Science.gov

Sample records for phylogenetic analyses suggest

  1. Phylogenetic analyses of complete mitochondrial genome sequences suggest a basal divergence of the enigmatic rodent Anomalurus

    PubMed Central

    Horner, David S; Lefkimmiatis, Konstantinos; Reyes, Aurelio; Gissi, Carmela; Saccone, Cecilia; Pesole, Graziano

    2007-01-01

    Background Phylogenetic relationships between Lagomorpha, Rodentia and Primates and their allies (Euarchontoglires) have long been debated. While it is now generally agreed that Rodentia constitutes a monophyletic sister-group of Lagomorpha and that this clade (Glires) is sister to Primates and Dermoptera, higher-level relationships within Rodentia remain contentious. Results We have sequenced and performed extensive evolutionary analyses on the mitochondrial genome of the scaly-tailed flying squirrel Anomalurus sp., an enigmatic rodent whose phylogenetic affinities have been obscure and extensively debated. Our phylogenetic analyses of the coding regions of available complete mitochondrial genome sequences from Euarchontoglires suggest that Anomalurus is a sister taxon to the Hystricognathi, and that this clade represents the most basal divergence among sampled Rodentia. Bayesian dating methods incorporating a relaxed molecular clock provide divergence-time estimates which are consistently in agreement with the fossil record and which indicate a rapid radiation within Glires around 60 million years ago. Conclusion Taken together, the data presented provide a working hypothesis as to the phylogenetic placement of Anomalurus, underline the utility of mitochondrial sequences in the resolution of even relatively deep divergences and go some way to explaining the difficulty of conclusively resolving higher-level relationships within Glires with available data and methodologies. PMID:17288612

  2. Phylogenetic analyses of endoparasitic Acanthocephala based on mitochondrial genomes suggest secondary loss of sensory organs.

    PubMed

    Weber, Mathias; Wey-Fabrizius, Alexandra R; Podsiadlowski, Lars; Witek, Alexander; Schill, Ralph O; Sugár, László; Herlyn, Holger; Hankeln, Thomas

    2013-01-01

    The metazoan taxon Syndermata (Monogononta, Bdelloidea, Seisonidea, Acanthocephala) comprises species with vastly different lifestyles. The focus of this study is on the phylogeny within the syndermatan subtaxon Acanthocephala (thorny-headed worms, obligate endoparasites). In order to investigate the controversially discussed phylogenetic relationships of acanthocephalan subtaxa we have sequenced the mitochondrial (mt) genomes of Echinorhynchus truttae (Palaeacanthocephala), Paratenuisentis ambiguus (Eoacanthocephala), Macracanthorhynchus hirudinaceus (Archiacanthocephala), and Philodina citrina (Bdelloidea). In doing so, we present the largest molecular phylogenetic dataset so far for this question comprising all major subgroups of Acanthocephala. Alongside with publicly available mt genome data of four additional syndermatans as well as 18 other lophotrochozoan (spiralian) taxa and one outgroup representative, the derived protein-coding sequences were used for Maximum Likelihood as well as Bayesian phylogenetic analyses. We achieved entirely congruent results, whereupon monophyletic Archiacanthocephala represent the sister taxon of a clade comprising Eoacanthocephala and monophyletic Palaeacanthocephala (Echinorhynchida). This topology suggests the secondary loss of lateral sensory organs (sensory pores) within Palaeacanthocephala and is further in line with the emergence of apical sensory organs in the stem lineage of Archiacanthocephala.

  3. Relationships in the Caryophyllales as suggested by phylogenetic analyses of partial chloroplast DNA ORF2280 homolog sequences.

    PubMed

    Downie, S; Katz-Downie, D; Cho, K

    1997-02-01

    Phylogenetic relationships within the angiosperm order Caryophyllales were investigated by comparative sequencing of two portions of the highly conserved inverted repeat (totaling some 1100 base pairs) coinciding with the region occupied by ORF2280 in Nicotiana, the largest gene in the plastid genomes of most land plants. Data were obtained for 33 species in 11 families within the order and for one species each of Plumbaginaceae, Polygonaceae, and Nepenthaceae. These data, when analyzed along with previously published ORF (open reading frame) sequences from Nicotiana. Spinacia. Epifagus, and Pelargonium using parsimony, neighbor-joining, and maximum likelihood methods, reveal that: (1) Amaranthus, Celosia, and Froelichia (all Amaranthaceae) do not comprise a monophyletic group; (2) Amaranthus may be nested within a paraphyletic Chenopodiaceae; (3) Sarcobatus (Chenopodiaceae) is allied with Nyctaginaceae + Phytolaccaceae (the latter family excluding Stegnosperma but including Petiveria); and (4) Caryophyllaceae (with Corrigiola basal within the clade) are sister group to Chenopodiaceae + Amaranthaceae. Basal relations within the order remain obscure. Sequence divergence values in pairwise comparisons across all Caryophyllales taxa ranged from 0.1 to 5% of nucleotides. However, despite these low values, 23 insertion and deletion events were apparent, of which five were informative phylogenetically and bolstered several of the relationships listed above. A polymerase chain reaction (PCR) survey for ORF homolog length variants in representatives from 70 additional angiosperm families revealed major deletions, of 100 to 1400 base pairs, in 19 of these families. Although the ORF is located within the mutationally retarded inverted repeat region of most angiosperm chloroplast DNAs, this gene appears particularly prone to length mutation.

  4. Phylogenetic and genomewide analyses suggest a functional relationship between kayak, the Drosophila fos homolog, and fig, a predicted protein phosphatase 2c nested within a kayak intron.

    PubMed

    Hudson, Stephanie G; Garrett, Matthew J; Carlson, Joseph W; Micklem, Gos; Celniker, Susan E; Goldstein, Elliott S; Newfeld, Stuart J

    2007-11-01

    A gene located within the intron of a larger gene is an uncommon arrangement in any species. Few of these nested gene arrangements have been explored from an evolutionary perspective. Here we report a phylogenetic analysis of kayak (kay) and fos intron gene (fig), a divergently transcribed gene located in a kay intron, utilizing 12 Drosophila species. The evolutionary relationship between these genes is of interest because kay is the homolog of the proto-oncogene c-fos whose function is modulated by serine/threonine phosphorylation and fig is a predicted PP2C phosphatase specific for serine/threonine residues. We found that, despite an extraordinary level of diversification in the intron-exon structure of kay (11 inversions and six independent exon losses), the nested arrangement of kay and fig is conserved in all species. A genomewide analysis of protein-coding nested gene pairs revealed that approximately 20% of nested pairs in D. melanogaster are also nested in D. pseudoobscura and D. virilis. A phylogenetic examination of fig revealed that there are three subfamilies of PP2C phosphatases in all 12 species of Drosophila. Overall, our phylogenetic and genomewide analyses suggest that the nested arrangement of kay and fig may be due to a functional relationship between them.

  5. Phylogenetic analyses and characterization of RNase X25 from Drosophila melanogaster suggest a conserved housekeeping role and additional functions for RNase T2 enzymes in protostomes.

    PubMed

    Ambrosio, Linda; Morriss, Stephanie; Riaz, Ayesha; Bailey, Ryan; Ding, Jian; MacIntosh, Gustavo C

    2014-01-01

    Ribonucleases belonging to the RNase T2 family are enzymes associated with the secretory pathway that are almost absolutely conserved in all eukaryotes. Studies in plants and vertebrates suggest they have an important housekeeping function in rRNA recycling. However, little is known about this family of enzymes in protostomes. We characterized RNase X25, the only RNase T2 enzyme in Drosophila melanogaster. We found that RNase X25 is the major contributor of ribonuclease activity in flies as detected by in gel assays, and has an acidic pH preference. Gene expression analyses showed that the RNase X25 transcript is present in all adult tissues and developmental stages. RNase X25 expression is elevated in response to nutritional stresses; consistent with the hypothesis that this enzyme has a housekeeping role in recycling RNA. A correlation between induction of RNase X25 expression and autophagy was observed. Moreover, induction of gene expression was triggered by oxidative stress suggesting that RNase X25 may have additional roles in stress responses. Phylogenetic analyses of this family in protostomes showed that RNase T2 genes have undergone duplication events followed by divergence in several phyla, including the loss of catalytic residues, and suggest that RNase T2 proteins have acquired novel functions. Among those, it is likely that a role in host immunosuppression evolved independently in several groups, including parasitic Platyhelminthes and parasitoid wasps. The presence of only one RNase T2 gene in the D. melanogaster genome, without any other evident secretory RNase activity detected, makes this organism an ideal system to study the cellular functions of RNase T2 proteins associated with RNA recycling and maintenance of cellular homeostasis. On the other hand, the discovery of gene duplications in several protostome genomes also presents interesting new avenues to study additional biological functions of this ancient family of proteins.

  6. Structural, Biochemical, and Phylogenetic Analyses Suggest That Indole-3-Acetic Acid Methyltransferase Is an Evolutionarily Ancient Member of the SABATH Family

    SciTech Connect

    Zhao,N.; Ferrer, J.; Ross, J.; Guan, J.; Yang, Y.; Pichersky, E.; Noel, J.; Chen, F.

    2008-01-01

    The plant SABATH protein family encompasses a group of related small-molecule methyltransferases (MTs) that catalyze the S-adenosyl-L-methionine-dependent methylation of natural chemicals encompassing widely divergent structures. Indole-3-acetic acid (IAA) methyltransferase (IAMT) is a member of the SABATH family that modulates IAA homeostasis in plant tissues through methylation of IAA's free carboxyl group. The crystal structure of Arabidopsis (Arabidopsis thaliana) IAMT (AtIAMT1) was determined and refined to 2.75 Angstroms resolution. The overall tertiary and quaternary structures closely resemble the two-domain bilobed monomer and the dimeric arrangement, respectively, previously observed for the related salicylic acid carboxyl methyltransferase from Clarkia breweri (CbSAMT). To further our understanding of the biological function and evolution of SABATHs, especially of IAMT, we analyzed the SABATH gene family in the rice (Oryza sativa) genome. Forty-one OsSABATH genes were identified. Expression analysis showed that more than one-half of the OsSABATH genes were transcribed in one or multiple organs. The OsSABATH gene most similar to AtIAMT1 is OsSABATH4. Escherichia coli-expressed OsSABATH4 protein displayed the highest level of catalytic activity toward IAA and was therefore named OsIAMT1. OsIAMT1 exhibited kinetic properties similar to AtIAMT1 and poplar IAMT (PtIAMT1). Structural modeling of OsIAMT1 and PtIAMT1 using the experimentally determined structure of AtIAMT1 reported here as a template revealed conserved structural features of IAMTs within the active-site cavity that are divergent from functionally distinct members of the SABATH family, such as CbSAMT. Phylogenetic analysis revealed that IAMTs from Arabidopsis, rice, and poplar (Populus spp.) form a monophyletic group. Thus, structural, biochemical, and phylogenetic evidence supports the hypothesis that IAMT is an evolutionarily ancient member of the SABATH family likely to play a critical role in

  7. Birth of Archaeal Cells: Molecular Phylogenetic Analyses of G1P Dehydrogenase, G3P Dehydrogenases, and Glycerol Kinase Suggest Derived Features of Archaeal Membranes Having G1P Polar Lipids

    PubMed Central

    2016-01-01

    Bacteria and Eukarya have cell membranes with sn-glycerol-3-phosphate (G3P), whereas archaeal membranes contain sn-glycerol-1-phosphate (G1P). Determining the time at which cells with either G3P-lipid membranes or G1P-lipid membranes appeared is important for understanding the early evolution of terrestrial life. To clarify this issue, we reconstructed molecular phylogenetic trees of G1PDH (G1P dehydrogenase; EgsA/AraM) which is responsible for G1P synthesis and G3PDHs (G3P dehydrogenase; GpsA and GlpA/GlpD) and glycerol kinase (GlpK) which is responsible for G3P synthesis. Together with the distribution of these protein-encoding genes among archaeal and bacterial groups, our phylogenetic analyses suggested that GlpA/GlpD in the Commonote (the last universal common ancestor of all extant life with a cellular form, Commonote commonote) acquired EgsA (G1PDH) from the archaeal common ancestor (Commonote archaea) and acquired GpsA and GlpK from a bacterial common ancestor (Commonote bacteria). In our scenario based on this study, the Commonote probably possessed a G3P-lipid membrane synthesized enzymatically, after which the archaeal lineage acquired G1PDH followed by the replacement of a G3P-lipid membrane with a G1P-lipid membrane. PMID:27774041

  8. Phylogenetic analysis suggests that habitat filtering is structuring marine bacterial communities across the globe.

    PubMed

    Pontarp, Mikael; Canbäck, Björn; Tunlid, Anders; Lundberg, Per

    2012-07-01

    The phylogenetic structure and community composition were analysed in an existing data set of marine bacterioplankton communities to elucidate the evolutionary and ecological processes dictating the assembly. The communities were sampled from coastal waters at nine locations distributed worldwide and were examined through the use of comprehensive clone libraries of 16S ribosomal RNA genes. The analyses show that the local communities are phylogenetically different from each other and that a majority of them are phylogenetically clustered, i.e. the species (operational taxonomic units) were more related to each other than expected by chance. Accordingly, the local communities were assembled non-randomly from the global pool of available bacterioplankton. Further, the phylogenetic structures of the communities were related to the water temperature at the locations. In agreement with similar studies, including both macroorganisms and bacteria, these results suggest that marine bacterial communities are structured by “habitat filtering”, i.e. through non-random colonization and invasion determined by environmental characteristics. Different bacterial types seem to have different ecological niches that dictate their survival in different habitats. Other eco-evolutionary processes that may contribute to the observed phylogenetic patterns are discussed. The results also imply a mapping between phenotype and phylogenetic relatedness which facilitates the use of community phylogenetic structure analysis to infer ecological and evolutionary assembly processes.

  9. Plant DNA sequencing for phylogenetic analyses: from plants to sequences.

    PubMed

    Neves, Susana S; Forrest, Laura L

    2011-01-01

    DNA sequences are important sources of data for phylogenetic analysis. Nowadays, DNA sequencing is a routine technique in molecular biology laboratories. However, there are specific questions associated with project design and sequencing of plant samples for phylogenetic analysis, which may not be familiar to researchers starting in the field. This chapter gives an overview of methods and protocols involved in the sequencing of plant samples, including general recommendations on the selection of species/taxa and DNA regions to be sequenced, and field collection of plant samples. Protocols of plant sample preparation, DNA extraction, PCR and cloning, which are critical to the success of molecular phylogenetic projects, are described in detail. Common problems of sequencing (using the Sanger method) are also addressed. Possible applications of second-generation sequencing techniques in plant phylogenetics are briefly discussed. Finally, orientation on the preparation of sequence data for phylogenetic analyses and submission to public databases is also given.

  10. Should genes with missing data be excluded from phylogenetic analyses?

    PubMed

    Jiang, Wei; Chen, Si-Yun; Wang, Hong; Li, De-Zhu; Wiens, John J

    2014-11-01

    Phylogeneticists often design their studies to maximize the number of genes included but minimize the overall amount of missing data. However, few studies have addressed the costs and benefits of adding characters with missing data, especially for likelihood analyses of multiple loci. In this paper, we address this topic using two empirical data sets (in yeast and plants) with well-resolved phylogenies. We introduce varying amounts of missing data into varying numbers of genes and test whether the benefits of excluding genes with missing data outweigh the costs of excluding the non-missing data that are associated with them. We also test if there is a proportion of missing data in the incomplete genes at which they cease to be beneficial or harmful, and whether missing data consistently bias branch length estimates. Our results indicate that adding incomplete genes generally increases the accuracy of phylogenetic analyses relative to excluding them, especially when there is a high proportion of incomplete genes in the overall dataset (and thus few complete genes). Detailed analyses suggest that adding incomplete genes is especially helpful for resolving poorly supported nodes. Given that we find that excluding genes with missing data often decreases accuracy relative to including these genes (and that decreases are generally of greater magnitude than increases), there is little basis for assuming that excluding these genes is necessarily the safer or more conservative approach. We also find no evidence that missing data consistently bias branch length estimates.

  11. Phylogenetic Analyses: A Toolbox Expanding towards Bayesian Methods

    PubMed Central

    Aris-Brosou, Stéphane; Xia, Xuhua

    2008-01-01

    The reconstruction of phylogenies is becoming an increasingly simple activity. This is mainly due to two reasons: the democratization of computing power and the increased availability of sophisticated yet user-friendly software. This review describes some of the latest additions to the phylogenetic toolbox, along with some of their theoretical and practical limitations. It is shown that Bayesian methods are under heavy development, as they offer the possibility to solve a number of long-standing issues and to integrate several steps of the phylogenetic analyses into a single framework. Specific topics include not only phylogenetic reconstruction, but also the comparison of phylogenies, the detection of adaptive evolution, and the estimation of divergence times between species. PMID:18483574

  12. Hal: an Automated Pipeline for Phylogenetic Analyses of Genomic Data

    PubMed Central

    Robbertse, Barbara; Yoder, Ryan J.; Boyd, Alex; Reeves, John; Spatafora, Joseph W.

    2011-01-01

    The rapid increase in genomic and genome-scale data is resulting in unprecedented levels of discrete sequence data available for phylogenetic analyses. Major analytical impasses exist, however, prior to analyzing these data with existing phylogenetic software. Obstacles include the management of large data sets without standardized naming conventions, identification and filtering of orthologous clusters of proteins or genes, and the assembly of alignments of orthologous sequence data into individual and concatenated super alignments. Here we report the production of an automated pipeline, Hal that produces multiple alignments and trees from genomic data. These alignments can be produced by a choice of four alignment programs and analyzed by a variety of phylogenetic programs. In short, the Hal pipeline connects the programs BLASTP, MCL, user specified alignment programs, GBlocks, ProtTest and user specified phylogenetic programs to produce species trees. The script is available at sourceforge (http://sourceforge.net/projects/bio-hal/). The results from an example analysis of Kingdom Fungi are briefly discussed. PMID:21327165

  13. Phylogenetic relationship among horseshoe crab species: effect of substitution models on phylogenetic analyses.

    PubMed

    Xia, X

    2000-03-01

    The horseshoe crabs, known as living fossils, have maintained their morphology almost unchanged for the past 150 million years. The little morphological differentiation among horseshoe crab lineages has resulted in substantial controversy concerning the phylogenetic relationship among the extant species of horseshoe crabs, especially among the three species in the Indo-Pacific region. Previous studies suggest that the three species constitute a phylogenetically unresolvable trichotomy, the result of a cladogenetic process leading to the formation of all three Indo-Pacific species in a short geological time. Data from two mitochondrial genes (for 16S ribosomal rRNA and cytochrome oxidase subunit I) and one nuclear gene (for coagulogen) in the four species of horseshoe crabs and outgroup species were used in a phylogenetic analysis with various substitution models. All three genes yield the same tree topology, with Tachypleus-gigas and Carcinoscorpius-rotundicauda grouped together as a monophyletic taxon. This topology is significantly better than all the alternatives when evaluated with the RELL (resampling estimated log-likelihood) method.

  14. Phylogenetic analyses of phylum Actinobacteria based on whole genome sequences.

    PubMed

    Verma, Mansi; Lal, Devi; Kaur, Jaspreet; Saxena, Anjali; Kaur, Jasvinder; Anand, Shailly; Lal, Rup

    2013-09-01

    Actinobacteria constitute one of the largest and ancient taxonomic phylum within the domain bacteria and are well known for their secondary metabolites. Considerable variation in the metabolic properties, genome size and GC content of the members of this phylum has been observed. Therefore, the placement of new or existing species based on 16S rRNA gene sometimes becomes problematic due to the low congruence level. In the present study, phylogeny of ninety actinobacterial genomes was reconstructed using single gene and whole genome based data. Where alignment-free phylogenetic method was found to be more robust, the concatenation of 94 proteins improved the resolution which all single gene based phylogenies failed to resolve. The comprehensive analysis of 94 conserved proteins resulted in a total of 42,447 informative sites, which is so far the largest meta-alignment obtained for this phylum. But the ultimate resolved phylogeny was obtained by generating a consensus tree by combining the information from single gene and genome based phylogenies. The present investigation clearly revealed that the consensus approach is a useful tool for phylogenetic inference and the taxonomic affiliations must be based on this approach. The consensus approach suggested that there is a need for taxonomic amendments of the orders Frankiales and Micrococcales.

  15. Taxonomic revision and phylogenetic analyses of rubber powdery mildew fungi.

    PubMed

    Liyanage, K K; Khan, Sehroon; Brooks, Siraprapa; Mortimer, Peter E; Karunarathna, Samantha C; Xu, Jianchu; Hyde, Kevin D

    2017-04-01

    Powdery mildew is a fungal disease that infects a wide range of plants, including rubber trees, which results in a reduction of latex yields of up to 45%. The causal agent of powdery mildew of rubber was first described as Oidium heveae, but later morpho-molecular research suggested that in the past, O. heveae has been confused with Erysiphe quercicola. However, it is still under debate whether the causal agent should be classified as a species of the genus Erysiphe emend. or Golovinomyces and Podosphaera, respectively. Therefore, the aim of this study was to undertake the morpho-molecular characterization of powdery mildew species associated with rubber trees, thus resolving these taxonomic issues. Morphological observation under light and scanning electron microscopes (SEM) clearly identified two morphotypes of the rubber powdery mildew. With the support of morphological and phylogenetic data, one of the two morphotypes was identified as the asexual morph of E. quercicola, while the second morphotype is still insufficiently known and according to the morphological results obtained we assume that it might belong to the genus Golovinomyces. More collections and additional molecular data are required for final conclusions regarding the exact taxonomic position of the second morphotype of rubber powdery mildew and its relation to the name O. heveae. The haplotype analysis identified eight haplotype groups of E. quercicola indicating the high genetic diversity of the species.

  16. Phylogenetic analyses of termite post-embryonic sequences illuminate caste and developmental pathway evolution.

    PubMed

    Legendre, Frédéric; Whiting, Michael F; Grandcolas, Philippe

    2013-01-01

    Termites are highly eusocial insects with a caste polyphenism (i.e., discontinuous morphological differences between castes) and elaborated behaviors. While the developmental pathways leading to caste occurrence are well-known in many species, the evolutionary origin of these pathways is still obscure. Recent molecular phylogenetic studies suggest multiple independent origins of sterile castes in termites, reviving a 30 years old debate. We demonstrate here that diploid sterile castes ("true" workers) evolved several times independently in this group and that this caste was lost at least once in a lineage with developmentally more flexible workers called pseudergates or "false" workers. We also infer that flexibility in post-embryonic development was acquired multiple times independently during termite evolution. We suggest that focusing on detailed developmental pathways in phylogenetic analyses is essential for elucidating the origin of caste polyphenism in termites.

  17. Automated Masking of AFLP Markers Improves Reliability of Phylogenetic Analyses

    PubMed Central

    Gimnich, France

    2012-01-01

    The amplified fragment length polymorphisms (AFLP) method has become an attractive tool in phylogenetics due to the ease with which large numbers of characters can be generated. In contrast to sequence-based phylogenetic approaches, AFLP data consist of anonymous multilocus markers. However, potential artificial amplifications or amplification failures of fragments contained in the AFLP data set will reduce AFLP reliability especially in phylogenetic inferences. In the present study, we introduce a new automated scoring approach, called “AMARE” (AFLP MAtrix REduction). The approach is based on replicates and makes marker selection dependent on marker reproducibility to control for scoring errors. To demonstrate the effectiveness of our approach we record error rate estimations, resolution scores, PCoA and stemminess calculations. As in general the true tree (i.e. the species phylogeny) is not known, we tested AMARE with empirical, already published AFLP data sets, and compared tree topologies of different AMARE generated character matrices to existing phylogenetic trees and/or other independent sources such as morphological and geographical data. It turns out that the selection of masked character matrices with highest resolution scores gave similar or even better phylogenetic results than the original AFLP data sets. PMID:23152859

  18. Early Evolution of Vertebrate Mybs: An Integrative Perspective Combining Synteny, Phylogenetic, and Gene Expression Analyses.

    PubMed

    Campanini, Emeline B; Vandewege, Michael W; Pillai, Nisha E; Tay, Boon-Hui; Jones, Justin L; Venkatesh, Byrappa; Hoffmann, Federico G

    2015-10-15

    The genes in the Myb superfamily encode for three related transcription factors in most vertebrates, A-, B-, and c-Myb, with functionally distinct roles, whereas most invertebrates have a single Myb. B-Myb plays an essential role in cell division and cell cycle progression, c-Myb is involved in hematopoiesis, and A-Myb is involved in spermatogenesis and regulating expression of pachytene PIWI interacting RNAs, a class of small RNAs involved in posttranscriptional gene regulation and the maintenance of reproductive tissues. Comparisons between teleost fish and tetrapods suggest that the emergence and functional divergence of the Myb genes were linked to the two rounds of whole-genome duplication early in vertebrate evolution. We combined phylogenetic, synteny, structural, and gene expression analyses of the Myb paralogs from elephant shark and lampreys with data from 12 bony vertebrates to reconstruct the early evolution of vertebrate Mybs. Phylogenetic and synteny analyses suggest that the elephant shark and Japanese lamprey have copies of the A-, B-, and c-Myb genes, implying their origin could be traced back to the common ancestor of lampreys and gnathostomes. However, structural and gene expression analyses suggest that their functional roles diverged between gnathostomes and cyclostomes. In particular, we did not detect A-Myb expression in testis suggesting that the involvement of A-Myb in the pachytene PIWI interacting RNA pathway is probably a gnathostome-specific innovation. We speculate that the secondary loss of a central domain in lamprey A-Myb underlies the functional differences between the cyclostome and gnathostome A-Myb proteins.

  19. Phylogenetic study on Shiraia bambusicola by rDNA sequence analyses.

    PubMed

    Cheng, Tian-Fan; Jia, Xiao-Ming; Ma, Xiao-Hang; Lin, Hai-Ping; Zhao, Yu-Hua

    2004-01-01

    In this study, 18S rDNA and ITS-5.8S rDNA regions of four Shiraia bambusicola isolates collected from different species of bamboos were amplified by PCR with universal primer pairs NS1/NS8 and ITS5/ITS4, respectively, and sequenced. Phylogenetic analyses were conducted on three selected datasets of rDNA sequences. Maximum parsimony, distance and maximum likelihood criteria were used to infer trees. Morphological characteristics were also observed. The positioning of Shiraia in the order Pleosporales was well supported by bootstrap, which agreed with the placement by Amano (1980) according to their morphology. We did not find significant inter-hostal differences among these four isolates from different species of bamboos. From the results of analyses and comparison of their rDNA sequences, we conclude that Shiraia should be classified into Pleosporales as Amano (1980) proposed and suggest that it might be positioned in the family Phaeosphaeriaceae.

  20. Phylogenetic Analyses Indicate an Atypical Nurse-to-Patient Transmission of Human Immunodeficiency Virus Type 1

    PubMed Central

    Goujon, Christophe P.; Schneider, Véronique M.; Grofti, Jaouad; Montigny, Joëlle; Jeantils, Vincent; Astagneau, Pascal; Rozenbaum, Willy; Lot, Florence; Frocrain-Herchkovitch, Claudie; Delphin, Nathalie; Le Gal, Frédéric; Nicolas, Jean-Claude; Milinkovitch, Michel C.; Dény, Paul

    2000-01-01

    A human immunodeficiency virus (HIV)-negative patient with no risk factor experienced HIV type 1 (HIV-1) primary infection 4 weeks after being hospitalized for surgery. Among the medical staff, only two night shift nurses were identified as HIV-1 seropositive. No exposure to blood was evidenced. To test the hypothesis of a possible nurse-to-patient transmission, phylogenetic analyses were conducted using two HIV-1 genomic regions (pol reverse transcriptase [RT] and env C2C4), each compared with reference strains and large local control sets (57 RT and 41 C2C4 local controls). Extensive analyses using multiple methodologies allowed us to test the robustness of phylogeny inference and to assess transmission hypotheses. Results allow us to unambiguously exclude one HIV-positive nurse and strongly suggest the other HIV-positive nurse as the source of infection of the patient. PMID:10684266

  1. Phylogenetic Analyses of Meloidogyne Small Subunit rDNA

    PubMed Central

    De Ley, Irma Tandingan; De Ley, Paul; Vierstraete, Andy; Karssen, Gerrit; Moens, Maurice; Vanfleteren, Jacques

    2002-01-01

    Phylogenies were inferred from nearly complete small subunit (SSU) 18S rDNA sequences of 12 species of Meloidogyne and 4 outgroup taxa (Globodera pallida, Nacobbus abberans, Subanguina radicicola, and Zygotylenchus guevarai). Alignments were generated manually from a secondary structure model, and computationally using ClustalX and Treealign. Trees were constructed using distance, parsimony, and likelihood algorithms in PAUP* 4.0b4a. Obtained tree topologies were stable across algorithms and alignments, supporting 3 clades: clade I = [M. incognita (M. javanica, M. arenaria)]; clade II = M. duytsi and M. maritima in an unresolved trichotomy with (M. hapla, M. microtyla); and clade III = (M. exigua (M. graminicola, M. chitwoodi)). Monophyly of [(clade I, clade II) clade III] was given maximal bootstrap support (mbs). M. artiellia was always a sister taxon to this joint clade, while M. ichinohei was consistently placed with mbs as a basal taxon within the genus. Affinities with the outgroup taxa remain unclear, although G. pallida and S. radicicola were never placed as closest relatives of Meloidogyne. Our results show that SSU sequence data are useful in addressing deeper phylogeny within Meloidogyne, and that both M. ichinohei and M. artiellia are credible outgroups for phylogenetic analysis of speciations among the major species. PMID:19265950

  2. Phylogenetic trait-based analyses of ecological networks

    PubMed Central

    Rafferty, Nicole E.; Ives, Anthony R.

    2013-01-01

    Ecological networks of two interacting guilds of species, such as flowering plants and pollinators, are common in nature, and studying their structure can yield insights into their resilience to environmental disturbances. Here we develop analytical methods for exploring the strengths of interactions within bipartite networks consisting of two guilds of phylogenetically related species. We then apply these methods to investigate the resilience of a plant–pollinator community to anticipated climate change. The methods allow the statistical assessment of, for example, whether closely related pollinators are more likely to visit plants with similar relative frequencies, and whether closely related pollinators tend to visit closely related plants. The methods can also incorporate trait information, allowing us to identify which plant traits are likely responsible for attracting different pollinators. These questions are important for our study of 14 prairie plants and their 22 insect pollinators. Over the last 70 years, six of the plants have advanced their flowering, while eight have not. When we experimentally forced earlier flowering times, five of the six advanced-flowering species experienced higher pollinator visitation rates, whereas only one of the eight other species had more visits; this network thus appears resilient to climate change, because those species with advanced flowering have ample pollinators earlier in the season. Using the methods developed here, we show that advanced-flowering plants did not have a distinct pollinator community from the other eight species. Furthermore, pollinator phylogeny did not explain pollinator community composition; closely related pollinators were not more likely to visit the same plant species. However, differences among pollinator communities visiting different plants were explained by plant height, floral color, and symmetry. As a result, closely related plants attracted similar numbers of pollinators. By parsing

  3. Phylogenetic analyses of novel squamate adenovirus sequences in wild-caught Anolis lizards.

    PubMed

    Ascher, Jill M; Geneva, Anthony J; Ng, Julienne; Wyatt, Jeffrey D; Glor, Richard E

    2013-01-01

    Adenovirus infection has emerged as a serious threat to the health of captive snakes and lizards (i.e., squamates), but we know relatively little about this virus' range of possible hosts, pathogenicity, modes of transmission, and sources from nature. We report the first case of adenovirus infection in the Iguanidae, a diverse family of lizards that is widely-studied and popular in captivity. We report adenovirus infections from two closely-related species of Anolis lizards (anoles) that were recently imported from wild populations in the Dominican Republic to a laboratory colony in the United States. We investigate the evolution of adenoviruses in anoles and other squamates using phylogenetic analyses of adenovirus polymerase gene sequences sampled from Anolis and a range of other vertebrate taxa. These phylogenetic analyses reveal that (1) the sequences detected from each species of Anolis are novel, and (2) adenoviruses are not necessarily host-specific and do not always follow a co-speciation model under which host and virus phylogenies are perfectly concordant. Together with the fact that the Anolis adenovirus sequences reported in our study were detected in animals that became ill and subsequently died shortly after importation while exhibiting clinical signs consistent with acute adenovirus infection, our discoveries suggest the need for renewed attention to biosecurity measures intended to prevent the spread of adenovirus both within and among species of snakes and lizards housed in captivity.

  4. Phylogenetic Analyses of Novel Squamate Adenovirus Sequences in Wild-Caught Anolis Lizards

    PubMed Central

    Ascher, Jill M.; Geneva, Anthony J.; Ng, Julienne; Wyatt, Jeffrey D.; Glor, Richard E.

    2013-01-01

    Adenovirus infection has emerged as a serious threat to the health of captive snakes and lizards (i.e., squamates), but we know relatively little about this virus' range of possible hosts, pathogenicity, modes of transmission, and sources from nature. We report the first case of adenovirus infection in the Iguanidae, a diverse family of lizards that is widely-studied and popular in captivity. We report adenovirus infections from two closely-related species of Anolis lizards (anoles) that were recently imported from wild populations in the Dominican Republic to a laboratory colony in the United States. We investigate the evolution of adenoviruses in anoles and other squamates using phylogenetic analyses of adenovirus polymerase gene sequences sampled from Anolis and a range of other vertebrate taxa. These phylogenetic analyses reveal that (1) the sequences detected from each species of Anolis are novel, and (2) adenoviruses are not necessarily host-specific and do not always follow a co-speciation model under which host and virus phylogenies are perfectly concordant. Together with the fact that the Anolis adenovirus sequences reported in our study were detected in animals that became ill and subsequently died shortly after importation while exhibiting clinical signs consistent with acute adenovirus infection, our discoveries suggest the need for renewed attention to biosecurity measures intended to prevent the spread of adenovirus both within and among species of snakes and lizards housed in captivity. PMID:23593364

  5. Molecular phylogenetic and dating analyses using mitochondrial DNA sequences of eyelid geckos (Squamata: Eublepharidae).

    PubMed

    Jonniaux, Pierre; Kumazawa, Yoshinori

    2008-01-15

    Mitochondrial DNA sequences of approximately 2.3 kbp including the complete NADH dehydrogenase subunit 2 gene and its flanking genes, as well as parts of 12S and 16S rRNA genes were determined from major species of the eyelid gecko family Eublepharidae sensu [Kluge, A.G. 1987. Cladistic relationships in the Gekkonoidea (Squamata, Sauria). Misc. Publ. Mus. Zool. Univ. Michigan 173, 1-54.]. In contrast to previous morphological studies, phylogenetic analyses based on these sequences supported that Eublepharidae and Gekkonidae form a sister group with Pygopodidae, raising the possibility of homoplasious character change in some key features of geckos, such as reduction of movable eyelids and innovation of climbing toe pads. The phylogenetic analyses also provided a well-resolved tree for relationships between the eublepharid species. The Bayesian estimation of divergence times without assuming the molecular clock suggested the Jurassic divergence of Eublepharidae from Gekkonidae and radiations of most eublepharid genera around the Cretaceous. These dating results appeared to be robust against some conditional changes for time estimation, such as gene regions used, taxon representation, and data partitioning. Taken together with geological evidence, these results support the vicariant divergence of Eublepharidae and Gekkonidae by the breakup of Pangea into Laurasia and Gondwanaland, and recent dispersal of two African eublepharid genera from Eurasia to Africa after these landmasses were connected in the Early Miocene.

  6. Suggestions for presenting the results of data analyses

    USGS Publications Warehouse

    Anderson, David R.; Link, William A.; Johnson, Douglas H.; Burnham, Kenneth P.

    2001-01-01

    We give suggestions for the presentation of research results from frequentist, information-theoretic, and Bayesian analysis paradigms, followed by several general suggestions. The information-theoretic and Bayesian methods offer alternative approaches to data analysis and inference compared to traditionally used methods. Guidance is lacking on the presentation of results under these alternative procedures and on nontesting aspects of classical frequentists methods of statistical analysis. Null hypothesis testing has come under intense criticism. We recommend less reporting of the results of statistical tests of null hypotheses in cases where the null is surely false anyway, or where the null hypothesis is of little interest to science or management.

  7. Mitochondrial Genome Analyses Suggest Multiple Trichuris Species in Humans, Baboons, and Pigs from Different Geographical Regions

    PubMed Central

    Hawash, Mohamed B. F.; Andersen, Lee O.; Gasser, Robin B.; Stensvold, Christen Rune; Nejsum, Peter

    2015-01-01

    Background The whipworms Trichuris trichiura and Trichuris suis are two parasitic nematodes of humans and pigs, respectively. Although whipworms in human and non-human primates historically have been referred to as T. trichiura, recent reports suggest that several Trichuris spp. are found in primates. Methods and Findings We sequenced and annotated complete mitochondrial genomes of Trichuris recovered from a human in Uganda, an olive baboon in the US, a hamadryas baboon in Denmark, and two pigs from Denmark and Uganda. Comparative analyses using other published mitochondrial genomes of Trichuris recovered from a human and a porcine host in China and from a françois’ leaf-monkey (China) were performed, including phylogenetic analyses and pairwise genetic and amino acid distances. Genetic and protein distances between human Trichuris in Uganda and China were high (~19% and 15%, respectively) suggesting that they represented different species. Trichuris from the olive baboon in US was genetically related to human Trichuris in China, while the other from the hamadryas baboon in Denmark was nearly identical to human Trichuris from Uganda. Baboon-derived Trichuris was genetically distinct from Trichuris from françois’ leaf monkey, suggesting multiple whipworm species circulating among non-human primates. The genetic and protein distances between pig Trichuris from Denmark and other regions were roughly 9% and 6%, respectively, while Chinese and Ugandan whipworms were more closely related. Conclusion and Significance Our results indicate that Trichuris species infecting humans and pigs are phylogenetically distinct across geographical regions, which might have important implications for the implementation of suitable and effective control strategies in different regions. Moreover, we provide support for the hypothesis that Trichuris infecting primates represents a complex of cryptic species with some species being able to infect both humans and non-human primates

  8. Genes with minimal phylogenetic information are problematic for coalescent analyses when gene tree estimation is biased.

    PubMed

    Xi, Zhenxiang; Liu, Liang; Davis, Charles C

    2015-11-01

    The development and application of coalescent methods are undergoing rapid changes. One little explored area that bears on the application of gene-tree-based coalescent methods to species tree estimation is gene informativeness. Here, we investigate the accuracy of these coalescent methods when genes have minimal phylogenetic information, including the implementation of the multilocus bootstrap approach. Using simulated DNA sequences, we demonstrate that genes with minimal phylogenetic information can produce unreliable gene trees (i.e., high error in gene tree estimation), which may in turn reduce the accuracy of species tree estimation using gene-tree-based coalescent methods. We demonstrate that this problem can be alleviated by sampling more genes, as is commonly done in large-scale phylogenomic analyses. This applies even when these genes are minimally informative. If gene tree estimation is biased, however, gene-tree-based coalescent analyses will produce inconsistent results, which cannot be remedied by increasing the number of genes. In this case, it is not the gene-tree-based coalescent methods that are flawed, but rather the input data (i.e., estimated gene trees). Along these lines, the commonly used program PhyML has a tendency to infer one particular bifurcating topology even though it is best represented as a polytomy. We additionally corroborate these findings by analyzing the 183-locus mammal data set assembled by McCormack et al. (2012) using ultra-conserved elements (UCEs) and flanking DNA. Lastly, we demonstrate that when employing the multilocus bootstrap approach on this 183-locus data set, there is no strong conflict between species trees estimated from concatenation and gene-tree-based coalescent analyses, as has been previously suggested by Gatesy and Springer (2014).

  9. Assessment of available anatomical characters for linking living mammals to fossil taxa in phylogenetic analyses

    PubMed Central

    2016-01-01

    Analyses of living and fossil taxa are crucial for understanding biodiversity through time. The total evidence method allows living and fossil taxa to be combined in phylogenies, using molecular data for living taxa and morphological data for living and fossil taxa. With this method, substantial overlap of coded anatomical characters among living and fossil taxa is vital for accurately inferring topology. However, although molecular data for living species are widely available, scientists generating morphological data mainly focus on fossils. Therefore, there are fewer coded anatomical characters in living taxa, even in well-studied groups such as mammals. We investigated the number of coded anatomical characters available in phylogenetic matrices for living mammals and how these were phylogenetically distributed across orders. Eleven of 28 mammalian orders have less than 25% species with available characters; this has implications for the accurate placement of fossils, although the issue is less pronounced at higher taxonomic levels. In most orders, species with available characters are randomly distributed across the phylogeny, which may reduce the impact of the problem. We suggest that increased morphological data collection efforts for living taxa are needed to produce accurate total evidence phylogenies. PMID:27146442

  10. Phylogenetic and morphometric analyses reveal ecophenotypic plasticity in freshwater mussels Obovaria jacksoniana and Villosa arkansasensis (Bivalvia: Unionidae)

    PubMed Central

    Inoue, Kentaro; Hayes, David M; Harris, John L; Christian, Alan D

    2013-01-01

    Abstract Freshwater mollusk shell morphology exhibits clinal variation along a stream continuum that has been termed the Law of Stream Distribution. We analyzed phylogenetic relationships and morphological similarity of two freshwater mussels (Bivalvia: Unionidae), Obovaria jacksoniana and Villosa arkansasensis, throughout their ranges. The objectives were to investigate phylogenetic structure and evolutionary divergence of O. jacksoniana and V. arkansasensis and morphological similarity between the two species. Our analyses were the first explicit tests of phenotypic plasticity in shell morphologies using a combination of genetics and morphometrics. We conducted phylogenetic analyses of mitochondrial DNA (1416 bp; two genes) and morphometric analyses for 135 individuals of O. jacksoniana and V. arkansasensis from 12 streams. We examined correlations among genetic, morphological, and spatial distances using Mantel tests. Molecular phylogenetic analyses revealed a monophyletic relationship between O. jacksoniana and V. arkansasensis. Within this O. jacksoniana/V. arkansasensis complex, five distinct clades corresponding to drainage patterns showed high genetic divergence. Morphometric analysis revealed relative differences in shell morphologies between the two currently recognized species. We conclude that morphological differences between the two species are caused by ecophenotypic plasticity. A series of Mantel tests showed regional and local genetic isolation by distance. We observed clear positive correlations between morphological and geographic distances within a single drainage. We did not observe correlations between genetic and morphological distances. Phylogenetic analyses suggest O. jacksoniana and V. arkansasensis are synonomous and most closely related to a clade composed of O. retusa, O. subrotunda, and O. unicolor. Therefore, the synonomous O. jacksoniana and V. arkansasensis should be recognized as Obovaria arkansasensis (Lea 1862) n

  11. Do homoiologies impede phylogenetic analyses of the fossil hominids? An assessment based on extant papionin craniodental morphology.

    PubMed

    Lycett, Stephen J; Collard, Mark

    2005-11-01

    Homoiologies are phylogenetically misleading resemblances among taxa that can be attributed to phenotypic plasticity. Recently, it has been claimed that homoiologies are widespread in the hominid skull, especially in those regions affected by mastication-related strain, and that their prevalence is a major reason why researchers have so far been unable to obtain a reliable estimate of hominid phylogeny. To evaluate this "homoiology hypothesis", we carried out analyses of a group of extant primates for which a robust molecular phylogeny is available-the papionins. We compiled a craniometric dataset from measurements that differ in their susceptibility to mastication-related strain according to developmental considerations and experimental evidence. We used the coefficient of variation and analysis of variance with post hoc least significant difference comparisons in order to evaluate the variability of the measurements. The prediction from the homoiology hypothesis was that dental measurements, which do not remodel in response to strain, should be less variable than low-to-moderate-strain measurements, and that the latter should be less variable than high-strain measurements. We then performed phylogenetic analyses using characters derived from the measurements and compared the resulting phylogenetic hypotheses to the group's consensus molecular phylogeny. The prediction was that, if the homoiology hypothesis is correct, the agreement between the craniometric and molecular phylogenies would be best in the analyses of dental characters, intermediate in the analyses of low-to-moderate-strain characters, and least in the analyses of high-strain characters. The results of this study support the suggestion that mastication-related mechanical loading can result in variation in hominid cranial characters. However, they do not support the hypothesis that homoiology is a major reason why phylogenetic analyses of hominid crania have so far yielded conflicting and weakly

  12. The importance of replicating genomic analyses to verify phylogenetic signal for recently evolved lineages.

    PubMed

    Fraser, Ceridwen I; McGaughran, Angela; Chuah, Aaron; Waters, Jonathan M

    2016-08-01

    Genomewide SNP data generated by nontargeted methods such as RAD and GBS are increasingly being used in phylogenetic and phylogeographic analyses. When these methods are used in the absence of a reference genome, however, little is known about the locations and evolution of the SNPs. In using such data to address phylogenetic questions, researchers risk drawing false conclusions, particularly if a representative number of SNPs is not obtained. Here, we empirically test the robustness of phylogenetic inference based on SNP data for closely related lineages. We conducted a genomewide analysis of 75 712 SNPs, generated via GBS, of southern bull-kelp (Durvillaea). Durvillaea chathamensis co-occurs with D. antarctica on Chatham Island, but the two species have previously been found to be so genetically similar that the status of the former has been questioned. Our results show that D. chathamensis, which differs from D. antarctica ecologically as well as morphologically, is indeed a reproductively isolated species. Furthermore, our replicated analyses show that D. chathamensis cannot be reliably distinguished phylogenetically from closely related D. antarctica using subsets (ranging in size from 400 to 10 000 sites) of the 40 912 parsimony-informative SNPs in our data set and that bootstrap values alone can give misleading impressions of the strength of phylogenetic inferences. These results highlight the importance of independently replicating SNP analyses to verify that phylogenetic inferences based on nontargeted SNP data are robust. Our study also demonstrates that modern genomic approaches can be used to identify cases of recent or incipient speciation that traditional approaches (e.g. Sanger sequencing of a few loci) may be unable to detect or resolve.

  13. Molecular phylogenetic analysis of nuclear genes suggests a Cenozoic over-water dispersal origin for the Cuban solenodon

    PubMed Central

    Sato, Jun J.; Ohdachi, Satoshi D.; Echenique-Diaz, Lazaro M.; Borroto-Páez, Rafael; Begué-Quiala, Gerardo; Delgado-Labañino, Jorge L.; Gámez-Díez, Jorgelino; Alvarez-Lemus, José; Nguyen, Son Truong; Yamaguchi, Nobuyuki; Kita, Masaki

    2016-01-01

    The Cuban solenodon (Solenodon cubanus) is one of the most enigmatic mammals and is an extremely rare species with a distribution limited to a small part of the island of Cuba. Despite its rarity, in 2012 seven individuals of S. cubanus were captured and sampled successfully for DNA analysis, providing new insights into the evolutionary origin of this species and into the origins of the Caribbean fauna, which remain controversial. We conducted molecular phylogenetic analyses of five nuclear genes (Apob, Atp7a, Bdnf, Brca1 and Rag1; total, 4,602 bp) from 35 species of the mammalian order Eulipotyphla. Based on Bayesian relaxed molecular clock analyses, the family Solenodontidae diverged from other eulipotyphlan in the Paleocene, after the bolide impact on the Yucatan Peninsula, and S. cubanus diverged from the Hispaniolan solenodon (S. paradoxus) in the Early Pliocene. The strikingly recent divergence time estimates suggest that S. cubanus and its ancestral lineage originated via over-water dispersal rather than vicariance events, as had previously been hypothesised. PMID:27498968

  14. Molecular phylogenetic analysis of nuclear genes suggests a Cenozoic over-water dispersal origin for the Cuban solenodon.

    PubMed

    Sato, Jun J; Ohdachi, Satoshi D; Echenique-Diaz, Lazaro M; Borroto-Páez, Rafael; Begué-Quiala, Gerardo; Delgado-Labañino, Jorge L; Gámez-Díez, Jorgelino; Alvarez-Lemus, José; Nguyen, Son Truong; Yamaguchi, Nobuyuki; Kita, Masaki

    2016-08-08

    The Cuban solenodon (Solenodon cubanus) is one of the most enigmatic mammals and is an extremely rare species with a distribution limited to a small part of the island of Cuba. Despite its rarity, in 2012 seven individuals of S. cubanus were captured and sampled successfully for DNA analysis, providing new insights into the evolutionary origin of this species and into the origins of the Caribbean fauna, which remain controversial. We conducted molecular phylogenetic analyses of five nuclear genes (Apob, Atp7a, Bdnf, Brca1 and Rag1; total, 4,602 bp) from 35 species of the mammalian order Eulipotyphla. Based on Bayesian relaxed molecular clock analyses, the family Solenodontidae diverged from other eulipotyphlan in the Paleocene, after the bolide impact on the Yucatan Peninsula, and S. cubanus diverged from the Hispaniolan solenodon (S. paradoxus) in the Early Pliocene. The strikingly recent divergence time estimates suggest that S. cubanus and its ancestral lineage originated via over-water dispersal rather than vicariance events, as had previously been hypothesised.

  15. In silico identification of Bell pepper endornavirus from pepper transcriptomes and their phylogenetic and recombination analyses.

    PubMed

    Jo, Yeonhwa; Choi, Hoseong; Yoon, Ju-Yeon; Choi, Seung-Kook; Cho, Won Kyong

    2016-01-10

    Here, we identified eight Bell pepper endornavirus (BPEV) isolates from nine different pepper transcriptomes. BPEV was present with low copy numbers ranging from 0.01% to 0.18% in the host transcriptome. Phylogenetic identified two different groups of BPEV isolates. Sequence alignment of the five BPEV genomes revealed conservation of the 5' and 3' untranslated regions. Recombination analysis identified two possible recombinant events in the isolate Yolo Wonder. Single nucleotide variation profiles revealed the presence of BPEV variants within a single pepper cultivar. Taken together, this study provides phylogenetic and recombination analyses of the genus Endornavirus using pepper transcriptome data.

  16. Multilocus phylogenetic and geospatial analyses illuminate diversification patterns and the biogeographic history of Malagasy endemic plated lizards (Gerrhosauridae: Zonosaurinae).

    PubMed

    Blair, C; Noonan, B P; Brown, J L; Raselimanana, A P; Vences, M; Yoder, A D

    2015-02-01

    Although numerous studies have attempted to find single unifying mechanisms for generating Madagascar's unique flora and fauna, little consensus has been reached regarding the relative importance of climatic, geologic and ecological processes as catalysts of diversification of the region's unique biota. Rather, recent work has shown that both biological and physical drivers of diversification are best analysed in a case-by-case setting with attention focused on the ecological and life-history requirements of the specific phylogenetic lineage under investigation. Here, we utilize a comprehensive analytical approach to examine evolutionary drivers and elucidate the biogeographic history of Malagasy plated lizards (Zonosaurinae). Data from three genes are combined with fossil information to construct time-calibrated species trees for zonosaurines and their African relatives, which are used to test alternative diversification hypotheses. Methods are utilized for explicitly incorporating phylogenetic uncertainty into downstream analyses. Species distribution models are created for 14 of 19 currently recognized species, which are then used to estimate spatial patterns of species richness and endemicity. Spatially explicit analyses are employed to correlate patterns of diversity with both topographic heterogeneity and climatic stability through geologic time. We then use inferred geographic ranges to estimate the biogeographic history of zonosaurines within each of Madagascar's major biomes. Results suggest constant Neogene and Quaternary speciation with divergence from the African most recent common ancestor ~30 million years ago when oceanic currents and African rivers facilitated dispersal. Spatial patterns of diversity appear concentrated along coastal regions of northern and southern Madagascar. We find no relationship between either topographic heterogeneity or climatic stability and patterns of diversity. Ancestral state reconstructions suggest that western dry

  17. Phylogenetic analysis of of Sarcocystis nesbitti (Coccidia: Sarcocystidae) suggests a snake as its probable definitive host

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sarcocystis nesbitti was first described by Mandour in 1969 from rhesus monkey muscle. Its definitive host remains unknown. 18SrRNA gene of Sarcocystis nesbitti was amplified, sequenced, and subjected to phylogenetic analysis. Among those congeners available for comparison, it shares closest affinit...

  18. Multilocus phylogenetic analyses of Hispaniolan and Bahamian trunk anoles (distichus species group).

    PubMed

    Geneva, Anthony J; Hilton, Jared; Noll, Sabina; Glor, Richard E

    2015-06-01

    The distichus species group includes six species and 21 subspecies of trunk ecomorph anoles distributed across Hispaniola and its satellite islands as well as the northern Bahamas. Although this group has long served as a model system for studies of reproductive character displacement, adaptation, behavior and speciation, it has never been the subject of a comprehensive phylogenetic analysis. Our goal here is to generate a multilocus phylogenetic dataset (one mitochondrial and seven nuclear loci) and to use this dataset to infer phylogenetic relationships among the majority of the taxa assigned to the distichus species group. We use these phylogenetic trees to address three topics about the group's evolution. First, we consider longstanding taxonomic controversies about the status of several species and subspecies assigned to the distichus species group. Second, we investigate the biogeographic history of the group and specifically test the hypotheses that historical division of Hispaniola into two paleo-islands contributed to the group's diversification and that Bahamian and Hispaniolan satellite island populations are derived from colonists from the main Hispaniolan landmass. Finally, third, we use comparative phylogenetic analyses to test the hypothesis that divergence between pale yellow and darkly pigmented orange or red dewlap coloration has occurred repeatedly across the distichus species group.

  19. Molecular systematics of Volvocales (Chlorophyceae, Chlorophyta) based on exhaustive 18S rRNA phylogenetic analyses.

    PubMed

    Nakada, Takashi; Misawa, Kazuharu; Nozaki, Hisayoshi

    2008-07-01

    The taxonomy of Volvocales (Chlorophyceae, Chlorophyta) was traditionally based solely on morphological characteristics. However, because recent molecular phylogeny largely contradicts the traditional subordinal and familial classifications, no classification system has yet been established that describes the subdivision of Volvocales in a manner consistent with the phylogenetic relationships. Towards development of a natural classification system at and above the generic level, identification and sorting of hundreds of sequences based on subjective phylogenetic definitions is a significant step. We constructed an 18S rRNA gene phylogeny based on 449 volvocalean sequences collected using exhaustive BLAST searches of the GenBank database. Many chimeric sequences, which can cause fallacious phylogenetic trees, were detected and excluded during data collection. The results revealed 21 strongly supported primary clades within phylogenetically redefined Volvocales. Phylogenetic classification following PhyloCode was proposed based on the presented 18S rRNA gene phylogeny along with the results of previous combined 18S and 26S rRNA and chloroplast multigene analyses.

  20. Characterization of the definitive classical calpain family of vertebrates using phylogenetic, evolutionary and expression analyses

    PubMed Central

    Macqueen, Daniel J.; Wilcox, Alexander H.

    2014-01-01

    The calpains are a superfamily of proteases with extensive relevance to human health and welfare. Vast research attention is given to the vertebrate ‘classical’ subfamily, making it surprising that the evolutionary origins, distribution and relationships of these genes is poorly characterized. Consequently, there exists uncertainty about the conservation of gene family structure, function and expression that has been principally defined from work with mammals. Here, more than 200 vertebrate classical calpains were incorporated in phylogenetic analyses spanning an unprecedented range of taxa, including jawless and cartilaginous fish. We demonstrate that the common vertebrate ancestor had at least six classical calpains, including a single gene that gave rise to CAPN11, 1, 2 and 8 in the early jawed fish lineage, plus CAPN3, 9, 12, 13 and a novel calpain gene, hereafter named CAPN17. We reveal that while all vertebrate classical calpains have been subject to persistent purifying selection during evolution, the degree and nature of selective pressure has often been lineage-dependent. The tissue expression of the complete classic calpain family was assessed in representative teleost fish, amphibians, reptiles and mammals. This highlighted systematic divergence in expression across vertebrate taxa, with most classic calpain genes from fish and amphibians having more extensive tissue distribution than in amniotes. Our data suggest that classical calpain functions have frequently diverged during vertebrate evolution and challenge the ongoing value of the established system of classifying calpains by expression. PMID:24718597

  1. Characterization of the definitive classical calpain family of vertebrates using phylogenetic, evolutionary and expression analyses.

    PubMed

    Macqueen, Daniel J; Wilcox, Alexander H

    2014-04-09

    The calpains are a superfamily of proteases with extensive relevance to human health and welfare. Vast research attention is given to the vertebrate 'classical' subfamily, making it surprising that the evolutionary origins, distribution and relationships of these genes is poorly characterized. Consequently, there exists uncertainty about the conservation of gene family structure, function and expression that has been principally defined from work with mammals. Here, more than 200 vertebrate classical calpains were incorporated in phylogenetic analyses spanning an unprecedented range of taxa, including jawless and cartilaginous fish. We demonstrate that the common vertebrate ancestor had at least six classical calpains, including a single gene that gave rise to CAPN11, 1, 2 and 8 in the early jawed fish lineage, plus CAPN3, 9, 12, 13 and a novel calpain gene, hereafter named CAPN17. We reveal that while all vertebrate classical calpains have been subject to persistent purifying selection during evolution, the degree and nature of selective pressure has often been lineage-dependent. The tissue expression of the complete classic calpain family was assessed in representative teleost fish, amphibians, reptiles and mammals. This highlighted systematic divergence in expression across vertebrate taxa, with most classic calpain genes from fish and amphibians having more extensive tissue distribution than in amniotes. Our data suggest that classical calpain functions have frequently diverged during vertebrate evolution and challenge the ongoing value of the established system of classifying calpains by expression.

