a new control and drive system for the ENTECH array. This report documents the design and development work performed under both contracts. Manufacturing processes for the new module were developed at the same time under a complementary PVMaT contract with the National Renewable Energy Laboratory. Two 100-kW power plants were deployed in 1995 in Texas using the newly developed fourth-generation concentrator technology, one at the CSW Solar Park near Ft. Davis and one at TUE Energy Park in Dallas. Technology developed under the Sandia contracts has made a successful transition from the laboratory to the production line to the field.

  7. Terrestrial Photovoltaic Module Accelerated Test-To-Failure Protocol

    SciTech Connect

    Osterwald, C. R.

    2008-03-01

    This technical report documents a test-to-failure protocol that may be used to obtain quantitative information about the reliability of photovoltaic modules using accelerated testing in environmental temperature-humidity chambers.

  8. Residential photovoltaic module and array requirements study, appendices

    NASA Technical Reports Server (NTRS)

    Nearhoof, S. L.; Oster, J. R.

    1979-01-01

    Regional building code variations, federal and city codes, and the national electric code are reviewed for their possible effects on the design of photovoltaic modules. Problems that photovoltaic arrays may impose on the insurability of residences are also discussed. Mounting configurations are developed for the modules, and grounding, wiring, terminal, and voltage requirements are established. Installation and materials costs are presented along with performance criteria.

  9. Qualification testing of flat-plate photovoltaic modules

    SciTech Connect

    Hoffman, A.R.; Griffith, J.S.; Ross, R.G. Jr.

    1982-08-01

    The placement of photovoltaic modules in various applications, in climates and locations throughout the world, results in different degrees and combinations of environmental and electrical stress. Early detection of module reliability deficiencies via laboratory testing is necessary for achieving long, satisfactory field service. This overview paper describes qualification testing techniques being used in the US Department of Energy's flat-plate terrestrial photovoltaic development program in terms of their significance, rationale for specified levels and durations, and test results.

  10. Qualification testing of flat-plate photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Hoffman, A. R.; Griffith, J. S.; Ross, R. G., Jr.

    1982-01-01

    The placement of photovoltaic modules in various applications, in climates and locations throughout the world, results in different degrees and combinations of environmental and electrical stress. Early detection of module reliability deficiencies via laboratory testing is necessary for achieving long, satisfactory field service. This overview paper describes qualification testing techniques being used in the US Department of Energy's flat-plate terrestrial photovoltaic development program in terms of their significance, rationale for specified levels and durations, and test results.

  11. The design and development of a high concentration and high efficiency photovoltaic concentrator utilizing a curved Fresnel lens

    SciTech Connect

    Moffat, A.L.; Scharlack, R.S.

    1982-09-01

    The design and development of an innovative photovoltaic concentrator which utilizes a low cost molded Fresnel lens is described. The lens design and fabrication are discussed, as well as the design of the collector module and tracking structure. A description of instrumentation developed to aid in the testing of lenses and solar cells is presented, and includes the test results.

  12. Laminated photovoltaic modules using back-contact solar cells

    DOEpatents

    Gee, James M.; Garrett, Stephen E.; Morgan, William P.; Worobey, Walter

    1999-09-14

    Photovoltaic modules which comprise back-contact solar cells, such as back-contact crystalline silicon solar cells, positioned atop electrically conductive circuit elements affixed to a planar support so that a circuit capable of generating electric power is created. The modules are encapsulated using encapsulant materials such as EVA which are commonly used in photovoltaic module manufacture. The module designs allow multiple cells to be electrically connected in a single encapsulation step rather than by sequential soldering which characterizes the currently used commercial practices.

  13. Yellowing reaction in encapsulant of photovoltaic modules

    SciTech Connect

    Shigekuni, T.; Kumano, M.

    1997-12-31

    To clarify the mechanism of the yellowing reaction in encapsulant used for photovoltaic (PV) modules, a low molecular weight substance in EVA (Ethylene vinyl acetate) under accelerated weathering test (Dew cycle test, 1000 hours) with yellow change and virgin EVA were extracted with methanol. Extracts were chemically analyzed by GCIR (Gas Chromatography Infrared-Ray spectroscopic analysis), GC-AED (Gas Chromatography Atomic Emission Detector), and FDMS (Field Desorption Mass Spectroscopy). The conditions of this accelerated test were based on JIS-K9117. The analysis results showed that 2,6-di-t-butyl-4-methyl phenol of antioxidant and 2-hydroxy-4-octoxy-benzophenone of UV absorbent were consumed after the weathering test and that 3,5-di-t-butyl-4-hydroxy-benzaldehyde having yellow color was newly produced. A mechanism of the yellowing reaction in encapsulant was presented here that 2,6-di-t-N-O radical from Bis-2,2,6,6-tetramethyl-4-piperidinyl sebacate to produce 3,5 di-t-butyl-4-hydroxy benzaldehyde.

  14. REGULATIONS ON PHOTOVOLTAIC MODULE DISPOSAL AND RECYCLING.

    SciTech Connect

    FTHENAKIS,V.

    2001-01-29

    Environmental regulations can have a significant impact on product use, disposal, and recycling. This report summarizes the basic aspects of current federal, state and international regulations which apply to end-of-life photovoltaic (PV) modules and PV manufacturing scrap destined for disposal or recycling. It also discusses proposed regulations for electronics that may set the ground of what is to be expected in this area in the near future. In the US, several states have started programs to support the recycling of electronic equipment, and materials destined for recycling often are excepted from solid waste regulations during the collection, transfer, storage and processing stages. California regulations are described separately because they are different from those of most other states. International agreements on the movement of waste between different countries may pose barriers to cross-border shipments. Currently waste moves freely among country members of the Organization of Economic Cooperation and Development (OECD), and between the US and the four countries with which the US has bilateral agreements. However, it is expected, that the US will adopt the rules of the Basel Convention (an agreement which currently applies to 128 countries but not the US) and that the Convection's waste classification system will influence the current OECD waste-handling system. Some countries adopting the Basel Convention consider end-of-life electronics to be hazardous waste, whereas the OECD countries consider them to be non-hazardous. Also, waste management regulations potentially affecting electronics in Germany and Japan are mentioned in this report.

  15. Safety-related requirements for photovoltaic modules and arrays

    NASA Technical Reports Server (NTRS)

    Levins, A.; Smoot, A.; Wagner, R.

    1984-01-01

    Safety requirements for photovoltaic module and panel designs and configurations for residential, intermediate, and large scale applications are investigated. Concepts for safety systems, where each system is a collection of subsystems which together address the total anticipated hazard situation, are described. Descriptions of hardware, and system usefulness and viability are included. A comparison of these systems, as against the provisions of the 1984 National Electrical Code covering photovoltaic systems is made. A discussion of the Underwriters Laboratory UL investigation of the photovoltaic module evaluated to the provisions of the proposed UL standard for plat plate photovoltaic modules and panels is included. Grounding systems, their basis and nature, and the advantages and disadvantages of each are described. The meaning of frame grounding, circuit groundings, and the type of circuit ground are covered.

  16. Development of photovoltaic array and module safety requirements

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Safety requirements for photovoltaic module and panel designs and configurations likely to be used in residential, intermediate, and large-scale applications were identified and developed. The National Electrical Code and Building Codes were reviewed with respect to present provisions which may be considered to affect the design of photovoltaic modules. Limited testing, primarily in the roof fire resistance field was conducted. Additional studies and further investigations led to the development of a proposed standard for safety for flat-plate photovoltaic modules and panels. Additional work covered the initial investigation of conceptual approaches and temporary deployment, for concept verification purposes, of a differential dc ground-fault detection circuit suitable as a part of a photovoltaic array safety system.

  17. Safety-related requirements for photovoltaic modules and arrays

    NASA Astrophysics Data System (ADS)

    Levins, A.; Smoot, A.; Wagner, R.

    1984-03-01

    Safety requirements for photovoltaic module and panel designs and configurations for residential, intermediate, and large scale applications are investigated. Concepts for safety systems, where each system is a collection of subsystems which together address the total anticipated hazard situation, are described. Descriptions of hardware, and system usefulness and viability are included. A comparison of these systems, as against the provisions of the 1984 National Electrical Code covering photovoltaic systems is made. A discussion of the Underwriters Laboratory UL investigation of the photovoltaic module evaluated to the provisions of the proposed UL standard for plat plate photovoltaic modules and panels is included. Grounding systems, their basis and nature, and the advantages and disadvantages of each are described. The meaning of frame grounding, circuit groundings, and the type of circuit ground are covered.

  18. Natural conditions and administrative settings for concentrating photovoltaics in China

    NASA Astrophysics Data System (ADS)

    Fu, Ling; Chen, Xiaoyuan; Leutz, Ralf

    2012-10-01

    It is an inevitable trend for China to develop green technologies to help the country to produce cleaner energy and to consume it more efficiently, under the pressure of energy security concern, the nation's emissions trajectory and sustainable economic development. The abundant solar resources in West China provide a big potential to utilize the solar energy. Under the promotion of key incentive policies including both feed-in-tariff (FIT) mechanisms and government rebate programs, China has become a major global solar force in photovoltaic (PV) industry both in manufacturing and in the installation of flat-plate products, with 16 GW production and 2.75 GW installation achieved in the year 2011. As a branch of PV technology, concentrating photovoltaics (CPV) technology with several years' development history in China is presently moving from pilot facilities to commercial-scale applications. Several MW-CPV power plants have been installed by both domestic and western companies in China, factories with several hundred-MW production capacity are being planned or built. Sustainable performance and reliability improvement of CPV modules, a vertical integration of supply chain in CPV industry aiming at a cost reduction, a sufficient grid infrastructure for facilitating the West-East and North-South electricity transmission will promote Chinese CPV market to actually initiate, develop and mature.

  19. Durability of Polymeric Encapsulation Materials for Concentrating Photovoltaic Systems (Presentation)

    SciTech Connect

    Miller, D. C.; Muller, M.; Kempe, M. D.; Araki, K.; Kennedy, C. E.; Kurtz, S. R.

    2012-03-01

    Many concentrating photovoltaic (CPV) systems use a polymeric encapsulant to couple and optical component and/or coverglass to the cell. In that location, the encapsulation improves the transmission of concentrated optical flux through interface(s), while protecting the cell from the environment. The durability of encapsulation materials, however, is not well established relative to the desired service life of 30 years. Therefore, we have initiated a screen test to identify the field-induced failure modes for a variety of popular PV encapsulation materials. An existing CPV module (with no PV cells present) was modified to accommodate encapsulation specimens. The module (where nominal concentration of solar flux is 500x for the domed-Fresnel design) has been mounted on a tracker in Golden, CO (elevation 1.79 km). Initial results are reported here for 18 months cumulative exposure, including the hottest and coldest months of the past year. Characteristics observed at intervals during that time include: visual appearance, direct and hemispherical transmittance, and mass. Degradation may be assessed from subsequent analysis (including yellowness index and cut-on frequency) relative to the ambient conditions present during field exposure. The fluorescence signature observed of all the silicone specimens is examined here, including possible factors of causation -- the platinum catalyst used in the addition cured materials as well as the primer used to promote adhesion to the quartz substrate and superstrate.

  20. Photovoltaic module electrical termination design requirement study. Final report

    SciTech Connect

    Mosna, F.J. Jr.; Donlinger, J.

    1980-07-01

    Motorola Inc., in conjunction with ITT Cannon, has conducted a study to develop information to facilitate the selection of existing, commercial, electrical termination hardware for photovoltaic modules and arrays. Details of the study are presented in this volume. Module and array design parameters were investigated and recommendations were developed for use in surveying, evaluating, and comparing electrical termination hardware. Electrical termination selection criteria factors were developed and applied to nine generic termination types in each of the four application sectors. Remote, residential, intermediate and industrial. Existing terminations best suited for photovoltaic modules and arrays were identified. Cost information was developed to identify cost drivers and/or requirements which might lead to cost reductions. The general conclusion is that there is no single generic termination that is best suited for photovoltaic application, but that the appropriate termination is strongly dependent upon the module construction and its support structure as well as the specific application sector.

  1. Design and analysis of a novel concentrated photovoltaic-thermal receiver concept

    NASA Astrophysics Data System (ADS)

    Hangweirer, Manfred; Höller, Robert; Schneider, Hartmut

    2015-08-01

    Solar concentrators, which focus the sunlight on a small surface of solar cells, are a promising way of reducing expensive semiconductor area and thus also the energy generation costs of photovoltaics. This paper presents the design and the analysis of a concentrated photovoltaic (CPV) receiver for a linear Fresnel concentrator mirror module. The receiver is designed as hybrid concentrated photovoltaic-thermal (CPV-T) receiver, which enables simultaneous generation of power and heat in one compact receiver. Spectral splitting with selective absorptive media and thermal decoupling of heat carrier and solar cells improves the electrical efficiency. Computational fluid dynamics (CFD) simulations of various receiver-setups result in an electrical efficiency of the receiver up to 6.2% and a thermal efficiency of up to 61.2% at a specific selected operating design point. 62% of the wavelengths of the incoming solar spectrum between 500 to 1100 nm hit the solar cells.

  2. Photovoltaic Module Reliability Workshop 2013: February 26-27, 2013

    SciTech Connect

    Kurtz, S.

    2013-10-01

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  3. Photovoltaic Module Reliability Workshop 2012: February 28 - March 1, 2012

    SciTech Connect

    Kurtz, S.

    2013-11-01

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  4. Photovoltaic Module Reliability Workshop 2014: February 25-26, 2014

    SciTech Connect

    Kurtz, S.

    2014-02-01

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  5. Integral bypass diodes in an amorphous silicon alloy photovoltaic module

    NASA Technical Reports Server (NTRS)

    Hanak, J. J.; Flaisher, H.

    1991-01-01

    Thin-film, tandem-junction, amorphous silicon (a-Si) photovoltaic modules were constructed in which a part of the a-Si alloy cell material is used to form bypass protection diodes. This integral design circumvents the need for incorporating external, conventional diodes, thus simplifying the manufacturing process and reducing module weight.

  6. Photovoltaic Module Reliability Workshop 2011: February 16-17, 2011

    SciTech Connect

    Kurtz, S.

    2013-11-01

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  7. Photovoltaic Module Reliability Workshop 2010: February 18-19, 2010

    SciTech Connect

    Kurtz, J.

    2013-11-01

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  8. The World's Largest Photovoltaic Concentrator System.

    ERIC Educational Resources Information Center

    Smith, Harry V.

    1982-01-01

    The Mississippi County Community College large-scale energy experiment, featuring the emerging high technology of solar electricity, is described. The project includes a building designed for solar electricity and a power plant consisting of a total energy photovoltaic system, and features two experimental developments. (MLW)

  9. Tracking integration in concentrating photovoltaics using laterally moving optics.

    PubMed

    Duerr, Fabian; Meuret, Youri; Thienpont, Hugo

    2011-05-09

    In this work the concept of tracking-integrated concentrating photovoltaics is studied and its capabilities are quantitatively analyzed. The design strategy desists from ideal concentration performance to reduce the external mechanical solar tracking effort in favor of a compact installation, possibly resulting in lower overall cost. The proposed optical design is based on an extended Simultaneous Multiple Surface (SMS) algorithm and uses two laterally moving plano-convex lenses to achieve high concentration over a wide angular range of ±24°. It achieves 500× concentration, outperforming its conventional concentrating photovoltaic counterparts on a polar aligned single axis tracker.

  10. Cost effective flat plate photovoltaic modules using light trapping

    NASA Technical Reports Server (NTRS)

    Bain, C. N.; Gordon, B. A.; Knasel, T. M.; Malinowski, R. L.

    1981-01-01

    Work in optical trapping in 'thick films' is described to form a design guide for photovoltaic engineers. A thick optical film can trap light by diffusive reflection and total internal reflection. Light can be propagated reasonably long distances compared with layer thicknesses by this technique. This makes it possible to conduct light from inter-cell and intra-cell areas now not used in photovoltaic modules onto active cell areas.

  11. Quantifying Solar Cell Cracks in Photovoltaic Modules by Electroluminescence Imaging

    SciTech Connect

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso; Glick, Stephen; Kerekes, Tamas; Teodorescu, Remus

    2015-06-14

    This article proposes a method for quantifying the percentage of partially and totally disconnected solar cell cracks by analyzing electroluminescence images of the photovoltaic module taken under high- and low-current forward bias. The method is based on the analysis of the module's electroluminescence intensity distribution, applied at module and cell level. These concepts are demonstrated on a crystalline silicon photovoltaic module that was subjected to several rounds of mechanical loading and humidity-freeze cycling, causing increasing levels of solar cell cracks. The proposed method can be used as a diagnostic tool to rate cell damage or quality of modules after transportation. Moreover, the method can be automated and used in quality control for module manufacturers, installers, or as a diagnostic tool by plant operators and diagnostic service providers.

  12. Multijunction Photovoltaic Technologies for High-Performance Concentrators: Preprint

    SciTech Connect

    McConnell, R.; Symko-Davies, M.

    2006-05-01

    Multijunction solar cells provide high-performance technology pathways leading to potentially low-cost electricity generated from concentrated sunlight. The National Center for Photovoltaics at the National Renewable Energy Laboratory has funded different III-V multijunction solar cell technologies and various solar concentration approaches. Within this group of projects, III-V solar cell efficiencies of 41% are close at hand and will likely be reported in these conference proceedings. Companies with well-developed solar concentrator structures foresee installed system costs of $3/watt--half of today's costs--within the next 2 to 5 years as these high-efficiency photovoltaic technologies are incorporated into their concentrator photovoltaic systems. These technology improvements are timely as new large-scale multi-megawatt markets, appropriate for high performance PV concentrators, open around the world.

  13. 77 FR 37877 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-25

    ... International Trade Administration Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules... determination in the antidumping duty investigation of crystalline silicon photovoltaic cells, whether or not assembled into modules (``solar cells''), from the People's Republic of China (``PRC''). The...

  14. 76 FR 66748 - Crystalline Silicon Photovoltaic Cells and Modules From China; Institution of Antidumping and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-27

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Crystalline Silicon Photovoltaic Cells and Modules From China; Institution of Antidumping and... from China of crystalline silicon photovoltaic cells and modules, provided for in subheadings...

  15. Development of a 160X crossed lens photovoltaic concentrator. Final report

    SciTech Connect

    McDanal, A.J.

    1986-03-01

    A new concentrator concept, the crossed lens solar photovoltaic concentrator, is described. The innovative concentrator cross-couples simple plano-cylindrical lenses with a linear Fresnel lens to achieve a geometric concentration ratio of 160X. The linear Fresnel lens provides lateral focussing of the incident sunlight while the plano-cylindrical lenses provide longitudinal focussing. The combined lateral/longitudinal focussing results in a series of focal spots on the photovoltaic receiver rather than a continuous focal line. An initial prototype module was fabricated and performance tested. The demonstrated peak electrical efficiency is 15.1% at 28/sup 0/C cell temperature. Incorporation of recently developed design improvements (a proprietary prismaic cell cover and a lens anti-reflection coating) indicates that a 20% module efficiency is achievable.

  16. Durability of Polymeric Encapsulation Materials for Concentrating Photovoltaic Systems (Presentation)

    SciTech Connect

    Miller, D. C.; Muller, M.; Kempe, M. D.; Araki, K.; Kennedy, C. E.; Kurtz, S. R.

    2011-04-01

    Presented at the 7th International Conference on Concentrating Photovoltaic Systems (CPV-7), 4-6 April 2011, Las Vegas, Nevada. Many concentrating photovoltaic (CPV) systems use a polymeric encapsulant to couple an optical component and/or coverglass to the cell. In that location, the encapsulation improves the transmission of concentrated optical flux through interfaces(s) while protecting the cell from the environment. The durability of encapsulation materials, however, is not well established relative to the desired service life of 30 years. Therefore, we have initiated a screen test to identify the field-induced failure modes for a variety of popular PV encapsulation materials.

  17. Design of photovoltaic central power station concentrator array

    SciTech Connect

    Not Available

    1984-02-01

    A design for a photovoltaic central power station using tracking concentrators has been developed. The 100 MW plant is assumed to be located adjacent to the Saguaro Power Station of Arizona Public Service. The design assumes an advanced Martin Marietta two-axis tracking fresnel lens concentrator. The concentrators are arrayed in 5 MW subfields, each with its own power conditioning unit. The photovoltaic plant output is connected to the existing 115 kV switchyard. The site specific design allows detailed cost estimates for engineering, site preparation, and installation. Collector and power conditioning costs have been treated parametrically.

  18. Concentration of solar radiation by white backed photovoltaic panels.

    PubMed

    Smestad, G; Hamill, P

    1984-12-01

    In this paper, we present an analysis of the concentration achieved by white backed photovoltaic panels. Concentration is due to the trapping by light scattered in the refractive plate to which the solar cell is bonded. Using the reciprocity relation and assuming the ideal case of a Lambertian distribution, a detailed model is formulated that includes the effects of the thickness and walls of the concentrator. This model converges to the thermodynamic limit and is found to be consistent with experimental results for a wide range of cell sizes. Finally, the model is generalized to multiple-cell photovoltaic panels.

  19. Epidemiological Analysis of Degradation in Silicon Photovoltaic Modules

    NASA Astrophysics Data System (ADS)

    Sakamoto, Sadao; Kobayashi, Tomonao; Nonomura, Shuichi

    2012-10-01

    We have studied the power reduction rate and degradation modes of crystalline-silicon photovoltaic modules, which had been operated in an outdoor field for about 10 years. We measured the electric parameters of the modules before and after 10-year operation, and classified our photovoltaic modules into four groups that were manufactured by four manufacturers. Analyzing the age-related decreases in electric parameters of the modules, we found two dominant degradation modes by correlation analysis of the electric parameters. In addition, we found delamination mode degradation by visual inspection. We have recognized a degradation rate in terms of the statistical distribution of the module power reduction. The power reduction rate was found to be an average of 4.7% for ten years.

  20. Photovoltaic module mounting clip with integral grounding

    DOEpatents

    Lenox, Carl J.

    2010-08-24

    An electrically conductive mounting/grounding clip, usable with a photovoltaic (PV) assembly of the type having an electrically conductive frame, comprises an electrically conductive body. The body has a central portion and first and second spaced-apart arms extending from the central portion. Each arm has first and second outer portions with frame surface-disrupting element at the outer portions.

  1. Dense-array concentrator photovoltaic system using non-imaging dish concentrator and crossed compound parabolic concentrator

    NASA Astrophysics Data System (ADS)

    Chong, Kok-Keong; Yew, Tiong-Keat; Wong, Chee-Woon; Tan, Ming-Hui; Tan, Woei-Chong; Lai, An-Chow; Lim, Boon-Han; Lau, Sing-Liong; Rahman, Faidz Abdul

    2015-04-01

    Solar concentrating device plays an important role by making use of optical technology in the design, which can be either reflector or lens to deliver high flux of sunlight onto the Concentrator Photovoltaic (CPV) module receiver ranging from hundreds to thousand suns. To be more competitive compared with fossil fuel, the current CPV systems using Fresnel lens and Parabolic dish as solar concentrator that are widely deployed in United States, Australia and Europe are facing great challenge to produce uniformly focused sunlight on the solar cells as to reduce the cost of electrical power generation. The concept of non-imaging optics is not new, but it has not fully explored by the researchers over the world especially in solving the problem of high concentration solar energy, which application is only limited to be a secondary focusing device or low concentration device using Compound Parabolic Concentrator. With the current advancement in the computer processing power, we has successfully invented the non-imaging dish concentrator (NIDC) using numerical simulation method to replace the current parabolic dish as primary focusing device with high solar concentration ratio (more than 400 suns) and large collective area (from 25 to 125 m2). In this paper, we disclose our research and development on dense array CPV system based on non-imaging optics. The geometry of the NIDC is determined using a special computational method. In addition, an array of secondary concentrators, namely crossed compound parabolic concentrators, is also proposed to further focus the concentrated sunlight by the NIDC onto active area of solar cells of the concentrator photovoltaic receiver. The invention maximizes the absorption of concentrated sunlight for the electric power generation system.

  2. 77 FR 4764 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-31

    ... International Trade Administration Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules... duty investigation of crystalline silicon photovoltaic cells, whether or not assembled into modules... Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's Republic of China: Postponement...

  3. 77 FR 72884 - Crystalline Silicon Photovoltaic Cells and Modules From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-06

    ... COMMISSION Crystalline Silicon Photovoltaic Cells and Modules From China Determinations On the basis of the... reason of imports of crystalline silicon photovoltaic cells and modules from China, provided for in... silicon photovoltaic cells and modules from China. Chairman Irving A. Williamson and Commissioner Dean...

  4. 76 FR 81914 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... International Trade Administration Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules... photovoltaic cells, whether or not assembled into modules, from the People's Republic of China.\\1\\ Currently... Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's Republic of China: Initiation...

  5. Exploration of external light trapping for photovoltaic modules.

    PubMed

    van Dijk, Lourens; van de Groep, Jorik; Di Vece, Marcel; Schropp, Ruud E I

    2016-07-11

    The reflection of incident sunlight by photovoltaic modules prevents them from reaching their theoretical energy conversion limit. We explore the effectiveness of a universal external light trap that can tackle this reflection loss. A unique feature of external light traps is their capability to simultaneously recycle various broadband sources of reflection on the module level, such as the reflection from the metal front grid, the front interfaces, the reflective backside of the cell, and the white back sheet. The reflected light is recycled in the space between the solar cell and a mirror above the solar cell. A concentrator funnels the light into this cage through a small aperture in the mirror. As a proof-of-principle experiment, a significant reflectance reduction of a bare crystalline silicon (c-Si) photodiode is demonstrated. In contrast to conventional light trapping methods, external light trapping does not induce any damage to the active solar cell material. Moreover, this is a universally applicable technology that enables the use of thin and planar solar cells of superior electrical quality that were so far hindered by limited optical absorption. We considered several trap designs and identified fabrication issues. A series of prototype millimeter-scale external metal light traps were milled and applied on an untextured c-Si photodiode, which is used as a model for future thin solar cells. We determined the concentrator transmittance and analyzed the effect of both the concentration factor and cage height on the absorptance and spatial intensity distribution on the surface of the solar cell. This relatively simple and comprehensive light management solution can be a promising candidate for highly efficient solar modules using thin c-Si solar cells.

  6. Development of an advanced photovoltaic concentrator system for space applications

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F., Jr.; Oneill, Mark J.

    1987-01-01

    Recent studies indicate that significant increases in system performance (increased efficiency and reduced system mass) are possible for high power space based systems by incorporating technological developments with photovoltaic power systems. The Advanced Photovoltaic Concentrator Program is an effort to take advantage of recent advancements in refractive optical elements. By using a domed Fresnel lens concentrator and a prismatic cell cover, to eliminate metallization losses, dramatic reductions in the required area and mass over current space photovoltaic systems are possible. The advanced concentrator concept also has significant advantages when compared to solar dynamic Organic Rankine Cycle power systems in Low Earth Orbit applications where energy storage is required. The program is currently involved in the selection of a material for the optical element that will survive the space environment and a demonstration of the system performance of the panel design.

  7. Flight Experience from Space Photovoltaic Concentrator Arrays and its Implication on Terrestrial Concentrator Systems

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F., Jr.

    2003-01-01

    Nearly all photovoltaic solar arrays flown in space have used a planar (non- concentrating) design. However, there have been a few notable exceptions where photovoltaic concentrators have been tested and used as the mission s primary power source. Among these are the success experienced by the SCARLET (Solar Concentrator Array with Refractive Linear Element Technology) concept used to power NASA's Deep Space 1 mission and the problems encountered by the original Boeing 702 reflective trough concentrator design. This presentation will give a brief overview of past photovoltaic concentrator systems that have flown in space, specifically addressing the valuable lessons learned from flight experience, and other viable concentrator concepts that are being proposed for the future. The general trends of this flight experience will be noted and discussed with regard to its implications on terrestrial photovoltaic concentrator designs.

  8. LIFE CYCLE DESIGN OF AMORPHOUS SILICON PHOTOVOLTAIC MODULES

    EPA Science Inventory

    The life cycle design framework was applied to photovoltaic module design. The primary objective of this project was to develop and evaluate design metrics for assessing and guiding the Improvement of PV product systems. Two metrics were used to assess life cycle energy perform...

  9. Performance model assessment for multi-junction concentrating photovoltaic systems.

    SciTech Connect

    Stein, Joshua S.; Riley, Daniel M.; McConnell, Robert.; Sahm, Aaron; Crawford, Clark; King, David L.; Cameron, Christopher P.; Foresi, James S.

    2010-03-01

    Four approaches to modeling multi-junction concentrating photovoltaic system performance are assessed by comparing modeled performance to measured performance. Measured weather, irradiance, and system performance data were collected on two systems over a one month period. Residual analysis is used to assess the models and to identify opportunities for model improvement. Large photovoltaic systems are typically developed as projects which supply electricity to a utility and are owned by independent power producers. Obtaining financing at favorable rates and attracting investors requires confidence in the projected energy yield from the plant. In this paper, various performance models for projecting annual energy yield from Concentrating Photovoltaic (CPV) systems are assessed by comparing measured system output to model predictions based on measured weather and irradiance data. The results are statistically analyzed to identify systematic error sources.

  10. SOLERAS: Photovoltaic power systems project. Module failure analysis

    NASA Astrophysics Data System (ADS)

    Huraib, F. S.; Imamura, M. S.; Salim, A. A.; Rao, N.

    1984-10-01

    The SOLERAS Photovoltaic Power System (PVPS) became operational in September 1981. The system has operated satisfactorily and has experienced very little downtime. Early in 1983 some degradation in the photovoltaic (PV) field performance was detected. A series of current voltage (I-V) tests and other analyses eventually uncovered a number of PV modules that have resulted in open circuit type failure in the four cell group, or a half module. As of August 1984, the estimated number of these defective modules in the PV field was 152. In addition, there are a total of 188 defective modules in the storage warehouse, resulting in a total of 340 modules that need repairs. At the current rate of failures (seven half modules per month), an additional 112 modules would be defective by the end of January 1986, resulting in 412 defective modules. This report presents the results of the failure analysis performed during the past several months on the open circuit modules. Background information as related to the module failures and the effects of such failures on the overall PV field power output are provided. In addition, a plan to continue the monitoring of the rate of failure and analyzing the failure mechanisms is presented.

  11. Reliability Issues for Photovoltaic Modules (Presentation)

    SciTech Connect

    Kurtz, S.

    2009-10-01

    Si modules good in field; new designs need reliability testing. CdTe & CIGS modules sensitive to moisture; carefully seal. CPV in product development stage; benefits from expertise in other industries.

  12. Designing a concentrating photovoltaic (CPV) system in adjunct with a silicon photovoltaic panel for a solar competition car

    NASA Astrophysics Data System (ADS)

    Arias-Rosales, Andrés.; Barrera-Velásquez, Jorge; Osorio-Gómez, Gilberto; Mejía-Gutiérrez, Ricardo

    2014-06-01

    Solar competition cars are a very interesting research laboratory for the development of new technologies heading to their further implementation in either commercial passenger vehicles or related applications. Besides, worldwide competitions allow the spreading of such ideas where the best and experienced teams bet on innovation and leading edge technologies, in order to develop more efficient vehicles. In these vehicles, some aspects generally make the difference such as aerodynamics, shape, weight, wheels and the main solar panels. Therefore, seeking to innovate in a competitive advantage, the first Colombian solar vehicle "Primavera", competitor at the World Solar Challenge (WSC)-2013, has implemented the usage of a Concentrating Photovoltaic (CPV) system as a complementary solar energy module to the common silicon photovoltaic panel. By harvesting sunlight with concentrating optical devices, CPVs are capable of maximizing the allowable photovoltaic area. However, the entire CPV system weight must be less harmful than the benefit of the extra electric energy generated, which in adjunct with added manufacture and design complexity, has intervened in the fact that CPVs had never been implemented in a solar car in such a scale as the one described in this work. Design considerations, the system development process and implementation are presented in this document considering both the restrictions of the context and the interaction of the CPV system with the solar car setup. The measured data evidences the advantage of using this complementary system during the competition and the potential this technology has for further developments.

  13. Chapter 3: Photovoltaic Module Stability and Reliability

    SciTech Connect

    Jordan, Dirk; Kurtz, Sarah

    2017-01-01

    Profits realized from investment in photovoltaic will benefit from decades of reliable operation. Service life prediction through accelerated tests is only possible if indoor tests duplicate power loss and failure modes observed in fielded systems. Therefore, detailing and quantifying power loss and failure modes is imperative. In the first section, we examine recent trends in degradation rates, the gradual power loss observed for different technologies, climates and other significant factors. In the second section, we provide a summary of the most commonly observed failure modes in fielded systems.

  14. Photovoltaic module mounting clip with integral grounding

    DOEpatents

    Lenox, Carl J.

    2008-10-14

    An electrically conductive mounting/grounding clip, for use with a photovoltaic assembly of the type having an electrically conductive frame, comprises an electrically conductive body. The body has a central portion and first and second spaced-apart arms extending generally perpendicular to the central portion. Each arm has an outer portion with each outer portion having an outer end. At least one frame surface-disrupting element is at each outer end. The central portion defines a plane with the frame surface-disrupting elements pointing towards the plane. In some examples each arm extends from the central portion at an acute angle to the plane.

  15. Performance model assessment for multi-junction concentrating photovoltaic systems.

    SciTech Connect

    Riley, Daniel M.; McConnell, Robert.; Sahm, Aaron; Crawford, Clark; King, David L.; Cameron, Christopher P.; Foresi, James S.

    2010-03-01

    Four approaches to modeling multi-junction concentrating photovoltaic system performance are assessed by comparing modeled performance to measured performance. Measured weather, irradiance, and system performance data were collected on two systems over a one month period. Residual analysis is used to assess the models and to identify opportunities for model improvement.

  16. Photovoltaic module encapsulation design and materials selection, volume 1

    NASA Technical Reports Server (NTRS)

    Cuddihy, E.; Carroll, W.; Coulbert, C.; Gupta, A.; Liang, R. H.

    1982-01-01

    Encapsulation material system requirements, material selection criteria, and the status and properties of encapsulation materials and processes available are presented. Technical and economic goals established for photovoltaic modules and encapsulation systems and their status are described. Available encapsulation technology and data are presented to facilitate design and material selection for silicon flat plate photovoltaic modules, using the best materials available and processes optimized for specific power applications and geographic sites. The operational and environmental loads that encapsulation system functional requirements and candidate design concepts and materials that are identified to have the best potential to meet the cost and performance goals for the flat plate solar array project are described. Available data on encapsulant material properties, fabrication processing, and module life and durability characteristics are presented.

  17. Electrochemical aging effects in photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Mon, G. R.

    1986-01-01

    Leakage currents were experimentally measured in PV modules undergoing natural aging outdoors, and in PV modules undergoing accelerated aging in laboratory environmental chambers. The significant contributors to module leakage current were identified with a long range goal to develop techniques to reduce or stop module leakage currents. For outdoor aging in general, module leakage current is relatively insensitive to temperature fluctuations, but is very sensitive to moisture effects such as dew, precipitation, and fluctuations in relative humidity. Comparing ethylene vinyl acetate (EVA) and polyvinyl butyral (PVB), module leakage currents are much higher in PVB as compared to EVA for all environmental conditions investigated. Leakage currents proceed in series along two paths, bulk conduction followed by interfacial (surfaces) conduction.

  18. An Advanced Photovoltaic Array Regulator Module

    NASA Technical Reports Server (NTRS)

    Button, Robert M.

    1996-01-01

    Current trends in satellite design are focused on developing small, reliable, and inexpensive spacecraft. To that end, a modular power management and distribution system is proposed which will help transition the aerospace industry towards an assembly line approach to building spacecraft. The modular system is based on an innovative DC voltage boost converter called the Series Connected Boost Unit (SCBU). The SCBU uses any isolating DC-DC converter and adds a unique series connection. This simple modification provides the SCBU topology with many advantages over existing boost converters. Efficiencies of 94-98%, power densities above 1,000 W/kg, and inherent fault tolerance are just a few of the characteristics presented. Limitations of the SCBU technology are presented, and it is shown that the SCBU makes an ideal photovoltaic an-ay regulator. A set of photovoltaic power system requirements are presented that can be applied to almost any low Earth orbit satellite. Finally, a modular design based on the series connected boost unit is outlined and functional descriptions of the components are given.

  19. Economic Feasibility of Recycling Photovoltaic Modules

    SciTech Connect

    Choi, J.K.; Fthenakis, V.

    2010-12-01

    The market for photovoltaic (PV) electricity generation has boomed over the last decade, and its expansion is expected to continue with the development of new technologies. Taking into consideration the usage of valuable resources and the generation of emissions in the life cycle of photovoltaic technologies dictates proactive planning for a sound PV recycling infrastructure to ensure its sustainability. PV is expected to be a 'green' technology, and properly planning for recycling will offer the opportunity to make it a 'double-green' technology - that is, enhancing life cycle environmental quality. In addition, economic feasibility and a sufficient level of value-added opportunity must be ensured, to stimulate a recycling industry. In this article, we survey mathematical models of the infrastructure of recycling processes of other products and identify the challenges for setting up an efficient one for PV. Then we present an operational model for an actual recycling process of a thin-film PV technology. We found that for the case examined with our model, some of the scenarios indicate profitable recycling, whereas in other scenarios it is unprofitable. Scenario SC4, which represents the most favorable scenario by considering the lower bounds of all costs and the upper bound of all revenues, produces a monthly profit of $107,000, whereas the least favorable scenario incurs a monthly loss of $151,000. Our intent is to extend the model as a foundation for developing a framework for building a generalized model for current-PV and future-PV technologies.

  20. Photovoltaic module energy rating methodology development

    SciTech Connect

    Kroposki, B.; Myers, D.; Emery, K.; Mrig, L.; Whitaker, C.; Newmiller, J.

    1996-05-01

    A consensus-based methodology to calculate the energy output of a PV module will be described in this paper. The methodology develops a simple measure of PV module performance that provides for a realistic estimate of how a module will perform in specific applications. The approach makes use of the weather data profiles that describe conditions throughout the United States and emphasizes performance differences between various module types. An industry-representative Technical Review Committee has been assembled to provide feedback and guidance on the strawman and final approach used in developing the methodology.

  1. 77 FR 10478 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ... International Trade Administration Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules... crystalline silicon photovoltaic cells, whether or not assembled into modules, from the People's Republic of..., 2012, which the Department granted.\\2\\ \\1\\ See Crystalline Silicon Photovoltaic Cells, Whether or...

  2. 76 FR 78313 - Crystalline Silicon Photovoltaic Cells and Modules From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ... COMMISSION Crystalline Silicon Photovoltaic Cells and Modules From China Determinations On the basis of the... is materially injured by reason of imports from China of crystalline silicon photovoltaic cells and... crystalline silicon photovoltaic cells and modules from China. Accordingly, effective October 19, 2011,...

  3. Temperature dependence of photovoltaic cells, modules, and systems

    SciTech Connect

    Emery, K.; Burdick, J.; Caiyem, Y.

    1996-05-01

    Photovoltaic (PV) cells and modules are often rated in terms of a set of standard reporting conditions defined by a temperature, spectral irradiance, and total irradiance. Because PV devices operates over a wide range of temperatures and irradiances, the temperature and irradiance related behavior must be known. This paper surveys the temperature dependence of crystalline and thin-film, state-of-the-art, research-size cells, modules, and systems measured by a variety of methods. The various error sources and measurement methods that contribute to cause differences in the temperature coefficient for a given cell or module measured with various methods are discussed.

  4. Photovoltaic module energy rating procedure. Final subcontract report

    SciTech Connect

    Whitaker, C.M.; Newmiller, J.D.

    1998-01-01

    This document describes testing and computation procedures used to generate a photovoltaic Module Energy Rating (MER). The MER consists of 10 estimates of the amount of energy a single module of a particular type (make and model) will produce in one day. Module energy values are calculated for each of five different sets of weather conditions (defined by location and date) and two load types. Because reproduction of these exact testing conditions in the field or laboratory is not feasible, limited testing and modeling procedures and assumptions are specified.

  5. Temperature dependence of photovoltaic cells, modules, and systems

    SciTech Connect

    Emery, K.; Burdick, J.; Caiyem, Y.

    1996-09-01

    Photovoltaic (PV) cells and modules are often rated in terms of a set of standard reporting conditions defined by a temperature, spectral irradiance, and total irradiance. Because PV devices operate over a wide range of temperatures and irradiances, the temperature and irradiance related behavior must be known. This paper surveys the temperature dependence of crystalline and thin-film, state-of-the-art, research-size cells, modules, and systems measured by a variety of methods. The various error sources and measurement methods that contribute to cause differences in the temperature coefficient for a given cell or module measured with various methods are discussed.

  6. Mini-dome Fresnel lens photovoltaic concentrator development

    NASA Technical Reports Server (NTRS)

    Oneill, Mark J.; Piszczor, Michael F., Jr.

    1991-01-01

    Since 1986 work on a new high-performance, light-weight space photovoltaic concentration array has been conducted. An update on the mini-dome lens concentrator array development program is provided. Recent prototype cell and lens test results indicate that near-term array performance goals of 300 w/sq m and 100 w/kg are feasible, and that a longer-term goal of 200 w/kg is reasonable.

  7. I-V Curves from Photovoltaic Modules Deployed in Tucson

    NASA Astrophysics Data System (ADS)

    Kopp, Emily; Brooks, Adria; Lonij, Vincent; Cronin, Alex

    2011-10-01

    More than 30 Mega Watts of photo-voltaic (PV) modules are connected to the electric power grid in Tucson, AZ. However, predictions of PV system electrical yields are uncertain, in part because PV modules degrade at various rates (observed typically in the range 0% to 3 %/yr). We present I-V curves (PV output current as a function of PV output voltage) as a means to study PV module efficiency, de-ratings, and degradation. A student-made I-V curve tracer for 100-Watt modules will be described. We present I-V curves for several different PV technologies operated at an outdoor test yard, and we compare new modules to modules that have been operated in the field for 10 years.

  8. Design and development of a high-concentration and high-efficiency photovoltaic concentrator using a curved Fresnel lens

    SciTech Connect

    Scharlack, R.S.; Moffat, A.

    1983-08-01

    Thermo Electron has designed a high concentration photovoltaic module that uses a domed, point-focus Fresnel lens. Their design, design optimization process, and results from lens and receiver tests are described in this report. A complete module has not been fabricated and probably will not be fabricated in the future; however, Thermo Electron's optical design, analysis, and testing of both secondary optical units and domed Fresnel lenses have made a significant contribution to our project. Tooling errors prevented the lens from reaching its potential efficiency by the end of the contract, and resolution of these tooling problems is currently being attempted with a follow-on contract, No. 68-9463.

  9. Stretched Lens Array Photovoltaic Concentrator Technology Developed

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F., Jr.; O'Neill, Mark J.

    2004-01-01

    Solar arrays have been and continue to be the mainstay in providing power to nearly all commercial and government spacecraft. Light from the Sun is directly converted into electrical energy using solar cells. One way to reduce the cost of future space power systems is by minimizing the size and number of expensive solar cells by focusing the sunlight onto smaller cells using concentrator optics. The stretched lens array (SLA) is a unique concept that uses arched Fresnel lens concentrators to focus sunlight onto a line of high-efficiency solar cells located directly beneath. The SLA concept is based on the Solar Concentrator Array with Refractive Linear Element Technology (SCARLET) design that was used on NASA's New Millennium Deep Space 1 mission. The highly successful asteroid/comet rendezvous mission (1998 to 2001) demonstrated the performance and long-term durability of the SCARLET/SLA solar array design and set the foundation for further improvements to optimize its performance.