  2. Phylogenetic analysis and survey of Apis cerana strain of sacbrood virus (AcSBV) in Taiwan suggests a recent introduction.

    PubMed

    Huang, Wei-Fone; Mehmood, Shahid; Huang, Shaokang; Chen, Yue-Wen; Ko, Chong-Yu; Su, Songkun

    2017-04-05

    The Sacbrood virus (SBV) is widely distributed in European honey bees, Apis mellifera. AcSBV, a distinct SBV strain in Asian honey bees (A. cerana) causes larva death before pupation and often depopulates colonies, leading to collapse. It is the most severe disease in A. cerana beekeeping. AcSBV infects A. cerana in most natural habitats, yet occurrences were not reported in Taiwan before 2015 and were not a concern for local beekeepers. However, in 2016, A. cerana beekeepers in central Taiwan reported SBV-like symptoms. We screened samples of larvae using RT-PCR and surveyed asymptomatic apiaries in north Taiwan. Phylogenetic analyses suggested that AcSBV isolates from central Taiwan were introduced; all isolates had high similarity in sequences to AcSBV genomes identified in mainland China, Vietnam, and Korea and distinct differences to SBV sequence identified in Taiwan. The overall prevalence in symptomatic colonies was low. No latent infections were detected in asymptomatic colonies. The AcSBV epizootic may not yet have reached its highest potential.

  3. Complete genome of a European hepatitis C virus subtype 1g isolate: phylogenetic and genetic analyses

    PubMed Central

    Bracho, Maria A; Saludes, Verónica; Martró, Elisa; Bargalló, Ana; González-Candelas, Fernando; Ausina, Vicent

    2008-01-01

    Background Hepatitis C virus isolates have been classified into six main genotypes and a variable number of subtypes within each genotype, mainly based on phylogenetic analysis. Analyses of the genetic relationship among genotypes and subtypes are more reliable when complete genome sequences (or at least the full coding region) are used; however, so far 31 of 80 confirmed or proposed subtypes have at least one complete genome available. Of these, 20 correspond to confirmed subtypes of epidemic interest. Results We present and analyse the first complete genome sequence of a HCV subtype 1g isolate. Phylogenetic and genetic distance analyses reveal that HCV-1g is the most divergent subtype among the HCV-1 confirmed subtypes. Potential genomic recombination events between genotypes or subtype 1 genomes were ruled out. We demonstrate phylogenetic congruence of previously deposited partial sequences of HCV-1g with respect to our sequence. Conclusion In light of this, we propose changing the current status of its subtype-specific designation from provisional to confirmed. PMID:18533988

  4. Forensic application of phylogenetic analyses - Exploration of suspected HIV-1 transmission case.

    PubMed

    Siljic, Marina; Salemovic, Dubravka; Cirkovic, Valentina; Pesic-Pavlovic, Ivana; Ranin, Jovan; Todorovic, Marija; Nikolic, Slobodan; Jevtovic, Djordje; Stanojevic, Maja

    2017-03-01

    Transmission of human immunodeficiency virus (HIV) between individuals may have important legal implications and therefore may come to require forensic investigation based upon phylogenetic analysis. In criminal trials results of phylogenetic analyses have been used as evidence of responsibility for HIV transmission. In Serbia, as in many countries worldwide, exposure and deliberate transmission of HIV are criminalized. We present the results of applying state of the art phylogenetic analyses, based on pol and env genetic sequences, in exploration of suspected HIV transmission among three subjects: a man and two women, with presumed assumption of transmission direction from one woman to a man. Phylogenetic methods included relevant neighbor-joining (NJ), maximum likelihood (ML) and Bayesian methods of phylogenetic trees reconstruction and hypothesis testing, that has been shown to be the most sensitive for the reconstruction of epidemiological links mostly from sexually infected individuals. End-point limiting-dilution PCR (EPLD-PCR) assay, generating the minimum of 10 sequences per genetic region per subject, was performed to assess HIV quasispecies distribution and to explore the direction of HIV transmission between three subjects. Phylogenetic analysis revealed that the viral sequences from the three subjects were more genetically related to each other than to other strains circulating in the same area with the similar epidemiological profile, forming strongly supported transmission chain, which could be in favour of a priori hypothesis of one of the women infecting the man. However, in the EPLD based phylogenetic trees for both pol and env genetic region, viral sequences of one subject (man) were paraphyletic to those of two other subjects (women), implying the direction of transmission opposite to the a priori assumption. The dated tree in our analysis confirmed the clustering pattern of query sequences. Still, in the context of unsampled sequences and

  5. Can treefrog phylogeographical clades and species' phylogenetic topologies be recovered by bioacoustical analyses?

    PubMed

    Forti, Lucas Rodriguez; Lingnau, Rodrigo; Encarnação, Lais Carvalho; Bertoluci, Jaime; Toledo, Luís Felipe

    2017-01-01

    Phenotypic traits, such as the frog advertisement call, are generally correlated with interspecific genetic variation, and, as a consequence of strong sexual selection, these behaviors may carry a phylogenetic signal. However, variation in acoustic traits is not always correlated with genetic differences between populations (intraspecific variation); phenotypic plasticity and environmental variables may explain part of such variation. For example, local processes can affect acoustic properties in different lineages due to differences in physical structure, climatic conditions, and biotic interactions, particularly when populations are isolated. However, acoustic traits can be used to test phylogenetic hypotheses. We analyzed the advertisement calls of Dendropsophus elegans males from 18 sites and compared them with those of four closely related congeneric species, in order to test for differences between inter and intraspecific variation. We analyzed 451 calls of 45 males of these five species. Because males from distant sites were grouped together without population congruence, differences found in advertisement calls among individuals were not correlated with phylogeographical clades. Phylogenetic and cluster analyses of the D. elegans clades and those of closely related species grouped all five species into the same topology, as reported by previous molecular and morphological phylogenies. However, the topology of the D. elegans phylogeographical clades did not match the topology previously reported. Acoustic communication in D. elegans seems to be conserved among populations, and the phylogeographical history of the species does not explain the variation among lineages in call properties, despite some congruent phylogenetic signals evident at the species level. Based on molecular clocks retrieved from the literature, it seems that more than 6.5 million years of divergence (late Miocene) are necessary to allow significant changes to occur in the acoustic

  6. Can treefrog phylogeographical clades and species’ phylogenetic topologies be recovered by bioacoustical analyses?

    PubMed Central

    Forti, Lucas Rodriguez; Lingnau, Rodrigo; Encarnação, Lais Carvalho; Bertoluci, Jaime; Toledo, Luís Felipe

    2017-01-01

    Phenotypic traits, such as the frog advertisement call, are generally correlated with interspecific genetic variation, and, as a consequence of strong sexual selection, these behaviors may carry a phylogenetic signal. However, variation in acoustic traits is not always correlated with genetic differences between populations (intraspecific variation); phenotypic plasticity and environmental variables may explain part of such variation. For example, local processes can affect acoustic properties in different lineages due to differences in physical structure, climatic conditions, and biotic interactions, particularly when populations are isolated. However, acoustic traits can be used to test phylogenetic hypotheses. We analyzed the advertisement calls of Dendropsophus elegans males from 18 sites and compared them with those of four closely related congeneric species, in order to test for differences between inter and intraspecific variation. We analyzed 451 calls of 45 males of these five species. Because males from distant sites were grouped together without population congruence, differences found in advertisement calls among individuals were not correlated with phylogeographical clades. Phylogenetic and cluster analyses of the D. elegans clades and those of closely related species grouped all five species into the same topology, as reported by previous molecular and morphological phylogenies. However, the topology of the D. elegans phylogeographical clades did not match the topology previously reported. Acoustic communication in D. elegans seems to be conserved among populations, and the phylogeographical history of the species does not explain the variation among lineages in call properties, despite some congruent phylogenetic signals evident at the species level. Based on molecular clocks retrieved from the literature, it seems that more than 6.5 million years of divergence (late Miocene) are necessary to allow significant changes to occur in the acoustic

  7. Morphological, molecular and phylogenetic analyses of the spirurid nematode Stegophorus macronectes (Johnston & Mawson, 1942).

    PubMed

    Vidal, V; Ortiz, J; Diaz, J I; Zafrilla, B; Bonete, M J; Ruiz De Ybañez, M R; Palacios, M J; Benzal, J; Valera, F; De La Cruz, C; Motas, M; Bautista, V; Machordom, A; Barbosa, A

    2016-03-01

    Stegophorus macronectes (Johnston & Mawson, 1942) is a gastrointestinal parasite found in Antarctic seabirds. The original description of the species, which was based only on females, is poor and fragmented with some unclear diagnostic characters. This study provides new morphometric and molecular data on this previously poorly described parasite. Nuclear rDNA sequences (18S, 5.8S, 28S and internal transcribed spacer (ITS) regions) were isolated from S. macronectes specimens collected from the chinstrap penguin Pygoscelis antarctica Forster on Deception Island, Antarctica. Using 18S rDNA sequences, phylogenetic analyses (maximum likelihood, maximum parsimony and Bayesian inference) of the order Spirurida were performed to determine the phylogenetic location of this species. Primer pairs of the ITS regions were designed for genus-level identification of specimens, regardless of their cycle, as an alternative to coprological methods. The utility of this molecular method for identification of morphologically altered specimens is also discussed.

  8. Nutrient transfer to plants by phylogenetically diverse fungi suggests convergent evolutionary strategies in rhizospheric symbionts

    PubMed Central

    Behie, Scott W.; Padilla-Guerrero, Israel E.; Bidochka, Michael J.

    2013-01-01

    Most land plants are able to form symbiotic associations with fungi, and in many cases these associations are necessary for plant and fungal survival. These plant/fungal associations are formed with mycorrhizal (arbuscular mycorrhizal or ectomycorrhizal) or endophytic fungi, fungi from distinct phylogenetic lineages. While it has been shown that mycorrhizal fungi are able to transfer nutrients to plant roots in exchange for carbon, endophytes have been thought as asymptomatic colonizers. Recently, however, it has been shown that some insect pathogenic endophytic fungi are able to transfer insect derived nitrogen to plant roots, likely in exchange for plant sugars. Here we explore potential convergent evolutionary strategies for nutrient transfer between insect pathogenic endophytes and mycorrhizal fungus. PMID:23802036

  9. Combined molecular and morphological phylogenetic analyses of the New Zealand wolf spider genus Anoteropsis (Araneae: Lycosidae).

    PubMed

    Vink, Cor J; Paterson, Adrian M

    2003-09-01

    Datasets from the mitochondrial gene regions NADH dehydrogenase subunit I (ND1) and cytochrome c oxidase subunit I (COI) of the 20 species in the New Zealand wolf spider (Lycosidae) genus Anoteropsis were generated. Sequence data were phylogenetically analysed using parsimony and maximum likelihood analyses. The phylogenies generated from the ND1 and COI sequence data and a previously generated morphological dataset were significantly congruent (p<0.001). Sequence data were combined with morphological data and phylogenetically analysed using parsimony. The ND1 region sequenced included part of tRNA(Leu(CUN)), which appears to have an unstable amino-acyl arm and no TpsiC arm in lycosids. Analyses supported the existence of five species groups within Anoteropsis and the monophyly of species represented by multiple samples. A radiation of Anoteropsis species within the last five million years is inferred from the ND1 and COI likelihood phylograms, habitat and geological data, which also indicates that Anoteropsis arrived in New Zealand some time after it separated from Gondwana.

  10. The complete mitochondrial genomes of four cockroaches (Insecta: Blattodea) and phylogenetic analyses within cockroaches.

    PubMed

    Cheng, Xue-Fang; Zhang, Le-Ping; Yu, Dan-Na; Storey, Kenneth B; Zhang, Jia-Yong

    2016-07-15

    Three complete mitochondrial genomes of Blaberidae (Insecta: Blattodea) (Gromphadorhina portentosa, Panchlora nivea, Blaptica dubia) and one complete mt genome of Blattidae (Insecta: Blattodea) (Shelfordella lateralis) were sequenced to further understand the characteristics of cockroach mitogenomes and reconstruct the phylogenetic relationship of Blattodea. The gene order and orientation of these four cockroach genomes were similar to known cockroach mt genomes, and contained 13 protein-coding genes (PCGs), 2 ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes and one control region. The mt genomes of Blattodea exhibited a characteristics of a high A+T composition (70.7%-74.3%) and dominant usage of the TAA stop codon. The AT content of the whole mt genome, PCGs and total tRNAs in G. portentosa was the lowest in known cockroaches. The presence of a 71-bp intergenic spacer region between trnQ and trnM was a unique feature in B. dubia, but absent in other cockroaches, which can be explained by the duplication/random loss model. Based on the nucleotide and amino acid datasets of the 13 PCGs genes, neighbor-joining (NJ), maximum parsimony (MP), maximum likelihood (ML) and bayesian inference (BI) analyses were used to rebuild the phylogenetic relationship of cockroaches. All phylogenetic analyses consistently placed Isoptera as the sister cluster to Cryptocercidae of Blattodea. Ectobiidae and Blaberidae (Blaberoidea) formed a sister clade to Blattidae. Corydiidae is a sister clade of all the remaining cockroach species with a high value in NJ and MP analyses of nucleotide and amino acid datasets, and ML and BI analyses of the amino acid dataset.

  11. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses

    PubMed Central

    Capella-Gutiérrez, Salvador; Silla-Martínez, José M.; Gabaldón, Toni

    2009-01-01

    Summary: Multiple sequence alignments are central to many areas of bioinformatics. It has been shown that the removal of poorly aligned regions from an alignment increases the quality of subsequent analyses. Such an alignment trimming phase is complicated in large-scale phylogenetic analyses that deal with thousands of alignments. Here, we present trimAl, a tool for automated alignment trimming, which is especially suited for large-scale phylogenetic analyses. trimAl can consider several parameters, alone or in multiple combinations, for selecting the most reliable positions in the alignment. These include the proportion of sequences with a gap, the level of amino acid similarity and, if several alignments for the same set of sequences are provided, the level of consistency across different alignments. Moreover, trimAl can automatically select the parameters to be used in each specific alignment so that the signal-to-noise ratio is optimized. Availability: trimAl has been written in C++, it is portable to all platforms. trimAl is freely available for download (http://trimal.cgenomics.org) and can be used online through the Phylemon web server (http://phylemon2.bioinfo.cipf.es/). Supplementary Material is available at http://trimal.cgenomics.org/publications. Contact: tgabaldon@crg.es PMID:19505945

  12. Arachnid relationships based on mitochondrial genomes: asymmetric nucleotide and amino acid bias affects phylogenetic analyses.

    PubMed

    Masta, Susan E; Longhorn, Stuart J; Boore, Jeffrey L

    2009-01-01

    Phylogenetic analyses based on mitochondrial DNA have yielded widely differing relationships among members of the arthropod lineage Arachnida, depending on the nucleotide coding schemes and models of evolution used. We enhanced taxonomic coverage within the Arachnida greatly by sequencing seven new arachnid mitochondrial genomes from five orders. We then used all 13 mitochondrial protein-coding genes from these genomes to evaluate patterns of nucleotide and amino acid biases. Our data show that two of the six orders of arachnids (spiders and scorpions) have experienced shifts in both nucleotide and amino acid usage in all their protein-coding genes, and that these biases mislead phylogeny reconstruction. These biases are most striking for the hydrophobic amino acids isoleucine and valine, which appear to have evolved asymmetrical exchanges in response to shifts in nucleotide composition. To improve phylogenetic accuracy based on amino acid differences, we tested two recoding methods: (1) removing all isoleucine and valine sites and (2) recoding amino acids based on their physiochemical properties. We find that these methods yield phylogenetic trees that are consistent in their support of ancient intraordinal divergences within the major arachnid lineages. Further refinement of amino acid recoding methods may help us better delineate interordinal relationships among these diverse organisms.

  13. RWTY (R We There Yet): An R package for examining convergence of Bayesian phylogenetic analyses.

    PubMed

    Warren, Dan L; Geneva, Anthony J; Lanfear, Robert

    2017-01-12

    Bayesian inference using Markov chain Monte Carlo (MCMC) has become one of the primary methods used to infer phylogenies from sequence data. Assessing convergence is a crucial component of these analyses, as it establishes the reliability of the posterior distribution estimates of the tree topology and model parameters sampled from the MCMC. Numerous tests and visualizations have been developed for this purpose, but many of the most popular methods are implemented in ways that make them inconvenient to use for large data sets. RWTY is an R package that implements established and new methods for diagnosing phylogenetic MCMC convergence in a single convenient interface.

  14. Variability of sexual organ possession rates and phylogenetic analyses of a parthenogenetic Japanese earthworm, Amynthas vittatus (Oligochaeta: Megascolecidae).

    PubMed

    Minamiya, Yukio; Hayakawa, Hiroshi; Ohga, Kyohei; Shimano, Satoshi; Ito, Masamichi T; Fukuda, Tatsuya

    2011-01-01

    Although earthworms are hermaphroditic animals with biparental sexual reproduction, some parthenogenetic species have been found. Evolutionary trends in parthenogenetic earthworms revealed a reduction in the reproductive organs. To clarify the phylogenetic relationships of parthenogenetic earthworms with different degree of degraded reproductive organs, we conducted a morphological analysis of the reproductive organs and molecular phylogenetic analyses of Amynthas vittatus which usually degraded a part of reproductive organs. Morphological analysis revealed that almost all individuals collected around Mt. Aobayama, Sendai city of northeastern Japan, possessed male pores, while individuals collected from areas located across Hirose River did not. Phylogenetic analysis using mitochondrial DNA sequences of 48 individuals representing 20 populations indicated that almost all individuals collected around Mt. Aobayama belonged to a different lineage from the other populations collected around Sendai, and that almost all individuals collected from across Japan belonged to the latter lineage. We suggest that the difference in the male pore possession rate was caused by histories of each population, but the A. vittatus population found on Mt. Aobayama belongs to a different lineage as compared to the other Japanese populations and not the primitive population. Thus, the parthenogenetic earthworm A. vittatus has undergone at least two morphological evolutionary processes.

  15. Evidence from phylogenetic and genome fingerprinting analyses suggests rapidly changing variation in Halorubrum and Haloarcula populations

    PubMed Central

    Ram Mohan, Nikhil; Fullmer, Matthew S.; Makkay, Andrea M.; Wheeler, Ryan; Ventosa, Antonio; Naor, Adit; Gogarten, J. Peter; Papke, R. Thane

    2014-01-01

    Halobacteria require high NaCl concentrations for growth and are the dominant inhabitants of hypersaline environments above 15% NaCl. They are well-documented to be highly recombinogenic, both in frequency and in the range of exchange partners. In this study, we examine the genetic and genomic variation of cultured, naturally co-occurring environmental populations of Halobacteria. Sequence data from multiple loci (~2500 bp) identified many closely and more distantly related strains belonging to the genera Halorubrum and Haloarcula. Genome fingerprinting using a random priming PCR amplification method to analyze these isolates revealed diverse banding patterns across each of the genera and surprisingly even for isolates that are identical at the nucleotide level for five protein coding sequenced loci. This variance in genome structure even between identical multilocus sequence analysis (MLSA) haplotypes indicates that accumulation of genomic variation is rapid: faster than the rate of third codon substitutions. PMID:24782838

  16. Evidence from phylogenetic and genome fingerprinting analyses suggests rapidly changing variation in Halorubrum and Haloarcula populations.

    PubMed

    Ram Mohan, Nikhil; Fullmer, Matthew S; Makkay, Andrea M; Wheeler, Ryan; Ventosa, Antonio; Naor, Adit; Gogarten, J Peter; Papke, R Thane

    2014-01-01

    Halobacteria require high NaCl concentrations for growth and are the dominant inhabitants of hypersaline environments above 15% NaCl. They are well-documented to be highly recombinogenic, both in frequency and in the range of exchange partners. In this study, we examine the genetic and genomic variation of cultured, naturally co-occurring environmental populations of Halobacteria. Sequence data from multiple loci (~2500 bp) identified many closely and more distantly related strains belonging to the genera Halorubrum and Haloarcula. Genome fingerprinting using a random priming PCR amplification method to analyze these isolates revealed diverse banding patterns across each of the genera and surprisingly even for isolates that are identical at the nucleotide level for five protein coding sequenced loci. This variance in genome structure even between identical multilocus sequence analysis (MLSA) haplotypes indicates that accumulation of genomic variation is rapid: faster than the rate of third codon substitutions.

  17. Characterization of bud emergence 46 (BEM46) protein: Sequence, structural, phylogenetic and subcellular localization analyses

    SciTech Connect

    Kumar, Abhishek; Kollath-Leiß, Krisztina; Kempken, Frank

    2013-08-30

    Highlights: •All eukaryotes have at least a single copy of a bem46 ortholog. •The catalytic triad of BEM46 is illustrated using sequence and structural analysis. •We identified indels in the conserved domain of BEM46 protein. •Localization studies of BEM46 protein were carried out using GFP-fusion tagging. -- Abstract: The bud emergence 46 (BEM46) protein from Neurospora crassa belongs to the α/β-hydrolase superfamily. Recently, we have reported that the BEM46 protein is localized in the perinuclear ER and also forms spots close by the plasma membrane. The protein appears to be required for cell type-specific polarity formation in N. crassa. Furthermore, initial studies suggested that the BEM46 amino acid sequence is conserved in eukaryotes and is considered to be one of the widespread conserved “known unknown” eukaryotic genes. This warrants for a comprehensive phylogenetic analysis of this superfamily to unravel origin and molecular evolution of these genes in different eukaryotes. Herein, we observe that all eukaryotes have at least a single copy of a bem46 ortholog. Upon scanning of these proteins in various genomes, we find that there are expansions leading into several paralogs in vertebrates. Usingcomparative genomic analyses, we identified insertion/deletions (indels) in the conserved domain of BEM46 protein, which allow to differentiate fungal classes such as ascomycetes from basidiomycetes. We also find that exonic indels are able to differentiate BEM46 homologs of different eukaryotic lineage. Furthermore, we unravel that BEM46 protein from N. crassa possess a novel endoplasmic-retention signal (PEKK) using GFP-fusion tagging experiments. We propose that three residues namely a serine 188S, a histidine 292H and an aspartic acid 262D are most critical residues, forming a catalytic triad in BEM46 protein from N. crassa. We carried out a comprehensive study on bem46 genes from a molecular evolution perspective with combination of functional

  18. Deceptive Desmas: Molecular Phylogenetics Suggests a New Classification and Uncovers Convergent Evolution of Lithistid Demosponges

    PubMed Central

    Schuster, Astrid; Erpenbeck, Dirk; Pisera, Andrzej; Hooper, John; Bryce, Monika; Fromont, Jane; Wörheide, Gert

    2015-01-01

    Reconciling the fossil record with molecular phylogenies to enhance the understanding of animal evolution is a challenging task, especially for taxa with a mostly poor fossil record, such as sponges (Porifera). ‘Lithistida’, a polyphyletic group of recent and fossil sponges, are an exception as they provide the richest fossil record among demosponges. Lithistids, currently encompassing 13 families, 41 genera and >300 recent species, are defined by the common possession of peculiar siliceous spicules (desmas) that characteristically form rigid articulated skeletons. Their phylogenetic relationships are to a large extent unresolved and there has been no (taxonomically) comprehensive analysis to formally reallocate lithistid taxa to their closest relatives. This study, based on the most comprehensive molecular and morphological investigation of ‘lithistid’ demosponges to date, corroborates some previous weakly-supported hypotheses, and provides novel insights into the evolutionary relationships of the previous ‘order Lithistida’. Based on molecular data (partial mtDNA CO1 and 28S rDNA sequences), we show that 8 out of 13 ‘Lithistida’ families belong to the order Astrophorida, whereas Scleritodermidae and Siphonidiidae form a separate monophyletic clade within Tetractinellida. Most lithistid astrophorids are dispersed between different clades of the Astrophorida and we propose to formally reallocate them, respectively. Corallistidae, Theonellidae and Phymatellidae are monophyletic, whereas the families Pleromidae and Scleritodermidae are polyphyletic. Family Desmanthidae is polyphyletic and groups within Halichondriidae – we formally propose a reallocation. The sister group relationship of the family Vetulinidae to Spongillida is confirmed and we propose here for the first time to include Vetulina into a new Order Sphaerocladina. Megascleres and microscleres possibly evolved and/or were lost several times independently in different

  19. Mining from transcriptomes: 315 single-copy orthologous genes concatenated for the phylogenetic analyses of Orchidaceae.

    PubMed

    Deng, Hua; Zhang, Guo-Qiang; Lin, Min; Wang, Yan; Liu, Zhong-Jian

    2015-09-01

    Phylogenetic relationships are hotspots for orchid studies with controversial standpoints. Traditionally, the phylogenies of orchids are based on morphology and subjective factors. Although more reliable than classic phylogenic analyses, the current methods are based on a few gene markers and PCR amplification, which are labor intensive and cannot identify the placement of some species with degenerated plastid genomes. Therefore, a more efficient, labor-saving and reliable method is needed for phylogenic analysis. Here, we present a method of orchid phylogeny construction using transcriptomes. Ten representative species covering five subfamilies of Orchidaceae were selected, and 315 single-copy orthologous genes extracted from the transcriptomes of these organisms were applied to reconstruct a more robust phylogeny of orchids. This approach provided a rapid and reliable method of phylogeny construction for Orchidaceae, one of the most diversified family of angiosperms. We also showed the rigorous systematic position of holomycotrophic species, which has previously been difficult to determine because of the degenerated plastid genome. We concluded that the method presented in this study is more efficient and reliable than methods based on a few gene markers for phylogenic analyses, especially for the holomycotrophic species or those whose DNA sequences have been difficult to amplify. Meanwhile, a total of 315 single-copy orthologous genes of orchids are offered and more informative loci could be used in the future orchid phylogenetic studies.

  20. Mining from transcriptomes: 315 single-copy orthologous genes concatenated for the phylogenetic analyses of Orchidaceae

    PubMed Central

    Deng, Hua; Zhang, Guo-Qiang; Lin, Min; Wang, Yan; Liu, Zhong-Jian

    2015-01-01

    Phylogenetic relationships are hotspots for orchid studies with controversial standpoints. Traditionally, the phylogenies of orchids are based on morphology and subjective factors. Although more reliable than classic phylogenic analyses, the current methods are based on a few gene markers and PCR amplification, which are labor intensive and cannot identify the placement of some species with degenerated plastid genomes. Therefore, a more efficient, labor-saving and reliable method is needed for phylogenic analysis. Here, we present a method of orchid phylogeny construction using transcriptomes. Ten representative species covering five subfamilies of Orchidaceae were selected, and 315 single-copy orthologous genes extracted from the transcriptomes of these organisms were applied to reconstruct a more robust phylogeny of orchids. This approach provided a rapid and reliable method of phylogeny construction for Orchidaceae, one of the most diversified family of angiosperms. We also showed the rigorous systematic position of holomycotrophic species, which has previously been difficult to determine because of the degenerated plastid genome. We concluded that the method presented in this study is more efficient and reliable than methods based on a few gene markers for phylogenic analyses, especially for the holomycotrophic species or those whose DNA sequences have been difficult to amplify. Meanwhile, a total of 315 single-copy orthologous genes of orchids are offered and more informative loci could be used in the future orchid phylogenetic studies. PMID:26380706

  1. Molecular and Morphological Analyses Reveal Phylogenetic Relationships of Stingrays Focusing on the Family Dasyatidae (Myliobatiformes)

    PubMed Central

    Lim, Kean Chong; Lim, Phaik-Eem; Chong, Ving Ching; Loh, Kar-Hoe

    2015-01-01

    Elucidating the phylogenetic relationships of the current but problematic Dasyatidae (Order Myliobatiformes) was the first priority of the current study. Here, we studied three molecular gene markers of 43 species (COI gene), 33 species (ND2 gene) and 34 species (RAG1 gene) of stingrays to draft out the phylogenetic tree of the order. Nine character states were identified and used to confirm the molecularly constructed phylogenetic trees. Eight or more clades (at different hierarchical level) were identified for COI, ND2 and RAG1 genes in the Myliobatiformes including four clades containing members of the present Dasyatidae, thus rendering the latter non-monophyletic. The uncorrected p-distance between these four ‘Dasytidae’ clades when compared to the distance between formally known families confirmed that these four clades should be elevated to four separate families. We suggest a revision of the present classification, retaining the Dasyatidae (Dasyatis and Taeniurops species) but adding three new families namely, Neotrygonidae (Neotrygon and Taeniura species), Himanturidae (Himantura species) and Pastinachidae (Pastinachus species). Our result indicated the need to further review the classification of Dasyatis microps. By resolving the non-monophyletic problem, the suite of nine character states enables the natural classification of the Myliobatiformes into at least thirteen families based on morphology. PMID:25867639

  2. Secondary structure analyses of the nuclear rRNA internal transcribed spacers and assessment of its phylogenetic utility across the Brassicaceae (mustards).

    PubMed

    Edger, Patrick P; Tang, Michelle; Bird, Kevin A; Mayfield, Dustin R; Conant, Gavin; Mummenhoff, Klaus; Koch, Marcus A; Pires, J Chris

    2014-01-01

    The internal transcribed spacers of the nuclear ribosomal RNA gene cluster, termed ITS1 and ITS2, are the most frequently used nuclear markers for phylogenetic analyses across many eukaryotic groups including most plant families. The reasons for the popularity of these markers include: 1.) Ease of amplification due to high copy number of the gene clusters, 2.) Available cost-effective methods and highly conserved primers, 3.) Rapidly evolving markers (i.e. variable between closely related species), and 4.) The assumption (and/or treatment) that these sequences are non-functional, neutrally evolving phylogenetic markers. Here, our analyses of ITS1 and ITS2 for 50 species suggest that both sequences are instead under selective constraints to preserve proper secondary structure, likely to maintain complete self-splicing functions, and thus are not neutrally-evolving phylogenetic markers. Our results indicate the majority of sequence sites are co-evolving with other positions to form proper secondary structure, which has implications for phylogenetic inference. We also found that the lowest energy state and total number of possible alternate secondary structures are highly significantly different between ITS regions and random sequences with an identical overall length and Guanine-Cytosine (GC) content. Lastly, we review recent evidence highlighting some additional problematic issues with using these regions as the sole markers for phylogenetic studies, and thus strongly recommend additional markers and cost-effective approaches for future studies to estimate phylogenetic relationships.

  3. Novel molecular markers for the detection of methanogens and phylogenetic analyses of methanogenic communities

    PubMed Central

    Dziewit, Lukasz; Pyzik, Adam; Romaniuk, Krzysztof; Sobczak, Adam; Szczesny, Pawel; Lipinski, Leszek; Bartosik, Dariusz; Drewniak, Lukasz

    2015-01-01

    Methanogenic Archaea produce approximately one billion tons of methane annually, but their biology remains largely unknown. This is partially due to the large phylogenetic and phenotypic diversity of this group of organisms, which inhabit various anoxic environments including peatlands, freshwater sediments, landfills, anaerobic digesters and the intestinal tracts of ruminants. Research is also hampered by the inability to cultivate methanogenic Archaea. Therefore, biodiversity studies have relied on the use of 16S rRNA and mcrA [encoding the α subunit of the methyl coenzyme M (methyl-CoM) reductase] genes as molecular markers for the detection and phylogenetic analysis of methanogens. Here, we describe four novel molecular markers that should prove useful in the detailed analysis of methanogenic consortia, with a special focus on methylotrophic methanogens. We have developed and validated sets of degenerate PCR primers for the amplification of genes encoding key enzymes involved in methanogenesis: mcrB and mcrG (encoding β and γ subunits of the methyl-CoM reductase, involved in the conversion of methyl-CoM to methane), mtaB (encoding methanol-5-hydroxybenzimidazolylcobamide Co-methyltransferase, catalyzing the conversion of methanol to methyl-CoM) and mtbA (encoding methylated [methylamine-specific corrinoid protein]:coenzyme M methyltransferase, involved in the conversion of mono-, di- and trimethylamine into methyl-CoM). The sensitivity of these primers was verified by high-throughput sequencing of PCR products amplified from DNA isolated from microorganisms present in anaerobic digesters. The selectivity of the markers was analyzed using phylogenetic methods. Our results indicate that the selected markers and the PCR primer sets can be used as specific tools for in-depth diversity analyses of methanogenic consortia. PMID:26217325

  4. Comparative phylogenetic analyses uncover the ancient roots of Indo-European folktales

    PubMed Central

    da Silva, Sara Graça; Tehrani, Jamshid J.

    2016-01-01

    Ancient population expansions and dispersals often leave enduring signatures in the cultural traditions of their descendants, as well as in their genes and languages. The international folktale record has long been regarded as a rich context in which to explore these legacies. To date, investigations in this area have been complicated by a lack of historical data and the impact of more recent waves of diffusion. In this study, we introduce new methods for tackling these problems by applying comparative phylogenetic methods and autologistic modelling to analyse the relationships between folktales, population histories and geographical distances in Indo-European-speaking societies. We find strong correlations between the distributions of a number of folktales and phylogenetic, but not spatial, associations among populations that are consistent with vertical processes of cultural inheritance. Moreover, we show that these oral traditions probably originated long before the emergence of the literary record, and find evidence that one tale (‘The Smith and the Devil’) can be traced back to the Bronze Age. On a broader level, the kinds of stories told in ancestral societies can provide important insights into their culture, furnishing new perspectives on linguistic, genetic and archaeological reconstructions of human prehistory. PMID:26909191

  5. Phylogenetic analyses of cyanobacterial genomes: Quantification of horizontal gene transfer events

    PubMed Central

    Zhaxybayeva, Olga; Gogarten, J. Peter; Charlebois, Robert L.; Doolittle, W. Ford; Papke, R. Thane

    2006-01-01

    Using 1128 protein-coding gene families from 11 completely sequenced cyanobacterial genomes, we attempt to quantify horizontal gene transfer events within cyanobacteria, as well as between cyanobacteria and other phyla. A novel method of detecting and enumerating potential horizontal gene transfer events within a group of organisms based on analyses of “embedded quartets” allows us to identify phylogenetic signal consistent with a plurality of gene families, as well as to delineate cases of conflict to the plurality signal, which include horizontally transferred genes. To infer horizontal gene transfer events between cyanobacteria and other phyla, we added homologs from 168 available genomes. We screened phylogenetic trees reconstructed for each of these extended gene families for highly supported monophyly of cyanobacteria (or lack of it). Cyanobacterial genomes reveal a complex evolutionary history, which cannot be represented by a single strictly bifurcating tree for all genes or even most genes, although a single completely resolved phylogeny was recovered from the quartets’ plurality signals. We find more conflicts within cyanobacteria than between cyanobacteria and other phyla. We also find that genes from all functional categories are subject to transfer. However, in interphylum as compared to intraphylum transfers, the proportion of metabolic (operational) gene transfers increases, while the proportion of informational gene transfers decreases. PMID:16899658

  6. The mitochondrial genome of Atrijuglans hetaohei Yang (Lepidoptera: Gelechioidea) and related phylogenetic analyses.

    PubMed

    Wang, Qiqi; Zhang, Zhengqing; Tang, Guanghui

    2016-04-25

    Complete mitochondrial genome sequences are of great importance for better understanding the genome-level characteristics and phylogenetic relationships among related species. In this study, the complete mitochondrial genome of Atrijuglans hetaohei Yang is sequenced and analyzed, which is 15,379bp in length (GenBank: KT581634) and contains a typical set of 13 protein-coding genes, 22 tRNA genes, two rRNA genes and a non-coding region (control region). Except for cox1 gene that is initiated by CGA codon, all protein-coding genes start with ATN codons and end with the stop codon T, TA or TAA. All tRNAs have a typical clover-leaf secondary structure, except for trnS1, of which the DHU arm could not form a stable stem-loop structure. The secondary structure of rrnL and rrnS consists of 49 helices and 33 helices, respectively. Phylogenetic analyses of the complete mitochondrial genome sequences and of the amino acid sequences for 13 mitochondrial protein-coding genes among related species support the view that A. hetaohei is more closely related to the Gelechioidea than Yponomeutoidea. This result is consistent with a previous classification based on morphology.

  7. Usefulness of cpDNA markers for phylogenetic and phylogeographic analyses of closely related cactus species.

    PubMed

    Bonatelli, I A S; Zappi, D C; Taylor, N P; Moraes, E M

    2013-02-28

    Although plastid DNA has been widely explored as a marker of choice for phylogeny and phylogeography studies, little is known about its utility for examining relationships between closely related species. The slow evolutionary rates inherent to chloroplast (cp) DNA make it difficult to perform lower level taxonomic analyses, particularly at the population level. We characterized the nucleotide variation and investigated the utility of eight noncoding cpDNA regions in four closely related species of the Pilosocereus aurisetus group (Cactaceae), an endemic taxon of eastern South America. The plastid intergenic spacers 5'-trnS-trnG, 3'-trnS-trnG and trnT-trnL were the most variable regions and were the most useful for lower level taxonomic comparisons, especially when used together. We conclude that an adequate combination of regions alongside indels as an additional character improves the usefulness of cpDNA for phylogenetic studies.

  8. Phylogenetic Analysis and Molecular Dating Suggest That Hemidactylus anamallensis Is Not a Member of the Hemidactylus Radiation and Has an Ancient Late Cretaceous Origin

    PubMed Central

    Bansal, Rohini; Karanth, K. Praveen

    2013-01-01

    Background of the Work The phylogenetic position and evolution of Hemidactylus anamallensis (family Gekkonidae) has been much debated in recent times. In the past it has been variously assigned to genus Hoplodactylus (Diplodactylidae) as well as a monotypic genus ‘Dravidogecko’ (Gekkonidae). Since 1995, this species has been assigned to Hemidactylus, but there is much disagreement between authors regarding its phylogenetic position within this genus. In a recent molecular study H. anamallensis was sister to Hemidactylus but appeared distinct from it in both mitochondrial and nuclear markers. However, this study did not include genera closely allied to Hemidactylus, thus a robust evaluation of this hypothesis was not undertaken. Methods The objective of this study was to investigate the phylogenetic position of H. anamallensis within the gekkonid radiation. To this end, several nuclear and mitochondrial markers were sequenced from H. anamallensis, selected members of the Hemidactylus radiation and genera closely allied to Hemidactylus. These sequences in conjunction with published sequences were subjected to multiple phylogenetic analyses. Furthermore the nuclear dataset was also subjected to molecular dating analysis to ascertain the divergence between H. anamallensis and related genera. Results and Conclusion Results showed that H. anamallensis lineage was indeed sister to Hemidactylus group but was separated from the rest of the Hemidactylus by a long branch. The divergence estimates supported a scenario wherein H. anamallensis dispersed across a marine barrier to the drifting peninsular Indian plate in the late Cretaceous whereas Hemidactylus arrived on the peninsular India after the Indian plate collided with the Eurasian plate. Based on these molecular evidence and biogeographical scenario we suggest that the genus Dravidogecko should be resurrected. PMID:23696785

  9. Partitioned Bayesian analyses, partition choice, and the phylogenetic relationships of scincid lizards.

    PubMed

    Brandley, Matthew C; Schmitz, Andreas; Reeder, Tod W

    2005-06-01

    Partitioned Bayesian analyses of approximately 2.2 kb of nucleotide sequence data (mtDNA) were used to elucidate phylogenetic relationships among 30 scincid lizard genera. Few partitioned Bayesian analyses exist in the literature, resulting in a lack of methods to determine the appropriate number of and identity of partitions. Thus, a criterion, based on the Bayes factor, for selecting among competing partitioning strategies is proposed and tested. Improvements in both mean -lnL and estimated posterior probabilities were observed when specific models and parameter estimates were assumed for partitions of the total data set. This result is expected given that the 95% credible intervals of model parameter estimates for numerous partitions do not overlap and it reveals that different data partitions may evolve quite differently. We further demonstrate that how one partitions the data (by gene, codon position, etc.) is shown to be a greater concern than simply the overall number of partitions. Using the criterion of the 2 ln Bayes factor > 10, the phylogenetic analysis employing the largest number of partitions was decisively better than all other strategies. Strategies that partitioned the ND1 gene by codon position performed better than other partition strategies, regardless of the overall number of partitions. Scincidae, Acontinae, Lygosominae, east Asian and North American "Eumeces" + Neoseps; North African Eumeces, Scincus, and Scincopus, and a large group primarily from sub-Saharan Africa, Madagascar, and neighboring islands are monophyletic. Feylinia, a limbless group of previously uncertain relationships, is nested within a "scincine" clade from sub-Saharan Africa. We reject the hypothesis that the nearly limbless dibamids are derived from within the Scincidae, but cannot reject the hypothesis that they represent the sister taxon to skinks. Amphiglossus, Chalcides, the acontines Acontias and Typhlosaurus, and Scincinae are paraphyletic. The globally widespread

  10. Cephalothrix gen. nov. (Cyanobacteria): towards an intraspecific phylogenetic evaluation by multilocus analyses.

    PubMed

    da Silva Malone, Camila Francieli; Rigonato, Janaína; Laughinghouse, Haywood Dail; Schmidt, Éder Carlos; Bouzon, Zenilda Laurita; Wilmotte, Annick; Fiore, Marli Fátima; Sant'Anna, Célia Leite

    2015-09-01

    For more than a decade, the taxonomy of the Phormidiaceae has been problematic, since morphologically similar organisms represent phylogenetically distinct entities. Based on 16S rRNA gene sequence analyses, the polyphyletic genus Phormidium and other gas-vacuolated oscillatorioids appear scattered throughout the cyanobacterial tree of life. Recently, several studies have focused on understanding the oscillatorioid taxa at the generic level. At the specific level, few studies have characterized cyanobacterial strains using combined datasets (morphology, ultrastructure and molecular multilocus analyses). Using a multifaceted approach, we propose a new, well-defined genus, Cephalothrix gen. nov., by analysing seven filamentous strains that are morphologically 'intermediate' between gas-vacuolated taxa and Phormidium. Furthermore, we characterize two novel species: Cephalothrix komarekiana sp. nov. (strains CCIBt 3277, CCIBt 3279, CCIBt 3523, CCALA 155, SAG 75.79 and UTEX 1580) and Cephalothrix lacustris sp. nov. (strain CCIBt 3261). The generic name and specific epithets are proposed under the provisions of the International Code of Nomenclature for Algae, Fungi, and Plants.

  11. Phylogenetic Relationships within the Opisthokonta Based on Phylogenomic Analyses of Conserved Single-Copy Protein Domains

    PubMed Central

    Torruella, Guifré; Derelle, Romain; Paps, Jordi; Lang, B. Franz; Roger, Andrew J.; Shalchian-Tabrizi, Kamran; Ruiz-Trillo, Iñaki

    2012-01-01

    Many of the eukaryotic phylogenomic analyses published to date were based on alignments of hundreds to thousands of genes. Frequently, in such analyses, the most realistic evolutionary models currently available are often used to minimize the impact of systematic error. However, controversy remains over whether or not idiosyncratic gene family dynamics (i.e., gene duplications and losses) and incorrect orthology assignments are always appropriately taken into account. In this paper, we present an innovative strategy for overcoming orthology assignment problems. Rather than identifying and eliminating genes with paralogy problems, we have constructed a data set comprised exclusively of conserved single-copy protein domains that, unlike most of the commonly used phylogenomic data sets, should be less confounded by orthology miss-assignments. To evaluate the power of this approach, we performed maximum likelihood and Bayesian analyses to infer the evolutionary relationships within the opisthokonts (which includes Metazoa, Fungi, and related unicellular lineages). We used this approach to test 1) whether Filasterea and Ichthyosporea form a clade, 2) the interrelationships of early-branching metazoans, and 3) the relationships among early-branching fungi. We also assessed the impact of some methods that are known to minimize systematic error, including reducing the distance between the outgroup and ingroup taxa or using the CAT evolutionary model. Overall, our analyses support the Filozoa hypothesis in which Ichthyosporea are the first holozoan lineage to emerge followed by Filasterea, Choanoflagellata, and Metazoa. Blastocladiomycota appears as a lineage separate from Chytridiomycota, although this result is not strongly supported. These results represent independent tests of previous phylogenetic hypotheses, highlighting the importance of sophisticated approaches for orthology assignment in phylogenomic analyses. PMID:21771718

  12. Evolutionary implications of phylogenetic analyses of the gene transfer agent (GTA) of Rhodobacter capsulatus.

    PubMed

    Lang, Andrew S; Taylor, Terumi A; Beatty, J Thomas

    2002-11-01

    The gene transfer agent (GTA) of the a-proteobacterium Rhodobacter capsulatus is a cell-controlled genetic exchange vector. Genes that encode the GTA structure are clustered in a 15-kb region of the R. capsulatus chromosome, and some of these genes show sequence similarity to known bacteriophage head and tail genes. However, the production of GTA is controlled at the level of transcription by a cellular two-component signal transduction system. This paper describes homologues of both the GTA structural gene cluster and the GTA regulatory genes in the a-proteobacteria Rhodopseudomonas palustris, Rhodobacter sphaeroides, Caulobacter crescentus, Agrobacterium tumefaciens and Brucella melitensis. These sequences were used in a phylogenetic tree approach to examine the evolutionary relationships of selected GTA proteins to these homologues and (pro)phage proteins, which was compared to a 16S rRNA tree. The data indicate that a GTA-like element was present in a single progenitor of the extant species that contain both GTA structural cluster and regulatory gene homologues. The evolutionary relationships of GTA structural proteins to (pro)phage proteins indicated by the phylogenetic tree patterns suggest a predominantly vertical descent of GTA-like sequences in the a-proteobacteria and little past gene exchange with (pro)phages.

  13. Phylogenetic analyses in cornus substantiate ancestry of xylem supercooling freezing behavior and reveal lineage of desiccation related proteins.

    PubMed

    Karlson, Dale T; Xiang, Qiu-Yun; Stirm, Vicki E; Shirazi, A M; Ashworth, Edward N

    2004-07-01

    The response of woody plant tissues to freezing temperature has evolved into two distinct behaviors: an avoidance strategy, in which intracellular water supercools, and a freeze-tolerance strategy, where cells tolerate the loss of water to extracellular ice. Although both strategies involve extracellular ice formation, supercooling cells are thought to resist freeze-induced dehydration. Dehydrin proteins, which accumulate during cold acclimation in numerous herbaceous and woody plants, have been speculated to provide, among other things, protection from desiccative extracellular ice formation. Here we use Cornus as a model system to provide the first phylogenetic characterization of xylem freezing behavior and dehydrin-like proteins. Our data suggest that both freezing behavior and the accumulation of dehydrin-like proteins in Cornus are lineage related; supercooling and nonaccumulation of dehydrin-like proteins are ancestral within the genus. The nonsupercooling strategy evolved within the blue- or white-fruited subgroup where representative species exhibit high levels of freeze tolerance. Within the blue- or white-fruited lineage, a single origin of dehydrin-like proteins was documented and displayed a trend for size increase in molecular mass. Phylogenetic analyses revealed that an early divergent group of red-fruited supercooling dogwoods lack a similar protein. Dehydrin-like proteins were limited to neither nonsupercooling species nor to those that possess extreme freeze tolerance.

  14. The Mitochondrial Genomes of Aquila fasciata and Buteo lagopus (Aves, Accipitriformes): Sequence, Structure and Phylogenetic Analyses

    PubMed Central

    Jiang, Lan; Chen, Juan; Wang, Ping; Ren, Qiongqiong; Yuan, Jian; Qian, Chaoju; Hua, Xinghong; Guo, Zhichun; Zhang, Lei; Yang, Jianke; Wang, Ying; Zhang, Qin; Ding, Hengwu; Bi, De; Zhang, Zongmeng; Wang, Qingqing; Chen, Dongsheng; Kan, Xianzhao

    2015-01-01

    The family Accipitridae is one of the largest groups of non-passerine birds, including 68 genera and 243 species globally distributed. In the present study, we determined the complete mitochondrial sequences of two species of accipitrid, namely Aquila fasciata and Buteo lagopus, and conducted a comparative mitogenome analysis across the family. The mitogenome length of A. fasciata and B. lagopus are 18,513 and 18,559 bp with an A + T content of 54.2% and 55.0%, respectively. For both the two accipitrid birds mtDNAs, obvious positive AT-skew and negative GC-skew biases were detected for all 12 PCGs encoded by the H strand, whereas the reverse was found in MT-ND6 encoded by the L strand. One extra nucleotide‘C’is present at the position 174 of MT-ND3 gene of A. fasciata, which is not observed at that of B. lagopus. Six conserved sequence boxes in the Domain II, named boxes F, E, D, C, CSBa, and CSBb, respectively, were recognized in the CRs of A. fasciata and B. lagopus. Rates and patterns of mitochondrial gene evolution within Accipitridae were also estimated. The highest dN/dS was detected for the MT-ATP8 gene (0.32493) among Accipitridae, while the lowest for the MT-CO1 gene (0.01415). Mitophylogenetic analysis supported the robust monophyly of Accipitriformes, and Cathartidae was basal to the balance of the order. Moreover, we performed phylogenetic analyses using two other data sets (two mitochondrial loci, and combined nuclear and mitochondrial loci). Our results indicate that the subfamily Aquilinae and all currently polytypic genera of this subfamily are monophyletic. These two novel mtDNA data will be useful in refining the phylogenetic relationships and evolutionary processes of Accipitriformes. PMID:26295156

  15. Pathogenesis and phylogenetic analyses of canine distemper virus strain 007Lm, a new isolate in dogs.

    PubMed

    Lan, N T; Yamaguchi, R; Furuya, Y; Inomata, A; Ngamkala, S; Naganobu, K; Kai, K; Mochizuki, M; Kobayashi, Y; Uchida, K; Tateyama, S

    2005-10-31

    The pathogenesis of a new isolate of canine distemper virus (CDV), strain 007Lm, was investigated from lymph node tissue by using Vero cells that express canine signalling lymphocyte activation molecules with a tag (Vero-DST) in dogs. Two CDV sero-negative Beagle dogs were inoculated intranasally and intraconjunctively with a virus suspension. Both infected dogs showed clinical signs of severe bloody diarrhea, conjunctivitis, ocular discharge, nasal discharge and coughing, lymphopenia, fever and weight loss. Titers of CDV-IgM and CDV-IgG in the blood were measured. CDV was detected by using reverse transcriptase-PCR and was recovered in swabs from one dog from 9 days and from the other dogs from 10 days after inoculation. Molecular and phylogenetic analyses of H and P genes showed that nucleotide and amino acid sequences of these genes of strain 007Lm after isolation in Vero-DST cells are identical to those of the original virus from fresh tissue and that strain 007Lm joins to the Asia 2 group cluster of CDV strains that is distinct from other clusters. These results indicate that (1) CDV strain 007Lm isolated in Vero-DST cells is virulent, (2) nucleotide and amino acid sequences of H and P genes of strain 007Lm do not change after isolation in Vero-DST cells compared with the original virus from fresh tissue and (3) strain 007Lm isolated from a vaccinated dog belongs to a cluster far from the vaccine strains in the phylogenetic trees of H and P genes.

  16. Phylogenetic analyses provide the first insights into the evolution of OVATE family proteins in land plants

    PubMed Central

    Liu, Di; Sun, Wei; Yuan, Yaowu; Zhang, Ning; Hayward, Alice; Liu, Yongliang; Wang, Ying

    2014-01-01

    Background and Aims The OVATE gene encodes a nuclear-localized regulatory protein belonging to a distinct family of plant-specific proteins known as the OVATE family proteins (OFPs). OVATE was first identified as a key regulator of fruit shape in tomato, with nonsense mutants displaying pear-shaped fruits. However, the role of OFPs in plant development has been poorly characterized. Methods Public databases were searched and a total of 265 putative OVATE protein sequences were identified from 13 sequenced plant genomes that represent the major evolutionary lineages of land plants. A phylogenetic analysis was conducted based on the alignment of the conserved OVATE domain from these 13 selected plant genomes. The expression patterns of tomato SlOFP genes were analysed via quantitative real-time PCR. The pattern of OVATE gene duplication resulting in the expansion of the gene family was determined in arabidopsis, rice and tomato. Key Results Genes for OFPs were found to be present in all the sampled land plant genomes, including the early-diverged lineages, mosses and lycophytes. Phylogenetic analysis based on the amino acid sequences of the conserved OVATE domain defined 11 sub-groups of OFPs in angiosperms. Different evolutionary mechanisms are proposed for OVATE family evolution, namely conserved evolution and divergent expansion. Characterization of the AtOFP family in arabidopsis, the OsOFP family in rice and the SlOFP family in tomato provided further details regarding the evolutionary framework and revealed a major contribution of tandem and segmental duplications towards expansion of the OVATE gene family. Conclusions This first genome-wide survey on OFPs provides new insights into the evolution of the OVATE protein family and establishes a solid base for future functional genomics studies on this important but poorly characterized regulatory protein family in plants. PMID:24812252

  17. Evolutionary relationships of the Critically Endangered frog Ericabatrachus baleensis Largen, 1991 with notes on incorporating previously unsampled taxa into large-scale phylogenetic analyses

    PubMed Central

    2014-01-01

    Background The phylogenetic relationships of many taxa remain poorly known because of a lack of appropriate data and/or analyses. Despite substantial recent advances, amphibian phylogeny remains poorly resolved in many instances. The phylogenetic relationships of the Ethiopian endemic monotypic genus Ericabatrachus has been addressed thus far only with phenotypic data and remains contentious. Results We obtained fresh samples of the now rare and Critically Endangered Ericabatrachus baleensis and generated DNA sequences for two mitochondrial and four nuclear genes. Analyses of these new data using de novo and constrained-tree phylogenetic reconstructions strongly support a close relationship between Ericabatrachus and Petropedetes, and allow us to reject previously proposed alternative hypotheses of a close relationship with cacosternines or Phrynobatrachus. Conclusions We discuss the implications of our results for the taxonomy, biogeography and conservation of E. baleensis, and suggest a two-tiered approach to the inclusion and analyses of new data in order to assess the phylogenetic relationships of previously unsampled taxa. Such approaches will be important in the future given the increasing availability of relevant mega-alignments and potential framework phylogenies. PMID:24612655

  18. SINE insertions in cladistic analyses and the phylogenetic affiliations of Tarsius bancanus to other primates.

    PubMed Central

    Schmitz, J; Ohme, M; Zischler, H

    2001-01-01

    Transpositions of Alu sequences, representing the most abundant primate short interspersed elements (SINE), were evaluated as molecular cladistic markers to analyze the phylogenetic affiliations among the primate infraorders. Altogether 118 human loci, containing intronic Alu elements, were PCR analyzed for the presence of Alu sequences at orthologous sites in each of two strepsirhine, New World and Old World monkey species, Tarsius bancanus, and a nonprimate outgroup. Fourteen size-polymorphic amplification patterns exhibited longer fragments for the anthropoids (New World and Old World monkeys) and T. bancanus whereas shorter fragments were detected for the strepsirhines and the outgroup. From these, subsequent sequence analyses revealed three Alu transpositions, which can be regarded as shared derived molecular characters linking tarsiers and anthropoid primates. Concerning the other loci, scenarios are represented in which different SINE transpositions occurred independently in the same intron on the lineages leading both to the common ancestor of anthropoids and to T. bancanus, albeit at different nucleotide positions. Our results demonstrate the efficiency and possible pitfalls of SINE transpositions used as molecular cladistic markers in tracing back a divergence point in primate evolution over 40 million years old. The three Alu insertions characterized underpin the monophyly of haplorhine primates (Anthropoidea and Tarsioidea) from a novel perspective. PMID:11156996

  19. Mutational and Phylogenetic Analyses of the Mycobacterial mbt Gene Cluster ▿§

    PubMed Central

    Chavadi, Sivagami Sundaram; Stirrett, Karen L.; Edupuganti, Uthamaphani R.; Vergnolle, Olivia; Sadhanandan, Gigani; Marchiano, Emily; Martin, Che; Qiu, Wei-Gang; Soll, Clifford E.; Quadri, Luis E. N.

    2011-01-01

    The mycobactin siderophore system is present in many Mycobacterium species, including M. tuberculosis and other clinically relevant mycobacteria. This siderophore system is believed to be utilized by both pathogenic and nonpathogenic mycobacteria for iron acquisition in both in vivo and ex vivo iron-limiting environments, respectively. Several M. tuberculosis genes located in a so-called mbt gene cluster have been predicted to be required for the biosynthesis of the core scaffold of mycobactin based on sequence analysis. A systematic and controlled mutational analysis probing the hypothesized essential nature of each of these genes for mycobactin production has been lacking. The degree of conservation of mbt gene cluster orthologs remains to be investigated as well. In this study, we sought to conclusively establish whether each of nine mbt genes was required for mycobactin production and to examine the conservation of gene clusters orthologous to the M. tuberculosis mbt gene cluster in other bacteria. We report a systematic mutational analysis of the mbt gene cluster ortholog found in Mycobacterium smegmatis. This mutational analysis demonstrates that eight of the nine mbt genes investigated are essential for mycobactin production. Our genome mining and phylogenetic analyses reveal the presence of orthologous mbt gene clusters in several bacterial species. These gene clusters display significant organizational differences originating from an intricate evolutionary path that might have included horizontal gene transfers. Altogether, the findings reported herein advance our understanding of the genetic requirements for the biosynthesis of an important mycobacterial secondary metabolite with relevance to virulence. PMID:21873494

  20. Morphological Examination and Phylogenetic Analyses of Phycopeltis spp. (Trentepohliales, Ulvophyceae) from Tropical China

    PubMed Central

    Zhu, Huan; Zhao, Zhijuan; Xia, Shuang; Hu, Zhengyu; Liu, Guoxiang

    2015-01-01

    During an investigation of Trentepohliales (Ulvophyceae) from tropical areas in China, four species of the genus Phycopeltis were identified: Phycopeltis aurea, P. epiphyton, P. flabellata and P. prostrata. The morphological characteristics of both young and adult thalli were observed and compared. Three species (P. flabellata, P. aurea and P. epiphyton) shared a symmetrical development with dichotomously branching vegetative cells during early stages; conversely, P. prostrata had dishevelled filaments with no dichotomously branching filaments and no symmetrical development. The adult thalli of the former three species shared common morphological characteristics, such as equally dichotomous filaments, absence of erect hair and gametangia formed in prostate vegetative filaments. Phylogenetic analyses based on SSU and ITS rDNA sequences showed that the three morphologically similar species were in a clade that was sister to a clade containing T. umbrina and T. abietina, thus confirming morphological monophyly. Conversely, Phycopeltis prostrata, a species with erect filaments, sessile gametangia on the basal erect hair, larger length/width ratio of vegetative cells and very loosely coalescent prostrate filaments, branched separately from the core Phycopeltis group and the T. umbrina and T. abietina clade. Based on morphological and molecular evidence, the genus Phycopeltis was paraphyletic. Furthermore, the traditional taxonomic criteria for Phycopeltis must be reassessed based on phylogeny using more species. A new circumscription of the Phycopeltis and the erection of new genera are recommended. PMID:25643363

  1. The mitochondrial genomes of the glaucophytes Gloeochaete wittrockiana and Cyanoptyche gloeocystis: multilocus phylogenetics suggests a monophyletic archaeplastida.

    PubMed

    Jackson, Christopher J; Reyes-Prieto, Adrian

    2014-10-03

    A significant limitation when testing the putative single origin of primary plastids and the monophyly of the Archaeplastida supergroup, comprised of the red algae, viridiplants, and glaucophytes, is the scarce nuclear and organellar genome data available from the latter lineage. The Glaucophyta are a key algal group when investigating the origin and early diversification of photosynthetic eukaryotes. However, so far only the plastid and mitochondrial genomes of the glaucophytes Cyanophora paradoxa (strain CCMP 329) and Glaucocystis nostochinearum (strain UTEX 64) have been completely sequenced. Here, we present the complete mitochondrial genomes of Gloeochaete wittrockiana SAG 46.84 (36.05 kb; 33 protein-coding genes, 6 unidentified open reading frames [ORFs], and 28 transfer RNAs [tRNAs]) and Cyanoptyche gloeocystis SAG 4.97 (33.24 kb; 33 protein-coding genes, 6 unidentified ORFs, and 26 tRNAs), which represent two genera distantly related to the "well-known" Cyanophora and Glaucocystis. The mitochondrial gene repertoire of the four glaucophyte species is highly conserved, whereas the gene order shows considerable variation. Phylogenetic analyses of 14 mitochondrial genes from representative taxa from the major eukaryotic supergroups, here including novel sequences from the glaucophytes Cyanophora tetracyanea (strain NIES-764) and Cyanophora biloba (strain UTEX LB 2766), recover a clade uniting the three Archaeplastida lineages; this recovery is dependent on our novel glaucophyte data, demonstrating the importance of greater taxon sampling within the glaucophytes.

  2. Systematics of Plant-Pathogenic and Related Streptomyces Species Based on Phylogenetic Analyses of Multiple Gene Loci

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 10 species of Streptomyces implicated as the etiological agents in scab disease of potatoes or soft rot disease of sweet potatoes are distributed among 7 different phylogenetic clades in analyses based on 16S rRNA gene sequences, but high sequence similarity of this gene among Streptomyces speci...

  3. World reclassification of the Cardiophorinae (Coleoptera, Elateridae), based on phylogenetic analyses of morphological characters

    PubMed Central

    Douglas, Hume B.

    2017-01-01

    Abstract The prior genus-level classification of Cardiophorinae had never been assessed phylogenetically, and not revised since 1906. A phylogeny for Cardiophorinae and Negastriinae is inferred by Bayesian analyses of 163 adult morphological characters to revise the generic classification. Parsimony analysis is also performed to assess the sensitivity of the Bayesian results to the choice of optimality criterion. Bayesian hypothesis testing rejected monophyly for: Negastriinae; Cardiophorinae (but monophyletic after addition of four taxa); Cardiophorini; cardiophorine genera Aphricus LeConte, 1853; Aptopus Eschscholtz, 1829; Cardiophorus Eschscholtz, 1829; Cardiotarsus Eschscholtz, 1836; Paracardiophorus Schwarz, 1895; Phorocardius Fleutiaux, 1931; Dicronychus sensu Platia, 1994; Dicronychus sensu Méquignon, 1931; Craspedostethus sensu Schwarz, 1906 (i.e., including Tropidiplus Fleutiaux, 1903); Paracardiophorus sensu Cobos, 1970, although well-supported alternative classifications were available for only some. Based on taxonomic interpretation of phylogenetic results: Nyctorini is syn. n. of Cardiophorini; Globothorax Fleutiaux, 1891 (Physodactylinae), Margogastrius Schwarz, 1903 (Physodactylinae), and Pachyelater Lesne, 1897 (Dendrometrinae) are transferred to Cardiophorinae. The following changes are proposed for cardiophorine genera: Aptopus Eschscholtz, 1829 is redefined to exclude Horistonotus-like species; Coptostethus Wollaston, 1854 is subgenus of Cardiophorus; Dicronychus Brullé, 1832 and Diocarphus Fleutiaux, 1947, Metacardiophorus Gurjeva, 1966, Platynychus Motschulsky, 1858, and Zygocardiophorus Iablokoff-Khnzorian and Mardjanian, 1981 are placed at genus rank; Paracardiophorus Schwarz, 1895 is redefined based on North American and Eurasian species only; Horistonotus Candèze, 1860 redefined to include species with multiple apices on each side of their tarsal claws; Patriciella Van Zwaluwenburg, 1953 is syn. n. of Aphricus LeConte, 1853; Teslasena

  4. Comprehensive Phylogenetic Reconstruction of Amoebozoa Based on Concatenated Analyses of SSU-rDNA and Actin Genes

    PubMed Central

    Lahr, Daniel J. G.; Grant, Jessica; Nguyen, Truc; Lin, Jian Hua; Katz, Laura A.

    2011-01-01

    Evolutionary relationships within Amoebozoa have been the subject of controversy for two reasons: 1) paucity of morphological characters in traditional surveys and 2) haphazard taxonomic sampling in modern molecular reconstructions. These along with other factors have prevented the erection of a definitive system that resolves confidently both higher and lower-level relationships. Additionally, the recent recognition that many protosteloid amoebae are in fact scattered throughout the Amoebozoa suggests that phylogenetic reconstructions have been excluding an extensive and integral group of organisms. Here we provide a comprehensive phylogenetic reconstruction based on 139 taxa using molecular information from both SSU-rDNA and actin genes. We provide molecular data for 13 of those taxa, 12 of which had not been previously characterized. We explored the dataset extensively by generating 18 alternative reconstructions that assess the effect of missing data, long-branched taxa, unstable taxa, fast evolving sites and inclusion of environmental sequences. We compared reconstructions with each other as well as against previously published phylogenies. Our analyses show that many of the morphologically established lower-level relationships (defined here as relationships roughly equivalent to Order level or below) are congruent with molecular data. However, the data are insufficient to corroborate or reject the large majority of proposed higher-level relationships (above the Order-level), with the exception of Tubulinea, Archamoebae and Myxogastrea, which are consistently recovered. Moreover, contrary to previous expectations, the inclusion of available environmental sequences does not significantly improve the Amoebozoa reconstruction. This is probably because key amoebozoan taxa are not easily amplified by environmental sequencing methodology due to high rates of molecular evolution and regular occurrence of large indels and introns. Finally, in an effort to facilitate

  5. Evolution of the chordate body plan: new insights from phylogenetic analyses of deuterostome phyla.

    PubMed

    Cameron, C B; Garey, J R; Swalla, B J

    2000-04-25

    The deuterostome phyla include Echinodermata, Hemichordata, and Chordata. Chordata is composed of three subphyla, Vertebrata, Cephalochordata (Branchiostoma), and Urochordata (Tunicata). Careful analysis of a new 18S rDNA data set indicates that deuterostomes are composed of two major clades: chordates and echinoderms + hemichordates. This analysis strongly supports the monophyly of each of the four major deuterostome taxa: Vertebrata + Cephalochordata, Urochordata, Hemichordata, and Echinodermata. Hemichordates include two distinct classes, the enteropneust worms and the colonial pterobranchs. Most previous hypotheses of deuterostome origins have assumed that the morphology of extant colonial pterobranchs resembles the ancestral deuterostome. We present a molecular phylogenetic analysis of hemichordates that challenges this long-held view. We used 18S rRNA to infer evolutionary relationships of the hemichordate classes Pterobranchia and Enteropneusta. Our data show that pterobranchs may be derived within enteropneust worms rather than being a sister clade to the enteropneusts. The nesting of the pterobranchs within the enteropneusts dramatically alters our view of the evolution of the chordate body plan and suggests that the ancestral deuterostome more closely resembled a mobile worm-like enteropneust than a sessile colonial pterobranch.

  6. Molecular phylogenetics of subclass Peritrichia (Ciliophora: Oligohymenophorea) based on expanded analyses of 18S rRNA sequences.

    PubMed

    Utz, Laura R P; Eizirik, Eduardo

    2007-01-01

    Phylogenetic relationships among peritrich ciliates remain unclear in spite of recent progress. To expand the analyses performed in previous studies, and to statistically test hypotheses of monophyly, we analyzed a broad sample of 18s rRNA sequences (including 15 peritrich genera), applying a conservative alignment strategy and several phylogenetic approaches. The main results are that: (i) the monophyly of Peritrichia cannot be rejected; (ii) the two main clades of Sessilida do not correspond to formally recognized taxa; (iii) the monophyly of genera Vorticella and Epistylis is significantly rejected; and (iv) morphological structures commonly used in peritrich taxonomy may be evolutionarily labile.

  7. The complete mitochondrial genome of Trabala vishnou guttata (Lepidoptera: Lasiocampidae) and the related phylogenetic analyses.

    PubMed

    Wu, Liuyu; Xiong, Xiao; Wang, Xuming; Xin, Tianrong; Wang, Jing; Zou, Zhiwen; Xia, Bin

    2016-12-01

    The bluish yellow lappet moth, Trabala vishnou guttata is an extraordinarily important pest in China. The complete mitochondrial genome is sequenced and determined firstly, which is based on traditional PCR amplification and primer walking methods with a length of 15,281 bp, including 13 protein-coding (PCG) genes, 22 transfer RNA (rRNA) genes, two ribosomal RNA (tRNA) genes, and an A + T-rich region. The gene order and orientation of the T. vishnou guttata mitogenome were identical to the other sequenced Lasiocampidae species. The overall nucleotide composition of T. vishnou guttata is A (40.27 %), T (40.59 %), C (11.58 %) and G (7.56 %), respectively. All the PCGs initiate with the three orthodox start codons ATN except for coxI with CGA start codon. Three PCGs (coxI, coxII and nad4) used incomplete stop codon T, while the other 10 PCGs terminate with complete stop codon TAA. All tRNA genes have a typical clover-leaf structure except for the absence of a dihydrouridine arm in trnS (AGN). The length of A + T-rich region is 383 bp. Phylogeny is established to reveal the genetic relationship between T. vishnou guttata and other lepidopteran species based on 13 PCGs nucleotide sequences of the sequenced species (32 taxa) by Maximum likelihood and Bayesian methods. Phylogenetic analyses presents that T. vishnou guttata and its closely related species (Dendrolimus taxa) are clustered on Lasiocampidae group. It is a sister clade relationship between Lasiocampidae and other families in Bombycoidea with a bootstrap value of 83 % and a posterior probability of 0.75. This study supports that Lasiocampidae may be independent from Bombycoidea.

  8. Phylogenetic inference rejects sporophyte based classification of the Funariaceae (Bryophyta): rapid radiation suggests rampant homoplasy in sporophyte evolution.

    PubMed

    Liu, Yang; Budke, Jessica M; Goffinet, Bernard

    2012-01-01

    The moss family Funariaceae, which includes the model systems Funaria hygrometrica and Physcomitrella patens, comprises 15 genera, of which three accommodate approximately 95% of the 250-400 species. Generic concepts are drawn primarily from patterns in the diversity of morphological complexity of the sporophyte. Phylogenetic inferences from ten loci sampled across the three genomic compartments yield a hypothesis that is incompatible with the current circumscription of two of the speciose genera of the Funariaceae. The single clade, comprising exemplars of Funaria with a compound annulus, is congruent with the systematic concept proposed by Fife (1985). By contrast, Entosthodon and Physcomitrium are resolved as polyphyletic entities, and even the three species of Physcomitrella are confirmed to have diverged from distinct ancestors. Although the backbone relationships within the core clade of the Funariaceae remain unresolved, the polyphyly of these genera withstands alternative hypothesis testing. Consequently, the sporophytic characters that define these lineages are clearly homoplasious suggesting that selective pressures (or their relaxation) are in fact driving the diversification rather than the conservation of sporophytic architecture in the Funariaceae.

  9. Integrating phylogenetic and population genetic analyses of multiple loci to test species divergence hypotheses in Passerina buntings.

    PubMed

    Carling, Matt D; Brumfield, Robb T

    2008-01-01

    Phylogenetic and population genetic analyses of DNA sequence data from 10 nuclear loci were used to test species divergence hypotheses within Passerina buntings, with special focus on a strongly supported, but controversial, sister relationship between Passerina amoena and P. caerulea inferred from a previous mitochondrial study. Here, a maximum-likelihood analysis of a concatenated 10-locus data set, as well as minimize-deep-coalescences and maximum-likelihood analyses of the locus-specific gene trees, recovered the traditional sister relationship between P. amoena and P. cyanea. In addition, a more recent divergence time estimate between P. amoena and P. cyanea than between P. amoena and P. caerulea provided evidence for the traditional sister relationship. These results provide a compelling example of how lineage sorting stochasticity can lead to incongruence between gene trees and species trees, and illustrate how phylogenetic and population genetic analyses can be integrated to investigate evolutionary relationships between recently diverged taxa.

  10. Fine-scale genetic structure analyses suggest further male than female dispersal in mountain gorillas

    PubMed Central

    2014-01-01

    Background Molecular studies in social mammals rarely compare the inferences gained from genetic analyses with field information, especially in the context of dispersal. In this study, we used genetic data to elucidate sex-specific dispersal dynamics in the Virunga Massif mountain gorilla population (Gorilla beringei beringei), a primate species characterized by routine male and female dispersal from stable mixed-sex social groups. Specifically, we conducted spatial genetic structure analyses for each sex and linked our genetically-based observations with some key demographic and behavioural data from this population. Results To investigate the spatial genetic structure of mountain gorillas, we analysed the genotypes of 193 mature individuals at 11 microsatellite loci by means of isolation-by-distance and spatial autocorrelation analyses. Although not all males and females disperse, female gorillas displayed an isolation-by-distance pattern among groups and a signal of dispersal at short distances from their natal group based on spatial autocorrelation analyses. In contrast, male genotypes were not correlated with spatial distance, thus suggesting a larger mean dispersal distance for males as compared to females. Both within sex and mixed-sex pairs were on average genetically more related within groups than among groups. Conclusions Our study provides evidence for an intersexual difference in dispersal distance in the mountain gorilla. Overall, it stresses the importance of investigating spatial genetic structure patterns on a sex-specific basis to better understand the dispersal dynamics of the species under investigation. It is currently poorly understood why some male and female gorillas disperse while others remain in the natal group. Our results on average relatedness within and across groups confirm that groups often contain close relatives. While inbreeding avoidance may play a role in driving female dispersal, we note that more detailed dyadic genetic

  11. Phylogenetic and Metagenomic Analyses of Substrate-Dependent Bacterial Temporal Dynamics in Microbial Fuel Cells

    PubMed Central

    Zhang, Husen; Chen, Xi; Braithwaite, Daniel; He, Zhen

    2014-01-01

    Understanding the microbial community structure and genetic potential of anode biofilms is key to improve extracellular electron transfers in microbial fuel cells. We investigated effect of substrate and temporal dynamics of anodic biofilm communities using phylogenetic and metagenomic approaches in parallel with electrochemical characterizations. The startup non-steady state anodic bacterial structures were compared for a simple substrate, acetate, and for a complex substrate, landfill leachate, using a single-chamber air-cathode microbial fuel cell. Principal coordinate analysis showed that distinct community structures were formed with each substrate type. The bacterial diversity measured as Shannon index decreased with time in acetate cycles, and was restored with the introduction of leachate. The change of diversity was accompanied by an opposite trend in the relative abundance of Geobacter-affiliated phylotypes, which were acclimated to over 40% of total Bacteria at the end of acetate-fed conditions then declined in the leachate cycles. The transition from acetate to leachate caused a decrease in output power density from 243±13 mW/m2 to 140±11 mW/m2, accompanied by a decrease in Coulombic electron recovery from 18±3% to 9±3%. The leachate cycles selected protein-degrading phylotypes within phylum Synergistetes. Metagenomic shotgun sequencing showed that leachate-fed communities had higher cell motility genes including bacterial chemotaxis and flagellar assembly, and increased gene abundance related to metal resistance, antibiotic resistance, and quorum sensing. These differentially represented genes suggested an altered anodic biofilm community in response to additional substrates and stress from the complex landfill leachate. PMID:25202990

  12. Genetic analyses of Xanthomonas axonopodis pv. dieffenbachiae strains reveal distinct phylogenetic groups.

    PubMed

    Donahoo, R S; Jones, J B; Lacy, G H; Stromberg, V K; Norman, D J

    2013-03-01

    A comprehensive analysis of 175 Xanthomonas axonopodis pv. dieffenbachiae strains isolated from 10 Araceae hosts was done to identify pathogen variation. The strains were subjected to repetitive extragenic palindromic sequence polymerase chain reaction and four major phylogenetic clusters were generated. A subset of 40 strains isolated from Anthurium, Dieffenbachia, and Syngonium was further defined by amplified fragment length polymorphism and fatty acid methyl ester analysis and the same four phylogenetic clusters were observed. Comparison of representative strains in the first three clusters using DNA-DNA hybridization and multilocus sequence analysis supports the previous reclassification of strains in cluster I, including the X. axonopodis pv. dieffenbachiae pathovar reference strain (LMG695), to X. citri. Our research findings indicate that strains in cluster I, isolated primarily from anthurium, probably represent an undescribed pathovar. Other phylogenetic subclusters consisting primarily of strains isolated from xanthosoma and philodendron in clusters III and IV, respectively, may yet represent other undescribed species or pathovars of Xanthomonas.

  13. The Complete Chloroplast Genomes of Three Cardiocrinum (Liliaceae) Species: Comparative Genomic and Phylogenetic Analyses

    PubMed Central

    Lu, Rui-Sen; Li, Pan; Qiu, Ying-Xiong

    2017-01-01

    The genus Cardiocrinum (Endlicher) Lindley (Liliaceae) comprises three herbaceous perennial species that are distributed in East Asian temperate-deciduous forests. Although all three Cardiocrinum species have horticultural and medical uses, studies related to species identification and molecular phylogenetic analysis of this genus have not been reported. Here, we report the complete chloroplast (cp) sequences of each Cardiocrinum species using Illumina paired-end sequencing technology. The cp genomes of C. giganteum, C. cathayanum, and C. cordatum were found to be 152,653, 152,415, and 152,410 bp in length, respectively, including a pair of inverted repeat (IR) regions (26,364–26,500 bp) separated by a large single-copy (LSC) region (82,186–82,368 bp) and a small single-copy (SSC) region (17,309–17,344 bp). Each cp genome contained the same 112 unique genes consisting of 30 transfer RNA genes, 4 ribosomal RNA genes, and 78 protein-coding genes. Gene content, gene order, AT content, and IR/SC boundary structures were almost the same among the three Cardiocrinum cp genomes, yet their lengths varied due to contraction/expansion of the IR/SC borders. Simple sequence repeat (SSR) analysis further indicated the richest SSRs in these cp genomes to be A/T mononucleotides. A total of 45, 57, and 45 repeats were identified in C. giganteum, C. cathayanum, and C. cordatum, respectively. Six cpDNA markers (rps19, rpoC2-rpoC1, trnS-psbZ, trnM-atpE, psaC-ndhE, ycf15-ycf1) with the percentage of variable sites higher than 0.95% were identified. Phylogenomic analyses of the complete cp genomes and 74 protein-coding genes strongly supported the monophyly of Cardiocrinum and a sister relationship between C. cathayanum and C. cordatum. The availability of these cp genomes provides valuable genetic information for further population genetics and phylogeography studies on Cardiocrinum. PMID:28119727

  14. Mitochondrial genetic analyses suggest selection against maternal lineages in bipolar affective disorder.

    PubMed Central

    Kirk, R; Furlong, R A; Amos, W; Cooper, G; Rubinsztein, J S; Walsh, C; Paykel, E S; Rubinsztein, D C

    1999-01-01

    Previous reports of preferential transmission of bipolar affective disorder (BP) from the maternal versus the paternal lines in families suggested that this disorder may be caused by mitochondrial DNA mutations. We have sequenced the mitochondrial genome in 25 BP patients with family histories of psychiatric disorder that suggest matrilineal inheritance. No polymorphism identified more than once in this sequencing showed any significant association with BP in association studies using 94 cases and 94 controls. To determine whether our BP sample showed evidence of selection against the maternal lineage, we determined genetic distances between all possible pairwise comparisons within the BP and control groups, based on multilocus mitochondrial polymorphism haplotypes. These analyses revealed fewer closely related haplotypes in the BP group than in the matched control group, suggesting selection against maternal lineages in this disease. Such selection is compatible with recurrent mitochondrial mutations, which are associated with slightly decreased fitness. Although such mismatch distribution comparisons have been used previously for analyses of population histories, this is, as far as we are aware, the first report of this method being used to study disease. PMID:10417293

  15. Molecular analyses of Pythium irregulare isolates from grapevines in South Africa suggest a single variable species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Pythium irregulare species complex is the most common and widespread Pythium spp. associated with grapevines in South Africa. This species complex can be subdivided into several morphological and phylogenetic species that are all highly similar at the sequence level. The complex includes P. re...

  16. Gene expression and molecular phylogenetic analyses of beta-glucosidase in the termite Reticulitermes speratus (Isoptera: Rhinotermitidae).

    PubMed

    Shimada, Keisuke; Maekawa, Kiyoto

    2014-06-01

    Beta-glucosidase (BG) is known as a multifunctional enzyme for social maintenance in terms of both cellulose digestion and social communication in termites. However, the expression profiles of each BG gene and their evolutionary history are not well understood. First, we cloned two types of BG homologs (RsBGI and RsBGII) from the termite Reticulitermes speratus (Kolbe). Gene expression analyses showed that RsBGI expression levels of primary queens and kings from 30 to 100 days after colony foundation were high, but those of reproductives dropped after day 400. Extremely low gene expression levels of RsBGI were observed in eggs, whereas workers had significantly higher expression levels than those of soldiers and other colony members. Consequently, RsBGI gene expression levels changed among each developmental stage, and RsBGI was shown to be involved in cellulose digestion. On the other hand, the RsBGII gene was consistently expressed in all castes and developmental stages examined, and notable expression changes were not observed among them, including in eggs. It was indicated that RsBGII is a main component involved in social communication, for example, the egg-recognition pheromone shown in this species previously. Finally, we obtained partial gene homologs from other termite and cockroach species, including the woodroach (genus Cryptocercus), which is the sister group to termites, and performed molecular phylogenetic analyses. The results showed that the origin of the BG gene homologs preceded the divergence of termites and cockroaches, suggesting that the acquisition of multifunctionality of the BG gene also occurred in cockroach lineages.

  17. Forensic characteristics and phylogenetic analyses of the Chinese Yi population via 19 X-chromosomal STR loci.

    PubMed

    He, GuangLin; Li, Ye; Zou, Xing; Li, Ping; Chen, PengYu; Song, Feng; Gao, Tianzhen; Liao, Miao; Yan, Jing; Wu, Jin

    2017-02-28

    The demographic characteristics and genetic polymorphism data of 56 Chinese nationalities or 31 administrative divisions in Chinese mainland have repeatedly been the genetic research hotspots. While most genetic studies focused on some particular Chinese populations based on autosomal or Y-chromosomal genetic markers, the forensic characteristics and phylogenetic analyses of the seventh largest Chinese population (Yi ethnicity) on the X-chromosomal genetic markers are scarce. Here, allele frequencies and forensic statistical parameters for 19 X-chromosomal short tandem repeat loci (DXS7424-DXS101, DXS6789-DXS6809, DXS7423-DXS10134, DXS10103-HPRTB-DXS10101, DXS10159-DXS10162-DXS10164, DXS10148-DXS10135-DXS8378, and DXS7132-DXS10079-DXS10074-DXS10075) of 331 Chinese Yi individuals were obtained. All 19 X-chromosomal short tandem repeat (STR) loci in females were consistent with the Hardy-Weinberg equilibrium test. A total of 214 alleles were identified with the corresponding allele frequencies spanned from 0.0019 to 0.6106. The combined PE, PDF, and PDM were 0.9999999214, 0.9999999999999999999993, and 0.9999999999998, respectively. The high combined MECKrüger, MECKishida, MECDesmarais, and MECDesmarais Duo were achieved as 0.9999999617638, 0.9999999999971, 0.9999999999971, and 0.9999999931538, respectively. The findings suggested that the panel of 19 X-STR loci is highly polymorphic and informative in the Yi ethnic population and can be considered to be a powerful tool in forensic complex kinship identification. Population differentiation analyses among 12 populations indicated that significant differences in genetic structure were observed in between the Yi ethnicity and the Chinese Uyghur as well as Kazakh, and genetic homogeneity existed in similar ethno-origin or geographic origin populations.

  18. Phytomonas (Euglenozoa: Trypanosomatidae): Phylogenetic analyses support infrageneric lineages and a new species transmitted to Solanaceae fruits by a pentatomid hemipteran.

    PubMed

    Zanetti, Andernice; Ferreira, Robson C; Serrano, Myrna G; Takata, Carmen S A; Campaner, Marta; Attias, Marcia; de Souza, Wanderley; Teixeira, Marta M G; Camargo, Erney P

    2016-10-01

    The genus Phytomonas includes trypanosomatids transmitted to the fruits, latex, and phloem of vascular plants by hemipterans. We inferred the phylogenetic relationships of plant and insect isolates assigned to the previously defined genetic groups A-F and H of Phytomonas, particularly those from groups A, C and E comprising flagellates of Solanaceae fruits. Phylogenetic analyses using glycosomal Glyceraldehyde Phosphate Dehydrogenase (gGAPDH) and Small Subunit rRNA (SSU rRNA) genes strongly supported the monophyly of the genus Phytomonas and its division into seven main infrageneric phylogenetic lineages (Phy clades). Isolates from fruit or latex do not constitute monophyletic assemblages but disperse through more than one lineages. In this study, fruit flagellates were distributed in three clades: PhyA, formed by isolates from Solanaceae and phytophagous hemipterans; PhyC comprising flagellates from four plant families; and PhyE, which contains 15 fruit isolates from seven species of Solanaceae. The flagellates of PhyE are described as Phytomonas dolleti n. sp. according to their positioning in phylogenetic trees, complemented by data about their life cycle, and developmental and morphological characteristics in cultures, fruits of Solanum spp., and salivary glands of the vector, the phytophagous hemipteran Arvelius albopunctatus (Pentatomidae).

  19. The complete mitochondrial genome of Flustra foliacea (Ectoprocta, Cheilostomata) - compositional bias affects phylogenetic analyses of lophotrochozoan relationships

    PubMed Central

    2011-01-01

    Background The phylogenetic relationships of the lophophorate lineages, ectoprocts, brachiopods and phoronids, within Lophotrochozoa are still controversial. We sequenced an additional mitochondrial genome of the most species-rich lophophorate lineage, the ectoprocts. Although it is known that there are large differences in the nucleotide composition of mitochondrial sequences of different lineages as well as in the amino acid composition of the encoded proteins, this bias is often not considered in phylogenetic analyses. We applied several approaches for reducing compositional bias and saturation in the phylogenetic analyses of the mitochondrial sequences. Results The complete mitochondrial genome (16,089 bp) of Flustra foliacea (Ectoprocta, Gymnolaemata, Cheilostomata) was sequenced. All protein-encoding, rRNA and tRNA genes are transcribed from the same strand. Flustra shares long intergenic sequences with the cheilostomate ectoproct Bugula, which might be a synapomorphy of these taxa. Further synapomorphies might be the loss of the DHU arm of the tRNA L(UUR), the loss of the DHU arm of the tRNA S(UCN) and the unique anticodon sequence GAG of the tRNA L(CUN). The gene order of the mitochondrial genome of Flustra differs strongly from that of the other known ectoprocts. Phylogenetic analyses of mitochondrial nucleotide and amino acid data sets show that the lophophorate lineages are more closely related to trochozoan phyla than to deuterostomes or ecdysozoans confirming the Lophotrochozoa hypothesis. Furthermore, they support the monophyly of Cheilostomata and Ectoprocta. However, the relationships of the lophophorate lineages within Lophotrochozoa differ strongly depending on the data set and the used method. Different approaches for reducing heterogeneity in nucleotide and amino acid data sets and saturation did not result in a more robust resolution of lophotrochozoan relationships. Conclusion The contradictory and usually weakly supported phylogenetic

  20. Phylogenetic analyses provide insights into the historical biogeography and evolution of Brachyrhaphis fishes.

    PubMed

    Ingley, Spencer J; Reina, Ruth G; Bermingham, Eldredge; Johnson, Jerald B

    2015-08-01

    The livebearing fish genus Brachyrhaphis (Poeciliidae) has become an increasingly important model in evolution and ecology research, yet the phylogeny of this group is not well understood, nor has it been examined thoroughly using modern phylogenetic methods. Here, we present the first comprehensive phylogenetic analysis of Brachyrhaphis by using four molecular markers (3mtDNA, 1nucDNA) to infer relationships among species in this genus. We tested the validity of this genus as a monophyletic group using extensive outgroup sampling based on recent phylogenetic hypotheses of Poeciliidae. We also tested the validity of recently described species of Brachyrhaphis that are part of the B. episcopi complex in Panama. Finally, we examined the impact of historical events on diversification of Brachyrhaphis, and made predictions regarding the role of different ecological environments on evolutionary diversification where known historical events apparently fail to explain speciation. Based on our results, we reject the monophyly of Brachyrhaphis, and question the validity of two recently described species (B. hessfeldi and B. roswithae). Historical biogeography of Brachyrhaphis generally agrees with patterns found in other freshwater taxa in Lower Central America, which show that geological barriers frequently predict speciation. Specifically, we find evidence in support of an 'island' model of Lower Central American formation, which posits that the nascent isthmus was partitioned by several marine connections before linking North and South America. In some cases where historic events (e.g., vicariance) fail to explain allopatric species breaks in Brachyrhaphis, ecological processes (e.g., divergent predation environments) offer additional insight into our understanding of phylogenetic diversification in this group.

  1. The Complete Chloroplast Genome Sequences of Five Epimedium Species: Lights into Phylogenetic and Taxonomic Analyses

    PubMed Central

    Zhang, Yanjun; Du, Liuwen; Liu, Ao; Chen, Jianjun; Wu, Li; Hu, Weiming; Zhang, Wei; Kim, Kyunghee; Lee, Sang-Choon; Yang, Tae-Jin; Wang, Ying

    2016-01-01

    Epimedium L. is a phylogenetically and economically important genus in the family Berberidaceae. We here sequenced the complete chloroplast (cp) genomes of four Epimedium species using Illumina sequencing technology via a combination of de novo and reference-guided assembly, which was also the first comprehensive cp genome analysis on Epimedium combining the cp genome sequence of E. koreanum previously reported. The five Epimedium cp genomes exhibited typical quadripartite and circular structure that was rather conserved in genomic structure and the synteny of gene order. However, these cp genomes presented obvious variations at the boundaries of the four regions because of the expansion and contraction of the inverted repeat (IR) region and the single-copy (SC) boundary regions. The trnQ-UUG duplication occurred in the five Epimedium cp genomes, which was not found in the other basal eudicotyledons. The rapidly evolving cp genome regions were detected among the five cp genomes, as well as the difference of simple sequence repeats (SSR) and repeat sequence were identified. Phylogenetic relationships among the five Epimedium species based on their cp genomes showed accordance with the updated system of the genus on the whole, but reminded that the evolutionary relationships and the divisions of the genus need further investigation applying more evidences. The availability of these cp genomes provided valuable genetic information for accurately identifying species, taxonomy and phylogenetic resolution and evolution of Epimedium, and assist in exploration and utilization of Epimedium plants. PMID:27014326

  2. Are pinnipeds functionally different from fissiped carnivores? The importance of phylogenetic comparative analyses.

    PubMed

    Bininda-Emonds, O R; Gittleman, J L

    2000-06-01

    It is widely assumed that adaptations to an aquatic lifestyle are so profound as to produce only obvious differences between pinnipeds and the remaining, largely terrestrial carnivore species ("fissipeds"). Thus, comparative studies of the order Carnivora routinely examine these groups independently. This approach is invalid for two reasons. First, fissipeds are a paraphyletic assemblage, which raises the general issue of when it is appropriate to ignore monophyly as a criterion for inclusion in comparative studies. Second, the claim that most functional characters (beyond a few undoubted characteristic features) are different in pinnipeds and fissipeds has never been quantitatively examined, nor with phylogenetic comparative methods. We test for possible differences between these two groups in relation to 20 morphological, life-history, physiological, and ecological variables. Comparisons employed the method of independent contrasts based on a complete and dated species-level phylogeny of the extant Carnivora. Pinnipeds differ from fissipeds only through evolutionary grade shifts in a limited number of life-history traits: litter weight (vs. gestation length), birth weight, and age of eyes opening (both vs. size). Otherwise, pinnipeds display the same rate of evolution as phylogenetically equivalent fissiped taxa for all variables. Overall functional differences between pinnipeds and fissipeds appear to have been overstated and may be no greater than those among major fissiped groups. Recognition of this fact should lead to a more complete understanding of carnivore biology as a whole through more unified comparative tests. Comparative studies that do not include monophyletic groups for phylogenetically based comparative tests should be reconsidered.

  3. Genetic Analyses of the Internal Transcribed Spacer Sequences Suggest Introgression and Duplication in the Medicinal Mushroom Agaricus subrufescens.

    PubMed

    Chen, Jie; Moinard, Magalie; Xu, Jianping; Wang, Shouxian; Foulongne-Oriol, Marie; Zhao, Ruilin; Hyde, Kevin D; Callac, Philippe

    2016-01-01

    The internal transcribed spacer (ITS) region of the nuclear ribosomal RNA gene cluster is widely used in fungal taxonomy and phylogeographic studies. The medicinal and edible mushroom Agaricus subrufescens has a worldwide distribution with a high level of polymorphism in the ITS region. A previous analysis suggested notable ITS sequence heterogeneity within the wild French isolate CA487. The objective of this study was to investigate the pattern and potential mechanism of ITS sequence heterogeneity within this strain. Using PCR, cloning, and sequencing, we identified three types of ITS sequences, A, B, and C with a balanced distribution, which differed from each other at 13 polymorphic positions. The phylogenetic comparisons with samples from different continents revealed that the type C sequence was similar to those found in Oceanian and Asian specimens of A. subrufescens while types A and B sequences were close to those found in the Americas or in Europe. We further investigated the inheritance of these three ITS sequence types by analyzing their distribution among single-spore isolates from CA487. In this analysis, three co-dominant markers were used firstly to distinguish the homokaryotic offspring from the heterokaryotic offspring. The homokaryotic offspring were then analyzed for their ITS types. Our genetic analyses revealed that types A and B were two alleles segregating at one locus ITSI, while type C was not allelic with types A and B but was located at another unlinked locus ITSII. Furthermore, type C was present in only one of the two constitutive haploid nuclei (n) of the heterokaryotic (n+n) parent CA487. These data suggest that there was a relatively recent introduction of the type C sequence and a duplication of the ITS locus in this strain. Whether other genes were also transferred and duplicated and their impacts on genome structure and stability remain to be investigated.

  4. Genetic Analyses of the Internal Transcribed Spacer Sequences Suggest Introgression and Duplication in the Medicinal Mushroom Agaricus subrufescens

    PubMed Central

    Chen, Jie; Moinard, Magalie; Xu, Jianping; Wang, Shouxian; Foulongne-Oriol, Marie; Zhao, Ruilin; Hyde, Kevin D.; Callac, Philippe

    2016-01-01

    The internal transcribed spacer (ITS) region of the nuclear ribosomal RNA gene cluster is widely used in fungal taxonomy and phylogeographic studies. The medicinal and edible mushroom Agaricus subrufescens has a worldwide distribution with a high level of polymorphism in the ITS region. A previous analysis suggested notable ITS sequence heterogeneity within the wild French isolate CA487. The objective of this study was to investigate the pattern and potential mechanism of ITS sequence heterogeneity within this strain. Using PCR, cloning, and sequencing, we identified three types of ITS sequences, A, B, and C with a balanced distribution, which differed from each other at 13 polymorphic positions. The phylogenetic comparisons with samples from different continents revealed that the type C sequence was similar to those found in Oceanian and Asian specimens of A. subrufescens while types A and B sequences were close to those found in the Americas or in Europe. We further investigated the inheritance of these three ITS sequence types by analyzing their distribution among single-spore isolates from CA487. In this analysis, three co-dominant markers were used firstly to distinguish the homokaryotic offspring from the heterokaryotic offspring. The homokaryotic offspring were then analyzed for their ITS types. Our genetic analyses revealed that types A and B were two alleles segregating at one locus ITSI, while type C was not allelic with types A and B but was located at another unlinked locus ITSII. Furthermore, type C was present in only one of the two constitutive haploid nuclei (n) of the heterokaryotic (n+n) parent CA487. These data suggest that there was a relatively recent introduction of the type C sequence and a duplication of the ITS locus in this strain. Whether other genes were also transferred and duplicated and their impacts on genome structure and stability remain to be investigated. PMID:27228131

  5. Complete generic-level phylogenetic analyses of palms (Arecaceae) with comparisons of supertree and supermatrix approaches.

    PubMed

    Baker, William J; Savolainen, Vincent; Asmussen-Lange, Conny B; Chase, Mark W; Dransfield, John; Forest, Félix; Harley, Madeline M; Uhl, Natalie W; Wilkinson, Mark

    2009-04-01

    Supertree and supermatrix methods have great potential in the quest to build the tree of life and yet they remain controversial, with most workers opting for one approach or the other, but rarely both. Here, we employed both methods to construct phylogenetic trees of all genera of palms (Arecaceae/Palmae), an iconic angiosperm family of great economic importance. We assembled a supermatrix consisting of 16 partitions, comprising DNA sequence data, plastid restriction fragment length polymorphism data, and morphological data for all genera, from which a highly resolved and well-supported phylogenetic tree was built despite abundant missing data. To construct supertrees, we used variants of matrix representation with parsimony (MRP) analysis based on input trees generated directly from subsamples of the supermatrix. All supertrees were highly resolved. Standard MRP with bootstrap-weighted matrix elements performed most effectively in this case, generating trees with the greatest congruence with the supermatrix tree and fewest clades unsupported by any input tree. Nonindependence due to input trees based on combinations of data partitions was an acceptable trade-off for improvements in supertree performance. Irreversible MRP and the use of strictly independent input trees only provided no obvious benefits. Contrary to previous claims, we found that unsupported clades are not infrequent under some MRP implementations, with up to 13% of clades lacking support from any input tree in some irreversible MRP supertrees. To build a formal synthesis, we assessed the cross-corroboration between supermatrix trees and the variant supertrees using semistrict consensus, enumerating shared clades and compatible clades. The semistrict consensus of the supermatrix tree and the most congruent supertree contained 160 clades (of a maximum of 204), 137 of which were present in both trees. The relationships recovered by these trees strongly support the current phylogenetic classification

  6. Analyses of HTLV-1 sequences suggest interaction between ORF-I mutations and HAM/TSP outcome.

    PubMed

    Barreto, Fernanda Khouri; Khouri, Ricardo; Rego, Filipe Ferreira de Almeida; Santos, Luciane Amorim; Castro-Amarante, Maria Fernanda de; Bialuk, Izabela; Pise-Masison, Cynthia A; Galvão-Castro, Bernardo; Gessain, Antoine; Jacobson, Steven; Franchini, Genoveffa; Alcantara, Luiz Carlos

    2016-11-01

    The region known as pX in the 3' end of the human T-cell lymphotropic virus type 1 (HTLV-1) genome contains four overlapping open reading frames (ORF) that encode regulatory proteins. HTLV-1 ORF-I produces the protein p12 and its cleavage product p8. The functions of these proteins have been linked to immune evasion and viral infectivity and persistence. It is known that the HTLV-1 infection does not necessarily imply the development of pathological processes and here we evaluated whether natural mutations in HTLV-1 ORF-I can influence the proviral load and clinical manifestation of HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). For that, we performed molecular characterization, datamining and phylogenetic analysis with HTLV-1 ORF-I sequences from 156 patients with negative or positive diagnosis for HAM/TSP. Our analyses demonstrated that some mutations may be associated with the outcome of HAM/TSP (C39R, L40F, P45L, S69G and R88K) or with proviral load (P34L and F61L). We further examined the presence of mutations in motifs of HBZ and observed that P45L mutation is located within the HBZ nuclear localization signal and was found more frequently between patients with HAM/TSP and high proviral load. These results indicate that some natural mutations are located in functional domains of ORF-I and suggests a potential association between these mutations and the proviral loads and development of HAM/TSP. Therefore it is necessary to conduct functional studies aimed at evaluating the impact of these mutations on the virus persistence and immune evasion.

  7. Complete mitochondrial genome of the Teinopalpus aureus guangxiensis (Lepidoptera: Papilionidae) and related phylogenetic analyses.

    PubMed

    Qin, Feng; Jiang, Guo-Fang; Zhou, Shan-Yi

    2012-04-01

    In this study, we sequenced the complete mitochondrial genome of Teinopalpus aureus guangxiensis (Lepidoptera: Papilionidae), which is considered as an endemic species in China. It is listed as a vulnerable species by International Union for Conservation of Nature and Natural Resources Red List and also a first class endangered species in China. The complete mtDNA from T. aureus guangxiensis was 15,235 base pairs in length and contained 13 protein-coding genes (PCGs), 2 rRNA genes, 22 tRNA genes, and a control region. The T. aureus guangxiensis genes were in the same order and orientation as the completely sequenced mitogenomes of other lepidopteran species. All PCGs of T. aureus guangxiensis mitogenome start with a typical ATN codon and terminate in the common stop codon TAA, except that ND1 gene uses TTA, ND3 gene uses ATT, and ND4 and ND4L gene use TAA. The phylogenetic relationships were reconstructed with the concatenated sequences of the 13 PCGs of the mitochondrial genome, and phylogenetic results confirmed that Nymphalidae, Lycaenidae, Papilionidae, Pieridae are monophyletic clades.

  8. Stable isotope and signature fatty acid analyses suggest reef manta rays feed on demersal zooplankton.

    PubMed

    Couturier, Lydie I E; Rohner, Christoph A; Richardson, Anthony J; Marshall, Andrea D; Jaine, Fabrice R A; Bennett, Michael B; Townsend, Kathy A; Weeks, Scarla J; Nichols, Peter D

    2013-01-01

    Assessing the trophic role and interaction of an animal is key to understanding its general ecology and dynamics. Conventional techniques used to elucidate diet, such as stomach content analysis, are not suitable for large threatened marine species. Non-lethal sampling combined with biochemical methods provides a practical alternative for investigating the feeding ecology of these species. Stable isotope and signature fatty acid analyses of muscle tissue were used for the first time to examine assimilated diet of the reef manta ray Manta alfredi, and were compared with different zooplankton functional groups (i.e. near-surface zooplankton collected during manta ray feeding events and non-feeding periods, epipelagic zooplankton, demersal zooplankton and several different zooplankton taxa). Stable isotope δ(15)N values confirmed that the reef manta ray is a secondary consumer. This species had relatively high levels of docosahexaenoic acid (DHA) indicating a flagellate-based food source in the diet, which likely reflects feeding on DHA-rich near-surface and epipelagic zooplankton. However, high levels of ω6 polyunsaturated fatty acids and slightly enriched δ(13)C values in reef manta ray tissue suggest that they do not feed solely on pelagic zooplankton, but rather obtain part of their diet from another origin. The closest match was with demersal zooplankton, suggesting it is an important component of the reef manta ray diet. The ability to feed on demersal zooplankton is likely linked to the horizontal and vertical movement patterns of this giant planktivore. These new insights into the habitat use and feeding ecology of the reef manta ray will assist in the effective evaluation of its conservation needs.

  9. Stable Isotope and Signature Fatty Acid Analyses Suggest Reef Manta Rays Feed on Demersal Zooplankton

    PubMed Central

    Couturier, Lydie I. E.; Rohner, Christoph A.; Richardson, Anthony J.; Marshall, Andrea D.; Jaine, Fabrice R. A.; Bennett, Michael B.; Townsend, Kathy A.; Weeks, Scarla J.; Nichols, Peter D.

    2013-01-01

    Assessing the trophic role and interaction of an animal is key to understanding its general ecology and dynamics. Conventional techniques used to elucidate diet, such as stomach content analysis, are not suitable for large threatened marine species. Non-lethal sampling combined with biochemical methods provides a practical alternative for investigating the feeding ecology of these species. Stable isotope and signature fatty acid analyses of muscle tissue were used for the first time to examine assimilated diet of the reef manta ray Manta alfredi, and were compared with different zooplankton functional groups (i.e. near-surface zooplankton collected during manta ray feeding events and non-feeding periods, epipelagic zooplankton, demersal zooplankton and several different zooplankton taxa). Stable isotope δ15N values confirmed that the reef manta ray is a secondary consumer. This species had relatively high levels of docosahexaenoic acid (DHA) indicating a flagellate-based food source in the diet, which likely reflects feeding on DHA-rich near-surface and epipelagic zooplankton. However, high levels of ω6 polyunsaturated fatty acids and slightly enriched δ13C values in reef manta ray tissue suggest that they do not feed solely on pelagic zooplankton, but rather obtain part of their diet from another origin. The closest match was with demersal zooplankton, suggesting it is an important component of the reef manta ray diet. The ability to feed on demersal zooplankton is likely linked to the horizontal and vertical movement patterns of this giant planktivore. These new insights into the habitat use and feeding ecology of the reef manta ray will assist in the effective evaluation of its conservation needs. PMID:24167562

  10. Multilocus phylogenetic analyses reveal unexpected abundant diversity and significant disjunct distribution pattern of the Hedgehog Mushrooms (Hydnum L.).

    PubMed

    Feng, Bang; Wang, Xiang-Hua; Ratkowsky, David; Gates, Genevieve; Lee, Su See; Grebenc, Tine; Yang, Zhu L

    2016-05-06

    Hydnum is a fungal genus proposed by Linnaeus in the early time of modern taxonomy. It contains several ectomycorrhizal species which are commonly consumed worldwide. However, Hydnum is one of the most understudied fungal genera, especially from a molecular phylogenetic view. In this study, we extensively gathered specimens of Hydnum from Asia, Europe, America and Australasia, and analyzed them by using sequences of four gene fragments (ITS, nrLSU, tef1α and rpb1). Our phylogenetic analyses recognized at least 31 phylogenetic species within Hydnum, 15 of which were reported for the first time. Most Australasian species were recognized as strongly divergent old relics, but recent migration between Australasia and the Northern Hemisphere was also detected. Within the Northern Hemisphere, frequent historical biota exchanges between the Old World and the New World via both the North Atlantic Land Bridge and the Bering Land Bridge could be elucidated. Our study also revealed that most Hydnum species found in subalpine areas of the Hengduan Mountains in southwestern China occur in northeastern/northern China and Europe, indicating that the composition of the mycobiota in the Hengduan Mountains reigion is more complicated than what we have known before.

  11. Multilocus phylogenetic analyses reveal unexpected abundant diversity and significant disjunct distribution pattern of the Hedgehog Mushrooms (Hydnum L.)

    PubMed Central

    Feng, Bang; Wang, Xiang-Hua; Ratkowsky, David; Gates, Genevieve; Lee, Su See; Grebenc, Tine; Yang, Zhu L.

    2016-01-01

    Hydnum is a fungal genus proposed by Linnaeus in the early time of modern taxonomy. It contains several ectomycorrhizal species which are commonly consumed worldwide. However, Hydnum is one of the most understudied fungal genera, especially from a molecular phylogenetic view. In this study, we extensively gathered specimens of Hydnum from Asia, Europe, America and Australasia, and analyzed them by using sequences of four gene fragments (ITS, nrLSU, tef1α and rpb1). Our phylogenetic analyses recognized at least 31 phylogenetic species within Hydnum, 15 of which were reported for the first time. Most Australasian species were recognized as strongly divergent old relics, but recent migration between Australasia and the Northern Hemisphere was also detected. Within the Northern Hemisphere, frequent historical biota exchanges between the Old World and the New World via both the North Atlantic Land Bridge and the Bering Land Bridge could be elucidated. Our study also revealed that most Hydnum species found in subalpine areas of the Hengduan Mountains in southwestern China occur in northeastern/northern China and Europe, indicating that the composition of the mycobiota in the Hengduan Mountains reigion is more complicated than what we have known before. PMID:27151256

  12. Phylogenetic relationships of the Cobitoidea (Teleostei: Cypriniformes) inferred from mitochondrial and nuclear genes with analyses of gene evolution.

    PubMed

    Liu, Si-Qing; Mayden, Richard L; Zhang, Jia-Bo; Yu, Dan; Tang, Qiong-Ying; Deng, Xin; Liu, Huan-Zhang

    2012-10-15

    The superfamily Cobitoidea of the order Cypriniformes is a diverse group of fishes, inhabiting freshwater ecosystems across Eurasia and North Africa. The phylogenetic relationships of this well-corroborated natural group and diverse clade are critical to not only informing scientific communities of the phylogeny of the order Cypriniformes, the world's largest freshwater fish order, but are key to every area of comparative biology examining the evolution of traits, functional structures, and breeding behaviors to their biogeographic histories, speciation, anagenetic divergence, and divergence time estimates. In the present study, two mitochondrial gene sequences (COI, ND4+5) and four single-copy nuclear gene segments (RH1, RAG1, EGR2B, IRBP) were used to infer the phylogenetic relationships of the Cobitoidea as reconstructed from maximum likelihood (ML) and partitioned Bayesian Analysis (BA). Analyses of the combined mitochondrial/nuclear gene datasets revealed five strongly supported monophyletic Cobitoidea families and their sister-group relationships: Botiidae+(Vaillantellidae+(Cobitidae+(Nemacheilidae+Balitoridae))). These recovered relationships are in agreement with previous systematic studies on the order Cypriniformes and/or those focusing on the superfamily Cobitoidea. Using these relationships, our analyses revealed pattern lineage- or ecological-group-specific evolution of these genes for the Cobitoidea. These observations and results corroborate the hypothesis that these group-specific-ancestral ecological characters have contributed in the diversification and/or adaptations within these groups. Positive selections were detected in RH1 of nemacheilids and in RAG1 of nemacheilids and genus Vaillantella, which indicated that evolution of RH1 (related to eye's optic sense) and RAG1 (related to immunity) genes appeared to be important for the diversification of these groups. The balitorid lineage (those species inhabiting fast-flowing riverine habitats) had

  13. Complete mitochondrial genome and phylogenetic relationship analyses of Amphioctopus aegina (Gray, 1849) (Cephalopoda: Octopodidae).

    PubMed

    Zhang, Xiaoying; Zheng, Xiaodong; Ma, Yuanyuan; Li, Qi

    2017-01-01

    In this paper, the circular mitochondrial genome of Amphioctopus aegina (Cephalopoda: Octopodidae) was sequenced. The whole mitogenome of A. aegina was 15 545 base pairs (bp) in length with a base composition of 42.53% A, 33.26% T, 16.70% C, and 7.51% G. The complete mitogenome contained 13 protein-coding genes (PCGs), 2 ribosomal RNA genes, 22 transfer RNA genes, and a major non-coding region. The gene arrangements of A. aegina showed remarkable similarity to other Octopodidae species reported. The phylogenetic relationships were reconstructed with the concatenated sequences of the 13 PCGs of the mitochondrial genome, and illustrated that A. aegina had the closest genetic relatives to A. fangsiao.

  14. Mitochondrial cytochrome b of the Lyakhov mammoth (Proboscidea, Mammalia): new data and phylogenetic analyses of Elephantidae.

    PubMed

    Debruyne, Régis; Barriel, Véronique; Tassy, Pascal

    2003-03-01

    The phylogenetic relationships between recent Elephantidae (Proboscidea, Mammalia), that is to say extant elephants (Asian and African) and extinct woolly mammoth, have remained unclear to date. The prevailing morphological scheme (mammoth grouped with Asian elephant) is either supported or questioned by the molecular results. Recently, the monophyly of woolly mammoths on mitochondrial grounds has been demonstrated (Thomas, et al., 2000), but it conflicts with previous studies (Barriel et al., 1999; Derenko et al., 1997). Here, we report the partial sequencing of two mitochondrial genes: 128 bp of 12S rDNA and 561 bp of cytochrome b for the Lyakhov mammoth, a 49,000-year-old Siberian individual. We use the most comprehensive sample of mammoth (11 sequences) to determine whether the sequences achieved by former studies were congruent or not. The monophyly of a major subset of mammoths sequences (including ours) is recovered. Such a result is assumed to be a good criterion for ascertaining the origin of ancient DNA. Our sequence is incongruent with that of Yang et al. (1996), though obtained for the same individual. As far as the latter sequence is concerned, a contamination by non-identified exogenous DNA is suspected. The robustness and reliability of the sister group relation between Mammuthus primigenius and Loxodonta africana are examined: down-weighting saturated substitutions has no impact on the topology; analyzing data partitions proves that the support of this clade can be assigned to the most conservative phylogenetic signal; insufficient taxonomic and/or characters sampling contributed to former discordant conclusions. We therefore assume the monophyly of "real mammoth sequences" and the (Mammuthus, Loxodonta) clade.

  15. Novel Evolutionary Lineages Revealed in the Chaetothyriales (Fungi) Based on Multigene Phylogenetic Analyses and Comparison of ITS Secondary Structure

    PubMed Central

    Réblová, Martina; Untereiner, Wendy A.; Réblová, Kamila

    2013-01-01

    Cyphellophora and Phialophora (Chaetothyriales, Pezizomycota) comprise species known from skin infections of humans and animals and from a variety of environmental sources. These fungi were studied based on the comparison of cultural and morphological features and phylogenetic analyses of five nuclear loci, i.e., internal transcribed spacer rDNA operon (ITS), large and small subunit nuclear ribosomal DNA (nuc28S rDNA, nuc18S rDNA), β-tubulin, DNA replication licensing factor (mcm7) and second largest subunit of RNA polymerase II (rpb2). Phylogenetic results were supported by comparative analysis of ITS1 and ITS2 secondary structure of representatives of the Chaetothyriales and the identification of substitutions among the taxa analyzed. Base pairs with non-conserved, co-evolving nucleotides that maintain base pairing in the RNA transcript and unique evolutionary motifs in the ITS2 that characterize whole clades or individual taxa were mapped on predicted secondary structure models. Morphological characteristics, structural data and phylogenetic analyses of three datasets, i.e., ITS, ITS-β-tubulin and 28S-18S-rpb2-mcm7, define a robust clade containing eight species of Cyphellophora (including the type) and six species of Phialophora. These taxa are now accommodated in the Cyphellophoraceae, a novel evolutionary lineage within the Chaetothyriales. Cyphellophora is emended and expanded to encompass species with both septate and nonseptate conidia formed on discrete, intercalary, terminal or lateral phialides. Six new combinations in Cyphellophora are proposed and a dichotomous key to species accepted in the genus is provided. Cyphellophora eugeniae and C. hylomeconis, which grouped in the Chaetothyriaceae, represent another novel lineage and are introduced as the type species of separate genera. PMID:23723988

  16. Reproductive mode evolution in lizards revisited: updated analyses examining geographic, climatic and phylogenetic effects support the cold-climate hypothesis.