  10. Performance optimization of dense-array concentrator photovoltaic system considering effects of circumsolar radiation and slope error.

    PubMed

    Wong, Chee-Woon; Chong, Kok-Keong; Tan, Ming-Hui

    2015-07-27

    This paper presents an approach to optimize the electrical performance of dense-array concentrator photovoltaic system comprised of non-imaging dish concentrator by considering the circumsolar radiation and slope error effects. Based on the simulated flux distribution, a systematic methodology to optimize the layout configuration of solar cells interconnection circuit in dense array concentrator photovoltaic module has been proposed by minimizing the current mismatch caused by non-uniformity of concentrated sunlight. An optimized layout of interconnection solar cells circuit with minimum electrical power loss of 6.5% can be achieved by minimizing the effects of both circumsolar radiation and slope error.

  11. The research on thermal adaptability reinforcement technology for photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Su, Nana; Zhou, Guozhong

    2015-10-01

    Nowadays, Photovoltaic module contains more high-performance components in smaller space. It is also demanded to work in severe temperature condition for special use, such as aerospace. As temperature rises, the failure rate will increase exponentially which makes reliability significantly reduce. In order to improve thermal adaptability of photovoltaic module, this paper makes a research on reinforcement technologies. Thermoelectric cooler is widely used in aerospace which has harsh working environment. So, theoretical formulas for computing refrigerating efficiency, refrigerating capacity and temperature difference are described in detail. The optimum operating current of three classical working condition is obtained which can be used to guide the design of driven circuit. Taken some equipment enclosure for example, we use thermoelectric cooler to reinforce its thermal adaptability. By building physical model and thermal model with the aid of physical dimension and constraint condition, the model is simulated by Flotherm. The temperature field cloud is shown to verify the effectiveness of reinforcement.

  12. Electrical characterization of electrophoretically coated aluminum samples for photovoltaic concentrator application

    SciTech Connect

    Sugimura, R.S.; Mon, G.R.; Ross, R.G. Jr.

    1992-10-01

    The practicality of using a thin-film styrene/acrylate copolymer electrophoretic coating to isolate concentrator cells electrically from their surroundings in a photovoltaic concentrator module is assessed. Only the electrical isolation problem was investigated. The approach was to subject various types of EP-coated aluminum specimens to electrical stress testing and to aging tests while monitoring coating electrical resistivity properties. It was determined that, in general, longer processing times--i.e., thicker electrophoretic layers--resulted in better voltage-withstand properties. In particular, a two-minute processing time seemed sufficient to provide the electrical isolation required in photovoltaic concentrator application applications. Even though electrophoretic coatings did not seem to fill voids in porous-anodized aluminum substrates, breakdown voltages generally exceeded hi-pot pass-fail voltage levels with a comfortable margin. 6 refs, 11 figs, 5 tabs.

  13. Testing flat plate photovoltaic modules for terrestrial environment

    NASA Technical Reports Server (NTRS)

    Hoffman, A. R.; Arnett, J. C.; Ross, R. G., Jr.

    1979-01-01

    New qualification tests have been developed for flat plate photovoltaic modules. Temperature cycling, cyclic pressure load, and humidity exposure are especially useful for detecting design and fabrication deficiencies. There is positive correlation between many of the observed field effects, such as power loss, and qualification test induced degradation. The status of research efforts for the development of test methodology for field-related problems is reviewed.

  14. Strategies for recycling CdTe photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Eberspacher, Chris; Gay, Charles F.; Moskowitz, Paul D.

    1994-12-01

    Recycling end-of-life cadmium telluride (CdTe) photovoltaic (PV) modules may enhance the competitive advantage of CdTe PV in the marketplace, but the experiences of industries with comparable Environmental, Health and Safety (EH&S) challenges suggest that collection and recycling costs can impose significant economic burdens. Customer cooperation and pending changes to US Federal law may improve recycling economics.

  15. Inflatable lenses for space photovoltaic concentrator arrays

    SciTech Connect

    O`Neill, M.J.; Piszczor, M.F.

    1997-12-31

    For 12 years, ENTECH and NASA Lewis have been developing Fresnel lens concentrator technology for space power applications. ENTECH provided the point-focus mini-dome lenses for the PASP+ array, launched in 1994. These silicone lenses performed well on orbit, with only about 3% optical performance loss after 1 year in elliptical orbit, with high radiation, atomic oxygen, and ultraviolet exposure. The only protection for these silicone lenses was a thin-film coating provided by OCLI. ENTECH also provided the line-focus lenses for the SCARLET 1 and SCARLET 2 arrays in 1995 and 1997, respectively. These lenses are laminated assemblies, with protective ceria glass superstrates over the silicone lens. In March 1997, ENTECH and NASA Lewis began development of inflatable Fresnel lenses, to achieve lower weight, smaller launch volume, reduced cost, less fragility, and other advantages. This paper summarizes the new concentrator approach, including key program results to date.

  16. Degradation by acetic acid for crystalline Si photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Masuda, Atsushi; Uchiyama, Naomi; Hara, Yukiko

    2015-04-01

    The degradation of crystalline Si photovoltaic modules during damp-heat test was studied using some test modules with and without polymer film insertion by observing electrical and electroluminescence properties and by chemical analyses. Acetic acid generated by the hydrolysis decomposition of ethylene vinyl acetate used as an encapsulant is the main origin of degradation. The change in electroluminescence images is explained on the basis of the corrosion of electrodes by acetic acid. On the other hand, little change was observed at the pn junction even after damp-heat test for a long time. Therefore, carrier generation occurs even after degradation; however, such generated carriers cannot be collected owing to corrosion of electrodes. The guiding principle that module structure and module materials without saving acetic acid into the modules was obtained.

  17. Electromigration in thin-film photovoltaic module metallization systems

    NASA Technical Reports Server (NTRS)

    Wen, L.; Mon, G.; Jetter, E.; Ross, R., Jr.

    1988-01-01

    Electromigration as a possible thin-film module failure mechanism was investigated using several specially made, fully aluminized thin-film photovoltaic (TF-PV) modules. The effect of electromigration, as determined experimentally by measuring increases in electrical resistance across scribe lines, can be expressed as the product of a damage function, which correlates degradation rate with operating conditions such as current density and temperature, and a susceptibility function, which is defined by module design parameters, particularly aluminum purity and the configuration of the intercell region. Experimental measurements and derived acceleration factors suggest that open-circuit failure resulting from electromigration should not be a serious problem in present state-of-the-art TF-PV modules. Nevertheless, significant intercell resistance increases can result from long-term electromigration exposure, especially in future high-efficiency modules. The problem can be alleviated, however, by appropriate metallization applications and/or proper design of the intercell region.

  18. Interconnect fatigue design for terrestrial photovoltaic modules

    SciTech Connect

    Mon, G. R.; Moore, D. M.; Ross, Jr., R. G.

    1982-03-01

    Fatigue of solar cell electrical interconnects due to thermal cycling has historically been a major failure mechanism in photovoltaic arrays; the results of a comprehensive investigation of interconnect fatigue that has led to the definition of useful reliability-design and life-prediction algorithms are presented. Experimental data gathered in this study indicate that the classical strain-cycle (fatigue) curve for the interconnect material is a good model of mean interconnect fatigue performance, but it fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming the classical fatigue curve is combined with experimental cumulative interconnect failure rate data to yield statistical fatigue curves (having failure probability as a parameter) which enable: (1) the prediction of cumulative interconnect failures during the design life of an array field; and (2) the unambiguous - i.e., quantitative - interpretation of data from field-service qualification (accelerated thermal cycling) tests. Optimal interconnect cost-reliability design algorithms are derived based on minimizing the cost of energy over the design life of the array field. This procedure yields not only the minimum break-even cost of delivered energy, but also the required degree of interconnect redundancy and an estimate of array power degradation during the design life of the array field. The usefulness of the design algorithms is demonstrated with realistic examples of design optimization, prediction, and service qualification testing.

  19. Photovoltaic module soiling studies, May 1978-October 1980

    SciTech Connect

    Hoffman, A.R.; Maag, C.R.

    1980-11-01

    The retention of particulate contamination on the surface of flat-plate photovoltaic devices is adversely affecting electrical performance of outdoor-exposed modules. The results of an experimental study being performed by the Jet Propulsion Laboratory's Low-Cost Solar Array Project to characterize and understand the effects of outdoor contaminants on sensitive optical surfaces of flat-plate photovoltaic modules and cover materials are described. Comparative electrical and optical performance data from photovoltaic modules and materials subjected to outdoor exposure at field test sites throughout the United States have been collected and examined. The results show significant time- and site-dependence. During periods when natural removal processes do not dominate, the rate of particulate contamination accumulation appears to be largely material-independent. The effectiveness of natural removal processes, especially rain, is strongly material-dependent. Glass and acrylic top-cover materials retain fewer particles than silicone rubber does. Side-by-side outdoor exposure testing for long duration is presently the most effective means of evaluating soiling differences between materials. Changes in spectral transmission as a function of time and location and limited scattering data are presented.

  20. Hermetic edge sealing of photovoltaic modules

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The edge sealing technique is accomplished by a combination of a chemical bond between glass and aluminum, formed by electrostatic bonding, and a metallurgical bond between aluminum and aluminum, formed by ultrasonic welding. Such a glass to metal seal promises to provide a low cost, long lifetime, highly effective hermetic seal which can protect module components from severe environments. Development of the sealing techniques and demonstration of their effectiveness by fabricating a small number of dummy modules, up to eight inches square in size, and testing them for hermeticity using helium leak testing methods are reviewed. Non-destructive test methods are investigated.

  1. Hermetic Edge Seals for Photovoltaic Modules

    NASA Technical Reports Server (NTRS)

    Nowlan, M. J.

    1986-01-01

    Corrosive atmospheric agents excluded to prolong cell life. Combination of two sealing techniques makes possible to protect solar cells from water vapor, oxygen, and other corrosive atmospheric constituents. Using three-step process, glass-to-metal hermetic seal formed around edge of solar-cell module. Elastomer seals used previously not as effective because they are permeable to water vapor and atmospheric gases.

  2. Energy efficient two-phase cooling for concentrated photovoltaic arrays

    NASA Astrophysics Data System (ADS)

    Reeser, Alexander Douglas

    Concentrated sunlight focused on the aperture of a photovoltaic solar cell, coupled with high efficiency, triple junction cells can produce much greater power densities than traditional 1 sun photovoltaic cells. However, the large concentration ratios will lead to very high cell temperatures if not efficiently cooled by a thermal management system. Two phase, flow boiling is an attractive cooling option for such CPV arrays. In this work, two phase flow boiling in mini/microchannels and micro pin fin arrays will be explored as a possible CPV cooling technique. The most energy efficient microchannel design is chosen based on a least-material, least-energy analysis. Heat transfer and pressure drop obtained in micro pin fins will be compared to data in the recent literature and new correlations for heat transfer coefficient and pressure drop will be presented. The work concludes with an energy efficiency comparison of micro pin fins with geometrically similar microchannel geometry.

  3. Potential-induced degradation in photovoltaic modules: a critical review

    SciTech Connect

    Luo, Wei; Khoo, Yong Sheng; Hacke, Peter; Naumann, Volker; Lausch, Dominik; Harvey, Steven P.; Singh, Jai Prakash; Chai, Jing; Wang, Yan; Aberle, Armin G.; Ramakrishna, Seeram

    2017-01-01

    Potential-induced degradation (PID) has received considerable attention in recent years due to its detrimental impact on photovoltaic (PV) module performance under field conditions. Both crystalline silicon (c-Si) and thin-film PV modules are susceptible to PID. While extensive studies have already been conducted in this area, the understanding of the PID phenomena is still incomplete and it remains a major problem in the PV industry. Herein, a critical review of the available literature is given to serve as a one-stop source for understanding the current status of PID research. This paper also aims to provide an overview of future research paths to address PID-related issues. This paper consists of three parts. In the first part, the modelling of leakage current paths in the module package is discussed. The PID mechanisms in both c-Si and thin-film PV modules are also comprehensively reviewed. The second part summarizes various test methods to evaluate PV modules for PID. The last part focuses on studies related to PID in the omnipresent p-type c-Si PV modules. The dependence of temperature, humidity and voltage on the progression of PID is examined. Preventive measures against PID at the cell, module and system levels are illustrated. Moreover, PID recovery in standard p-type c-Si PV modules is also studied. Most of the findings from p-type c-Si PV modules are also applicable to other PV module technologies.

  4. Potential-induced degradation in photovoltaic modules: a critical review

    SciTech Connect

    Luo, Wei; Khoo, Yong Sheng; Hacke, Peter; Naumann, Volker; Lausch, Dominik; Harvey, Steven P.; Singh, Jai Prakash; Chai, Jing; Wang, Yan; Aberle, Armin G.; Ramakrishna, Seeram

    2016-11-21

    Potential-induced degradation (PID) has received considerable attention in recent years due to its detrimental impact on photovoltaic (PV) module performance under field conditions. Both crystalline silicon (c-Si) and thin-film PV modules are susceptible to PID. While extensive studies have already been conducted in this area, the understanding of the PID phenomena is still incomplete and it remains a major problem in the PV industry. Herein, a critical review of the available literature is given to serve as a one-stop source for understanding the current status of PID research. This article also aims to provide an overview of future research paths to address PID-related issues. This paper consists of three parts. In the first part, the modelling of leakage current paths in the module package is discussed. The PID mechanisms in both c-Si and thin-film PV modules are also comprehensively reviewed. The second part summarizes various test methods to evaluate PV modules for PID. The last part focuses on studies related to PID in the omnipresent p-type c-Si PV modules. The dependence of temperature, humidity and voltage on the progression of PID is examined. Preventive measures against PID at the cell, module and system levels are illustrated. Moreover, PID recovery in standard p-type c-Si PV modules is also studied. Most of the findings from p-type c-Si PV modules are also applicable to other PV module technologies.

  5. Cost Analysis of a Concentrator Photovoltaic Hydrogen Production System

    SciTech Connect

    Thompson, J. R.; McConnell, R. D.; Mosleh, M.

    2005-08-01

    The development of efficient, renewable methods of producing hydrogen are essential for the success of the hydrogen economy. Since the feedstock for electrolysis is water, there are no harmful pollutants emitted during the use of the fuel. Furthermore, it has become evident that concentrator photovoltaic (CPV) systems have a number of unique attributes that could shortcut the development process, and increase the efficiency of hydrogen production to a point where economics will then drive the commercial development to mass scale.

  6. The role of optics in practical concentrating photovoltaics

    NASA Astrophysics Data System (ADS)

    Horne, S.

    2016-09-01

    Commercially viable concentrating photovoltaic systems are a difficult blend of science and practicality, especially as the complete product lifecycle must be addressed. Optical choices are key: they set the stage for the many compromises that must be made, for better or for worse. This talk will outline SolFocus' experience in bringing one approach to commercial reality, and the important role the company's consulting professors played.

  7. Photovoltaic concentrator with plastic-film reflector. Final report

    SciTech Connect

    Not Available

    1982-06-01

    A 4m diameter reflective film, parabolic dish concentrator proposed for use with a photovoltaic array has been designed, fabricated, and tested. The concentrator is made from aluminized film gores (wedge shaped pieces) that are taped together along their edges to form a dish. The shape of the dish is maintained by a pressure difference between the front and back. The deep dish was designed to illuminate a cylindrical receiver populated by solar cells with a geometric concentration ratio of 145. Three full scale dishes were made in sequence, each using improvements suggested by the previous design. They were tested with a laser to determine surface errors and flux uniformity on the target.

  8. Photovoltaic-module encapsulation design and materials selection: Volume 1

    SciTech Connect

    Cuddihy, E.; Carroll, W.; Coulbert, C.; Gupta, A.; Liang, R.

    1982-06-01

    Encapsulation-material system requirements, material-selection criteria, and the status and properties of encapsulation materials and processes available to the module manufacturer are presented in detail. Technical and economic goals established for photovoltaic modules and encapsulation systems and their status are described for material suppliers to assist them in assessing the suitability of materials in their product lines and the potential of new-material products. A comprehensive discussion of available encapsulation technology and data is presented to facilitate design and material selection for silicon flat-plate photovoltaic modules, using the best materials available and processes optimized for specific power applications and geographic sites. A basis is provided for specifying the operational and environmental loads that encapsulation material systems must resist. Potential deployment sites for which cost effectiveness may be achieved at a module price much greater than $0.70/W/sub p/, are also considered; data on higher-cost encapsulant materials and processes that may be in use and other material candidates that may be justified for special application are discussed. Described are encapsulation-system functional requirements and candidate design concepts and materials that have been identified and analyzed as having the best potential to meet the cost and performance goals for the Flat-Plate Solar Array Project. The available data on encapsulant material properties, fabrication processing, and module life and durability characteristics are presented.

  9. Design, fabrication and performance of high efficiency photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Nowlan, M. J.; Kreisman, W. S.; Younger, P. R.

    1981-01-01

    Design details and performance and environmental test results of newly developed high performance and reliability photovoltaic modules are presented. Efficiencies averaging 14.3% for 3040 cells were obtained by using ion implantation for cell junction and back surface field formation. 152 rectangular (6.0 cm x 4.6 cm) cells arranged with a 97% local packing density comprise the circuit assembly, and cells are wired 4 in parallel by 38 in series. The top cover of the superstrate design module is composed of tempered low-iron glass to provide transparent protection for the optical surface. Results show that this design has an encapsulation system which does not fail in the event of reverse-bias operation, and an average module efficiency of 12.2% was achieved at a 58.6W power which varied only 2% among all 20 modules.

  10. Development and testing of advanced fire-resistant photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Sugimura, R. S.; Otth, D. H.; Ross, R. G., Jr.

    The evaluation of back-surface materials flammability in order to identify fire resistant module designs is examined. The fire test apparatus, burning-brand test sequence, and spread-of-flame test sequence are described. Video recordings and time-temperature profiles of module back surfaces are utilized to study the flammability failure mechanism and identify high-temperature materials. A table of flammability test results for various module designs is provided. The data reveals that 2-mil kapton, fiberglass cloth coated or impregnated with a material to plug pores, and metal foil back-surface materials achieve class A and B fire-resistance levels, and are applicable for photovoltaic module designs.

  11. High efficiency solar photovoltaic power module concept

    NASA Technical Reports Server (NTRS)

    Bekey, I.

    1978-01-01

    The investigation of a preliminary concept for high efficiency solar power generation in space is presented. The concept was a synergistic combination of spectral splitting, tailored bandgap cells, high concentration ratios, and cool cell areas.

  12. Hermetic edge sealing of photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Nowlan, M. J.

    1983-01-01

    The feasibility of using an electrostatic bonding (ESB) and ultrasonic welding process to produce hermetic edge seals on terrestrial solar cell modules was investigated. The fabrication sequence is to attach an aluminum foil "gasket' to the perimeter of a glass sheet. A cell circuit is next encapsulated inside the gasket, and its aluminum foil back cover is seam welded ultrasonically to the gasket. An ESB process for sealing aluminum to glass was developed in an ambient air atmosphere, which eliminates the requirement for a vacuum or pressure vessel. An ultrasonic seam welding process was also developed which did not degrade the quality of the ESB seal. Good quality welds with minimal deformation were produced. The effectiveness of the above described sealing techniques was tested by constructing 400 sq cm (8 x 8 s64 sq in) sample modules, and then subjecting them to nondestructive fine and gross leak tests. The gross leak tests identified several different causes of leaks which were then eliminated by modifying the assembly process.

  13. An array of directable mirrors as a photovoltaic solar concentrator

    NASA Astrophysics Data System (ADS)

    Ittner, W. B., III

    1980-01-01

    Calculations of the optics of heliostats for use in large thermal power towers have been carried out in considerable detail, chiefly by Vant-Hull et al. This paper describes a simplified method for calculating the images generated by a special type of concentrator, i.e. an array of independently steered mirrors on a single frame, intended to direct the solar image onto a flat photovoltaic solar cell target. The case of interest is one in which the field of illumination on the target is as uniform as possible, and the emphasis is thus on small 'rim angle' geometries (a configuration which also minimizes mirror interference effects). Calculations are presented for constructing the individual mirror target images in terms of three angles: (1) the angle between the photovoltaic target normal and the reflecting mirror (called here the mirror position angle), (2) the angle between the target center and the sun as measured from the center of the reflecting mirror, and (3) the angle at which the plane defined by the center of the sun, the mirror center and the target center intersects the plane of the target. The overall system efficiency for various mirror configurations, characterized by such parameters as the maximum mirror angle (i.e. 'rim angle'), target-mirror plane separation, and mirror aiming accuracy is discussed in terms of the specifications desirable in an optical concentrator designed specifically to illuminate uniformly a photovoltaic solar cell target.

  14. Antistatic effect of power-enhancement coating for photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Narushima, D.; Takanohashi, H.; Hirose, J.; Ogawa, S.

    2011-09-01

    Photovoltaic (PV) modules are periodically cleaned, particularly in large grid-connect photovoltaic plants, in order to avoid losses caused by dust accumulation. However, this maintenance task is often expensive, especially in those areas with water shortage. A hydrophilic coating on the surface of PV modules is one of typical methods to reduce the dust accumulation. But it is not commonly used yet, because the electrical performance of PV modules with conventional hydrophilic coating was slightly degraded by the decrease of transmittance. We have already developed a new hydrophilic power enhancement coating and reported its fundamental characters and results of several ISO/IEC standard tests in SPIE Solar Energy + Technology in 2010. One of the important characters was an antistatic effect. It was showed that the surface resistances of the coated glass and the uncoated glass were 1.3 × 1010Ω and 5.3 × 1014Ω, respectively. It would be understood that lower surface resistance of the coated glass resulted in the antistatic characteristics, which reduce the dust attraction on the coated glass. With the surface resistance result, it could be elucidated that the 3% additional energy production resulted from the antistatic effect of the coating on PV modules in the exposure test after several months without rain in Spain. In this paper, it is shown the results of the antistatic effect performed under the several dust accumulation tests.

  15. Airborne particulate soiling of terrestrial photovoltaic modules and cover materials

    NASA Technical Reports Server (NTRS)

    Hoffman, A. R.; Maag, C. R.

    1980-01-01

    Results are presented for the first phase of a photovoltaic-module soiling study that was carried out with NASA participation to investigate the problem of the electrical performance degradation of flat-plate photovoltaic modules exposed at outdoor sites that is due to the accumulation of airborne particulates on sensitive optical surfaces. The results were obtained in both field and laboratory soiling experiments, as well as in materials field experiments using candidate encapsulants and top covers. It is concluded that: (1) the electrical performance degradation shows a significant time and site dependence, ranging from 2% to 60% power loss; (2) the rate of particulate accumulation appears to be largely material independent when natural removal processes do not dominate; (3) the effectiveness of natural removal processes, especially rain, is strongly material dependent; (4) top-cover materials of glass and plexiglass retain fewer particles than silicone rubber; and (5) high module voltages relative to ground do not appear to affect the rate of dirt accumulation on modules.

  16. Generating Hydrogen through Water Electrolysis using Concentrator Photovoltaics

    SciTech Connect

    McConnell, R.; Thompson, J.

    2005-01-01

    Hydrogen can be an important element in reducing global climate change if the feedstock and process to produce the hydrogen are carbon free. Using nuclear energy to power a high temperature water electrolysis process meets these constraints while another uses heat and electricity from solar electric concentrators. Nuclear researchers have estimated the cost of hydrogen generated in this fashion and we will compare their estimates with those we have made for generating hydrogen using electricity and waste heat from a dish concentrator photovoltaic system. The conclusion is that the costs are comparable and low enough to compete with gasoline costs in the not too distant future.

  17. Space Station Freedom photovoltaic power module design status

    NASA Technical Reports Server (NTRS)

    Jimenez, Amador P.; Hoberecht, Mark A.

    1989-01-01

    Electric power generation for Space Station Freedom will be provided by four photovoltaic (PV) power modules using silicon solar cells during Phase 1 operation. Each PV power module requires two solar arrays with 32,800 solar cells generating 18.75 kW of dc power for a total of 75 kW. A portion of this power will be stored in nickel-hydrogen batteries for use during eclipse, and the balance will be processed and converted to 20 kHz ac power for distribution to end users through the power management and distribution system. The design incorporates an optimized thermal control system, pointing and tracking provision with the application of gimbals, and the use of orbital replacement units (ORU's) to achieve modularization. Design status of the PV power module, as derived from major trade studies, is discussed at hardware levels ranging from component to system. Details of the design are presented where appropriate.

  18. Space Station Freedom photovoltaic power module design status

    NASA Technical Reports Server (NTRS)

    Jimenez, Amador P.; Hoberecht, Mark A.

    1989-01-01

    Electric power generation for the Space Station Freedom will be provided by four photovoltaic (PV) power modules using silicon solar cells during phase I operation. Each PV power module requires two solar arrays with 32,800 solar cells generating 18.75 kW of dc power for a total of 75 kW. A portion of this power will be stored in nickel-hydrogen batteries for use during eclipse, and the balance will be processed and converted to 20 kHz ac power for distribution to end users through the power management and distribution system. The design incorporates an optimized thermal control system, pointing and tracking provision with the application of gimbals, and the use of orbital replacement units to achieve modularization. The design status of the PV power module, as derived from major trade studies, is discussed at hardware levels ranging from component to system. Details of the design are presented where appropriate.

  19. Two terminal diagnostics for cells in series connected photovoltaic modules

    SciTech Connect

    McMahon, T.J.; Basso, T.S.

    1995-11-01

    The authors have developed a method that allows us to know if a cell`s shunt resistance is affecting the output of a two-terminal, series-connected photovoltaic module, without the need of encapsulation. This two-terminal diagnostic method directly measures the shunt resistance of the individual cells within a series-connected module non-intrusively. Being a phase sensitive, lock-in technique, individual cell shunt resistance values are measured over a wide range, from a fraction of an ohm to thousands of ohms. The authors have applied this method to amorphous Si, Si and CuInSe{sub 2}-based modules, some with as few as eight cells in series, but usually with 28 to 68 cells. ``Two-terminal values`` are more accurate for cells that have lower shunt resistance, i.e., the ``problem`` cells. Cells with visual defects may be a significant problem if they provide a substantial shunt path.

  20. Sequential and combined acceleration tests for crystalline Si photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Masuda, Atsushi; Yamamoto, Chizuko; Uchiyama, Naomi; Ueno, Kiyoshi; Yamazaki, Toshiharu; Mitsuhashi, Kazunari; Tsutsumida, Akihiro; Watanabe, Jyunichi; Shirataki, Jyunko; Matsuda, Keiko

    2016-04-01

    The sequential combination test for photovoltaic modules is effective for accelerating degradation to shorten the test time and for reproducing degradation phenomena observed in modules exposed outdoors for a long time. The damp-heat (DH) test, thermal-cycle (TC) test, humidity-freeze (HF) test or dynamic mechanical load (DML) test is combined for the test modules. It was confirmed that chemical corrosion degradation or physical mechanical degradation is reproduced by the combination of the above tests. Cracks on the back sheet and delamination, often observed upon outdoor exposure, were well reproduced by the combination of DH and TC tests and TC and HF tests, respectively. Sequential DH and TC tests and DML and TC tests accelerated the degradation. These sequential tests are expected to be effective in reducing the required time of indoor testing for ensuring long-term reliability.

  1. Launch packaging options for the photovoltaic power module cargo element

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark A.; Vogt, Scott T.

    1989-01-01

    The National Aeronautics and Space Administration recently embarked on the Space Station Freedom program, which will utilize the Shuttle Orbiter for transportation to orbit. This task will be accomplished with a number of flights over several years. Each flight is unique in terms of the hardware that is manifested and the method by which it is integrated to form viable cargo elements. Work Package 4 is responsible for the electric power system for Space Station Freedom, and was delegated the authority to develop a photovoltaic (PV) power module cargo element. The PV power module consists of several unique assemblies. The first of these is the combined solar array/beta gimbal assembly. The remaining assemblies form the single combined integrated equipment assembly for each PV power module. These three combined assemblies are packaged into a launch cradle to form the PV power module cargo element, which is placed in the cargo bay of the Shuttle Orbiter for transportation to orbit. Various constraints determine the packaging options for the three PV power module combined assemblies. The size and shape of the combined assemblies in relation to the Shuttle Orbiter cargo bay dimensions and other manifested hardware are ultimately a factor in determining the acceptable packaging schemes for the PV power module cargo element. Several packaging options for the PV power module cargo element are presented. These options are discussed in terms of their impact on the overall flight hardware manifest as determined by the various constraints.

  2. Review of Photovoltaic Energy Production Using Thin Film Modules

    NASA Astrophysics Data System (ADS)

    Gessert, Timothy

    2011-04-01

    It is now widely accepted that thin-film photovoltaic (PV) devices will be important contributors of new US electricity generation. The annual production of PV devices needed to meet conservative U.S. Department of Energy goals for 2050 represents ˜100 square miles of active module area (20 GW), or ˜200 times the total area of photovoltaic modules installed in the US by 2004. However, if the rate of growth observed in PV module production for the past eight years continues, 100 square miles of annual US PV production could be achieved as early as 2018. Further, the amount PV installed by 2036 could generate the entire 2004 US Total Energy Consumption (˜100 Quadrillion BTU's, i.e., the combined energy consumed in the US from petroleum, coal, natural gas, nuclear, and all renewable sources). Regardless of what assumptions are made, PV represents a significant future market for related materials and technologies. This talk will discuss thin-film PV devices within the context of the major PV technologies in production today, and indicate areas where improved material and device understanding would be beneficial. This work was performed with the support of US Department of Energy Contract No. DE-AC36-08-GO28308. This abstract is subject to government rights.

  3. Photovoltaic module certification/laboratory accreditation criteria development

    SciTech Connect

    Osterwald, C.R.; Hammond, R.L.; Wood, B.D.; Backus, C.E.; Sears, R.L.; Zerlaut, G.A.; D`Aiello, R.V.

    1995-04-01

    This document provides an overview of the structure and function of typical product certification/laboratory accreditation programs. The overview is followed by a model program which could serve as the basis for a photovoltaic (PV) module certification/laboratory accreditation program. The model covers quality assurance procedures for the testing laboratory and manufacturer, third-party certification and labeling, and testing requirements (performance and reliability). A 30-member Criteria Development Committee was established to guide, review, and reach a majority consensus regarding criteria for a PV certification/laboratory accreditation program. Committee members represented PV manufacturers, end users, standards and codes organizations, and testing laboratories.

  4. Model institutional infrastructures for recycling of photovoltaic modules

    SciTech Connect

    Reaven, S.J.; Moskowitz, P.D.; Fthenakis, V.

    1996-01-01

    How will photovoltaic modules (PVMS) be recycled at the end of their service lives? This question has technological and institutional components (Reaven, 1994a). The technological aspect concerns the physical means of recycling: what advantages and disadvantages of the several existing and emerging mechanical, thermal, and chemical recycling processes and facilities merit consideration? The institutional dimension refers to the arrangements for recycling: what are the operational and financial roles of the parties with an interest in PVM recycling? These parties include PVM manufacturers, trade organizations; distributors, and retailers; residential, commercial, and utility PVM users; waste collectors, transporters, reclaimers, and reclaimers; and governments.

  5. Photothermal characterization of encapsulant materials for photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Liang, R. H.; Gupta, A.; Distefano, S.

    1982-01-01

    A photothermal test matrix and a low cost testing apparatus for encapsulant materials of photovoltaic modules were defined. Photothermal studies were conducted to screen and rank existing as well as future encapsulant candidate materials and/or material formulations in terms of their long term physiochemical stability under accelerated photothermal aging conditions. Photothermal characterization of six candidate pottant materials and six candidate outer cover materials were carried out. Principal products of photothermal degradation are identified. Certain critical properties are also monitored as a function of photothermal aging.

  6. Thermal control system for Space Station Freedom photovoltaic power module

    NASA Technical Reports Server (NTRS)

    Hacha, Thomas H.; Howard, Laura

    1994-01-01

    The electric power for Space Station Freedom (SSF) is generated by the solar arrays of the photovoltaic power modules (PVM's) and conditioned, controlled, and distributed by a power management and distribution system. The PVM's are located outboard of the alpha gimbals of SSF. A single-phase thermal control system is being developed to provide thermal control of PVM electrical equipment and energy storage batteries. This system uses ammonia as the coolant and a direct-flow deployable radiator. The description and development status of the PVM thermal control system is presented.

  7. Thermal control system for Space Station Freedom photovoltaic power module

    NASA Technical Reports Server (NTRS)

    Hacha, Thomas H.; Howard, Laura S.

    1992-01-01

    The electric power for Space Station Freedom (SSF) is generated by the solar arrays of the photovoltaic power modules (PVM's) and conditioned, controlled, and distributed by a power management and distribution system. The PVM's are located outboard of the alpha gimbals of SSF. A single-phase thermal control system is being developed to provide thermal control of PVM electrical equipment and energy storage batteries. This system uses ammonia as the coolant and a direct-flow deployable radiator. This paper presents the description and development status of the PVM thermal control system.

  8. Photovoltaic module encapsulation design and materials selection. Volume II

    SciTech Connect

    Cuddihy, E.

    1984-06-01

    This is Volume II of Photovoltaic Module Encapsulation Design and Materials Selection: a periodically updated handbook of encapsulation technology, developed with the support of the Flat-Plate Solar Array Project (FSA), managed for the Department of Energy (DOE) by the Jet Propulsion Laboratory. Volume II describes FSA encapsulation technology developed between June 1, 1982, and January 1, 1984. Emphasis during this period shifted from materials development to demonstration of reliability and durability in an outdoor environment; the updated information in this volume reflects the developing technology base related to both reliability and encapsulation process improvements.

  9. Testing and analysis of photovoltaic modules for electrochemical corrosion

    NASA Technical Reports Server (NTRS)

    Neff, Michael; Mon, Gordon R.; Whitla, Guy; Ross, Russ, Jr.

    1986-01-01

    This paper describes the testing and evaluation used to characterize the mechanisms of electrochemical corrosion of photovoltaic modules - encapsulated solar cells. Accelerated exposure testing was performed on a sample matrix of cell/encapsulant combinations, and microanalytical failure analysis was performed on selected samples to confirm the correlation between the accelerated test data and the life prediction model. A quantitative correlation between field exposure time and exposure time in the accelerated multistress tests was obtained based upon the observation that equal quantities of interelectrode charge transfer resulted in equivalent degrees of electrochemical charge.

  10. Potential-induced degradation in photovoltaic modules: a critical review

    DOE PAGES

    Luo, Wei; Khoo, Yong Sheng; Hacke, Peter; ...

    2016-11-21

    Potential-induced degradation (PID) has received considerable attention in recent years due to its detrimental impact on photovoltaic (PV) module performance under field conditions. Both crystalline silicon (c-Si) and thin-film PV modules are susceptible to PID. While extensive studies have already been conducted in this area, the understanding of the PID phenomena is still incomplete and it remains a major problem in the PV industry. Herein, a critical review of the available literature is given to serve as a one-stop source for understanding the current status of PID research. This article also aims to provide an overview of future research pathsmore » to address PID-related issues. This paper consists of three parts. In the first part, the modelling of leakage current paths in the module package is discussed. The PID mechanisms in both c-Si and thin-film PV modules are also comprehensively reviewed. The second part summarizes various test methods to evaluate PV modules for PID. The last part focuses on studies related to PID in the omnipresent p-type c-Si PV modules. The dependence of temperature, humidity and voltage on the progression of PID is examined. Preventive measures against PID at the cell, module and system levels are illustrated. Moreover, PID recovery in standard p-type c-Si PV modules is also studied. Most of the findings from p-type c-Si PV modules are also applicable to other PV module technologies.« less

  11. Stretched Lens Array (SLA) Photovoltaic Concentrator Hardware Development and Testing

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael; O'Neill, Mark J.; Eskenazi, Michael

    2003-01-01

    Over the past two years, the Stretched Lens Array (SLA) photovoltaic concentrator has evolved, under a NASA contract, from a concept with small component demonstrators to operational array hardware that is ready for space validation testing. A fully-functional four panel SLA solar array has been designed, built and tested. This paper will summarize the focus of the hardware development effort, discuss the results of recent testing conducted under this program and present the expected performance of a full size 7kW array designed to meet the requirements of future space missions.

  12. High Throughput, Continuous, Mass Production of Photovoltaic Modules

    SciTech Connect

    Kurt Barth

    2008-02-06

    AVA Solar has developed a very low cost solar photovoltaic (PV) manufacturing process and has demonstrated the significant economic and commercial potential of this technology. This I & I Category 3 project provided significant assistance toward accomplishing these milestones. The original goals of this project were to design, construct and test a production prototype system, fabricate PV modules and test the module performance. The original module manufacturing costs in the proposal were estimated at $2/Watt. The objectives of this project have been exceeded. An advanced processing line was designed, fabricated and installed. Using this automated, high throughput system, high efficiency devices and fully encapsulated modules were manufactured. AVA Solar has obtained 2 rounds of private equity funding, expand to 50 people and initiated the development of a large scale factory for 100+ megawatts of annual production. Modules will be manufactured at an industry leading cost which will enable AVA Solar's modules to produce power that is cost-competitive with traditional energy resources. With low manufacturing costs and the ability to scale manufacturing, AVA Solar has been contacted by some of the largest customers in the PV industry to negotiate long-term supply contracts. The current market for PV has continued to grow at 40%+ per year for nearly a decade and is projected to reach $40-$60 Billion by 2012. Currently, a crystalline silicon raw material supply shortage is limiting growth and raising costs. Our process does not use silicon, eliminating these limitations.

  13. Photovoltaic power modules for NASA's manned Space Station

    NASA Technical Reports Server (NTRS)

    Tatro, C. A.

    1988-01-01

    The capability and the safety of manned spacecraft are largely dependent upon reliable electric power systems. Two similar space power systems able to survive the low earth orbit environment, are being considered for NASA's Manned Space Station (SS), scheduled to begin operation in the mid 1990's. The Space Station Electric Power System (EPS) is composed of Photovoltaic (PV) Power Modules, Solar Dynamic (SD) Power Modules, and the Power Management and Distribution (PMAD) System. One EPS configuration will deliver 37.5 kW of PV based, utility grade, ac power to SS users. A second 75 kWe PV based EPS option is also being considered for SS deployment. The two EPS options utilize common modules and differ only in the total number of PV Power Modules used. Each PV Power Module supplies 18.75 kWe of ac power and incorporates its own energy storage and thermal control. The general requirements and the current preliminary design configuration of the Space Station PV Power Modules are examined.

  14. Photovoltaic power modules for NASA's manned space station

    NASA Technical Reports Server (NTRS)

    Tatro, Charles A.

    1987-01-01

    The capability and the safety of manned spacecraft are largely dependent upon reliable electric power systems. Two similar space power systems able to survive the low Earth orbit environment, are being considered for NASA's Manned Space Station (SS), scheduled to begin operation in the mid 1990's. The Space Station Electric Power System (EPS) is composed of Photovoltaic (PV) Power Modules, Solar Dynamic (SD) Power Modules, and the Power Management and Distribution (PMAD) System. One EPS configuration will deliver 37.5 kW of PV based, utility grade, ac power to SS users. A second 75 kWe PV based EPS option is also being considered for SS deployment. The two EPS options utilize common modules and differ only in the total number of PV Power Modules used. Each PV Power Module supplies 18.75 kWe of ac power and incorporates its own energy storage and thermal control. The general requirements and the current preliminary design configuration of the Space Station PV Power Modules are examined.

  15. A Photovoltaics Module for Incoming Science, Technology, Engineering and Mathematics Undergraduates

    ERIC Educational Resources Information Center

    Dark, Marta L.

    2011-01-01

    Photovoltaic-cell-based projects have been used to train eight incoming undergraduate women who were part of a residential summer programme at a women's college. A module on renewable energy and photovoltaic cells was developed in the physics department. The module's objectives were to introduce women in science, technology, engineering and…

  16. 77 FR 25400 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-30

    ... International Trade Administration Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules... in this countervailing duty (CVD) investigation of crystalline silicon photovoltaic cells, whether or not assembled into modules (solar cells) from the People's Republic of China (PRC) with the...

  17. 77 FR 63788 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-17

    ... International Trade Administration Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules... countervailable subsidies are being provided to producers and exporters of crystalline silicon photovoltaic cells, whether or not assembled into modules (solar cells) from the People's Republic of China (PRC)....

  18. Photovoltaic Modules: Effect of Tilt Angle on Soiling

    NASA Astrophysics Data System (ADS)

    Cano, Jose

    2011-12-01

    Photovoltaic (PV) systems are one of the next generation's renewable energy sources for our world energy demand. PV modules are highly reliable. However, in polluted environments, over time, they will collect grime and dust. There are also limited field data studies about soiling losses on PV modules. The study showed how important it is to investigate the effect of tilt angle on soiling. The study includes two sets of mini-modules. Each set has 9 PV modules tilted at 0, 5, 10, 15, 20, 23, 30, 33 and 40°. The first set called "Cleaned" was cleaned every other day. The second set called "Soiled" was never cleaned after the first day. The short circuit current, a measure of irradiance, and module temperature was monitored and recorded every two minutes over three months (January-March 2011). The data were analyzed to investigate the effect of tilt angle on daily and monthly soiling, and hence transmitted solar insolation and energy production by PV modules. The study shows that during the period of January through March 2011 there was an average loss due to soiling of approximately 2.02% for 0° tilt angle. Modules at tilt angles 23° and 33° also have some insolation losses but do not come close to the module at 0° tilt angle. Tilt angle 23° has approximately 1.05% monthly insolation loss, and 33° tilt angle has an insolation loss of approximately 0.96%. The soiling effect is present at any tilt angle, but the magnitude is evident: the flatter the solar module is placed the more energy it will lose.

  19. Hot-spot qualification testing of concentrator modules

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.; Sugimura, R. S.; Ross, R. G., Jr.

    1987-01-01

    Results of a study to determine the hot-spot susceptibility of concentrator cells, to provide a hot-spot qualification test for concentrator modules, and to provide guidelines for reducing hot-spot susceptibility are presented. Hot-spot heating occurs in a photovoltaic module when the short-circuit current of a cell is lower than the string operating current, forcing the cell into reverse bias with a concurrent power dissipation. Although the basis for the concentrator-module hot-spot qualification test is the test developed for flat-plate modules, issues such as providing cell illumination introduce additional complexities into the testing procedure. The results indicate that the same general guidelines apply to protecting concentrator modules from hot-spot stressing as apply to flat-plate modules, and recommendations are made on the number of bypass diodes required per given number of series cells per module or source circuit. A method for determining the cell temperature in the laboratory or in the field is discussed.

  20. Parameter Estimation for Single Diode Models of Photovoltaic Modules

    SciTech Connect

    Hansen, Clifford

    2015-03-01

    Many popular models for photovoltaic system performance employ a single diode model to compute the I - V curve for a module or string of modules at given irradiance and temperature conditions. A single diode model requires a number of parameters to be estimated from measured I - V curves. Many available parameter estimation methods use only short circuit, o pen circuit and maximum power points for a single I - V curve at standard test conditions together with temperature coefficients determined separately for individual cells. In contrast, module testing frequently records I - V curves over a wide range of irradi ance and temperature conditions which, when available , should also be used to parameterize the performance model. We present a parameter estimation method that makes use of a fu ll range of available I - V curves. We verify the accuracy of the method by recov ering known parameter values from simulated I - V curves . We validate the method by estimating model parameters for a module using outdoor test data and predicting the outdoor performance of the module.