    PubMed

    Watson, C M; Makowsky, R; Bagley, J C

    2014-12-01

    Viviparity, the bearing of live young, has evolved well over 100 times among squamate reptiles. This reproductive strategy is hypothesized to allow maternal control of the foetus' thermal environment and thereby to increase the fitness of the parents and offspring. Two hypotheses have been posited to explain this phenomenon: (i) the cold-climate hypothesis (CCH), which advocates low temperatures as the primary selective force; and (ii) the maternal manipulation hypothesis (MMH), which advocates temperature variability as the primary selective force. Here, we investigate whether climatic and geographic variables associated with the CCH vs. the MMH best explain the current geographical distributions of viviparity in lizards while incorporating recent advances in comparative methods, squamate phylogenetics and geospatial analysis. To do this, we compared nonphylogenetic and phylogenetic models predicting viviparity based on point-of-capture data from 20,994 museum specimens representing 215 lizard species in conjunction with spatially explicit bioclimatic and geographic (elevation and latitude) data layers. The database we analysed emphasized Nearctic lizards from three species-rich genera (Phrynosoma, Plestiodon and Sceloporus); however, we additionally analysed a less substantial, but worldwide sample of species to verify the universality of our Nearctic results. We found that maximum temperature of the warmest month (and, less commonly, elevation and maximum temperature of the driest quarter) was frequently the best predictor of viviparity and showed an association consistent with the CCH. Our results strongly favour the CCH over the MMH in explaining lizard reproductive mode evolution.

  17. Examining Relationships Among Several Oyster Pathogens in the Genus Bonamia Using Molecular Data, in Phylogenetic Analyses

    NASA Astrophysics Data System (ADS)

    White, D.; Burreson, E.

    2006-12-01

    Bonamiasis is a disease that affects oyster stocks around the world and is caused by intracellular protozoan parasites. Bonamia species can rapidly spread through oyster stocks and cause clinical disease in the host. The type species in the genus, Bonamia ostreae, was described from the European flat oyster Ostrea edulis. Since that time, several bonamia-like species have been observed in the following oyster hosts: Crassostrea ariakensis deployed in North Carolina, USA, Ostrea pulchana from Argentina, Ostrea chilensis from Chile, and in Ostrea angasi from Australia. There is, however, much debate over the species identity of these undescribed Bonamia parasites. An hypothesis that I will test is whether the species of Bonamia that occurs in the aforementioned oysters are representative of one species of Bonamia, Bonamia exitiosa, or are representative of different, currently undescribed, species of Bonamia. To test this hypothesis, molecular techniques to include the polymerase chain reaction (PCR) and simultaneous bi-directional sequencing (SBS) reactions were utilized to target the internal transcribed spacer (ITS) region of the ribosomal RNA gene complex for each of the undescribed Bonamia species and for Bonamia exitiosa. Phylogenetic analysis of the sequenced data in addition to pertinent morphological data, geographic distribution information, and possible host dispersals are included in this study to provide additional information for testing hypotheses developed based on molecular data.

  18. Phylogenetic analyses and morphological characteristics support the description of a second species of Tridimeris (Annonaceae).

    PubMed

    Ortiz-Rodriguez, Andres Ernesto; Escobar-Castellanos, Marcos Alberto; Pérez-Farrera, Miguel Angel

    2016-01-01

    Based on phylogenetic and morphological evidence, Tridimeris chiapensis Escobar-Castellanos & Ortiz-Rodr., sp. n. (Annonaceae), a new species from the karst forest of southern Mexico, is described and illustrated. The new species differs from Tridimeris hahniana, the only described species in the genus, in that the latter has flowers with sepals densely tomentose outside, one (rarely two) carpel(s) per flower and fruits densely covered with golden-brown hairs, while Tridimeris chiapensis has flowers with glabrous sepals outside, two to five carpels per flower and glabrous fruits. Furthermore, a shallow triangular white patch at the base of the inner petals is found in Tridimeris chiapensis, a morphological character shared with the sister genus Sapranthus but absent in Tridimeris hahniana. Geographically, both species occur allopatrically. With just one known locality and seven individuals of Tridimeris chiapensis recorded in one sampling hectare, and based on application of the criteria established by the IUCN, we conclude tentatively that the species is critically endangered.

  19. Highly conserved low-copy nuclear genes as effective markers for phylogenetic analyses in angiosperms.

    PubMed

    Zhang, Ning; Zeng, Liping; Shan, Hongyan; Ma, Hong

    2012-09-01

    Organismal phylogeny provides a crucial evolutionary framework for many studies and the angiosperm phylogeny has been greatly improved recently, largely using organellar and rDNA genes. However, low-copy protein-coding nuclear genes have not been widely used on a large scale in spite of the advantages of their biparental inheritance and vast number of choices. Here, we identified 1083 highly conserved low-copy nuclear genes by genome comparison. Furthermore, we demonstrated the use of five nuclear genes in 91 angiosperms representing 46 orders (73% of orders) and three gymnosperms as outgroups for a highly resolved phylogeny. These nuclear genes are easy to clone and align, and more phylogenetically informative than widely used organellar genes. The angiosperm phylogeny reconstructed using these genes was largely congruent with previous ones mainly inferred from organellar genes. Intriguingly, several new placements were uncovered for some groups, including those among the rosids, the asterids, and between the eudicots and several basal angiosperm groups. These conserved universal nuclear genes have several inherent qualities enabling them to be good markers for reconstructing angiosperm phylogeny, even eukaryotic relationships, further providing new insights into the evolutionary history of angiosperms.

  20. Phylogenetic analyses and morphological characteristics support the description of a second species of Tridimeris (Annonaceae)

    PubMed Central

    Ortiz-Rodriguez, Andres Ernesto; Escobar-Castellanos, Marcos Alberto; Pérez-Farrera, Miguel Angel

    2016-01-01

    Abstract Based on phylogenetic and morphological evidence, Tridimeris chiapensis Escobar-Castellanos & Ortiz-Rodr., sp. n. (Annonaceae), a new species from the karst forest of southern Mexico, is described and illustrated. The new species differs from Tridimeris hahniana, the only described species in the genus, in that the latter has flowers with sepals densely tomentose outside, one (rarely two) carpel(s) per flower and fruits densely covered with golden-brown hairs, while Tridimeris chiapensis has flowers with glabrous sepals outside, two to five carpels per flower and glabrous fruits. Furthermore, a shallow triangular white patch at the base of the inner petals is found in Tridimeris chiapensis, a morphological character shared with the sister genus Sapranthus but absent in Tridimeris hahniana. Geographically, both species occur allopatrically. With just one known locality and seven individuals of Tridimeris chiapensis recorded in one sampling hectare, and based on application of the criteria established by the IUCN, we conclude tentatively that the species is critically endangered. PMID:28127237

  1. Phylogenetic and Genomic Analyses Resolve the Origin of Important Plant Genes Derived from Transposable Elements

    PubMed Central

    Joly-Lopez, Zoé; Hoen, Douglas R.; Blanchette, Mathieu; Bureau, Thomas E.

    2016-01-01

    Once perceived as merely selfish, transposable elements (TEs) are now recognized as potent agents of adaptation. One way TEs contribute to evolution is through TE exaptation, a process whereby TEs, which persist by replicating in the genome, transform into novel host genes, which persist by conferring phenotypic benefits. Known exapted TEs (ETEs) contribute diverse and vital functions, and may facilitate punctuated equilibrium, yet little is known about this process. To better understand TE exaptation, we designed an approach to resolve the phylogenetic context and timing of exaptation events and subsequent patterns of ETE diversification. Starting with known ETEs, we search in diverse genomes for basal ETEs and closely related TEs, carefully curate the numerous candidate sequences, and infer detailed phylogenies. To distinguish TEs from ETEs, we also weigh several key genomic characteristics including repetitiveness, terminal repeats, pseudogenic features, and conserved domains. Applying this approach to the well-characterized plant ETEs MUG and FHY3, we show that each group is paraphyletic and we argue that this pattern demonstrates that each originated in not one but multiple exaptation events. These exaptations and subsequent ETE diversification occurred throughout angiosperm evolution including the crown group expansion, the angiosperm radiation, and the primitive evolution of angiosperms. In addition, we detect evidence of several putative novel ETE families. Our findings support the hypothesis that TE exaptation generates novel genes more frequently than is currently thought, often coinciding with key periods of evolution. PMID:27189548

  2. Towards a phylogenetic generic classification of Thelypteridaceae: Additional sampling suggests alterations of neotropical taxa and further study of paleotropical genera.

    PubMed

    Almeida, Thaís Elias; Hennequin, Sabine; Schneider, Harald; Smith, Alan R; Batista, João Aguiar Nogueira; Ramalho, Aline Joseph; Proite, Karina; Salino, Alexandre

    2016-01-01

    Thelypteridaceae is one of the largest fern families, having about 950 species and a cosmopolitan distribution but with most species occurring in tropical and subtropical regions. Its generic classification remains controversial, with different authors recognizing from one up to 32 genera. Phylogenetic relationships within the family have not been exhaustively studied, but previous studies have confirmed the monophyly of the lineage. Thus far, sampling has been inadequate for establishing a robust hypothesis of infrafamilial relationships within the family. In order to understand phylogenetic relationships within Thelypteridaceae and thus to improve generic reclassification, we expand the molecular sampling, including new samples of Old World taxa and, especially, many additional neotropical representatives. We also explore the monophyly of exclusively or mostly neotropical genera Amauropelta, Goniopteris, Meniscium, and Steiropteris. Our sampling includes 68 taxa and 134 newly generated sequences from two plastid genomic regions (rps4-trnS and trnL-trnF), plus 73 rps4 and 72 trnL-trnF sequences from GenBank. These data resulted in a concatenated matrix of 1980 molecular characters for 149 taxa. The combined data set was analyzed using maximum parsimony and bayesian inference of phylogeny. Our results are consistent with the general topological structure found in previous studies, including two main lineages within the family: phegopteroid and thelypteroid. The thelypteroid lineage comprises two clades; one of these included the segregates Metathelypteris, Coryphopteris, and Amauropelta (including part of Parathelypteris), whereas the other comprises all segregates of Cyclosorus s.l., such as Goniopteris, Meniscium, and Steiropteris (including Thelypteris polypodioides, previously incertae sedis). The three mainly neotropical segregates were found to be monophyletic but nested in a broadly defined Cyclosorus. The fourth mainly neotropical segregate, Amauropelta

  3. Molecular phylogenetic and chemical analyses of the microbial mats in deep-sea cold seep sediments at the northeastern Japan Sea.

    PubMed

    Arakawa, Shizuka; Sato, Takako; Sato, Rumi; Zhang, Jing; Gamo, Toshitaka; Tsunogai, Urumu; Hirota, Akinari; Yoshida, Yasuhiko; Usami, Ron; Inagaki, Fumio; Kato, Chiaki

    2006-08-01

    Microbial communities inhabiting deep-sea cold seep sediments at the northeastern Japan Sea were characterized by molecular phylogenetic and chemical analyses. White patchy microbial mats were observed along the fault offshore the Hokkaido Island and sediment samples were collected from two stations at the southern foot of the Shiribeshi seamount (M1 site at a depth of 2,961 m on the active fault) and off the Motta Cape site (M2 site at a depth of 3,064 m off the active fault). The phylogenetic and terminal-restriction fragment polymorphism analyses of PCR-amplified 16S rRNA genes revealed that microbial community structures were different between two sampling stations. The members of ANME-2 archaea and diverse bacterial components including sulfate reducers within Deltaproteobacteria were detected from M1 site, indicating the occurrence of biologically mediated anaerobic oxidation of methane, while microbial community at M2 site was predominantly composed of members of Marine Crenarchaeota group I, sulfate reducers of Deltaproteobacteria, and sulfur oxidizers of Epsilonproteobacteria. Chemical analyses of seawater above microbial mats suggested that concentrations of sulfate and methane at M1 site were largely decreased relative to those at M2 site and carbon isotopic composition of methane at M1 site shifted heavier ((13)C-enriched), the results of which are consistent with molecular analyses. These results suggest that the mat microbial communities in deep-sea cold seep sediments at the northeastern Japan Sea are significantly responsible for sulfur and carbon circulations and the geological activity associated with plate movements serves unique microbial habitats in deep-sea environments.

  4. Coalescent species delimitation in milksnakes (genus Lampropeltis) and impacts on phylogenetic comparative analyses.

    PubMed

    Ruane, Sara; Bryson, Robert W; Pyron, R Alexander; Burbrink, Frank T

    2014-03-01

    Both gene-tree discordance and unrecognized diversity are sources of error for accurate estimation of species trees, and can affect downstream diversification analyses by obscuring the correct number of nodes, their density, and the lengths of the branches subtending them. Although the theoretical impact of gene-tree discordance on evolutionary analyses has been examined previously, the effect of unsampled and cryptic diversity has not. Here, we examine how delimitation of previously unrecognized diversity in the milksnake (Lampropeltis triangulum) and use of a species-tree approach affects both estimation of the Lampropeltis phylogeny and comparative analyses with respect to the timing of diversification. Coalescent species delimitation indicates that L. triangulum is not monophyletic and that there are multiple species of milksnake, which increases the known species diversity in the genus Lampropeltis by 40%. Both genealogical and temporal discordance occurs between gene trees and the species tree, with evidence that mitochondrial DNA (mtDNA) introgression is a main factor. This discordance is further manifested in the preferred models of diversification, where the concatenated gene tree strongly supports an early burst of speciation during the Miocene, in contrast to species-tree estimates where diversification follows a birth-death model and speciation occurs mostly in the Pliocene and Pleistocene. This study highlights the crucial interaction among coalescent-based phylogeography and species delimitation, systematics, and species diversification analyses.

  5. Morphological analyses suggest a new taxonomic circumscription for Hymenaea courbaril L. (Leguminosae, Caesalpinioideae)

    PubMed Central

    Souza, Isys Mascarenhas; Funch, Ligia Silveira; de Queiroz, Luciano Paganucci

    2014-01-01

    Abstract Hymenaea is a genus of the Resin-producing Clade of the tribe Detarieae (Leguminosae: Caesalpinioideae) with 14 species. Hymenaea courbaril is the most widespread species of the genus, ranging from southern Mexico to southeastern Brazil. As currently circumscribed, Hymenaea courbaril is a polytypic species with six varieties: var. altissima, var. courbaril, var. longifolia, var. stilbocarpa, var. subsessilis, and var. villosa. These varieties are distinguishable mostly by traits related to leaflet shape and indumentation, and calyx indumentation. We carried out morphometric analyses of 14 quantitative (continuous) leaf characters in order to assess the taxonomy of Hymenaea courbaril under the Unified Species Concept framework. Cluster analysis used the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) based on Bray-Curtis dissimilarity matrices. Principal Component Analyses (PCA) were carried out based on the same morphometric matrix. Two sets of Analyses of Similarity and Non Parametric Multivariate Analysis of Variance were carried out to evaluate statistical support (1) for the major groups recovered using UPGMA and PCA, and (2) for the varieties. All analyses recovered three major groups coincident with (1) var. altissima, (2) var. longifolia, and (3) all other varieties. These results, together with geographical and habitat information, were taken as evidence of three separate metapopulation lineages recognized here as three distinct species. Nomenclatural adjustments, including reclassifying formerly misapplied types, are proposed. PMID:25009440

  6. Morphological analyses suggest a new taxonomic circumscription for Hymenaea courbaril L. (Leguminosae, Caesalpinioideae).

    PubMed

    Souza, Isys Mascarenhas; Funch, Ligia Silveira; de Queiroz, Luciano Paganucci

    2014-01-01

    Hymenaea is a genus of the Resin-producing Clade of the tribe Detarieae (Leguminosae: Caesalpinioideae) with 14 species. Hymenaea courbaril is the most widespread species of the genus, ranging from southern Mexico to southeastern Brazil. As currently circumscribed, Hymenaea courbaril is a polytypic species with six varieties: var. altissima, var. courbaril, var. longifolia, var. stilbocarpa, var. subsessilis, and var. villosa. These varieties are distinguishable mostly by traits related to leaflet shape and indumentation, and calyx indumentation. We carried out morphometric analyses of 14 quantitative (continuous) leaf characters in order to assess the taxonomy of Hymenaea courbaril under the Unified Species Concept framework. Cluster analysis used the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) based on Bray-Curtis dissimilarity matrices. Principal Component Analyses (PCA) were carried out based on the same morphometric matrix. Two sets of Analyses of Similarity and Non Parametric Multivariate Analysis of Variance were carried out to evaluate statistical support (1) for the major groups recovered using UPGMA and PCA, and (2) for the varieties. All analyses recovered three major groups coincident with (1) var. altissima, (2) var. longifolia, and (3) all other varieties. These results, together with geographical and habitat information, were taken as evidence of three separate metapopulation lineages recognized here as three distinct species. Nomenclatural adjustments, including reclassifying formerly misapplied types, are proposed.

  7. Sequence and phylogenetic analyses of novel totivirus-like double-stranded RNAs from field-collected powdery mildew fungi.

    PubMed

    Kondo, Hideki; Hisano, Sakae; Chiba, Sotaro; Maruyama, Kazuyuki; Andika, Ida Bagus; Toyoda, Kazuhiro; Fujimori, Fumihiro; Suzuki, Nobuhiro

    2016-02-02

    The identification of mycoviruses contributes greatly to understanding of the diversity and evolutionary aspects of viruses. Powdery mildew fungi are important and widely studied obligate phytopathogenic agents, but there has been no report on mycoviruses infecting these fungi. In this study, we used a deep sequencing approach to analyze the double-stranded RNA (dsRNA) segments isolated from field-collected samples of powdery mildew fungus-infected red clover plants in Japan. Database searches identified the presence of at least ten totivirus (genus Totivirus)-like sequences, termed red clover powdery mildew-associated totiviruses (RPaTVs). The majority of these sequences shared moderate amino acid sequence identity with each other (<44%) and with other known totiviruses (<59%). Nine of these identified sequences (RPaTV1a, 1b and 2-8) resembled the genome of the prototype totivirus, Saccharomyces cerevisiae virus-L-A (ScV-L-A) in that they contained two overlapping open reading frames (ORFs) encoding a putative coat protein (CP) and an RNA dependent RNA polymerase (RdRp), while one sequence (RPaTV9) showed similarity to another totivirus, Ustilago maydis virus H1 (UmV-H1) that encodes a single polyprotein (CP-RdRp fusion). Similar to yeast totiviruses, each ScV-L-A-like RPaTV contains a -1 ribosomal frameshift site downstream of a predicted pseudoknot structure in the overlapping region of these ORFs, suggesting that the RdRp is translated as a CP-RdRp fusion. Moreover, several ScV-L-A-like sequences were also found by searches of the transcriptome shotgun assembly (TSA) libraries from rust fungi, plants and insects. Phylogenetic analyses show that nine ScV-L-A-like RPaTVs along with ScV-L-A-like sequences derived from TSA libraries are clustered with most established members of the genus Totivirus, while one RPaTV forms a new distinct clade with UmV-H1, possibly establishing an additional genus in the family. Taken together, our results indicate the presence of

  8. Geometric morphometric analyses of hominid proximal femora: taxonomic and phylogenetic considerations.

    PubMed

    Holliday, T W; Hutchinson, Vance T; Morrow, Melissa M B; Livesay, Glen A

    2010-02-01

    The proximal femur has long been used to distinguish fossil hominin taxa. Specifically, the genus Homo is said to be characterized by larger femoral heads, shorter femoral necks, and more lateral flare of the greater trochanter than are members of the genera Australopithecus or Paranthropus. Here, a digitizing arm was used to collect landmark data on recent human (n=82), chimpanzee (n=16), and gorilla (n=20) femora and casts of six fossil hominin femora in order to test whether one can discriminate extant and fossil hominid (sensu lato) femora into different taxa using three-dimensional (3D) geometric morphometric analyses. Twenty proximal femoral landmarks were chosen to best quantify the shape differences between hominin genera. These data were first subjected to Procrustes analysis. The resultant fitted coordinate values were then subjected to PCA. PC scores were used to compute a dissimilarity matrix that was subjected to cluster analyses. Results indicate that one can easily distinguish Homo, Pan, and Gorilla from each other based on proximal femur shape, and one can distinguish Pliocene and Early Pleistocene hominin femora from those of recent Homo. It is more difficult to distinguish Early Pleistocene Homo proximal femora from those of Australopithecus or Paranthropus, but cluster analyses appear to separate the fossil hominins into four groups: an early australopith cluster that is an outlier from other fossil hominins; and two clusters that are sister taxa to each other: a late australopith/Paranthropus group and an early Homo group.

  9. Phylogenetics: bats united, microbats divided.

    PubMed

    Springer, Mark S

    2013-11-18

    Phylogenetic analyses on four new bat genomes provide convincing support for the placement of bats relative to other placental mammals, suggest that microbats are an unnatural group, and have important implications for understanding the evolution of echolocation.

  10. Phylogenetic Analyses of Armillaria Reveal at Least 15 Phylogenetic Lineages in China, Seven of Which Are Associated with Cultivated Gastrodia elata

    PubMed Central

    Guo, Ting; Wang, Han Chen; Xue, Wan Qiu; Zhao, Jun; Yang, Zhu L.

    2016-01-01

    Fungal species of Armillaria, which can act as plant pathogens and/or symbionts of the Chinese traditional medicinal herb Gastrodia elata (“Tianma”), are ecologically and economically important and have consequently attracted the attention of mycologists. However, their taxonomy has been highly dependent on morphological characterization and mating tests. In this study, we phylogenetically analyzed Chinese Armillaria samples using the sequences of the internal transcribed spacer region, translation elongation factor-1 alpha gene and beta-tubulin gene. Our data revealed at least 15 phylogenetic lineages of Armillaria from China, of which seven were newly discovered and two were recorded from China for the first time. Fourteen Chinese biological species of Armillaria, which were previously defined based on mating tests, could be assigned to the 15 phylogenetic lineages identified herein. Seven of the 15 phylogenetic lineages were found to be disjunctively distributed in different continents of the Northern Hemisphere, while eight were revealed to be endemic to certain continents. In addition, we found that seven phylogenetic lineages of Armillaria were used for the cultivation of Tianma, only two of which had been recorded to be associated with Tianma previously. We also illustrated that G. elata f. glauca (“Brown Tianma”) and G. elata f. elata (“Red Tianma”), two cultivars of Tianma grown in different regions of China, form symbiotic relationships with different phylogenetic lineages of Armillaria. These findings should aid the development of Tianma cultivation in China. PMID:27138686

  11. Hedysarum L. (Fabaceae: Hedysareae) Is Not Monophyletic – Evidence from Phylogenetic Analyses Based on Five Nuclear and Five Plastid Sequences

    PubMed Central

    Liu, Pei-Liang; Wen, Jun; Duan, Lei; Arslan, Emine; Ertuğrul, Kuddisi; Chang, Zhao-Yang

    2017-01-01

    The legume family (Fabaceae) exhibits a high level of species diversity and evolutionary success worldwide. Previous phylogenetic studies of the genus Hedysarum L. (Fabaceae: Hedysareae) showed that the nuclear and the plastid topologies might be incongruent, and the systematic position of the Hedysarum sect. Stracheya clade was uncertain. In this study, phylogenetic relationships of Hedysarum were investigated based on the nuclear ITS, ETS, PGDH, SQD1, TRPT and the plastid psbA-trnH, trnC-petN, trnL-trnF, trnS-trnG, petN-psbM sequences. Both nuclear and plastid data support two major lineages in Hedysarum: the Hedysarum s.s. clade and the Sartoria clade. In the nuclear tree, Hedysarum is biphyletic with the Hedysarum s.s. clade sister to the Corethrodendron + Eversmannia + Greuteria + Onobrychis clade (the CEGO clade), whereas the Sartoria clade is sister to the genus Taverniera DC. In the plastid tree, Hedysarum is monophyletic and sister to Taverniera. The incongruent position of the Hedysarum s.s. clade between the nuclear and plastid trees may be best explained by a chloroplast capture hypothesis via introgression. The Hedysarum sect. Stracheya clade is resolved as sister to the H. sect. Hedysarum clade in both nuclear and plastid trees, and our analyses support merging Stracheya into Hedysarum. Based on our new evidence from multiple sequences, Hedysarum is not monophyletic, and its generic delimitation needs to be reconsidered. PMID:28122062

  12. Molecular phylogenetic analyses of reverse-transcribed bacterial rRNA obtained from deep-sea cold seep sediments.

    PubMed

    Inagaki, Fumio; Sakihama, Yuri; Inoue, Akira; Kato, Chiaki; Horikoshi, Koki

    2002-05-01

    A depth profile of naturally occurring bacterial community structures associated with the deep-sea cold seep push-core sediment in the Japan Trench at a depth of 5343 m were evaluated using molecular phylogenetic analyses of RNA reverse transcription-PCR (RT-PCR) amplified 16S crDNA fragments. A total of 137 clones of bacterial crDNA (complimentary rDNA) phylotypes (phylogenetic types) obtained at three different depths (2-4, 8-10 and 14-16 cm) were identified in partial crDNA sequencings. crDNA phylotypes from the cold seep sediment were dominantly composed of delta- and epsilon-Proteobacteria (36% and 42% respectively). Phylotype analysis of crDNA clone libraries and terminal restriction fragment length polymorphism (T-RFLP) analysis revealed that the majority of bacterial components shifted from delta- Proteobacteria to epsilon-Proteobacteria with increasing depth. Among the delta-proteobacterial crDNA clones, the sequences related to the genus Desulfosarcina were dominant. Almost all sequences of crDNA belonging to epsilon-Proteobacteria were affiliated with the same cluster (epsilon-CSG: epsilon-proteobacterial cold seep group), and were closely related with rDNA sequences from deep-sea hydrothermal vent environments.

  13. Taxonomic revision of three species of the genus Genarchopsis (Digenea: Hemiuroidea: Derogenidae) in Japan by molecular phylogenetic analyses.

    PubMed

    Urabe, Misako; Nishimura, Tatsuhiko; Shimazu, Takeshi

    2012-12-01

    The taxonomic status of three nominal species of Genarchopsis (G. goppo Ozaki, 1925; G. gigi Yamaguti 1939; and G. fellicola Shimazu, 1995) (Digenea: Hemiuroidea: Derogenidae) was investigated by molecular phylogenetic analyses using partial sequences of the genomic ITS-1 region and the mitochondrial COI. The analyzed samples were divided into four groups: Lake Biwa, West Japan, Central Japan and G. fellicola. The Lake Biwa group, a sister taxon to the other three groups, was interpreted as G. gigi, so we concluded that G. gigi is valid; thus, this species is resurrected taxonomically. The specimens from the type host caught near the type locality of G. goppo were included in the West Japan group, so this group was regarded as G. goppo sensu stricto. Because the phylogenetic position of the Central Japan group could not be confirmed, it was identified tentatively as G. goppo, even though this species thus becomes paraphyletic. The taxonomic validity of G. fellicola was reconfirmed. The divergence time of G. gigi is discussed in relation to the geological history of Lake Biwa and the origin of host species.

  14. Phylogenetic analyses indicate little variation among reticuloendotheliosis viruses infecting avian species, including the endangered Attwater's prairie chicken.

    PubMed

    Bohls, Ryan L; Linares, Jose A; Gross, Shannon L; Ferro, Pam J; Silvy, Nova J; Collisson, Ellen W

    2006-08-01

    Reticuloendotheliosis virus infection, which typically causes systemic lymphomas and high mortality in the endangered Attwater's prairie chicken, has been described as a major obstacle in repopulation efforts of captive breeding facilities in Texas. Although antigenic relationships among reticuloendotheliosis virus (REV) strains have been previously determined, phylogenetic relationships have not been reported. The pol and env of REV proviral DNA from prairie chickens (PC-R92 and PC-2404), from poxvirus lesions in domestic chickens, the prototype poultry derived REV-A and chick syncytial virus (CSV), and duck derived spleen necrosis virus (SNV) were PCR amplified and sequenced. The 5032bp, that included the pol and most of env genes, of the PC-R92 and REV-A were 98% identical, and nucleotide sequence identities of smaller regions within the pol and env from REV strains examined ranged from 95 to 99% and 93 to 99%, respectively. The putative amino acid sequences were 97-99% identical in the polymerase and 90-98% in the envelope. Phylogenetic analyses of the nucleotide and amino acid sequences indicated the closest relationship among the recent fowl pox-associated chicken isolates, the prairie chicken isolates and the prototype CSV while only the SNV appeared to be distinctly divergent. While the origin of the naturally occurring viruses is not known, the avian poxvirus may be a critical component of transmission of these ubiquitous oncogenic viruses.

  15. Evolutionary Analyses Suggest a Function of MxB Immunity Proteins Beyond Lentivirus Restriction

    PubMed Central

    Mitchell, Patrick S.; Young, Janet M.; Emerman, Michael; Malik, Harmit S.

    2015-01-01

    Viruses impose diverse and dynamic challenges on host defenses. Diversifying selection of codons and gene copy number variation are two hallmarks of genetic innovation in antiviral genes engaged in host-virus genetic conflicts. The myxovirus resistance (Mx) genes encode interferon-inducible GTPases that constitute a major arm of the cell-autonomous defense against viral infection. Unlike the broad antiviral activity of MxA, primate MxB was recently shown to specifically inhibit lentiviruses including HIV-1. We carried out detailed evolutionary analyses to investigate whether genetic conflict with lentiviruses has shaped MxB evolution in primates. We found strong evidence for diversifying selection in the MxB N-terminal tail, which contains molecular determinants of MxB anti-lentivirus specificity. However, we found no overlap between previously-mapped residues that dictate lentiviral restriction and those that have evolved under diversifying selection. Instead, our findings are consistent with MxB having a long-standing and important role in the interferon response to viral infection against a broader range of pathogens than is currently appreciated. Despite its critical role in host innate immunity, we also uncovered multiple functional losses of MxB during mammalian evolution, either by pseudogenization or by gene conversion from MxA genes. Thus, although the majority of mammalian genomes encode two Mx genes, this apparent stasis masks the dramatic effects that recombination and diversifying selection have played in shaping the evolutionary history of Mx genes. Discrepancies between our study and previous publications highlight the need to account for recombination in analyses of positive selection, as well as the importance of using sequence datasets with appropriate depth of divergence. Our study also illustrates that evolutionary analyses of antiviral gene families are critical towards understanding molecular principles that govern host-virus interactions and

  16. Analyses of soft tissue from Tyrannosaurus rex suggest the presence of protein.

    PubMed

    Schweitzer, Mary Higby; Suo, Zhiyong; Avci, Recep; Asara, John M; Allen, Mark A; Arce, Fernando Teran; Horner, John R

    2007-04-13

    We performed multiple analyses of Tyrannosaurus rex (specimen MOR 1125) fibrous cortical and medullary tissues remaining after demineralization. The results indicate that collagen I, the main organic component of bone, has been preserved in low concentrations in these tissues. The findings were independently confirmed by mass spectrometry. We propose a possible chemical pathway that may contribute to this preservation. The presence of endogenous protein in dinosaur bone may validate hypotheses about evolutionary relationships, rates, and patterns of molecular change and degradation, as well as the chemical stability of molecules over time.

  17. Characterization of Paecilomyces variotii and Talaromyces amestolkiae in Korea Based on the Morphological Characteristics and Multigene Phylogenetic Analyses

    PubMed Central

    Nguyen, Thi Thuong Thuong; Paul, Narayan Chandra

    2016-01-01

    During fungal diversity surveys of the order Eurotiales in Korea, two fungal strains, EML-DG33-1 and EML-NCP50, were isolated from samples of rat dung and fig tree leaf collected at a garden located in Gwangju in 2014. To complete the National Species List of Korea, it is a prerequisite to verify whether many questionable species, which were previously recorded but not confirmed, indeed present in Korea. Herein, the isolates were confirmed as undescribed species, Paecilomyces variotii and Talaromyces amestolkiae based on the combination of morphological and phylogenetic analyses of multigenes including the rDNA internal transcribed spacer, β-tubulin, and RNA polymerase II subunit 2. PMID:28154482

  18. PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses.

    PubMed

    Lanfear, Robert; Frandsen, Paul B; Wright, April M; Senfeld, Tereza; Calcott, Brett

    2017-03-01

    PartitionFinder 2 is a program for automatically selecting best-fit partitioning schemes and models of evolution for phylogenetic analyses. PartitionFinder 2 is substantially faster and more efficient than version 1, and incorporates many new methods and features. These include the ability to analyze morphological datasets, new methods to analyze genome-scale datasets, new output formats to facilitate interoperability with downstream software, and many new models of molecular evolution. PartitionFinder 2 is freely available under an open source license and works on Windows, OSX, and Linux operating systems. It can be downloaded from www.robertlanfear.com/partitionfinder. The source code is available at https://github.com/brettc/partitionfinder.

  19. Molecular phylogenetic analyses of Tofieldiaceae (Alismatales): family circumscription and intergeneric relationships.

    PubMed

    Azuma, Hiroshi; Tobe, Hiroshi

    2011-05-01

    Tofieldiaceae are a small monocot family comprising about 20 species, mostly distributed in the Northern Hemisphere, with some in northern South America. To clarify the family circumscription, the number of distinguishable genera in the family, and relationships among the genera, we conducted molecular analyses of cpDNA (matK and non-coding trnL-trnL-trnF region) sequences of 17 associated species of Tofieldiaceae, along with 14 species of Acorales, Alismatales, Dioscoreales, Pandanales, and Liliales. Results showed that Tofieldiaceae are monophyletic, comprising all the species assignable to Harperocallis, Isidrogalvia, Pleea, Tofieldia, and Triantha, thus supporting the original family circumscription. Within the family, Pleea is sister to the rest of the family, in which Isidrogalvia is sister to Harperocallis, and Tofieldia to Triantha. Morphological characters supporting the relationships among the genera were briefly discussed.

  20. Genome-wide analyses of recombination suggest that Giardia intestinalis assemblages represent different species.

    PubMed

    Xu, Feifei; Jerlström-Hultqvist, Jon; Andersson, Jan O

    2012-10-01

    Giardia intestinalis is a major cause of waterborne enteric disease in humans. The species is divided into eight assemblages suggested to represent separate Giardia species based on host specificities and the genetic divergence of marker genes. We have investigated whether genome-wide recombination occurs between assemblages using the three available G. intestinalis genomes. First, the relative nonsynonymous substitution rates of the homologs were compared for 4,009 positional homologs. The vast majority of these comparisons indicate genetic isolation without interassemblage recombinations. Only a region of 6 kbp suggests genetic exchange between assemblages A and E, followed by gene conversion events. Second, recombination-detecting software fails to identify within-gene recombination between the different assemblages for most of the homologs. Our results indicate very low frequency of recombination between the syntenic core genes, suggesting that G. intestinalis assemblages are genetically isolated lineages and thus should be viewed as separated Giardia species.

  1. Molecular phylogenetic and zoospore ultrastructural analyses of Chytridium olla establish the limits of a monophyletic Chytridiales.

    PubMed

    Vélez, Carlos G; Letcher, Peter M; Schultz, Sabina; Powell, Martha J; Churchill, Perry F

    2011-01-01

    Chytridium olla A. Braun, the first described chytrid and an obligate algal parasite, is the type for the genus and thus the foundation of family Chytridiaceae, order Chytridiales, class Chytridiomycetes and phylum Chytridiomycota. Chytridium olla was isolated in coculture with its host, Oedogonium capilliforme. DNA was extracted from the coculture, and 18S, 28S and ITS1-5.8S-ITS2 rDNA were amplified with universal fungal primers. Free swimming zoospores and zoospores in mature sporangia were examined with electron microscopy. Molecular analyses placed C. olla in a clade in Chytridiales with isolates of Chytridium lagenaria and Phlyctochytrium planicorne. Ultrastructural analysis revealed C. olla to have a Group II-type zoospore, previously described for Chytridium lagenaria and Phlyctochytrium planicorne. On the basis of zoospore ultrastructure, family Chytridiaceae is emended to include the type of Chytridium and other species with a Group II-type zoospore, and the new family Chytriomycetaceae is delineated to include members of Chytridiales with a Group I-type zoospore.

  2. Diversity and evolution of plant diacylglycerol acyltransferase (DGATs) unveiled by phylogenetic, gene structure and expression analyses

    PubMed Central

    Turchetto-Zolet, Andreia Carina; Christoff, Ana Paula; Kulcheski, Franceli Rodrigues; Loss-Morais, Guilherme; Margis, Rogerio; Margis-Pinheiro, Marcia

    2016-01-01

    Abstract Since the first diacylglycerol acyltransferase (DGAT) gene was characterized in plants, a number of studies have focused on understanding the role of DGAT activity in plant triacylglycerol (TAG) biosynthesis. DGAT enzyme is essential in controlling TAGs synthesis and is encoded by different genes. DGAT1 and DGAT2 are the two major types of DGATs and have been well characterized in many plants. On the other hand, the DGAT3 and WS/DGAT have received less attention. In this study, we present the first general view of the presence of putative DGAT3 and WS/DGAT in several plant species and report on the diversity and evolution of these genes and its relationships with the two main DGAT genes (DGAT1 and DGAT2). According to our analyses DGAT1, DGAT2, DGAT3 and WS/DGAT are very divergent genes and may have distinct origin in plants. They also present divergent expression patterns in different organs and tissues. The maintenance of several types of genes encoding DGAT enzymes in plants demonstrates the importance of DGAT activity for TAG biosynthesis. Evolutionary history studies of DGATs coupled with their expression patterns help us to decipher their functional role in plants, helping to drive future biotechnological studies. PMID:27706370

  3. Pathways of Carbon Assimilation and Ammonia Oxidation Suggested by Environmental Genomic Analyses of Marine Crenarchaeota

    PubMed Central

    Hallam, Steven J; Mincer, Tracy J; Schleper, Christa; Preston, Christina M; Roberts, Katie; Richardson, Paul M

    2006-01-01

    Marine Crenarchaeota represent an abundant component of oceanic microbiota with potential to significantly influence biogeochemical cycling in marine ecosystems. Prior studies using specific archaeal lipid biomarkers and isotopic analyses indicated that planktonic Crenarchaeota have the capacity for autotrophic growth, and more recent cultivation studies support an ammonia-based chemolithoautotrophic energy metabolism. We report here analysis of fosmid sequences derived from the uncultivated marine crenarchaeote, Cenarchaeum symbiosum, focused on the reconstruction of carbon and energy metabolism. Genes predicted to encode multiple components of a modified 3-hydroxypropionate cycle of autotrophic carbon assimilation were identified, consistent with utilization of carbon dioxide as a carbon source. Additionally, genes predicted to encode a near complete oxidative tricarboxylic acid cycle were also identified, consistent with the consumption of organic carbon and in the production of intermediates for amino acid and cofactor biosynthesis. Therefore, C. symbiosum has the potential to function either as a strict autotroph, or as a mixotroph utilizing both carbon dioxide and organic material as carbon sources. From the standpoint of energy metabolism, genes predicted to encode ammonia monooxygenase subunits, ammonia permease, urease, and urea transporters were identified, consistent with the use of reduced nitrogen compounds as energy sources fueling autotrophic metabolism. Homologues of these genes, recovered from ocean waters worldwide, demonstrate the conservation and ubiquity of crenarchaeal pathways for carbon assimilation and ammonia oxidation. These findings further substantiate the likely global metabolic importance of Crenarchaeota with respect to key steps in the biogeochemical transformation of carbon and nitrogen in marine ecosystems. PMID:16533068

  4. Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota.

    PubMed

    Hallam, Steven J; Mincer, Tracy J; Schleper, Christa; Preston, Christina M; Roberts, Katie; Richardson, Paul M; DeLong, Edward F

    2006-04-01

    Marine Crenarchaeota represent an abundant component of oceanic microbiota with potential to significantly influence biogeochemical cycling in marine ecosystems. Prior studies using specific archaeal lipid biomarkers and isotopic analyses indicated that planktonic Crenarchaeota have the capacity for autotrophic growth, and more recent cultivation studies support an ammonia-based chemolithoautotrophic energy metabolism. We report here analysis of fosmid sequences derived from the uncultivated marine crenarchaeote, Cenarchaeum symbiosum, focused on the reconstruction of carbon and energy metabolism. Genes predicted to encode multiple components of a modified 3-hydroxypropionate cycle of autotrophic carbon assimilation were identified, consistent with utilization of carbon dioxide as a carbon source. Additionally, genes predicted to encode a near complete oxidative tricarboxylic acid cycle were also identified, consistent with the consumption of organic carbon and in the production of intermediates for amino acid and cofactor biosynthesis. Therefore, C. symbiosum has the potential to function either as a strict autotroph, or as a mixotroph utilizing both carbon dioxide and organic material as carbon sources. From the standpoint of energy metabolism, genes predicted to encode ammonia monooxygenase subunits, ammonia permease, urease, and urea transporters were identified, consistent with the use of reduced nitrogen compounds as energy sources fueling autotrophic metabolism. Homologues of these genes, recovered from ocean waters worldwide, demonstrate the conservation and ubiquity of crenarchaeal pathways for carbon assimilation and ammonia oxidation. These findings further substantiate the likely global metabolic importance of Crenarchaeota with respect to key steps in the biogeochemical transformation of carbon and nitrogen in marine ecosystems.

  5. Multivariate and Phylogenetic Analyses Assessing the Response of Bacterial Mat Communities from an Ancient Oligotrophic Aquatic Ecosystem to Different Scenarios of Long-Term Environmental Disturbance

    PubMed Central

    Pajares, Silvia; Souza, Valeria; Eguiarte, Luis E.

    2015-01-01

    Understanding the response of bacterial communities to environmental change is extremely important in predicting the effect of biogeochemical modifications in ecosystem functioning. The Cuatro Cienegas Basin is an ancient oasis in the Mexican Chihuahuan desert that hosts a wide diversity of microbial mats and stromatolites that have survived in extremely oligotrophic pools with nearly constant conditions. However, thus far, the response of these unique microbial communities to long-term environmental disturbances remains unexplored. We therefore studied the compositional stability of these bacterial mat communities by using a replicated (3x) mesocosm experiment: a) Control; b) Fluct: fluctuating temperature; c) 40C: increase to 40 ºC; d) UVplus: artificial increase in UV radiation; and f) UVmin: UV radiation protection. In order to observe the changes in biodiversity, we obtained 16S rRNA gene clone libraries from microbial mats at the end of the experiment (eight months) and analyzed them using multivariate and phylogenetic tools. Sequences were assigned to 13 major lineages, among which Cyanobacteria (38.8%) and Alphaproteobacteria (25.5%) were the most abundant. The less extreme treatments (Control and UVmin) had a more similar composition and distribution of the phylogenetic groups with the natural pools than the most extreme treatments (Fluct, 40C, and UVplus), which showed drastic changes in the community composition and structure, indicating a different community response to each environmental disturbance. An increase in bacterial diversity was found in the UVmin treatment, suggesting that protected environments promote the establishment of complex bacterial communities, while stressful environments reduce diversity and increase the dominance of a few Cyanobacterial OTUs (mainly Leptolyngbya sp) through environmental filtering. Mesocosm experiments using complex bacterial communities, along with multivariate and phylogenetic analyses of molecular data, can

  6. The analysis of core and symbiotic genes of rhizobia nodulating Vicia from different continents reveals their common phylogenetic origin and suggests the distribution of Rhizobium leguminosarum strains together with Vicia seeds.

    PubMed

    Alvarez-Martínez, Estela R; Valverde, Angel; Ramírez-Bahena, Martha Helena; García-Fraile, Paula; Tejedor, Carmen; Mateos, Pedro F; Santillana, Nery; Zúñiga, Doris; Peix, Alvaro; Velázquez, Encarna

    2009-08-01

    In this work, we analysed the core and symbiotic genes of rhizobial strains isolated from Vicia sativa in three soils from the Northwest of Spain, and compared them with other Vicia endosymbionts isolated in other geographical locations. The analysis of rrs, recA and atpD genes and 16S-23S rRNA intergenic spacer showed that the Spanish strains nodulating V. sativa are phylogenetically close to those isolated from V. sativa and V. faba in different European, American and Asian countries forming a group related to Rhizobium leguminosarum. The analysis of the nodC gene of strains nodulating V. sativa and V. faba in different continents showed they belong to a phylogenetically compact group indicating that these legumes are restrictive hosts. The results of the nodC gene analysis allow the delineation of the biovar viciae showing a common phylogenetic origin of V. sativa and V. faba endosymbionts in several continents. Since these two legume species are indigenous from Europe, our results suggest a world distribution of strains from R. leguminosarum together with the V. sativa and V. faba seeds and a close coevolution among chromosome, symbiotic genes and legume host in this Rhizobium-Vicia symbiosis.

  7. Microarray and bioinformatic analyses suggest models for carbon metabolism in the autotroph Acidithiobacillus ferrooxidans

    SciTech Connect

    C. Appia-ayme; R. Quatrini; Y. Denis; F. Denizot; S. Silver; F. Roberto; F. Veloso; J. Valdes; J. P. Cardenas; M. Esparza; O. Orellana; E. Jedlicki; V. Bonnefoy; D. Holmes

    2006-09-01

    Acidithiobacillus ferrooxidans is a chemolithoautotrophic bacterium that uses iron or sulfur as an energy and electron source. Bioinformatic analysis was used to identify putative genes and potential metabolic pathways involved in CO2 fixation, 2P-glycolate detoxification, carboxysome formation and glycogen utilization in At. ferrooxidans. Microarray transcript profiling was carried out to compare the relative expression of the predicted genes of these pathways when the microorganism was grown in the presence of iron versus sulfur. Several gene expression patterns were confirmed by real-time PCR. Genes for each of the above predicted pathways were found to be organized into discrete clusters. Clusters exhibited differential gene expression depending on the presence of iron or sulfur in the medium. Concordance of gene expression within each cluster, suggested that they are operons Most notably, clusters of genes predicted to be involved in CO2 fixation, carboxysome formation, 2P-glycolate detoxification and glycogen biosynthesis were up-regulated in sulfur medium, whereas genes involved in glycogen utilization were preferentially expressed in iron medium. These results can be explained in terms of models of gene regulation that suggest how A. ferrooxidans can adjust its central carbon management to respond to changing environmental conditions.

  8. The importance of retaining a phylogenetic perspective in traits-based community analyses

    DOE PAGES

    Poteat, Monica D.; Buchwalter, David B.; Jacobus, Luke M.

    2015-04-08

    1) Many environmental stressors manifest their effects via physiological processes (traits) that can differ significantly among species and species groups. We compiled available data for three traits related to the bioconcentration of the toxic metal cadmium (Cd) from 42 aquatic insect species representing orders Ephemeroptera (mayfly), Plecoptera (stonefly), and Trichoptera (caddisfly). These traits included the propensity to take up Cd from water (uptake rate constant, ku), the ability to excrete Cd (efflux rate constant, ke), and the net result of these two processes (bioconcentration factor, BCF). 2) Ranges in these Cd bioaccumulation traits varied in magnitude across lineages (some lineagesmore » had a greater tendency to bioaccumulate Cd than others). Overlap in the ranges of trait values among different lineages was common and highlights situations where species from different lineages can share a similar trait state, but represent the high end of possible physiological values for one lineage and the low end for another. 3) Variance around the mean trait state differed widely across clades, suggesting that some groups (e.g., Ephemerellidae) are inherently more variable than others (e.g., Perlidae). Thus, trait variability/lability is at least partially a function of lineage. 4) Akaike information criterion (AIC) comparisons of statistical models were more often driven by clade than by other potential biological or ecological explanation tested. Clade-driven models generally improved with increasing taxonomic resolution. 5) Altogether, these findings suggest that lineage provides context for the analysis of species traits, and that failure to consider lineage in community-based analysis of traits may obscure important patterns of species responses to environmental change.« less

  9. The importance of retaining a phylogenetic perspective in traits-based community analyses

    SciTech Connect

    Poteat, Monica D.; Buchwalter, David B.; Jacobus, Luke M.

    2015-04-08

    1) Many environmental stressors manifest their effects via physiological processes (traits) that can differ significantly among species and species groups. We compiled available data for three traits related to the bioconcentration of the toxic metal cadmium (Cd) from 42 aquatic insect species representing orders Ephemeroptera (mayfly), Plecoptera (stonefly), and Trichoptera (caddisfly). These traits included the propensity to take up Cd from water (uptake rate constant, ku), the ability to excrete Cd (efflux rate constant, ke), and the net result of these two processes (bioconcentration factor, BCF). 2) Ranges in these Cd bioaccumulation traits varied in magnitude across lineages (some lineages had a greater tendency to bioaccumulate Cd than others). Overlap in the ranges of trait values among different lineages was common and highlights situations where species from different lineages can share a similar trait state, but represent the high end of possible physiological values for one lineage and the low end for another. 3) Variance around the mean trait state differed widely across clades, suggesting that some groups (e.g., Ephemerellidae) are inherently more variable than others (e.g., Perlidae). Thus, trait variability/lability is at least partially a function of lineage. 4) Akaike information criterion (AIC) comparisons of statistical models were more often driven by clade than by other potential biological or ecological explanation tested. Clade-driven models generally improved with increasing taxonomic resolution. 5) Altogether, these findings suggest that lineage provides context for the analysis of species traits, and that failure to consider lineage in community-based analysis of traits may obscure important patterns of species responses to environmental change.

  10. Recent vicariance and the origin of the rare, edaphically specialized Sandhills lily, Lilium pyrophilum (Liliaceae): evidence from phylogenetic and coalescent analyses.

    PubMed

    Douglas, Norman A; Wall, Wade A; Xiang, Qiu-Yun Jenny; Hoffmann, William A; Wentworth, Thomas R; Gray, Janet B; Hohmann, Matthew G

    2011-07-01

    Establishing the phylogenetic and demographic history of rare plants improves our understanding of mechanisms that have led to their origin and can lead to valuable insights that inform conservation decisions. The Atlantic coastal plain of eastern North America harbours many rare and endemic species, yet their evolution is poorly understood. We investigate the rare Sandhills lily (Lilium pyrophilum), which is endemic to seepage slopes in a restricted area of the Atlantic coastal plain of eastern North America. Using phylogenetic evidence from chloroplast, nuclear internal transcribed spacer and two low-copy nuclear genes, we establish a close relationship between L. pyrophilum and the widespread Turk's cap lily, L. superbum. Isolation-with-migration and coalescent simulation analyses suggest that (i) the divergence between these two species falls in the late Pleistocene or Holocene and almost certainly post-dates the establishment of the edaphic conditions to which L. pyrophilum is presently restricted, (ii) vicariance is responsible for the present range disjunction between the two species, and that subsequent gene flow has been asymmetrical and (iii) L. pyrophilum harbours substantial genetic diversity in spite of its present rarity. This system provides an example of the role of edaphic specialization and climate change in promoting diversification in the Atlantic coastal plain.

  11. Behavioral and molecular analyses suggest that circadian output is disrupted by disconnected mutants in D. melanogaster.

    PubMed Central

    Hardin, P E; Hall, J C; Rosbash, M

    1992-01-01

    Mutations in the disconnected (disco) gene act to disrupt neural cell patterning in the Drosophila visual system. These mutations also affect adult locomotor activity rhythms, as disco flies are arrhythmic under conditions of constant darkness (DD). To determine the state of the circadian pacemaker in disco mutants, we constructed with pers double mutants (a short period allele of the period gene) and assayed their behavioral rhythms in light-dark cycles (LD), and their biochemical rhythms of period gene expression under both LD and DD conditions. The results demonstrate that disco flies are rhythmic, indicating that they have an active circadian pacemaker that can be entrained by light. They also suggest that disco mutants block or interfere with elements of the circadian system located between the central pacemaker and its outputs that mediate overt rhythms. Images PMID:1740100

  12. Conservation of biotrophy in Hygrophoraceae inferred from combined stable isotope and phylogenetic analyses.

    PubMed

    Seitzman, Brian H; Ouimette, Andrew; Mixon, Rachel L; Hobbie, Erik A; Hibbett, David S

    2011-01-01

    The nutritional modes of genera in Hygrophoraceae (Basidiomycota: Agaricales), apart from the ectomycorrhizal Hygrophorus and lichen-forming taxa, are uncertain. New δ(15)N and δ(13)C values were obtained from 15 taxa under Hygrophoraceae collected in central Massachusetts and combined with isotopic datasets from five prior studies including a further 12 species using a data standardization method to allow cross-site comparison. Based on these data, we inferred the probable nutritional modes for species of Hygrophorus, Hygrocybe, Humidicutis, Cuphophyllus and Gliophorus. A phylogeny of Hygrophoraceae was constructed by maximum likelihood analysis of nuclear ribosomal 28S and 5.8S sequences and standardized δ(15)N and δ(13)C values were used for parsimony optimization on this phylogeny. Our results supported a mode of biotrophy in Hygrocybe, Humidicutis, Cuphophyllus and Gliophorus quantitatively unlike that in more than 450 other fungal taxa sampled in the present and prior studies. Parsimony optimization of stable isotope data suggests moderate conservation of nutritional strategies in Hygrophoraceae and a single switch to a predominantly ectomycorrhizal life strategy in the lineage leading to Hygrophorus. We conclude that Hygrophoraceae of previously unknown nutritional status are unlikely to be saprotrophs and are probably in symbiosis with bryophytes or other understory plants.

  13. Phylogenetic analyses of dimorphism in primates: evidence for stronger selection on canine size than on body size.

    PubMed

    Thorén, Sandra; Lindenfors, Patrik; Kappeler, Peter M

    2006-05-01

    Phylogenetic comparative methods were used to analyze the consequences of sexual selection on canine size and canine size dimorphism in primates. Our analyses of previously published body mass and canine size data revealed that the degree of sexual selection is correlated with canine size dimorphism, as well as with canine size in both sexes, in haplorhine but not in strepsirrhine primates. Consistent with these results, male and female canine size was found to be highly correlated in all primates. Since canine dimorphism and canine size in both sexes in haplorhines were found to be not only related to mating system but also to body size and body size dimorphism (characters which are also subject to or the result of sexual selection), it was not apparent whether the degree of canine dimorphism is the result of sexual selection on canine size itself, or whether canine dimorphism is instead a consequence of selection on body size, or vice versa. To distinguish among these possibilities, we conducted matched-pairs analyses on canine size after correcting for the effects of body size. These tests revealed significant effects of sexual selection on relative canine size, indicating that canine size is more important in haplorhine male-male competition than body size. Further analyses showed, however, that it was not possible to detect any evolutionary lag between canine size and body size, or between canine size dimorphism and body size dimorphism. Additional support for the notion of special selection on canine size consisted of allometric relationships in haplorhines between canine size and canine size dimorphism in males, as well as between canine size dimorphism and body size dimorphism. In conclusion, these analyses revealed that the effects of sexual selection on canine size are stronger than those on body size, perhaps indicating that canines are more important than body size in haplorhine male-male competition.

  14. Phylogenetic Distribution of Intron Positions in Alpha-Amylase Genes of Bilateria Suggests Numerous Gains and Losses

    PubMed Central

    Da Lage, Jean-Luc; Maczkowiak, Frédérique; Cariou, Marie-Louise

    2011-01-01

    Most eukaryotes have at least some genes interrupted by introns. While it is well accepted that introns were already present at moderate density in the last eukaryote common ancestor, the conspicuous diversity of intron density among genomes suggests a complex evolutionary history, with marked differences between phyla. The question of the rates of intron gains and loss in the course of evolution and factors influencing them remains controversial. We have investigated a single gene family, alpha-amylase, in 55 species covering a variety of animal phyla. Comparison of intron positions across phyla suggests a complex history, with a likely ancestral intronless gene undergoing frequent intron loss and gain, leading to extant intron/exon structures that are highly variable, even among species from the same phylum. Because introns are known to play no regulatory role in this gene and there is no alternative splicing, the structural differences may be interpreted more easily: intron positions, sizes, losses or gains may be more likely related to factors linked to splicing mechanisms and requirements, and to recognition of introns and exons, or to more extrinsic factors, such as life cycle and population size. We have shown that intron losses outnumbered gains in recent periods, but that “resets” of intron positions occurred at the origin of several phyla, including vertebrates. Rates of gain and loss appear to be positively correlated. No phase preference was found. We also found evidence for parallel gains and for intron sliding. Presence of introns at given positions was correlated to a strong protosplice consensus sequence AG/G, which was much weaker in the absence of intron. In contrast, recent intron insertions were not associated with a specific sequence. In animal Amy genes, population size and generation time seem to have played only minor roles in shaping gene structures. PMID:21611157

  15. Combining phylogenetic and syntenic analyses for understanding the evolution of TCP ECE genes in eudicots.

    PubMed

    Citerne, Hélène L; Le Guilloux, Martine; Sannier, Julie; Nadot, Sophie; Damerval, Catherine

    2013-01-01

    TCP ECE genes encode transcription factors which have received much attention for their repeated recruitment in the control of floral symmetry in core eudicots, and more recently in monocots. Major duplications of TCP ECE genes have been described in core eudicots, but the evolutionary history of this gene family is unknown in basal eudicots. Reconstructing the phylogeny of ECE genes in basal eudicots will help set a framework for understanding the functional evolution of these genes. TCP ECE genes were sequenced in all major lineages of basal eudicots and Gunnera which belongs to the sister clade to all other core eudicots. We show that in these lineages they have a complex evolutionary history with repeated duplications. We estimate the timing of the two major duplications already identified in the core eudicots within a timeframe before the divergence of Gunnera and after the divergence of Proteales. We also use a synteny-based approach to examine the extent to which the expansion of TCP ECE genes in diverse eudicot lineages may be due to genome-wide duplications. The three major core-eudicot specific clades share a number of collinear genes, and their common evolutionary history may have originated at the γ event. Genomic comparisons in Arabidopsis thaliana and Solanumlycopersicum highlight their separate polyploid origin, with syntenic fragments with and without TCP ECE genes showing differential gene loss and genomic rearrangements. Comparison between recently available genomes from two basal eudicots Aquilegiacoerulea and Nelumbonucifera suggests that the two TCP ECE paralogs in these species are also derived from large-scale duplications. TCP ECE loci from basal eudicots share many features with the three main core eudicot loci, and allow us to infer the makeup of the ancestral eudicot locus.

  16. Combining Phylogenetic and Syntenic Analyses for Understanding the Evolution of TCP ECE Genes in Eudicots

    PubMed Central

    Citerne, Hélène L.; Le Guilloux, Martine; Sannier, Julie; Nadot, Sophie; Damerval, Catherine

    2013-01-01

    TCP ECE genes encode transcription factors which have received much attention for their repeated recruitment in the control of floral symmetry in core eudicots, and more recently in monocots. Major duplications of TCP ECE genes have been described in core eudicots, but the evolutionary history of this gene family is unknown in basal eudicots. Reconstructing the phylogeny of ECE genes in basal eudicots will help set a framework for understanding the functional evolution of these genes. TCP ECE genes were sequenced in all major lineages of basal eudicots and Gunnera which belongs to the sister clade to all other core eudicots. We show that in these lineages they have a complex evolutionary history with repeated duplications. We estimate the timing of the two major duplications already identified in the core eudicots within a timeframe before the divergence of Gunnera and after the divergence of Proteales. We also use a synteny-based approach to examine the extent to which the expansion of TCP ECE genes in diverse eudicot lineages may be due to genome-wide duplications. The three major core-eudicot specific clades share a number of collinear genes, and their common evolutionary history may have originated at the γ event. Genomic comparisons in Arabidopsis thaliana and Solanumlycopersicum highlight their separate polyploid origin, with syntenic fragments with and without TCP ECE genes showing differential gene loss and genomic rearrangements. Comparison between recently available genomes from two basal eudicots Aquilegiacoerulea and Nelumbonucifera suggests that the two TCP ECE paralogs in these species are also derived from large-scale duplications. TCP ECE loci from basal eudicots share many features with the three main core eudicot loci, and allow us to infer the makeup of the ancestral eudicot locus. PMID:24019982

  17. Autosomal STR analyses in native Amazonian tribes suggest a population structure driven by isolation by distance.

    PubMed

    Dos Santos, Sidney E B; Ribeiro-Rodrigues, Elzemar M; Ribeiro-Dos-Santos, Andrea K C; Hutz, Mara H; Tovo-Rodrigues, Luciana; Salzano, Francisco M; Callegari-Jacques, Sidia M

    2009-02-01

    Eleven short tandem repeat loci (CSF1PO, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D21S11, TH01, and TPOX) were investigated in 232 individuals from 6 Amazonian native tribes (Tiriyó, Waiãpi, Zoé, Urubu-Kaapor, Awa-Guajá, and Parakanã). We added the new data to a database that included five previously typed native populations from the same area (Wai Wai, Gavião, Zoró, Suruí, and Xavante). The results presented here concern this new data set, which accounts for 526 individuals in total. We tested whether major geographic or linguistic barriers to gene flow exist among such human groups and tried to find a possible anthropological or ethnological explanation for such patterns. We measured the average heterozygosity (H) and the number of alleles (N(A) ) and found that both are lower than values observed in populations of different ethnic backgrounds, such as European or African descendants. Despite such a result, we found high between-population variation; lower H and/or N(A) values were obtained from four isolated tribes that came into contact with external nonnative populations in recent times (1921-1989). By applying analysis of molecular variance, generalized hierarchical modeling, and the Structure Bayesian analysis, we were not able to detect any significant geographic or linguistic barrier to gene flow. Geographic autocorrelation analysis suggests that the genetic structure of native Amazonian tribes is better explained by isolation by distance because the level of genetic similarity decreases according to linear geographic distance, reaching null or negative values at a scale of 300 km.

  18. Genome analyses suggest the presence of polyploidy and recent human-driven expansions in eight global populations of the honeybee pathogen Nosema ceranae.

    PubMed

    Pelin, Adrian; Selman, Mohammed; Aris-Brosou, Stéphane; Farinelli, Laurent; Corradi, Nicolas

    2015-11-01

    Nosema ceranae is a microsporidian pathogen whose infections have been associated with recent global declines in the populations of western honeybees (Apis mellifera). Despite the outstanding economic and ecological threat that N. ceranae may represent for honeybees worldwide, many aspects of its biology, including its mode of reproduction, propagation and ploidy, are either very unclear or unknown. In the present study, we set to gain knowledge in these biological aspects by re-sequencing the genome of eight isolates (i.e. a population of spores isolated from one single beehive) of this species harvested from eight geographically distant beehives, and by investigating their level of polymorphism. Consistent with previous analyses performed using single gene sequences, our analyses uncovered the presence of very high genetic diversity within each isolate, but also very little hive-specific polymorphism. Surprisingly, the nature, location and distribution of this genetic variation suggest that beehives around the globe are infected by a population of N. ceranae cells that may be polyploid (4n or more), and possibly clonal. Lastly, phylogenetic analyses based on genome-wide single-nucleotide polymorphism data extracted from these parasites and mitochondrial sequences from their hosts all failed to support the current geographical structure of our isolates.

  19. Unraveling the evolutionary history of the phosphoryl-transfer chain of the phosphoenolpyruvate:phosphotransferase system through phylogenetic analyses and genome context

    PubMed Central

    2008-01-01

    Background The phosphoenolpyruvate phosphotransferase system (PTS) plays a major role in sugar transport and in the regulation of essential physiological processes in many bacteria. The PTS couples solute transport to its phosphorylation at the expense of phosphoenolpyruvate (PEP) and it consists of general cytoplasmic phosphoryl transfer proteins and specific enzyme II complexes which catalyze the uptake and phosphorylation of solutes. Previous studies have suggested that the evolution of the constituents of the enzyme II complexes has been driven largely by horizontal gene transfer whereas vertical inheritance has been prevalent in the general phosphoryl transfer proteins in some bacterial groups. The aim of this work is to test this hypothesis by studying the evolution of the phosphoryl transfer proteins of the PTS. Results We have analyzed the evolutionary history of the PTS phosphoryl transfer chain (PTS-ptc) components in 222 complete genomes by combining phylogenetic methods and analysis of genomic context. Phylogenetic analyses alone were not conclusive for the deepest nodes but when complemented with analyses of genomic context and functional information, the main evolutionary trends of this system could be depicted. Conclusion The PTS-ptc evolved in bacteria after the divergence of early lineages such as Aquificales, Thermotogales and Thermus/Deinococcus. The subsequent evolutionary history of the PTS-ptc varied in different bacterial lineages: vertical inheritance and lineage-specific gene losses mainly explain the current situation in Actinobacteria and Firmicutes whereas horizontal gene transfer (HGT) also played a major role in Proteobacteria. Most remarkably, we have identified a HGT event from Firmicutes or Fusobacteria to the last common ancestor of the Enterobacteriaceae, Pasteurellaceae, Shewanellaceae and Vibrionaceae. This transfer led to extensive changes in the metabolic and regulatory networks of these bacteria including the development of a

  20. Phylogenetic and Multivariate Analyses To Determine the Effects of Different Tillage and Residue Management Practices on Soil Bacterial Communities▿ †

    PubMed Central

    Ceja-Navarro, Javier A.; Rivera-Orduña, Flor N.; Patiño-Zúñiga, Leonardo; Vila-Sanjurjo, Antón; Crossa, José; Govaerts, Bram; Dendooven, Luc

    2010-01-01

    Bacterial communities are important not only in the cycling of organic compounds but also in maintaining ecosystems. Specific bacterial groups can be affected as a result of changes in environmental conditions caused by human activities, such as agricultural practices. The aim of this study was to analyze the effects of different forms of tillage and residue management on soil bacterial communities by using phylogenetic and multivariate analyses. Treatments involving zero tillage (ZT) and conventional tillage (CT) with their respective combinations of residue management, i.e., removed residue (−R) and kept residue (+R), and maize/wheat rotation, were selected from a long-term field trial started in 1991. Analysis of bacterial diversity showed that soils under zero tillage and crop residue retention (ZT/+R) had the highest levels of diversity and richness. Multivariate analysis showed that beneficial bacterial groups such as fluorescent Pseudomonas spp. and Burkholderiales were favored by residue retention (ZT/+R and CT/+R) and negatively affected by residue removal (ZT/−R). Zero-tillage treatments (ZT/+R and ZT/−R) had a positive effect on the Rhizobiales group, with its main representatives related to Methylosinus spp. known as methane-oxidizing bacteria. It can be concluded that practices that include reduced tillage and crop residue retention can be adopted as safer agricultural practices to preserve and improve the diversity of soil bacterial communities. PMID:20382808

  1. Phylogenetic and multivariate analyses to determine the effects of different tillage and residue management practices on soil bacterial communities.

    PubMed

    Ceja-Navarro, Javier A; Rivera-Orduña, Flor N; Patiño-Zúñiga, Leonardo; Vila-Sanjurjo, Antón; Crossa, José; Govaerts, Bram; Dendooven, Luc

    2010-06-01

    Bacterial communities are important not only in the cycling of organic compounds but also in maintaining ecosystems. Specific bacterial groups can be affected as a result of changes in environmental conditions caused by human activities, such as agricultural practices. The aim of this study was to analyze the effects of different forms of tillage and residue management on soil bacterial communities by using phylogenetic and multivariate analyses. Treatments involving zero tillage (ZT) and conventional tillage (CT) with their respective combinations of residue management, i.e., removed residue (-R) and kept residue (+R), and maize/wheat rotation, were selected from a long-term field trial started in 1991. Analysis of bacterial diversity showed that soils under zero tillage and crop residue retention (ZT/+R) had the highest levels of diversity and richness. Multivariate analysis showed that beneficial bacterial groups such as fluorescent Pseudomonas spp. and Burkholderiales were favored by residue retention (ZT/+R and CT/+R) and negatively affected by residue removal (ZT/-R). Zero-tillage treatments (ZT/+R and ZT/-R) had a positive effect on the Rhizobiales group, with its main representatives related to Methylosinus spp. known as methane-oxidizing bacteria. It can be concluded that practices that include reduced tillage and crop residue retention can be adopted as safer agricultural practices to preserve and improve the diversity of soil bacterial communities.

  2. Cloning, characterization and phylogenetic analyses of members of three major venom families from a single specimen of Walterinnesia aegyptia.

    PubMed

    Tsai, Hsin-Yu; Wang, Ying Ming; Tsai, Inn-Ho

    2008-06-01

    Walterinnesia aegyptia is a monotypic elapid snake inhabiting in Africa and Mideast. Although its envenoming is known to cause rapid deaths and paralysis, structural data of its venom proteins are rather limited. Using gel filtration and reverse-phase HPLC, phospholipases A(2) (PLAs), three-fingered toxins (3FTxs), and Kunitz-type protease inhibitors (KIns) were purified from the venom of a single specimen of this species caught in northern Egypt. In addition, specific primers were designed and PCR was carried out to amplify the cDNAs encoding members of the three venom families, respectively, using total cDNA prepared from its venom glands. Complete amino acid sequences of two acidic PLAs, three short chain 3FTxs, and four KIns of this venom species were thus deduced after their cDNAs were cloned and sequenced. They are all novel sequences and match the mass data of purified proteins. For members of each toxin family, protein sequences were aligned and subjected to molecular phylogenetic analyses. The results indicated that the PLAs and a Kunitz inhibitor of W. aegyptia are most similar to those of king cobra venom, and its 3FTxs belongs to either Type I alpha-neurotoxins or weak toxins of orphan-II subtype. It is remarkable that both king cobra and W. aegyptia cause rapid deaths of the victims, and a close evolutionary relationship between them is speculated.

  3. Pathogenesis and phylogenetic analyses of canine distemper virus strain ZJ7 isolate from domestic dogs in China.

    PubMed

    Tan, Bin; Wen, Yong-Jun; Wang, Feng-Xue; Zhang, Shu-Qin; Wang, Xiu-Dong; Hu, Jia-Xin; Shi, Xin-Chuan; Yang, Bo-Chao; Chen, Li-Zhi; Cheng, Shi-Peng; Wu, Hua

    2011-11-16

    A new isolate of canine distemper virus (CDV), named ZJ7, was isolated from lung tissues of a dog suspected with CDV infection using MDCK cells. The ZJ7 isolate induced cytopathogenic effects of syncytia in MDCK cell after six passages. In order to evaluate pathogenesis of ZJ7 strain, three CDV sero-negative dogs were intranasally inoculated with its virus suspension. All infected dogs developed clinical signs of severe bloody diarrhea, conjunctivitis, ocular discharge, nasal discharge and coughing, fever and weight loss at 21 dpi, whereas the mock group infected with DMEM were normal. The results demonstrated that CDV-ZJ7 strain isolated by MDCK cell was virulent, and the nucleotide and amino acid sequences of strain ZJ7 had no change after isolation by MDCK cell when compared with the original virus from the fresh tissues. Molecular and phylogenetic analyses for the nucleocapsid (N), phosphoprotein (P) and receptor binding haemagglutinin (H) gene of the ZJ7 isolate clearly showed it is joins to the Asia 1 group cluster of CDV strains, the predominant genotype in China.

  4. Phylogenetic analyses of nucleotide sequences confirm a unique plant intercontinental disjunction between tropical Africa, the Caribbean, and the Hawaiian Islands.

    PubMed

    Namoff, Sandra; Luke, Quentin; Jiménez, Francisco; Veloz, Alberto; Lewis, Carl E; Sosa, Victoria; Maunder, Mike; Francisco-Ortega, Javier

    2010-01-01

    Phylogenetic analyses of nucleotide sequences of the internal transcribed spacers and 5.8 regions of the nuclear ribosomal DNA and of the trnH-psbA spacer of the chloroplast genome confirm that the three taxa of the Jacquemontia ovalifolia (Choicy) Hallier f. complex (Convolvulaceae) form a monophyletic group. Levels of nucleotide divergence and morphological differentiation among these taxa support the view that each should be recognized as distinct species. These three species display unique intercontinental disjunction, with one species endemic to Hawaii (Jacquemontia sandwicensis A. Gray.), another restricted to eastern Mexico and the Antilles [Jacquemontia obcordata (Millspaugh) House], and the third confined to East and West Africa (J. ovalifolia). The Caribbean and Hawaiian species are sister taxa and are another example of a biogeographical link between the Caribbean Basin and Polynesia. We provide a brief conservation review of the three taxa based on our collective field work and investigations; it is apparent that J. obcordata is highly threatened and declining in the Caribbean.

  5. Assembly and variation analyses of Clarias batrachus mitogenome retrieved from WGS data and its phylogenetic relationship with other catfishes

    PubMed Central

    Kushwaha, Basdeo; Kumar, Ravindra; Agarwal, Suyash; Pandey, Manmohan; Nagpure, N.S.; Singh, Mahender; Srivastava, Shreya; Joshi, C.G.; Das, P.; Sahoo, L.; Jayasankar, P.; Meher, P.K.; Shah, T.M.; Patel, A.B.; Patel, Namrata; Koringa, P.; Das, Sofia Priyadarsani; Patnaik, Siddhi; Bit, Amrita; Sarika; Iquebal, M.A.; Kumar, Dinesh; Jena, J.K.

    2015-01-01

    Whole genome sequencing (WGS) using next generation sequencing technologies paves the way to sequence the mitochondrial genomes with greater ease and lesser time. Here, we used the WGS data of Clarias batrachus, generated from Roche 454 and Ion Torrent sequencing platforms, to assemble the complete mitogenome using both de novo and reference based approaches. Both the methods yielded almost similar results and the best assembled mitogenome was of 16,510 bp size (GenBank Acc. No. KM259918). The mitogenome annotation resulted in 13 coding genes, 22 tRNA genes, 2 rRNA genes and one control region, and the gene order was found to be identical with other catfishes. Variation analyses between assembled and the reference (GenBank Acc. No. NC_023923) mitogenome revealed 51 variations. The phylogenetic analysis of coding DNA sequences and tRNA supports the monophyly of catfishes. Two SSRs were identified in C. batrachus mitogenome, out of which one was unique to this species. Based on the relative rate of gene evolution, protein coding mitochondrial genes were found to evolve at a much faster pace than the d-loop, which in turn are followed by the rRNAs; the tRNAs showed wide variability in the rate of sequence evolution, and on average evolve the slowest. Among the coding genes, ND2 evolves most rapidly. The variations present in the coding regions of the mitogenome and their comparative analyses with other catfish species may be useful in species conservation and management programs. PMID:26137446

  6. Phylogenetic and Morphologic Analyses of a Coastal Fish Reveals a Marine Biogeographic Break of Terrestrial Origin in the Southern Caribbean

    PubMed Central

    Betancur-R, Ricardo; Acero P., Arturo; Duque-Caro, Hermann; Santos, Scott R.

    2010-01-01

    Background Marine allopatric speciation involves interplay between intrinsic organismal properties and extrinsic factors. However, the relative contribution of each depends on the taxon under study and its geographic context. Utilizing sea catfishes in the Cathorops mapale species group, this study tests the hypothesis that both reproductive strategies conferring limited dispersal opportunities and an apparent geomorphologic barrier in the Southern Caribbean have promoted speciation in this group from a little studied area of the world. Methodology/Principal Findings Mitochondrial gene sequences were obtained from representatives of the Cathorops mapale species group across its distributional range from Colombia to Venezuela. Morphometric and meristic analyses were also done to assess morphologic variation. Along a ∼2000 km transect, two major lineages, Cathorops sp. and C. mapale, were identified by levels of genetic differentiation, phylogenetic reconstructions, and morphological analyses. The lineages are separated by ∼150 km at the Santa Marta Massif (SMM) in Colombia. The northward displacement of the SMM into the Caribbean in the early Pleistocene altered the geomorphology of the continental margin, ultimately disrupting the natural habitat of C. mapale. The estimated ∼0.86 my divergence of the lineages from a common ancestor coincides with the timing of the SMM displacement at ∼0.78 my. Main Conclusions/Significance Results presented here support the hypothesis that organismal properties as well as extrinsic factors lead to diversification of the Cathorops mapale group along the northern coast of South America. While a lack of pelagic larval stages and ecological specialization are forces impacting this process, the identification of the SMM as contributing to allopatric speciation in marine organisms adds to the list of recognized barriers in the Caribbean. Comparative examination of additional Southern Caribbean taxa, particularly those with

  7. Genetic and Phylogenetic Analyses of Influenza A H1N1pdm Virus in Buenos Aires, Argentina ▿ †

    PubMed Central

    Barrero, P. R.; Viegas, M.; Valinotto, L. E.; Mistchenko, A. S.

    2011-01-01

    An influenza pandemic caused by swine-origin influenza virus A/H1N1 (H1N1pdm) spread worldwide in 2009, with 12,080 confirmed cases and 626 deaths occurring in Argentina. A total of 330 H1N1pdm viruses were detected from May to August 2009, and phylogenetic and genetic analyses of 21 complete genome sequences from both mild and fatal cases were achieved with reference to concatenated whole genomes. In addition, the analysis of another 16 hemagglutinin (HA), neuraminidase (NA), and matrix (M) gene sequences of Argentinean isolates was performed. The microevolution timeline was assessed and resistance monitoring of an NA fragment from 228 samples throughout the 2009 pandemic peak was performed by sequencing and pyrosequencing. We also assessed the viral growth kinetics for samples with replacements at the genomic level or special clinical features. In this study, we found by Bayesian inference that the Argentinean complete genome sequences clustered with globally distributed clade 7 sequences. The HA sequences were related to samples from the northern hemisphere autumn-winter from September to December 2009. The NA of Argentinean sequences belonged to the New York group. The N-4 fragment as well as the hierarchical clustering of samples showed that a consensus sequence prevailed in time but also that different variants, including five H275Y oseltamivir-resistant strains, arose from May to August 2009. Fatal and oseltamivir-resistant isolates had impaired growth and a small plaque phenotype compared to oseltamivir-sensitive and consensus strains. Although these strains might not be fit enough to spread in the entire population, molecular surveillance proved to be essential to monitor resistance and viral dynamics in our country. PMID:21047959

  8. Molecular phylogenetic and evolutionary analyses of Muar strain of Japanese encephalitis virus reveal it is the missing fifth genotype.

    PubMed

    Mohammed, Manal A F; Galbraith, Sareen E; Radford, Alan D; Dove, Winifred; Takasaki, Tomohiko; Kurane, Ichiro; Solomon, Tom

    2011-07-01

    Japanese encephalitis virus (JEV) is the most important cause of epidemic encephalitis worldwide but its origin is unknown. Epidemics of encephalitis suggestive of Japanese encephalitis (JE) were described in Japan from the 1870s onwards. Four genotypes of JEV have been characterised and representatives of each genotype have been fully sequenced. Based on limited information, a single isolate from Malaysia is thought to represent a putative fifth genotype. We have determined the complete nucleotide and amino acid sequence of Muar strain and compared it with other fully sequenced JEV genomes. Muar was the least similar, with nucleotide divergence ranging from 20.2 to 21.2% and amino acid divergence ranging from 8.5 to 9.9%. Phylogenetic analysis of Muar strain revealed that it does represent a distinct fifth genotype of JEV. We elucidated Muar signature amino acids in the envelope (E) protein, including E327 Glu on the exposed lateral surface of the putative receptor binding domain which distinguishes Muar strain from the other four genotypes. Evolutionary analysis of full-length JEV genomes revealed that the mean evolutionary rate is 4.35 × 10(-4) (3.4906 × 10(-4) to 5.303 × 10(-4)) nucleotides substitutions per site per year and suggests JEV originated from its ancestral virus in the mid 1500s in the Indonesia-Malaysia region and evolved there into different genotypes, which then spread across Asia. No strong evidence for positive selection was found between JEV strains of the five genotypes and the E gene has generally been subjected to strong purifying selection.

  9. Multilocus, DNA-based phylogenetic analyses reveal three new species lineages in the Phellinus gabonensis-P. caribaeo-quercicola species complex, including P. amazonicus sp. nov.

    PubMed

    de Campos-Santana, Marisa; Amalfi, Mario; Castillo, Gabriel; Decock, Cony

    2016-09-01

    Species complexes in the poroid Hymenochaetaceae are well documented in the temperate areas. Potential species complexes are less known in tropical areas, however. In the last ten years, four phylogenetically and morphologically closely related species of Phellinus (Hymenochaetaceae) were described from various tropical/subtropical areas viz. P. caribaeo-quercicola, P. gabonensis, P. ellipsoideus, and P. castanopsidis They are characterized by cushion-shaped basidiomata, ventricose, commonly hamate hymenial setae, and broadly ellipsoid, thick-walled, pale yellowish basidiospores. Pursuing the studies of this complex, a phylogenetic approach based on DNA sequence data from the nuc rDNA regions ITS1-5.8S-ITS2 (ITS) and partial 28S (including the domains D1, D2, D3) and on part of the translation elongation factor 1-α (tef1, region between exons 4 and 8) revealed three new lineages or phylogenetic species. Two of these phylogenetic species are composed of exclusively on Neotropical specimens. One of them, described below as Phellinus amazonicus sp. nov., is represented by multiple collections originating from Neotropical, lowland, dense, moist forest at the western edge of the Amazon Basin in Ecuador, the Guiana Shield in French Guiana and (more likely) Trinidad. The second Neotropical phylogenetic species is represented in our phylogenetic analyses by a single collection from northeastern Argentina. It is also potentially known from two herbarium specimens originating from southern Brazil, for which no sequence data is available. It is left for now as Phellinus sp. 1, waiting to gather more specimens and DNA sequences data. The third new phylogenetic species is known by a single collection (pure culture) of uncertain origin. It is thought to represent Phellinus setulosus, a Southeast Asian taxa. From an evolutionary perspective, tree species occurring in the Neotropics (P. amazonicus, P. caribaeo-quercicola, and Phellinus sp. 1) have a closely related genetic

  10. Combined Genotypic, Phylogenetic, and Epidemiologic Analyses of Mycobacterium tuberculosis Genetic Diversity in the Rhône Alpes Region, France

    PubMed Central

    Pichat, Catherine; Couvin, David; Carret, Gérard; Frédénucci, Isabelle; Jacomo, Véronique; Carricajo, Anne; Boisset, Sandrine; Dumitrescu, Oana; Flandrois, Jean-Pierre; Lina, Gérard; Rastogi, Nalin

    2016-01-01

    Background The present work relates to identification and a deep molecular characterization of circulating Mycobacterium tuberculosis complex (MTBC) strains in the Rhône-Alpes region, France from 2000 to 2010. It aimed to provide with a first snapshot of MTBC genetic diversity in conjunction with bacterial drug resistance, type of disease and available demographic and epidemiologic characteristics over an eleven-year period, in the south-east of France. Methods Mycobacterium tuberculosis complex (MTBC) strains isolated in the Rhône-Alpes region, France (n = 2257, 1 isolate per patient) between 2000 and 2010 were analyzed by spoligotyping. MIRU-VNTR typing was applied on n = 1698 strains (with full results available for 974 strains). The data obtained were compared with the SITVIT2 database, followed by detailed genotyping, phylogenetic, and epidemiologic analyses in correlation with anonymized data on available demographic, and epidemiologic characteristics, and location of disease (pulmonary or extrapulmonary TB). Results The most predominant spoligotyping clusters were SIT53/T1 (n = 346, 15.3%) > SIT50/H3 (n = 166, 7.35%) > SIT42/LAM9 (n = 125, 5.5%) > SIT1/Beijing (n = 72, 3.2%) > SIT47/H1 (n = 71, 3.1%). Evolutionary-recent strains belonging to the Principal Genetic Group (PGG) 2/3, or Euro-American lineages (T, LAM, Haarlem, X, S) were predominant and represented 1768 or 78.33% of all isolates. For strains having drug resistance information (n = 1119), any drug resistance accounted for 14.83% cases vs. 1.52% for multidrug resistance (MDR); and was significantly more associated with age group 21–40 years (p-value<0.001). Extra-pulmonary TB was more common among female patients while pulmonary TB predominated among men (p-value<0.001; OR = 2.16 95%CI [1.69; 2.77]). Also, BOV and CAS lineages were significantly well represented in patients affected by extra-pulmonary TB (p-value<0.001). The origin was known for 927/2257 patients: 376 (40.6%) being French

  11. Bacterial Communities in Women with Bacterial Vaginosis: High Resolution Phylogenetic Analyses Reveal Relationships of Microbiota to Clinical Criteria

    PubMed Central

    Srinivasan, Sujatha; Hoffman, Noah G.; Morgan, Martin T.; Matsen, Frederick A.; Fiedler, Tina L.; Hall, Robert W.; Ross, Frederick J.; McCoy, Connor O.; Bumgarner, Roger; Marrazzo, Jeanne M.; Fredricks, David N.

    2012-01-01

    Background Bacterial vaginosis (BV) is a common condition that is associated with numerous adverse health outcomes and is characterized by poorly understood changes in the vaginal microbiota. We sought to describe the composition and diversity of the vaginal bacterial biota in women with BV using deep sequencing of the 16S rRNA gene coupled with species-level taxonomic identification. We investigated the associations between the presence of individual bacterial species and clinical diagnostic characteristics of BV. Methodology/Principal Findings Broad-range 16S rRNA gene PCR and pyrosequencing were performed on vaginal swabs from 220 women with and without BV. BV was assessed by Amsel’s clinical criteria and confirmed by Gram stain. Taxonomic classification was performed using phylogenetic placement tools that assigned 99% of query sequence reads to the species level. Women with BV had heterogeneous vaginal bacterial communities that were usually not dominated by a single taxon. In the absence of BV, vaginal bacterial communities were dominated by either Lactobacillus crispatus or Lactobacillus iners. Leptotrichia amnionii and Eggerthella sp. were the only two BV-associated bacteria (BVABs) significantly associated with each of the four Amsel’s criteria. Co-occurrence analysis revealed the presence of several sub-groups of BVABs suggesting metabolic co-dependencies. Greater abundance of several BVABs was observed in Black women without BV. Conclusions/Significance The human vaginal bacterial biota is heterogeneous and marked by greater species richness and diversity in women with BV; no species is universally present. Different bacterial species have different associations with the four clinical criteria, which may account for discrepancies often observed between Amsel and Nugent (Gram stain) diagnostic criteria. Several BVABs exhibited race-dependent prevalence when analyzed in separate groups by BV status which may contribute to increased incidence of BV in

  12. ddRAD-seq phylogenetics based on nucleotide, indel, and presence-absence polymorphisms: Analyses of two avian genera with contrasting histories.

    PubMed

    DaCosta, Jeffrey M; Sorenson, Michael D

    2016-01-01

    Genotype-by-sequencing (GBS) methods have revolutionized the field of molecular ecology, but their application in molecular phylogenetics remains somewhat limited. In addition, most phylogenetic studies based on large GBS data sets have relied on analyses of concatenated data rather than species tree methods that explicitly account for genealogical stochasticity among loci. We explored the utility of "double-digest" restriction site-associated DNA sequencing (ddRAD-seq) for phylogenetic analyses of the Lagonosticta firefinches (family Estrildidae) and the Vidua brood parasitic finches (family Viduidae). As expected, the number of homologous loci shared among samples was negatively correlated with genetic distance due to the accumulation of restriction site polymorphisms. Nonetheless, for each genus, we obtained data sets of ∼3000 loci shared in common among all samples, including a more distantly related outgroup taxon. For all samples combined, we obtained >1000 homologous loci despite ∼20my divergence between estrildid and parasitic finches. In addition to nucleotide polymorphisms, the ddRAD-seq data yielded large sets of indel and locus presence-absence polymorphisms, all of which had higher consistency indices than mtDNA sequence data in the context of concatenated parsimony analyses. Species tree methods, using individual gene trees or single nucleotide polymorphisms as input, generated results broadly consistent with analyses of concatenated data, particularly for Lagonosticta, which appears to have a well resolved, bifurcating history. Results for Vidua were also generally consistent across methods and data sets, although nodal support and results from different species tree methods were more variable. Lower gene tree congruence in Vidua is likely the result of its unique evolutionary history, which includes rapid speciation by host shift and occasional hybridization and introgression due to incomplete reproductive isolation. We conclude that dd

  13. Do freshwater fishes diversify faster than marine fishes? A test using state-dependent diversification analyses and molecular phylogenetics of new world silversides (atherinopsidae).

    PubMed

    Bloom, Devin D; Weir, Jason T; Piller, Kyle R; Lovejoy, Nathan R

    2013-07-01

    Freshwater habitats make up only ∼0.01% of available aquatic habitat and yet harbor 40% of all fish species, whereas marine habitats comprise >99% of available aquatic habitat and have only 60% of fish species. One possible explanation for this pattern is that diversification rates are higher in freshwater habitats than in marine habitats. We investigated diversification in marine and freshwater lineages in the New World silverside fish clade Menidiinae (Teleostei, Atherinopsidae). Using a time-calibrated phylogeny and a state-dependent speciation-extinction framework, we determined the frequency and timing of habitat transitions in Menidiinae and tested for differences in diversification parameters between marine and freshwater lineages. We found that Menidiinae is an ancestrally marine lineage that independently colonized freshwater habitats four times followed by three reversals to the marine environment. Our state-dependent diversification analyses showed that freshwater lineages have higher speciation and extinction rates than marine lineages. Net diversification rates were higher (but not significant) in freshwater than marine environments. The marine lineage-through time (LTT) plot shows constant accumulation, suggesting that ecological limits to clade growth have not slowed diversification in marine lineages. Freshwater lineages exhibited an upturn near the recent in their LTT plot, which is consistent with our estimates of high background extinction rates. All sequence data are currently being archived on Genbank and phylogenetic trees archived on Treebase.

  14. Phylogenetic and transcriptomic analyses reveal the evolution of bioluminescence and light detection in marine deep-sea shrimps of the family Oplophoridae (Crustacea: Decapoda).

    PubMed

    Wong, Juliet M; Pérez-Moreno, Jorge L; Chan, Tin-Yam; Frank, Tamara M; Bracken-Grissom, Heather D

    2015-02-01

    Bioluminescence is essential to the survival of many organisms, particularly in the deep sea where light is limited. Shrimp of the family Oplophoridae exhibit a remarkable mechanism of bioluminescence in the form of a secretion used for predatory defense. Three of the ten genera possess an additional mode of bioluminescence in the form of light-emitting organs called photophores. Phylogenetic analyses can be useful for tracing the evolution of bioluminescence, however, the few studies that have attempted to reconcile the relationships within Oplophoridae have generated trees with low-resolution. We present the most comprehensive phylogeny of Oplophoridae to date, with 90% genera coverage using seven genes (mitochondrial and nuclear) across 30 oplophorid species. We use our resulting topology to trace the evolution of bioluminescence within Oplophoridae. Previous studies have suggested that oplophorid visual systems may be tuned to differentiate the separate modes of bioluminescence. While all oplophorid shrimp possess a visual pigment sensitive to blue-green light, only those bearing photophores have an additional pigment sensitive to near-ultraviolet light. We attempt to characterize opsins, visual pigment proteins essential to light detection, in two photophore-bearing species (Systellaspis debilis and Oplophorus gracilirostris) and make inferences regarding their function and evolutionary significance.

  15. Disentangling the complex evolutionary history of the Western Palearctic blue tits (Cyanistes spp.) - phylogenomic analyses suggest radiation by multiple colonization events and subsequent isolation.

    PubMed

    Stervander, Martin; Illera, Juan Carlos; Kvist, Laura; Barbosa, Pedro; Keehnen, Naomi P; Pruisscher, Peter; Bensch, Staffan; Hansson, Bengt

    2015-05-01

    Isolated islands and their often unique biota continue to play key roles for understanding the importance of drift, genetic variation and adaptation in the process of population differentiation and speciation. One island system that has inspired and intrigued evolutionary biologists is the blue tit complex (Cyanistes spp.) in Europe and Africa, in particular the complex evolutionary history of the multiple genetically distinct taxa of the Canary Islands. Understanding Afrocanarian colonization events is of particular importance because of recent unconventional suggestions that these island populations acted as source of the widespread population in mainland Africa. We investigated the relationship between mainland and island blue tits using a combination of Sanger sequencing at a population level (20 loci; 12 500 nucleotides) and next-generation sequencing of single population representatives (>3 200 000 nucleotides), analysed in coalescence and phylogenetic frameworks. We found (i) that Afrocanarian blue tits are monophyletic and represent four major clades, (ii) that the blue tit complex has a continental origin and that the Canary Islands were colonized three times, (iii) that all island populations have low genetic variation, indicating low long-term effective population sizes and (iv) that populations on La Palma and in Libya represent relicts of an ancestral North African population. Further, demographic reconstructions revealed (v) that the Canary Islands, conforming to traditional views, hold sink populations, which have not served as source for back colonization of the African mainland. Our study demonstrates the importance of complete taxon sampling and an extensive multimarker study design to obtain robust phylogeographical inferences.

  16. A new phylogenetic test for comparing multiple high-dimensional evolutionary rates suggests interplay of evolutionary rates and modularity in lanternfishes (Myctophiformes; Myctophidae).

    PubMed

    Denton, John S S; Adams, Dean C

    2015-09-01

    The interplay between evolutionary rates and modularity influences the evolution of organismal body plans by both promoting and constraining the magnitude and direction of trait response to ecological conditions. However, few studies have examined whether the best-fit hypothesis of modularity is the same as the shape subset with the greatest difference in evolutionary rate. Here, we develop a new phylogenetic comparative method for comparing evolutionary rates among high-dimensional traits, and apply this method to analyze body shape evolution in bioluminescent lanternfishes. We frame the study of evolutionary rates and modularity through analysis of three hypotheses derived from the literature on fish development, biomechanics, and bioluminescent communication. We show that a development-informed partitioning of shape exhibits the greatest evolutionary rate differences among modules, but that a hydrodynamically informed partitioning is the best-fit modularity hypothesis. Furthermore, we show that bioluminescent lateral photophores evolve at a similar rate as, and are strongly integrated with, body shape in lanternfishes. These results suggest that overlapping life-history constraints on development and movement define axes of body shape evolution in lanternfishes, and that the positions of their lateral photophore complexes are likely a passive outcome of the interaction of these ecological pressures.

  17. A well-sampled phylogenetic analysis of the polystichoid ferns (Dryopteridaceae) suggests a complex biogeographical history involving both boreotropical migrations and recent transoceanic dispersals.

    PubMed

    Le Péchon, Timothée; Zhang, Liang; He, Hai; Zhou, Xin-Mao; Bytebier, Benny; Gao, Xin-Fen; Zhang, Li-Bing

    2016-05-01

    Intercontinental disjunctions in ferns have often been considered as the result of long-distance dispersal (LDD) events rather than of vicariance. However, in many leptosporangiate groups, both processes appear to have played a major role in shaping current geographical distribution. In this study, we reconstructed the phylogenetic relationships and inferred the ancestral distribution areas of the polystichoid ferns (Cyrtomium, Phanerophlebia, and Polystichum), to evaluate the relative impact of vicariance and LDD on the biogeography of this group. We used a molecular dataset including 3346 characters from five plastid loci. With 190 accessions our taxon coverage was about three times as large as any previous worldwide sampling. Biogeographical analyses were performed using S-DIVA and S-DEC and divergence times were estimated by integrating fossil and secondary calibrations. The polystichoid ferns are a monophyletic clade that may have originated in East Asia during the Eocene, an age much younger than previously estimated. Three transoceanic disjunctions between East Asia and New World were identified in the Paleogene: one for Phanerophlebia during late Eocene (34Ma, 19-51Ma), and two in Polystichum at the Eocene-Oligocene boundary (30Ma, 18-43Ma; 28Ma, 19-39Ma respectively). During the Neogene, further range expansions took place from Asia to Africa, Hawaii, and the Southwestern Indian Ocean region. Our results indicate that early transfers between the Old and the New World are compatible with a boreotropical migration scenario. After evolving in Asia during the Eocene, the polystichoid ferns reached the New World in independent migrations at the Eocene-Oligocene boundary through the boreotropical belt. However, although less likely, the alternative hypothesis of independent transoceanic dispersals from the Old to the New World cannot be ruled out. Further range expansion during the Neogene was most likely the result of long-distance dispersal (LDD).

  18. Molecular and evolutionary analyses of formyl peptide receptors suggest the absence of VNO-specific FPRs in primates.

    PubMed

    Yang, Hui; Shi, Peng

    2010-12-01

    Formyl peptide receptors (FPRs) were observed to expand in rodents and were recently suggested as candidate vomeronasal chemosensory receptors. Since vomeronasal chemosensory receptors usually underwent positive selection and evolved concordantly with the vomeronasal organ (VNO) morphology, we surveyed FPRs in primates in which VNO morphology is greatly diverse and thus it would provide us a clearer view of VNO-FPRs evolution. By screening available primate genome sequences, we obtained the FPR repertoires in representative primate species. As a result, we did not find FPR family size expansion in primates. Further analyses showed no evolutionary force variance between primates with or without VNO structure, which indicated that there was no functional divergence among primates FPRs. Our results suggest that primates lack the VNO-specific FPRs and the FPR expansion is not a common phenomenon in mammals outside rodent lineage, regardless of VNO complexity.

  19. Cultural studies coupled with DNA based sequence analyses and its implication on pigmentation as a phylogenetic marker in Pestalotiopsis taxonomy.

    PubMed

    Liu, Ai-Rong; Chen, Shuang-Chen; Wu, Shang-Ying; Xu, Tong; Guo, Liang-Dong; Jeewon, Rajesh; Wei, Ji-Guang

    2010-11-01

    Previous phylogenetic studies based on DNA sequence data have partially resolved taxonomic relationships among Pestalotiopsis species. There are still some morphological characters whose phylogenetic significance have not been assessed properly due to limited taxon sampling, in particular the degree of pigmentation of median cells. In this study, the stability of pigmentation of median cells of conidia in Pestalotiopsis species was evaluated in subculture, and a molecular phylogenetic analysis was conducted on 45 strains belonging to 26 species in order to reappraise the pigmentation of median cells for its significance in the taxonomy of Pestalotiopsis. Phylogenetic relationships were inferred from nucleotide sequences in ITS regions (ITS1, 5.8S and ITS2) and β-tubulin 2 gene (tub2). The results showed that pigmentation of median cells was stable and it could be a key character in the taxonomy of Pestalotiopsis species. Instead of "concolorous" and "versicolor" proposed by Steyeart (1949), "brown to olivaceous" and "umber to fuliginous" are described and proposed in this paper.

  20. Paleogenetic Analyses Reveal Unsuspected Phylogenetic Affinities between Mice and the Extinct Malpaisomys insularis, an Endemic Rodent of the Canaries

    PubMed Central

    Gros-Balthazard, Muriel; Hughes, Sandrine; Alcover, Josep Antoni; Hutterer, Rainer; Rando, Juan Carlos; Michaux, Jacques; Hänni, Catherine

    2012-01-01

    Background The lava mouse, Malpaisomys insularis, was endemic to the Eastern Canary islands and became extinct at the beginning of the 14th century when the Europeans reached the archipelago. Studies to determine Malpaisomys' phylogenetic affinities, based on morphological characters, remained inconclusive because morphological changes experienced by this insular rodent make phylogenetic investigations a real challenge. Over 20 years since its first description, Malpaisomys' phylogenetic position remains enigmatic. Methodology/Principal Findings In this study, we resolved this issue using molecular characters. Mitochondrial and nuclear markers were successfully amplified from subfossils of three lava mouse samples. Molecular phylogenetic reconstructions revealed, without any ambiguity, unsuspected relationships between Malpaisomys and extant mice (genus Mus, Murinae). Moreover, through molecular dating we estimated the origin of the Malpaisomys/mouse clade at 6.9 Ma, corresponding to the maximal age at which the archipelago was colonised by the Malpaisomys ancestor via natural rafting. Conclusion/Significance This study reconsiders the derived morphological characters of Malpaisomys in light of this unexpected molecular finding. To reconcile molecular and morphological data, we propose to consider Malpaisomys insularis as an insular lineage of mouse. PMID:22363563

  1. The phylogenetic diversity of metagenomes.

    PubMed

    Kembel, Steven W; Eisen, Jonathan A; Pollard, Katherine S; Green, Jessica L

    2011-01-01

    Phylogenetic diversity--patterns of phylogenetic relatedness among organisms in ecological communities--provides important insights into the mechanisms underlying community assembly. Studies that measure phylogenetic diversity in microbial communities have primarily been limited to a single marker gene approach, using the small subunit of the rRNA gene (SSU-rRNA) to quantify phylogenetic relationships among microbial taxa. In this study, we present an approach for inferring phylogenetic relationships among microorganisms based on the random metagenomic sequencing of DNA fragments. To overcome challenges caused by the fragmentary nature of metagenomic data, we leveraged fully sequenced bacterial genomes as a scaffold to enable inference of phylogenetic relationships among metagenomic sequences from multiple phylogenetic marker gene families. The resulting metagenomic phylogeny can be used to quantify the phylogenetic diversity of microbial communities based on metagenomic data sets. We applied this method to understand patterns of microbial phylogenetic diversity and community assembly along an oceanic depth gradient, and compared our findings to previous studies of this gradient using SSU-rRNA gene and metagenomic analyses. Bacterial phylogenetic diversity was highest at intermediate depths beneath the ocean surface, whereas taxonomic diversity (diversity measured by binning sequences into taxonomically similar groups) showed no relationship with depth. Phylogenetic diversity estimates based on the SSU-rRNA gene and the multi-gene metagenomic phylogeny were broadly concordant, suggesting that our approach will be applicable to other metagenomic data sets for which corresponding SSU-rRNA gene sequences are unavailable. Our approach opens up the possibility of using metagenomic data to study microbial diversity in a phylogenetic context.

  2. Expertly validated models and phylogenetically-controlled analysis suggests responses to climate change are related to species traits in the order lagomorpha.

    PubMed

    Leach, Katie; Kelly, Ruth; Cameron, Alison; Montgomery, W Ian; Reid, Neil

    2015-01-01

    Climate change during the past five decades has impacted significantly on natural ecosystems, and the rate of current climate change is of great concern among conservation biologists. Species Distribution Models (SDMs) have been used widely to project changes in species' bioclimatic envelopes under future climate scenarios. Here, we aimed to advance this technique by assessing future changes in the bioclimatic envelopes of an entire mammalian order, the Lagomorpha, using a novel framework for model validation based jointly on subjective expert evaluation and objective model evaluation statistics. SDMs were built using climatic, topographical, and habitat variables for all 87 lagomorph species under past and current climate scenarios. Expert evaluation and Kappa values were used to validate past and current models and only those deemed 'modellable' within our framework were projected under future climate scenarios (58 species). Phylogenetically-controlled regressions were used to test whether species traits correlated with predicted responses to climate change. Climate change is likely to impact more than two-thirds of lagomorph species, with leporids (rabbits, hares, and jackrabbits) likely to undertake poleward shifts with little overall change in range extent, whilst pikas are likely to show extreme shifts to higher altitudes associated with marked range declines, including the likely extinction of Kozlov's Pika (Ochotona koslowi). Smaller-bodied species were more likely to exhibit range contractions and elevational increases, but showing little poleward movement, and fecund species were more likely to shift latitudinally and elevationally. Our results suggest that species traits may be important indicators of future climate change and we believe multi-species approaches, as demonstrated here, are likely to lead to more effective mitigation measures and conservation management. We strongly advocate studies minimising data gaps in our knowledge of the Order

  3. Comparative proteomic analyses of the nuclear envelope and pore complex suggests a wide range of heretofore unexpected functions.

    PubMed

    Batrakou, Dzmitry G; Kerr, Alastair R W; Schirmer, Eric C

    2009-02-15

    Since the discovery of several inherited diseases linked to the nuclear envelope the number of functions ascribed to this subcellular organelle has skyrocketed. However the molecular pathways underlying these functions are not clear in most cases, perhaps because of missing components. Several recent proteomic analyses of the nuclear envelope and nuclear pore complex proteomes have yielded not only enough missing components to potentially elucidate these pathways, but suggest an exponentially greater number of functions at the nuclear periphery than ever imagined. Many of these functions appear to derive from recapitulation of pathways utilized at the plasma membrane and from other membrane systems. Additionally, many proteins identified in the comparative nuclear envelope studies have sequence characteristics suggesting that they might also contribute to nuclear pore complex functions. In particular, the striking enrichment for proteins in the nuclear envelope fractions that carry phenylalanine-glycine (FG) repeats may be significant for the mechanism of nuclear transport. In retrospect, these findings are only surprising in context of the notion held for many years that the nuclear envelope was only a barrier protecting the genome. In fact, it is arguably the most complex membrane organelle in the cell.

  4. Proteomics computational analyses suggest that the carboxyl terminal glycoproteins of Bunyaviruses are class II viral fusion protein (beta-penetrenes)

    PubMed Central

    Garry, Courtney E; Garry, Robert F

    2004-01-01

    The Bunyaviridae family of enveloped RNA viruses includes five genuses, orthobunyaviruses, hantaviruses, phleboviruses, nairoviruses and tospoviruses. It has not been determined which Bunyavirus protein mediates virion:cell membrane fusion. Class II viral fusion proteins (beta-penetrenes), encoded by members of the Alphaviridae and Flaviviridae, are comprised of three antiparallel beta sheet domains with an internal fusion peptide located at the end of domain II. Proteomics computational analyses indicate that the carboxyl terminal glycoprotein (Gc) encoded by Sandfly fever virus (SAN), a phlebovirus, has a significant amino acid sequence similarity with envelope protein 1 (E1), the class II fusion protein of Sindbis virus (SIN), an Alphavirus. Similar sequences and common structural/functional motifs, including domains with a high propensity to interface with bilayer membranes, are located collinearly in SAN Gc and SIN E1. Gc encoded by members of each Bunyavirus genus share several sequence and structural motifs. These results suggest that Gc of Bunyaviridae, and similar proteins of Tenuiviruses and a group of Caenorhabditis elegans retroviruses, are class II viral fusion proteins. Comparisons of divergent viral fusion proteins can reveal features essential for virion:cell fusion, and suggest drug and vaccine strategies. PMID:15544707

  5. Multiplex cytokine analyses in dogs with pyometra suggest involvement of KC-like chemokine in canine bacterial sepsis.

    PubMed

    Karlsson, Iulia; Hagman, Ragnvi; Johannisson, Anders; Wang, Liya; Södersten, Fredrik; Wernersson, Sara

    2016-02-01

    Clinical diagnostic criteria for sepsis (systemic inflammatory response syndrome caused by infection) are unspecific and, therefore, biomarkers for sepsis diagnosis are needed for appropriate treatment and patient survival. Pyometra, a common disease caused by bacterial infection of the uterus, results in sepsis in nearly 60% of cases in dogs. We used dogs with pyometra as a natural model for sepsis and collected serum samples from 39 dogs, of which 22 with pyometra and 17 healthy controls. Dogs with pyometra were further grouped into dogs with sepsis (n=18) and without sepsis (n=4). Serum concentrations of a panel of cytokines, including keratinocyte-derived chemokine (KC)-like, granulocyte-macrophages colony stimulating factor (GM-CSF), interleukin (IL)-2, IL-4, IL-6, IL-7, IL-8, IL-10, IL-15, IL-18, chemokine C-X-C motif ligand (CXCL)10 and tumor necrosis factor (TNF)-α, were measured using multiplex analyses. Serum C-reactive protein (CRP) levels were determined using an automated immunoturbidimetric assay. In addition to physical examination hematological and serum biochemical analyses were performed to evaluate the overall status of the dogs. Significantly higher concentrations of KC-like (757 vs 304 pg/ml) were detected in dogs with pyometra as compared to healthy dogs. Within the pyometra group, dogs with sepsis compared to dogs without sepsis had a higher KC-like concentration (873 vs 300 pg/ml). Hemoglobin levels were significantly lower in dogs with pyometra compared to healthy dogs, regardless of the presence or absence of sepsis, and correlated negatively with KC-like. KC-like concentrations correlated positively with CRP, number of hospitalization days, number of monocytes, concentrations of IL-8, and percentage band neutrophils. Our data suggest that bacterial infection triggers the expression of KC-like and further studies are warranted of KC-like as a possible biomarker for diagnosing sepsis and uterine bacterial infection in dogs.

  6. Identification of medicinal Dendrobium species by phylogenetic analyses using matK and rbcL sequences.

    PubMed

    Asahina, Haruka; Shinozaki, Junichi; Masuda, Kazuo; Morimitsu, Yasujiro; Satake, Motoyoshi

    2010-04-01

    Species identification of five Dendrobium plants was conducted using phylogenetic analysis and the validity of the method was verified. Some Dendrobium plants (Orchidaceae) have been used as herbal medicines but the difficulty in identifying their botanical origin by traditional methods prevented their full modern utilization. Based on the emerging field of molecular systematics as a powerful classification tool, a phylogenetic analysis was conducted using sequences of two plastid genes, the maturase-coding gene (matK) and the large subunit of ribulose 1,5-bisphosphate carboxylase-coding gene (rbcL), as DNA barcodes for species identification of Dendrobium plants. We investigated five medicinal Dendrobium species, Dendrobium fimbriatum, D. moniliforme, D. nobile, D. pulchellum, and D. tosaense. The phylogenetic trees constructed from matK data successfully distinguished each species from each other. On the other hand, rbcL, as a single-locus barcode, offered less species discriminating power than matK, possibly due to its being present with little variation. When results using matK sequences of D. officinale that was deposited in the DNA database were combined, D. officinale and D. tosaense showed a close genetic relationship, which brought us closer to resolving the question of their taxonomic identity. Identification of the plant source as well as the uniformity of the chemical components is critical for the quality control of herbal medicines and it is important that the processed materials be validated. The methods presented here could be applied to the analysis of processed Dendrobium plants and be a promising tool for the identification of botanical origins of crude drugs.

  7. Phylogenetically resolving epidemiologic linkage

    PubMed Central

    Romero-Severson, Ethan O.; Bulla, Ingo; Leitner, Thomas

    2016-01-01

    Although the use of phylogenetic trees in epidemiological investigations has become commonplace, their epidemiological interpretation has not been systematically evaluated. Here, we use an HIV-1 within-host coalescent model to probabilistically evaluate transmission histories of two epidemiologically linked hosts. Previous critique of phylogenetic reconstruction has claimed that direction of transmission is difficult to infer, and that the existence of unsampled intermediary links or common sources can never be excluded. The phylogenetic relationship between the HIV populations of epidemiologically linked hosts can be classified into six types of trees, based on cladistic relationships and whether the reconstruction is consistent with the true transmission history or not. We show that the direction of transmission and whether unsampled intermediary links or common sources existed make very different predictions about expected phylogenetic relationships: (i) Direction of transmission can often be established when paraphyly exists, (ii) intermediary links can be excluded when multiple lineages were transmitted, and (iii) when the sampled individuals’ HIV populations both are monophyletic a common source was likely the origin. Inconsistent results, suggesting the wrong transmission direction, were generally rare. In addition, the expected tree topology also depends on the number of transmitted lineages, the sample size, the time of the sample relative to transmission, and how fast the diversity increases after infection. Typically, 20 or more sequences per subject give robust results. We confirm our theoretical evaluations with analyses of real transmission histories and discuss how our findings should aid in interpreting phylogenetic results. PMID:26903617

  8. Phylogenetically resolving epidemiologic linkage

    SciTech Connect

    Romero-Severson, Ethan O.; Bulla, Ingo; Leitner, Thomas

    2016-02-22

    The use of phylogenetic trees in epidemiological investigations has become commonplace, but their epidemiological interpretation has not been systematically evaluated. Here, we use an HIV-1 within-host coalescent model to probabilistically evaluate transmission histories of two epidemiologically linked hosts. Previous critique of phylogenetic reconstruction has claimed that direction of transmission is difficult to infer, and that the existence of unsampled intermediary links or common sources can never be excluded. The phylogenetic relationship between the HIV populations of epidemiologically linked hosts can be classified into six types of trees, based on cladistic relationships and whether the reconstruction is consistent with the true transmission history or not. We show that the direction of transmission and whether unsampled intermediary links or common sources existed make very different predictions about expected phylogenetic relationships: (i) Direction of transmission can often be established when paraphyly exists, (ii) intermediary links can be excluded when multiple lineages were transmitted, and (iii) when the sampled individuals’ HIV populations both are monophyletic a common source was likely the origin. Inconsistent results, suggesting the wrong transmission direction, were generally rare. In addition, the expected tree topology also depends on the number of transmitted lineages, the sample size, the time of the sample relative to transmission, and how fast the diversity increases after infection. Typically, 20 or more sequences per subject give robust results. Moreover, we confirm our theoretical evaluations with analyses of real transmission histories and discuss how our findings should aid in interpreting phylogenetic results.

  9. Phylogenetically resolving epidemiologic linkage

    DOE PAGES

    Romero-Severson, Ethan O.; Bulla, Ingo; Leitner, Thomas

    2016-02-22

    The use of phylogenetic trees in epidemiological investigations has become commonplace, but their epidemiological interpretation has not been systematically evaluated. Here, we use an HIV-1 within-host coalescent model to probabilistically evaluate transmission histories of two epidemiologically linked hosts. Previous critique of phylogenetic reconstruction has claimed that direction of transmission is difficult to infer, and that the existence of unsampled intermediary links or common sources can never be excluded. The phylogenetic relationship between the HIV populations of epidemiologically linked hosts can be classified into six types of trees, based on cladistic relationships and whether the reconstruction is consistent with the truemore » transmission history or not. We show that the direction of transmission and whether unsampled intermediary links or common sources existed make very different predictions about expected phylogenetic relationships: (i) Direction of transmission can often be established when paraphyly exists, (ii) intermediary links can be excluded when multiple lineages were transmitted, and (iii) when the sampled individuals’ HIV populations both are monophyletic a common source was likely the origin. Inconsistent results, suggesting the wrong transmission direction, were generally rare. In addition, the expected tree topology also depends on the number of transmitted lineages, the sample size, the time of the sample relative to transmission, and how fast the diversity increases after infection. Typically, 20 or more sequences per subject give robust results. Moreover, we confirm our theoretical evaluations with analyses of real transmission histories and discuss how our findings should aid in interpreting phylogenetic results.« less

  10. Molecular and phylogenetic analyses reveal mammalian-like clockwork in the honey bee (Apis mellifera) and shed new light on the molecular evolution of the circadian clock.