  1. 77 FR 35425 - Crystalline Silicon Photovoltaic Cells and Modules From China; Scheduling of the Final Phase of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-13

    ... COMMISSION Crystalline Silicon Photovoltaic Cells and Modules From China; Scheduling of the Final Phase of... crystalline silicon photovoltaic cells and modules, provided for in subheadings 8501.31.80, 8501.61.00, 8507... silicon photovoltaic cells, and modules, laminates, and panels, consisting of crystalline...

  2. Dynamic thermal analysis of a concentrated photovoltaic system

    NASA Astrophysics Data System (ADS)

    Avrett, John T., II; Cain, Stephen C.; Pochet, Michael

    2012-02-01

    Concentrated photovoltaic (PV) technology represents a growing market in the field of terrestrial solar energy production. As the demand for renewable energy technologies increases, further importance is placed upon the modeling, design, and simulation of these systems. Given the U.S. Air Force cultural shift towards energy awareness and conservation, several concentrated PV systems have been installed on Air Force installations across the country. However, there has been a dearth of research within the Air Force devoted to understanding these systems in order to possibly improve the existing technologies. This research presents a new model for a simple concentrated PV system. This model accurately determines the steady state operating temperature as a function of the concentration factor for the optical part of the concentrated PV system, in order to calculate the optimum concentration that maximizes power output and efficiency. The dynamic thermal model derived is validated experimentally using a commercial polysilicon solar cell, and is shown to accurately predict the steady state temperature and ideal concentration factor.

  3. Novel in situ series connection for thin film photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Merz, Rainer; Kistner, Jens; Schubert, Markus B.; Werner, Jürgen H.

    2009-08-01

    The monolithically integrated series connection of single solar cell stripes into complete photovoltaic (PV) modules is one of the key advantages of thin film PV technologies. Instead of the well established laser scribing for series connection, this contribution focuses on a novel in situ series connection technology, without breaking the vacuum during module manufacturing, and without the need of costly laser-scribing equipment. Metallic wires or other filaments aligned along the slightly bent substrate, sequentially pattern the solar cell layers for implementing the monolithic series connection, simultaneously with the consecutive evaporation, plasma deposition, and sputtering of the semiconductor and contact layers. In addition to a proof of concept by flexible PV modules, this paper for the first time investigates wire-shading on rigid glass substrates and by multiple adjacent filaments. The results of these studies demonstrate that the in situ series connection is a promising candidate for competing with laser scribing, not only in roll-to-roll production of flexible PV modules, but also in batch or inline processing of standard large-area glass plates. Applying the novel in situ series connection to a laboratory-scale solar cell process, yields 40 cm2 sized PV modules, consisting of ten single junction amorphous silicon n-i-p cells on a flexible polymer foil. The modules' total area efficiency of 3 % is close to the non-optimized efficiency of reference cells of 3.3 %. Wire-shading with wire diameters down to 50 μm proves successful, and thereby projects total interconnection losses F < 5 %, whereas the first experimental modules exhibit F = 15 %.

  4. Manufacturing injection-moleded Fresnel lens parquets for point-focus concentrating photovoltaic systems

    SciTech Connect

    Peters, E.M.; Masso, J.D.

    1995-10-01

    This project involved the manufacturing of curved-faceted, injection-molded, four-element Fresnel lens parquets for concentrating photovoltaic arrays. Previous efforts showed that high-efficiency (greater than 82%) Fresnel concentrators could be injection molded. This report encompasses the mold design, molding, and physical testing of a four-lens parquet for a solar photovoltaic concentrator system.

  5. High-throughput manufacturing of thin-film CdS/CdTe photovoltaic modules. Annual subcontract report, 16 September 1996--15 January 1998

    SciTech Connect

    Sandwisch, D.W.

    1998-08-01

    Cadmium telluride (CdTe) is recognized as one of the leading materials for low-cost photovoltaic modules. Solar Cells, Inc., has developed this technology and is scaling its pilot production capabilities to a multi-megawatt level. The Photovoltaic Manufacturing Technology (PVMaT) subcontract supports these efforts. Activities during the third phase of the program concentrated on process development, equipment design and testing, quality assurance, ES and H programs, and large-scale next-generation coating-system prototype development. These efforts broadly addressed the issues of the manufacturing process for producing thin-film, monolithic CdS/CdTe photovoltaic modules.

  6. Effects of UV on power degradation of photovoltaic modules in combined acceleration tests

    NASA Astrophysics Data System (ADS)

    Ngo, Trang; Heta, Yushi; Doi, Takuya; Masuda, Atsushi

    2016-05-01

    UV exposure and other factors such as high/low temperature, humidity and mechanical stress have been reported to degrade photovoltaic (PV) module materials. By focusing on the combined effects of UV stress and moisture on PV modules, two new acceleration tests of light irradiation and damp heat (DH) were designed and conducted. The effects of UV exposure were validated through a change in irradiation time (UV dosage) and a change of the light irradiation side (glass side vs backsheet side) in the UV-preconditioned DH and cyclic sequential tests, respectively. The chemical corrosion of finger electrodes in the presence of acetic acid generated from ethylene vinyl acetate used as an encapsulant was considered to be the main origin of degradation. The module performance characterized by electroluminescence images was confirmed to correlate with the measured acetic acid concentration and Ag finger electrode resistance.

  7. Photovoltaic module certification/laboratory accreditation criteria development: Implementation handbook

    SciTech Connect

    Osterwald, C.R.; Hammond, R.L.; Wood, B.D.; Backus, C.E.; Sears, R.L.; Zerlaut, G.A.; D`Aiello, R.V.

    1996-08-01

    This document covers the second phase of a two-part program. Phase I provided an overview of the structure and function of typical product certification/laboratory accreditation programs. This report (Phase H) provides most of the draft documents that will be necessary for the implementation of a photovoltaic (PV) module certification/laboratory accreditation program. These include organizational documents such as articles of incorporation, bylaws, and rules of procedure, as well as marketing and educational program documents. In Phase I, a 30-member criteria development committee was established to guide, review and reach a majority consensus regarding criteria for a PV certification/laboratory accreditation program. Committee members represented PV manufacturers, end users, standards and codes organizations, and testing laboratories. A similar committee was established for Phase II; the criteria implementation committee consisted of 29 members. Twenty-one of the Phase I committee members also served on the Phase II committee, which helped to provide program continuity during Phase II.

  8. Photovoltaic module soiling studies, May 1978 - October 1980

    NASA Technical Reports Server (NTRS)

    Hoffman, A. R.; Maag, C. R.

    1980-01-01

    Comparative electrical and optical performance data from photovoltaic modules and materials subjected to outdoor exposure at field test sites throughout the United States were collected and examined. The results show significant time and site dependence. During periods when natural removal processes do not dominate, the rate of particulate contamination accumulation appears to be largely material-independent. The effectiveness of natural removal processes, especially rain, is strongly material-dependent. Glass and acrylic top cover materials retain fewer particles than silicone rubber does. Side by side outdoor exposure testing for long duration is presently the most effective means of evaluating soiling differences between materials. Changes in spectral transmission as a function of time and location and limited scattering data are presented.

  9. Relative potentials of concentrating and two-axis tracking flat-plate photovoltaic arrays for central-station applications

    NASA Technical Reports Server (NTRS)

    Borden, C. S.; Schwartz, D. L.

    1984-01-01

    The purpose of this study is to assess the relative economic potentials of concenrating and two-axis tracking flat-plate photovoltaic arrays for central-station applications in the mid-1990's. Specific objectives of this study are to provide information on concentrator photovoltaic collector probabilistic price and efficiency levels to illustrate critical areas of R&D for concentrator cells and collectors, and to compare concentrator and flat-plate PV price and efficiency alternatives for several locations, based on their implied costs of energy. To deal with the uncertainties surrounding research and development activities in general, a probabilistic assessment of commercially achievable concentrator photovoltaic collector efficiencies and prices (at the factory loading dock) is performed. The results of this projection of concentrator photovoltaic technology are then compared with a previous flat-plate module price analysis (performed early in 1983). To focus this analysis on specific collector alternatives and their implied energy costs for different locations, similar two-axis tracking designs are assumed for both concentrator and flat-plate options.

  10. Safety-related requirements for photovoltaic modules and arrays. Final report

    SciTech Connect

    Levins, A.

    1984-03-01

    Underwriters Laboratories has conducted a study to identify and develop safety requirements for photovoltaic module and panel designs and configurations for residential, intermediate, and large scale applications. Concepts for safety systems, where each system is a collection of subsystems which together address the total anticipated hazard situation, are described. Descriptions of hardware, and system usefulness and viability are included. This discussion of safety systems recognizes that there is little history on which to base the expected safety related performance of a photovoltaic system. A comparison of these systems, as against the provisions of the 1984 National Electrical Code covering photovoltaic systems is made. A discussion of the UL investigation of the photovoltaic module evaluated to the provisions of the Proposed UL Standard for Flat-Plate Photovoltaic Modules and Panels is included. Grounding systems, their basis and nature, and the advantages and disadvantages of each are described. The meaning of frame grounding, circuit grounding, and the type of circuit ground are covered. The development of the Standard for Flat-Plate Photovoltaic Modules and Panels has continued, and with both industry comment and a product submittal and listing, the Standard has been refined to a viable document allowing an objective safety review of photovoltaic modules and panels. How this document, and other UL documents would cover investigations of certain other photovoltaic system components is described.

  11. Predicting the Spectral Effects of Soils on Concentrating Photovoltaic Systems

    DOE PAGES

    Burton, Patrick D.; King, Bruce Hardison; Riley, Daniel M.

    2014-12-15

    The soiling losses on high concentrating photovoltaic (HCPV) systems may be influenced by the spectral properties of accumulated soil. We predicted the response of an isotype cell to changes in spectral content and reduction in transmission due to soiling using measured UV/vis transmittance through soil films. Artificial soil test blends deposited on glass coupons were used to supply the transmission data, which was then used to calculate the effect on model spectra. Moreover, the wavelength transparency of the test soil was varied by incorporating red and yellow mineral pigments into graded sand. The more spectrally responsive (yellow) soils were predictedmore » to alter the current balance between the top and middle subcells throughout a range of air masses corresponding to daily and seasonal variation.« less

  12. Verification of Fresnel lens in high concentration photovoltaic system

    NASA Astrophysics Data System (ADS)

    Wei, An-Chi; Sze, Jyh-Rou; Chern, Jyh-Long

    2012-10-01

    An approach using micro lens arrays to confine the cone angle of light source in a solar simulator has been proposed to verify the Fresnel lens in a high concentration photovoltaic (HCPV) system. Compared with other three prior arts by the computer simulation, the proposed method had the characteristics of the better approximation to the direct normal insolation and the low cost. Also, to ensure the erection of the evaluation system, the tolerance of lens alignment has been analyzed. The results showed that to maintain at least the 50% of the maximum luminous flux incident on the solar cell, the transverse and longitudinal tolerances of ±1.4 mm and ±4 mm, respectively, were required.

  13. Systems and applications analysis for concentrating photovoltaic-thermal systems

    NASA Astrophysics Data System (ADS)

    Schwinkendorf, W. E.

    Numerical simulations were carried out of the performance, costs, and land use requirements of five commercial and six residential applications of combined photovoltaic-thermal (PVT) power plants. Line focus Fresnel concentrators (LFF) systems were selected after a simulated comparison of different PVT systems. Load profiles were configured from industrial data and ASHRAE and building codes. Assumptions included costs of $1/Wp, 0.15 efficiency, and a cost of $275/sq m, as well as a 25 percent solar tax credit. The calculations showed that a significant low temperature thermal load must be available, but no heat recovery system. Industrial situations were identified which favor solar thermal energy alone rather than a combined system. The thermal energy displacement was determined to be the critical factor in assessing the economics of the PVT systems.

  14. Predicting the Spectral Effects of Soils on Concentrating Photovoltaic Systems

    SciTech Connect

    Burton, Patrick D.; King, Bruce Hardison; Riley, Daniel M.

    2014-12-15

    The soiling losses on high concentrating photovoltaic (HCPV) systems may be influenced by the spectral properties of accumulated soil. We predicted the response of an isotype cell to changes in spectral content and reduction in transmission due to soiling using measured UV/vis transmittance through soil films. Artificial soil test blends deposited on glass coupons were used to supply the transmission data, which was then used to calculate the effect on model spectra. Moreover, the wavelength transparency of the test soil was varied by incorporating red and yellow mineral pigments into graded sand. The more spectrally responsive (yellow) soils were predicted to alter the current balance between the top and middle subcells throughout a range of air masses corresponding to daily and seasonal variation.

  15. Degradation study on optical materials for concentrator photovoltaics

    NASA Astrophysics Data System (ADS)

    Eltermann, Fabian; Roeder, Kerstin; Wiesenfarth, Maike; Wilde, Juergen; Bett, Andreas W.

    2012-10-01

    In this work the impact of accelerated aging on the spectral transmission and the mechanical robustness of silicone elastomers for concentrator photovoltaic applications was investigated. Therefore, specific test samples were manufactured. The samples were annealed at 150 °C to assure a complete cross-linking. These samples were exposed to humidity freeze, to a pressure cooker test, and to UV light. To investigate optical materials under UVA intensity up to 10 W/cm2 a test setup was developed. Thus, a UV dosage of 10000 kWh/m2 was applied to the silicone samples after thermal treatment. The mean transmission was used as a measure to identify changes in the spectral behavior and was, therefore, compared after the stress tests with the initial value. No total failures but rather degradation was observed, mainly in the range of ultraviolet and visible light. In addition, the shear strengths for the silicone elastomers were compared before and after stress.

  16. Reliability and performance experience with flat-plate photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Ross, R. G., Jr.

    Statistical models developed to define the most likely sources of photovoltaic (PV) array failures and the optimum method of allowing for the defects in order to achieve a 20 yr lifetime with acceptable performance degradation are summarized. Significant parameters were the cost of energy, annual power output, initial cost, replacement cost, rate of module replacement, the discount rate, and the plant lifetime. Acceptable degradation allocations were calculated to be 0.0001 cell failures/yr, 0.005 module failures/yr, 0.05 power loss/yr, a 0.01 rate of power loss/yr, and a 25 yr module wear-out length. Circuit redundancy techniques were determined to offset cell failures using fault tolerant designs such as series/parallel and bypass diode arrangements. Screening processes have been devised to eliminate cells that will crack in operation, and multiple electrical contacts at each cell compensate for the cells which escape the screening test and then crack when installed. The 20 yr array lifetime is expected to be achieved in the near-term.

  17. 76 FR 70960 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ... concerning imports of crystalline silicon photovoltaic cells, whether or not assembled into modules (``solar cells'') from the People's Republic of China (``PRC'') filed in proper form by SolarWorld Industries... International Trade Administration Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into...

  18. Report of an exploratory study: safety and liability considerations for photovoltaic modules/panels, Low Cost Solar Array Project

    SciTech Connect

    Weinstein, A.S.; Meeker, D.G.

    1981-01-01

    Product safety and product liability considerations are explored for photovoltaic module/array devices. A general review of photovoltaic literature was made using computerized literature searches. A literature search was also made of relevant legal material as it applies to design. Recommendations are made to minimize or eliminate perceived hazards in manufacture and use of a photovoltaic module/array. (MHR)

  19. Use of imaging refractive secondaries in photovoltaic concentrators

    SciTech Connect

    James L.W.

    1989-07-01

    A new type of secondary optical element for two-axis photovoltaic solar concentrator systems is described. This optical system is known as the double-imaging concentrator system because the sun is imaged by the primary Fresnel lens onto the secondary lens, and the primary lens is imaged by the secondary lens onto the cell. The secondary lens can take two forms. An egg-shaped (ellipsoidal) glass secondary is suspended above the cell in one implementation. The alternative configuration, called the SILO secondary, allows gluing the secondary lens directly to the cell. The SILO lens is a glass cylinder or cone with a molded half-ellipsoidal top surface. In both cases, the fact that the primary lens is imaged onto the cell means that if the primary lens is uniformly illuminated, then the cell is uniformly illuminated, independent of first-order of tracking errors, mounting errors, and primary Fresnel lens aberrations. Monte Carlo ray trace modeling of these systems with the ''FgImgSec'' computer code shows significant advantages over other optical systems in the important areas of photon flux uniformity over the solar cell surface, and maximum allowable mounting and aiming tolerances. Parametric studies of concentration ratio and primary lens f-number show the limits in system design and give guidance for system optimization. 2 refs., 44 figs.

  20. Optical design considerations for high-concentration photovoltaics

    NASA Astrophysics Data System (ADS)

    Garboushian, Vahan; Gordon, Robert

    2006-08-01

    Over the past 15 years, major advances in Concentrating Photovoltaics (CPV) have been achieved. Ultra-efficient Si solar cells have produced commercial concentration systems which are being fielded today and are competitively priced. Advanced research has primarily focused on significantly more efficient multi-junction solar cells for tomorrow's systems. This effort has produced sophisticated solar cells that significantly improve power production. Additional performance and cost improvements, especially in the optical system area and system integration, must be made before CPV can realize its ultimate commercial potential. Structural integrity and reliability are vital for commercial success. As incremental technical improvements are made in solar cell technologies, evaluation and 'fine-tuning' of optical systems properly matched to the solar cell are becoming increasingly necessary. As we move forward, it is increasingly important to optimize all of the interrelated elements of a CPV system for high performance without sacrificing the marketable cost and structural requirements of the system. Areas such as wavelength absorption of refractive optics need to be carefully matched to the solar cell technology employed. Reflective optics require advanced engineering models to insure uniform flux distribution without excessive losses. In Situ measurement of the 'fine-grain' improvements are difficult as multiple variables such as solar insolation, temperature, wind, altitude, etc. infringe on analytical data. This paper discusses design considerations based on 10 years of field trials of high concentration systems and their relevance for tomorrow's advanced CPV systems.

  1. Point-focus spectral splitting solar concentrator for multiple cells concentrating photovoltaic system

    NASA Astrophysics Data System (ADS)

    Maragliano, Carlo; Chiesa, Matteo; Stefancich, Marco

    2015-10-01

    In this paper we present and experimentally validate a low-cost design of a spectral splitting concentrator for the efficient conversion of solar energy. The optical device consists of a dispersive prismatic lens made of polycarbonate designed to simultaneously concentrate solar light and split it into its spectral components. With respect to our previous implementation, this device concentrates light along two axes and generates a light pattern compatible with the dimensions of a set of concentrating photovoltaic cells, while providing a higher concentration ratio. The mathematical framework and the constructive approach used for the design are presented and the device performance is simulated using ray-tracing software. We obtain spectral separation in the visible range within a 3 × 1 cm2 area and a maximum concentration of 210× for a single wavelength. The device is fabricated by injection molding and its performance is experimentally investigated. We measure an optical transmissivity above 90% in the range 400-800 nm and we observe a spectral distribution in good accordance with simulations. Our results demonstrate the feasibility of the device for cost effective high efficiency concentrated photovoltaic systems.

  2. Photovoltaic module encapsulation design and materials section, volume 2

    NASA Astrophysics Data System (ADS)

    Cuddihy, E. F.

    1984-06-01

    Tests for chemical structure, material properties, water absorption, aging and curing agent of Ethylene Vinyl Acetate (EVA) and UV absorption studies are carried out. A computer model was developed for thermal optical modeling, to investigate dependence between module operating temperature and solar insolation, and heat dissapation behavior. Structural analyses were performed in order to determine the stress distribution under wind and heat conditions. Curves are shown for thermal loading conditions. An electrical isolation was carried out to investigate electrical stress aging of non-metallic encapsulation materials and limiting material flaws, and to develop a computer model of electrical fields and stresses in encapsulation materials. In addition, a mathematical model was developed and tests were conducted to predict hygroscopic and thermal expansion and contraction on a plastic coated wooden substrate. Thermal cycle and humidity freezing cycle tests, partial discharge tests, and hail impact tests were also carried out. Finally, the effects of soiling on the surface of photovoltaic modules were investigated. Two antisoiling coatings, a fluorinated silane and perflourodecanoic acid were considered.

  3. Photovoltaic module encapsulation design and materials section, volume 2

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.

    1984-01-01

    Tests for chemical structure, material properties, water absorption, aging and curing agent of Ethylene Vinyl Acetate (EVA) and UV absorption studies are carried out. A computer model was developed for thermal optical modeling, to investigate dependence between module operating temperature and solar insolation, and heat dissapation behavior. Structural analyses were performed in order to determine the stress distribution under wind and heat conditions. Curves are shown for thermal loading conditions. An electrical isolation was carried out to investigate electrical stress aging of non-metallic encapsulation materials and limiting material flaws, and to develop a computer model of electrical fields and stresses in encapsulation materials. In addition, a mathematical model was developed and tests were conducted to predict hygroscopic and thermal expansion and contraction on a plastic coated wooden substrate. Thermal cycle and humidity freezing cycle tests, partial discharge tests, and hail impact tests were also carried out. Finally, the effects of soiling on the surface of photovoltaic modules were investigated. Two antisoiling coatings, a fluorinated silane and perflourodecanoic acid were considered.

  4. Photovoltaic module start-up for the International Space Station

    SciTech Connect

    Hajela, G.P.; Hague, L.M.

    1996-12-31

    The International Space Station (ISS) US On-Orbit Segment Electric Power System (EPS) uses four photovoltaic modules (PVMs). Each PVM consists of solar array wings (SAW) for converting solar flux to electric power, nickel-hydrogen batteries for electric energy storage, electronic boxes for electric voltage control and power switching, and a thermal control system (TCS) for maintaining selected PVM components within their normal operating temperature ranges. Each PVM consists of two independent power channels, which are started sequentially. The start-up consists of deploying the SAW and photovoltaic radiator (PVR), initialization and check out of all hardware, thermally conditioning batteries, and charging batteries. After start-up, each PVM power channel is able to generate, store, and distribute electric power to ISS loads. Electric power to support start-up of the first PVM is provided by the NSTS via two auxiliary power converter units (APCUs), one per channel. During sunlit periods, the SAW provides power for the battery heaters (for thermal conditioning, as needed) and battery charging. During eclipse periods, the APCU maintains the channel in a standby mode. After start-up is complete, the APCU is disconnected and the PVM operates independently. The process used to start-up the first PVM on the ISS is described in this paper. Procedures used to bring dormant batteries to their normal operating temperature range and then to charge them to 100% state of charge (SOC) are also described. Total time required to complete start-up and the APCU power required during start-up are computed and compared to the requirements.

  5. Thermal and other tests of photovoltaic modules performed in natural sunlight

    NASA Technical Reports Server (NTRS)

    Stultz, J. W.

    1979-01-01

    The nominal operating cell temperature (NOCT), an effective way to characterize the thermal performance of a photovoltaic module in natural sunlight, is developed. NOCT measurements for more than twenty different modules are presented. Changes in NOCT reflect changes in module design, residential roof mounting, and dirt accumulation. Other test results show that electrical performance is improved by cooling modules with water and by use of a phase change wax. Electrical degradation resulting from the marriage of photovoltaic and solar water heating modules is demonstrated. Cost-effectiveness of each of these techniques is evaluated.

  6. Active and passive cooling for concentrating photovoltaic arrays

    SciTech Connect

    Edenburn, M.W.

    1981-10-01

    Optimization, based on minimum energy cost, of active and passive cooling designs for point-focus Fresnel lens photovoltaic arrays and line-focus, parabolic-trough photovoltaic arrays is discussed, and the two types of cooling are compared. Passive cooling is more cost-effective for Fresnel lens arrays while the reverse is true for parabolic-trough arrays.

  7. New architecture for utility scale electricity from concentrator photovoltaics

    NASA Astrophysics Data System (ADS)

    Angel, Roger; Connors, Thomas; Davison, Warren; Olbert, Blain; Sivanandam, Suresh

    2010-08-01

    The paper describes a new system architecture optimized for utility-scale generation with concentrating photovoltaic cells (CPV) at fossil fuel price. We report on-sun tests of the architecture and development at the University of Arizona of the manufacturing processes adapted for high volume production. The new system takes advantage of triple-junction cells to convert concentrated sunlight into electricity. These commercially available cells have twice the conversion efficiency of silicon panels (40%) and one-tenth the cost per watt, when used at 1000x concentration. Telescope technology is adapted to deliver concentrated light to the cells at minimum cost. The architecture combines three novel elements: large (3.1 m x 3.1 m square) dish reflectors made as back-silvered glass monoliths; 2.5 kW receivers at each dish focus, each one incorporating a spherical field lens to deliver uniform illumination to multiple cells; and a lightweight steel spaceframe structure to hold multiple dish/receiver units in coalignment and oriented to the sun. Development of the process for replicating single-piece reflector dishes is well advanced at the Steward Observatory Mirror Lab. End-to-end system tests have been completed with single cells. A lightweight steel spaceframe to hold and track eight dish/receiver units to generate 20 kW has been completed. A single 2.5 kW receiver is presently under construction, and is expected to be operated in an end-to-end on-sun test with a monolithic dish before the end of 2010. The University of Arizona has granted an exclusive license to REhnu, LLC to commercialize this technology.

  8. Phase II fabrication and construction of the Sky Harbor Airport, Solar Photovoltaic Concentrator Project. Progress from March 11, 1980-June 30, 1982

    SciTech Connect

    McGuirk, W.J.

    1984-01-01

    This report documents the activities of Phase II of the Sky Harbor Airport Solar Photovoltaic Project during the period from March 11, 1980 to June 30, 1982. The work was accomplished under contract number DE-AC04-80ET20624 as part of DOE's PRDA EG-78-D-04-0035 program for the evaluation of concentrating photovoltaic application experiments. The Phase II effort included evaluation of prototype Motorola concentrator modules, a critical review of Fresnel lens concentrator designs, selection of an alternative Fresnel lens concentrator design by Martin Marietta, and construction and initial operation of the 225 kW system.

  9. High-throughput manufacturing of thin-film CdS/CdTe photovoltaic modules. Annual subcontract report, 16 November 1994--15 November 1995

    SciTech Connect

    Sandwisch, D.W.

    1997-02-01

    The objectives of this subcontract are to advance Solar Cells, Inc.`s (SCI`s) photovoltaic manufacturing technologies, reduce module production costs, increase module performance, and provide the groundwork for SCI to expand its commercial production capacities. Activities during the second year of the program concentrated on process development, equipment design and testing, quality assurance, and ES and H programs. These efforts broadly addressed the issues of the manufacturing process for producing thin-film monolithic CdS/CdTe photovoltaic modules.

  10. Energy and environmental analysis of a linear concentrating photovoltaic system

    NASA Astrophysics Data System (ADS)

    Kerzmann, Tony

    The world is facing an imminent energy supply crisis. In order to sustain and increase our energy supply in an environmentally-conscious manner, it is necessary to advance renewable technologies. Despite this urgency, however, it is paramount to consider the larger environmental effects associated with using renewable energy resources. This research is meant to better understand linear concentrating photovoltaics (LCPVs) from an engineering and environmental standpoint. In order to analyze the LCPV system, a simulation and life cycle assessment (LCA) were developed. The LCPV system serves two major purposes: it produces electricity, and waste heat is collected for heating use. There are three parts to the LCPV simulation. The first part simulates the multijunction cell output so as to calculate the temperature-dependent electricity generation. The second part simulates the cell cooling and waste heat recovery system using a model consisting of heat transfer and fluid flow equations. The waste heat recovery in the LCPV system was linked to a hot water storage system, which was also modeled. Coupling the waste heat recovery simulation and the hot water storage system gives an overall integrated system that is useful for system design, optimization, and acts as a stepping stone for future multijunction cell Photovoltaic/Thermal (PV/T) systems. Finally, all of the LCPV system components were coded in Engineering Equation Solver (EES) and were used in an energy analysis under actual weather and solar conditions for the Phoenix, AZ, region. The life cycle assessment for the LCPV system allowed for an environmental analysis of the system where areas of the highest environmental impact were pinpointed. While conducting the LCA research, each component of the system was analyzed from a resource extraction, production, and use standpoint. The collective production processes of each LCPV system component were gathered into a single inventory of materials and energy flows

  11. Optical characterization of nonimaging dish concentrator for the application of dense-array concentrator photovoltaic system.

    PubMed

    Tan, Ming-Hui; Chong, Kok-Keong; Wong, Chee-Woon

    2014-01-20

    Optimization of the design of a nonimaging dish concentrator (NIDC) for a dense-array concentrator photovoltaic system is presented. A new algorithm has been developed to determine configuration of facet mirrors in a NIDC. Analytical formulas were derived to analyze the optical performance of a NIDC and then compared with a simulated result obtained from a numerical method. Comprehensive analysis of optical performance via analytical method has been carried out based on facet dimension and focal distance of the concentrator with a total reflective area of 120 m2. The result shows that a facet dimension of 49.8 cm, focal distance of 8 m, and solar concentration ratio of 411.8 suns is the most optimized design for the lowest cost-per-output power, which is US$1.93 per watt.

  12. Component and prototype panel testing of the mini-dome Fresnel lens photovoltaic concentrator array

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F.; Swartz, Clifford K.; O'Neill, Mark J.

    1990-01-01

    The mini-dome Fresnel lens concentrator array, a high-efficiency, lightweight space photovoltaic array concept, is described. The three critical elements of the array concept are the Fresnel lens concentrator, the prismatic cell power cover, and the photovoltaic cell. Prototype concentrator lenses have been fabricated and tested, with optical efficiencies reaching 90 percent. Work is progressing on the design and fabrication of the panel structure. The impact of recent advances in 30 percent-efficient multijunction photovoltaic cells on array performance is also discussed. Near-term performance goals of 300 w/sq m and 100 w/kg are now feasible.

  13. Space Photovoltaic Concentrator Using Robust Fresnel Lenses, 4-Junction Cells, Graphene Radiators, and Articulating Receivers

    NASA Technical Reports Server (NTRS)

    O'Neill, Mark; McDanal, A. J.; Brandhorst, Henry; Spence, Brian; Iqbal, Shawn; Sharps, Paul; McPheeters, Clay; Steinfeldt, Jeff; Piszczor, Michael; Myers, Matt

    2016-01-01

    At the 42nd PVSC, our team presented recent advances in our space photovoltaic concentrator technology. These advances include more robust Fresnel lenses for optical concentration, more thermally conductive graphene radiators for waste heat rejection, improved color-mixing lens technology to minimize chromatic aberration losses with 4-junction solar cells, and an articulating photovoltaic receiver enabling single-axis sun-tracking, while maintaining a sharp focal line despite large beta angles of incidence. In the past year, under a NASA Phase II SBIR program, our team has made much additional progress in the development of this new space photovoltaic concentrator technology, as described in this paper.

  14. Model institutional infrastructures for recycling of photovoltaic modules

    SciTech Connect

    Moscowitz, P.D.; Reaven, J.; Fthenakis, V.M.

    1996-07-01

    This paper describes model approaches to designing an institutional infrastructure for the recycling of decommissioned photovoltaic modules; more detailed discussion of the information presented in this paper is contained in Reaven et al., (1996)[1]. The alternative approaches are based on experiences in other industries, with other products and materials. In the aluminum, scrap iron, and container glass industries, where recycling is a long-standing, even venerable practice, predominantly private, fully articulated institutional infrastructures exist. Nevertheless, even in these industries, arrangements are constantly evolving in response to regulatory changes, competition, and new technological developments. Institutional infrastructures are less settled for younger large- scale recycling industries that target components of the municipal solid waste (MSW) stream, such as cardboard and newspaper, polyethylene terephthalate (PET) and high-density polyethylene (HDPE) plastics, and textiles. In these industries the economics, markets, and technologies are rapidly changing. Finally, many other industries are developing projects to ensure that their products are recycled (and recyclable) e.g., computers, non-automotive batteries, communications equipment, motor and lubrication oil and oil filters, fluorescent lighting fixtures, automotive plastics and shredder residues, and bulk industrial chemical wastes. The lack of an an adequate recycling infrastructure, attractive end-markets, and clear the economic incentives, can be formidable impediments to a self- sustaining recycling system.

  15. Progress in piezo-phototronic effect modulated photovoltaics

    NASA Astrophysics Data System (ADS)

    Que, Miaoling; Zhou, Ranran; Wang, Xiandi; Yuan, Zuqing; Hu, Guofeng; Pan, Caofeng

    2016-11-01

    Wurtzite structured materials, like ZnO, GaN, CdS, and InN, simultaneously possess semiconductor and piezoelectric properties. The inner-crystal piezopotential induced by external strain can effectively tune/control the carrier generation, transport and separation/combination processes at the metal-semiconductor contact or p-n junction, which is called the piezo-phototronic effect. This effect can efficiently enhance the performance of photovoltaic devices based on piezoelectric semiconductor materials by utilizing the piezo-polarization charges at the junction induced by straining, which can modulate the energy band of the piezoelectric material and then accelerate or prevent the separation process of the photon-generated electrons and vacancies. This paper introduces the fundamental physics principles of the piezo-phototronic effect, and reviews recent progress in piezo-phototronic effect enhanced solar cells, including solar cells based on semiconductor nanowire, organic/inorganic materials, quantum dots, and perovskite. The piezo-phototronic effect is suggested as a suitable basis for the development of an innovative method to enhance the performance of solar cells based on piezoelectric semiconductors by applied extrinsic strains, which might be appropriate for fundamental research and potential applications in various areas of optoelectronics.

  16. Active and passive cooling for concentrating photovoltaic arrays

    SciTech Connect

    Edenburn, M.W.

    1980-01-01

    The optimization, based on minimum energy cost, of active and passive cooling designs for point-focus Fresnel lens photovoltaic arrays and line-focus, parabolic-trough photovoltaic arrays are discussed, and the two types of cooling are compared. Passive cooling is more cost effective than active for Fresnel lens arrays while the reverse is true for parabolic trough arrays. The analysis produced several other conclusions of interest which are also discussed.

  17. Cost-effective flat-plate photovoltaic modules using light trapping. Final report

    SciTech Connect

    Bain, C.N.; Gordon, B.A.; Knasel, T.M.; Malinowski, R.L.

    1981-04-01

    Work in optical trapping in thick films is extended to form a design guide for photovoltaic engineers. Details of the methods, techniques, and considerations that are used in the definition and analysis of light trapping photovoltaic panels are provided. Assumptions, sources of data, optical and cost modeling methods and the techniques used in the analysis are included. The ways to use light trapping are discussed, and methods are described to use simplified design and costing equations to predict performance and cost benefits. Four significant ways to use the findings presented are: a minimum design change module; an optimum packing factor module concept; roof or wall integrated panels; and modules using light trapping from cell grids. Finally, a design guide is included which shows how to construct photovoltaic modules to exploit light trapping. It is claimed that up to 20% improvements in standard module performance can be expected. (LEW)

  18. Plasma etching antireflection nanostructures on optical elements in concentrator photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Tamayo Ruiz, Efrain Eduardo; Watanabe, Kentaroh; Tamaki, Ryo; Hoshii, Takuya; Sugiyama, Masakazu; Okada, Yoshitaka; Miyano, Kenjiro; Cvetkovic, Aleksandra; Mohedano, Rubén; Hernandez, Maikel

    2015-01-01

    Transmission-type concentrator photovoltaic (CPV) systems are a potential candidate to achieve high efficiency and low cost solar energy. The use of optical elements in these systems creates reflection losses of incoming solar energy that account for about 8% to 12% depending on the optical design. In order to reduce these losses, we have nanostructured the air/optical-elements' interfaces by using plasma etching methods on the Fresnel lens made of poly(methyl methacrylate) (PMMA) and the homogenizer made of glass. On flat PMMA and glass substrates, transmittance enhancement measurements are in agreement with relative Jsc gains. The field test results using a CPV module with all textured optical-elements' interfaces achieved 8.0% and 4.3% relative Jsc and efficiency gains, respectively, demonstrating the potential of this approach to tackle the reflection losses.

  19. Recycling of cadmium and selenium from photovoltaic modules and manufacturing wastes

    SciTech Connect

    Moskowitz, P.D.; Zweibel, K.

    1992-01-01

    Since the development of the first silicon based photovoltaic cell in the 1950's, large advances have been made in photovoltaic material and processing options. At present there is growing interest in the commercial potential of cadmium telluride (CdTe) and copper indium diselenide (CIS) photovoltaic modules. As the commercial potential of these technologies becomes more apparent, interest in the environmental, health and safety issues associated with their production, use and disposal has also increased because of the continuing regulatory focus on cadmium and selenium. In future, recycling of spent or broken CdTe and CIS modules and manufacturing wastes may be needed for environmental, economic or political reasons. To assist industry to identify recycling options early in the commercialization process, a Workshop was convened. At this Workshop, representatives from the photovoltaic, electric utility, and nonferrous metals industries met to explore technical and institutional options for the recycling of spent CdTe and CIS modules and manufacturing wastes. This report summarizes the results of the Workshop. This report includes: (1) A discussion of the Resource Conservation and Recovery Act regulations and their potential implications to the photovoltaic industry; (2) an assessment of the needs of the photovoltaic industry from the perspective of module manufacturers and consumers; (3) an overview of recycling technologies now employed by other industries for similar types of materials; and, (4) a list of recommendation.

  20. Recycling of cadmium and selenium from photovoltaic modules and manufacturing wastes. A workshop report

    SciTech Connect

    Moskowitz, P.D.; Zweibel, K.

    1992-10-01

    Since the development of the first silicon based photovoltaic cell in the 1950`s, large advances have been made in photovoltaic material and processing options. At present there is growing interest in the commercial potential of cadmium telluride (CdTe) and copper indium diselenide (CIS) photovoltaic modules. As the commercial potential of these technologies becomes more apparent, interest in the environmental, health and safety issues associated with their production, use and disposal has also increased because of the continuing regulatory focus on cadmium and selenium. In future, recycling of spent or broken CdTe and CIS modules and manufacturing wastes may be needed for environmental, economic or political reasons. To assist industry to identify recycling options early in the commercialization process, a Workshop was convened. At this Workshop, representatives from the photovoltaic, electric utility, and nonferrous metals industries met to explore technical and institutional options for the recycling of spent CdTe and CIS modules and manufacturing wastes. This report summarizes the results of the Workshop. This report includes: (1) A discussion of the Resource Conservation and Recovery Act regulations and their potential implications to the photovoltaic industry; (2) an assessment of the needs of the photovoltaic industry from the perspective of module manufacturers and consumers; (3) an overview of recycling technologies now employed by other industries for similar types of materials; and, (4) a list of recommendation.

  1. A novel photovoltaic power system which uses a large area concentrator mirror

    NASA Technical Reports Server (NTRS)

    Arrison, Anne; Fatemi, Navid

    1987-01-01

    A preliminary analysis has been made of a novel photovoltaic power system concept. The system is composed of a small area, dense photovoltaic array, a large area solar concentrator, and a battery system for energy storage. The feasibility of such a system is assessed for space power applications. The orbital efficiency, specific power, mass, and area of the system are calculated under various conditions and compared with those for the organic Rankine cycle solar dynamic system proposed for Space Station. Near term and advanced large area concentrator photovoltaic systems not only compare favorably to solar dynamic systems in terms of performance but offer other benefits as well.

  2. Evaluation of cleaners for photovoltaic modules exposed in an outdoor environment

    NASA Technical Reports Server (NTRS)

    Knapp, W. D.

    1979-01-01

    Power recovery of silicone encapsulated and glass covered photovoltaic modules, exposed for two years to a suburban environment, was measured after washing with a variety of cleaners including detergents, abrasive soap, and hydrocarbon solvents. Silicone encapsulated modules in operating environments may experience significant power losses or require extensive periodic cleaning. Glass front-faced modules in similar situations are much less affected. Organic hydrocarbon solvents or abrasives were found to be about five times more effective than mild detergents in cleaning encapsulated modules.

  3. Photovoltaic technology assessment

    SciTech Connect

    Backus, C.E.

    1981-01-01

    After a brief review of the history of photovoltaic devices and a discussion of the cost goals set for photovoltaic modules, the status of photovoltaic technology is assessed. Included are discussions of: current applications, present industrial production, low-cost silicon production techniques, energy payback periods for solar cells, advanced materials research and development, concentrator systems, balance-of-system components. Also discussed are some nontechnical aspects, including foreign markets, US government program approach, and industry attitudes and approaches. (LEW)

  4. Progress Toward a Stabilization and Preconditioning Protocol for Polycrystalline Thin-Film Photovoltaic Modules

    SciTech Connect

    del Cueto, J. A.; Deline, C. A.; Rummel, S. R.; Anderberg, A.

    2010-08-01

    Cadmium telluride (CdTe) and copper indium gallium diselenide (CIGS) thin-film photovoltaic (PV) modules can exhibit substantial variation in measured performance depending on prior exposure history. This study examines the metastable performance changes in these PV modules with the goal of establishing standard preconditioning or stabilization exposure procedures to mitigate measured variations prior to current-voltage (IV) measurements.

  5. The NREL Outdoor Accelerated-Weathering Tracking System Photovoltaic Module Exposure Results

    SciTech Connect

    Basso, T. S.

    2000-01-01

    Status results are presented for the Outdoor Accelerated-Weathering Tracking System (OATS) first study on photovoltaic (PV) modules. Studies began in November 1997 on pairs of commercially available crystalline silicon and amorphous silicon (a-Si) PV modules kept at constant resistive load.

  6. Enhanced power generation in concentrated photovoltaics using broadband antireflective coverglasses with moth eye structures.

    PubMed

    Song, Young Min; Jeong, Yonkil; Yeo, Chan Il; Lee, Yong Tak

    2012-11-05

    We present the effect of broadband antireflective coverglasses (BARCs) with moth eye structures on the power generation capability of a sub-receiver module for concentrated photovoltaics. The period and height of the moth eye structures were designed by a rigorous coupled-wave analysis method in order to cover the full solar spectral ranges without transmission band shrinkage. The BARCs with moth eye structures were prepared by the dry etching of silver (Ag) nanomasks, and the fabricated moth eye structures on coverglass showed strongly enhanced transmittance compared to the bare glass with a flat surface, at wavelengths of 300 - 1800 nm. The BARCs were mounted on InGaP/GaAs/Ge triple-junction solar cells and the power conversion efficiency of this sub-receiver module reached 42.16% for 196 suns, which is a 7.41% boosted value compared to that of a module with bare coverglass, without any detrimental changes of the open circuit voltages (V(oc)) and fill factor (FF).

  7. Review of the environmental effects on the Space Station Freedom photovoltaic power module

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.

    1989-01-01

    An overview is provided of the environment in the low earth orbit (LEO), the interaction of this environment with the photovoltaic (PV) power system of the Space Station Freedom is reviewed, and the environmental programs are described that are designed to investigate the interaction of the LEO environment with the photovoltaic power system. Such programs will support and impact the design of the subsystems of the PV module in order to survive the design lifetime in the LEO natural and induced environment.

  8. Operation and maintenance cost data for residential photovoltaic modules/panels

    NASA Technical Reports Server (NTRS)

    Oster, J. R., Jr.; Zaremski, D. R., Jr.; Albert, E. M.; Hawkins, S. L.

    1980-01-01

    Costs associated with the operation and maintenance of residential photovoltaic modules and arrays are studied. Six basic topics related to operation and maintenance to photovoltaic arrays are investigated: maintenance; cleaning; panel replacement; gasket repair/replacement; wiring repair/replacement; and termination repair/replacement. The effects of the mounting types (rack mount, stand off mount, direct mount and integral mount) and the installation/replacement type (sequential, partial interruption and independent) are identified and described. Methods of reducing maintenance costs are suggested.

  9. Review of the environmental effects of the Space Station Freedom photovoltaic power module

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.

    1989-01-01

    An overview is provided of the environment in the low Earth orbit (LEO), the interaction of this environment with the Photovoltaic (PV) Power system of the Space Station Freedom is reviewed, and the environmental programs are described that are designed to investigate the interactions of the LEO environment with the photovoltaic power system. Such programs will support and impact the design of the subsystems of the PV module in order to survive the design lifetime in the LEO natural and induced environment.

  10. Cost effective flat plate photovoltaic modules using light trapping. Final report

    SciTech Connect

    Bain, C.N.; Gordon, B.A.; Knasel, T.M.; Malinowski, R.L.

    1981-04-01

    Work in optical trapping in 'thick films' is described to form a design guide for photovoltaic engineers. A thick optical film can trap light by diffusive reflection and total internal reflection. Light can be propagated reasonably long distances compared with layer thicknesses by this technique. This makes it possible to conduct light from inter-cell and intra-cell areas now not used in photovoltaic modules onto active cell areas.

  11. Operation and maintenance cost data for residential photovoltaic modules/panels

    NASA Astrophysics Data System (ADS)

    Oster, J. R., Jr.; Zaremski, D. R., Jr.; Albert, E. M.; Hawkins, S. L.

    1980-07-01

    Costs associated with the operation and maintenance of residential photovoltaic modules and arrays are studied. Six basic topics related to operation and maintenance to photovoltaic arrays are investigated: maintenance; cleaning; panel replacement; gasket repair/replacement; wiring repair/replacement; and termination repair/replacement. The effects of the mounting types (rack mount, stand off mount, direct mount and integral mount) and the installation/replacement type (sequential, partial interruption and independent) are identified and described. Methods of reducing maintenance costs are suggested.

  12. Modeling Photovoltaic and Concentrating Solar Power Trough Performance, Cost, and Financing with Solar Advisor Model

    SciTech Connect

    Blair, N.; Mehos, M.; Christensen, C.; Cameron, C.

    2008-01-01

    A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM), has been developed to support the federal R&D community and the solar industry by staff at the National Renewable Energy Laboratory (NREL) and Sandia National Laboratory. This model is able to model the finances, incentives, and performance of flat-plate photovoltaic (PV), concentrating PV, and concentrating solar power (specifically, parabolic troughs). The primary function of the model is to allow users to investigate the impact of variations in performance, cost, and financial parameters to better understand their impact on key figures of merit. Figures of merit related to the cost and performance of these systems include, but aren't limited to, system output, system efficiencies, levelized cost of energy, return on investment, and system capital and O&M costs. SAM allows users to do complex system modeling with an intuitive graphical user interface (GUI). In fact, all tables and graphics for this paper are taken directly from the model GUI. This model has the capability to compare different solar technologies within the same interface, making use of similar cost and finance assumptions. Additionally, the ability to do parametric and sensitivity analysis is central to this model. There are several models within SAM to model the performance of photovoltaic modules and inverters. This paper presents an overview of each PV and inverter model, introduces a new generic model, and briefly discusses the concentrating solar power (CSP) parabolic trough model. A comparison of results using the different PV and inverter models is also presented.

  13. Relative potentials of concentrating and two-axis tracking flat-plate photovoltaic arrays for central-station applications. Issue study

    SciTech Connect

    Borden, C.S.; Schwartz, D.L.

    1984-12-31

    The purpose of this study is to assess the relative economic potentials of concentrating and two-axis tracking flat-plate photovoltaic arrays for central-station applications in the mid-1990's. Specific objectives of this study are to provide information on concentrator photovoltaic collector probabilistic price and efficiency levels to illustrate critical areas of R and D for concentrator cells and collectors, and to compare concentrator and flat-plate PV price and efficiency alternatives for several locations, based on their implied costs of energy. To deal with the uncertainties surrounding research and development activities in general, a probabilistic assessment of commercially achievable concentrator photovoltaic collector efficiencies and prices (at the factory loading dock) is performed. The results of this projection of concentrator photovoltaic technology are then compared with a previous flat-plate module price analysis (performed early in 1983). To focus this analysis on specific collector alternatives and their implied energy costs for different locations, similar two-axis tracking designs are assumed for both concentrator and flat-plate options. The results of this study provide the first comprehensive assessment of PV concentrator collector manufacturing costs in combination with those of flat-plate modules, both projected to their commercial potentials in the mid-1990's.

  14. Fullerene concentration dependent bimolecular recombination in organic photovoltaic films

    NASA Astrophysics Data System (ADS)

    Kaake, Loren G.; Sun, Yanming; Bazan, Guillermo C.; Heeger, Alan J.

    2013-04-01

    Organic photovoltaic devices made of a solution processed small molecule and a fullerene show a decrease in short circuit current with decreasing fullerene amounts. Transient absorption experiments show that the rate of bimolecular recombination increases as the system is deprived of fullerene. A simple expression for the bimolecular recombination coefficient derived by accounting for intrinsic carrier generation reproduces the observed behavior.

  15. Experimental measurements of a prototype high-concentration Fresnel lens and sun-tracking method for photovoltaic panel's efficiency enhancement

    NASA Astrophysics Data System (ADS)

    Rajaee, Meraj; Ghorashi, Seyed Mohamad Bagher

    2015-08-01

    Concentrator photovoltaic modules are a promising technology for highly efficient solar energy conversion. This system presents several advantages due to additional degrees of freedom that has been provided by the spectral separation such as cost and mass reduction, increase in the incident solar flux on PV cells and performances. This paper has proposed a unique photovoltaic solar cell system that consists of semi-Fresnel lens convergent structure and a novel two axis sun tracking module to enhance the efficiency of solar cell by using less cell area and energy losses. The grooves of this lens are calculated according to the refraction and convergent angles of the light easy for perpendicular incidence angle. The update time interval during tracking causes misalignment of the lens' optical axis versus the sunrays. Then an inventive sun-tracking method is introduced to adjust the module so that the incident rays are always perpendicular to the module's surface. As a result, all rays will be refracted with the predetermined angles. This way the focus area is reduced and smaller cells can be used. We also mentioned different module connections in order to provide compensation method during losses, for networks and power systems. Experimental results show that using semi-Fresnel lens, along with the sun-tracking method increases the efficiency of PV panel.

  16. Photovoltaic module performance and durability following long-term field exposure

    SciTech Connect

    Ellibee, D.E.; Hansen, B.R.; King, D.L.; Kratochvil, J.A.; Quintana, M.A.

    1998-09-08

    Our investigations of both new and field-aged photovoltaic modules have indicated that, in general, today's commercially available modules area highly reliable product. However, by using new test procedures, subtle failure mechanisms have also been identified that must be addressed in order to achieve 30-year module lifetimes. This paper summarizes diagnostic test procedures, results, and implications of in-depth investigations of the performance and durability characteristics of commercial modules after long-term field exposure. A collaborative effort with U.S. module manufacturers aimed at achieving 30-year module lifetimes is also described.

  17. Towards a flat 45%-efficient concentrator module

    NASA Astrophysics Data System (ADS)

    Mohedano, Rubén; Hernandez, Maikel; Vilaplana, Juan; Chaves, Julio; Miñano, Juan C.; Benitez, Pablo; Sorgato, S.; Falicoff, Waqidi

    2015-09-01

    The so-called CCS4FK is an ultra-flat photovoltaic system of high concentration and high efficiency, with potential to convert, ideally, the equivalent of a 45% of direct solar radiation into electricity by optimizing the usage of sun spectrum and by collecting part of the diffuse radiation, as a flat plate does. LPI has recently finished a design based on this concept and is now developing a prototype based on this technology, thanks to the support of FUNDACION REPSOL-Fondo de Emprendedores, which promotes entrepreneur projects in different areas linked to energy. This works shows some details of the actual design and preliminary potential performance expected, according to accurate spectral simulations.

  18. Towards a flat 45%-efficient concentrator module

    SciTech Connect

    Mohedano, Rubén Hernandez, Maikel; Vilaplana, Juan; Chaves, Julio; Sorgato, S.; Falicoff, Waqidi; Miñano, Juan C.; Benitez, Pablo

    2015-09-28

    The so-called CCS{sup 4}FK is an ultra-flat photovoltaic system of high concentration and high efficiency, with potential to convert, ideally, the equivalent of a 45% of direct solar radiation into electricity by optimizing the usage of sun spectrum and by collecting part of the diffuse radiation, as a flat plate does. LPI has recently finished a design based on this concept and is now developing a prototype based on this technology, thanks to the support of FUNDACION REPSOL-Fondo de Emprendedores, which promotes entrepreneur projects in different areas linked to energy. This works shows some details of the actual design and preliminary potential performance expected, according to accurate spectral simulations.

  19. CPV for the rooftop market: novel approaches to tracking integration in photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Apostoleris, Harry; Stefancich, Marco; Alexander-Katz, Alfredo; Chiesa, Matteo

    2016-03-01

    Concentrated photovoltaics (CPV) has long been recognized as an effective approach to enabling the use of high cost, high-efficiency solar cells for enhanced solar energy conversion, but is excluded from the domestic rooftop market due to the requirement that solar concentrators track the sun. This market may be opened up by integrating of the tracking mechanism into the module itself. Tracking integration may take the form of a miniaturization of a conventional tracking apparatus, or optical tracking, in which tracking is achieved through variation of optical properties such as refractive index or transparency rather than mechanical movement of the receiver. We have demonstrated a simple system using a heat-responsive transparency switching material to create a moving aperture that tracks the position of a moving light spot. We use this behavior to create a concentrating light trap with a moving aperture that reactively tracks the sun. Taking the other approach, we have fabricated 3D-printed parabolic mini-concentrators which can track the sun using small motors in a low-profile geometry. We characterize the performance of the concentrators and consider the impact of tracking integration on the broader PV market.

  20. Low-Cost High-Concentration Photovoltaic Systems for Utility Power Generation

    SciTech Connect

    McConnell, R.; Garboushian, V.; Gordon, R.; Dutra, D.; Kinsey, G.; Geer, S.; Gomez, H.; Cameron, C.

    2012-03-31

    Under DOE's Technology Pathway Partnership (TPP) program, Amonix, Inc. developed a new generation of high-concentration photovoltaic systems using multijunction technology and established the manufacturing capacity needed to supply multi-megawatt power plants buing using the new Amonix 7700-series solar energy systems. For this effort, Amonix Collaborated with a variety of suppliers and partners to complete project tasks. Subcontractors included: Evonik/Cyro; Hitek; the National Renewable Energy Laboratory (NREL); Raytech; Spectrolab; UL; University of Nevada, Las Vegas; and TUV Rheinland PTL. The Amonix TPP tasks included: Task 1: Multijunction Cell Optimization for Field Operation, Task 2: Fresnel Lens R&D, Task 3: Cell Package Design & Production, Task 4: Standards Compliance and Reliability Testing, Task 5: Receiver Plate Production, Task 6: MegaModule Performance, Task 7: MegaModule Cost Reduction, Task 8: Factory Setup and MegaModule Production, Task 9: Tracker and Tracking Controller, Task 10: Installation and Balance of System (BOS), Task 11: Field Testing, and Task 12: Solar Advisor Modeling and Market Analysis. Amonix's TPP addressed nearly the complete PV value chain from epitaxial layer design and wafer processing through system design, manufacturing, deployment and O&M. Amonix has made progress toward achieving these reduced costs through the development of its 28%+ efficient MegaModule, reduced manufacturing and installation cost through design for manufacturing and assembly, automated manufacturing processes, and reduced O&M costs. Program highlights include: (1) Optimized multijunction cell and cell package design to improve performance by > 10%; (2) Updated lens design provided 7% increased performance and higher concentration; (3) 28.7% DC STC MegaModule efficiency achieved in Phase II exceeded Phase III performance goal; (4) New 16' focal length MegaModule achieved target materials and manufacturing cost reduction; (5) Designed and placed into

  1. Design and realization of transparent solar modules based on luminescent solar concentrators integrating nanostructured photonic crystals

    PubMed Central

    Jiménez‐Solano, Alberto; Delgado‐Sánchez, José‐Maria; Calvo, Mauricio E.; Miranda‐Muñoz, José M.; Lozano, Gabriel; Sancho, Diego; Sánchez‐Cortezón, Emilio

    2015-01-01

    Abstract Herein, we present a prototype of a photovoltaic module that combines a luminescent solar concentrator integrating one‐dimensional photonic crystals and in‐plane CuInGaSe2 (CIGS) solar cells. Highly uniform and wide‐area nanostructured multilayers with photonic crystal properties were deposited by a cost‐efficient and scalable liquid processing amenable to large‐scale fabrication. Their role is to both maximize light absorption in the targeted spectral range, determined by the fluorophore employed, and minimize losses caused by emission at angles within the escape cone of the planar concentrator. From a structural perspective, the porous nature of the layers facilitates the integration with the thermoplastic polymers typically used to encapsulate and seal these modules. Judicious design of the module geometry, as well as of the optical properties of the dielectric mirrors employed, allows optimizing light guiding and hence photovoltaic performance while preserving a great deal of transparency. Optimized in‐plane designs like the one herein proposed are of relevance for building integrated photovoltaics, as ease of fabrication, long‐term stability and improved performance are simultaneously achieved. © 2015 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons Ltd. PMID:27656090

  2. Design and realization of transparent solar modules based on luminescent solar concentrators integrating nanostructured photonic crystals.

    PubMed

    Jiménez-Solano, Alberto; Delgado-Sánchez, José-Maria; Calvo, Mauricio E; Miranda-Muñoz, José M; Lozano, Gabriel; Sancho, Diego; Sánchez-Cortezón, Emilio; Míguez, Hernán

    2015-12-01

    Herein, we present a prototype of a photovoltaic module that combines a luminescent solar concentrator integrating one-dimensional photonic crystals and in-plane CuInGaSe2 (CIGS) solar cells. Highly uniform and wide-area nanostructured multilayers with photonic crystal properties were deposited by a cost-efficient and scalable liquid processing amenable to large-scale fabrication. Their role is to both maximize light absorption in the targeted spectral range, determined by the fluorophore employed, and minimize losses caused by emission at angles within the escape cone of the planar concentrator. From a structural perspective, the porous nature of the layers facilitates the integration with the thermoplastic polymers typically used to encapsulate and seal these modules. Judicious design of the module geometry, as well as of the optical properties of the dielectric mirrors employed, allows optimizing light guiding and hence photovoltaic performance while preserving a great deal of transparency. Optimized in-plane designs like the one herein proposed are of relevance for building integrated photovoltaics, as ease of fabrication, long-term stability and improved performance are simultaneously achieved. © 2015 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons Ltd.

  3. Applications of ethylene vinyl acetate as an encapsulation material for terrestrial photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.; Coulbert, C. D.; Liang, R. H.; Gupta, A.; Willis, P.; Baum, B.

    1983-01-01

    Terrestrial photovoltaic modules must undergo substantial reductions in cost in order to become economically attractive as practical devices for large scale production of electricity. Part of the cost reductions must be realized by the encapsulation materials that are used to package, protect, and support the solar cells, electrical interconnects, and other ancillary components. As many of the encapsulation materials are polymeric, cost reductions necessitate the use of low cost polymers. The performance and status of ethylene vinyl acetate, a low cost polymer that is being investigated as an encapsulation material for terrestrial photovoltaic modules, are described.

  4. Thermal and Electrical Effects of Partial Shade in Monolithic Thin-Film Photovoltaic Modules

    SciTech Connect

    Silverman, Timothy J.; Deceglie, Michael G.; Sun, Xingshu; Garris, Rebekah L.; Alam, Muhammad Ashraful; Deline, Chris; Kurtz, Sarah

    2015-06-14

    Photovoltaic cells can be damaged by reverse bias stress, which arises during service when a monolithically integrated thin-film module is partially shaded. We introduce a model for describing a module's internal thermal and electrical state, which cannot normally be measured. Using this model and experimental measurements, we present several results with relevance for reliability testing and module engineering: Modules with a small breakdown voltage experience less stress than those with a large breakdown voltage, with some exceptions for modules having light-enhanced reverse breakdown. Masks leaving a small part of the masked cells illuminated can lead to very high temperature and current density compared to masks covering entire cells.

  5. Thermal and Electrical Effects of Partial Shade in Monolithic Thin-Film Photovoltaic Modules: Preprint

    SciTech Connect

    Silverman, Timothy J.; Deceglie, Michael G.; Sun, Xingshu; Garris, Rebekah L.; Alam, Muhammad Ashraful; Deline, Chris; Kurtz, Sarah

    2015-09-02

    Photovoltaic cells can be damaged by reverse bias stress, which arises during service when a monolithically integrated thin-film module is partially shaded. We introduce a model for describing a module's internal thermal and electrical state, which cannot normally be measured. Using this model and experimental measurements, we present several results with relevance for reliability testing and module engineering: Modules with a small breakdown voltage experience less stress than those with a large breakdown voltage, with some exceptions for modules having light-enhanced reverse breakdown. Masks leaving a small part of the masked cells illuminated can lead to very high temperature and current density compared to masks covering entire cells.

  6. History of Accelerated and Qualification Testing of Terrestrial Photovoltaic Modules: A Literature Review

    SciTech Connect

    Osterwald, C. R.; McMahon, T. J.

    2009-01-01

    We review published literature from 1975 to the present for accelerated stress testing of flat-plate terrestrial photovoltaic (PV) modules. An important facet of this subject is the standard module test sequences that have been adopted by national and international standards organizations, especially those of the International Electrotechnical Commission (IEC). The intent and history of these qualification tests, provided in this review, shows that standard module qualification test results cannot be used to obtain or infer a product lifetime. Closely related subjects also discussed include: other limitations of qualification testing, definitions of module lifetime, module product certification, and accelerated life testing.

  7. The NREL Outdoor Accelerated-weathering Tracking System and Photovoltaic Module Exposure Results

    SciTech Connect

    Basso, T. S.

    1998-10-31

    This paper describes the Outdoor Accelerated-weathering Tracking System (OATS) and interim results for the first OATS study on photovoltaic (PV) modules. With two test planes measuring 1.52 x 1.83 m, OATS provides a unique solar-concentrating exposure capability. Test sample temperatures are moderated by air blowers. Water spray capability exists for wetting samples. The OATS two-axis tracker points to the sun using software calculations. Non-imaging aluminum reflectors give a nominal clear-sky optical concentration ratio of three. Field-qualification measurements in the test plane under reflector conditions showed its relative irradiance non-uniformity was '' 15% for a clear-sky summer day with '' 75 mm as the smallest distance for that non-uniformity. Exposure studies began in November 1997 on seven pairs of commercially available ribbon silicon, crystalline silicon and amorphous silicon PV modules kept at constant resistive load. The modules were periodically removed from OATS for visual inspection and solar simulator performance measurements. There were no module failures. This PV module study is ongoing and later results will be compared to other testing techniques. Through July 1998, the modules under reflector conditions received 392 MJ/m2 of total ultraviolet (TUV) exposure. That was 2.07 times the TUV exposure compared to a south-facing fixed array tilted 40{sup o} up from horizontal at NREL. Similarly, the modules in the test plane under the covered reflectors received 1.04 times the fixed array TUV exposure. For the test plane under the covered reflectors there was a loss of 13% TUV exposure attributed to the reflectors blocking some of the diffuse-sky UV light. Also through July 1998, the OATS sunlight availability measured 95% compared to the cumulative global normal exposure at the NREL Solar Radiation Research Laboratory (SRRL). The OATS sunlight availability losses included downtime when the PV modules were removed, and when there were OAT S

  8. The NREL outdoor accelerated-weathering tracking system and photovoltaic module exposure results

    SciTech Connect

    Basso, T.S.

    1999-03-01

    This paper describes the Outdoor Accelerated-weathering Tracking System (OATS) and interim results for the first OATS study on photovoltaic (PV) modules. With two test planes measuring 1.52{times}1.83&hthinsp;m, OATS provides a unique solar-concentrating exposure capability. Test sample temperatures are moderated by air blowers. Water spray capability exists for wetting samples. The OATS two-axis tracker points to the sun using software calculations. Non-imaging aluminum reflectors give a nominal clear-sky optical concentration ratio of three. Field-qualification measurements in the test plane under reflector conditions showed its relative irradiance non-uniformity was {plus_minus}15{percent} for a clear-sky summer day with {plus_minus} 75 mm as the smallest distance for that non-uniformity. Exposure studies began in November 1997 on seven pairs of commercially available ribbon silicon, crystalline silicon and amorphous silicon PV modules kept at constant resistive load. The modules were periodically removed from OATS for visual inspection and solar simulator performance measurements. There were no module failures. This PV module study is ongoing and later results will be compared to other testing techniques. Through July 1998, the modules under reflector conditions received 392 MJ/m{sup 2} of total ultraviolet (TUV) exposure. That was 2.07 times the TUV exposure compared to a south-facing fixed array tilted 40{degree} up from horizontal at NREL. Similarly, the modules in the test plane under the covered reflectors received 1.04 times the fixed array TUV exposure. For the test plane under the covered reflectors there was a loss of 13{percent} TUV exposure attributed to the reflectors blocking some of the diffuse-sky UV light. Also through July 1998, the OATS sunlight availability measured 95{percent} compared to the cumulative global normal exposure at the NREL Solar Radiation Research Laboratory (SRRL). The OATS sunlight availability losses included downtime when

  9. The mini-dome Fresnel lens photovoltaic concentrator array - Current program status

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F.; O'Neill, Mark J.; Fraas, Lewis

    1991-01-01

    Over the last seven years, NASA Lewis, ENTECH, and Boeing have been developing a high-efficiency, lightweight space photovoltaic concentrator array. The authors report the current status of the mini-dome Fresnel lens concentrator program, emphasizing the latest results on the fabrication and testing of a space-qualifiable version of the concentrator lens and panel structure. Calculations indicated that such an array can achieve 300 W/sq m at a specific power of 100 W/kg. The authors describe the current status of component and prototype panel testing and the preliminary development of a flight panel for the Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) flight experiment.

  10. Simulation of an active cooling system for photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Abdelhakim, Lotfi

    2016-06-01

    Photovoltaic cells are devices that convert solar radiation directly into electricity. However, solar radiation increases the photovoltaic cells temperature [1] [2]. The temperature has an influence on the degradation of the cell efficiency and the lifetime of a PV cell. This work reports on a water cooling technique for photovoltaic panel, whereby the cooling system was placed at the front surface of the cells to dissipate excess heat away and to block unwanted radiation. By using water as a cooling medium for the photovoltaic solar cells, the overheating of closed panel is greatly reduced without prejudicing luminosity. The water also acts as a filter to remove a portion of solar spectrum in the infrared band but allows transmission of the visible spectrum most useful for the PV operation. To improve the cooling system efficiency and electrical efficiency, uniform flow rate among the cooling system is required to ensure uniform distribution of the operating temperature of the PV cells. The aims of this study are to develop a 3D thermal model to simulate the cooling and heat transfer in Photovoltaic panel and to recommend a cooling technique for the PV panel. The velocity, pressure and temperature distribution of the three-dimensional flow across the cooling block were determined using the commercial package, Fluent. The second objective of this work is to study the influence of the geometrical dimensions of the panel, water mass flow rate and water inlet temperature on the flow distribution and the solar panel temperature. The results obtained by the model are compared with experimental results from testing the prototype of the cooling device.

  11. Photovoltaic-Concentrator Based Power Beaming For Space Elevator Application

    SciTech Connect

    Becker, Daniel E.; Chiang, Richard; Keys, Catherine C.; Lyjak, Andrew W.; Starch, Michael D.; Nees, John A.

    2010-05-06

    The MClimber team, at the Student Space Systems Fabrication Laboratory of the University of Michigan, has developed a prototype robotic climber for competition in the NASA sponsored Power Beaming Challenge. This paper describes the development of the system that utilizes a simple telescope to deliver an 8 kW beam to a photovoltaic panel in order to power a one kilometer climb. Its unique approach utilizes a precision GPS signal to track the panel. Fundamental systems of the project were implemented using a design strategy focusing on robustness and modularity. Development of this design and its results are presented.

  12. Improved Coefficient Calculator for the California Energy Commission 6 Parameter Photovoltaic Module Model

    SciTech Connect

    Dobos, A. P.

    2012-05-01

    This paper describes an improved algorithm for calculating the six parameters required by the California Energy Commission (CEC) photovoltaic (PV) Calculator module model. Rebate applications in California require results from the CEC PV model, and thus depend on an up-to-date database of module characteristics. Currently, adding new modules to the database requires calculating operational coefficients using a general purpose equation solver - a cumbersome process for the 300+ modules added on average every month. The combination of empirical regressions and heuristic methods presented herein achieve automated convergence for 99.87% of the 5487 modules in the CEC database and greatly enhance the accuracy and efficiency by which new modules can be characterized and approved for use. The added robustness also permits general purpose use of the CEC/6 parameter module model by modelers and system analysts when standard module specifications are known, even if the module does not exist in a preprocessed database.

  13. A Systematic Method of Interconnection Optimization for Dense-Array Concentrator Photovoltaic System

    PubMed Central

    Siaw, Fei-Lu

    2013-01-01

    This paper presents a new systematic approach to analyze all possible array configurations in order to determine the most optimal dense-array configuration for concentrator photovoltaic (CPV) systems. The proposed method is fast, simple, reasonably accurate, and very useful as a preliminary study before constructing a dense-array CPV panel. Using measured flux distribution data, each CPV cells' voltage and current values at three critical points which are at short-circuit, open-circuit, and maximum power point are determined. From there, an algorithm groups the cells into basic modules. The next step is I-V curve prediction, to find the maximum output power of each array configuration. As a case study, twenty different I-V predictions are made for a prototype of nonimaging planar concentrator, and the array configuration that yields the highest output power is determined. The result is then verified by assembling and testing of an actual dense-array on the prototype. It was found that the I-V curve closely resembles simulated I-V prediction, and measured maximum output power varies by only 1.34%. PMID:24453823

  14. A systematic method of interconnection optimization for dense-array concentrator photovoltaic system.

    PubMed

    Siaw, Fei-Lu; Chong, Kok-Keong

    2013-01-01

    This paper presents a new systematic approach to analyze all possible array configurations in order to determine the most optimal dense-array configuration for concentrator photovoltaic (CPV) systems. The proposed method is fast, simple, reasonably accurate, and very useful as a preliminary study before constructing a dense-array CPV panel. Using measured flux distribution data, each CPV cells' voltage and current values at three critical points which are at short-circuit, open-circuit, and maximum power point are determined. From there, an algorithm groups the cells into basic modules. The next step is I-V curve prediction, to find the maximum output power of each array configuration. As a case study, twenty different I-V predictions are made for a prototype of nonimaging planar concentrator, and the array configuration that yields the highest output power is determined. The result is then verified by assembling and testing of an actual dense-array on the prototype. It was found that the I-V curve closely resembles simulated I-V prediction, and measured maximum output power varies by only 1.34%.

  15. 77 FR 73017 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-07

    ... into modules (solar cells), from the People's Republic of China (PRC). On November 30, 2012, the ITC... investigation of solar cells from the PRC.\\2\\ \\2\\ See Crystalline Silicon Photovoltaic Cells, Whether or Not.... Merchandise covered by this order is currently classified in the Harmonized Tariff System of the United...

  16. Report of an exploratory study: Safety and liability considerations for photovoltaic modules/panels

    NASA Technical Reports Server (NTRS)

    Weinstein, A. S.; Meeker, D. G.

    1981-01-01

    An overview of legal issues as they apply to design, manufacture and use of photovoltaic module/array devices is provided and a methodology is suggested for use of the design stage of these products to minimize or eliminate perceived hazards. Questions are posed to stimulate consideration of this area.

  17. Building America Case Study: Photovoltaic Systems with Module-Level Power Electronics

    SciTech Connect

    2015-09-01

    Direct current (DC) power optimizers and microinverters (together known as module-level power electronics, or MLPE) are one of the fastest growing market segments in the solar industry. According to GTM Research in The Global PV Inverter Landscape 2015, over 55% of all residential photovoltaic (PV) installations in the United States used some form of MLPE in 2014.

  18. Modulation of hybrid organic–perovskite photovoltaic performance by controlling the excited dynamics of fullerenes

    SciTech Connect

    Li, Chang-Zhi; Liang, Po-Wei; Sulas, Dana B.; Nguyen, Phu D.; Li, Xiaosong; Ginger, David S.; Schlenker, Cody W.; Jen, Alex K. -Y.

    2015-04-02

    Here, we present a synergistic approach to modulate organic–perovskite interfaces and their photovoltaic behaviors by tuning the properties of n-contact fullerenes layered atop of perovskite. Fullerenes with excited charge transfer are found to not only suppress fullerene photoluminescence, but also enhance molecular polarization and transport capabilities. This results in optimized perovskite–fullerene contact.

  19. Structural cost optimization of photovoltaic central power station modules and support structure

    NASA Technical Reports Server (NTRS)

    Sutton, P. D.; Stolte, W. J.; Marsh, R. O.

    1979-01-01

    The results of a comprehensive study of photovoltaic module structural support concepts for photovoltaic central power stations and their associated costs are presented. The objective of the study has been the identification of structural cost drivers. Parametric structural design and cost analyses of complete array systems consisting of modules, primary support structures, and foundations were performed. Area related module cost was found to be constant with design, size, and loading. A curved glass module concept was evaluated and found to have the potential to significantly reduce panel structural costs. Conclusions of the study are: array costs do not vary greatly among the designs evaluated; panel and array costs are strongly dependent on design loading; and the best support configuration is load dependent

  20. Performance of a silicon photovoltaic module under enhanced illumination and selective filtration of incoming radiation with simultaneous cooling

    SciTech Connect

    Maiti, Subarna; Vyas, Kairavi; Ghosh, Pushpito K.

    2010-08-15

    A promising option to reduce the cost of silicon photovoltaic systems is to concentrate the sunlight incident on the solar cells to increase the output power. However, this leads to higher module temperatures which affects performance adversely and may also cause long term damage. Proper cooling is therefore necessary to operate the system under concentrated radiation. The present work was undertaken to circumvent the problem in practical manner. A suitable liquid, connected to a heat exchanger, was placed in the housing of the photovoltaic module and unwanted wavelengths of solar radiation were filtered out to minimise overheating of the cells. The selection of the liquid was based on factors such as boiling point, transparency towards visible radiation, absorption of infrared and ultraviolet radiation, stability, flow characteristics, heat transfer properties, and electrical nonconductivity. Using a square parabolic type reflector, more than two fold increase in output power was realised on a clear sunny day employing a 0.13 m{sup 2} silicon solar module. Without the cooling arrangement the panel temperature rose uncontrollably. (author)

  1. Estimating Parameters for the PVsyst Version 6 Photovoltaic Module Performance Model

    SciTech Connect

    Hansen, Clifford

    2015-10-01

    We present an algorithm to determine parameters for the photovoltaic module perf ormance model encoded in the software package PVsyst(TM) version 6. Our method operates on current - voltage (I - V) measured over a range of irradiance and temperature conditions. We describe the method and illustrate its steps using data for a 36 cell crystalli ne silicon module. We qualitatively compare our method with one other technique for estimating parameters for the PVsyst(TM) version 6 model .

  2. Thermal and other tests of photovoltaic modules performed in natural sunlight

    NASA Technical Reports Server (NTRS)

    Stultz, J. W.

    1978-01-01

    The bulk of the testing was the characterization of twenty-nine modules according to their nominal operating cell temperature (NOCT) and the effect on NOCT of changes in module design, various residential roof mounting configurations, and dirt accumulation. Other tests, often performed parallel with the NOCT measurements, evaluated the improvement in electrical performance by cooling the modules with water and by channeling the waste heat into a phase change material (wax). Electrical degradation resulting from the natural marriage of photovoltaic and solar water heating modules was also demonstrated. Cost effectiveness of each of these techniques are evaluated in light of the LSA cost goal of $0.50 per watt.

  3. Robust Measurement of Thin-Film Photovoltaic Modules Exhibiting Light-Induced Transients: Preprint

    SciTech Connect

    Deceglie, Michael, G.; Silverman, Timothy J.; Marion, Bill; Kurtz, Sarah R.

    2015-09-09

    Light-induced changes to the current-voltage characteristic of thin-film photovoltaic modules (i.e. light-soaking effects) frustrate the repeatable measurement of their operating power. We describe best practices for mitigating, or stabilizing, light-soaking effects for both CdTe and CIGS modules to enable robust, repeatable, and relevant power measurements. We motivate the practices by detailing how modules react to changes in different stabilization methods. We also describe and demonstrate a method for validating alternative stabilization procedures, such as those relying on forward bias in the dark. Reliable measurements of module power are critical for qualification testing, reliability testing, and power rating.

  4. Robust measurement of thin-film photovoltaic modules exhibiting light-induced transients

    NASA Astrophysics Data System (ADS)

    Deceglie, Michael G.; Silverman, Timothy J.; Marion, Bill; Kurtz, Sarah R.

    2015-09-01

    Light-induced changes to the current-voltage characteristic of thin-film photovoltaic modules (i.e. light-soaking effects) frustrate the repeatable measurement of their operating power. We describe best practices for mitigating, or stabilizing, light-soaking effects for both CdTe and CIGS modules to enable robust, repeatable, and relevant power measurements. We motivate the practices by detailing how modules react to changes in different stabilization methods. We also describe and demonstrate a method for validating alternative stabilization procedures, such as those relying on forward bias in the dark. Reliable measurements of module power are critical for qualification testing, reliability testing, and power rating.

  5. Thermal and optical performance of encapsulation systems for flat-plate photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Minning, C. P.; Coakley, J. F.; Perrygo, C. M.; Garcia, A., III; Cuddihy, E. F.

    1981-01-01

    The electrical power output from a photovoltaic module is strongly influenced by the thermal and optical characteristics of the module encapsulation system. Described are the methodology and computer model for performing fast and accurate thermal and optical evaluations of different encapsulation systems. The computer model is used to evaluate cell temperature, solar energy transmittance through the encapsulation system, and electric power output for operation in a terrestrial environment. Extensive results are presented for both superstrate-module and substrate-module design schemes which include different types of silicon cell materials, pottants, and antireflection coatings.

  6. Startup experience with a concentrating photovoltaic power system

    NASA Astrophysics Data System (ADS)

    Kaplan, S. I.

    1982-01-01

    Physical features and startup characteristics of a 240 kW parabolic trough photovoltaic power system are described. The Mississippi County Community College array (Blytheville, AR) comprises 45 rows of linear parabolic troughs oriented N-S, which track E-W by means of a hydraulically driven actuator. The solar input is focussed onto 50/50 water-glycol cooled receiver bars on which Si solar cells are mounted. Nominal operating temperature for the cells is 50 C, with the heat transferred to the building heat supply in the winter. The output is routed through a power conditioning unit for inversion to 480 V ac power, for use by the school or, when the demand is exceeded, for direct transmission into the utility grid. Problems during startup have included misalignment, due to gravitational torquing and twisting, standoff insulation, and tracking during cloudy periods. Output has been 45% of design during the autumn of 1981.

  7. Energy production estimation for Kosh-Agach grid-tie photovoltaic power plant for different photovoltaic module types

    NASA Astrophysics Data System (ADS)

    Gabderakhmanova, T. S.; Kiseleva, S. V.; Frid, S. E.; Tarasenko, A. B.

    2016-11-01

    This paper is devoted to calculation of yearly energy production, demanded area and capital costs for first Russian 5 MW grid-tie photovoltaic (PV) plant in Altay Republic that is named Kosh-Agach. Simple linear calculation model, involving average solar radiation and temperature data, grid-tie inverter power-efficiency dependence and PV modules parameters is proposed. Monthly and yearly energy production, equipment costs and demanded area for PV plant are estimated for mono-, polycrystalline and amorphous modules. Calculation includes three types of initial radiation and temperature data—average day for every month from NASA SSE, average radiation and temperature for each day of the year from NASA POWER and typical meteorology year generated from average data for every month. The peculiarities for each type of initial data and their influence on results are discussed.

  8. Design and development of a linear Fresnel lens air-cooled photovoltaic module and a stand-alone photovoltaic collector array

    SciTech Connect

    Not Available

    1985-01-01

    A summary description of the design development of a linear Fresnel lens air-cooled photovoltaic collector and a stand-alone photovoltaic collector array is presented. Module performance is characterized by 12.9% electrical efficiency under operational conditions (800 w/m/sup 2/, 20/sup 0/C ambient temperature) and 14.2% electrical efficiency at 28/sup 0/C cell reference temperature. The stand-alone photovoltaic collector array design utilizes eight air-cooled photovoltaic modules and produces a peak output of 2680 watts at 20/sup 0/C ambient temperature and 1000 w/m/sup 2/ direct normal insolation. This corresponds to an overall array electrical efficiency of 12%. A prototype subscale array was fabricated and performance tested and verified the stand-alone array concept.

  9. Operation and maintenance cost data for residential photovoltaic modules/panels

    SciTech Connect

    1980-07-01

    Burt Hill Kosar Rittelmann Associates has conducted a study to identify and estimate costs associated with the operation and maintenance of residential photovoltaic modules and arrays. Six basic topics related to operation and maintenance to photovoltaic arrays were investigated - General (Normal) Maintenance, Cleaning, Panel Replacement, Gasket Repair/Replacement, Wiring Repair/Replacement, and Termination Repair/Replacement. The effects of the mounting types - Rack Mount, Stand-Off Mount, Direct Mount, and Integral Mount - and the installation/replacement type - Sequential, Partial Interruption, and Independent - have been identified and described. Recommendation on methods of reducing maintenance costs are made.

  10. Development of dendritic web continuous ribbon silicon cells for use in a linear Fresnel lens photovoltaic concentrator

    SciTech Connect

    O'Neill, M.J.; McDanal, A.J.

    1986-04-01

    The primary objective of this program was to design, develop, and test low-cost, continuous ribbon silicon cells suitable for use in ENTECH's linear Fresnel lens photovoltaic concenrator module. The cells were made by Westinghouse using a dendritic web continuous ribbon process. This program represented the first attempt to adapt dendritic web cell fabrication technology to concentrator applications. ENTECH generated an optimized cell design, which included variable metallization matched to the radiant flux profile of the linear Fresnel lens concentrator. Westinghouse fabricated cells in several sequential production runs. The cells were tested by ENTECH under actual lens illumination to determine their performance parameters. The best cells made under this program achieved peak cell efficiencies of about 14%, compared to about 16% for production cells made by Applied Solar Energy Corporation, using float-zone-refined single-crystal silicon. With additional development, significant performance improvements should be achievable in future dendritic web concentrator cells.

  11. A series connection architecture for large-area organic photovoltaic modules with a 7.5% module efficiency

    NASA Astrophysics Data System (ADS)

    Hong, Soonil; Kang, Hongkyu; Kim, Geunjin; Lee, Seongyu; Kim, Seok; Lee, Jong-Hoon; Lee, Jinho; Yi, Minjin; Kim, Junghwan; Back, Hyungcheol; Kim, Jae-Ryoung; Lee, Kwanghee

    2016-01-01

    The fabrication of organic photovoltaic modules via printing techniques has been the greatest challenge for their commercial manufacture. Current module architecture, which is based on a monolithic geometry consisting of serially interconnecting stripe-patterned subcells with finite widths, requires highly sophisticated patterning processes that significantly increase the complexity of printing production lines and cause serious reductions in module efficiency due to so-called aperture loss in series connection regions. Herein we demonstrate an innovative module structure that can simultaneously reduce both patterning processes and aperture loss. By using a charge recombination feature that occurs at contacts between electron- and hole-transport layers, we devise a series connection method that facilitates module fabrication without patterning the charge transport layers. With the successive deposition of component layers using slot-die and doctor-blade printing techniques, we achieve a high module efficiency reaching 7.5% with area of 4.15 cm2.

  12. Progress in photovoltaic module calibration: results of a worldwide intercomparison between four reference laboratories

    NASA Astrophysics Data System (ADS)

    Dirnberger, D.; Kräling, U.; Müllejans, H.; Salis, E.; Emery, K.; Hishikawa, Y.; Kiefer, K.

    2014-10-01

    Measurement results from a worldwide intercomparison of photovoltaic module calibrations are presented. Four photovoltaic reference laboratories in the USA, Japan and Europe with different traceability chains, measurement equipment and procedures, and uncertainty estimation concepts, participated. Seven photovoltaic modules of different technologies were measured (standard and high-efficiency crystalline silicon, cadmium telluride, single and double-junction amorphous and micromorph silicon). The measurement results from all laboratories and for all devices agreed well. Maximum power for the crystalline silicon samples was within ±1.3% for all thin-film modules roughly within ±3%, which is an improvement compared to past intercomparisons. The agreement between the results was evaluated using a weighted mean as a reference value, which considers results-specific uncertainty, instead of the widely used unweighted arithmetic mean. A further statistical analysis of all deviations between results and the corresponding reference mean showed that the uncertainties estimated by the participating laboratories were realistic, with a slight tendency towards being too conservative. The observed deviations of results from the reference mean concerned mainly short-circuit current and fill factor. Module stability was monitored through repeated measurements at Fraunhofer ISE before and after measurements at each of the other participating laboratories. Based on these re-measurements, stability problems that occurred for some thin-film modules and influenced the results were analyzed and explained in detail.

  13. Modelling acceptance of sunlight in high and low photovoltaic concentration

    SciTech Connect

    Leutz, Ralf

    2014-09-26

    A simple model incorporating linear radiation characteristics, along with the optical trains and geometrical concentration ratios of solar concentrators is presented with performance examples for optical trains of HCPV, LCPV and benchmark flat-plate PV.

  14. Recent developments in refractive concentrators for space photovoltaic power systems

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F.; Oneill, Mark J.

    1993-01-01

    Since SPRAT 11, significant progress has been made in the development of refractive concentrator elements and components designed specifically for space applications. The status of the mini-dome Fresnel lens concentrator array is discussed and then the results of work recently completed in the area of prismatic cell covers for concentrator systems are summarized. This is followed by a brief discussion of some work just starting in the area of line-focus refractive concentrators for space.

  15. Photovoltaic array performance model.

    SciTech Connect

    Kratochvil, Jay A.; Boyson, William Earl; King, David L.

    2004-08-01

    This document summarizes the equations and applications associated with the photovoltaic array performance model developed at Sandia National Laboratories over the last twelve years. Electrical, thermal, and optical characteristics for photovoltaic modules are included in the model, and the model is designed to use hourly solar resource and meteorological data. The versatility and accuracy of the model has been validated for flat-plate modules (all technologies) and for concentrator modules, as well as for large arrays of modules. Applications include system design and sizing, 'translation' of field performance measurements to standard reporting conditions, system performance optimization, and real-time comparison of measured versus expected system performance.