    PubMed

    Rubin, Elad B; Shemesh, Yair; Cohen, Mira; Elgavish, Sharona; Robertson, Hugh M; Bloch, Guy

    2006-11-01

    The circadian clock of the honey bee is implicated in ecologically relevant complex behaviors. These include time sensing, time-compensated sun-compass navigation, and social behaviors such as coordination of activity, dance language communication, and division of labor. The molecular underpinnings of the bee circadian clock are largely unknown. We show that clock gene structure and expression pattern in the honey bee are more similar to the mouse than to Drosophila. The honey bee genome does not encode an ortholog of Drosophila Timeless (Tim1), has only the mammalian type Cryptochrome (Cry-m), and has a single ortholog for each of the other canonical "clock genes." In foragers that typically have strong circadian rhythms, brain mRNA levels of amCry, but not amTim as in Drosophila, consistently oscillate with strong amplitude and a phase similar to amPeriod (amPer) under both light-dark and constant darkness illumination regimes. In contrast to Drosophila, the honey bee amCYC protein contains a transactivation domain and its brain transcript levels oscillate at virtually an anti-phase to amPer, as it does in the mouse. Phylogenetic analyses indicate that the basal insect lineage had both the mammalian and Drosophila types of Cry and Tim. Our results suggest that during evolution, Drosophila diverged from the ancestral insect clock and specialized in using a set of clock gene orthologs that was lost by both mammals and bees, which in turn converged and specialized in the other set. These findings illustrate a previously unappreciated diversity of insect clockwork and raise critical questions concerning the evolution and functional significance of species-specific variation in molecular clockwork.

  11. Sequence and expression analyses of KIX domain proteins suggest their importance in seed development and determination of seed size in rice, and genome stability in Arabidopsis.

    PubMed

    Thakur, Jitendra Kumar; Agarwal, Pinky; Parida, Swarup; Bajaj, Deepak; Pasrija, Richa

    2013-08-01

    The KIX domain, which mediates protein-protein interactions, was first discovered as a motif in the large multidomain transcriptional activator histone acetyltransferase p300/CBP. Later, the domain was also found in Mediator subunit MED15, where it interacts with many transcription factors. In both proteins, the KIX domain is a target of activation domains of diverse transcription activators. It was found to be an essential component of several specific gene-activation pathways in fungi and metazoans. Not much is known about KIX domain proteins in plants. This study aims to characterize all the KIX domain proteins encoded by the genomes of Arabidopsis and rice. All identified KIX domain proteins are presented, together with their chromosomal locations, phylogenetic analysis, expression and SNP analyses. KIX domains were found not only in p300/CBP- and MED15-like plant proteins, but also in F-box proteins in rice and DNA helicase in Arabidopsis, suggesting roles of KIX domains in ubiquitin-mediated proteasomal degradation and genome stability. Expression analysis revealed overlapping expression of OsKIX_3, OsKIX_5 and OsKIX_7 in different stages of rice seeds development. Moreover, an association analysis of 136 in silico mined SNP loci in 23 different rice genotypes with grain-length information identified three non-synonymous SNP loci in these three rice genes showing strong association with long- and short-grain differentiation. Interestingly, these SNPs were located within KIX domain encoding sequences. Overall, this study lays a foundation for functional analysis of KIX domain proteins in plants.

  12. Phylogenetic and pathogenic analyses of two virulent Newcastle disease viruses isolated from Crested Ibis (Nipponia nippon) in China.

    PubMed

    Chen, Shengli; Hao, Huafang; Liu, Qingtian; Wang, Rong; Zhang, Peng; Wang, Xinglong; Du, Enqi; Yang, Zengqi

    2013-06-01

    The crested ibis is one of the most endangered birds in the world, found only in Shaanxi Province in Central China, and it has been reintroduced in Sadogashima in Japan. Two Newcastle disease virus (NDV) isolates were collected from sick crested ibises, and their pathogenic and phylogenetic characteristics were investigated. The results showed that they are virulent, with intracerebral pathogenicity indices of 1.46-1.83 and a mean time of death of 54.4-84.4 h. They shared the same virulent motif (112)-R-R-Q-K-R-F-(117) at the F protein cleavage site. The phylogenetic analysis revealed that both isolates were clustered with class II NDVs, with one in genotype VIId and another in a novel genotype (provisionally designated as VIi). The two isolates shared high homology with the strains isolated from poultry flocks in the same region from 2006 to 2010. We first isolated and characterised the NDV isolates from crested ibises, one of which showed new genetic characteristics and formed a new subgenotype with isolates from pigeons and ostriches in the same area. These data are useful for further epidemiological studies on NDV and the protection of crested ibises.

  13. Cross-Disorder Genome-Wide Analyses Suggest a Complex Genetic Relationship Between Tourette Syndrome and Obsessive-Compulsive Disorder

    PubMed Central

    Yu, Dongmei; Mathews, Carol A.; Scharf, Jeremiah M.; Neale, Benjamin M.; Davis, Lea K.; Gamazon, Eric R.; Derks, Eske M.; Evans, Patrick; Edlund, Christopher K.; Crane, Jacquelyn; Fagerness, Jesen A.; Osiecki, Lisa; Gallagher, Patience; Gerber, Gloria; Haddad, Stephen; Illmann, Cornelia; McGrath, Lauren M.; Mayerfeld, Catherine; Arepalli, Sampath; Barlassina, Cristina; Barr, Cathy L.; Bellodi, Laura; Benarroch, Fortu; Berrió, Gabriel Bedoya; Bienvenu, O. Joseph; Black, Donald; Bloch, Michael H.; Brentani, Helena; Bruun, Ruth D.; Budman, Cathy L.; Camarena, Beatriz; Campbell, Desmond D.; Cappi, Carolina; Cardona Silgado, Julio C.; Cavallini, Maria C.; Chavira, Denise A.; Chouinard, Sylvain; Cook, Edwin H.; Cookson, M. R.; Coric, Vladimir; Cullen, Bernadette; Cusi, Daniele; Delorme, Richard; Denys, Damiaan; Dion, Yves; Eapen, Valsama; Egberts, Karin; Falkai, Peter; Fernandez, Thomas; Fournier, Eduardo; Garrido, Helena; Geller, Daniel; Gilbert, Donald; Girard, Simon L.; Grabe, Hans J.; Grados, Marco A.; Greenberg, Benjamin D.; Gross-Tsur, Varda; Grünblatt, Edna; Hardy, John; Heiman, Gary A.; Hemmings, Sian M.J.; Herrera, Luis D.; Hezel, Dianne M.; Hoekstra, Pieter J.; Jankovic, Joseph; Kennedy, James L.; King, Robert A.; Konkashbaev, Anuar I.; Kremeyer, Barbara; Kurlan, Roger; Lanzagorta, Nuria; Leboyer, Marion; Leckman, James F.; Lennertz, Leonhard; Liu, Chunyu; Lochner, Christine; Lowe, Thomas L.; Lupoli, Sara; Macciardi, Fabio; Maier, Wolfgang; Manunta, Paolo; Marconi, Maurizio; McCracken, James T.; Mesa Restrepo, Sandra C.; Moessner, Rainald; Moorjani, Priya; Morgan, Jubel; Muller, Heike; Murphy, Dennis L.; Naarden, Allan L.; Ochoa, William Cornejo; Ophoff, Roel A.; Pakstis, Andrew J.; Pato, Michele T.; Pato, Carlos N.; Piacentini, John; Pittenger, Christopher; Pollak, Yehuda; Rauch, Scott L.; Renner, Tobias; Reus, Victor I.; Richter, Margaret A.; Riddle, Mark A.; Robertson, Mary M.; Romero, Roxana; Rosário, Maria C.; Rosenberg, David; Ruhrmann, Stephan; Sabatti, Chiara; Salvi, Erika; Sampaio, Aline S.; Samuels, Jack; Sandor, Paul; Service, Susan K.; Sheppard, Brooke; Singer, Harvey S.; Smit, Jan H.; Stein, Dan J.; Strengman, Eric; Tischfield, Jay A.; Turiel, Maurizio; Valencia Duarte, Ana V.; Vallada, Homero; Veenstra-VanderWeele, Jeremy; Walitza, Susanne; Walkup, John; Wang, Ying; Weale, Mike; Weiss, Robert; Wendland, Jens R.; Westenberg, Herman G.M.; Yao, Yin; Hounie, Ana G.; Miguel, Euripedes C.; Nicolini, Humberto; Wagner, Michael; Ruiz-Linares, Andres; Cath, Danielle C.; McMahon, William; Posthuma, Danielle; Oostra, Ben A.; Nestadt, Gerald; Rouleau, Guy A.; Purcell, Shaun; Jenike, Michael A.; Heutink, Peter; Hanna, Gregory L.; Conti, David V.; Arnold, Paul D.; Freimer, Nelson; Stewart, S. Evelyn; Knowles, James A.; Cox, Nancy J.; Pauls, David L.

    2014-01-01

    Obsessive-compulsive disorder (OCD) and Tourette Syndrome (TS) are highly heritable neurodevelopmental disorders that are thought to share genetic risk factors. However, the identification of definitive susceptibility genes for these etiologically complex disorders remains elusive. Here, we report a combined genome-wide association study (GWAS) of TS and OCD in 2723 cases (1310 with OCD, 834 with TS, 579 with OCD plus TS/chronic tics (CT)), 5667 ancestry-matched controls, and 290 OCD parent-child trios. Although no individual single nucleotide polymorphisms (SNPs) achieved genome-wide significance, the GWAS signals were enriched for SNPs strongly associated with variations in brain gene expression levels, i.e. expression quantitative loci (eQTLs), suggesting the presence of true functional variants that contribute to risk of these disorders. Polygenic score analyses identified a significant polygenic component for OCD (p=2×10−4), predicting 3.2% of the phenotypic variance in an independent data set. In contrast, TS had a smaller, non-significant polygenic component, predicting only 0.6% of the phenotypic variance (p=0.06). No significant polygenic signal was detected across the two disorders, although the sample is likely underpowered to detect a modest shared signal. Furthermore, the OCD polygenic signal was significantly attenuated when cases with both OCD and TS/CT were included in the analysis (p=0.01). Previous work has shown that TS and OCD have some degree of shared genetic variation. However, the data from this study suggest that there are also distinct components to the genetic architectures of TS and OCD. Furthermore, OCD with co-occurring TS/CT may have different underlying genetic susceptibility compared to OCD alone. PMID:25158072

  14. Heritability and Demographic Analyses in the Large Isolated Population of Val Borbera Suggest Advantages in Mapping Complex Traits Genes

    PubMed Central

    Masciullo, Corrado; Cverhova, Valeria; Lori, Francesca; Pistis, Giorgio; Bione, Silvia; Gasparini, Paolo; Ulivi, Sheila; Ciullo, Marina; Nutile, Teresa; Bosi, Emanuele; Sirtori, Marcella; Mignogna, Giovanna; Rubinacci, Alessandro; Buetti, Iwan; Camaschella, Clara; Petretto, Enrico; Toniolo, Daniela

    2009-01-01

    Background Isolated populations are a useful resource for mapping complex traits due to shared stable environment, reduced genetic complexity and extended Linkage Disequilibrium (LD) compared to the general population. Here we describe a large genetic isolate from the North West Apennines, the mountain range that runs through Italy from the North West Alps to the South. Methodology/Principal Findings The study involved 1,803 people living in 7 villages of the upper Borbera Valley. For this large population cohort, data from genealogy reconstruction, medical questionnaires, blood, anthropometric and bone status QUS parameters were evaluated. Demographic and epidemiological analyses indicated a substantial genetic component contributing to each trait variation as well as overlapping genetic determinants and family clustering for some traits. Conclusions/Significance The data provide evidence for significant heritability of medical relevant traits that will be important in mapping quantitative traits. We suggest that this population isolate is suitable to identify rare variants associated with complex phenotypes that may be difficult to study in larger but more heterogeneous populations. PMID:19847309

  15. Phylogenetic analyses of typical bovine rotavirus genotypes G6, G10, P[5] and P[11] circulating in Argentinean beef and dairy herds.

    PubMed

    Badaracco, A; Garaicoechea, L; Matthijnssens, J; Louge Uriarte, E; Odeón, A; Bilbao, G; Fernandez, F; Parra, G I; Parreño, V

    2013-08-01

    Group A rotavirus (RVA) is one of the main causes of neonatal calf diarrhea worldwide. RVA strains affecting Argentinean cattle mainly possess combinations of the G6, G10, P[5] and P[11] genotypes. To determine RVA diversity among Argentinean cattle, representative bovine RVA strains detected in diarrheic calves were selected from a survey conducted during 1997-2009. The survey covered the main livestock regions of the country from dairy and beef herds. Different phylogenetic approaches were used to investigate the genetic evolution of RVA strains belonging to the prevalent genotypes. The nucleotide phylogenetic tree showed that all genotypes studied could be divided into several lineages. Argentinean bovine RVA strains were distributed across multiple lineages and most of them were distinct from the lineage containing the vaccine strains. Only the aminoacid phylogenetic tree of G6 RVA strains maintained the same lineages as observed at the nucleotide level, whereas a different clustering pattern was observed for the aminoacid phylogenetic trees of G10, P[5] and P[11] suggesting that the strains are more closely related at the aminoacid level than G6 strains. Association between P[5] and G6(IV), prevalent in beef herd, and between P[11] and G6(III) or G10 (VI and V), prevalent in dairy herds, were found. In addition, Argentinean G6(III), G10, P[5] and P[11] bovine RVA strains grouped together with human strains, highlighting their potential for zoonotic transmission. Phylogenetic studies of RVA circulating in animals raised for consumption and in close contact with humans, such as cattle, contribute to a better understanding of the epidemiology of the RVA infection and evolution.

  16. Empirical calibrated radiocarbon sampler: a tool for incorporating radiocarbon-date and calibration error into Bayesian phylogenetic analyses of ancient DNA.

    PubMed

    Molak, Martyna; Suchard, Marc A; Ho, Simon Y W; Beilman, David W; Shapiro, Beth

    2015-01-01

    Studies of DNA from ancient samples provide a valuable opportunity to gain insight into past evolutionary and demographic processes. Bayesian phylogenetic methods can estimate evolutionary rates and timescales from ancient DNA sequences, with the ages of the samples acting as calibrations for the molecular clock. Sample ages are often estimated using radiocarbon dating, but the associated measurement error is rarely taken into account. In addition, the total uncertainty quantified by converting radiocarbon dates to calendar dates is typically ignored. Here, we present a tool for incorporating both of these sources of uncertainty into Bayesian phylogenetic analyses of ancient DNA. This empirical calibrated radiocarbon sampler (ECRS) integrates the age uncertainty for each ancient sequence over the calibrated probability density function estimated for its radiocarbon date and associated error. We use the ECRS to analyse three ancient DNA data sets. Accounting for radiocarbon-dating and calibration error appeared to have little impact on estimates of evolutionary rates and related parameters for these data sets. However, analyses of other data sets, particularly those with few or only very old radiocarbon dates, might be more sensitive to using artificially precise sample ages and should benefit from use of the ECRS.

  17. Co-evolution of genomic islands and their bacterial hosts revealed through phylogenetic analyses of 17 groups of homologous genomic islands.

    PubMed

    Guo, F-B; Wei, W; Wang, X L; Lin, H; Ding, H; Huang, J; Rao, N

    2012-10-15

    Horizontal gene transfer is an important mechanism for the evolution of microbial genomes, and many horizontal gene transfer events are facilitated by genomic islands (GIs). Until now, few reports have provided evidence for the co-evolution of horizontally transferred genes and their hosts. We obtained 17 groups of homologous GIs, all of which appear in 8 or more bacterial strains of the same species or genus. Using phylogenetic analyses, we found that the topological structure of a distance tree based on the proteins of each group of homologous GIs was consistent with that based on the complete proteomes of the hosts. This result clearly indicates that GIs and their bacterial hosts have co-evolved. In addition to presenting and providing evidence for a novel concept, i.e., the co-evolution of GIs and their bacterial hosts, we also describe a new and interesting detail for the phylogenetic analysis of horizontally transferred genes: consistent phylogenetic trees can be obtained by focusing on homologous GIs despite the commonly accepted theory that the phylogenies of horizontally transferred sequences and host organisms should be inconsistent.

  18. Taxonomic relationships among Turkish water frogs as revealed by phylogenetic analyses using mtDNA gene sequences.

    PubMed

    Bülbül, Ufuk; Matsui, Masafumi; Kutrup, Bilal; Eto, Koshiro

    2011-12-01

    We assessed taxonomic relationships among Turkish water frogs through estimation of phylogenetic relationships among 62 adult specimens from 44 distinct populations inhabiting seven main geographical regions of Turkey using 2897 bp sequences of the mitochondrial Cytb, 12S rRNA and 16S rRNA genes with equally-weighted parsimony, likelihood, and Bayesian methods of inference. Monophyletic clade (Clade A) of the northwesternmost (Thrace) samples is identified as Pelophylax ridibundus. The other clade (Clade B) consisted of two monophyletic subclades. One of these contains specimens from southernmost populations that are regarded as an unnamed species. The other subclade consists of two lineages, of which one corresponds to P. caralitanus and another to P. bedriagae. Taxonomic relationships of these two species are discussed and recognition of P. caralitanus as a subspecies of P. bedriagae is proposed.

  19. Pathogenesis and Phylogenetic Analyses of Two Avian Influenza H7N1 Viruses Isolated from Wild Birds.

    PubMed

    Jin, Hongmei; Wang, Deli; Sun, Jing; Cui, Yanfang; Chen, Guang; Zhang, Xiaolin; Zhang, Jiajie; Li, Xiang; Chai, Hongliang; Gao, Yuwei; Li, Yanbing; Hua, Yuping

    2016-01-01

    The emergence of human infections with a novel H7N9 influenza strain has raised global concerns about a potential human pandemic. To further understand the character of other influenza viruses of the H7 subtype, we selected two H7N1 avian influenza viruses (AIVs) isolated from wild birds during routine surveillance in China: A/Baer's Pochard/Hunan/414/2010 (BP/HuN/414/10) (H7N1) and A/Common Pochard/Xianghai/420/2010 (CP/XH/420/10) (H7N1). To better understand the molecular characteristics of these two isolated H7N1 viruses, we sequenced and phylogenetically analyzed their entire genomes. The results showed that the two H7N1 strains belonged to a Eurasian branch, originating from a common ancestor. Phylogenetic analysis of their hemagglutinin (HA) genes showed that BP/HuN/414/10 and CP/XH/420/10 have a more distant genetic relationship with A/Shanghai/13/2013 (H7N9), with similarities of 91.6 and 91.4%, respectively. To assess the replication and pathogenicity of these viruses in different hosts, they were inoculated in chickens, ducks and mice. Although, both CP/XH/420/10 and BP/HuN/414/10 can infect chickens, ducks and mice, they exhibited different replication capacities in these animals. The results of this study demonstrated that two low pathogenic avian influenza (LPAI) H7N1 viruses of the Eurasian branch could infect mammals and may even have the potential to infect humans. Therefore, it is important to monitor H7 viruses in both domestic and wild birds.

  20. Pathogenesis and Phylogenetic Analyses of Two Avian Influenza H7N1 Viruses Isolated from Wild Birds

    PubMed Central

    Jin, Hongmei; Wang, Deli; Sun, Jing; Cui, Yanfang; Chen, Guang; Zhang, Xiaolin; Zhang, Jiajie; Li, Xiang; Chai, Hongliang; Gao, Yuwei; Li, Yanbing; Hua, Yuping

    2016-01-01

    The emergence of human infections with a novel H7N9 influenza strain has raised global concerns about a potential human pandemic. To further understand the character of other influenza viruses of the H7 subtype, we selected two H7N1 avian influenza viruses (AIVs) isolated from wild birds during routine surveillance in China: A/Baer's Pochard/Hunan/414/2010 (BP/HuN/414/10) (H7N1) and A/Common Pochard/Xianghai/420/2010 (CP/XH/420/10) (H7N1). To better understand the molecular characteristics of these two isolated H7N1 viruses, we sequenced and phylogenetically analyzed their entire genomes. The results showed that the two H7N1 strains belonged to a Eurasian branch, originating from a common ancestor. Phylogenetic analysis of their hemagglutinin (HA) genes showed that BP/HuN/414/10 and CP/XH/420/10 have a more distant genetic relationship with A/Shanghai/13/2013 (H7N9), with similarities of 91.6 and 91.4%, respectively. To assess the replication and pathogenicity of these viruses in different hosts, they were inoculated in chickens, ducks and mice. Although, both CP/XH/420/10 and BP/HuN/414/10 can infect chickens, ducks and mice, they exhibited different replication capacities in these animals. The results of this study demonstrated that two low pathogenic avian influenza (LPAI) H7N1 viruses of the Eurasian branch could infect mammals and may even have the potential to infect humans. Therefore, it is important to monitor H7 viruses in both domestic and wild birds. PMID:27458455

  1. Metagenome-based diversity analyses suggest a significant contribution of non-cyanobacterial lineages to carbonate precipitation in modern microbialites

    PubMed Central

    Saghaï, Aurélien; Zivanovic, Yvan; Zeyen, Nina; Moreira, David; Benzerara, Karim; Deschamps, Philippe; Bertolino, Paola; Ragon, Marie; Tavera, Rosaluz; López-Archilla, Ana I.; López-García, Purificación

    2015-01-01

    Cyanobacteria are thought to play a key role in carbonate formation due to their metabolic activity, but other organisms carrying out oxygenic photosynthesis (photosynthetic eukaryotes) or other metabolisms (e.g., anoxygenic photosynthesis, sulfate reduction), may also contribute to carbonate formation. To obtain more quantitative information than that provided by more classical PCR-dependent methods, we studied the microbial diversity of microbialites from the Alchichica crater lake (Mexico) by mining for 16S/18S rRNA genes in metagenomes obtained by direct sequencing of environmental DNA. We studied samples collected at the Western (AL-W) and Northern (AL-N) shores of the lake and, at the latter site, along a depth gradient (1, 5, 10, and 15 m depth). The associated microbial communities were mainly composed of bacteria, most of which seemed heterotrophic, whereas archaea were negligible. Eukaryotes composed a relatively minor fraction dominated by photosynthetic lineages, diatoms in AL-W, influenced by Si-rich seepage waters, and green algae in AL-N samples. Members of the Gammaproteobacteria and Alphaproteobacteria classes of Proteobacteria, Cyanobacteria, and Bacteroidetes were the most abundant bacterial taxa, followed by Planctomycetes, Deltaproteobacteria (Proteobacteria), Verrucomicrobia, Actinobacteria, Firmicutes, and Chloroflexi. Community composition varied among sites and with depth. Although cyanobacteria were the most important bacterial group contributing to the carbonate precipitation potential, photosynthetic eukaryotes, anoxygenic photosynthesizers and sulfate reducers were also very abundant. Cyanobacteria affiliated to Pleurocapsales largely increased with depth. Scanning electron microscopy (SEM) observations showed considerable areas of aragonite-encrusted Pleurocapsa-like cyanobacteria at microscale. Multivariate statistical analyses showed a strong positive correlation of Pleurocapsales and Chroococcales with aragonite formation at

  2. Genome-wide analyses suggest parallel selection for universal traits may eclipse local environmental selection in a highly mobile carnivore.

    PubMed

    Stronen, Astrid Vik; Jędrzejewska, Bogumiła; Pertoldi, Cino; Demontis, Ditte; Randi, Ettore; Niedziałkowska, Magdalena; Borowik, Tomasz; Sidorovich, Vadim E; Kusak, Josip; Kojola, Ilpo; Karamanlidis, Alexandros A; Ozolins, Janis; Dumenko, Vitalii; Czarnomska, Sylwia D

    2015-10-01

    Ecological and environmental heterogeneity can produce genetic differentiation in highly mobile species. Accordingly, local adaptation may be expected across comparatively short distances in the presence of marked environmental gradients. Within the European continent, wolves (Canis lupus) exhibit distinct north-south population differentiation. We investigated more than 67-K single nucleotide polymorphism (SNP) loci for signatures of local adaptation in 59 unrelated wolves from four previously identified population clusters (northcentral Europe n = 32, Carpathian Mountains n = 7, Dinaric-Balkan n = 9, Ukrainian Steppe n = 11). Our analyses combined identification of outlier loci with findings from genome-wide association study of individual genomic profiles and 12 environmental variables. We identified 353 candidate SNP loci. We examined the SNP position and neighboring megabase (1 Mb, one million bases) regions in the dog (C. lupus familiaris) genome for genes potentially under selection, including homologue genes in other vertebrates. These regions included functional genes for, for example, temperature regulation that may indicate local adaptation and genes controlling for functions universally important for wolves, including olfaction, hearing, vision, and cognitive functions. We also observed strong outliers not associated with any of the investigated variables, which could suggest selective pressures associated with other unmeasured environmental variables and/or demographic factors. These patterns are further supported by the examination of spatial distributions of the SNPs associated with universally important traits, which typically show marked differences in allele frequencies among population clusters. Accordingly, parallel selection for features important to all wolves may eclipse local environmental selection and implies long-term separation among population clusters.

  3. The phylogenetic position of the Loimoidae Price, 1936 (Monogenoidea: Monocotylidea) based on analyses of partial rDNA sequences and morphological data.

    PubMed

    Boeger, W A; Kritsky, D C; Domingues, M V; Bueno-Silva, M

    2014-06-01

    Phylogenetic analyses of partial sequences of 18S and 28S rDNA of some monogenoids, including monocotylids and a specimen of Loimosina sp. collected from a hammerhead shark off Brazil, indicated that the Loimoidae (as represented by the specimen of Loimosina sp.) represents an in-group taxon of the Monocotylidae. In all analyses, the Loimoidae fell within a major monocotylid clade including species of the Heterocotylinae, Decacotylinae, and Monocotylinae. The Loimoidae formed a terminal clade with two heterocotyline species, Troglocephalus rhinobatidis and Neoheterocotyle rhinobatis, for which it represented the sister taxon. The following morphological characters supported the clade comprising the Loimoidae, Heterocotylinae, Decacotylinae and Monocotylinae: single vagina present, presence of a narrow deep anchor root, and presence of a marginal haptoral membrane. The presence of cephalic pits was identified as a putative synapomorphy for the clade (Loimoidae (T. rhinobatidis, N. rhinobatis)). Although rDNA sequence data support the rejection of the Loimoidae and incorporating its species into the Monocotylidae, this action was not recommended pending a full phylogenetic analysis of morphological data.

  4. Multilocus analyses of seven candidate genes suggest interacting pathways for obesity-related traits in Brazilian populations.

    PubMed

    Angeli, Cláudia B; Kimura, Lilian; Auricchio, Maria T; Vicente, João P; Mattevi, Vanessa S; Zembrzuski, Verônica M; Hutz, Mara H; Pereira, Alexandre C; Pereira, Tiago V; Mingroni-Netto, Regina C

    2011-06-01

    We investigated whether variants in major candidate genes for food intake and body weight regulation contribute to obesity-related traits under a multilocus perspective. We studied 375 Brazilian subjects from partially isolated African-derived populations (quilombos). Seven variants displaying conflicting results in previous reports and supposedly implicated in the susceptibility of obesity-related phenotypes were investigated: β2-adrenergic receptor (ADRB2) (Arg16Gly), insulin induced gene 2 (INSIG2) (rs7566605), leptin (LEP) (A19G), LEP receptor (LEPR) (Gln223Arg), perilipin (PLIN) (6209T > C), peroxisome proliferator-activated receptor-γ (PPARG) (Pro12Ala), and resistin (RETN) (-420 C > G). Regression models as well as generalized multifactor dimensionality reduction (GMDR) were employed to test the contribution of individual effects and higher-order interactions to BMI and waist-hip ratio (WHR) variation and risk of overweight/obesity. The best multilocus association signal identified in the quilombos was further examined in an independent sample of 334 Brazilian subjects of European ancestry. In quilombos, only the PPARG polymorphism displayed significant individual effects (WHR variation, P = 0.028). No association was observed either with the risk of overweight/obesity (BMI ≥ 25 kg/m2), risk of obesity alone (BMI ≥ 30 kg/m2) or BMI variation. However, GMDR analyses revealed an interaction between the LEPR and ADRB2 polymorphisms (P = 0.009) as well as a third-order effect involving the latter two variants plus INSIG2 (P = 0.034) with overweight/obesity. Assessment of the LEPR-ADRB2 interaction in the second sample indicated a marginally significant association (P = 0.0724), which was further verified to be limited to men (P = 0.0118). Together, our findings suggest evidence for a two-locus interaction between the LEPR Gln223Arg and ADRB2 Arg16Gly variants in the risk of overweight/obesity, and highlight further the importance of multilocus effects in

  5. Large-scale phylogenetic analyses reveal multiple gains of actinorhizal nitrogen-fixing symbioses in angiosperms associated with climate change.

    PubMed

    Li, Hong-Lei; Wang, Wei; Mortimer, Peter E; Li, Rui-Qi; Li, De-Zhu; Hyde, Kevin D; Xu, Jian-Chu; Soltis, Douglas E; Chen, Zhi-Duan

    2015-09-10

    Nitrogen is fundamental to all life forms and is also one of the most limiting of nutrients for plant growth. Several clades of angiosperms have developed symbiotic relationships with actinorhizal bacteria that fix atmospheric nitrogen and increase access to this nutrient. However, the evolutionary patterns of actinorhizal nitrogen-fixing symbioses remain unclear to date. Furthermore the underlying environmental pressures that led to the gain of symbiotic actinorhizal nitrogen fixation have never been investigated. Here, we present the most comprehensive genus-level phylogenetic analysis of the nitrogen-fixing angiosperms based on three plastid loci. We found that actinorhizal nitrogen-fixing species are distributed in nine distinct lineages. By dating the branching events, we determined that seven actinorhizal nitrogen-fixing lineages originated during the Late Cretaceous, and two more emerged during the Eocene. We put forward a hypothesis that multiple gains of actinorhizal nitrogen-fixing symbioses in angiosperms may have been associated with increased global temperatures and high levels of atmospheric carbon dioxide during these two time periods, as well as the availability of open habitats with high light conditions. Our nearly complete genus-level time-tree for the nitrogen-fixing clade is a significant advance in understanding the evolutionary and ecological background of this important symbiosis between plants and bacteria.

  6. Mitochondrial DNA sequence analyses and phylogenetic relationships among two Nigerian goat breeds and the South African Kalahari Red.

    PubMed

    Awotunde, Esther O; Bemji, Martha N; Olowofeso, Olajide; James, Ikechukwu J; Ajayi, O O; Adebambo, Ayotunde O

    2015-01-01

    The first hypervariable (HV1) region of mitochondrial DNA (mtDNA) of two popular Nigerian goat breeds: West African Dwarf (WAD) (n=35) and Red Sokoto (RS) (n=37) and one exotic breed: Kalahari Red (KR) (n=38) imported from South Africa were sequenced to investigate sequence diversity, genetic structure, origin, and demographic history of the populations. A total of 68 polymorphic sites were found in 110 sequences that grouped into 68 haplotypes. Average haplotype and nucleotide diversities for all breeds were 0.982±0.005 and 0.02350±0.00213, respectively. Phylogenetic analysis revealed two mtDNA lineages (A and B). Lineage A was predominant and included all haplotypes from WAD and RS and 5 out of 11 haplotypes of KR goats. The remaining haplotypes (6) of KR belong to lineage B. The analysis of molecular variance revealed a high-within breed genetic variance of 82.4% and a low-between breed genetic variance of 17.6%. The three breeds clustered with Capra aegagrus as their wild ancestor. Mismatch distribution analysis showed that WAD, RS and haplogroup A have experienced population expansion events. The study has revealed very high diversity within the three breeds which are not strongly separated from each other based on mtDNA analysis. The information obtained on the genetic structure of the breeds will be useful in planning improvement and conservation programs for the local populations.

  7. Phylogenetic Analysis of Bolivian Bat Trypanosomes of the Subgenus Schizotrypanum Based on Cytochrome b Sequence and Minicircle Analyses

    PubMed Central

    García, Lineth; Ortiz, Sylvia; Osorio, Gonzalo; Torrico, Mary Cruz; Torrico, Faustino; Solari, Aldo

    2012-01-01

    The aim of this study was to establish the phylogenetic relationships of trypanosomes present in blood samples of Bolivian Carollia bats. Eighteen cloned stocks were isolated from 115 bats belonging to Carollia perspicillata (Phyllostomidae) from three Amazonian areas of the Chapare Province of Bolivia and studied by xenodiagnosis using the vectors Rhodnius robustus and Triatoma infestans (Trypanosoma cruzi marenkellei) or haemoculture (Trypanosoma dionisii). The PCR DNA amplified was analyzed by nucleotide sequences of maxicircles encoding cytochrome b and by means of the molecular size of hyper variable regions of minicircles. Ten samples were classified as Trypanosoma cruzi marinkellei and 8 samples as Trypanosoma dionisii. The two species have a different molecular size profile with respect to the amplified regions of minicircles and also with respect to Trypanosoma cruzi and Trypanosoma rangeli used for comparative purpose. We conclude the presence of two species of bat trypanosomes in these samples, which can clearly be identified by the methods used in this study. The presence of these trypanosomes in Amazonian bats is discussed. PMID:22590570

  8. Large-scale phylogenetic analyses reveal multiple gains of actinorhizal nitrogen-fixing symbioses in angiosperms associated with climate change

    PubMed Central

    Li, Hong-Lei; Wang, Wei; Mortimer, Peter E.; Li, Rui-Qi; Li, De-Zhu; Hyde, Kevin D.; Xu, Jian-Chu; Soltis, Douglas E.; Chen, Zhi-Duan

    2015-01-01

    Nitrogen is fundamental to all life forms and is also one of the most limiting of nutrients for plant growth. Several clades of angiosperms have developed symbiotic relationships with actinorhizal bacteria that fix atmospheric nitrogen and increase access to this nutrient. However, the evolutionary patterns of actinorhizal nitrogen-fixing symbioses remain unclear to date. Furthermore the underlying environmental pressures that led to the gain of symbiotic actinorhizal nitrogen fixation have never been investigated. Here, we present the most comprehensive genus-level phylogenetic analysis of the nitrogen-fixing angiosperms based on three plastid loci. We found that actinorhizal nitrogen-fixing species are distributed in nine distinct lineages. By dating the branching events, we determined that seven actinorhizal nitrogen-fixing lineages originated during the Late Cretaceous, and two more emerged during the Eocene. We put forward a hypothesis that multiple gains of actinorhizal nitrogen-fixing symbioses in angiosperms may have been associated with increased global temperatures and high levels of atmospheric carbon dioxide during these two time periods, as well as the availability of open habitats with high light conditions. Our nearly complete genus-level time-tree for the nitrogen-fixing clade is a significant advance in understanding the evolutionary and ecological background of this important symbiosis between plants and bacteria. PMID:26354898

  9. Chloroplast genome of one brown seaweed, Saccharina japonica (Laminariales, Phaeophyta): its structural features and phylogenetic analyses with other photosynthetic plastids.

    PubMed

    Wang, Xiuliang; Shao, Zhanru; Fu, Wandong; Yao, Jianting; Hu, Qiuping; Duan, Delin

    2013-06-01

    The chloroplast genome sequence of one brown seaweed, Saccharina japonica, was fully determined. It is characterized by 130,584 base pairs (bp) with a large and a small single-copy region (LSC and SSC), separated by two copies of inverted repeats (IR1 and IR2). The inverted repeat is 5015 bp long, and the sizes of SSC and LSC are 43,174 bp and 77,378 bp, respectively. The chloroplast genome of S. japonica consists of 139 protein-coding genes, 29 tRNA genes, and 3 ribosomal RNA genes. One intron was found in one tRNA-Leu gene in the chloroplast genome of S. japonica. Four types of overlapping genes were identified, ycf24 overlapped with ycf16 by 4 nucleotides (nt), ftrB overlapped with ycf12 by 6 nt, rpl4 and rpl23 overlapped by 8 nt, finally, psbC overlapped with psbD by 53 nt. With two sets of concatenated plastid protein data, 40-protein dataset and 26-protein dataset, the chloroplast phylogenetic relationship among S. japonica and the other photosynthetic species was evaluated. We found that the chloroplast genomes of haptophyte, cryptophyte and heterokont were not resolved into one cluster by the 40-protein dataset with amino acid composition bias, although it was recovered with strong support by the 26-protein dataset.

  10. Phylogenetic analyses of Lapita decoration do not support branching evolution or regional population structure during colonization of Remote Oceania.

    PubMed

    Cochrane, Ethan E; Lipo, Carl P

    2010-12-12

    Intricately decorated Lapita pottery (3100-2700 BP) was made and deposited by the prehistoric colonizers of Pacific islands, east of the main Solomon's chain. For decades, analyses of this pottery have focused on the ancestor-descendant relationships of populations and the relative degree of interaction across the region to explain similarities in Lapita decoration. Cladistic analyses, increasingly used to examine the evolutionary relationships of material culture assemblages, have not been conducted on Lapita artefacts. Here, we present the first cladistic analysis of Lapita pottery and note the difficulties in using cladistics to investigate datasets where a high degree of horizontal transmission and non-branching evolution may explain observed variation. We additionally present NeighborNet and phenetic distance network analyses to generate hypotheses that may account for Lapita decorative similarity.

  11. Analysis of the complete genome of Fervidococcus fontis confirms the distinct phylogenetic position of the order Fervidicoccales and suggests its environmental function.

    PubMed

    Lebedinsky, Alexander V; Mardanov, Andrey V; Kublanov, Ilya V; Gumerov, Vadim M; Beletsky, Alexey V; Perevalova, Anna A; Bidzhieva, Salima Kh; Bonch-Osmolovskaya, Elizaveta A; Skryabin, Konstantin G; Ravin, Nikolai V

    2014-03-01

    The complete genome of the obligately anaerobic crenarchaeote Fervidicoccus fontis Kam940(T), a terrestrial hot spring inhabitant with a growth optimum of 65-70 °C, has been sequenced and analyzed. The small 1.3-Mb genome encodes several extracellular proteases and no other extracellular hydrolases. No complete pathways of carbohydrate catabolism were found. Genes coding for enzymes necessary for amino acid transamination and further oxidative decarboxylation are present. The genome encodes no mechanisms of acyl-CoA and acetyl-CoA oxidation. Two [NiFe]-hydrogenases are encoded: a membrane-bound energy-converting hydrogenase and a cytoplasmic one. The ATP-synthase is H(+)-dependent as inferred from the amino acid sequence of the membrane rotor subunit. On the whole, genome analysis shows F. fontis to be a peptidolytic heterotroph with a restricted biosynthetic potential, which is in accordance with its phenotypic properties. The analysis of phylogenetic markers and of the distribution of best blastp hits of F. fontis proteins in the available genomes of Crenarchaeota supports distinct phylogenetic position of the order Fervidicoccales as a separate lineage adjoining the heterogeneous order Desulfurococcales. In addition, certain F. fontis genomic features correlate with its adaptation to temperatures of 60-80 °C, which are lower than temperatures preferred by Desulfurococcales.

  12. Oogonial biometry and phylogenetic analyses of the Pythium vexans species group from woody agricultural hosts in South Africa reveal distinct groups within this taxon.

    PubMed

    Spies, Christoffel F J; Mazzola, Mark; Botha, Wilhelm J; Van Der Rijst, Marieta; Mostert, Lizel; Mcleod, Adéle

    2011-02-01

    Pythium vexans fits into the internal transcribed spacer (ITS) clade K sensu Lévesque & De Cock (2004). Within clade K, P. vexans forms a distinct clade containing two enigmatic species, Pythium indigoferae and Pythium cucurbitacearum of which no ex-type strains are available. In South Africa, as well as in other regions of the world, P. vexans isolates are known to be heterogeneous in their ITS sequences and may consist of more than one species. This study aimed to investigate the diversity of South African P. vexans isolates, mainly from grapevines, but also citrus and apple using (i) phylogenetic analyses of the ITS, cytochrome c oxidase (cox) I, cox II, and β-tubulin regions and (ii) seven biometric oogonial parameters. Each of the phylogenies clustered P. vexans isolates into a single well-supported clade, distinct from other clade K species. The β-tubulin region was phylogenetically uninformative regarding the P. vexans group. The ITS phylogeny and combined cox I and II phylogenies, although each revealing several P. vexans subclades, were incongruent. One of the most striking incongruences was the presence of one cox subclade that contained two distinct ITS subclades (Ib and IV). Three groups (A-C) were subjectively identified among South African P. vexans isolates using (i) phylogenetic clades (ITS and cox), (ii) univariate analysis of oogonial diameters, and (iii) multivariate analyses of biometric oogonial parameters. Group A is considered to be P. vexans s. str. since it contained the P. vexans CBS reference strain from Van der Plaats-Niterink (1981). This group had significantly smaller oogonial diameters than group B and C isolates. Group B contained the isolates from ITS subclades Ib and IV, which formed a single cox subclade. The ITS subclade IV isolates were all sexually sterile or produced mainly abortive oospores, as opposed to the sexually fertile subclade Ib isolates, and may thus represent a distinct assemblage within group B. Although ITS

  13. Nucleotide and phylogenetic analyses of the Chlamydia trachomatis ompA gene indicates it is a hotspot for mutation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Serovars of the human pathogen Chlamydia trachomatis occupy one of three specific tissue niches. Genomic analyses indicate that the serovars have a phylogeny congruent with their pathobiology and have an average substitution rate of less than one nucleotide per kilobase. The ompA gene, h...

  14. Phylogenetic and phylodynamic analyses of human metapneumovirus in Buenos Aires (Argentina) for a three-year period (2009-2011).

    PubMed

    Velez Rueda, Ana Julia; Mistchenko, Alicia Susana; Viegas, Mariana

    2013-01-01

    Human metapneumovirus, which belongs to the Paramyxoviridae family and has been classified as a member of the Pneumovirus genus, is genetically and clinically similar to other family members such as human respiratory syncytial virus. A total of 1146 nasopharyngeal aspirates from pediatric patients with moderate and severe acute lower respiratory tract infections, hospitalized at the Ricardo Gutierrez Childreńs Hospital (Buenos Aires, Argentina), were tested by real time RT-PCR for human metapneumovirus. Results showed that 168 (14.65%) were positive. Thirty-six of these 168 samples were randomly selected to characterize positive cases molecularly. The phylogenetic analysis of the sequences of the G and F genes showed that genotypes A2 and B2 cocirculated during 2009 and 2010 and that only genotype A2 circulated in 2011 in Argentina. Genotype A2 prevailed during the study period, a fact supported by a higher effective population size (Neτ) and higher diversity as compared to that of genotype B2 (10.9% (SE 1.3%) vs. 1.7% (SE 0.4%), respectively). The phylogeographic analysis of the G protein gene sequences showed that this virus has no geographical restrictions and can travel globally harbored in hosts. The selection pressure analysis of the F protein showed that although this protein has regions with polymorphisms, it has vast structural and functional constraints. In addition, the predicted B-linear epitopes and the sites recognized by previously described monoclonal antibodies were conserved in all Argentine sequences. This points out this protein as a potential candidate to be the target of future humanized antibodies or vaccines.

  15. Functional and Phylogenetic Analyses of a Conserved Regulatory Program in the Phloem of Minor Veins1[w

    PubMed Central

    Ayre, Brian G.; Blair, Jaime E.; Turgeon, Robert

    2003-01-01

    The minor-vein phloem of mature leaves is developmentally and physiologically distinct from the phloem in the rest of the vascular system. Phloem loading of transport sugars occurs in the minor veins, and consistent with this, galactinol synthase is expressed in the minor veins of melon (Cucumis melo) as part of the symplastic-loading mechanism that operates in this species. A galactinol synthase promoter from melon drives gene expression in the minor-vein companion cells of both transgenic tobacco (Nicotiana tabacum) and Arabidopsis. Neither of these plants use galactinol in the phloem-loading process, implying that the promoter responds to a minor-vein-specific regulatory cascade that is highly conserved across a broad range of eudicotyledons. Detailed analysis of this promoter by truncation and mutagenesis identified three closely coupled sequences that unambiguously modulate tissue specificity. These sequences cooperate in a combinatorial fashion: two promote expression throughout the vascular system of the plant, whereas the third functions to repress expression in the larger bundles. In a complementary approach, phylogenetic footprinting was used to obtain single-nucleotide resolution of conserved sites in orthologous promoters from diverse members of the Cucurbitaceae. This comparative analysis confirmed the importance of the closely coupled sites but also revealed other highly conserved sequences that may modulate promoter strength or contribute to expression patterns outside of the phloem. The conservation of this regulatory design among species that phloem load by different mechanisms supports a model for organismal development in which tissues and cell types are controlled by relatively ancient and conserved paradigms but expression of genes influencing final form and function are relatively plastic. PMID:14526110

  16. Interpretive analysis of 85 systematic reviews suggests that narrative syntheses and meta-analyses are incommensurate in argumentation.

    PubMed

    Melendez-Torres, G J; O'Mara-Eves, A; Thomas, J; Brunton, G; Caird, J; Petticrew, M

    2016-11-17

    Using Toulmin's argumentation theory, we analysed the texts of systematic reviews in the area of workplace health promotion to explore differences in the modes of reasoning embedded in reports of narrative synthesis as compared with reports of meta-analysis. We used framework synthesis, grounded theory and cross-case analysis methods to analyse 85 systematic reviews addressing intervention effectiveness in workplace health promotion. Two core categories, or 'modes of reasoning', emerged to frame the contrast between narrative synthesis and meta-analysis: practical-configurational reasoning in narrative synthesis ('what is going on here? What picture emerges?') and inferential-predictive reasoning in meta-analysis ('does it work, and how well? Will it work again?'). Modes of reasoning examined quality and consistency of the included evidence differently. Meta-analyses clearly distinguished between warrant and claim, whereas narrative syntheses often presented joint warrant-claims. Narrative syntheses and meta-analyses represent different modes of reasoning. Systematic reviewers are likely to be addressing research questions in different ways with each method. It is important to consider narrative synthesis in its own right as a method and to develop specific quality criteria and understandings of how it is carried out, not merely as a complement to, or second-best option for, meta-analysis. © 2016 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd.

  17. Interpretive analysis of 85 systematic reviews suggests that narrative syntheses and meta‐analyses are incommensurate in argumentation

    PubMed Central

    O'Mara‐Eves, A.; Thomas, J.; Brunton, G.; Caird, J.; Petticrew, M.

    2016-01-01

    Using Toulmin's argumentation theory, we analysed the texts of systematic reviews in the area of workplace health promotion to explore differences in the modes of reasoning embedded in reports of narrative synthesis as compared with reports of meta‐analysis. We used framework synthesis, grounded theory and cross‐case analysis methods to analyse 85 systematic reviews addressing intervention effectiveness in workplace health promotion. Two core categories, or ‘modes of reasoning’, emerged to frame the contrast between narrative synthesis and meta‐analysis: practical–configurational reasoning in narrative synthesis (‘what is going on here? What picture emerges?’) and inferential–predictive reasoning in meta‐analysis (‘does it work, and how well? Will it work again?’). Modes of reasoning examined quality and consistency of the included evidence differently. Meta‐analyses clearly distinguished between warrant and claim, whereas narrative syntheses often presented joint warrant–claims. Narrative syntheses and meta‐analyses represent different modes of reasoning. Systematic reviewers are likely to be addressing research questions in different ways with each method. It is important to consider narrative synthesis in its own right as a method and to develop specific quality criteria and understandings of how it is carried out, not merely as a complement to, or second‐best option for, meta‐analysis. © 2016 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd. PMID:27860329

  18. Reprint of "Sequence and phylogenetic analyses of novel totivirus-like double-stranded RNAs from field-collected powdery mildew fungi".

    PubMed

    Kondo, Hideki; Hisano, Sakae; Chiba, Sotaro; Maruyama, Kazuyuki; Andika, Ida Bagus; Toyoda, Kazuhiro; Fujimori, Fumihiro; Suzuki, Nobuhiro

    2016-07-02

    The identification of mycoviruses contributes greatly to understanding of the diversity and evolutionary aspects of viruses. Powdery mildew fungi are important and widely studied obligate phytopathogenic agents, but there has been no report on mycoviruses infecting these fungi. In this study, we used a deep sequencing approach to analyze the double-stranded RNA (dsRNA) segments isolated from field-collected samples of powdery mildew fungus-infected red clover plants in Japan. Database searches identified the presence of at least ten totivirus (genus Totivirus)-like sequences, termed red clover powdery mildew-associated totiviruses (RPaTVs). The majority of these sequences shared moderate amino acid sequence identity with each other (<44%) and with other known totiviruses (<59%). Nine of these identified sequences (RPaTV1a, 1b and 2-8) resembled the genome of the prototype totivirus, Saccharomyces cerevisiae virus-L-A (ScV-L-A) in that they contained two overlapping open reading frames (ORFs) encoding a putative coat protein (CP) and an RNA dependent RNA polymerase (RdRp), while one sequence (RPaTV9) showed similarity to another totivirus, Ustilago maydis virus H1 (UmV-H1) that encodes a single polyprotein (CP-RdRp fusion). Similar to yeast totiviruses, each ScV-L-A-like RPaTV contains a -1 ribosomal frameshift site downstream of a predicted pseudoknot structure in the overlapping region of these ORFs, suggesting that the RdRp is translated as a CP-RdRp fusion. Moreover, several ScV-L-A-like sequences were also found by searches of the transcriptome shotgun assembly (TSA) libraries from rust fungi, plants and insects. Phylogenetic analyses show that nine ScV-L-A-like RPaTVs along with ScV-L-A-like sequences derived from TSA libraries are clustered with most established members of the genus Totivirus, while one RPaTV forms a new distinct clade with UmV-H1, possibly establishing an additional genus in the family. Taken together, our results indicate the presence of

  19. Southeast Asian mouth-brooding Betta fighting fish (Teleostei: Perciformes) species and their phylogenetic relationships based on mitochondrial COI and nuclear ITS1 DNA sequences and analyses

    PubMed Central

    Panijpan, Bhinyo; Kowasupat, Chanon; Laosinchai, Parames; Ruenwongsa, Pintip; Phongdara, Amornrat; Senapin, Saengchan; Wanna, Warapond; Phiwsaiya, Kornsunee; Kühne, Jens; Fasquel, Frédéric

    2014-01-01

    Fighting fish species in the genus Betta are found in several Southeast Asian countries. Depending on the mode of paternal care for fertilized eggs and hatchlings, various species of the betta fish are classified as mouth brooders or nest builders whose members in turn have been grouped according to their similarities mainly in morphology. The mouth brooders as well as some nest builders involved in the present study include fishes discovered and identified subsequent to previous reports on species groupings and their positions on phylogenetic trees based on DNA sequences that differ from those used by us in this study. From the mitochondrial COI gene and nuclear ITS1 gene sequences and more accurate analyses we conclude that the following members of the mouth-brooding pairs, named differently previously, are virtually identical, viz the Betta prima–Betta pallida pair and Betta ferox–Betta apollon pair. The Betta simplex, hitherto believed to be one species, could possibly be genetically split into 2 distinct species. In addition, several other established type-locality fishes could harbor cryptic species as judged by genetic differences. Assignments of fish species to groups reported earlier may have to be altered somewhat by the present genetic findings. We propose here a new Betta fish phylogenetic tree which, albeit being similar to the previous ones, is clearly different from them. Our gene-based evidence also leads to assignments of some fishes to new species groups and alters the positions of some species on the new phylogenetic tree, thus implying different ancestral relationships. PMID:25606468

  20. Phylogenetic analyses of influenza A (H1N1)pdm09 hemagglutinin gene during and after the pandemic event in Brazil.

    PubMed

    Resende, Paola Cristina; Motta, Fernando Couto; Born, Priscila Silva; Machado, Daniela; Caetano, Braulia Costa; Brown, David; Siqueira, Marilda Mendonça

    2015-12-01

    Pandemic influenza A H1N1 [A(H1N1)pdm09] was first detected in Brazil in May 2009, and spread extensively throughout the country causing a peak of infection during June to August 2009. Since then, it has continued to circulate with a seasonal pattern, causing high rates of morbidity and mortality. Over this period, the virus has continually evolved with the accumulation of new mutations. In this study we analyze the phylogenetic relationship in a collection of 220 A(H1N1)pdm09 hemagglutinin (HA) gene sequences collected during and after the pandemic period (2009 to 2014) in Brazil. In addition, we have looked for evidence of viral polymorphisms associated with severe disease and compared the range of viral variants with the vaccine strain (A/California/7/2009) used throughout this period. The phylogenetic analyses in this study revealed the circulation of at least eight genetic groups in Brazil. Two (G6-pdm and G7-pdm) co-circulated during the pandemic period, showing an early pattern of viral diversification with a low genetic distance from vaccine strain. Other phylogenetic groups, G5, G6 (including 6B, 6C and 6D subgroups), and G7 were found in the subsequent epidemic seasons from 2011 to 2014. These viruses exhibited more amino acid differences from the vaccine strain with several substitutions at the antigenic sites. This is associated with a theoretical decrease in the vaccine efficacy. Furthermore, we observed that the presence of any polymorphism at residue 222 of the HA gene was significantly associated with severe/fatal cases, reinforcing previous reports that described this residue as a potential virulence marker. This study provides new information about the circulation of some viral variants in Brazil, follows up potential genetic markers associated with virulence and allows infer if the efficacy of the current vaccine against more recent A(H1N1)pdm09 strains may be reduced.

  1. Phylogenetic analysis of nuclear small subunit rDNA sequences suggests that the endangered African Pencil Cedar, Juniperus procera, is associated with distinct members of Glomeraceae.

    PubMed

    Wubet, Tesfaye; Weiss, Michael; Kottke, Ingrid; Teketay, Demel; Oberwinkler, Franz

    2006-09-01

    The endangered indigenous tree species Juniperus procera, commonly known as African Pencil Cedar, is an important component of the dry Afromontane vegetation of Ethiopia and was shown to be AM in earlier studies. Here we describe the composition of AM fungi in colonized roots of J. procera from two dry Afromontane forests of Ethiopia. The nuSSU rDNA gene was amplified from colonized roots, cloned and sequenced using AM fungal specific primers that were partly developed for this study. Molecular phylogenetic analysis revealed that all the glomeralean sequences obtained belonged exclusively to the genus Glomus (Glomeraceae). Seven distinct Glomus sequence types were identified that all are new to science. The composition of the AM fungal communities between the sampled trees, and between the two study sites in general, differed significantly. Isolation and utilization of the indigenous AM fungal taxa from the respective sites might be required for successful enrichment plantation of this threatened Juniperus species.

  2. Assessment of fecal pollution sources in a small northern-plains watershed using PCR and phylogenetic analyses of Bacteroidetes 16S rRNA gene

    USGS Publications Warehouse

    Lamendella, R.; Domingo, J.W.S.; Oerther, D.B.; Vogel, J.R.; Stoeckel, D.M.

    2007-01-01

    We evaluated the efficacy, sensitivity, host-specificity, and spatial/temporal dynamics of human- and ruminant-specific 16S rRNA gene Bacteroidetes markers used to assess the sources of fecal pollution in a fecally impacted watershed. Phylogenetic analyses of 1271 fecal and environmental 16S rRNA gene clones were also performed to study the diversity of Bacteroidetes in this watershed. The host-specific assays indicated that ruminant feces were present in 28-54% of the water samples and in all sampling seasons, with increasing frequency in downstream sites. The human-targeted assays indicated that only 3-5% of the water samples were positive for human fecal signals, although a higher percentage of human-associated signals (19-24%) were detected in sediment samples. Phylogenetic analysis indicated that 57% of all water clones clustered with yet-to-be-cultured Bacteroidetes species associated with sequences obtained from ruminant feces, further supporting the prevalence of ruminant contamination in this watershed. However, since several clusters contained sequences from multiple sources, future studies need to consider the potential cosmopolitan nature of these bacterial populations when assessing fecal pollution sources using Bacteroidetes markers. Moreover, additional data is needed in order to understand the distribution of Bacteroidetes host-specific markers and their relationship to water quality regulatory standards. ?? 2006 Federation of European Microbiological Societies.

  3. Emerging highly pathogenic H5 avian influenza viruses in France during winter 2015/16: phylogenetic analyses and markers for zoonotic potential

    PubMed Central

    Briand, François-Xavier; Schmitz, Audrey; Ogor, Katell; Le Prioux, Aurélie; Guillou-Cloarec, Cécile; Guillemoto, Carole; Allée, Chantal; Le Bras, Marie-Odile; Hirchaud, Edouard; Quenault, Hélène; Touzain, Fabrice; Cherbonnel-Pansart, Martine; Lemaitre, Evelyne; Courtillon, Céline; Gares, Hélène; Daniel, Patrick; Fediaevsky, Alexandre; Massin, Pascale; Blanchard, Yannick; Eterradossi, Nicolas; van der Werf, Sylvie; Jestin, Véronique; Niqueux, Eric

    2017-01-01

    Several new highly pathogenic (HP) H5 avian influenza virus (AIV) have been detected in poultry farms from south-western France since November 2015, among which an HP H5N1. The zoonotic potential and origin of these AIVs immediately became matters of concern. One virus of each subtype H5N1 (150169a), H5N2 (150233) and H5N9 (150236) was characterised. All proved highly pathogenic for poultry as demonstrated molecularly by the presence of a polybasic cleavage site in their HA protein – with a sequence (HQRRKR/GLF) previously unknown among avian H5 HPAI viruses – or experimentally by the in vivo demonstration of an intravenous pathogenicity index of 2.9 for the H5N1 HP isolate. Phylogenetic analyses based on the full genomes obtained by NGS confirmed that the eight viral segments of the three isolates were all part of avian Eurasian phylogenetic lineage but differed from the Gs/Gd/1/96-like lineage. The study of the genetic characteristics at specific amino acid positions relevant for modulating the adaptation to and the virulence for mammals showed that presently, these viruses possess most molecular features characteristic of AIV and lack some major characteristics required for efficient respiratory transmission to or between humans. The three isolates are therefore predicted to have no significant pandemic potential. PMID:28277218

  4. Phylogenetic analyses and nitrate-reducing activity of fungal cultures isolated from the permanent, oceanic oxygen minimum zone of the Arabian Sea.

    PubMed

    Manohar, Cathrine Sumathi; Menezes, Larissa Danielle; Ramasamy, Kesava Priyan; Meena, Ram M

    2015-03-01

    Reports on the active role of fungi as denitrifiers in terrestrial ecosystems have stimulated an interest in the study of the role of fungi in oxygen-deficient marine systems. In this study, the culturable diversity of fungi was investigated from 4 stations within the permanent, oceanic, oxygen minimum zone of the Arabian Sea. The isolated cultures grouped within the 2 major fungal phyla Ascomycota and Basidiomycota; diversity estimates in the stations sampled indicated that the diversity of the oxygen-depleted environments is less than that of mangrove regions and deep-sea habitats. Phylogenetic analyses of 18S rRNA sequences revealed a few divergent isolates that clustered with environmental sequences previously obtained by others. This is significant, as these isolates represent phylotypes that so far were known only from metagenomic studies and are of phylogenetic importance. Nitrate reduction activity, the first step in the denitrification process, was recorded for isolates under simulated anoxic, deep-sea conditions showing ecological significance of fungi in the oxygen-depleted habitats. This report increases our understanding of fungal diversity in unique, poorly studied habitats and underlines the importance of fungi in the oxygen-depleted environments.

  5. Analysis of genetic diversity in banana cultivars (Musa cvs.) from the South of Oman using AFLP markers and classification by phylogenetic, hierarchical clustering and principal component analyses.

    PubMed

    Opara, Umezuruike Linus; Jacobson, Dan; Al-Saady, Nadiya Abubakar

    2010-05-01

    Banana is an important crop grown in Oman and there is a dearth of information on its genetic diversity to assist in crop breeding and improvement programs. This study employed amplified fragment length polymorphism (AFLP) to investigate the genetic variation in local banana cultivars from the southern region of Oman. Using 12 primer combinations, a total of 1094 bands were scored, of which 1012 were polymorphic. Eighty-two unique markers were identified, which revealed the distinct separation of the seven cultivars. The results obtained show that AFLP can be used to differentiate the banana cultivars. Further classification by phylogenetic, hierarchical clustering and principal component analyses showed significant differences between the clusters found with molecular markers and those clusters created by previous studies using morphological analysis. Based on the analytical results, a consensus dendrogram of the banana cultivars is presented.

  6. Suggested protocol for collecting, handling and preparing peat cores and peat samples for physical, chemical, mineralogical and isotopic analyses.

    PubMed

    Givelet, Nicolas; Le Roux, Gaël; Cheburkin, Andriy; Chen, Bin; Frank, Jutta; Goodsite, Michael E; Kempter, Heike; Krachler, Michael; Noernberg, Tommy; Rausch, Nicole; Rheinberger, Stefan; Roos-Barraclough, Fiona; Sapkota, Atindra; Scholz, Christian; Shotyk, William

    2004-05-01

    For detailed reconstructions of atmospheric metal deposition using peat cores from bogs, a comprehensive protocol for working with peat cores is proposed. The first step is to locate and determine suitable sampling sites in accordance with the principal goal of the study, the period of time of interest and the precision required. Using the state of the art procedures and field equipment, peat cores are collected in such a way as to provide high quality records for paleoenvironmental study. Pertinent field observations gathered during the fieldwork are recorded in a field report. Cores are kept frozen at -18 degree C until they can be prepared in the laboratory. Frozen peat cores are precisely cut into 1 cm slices using a stainless steel band saw with stainless steel blades. The outside edges of each slice are removed using a titanium knife to avoid any possible contamination which might have occurred during the sampling and handling stage. Each slice is split, with one-half kept frozen for future studies (archived), and the other half further subdivided for physical, chemical, and mineralogical analyses. Physical parameters such as ash and water contents, the bulk density and the degree of decomposition of the peat are determined using established methods. A subsample is dried overnight at 105 degree C in a drying oven and milled in a centrifugal mill with titanium sieve. Prior to any expensive and time consuming chemical procedures and analyses, the resulting powdered samples, after manual homogenisation, are measured for more than twenty-two major and trace elements using non-destructive X-Ray fluorescence (XRF) methods. This approach provides lots of valuable geochemical data which documents the natural geochemical processes which occur in the peat profiles and their possible effect on the trace metal profiles. The development, evaluation and use of peat cores from bogs as archives of high-resolution records of atmospheric deposition of mineral dust and trace

  7. Analyses of nuclearly encoded mitochondrial genes suggest gene duplication as a mechanism for resolving intralocus sexually antagonistic conflict in Drosophila.

    PubMed

    Gallach, Miguel; Chandrasekaran, Chitra; Betrán, Esther

    2010-01-01

    Gene duplication is probably the most important mechanism for generating new gene functions. However, gene duplication has been overlooked as a potentially effective way to resolve genetic conflicts. Here, we analyze the entire set of Drosophila melanogaster nuclearly encoded mitochondrial duplicate genes and show that both RNA- and DNA-mediated mitochondrial gene duplications exhibit an unexpectedly high rate of relocation (change in location between parental and duplicated gene) as well as an extreme tendency to avoid the X chromosome. These trends are likely related to our observation that relocated genes tend to have testis-specific expression. We also infer that these trends hold across the entire Drosophila genus. Importantly, analyses of gene ontology and functional interaction networks show that there is an overrepresentation of energy production-related functions in these mitochondrial duplicates. We discuss different hypotheses to explain our results and conclude that our findings substantiate the hypothesis that gene duplication for male germline function is likely a mechanism to resolve intralocus sexually antagonistic conflicts that we propose are common in testis. In the case of nuclearly encoded mitochondrial duplicates, our hypothesis is that past sexually antagonistic conflict related to mitochondrial energy function in Drosophila was resolved by gene duplication.

  8. Limitations of Species Delimitation Based on Phylogenetic Analyses: A Case Study in the Hypogymnia hypotrypa Group (Parmeliaceae, Ascomycota)

    PubMed Central

    Wei, Xinli; McCune, Bruce; Lumbsch, H. Thorsten; Li, Hui; Leavitt, Steven; Yamamoto, Yoshikazu; Tchabanenko, Svetlana; Wei, Jiangchun

    2016-01-01

    Delimiting species boundaries among closely related lineages often requires a range of independent data sets and analytical approaches. Similar to other organismal groups, robust species circumscriptions in fungi are increasingly investigated within an empirical framework. Here we attempt to delimit species boundaries in a closely related clade of lichen-forming fungi endemic to Asia, the Hypogymnia hypotrypa group (Parmeliaceae). In the current classification, the Hypogymnia hypotrypa group includes two species: H. hypotrypa and H. flavida, which are separated based on distinctive reproductive modes, the former producing soredia but absent in the latter. We reexamined the relationship between these two species using phenotypic characters and molecular sequence data (ITS, GPD, and MCM7 sequences) to address species boundaries in this group. In addition to morphological investigations, we used Bayesian clustering to identify potential genetic groups in the H. hypotrypa/H. flavida clade. We also used a variety of empirical, sequence-based species delimitation approaches, including: the “Automatic Barcode Gap Discovery” (ABGD), the Poisson tree process model (PTP), the General Mixed Yule Coalescent (GMYC), and the multispecies coalescent approach BPP. Different species delimitation scenarios were compared using Bayes factors delimitation analysis, in addition to comparisons of pairwise genetic distances, pairwise fixation indices (FST). The majority of the species delimitation analyses implemented in this study failed to support H. hypotrypa and H. flavida as distinct lineages, as did the Bayesian clustering analysis. However, strong support for the evolutionary independence of H. hypotrypa and H. flavida was inferred using BPP and further supported by Bayes factor delimitation. In spite of rigorous morphological comparisons and a wide range of sequence-based approaches to delimit species, species boundaries in the H. hypotrypa group remain uncertain. This study

  9. Molecular phylogenetic analyses of nuclear and plastid DNA sequences support dysploid and polyploid chromosome number changes and reticulate evolution in the diversification of Melampodium (Millerieae, Asteraceae)

    PubMed Central

    Blöch, Cordula; Weiss-Schneeweiss, Hanna; Schneeweiss, Gerald M.; Barfuss, Michael H.J.; Rebernig, Carolin A.; Villaseñor, José Luis; Stuessy, Tod F.

    2014-01-01

    Chromosome evolution (including polyploidy, dysploidy, and structural changes) as well as hybridization and introgression are recognized as important aspects in plant speciation. A suitable group for investigating the evolutionary role of chromosome number changes and reticulation is the medium-sized genus Melampodium (Millerieae, Asteraceae), which contains several chromosome base numbers (x = 9, 10, 11, 12, 14) and a number of polyploid species, including putative allopolyploids. A molecular phylogenetic analysis employing both nuclear (ITS) and plastid (matK) DNA sequences, and including all species of the genus, suggests that chromosome base numbers are predictive of evolutionary lineages within Melampodium. Dysploidy, therefore, has clearly been important during evolution of the group. Reticulate evolution is evident with allopolyploids, which prevail over autopolyploids and several of which are confirmed here for the first time, and also (but less often) on the diploid level. Within sect. Melampodium, the complex pattern of bifurcating phylogenetic structure among diploid taxa overlain by reticulate relationships from allopolyploids has non-trivial implications for intrasectional classification. PMID:19272456

  10. Comparative transcriptome analyses reveal core parasitism genes and suggest gene duplication and repurposing as sources of structural novelty.

    PubMed

    Yang, Zhenzhen; Wafula, Eric K; Honaas, Loren A; Zhang, Huiting; Das, Malay; Fernandez-Aparicio, Monica; Huang, Kan; Bandaranayake, Pradeepa C G; Wu, Biao; Der, Joshua P; Clarke, Christopher R; Ralph, Paula E; Landherr, Lena; Altman, Naomi S; Timko, Michael P; Yoder, John I; Westwood, James H; dePamphilis, Claude W

    2015-03-01

    The origin of novel traits is recognized as an important process underlying many major evolutionary radiations. We studied the genetic basis for the evolution of haustoria, the novel feeding organs of parasitic flowering plants, using comparative transcriptome sequencing in three species of Orobanchaceae. Around 180 genes are upregulated during haustorial development following host attachment in at least two species, and these are enriched in proteases, cell wall modifying enzymes, and extracellular secretion proteins. Additionally, about 100 shared genes are upregulated in response to haustorium inducing factors prior to host attachment. Collectively, we refer to these newly identified genes as putative "parasitism genes." Most of these parasitism genes are derived from gene duplications in a common ancestor of Orobanchaceae and Mimulus guttatus, a related nonparasitic plant. Additionally, the signature of relaxed purifying selection and/or adaptive evolution at specific sites was detected in many haustorial genes, and may play an important role in parasite evolution. Comparative analysis of gene expression patterns in parasitic and nonparasitic angiosperms suggests that parasitism genes are derived primarily from root and floral tissues, but with some genes co-opted from other tissues. Gene duplication, often taking place in a nonparasitic ancestor of Orobanchaceae, followed by regulatory neofunctionalization, was an important process in the origin of parasitic haustoria.

  11. Comparative Transcriptome Analyses Reveal Core Parasitism Genes and Suggest Gene Duplication and Repurposing as Sources of Structural Novelty

    PubMed Central

    Yang, Zhenzhen; Wafula, Eric K.; Honaas, Loren A.; Zhang, Huiting; Das, Malay; Fernandez-Aparicio, Monica; Huang, Kan; Bandaranayake, Pradeepa C.G.; Wu, Biao; Der, Joshua P.; Clarke, Christopher R.; Ralph, Paula E.; Landherr, Lena; Altman, Naomi S.; Timko, Michael P.; Yoder, John I.; Westwood, James H.; dePamphilis, Claude W.

    2015-01-01

    The origin of novel traits is recognized as an important process underlying many major evolutionary radiations. We studied the genetic basis for the evolution of haustoria, the novel feeding organs of parasitic flowering plants, using comparative transcriptome sequencing in three species of Orobanchaceae. Around 180 genes are upregulated during haustorial development following host attachment in at least two species, and these are enriched in proteases, cell wall modifying enzymes, and extracellular secretion proteins. Additionally, about 100 shared genes are upregulated in response to haustorium inducing factors prior to host attachment. Collectively, we refer to these newly identified genes as putative “parasitism genes.” Most of these parasitism genes are derived from gene duplications in a common ancestor of Orobanchaceae and Mimulus guttatus, a related nonparasitic plant. Additionally, the signature of relaxed purifying selection and/or adaptive evolution at specific sites was detected in many haustorial genes, and may play an important role in parasite evolution. Comparative analysis of gene expression patterns in parasitic and nonparasitic angiosperms suggests that parasitism genes are derived primarily from root and floral tissues, but with some genes co-opted from other tissues. Gene duplication, often taking place in a nonparasitic ancestor of Orobanchaceae, followed by regulatory neofunctionalization, was an important process in the origin of parasitic haustoria. PMID:25534030

  12. Phylogenetic and functional analyses of a plant protein related to human B-cell receptor-associated proteins.

    PubMed

    Atabekova, Anastasia K; Pankratenko, Anna V; Makarova, Svetlana S; Lazareva, Ekaterina A; Owens, Robert A; Solovyev, Andrey G; Morozov, Sergey Y

    2017-01-01

    Human B-cell receptor-associated protein BAP31 (HsBAP31) is the endoplasmic reticulum-resident protein involved in protein sorting and transport as well as pro-apoptotic signaling. Plant orthologs of HsBAP31 termed 'plant BAP-like proteins' (PBL proteins) have thus far remained unstudied. Recently, the PBL protein from Nicotiana tabacum (NtPBL) was identified as an interactor of Nt-4/1, a plant protein known to interact with plant virus movement proteins and affect the long-distance transport of potato spindle tuber viroid (PSTVd) via the phloem. Here, we have compared the sequences of PBL proteins and studied the biochemical properties of NtPBL. Analysis of a number of fully sequenced plant genomes revealed that PBL-encoding genes represent a small multigene family with up to six members per genome. Two conserved motifs were identified in the C-terminal region of PBL proteins. The NtPBL C-terminal hydrophilic region (NtPBL-C) was expressed in bacterial cells, purified, and used for analysis of its RNA binding properties in vitro. In gel shift experiments, NtPBL-C was found to bind several tested RNAs, showing the most efficient binding to microRNA precursors (pre-miRNA) and less efficient interaction with PSTVd. Mutational analysis suggested that NtPBL-C has a composite RNA-binding site, with two conserved lysine residues in the most C-terminal protein region being involved in binding of pre-miRNA but not PSTVd RNA. Virus-mediated transient expression of NtPBL-C in plants resulted in stunting and leaf malformation, developmental abnormalities similar to those described previously for blockage of miRNA biogenesis/function. We hypothesize that the NtPBL protein represents a previously undiscovered component of the miRNA pathway.

  13. Understanding V(D)J recombination initiator RAG1 gene using molecular phylogenetic and genetic variant analyses and upgrading missense and non-coding variants of clinical importance.

    PubMed

    Kumar, Abhishek; Bhandari, Anita; Sarde, Sandeep J; Muppavarapu, Sekhar; Tandon, Ravi

    2015-07-10

    The recombination-activating genes (RAGs) encode for V(D)J recombinases responsible for rearrangements of antigen-receptor genes during T and B cell development, and RAG expression is known to correlate strictly with the process of rearrangement. There have been several studies of RAG1 illustrating biochemical, physiological and immunological properties. Hitherto, there are limited studies on RAG1 focusing molecular phylogenetic analyses, evolutionary traits, and genetic variants in human populations. Hence, there is a need of a comprehensive study on this topic. In the current report, we have shed light into insights of evolutionary traits and genetic variants of human RAG1 gene using 1092 genomes from human populations. Syntenic analyses revealed that two RAG genes are physically linked and conserved on the same locus in head-to-head orientation from sea urchin to human for about 550 MY. Spliceosomal introns have been in invaded in fishes and sea urchin, whereas gene structures of RAG1 gene from tetrapods remained single exon architecture. We compiled 751 genetic variants in human RAG1 gene using 1092 human genomes; where major stockholders of variant classes are 79% single nucleotide polymorphisms (SNPs), 12.2% somatic single nucleotide variants (somatic SNVs) and 6.8% deletion. Out of 267 missense variants, 140 are deleterious mutations. We identified 284 non-coding variants with 94% regulatory in nature.

  14. Phylogenetic Analyses of Shigella and Enteroinvasive Escherichia coli for the Identification of Molecular Epidemiological Markers: Whole-Genome Comparative Analysis Does Not Support Distinct Genera Designation.

    PubMed

    Pettengill, Emily A; Pettengill, James B; Binet, Rachel

    2015-01-01

    As a leading cause of bacterial dysentery, Shigella represents a significant threat to public health and food safety. Related, but often overlooked, enteroinvasive Escherichia coli (EIEC) can also cause dysentery. Current typing methods have limited ability to identify and differentiate between these pathogens despite the need for rapid and accurate identification of pathogens for clinical treatment and outbreak response. We present a comprehensive phylogeny of Shigella and EIEC using whole genome sequencing of 169 samples, constituting unparalleled strain diversity, and observe a lack of monophyly between Shigella and EIEC and among Shigella taxonomic groups. The evolutionary relationships in the phylogeny are supported by analyses of population structure and hierarchical clustering patterns of translated gene homolog abundance. Lastly, we identified a panel of 404 single nucleotide polymorphism (SNP) markers specific to each phylogenetic cluster for more accurate identification of Shigella and EIEC. Our findings show that Shigella and EIEC are not distinct evolutionary groups within the E. coli genus and, thus, EIEC as a group is not the ancestor to Shigella. The multiple analyses presented provide evidence for reconsidering the taxonomic placement of Shigella. The SNP markers offer more discriminatory power to molecular epidemiological typing methods involving these bacterial pathogens.

  15. Phylogeographic Analyses of American Black Bears (Ursus americanus) Suggest Four Glacial Refugia and Complex Patterns of Postglacial Admixture.

    PubMed

    Puckett, Emily E; Etter, Paul D; Johnson, Eric A; Eggert, Lori S

    2015-09-01

    Studies of species with continental distributions continue to identify intraspecific lineages despite continuous habitat. Lineages may form due to isolation by distance, adaptation, divergence across barriers, or genetic drift following range expansion. We investigated lineage diversification and admixture within American black bears (Ursus americanus) across their range using 22 k single nucleotide polymorphisms and mitochondrial DNA sequences. We identified three subcontinental nuclear clusters which we further divided into nine geographic regions: Alaskan (Alaska-East), eastern (Central Interior Highlands, Great Lakes, Northeast, Southeast), and western (Alaska-West, West, Pacific Coast, Southwest). We estimated that the western cluster diverged 67 ka, before eastern and Alaskan divergence 31 ka; these divergence dates contrasted with those from the mitochondrial genome where clades A and B diverged 1.07 Ma, and clades A-east and A-west diverged 169 ka. We combined estimates of divergence timing with hindcast species distribution models to infer glacial refugia for the species in Beringia, Pacific Northwest, Southwest, and Southeast. Our results show a complex arrangement of admixture due to expansion out of multiple refugia. The delineation of the genomic population clusters was inconsistent with the ranges for 16 previously described subspecies. Ranges for U. a. pugnax and U. a. cinnamomum were concordant with admixed clusters, calling into question how to order taxa below the species level. Additionally, our finding that U. a. floridanus has not diverged from U. a. americanus also suggests that morphology and genetics should be reanalyzed to assess taxonomic designations relevant to the conservation management of the species.

  16. Genomic and phylogenetic analyses of an adenovirus isolated from a corn snake (Elaphe guttata) imply a common origin with members of the proposed new genus Atadenovirus.

    PubMed

    Farkas, Szilvia L; Benko, Mária; Elo, Péter; Ursu, Krisztina; Dán, Adám; Ahne, Winfried; Harrach, Balázs

    2002-10-01

    Approximately 60% of the genome of an adenovirus isolated from a corn snake (Elaphe guttata) was cloned and sequenced. The results of homology searches showed that the genes of the corn snake adenovirus (SnAdV-1) were closest to their counterparts in members of the recently proposed new genus ATADENOVIRUS: In phylogenetic analyses of the complete hexon and protease genes, SnAdV-1 indeed clustered together with the atadenoviruses. The characteristic features in the genome organization of SnAdV-1 included the presence of a gene homologous to that for protein p32K, the lack of structural proteins V and IX and the absence of homologues of the E1A and E3 regions. These characteristics are in accordance with the genus-defining markers of atadenoviruses. Comparison of the cleavage sites of the viral protease in core protein pVII also confirmed SnAdV-1 as a candidate member of the genus ATADENOVIRUS: Thus, the hypothesis on the possible reptilian origin of atadenoviruses (Harrach, Acta Veterinaria Hungarica 48, 484-490, 2000) seems to be supported. However, the base composition of DNA sequence (>18 kb) determined from the SnAdV-1 genome showed an equilibrated GC content of 51%, which is unusual for an atadenovirus.

  17. Purification, sequencing, and phylogenetic analyses of novel Lys-49 phospholipases A(2) from the venoms of rattlesnakes and other pit vipers.

    PubMed

    Tsai, I H; Chen, Y H; Wang, Y M; Tu, M C; Tu, A T

    2001-10-15

    Basic phospholipase A(2) homologs with Lys49 substitution at the essential Ca(2+)-binding site are present in the venom of pit vipers under many genera. However, they have not been found in rattlesnake venoms before. We have now screened for this protein in the venom of rattlesnakes and other less studied pit vipers. By gel filtration chromatography and RP-HPLC, Lys49-phospholipase-like proteins were purified from the venoms of two rattlers, Crotalus atrox and Crotalus m. molossus, and five nonrattlers, Porthidium nummifer, Porthidium godmani, Bothriechis schlegelii, Trimeresurus puniceus, and Trimeresurus albolabris. Their N-terminal amino acid sequences were shown to be characteristic for this phospholipase subfamily. The purified basic proteins from rattlesnakes caused myonecrosis and edema in experimental animals. We have also cloned the cDNAs and solved the complete sequences of four novel Lys49-phospholipases from the venom glands of C. atrox, P. godmani, B. schlegelii, and Deinagkistrodon acutus (hundred-pace). Phylogenetic analyses based on the amino acid sequences of 28 Lys49-phospholipases separate the pitviper of the New World from those of the Old World, and the arboreal Asiatic species from the terrestrial Asiatic species. The implications of the phylogeny tree to the systematics of pit vipers, and structure-function relationship of the Lys49-phospholipases are discussed.

  18. Range extension for the common dolphin (Delphinus sp.) to the Colombian Caribbean, with taxonomic implications from genetic barcoding and phylogenetic analyses.

    PubMed

    Farías-Curtidor, Nohelia; Barragán-Barrera, Dalia C; Chávez-Carreño, Paula Alejandra; Jiménez-Pinedo, Cristina; Palacios, Daniel M; Caicedo, Dalila; Trujillo, Fernando; Caballero, Susana

    2017-01-01

    The nearest known population of common dolphins (Delphinus sp.) to the Colombian Caribbean occurs in a fairly restricted range in eastern Venezuela. These dolphins have not been previously reported in the Colombian Caribbean, likely because of a lack of study of the local cetacean fauna. We collected cetacean observations in waters of the Guajira Department, northern Colombia (~11°N, 73°W) during two separate efforts: (a) a seismic vessel survey (December 2009-March 2010), and (b) three coastal surveys from small boats (May-July 2012, May 2013, and May 2014). Here we document ten sightings of common dolphins collected during these surveys, which extend the known range of the species by ~1000 km into the southwestern Caribbean. We also collected nine skin biopsies in 2013 and 2014. In order to determine the taxonomic identity of the specimens, we conducted genetic barcoding and phylogenetic analyses using two mitochondrial markers, the Control Region (mtDNA) and Cytochrome b (Cytb). Results indicate that these specimens are genetically closer to the short-beaked common dolphin (Delphinus delphis) even though morphologically they resemble a long-beaked form (Delphinus sp.). However, the specific taxonomic status of common dolphins in the Caribbean and in the Western Atlantic remains unresolved. It is also unclear whether the distribution of the species between northern Colombia and eastern Venezuela is continuous or disjoined, or whether they can be considered part of the same stock.

  19. Range extension for the common dolphin (Delphinus sp.) to the Colombian Caribbean, with taxonomic implications from genetic barcoding and phylogenetic analyses

    PubMed Central

    Chávez-Carreño, Paula Alejandra; Jiménez-Pinedo, Cristina; Palacios, Daniel M.; Caicedo, Dalila; Trujillo, Fernando; Caballero, Susana

    2017-01-01

    The nearest known population of common dolphins (Delphinus sp.) to the Colombian Caribbean occurs in a fairly restricted range in eastern Venezuela. These dolphins have not been previously reported in the Colombian Caribbean, likely because of a lack of study of the local cetacean fauna. We collected cetacean observations in waters of the Guajira Department, northern Colombia (~11°N, 73°W) during two separate efforts: (a) a seismic vessel survey (December 2009—March 2010), and (b) three coastal surveys from small boats (May—July 2012, May 2013, and May 2014). Here we document ten sightings of common dolphins collected during these surveys, which extend the known range of the species by ~1000 km into the southwestern Caribbean. We also collected nine skin biopsies in 2013 and 2014. In order to determine the taxonomic identity of the specimens, we conducted genetic barcoding and phylogenetic analyses using two mitochondrial markers, the Control Region (mtDNA) and Cytochrome b (Cytb). Results indicate that these specimens are genetically closer to the short-beaked common dolphin (Delphinus delphis) even though morphologically they resemble a long-beaked form (Delphinus sp.). However, the specific taxonomic status of common dolphins in the Caribbean and in the Western Atlantic remains unresolved. It is also unclear whether the distribution of the species between northern Colombia and eastern Venezuela is continuous or disjoined, or whether they can be considered part of the same stock. PMID:28192446

  20. Phylogenetic and molecular analyses of human parainfluenza type 3 virus in Buenos Aires, Argentina, between 2009 and 2013: The emergence of new genetic lineages.

    PubMed

    Goya, Stephanie; Mistchenko, Alicia Susana; Viegas, Mariana

    2016-04-01

    Despite that human parainfluenza type 3 viruses (HPIV3) are one of the leading causes of acute lower respiratory tract infections in children under five, there is no licensed vaccine and there is limited current information on the molecular characteristics of regional and global circulating strains. The aim of this study was to describe the molecular characterization of HPIV3 circulating in Buenos Aires. We performed a genetic and phylogenetic analysis of the HN glycoprotein gene. Between 2009 and 2013, 124 HPIV3-positive samples taken from hospitalized pediatric patients were analyzed. Four new genetic lineages were described. Among them, C1c and C3d lineages showed local circulation patterns, whereas C3e and C3f comprised sequences from very distant countries. Despite the diversity of the described genotypes, C3a and C3d predominated over the others, the latter was present during the first years of the study and it was progressively replaced by C3a. Molecular analyses showed 28 non-synonymous substitutions; of these, 13 were located in potentially predicted B-cell epitopes. Taken together, the emergence of genetic lineages and the information of the molecular characteristics of HN protein may contribute to the general knowledge of HPIV3 molecular epidemiology for future vaccine development and antiviral therapies.

  1. The closest relatives of cacti: insights from phylogenetic analyses of chloroplast and mitochondrial sequences with special emphasis on relationships in the tribe Anacampseroteae.

    PubMed

    Nyffeler, Reto

    2007-01-01

    Recent molecular and morphological systematic investigations revealed that the cacti are most closely related to Anacampseroteae, Portulaca and Talinum of the family Portulacaceae (ACPT clade of suborder Portulacineae). A combined analysis of ndhF, matK, and nad1 sequence data from the chloroplast and the mitochondrial genomes indicates that the tribe Anacampseroteae is the sister group of the family Cactaceae. This clade, together with Portulaca, is well characterized by the presence of axillary hairs or scales. Relationships within Anacampseroteae are characterized by a grade of five species of Grahamia s.l. from North and South America, and Grahamia australiana is found to be sister to the genera Anacampseros and Avonia. A comparison of vegetative characteristics indicates an evolutionary transition from woody subshrubs to dwarf perennial and highly succulent herbs during the diversification of Anacampseroteae. Available evidence from the present investigation as well as from previously published studies suggests that a revised classification of Portulacineae on the basis of inferred phylogenetic relationships might consist of a superfamily that includes Cactaceae and the three genera Anacampseros s.l. (including Avonia and Grahamia s.l.), Portulaca, and Talinum (including Talinella), either referred to three monogeneric families or to a paraphyletic family Portulacaceae*.

  2. Identification and evolutionary dynamics of two novel human coronavirus OC43 genotypes associated with acute respiratory infections: phylogenetic, spatiotemporal and transmission network analyses

    PubMed Central

    Oong, Xiang Yong; Ng, Kim Tien; Takebe, Yutaka; Ng, Liang Jie; Chan, Kok Gan; Chook, Jack Bee; Kamarulzaman, Adeeba; Tee, Kok Keng

    2017-01-01

    Human coronavirus OC43 (HCoV-OC43) is commonly associated with respiratory tract infections in humans, with five genetically distinct genotypes (A to E) described so far. In this study, we obtained the full-length genomes of HCoV-OC43 strains from two previously unrecognized lineages identified among patients presenting with severe upper respiratory tract symptoms in a cross-sectional molecular surveillance study in Kuala Lumpur, Malaysia, between 2012 and 2013. Phylogenetic, recombination and comparative genomic analyses revealed two distinct clusters diverging from a genotype D-like common ancestor through recombination with a putative genotype A-like lineage in the non-structural protein (nsp) 10 gene. Signature amino acid substitutions and a glycine residue insertion at the N-terminal domain of the S1 subunit of the spike gene, among others, exhibited further distinction in a recombination pattern, to which these clusters were classified as genotypes F and G. The phylogeographic mapping of the global spike gene indicated that the genetically similar HCoV-OC43 genotypes F and G strains were potentially circulating in China, Japan, Thailand and Europe as early as the late 2000s. The transmission network construction based on the TN93 pairwise genetic distance revealed the emergence and persistence of multiple sub-epidemic clusters of the highly prevalent genotype D and its descendant genotypes F and G, which contributed to the spread of HCoV-OC43 in the region. Finally, a more consistent nomenclature system for non-recombinant and recombinant HCoV-OC43 lineages is proposed, taking into account genetic recombination as an important feature in HCoV evolution and classification. PMID:28050020

  3. Cloning and characterization of a pectin lyase gene from Colletotrichum lindemuthianum and comparative phylogenetic/structural analyses with genes from phytopathogenic and saprophytic/opportunistic microorganisms

    PubMed Central

    2011-01-01

    Background Microorganisms produce cell-wall-degrading enzymes as part of their strategies for plant invasion/nutrition. Among these, pectin lyases (PNLs) catalyze the depolymerization of esterified pectin by a β-elimination mechanism. PNLs are grouped together with pectate lyases (PL) in Family 1 of the polysaccharide lyases, as they share a conserved structure in a parallel β-helix. The best-characterized fungal pectin lyases are obtained from saprophytic/opportunistic fungi in the genera Aspergillus and Penicillium and from some pathogens such as Colletotrichum gloeosporioides. The organism used in the present study, Colletotrichum lindemuthianum, is a phytopathogenic fungus that can be subdivided into different physiological races with different capacities to infect its host, Phaseolus vulgaris. These include the non-pathogenic and pathogenic strains known as races 0 and 1472, respectively. Results Here we report the isolation and sequence analysis of the Clpnl2 gene, which encodes the pectin lyase 2 of C. lindemuthianum, and its expression in pathogenic and non-pathogenic races of C. lindemuthianum grown on different carbon sources. In addition, we performed a phylogenetic analysis of the deduced amino acid sequence of Clpnl2 based on reported sequences of PNLs from other sources and compared the three-dimensional structure of Clpnl2, as predicted by homology modeling, with those of other organisms. Both analyses revealed an early separation of bacterial pectin lyases from those found in fungi and oomycetes. Furthermore, two groups could be distinguished among the enzymes from fungi and oomycetes: one comprising enzymes from mostly saprophytic/opportunistic fungi and the other formed mainly by enzymes from pathogenic fungi and oomycetes. Clpnl2 was found in the latter group and was grouped together with the pectin lyase from C. gloeosporioides. Conclusions The Clpnl2 gene of C. lindemuthianum shares the characteristic elements of genes coding for pectin

  4. Integrated network-diversity analyses suggest suppressive effect of Hodgkin’s lymphoma and slightly relieving effect of chemotherapy on human milk microbiome

    PubMed Central

    Ma, Zhanshan (Sam); Li, Lianwei; Li, Wendy; Li, Jie; Chen, Hongju

    2016-01-01

    We aim to investigate the effects of Hodgkin’s lymphoma and the chemotherapy for treating the disease on the human milk microbiome through integrated network and community diversity analyses. Our analyses suggest that Hodgkin’s lymphoma seems to have a suppressing effect on the milk microbiome by lowering the milk microbial community diversity, as measured by the Hill numbers profiles. Although the diversity analysis did not reveal an effect of chemotherapy on community diversity, bacterial species interaction network analysis shows that chemotherapy may help to slightly restore the milk microbiome impacted by Hodgkin’s lymphoma through its influence on the interactions among species (or OTUs). We further constructed diversity-metabolites network, which suggests that the milk microbial diversity is positively correlated with some beneficial milk metabolites such as DHA (DocosaHexaenoic Acid), and that the diversity is negatively correlated with some potentially harmful metabolites such as Butanal. We hence postulate that higher milk microbial diversity should be a signature of healthy mothers and beneficial to infants. Finally, we constructed metabolites OTU correlation networks, from which we identified some special OTUs. These OTUs deserve further investigations given their apparent involvements in regulating the levels of critical milk metabolites such as DHA, Inositol and Butanal. PMID:27386954

  5. Phylogenetic analysis of the genera Proteus, Morganella and Providencia by comparison of rpoB gene sequences of type and clinical strains suggests the reclassification of Proteus myxofaciens in a new genus, Cosenzaea gen. nov., as Cosenzaea myxofaciens comb. nov.

    PubMed

    Giammanco, Giovanni M; Grimont, Patrick A D; Grimont, Francine; Lefevre, Martine; Giammanco, Giuseppe; Pignato, Sarina

    2011-07-01

    Phylogenetic analysis of partial rpoB gene sequences of type and clinical strains belonging to different 16S rRNA gene-fingerprinting ribogroups within 11 species of enterobacteria of the genera Proteus, Morganella and Providencia was performed and allowed the definition of rpoB clades, supported by high bootstrap values and confirmed by ≥2.5 % nucleotide divergence. None of the resulting clades included strains belonging to different species and the majority of the species were confirmed as discrete and homogeneous. However, more than one distinct rpoB clade could be defined among strains belonging to the species Proteus vulgaris (two clades), Providencia alcalifaciens (two clades) and Providencia rettgeri (three clades), suggesting that some strains represent novel species according to the genotypes outlined by rpoB gene sequence analysis. Percentage differences between the rpoB gene sequence of the type strain of Proteus myxofaciens and other members of the same genus (17.3-18.9 %) were similar to those calculated amongst strains of the genus Providencia (16.4-18.7 %), suggesting a genetic distance at the genus-level between Proteus myxofaciens and the rest of the Proteus-Providencia group. Proteus myxofaciens therefore represents a member of a new genus, for which the name Cosenzaea gen. nov., is proposed.

  6. Re-Evaluation of Phylogenetic Relationships among Species of the Mangrove Genus Avicennia from Indo-West Pacific Based on Multilocus Analyses

    PubMed Central

    Li, Xinnian; Duke, Norman C.; Yang, Yuchen; Huang, Lishi; Zhu, Yuxiang; Zhang, Zhang; Zhou, Renchao; Zhong, Cairong; Huang, Yelin; Shi, Suhua

    2016-01-01

    Avicennia L. (Avicenniaceae), one of the most diverse mangrove genera, is distributed widely in tropical and subtropical intertidal zones worldwide. Five species of Avicennia in the Indo-West Pacific region have been previously described. However, their phylogenetic relationships were determined based on morphological and allozyme data. To enhance our understanding of evolutionary patterns in the clade, we carried out a molecular phylogenetic study using wide sampling and multiple loci. Our results support two monophyletic clades across all species worldwide in Avicennia: an Atlantic-East Pacific (AEP) lineage and an Indo-West Pacific (IWP) lineage. This split is in line with biogeographic distribution of the clade. Focusing on the IWP branch, we reconstructed a detailed phylogenetic tree based on sequences from 25 nuclear genes. The results identified three distinct subclades, (1) A. rumphiana and A. alba, (2) A. officinalis and A. integra, and (3) the A. marina complex, with high bootstrap support. The results strongly corresponded to two morphological traits in floral structure: stigma position in relation to the anthers and style length. Using Bayesian dating methods we estimated diversification of the IWP lineage was dated to late Miocene (c. 6.0 million years ago) and may have been driven largely by the fluctuating sea levels since that time. PMID:27716800

  7. Experimental facilitation of the sensed presence is predicted by the specific patterns of the applied magnetic fields, not by suggestibility: re-analyses of 19 experiments.

    PubMed

    St-Pierre, L S; Persinger, M A

    2006-09-01

    If all experiences are generated by brain activity, then experiences of God and spirits should also be produced by the appropriate cerebral stimulation. During the last 15 years experiments have shown that the sensed presence of a "Sentient Being" can be reliably evoked by very specific temporal patterns of weak (<1 microT) transcerebral magnetic fields applied across the temporoparietal region of the two hemispheres. Recently Granqvist et al. (2005) attributed these effects to suggestibility and exotic beliefs. Re-analyses with additional data for 407 subjects (19 experiments) showed that the magnetic configurations, not the subjects' exotic beliefs or suggestibility, were responsible for the experimental facilitation of sensing a presence. On the other hand, the subjects' histories of sensed presences before exposure to the experimental setting were moderately correlated with exotic beliefs and temporal lobe sensitivity. Several recent experiments have shown that the side attributed to the presence at the time of the experience is sensitive to the temporal parameters of the fields, the hemisphere to which they are maximized, and the person's a priori beliefs. The importance of verifying the specific timing and temporal pattern of the software-generated fields and following an effective protocol is emphasized.

  8. A close relationship between Cercozoa and Foraminifera supported by phylogenetic analyses based on combined amino acid sequences of three cytoskeletal proteins (actin, alpha-tubulin, and beta-tubulin).

    PubMed

    Takishita, Kiyotaka; Inagaki, Yuji; Tsuchiya, Masashi; Sakaguchi, Miako; Maruyama, Tadashi

    2005-12-05

    Recently, there has been increasing molecular evidence of phylogenetic affinity between Cercozoa and Foraminifera in the eukaryotic lineage. We performed phylogenetic analyses based on the combined (concatenated) amino acid sequence data of actin, alpha-tubulin, and beta-tubulin from a wide variety of eukaryotes, including the foraminifers Planoglabratella opercularis and Reticulomyxa filosa, as well as cercomonad and chlorarachniophyte members of Cercozoa. A monophyletic lineage composed of two foraminiferan species branched with the centroheliozoan species Raphidiophrys contractilis was reconstructed in both Bayesian and maximum-likelihood (ML) analyses under 'linked' models, enforcing a single set of the parameters (the parameter for among-site rate variation and branch lengths) on the entire combined alignment. Considering the extremely divergent nature of Foraminifera and Raphidiophyrs tubulins, the union of these lineages recovered is most probably a long-branch attraction artifact due to ignoring gene-specific evolutionary processes. On the other hand, the foraminiferan lineage was within the radiation of Cercozoa in Bayesian analyses under 'unlinked' model conditions, accommodating differences in evolutionary processes across the three genes in the combined alignment. The Foraminifera+Cercozoa affinity recovered in the latter multi-gene analyses is most likely genuine, and thus our data presented here provide further support for the close relationship between these two protist lineages.

  9. Evolutionary history of trypanosomes from South American caiman (Caiman yacare) and African crocodiles inferred by phylogenetic analyses using SSU rDNA and gGAPDH genes.

    PubMed

    Viola, L B; Almeida, R S; Ferreira, R C; Campaner, M; Takata, C S A; Rodrigues, A C; Paiva, F; Camargo, E P; Teixeira, M M G

    2009-01-01

    In this study, using a combined data set of SSU rDNA and gGAPDH gene sequences, we provide phylogenetic evidence that supports clustering of crocodilian trypanosomes from the Brazilian Caiman yacare (Alligatoridae) and Trypanosoma grayi, a species that circulates between African crocodiles (Crocodilydae) and tsetse flies. In a survey of trypanosomes in Caiman yacare from the Brazilian Pantanal, the prevalence of trypanosome infection was 35% as determined by microhaematocrit and haemoculture, and 9 cultures were obtained. The morphology of trypomastigotes from caiman blood and tissue imprints was compared with those described for other crocodilian trypanosomes. Differences in morphology and growth behaviour of caiman trypanosomes were corroborated by molecular polymorphism that revealed 2 genotypes. Eight isolates were ascribed to genotype Cay01 and 1 to genotype Cay02. Phylogenetic inferences based on concatenated SSU rDNA and gGAPDH sequences showed that caiman isolates are closely related to T. grayi, constituting a well-supported monophyletic assemblage (clade T. grayi). Divergence time estimates based on clade composition, and biogeographical and geological events were used to discuss the relationships between the evolutionary histories of crocodilian trypanosomes and their hosts.

  10. Phylogenetic and in silico functional analyses of thermostable-direct hemolysin and tdh-related encoding genes in Vibrio parahaemolyticus and other Gram-negative bacteria.

    PubMed

    Bhowmik, Sushanta K; Pazhani, Gururaja P; Ramamurthy, Thandavarayan

    2014-01-01

    Emergence and spread of pandemic strains of Vibrio parahaemolyticus have drawn attention to make detailed study on their genomes. The pathogenicity of V. parahaemolyticus has been associated with thermostable-direct hemolysin (TDH) and/or TDH-related hemolysin (TRH). The present study evaluated characteristics of tdh and trh genes, considering the phylogenetic and in silico functional features of V. parahaemolyticus and other bacteria. Fifty-two tdh and trh genes submitted to the GenBank were analyzed for sequence similarity. The promoter sequences of these genes were also analyzed from transcription start point to -35 regions and correlated with amino acid substitution within the coding regions. The phylogenetic analysis revealed that tdh and trh are highly distinct and also differ within the V. parahaemolyticus strains that were isolated from different geographical regions. Promoter sequence analysis revealed nucleotide substitutions and deletions at -18 and -19 positions among the pandemic, prepandemic, and nonpandemic tdh sequences. Many amino acid substitutions were also found within the signal peptide and also in the matured protein region of several TDH proteins as compared to TDH-S protein of pandemic V. parahaemolyticus. Experimental evidences are needed to recognize the importance of substitutions and deletions in the tdh and trh genes.

  11. Phylogenetic Co-Occurrence of ExoR, ExoS, and ChvI, Components of the RSI Bacterial Invasion Switch, Suggests a Key Adaptive Mechanism Regulating the Transition between Free-Living and Host-Invading Phases in Rhizobiales

    PubMed Central

    Heavner, Mary Ellen; Qiu, Wei-Gang; Cheng, Hai-Ping

    2015-01-01

    Both bacterial symbionts and pathogens rely on their host-sensing mechanisms to activate the biosynthetic pathways necessary for their invasion into host cells. The Gram-negative bacterium Sinorhizobium meliloti relies on its RSI (ExoR-ExoS-ChvI) Invasion Switch to turn on the production of succinoglycan, an exopolysaccharide required for its host invasion. Recent whole-genome sequencing efforts have uncovered putative components of RSI-like invasion switches in many other symbiotic and pathogenic bacteria. To explore the possibility of the existence of a common invasion switch, we have conducted a phylogenomic survey of orthologous ExoR, ExoS, and ChvI tripartite sets in more than ninety proteobacterial genomes. Our analyses suggest that functional orthologs of the RSI invasion switch co-exist in Rhizobiales, an order characterized by numerous invasive species, but not in the order’s close relatives. Phylogenomic analyses and reconstruction of orthologous sets of the three proteins in Alphaproteobacteria confirm Rhizobiales-specific gene synteny and congruent RSI evolutionary histories. Evolutionary analyses further revealed site-specific substitutions correlated specifically to either animal-bacteria or plant-bacteria associations. Lineage restricted conservation of any one specialized gene is in itself an indication of species adaptation. However, the orthologous phylogenetic co-occurrence of all interacting partners within this single signaling pathway strongly suggests that the development of the RSI switch was a key adaptive mechanism. The RSI invasion switch, originally found in S. meliloti, is a characteristic of the Rhizobiales, and potentially a conserved crucial activation step that may be targeted to control host invasion by pathogenic bacterial species. PMID:26309130

  12. Phylogenetic and Taxonomic Status Analyses of the Abaso Section from Multiple Nuclear Genes and Plastid Fragments Reveal New Insights into the North America Origin of Populus (Salicaceae)

    PubMed Central

    Liu, Xia; Wang, Zhaoshan; Shao, Wenhao; Ye, Zhanyang; Zhang, Jianguo

    2017-01-01

    Although, the Abaso section is widely accepted as an independent section, the taxonomic status of Populus mexicana (section Abaso) has not yet been resolved due to the limited availability markers and/or the lack of P. mexicana specimens in previous studies. Thirty-one poplar species that represent six sections of the Populus genus were sampled, and 23 single-copy nuclear DNA and 34 chloroplast fragments were sequenced. The present study obtained two updated phylogenies of Populus. We found that monophyly of the genus Populus is strongly supported by nuclear and plastid gene, which is consistent with previous studies. P. mexicana, diverged first in the nuclear DNA tree, which occupied the basal position, implying that the section Abaso may be the most ancestral lineage in extant populous species. Given that the short branches and low statistical support for the divergence of sections Abaso and Turanga, this observation probably indicated that a rapid radiation evolution following the early split of the genus Populus. In the plastid tree, P. mexicana clustered with modern-day species of section Tacamahaca in the plastid tree. Based on cytoplasmic and single-copy nuclear marker sequences, we hypothesized that chloroplast capture resulted in the inconsistent position of P. mexicana between the phylogenetic trees. Given the first unequivocal records of poplar fossils from the Eocene with similar leaf morphology to the extant P. mexicana and the phylogenetic positions of P. mexicana in our study, we support the hypothesis that the Populus genus originated in North America, which will provide new insights to the development of the origin of Populus species. PMID:28101098

  13. Multi-gene phylogenetic analyses reveal species limits, phylogeographic patterns, and evolutionary histories of key morphological traits in Entoloma (Agaricales, Basidiomycota).

    PubMed

    Morgado, L N; Noordeloos, M E; Lamoureux, Y; Geml, J

    2013-12-01

    Species from Entoloma subg. Entoloma are commonly recorded from both the Northern and Southern Hemispheres and, according to literature, most of them have at least Nearctic-Palearctic distributions. However, these records are based on morphological analysis, and studies relating morphology, molecular data and geographical distribution have not been reported. In this study, we used phylogenetic species recognition criteria through gene genealogical concordance (based on nuclear ITS, LSU, rpb2 and mitochondrial SSU) to answer specific questions considering species limits in Entoloma subg. Entoloma and their geographic distribution in Europe, North America and Australasia. The studied morphotaxa belong to sect. Entoloma, namely species like the notorious poisonous E. sinuatum (E. lividum auct.), E. prunuloides (type-species of sect. Entoloma), E. nitidum and the red-listed E. bloxamii. With a few exceptions, our results reveal strong phylogeographical partitions that were previously not known. For example, no collection from Australasia proved to be conspecific with the Northern Hemisphere specimens. Almost all North American collections represent distinct and sister taxa to the European ones. And even within Europe, new lineages were uncovered for the red-listed E. bloxamii, which were previously unknown due to a broad morphological species concept. Our results clearly demonstrate the power of the phylogenetic species concept to reveal evolutionary units, to redefine the morphological limits of the species addressed and to provide insights into the evolutionary history of key morphological characters for Entoloma systematics. New taxa are described, and new combinations are made, including E. fumosobrunneum, E. pseudoprunuloides, E. ochreoprunuloides and E. caesiolamellatum. Epitypes are selected for E. prunuloides and E. bloxamii. In addition, complete descriptions are given of some other taxa used in this study for which modern descriptions are lacking, viz. E

  14. Phylogenetic analyses of RPB1 and RPB2 support a middle Cretaceous origin for a clade comprising all agriculturally and medically important fusaria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium (Hypocreales, Nectriaceae) is one of the most economically important and systematically challenging groups of mycotoxigenic phytopathogens and emergent human pathogens. We conducted maximum likelihood (ML), maximum parsimony (MP) and Bayesian (B) analyses on partial RNA polymerase largest (...

  15. Analyses of the Distribution Patterns of Burkholderia pseudomallei and Associated Phages in Soil Samples in Thailand Suggest That Phage Presence Reduces the Frequency of Bacterial Isolation

    PubMed Central

    Withatanung, Patoo; Chantratita, Narisara; Muangsombut, Veerachat; Saiprom, Natnaree; Lertmemongkolchai, Ganjana; Klumpp, Jochen; Clokie, Martha R. J.; Galyov, Edouard E.

    2016-01-01

    Background Burkholderia pseudomallei is a soil saprophytic bacterium that causes melioidosis. The infection occurs through cutaneous inoculation, inhalation or ingestion. Bacteriophages (phages) in the same ecosystem may significantly impact the biology of this bacterium in the environment, and in their culturability in the laboratory. Methods/Principal Findings The soil samples were analysed for the presence of bacteria using culture methods, and for phages using plaque assays on B. pseudomallei strain 1106a lawns. Of the 86 soil samples collected from northeastern Thailand, B. pseudomallei was cultured from 23 (26.7%) samples; no phage capable of infecting B. pseudomallei was detected in these samples. In contrast, phages capable of infecting B. pseudomallei, but no bacteria, were present in 10 (11.6%) samples. B. pseudomallei and their phages were co-isolated from only 3 (3.5%) of soil samples. Since phage capable of infecting B. pseudomallei could not have appeared in the samples without the prior presence of bacteria, or exposure to bacteria nearby, our data suggest that all phage-positive/bacteria-negative samples have had B. pseudomallei in or in a close proximity to them. Taken together, these findings indicate that the presence of phages may influence the success of B. pseudomallei isolation. Transmission electron microscopy revealed that the isolated phages are podoviruses. The temperate phages residing in soil-isolated strains of B. pseudomallei that were resistant to the dominant soil borne phages could be induced by mitomycin C. These induced-temperate phages were closely related, but not identical, to the more dominant soil-isolated phage type. Conclusion/Significance The presence of podoviruses capable of infecting B. pseudomallei may affect the success of the pathogen isolation from the soil. The currently used culture-based methods of B. pseudomallei isolation appear to under-estimate the bacterial abundance. The detection of phage capable of

  16. Phylogenetic and pathogenic analyses of three H5N1 avian influenza viruses (clade 2.3.2.1) isolated from wild birds in Northeast China.

    PubMed

    Fan, Zhaobin; Ci, Yanpeng; Liu, Liling; Ma, Yixin; Jia, Ying; Wang, Deli; Guan, Yuntao; Tian, Guobin; Ma, Jianzhang; Li, Yanbing; Chen, Hualan

    2015-01-01

    From April to September 2012, periodic surveillance of avian influenza H5N1 viruses from different wild bird species was conducted in Northeast China. Three highly pathogenic avian influenza (HPAI) H5N1 viruses were isolated from a yellow-browed warbler, common shoveler, and mallard. To trace the genetic lineage of the isolates, nucleotide sequences of all eight gene segments were determined and phylogenetically analyzed. The data indicated that three viruses belonged to the same antigenic virus group: clade 2.3.2.1. To investigate the pathogenicity of these three viruses in different hosts, chickens, ducks, and mice were inoculated. The results showed that chickens were susceptible to each of the three HPAI H5N1 viruses, resulting in 100% mortality within 2-6 days after infection, whereas the three isolates exhibited distinctly different virulence in ducks and mice. The results of this study demonstrated that HPAI H5N1 viruses of clade 2.3.2.1 are still circulating in wild birds through overlapping migratory flyways. Therefore, continuous monitoring of H5N1 in both domestic and wild birds is necessary to prevent a potentially wider outbreak.

  17. Morphometric and phylogenetic analyses of Serpentirhabdias viperidicus n. sp. (Nematoda: Rhabdiasidae) from the lancehead snake Bothrops moojeni Hoge, 1966 (Reptilia: Serpentes: Viperidae) in Brazil.

    PubMed

    Morais, D H; Aguiar, A; Müller, M I; Narciso, R B; da Silva, L A F; da Silva, R J

    2017-05-01

    Serpentirhabdias viperidicus n. sp. (Nematoda: Rhabdiasidae) is described from the lungs of the 'Brazilian lancehead' Bothrops moojeni (Hoge, 1966) from the savannah in São Paulo State, Brazil. The new species is the eighth species of Serpentirhabdias described in the Neotropical region, and differs from other species mainly by a combination of characters: lips slightly notable, presence of fine striations at posterior ends, presence of two parallel lines with intercalated pores, a pore-shaped phasmid situated at the level of the anal aperture and another two in the posterior half of the tail. It is the first species of Serpentirhabdias reported in this snake host and the second species of this genus found parasitizing South American viperidian snakes. Molecular phylogenetic analysis using ribosomal (ITS and 28S partial) genes confirms Serpentirhabdias viperidicus n. sp. as a new species that clustered in the Serpentirhabdias clade, sister taxon to Serpentirhabdias fuscovenosa and Serpentirhabdias elaphe. This is the first description of Serpentirhabdias species from Brazil using molecular approaches and morphological characters to confirm the monophyly of this recent genus.

  18. Genomic, Proteomic, Morphological, and Phylogenetic Analyses of vB_EcoP_SU10, a Podoviridae Phage with C3 Morphology

    PubMed Central

    Mirzaei, Mohammadali Khan; Eriksson, Harald; Kasuga, Kie; Haggård-Ljungquist, Elisabeth; Nilsson, Anders S.

    2014-01-01

    A recently isolated phage, vB_EcoP_SU10 (SU10), with the unusual elongated C3 morphotype, can infect a wide range of Escherichia coli strains. We have sequenced the genome of this phage and characterized it further by mass spectrometry based proteomics, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and ultra-thin section electron microscopy. The genome size is 77,327 base pairs and its genes, and genome architecture, show high similarity to the phiEco32 phage genes and genome. The TEM images reveal that SU10 have a quite long tail for being a Podoviridae phage, and that the tail also changes conformation upon infection. The ultra-thin section electron microscopy images of phages at the stage of replication within the host cell show that the phages form a honeycomb-like structure under packaging of genomes and assembly of mature capsids. This implies a tight link between the replication and cutting of the concatemeric genome, genome packaging, and capsid assembly. We have also performed a phylogenetic analysis of the structural genes common between Podoviridae phages of the C1 and C3 morphotypes. The result shows that the structural genes have coevolved, and that they form two distinct groups linked to their morphotypes. The structural genes of C1 and C3 phages appear to have diverged around 280 million years ago applying a molecular clock calibrated according to the presumed split between the Escherichia – Salmonella genera. PMID:25551446

  19. Phylogenetic and Genome-Wide Deep-Sequencing Analyses of Canine Parvovirus Reveal Co-Infection with Field Variants and Emergence of a Recent Recombinant Strain

    PubMed Central

    Pérez, Ruben; Calleros, Lucía; Marandino, Ana; Sarute, Nicolás; Iraola, Gregorio; Grecco, Sofia; Blanc, Hervé; Vignuzzi, Marco; Isakov, Ofer; Shomron, Noam; Carrau, Lucía; Hernández, Martín; Francia, Lourdes; Sosa, Katia; Tomás, Gonzalo; Panzera, Yanina

    2014-01-01

    Canine parvovirus (CPV), a fast-evolving single-stranded DNA virus, comprises three antigenic variants (2a, 2b, and 2c) with different frequencies and genetic variability among countries. The contribution of co-infection and recombination to the genetic variability of CPV is far from being fully elucidated. Here we took advantage of a natural CPV population, recently formed by the convergence of divergent CPV-2c and CPV-2a strains, to study co-infection and recombination. Complete sequences of the viral coding region of CPV-2a and CPV-2c strains from 40 samples were generated and analyzed using phylogenetic tools. Two samples showed co-infection and were further analyzed by deep sequencing. The sequence profile of one of the samples revealed the presence of CPV-2c and CPV-2a strains that differed at 29 nucleotides. The other sample included a minor CPV-2a strain (13.3% of the viral population) and a major recombinant strain (86.7%). The recombinant strain arose from inter-genotypic recombination between CPV-2c and CPV-2a strains within the VP1/VP2 gene boundary. Our findings highlight the importance of deep-sequencing analysis to provide a better understanding of CPV molecular diversity. PMID:25365348

  20. Phylogenetic and genome-wide deep-sequencing analyses of canine parvovirus reveal co-infection with field variants and emergence of a recent recombinant strain.