  16. Photovoltaic hysteresis and its ramifications for concentrator solar cell design and diagnostics

    NASA Astrophysics Data System (ADS)

    Gordon, Jeffrey M.; Katz, Eugene A.; Tassew, Wondesen; Feuermann, Daniel

    2005-02-01

    We report the observation of a photovoltaic effect with pronounced hysteresis. The phenomenon derives from the sharp transition in the dominant mode of electron transport in the tunnel diodes that regulate multijunction solar cells, and is only observable at high flux. These results emerged from measurements of cell current-voltage characteristics performed with miniature fiber-optic solar concentrators that can deliver flux levels up to 10 000 times that of ambient sunlight in a highly localized fashion. The ramifications of our findings for photovoltaic design, diagnostics, and performance are addressed, and a nondestructive determination of the peak and valley threshold current densities of tunnel diodes is presented.

  17. Trajectories of concentrating photovoltaics (CPV) in market space based on comparisons with offshore wind power

    NASA Astrophysics Data System (ADS)

    Leutz, Ralf

    2012-10-01

    Concentrating photovoltaics (CPV) are for solar photovoltaics what offshore wind power is for wind power; this is the hypothesis of this work. In analogy to offshore wind cumulative global CPV installations of approximately 3-7 GW are predicted for the year 2020. Scenarios are based on paths for CPV following offshore wind in shape, but with a delay of ten years which is approximately the time lag the first larger offshore wind farms were built earlier than the first large CPV plants of 2011.

  18. Metastable Changes to the Temperature Coefficients of Thin-Film Photovoltaic Modules

    SciTech Connect

    Deceglie, M. G.; Silverman, T. J.; Marion, B.; Kurtz, S. R.

    2014-07-01

    Transient changes in the performance of thin-film modules with light exposure are a well-known and widely reported phenomenon. These changes are often the result of reversible metastabilities rather than irreversible changes. Here we consider how these metastable changes affect the temperature dependence of photovoltaic performance. We find that in CIGS modules exhibiting a metastable increase in performance with light exposure, the light exposure also induces an increase in the magnitude of the temperature coefficient. It is important to understand such changes when characterizing temperature coefficients and when analyzing the outdoor performance of newly installed modules.

  19. Modeling Photovoltaic and Concentrating Solar Power Trough Performance, Cost, and Financing with the Solar Advisor Model: Preprint

    SciTech Connect

    Blair, N.; Mehos, M.; Christensen, C.; Cameron, C.

    2008-05-01

    A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM), has been developed to support the federal R&D community and the solar industry by staff at the National Renewable Energy Laboratory (NREL) and Sandia National Laboratory. This model is able to model the finances, incentives, and performance of flat-plate photovoltaic (PV), concentrating PV, and concentrating solar power (specifically, parabolic troughs). The primary function of the model is to allow users to investigate the impact of variations in performance, cost, and financial parameters to better understand their impact on key figures of merit. Figures of merit related to the cost and performance of these systems include, but aren't limited to, system output, system efficiencies, levelized cost of energy, return on investment, and system capital and O&M costs. There are several models within SAM to model the performance of photovoltaic modules and inverters. This paper presents an overview of each PV and inverter model, introduces a new generic model, and briefly discusses the concentrating solar power (CSP) parabolic trough model. A comparison of results using the different PV and inverter models is also presented.

  20. SCARLET Photovoltaic Concentrator Array Selected for Flight Under NASA's New Millennium Program

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F., Jr.

    1997-01-01

    The NASA Lewis Research Center continues to demonstrate its expertise in the development and implementation of advanced space power systems. For example, during the past year, the NASA New Millennium Program selected the Solar Concentrator Array with Refractive Linear Element Technology (SCARLET) photovoltaic array as the power system for its Deep Space-1 (DS-1) mission. This Jet Propulsion Laboratory (JPL) managed DS-1 mission, which represents the first operational flight of a photovoltaic concentrator array, will provide a baseline for the use of this technology in a variety of future government and commercial applications. SCARLET is a joint NASA Lewis/Ballistic Missile Defense Organization program to develop advanced photovoltaic array technology that uses a unique refractive concentrator design to focus sunlight onto a line of photovoltaic cells located below the optical element. The general concept is based on previous work conducted at Lewis under a Small Business Innovation Research (SBIR) contract with AEC-Able Engineering, Inc., for the Multiple Experiments to Earth Orbit and Return (METEOR) spacecraft. The SCARLET II design selected by the New Millennium Program is a direct adaptation of the smaller SCARLET I array built for METEOR. Even though SCARLET I was lost during a launch failure in October 1995, the hardware (designed, built, and flight qualified within 6 months) provided invaluable information and experience that led to the selection of this technology as the primary power source for DS-1.

  1. Ultralight amorphous silicon alloy photovoltaic modules for space applications

    NASA Technical Reports Server (NTRS)

    Hanak, J. J.; Chen, Englade; Fulton, C.; Myatt, A.; Woodyard, J. R.

    1987-01-01

    Ultralight and ultrathin, flexible, rollup monolithic PV modules have been developed consisting of multijunction, amorphous silicon alloys for either terrestrial or aerospace applications. The rate of progress in increasing conversion efficiency of stable multijunction and multigap PV cells indicates that arrays of these modules can be available for NASA's high power systems in the 1990's. Because of the extremely light module weight and the highly automated process of manufacture, the monolithic a-Si alloy arrays are expected to be strongly competitive with other systems for use in NASA's space station or in other large aerospace applications.

  2. Crystalline-silicon photovoltaics summary module design and reliability

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.

    1986-01-01

    The evolution of the design and reliability of solar modules was described. Design requirements involved 14 different considerations, including residential building and material electrical codes, wind-loading, hail impact, operating temperature levels, module flammability, and interfaces for both the array structure and the operation of the system. Reliability research involved in diverse investigations including glass-fracture strength, soiling levels, electrochemical corrosion, and bypass-diode qualification tests. Based on these internationally recognized studies, performance assessments, and failure analyses, the Flat-plate Solar Array Project in its 11-year duration served to nuture the development of 45 different solar module designs from 15 PV manufacturers.

  3. In-Situ Characterization of Potential-Induced Degradation in Crystalline Silicon Photovoltaic Modules Through Dark I–V Measurements

    SciTech Connect

    Luo, Wei; Hacke, Peter; Singh, Jai Prakash; Chai, Jing; Wang, Yan; Ramakrishna, Seeram; Aberle, Armin G.; Khoo, Yong Sheng

    2017-01-01

    A temperature correction methodology for in-situ dark I-V(DIV) characterization of conventional p-type crystalline silicon photovoltaic (PV) modules undergoing potential-induced degradation (PID) is proposed.

  4. Reflection-type single long-pulse solar simulator for high-efficiency crystalline silicon photovoltaic modules.

    PubMed

    Hu, Binxin; Li, Buyin; Zhao, Rixin; Yang, Tiechen

    2011-06-01

    Photovoltaic module measurements are predominantly taken by using pulsed solar simulators. However, significant errors can be generated when the existing simulators are applied to current high-efficiency crystalline silicon photovoltaic modules. This paper presents the design and implementation of a novel solar simulator featuring reflection-type light source and single long-pulse flash. The analysis and experimental study of the capacitance effect and the technical details of the simulator including reflection-type lamp house, xenon flash lamp power supply, and source-measure unit are introduced. The results show that the complete system achieves Class AAA performance in accordance with the international standard. The proposed simulator outperforms other similar products on the market and has been adopted by some well-known photovoltaic module manufacturers. The practical application demonstrates that this high-performance and cost-effective simulator is quite suitable for photovoltaic module production line.

  5. Study of a micro-concentrated photovoltaic system based on Cu(In,Ga)Se2 microcells array.

    PubMed

    Jutteau, Sebastien; Guillemoles, Jean-François; Paire, Myriam

    2016-08-20

    We study a micro-concentrated photovoltaic (CPV) system based on micro solar cells made from a thin film technology, Cu(In,Ga)Se2. We designed, using the ray-tracing software Zemax OpticStudio 14, an optical system adapted and integrated to the microcells, with only spherical lenses. The designed architecture has a magnification factor of 100× for an optical efficiency of 85% and an acceptance angle of ±3.5°, without anti-reflective coating. An experimental study is realized to fabricate the first generation prototype on a 5  cm×5  cm substrate. A mini-module achieved a concentration ratio of 72× under AM1.5G, and an absolute efficiency gain of 1.8% for a final aperture area efficiency of 12.6%.

  6. Electrochemical degradation of amorphous-silicon photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Mon, G. R.; Ross, R. G., Jr.

    1985-01-01

    Techniques of module electrochemical corrosion research, developed during reliability studies of crystalline-silicon modules (C-Si), have been applied to this new investigation into amorphous-silicon (a-Si) module reliability. Amorphous-Si cells, encapsulated in the polymers polyvinyl butyral (PVB) and ethylene vinyl acetate (EVA), were exposed for more than 1200 hours in a controlled 85 C/85 percent RH environment, with a constant 500 volts applied between the cells and an aluminum frame. Plotting power output reduction versus charge transferred reveals that about 50 percent a-Si cell failures can be expected with the passage of 0.1 to 1.0 Coulomb/cm of cell-frame edge length; this threshold is somewhat less than that determined for C-Si modules.

  7. Analysis of transmitted optical spectrum enabling accelerated testing of multijunction concentrating photovoltaic designs

    NASA Astrophysics Data System (ADS)

    Miller, David C.; Kempe, Michael D.; Kennedy, Cheryl E.; Kurtz, Sarah R.

    2011-01-01

    Concentrating photovoltaic (CPV) technology has recently gained interest based on its scalability and expected low levelized cost of electricity. The reliability of encapsulation materials used in CPV systems, however, is not well established. For example, the present qualification test for CPV modules includes only real-time ultraviolet (UV) exposure, i.e., methods for accelerated UV testing have not yet been developed. To better define the stress inherent to CPV systems, the UV and infrared spectra transmitted through representative optical systems were evaluated. Measurements of optical components are used to assess expected optical performance and quantify damaging optical exposure. Optical properties (transmittance, refractive index, reflectance, and absorptance) of candidate materials (including PMMA, soda-lime glass, borosilicate glass, and quartz refractors), components (including Ag- and Al-enabled reflectors), and encapsulants (including EVA, ionomer, PDMS, PPMS, polyolefin, and PVB) were identified. The activation spectrum was calculated for the representative optical systems using an assumed action spectrum to compare the expected damaging dose of UV radiation delivered to the cell encapsulation. The dose and flux analysis identifies the significance of IR relative to UV exposure for CPV systems. Because UV light is typically more highly attenuated, the UV dose within the encapsulation may not greatly exceed the unconcentrated global solar condition, but the thermal load scales nearly directly with the geometric concentration. Relative to a previous analysis for crystalline silicon cell technology, the analysis here is performed for III-V multijunction technology. Novel aspects here also include additional materials (such as TPU encapsulation) and additional components (transmission through silicone on glass lenses, antireflective coatings, and the front glass used with reflective systems, as well as reflection off of the cell).

  8. Partial shade stress test for thin-film photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Silverman, Timothy J.; Deceglie, Michael G.; Deline, Chris; Kurtz, Sarah

    2015-09-01

    Partial shade of monolithic thin-film PV modules can cause reverse-bias conditions leading to permanent damage. In this work, we introduce a partial shade stress test for thin-film PV modules that quantifies permanent performance loss. The test reproduces shading and loading conditions that may occur in the field. It accounts for reversible light-induced performance changes and for the effects of light-enhanced reverse breakdown. We simulated the test procedure using a computer model that predicts the local voltage, current and temperature stress resulting from partial shade. We also performed the test on three commercial module types. Each module type we tested suffered permanent damage during masked ash testing totaling < 2 s of light exposure. During the subsequent stress test these module types lost 4%{11% in Pmp due to widespread formation of new shunts. One module type showed a substantial worsening of the Pmp loss upon light stabilization, underscoring the importance of this practice for proper quantification of damage.

  9. Reliability and engineering of thin-film photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Royal, E. L.

    1985-01-01

    Objectives were to: examine thin-film cell attributes that influence module performance and reliability, explore the lessons and applicability of crystalline-silicon module technology to thin-film modules, review the current status of thin-film module technologies, and identify problem areas and needed research. A major need is to separate the effects and resons for reversible degradatin from nonreversible degradation. Amorphous-silicon (a-Si) reliability investigations are focusing on exploratory research investigations, accelerated Arrhenius-type testing of a-Si cells, real-time outdoor exposure testing of a-Si cells, cell failure analysis, and failure mechanism research. Studies included the reduction in strength of glass by high temperature depositions on glass and laser scribing, encapsulation materials development needs, and the testing of modules. The new materials and processes in thin-film modules will require a delinquent reliability effort, including: establishment of mechanism-specific reliability goals; quantification of mechanism parameter dependencies; prediction of expected long-term degradation; identification of cost-effective solutions; and testing and failure analysis of trial solutions.

  10. Comparative performance testing of photovoltaic modules in tropical climates of Indonesia

    NASA Astrophysics Data System (ADS)

    Rosyid, Oo Abdul

    2016-02-01

    Solar energy is one of the most significant types of the sustainable and renewable energy sources that have been used in Indonesia. Photovoltaic (PV) is known as the direct conversion of the sunlight to electricity energy with the used of solar cells. There are number of different types of solar PV modules, from an ever increasing range of manufacturers. Each of them claims that they are the best for one reason or another. This paper reports the study results of energy yield measurements of different PV module technologies performed at the outdoor testing facility of the Energy Technology Center (B2TE-BPPT) Kawasan Puspiptek Serpong-Indonesia from March 2014 through February 2015. The purposes of the study wereto evaluate and compare the performances of three different PV modules during a medium term outdoor exposure at the tropical climate of Indonesia. Normalized energy yields (Y), module efficiency (η), and performance ratio (PR) were calculated for each module, and the effect of module temperature and solar irradiance on these parameters was investigated. Monocrystalline PV module was better in terms of module efficiency and overall power production. Meanwhile micromorph silicon (uc-Si) showed the lowest module efficiency, but the more power production compared with polycrystalline PV module. Module efficiency and performance ratio showed a decreasing trend with increase of module temperature.

  11. Generic quality assurance/quality control guide for photovoltaic concentrator design, development and system installation

    NASA Astrophysics Data System (ADS)

    Murty, V. S.; Chamberlin, J. L.

    The U.S. Department of Energy National Photovoltaics Program considers the photovoltaic (PV) concentrator technology as a viable entity, likely to penetrate the utility market in the foreseeable future. To achieve this, it has launched the National Photovoltaic Concentrator Initiative under the management of Sandia National Laboratories. The objective of this program is to encourage PV concentrator system design and manufacture, with a view to bringing the energy cost to $0.12/kWh in the next four years and to $0.06/kWh by the year 2000. To achieve these goals, the systems have to perform reliably for 20 to 30 years. This necessitates a stringent quality assurance/quality control (QA/QC) program in all phases of PV concentrator design, production, and installation. In order to assist the PV industry in this effort a project was initiated to provide a generic QA/QC guide, capable of being adapted by any PV concentrator industry to prepare its individual QA/QC plan. The draft plan of the guide was prepared and circulated to various government laboratories and industries involved in PV concentrator work. Their input is now being incorporated into a final document, which will serve as an industry standard.

  12. Fatigue degradation and electric recovery in Silicon solar cells embedded in photovoltaic modules

    PubMed Central

    Paggi, Marco; Berardone, Irene; Infuso, Andrea; Corrado, Mauro

    2014-01-01

    Cracking in Silicon solar cells is an important factor for the electrical power-loss of photovoltaic modules. Simple geometrical criteria identifying the amount of inactive cell areas depending on the position of cracks with respect to the main electric conductors have been proposed in the literature to predict worst case scenarios. Here we present an experimental study based on the electroluminescence (EL) technique showing that crack propagation in monocrystalline Silicon cells embedded in photovoltaic (PV) modules is a much more complex phenomenon. In spite of the very brittle nature of Silicon, due to the action of the encapsulating polymer and residual thermo-elastic stresses, cracked regions can recover the electric conductivity during mechanical unloading due to crack closure. During cyclic bending, fatigue degradation is reported. This pinpoints the importance of reducing cyclic stresses caused by vibrations due to transportation and use, in order to limit the effect of cracking in Silicon cells. PMID:24675974

  13. NREL Determines Better Testing Methods for Photovoltaic Module Durability (Fact Sheet), NREL Highlights, Research & Development

    SciTech Connect

    Not Available

    2011-11-01

    NREL discoveries will enable manufacturers to produce more robust photovoltaic modules. Over the past decade, some photovoltaic (PV) modules have experienced power losses because of the system voltage stress that modules experience in fielded arrays. This is partly because qualification tests and standards do not adequately evaluate the durability of modules that undergo the long-term effects of high voltage. Scientists at the National Renewable Energy Laboratory (NREL) tried various testing methods and stress levels to demonstrate module durability to system voltage potential-induced degradation (PID) mechanisms. The results of these accelerated tests, along with outdoor testing, were used to estimate the acceleration factors needed to more accurately evaluate the durability of modules to system voltage stress. NREL was able to determine stress factors, levels, and methods for testing based on the stresses experienced by modules in the field. These results, in combination with those in the literature, suggest that constant stress with humidity and system voltage is more damaging than stress applied intermittently or with periods of recovery comprising hot and dry conditions or alternating bias in between. NREL has determined some module constructions to be extremely durable to PID. These findings will help the manufacturers of PV materials and components produce more durable products that better satisfy their customers. NREL determined that there is rapid degradation of some PV modules under system voltage stress and evaluated degradation rates in the field to develop more accurate accelerated testing methods. PV module manufacturers will be better able to choose robust materials and durable designs and guarantee sturdier, longer-lasting products. As PV modules become more durable, and thus more efficient over the long term, the risks and the cost of PV power will be reduced.

  14. Experimental measurements of a prototype high concentration Fresnel lens CPV module for the harvesting of diffuse solar radiation.

    PubMed

    Yamada, Noboru; Okamoto, Kazuya

    2014-01-13

    A prototype concentrator photovoltaic (CPV) module with high solar concentration, an added low-cost solar cell, and an adjoining multi-junction solar cell is fabricated and experimentally demonstrated. In the present CPV module, the low cost solar cell captures diffuse solar radiation penetrating the concentrator lens and the multi-junction cell captures concentrated direct solar radiation. On-sun test results show that the electricity generated by a Fresnel lens-based CPV module with an additional crystalline silicon solar cell is greater than that for a conventional CPV module by a factor of 1.44 when the mean ratio of diffuse normal irradiation to global normal irradiation at the module aperture is 0.4. Several fundamental optical characteristics are presented for the present module.

  15. Recycling WEEE: Polymer characterization and pyrolysis study for waste of crystalline silicon photovoltaic modules.

    PubMed

    Dias, Pablo; Javimczik, Selene; Benevit, Mariana; Veit, Hugo

    2017-02-01

    Photovoltaic (PV) modules contain both valuable and hazardous materials, which makes its recycling meaningful economically and environmentally. In general, the recycling of PV modules starts with the removal of the polymeric ethylene-vinyl acetate (EVA) resin using pyrolysis, which assists in the recovery of materials such as silicon, copper and silver. The pyrolysis implementation, however, needs improvement given its importance. In this study, the polymers in the PV modules were characterized by Fourier transform infrared spectroscopy (FTIR) and the removal of the EVA resin using pyrolysis has been studied and optimized. The results revealed that 30min pyrolysis at 500°C removes >99% of the polymers present in photovoltaic modules. Moreover, the behavior of different particle size milled modules during the pyrolysis process was evaluated. It is shown that polymeric materials tend to remain at a larger particle size and thus, this fraction has the greatest mass loss during pyrolysis. A thermo gravimetric analysis (TGA) performed in all polymeric matter revealed the optimum pyrolysis temperature is around 500°C. Temperatures above 500°C continue to degrade matter, but mass loss rate is 6.25 times smaller. This study demonstrates the use of pyrolysis can remove >99% of the polymeric matter from PV modules, which assists the recycling of this hazardous waste and avoids its disposal.

  16. Concentrated photovoltaics system costs and learning curve analysis

    NASA Astrophysics Data System (ADS)

    Haysom, Joan E.; Jafarieh, Omid; Anis, Hanan; Hinzer, Karin

    2013-09-01

    An extensive set of costs in /W for the installed costs of CPV systems has been amassed from a range of public sources, including both individual company prices and market reports. Cost reductions over time are very evident, with current prices for 2012 in the range of 3.0 ± 0.7 /W and a predicted cost of 1.5 /W for 2020. Cost data is combined with deployment volumes in a learning curve analysis, providing a fitted learning rate of either 18.5% or 22.3% depending on the methodology. This learning rate is compared to that of PV modules and PV installed systems, and the influence of soft costs is discussed. Finally, if an annual growth rate of 39% is assumed for deployed volumes, then, using the learning rate of 20%, this would predict the achievement of a cost point of 1.5 /W by 2016.

  17. Potential-induced degradation of thin-film Si photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Masuda, Atsushi; Hara, Yukiko

    2017-04-01

    Potential-induced degradation (PID) of thin-film Si photovoltaic (PV) modules was investigated. The characteristics of PID phenomena of thin-film Si PV modules are markedly different from those of crystalline Si PV modules. Not only performance loss but also linear-shape and spot-shape delamination was observed after negative voltage application. Recovery from PID was also observed after positive voltage application. However, rapid progression of PID was found after the second negative voltage application after recovery from the initial PID. The root cause of PID of thin-film Si PV modules is thought to be the delamination between a transparent conductive oxide film and a glass substrate. Such degradation accompanied by delamination was also observed in thin-film Si PV modules exposed outside for about 5 years.

  18. Cost and Potential of Monolithic CIGS Photovoltaic Modules

    SciTech Connect

    Horowitz, Kelsey; Woodhouse, Michael

    2015-06-17

    A bottom-up cost analysis of monolithic, glass-glass Cu(In,Ga)(Se,S)2 (CIGS) modules is presented, illuminating current cost drivers for this technology and possible pathways to reduced cost. At 14% module efficiency, for the case of U.S. manufacturing, a manufacturing cost of $0.56/WDC and a minimum sustainable price of $0.72/WDC were calculated. Potential for reduction in manufacturing costs to below $0.40/WDC in the long-term may be possible if module efficiency can be increased without significant increase in $/m2 costs. The levelized cost of energy (LCOE) in Phoenix, AZ under different conditions is assessed and compared to standard c-Si.

  19. Cost and Potential of Monolithic CIGS Photovoltaic Modules

    SciTech Connect

    Horowitz, Kelsey A.; Woodhouse, Michael

    2015-06-14

    A bottom-up cost analysis of monolithic, glass-glass Cu(In,Ga)(Se,S)2 (CIGS) modules is presented, illuminating current cost drivers for this technology and possible pathways to reduced cost. At 14% module efficiency, for the case of U.S. manufacturing, a manufacturing cost of $0.56/WDC and a minimum sustainable price of $0.72/WDC were calculated. Potential for reduction in manufacturing costs to below $0.40/WDC in the long-term may be possible if module efficiency can be increased without significant increase in $/m2 costs. The levelized cost of energy (LCOE) in Phoenix, AZ under different conditions is assessed and compared to standard c-Si.

  20. Photovoltaic Shading Testbed for Module-Level Power Electronics

    SciTech Connect

    Deline, C.; Meydbray, J.; Donovan, M.; Forrest, J.

    2012-05-01

    This document describes a repeatable test procedure that attempts to simulate shading situations, as would be experienced by typical residential rooftop photovoltaic (PV) systems. This type of shading test is particularly useful to evaluate the impact of different power conversion setups, including microinverters, DC power optimizers and string inverters, on overall system performance. The performance results are weighted based on annual estimates of shade to predict annual performance improvement. A trial run of the test procedure was conducted with a side by side comparison of a string inverter with a microinverter, both operating on identical 8kW solar arrays. Considering three different shade weighting conditions, the microinverter was found to increase production by 3.7% under light shading, 7.8% under moderate shading, and 12.3% under heavy shading, relative to the reference string inverter case. Detail is provided in this document to allow duplication of the test method at different test installations and for different power electronics devices.

  1. Can Integrated Micro-Optical Concentrator Technology Revolutionize Flat-Plate Photovoltaic Solar Energy Harvesting?

    NASA Astrophysics Data System (ADS)

    Haney, Michael W.

    2015-12-01

    The economies-of-scale and enhanced performance of integrated micro-technologies have repeatedly delivered disruptive market impact. Examples range from microelectronics to displays to lighting. However, integrated micro-scale technologies have yet to be applied in a transformational way to solar photovoltaic panels. The recently announced Micro-scale Optimized Solar-cell Arrays with Integrated Concentration (MOSAIC) program aims to create a new paradigm in solar photovoltaic panel technology based on the incorporation of micro-concentrating photo-voltaic (μ-CPV) cells. As depicted in Figure 1, MOSAIC will integrate arrays of micro-optical concentrating elements and micro-scale PV elements to achieve the same aggregated collection area and high conversion efficiency of a conventional (i.e., macro-scale) CPV approach, but with the low profile and mass, and hopefully cost, of a conventional non-concentrated PV panel. The reduced size and weight, and enhanced wiring complexity, of the MOSAIC approach provide the opportunity to access the high-performance/low-cost region between the conventional CPV and flat-plate (1-sun) PV domains shown in Figure 2. Accessing this portion of the graph in Figure 2 will expand the geographic and market reach of flat-plate PV. This talk reviews the motivation and goals for the MOSAIC program. The diversity of the technical approaches to micro-concentration, embedded solar tracking, and hybrid direct/diffuse solar resource collection found in the MOSAIC portfolio of projects will also be highlighted.

  2. Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts

    DOEpatents

    Jansen, Kai W.; Maley, Nagi

    2001-01-01

    High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.

  3. Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts

    DOEpatents

    Jansen, Kai W.; Maley, Nagi

    2000-01-01

    High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.

  4. Thermal Reliability Study of Bypass Diodes in Photovoltaic Modules (Poster)

    SciTech Connect

    Zhang, Z.; Wohlgemuth, J.; Kurtz, S.

    2013-05-01

    This paper presents the result of high-temperature durability and thermal cycling testing and analysis for the selected diodes to study the detail of the thermal design and relative long-term reliability of the bypass diodes used to limit the detrimental effects of module hot-spot susceptibility.

  5. Elevated temperature testing of Mir 1 cooperative solar array photovoltaic panel module

    SciTech Connect

    Chau, M.T.; Brisco, H.N.

    1995-12-31

    The Mir 1 Cooperative Solar Array project supplies the Russians, Rocket Space Corporation-Energia (RSC-E) with US photovoltaic panel modules (PPMs) based on the International Space Station Alpha`s (ISSA) solar array technology developed by Lockheed Missiles and Space Company, Inc. (LMSC). The PPMs are integrated into the Russian module frame assemblies (MFA) and deployment mechanisms, and will replace solar arrays on the current Mir 1 Station. The replacement solar arrays will generate 6.5 kW beginning of life power (BOL). This paper documents LMSC`s effort in the diagnosis of the PPMs` performance degradation after completion of the development tests at RSC-E.

  6. A review of manufacturing metrology for improved reliability of silicon photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Davis, Kristopher O.; Walters, Joseph; Schneller, Eric; Seigneur, Hubert; Brooker, R. Paul; Scardera, Giuseppe; Rodgers, Marianne P.; Mohajeri, Nahid; Shiradkar, Narendra; Dhere, Neelkanth G.; Wohlgemuth, John; Rudack, Andrew C.; Schoenfeld, Winston V.

    2014-10-01

    In this work, the use of manufacturing metrology across the supply chain to improve crystalline silicon (c-Si) photovoltaic (PV) module reliability and durability is addressed. Additionally, an overview and summary of a recent extensive literature survey of relevant measurement techniques aimed at reducing or eliminating the probability of field failures is presented. An assessment of potential gaps is also given, wherein the PV community could benefit from new research and demonstration efforts. This review is divided into three primary areas representing different parts of the c-Si PV supply chain: (1) feedstock production, crystallization and wafering; (2) cell manufacturing; and (3) module manufacturing.

  7. The application of encapsulation material stability data to photovoltaic module life assessment

    NASA Technical Reports Server (NTRS)

    Coulbert, C. D.

    1983-01-01

    For any piece of hardware that degrades when subject to environmental and application stresses, the route or sequence that describes the degradation process may be summarized in terms of six key words: LOADS, RESPONSE, CHANGE, DAMAGE, FAILURE, and PENALTY. Applied to photovoltaic modules, these six factors form the core outline of an expanded failure analysis matrix for unifying and integrating relevant material degradation data and analyses. An important feature of this approach is the deliberate differentiation between factors such as CHANGE, DAMAGE, and FAILURE. The application of this outline to materials degradation research facilitates the distinction between quantifying material property changes and quantifying module damage or power loss with their economic consequences. The approach recommended for relating material stability data to photovoltaic module life is to use the degree of DAMAGE to (1) optical coupling, (2) encapsulant package integrity, (3) PV circuit integrity or (4) electrical isolation as the quantitative criterion for assessing module potential service life rather than simply using module power loss.

  8. The application of encapsulation material stability data to photovoltaic module life assessment

    NASA Astrophysics Data System (ADS)

    Coulbert, C. D.

    1983-04-01

    For any piece of hardware that degrades when subject to environmental and application stresses, the route or sequence that describes the degradation process may be summarized in terms of six key words: LOADS, RESPONSE, CHANGE, DAMAGE, FAILURE, and PENALTY. Applied to photovoltaic modules, these six factors form the core outline of an expanded failure analysis matrix for unifying and integrating relevant material degradation data and analyses. An important feature of this approach is the deliberate differentiation between factors such as CHANGE, DAMAGE, and FAILURE. The application of this outline to materials degradation research facilitates the distinction between quantifying material property changes and quantifying module damage or power loss with their economic consequences. The approach recommended for relating material stability data to photovoltaic module life is to use the degree of DAMAGE to (1) optical coupling, (2) encapsulant package integrity, (3) PV circuit integrity or (4) electrical isolation as the quantitative criterion for assessing module potential service life rather than simply using module power loss.

  9. Fabrication of High Contrast Gratings for the Spectrum Splitting Dispersive Element in a Concentrated Photovoltaic System.

    PubMed

    Yao, Yuhan; Liu, He; Wu, Wei

    2015-07-18

    High contrast gratings are designed and fabricated and its application is proposed in a parallel spectrum splitting dispersive element that can improve the solar conversion efficiency of a concentrated photovoltaic system. The proposed system will also lower the solar cell cost in the concentrated photovoltaic system by replacing the expensive tandem solar cells with the cost-effective single junction solar cells. The structures and the parameters of high contrast gratings for the dispersive elements were numerically optimized. The large-area fabrication of high contrast gratings was experimentally demonstrated using nanoimprint lithography and dry etching. The quality of grating material and the performance of the fabricated device were both experimentally characterized. By analyzing the measurement results, the possible side effects from the fabrication processes are discussed and several methods that have the potential to improve the fabrication processes are proposed, which can help to increase the optical efficiency of the fabricated devices.

  10. Optimum Concentration Ratio Analysis Using Dynamic Thermal Model for Concentrated Photovoltaic System

    DTIC Science & Technology

    2012-03-22

    solar cells , the quantum efficiency β approaches unity for all wavelengths with energies greater than the...different semiconductor material solar cells , such as GaAs , InGaP, CdTe, and other high- efficiency cell materials to investigate the thermal properties...photovoltaic conversion, and CSP systems represent the highest - efficiency solar energy systems currently on the market [8]. The increased solar

  11. Durability of Poly(Methyl Methacrylate) Lenses Used in Concentrating Photovoltaic Technology (Revised) (Presentation)

    SciTech Connect

    Miller, D. C.; Carloni, J. D.; Pankow, J. W.; Gjersing, E. L.; To, B.; Packard, C. E.; Kennedy, C. E.; Kurtz, S. R.

    2012-01-01

    Concentrating photovoltaic (CPV) technology recently gained interest based on its expected low levelized cost of electricity, high efficiency, and scalability. Many CPV systems employ Fresnel lenses composed of poly(methyl methacrylate) (PMMA) to obtain a high optical flux density on the cell. The optical and mechanical durability of these lenses, however, is not well established relative to the desired surface life of 30 years. Our research aims to quantify the expected lifetime of PMMA in key market locations (FL, AZ, and CO).

  12. Earth abundant thin film technology for next generation photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Alapatt, Githin Francis

    With a cumulative generation capacity of over 100 GW, Photovoltaics (PV) technology is uniquely poised to become increasingly popular in the coming decades. Although, several breakthroughs have propelled PV technology, it accounts for only less than 1% of the energy produced worldwide. This aspect of the PV technology is primarily due to the somewhat high cost per watt, which is dependent on the efficiency of the PV cells as well as the cost of manufacturing and installing them. Currently, the efficiency of the PV conversion process is limited to about 25% for commercial terrestrial cells; improving this efficiency can increase the penetration of PV worldwide rapidly. A critical review of all possibilities pursued in the public domain reveals serious shortcomings and manufacturing issues. To make PV generated power a reality in every home, a Multi-Junction Multi-Terminal (MJMT) PV architecture can be employed combining silicon and another earth abundant material. However, forming electronic grade thin films of earth abundant materials is a non-trivial challenge; without solving this, it is impossible to increase the overall PV efficiency. Deposition of Copper (I) Oxide, an earth abundant semiconducting material, was conducted using an optimized Photo assisted Chemical Vapor Deposition process. X-Ray Diffraction, Ellipsometry, Transmission Electron Microscopy, and Profilometry revealed that the films composed of Cu2O of about 90 nm thickness and the grain size was as large as 600 nm. This result shows an improvement in material properties over previously grown thin films of Cu2O. Measurement of I-V characteristics of a diode structure composed of the Cu2O indicates an increase in On/Off ratio to 17,000 from the previous best value of 800. These results suggest that the electronic quality of the thin films deposited using our optimized process to be better than the results reported elsewhere. Using this optimized thin film forming technique, it is now possible to

  13. Optimal design of inverted truncated pyramid with Fresnel lens for concentrated photovoltaic Units

    NASA Astrophysics Data System (ADS)

    El-Yahyaoui, S.; El Himer, S.; Mechaqrane, A.; Ahaitouf, A.

    2017-03-01

    The aim of the presented work was to determine the optimum parameters of inverter truncated rectangular pyramid with Fresnel lenses. The use of secondary optical element (SOE) in a concentrated photovoltaic system can be effective in redirecting the sun light into the solar cell, increasing the concentration as well as improving the energy uniformity on the solar cell Ray tracing technique was used to simulate the optical characteristics of the CPV unit with various design parameters of the component. Finally, a typical concentrator was designed by using three possible materials, the Fused Silica, the BK7 and the PMMA.

  14. Modeling the irradiance and temperature rependence of photovoltaic modules in PVsyst

    DOE PAGES

    Sauer, Kenneth J.; Roessler, Thomas; Hansen, Clifford W.

    2014-11-10

    In order to reliably simulate the energy yield of photovoltaic (PV) systems, it is necessary to have an accurate model of how the PV modules perform with respect to irradiance and cell temperature. Building on previous work that addresses the irradiance dependence, two approaches to fit the temperature dependence of module power in PVsyst have been developed and are applied here to recent multi-irradiance and -temperature data for a standard Yingli Solar PV module type. The results demonstrate that it is possible to match the measured irradiance and temperature dependence of PV modules in PVsyst. As a result, improvements inmore » energy yield prediction using the optimized models relative to the PVsyst standard model are considered significant for decisions about project financing.« less

  15. Outdoor Performance of a Thin-Film Gallium-Arsenide Photovoltaic Module

    SciTech Connect

    Silverman, T. J.; Deceglie, M. G.; Marion, B.; Cowley, S.; Kayes, B.; Kurtz, S.

    2013-06-01

    We deployed a 855 cm2 thin-film, single-junction gallium arsenide (GaAs) photovoltaic (PV) module outdoors. Due to its fundamentally different cell technology compared to silicon (Si), the module responds differently to outdoor conditions. On average during the test, the GaAs module produced more power when its temperature was higher. We show that its maximum-power temperature coefficient, while actually negative, is several times smaller in magnitude than that of a Si module used for comparison. The positive correlation of power with temperature in GaAs is due to temperature-correlated changes in the incident spectrum. We show that a simple correction based on precipitable water vapor (PWV) brings the photocurrent temperature coefficient into agreement with that measured by other methods and predicted by theory. The low operating temperature and small temperature coefficient of GaAs give it an energy production advantage in warm weather.

  16. Modeling the irradiance and temperature rependence of photovoltaic modules in PVsyst

    SciTech Connect

    Sauer, Kenneth J.; Roessler, Thomas; Hansen, Clifford W.

    2014-11-10

    In order to reliably simulate the energy yield of photovoltaic (PV) systems, it is necessary to have an accurate model of how the PV modules perform with respect to irradiance and cell temperature. Building on previous work that addresses the irradiance dependence, two approaches to fit the temperature dependence of module power in PVsyst have been developed and are applied here to recent multi-irradiance and -temperature data for a standard Yingli Solar PV module type. The results demonstrate that it is possible to match the measured irradiance and temperature dependence of PV modules in PVsyst. As a result, improvements in energy yield prediction using the optimized models relative to the PVsyst standard model are considered significant for decisions about project financing.

  17. Partial Shade Stress Test for Thin-Film Photovoltaic Modules: Preprint

    SciTech Connect

    Silverman, Timothy J.; Deceglie, Michael G.; Deline, Chris; Kurtz, Sarah

    2015-09-02

    Partial shade of monolithic thin-film PV modules can cause reverse-bias conditions leading to permanent damage. In this work, we propose a partial shade stress test for thin-film PV modules that quantifies permanent performance loss. We designed the test with the aid of a computer model that predicts the local voltage, current and temperature stress that result from partial shade. The model predicts the module-scale interactions among the illumination pattern, the electrical properties of the photovoltaic material and the thermal properties of the module package. The test reproduces shading and loading conditions that may occur in the field. It accounts for reversible light-induced performance changes and for additional stress that may be introduced by light-enhanced reverse breakdown. We present simulated and experimental results from the application of the proposed test.

  18. Photovoltaic Cz silicon module improvements. Annual technical progress report, November 9, 1995--November 8, 1996

    SciTech Connect

    King, R.R.; Mitchell, K.W.; Jester, T.L.

    1998-02-01

    Work focused on reducing the cost per watt of Cz silicon photovoltaic modules under Phase I of Siemens Solar Industries` DOE/NREL PVMaT 4A subcontract is described. Module cost components are analyzed and solutions to high-cost items are discussed in terms of specific module designs. The approaches of using larger cells and modulus to reduce per-part processing cost, and of minimizing yield loss are particularly leveraging. Yield components for various parts of the fabrication process and various types of defects are shown, and measurements of the force required to break wafers throughout the cell fabrication sequence are given. The most significant type of yield loss is mechanical breakage. The implementation of statistical process control on key manufacturing processes at Siemens Solar Industries is described. Module configurations prototyped during Phase I of this project and scheduled to begin production in Phase II have a projected cost per watt reduction of 19%.

  19. The Stretched Lens Array (SLA): An Ultra-Light Photovoltaic Concentrator

    NASA Astrophysics Data System (ADS)

    ONeill, Mark J.; Pisczor, Michael F.; Eskenazi, Michael I.; McDanal, A. J.; George, Patrick J.; Botke, Matthew M.; Brandhorst, Henry W.; Edwards, David L.; Jaster, Paul A.

    2002-10-01

    A high-performance, ultralight, photovoltaic concentrator array is being developed for space power. The stretched lens array (SLA) uses stretched-membrane, silicone Fresnel lenses to concentrate sunlight onto triple-junction photovoltaic cells. The cells are mounted to a composite radiator structure. The entire solar array wing, including lenses, photovoltaic cell flex circuits, composite panels, hinges, yoke, wiring harness, and deployment mechanisms, has a mass density of 1.6 kg/sq.m. NASA Glenn has measured 27.4% net SLA panel efficiency, or 375 W/sq.m. power density, at room temperature. At GEO operating cell temperature (80 C), this power density will be 300 W/sq.m., resulting in more than 180 W/kg specific power at the full wing level. SLA is a direct ultralight descendent of the successful SCARLET array on NASA's Deep Space 1 spacecraft. This paper describes the evolution from SCARLET to SLA, summarizes the SLA's key features, and provides performance and mass data for this new concentrator array.

  20. The Stretched Lens Array (SLA): An Ultra-Light Photovoltaic Concentrator

    NASA Technical Reports Server (NTRS)

    ONeill, Mark J.; Pisczor, Michael F.; Eskenazi, Michael I.; McDanal, A. J.; George, Patrick J.; Botke, Matthew M.; Brandhorst, Henry W.; Edwards, David L.; Jaster, Paul A.

    2002-01-01

    A high-performance, ultralight, photovoltaic concentrator array is being developed for space power. The stretched lens array (SLA) uses stretched-membrane, silicone Fresnel lenses to concentrate sunlight onto triple-junction photovoltaic cells. The cells are mounted to a composite radiator structure. The entire solar array wing, including lenses, photovoltaic cell flex circuits, composite panels, hinges, yoke, wiring harness, and deployment mechanisms, has a mass density of 1.6 kg/sq.m. NASA Glenn has measured 27.4% net SLA panel efficiency, or 375 W/sq.m. power density, at room temperature. At GEO operating cell temperature (80 C), this power density will be 300 W/sq.m., resulting in more than 180 W/kg specific power at the full wing level. SLA is a direct ultralight descendent of the successful SCARLET array on NASA's Deep Space 1 spacecraft. This paper describes the evolution from SCARLET to SLA, summarizes the SLA's key features, and provides performance and mass data for this new concentrator array.

  1. Potential-induced degradation of Cu(In,Ga)Se2 photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Seira; Jonai, Sachiko; Hara, Kohjiro; Komaki, Hironori; Shimizu-Kamikawa, Yukiko; Shibata, Hajime; Niki, Shigeru; Kawakami, Yuji; Masuda, Atsushi

    2015-08-01

    Potential-induced degradation (PID) of Cu(In,Ga)Se2 (CIGS) photovoltaic (PV) modules fabricated from integrated submodules is investigated. PID tests were performed by applying a voltage of -1000 V to connected submodule interconnector ribbons at 85 °C. The normalized energy conversion efficiency of a standard module decreases to 0.2 after the PID test for 14 days. This reveals that CIGS modules suffer PID under this experimental condition. In contrast, a module with non-alkali glass shows no degradation, which implies that the degradation occurs owing to alkali metal ions, e.g., Na+, migrating from the cover glass. The results of dynamic secondary ion mass spectrometry show Na accumulation in the n-ZnO transparent conductive oxide layer of the degraded module. A CIGS PV module with an ionomer (IO) encapsulant instead of a copolymer of ethylene and vinyl acetate shows no degradation. This reveals that the IO encapsulant can prevent PID of CIGS modules. A degraded module can recover from its performance losses by applying +1000 V to connected submodule interconnector ribbons from an Al plate placed on the test module.

  2. Degradation of Photovoltaic Modules Under High Voltage Stress in the Field: Preprint

    SciTech Connect

    del Cueto, J. A.; Rummel, S. R.

    2010-08-01

    The degradation in performance for eight photovoltaic (PV) modules stressed at high voltage (HV) is presented. Four types of modules--tandem-junction and triple-junction amorphous thin-film silicon, plus crystalline and polycrystalline silicon modules--were tested, with a pair of each biased at opposite polarities. They were deployed outdoors between 2001 and 2009 with their respective HV leakage currents through the module encapsulation continuously monitored with a data acquisition system, along with air temperature and relative humidity. For the first 5 years, all modules were biased continuously at fixed 600 VDC, day and night. In the last 2 years, the modules were step-bias stressed cyclically up and down in voltage between 10 and 600 VDC, in steps of tens to hundreds of volts. This allowed characterization of leakage current versus voltage under a large range of temperature and moisture conditions, facilitating determination of leakage paths. An analysis of the degradation is presented, along with integrated leakage charge. In HV operation: the bulk silicon modules degraded either insignificantly or at rates of 0.1%/yr higher than modules not biased at HV; for the thin-film silicon modules, the added loss rates are insignificant for one type, or 0.2%/yr-0.6%/yr larger for the other type.

  3. Thin-film-based CdTe photovoltaic module characterization: Measurements and energy prediction improvement

    NASA Astrophysics Data System (ADS)

    Lay-Ekuakille, A.; Arnesano, A.; Vergallo, P.

    2013-01-01

    Photovoltaic characterization is a topic of major interest in the field of renewable energy. Monocrystalline and polycrystalline modules are mostly used and, hence characterized since many laboratories have data of them. Conversely, cadmium telluride (CdTe), as thin-film module are, in some circumstances, difficult to be used for energy prediction. This work covers outdoor testing of photovoltaic modules, in particular that regarding CdTe ones. The scope is to obtain temperature coefficients that best predict the energy production. A First Solar (K-275) module has been used for the purposes of this research. Outdoor characterizations were performed at Department of Innovation Engineering, University of Salento, Lecce, Italy. The location of Lecce city represents a typical site in the South Italy. The module was exposed outdoor and tested under clear sky conditions as well as under cloudy sky ones. During testing, the global-inclined irradiance varied between 0 and 1500 W/m2. About 37 000 I-V characteristics were acquired, allowing to process temperature coefficients as a function of irradiance and ambient temperature. The module was characterized by measuring the full temperature-irradiance matrix in the range from 50 to 1300 W/m2 and from -1 to 40 W/m2 from October 2011 to February 2012. Afterwards, the module energy output, under real conditions, was calculated with the "matrix method" of SUPSI-ISAAC and the results were compared with the five months energy output data of the same module measured with the outdoor energy yield facility in Lecce.

  4. Thin-film-based CdTe photovoltaic module characterization: measurements and energy prediction improvement.

    PubMed

    Lay-Ekuakille, A; Arnesano, A; Vergallo, P

    2013-01-01

    Photovoltaic characterization is a topic of major interest in the field of renewable energy. Monocrystalline and polycrystalline modules are mostly used and, hence characterized since many laboratories have data of them. Conversely, cadmium telluride (CdTe), as thin-film module are, in some circumstances, difficult to be used for energy prediction. This work covers outdoor testing of photovoltaic modules, in particular that regarding CdTe ones. The scope is to obtain temperature coefficients that best predict the energy production. A First Solar (K-275) module has been used for the purposes of this research. Outdoor characterizations were performed at Department of Innovation Engineering, University of Salento, Lecce, Italy. The location of Lecce city represents a typical site in the South Italy. The module was exposed outdoor and tested under clear sky conditions as well as under cloudy sky ones. During testing, the global-inclined irradiance varied between 0 and 1500 W/m(2). About 37,000 I-V characteristics were acquired, allowing to process temperature coefficients as a function of irradiance and ambient temperature. The module was characterized by measuring the full temperature-irradiance matrix in the range from 50 to 1300 W/m(2) and from -1 to 40 W/m(2) from October 2011 to February 2012. Afterwards, the module energy output, under real conditions, was calculated with the "matrix method" of SUPSI-ISAAC and the results were compared with the five months energy output data of the same module measured with the outdoor energy yield facility in Lecce.

  5. Pump and Flow Control Subassembly of Thermal Control Subsystem for Photovoltaic Power Module

    NASA Technical Reports Server (NTRS)

    Motil, Brian; Santen, Mark A.

    1993-01-01

    The pump and flow control subassembly (PFCS) is an orbital replacement unit (ORU) on the Space Station Freedom photovoltaic power module (PVM). The PFCS pumps liquid ammonia at a constant rate of approximately 1170 kg/hr while providing temperature control by flow regulation between the radiator and the bypass loop. Also, housed within the ORU is an accumulator to compensate for fluid volumetric changes as well as the electronics and firmware for monitoring and control of the photovoltaic thermal control system (PVTCS). Major electronic functions include signal conditioning, data interfacing and motor control. This paper will provide a description of each major component within the PFCS along with performance test data. In addition, this paper will discuss the flow control algorithm and describe how the nickel hydrogen batteries and associated power electronics will be thermally controlled through regulation of coolant flow to the radiator.

  6. Pump and flow control subassembly of thermal control subsystem for photovoltaic power module

    NASA Astrophysics Data System (ADS)

    Motil, Brian; Santen, Mark A.

    The pump and flow control subassembly (PFCS) is an orbital replacement unit (ORU) on the Space Station Freedom photovoltaic power module (PVM). The PFCS pumps liquid ammonia at a constant rate of approximately 1170 kg/hr while providing temperature control by flow regulation between the radiator and the bypass loop. Also, housed within the ORU is an accumulator to compensate for fluid volumetric changes as well as the electronics and firmware for monitoring and control of the photovoltaic thermal control system (PVTCS). Major electronic functions include signal conditioning, data interfacing and motor control. This paper will provide a description of each major component within the PFCS along with performance test data. In addition, this paper will discuss the flow control algorithm and describe how the nickel hydrogen batteries and associated power electronics will be thermally controlled through regulation of coolant flow to the radiator.

  7. Design construction and analysis of solar ridge concentrator photovoltaic (PV) system to improve battery charging performance.

    PubMed

    Narasimman, Kalaiselvan; Selvarasan, Iniyan

    2016-05-01

    A ridge concentrator photovoltaic system for a 10W multi-crystalline solar panel was designed with the concentration ratios of 1X and 2X. The ray tracing model of ridge concentrator photovoltaic system was carried out using Trace-Pro simulation. The optimum tilt angle for the concentrator PV system throughout the year was computed. The electrical parameters of the 3 panels were analyzed. The effect of temperature on the electrical performance of the panel was also studied. The reduction of voltage due to increasing panel temperature was managed by MPES type Charge controller. Glass reflector with reflectivity 0.95 was chosen as the ridge wall for the concentrator system. The maximum power outputs for the 1X and 2X panel reached were 9W and 10.5W with glass reflector. The percentage of power improvement for 1X and 2X concentrations were 22.3% and 45.8% respectively. The 2X concentrated panel connected battery takes lower time to charge compared with normal panel connected battery.

  8. On the dust-equivalent series resistance of a photovoltaic concentrator

    NASA Astrophysics Data System (ADS)

    Zakzouk, A. K. M.

    1984-02-01

    A new concept for treating the effects of dust on the electrical performance of photovoltaic concentrators is presented in the paper. The dust concentration in the atmospheric air around the concentrator is measured continuously during the test period. The rate of dust accumulation on the concentrator surface is determined. The concentrator performance degradation, as a result of dust accumulation, is related to the amount of dust accumulated per unit area of the collector surface (in g/sq m) rather than the exposure time. It has been shown that major reductions in the short-circuit current and the efficiency are observed for dust accumulations up to 5.4 g/sq m. The accumulation of dust on the photovoltaic concentrator causes a successively larger 'rounding' of the I/V characteristic at constant incident direct normal radiation intensity and constant cell temperature. This effect is equivalent to an increase in the internal series resistance of the concentrator. This dust-equivalent series resistance increases with increasing dust accumulation.

  9. A photovoltaic 12/1 concentrating solar power system with a unique launch stowing configuration

    SciTech Connect

    Falbel, G.

    1998-07-01

    Recent advancements in photovoltaic solar cells made from gallium arsenide (GaAs) have shown that with concentration ratios greater than one solar constant, overall efficiencies up to 23% can be achieved. A second issue applicable to solar power systems for spacecraft is the cost driver, which requires that the efficiency/weight ratio be improved so that solar panels with high output, weighing less, will reduce payload weights, which, in turn, reduces launch costs. This has resulted in a Figure of Merit being introduced to grade the characteristics of solar panels for spacecraft. This Figure of Merit defines a ratio of watts/kilogram for a solar panel. Typical flat plate panels on current spacecraft, fabricated with silicon solar cells without concentration, provide Figures of Merit of 25 to 30 watts/Kg. This paper describes a new design of a 12/1 solar concentrator in which conservative calculations show improvements on this Figure of Merit by a major factor. An ultra-lightweight cylindrical solar concentrator is coiled up around a spacecraft in the launch mode, using the same principle as is used in Lufkin type metal measuring tapes. This provides a high volumetric efficiency launch folded mode as compared to the current method of accordion pleats of flat solar panels. The deployment means of this coiled launch mode configuration is much simpler and inherently more reliable than the current unfolding of accordion pleats, and is self powered by the spring action of the coiled cylindrical aluminum mirror. A special triangular heat pipe transfers the heat absorbed by the solar array to the cylindrical mirror, which also acts as the heat dissipator. Through the use of flexible bellows in the heat pipe assembly the assembly collapses to a cylindrical shape having a radial thickness of less than 1 inch, so that only two coils of this concentrating collector around a 10 ft diameter spacecraft results in a 2 ft. wide, x 66 ft. long deployed collector module capable of

  10. Photovoltaic concentrator optical system design: Solar energy engineering from physics to field

    NASA Astrophysics Data System (ADS)

    Coughenour, Blake Michael

    This dissertation describes the design, development, and field validation of a concentrator photovoltaic (CPV) solar energy system. The challenges of creating a highly efficient yet low-cost system architecture come from many sources. The solid-state physics of photovoltaic devices present fundamental limits to photoelectron conversion efficiency, while the electrical and thermal characteristics of widely available materials limit the design arena. Furthermore, the need for high solar spectral throughput, evenly concentrated sunlight, and tolerance to off-axis pointing places strict illumination requirements on the optical design. To be commercially viable, the cost associated with all components must be minimized so that when taken together, the absolute installed cost of the system in kWh is lower than any other solar energy method, and competitive with fossil fuel power generation. The work detailed herein focuses specifically on unique optical design and illumination concepts discovered when developing a viable commercial CPV system. By designing from the ground up with the fundamental physics of photovoltaic devices and the required system tolerances in mind, a select range of optical designs are determined and modeled. Component cost analysis, assembly effort, and development time frame further influence design choices to arrive at a final optical system design. When coupled with the collecting mirror, the final optical hardware unit placed at the focus generates more than 800W, yet is small and lightweight enough to hold in your hand. After fabrication and installation, the completed system's illumination, spectral, and thermal performance is validated with on-sun operational testing.

  11. Commercial/industrial photovoltaic module and array requirement study. Low-cost solar array project engineering area

    NASA Astrophysics Data System (ADS)

    1981-12-01

    Design requirements for photovoltaic modules and arrays used in commercial and industrial applications were identified. Building codes and referenced standards were reviewed for their applicability to commercial and industrial photovoltaic array installation. Four general installation types were identified - integral (replaces roofing), direct (mounted on top of roofing), stand-off (mounted away from roofing), and rack (for flat or low slope roofs, or ground mounted). Each of the generic mounting types can be used in vertical wall mounting systems. This implies eight mounting types exist in the commercial/industrial sector. Installation costs were developed for these mounting types as a function of panel/module size. Cost drivers were identified. Studies were performed to identify optimum module shapes and sizes and operating voltage cost drivers. The general conclusion is that there are no perceived major obstacles to the use of photovoltaic modules in commercial/industrial arrays.

  12. Commercial/industrial photovoltaic module and array requirement study. Low-cost solar array project engineering area

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Design requirements for photovoltaic modules and arrays used in commercial and industrial applications were identified. Building codes and referenced standards were reviewed for their applicability to commercial and industrial photovoltaic array installation. Four general installation types were identified - integral (replaces roofing), direct (mounted on top of roofing), stand-off (mounted away from roofing), and rack (for flat or low slope roofs, or ground mounted). Each of the generic mounting types can be used in vertical wall mounting systems. This implies eight mounting types exist in the commercial/industrial sector. Installation costs were developed for these mounting types as a function of panel/module size. Cost drivers were identified. Studies were performed to identify optimum module shapes and sizes and operating voltage cost drivers. The general conclusion is that there are no perceived major obstacles to the use of photovoltaic modules in commercial/industrial arrays.

  13. Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides.

    PubMed

    Yoon, Jongseung; Li, Lanfang; Semichaevsky, Andrey V; Ryu, Jae Ha; Johnson, Harley T; Nuzzo, Ralph G; Rogers, John A

    2011-06-14

    Unconventional methods to exploit monocrystalline silicon and other established materials in photovoltaic (PV) systems can create new engineering opportunities, device capabilities and cost structures. Here we show a type of composite luminescent concentrator PV system that embeds large scale, interconnected arrays of microscale silicon solar cells in thin matrix layers doped with luminophores. Photons that strike cells directly generate power in the usual manner; those incident on the matrix launch wavelength-downconverted photons that reflect and waveguide into the sides and bottom surfaces of the cells to increase further their power output, by more than 300% in examples reported here. Unlike conventional luminescent photovoltaics, this unusual design can be implemented in ultrathin, mechanically bendable formats. Detailed studies of design considerations and fabrication aspects for such devices, using both experimental and computational approaches, provide quantitative descriptions of the underlying materials science and optics.

  14. Contribution of concentrator photovoltaic installations to grid stability and power quality

    NASA Astrophysics Data System (ADS)

    del Toro García, Xavier; Roncero-Sánchez, Pedro; Torres, Alfonso Parreño; Vázquez, Javier

    2012-10-01

    Large-scale integration of Photovoltaic (PV) generation systems, including Concentrator Photovoltaic (CPV) technologies, will require the contribution and support of these technologies to the management and stability of the grid. New regulations and grid codes for PV installations in countries such as Spain have recently included dynamic voltage control support during faults. The PV installation must stay connected to the grid during voltage dips and inject reactive power in order to enhance the stability of the system. The existing PV inverter technologies based on the Voltage-Source Converter (VSC) are in general well suited to provide advanced grid-support characteristics. Nevertheless, new advanced control schemes and monitoring techniques will be necessary to meet the most demanding requirements.

  15. Development of a dome Fresnel lens/gallium arsenide photovoltaic concentrator for space applications

    NASA Technical Reports Server (NTRS)

    O'Neill, Mark J.; Piszczor, Michael F.

    1987-01-01

    A novel photovoltaic concentrator system is currently being developed. Phase I of the program, completed in late 1986, produced a conceptual design for the concentrator system, including an array weight and performance estimates based on optical, electrical, and thermal analyses. Phase II of the program, just underway, concerns the fabrication and testing of prototype concentrator panels of the design. The concentrator system uses dome Fresnel lenses for optical concentration; gallium arsenide concentrator cells for power generation; prismatic cell covers to eliminate gridline obscuration losses; a backplane radiator for heat rejection; and a honeycomb structure for the deployable panel assembly. The conceptual design of the system, its anticipated performance, and its estimated weight are reported.

  16. Use of Melt Flow Rate Test in Reliability Study of Thermoplastic Encapsulation Materials in Photovoltaic Modules

    SciTech Connect

    Moseley, J.; Miller, D.; Shah, Q.-U.-A. S. J.; Sakurai, K.; Kempe, M.; Tamizhmani, G.; Kurtz, S.

    2011-10-01

    Use of thermoplastic materials as encapsulants in photovoltaic (PV) modules presents a potential concern in terms of high temperature creep, which should be evaluated before thermoplastics are qualified for use in the field. Historically, the issue of creep has been avoided by using thermosetting polymers as encapsulants, such as crosslinked ethylene-co-vinyl acetate (EVA). Because they lack crosslinked networks, however, thermoplastics may be subject to phase transitions and visco-elastic flow at the temperatures and mechanical stresses encountered by modules in the field, creating the potential for a number of reliability and safety issues. Thermoplastic materials investigated in this study include PV-grade uncured-EVA (without curing agents and therefore not crosslinked); polyvinyl butyral (PVB); thermoplastic polyurethane (TPU); and three polyolefins (PO), which have been proposed for use as PV encapsulation. Two approaches were used to evaluate the performance of these materials as encapsulants: module-level testing and a material-level testing.

  17. Creep in Photovoltaic Modules: Examining the Stability of Polymeric Materials and Components

    SciTech Connect

    Miller, D. C.; Kempe, M. D.; Glick, S. H.; Kurtz, S. R.

    2011-02-01

    Interest in renewable energy has motivated the implementation of new polymeric materials in photovoltaic modules. Some of these are non-cross-linked thermoplastics, in which there is a potential for new behaviors to occur, including phase transformation and visco-elastic flow. Differential scanning calorimetry and rheometry data were obtained and then combined with existing site-specific time-temperature information in a theoretical analysis to estimate the displacement expected to occur during module service life. The analysis identified that, depending on the installation location, module configuration and/or mounting configuration, some of the thermoplastics are expected to undergo unacceptable physical displacement. While the examples here focus on encapsulation materials, the concerns apply equally to the frame, junction-box, and mounting-adhesive technologies.

  18. Low Earth orbit durability evaluation of protected silicone for advanced refractive photovoltaic concentrator arrays

    NASA Technical Reports Server (NTRS)

    Degroh, Kim K.; Mccollum, Timothy A.

    1994-01-01

    The need for efficient, cost effective sources of electrical power in space has led to the development of photovoltaic power systems which make use of novel refractive solar concentrators. These concentrators have been conceived in both point-focus and linear-focus designs. Current concentrator lenses are fabricated from flexible silicones with Fresnel facets along their inside surface. To insure the efficient operation of these power systems, the concentrator lenses must be durable and the silicone material must remain specularly transmitting over a reasonable lifetime in low Earth orbit (LEO) and other space environments. Because of the vulnerability of silicones to atomic oxygen and ultraviolet radiation in LEO these lenses have been coated with a multi-layer metal oxide protective coating. The objective of this research was to evaluate the LEO durability of the multilayer coated silicone for advanced refractive photovoltaic concentrator arrays with respect to optical properties and microstructure. Flat metal oxide coated silicone samples were exposed to ground-laboratory and in-space atomic oxyqen for durability evaluation.

  19. Optical simulation of photovoltaic modules with multiple textured interfaces using the matrix-based formalism OPTOS.

    PubMed

    Tucher, Nico; Eisenlohr, Johannes; Gebrewold, Habtamu; Kiefel, Peter; Höhn, Oliver; Hauser, Hubert; Goldschmidt, Jan Christoph; Bläsi, Benedikt

    2016-07-11

    The OPTOS formalism is a matrix-based approach to determine the optical properties of textured optical sheets. It is extended within this work to enable the modelling of systems with an arbitrary number of textured, plane-parallel interfaces. A matrix-based system description is derived that accounts for the optical reflection and transmission interaction between all textured interfaces. Using OPTOS, we calculate reflectance and absorptance of complete photovoltaic module stacks, which consist of encapsulated silicon solar cells featuring textures that operate in different optical regimes. As exemplary systems, solar cells with and without module encapsulation are shown to exhibit a considerable absorptance gain if the random pyramid front side texture is combined with a diffractive rear side grating. A variation of the sunlight's angle of incidence reveals that the grating gain is almost not affected for incoming polar angles up to 60°. Considering as well the good agreement with alternative simulation techniques, OPTOS is demonstrated to be a versatile and efficient method for the optical analysis of photovoltaic modules.

  20. Commercial production of thin-film CdTe photovoltaic modules. Final report

    SciTech Connect

    Brog, T. K.

    1997-10-01

    This annual report describes gains made in the manufacturing process for CdS/CdTe thin film photovoltaics deposited on soda/lime glass. The company was forced to restructure following its inability to manufacture modules which did not suffer extensive degradation. Following this the company restructured its manufacturing process line through a better understanding of the materials and materials processing issues. This led to major improvements in the production of cells, both in terms of the effective yield off the manufacturing line, but also in device stability and cell efficiency.

  1. Concentrating and spectrum splitting optical device in high efficiency CPV module with five bandgaps

    NASA Astrophysics Data System (ADS)

    Taudien, Jerker Y.; Kern, Ludwig A.

    2013-09-01

    There is a need for a high efficiency low cost solar energy conversion system. Currently, most concentrating photovoltaic (CPV) systems concentrate the solar spectrum onto triple junction cells to strive for high conversion efficiencies and low cost. Other approaches to high efficiency use spectrum splitting. Triple junction systems are limited in efficiency and spectrum splitting systems are usually too costly for mass production. The objective is to design a spectrum splitting solar concentrator, using reverse ray tracing methods, to overcome the efficiency and cost limitations of current systems by using a single low cost optical device to concentrate and split the solar spectrum onto a large number of target photovoltaic (PV) cells. Dispersive properties of standard optical materials, such as glass or plastic, are utilized to achieve the desired spectral separation. Reverse ray tracing is used to simultaneously optimize the shape of the top and bottom interfaces of the solar concentrator to achieve the desired split spectrum at the target PV cells. Additional strategies to increase system efficiency and minimize optical losses, including draft surface shading and corner rounding losses, are explored. A CPV module, including the spectrum splitting solar concentrator and five PV cells of different bandgaps, is proposed. This spectrum splitting CPV system has a calculated aggregate cell conversion efficiency that exceeds 45%, has the potential to be mass produced, and meets the need for a high efficiency low cost solar energy conversion system.

  2. Modeling and simulation of the solar concentrator in photovoltaic systems through the application of a new BRDF function model

    NASA Astrophysics Data System (ADS)

    Plachta, Kamil

    2016-04-01

    The paper presents a new algorithm that uses a combination of two models of BRDF functions: Torrance-Sparrow model and HTSG model. The knowledge of technical parameters of a surface is especially useful in the construction of the solar concentrator. The concentrator directs the reflected solar radiation on the surface of photovoltaic panels, increasing the amount of incident radiance. The software applying algorithm allows to calculate surface parameters of the solar concentrator. Performed simulation showing the share of diffuse component and directional component in reflected stream for surfaces made from particular materials. The impact of share of each component in reflected stream on the efficiency of the solar concentrator and photovoltaic surface has also been described. Subsequently, simulation change the value of voltage, current and power output of monocrystalline photovoltaic panels installed in a solar concentrator system has been made for selected surface of materials solar concentrator.

  3. The influence of active cell design on a monolithic organic photovoltaic module: fabrication and simulation

    NASA Astrophysics Data System (ADS)

    Lyu, Hong-Kun; Sim, Jun Hyoung; Jeong, Seonju; Woo, Sung-Ho; Shin, Jang-Kyoo; Han, Yoon Soo

    2011-09-01

    In this study, the influence of an active cell design on the power conversion efficiency (PCE) of a monolithic organic photovoltaic (OPV) module was investigated using experimental methods and circuit simulation. For circuit simulation using computer simulation-based study, the organic PV cell was described by a circuit-based two-diode model and the modules were simulated under several conditions including shading effect, diode model parameters, series resistance and shunt resistance, etc. A unit organic PV cell as a reference device and four types of monolithic organic PV modules with different active cell length were fabricated together on the same glass substrate. The characteristics of the fabricated unit OPV cell were measured and the electrical parameters were extracted to use them for the simulation of four types of monolithic organic PV modules. To analyze the influence of OPV cell design on the PCE of monolithic organic PV modules, the current-voltage (I-V) characteristic curves and the PCEs of the four type monolithic OPV modules with different active cell length were obtained and compared with the simulated results. The simulated I-V curves were matched well with the measured I-V curves for the four types of monolithic organic PV modules with different active cell length. The highest PCE of the monolithic OPV module was 2.86 % with the active cell length of 11.6 mm. We expect that this work is meaningful to enhance the performance of a monolithic OPV module to a certain extent and it offers a method to design a high-efficiency large-area monolithic OPV module.

  4. Ultra-High-Concentration Photovoltaic-Thermal Systems Based on Microfluidic Chip-Coolers

    NASA Astrophysics Data System (ADS)

    Müller, M.; Escher, W.; Ghannam, R.; Goicochea, J.; Michel, B.; Ong, C. L.; Paredes, S.

    2011-12-01

    The electrical efficiency of a photovoltaic-thermal system for coolant inlet temperatures ranging from 25 °C to 75 °C and concentrations from 500 to 1500 suns was investigated experimentally and theoretically. In this system absorbed radiation and thermal losses from the electric circuit are collected in a thermal circuit. This allows one to directly drive a thermal desalination process thereby contributing to an improved system efficiency. A triple-junction solar cell was tested in two different configurations. At 1500 suns the electric efficiency of a silicon microchannel cooler package exceeded the efficiency of a reference package with a copper cooler by 2% and it remained fully functional up to concentrations of 4930 suns. We present a general model for concentrated photovoltaic-thermal systems in which the standard efficiency modeling approaches for triple-junction cells are extended by temperature and concentration dependencies. The currents were modeled both following the Shockley-Queisser and a "real" cell model with temperature dependent material parameters, radiative recombination, and high injection conditions.

  5. High-efficiency thin and compact concentrator photovoltaics using micro-solar cells with via-holes sandwiched between thin lens-array and circuit board

    NASA Astrophysics Data System (ADS)

    Itou, Akihiro; Asano, Tetsuya; Inoue, Daijiro; Arase, Hidekazu; Matsushita, Akio; Hayashi, Nobuhiko; Futakuchi, Ryutaro; Inoue, Kazuo; Yamamoto, Masaki; Fujii, Eiji; Nakagawa, Tohru; Anda, Yoshiharu; Ishida, Hidetoshi; Ueda, Tetsuzo; Fidaner, Onur; Wiemer, Michael; Ueda, Daisuke

    2014-01-01

    We have developed a compact concentrator photovoltaic (CPV) module that comprises micro-solar cells with an area of ≈0.6 × 0.6 mm2 sandwiched between a 20-mm-thick lens array and a 1-mm-thick circuit board with no air gap. To establish electrical connections between the circuit board and the micro-solar cells, we developed a micro-solar cell with positive and negative electrodes on the lower face of the cell. In this study, we demonstrated the photovoltaic performance of the micro-solar cell closely approaches that of the standard solar cell measuring ≈5 × 5 mm2 commonly used in conventional CPVs under concentrated illumination. Our study showed that the negative effect on PV performance of perimeter carrier recombination in the micro-solar cell was insignificant under concentrated illumination. Finally, we assembled our micro-solar cells into a CPV module and achieved the module energy conversion efficiency of 34.7% under outdoor solar illumination.

  6. Photovoltaic Shading Testbed for Module-Level Power Electronics: 2016 Performance Data Update

    SciTech Connect

    Deline, Chris; Meydbray, Jenya; Donovan, Matt

    2016-09-01

    The 2012 NREL report 'Photovoltaic Shading Testbed for Module-Level Power Electronics' provides a standard methodology for estimating the performance benefit of distributed power electronics under partial shading conditions. Since the release of the report, experiments have been conducted for a number of products and for different system configurations. Drawing from these experiences, updates to the test and analysis methods are recommended. Proposed changes in data processing have the benefit of reducing the sensitivity to measurement errors and weather variability, as well as bringing the updated performance score in line with measured and simulated values of the shade recovery benefit of distributed PV power electronics. Also, due to the emergence of new technologies including sub-module embedded power electronics, the shading method has been extended to include power electronics that operate at a finer granularity than the module level. An update to the method is proposed to account for these emerging technologies that respond to shading differently than module-level devices. The partial shading test remains a repeatable test procedure that attempts to simulate shading situations as would be experienced by typical residential or commercial rooftop photovoltaic (PV) systems. Performance data for multiple products tested using this method are discussed, based on equipment from Enphase, Solar Edge, Maxim Integrated and SMA. In general, the annual recovery of shading losses from the module-level electronics evaluated is 25-35%, with the major difference between different trials being related to the number of parallel strings in the test installation rather than differences between the equipment tested. Appendix D data has been added in this update.

  7. Solar concentrator modules with silicone-onglass Fresnel lens panels and multijunction cells.

    PubMed

    Rumyantsev, Valery D

    2010-04-26

    High-efficiency multijunction (MJ) solar cells, being very expensive to manufacture, should only be used in combination with solar concentrators in terrestrial applications. An essential cost reduction of electric power produced by photovoltaic (PV) installations with MJ cells, may be expected by the creation of highly-effective, but inexpensive, elements for optical concentration and sun tracking. This article is an overview of the corresponding approach under development at the Ioffe Physical Technical Institute. The approach to R&D of the solar PV modules is based on the concepts of sunlight concentration by small-aperture area Fresnel lenses and "all-glass" module design. The small-aperture area lenses are arranged as a panel with silicone-on-glass structure where the glass plate serves as the front surface of a module. In turn, high-efficiency InGaP/(In)GaAs/Ge cells are arranged on a rear module panel mounted on a glass plate which functions as a heat sink and integrated protective cover for the cells. The developed PV modules and sun trackers are characterized by simple design, and are regarded as the prototypes for further commercialization.

  8. Solar concentrator modules with silicone-on-glass Fresnel lens panels and multijunction cells.

    PubMed

    Rumyantsev, Valery D

    2010-04-26

    High-efficiency multijunction (MJ) solar cells, being very expensive to manufacture, should only be used in combination with solar concentrators in terrestrial applications. An essential cost reduction of electric power produced by photovoltaic (PV) installations with MJ cells, may be expected by the creation of highly-effective, but inexpensive, elements for optical concentration and sun tracking. This article is an overview of the corresponding approach under development at the Ioffe Physical Technical Institute. The approach to R&D of the solar PV modules is based on the concepts of sunlight concentration by small-aperture area Fresnel lenses and "all-glass" module design. The small-aperture area lenses are arranged as a panel with silicone-on-glass structure where the glass plate serves as the front surface of a module. In turn, high-efficiency InGaP/(In)GaAs/Ge cells are arranged on a rear module panel mounted on a glass plate which functions as a heat sink and integrated protective cover for the cells. The developed PV modules and sun trackers are characterized by simple design, and are regarded as the prototypes for further commercialization.

  9. Manufacturing technology development of the Powergrid{trademark} linear focus photovoltaic concentrator system

    SciTech Connect

    Kaminar, N.; Alexander, T.; Amaya, J.; Bottenberg, W.; Carrie, P.; Chen, K.; Gilbert, D.; Guzman, P.; Hobden, P.; Ross, J.; Sahagian, J.; Rodrigues, D.; Zimmermann, J.

    1999-03-01

    This article reports manufacturing technology improvements developed for the production of the PVI Powergrid{trademark} linear focus photovoltaic concentrator as part of a PVMaT project. The improvements include the development of an advanced, acrylic plastic extrusion system for Fresnel lenses, an automated receiver station, an EVA encapsulation process, an improved collector fabrication method and a lower cost panel frame. These project improvements have prepared PVI for entrance into large-scale production of PV power generation systems. {copyright} {ital 1999 American Institute of Physics.}

  10. Sun tracking controller for multi-kW photovoltaic concentrator system

    NASA Astrophysics Data System (ADS)

    Semma, R. P.; Imamura, M. S.

    A two-axis suntracking controller is presented, which is designed to achieve low cost, high performance reliability, and operational flexibility for multi-kW to multihundred-kW photovoltaic concentrator applications. The controller is based on an active sun sensing approach, allows an array assembly to track the sun within five arcmin, and has the capability to stow the array at night or during inclement weather conditions, communicate with an external computer, and provide autonomous operation and diagnostic monitoring. This third generation design represents a significant improvement over the two earlier generations, which were based on hard-wire logic.

  11. Stationary Optical Concentrator Designs and Wafer Scale Monolithic Integration of Semiconductor Devices for Next Generation Photovoltaic Panels

    NASA Astrophysics Data System (ADS)

    Kim, Jung Min

    A major barrier in utilizing solar energy for large scale deployment is the cost of the photovoltaic (PV) systems. Several approaches have been used for the cost reduction such as by modifying PV system designs in addition to enhancing the efficiency of solar cells. Due to the high cost of materials, minimizing the use of solar cells such as in concentrator type systems is highly attractive for reducing the cost of the PV modules by focusing the incident light onto the PV cell. However concentrator PV systems (CPV) require constant tracking of the sun and hence are complex in design and expensive to operate, except in limited situations such as large scale PV power plants. It is desirable to design new concentrator type systems that do not require continuous tracking of the sun. These systems could ultimately reduce the PV system cost to a minimum while maximizing the power conversion efficiency. In this thesis we propose a simple design for a stationary concentrator photovoltaic (SCPV) system that could significantly reduce the cost of generating electricity using PV devices. Using optical ray tracing simulations, we have been able to design SCPV systems that could reduce the PV module cost by 2--10 times without compromising on the power conversion efficiency of the system. Another alternative approach for sustainable high efficiency PV system design is to develop low cost PV cells for terrestrial applications. To meet the demands of low cost and large scale production, larger and thinner (or flexible) substrates are required. We demonstrated the feasibility of fabricating monolithic interconnected PV devices at the wafer scale (2 inch wafers). In this study, GaSb PV cells grown on semi-insulating GaAs were used as the model material. Crucial device fabrication steps such as a selective etching process have been developed that is necessary for isolating individual devices on the wafer and interconnecting them with sub-micron scale accuracy. Selective etching of

  12. Design of dual-curvature mirror for linear medium concentration photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Lance, Tamir; Ackler, Harold; Finot, Marc

    2012-01-01

    The impact of mirror shape on energy production in Skyline Solar's reflective trough medium concentration photovoltaic system is reviewed using a combination of commercial and proprietary modeling tools. For linear concentrators, an important parameter for efficiency optimization is the uniformity of the flux line on the photovoltaic cells. A significant source of nonuniformity is the discontinuity of reflected light due to the gap between mirrors along the length of the trough. Standard concentrating solar power trough mirrors have a typical length of 1.5 m with a gap between mirrors of 10 to 20 mm. To reduce nonuniformity of the flux line due to this mirror to mirror gap, Skyline Solar developed a dual curvature mirror that stretches the flux line along the trough axis. Extensive modeling and experiments have been conducted to analyze the impact of this design. The methodology of optimization is presented for the X14 Skyline system architecture, and benefits of up to 3% of energy can be realized at locations with latitude below 30 deg.

  13. A high temperature hybrid photovoltaic-thermal receiver employing spectral beam splitting for linear solar concentrators

    NASA Astrophysics Data System (ADS)

    Mojiri, Ahmad; Stanley, Cameron; Rosengarten, Gary

    2015-09-01

    Hybrid photovoltaic/thermal (PV-T) solar collectors are capable of delivering heat and electricity concurrently. Implementing such receivers in linear concentrators for high temperature applications need special considerations such as thermal decoupling of the photovoltaic (pv) cells from the thermal receiver. Spectral beam splitting of concentrated light provides an option for achieving this purpose. In this paper we introduce a relatively simple hybrid receiver configuration that spectrally splits the light between a high temperature thermal fluid and silicon pv cells using volumetric light filtering by semi-conductor doped glass and propylene glycol. We analysed the optical performance of this device theoretically using ray tracing and experimentally through the construction and testing of a full scale prototype. The receiver was mounted on a commercial parabolic trough concentrator in an outdoor experiment. The prototype receiver delivered heat and electricity at total thermal efficiency of 44% and electrical efficiency of 3.9% measured relative to the total beam energy incident on the primary mirror.

  14. Design, construction, and measurement of a dielectric single-mirror two-stage (DSMTS) photovoltaic concentrator

    NASA Astrophysics Data System (ADS)

    Mohedano Arroyo, Ruben; Benitez, Pablo; Minano, Juan C.; Bercero, Francisco; Lobato, Pablo

    2001-11-01

    The 30 X DSMTS is a trough-like photovoltaic concentrator, meant to track the sun in one axis, which has a mirror allocating two concentration stages and a secondary lens that increases its acceptance up to +/- 2.3 degrees. Provided that the sun subtends an angle of +/- 0.256 degrees, such acceptance seems excessive. However, thanks to it, we can relax requirements that often demand accuracy in systems of the kind. For instance, the shape of the mirror can be achieved by simply bending an aluminum sheet. To foresee the results we may expect of this strategy, we carried out some mechanical calculations, whose results are the boundary conditions that lead to a minimum standard deviation on the local slope of the elastic mirror with regards to the theoretical value. We checked by ray tracing that such an error actually provoked a small decrease on the acceptance. This fact persuaded us to carry out the manufacture of two elastic prototypes. In the test that have been performed so far with them we achieved an acceptance angle of +/- 1.63 degrees and a collection efficiency of 98 percent at a geometrical concentration of 30 times, results that can be considered as outstanding in the photovoltaics framework.

  15. Environmental and health aspects of copper-indium-diselenide thin-film photovoltaic modules

    SciTech Connect

    Steinberger, H.; Thumm, W.; Freitag, R.; Moskowitz, P.D.; Chapin, R.

    1994-12-31

    Copper-indium-diselenide (CIS) is a semiconductor compound that can be used to produce thin-film photovoltaic modules. There is on-going research being conducted by various federal agencies and private industries to demonstrate the commercial viability of this material. Because this is a new technology, and because scant information about the health and environmental hazards associated with the use of this material is available, studies have been initiated to characterize the environmental mobility and environmental toxicology of this compound. The objective of these studies is to identify the environmental and health hazards associated with the production, use, and disposal of CIS thin-film photovoltaic modules. The program includes both experimental and theoretical components. Theoretical studies are being undertaken to estimate material flows through the environment for a range of production options as well as use and disposal scenarios. The experimental programs characterize the physical, chemical e.g. leachability and biological parameters e.g. EC{sub 50} in daphnia and algae, and feeding studies in rats.

  16. Qualification and durability tests - Applications for thermal collectors and photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Riesch, G.

    Accelerated and abbreviated durability tests for characterizing the long-term reliability of solar thermal and photovoltaic modules are described. The tests have been designed to provoke behaviors which would normally require years to become manifest, thereby allowing lifetime predictions to be made over a short testing period. Increasing the intensity of the potentially damaging agent, e.g., UV radiation, humidity, a combination of both, is one method, and cycling the specimen through exposures and out of them in repetitive rapid succession, such as in thermal cycling, is another. The two techniques can also be combined. Solar flat plate collectors are presently tested for overpressure resistance of the absorber, leak tests, rain penetration, load carrying capacity, resistance to hail impact, and durability under thermal shock. Trials are also run involving exposure to a dry atmosphere, UV radiation, ozone-contaminatead atmosphere, sulfur dioxide, cyclic damp heat, and salt mist. Photovoltaic modules are tested for thermal strength, in mounting twist tests, for insulation integrity, for ice loading, for humidity freezing, temperature cycling, long exposure to high temperatures, in damp heat in long storage, and to the same atmospheric factors as flat plates.

  17. Health and environmental hazards of CdTe photovoltaic module production, use and decommissioning

    NASA Astrophysics Data System (ADS)

    Moskowitz, P. D.; Steinberger, H.; Thumm, W.

    Health and environmental (H&E) risks presented by CdTe photovoltaic module production, use and decommissioning have been reviewed and discussed by several authors. Several H&E concerns exist. The estimated risks are based on extrapolations of toxicity, environmental mobility, and bioavailability data for other inorganic cadmium compounds. Little information, however, is available about CdTe itself. In response to the increased interest in CdTe, Brookhaven National Laboratory (BNL) has been engaged in a cooperative research program with the National Institute of Environmental Health Sciences (NIEHS), the Fraunhofer Institute for Solid State Technology (IFT), and the GSF Institute of Chemical Ecology to develop fundamental toxicological and environmental data for CdTe. This paper describes the results of these studies, and their potential implications with respect to the H&E hazards presented by CdTe module production, use and decommissioning.

  18. Health and environmental hazards of CdTe photovoltaic module production, use and decommissioning

    SciTech Connect

    Moskowitz, P.D.; Steinberger, H.; Thumm, W.

    1995-02-01

    Health and environmental (H&E) risks presented by CdTe photovoltaic module production, use and decommissioning have been reviewed and discussed by several authors. Several H&E concerns exit. The estimated risks are based on extrapolations of toxicity, environmental mobility, and bioavailability data for other inorganic cadmium compounds. Little information, however, is available about CdTe itself. In response to the increased interest in CdTe, Brookhaven National Laboratory (BNL) has been engaged in a cooperative research program with the National Institute of Environmental Health Sciences (NIEHS), the Fraunhofer Institute for Solid State Technology (IFT), and the GSF Institute of Chemical Ecology to develop fundamental toxicological and environmental data for CdTe. This paper describes the results of these studies, and their potential implications with respect to the H&E hazards presented by CdTe module production, use and decommissioning.

  19. The application of fracture mechanics to failure analysis of photovoltaic solar modules

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Leipold, M. H.

    1981-01-01

    Cracking of silicon solar cells and solar module transparent cover panels such as glass or polymethylmethacrylate (PMMA) is a major cause of photovoltaic solar module failure in field service. Silicon and cover materials are brittle, and cracking of these materials is expected to result from the extension of preexisting flaws under stress. Study of the cracking mechanisms is therefore an appropriate area for the application of fracture mechanics principles. In this study, fracture mechanics techniques were employed to identify the mode of crack propagation, to examine the fracture-initiating flaw, to estimate the nature and magnitude of fracture stress in the field, and to predict analytically the service lifetime. Recommendations for corrective actions are also made.

  20. Analysis of Photovoltaic (PV) Module during Partial Shading based on Simplified Two-Diode Model

    NASA Astrophysics Data System (ADS)

    Chitti Babu, B.; Gurjar, Suresh; Meher, Ashish

    2015-02-01

    Generally, the characteristics of photovoltaic (PV) array are largely affected by solar temperature, solar irradiance, shading patterns, array configuration and location of shading modules. Partial shading is due to moving clouds and shadows of nearby obstacles and can cause a significant degradation in the output of PV system. Hence, the characteristics of PV array get more multifaceted with multiple peaks. The ultimate aim of the paper is to analyze the performance of PV module during such adverse condition based on simplified two-diode model. To reduce the computational time, the simplified two-diode model has a photocurrent source in parallel with two ideal diodes. Only four parameters are required to be calculated from datasheet in order to simulate the model. Moreover, the performance of PV array is evaluated at different shaded patterns and it is found that the model has less computational time and gives accurate results.

  1. Protoflight photovoltaic power module system-level tests in the Space Power Facility

    NASA Technical Reports Server (NTRS)

    Rivera, Juan C.; Kirch, Luke A.

    1989-01-01

    Work Package Four, which includes the NASA-Lewis and Rocketdyne, has selected an approach for the Space Station Freedom Photovoltaic (PV) Power Module flight certification that combines system level qualification and acceptance testing in the thermal vacuum environment: the 'protoflight' vehicle approach. This approach maximizes ground test verification to assure system level performance and to minimize risk of on-orbit failures. The preliminary plans for system level thermal vacuum environmental testing of the protoflight PV Power Module in the NASA-Lewis Space Power Facility (SPF) are addressed. Details of the facility modifications to refurbish SPF, after 13 years of downtime, are briefly discussed. The results of an evaluation of the effectiveness of system level environmental testing in screening out incipient part and workmanship defects and unique failure modes are discussed. Preliminary test objectives, test hardware configurations, test support equipment, and operations, are presented.

  2. Protoflight photovoltaic power module system-level tests in the space power facility

    NASA Technical Reports Server (NTRS)

    Rivera, Juan C.; Kirch, Luke A.

    1989-01-01

    Work Package Four, which includes the NASA-Lewis and Rocketdyne, has selected an approach for the Space Station Freedom Photovoltaic (PV) Power Module flight certification that combines system level qualification and acceptance testing in the thermal vacuum environment: The protoflight vehicle approach. This approach maximizes ground test verification to assure system level performance and to minimize risk of on-orbit failures. The preliminary plans for system level thermal vacuum environmental testing of the protoflight PV Power Module in the NASA-Lewis Space Power Facility (SPF), are addressed. Details of the facility modifications to refurbish SPF, after 13 years of downtime, are briefly discussed. The results of an evaluation of the effectiveness of system level environmental testing in screening out incipient part and workmanship defects and unique failure modes are discussed. Preliminary test objectives, test hardware configurations, test support equipment, and operations are presented.

  3. Effects of Photovoltaic Module Soiling on Glass Surface Resistance and Potential-Induced Degradation

    SciTech Connect

    Hacke, Peter; Burton, Patrick; Hendrickson, Alex; Spataru, Sergiu; Glick, Stephen; Terwilliger, Kent

    2015-06-14

    The sheet resistance of three soil types (Arizona road dust, soot, and sea salt) on glass were measured by the transmission line method as a function of relative humidity (RH) between 39% and 95% at 60 degrees C. Sea salt yielded a 3.5 orders of magnitude decrease in resistance on the glass surface when the RH was increased over this RH range. Arizona road dust showed reduced sheet resistance at lower RH, but with less humidity sensitivity over the range tested. The soot sample did not show significant resistivity change compared to the unsoiled control. Photovoltaic modules with sea salt on their faces were step-stressed between 25% and 95% RH at 60 degrees C applying -1000 V bias to the active cell circuit. Leakage current from the cell circuit to ground ranged between two and ten times higher than that of the unsoiled controls. Degradation rate of modules with salt on the surface increased with increasing RH and time.

  4. Determination of hot-spot susceptibility of multistring photovoltaic modules in a central-station application

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.; Weaver, R. W.; Ross, R. G., Jr.; Spencer, R.; Arnett, J. C.

    1984-01-01

    Part of the effort of the Jet Propulsion Laboratory (JPL) Flat-Plate Solar Array Project (FSA) includes a program to improve module and array reliability. A collaborative activity with industry dealing with the problem of hot-spot heating due to the shadowing of photovoltaic cells in modules and arrays containing several paralleled cell strings is described. The use of multiparallel strings in large central-station arrays introduces the likelihood of unequal current sharing and increased heating levels. Test results that relate power dissipated, current imbalance, cross-strapping frequency, and shadow configuration to hot-spot heating levels are presented. Recommendations for circuit design configurations appropriate to central-station applications that reduce the risk of hot-spot problems are offered. Guidelines are provided for developing hot-spot tests for arrays when current imbalance is a threat.

  5. Reliability and Engineering of Thin-Film Photovoltaic Modules. Research forum proceedings

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr. (Editor); Royal, E. L. (Editor)

    1985-01-01

    A Research Forum on Reliability and Engineering of Thin Film Photovoltaic Modules, under sponsorship of the Jet Propulsion Laboratory's Flat Plate Solar Array (FSA) Project and the U.S. Department of Energy, was held in Washington, D.C., on March 20, 1985. Reliability attribute investigations of amorphous silicon cells, submodules, and modules were the subjects addressed by most of the Forum presentations. Included among the reliability research investigations reported were: Arrhenius-modeled accelerated stress tests on a Si cells, electrochemical corrosion, light induced effects and their potential effects on stability and reliability measurement methods, laser scribing considerations, and determination of degradation rates and mechanisms from both laboratory and outdoor exposure tests.

  6. A thermo-electric system using concentrated solar energy with photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Wong, K.-F. V.; Dorney, S.

    The work reported here is a preliminary study of a thermo-electric system using concentrated solar radiation with photovoltaic cells. The system incorporated a novel concentrating system with the designed purpose of utilizing those portions of the solar spectrum that the silicon solar cells were not responsive to. The experimental set-up consisted of a 3.8 cm diameter glass tube, 76.2 cm long with the glass silicon cells positioned at equal intervals on its underside. Fresnel lenses were placed so that the incoming solar radiation was concentrated onto the silicon cells. The glass tube was filled with water which absorbed energy from the solar radiation before it reached the cells. The water had its temperature raised nine degrees Fahrenheit while also allowing the solar cells to produce approximately 0.05 watt. This results in an efficiency of around 35 percent. The results obtained are preliminary, and represent typical conditions in south Florida.

  7. Field test analysis of concentrator photovoltaic system focusing on average photon energy and temperature

    NASA Astrophysics Data System (ADS)

    Husna, Husyira Al; Ota, Yasuyuki; Minemoto, Takashi; Nishioka, Kensuke

    2015-08-01

    The concentrator photovoltaic (CPV) system is unique and different from the common flat-plate PV system. It uses a multi-junction solar cell and a Fresnel lens to concentrate direct solar radiation onto the cell while tracking the sun throughout the day. The cell efficiency could reach over 40% under high concentration ratio. In this study, we analyzed a one year set of environmental condition data of the University of Miyazaki, Japan, where the CPV system was installed. Performance ratio (PR) was discussed to describe the system’s performance. Meanwhile, the average photon energy (APE) was used to describe the spectrum distribution at the site where the CPV system was installed. A circuit simulator network was used to simulate the CPV system electrical characteristics under various environmental conditions. As for the result, we found that the PR of the CPV systems depends on the APE level rather than the cell temperature.

  8. Flat plate vs. concentrator solar photovoltaic cells - A manufacturing cost analysis

    NASA Technical Reports Server (NTRS)

    Granon, L. A.; Coleman, M. G.

    1980-01-01

    The choice of which photovoltaic system (flat plate or concentrator) to use for utilizing solar cells to generate electricity depends mainly on the cost. A detailed, comparative manufacturing cost analysis of the two types of systems is presented. Several common assumptions, i.e., cell thickness, interest rate, power rate, factory production life, polysilicon cost, and direct labor rate are utilized in this analysis. Process sequences, cost variables, and sensitivity analyses have been studied, and results of the latter show that the most important parameters which determine manufacturing costs are concentration ratio, manufacturing volume, and cell efficiency. The total cost per watt of the flat plate solar cell is $1.45, and that of the concentrator solar cell is $1.85, the higher cost being due to the increased process complexity and material costs.

  9. Automatized segmentation of photovoltaic modules in IR-images with extreme noise

    NASA Astrophysics Data System (ADS)

    Vetter, Andreas; Hepp, Johannes; Brabec, Christoph J.

    2016-05-01

    Local electric defects may result in considerable performance losses in solar cells. Infrared thermography is an essential tool to detect these defects on photovoltaic modules. Accordingly, IR-thermography is frequently used in R&D labs of PV manufactures and, furthermore, outdoors in order to identify faulty modules in PV-power plants. Massive amount of data is acquired which needs to be analyzed. An automatized method for detecting solar modules in IR-images would enable a faster and automatized analysis of the data. However, IR-images tend to suffer from rather large noise, which makes an automatized segmentation challenging. The aim of this study was to establish a reliable segmentation algorithm for R&D labs. We propose an algorithm, which detects a solar cell or module within an IR-image with large noise. We tested the algorithm on images of 10 PV-samples characterized by highly sensitive dark lock-in thermography (DLIT). The algorithm proved to be very reliable in detecting correctly the solar module. In our study, we focused on thin film solar cells, however, a transfer of the algorithm to other cell types is straight forward.

  10. Damage in Monolithic Thin-Film Photovoltaic Modules Due to Partial Shade

    SciTech Connect

    Silverman, Timothy J.; Mansfield, Lorelle; Repins, Ingrid; Kurtz, Sarah

    2016-09-01

    The typical configuration of monolithic thin-film photovoltaic modules makes it possible for partial shade to place one or more cells in such a module in reverse bias. Reverse bias operation leads to high voltage, current density, and power density conditions, which can act as driving forces for failure. We showed that a brief outdoor shadow event can cause a 7% permanent loss in power. We applied an indoor partial shade durability test that moves beyond the standard hot spot endurance test by using more realistic mask and bias conditions and by carefully quantifying the permanent change in performance due to the stress. With the addition of a pass criterion based on change in maximum power, this procedure will soon be proposed as a part of the module-type qualification test. All six commercial copper indium gallium diselenide and cadmium telluride modules we tested experienced permanent damage due to the indoor partial shade test, ranging from 4% to 14% loss in maximum power. We conclude by summarizing ways to mitigate partial shade stress at the cell, module, and system levels.

  11. Study of curved glass photovoltaic module and module electrical isolation design requirements

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The design of a 1.2 by 2.4 m curved glass superstrate and support clip assembly is presented, along with the results of finite element computer analysis and a glass industry survey conducted to assess the technical and economic feasibility of the concept. Installed costs for four curved glass module array configurations are estimated and compared with cost previously reported for comparable flat glass module configurations. Electrical properties of candidate module encapsulation systems are evaluated along with present industry practice for the design and testing of electrical insulation systems. Electric design requirements for module encapsulation systems are also discussed.

  12. Evaluation of a heliostat tracker for linear Fresnel lens photovoltaic concentrators

    NASA Astrophysics Data System (ADS)

    1986-12-01

    This report presents the results of an evaluation of a heliostat tracking structure used as a two-axis tracking platform for ENTECH's linear focus Fresnel lens photovoltaic collectors. The study included the installation and operation of a heliostat tracker populated with 30 modules (1 operational and 29 non-operational) on a 32-ft x 32-ft platform. Details of the array installation, collector mounting, and array tracking accuracy are provided. Test results demonstrate that the heliostat tracker meets the performance requirements imposed by the collector. The evaluation includes a comparison of the heliostat tracker approach with the current tracker approach (a roll/tilt array). Results of the comparison do not identify a clearly superior option.

  13. A high-performance photovoltaic concentrator array - The mini-dome Fresnel lens concentrator with 30 percent efficient GaAs/GaSb tandem cells

    NASA Technical Reports Server (NTRS)

    Piszczor, M. F.; Brinker, D. J.; Flood, D. J.; Avery, J. E.; Fraas, L. M.; Fairbanks, E. S.; Yerkes, J. W.; O'Neill, M. J.

    1991-01-01

    A high-efficiency, lightweight space photovoltaic concentrator array is described. Previous work on the minidome Fresnel lens concentrator concept is being integrated with Boeing's 30 percent efficient tandem GaAs/GaSb concentrator cells into a high-performance photovoltaic array. Calculations indicate that, in the near term, such an array can achieve 300 W/sq m at a specific power of 100 W/kg. Emphasis of the program has now shifted to integrating the concentrator lens, tandem cell, and supporting panel structure into a space-qualifiable array. A description is presented of the current status of component and prototype panel testing and the development of a flight panel for the Photovoltaic Array Space Power Plus Diagnostics (PASP PLUS) flight experiment.

  14. A high-performance photovoltaic concentrator array - The mini-dome Fresnel lens concentrator with 30 percent efficient GaAs/GaSb tandem cells

    NASA Astrophysics Data System (ADS)

    Piszczor, M. F.; Brinker, D. J.; Flood, D. J.; Avery, J. E.; Fraas, L. M.; Fairbanks, E. S.; Yerkes, J. W.; O'Neill, M. J.

    A high-efficiency, lightweight space photovoltaic concentrator array is described. Previous work on the minidome Fresnel lens concentrator concept is being integrated with Boeing's 30 percent efficient tandem GaAs/GaSb concentrator cells into a high-performance photovoltaic array. Calculations indicate that, in the near term, such an array can achieve 300 W/sq m at a specific power of 100 W/kg. Emphasis of the program has now shifted to integrating the concentrator lens, tandem cell, and supporting panel structure into a space-qualifiable array. A description is presented of the current status of component and prototype panel testing and the development of a flight panel for the Photovoltaic Array Space Power Plus Diagnostics (PASP PLUS) flight experiment.

  15. 30 kW concentrator photovoltaic system using dome-shaped Fresnel lenses.

    PubMed

    Araki, Kenji; Yano, Taizo; Kuroda, Yoshio

    2010-04-26

    A 30 kW concentrator photovoltaic power plant was constructed and has started operation with the following new technologies: A new Concentrating PhotoVoltaic (CPV) tracker developed for high wind area like Korea and Japan by Daido Steel. (The power consumption of the tracking motors was only 19.6 W, namely 0.07% of the rated power.) With improved optics that reduce the mismatch losses associated with optical aberrations, an efficiency of 25.8% was achieved under standard testing conditions (STC) even in a large 23.8 m(2) array size. A rapid installation sequence was developed. It was designed for long-term power supply to a local sewage center. Peak power corresponds to 10% of the demand. As a result, the system performance ratio was 0.87, and the capacity factor was 11.7%. The energy generation per rated power was 1,020 kWh/kWp. While it is true that CPV systems perform better in dry and high irradiance areas, our 30 kW system installed in a cloudy area like Japan, showed satisfactory performance.

  16. 30 kW concentrator photovoltaic system using dome-shaped Fresnel lenses.

    PubMed

    Araki, Kenji; Yano, Taizo; Kuroda, Yoshio

    2010-04-26

    A 30 kW concentrator photovoltaic power plant was constructed and has started operation with the following new technologies: A new Concentrating PhotoVoltaic (CPV) tracker developed for high wind area like Korea and Japan by Daido Steel. (The power consumption of the tracking motors was only 19.6 W, namely 0.07% of the rated power.) With improved optics that reduce the mismatch losses associated with optical aberrations, an efficiency of 25.8% was achieved under standard testing conditions (STC) even in a large 23.8 m2 array size. A rapid installation sequence was developed. It was designed for long-term power supply to a local sewage center. Peak power corresponds to 10% of the demand. As a result, the system performance ratio was 0.87, and the capacity factor was 11.7%. The energy generation per rated power was 1,020 kWh/kWp. While it is true that CPV systems perform better in dry and high irradiance areas, our 30 kW system installed in a cloudy area like Japan, showed satisfactory performance.

  17. Customized color patterning of photovoltaic cells

    SciTech Connect

    Cruz-Campa, Jose Luis; Nielson, Gregory N.; Okandan, Murat; Lentine, Anthony L.; Resnick, Paul J.; Gupta, Vipin P.

    2016-11-15

    Photovoltaic cells and photovoltaic modules, as well as methods of making and using such photovoltaic cells and photovoltaic modules, are disclosed. More particularly, embodiments of the photovoltaic cells selectively reflect visible light to provide the photovoltaic cells with a colorized appearance. Photovoltaic modules combining colorized photovoltaic cells may be used to harvest solar energy while providing a customized appearance, e.g., an image or pattern.

  18. Battery Reinitialization of the Photovoltaic Module of the International Space Station

    NASA Technical Reports Server (NTRS)

    Hajela, Gyan; Cohen, Fred; Dalton, Penni

    2002-01-01

    The photovoltaic (PV) module on the International Space Station (ISS) has been operating since November 2000 and supporting electric power demands of the ISS and its crew of three. The PV module contains photovoltaic arrays that convert solar energy to electrical power and an integrated equipment assembly (IEA) that houses electrical hardware and batteries for electric power regulation and storage. Each PV module contains two independent power channels for fault tolerance. Each power channel contains three batteries in parallel to meet its performance requirements and for fault tolerance. Each battery consists of 76 Ni-Hydrogen (Ni-H2) cells in series. These 76 cells are contained in two orbital replaceable units (ORU) that are connected in series. On-orbit data are monitored and trended to ensure that all hardware is operating normally. Review of on-orbit data showed that while five batteries are operating very well, one is showing signs of mismatched ORUs. The cell pressure in the two ORUs differs by an amount that exceeds the recommended range. The reason for this abnormal behavior may be that the two ORUs have different use history. An assessment was performed and it was determined that capacity of this battery would be limited by the lower pressure ORU. Steps are being taken to reduce this pressure differential before battery capacity drops to the point of affecting its ability to meet performance requirements. As a first step, a battery reinitialization procedure was developed to reduce this pressure differential. The procedure was successfully carried out on-orbit and the pressure differential was reduced to the recommended range. This paper describes the battery performance and the consequences of mismatched ORUs that make a battery. The paper also describes the reinitialization procedure, how it was performed on orbit, and battery performance after the reinitialization. On-orbit data monitoring and trending is an ongoing activity and it will continue as

  19. Modulating Concentration Of Hydrazine Vapor To Aid Detection

    NASA Technical Reports Server (NTRS)

    Stetter, Joseph R.; Maclay, G. Jordan

    1992-01-01

    Three techniques, flow modulation, filament modulation, and reactive-filter modulation developed to obtain selective response to hydrazine or to methyl hydrazines from photoionization detector. Implemented in portable selective hydrazine detectors, useful where continuous or rapid, repetitive quantitative measurements of concentrations of vapors of these toxic substances required. Measure concentration of gaseous hydrazines in presence of other gases like cyclohexane, chlorofluorocarbons, and ammonia. Produce modulated signal, amplitude and phase indicating amount of hydrazine, monomethyl hydrazine, or 1,1-dimethyl hydrazine present in mixture. Used with such other detectors as electrochemical cells.

  20. Amorphous silicon photovoltaic modules and test devices design, fabrication and testing

    NASA Technical Reports Server (NTRS)

    Vanleeuwen, M.

    1985-01-01

    In July of 1984, Hughes and JPL initiated a contract for Hughes to design, fabricate and test 10 thin film Amorphous Silicon (a-Si) photovoltaic power modules. These modules were to be 1 ft x 4 ft in size. They were to be preceded by the delivery of 10 a-Si 4 in. square test devices. This effort is very timely since thin film PV development has progressed to the point where intermediate load power applications are on the horizon. It is important to know if current a-Si submodule design and manufacturing processes yield a product that is compatible with the packaging needed to meet a 20 to 30 year life span expectancy. The term submodule is assigned to an interconnected assembly of 28 a-Si cells deposited on a 1 foot square glass superstrate. These assemblies are equipped with electrical terminations, i.e., copper tabs at the four corners of the inverted submodules. It is these submodules that are to be interconnected and packaged into power modules, as opposed to the interconnected individual crystalline cells packaged into todays PV modules. A discussion of the fabrication methods and results follows.

  1. Metastable Electrical Characteristics of Polycrystalline Thin-Film Photovoltaic Modules upon Exposure and Stabilization: Preprint

    SciTech Connect

    Deline, C. A.; del Cueto, J. A.; Albin, D. S.; Rummel, S. R.

    2011-09-01

    The significant features of a series of stabilization experiments conducted at the National Renewable Energy Laboratory (NREL) between May 2009 and the present are reported. These experiments evaluated a procedure to stabilize the measured performance of thin-film polycrystalline cadmium telluride (CdTe) and copper indium gallium diselenide (CIGS) thin-film photovoltaic (PV) modules. The current-voltage (I-V) characteristics of CdTe and CIGS thin-film PV devices and modules exhibit transitory changes in electrical performance after thermal exposure in the dark and/or bias and light exposures. We present the results of our case studies of module performance versus exposure: light-soaked at 65 degrees C; exposed in the dark under forward bias at 65 degrees C; and, finally, longer-term outdoor exposure. We find that stabilization can be achieved to varying degrees using either light-soaking or dark bias methods and that the existing IEC 61646 light-soaking interval may be appropriate for CdTe and CIGS modules with one caveat: it is likely that at least three exposure intervals are required for stabilization.

  2. Metastable electrical characteristics of polycrystalline thin-film photovoltaic modules upon exposure and stabilization

    NASA Astrophysics Data System (ADS)

    Deline, Chris A.; del Cueto, Joseph A.; Albin, David S.; Rummel, Steve R.

    2011-09-01

    The significant features of a series of stabilization experiments conducted at the National Renewable Energy Laboratory (NREL) between May 2009 and the present are reported. These experiments evaluated a procedure to stabilize the measured performance of thin-film polycrystalline cadmium telluride (CdTe) and copper indium gallium diselenide (CIGS) thin-film photovoltaic (PV) modules. The current-voltage (I-V) characteristics of CdTe and CIGS thin-film PV devices and modules exhibit transitory changes in electrical performance after thermal exposure in the dark and/or bias and light exposures. We present the results of our case studies of module performance versus exposure: light-soaked at 65°C exposed in the dark under forward bias at 65°C and, finally, longer-term outdoor exposure. We find that stabilization can be achieved to varying degrees using either light-soaking or dark bias methods and that the existing IEC 61646 light-soaking interval may be appropriate for CdTe and CIGS modules with one caveat: it is likely that at least three exposure intervals are required for stabilization.

  3. Free-form optics for Fresnel-lens-based photovoltaic concentrators.

    PubMed

    Miñano, Juan C; Benítez, Pablo; Zamora, Pablo; Buljan, Marina; Mohedano, Rubén; Santamaría, Asunción

    2013-05-06

    The Concentrated Photovoltaics (CPV) promise relies upon the use of high-efficiency triple-junction solar cells (with proven efficiencies of over 44%) and upon high-performance optics that allow for high concentration concurrent with relaxed manufacturing tolerances (all key elements for low-cost mass production). Additionally, uniform illumination is highly desirable for efficiency and reliability reasons. All of these features have to be achieved with inexpensive optics containing only a few (in general no more than 2) optical elements. In this paper we show that the degrees of freedom using free-forms allow the introduction of multiple functionalities required for CPV with just 2 optical elements, one of which is a Fresnel lens.

  4. Origins of varying carrier concentration in Cu2SnS3 photovoltaic absorbers

    NASA Astrophysics Data System (ADS)

    Baranowski, Lauryn; Zawadzki, Pawel; Lany, Stephan; Tumas, William; Ginley, David; Toberer, Eric; Zakutayev, Andriy

    2014-03-01

    Within the Cu-Sn-S family of earth abundant photovoltaic absorbers, the Cu2SnS3 phase is predicted to be the most promising absorber material [P. Zawadzki, et al.]. To date there has been limited synthetic work on the Cu2SnS3 phase, particularly the carrier concentration. In this study, we develop an understanding of the effects of RF sputtering growth conditions on the hole concentrations of Cu2SnS3 absorber films, and use these results to identify the underlying causes of the observed variations in carrier concentration. Two effects are identified that control the carrier concentration in Cu2SnS3 films. The first effect, which occurs during Cu-rich growth, is isostructural alloying with a metallic Cu3SnS4 phase, which gives rise to hole concentrations above 1019 cm-3. The second effect is that, when the Cu2SnS3 films are grown under Sn-rich conditions, varying the S chemical potential during film deposition gives 1018-1019 cm-3 holes. This variation in carrier concentration with S chemical potential can be explained by a Cu vacancy defect model. Understanding the origins of the varying doping density in Cu2SnS3 films allows for targeted growth to achieve desired carrier concentrations for device integration.

  5. Optical analysis and thermal management of 2-cell strings linear concentrating photovoltaic system

    NASA Astrophysics Data System (ADS)

    Reddy, K. S.; Kamnapure, Nikhilesh R.

    2015-09-01

    This paper presents the optical and thermal analyses for a linear concentrating photovoltaic/thermal collector under different operating conditions. Linear concentrating photovoltaic system (CPV) consists of a highly reflective mirror, a receiver and semi-dual axis tracking mechanism. The CPV receiver embodies two strings of triple-junction cells (100 cells in each string) adhered to a mild steel circular tube mounted at the focal length of trough. This system provides 560 W of electricity and 1580 W of heat which needs to be dissipated by active cooling. The Al2O3/Water nanofluid is used as heat transfer fluid (HTF) flowing through circular receiver for CPV cells cooling. Optical analysis of linear CPV system with 3.35 m2 aperture and geometric concentration ratio (CR) of 35 is carried out using Advanced System Analysis Program (ASAP) an optical simulation tool. Non-uniform intensity distribution model of solar disk is used to model the sun in ASAP. The impact of random errors including slope error (σslope), tracking error (σtrack) and apparent change in sun's width (σsun) on optical performance of collector is shown. The result from the optical simulations shows the optical efficiency (ηo) of 88.32% for 2-cell string CPV concentrator. Thermal analysis of CPV receiver is carried out with conjugate heat transfer modeling in ANSYS FLUENT-14. Numerical simulations of Al2O3/Water nanofluid turbulent forced convection are performed for various parameters such as nanoparticle volume fraction (φ), Reynolds number (Re). The addition of the nanoparticle in water enhances the heat transfer in the ranges of 3.28% - 35.6% for φ = 1% - 6%. Numerical results are compared with literature data which shows the reasonable agreement.

  6. Modeling Photovoltaic Module-Level Power Electronics in the System Advisor Model; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-07-01

    Module-level power electronics, such as DC power optimizers, microinverters, and those found in AC modules, are increasing in popularity in smaller-scale photovoltaic (PV) systems as their prices continue to decline. Therefore, it is important to provide PV modelers with guidelines about how to model these distributed power electronics appropriately in PV modeling software. This paper extends the work completed at NREL that provided recommendations to model the performance of distributed power electronics in NREL’s popular PVWatts calculator [1], to provide similar guidelines for modeling these technologies in NREL's more complex System Advisor Model (SAM). Module-level power electronics - such as DC power optimizers, microinverters, and those found in AC modules-- are increasing in popularity in smaller-scale photovoltaic (PV) systems as their prices continue to decline. Therefore, it is important to provide PV modelers with guidelines about how to model these distributed power electronics appropriately in PV modeling software.

  7. High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrator Application

    SciTech Connect

    Hubbard, Seth

    2012-09-12

    The High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrators project seeks to provide new photovoltaic cells for Concentrator Photovoltaics (CPV) Systems with higher cell efficiency, more favorable temperature coefficients and less sensitivity to changes in spectral distribution. The main objective of this project is to provide high efficiency III-V solar cells that will reduce the overall cost per Watt for power generation using CPV systems.This work is focused both on a potential near term application, namely the use of indium arsenide (InAs) QDs to spectrally "tune" the middle (GaAs) cell of a SOA triple junction device to a more favorable effective bandgap, as well as the long term goal of demonstrating intermediate band solar cell effects. The QDs are confined within a high electric field i-region of a standard GaAs solar cell. The extended absorption spectrum (and thus enhanced short circuit current) of the QD solar cell results from the increase in the sub GaAs bandgap spectral response that is achievable as quantum dot layers are introduced into the i-region. We have grown InAs quantum dots by OMVPE technique and optimized the QD growth conditions. Arrays of up to 40 layers of strain balanced quantum dots have been experimentally demonstrated with good material quality, low residual stain and high PL intensity. Quantum dot enhanced solar cells were grown and tested under simulated one sun AM1.5 conditions. Concentrator solar cells have been grown and fabricated with 5-40 layers of QDs. Testing of these devices show the QD cells have improved efficiency compared to baseline devices without QDs. Device modeling and measurement of thermal properties were performed using Crosslight APSYS. Improvements in a triple junction solar cell with the insertion of QDs into the middle current limiting junction was shown to be as high as 29% under one sun illumination for a 10 layer stack QD enhanced triple junction solar cell. QD devices have strong

  8. Polarization-dependent interfacial coupling modulation of ferroelectric photovoltaic effect in PZT-ZnO heterostructures

    NASA Astrophysics Data System (ADS)

    Pan, Dan-Feng; Bi, Gui-Feng; Chen, Guang-Yi; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-03-01

    Recently, ferroelectric perovskite oxides have drawn much attention due to potential applications in the field of solar energy conversion. However, the power conversion efficiency of ferroelectric photovoltaic effect currently reported is far below the expectable value. One of the crucial problems lies in the two back-to-back Schottky barriers, which are formed at the ferroelectric-electrode interfaces and blocking most of photo-generated carriers to reach the outside circuit. Herein, we develop a new approach to enhance the ferroelectric photovoltaic effect by introducing the polarization-dependent interfacial coupling effect. Through inserting a semiconductor ZnO layer with spontaneous polarization into the ferroelectric ITO/PZT/Au film, a p-n junction with strong polarization-dependent interfacial coupling effect is formed. The power conversion efficiency of the heterostructure is improved by nearly two orders of magnitude and the polarization modulation ratio is increased about four times. It is demonstrated that the polarization-dependent interfacial coupling effect can give rise to a great change in band structure of the heterostructure, not only producing an aligned internal electric field but also tuning both depletion layer width and potential barrier height at PZT-ZnO interface. This work provides an efficient way in developing highly efficient ferroelectric-based solar cells and novel optoelectronic memory devices.

  9. Polarization-dependent interfacial coupling modulation of ferroelectric photovoltaic effect in PZT-ZnO heterostructures.

    PubMed

    Pan, Dan-Feng; Bi, Gui-Feng; Chen, Guang-Yi; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-03-08

    Recently, ferroelectric perovskite oxides have drawn much attention due to potential applications in the field of solar energy conversion. However, the power conversion efficiency of ferroelectric photovoltaic effect currently reported is far below the expectable value. One of the crucial problems lies in the two back-to-back Schottky barriers, which are formed at the ferroelectric-electrode interfaces and blocking most of photo-generated carriers to reach the outside circuit. Herein, we develop a new approach to enhance the ferroelectric photovoltaic effect by introducing the polarization-dependent interfacial coupling effect. Through inserting a semiconductor ZnO layer with spontaneous polarization into the ferroelectric ITO/PZT/Au film, a p-n junction with strong polarization-dependent interfacial coupling effect is formed. The power conversion efficiency of the heterostructure is improved by nearly two orders of magnitude and the polarization modulation ratio is increased about four times. It is demonstrated that the polarization-dependent interfacial coupling effect can give rise to a great change in band structure of the heterostructure, not only producing an aligned internal electric field but also tuning both depletion layer width and potential barrier height at PZT-ZnO interface. This work provides an efficient way in developing highly efficient ferroelectric-based solar cells and novel optoelectronic memory devices.

  10. Polarization-dependent interfacial coupling modulation of ferroelectric photovoltaic effect in PZT-ZnO heterostructures

    PubMed Central

    Pan, Dan-Feng; Bi, Gui-Feng; Chen, Guang-Yi; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-01-01

    Recently, ferroelectric perovskite oxides have drawn much attention due to potential applications in the field of solar energy conversion. However, the power conversion efficiency of ferroelectric photovoltaic effect currently reported is far below the expectable value. One of the crucial problems lies in the two back-to-back Schottky barriers, which are formed at the ferroelectric-electrode interfaces and blocking most of photo-generated carriers to reach the outside circuit. Herein, we develop a new approach to enhance the ferroelectric photovoltaic effect by introducing the polarization-dependent interfacial coupling effect. Through inserting a semiconductor ZnO layer with spontaneous polarization into the ferroelectric ITO/PZT/Au film, a p-n junction with strong polarization-dependent interfacial coupling effect is formed. The power conversion efficiency of the heterostructure is improved by nearly two orders of magnitude and the polarization modulation ratio is increased about four times. It is demonstrated that the polarization-dependent interfacial coupling effect can give rise to a great change in band structure of the heterostructure, not only producing an aligned internal electric field but also tuning both depletion layer width and potential barrier height at PZT-ZnO interface. This work provides an efficient way in developing highly efficient ferroelectric-based solar cells and novel optoelectronic memory devices. PMID:26954833

  11. Si Radial p-i-n Junction Photovoltaic Arrays with Built-In Light Concentrators.

    PubMed

    Yoo, Jinkyoung; Nguyen, Binh-Minh; Campbell, Ian H; Dayeh, Shadi A; Schuele, Paul; Evans, David; Picraux, S Tom

    2015-05-26

    High-performance photovoltaic (PV) devices require strong light absorption, low reflection and efficient photogenerated carrier collection for high quantum efficiency. Previous optical studies of vertical wires arrays have revealed that extremely efficient light absorption in the visible wavelengths is achievable. Photovoltaic studies have further advanced the wire approach by employing radial p-n junction architectures to achieve more efficient carrier collection. While radial p-n junction formation and optimized light absorption have independently been considered, PV efficiencies have further opportunities for enhancement by exploiting the radial p-n junction fabrication procedures to form arrays that simultaneously enhance both light absorption and carrier collection efficiency. Here we report a concept of morphology control to improve PV performance, light absorption and quantum efficiency of silicon radial p-i-n junction arrays. Surface energy minimization during vapor phase epitaxy is exploited to form match-head structures at the tips of the wires. The match-head structure acts as a built-in light concentrator and enhances optical absorptance and external quantum efficiencies by 30 to 40%, and PV efficiency under AM 1.5G illumination by 20% compared to cylindrical structures without match-heads. The design rules for these improvements with match-head arrays are systematically studied. This approach of process-enhanced control of three-dimensional Si morphologies provides a fab-compatible way to enhance the PV performance of Si radial p-n junction wire arrays.

  12. Monte Carlo ray-tracing simulations of luminescent solar concentrators for building integrated photovoltaics

    NASA Astrophysics Data System (ADS)

    Leow, Shin Woei; Corrado, Carley; Osborn, Melissa; Carter, Sue A.

    2013-09-01

    Luminescent solar concentrators (LSCs) have the ability to receive light from a wide range of angles, concentrating the captured light onto small photo active areas. This enables greater incorporation of LSCs into building designs as windows, skylights and wall claddings in addition to rooftop installations of current solar panels. Using relatively cheap luminescent dyes and acrylic waveguides to effect light concentration onto lesser photovoltaic (PV) cells, there is potential for this technology to approach grid price parity. We employ a panel design in which the front facing PV cells collect both direct and concentrated light ensuring a gain factor greater than one. This also allows for flexibility in determining the placement and percentage coverage of PV cells during the design process to balance reabsorption losses against the power output and level of light concentration desired. To aid in design optimization, a Monte-Carlo ray tracing program was developed to study the transport of photons and loss mechanisms in LSC panels. The program imports measured absorption/emission spectra and transmission coefficients as simulation parameters with interactions of photons in the panel determined by comparing calculated probabilities with random number generators. LSC panels with multiple dyes or layers can also be simulated. Analysis of the results reveals optimal panel dimensions and PV cell layouts for maximum power output for a given dye concentration, absorbtion/emission spectrum and quantum efficiency.

  13. Analysis of twelve-month degradation in three polycrystalline photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Lai, T.; Potter, B. G.; Simmons-Potter, K.

    2016-09-01

    Polycrystalline silicon photovoltaic (PV) modules have the advantage of lower manufacturing cost as compared to their monocrystalline counterparts, but generally exhibit both lower initial module efficiencies and more significant early-stage efficiency degradation than do similar monocrystalline PV modules. For both technologies, noticeable deterioration in power conversion efficiency typically occurs over the first two years of usage. Estimating PV lifetime by examining the performance degradation behavior under given environmental conditions is, therefore, one of continual goals for experimental research and economic analysis. In the present work, accelerated lifecycle testing (ALT) on three polycrystalline PV technologies was performed in a full-scale, industrial-standard environmental chamber equipped with single-sun irradiance capability, providing an illumination uniformity of 98% over a 2 x 1.6m area. In order to investigate environmental aging effects, timedependent PV performance (I-V characteristic) was evaluated over a recurring, compressed day-night cycle, which simulated local daily solar insolation for the southwestern United States, followed by dark (night) periods. During a total test time of just under 4 months that corresponded to a year equivalent exposure on a fielded module, the temperature and humidity varied in ranges from 3°C to 40°C and 5% to 85% based on annual weather profiles for Tucson, AZ. Removing the temperature de-rating effect that was clearly seen in the data enabled the computation of normalized efficiency degradation with time and environmental exposure. Results confirm the impact of environmental conditions on the module long-term performance. Overall, more than 2% efficiency degradation in the first year of usage was observed for all thee polycrystalline Si solar modules. The average 5-year degradation of each PV technology was estimated based on their determined degradation rates.

  14. Potential Induced Degradation (PID) of Pre-Stressed Photovoltaic Modules: Effect of Glass Surface Conductivity Disruption

    NASA Astrophysics Data System (ADS)

    Tatapudi, Sai Ravi Vasista

    Potential induced degradation (PID) due to high system voltages is one of the major degradation mechanisms in photovoltaic (PV) modules, adversely affecting their performance due to the combined effects of the following factors: system voltage, superstrate/glass surface conductivity, encapsulant conductivity, silicon nitride anti-reflection coating property and interface property (glass/encapsulant; encapsulant/cell; encapsulant/backsheet). Previous studies carried out at ASU's Photovoltaic Reliability Laboratory (ASU-PRL) showed that only negative voltage bias (positive grounded systems) adversely affects the performance of commonly available crystalline silicon modules. In previous studies, the surface conductivity of the glass surface was obtained using either conductive carbon layer extending from the glass surface to the frame or humidity inside an environmental chamber. This thesis investigates the influence of glass surface conductivity disruption on PV modules. In this study, conductive carbon was applied only on the module’s glass surface without extending to the frame and the surface conductivity was disrupted (no carbon layer) at 2cm distance from the periphery of frame inner edges. This study was carried out under dry heat at two different temperatures (60°C and 85°C) and three different negative bias voltages (-300V, -400V, and -600V). To replicate closeness to the field conditions, half of the selected modules were pre-stressed under damp heat for 1000 hours (DH 1000) and the remaining half under 200 hours of thermal cycling (TC 200). When the surface continuity was disrupted by maintaining a 2 cm gap from the frame to the edge of the conductive layer, as demonstrated in this study, the degradation was found to be absent or negligibly small even after 35 hours of negative bias at elevated temperatures. This preliminary study appears to indicate that the modules could become immune to PID losses if the continuity of the glass surface conductivity

  15. Commercial production of thin-film CdTe photovoltaic modules. 1995 annual report

    SciTech Connect

    Brog, T.K.

    1997-02-01

    This report presents a general overview of progress made in Golden Photon Inc.`s commercial production of thin-film CdTe photovoltaic modules. It describes the improvement in the number of batch runs processed through substrate deposition, all inter-connection, and encapsulation process steps; a progressive increase in the total number of panels processed each month; an improvement in cumulative process yields; and the continual attention given to modifying operating parameters of each major process step. The report also describes manpower status and staffing issues. The description of the status of subcontract progress includes engineering design; process improvement and development; cost improvement and raw materials; environment, safety, and health; and manufacturing cost and productivity optimization. Milestones and deliverables are also described.

  16. Insolation-oriented model of photovoltaic module using Matlab/Simulink

    SciTech Connect

    Tsai, Huan-Liang

    2010-07-15

    This paper presents a novel model of photovoltaic (PV) module which is implemented and analyzed using Matlab/Simulink software package. Taking the effect of sunlight irradiance on the cell temperature, the proposed model takes ambient temperature as reference input and uses the solar insolation as a unique varying parameter. The cell temperature is then explicitly affected by the sunlight intensity. The output current and power characteristics are simulated and analyzed using the proposed PV model. The model verification has been confirmed through an experimental measurement. The impact of solar irradiation on cell temperature makes the output characteristic more practical. In addition, the insolation-oriented PV model enables the dynamics of PV power system to be analyzed and optimized more easily by applying the environmental parameters of ambient temperature and solar irradiance. (author)

  17. Mast material test program (MAMATEP). [for Solar Array Assembly of Space Station Photovoltaic Power Module

    NASA Technical Reports Server (NTRS)

    Ciancone, Michael L.; Rutledge, Sharon K.

    1988-01-01

    The MAMATEP program, which is aimed at verifying the need for and evaluating the performance of various protection techniques for the solar array assembly mast of the Space Station photovoltaic power module, is discussed. Coated and uncoated mast material samples have been environmentally tested and evaluated, before and after testing, in terms of mass and bending modulus. The protective coatings include CV-1144 silicone, a Ni/Al/InSn eutectic, and an open-weave Al braid. Long-term plasma asher results from unprotected samples indicate that, even though fiberglass-epoxy samples degrade, a protection technique may not be necessary to ensure structural integrity. A protection technique, however, may be desirable to limit or contain the amount of debris generated by the degradation of the fiberglass-epoxy.

  18. Cassegrainian concentrator solar array exploratory development module

    NASA Technical Reports Server (NTRS)

    Patterson, R. E.; Crabtree, W. L.

    1982-01-01

    A miniaturized Cassegrainian concentrator solar array concept is under development to reduce the cost of multi-kW spacecraft solar arrays. A primary parabolic reflector directs incoming solar energy to a secondary, centrally mounted inverted hyperbolic reflector and down onto a solar cell mounted on an Mo heat spreader on a 0.25 mm thick Al heat fin. Each unit is 12.7 mm thick, which makes the concentrator assembly roughly as thick as a conventional panel. The output is 100 W/sq and 20 W/kg, considering 20% efficient Si cells at 100 suns. A tertiary light catcher is mounted around the cell to ameliorate optic errors. The primary reflector is electroformed Ni with protective and reflective coatings. The cells have back surface reflectors and a SiO antireflective coating. An optical efficiency of 80% is projected, and GaAs cells are being considered in an attempt to raise cell efficiencies to over 30%.

  19. Trial Run of a Junction-Box Attachment Test for Use in Photovoltaic Module Qualification (Presentation)

    SciTech Connect

    Miller, D.; Deibert, S.; Wohlgemuth, J.

    2014-06-01

    Engineering robust adhesion of the junction-box (j-box) is a hurdle typically encountered by photovoltaic (PV) module manufacturers during product development and manufacturing process control. There are historical incidences of adverse effects (e.g., fires), caused when the j-box/adhesive/module system has failed in the field. The addition of a weight to the j-box during the 'damp-heat', 'thermal-cycle', or 'creep' tests within the IEC qualification protocol is proposed to verify the basic robustness of the adhesion system. The details of the proposed test are described, in addition to a trial run of the test procedure. The described experiments examine 4 moisture-cured silicones, 4 foam tapes, and a hot-melt adhesive used in conjunction with glass, KPE, THV, and TPE substrates. For the purpose of validating the experiment, j-boxes were adhered to a substrate, loaded with a prescribed weight, and then subjected to aging. The replicate mock-modules were aged in an environmental chamber (at 85 deg C/85% relative humidity for 1000 hours; then 100 degrees C/<10% relative humidity for 200 hours) or fielded in Golden, Miami, and Phoenix for 1 year. Attachment strength tests, including pluck and shear test geometries, were also performed on smaller component specimens.

  20. Examination of a Junction-Box Adhesion Test for Use in Photovoltaic Module Qualification: Preprint

    SciTech Connect

    Miller, D. C.; Wohlgemuth, J. H.

    2012-08-01

    Engineering robust adhesion of the junction-box (j-box) is a hurdle typically encountered by photovoltaic (PV) module manufacturers during product development. There are historical incidences of adverse effects (e.g., fires) caused when the j-box/adhesive/module system has failed in the field. The addition of a weight to the j-box during the 'damp heat' IEC qualification test is proposed to verify the basic robustness of its adhesion system. The details of the proposed test will be described, in addition to the preliminary results obtained using representative materials and components. The described discovery experiments examine moisture-cured silicone, foam tape, and hot-melt adhesives used in conjunction with PET or glass module 'substrates.' To be able to interpret the results, a set of material-level characterizations was performed, including thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. PV j-boxes were adhered to a substrate, loaded with a prescribed weight, and then placed inside an environmental chamber (at 85C, 85% relative humidity). Some systems did not remain attached through the discovery experiments. Observed failure modes include delamination (at the j-box/adhesive or adhesive/substrate interface) and phase change/creep. The results are discussed in the context of the application requirements, in addition to the plan for the formal experiment supporting the proposed modification to the qualification test.

  1. Examination of a Junction-Box Adhesion Test for Use in Photovoltaic Module Qualification (Presentation)

    SciTech Connect

    Miller, D. C.; Wohlgemuth, J. H.

    2012-08-01

    Engineering robust adhesion of the junction-box (j-box) is a hurdle typically encountered by photovoltaic (PV) module manufacturers during product development. There are historical incidences of adverse effects (e.g., fires) caused when the j-box/adhesive/module system has failed in the field. The addition of a weight to the j-box during the 'damp heat' IEC qualification test is proposed to verify the basic robustness of its adhesion system. The details of the proposed test will be described, in addition to the preliminary results obtained using representative materials and components. The described discovery experiments examine moisture-cured silicone, foam tape, and hot-melt adhesives used in conjunction with PET or glass module 'substrates.' To be able to interpret the results, a set of material-level characterizations was performed, including thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. PV j-boxes were adhered to a substrate, loaded with a prescribed weight, and then placed inside an environmental chamber (at 85C, 85% relative humidity). Some systems did not remain attached through the discovery experiments. Observed failure modes include delamination (at the j-box/adhesive or adhesive/substrate interface) and phase change/creep. The results are discussed in the context of the application requirements, in addition to the plan for the formal experiment supporting the proposed modification to the qualification test.

  2. Estimating service lifetimes of a polymer encapsulant for photovoltaic modules from accelerated testing

    SciTech Connect

    Czanderna, A.W.; Pern, F.J.

    1996-05-01

    In this paper, most of the emphasis is on A9918 ethylene vinyl acetate (EVA) used commercially as the pottant for encapsulating photovoltaic (PV) modules, in which the efficiencies in field-deployed modules have been reduced by 10-70% in 4-12 years. Yet, projections were made by several different research groups in the 1980s that the EVA lifetime could range from 2-100 years. The authors (1) elucidate the complexity of the encapsulation problem, (2) indicate the performance losses reported for PV systems deployed since 1981, (3) critically assess the service lifetime predictions for EVA as a PV pottant based on studies by others for which they review the inherent errors in their assumptions about the Arrhenius relation, (4) show how degradation of minimodules in laboratory experiments that simulate reality can produce efficiency losses comparable to those in field-degraded PV modules reported in the literature, and (5) outline an acceptable methodology for making a service lifetime prediction of the polymer encapsulant, including the essential need for relating accelerated lifetime testing to real-time testing with a sufficient number of samples.

  3. Multifunctional microstructured polymer films for boosting solar power generation of silicon-based photovoltaic modules.

    PubMed

    Leem, Jung Woo; Choi, Minkyu; Yu, Jae Su

    2015-02-04

    We propose two-dimensional periodic conical micrograting structured (MGS) polymer films as a multifunctional layer (i.e., light harvesting and self-cleaning) at the surface of outer polyethylene terephthalate (PET) cover-substrates for boosting the solar power generation in silicon (Si)-based photovoltaic (PV) modules. The surface of ultraviolet-curable NOA63 MGS polymer films fabricated by the soft imprint lithography exhibits a hydrophobic property with water contact angle of ∼121° at no inclination and dynamic advancing/receding water contact angles of ∼132°/111° at the inclination angle of 40°, respectively, which can remove dust particles or contaminants on the surface of PV modules in real outdoor environments (i.e., self-cleaning). The NOA63 MGS film coated on the bare PET leads to the reduction of reflection as well as the enhancement of both the total and diffuse transmissions at wavelengths of 300-1100 nm, indicating lower solar weighted reflectance (RSW) of ∼8.2%, higher solar weighted transmittance (TSW) of ∼93.1%, and considerably improved average haze ratio (HAvg) of ∼88.3% as compared to the bare PET (i.e., RSW ≈ 13.5%, TSW ≈ 86.9%, and HAvg ≈ 9.1%), respectively. Additionally, it shows a relatively good durability at temperatures of ≤160 °C. The resulting Si PV module with the NOA63 MGS/PET has an enhanced power conversion efficiency (PCE) of 13.26% (cf., PCE = 12.55% for the reference PV module with the bare PET) due to the mainly improved short circuit current from 49.35 to 52.01 mA, exhibiting the PCE increment percentage of ∼5.7%. For light incident angle-dependent PV module current-voltage characteristics, superior solar energy conversion properties are also obtained in a broad angle range of 10-80°.

  4. The hybrid nanofluid/microchannel cooling solution for concentrated photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Lelea, Dorin; Calinoiu, Delia Gabriela; Trif-Tordai, Gavrila; Cioabla, Adrian Eugen; Laza, Ioan; Popescu, Francisc

    2015-02-01

    The paper deals with the cooling solution of the concentrated photovoltaic panel based on a microthermal device with impingement fluid jet and nanofluid as the working fluid. For this purpose, the numerical simulations of the nanofluid flow and heat transfer through the microchannel heat sink with impingement fluid jets is made. The laminar and stationary regime is considered. The water based Al2O3 nanofluid type is considered with various particle diameters and volume fractions of the particles. The results are presented in the form of the thermal resistance considered Reynolds number and fixed pumping power basis. It is concluded that cooling behavior of the micro-thermal device is strongly dependent both on the analysis basis and particle diameter or volume fractions.

  5. Anti-soiling coating based on silica for Fresnel lens of concentrator photovoltaics

    NASA Astrophysics Data System (ADS)

    Hirohata, Takuya; Ota, Yasuyuki; Nishioka, Kensuke

    2015-08-01

    A simple anti-soiling layer was coated on the surface of poly(methyl methacrylate), which is the primary material of Fresnel lenses for concentrator photovoltaics. The main material of the anti-soiling layer was silica and the layer contained abundant hydroxyl groups that adsorbed water on the surface. After 9 months of exposure, the transmittance of the sample without the coating was 83.9%. On the other hand, the transmittance of the sample with the coating was 90.7%. The relationship between the electrostatic potential and the adhesion of sand on a Fresnel lens was evaluated. The electrostatic potential and mass of the adherent sand were decreased by the anti-soiling coating.

  6. Behavioral data of thin-film single junction amorphous silicon (a-Si) photovoltaic modules under outdoor long term exposure

    PubMed Central

    Kichou, Sofiane; Silvestre, Santiago; Nofuentes, Gustavo; Torres-Ramírez, Miguel; Chouder, Aissa; Guasch, Daniel

    2016-01-01

    Four years׳ behavioral data of thin-film single junction amorphous silicon (a-Si) photovoltaic (PV) modules installed in a relatively dry and sunny inland site with a Continental-Mediterranean climate (in the city of Jaén, Spain) are presented in this article. The shared data contributes to clarify how the Light Induced Degradation (LID) impacts the output power generated by the PV array, especially in the first days of exposure under outdoor conditions. Furthermore, a valuable methodology is provided in this data article permitting the assessment of the degradation rate and the stabilization period of the PV modules. Further discussions and interpretations concerning the data shared in this article can be found in the research paper “Characterization of degradation and evaluation of model parameters of amorphous silicon photovoltaic modules under outdoor long term exposure” (Kichou et al., 2016) [1]. PMID:26977439

  7. Behavioral data of thin-film single junction amorphous silicon (a-Si) photovoltaic modules under outdoor long term exposure.

    PubMed

    Kichou, Sofiane; Silvestre, Santiago; Nofuentes, Gustavo; Torres-Ramírez, Miguel; Chouder, Aissa; Guasch, Daniel

    2016-06-01

    Four years׳ behavioral data of thin-film single junction amorphous silicon (a-Si) photovoltaic (PV) modules installed in a relatively dry and sunny inland site with a Continental-Mediterranean climate (in the city of Jaén, Spain) are presented in this article. The shared data contributes to clarify how the Light Induced Degradation (LID) impacts the output power generated by the PV array, especially in the first days of exposure under outdoor conditions. Furthermore, a valuable methodology is provided in this data article permitting the assessment of the degradation rate and the stabilization period of the PV modules. Further discussions and interpretations concerning the data shared in this article can be found in the research paper "Characterization of degradation and evaluation of model parameters of amorphous silicon photovoltaic modules under outdoor long term exposure" (Kichou et al., 2016) [1].

  8. Photovoltaic response in pristine WSe{sub 2} layers modulated by metal-induced surface-charge-transfer doping

    SciTech Connect

    Wi, Sungjin; Chen, Mikai; Li, Da; Nam, Hongsuk; Meyhofer, Edgar; Liang, Xiaogan

    2015-08-10

    We obtained photovoltaic response in pristine multilayer WSe{sub 2} by sandwiching WSe{sub 2} between top and bottom metals. In this structure, the work-function difference between the top metal and WSe{sub 2} plays a critical role in generating built-in potentials and photovoltaic responses. Our devices with Zn as top metal exhibit photo-conversion efficiencies up to 6.7% under 532 nm illumination and external quantum efficiencies in the range of 40%–83% for visible light. This work provides a method for generating photovoltaic responses in layered semiconductors without detrimental doping or exquisite heterostructures, and also advances the physics for modulating the band structures of such emerging semiconductors.

  9. Implementation of high concentration photovoltaic grid connected power plant for training, research, innovation and solar electricity production

    NASA Astrophysics Data System (ADS)

    Barhdadi, A.; Benazzouz, A.; Fabrizio, B.; Verdilio, D.

    2015-04-01

    In this paper, performance monitoring program is applied to a grid-connected high concentration photovoltaic power plant in order to identify any operational problem and to make sure of its optimal and continuous power generation working conditions. A preventive maintenance plan was also established and proposed for the whole system.

  10. InPhoCUS (Inflated Photovoltaic Ultra-light Mirror Concentrators): First Results Of The Project And Future Perspectives

    NASA Astrophysics Data System (ADS)

    Pravettoni, Mauro; Barbato, Maurizio; Cooper, Thomas; Pedretti, Andrea; Ambrosetti, Gianluca; Steinfeld, Aldo

    2011-12-01

    InPhoCUS (Inflated PhotovoltaiC Ultra-light mirror concentratorS) is a concentrating photovoltaic (CPV) project funded by the Swiss Confederation's Innovation Promotion Agency (CTI) and developed by Airlight Energy Holding SA, the University of Applied Sciences and Arts of Southern Switzerland and the Swiss Federal Institute of Technology. The proposed novel concentrating system has already been patented for concentrated solar power applications: it is made by unconventional pneumatic multilayer polymeric mirrors, has an innovative fibre-reinforced concrete structure and an original tilting mechanism to track the sun. The innovative CPV solar collector is profitable for electric power plants both for the sun-belt region and in the Mediterranean. In this paper the authors present the novel CPV system and preliminary results on cost analysis, optical design and thermal modelling.

  11. Experiments on solar photovoltaic power generation using concentrator and liquid cooling

    NASA Technical Reports Server (NTRS)

    Beam, B. H.; Hansen, C. F.

    1975-01-01

    Calculations and experimental data are presented leading to the development of a practical, economical solar photovoltaic power supply. The concept involves concentration of sunlight up to about 100 times normal solar intensity in a solar tracking collector and directing this to an array of solar cells. The cells are immersed in water circulated from a thermal reservoir which limits cell temperature rise to about 20 C above ambient during the day and which cools to ambient temperature during the night. Experiments were conducted on solar cells using a Fresnel lens for magnification, a telescope equatorial mount with clock drive, and tap water circulated through the solar cell holder cavity. Test results show that cells operate satisfactorily under these conditions. Power outputs achieved experimentally with cell optimized for 25 suns were linear with concentration to about 15 suns. Cells optimized for 100 suns were not available, but a corresponding linear relation of power output with concentration is anticipated. Test results have been used in a design analysis of the cost of systems utilizing this technique.

  12. Hybrid photovoltaic-thermoelectric system for concentrated solar energy conversion: Experimental realization and modeling

    NASA Astrophysics Data System (ADS)

    Beeri, Ofer; Rotem, Oded; Hazan, Eden; Katz, Eugene A.; Braun, Avi; Gelbstein, Yaniv

    2015-09-01

    An experimental demonstration of the combined photovoltaic (PV) and thermoelectric conversion of concentrated sunlight (with concentration factor, X, up to ˜300) into electricity is presented. The hybrid system is based on a multi-junction PV cell and a thermoelectric generator (TEG). The latter increases the electric power of the system and dissipates some of the excessive heat. For X ≤ 200, the system's maximal efficiency, ˜32%, was mostly due to the contribution from the PV cell. With increasing X and system temperature, the PV cell's efficiency decreased while that of the TEG increased. Accordingly, the direct electrical contribution of the TEG started to dominate in the total system power, reaching ˜20% at X ≈ 290. Using a simple steady state finite element modeling, the cooling effect of the TEG on the hybrid system's efficiency was proved to be even more significant than its direct electrical contribution for high solar concentrations. As a result, the total efficiency contribution of the TEG reached ˜40% at X ≈ 200. This suggests a new system optimization concept that takes into account the PV cell's temperature dependence and the trade-off between the direct electrical generation and cooling capabilities of the TEG. It is shown that the hybrid system has a real potential to exceed 50% total efficiency by using more advanced PV cells and TE materials.

  13. Temperature Dependent Measurement And Simulation Of Fresnel Lenses For Concentrating Photovoltaics

    NASA Astrophysics Data System (ADS)

    Hornung, Thorsten; Bachmaier, Andreas; Nitz, Peter; Gombert, Andreas

    2010-10-01

    Concentrating photovoltaics (CPV) require large areas of optical components that concentrate incident sunlight effectively onto a solar cell. Fresnel lenses are often used as primary optical component providing this concentration. When applied in the field, varying conditions during operation lead to variations in lens temperature which has a strong impact on the optical efficiency of the lenses. A setup for indoor characterization with the ability to heat lens plates allows for the assessment of the quality of Fresnel lenses by means of their irradiance profiles in the focal plane. To analyze the measured temperature dependency we simulate thermal deformations of the lens geometry with finite element method (FEM) tools and use the resulting lens geometry as an input to ray tracing simulations. We performed high accuracy measurements of the temperature and wavelength dependent refractive indices of relevant lens materials to obtain additional input data for computer simulations. A close match between computer simulations and measurements of the irradiance in the focal plane could be achieved, validating our simulation approach. This allows us to judge and optimize the temperature dependence of new lens designs before building and testing prototypes. The simulations themselves allow us to analyze and understand all superimposed effects in detail. The developed tools in combination with detailed solar resource data and knowledge of the CPV system will be the basis for future assessment of overall performance and further optimization of optics for CPV applications.

  14. Development of a building block design of modular photovoltaic concentrator array fields

    SciTech Connect

    Carmichael, D.C.; Alexander, G.; Noel, G.T.; Scurlock, L.D.; Huss, W.R.; Stickford, G.H.

    1983-08-01

    To reduce the balance-of-system (BOS) costs and site-specific design costs for photovoltaic concentrator array fields, a modular Building Block design has been developed for installing array fields of each of two available concentrator collectors. The array-field subsystems and requirements incorporated in the design analyses include site preparation, foundations, electrical wiring, grounding, lightning protection, electromagnetic interference provisions, and tracking and controls. The Building Block designs developed minimize these array-field BOS costs and serve as standardized units to be used in multiples to construct array fields of various sizes. The detailed drawings and construction specifications prepared for the designs require only minimal design modification and cost for adaption to a specific site and application. The two concentrator collectors for which the modular array-field designs were developed are the linear-focus Fresnel-lens array manufactured by E-Systems, Inc., and the point-focus Fresnel-lens array manufactured by Martin Marietta Aerospace Corporation. Both designs are two-axis tracking and passively cooled. The developed Building Block designs are immediately applicable and reduce the array-field BOS costs and site-specific design costs to a fraction of those experienced in previous installations. The estimated array-field BOS costs (in 1982 dollars) using these modular designs are $0.78/W for the modular field based on the E-Systems array and $1.18/W for the modular field based on the Martin-Marietta array.

  15. Analyzing luminescent solar concentrators with front-facing photovoltaic cells using weighted Monte Carlo ray tracing

    NASA Astrophysics Data System (ADS)

    Woei Leow, Shin; Corrado, Carley; Osborn, Melissa; Isaacson, Michael; Alers, Glenn; Carter, Sue A.

    2013-06-01

    Luminescent solar concentrators (LSC) collect ambient light from a broad range of angles and concentrate the captured light onto photovoltaic (PV) cells. LSCs with front-facing cells collect direct and indirect sunlight ensuring a gain factor greater than one. The flexible placement and percentage coverage of PV cells on the LSC panel allow for layout adjustments to be made in order to balance re-absorption losses and the level of light concentration desired. A weighted Monte Carlo ray tracing program was developed to study the transport of photons and loss mechanisms in the LSC to aid in design optimization. The program imports measured absorption/emission spectra of an organic luminescent dye (LR305), the transmission coefficient, and refractive index of acrylic as parameters that describe the system. Simulations suggest that for LR305, 8-10 cm of luminescent material surrounding the PV cell yields the highest increase in power gain per unit area of LSC added, thereby determining the ideal spacing between PV cells in the panel. For rectangular PV cells, results indicate that for each centimeter of PV cell width, an additional increase of 0.15 mm to the waveguide thickness is required to efficiently transport photon collected by the LSC to the PV cell with minimal loss.

  16. Long-term photothermal/humidity testing of photovoltaic module polymer insulations and cover films

    NASA Technical Reports Server (NTRS)

    Mon, G.; Gonzales, C.; Willis, P.; Jetter, E.; Sugimura, R.

    1990-01-01

    The life expectancies of Tedlar and other polymer films considered for use as cover materials in terrestrial photovoltaic (PV) modules were investigated by exposing them for more than 13,000 h on an outdoor test stand and for up to 10,000 h in several accelerated multistress environments. Visual observations and diagnostic analyses of weight and mechanical strength losses were periodically conducted to assess the nature and rate of degradation of mechanical properties and to assess the effects of film thickness and UV stabilizer content. Spectroscopic analyses of pristine and degraded materials linked weight and mechanical property losses to the underlying photothermal/photooxidation chemistry. It is shown that heavy doses of UV stabilizers prolong, while elevated temperatures shorten, the useful life of these materials; humidity plays only a minor role. The most heavily UV-stabilized films are expected to operate usefully in a PV module front-cover application for only five to ten years. The performance of none of the tested films appears consistent with the 20-30 year life goals of the PV industry.

  17. Synergic system between photovoltaic module and microbial fuel cell with simultaneous pollution control

    NASA Astrophysics Data System (ADS)

    Vasyliv, Oresta; Dhere, Neelkanth G.

    2015-05-01

    Combined photovoltaic module-microbial fuel cell construction shows prospect of advanced autonomous functioning effective energy-production system with the possibility of round-the-clock power generation. Application of Desulfuromonas sp. as anode biocatalyst in photovoltaic (PV) - microbial fuel cell (MFC) could support highly effective eco-friendly energy derivation with simultaneous reduction of organic and inorganic wastes in water environment. D. acetoxidans is exoelectrogenic bacterium that supports S0-reduction with H2S formation and S0-oxidation while an electrode serves as the electron acceptor. Simultaneous sulfur redox processes enhance electron transfer to the electrode surface that may increase the effectiveness of microbial fuel cell performance. It was shown that D. acetoxidans IMV B-7384 possesses selective resistance to 0.5-2.5 mM of copper, iron, nickel, manganese and lead ions. Metal-resistant strains of this bacterium may help overcome H2S toxicity, which is produced because of dissimilative S0-reduction, since divalent cations will interact with sulfide ions, forming insoluble precipitates. Thus D. acetoxidans IMV B-7384 may be applied for remediation of toxic metal ions from water environments because of metal fixation in form of insoluble complexes of metal sulfides. D. acetoxidans IMV B-7384 is presumed to have the capability to convert organic compounds, such as malate, pyruvate, succinate and fumarate via reductive stage of tricarboxylic acid cycle. Thus application of effluents as anolyte in MFC, based on D. acetoxidans IMV B-7384, may cause decrease of its organic content with formation of simple benign constituents, such as CO2 and H2O. Hence the advanced system for eco-friendly energy generation with simultaneous water pollution control is proposed.

  18. How could the family-scale photovoltaic module help the poor farmer out of poverty and reduce CO2 emission?

    NASA Astrophysics Data System (ADS)

    Qiu, Xu; Jin, Ran

    2016-04-01

    China, the world's most populous country, is facing great opportunities and challenges. On the one hand, China's increasing economy is raising hundreds of millions of people out of poverty. On the other hand, there are still 100 million of whose daily income is less than 1 US dollar. In addition, China is the world's largest solar panel producer and also the largest emitter of greenhouse gases. Could we find a feasible way to use solar panels to help the poor and meanwhile reduce CO2 emissions? To do this, we reviewed the literature and investigated the related field sites and institutions in China. Results show that the extension of family-scale photovoltaic modules to countryside could help. The 3 kW-module is recommended for widely distribution because its technology is mature and the cost is relatively low (3500 US dollars). Besides their own use to improve their living standard, farmers can sell the excess electricity to the grid at the price of 0.17 UD/kWh. The farmer's annual income could be increased by 460-615 US dollars by selling electricity, and this is equivalent to half of their annual income in many rural regions. The photovoltaic module can be used for 25 years and the payback period is 7 years. In addition to its economic benefit, the photovoltaic module can reduce CO2 emissions by 0.93 kg/kWh. This is equivalent to annual reduction of 3000-4000 kg CO2 per family. Therefore, it is concluded that the family-scale photovoltaic module not only can help the farmers out of poverty but also can reduce CO2 emissions significantly. To promote its sustainable development, it is worthwhile to further investigations its business models as well as the effects of long-term support policies under different social and nature conditions.

  19. FluidReflex Concentrator: From Elementary Unit to Module

    NASA Astrophysics Data System (ADS)

    Victoria, M.; Askins, S.; Domínguez, C.; Antón, I.; Sala, G.

    2011-12-01

    FluidReflex concentrator is a novel CPV design that uses a fluid dielectric to increase optical efficiency and improve module thermal behavior. An optical efficiency of 83.5% at 1035X has been measured when using an antireflection coating over the cell optimized for wide incidence angle and high reflectivity silver mirrors. In addition, first results for the FluidReflex prototype modules are presented in this article.

  20. Life cycle assessment and economic analysis of a low concentrating photovoltaic system.

    PubMed

    De Feo, G; Forni, M; Petito, F; Renno, C

    2016-10-01

    Many new photovoltaic (PV) applications, such as the concentrating PV (CPV) systems, are appearing on the market. The main characteristic of CPV systems is to concentrate sunlight on a receiver by means of optical devices and to decrease the solar cells area required. A low CPV (LCPV) system allows optimizing the PV effect with high increase of generated electric power as well as decrease of active surface area. In this paper, an economic analysis and a life cycle assessment (LCA) study of a particular LCPV scheme is presented and its environmental impacts are compared with those of a PV traditional system. The LCA study was performed with the software tool SimaPro 8.0.2, using the Econinvent 3.1 database. A functional unit of 1 kWh of electricity produced was chosen. Carbon Footprint, Ecological Footprint and ReCiPe 2008 were the methods used to assess the environmental impacts of the LCPV plant compared with a corresponding traditional system. All the methods demonstrated the environmental convenience of the LCPV system. The innovative system allowed saving 16.9% of CO2 equivalent in comparison with the traditional PV plant. The environmental impacts saving was 17% in terms of Ecological Footprint, and, finally, 15.8% with the ReCiPe method.

  1. 26+ Year Old Photovoltaic Power Plant: Degradation and Reliability Evaluation of Crystalline Silicon Modules -- South Array

    NASA Astrophysics Data System (ADS)

    Olakonu, Kolapo

    As the use of photovoltaic (PV) modules in large power plants continues to increase globally, more studies on degradation, reliability, failure modes, and mechanisms of field aged modules are needed to predict module life expectancy based on accelerated lifetime testing of PV modules. In this work, a 26+ year old PV power plant in Phoenix, Arizona has been evaluated for performance, reliability, and durability. The PV power plant, called Solar One, is owned and operated by John F. Long's homeowners association. It is a 200 kW dc, standard test conditions (STC) rated power plant comprised of 4000 PV modules or frameless laminates, in 100 panel groups (rated at 175 kW ac). The power plant is made of two center-tapped bipolar arrays, the north array and the south array. Due to a limited time frame to execute this large project, this work was performed by two masters students (Jonathan Belmont and Kolapo Olakonu) and the test results are presented in two masters theses. This thesis presents the results obtained on the south array and the other thesis presents the results obtained on the north array. Each of these two arrays is made of four sub arrays, the east sub arrays (positive and negative polarities) and the west sub arrays (positive and negative polarities), making up eight sub arrays. The evaluation and analyses of the power plant included in this thesis consists of: visual inspection, electrical performance measurements, and infrared thermography. A possible presence of potential induced degradation (PID) due to potential difference between ground and strings was also investigated. Some installation practices were also studied and found to contribute to the power loss observed in this investigation. The power output measured in 2011 for all eight sub arrays at STC is approximately 76 kWdc and represents a power loss of 62% (from 200 kW to 76 kW) over 26+ years. The 2011 measured power output for the four south sub arrays at STC is 39 kWdc and represents a power

  2. Consideration on Na diffusion and recovery phenomena in potential-induced degradation for crystalline Si photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Masuda, Atsushi; Hara, Yukiko; Jonai, Sachiko

    2016-02-01

    Potential-induced degradation (PID), which brings about a large rapid decrease in output power has been observed in megawatt-scale photovoltaic power plants. Na diffusion from a cover glass to a cell through an encapsulant is possibly the direct origin of PID for p-type crystalline Si photovoltaic modules. On the other hand, PID is suppressed when using an ionomer encapsulant instead of a conventional ethylene vinyl acetate encapsulant. Some researchers consider that the reason is the suppression of Na diffusion when using an ionomer encapsulant. However, there has been no direct observation of Na diffusion behavior to the best of our knowledge for the modules prepared using an ionomer encapsulant. In this study it was found for the first time that Na diffuses in p-type multicrystalline Si photovoltaic modules prepared using an ionomer encapsulant without PID, suggesting that Na diffusion is not a sufficient condition for PID to occur. Another feature of PID is the recovery phenomenon induced by applying reverse voltage after PID occurs. In this study it was also found that reverse voltage application in the initial stage is effective for suppressing PID.

  3. Ground testing of array modules for the photovoltaic array space power (PASP) experiment

    NASA Technical Reports Server (NTRS)

    Morris, Robert K.; Grier, Norman T.

    1987-01-01

    One of the objectives of the PASP experiment is the verification of cost-effective ground simulations of high-voltage solar array/space-environment interactions by comparing the results with flight data. These ground tests consist of electrical characterization, thermal cycling, and plasma chamber simulations. The results of the latter tests are reported. Five array modules which are representative of the flight arrays were tested. The module types are planar silicon, planar gallium arsenide, planar silicon passivated with an integrally deposited cover glass, mini-Cassegrainian concentrator, and SLATS concentrator. The modules were biased to -1000 V in varying plasma densities from 4 x 103 to 2 x 105 e-/cu cm. Each array was tested in both dark and illuminated conditions with a load resistance. In addition to monitoring arcing during the plasma tests, the arrays were visually inspected and electrically characterized before and after exposure in the chamber. The electrical results are tabulated and briefly discussed.

  4. Low-cost photovoltaics: Luminescent solar concentrators and colloidal quantum dot solar cells

    NASA Astrophysics Data System (ADS)

    Leow, Shin Woei

    Solar energy has long been lauded as an inexhaustible fuel source with more energy reaching the earth's surface in one hour than the global consumption for a year. Although capable of satisfying the world's energy requirements, solar energy remains an expensive technology that has yet to attain grid parity. Another drawback is that existing solar farms require large quantities of land in order to generate power at useful rates. In this work, we look to luminescent solar concentrator systems and quantum dot technology as viable solutions to lowering the cost of solar electricity production with the flexibility to integrate such technologies into buildings to achieve dual land use. Luminescent solar concentrator (LSC) windows with front-facing photovoltaic (PV) cells were built and their gain and power efficiency were investigated. Conventional LSCs employ a photovoltaic (PV) cell that is placed on the edge of the LSC, facing inward. This work describes a new design with the PV cells on the front-face allowing them to receive both direct solar irradiation and wave-guided photons emitted from a dye embedded in an acrylic sheet, which is optically coupled to the PV cells. Parameters investigated include the thickness of the waveguide, edge treatment of the window, cell width, and cell placement. The data allowed us to make projections that aided in designing windows for maximized overall efficiency. A gain in power of 2.2x over the PV cells alone was obtained with PV cell coverage of 5%, and a power conversion efficiency as high as 6.8% was obtained with a PV cell coverage of 31%. Balancing the trade-offs between gain and efficiency, the design with the lowest cost per watt attained a power efficiency of 3.8% and a gain of 1.6x. With the viability of the LSC demonstrated, a weighted Monte-Carlo Ray Tracing program was developed to study the transport of photons and loss mechanisms in the LSC to aid in design optimization. The program imports measured absorption

  5. Performance comparison of four kinds of flat nonimaging Fresnel lenses made of polycarbonates and polymethyl methacrylate for concentrated photovoltaics

    NASA Astrophysics Data System (ADS)

    Languy, Fabian; Habraken, Serge

    2011-07-01

    Solar concentrators made of a single refractive primary optics are limited to a concentration ratio of about 1000× [Opt. Express19, A280 (2011)], due only to longitudinal chromatic aberration, while mirrors are limited to ˜46,000× by the angular size of the Sun. To reduce the chromatic aberration while keeping cost-effective systems for concentrated photovoltaics, a study of four different kinds of flat Fresnel doublets made of polycarbonates and polymethyl methacrylate is presented. It reveals that Fresnel doublets may have fewer optical losses than non-Fresnel doublets, with a lower lateral chromatic split allowing for even higher concentration ratio.

  6. Ultraviolet Radiation Round-Robin Testing of Various Backsheets for Photovoltaic Modules

    SciTech Connect

    Koehl, Michael; Ballion, Amal; Lee, Yu-Hsien; Wu, Hung-Sen; Scott, Kurt; Glick, Stephen; Hacke, Peter; Koo, Hyun Jin

    2015-06-14

    Durability testing of materials exposed to natural weathering requires testing of the ultraviolet (UV) stability, especially for polymeric materials. The type approval testing of photovoltaic (PV) modules according to standards IEC 61215 and IEC 61646, which includes a so-called UV preconditioning test with a total UV dose of 15 kWh/m2, does not correspond to the real loads during lifetime. Between 3%-10% of the UV radiation has to be in the spectral range between 280 and 320 nm (UV-B) in the recent editions of the standards. However, the spectral distribution of the radiation source is very important because different samples show very individual spectral sensitivity for the radiation offered. Less than 6% of the intensity of solar radiation exists in the UV range. In the case of an increase of the intensity of the light source for accelerating the UV test, overheating of the samples would have to be prevented more rigorously and the temperature of the samples have to be measured to avoid misinterpretation of the test results.

  7. A pulse-width modulated, high reliability charge controller for small photovoltaic systems

    SciTech Connect

    Gerken, K.; Welsh, D.

    1997-02-01

    This report presents the results of a development effort to design, test and begin production of a new class of small photovoltaic (PV) charge controllers. Sandia National Laboratories provided technical support, test data and financial support through a Balance-of-System Development contract. One of the objectives of the development was to increase user confidence in small PV systems by improving the reliability and operating life of the system controllers. Another equally important objective was to improve the economics of small PV systems by extending the battery lifetimes. Using new technology and advanced manufacturing techniques, these objectives were accomplished. Because small stand-alone PV systems account for over one third of all PV modules shipped, the positive impact of improving the reliability and economics of PV systems in this market segment will be felt throughout the industry. The results of verification testing of the new product are also included in this report. The initial design goals and specifications were very aggressive, but the extensive testing demonstrates that all the goals were achieved. Production of the product started in May at a rate of 2,000 units per month. Over 40 Morningstar distributors (5 US and 35 overseas) have taken delivery in the first 2 months of shipments. Initial customer reactions to the new controller have been very favorable.

  8. Low earth orbit durability of protected silicone for refractive photovoltaic concentrator arrays

    NASA Technical Reports Server (NTRS)

    McCollum, Timothy A.; deGroh, Kim K.

    1995-01-01

    Photovoltaic power systems with novel refractive silicone solar concentrators are being developed for use in low Earth orbit (LEO). Because of the vulnerability of silicones to atomic oxygen and ultraviolet radiation, these lenses are coated with a multilayer metal oxide protective coating. The objective of this work was to evaluate the effects of atomic oxygen and thermal exposures on multilayer coated silicone. Samples were exposed to high-fluence ground-laboratory and low-fluence in-space atomic oxygen. Ground testing resulted in decreases in both total and specular transmittance, while in-space exposure resulted in only small decreases in specular transmittance. A contamination film, attributed to exposed silicone at coating crack sites, was found to cause transmittance decreases during ground testing. Propagation of coating cracks was found to be the result of sample heating during exposure. The potential for silicone exposure, with the resulting degradation of optical properties from silicone contamination, indicates that this multilayer coated silicone is not durable for LEO space applications where thermal exposures will cause coating crack development and propagation.

  9. Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview

    SciTech Connect

    Mendelsohn, M.; Lowder, T.; Canavan, B.

    2012-04-01

    Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.

  10. Temperature and wavelength dependent measurement and simulation of Fresnel lenses for concentrating photovoltaics

    NASA Astrophysics Data System (ADS)

    Hornung, Thorsten; Bachmaier, Andreas; Nitz, Peter; Gombert, Andreas

    2010-05-01

    Fresnel lenses are often used as primary optical components in concentrating photovoltaics (CPV). When applied in the field, varying conditions during operation lead to variations in lens temperature which has a strong impact on the optical efficiency of the lenses. A setup for indoor characterization with the ability to heat lens plates allows for the assessment of the quality of Fresnel lenses by means of their irradiance profiles in the focal plane. To analyze the measured temperature dependency we simulate thermal deformations of the lens geometry with finite element method (FEM) tools and use the resulting lens geometry as an input to ray tracing simulations. A close match between computer simulations and measurements of the irradiance profile in the focal plane is achieved, validating our simulation approach. This allows us to judge and optimize the temperature dependence of new lens designs before building and testing prototypes. The simulation enables us to analyze and understand all superimposed effects in detail. The developed tools in combination with detailed solar resource data and knowledge of the CPV system will be the basis for future assessment of overall performance and further optimization of optics for CPV applications.

  11. Electrical Bias as an Alternate Method for Reproducible Measurement of Copper Indium Gallium Diselenide (CIGS) Photovoltaic Modules: Preprint

    SciTech Connect

    Deline, C.; Stokes, A.; Silverman, T. J.; Rummel, S.; Jordan, D.; Kurtz, S.

    2012-08-01

    Light-to-dark metastable changes in thin-film photovoltaic (PV) modules can introduce uncertainty when measuring module performance on indoor flash testing equipment. This study describes a method to stabilize module performance through forward-bias current injection rather than light exposure. Measurements of five pairs of thin-film copper indium gallium diselenide (CIGS) PV modules indicate that forward-bias exposure maintained the PV modules at a stable condition (within 1%) while the unbiased modules degraded in performance by up to 12%. It was additionally found that modules exposed to forward bias exhibited stable performance within about 3% of their long-term outdoor exposed performance. This carrier-injection method provides a way to reduce uncertainty arising from fast transients in thin-film module performance between the time a module is removed from light exposure and when it is measured indoors, effectively simulating continuous light exposure by injecting minority carriers that behave much as photocarriers do. This investigation also provides insight into the initial light-induced transients of thin-film modules upon outdoor deployment.

  12. Development of a second-generation linear Fresnel lens photovoltaic and thermal (PVT) concentrator array, including fabrication and installation of a 200 square meter collector field

    SciTech Connect

    O'Neill, M.J.

    1985-02-01

    This report summarizes work performed in two areas: development of a second-generation linear Fresnel lens photovoltaic concentrator array, and development and fabrication of a 22 kilowatt photovoltaic and thermal concentrator array. Under these programs, ENTECH, Inc. developed a new second-generation linear Fresnel lens PVT concentrator system, and deployed a 200 square meter collector field of the new design at Sandia-Albuquerque. The new system combines excellent performance and low mass-production cost.

  13. System and method for design and optimization of grid connected photovoltaic power plant with multiple photovoltaic module technologies

    DOEpatents

    Thomas, Bex George; Elasser, Ahmed; Bollapragada, Srinivas; Galbraith, Anthony William; Agamy, Mohammed; Garifullin, Maxim Valeryevich

    2016-03-29

    A system and method of using one or more DC-DC/DC-AC converters and/or alternative devices allows strings of multiple module technologies to coexist within the same PV power plant. A computing (optimization) framework estimates the percentage allocation of PV power plant capacity to selected PV module technologies. The framework and its supporting components considers irradiation, temperature, spectral profiles, cost and other practical constraints to achieve the lowest levelized cost of electricity, maximum output and minimum system cost. The system and method can function using any device enabling distributed maximum power point tracking at the module, string or combiner level.

  14. Detection of acid moisture in photovoltaic modules using a dual wavelength pH-sensitive fluorescent dye

    NASA Astrophysics Data System (ADS)

    Asaka, Takashi; Iwami, Kentaro; Taguchi, Atsushi; Umeda, Norihiro; Masuda, Atsushi

    2014-01-01

    The formation of acetic acid via the penetration of moisture into ethylene vinyl acetate (EVA) in photovoltaic (PV) modules is cited as the main reason for PV modules’ degradation. Currently, there is no effective method for detecting acetic moisture in PV modules. We proposed a simple method for detecting acid moisture in PV modules using a dual-wavelength pH-sensitive dye that measures pH by the ratio of the intensities of two peaks in the fluorescence spectra of the dye. We detected the pH change caused by acetic acid with the change in the intensity ratio of the fluorescence spectra of the dried dye. Furthermore, we observed that the dry fluorescent dye is heat resistant to withstand the lamination process for the manufacturing of PV modules, and has good long-term durability.

  15. Effects of light illumination during damp/dry heat tests on a flexible thin film photovoltaic module

    NASA Astrophysics Data System (ADS)

    Sakurai, Keiichiro; Takano, Akihiro; Takani, Masayoshi; Masuda, Atsushi

    2015-09-01

    Current injected damp heat (CDH) test have been reported to accelerate certain type of long-term degradation observed in at least one prototype flexible thin film silicon photovoltaic (PV) modules deployed in field [1]. This report have raised a question that whether conventional DH tests should be combined with current injection or light illumination to better reproduce long-time degradations of flexible thin film modules. To answer this question, we have been testing multiple flexible products available in the market, as part of the activities of Japanese Task Group 8 of the International PV Quality Assurance Task Force (PVQAT) [2]. Here, we present some results of our damp (or dry) heat testing with light illumination on a flexible CIGS module product with relatively poor moisture barriers.

  16. Manufacturing metrology for c-Si photovoltaic module reliability and durability, Part I: Feedstock, crystallization and wafering

    SciTech Connect

    Seigneur, Hubert; Mohajeri, Nahid; Brooker, R. Paul; Davis, Kristopher O.; Schneller, Eric J.; Dhere, Neelkanth G.; Rodgers, Marianne P.; Wohlgemuth, John; Shiradkar, Narendra S.; Scardera, Giuseppe; Rudack, Andrew C.; Schoenfeld, Winston V.

    2016-06-01

    This article is the first in a three-part series of manufacturing metrology for c-Si photovoltaic (PV) module reliability and durability. Here in Part 1 we focus on the three primary process steps for making silicon substrates for PV cells: (1) feedstock production; (2) ingot and brick production; and (3) wafer production. Each of these steps can affect the final reliability/durability of PV modules in the field with manufacturing metrology potentially playing a significant role. This article provides a comprehensive overview of historical and current processes in each of these three steps, followed by a discussion of associated reliability challenges and metrology strategies that can be employed for increased reliability and durability in resultant modules. Gaps in the current state of understanding in connective metrology data during processing to reliability/durability in the field are then identified along with suggested improvements that should be considered by the PV community.

  17. Monte Carlo Simulations of Luminescent Solar Concentrators with Front-Facing Photovoltaic Cells for Building Integrated Photovoltaics

    NASA Astrophysics Data System (ADS)

    Leow, Shin; Corrado, Carley; Osborn, Melissa; Carter, Sue

    2013-03-01

    Luminescent solar concentrators (LSCs) have the ability to receive light from a wide range of angles and concentrate the captured light on to small photo active areas. This enables LSCs to be integrated more extensively into buildings as windows and wall claddings on top of roof installations. LSCs with front facing PV cells collect both direct and concentrated light ensuring a gain factor greater than one. It also allows for flexibility in determining the placement and percentage coverage of PV cells when designing panels to balance reabsorption losses, power output and the level of concentration desired. A Monte-Carlo ray tracing program was developed to study the transport of photons and loss mechanisms in LSC panels and aid in design optimization. The program imports measured absorption/emission spectra and transmission coefficients as simulation parameters. Interactions of photons with the LSC panel are determined by comparing calculated probabilities with random number generators. Simulation results reveal optimal panel dimensions and PV cell layouts to achieve maximum power output.

  18. Influence of volcanic tephra on photovoltaic (PV)-modules: An experimental study with application to the 2010 Eyjafjallajokull eruption, Iceland

    NASA Astrophysics Data System (ADS)

    Zorn, Edgar; Walter, Thomas R.

    2016-04-01

    Large volcanic eruptions may lead to significant tephra dispersion, crossing borders and affecting distant and industrial societies in various ways. While the effects of volcanic ash clouds on the aviation industry have been recognized, damaging effects on the photovoltaic energy sector are poorly investigated. Here we describe the influence of volcanic tephra deposition on photovoltaic (PV) modules that we experimentally analyzed and evaluated. A systematic set of experiments was conducted under controlled conditions using an artificial light source and measuring the electrical power generated from the PV-modules with the aim to determine the dependency of the amount of tephra covering a module and its subsequent loss in power production (measured in voltage and current) as well as the influence of the tephra grain size. We find that a mass of fine tephra has a stronger influence on the PV-modules power generation than the same mass of coarser particles. An application to the fine-grained 2010 Eyjafjallajökull eruption in Iceland and the resulting ash-cloud reveals that the power produced by PV-modules in continental Europe might have been affected significantly. Deposits were thick enough to cause complete failures of PV-modules up to a distance of about 300 km downwind. Although this distance is largely over the ocean in this particular case, our results imply that similar and larger eruptions of other volcanoes elsewhere might harm commercial or private energy production at distances of hundreds to thousands of kilometers from the volcano. Given that volcanic eruptions are frequent and the fact that the PV-industry is growing rapidly, negative impacts are expected in the future, requiring close tephra dispersion monitoring and PV-maintenance strategies.

  19. Non-contact measurement of electric potential of photovoltaic cells in a module and novel characterization technologies

    NASA Astrophysics Data System (ADS)

    Hishikawa, Yoshihiro; Yamagoe, Kengo; Onuma, Tsuyoshi

    2015-08-01

    A novel noncontact method of measuring the electric potential of component cells in photovoltaic (PV) modules is investigated using electrostatic field measurement technology. Experimental results for various kinds of PV cells and modules are presented, and their measurement principle as well as practical factors that affect the measurement results are discussed. It is demonstrated that the DC electric potential of the cells in various crystalline silicon and thin-film PV modules can be measured indoors through their cover glass or backsheet within a resolution of the output voltage of about 1 cell. The method is also applicable to the outdoor measurement of PV modules under grid-connected operation, and enables various kinds of characterization such as identifying low-performance cells in a PV module and degraded modules in a PV array, and determining the balance of their output current under outdoor operating conditions. Different distributions of electric potential measured from the front and back surfaces are observed for some types of modules. These differences are suggested, by the results of the analysis of experiments and numerical simulations, to originate from the modification of the module’s surface electric potential by slight current flow through its component materials such as the cover glass, ethylene vinyl acetate (EVA), and backsheet.

  20. Review of Consensus Standard Spectra for Flat Plate and Concentrating Photovoltaic Performance

    SciTech Connect

    Myers, D.

    2011-09-01

    Consensus standard reference terrestrial solar spectra are used to establish nameplate ratings for photovoltaic device performance at standard reporting conditions. This report describes reference solar spectra developed in the United States and international consensus standards community which are widely accepted as of this writing (June 2011).