    PubMed

    Pérez, Ruben; Calleros, Lucía; Marandino, Ana; Sarute, Nicolás; Iraola, Gregorio; Grecco, Sofia; Blanc, Hervé; Vignuzzi, Marco; Isakov, Ofer; Shomron, Noam; Carrau, Lucía; Hernández, Martín; Francia, Lourdes; Sosa, Katia; Tomás, Gonzalo; Panzera, Yanina

    2014-01-01

    Canine parvovirus (CPV), a fast-evolving single-stranded DNA virus, comprises three antigenic variants (2a, 2b, and 2c) with different frequencies and genetic variability among countries. The contribution of co-infection and recombination to the genetic variability of CPV is far from being fully elucidated. Here we took advantage of a natural CPV population, recently formed by the convergence of divergent CPV-2c and CPV-2a strains, to study co-infection and recombination. Complete sequences of the viral coding region of CPV-2a and CPV-2c strains from 40 samples were generated and analyzed using phylogenetic tools. Two samples showed co-infection and were further analyzed by deep sequencing. The sequence profile of one of the samples revealed the presence of CPV-2c and CPV-2a strains that differed at 29 nucleotides. The other sample included a minor CPV-2a strain (13.3% of the viral population) and a major recombinant strain (86.7%). The recombinant strain arose from inter-genotypic recombination between CPV-2c and CPV-2a strains within the VP1/VP2 gene boundary. Our findings highlight the importance of deep-sequencing analysis to provide a better understanding of CPV molecular diversity.

  1. Phylogenetic diversity based on rrs, atpD, recA genes and 16S-23S intergenic sequence analyses of rhizobial strains isolated from Vicia faba and Pisum sativum in Peru.

    PubMed

    Santillana, Nery; Ramírez-Bahena, Martha Helena; García-Fraile, Paula; Velázquez, Encarna; Zúñiga, Doris

    2008-03-01

    In this study 17 isolates from effective nodules of Vicia faba and Pisum sativum var. macrocarpum growing in different soils from Peru were isolated and characterized. The isolates, presenting 11 different RAPD profiles, were distributed in three groups on the basis of their 16S-RFLP patterns. The 16S rRNA gene sequences of strains from 16S-RFLP groups I, II and III were closely related (identities higher than 99.5%) to Rhizobium leguminosarum bv. trifolii DSM 30141 (=ATCC 14480), R. leguminosarum bv. viciae DSM 30132(T) and Rhizobium etli CFN42(T) (=USDA 9032(T)), respectively. The analysis of the 16S-23S intergenic spacer (ITS) and two housekeeping genes, atpD and recA, confirmed the identification of strains from group I, however those from groups II and III were phylogenetically divergent to strains DSM 30132(T) and CFN42(T). These results support the fact that the 16S rRNA gene is not adequate for identification at species level within genus Rhizobium and suggest the existence of putative new species within the phylogenetic group of R. leguminosarum. They also confirm the need of a taxonomic revision of R. leguminosarum since the reference strains of the three biovars included in this study are phylogenetically divergent according to their ITS, atpD and recA gene sequences.

  2. Moving pieces in a taxonomic puzzle: venom 2D-LC/MS and data clustering analyses to infer phylogenetic relationships in some scorpions from the Buthidae family (Scorpiones).

    PubMed

    Nascimento, Danielle G; Rates, Breno; Santos, Daniel M; Verano-Braga, Thiago; Barbosa-Silva, Adriano; Dutra, Alexandre A A; Biondi, Ilka; Martin-Eauclaire, Marie France; De Lima, Maria Elena; Pimenta, Adriano M C

    2006-05-01

    The Buthidae is the most clinically important scorpion family, with over 500 species distributed worldwide. Taxonomical positions and phylogenetic relationships concerning the representative genera and species of this family have been mostly inferred based upon comparisons between morphological characters. Yet, some authors have performed such inferences by comparing some structural properties of a few selected molecules found in the venoms from these scorpions. Here, we propose a novel methodology pipeline designed to address these issues. We have analyzed the whole venoms from some species that exemplify peculiar cases in the Buthidae family (Tityus stigmurus, Tityus serrulatus, Tityus bahiensis, Leiurus quinquestriatus quinquestriatus and Leiurus quinquestriatus hebraeus), by means of a proteomic approach using a 2D-LC/MS technique. The molecules found in these venoms were clustered according to their physicochemical properties (molecular mass and hydrophobicity), by using the machine learning-based Weka software. The clusters assessment, along with the number of molecules found in a given cluster for each scorpion, which assigns for the venom and structural family complexities, respectively, was used to generate a phenetic correlation tree for positioning these species. Our results were in accordance with the classical taxonomy viewpoint, which places T. serrulatus and T. stigmurus as very close species, T. bahiensis as a less related species in the Tityus genus and L. q. quinquestriatus and L. q. hebraeus with small differences within the same species (L. quinquestriatus). Therefore, we believe that this is a well-suited method to determine venom complexities that reflect the scorpions' evolutionary history, which can be crucial to reconstruct their phylogeny through the molecular evolution of their venoms.

  3. Comparative Genomic and Phylogenetic Analyses of Gammaproteobacterial glg Genes Traced the Origin of the Escherichia coli Glycogen glgBXCAP Operon to the Last Common Ancestor of the Sister Orders Enterobacteriales and Pasteurellales

    PubMed Central

    Almagro, Goizeder; Viale, Alejandro M.; Montero, Manuel; Rahimpour, Mehdi; Muñoz, Francisco José; Baroja-Fernández, Edurne; Bahaji, Abdellatif; Zúñiga, Manuel; González-Candelas, Fernando; Pozueta-Romero, Javier

    2015-01-01

    Production of branched α-glucan, glycogen-like polymers is widely spread in the Bacteria domain. The glycogen pathway of synthesis and degradation has been fairly well characterized in the model enterobacterial species Escherichia coli (order Enterobacteriales, class Gammaproteobacteria), in which the cognate genes (branching enzyme glgB, debranching enzyme glgX, ADP-glucose pyrophosphorylase glgC, glycogen synthase glgA, and glycogen phosphorylase glgP) are clustered in a glgBXCAP operon arrangement. However, the evolutionary origin of this particular arrangement and of its constituent genes is unknown. Here, by using 265 complete gammaproteobacterial genomes we have carried out a comparative analysis of the presence, copy number and arrangement of glg genes in all lineages of the Gammaproteobacteria. These analyses revealed large variations in glg gene presence, copy number and arrangements among different gammaproteobacterial lineages. However, the glgBXCAP arrangement was remarkably conserved in all glg-possessing species of the orders Enterobacteriales and Pasteurellales (the E/P group). Subsequent phylogenetic analyses of glg genes present in the Gammaproteobacteria and in other main bacterial groups indicated that glg genes have undergone a complex evolutionary history in which horizontal gene transfer may have played an important role. These analyses also revealed that the E/P glgBXCAP genes (a) share a common evolutionary origin, (b) were vertically transmitted within the E/P group, and (c) are closely related to glg genes of some phylogenetically distant betaproteobacterial species. The overall data allowed tracing the origin of the E. coli glgBXCAP operon to the last common ancestor of the E/P group, and also to uncover a likely glgBXCAP transfer event from the E/P group to particular lineages of the Betaproteobacteria. PMID:25607991

  4. Cnidarian phylogenetic relationships as revealed by mitogenomics

    PubMed Central

    2013-01-01

    Background Cnidaria (corals, sea anemones, hydroids, jellyfish) is a phylum of relatively simple aquatic animals characterized by the presence of the cnidocyst: a cell containing a giant capsular organelle with an eversible tubule (cnida). Species within Cnidaria have life cycles that involve one or both of the two distinct body forms, a typically benthic polyp, which may or may not be colonial, and a typically pelagic mostly solitary medusa. The currently accepted taxonomic scheme subdivides Cnidaria into two main assemblages: Anthozoa (Hexacorallia + Octocorallia) – cnidarians with a reproductive polyp and the absence of a medusa stage – and Medusozoa (Cubozoa, Hydrozoa, Scyphozoa, Staurozoa) – cnidarians that usually possess a reproductive medusa stage. Hypothesized relationships among these taxa greatly impact interpretations of cnidarian character evolution. Results We expanded the sampling of cnidarian mitochondrial genomes, particularly from Medusozoa, to reevaluate phylogenetic relationships within Cnidaria. Our phylogenetic analyses based on a mitochogenomic dataset support many prior hypotheses, including monophyly of Hexacorallia, Octocorallia, Medusozoa, Cubozoa, Staurozoa, Hydrozoa, Carybdeida, Chirodropida, and Hydroidolina, but reject the monophyly of Anthozoa, indicating that the Octocorallia + Medusozoa relationship is not the result of sampling bias, as proposed earlier. Further, our analyses contradict Scyphozoa [Discomedusae + Coronatae], Acraspeda [Cubozoa + Scyphozoa], as well as the hypothesis that Staurozoa is the sister group to all the other medusozoans. Conclusions Cnidarian mitochondrial genomic data contain phylogenetic signal informative for understanding the evolutionary history of this phylum. Mitogenome-based phylogenies, which reject the monophyly of Anthozoa, provide further evidence for the polyp-first hypothesis. By rejecting the traditional Acraspeda and Scyphozoa hypotheses, these analyses suggest that

  5. Systematics and evolution of tribe Sinningieae (Gesneriaceae): evidence from phylogenetic analyses of six plastid DNA regions and nuclear ncpGS.

    PubMed

    Perret, Mathieu; Chautems, Alain; Spichiger, Rodolphe; Kite, Geoffrey; Savolainen, Vincent

    2003-03-01

    For nearly all species in the three genera of tribe Sinningieae (Gesneriaceae), Sinningia, Paliavana, and Vanhouttea (mostly in southeastern Brazil) plus 10 outgroups, we have sequenced six non-coding DNA regions (i.e., plastid intergenic spacers trnT-trnL, trnL-trnF, trnS-trnG, atpB-rbcL, and introns in the trnL and rpl16 genes) and four introns in nuclear plastid-expressed glutamine synthetase gene (ncpGS). Separate and combined analyses of these data sets using maximum parsimony supported the monophyly of Sinningieae, but the genera Paliavana and Vanhouttea were found embedded within Sinningia; therefore a new infrageneric classification is here proposed. Mapping of pollination syndromes on the DNA-based trees supported multiple origins of hummingbird and bee syndromes and derivation of moth and bat syndromes from hummingbird flowers. Perennial tubers were derived from perennial stems in non-tuberous plants.

  6. Bayesian phylogenetic estimation of fossil ages

    PubMed Central

    Drummond, Alexei J.; Stadler, Tanja

    2016-01-01

    Recent advances have allowed for both morphological fossil evidence and molecular sequences to be integrated into a single combined inference of divergence dates under the rule of Bayesian probability. In particular, the fossilized birth–death tree prior and the Lewis-Mk model of discrete morphological evolution allow for the estimation of both divergence times and phylogenetic relationships between fossil and extant taxa. We exploit this statistical framework to investigate the internal consistency of these models by producing phylogenetic estimates of the age of each fossil in turn, within two rich and well-characterized datasets of fossil and extant species (penguins and canids). We find that the estimation accuracy of fossil ages is generally high with credible intervals seldom excluding the true age and median relative error in the two datasets of 5.7% and 13.2%, respectively. The median relative standard error (RSD) was 9.2% and 7.2%, respectively, suggesting good precision, although with some outliers. In fact, in the two datasets we analyse, the phylogenetic estimate of fossil age is on average less than 2 Myr from the mid-point age of the geological strata from which it was excavated. The high level of internal consistency found in our analyses suggests that the Bayesian statistical model employed is an adequate fit for both the geological and morphological data, and provides evidence from real data that the framework used can accurately model the evolution of discrete morphological traits coded from fossil and extant taxa. We anticipate that this approach will have diverse applications beyond divergence time dating, including dating fossils that are temporally unconstrained, testing of the ‘morphological clock', and for uncovering potential model misspecification and/or data errors when controversial phylogenetic hypotheses are obtained based on combined divergence dating analyses. This article is part of the themed issue ‘Dating species divergences

  7. A phylogenetic re-appraisal of the family Liagoraceae sensu lato (Nemaliales, Rhodophyta) based on sequence analyses of two plastid genes and postfertilization development.

    PubMed

    Lin, Showe-Mei; Rodríguez-Prieto, Conxi; Huisman, John M; Guiry, Michael D; Payri, Claude; Nelson, Wendy A; Liu, Shao-Lun

    2015-06-01

    The marine red algal family Liagoraceae sensu lato is shown to be polyphyletic based on analyses of a combined rbcL and psaA data set and the pattern of carposporophyte development. Fifteen of eighteen genera analyzed formed a monophyletic lineage that included the genus Liagora. Nemalion did not cluster with Liagoraceae sensu stricto, and Nemaliaceae is reinstated, characterized morphologically by the formation of the primary gonimolobes by longitudinal divisions of the gonimoblast initial. Yamadaella and Liagoropsis, previously placed in the Dermonemataceae, are shown to be independent lineages and are recognized as two new families Yamadaellaceae and Liagoropsidaceae. Yamadaellaceae is characterized by two gonimoblast initials cut off bilaterally from the fertilized carpogonium and diffusely spreading gonimoblast filaments. Liagoropsidaceae is characterized by at least three gonimoblast initials cut off by longitudinal septa from the fertilized carpogonium. In contrast, Liagoraceae sensu stricto is characterized by a single gonimoblast initial cut off transversely or diagonally from the fertilized carpogonium. Reproductive features, such as diffuse gonimoblasts and unfused carpogonial branches following postfertilization, appear to have evolved on more than one occasion in the Nemaliales and are therefore not taxonomically diagnostic at the family level, although they may be useful in recognizing genera.

  8. Geologic Insights and Suggestions on Mineral Potential Based on Analyses of Geophysical Data of the Southern Toquima Range, Nye County, Nevada

    USGS Publications Warehouse

    Shawe, D.R.; Kucks, R.P.; Hildenbrand, T.G.

    2004-01-01

    Aeromagnetic and gravity data provide confirmation of major structural and lithologic units in the southern Toquima Range, Nevada. These units include Cretaceous granite plutons and Tertiary calderas. In addition, the geophysical maps pinpoint numerous faults and lesser intrusions, and they suggest locations of several inferred subsurface intrusions. They also corroborate a system of northwesterly and northeasterly conjugate structures that probably are fundamental to the structural framework of the Toquima Range. A combination of geophysical, geochemical, and geologic data available for the widely mineralized and productive area suggests additional mineral resource potential, especially in and (or) adjacent to the Round Mountain, Jefferson, Manhattan, and Belmont mining districts. Also, evidence for mineral potential exists for areas near the Flower mercury mine south of Mount Jefferson caldera, and in the Bald Mountain Canyon belt of gold-quartz veins in the Manhattan caldera. A few other areas also show potential for mineral resources. The various geologic environments indicated within the map area suggest base- and precious-metal potential in porphyry deposits as well as in quartz-vein and skarn deposits associated with intrusive stocks.

  9. A model for the development of human IgD-only B cells: Genotypic analyses suggest their generation in superantigen driven immune responses.

    PubMed

    Seifert, Marc; Steimle-Grauer, Susanne A; Goossens, Tina; Hansmann, Martin-Leo; Bräuninger, Andreas; Küppers, Ralf

    2009-02-01

    Human peripheral blood (PB) B cells expressing only IgD and tonsillar IgD-secreting plasma cells carry highly mutated V(H) genes and show preferential Iglambda usage. To further characterize these peculiar cells and gain insight into their generation, we analysed rearranged V(H) and V(L) genes of single IgD-only lambda(+) PB B cells and IgD(+) plasma cells from four individuals each. We demonstrate that the high somatic hypermutation activity in these cells is not restricted to V(H) genes but also present in V(L) genes. Moreover, not only PB IgD-only B cells, as reported earlier, but also IgD-expressing plasma cells often belong to very large clones. Surprisingly, the V(H)3-30 gene segment was used in each PB donor by >30% of IgD-only cells and in 2 tonsils by >50% of IgD plasma cells, whereas it was used less frequent in other B cells. All these features fit to a model in which IgD-only cells develop in superantigen-driven germinal center reactions, in which B cells are activated by binding of antigens to constant parts of Cdelta and often lambda light chains and the V(H)3-30 segment, and are selected for deletion of Cmu. IgD-only B cells may hence represent a unique B lineage subset generated in response to particular antigens.

  10. Analyses of MbtB, MbtE, and MbtF Suggest Revisions to the Mycobactin Biosynthesis Pathway in Mycobacterium tuberculosis

    PubMed Central

    McMahon, Matthew D.; Rush, Jason S.

    2012-01-01

    The production of mycobactin (MBT) by Mycobacterium tuberculosis is essential for this bacterium to access iron when it is in an infected host. Due to this essential function, there is considerable interest in deciphering the mechanism of MBT assembly, with the goal of targeting select biosynthetic steps for antituberculosis drug development. The proposed scheme for MBT biosynthesis involves assembly of the MBT backbone by a hybrid nonribosomal peptide synthetase (NRPS)/polyketide synthase (PKS) megasynthase followed by the tailoring of this backbone by N6 acylation of the central l-Lys residue and subsequent N6-hydroxylation of the central N6-acyl-l-Lys and the terminal caprolactam. A complete testing of this hypothesis has been hindered by the inability to heterologously produce soluble megasynthase components. Here we show that soluble forms of the NRPS components MbtB, MbtE, and MbtF are obtained when these enzymes are coproduced with MbtH. Using these soluble enzymes we determined the amino acid specificity of each adenylation (A) domain. These results suggest that the proposed tailoring enzymes are actually involved in precursor biosynthesis since the A domains of MbtE and MbtF are specific for N6-acyl-N6-hydroxy-l-Lys and N6-hydroxy-l-Lys, respectively. Furthermore, the preference of the A domain of MbtB for l-Thr over l-Ser suggests that the megasynthase produces MBT derivatives with β-methyl oxazoline rings. Since the most prominent form of MBT produced by M. tuberculosis lacks this β-methyl group, a mechanism for demethylation remains to be discovered. These results suggest revisions to the MBT biosynthesis pathway while also identifying new targets for antituberculosis drug development. PMID:22447909

  11. Structural and phylogenetic analyses of the GP42 transglutaminase from Phytophthora sojae reveal an evolutionary relationship between oomycetes and marine Vibrio bacteria.

    PubMed

    Reiss, Kerstin; Kirchner, Eva; Gijzen, Mark; Zocher, Georg; Löffelhardt, Birgit; Nürnberger, Thorsten; Stehle, Thilo; Brunner, Frédéric

    2011-12-09

    Transglutaminases (TGases) are ubiquitous enzymes that catalyze selective cross-linking between protein-bound glutamine and lysine residues; the resulting isopeptide bond confers high resistance to proteolysis. Phytophthora sojae, a pathogen of soybean, secretes a Ca(2+)-dependent TGase (GP42) that is activating defense responses in both host and non-host plants. A GP42 fragment of 13 amino acids, termed Pep-13, was shown to be absolutely indispensable for both TGase and elicitor activity. GP42 does not share significant primary sequence similarity with known TGases from mammals or bacteria. This suggests that GP42 has evolved novel structural and catalytic features to support enzymatic activity. We have solved the crystal structure of the catalytically inactive point mutant GP42 (C290S) at 2.95 Å resolution and identified residues involved in catalysis by mutational analysis. The protein comprises three domains that assemble into an elongated structure. Although GP42 has no structural homolog, its core region displays significant similarity to the catalytic core of the Mac-1 cysteine protease from Group A Streptococcus, a member of the papain-like superfamily of cysteine proteases. Proteins that are taxonomically related to GP42 are only present in plant pathogenic oomycetes belonging to the order of the Peronosporales (e.g. Phytophthora, Hyaloperonospora, and Pythium spp.) and in marine Vibrio bacteria. This suggests that a lateral gene transfer event may have occurred between bacteria and oomycetes. Our results offer a basis to design and use highly specific inhibitors of the GP42-like TGase family that may impair the growth of important oomycete and bacterial pathogens.

  12. Effects of sample size and intraspecific variation in phylogenetic comparative studies: a meta-analytic review.

    PubMed

    Garamszegi, László Z; Møller, Anders P

    2010-11-01

    Comparative analyses aim to explain interspecific variation in phenotype among taxa. In this context, phylogenetic approaches are generally applied to control for similarity due to common descent, because such phylogenetic relationships can produce spurious similarity in phenotypes (known as phylogenetic inertia or bias). On the other hand, these analyses largely ignore potential biases due to within-species variation. Phylogenetic comparative studies inherently assume that species-specific means from intraspecific samples of modest sample size are biologically meaningful. However, within-species variation is often significant, because measurement errors, within- and between-individual variation, seasonal fluctuations, and differences among populations can all reduce the repeatability of a trait. Although simulations revealed that low repeatability can increase the type I error in a phylogenetic study, researchers only exercise great care in accounting for similarity in phenotype due to common phylogenetic descent, while problems posed by intraspecific variation are usually neglected. A meta-analysis of 194 comparative analyses all adjusting for similarity due to common phylogenetic descent revealed that only a few studies reported intraspecific repeatabilities, and hardly any considered or partially dealt with errors arising from intraspecific variation. This is intriguing, because the meta-analytic data suggest that the effect of heterogeneous sampling can be as important as phylogenetic bias, and thus they should be equally controlled in comparative studies. We provide recommendations about how to handle such effects of heterogeneous sampling.

  13. Analyses of GA20ox- and GID1-over-expressing aspen suggest that gibberellins play two distinct roles in wood formation.

    PubMed

    Mauriat, Mélanie; Moritz, Thomas

    2009-06-01

    Gibberellins (GAs) are involved in many aspects of plant development, including shoot growth, flowering and wood formation. Increased levels of bioactive GAs are known to induce xylogenesis and xylem fiber elongation in aspen. However, there is currently little information on the response pathway(s) that mediate GA effects on wood formation. Here we characterize an important element of the GA pathway in hybrid aspen: the GA receptor, GID1. Four orthologs of GID1 were identified in Populus tremula x P. tremuloides (PttGID1.1-1.4). These were functional when expressed in Arabidopsis thaliana, and appear to present a degree of sub-functionalization in hybrid aspen. PttGID1.1 and PttGID1.3 were over-expressed in independent lines of hybrid aspen using either the 35S promoter or a xylem-specific promoter (LMX5). The 35S:PttGID1 over-expressors shared several phenotypic traits previously described in 35S:AtGA20ox1 over-expressors, including rapid growth, increased elongation, and increased xylogenesis. However, their xylem fibers were not elongated, unlike those of 35S:AtGA20ox1 plants. Similar differences in the xylem fiber phenotype were observed when PttGID1.1, PttGID1.3 or AtGA20ox1 were expressed under the control of the LMX5 promoter, suggesting either that PttGID1.1 and PttGID1.3 play no role in fiber elongation or that GA homeostasis is strongly controlled when GA signaling is altered. Our data suggest that GAs are required in two distinct wood-formation processes that have tissue-specific signaling pathways: xylogenesis, as mediated by GA signaling in the cambium, and fiber elongation in the developing xylem.

  14. Seed plant phylogenetic diversity and species richness in conservation planning within a global biodiversity hotspot in eastern Asia.

    PubMed

    Li, Rong; Kraft, Nathan J B; Yu, Haiying; Li, Heng

    2015-12-01

    One of the main goals of conservation biology is to understand the factors shaping variation in biodiversity across the planet. This understanding is critical for conservation planners to be able to develop effective conservation strategies. Although many studies have focused on species richness and the protection of rare and endemic species, less attention has been paid to the protection of the phylogenetic dimension of biodiversity. We explored how phylogenetic diversity, species richness, and phylogenetic community structure vary in seed plant communities along an elevational gradient in a relatively understudied high mountain region, the Dulong Valley, in southeastern Tibet, China. As expected, phylogenetic diversity was well correlated with species richness among the elevational bands and among communities. At the community level, evergreen broad-leaved forests had the highest levels of species richness and phylogenetic diversity. Using null model analyses, we found evidence of nonrandom phylogenetic structure across the region. Evergreen broad-leaved forests were phylogenetically overdispersed, whereas other vegetation types tended to be phylogenetically clustered. We suggest that communities with high species richness or overdispersed phylogenetic structure should be a focus for biodiversity conservation within the Dulong Valley because these areas may help maximize the potential of this flora to respond to future global change. In biodiversity hotspots worldwide, we suggest that the phylogenetic structure of a community may serve as a useful measure of phylogenetic diversity in the context of conservation planning.

  15. Analyses of chromosome copy number and expression level of four genes in the ciliate Chilodonella uncinata reveal a complex pattern that suggests epigenetic regulation.

    PubMed

    Bellec, Laure; Katz, Laura A

    2012-08-10

    Chilodonella uncinata, like all ciliates, contains two distinct nuclei in every cell: a germline micronucleus and a somatic macronucleus. The macronucleus develops from the zygotic nucleus through a series of chromosomal rearrangements. Macronuclear development in C. uncinata yields a nucleus with highly amplified gene-sized chromosomes. The macronucleus is transcriptionally active during vegetative growth while there is no expression in the micronucleus except during a brief period following conjugation. Gene family evolution in ciliates occurs through complex processes including gene duplication and an alternative processing of scrambled genes. Here we use quantitative PCR to compare relative expression levels of eight genes (SSU-rDNA, actin, α-tubulin and five β-tubulin sequences) to their abundance as macronuclear chromosomes. We show that three strains of the morphospecies C. uncinata share similar patterns across all loci. For example, we find an inverse correlation among five β-tubulin genes whereby the more abundant macronuclear chromosomes have lower levels of expression compared to less abundant chromosomes. We discuss the implication of our findings, which suggest that epigenetic mechanisms maintain chromosome copy number in C. uncinata.

  16. Mutational analyses of the SOCS proteins suggest a dual domain requirement but distinct mechanisms for inhibition of LIF and IL-6 signal transduction.

    PubMed Central

    Nicholson, S E; Willson, T A; Farley, A; Starr, R; Zhang, J G; Baca, M; Alexander, W S; Metcalf, D; Hilton, D J; Nicola, N A

    1999-01-01

    SOCS-1 (suppressor of cytokine signaling-1) is a representative of a family of negative regulators of cytokine signaling (SOCS-1 to SOCS-7 and CIS) characterized by a highly conserved C-terminal SOCS box preceded by an SH2 domain. This study comprehensively examined the ability of several SOCS family members to negatively regulate the gp130 signaling pathway. SOCS-1 and SOCS-3 inhibited both interleukin-6 (IL-6)- and leukemia inhibitory factor (LIF)-induced macrophage differentiation of murine monocytic leukemic M1 cells and LIF induction of a Stat3-responsive reporter construct in 293T fibroblasts. Deletion of amino acids 51-78 in the N-terminal region of SOCS-1 prevented inhibition of LIF signaling. The SOCS-1 and SOCS-3 N-terminal regions were functionally interchangeable, but this did not extend to other SOCS family members. Mutation of SH2 domains abrogated the ability of both SOCS-1 and SOCS-3 to inhibit LIF signal transduction. Unlike SOCS-1, SOCS-3 was unable to inhibit JAK kinase activity in vitro, suggesting that SOCS-1 and SOCS-3 act on the JAK-STAT pathway in different ways. Thus, although inhibition of signaling by SOCS-1 and SOCS-3 requires both the SH2 and N-terminal domains, their mechanisms of action appear to be biochemically different. PMID:9889194

  17. Structural mapping of the coiled-coil domain of a bacterial condensin and comparative analyses across all domains of life suggest conserved features of SMC proteins.

    PubMed

    Waldman, Vincent M; Stanage, Tyler H; Mims, Alexandra; Norden, Ian S; Oakley, Martha G

    2015-06-01

    The structural maintenance of chromosomes (SMC) proteins form the cores of multisubunit complexes that are required for the segregation and global organization of chromosomes in all domains of life. These proteins share a common domain structure in which N- and C- terminal regions pack against one another to form a globular ATPase domain. This "head" domain is connected to a central, globular, "hinge" or dimerization domain by a long, antiparallel coiled coil. To date, most efforts for structural characterization of SMC proteins have focused on the globular domains. Recently, however, we developed a method to map interstrand interactions in the 50-nm coiled-coil domain of MukB, the divergent SMC protein found in γ-proteobacteria. Here, we apply that technique to map the structure of the Bacillus subtilis SMC (BsSMC) coiled-coil domain. We find that, in contrast to the relatively complicated coiled-coil domain of MukB, the BsSMC domain is nearly continuous, with only two detectable coiled-coil interruptions. Near the middle of the domain is a break in coiled-coil structure in which there are three more residues on the C-terminal strand than on the N-terminal strand. Close to the head domain, there is a second break with a significantly longer insertion on the same strand. These results provide an experience base that allows an informed interpretation of the output of coiled-coil prediction algorithms for this family of proteins. A comparison of such predictions suggests that these coiled-coil deviations are highly conserved across SMC types in a wide variety of organisms, including humans.

  18. Comparative Transcriptome Analyses between a Spontaneous Late-Ripening Sweet Orange Mutant and Its Wild Type Suggest the Functions of ABA, Sucrose and JA during Citrus Fruit Ripening

    PubMed Central

    Zhang, Ya-Jian; Wang, Xing-Jian; Wu, Ju-Xun; Chen, Shan-Yan; Chen, Hong; Chai, Li-Jun; Yi, Hua-Lin

    2014-01-01

    A spontaneous late-ripening mutant of ‘Jincheng’ (C. sinensis L. Osbeck) sweet orange exhibited a delay of fruit pigmentation and harvesting. In this work, we studied the processes of orange fruit ripening through the comparative analysis between the Jincheng mutant and its wild type. This study revealed that the fruit quality began to differ on 166th days after anthesis. At this stage, fruits were subjected to transcriptome analysis by RNA sequencing. 13,412 differentially expressed unigenes (DEGs) were found. Of these unigenes, 75.8% were down-regulated in the wild type, suggesting that the transcription level of wild type was lower than that of the mutant during this stage. These DEGs were mainly clustered into five pathways: metabolic pathways, plant-pathogen interaction, spliceosome, biosynthesis of plant hormones and biosynthesis of phenylpropanoids. Therefore, the expression profiles of the genes that are involved in abscisic acid, sucrose, and jasmonic acid metabolism and signal transduction pathways were analyzed during the six fruit ripening stages. The results revealed the regulation mechanism of sweet orange fruit ripening metabolism in the following four aspects: First, the more mature orange fruits were, the lower the transcription levels were. Second, the expression level of PME boosted with the maturity of the citrus fruit. Therefore, the expression level of PME might represent the degree of the orange fruit ripeness. Third, the interaction of PP2C, PYR/PYL, and SnRK2 was peculiar to the orange fruit ripening process. Fourth, abscisic acid, sucrose, and jasmonic acid all took part in orange fruit ripening process and might interact with each other. These findings provide an insight into the intricate process of sweet orange fruit ripening. PMID:25551568

  19. Phylogenetic constraints on ecosystem functioning.

    PubMed

    Gravel, Dominique; Bell, Thomas; Barbera, Claire; Combe, Marine; Pommier, Thomas; Mouquet, Nicolas

    2012-01-01

    There is consensus that biodiversity losses will result in declining ecosystem functioning if species have different functional traits. Phylogenetic diversity has recently been suggested as a predictor of ecosystem functioning because it could approximate the functional complementarity among species. Here we describe an experiment that takes advantage of the rapid evolutionary response of bacteria to disentangle the role of phylogenetic and species diversity. We impose a strong selection regime on marine bacterial lineages and assemble the ancestral and evolved lines in microcosms of varying lineage and phylogenetic diversity. We find that the relationship between phylogenetic diversity and productivity is strong for the ancestral lineages but brakes down for the evolved lineages. Our results not only emphasize the potential of using phylogeny to evaluate ecosystem functioning, but also they warn against using phylogenetics as a proxy for functional diversity without good information on species evolutionary history.

  20. Phylogenetic proximity revealed by neurodevelopmental event timings.

    PubMed

    Nagarajan, Radhakrishnan; Clancy, Barbara

    2008-01-01

    Statistical properties such as distribution and correlation signatures were investigated using a temporal database of common neurodevelopmental events in the three species most frequently used in experimental studies, rat, mouse, and macaque. There was a fine nexus between phylogenetic proximity and empirically derived dates of the occurrences of 40 common events including the neurogenesis of cortical layers and outgrowth milestones of developing axonal projections. Exponential and power-law approximations to the distribution of the events reveal strikingly similar decay patterns in rats and mice when compared to macaques. Subsequent hierarchical clustering of the common event timings also captures phylogenetic proximity, an association further supported by multivariate linear regression data. These preliminary results suggest that statistical analyses of the timing of developmental milestones may offer a novel measure of phylogenetic classifications. This may have added pragmatic value in the specific support it offers for the reliability of rat/mouse comparative modeling, as well as in the broader implications for the potential of meta-analyses using databases assembled from the extensive empirical literature.

  1. Refuting phylogenetic relationships

    PubMed Central

    Bucknam, James; Boucher, Yan; Bapteste, Eric

    2006-01-01

    Background Phylogenetic methods are philosophically grounded, and so can be philosophically biased in ways that limit explanatory power. This constitutes an important methodologic dimension not often taken into account. Here we address this dimension in the context of concatenation approaches to phylogeny. Results We discuss some of the limits of a methodology restricted to verificationism, the philosophy on which gene concatenation practices generally rely. As an alternative, we describe a software which identifies and focuses on impossible or refuted relationships, through a simple analysis of bootstrap bipartitions, followed by multivariate statistical analyses. We show how refuting phylogenetic relationships could in principle facilitate systematics. We also apply our method to the study of two complex phylogenies: the phylogeny of the archaea and the phylogeny of the core of genes shared by all life forms. While many groups are rejected, our results left open a possible proximity of N. equitans and the Methanopyrales, of the Archaea and the Cyanobacteria, and as well the possible grouping of the Methanobacteriales/Methanoccocales and Thermosplasmatales, of the Spirochaetes and the Actinobacteria and of the Proteobacteria and firmicutes. Conclusion It is sometimes easier (and preferable) to decide which species do not group together than which ones do. When possible topologies are limited, identifying local relationships that are rejected may be a useful alternative to classical concatenation approaches aiming to find a globally resolved tree on the basis of weak phylogenetic markers. Reviewers This article was reviewed by Mark Ragan, Eugene V Koonin and J Peter Gogarten. PMID:16956399

  2. Suggested isosbestic wavelength calibration in clinical analyses.

    PubMed

    Hoxter, G

    1979-01-01

    I recommend the use of isosbestic points for conveniently checking the wavelength scale of spectrophotometers in the ultraviolet and visible regions. Colorimetric pH indicators, hemoglobin derivatives, and other radiation-absorbing substances that are convertible into stable isomers of different absorption spectra provide a means for calibrating many different wavelengths by comparing the absorptivities of these isomers in equimolar solutions. The method requires no special precautions and results are independent of substance concentration and temperature between 4 and 45 degrees C. Isosbestic calibration may be important for (e.g.) coenzyme-dependent dehydrogenase activity determinations and in quality assurance programs.

  3. apex: phylogenetics with multiple genes.

    PubMed

    Jombart, Thibaut; Archer, Frederick; Schliep, Klaus; Kamvar, Zhian; Harris, Rebecca; Paradis, Emmanuel; Goudet, Jérome; Lapp, Hilmar

    2017-01-01

    Genetic sequences of multiple genes are becoming increasingly common for a wide range of organisms including viruses, bacteria and eukaryotes. While such data may sometimes be treated as a single locus, in practice, a number of biological and statistical phenomena can lead to phylogenetic incongruence. In such cases, different loci should, at least as a preliminary step, be examined and analysed separately. The r software has become a popular platform for phylogenetics, with several packages implementing distance-based, parsimony and likelihood-based phylogenetic reconstruction, and an even greater number of packages implementing phylogenetic comparative methods. Unfortunately, basic data structures and tools for analysing multiple genes have so far been lacking, thereby limiting potential for investigating phylogenetic incongruence. In this study, we introduce the new r package apex to fill this gap. apex implements new object classes, which extend existing standards for storing DNA and amino acid sequences, and provides a number of convenient tools for handling, visualizing and analysing these data. In this study, we introduce the main features of the package and illustrate its functionalities through the analysis of a simple data set.

  4. Phylogenetic and biogeographic implications inferred by mitochondrial intergenic region analyses and ITS1-5.8S-ITS2 of the entomopathogenic fungi Beauveria bassiana and B. brongniartii

    PubMed Central

    2010-01-01

    Background The entomopathogenic fungi of the genus Beauveria are cosmopolitan with a variety of different insect hosts. The two most important species, B. bassiana and B. brongniartii, have already been used as biological control agents of pests in agriculture and as models for the study of insect host - pathogen interactions. Mitochondrial (mt) genomes, due to their properties to evolve faster than the nuclear DNA, to contain introns and mobile elements and to exhibit extended polymorphisms, are ideal tools to examine genetic diversity within fungal populations and genetically identify a species or a particular isolate. Moreover, mt intergenic region can provide valuable phylogenetic information to study the biogeography of the fungus. Results The complete mt genomes of B. bassiana (32,263 bp) and B. brongniartii (33,920 bp) were fully analysed. Apart from a typical gene content and organization, the Beauveria mt genomes contained several introns and had longer intergenic regions when compared with their close relatives. The phylogenetic diversity of a population of 84 Beauveria strains -mainly B. bassiana (n = 76) - isolated from temperate, sub-tropical and tropical habitats was examined by analyzing the nucleotide sequences of two mt intergenic regions (atp6-rns and nad3-atp9) and the nuclear ITS1-5.8S-ITS2 domain. Mt sequences allowed better differentiation of strains than the ITS region. Based on mt and the concatenated dataset of all genes, the B. bassiana strains were placed into two main clades: (a) the B. bassiana s. l. and (b) the "pseudobassiana". The combination of molecular phylogeny with criteria of geographic and climatic origin showed for the first time in entomopathogenic fungi, that the B. bassiana s. l. can be subdivided into seven clusters with common climate characteristics. Conclusions This study indicates that mt genomes and in particular intergenic regions provide molecular phylogeny tools that combined with criteria of geographic and

  5. Phylogenetic relationships among Boleosoma darter species (Percidae: Etheostoma).

    PubMed

    Heckman, K L; Near, T J; Alonzo, S H

    2009-10-01

    Darters represent a species rich group of North American freshwater fishes studied in the context of their diverse morphology, behavior, and geographic distribution. We report the first molecular phylogenetic analyses of the Boleosoma darter clade that includes complete species sampling. We estimated the relationship among the species of Boleosoma using DNA sequence data from a mitochondrial (cytochrome b) and a nuclear gene (S7 ribosomal protein intron 1). Our analyses discovered that the two Boleosoma species with large geographic distributions (E. nigrum and E. olmstedi) do not form reciprocally monophyletic groups in either gene trees. Etheostoma susanae and E. perlongum were phylogenetically nested in E. nigrum and E. olmstedi, respectively. While analysis of the nuclear gene resulted in a phylogeny where E. longimanum and E. podostemone were sister species, the mitochondrial gene tree did not support this relationship. Etheostoma vitreum was phylogenetically nested within Boleosoma in the mitochondrial DNA and nuclear gene trees. Our analyses suggest that current concepts of species diversity underestimate phylogenetic diversity in Boleosoma and that Boleosoma species likely provide another example of the growing number of discovered instances of mitochondrial genome transfer between darter species.

  6. Phylogenetic Codivergence Supports Coevolution of Mimetic Heliconius Butterflies

    PubMed Central

    Hoyal Cuthill, Jennifer; Charleston, Michael

    2012-01-01

    The unpalatable and warning-patterned butterflies Heliconius erato and Heliconius melpomene provide the best studied example of mutualistic Müllerian mimicry, thought–but rarely demonstrated–to promote coevolution. Some of the strongest available evidence for coevolution comes from phylogenetic codivergence, the parallel divergence of ecologically associated lineages. Early evolutionary reconstructions suggested codivergence between mimetic populations of H. erato and H. melpomene, and this was initially hailed as one of the most striking known cases of coevolution. However, subsequent molecular phylogenetic analyses found discrepancies in phylogenetic branching patterns and timing (topological and temporal incongruence) that argued against codivergence. We present the first explicit cophylogenetic test of codivergence between mimetic populations of H. erato and H. melpomene, and re-examine the timing of these radiations. We find statistically significant topological congruence between multilocus coalescent population phylogenies of H. erato and H. melpomene. Cophylogenetic historical reconstructions support repeated codivergence of mimetic populations, from the base of the sampled radiations. Pairwise distance correlation tests, based on our coalescent analyses plus recently published AFLP and wing colour pattern gene data, also suggest that the phylogenies of H. erato and H. melpomene show significant topological congruence. Divergence time estimates, based on a Bayesian coalescent model, suggest that the evolutionary radiations of H. erato and H. melpomene occurred over the same time period, and are compatible with a series of temporally congruent codivergence events. Our results suggest that differences in within-species genetic divergence are the result of a greater overall effective population size for H. erato relative to H. melpomene and do not imply incongruence in the timing of their phylogenetic radiations. Repeated codivergence between M

  7. Phylogenetic fields of species: cross-species patterns of phylogenetic structure and geographical coexistence.

    PubMed

    Villalobos, Fabricio; Rangel, Thiago F; Diniz-Filho, José Alexandre F

    2013-04-07

    Differential coexistence among species underlies geographical patterns of biodiversity. Understanding such patterns has relied either on ecological or historical approaches applied separately. Recently, macroecology and community phylogenetics have tried to integrate both ecological and historical approaches. However, macroecology is mostly non-phylogenetic, whereas community phylogenetics is largely focused on local scales. Here, we propose a conceptual framework to link macroecology and community phylogenetics by exploring the evolutionary context of large-scale species coexistence, introducing the phylogenetic field concept. This is defined as the phylogenetic structure of species co-occurrence within a focal species' geographical range. We developed concepts and methods for analysing phylogenetic fields and applied them to study coexistence patterns of the bat family Phyllostomidae. Our analyses showed that phyllostomid bats coexist mostly with closely related species, revealing a north-south gradient from overdispersed to clustered phylogenetic fields. Patterns at different phylogenetic levels (i.e. all species versus close relatives only) presented the same gradient. Results support the tropical niche conservatism hypothesis, potentially mediated by higher speciation rates in the region of origin coupled with shared environmental preferences among species. The phylogenetic field approach enables species-based community phylogenetics, instead of those that are site-based, allowing the description of historical processes at more appropriate macroecological and biogeographic scales.

  8. Opposing phylogenetic diversity gradients of plant and soil bacterial communities

    PubMed Central

    Goberna, Marta; Navarro-Cano, Jose A.; Verdú, Miguel

    2016-01-01

    Plants and soil microbes show parallel patterns of species-level diversity. Diverse plant communities release a wider range of organics that are consumed by more microbial species. We speculated, however, that diversity metrics accounting for the evolutionary distance across community members would reveal opposing patterns between plant and soil bacterial phylogenetic diversity. Plant phylogenetic diversity enhances plant productivity and thus expectedly soil fertility. This, in turn, might reduce bacterial phylogenetic diversity by favouring one (or a few) competitive bacterial clade. We collected topsoils in 15 semi-arid plant patches and adjacent low-cover areas configuring a plant phylodiversity gradient, pyrosequenced the 16S rRNA gene to identify bacterial taxa and analysed soil fertility parameters. Structural equation modelling showed positive effects of both plant richness and phylogenetic diversity on soil fertility. Fertility increased bacterial richness but reduced bacterial phylogenetic diversity. This might be attributed to the competitive dominance of a lineage based on its high relative fitness. This suggests biotic interactions as determinants of the soil bacterial community assembly, while emphasizing the need to use phylogeny-informed metrics to tease apart the processes underlying the patterns of diversity. PMID:26888037

  9. Opposing phylogenetic diversity gradients of plant and soil bacterial communities.

    PubMed

    Goberna, Marta; Navarro-Cano, Jose A; Verdú, Miguel

    2016-02-24

    Plants and soil microbes show parallel patterns of species-level diversity. Diverse plant communities release a wider range of organics that are consumed by more microbial species. We speculated, however, that diversity metrics accounting for the evolutionary distance across community members would reveal opposing patterns between plant and soil bacterial phylogenetic diversity. Plant phylogenetic diversity enhances plant productivity and thus expectedly soil fertility. This, in turn, might reduce bacterial phylogenetic diversity by favouring one (or a few) competitive bacterial clade. We collected topsoils in 15 semi-arid plant patches and adjacent low-cover areas configuring a plant phylodiversity gradient, pyrosequenced the 16S rRNA gene to identify bacterial taxa and analysed soil fertility parameters. Structural equation modelling showed positive effects of both plant richness and phylogenetic diversity on soil fertility. Fertility increased bacterial richness but reduced bacterial phylogenetic diversity. This might be attributed to the competitive dominance of a lineage based on its high relative fitness. This suggests biotic interactions as determinants of the soil bacterial community assembly, while emphasizing the need to use phylogeny-informed metrics to tease apart the processes underlying the patterns of diversity.

  10. SUNPLIN: Simulation with Uncertainty for Phylogenetic Investigations

    PubMed Central

    2013-01-01

    Background Phylogenetic comparative analyses usually rely on a single consensus phylogenetic tree in order to study evolutionary processes. However, most phylogenetic trees are incomplete with regard to species sampling, which may critically compromise analyses. Some approaches have been proposed to integrate non-molecular phylogenetic information into incomplete molecular phylogenies. An expanded tree approach consists of adding missing species to random locations within their clade. The information contained in the topology of the resulting expanded trees can be captured by the pairwise phylogenetic distance between species and stored in a matrix for further statistical analysis. Thus, the random expansion and processing of multiple phylogenetic trees can be used to estimate the phylogenetic uncertainty through a simulation procedure. Because of the computational burden required, unless this procedure is efficiently implemented, the analyses are of limited applicability. Results In this paper, we present efficient algorithms and implementations for randomly expanding and processing phylogenetic trees so that simulations involved in comparative phylogenetic analysis with uncertainty can be conducted in a reasonable time. We propose algorithms for both randomly expanding trees and calculating distance matrices. We made available the source code, which was written in the C++ language. The code may be used as a standalone program or as a shared object in the R system. The software can also be used as a web service through the link: http://purl.oclc.org/NET/sunplin/. Conclusion We compare our implementations to similar solutions and show that significant performance gains can be obtained. Our results open up the possibility of accounting for phylogenetic uncertainty in evolutionary and ecological analyses of large datasets. PMID:24229408

  11. Geometric morphometric character suites as phylogenetic data: extracting phylogenetic signal from gastropod shells.

    PubMed

    Smith, Ursula E; Hendricks, Jonathan R

    2013-05-01

    Despite being the objects of numerous macroevolutionary studies, many of the best represented constituents of the fossil record-including diverse examples such as foraminifera, brachiopods, and mollusks-have mineralized skeletons with limited discrete characteristics, making morphological phylogenies difficult to construct. In contrast to their paucity of phylogenetic characters, the mineralized structures (tests and shells) of these fossil groups frequently have distinctive shapes that have long proved useful for their classification. The recent introduction of methodologies for including continuous data directly in a phylogenetic analysis has increased the number of available characters, making it possible to produce phylogenies based, in whole or part, on continuous character data collected from such taxa. Geometric morphometric methods provide tools for accurately characterizing shape variation and can produce quantitative data that can therefore now be included in a phylogenetic matrix in a nonarbitrary manner. Here, the marine gastropod genus Conus is used to evaluate the ability of continuous characters-generated from a geometric morphometric analysis of shell shape-to contribute to a total evidence phylogenetic hypothesis constructed using molecular and morphological data. Furthermore, the ability of continuous characters derived from geometric morphometric analyses to place fossil taxa with limited discrete characters into a phylogeny with their extant relatives was tested by simulating the inclusion of fossil taxa. This was done by removing the molecular partition of individual extant species to produce a "cladistic pseudofossil" with only the geometric morphometric derived characters coded. The phylogenetic position of each cladistic pseudofossil taxon was then compared with its placement in the total evidence tree and a symmetric resampling tree to evaluate the degree to which morphometric characters alone can correctly place simulated fossil species

  12. [Molecular evidence on the phylogenetic position of tree shrews].

    PubMed

    Xu, Ling; Fan, Yu; Jiang, Xue-Long; Yao, Yong-Gang

    2013-04-01

    The tree shrew is currently located in the Order Scandentia and is widely distributed in Southeast Asia, South Asia, and South China. Due to its unique characteristics, such as small body size, high brain-to-body mass ratio, short reproductive cycle and life span, and low-cost of maintenance, the tree shrew has been proposed as an alternative experimental animal to primates in biomedical research. However, there is unresolved debate regarding the phylogenetic affinity of tree shrews to primates and their phylogenetic position in Euarchontoglires. To help settle this debate, we summarized the available molecular evidence on the phylogenetic position of the tree shrew. Most nuclear DNA data, including recent genome data, suggested that the tree shrew belongs to the Euarchonta clade harboring primates and flying lemurs (colugos). However, analyses of mitochondrial DNA (mtDNA) data suggested a close relationship to lagomorphs and rodents. These different clustering patterns could be explained by nuclear gene data and mtDNA data discrepancies, as well as the different phylogenetic approaches used in previous studies. Taking all available conclusions together, the robust data from whole genome of this species supports tree shrews being genetically closely related to primates.

  13. Phylogenetic signal in diatom ecology: perspectives for aquatic ecosystems biomonitoring.

    PubMed

    Keck, François; Rimet, Frédéric; Franc, Alain; Bouchez, Agnés

    2016-04-01

    Diatoms include a great diversity of taxa and are recognized as powerful bioindicators in rivers. However using diatoms for monitoring programs is costly and time consuming because most of the methodologies necessitate species-level identification. This raises the question of the optimal trade-off between taxonomic resolution and bioassessment quality. Phylogenetic tools may form the bases of new, more efficient approaches for biomonitoring if relationships between ecology and phylogeny can be demonstrated. We estimated the ecological optima of 127 diatom species for 19 environmental parameters using count data from 2119 diatom communities sampled during eight years in eastern France. Using uni- and multivariate analyses, we explored the relationships between freshwater diatom phylogeny and ecology (i.e., the phylogenetic signal). We found a significant phylogenetic signal for many of the ecological optima that were tested, but the strength of the signal varied significantly from one trait to another. Multivariate analysis also showed that the multidimensional ecological niche of diatoms can be strongly related to phylogeny. The presence of clades containing species that exhibit homogeneous ecology suggests that phylogenetic information can be useful for aquatic biomonitoring. This study highlights the presence of significant patterns of ecological optima for freshwater diatoms in relation to their phylogeny. These results suggest the presence of a signal above the species level, which is encouraging for the development of simplified methods for biomonitoring survey.

  14. The phylogenetic position and diversity of the enigmatic mongrel frog Nothophryne Poynton, 1963 (Amphibia, Anura).

    PubMed

    Bittencourt-Silva, Gabriela B; Conradie, Werner; Siu-Ting, Karen; Tolley, Krystal A; Channing, Alan; Cunningham, Michael; Farooq, Harith M; Menegon, Michele; Loader, Simon P

    2016-06-01

    The phylogenetic relationships of the African mongrel frog genus Nothophryne are poorly understood. We provide the first molecular assessment of the phylogenetic position of, and diversity within, this monotypic genus from across its range-the Afromontane regions of Malawi and Mozambique. Our analysis using a two-tiered phylogenetic approach allowed us to place the genus in Pyxicephalidae. Within the family, Nothophryne grouped with Tomopterna, a hypothesis judged significantly better than alternative hypotheses proposed based on morphology. Our analyses of populations across the range of Nothophryne suggest the presence of several cryptic species, at least one species per mountain. Formal recognition of these species is pending but there is a major conservation concern for these narrowly distributed populations in an area impacted by major habitat change. The phylogenetic tree of pyxicephalids is used to examine evolution of life history, ancestral habitat, and biogeography of this group.

  15. Molecular phylogenetics: testing evolutionary hypotheses.

    PubMed

    Walsh, David A; Sharma, Adrian K

    2009-01-01

    A common approach for investigating evolutionary relationships between genes and organisms is to compare extant DNA or protein sequences and infer an evolutionary tree. This methodology is known as molecular phylogenetics and may be the most informative means for exploring phage evolution, since there are few morphological features that can be used to differentiate between these tiny biological entities. In addition, phage genomes can be mosaic, meaning different genes or genomic regions can exhibit conflicting evolutionary histories due to lateral gene transfer or homologous recombination between different phage genomes. Molecular phylogenetics can be used to identify and study such genome mosaicism. This chapter provides a general introduction to the theory and methodology used to reconstruct phylogenetic relationships from molecular data. Also included is a discussion on how the evolutionary history of different genes within the same set of genomes can be compared, using a collection of T4-type phage genomes as an example. A compilation of programs and packages that are available for conducting phylogenetic analyses is supplied as an accompanying appendix.

  16. Lack of phylogenetic signals within environmental niches of tropical tree species across life stages

    PubMed Central

    Zhang, Caicai; Yang, Jie; Sha, Liqing; Ci, Xiuqin; Li, Jie; Cao, Min; Brown, Calum; Swenson, Nathan G.; Lin, Luxiang

    2017-01-01

    The lasting imprint of phylogenetic history on current day ecological patterns has long intrigued biologists. Over the past decade ecologists have increasingly sought to quantify phylogenetic signals in environmental niche preferences and, especially, traits to help uncover the mechanisms driving plant community assembly. However, relatively little is known about how phylogenetic patterns in environmental niches and traits compare, leaving significant uncertainty about the ecological implications of trait-based analyses. We examined phylogenetic signals within known environmental niches of 64 species, at seedling and adult life stages, in a Chinese tropical forest, to test whether local environmental niches had consistent relationships with phylogenies. Our analyses show that local environmental niches are highly phylogenetically labile for both seedlings and adult trees, with closely related species occupying niches that are no more similar than expected by random chance. These findings contrast with previous trait-based studies in the same forest, suggesting that phylogenetic signals in traits might not a reliable guide to niche preferences or, therefore, to community assembly processes in some ecosystems, like the tropical seasonal rainforest in this study. PMID:28181524

  17. Characterizing the phylogenetic tree community structure of a protected tropical rain forest area in Cameroon.

    PubMed

    Manel, Stéphanie; Couvreur, Thomas L P; Munoz, François; Couteron, Pierre; Hardy, Olivier J; Sonké, Bonaventure

    2014-01-01

    Tropical rain forests, the richest terrestrial ecosystems in biodiversity on Earth are highly threatened by global changes. This paper aims to infer the mechanisms governing species tree assemblages by characterizing the phylogenetic structure of a tropical rain forest in a protected area of the Congo Basin, the Dja Faunal Reserve (Cameroon). We re-analyzed a dataset of 11538 individuals belonging to 372 taxa found along nine transects spanning five habitat types. We generated a dated phylogenetic tree including all sampled taxa to partition the phylogenetic diversity of the nine transects into alpha and beta components at the level of the transects and of the habitat types. The variation in phylogenetic composition among transects did not deviate from a random pattern at the scale of the Dja Faunal Reserve, probably due to a common history and weak environmental variation across the park. This lack of phylogenetic structure combined with an isolation-by-distance pattern of taxonomic diversity suggests that neutral dispersal limitation is a major driver of community assembly in the Dja. To assess any lack of sensitivity to the variation in habitat types, we restricted the analyses of transects to the terra firme primary forest and found results consistent with those of the whole dataset at the level of the transects. Additionally to previous analyses, we detected a weak but significant phylogenetic turnover among habitat types, suggesting that species sort in varying environments, even though it is not predominating on the overall phylogenetic structure. Finer analyses of clades indicated a signal of clustering for species from the Annonaceae family, while species from the Apocynaceae family indicated overdispersion. These results can contribute to the conservation of the park by improving our understanding of the processes dictating community assembly in these hyperdiverse but threatened regions of the world.

  18. Phylogenetic plant community structure along elevation is lineage specific

    PubMed Central

    Ndiribe, Charlotte; Pellissier, Loïc; Antonelli, Silvia; Dubuis, Anne; Pottier, Julien; Vittoz, Pascal; Guisan, Antoine; Salamin, Nicolas

    2013-01-01

    The trend of closely related taxa to retain similar environmental preferences mediated by inherited traits suggests that several patterns observed at the community scale originate from longer evolutionary processes. While the effects of phylogenetic relatedness have been previously studied within a single genus or family, lineage-specific effects on the ecological processes governing community assembly have rarely been studied for entire communities or flora. Here, we measured how community phylogenetic structure varies across a wide elevation gradient for plant lineages represented by 35 families, using a co-occurrence index and net relatedness index (NRI). We propose a framework that analyses each lineage separately and reveals the trend of ecological assembly at tree nodes. We found prevailing phylogenetic clustering for more ancient nodes and overdispersion in more recent tree nodes. Closely related species may thus rapidly evolve new environmental tolerances to radiate into distinct communities, while older lineages likely retain inherent environmental tolerances to occupy communities in similar environments, either through efficient dispersal mechanisms or the exclusion of older lineages with more divergent environmental tolerances. Our study illustrates the importance of disentangling the patterns of community assembly among lineages to better interpret the ecological role of traits. It also sheds light on studies reporting absence of phylogenetic signal, and opens new perspectives on the analysis of niche and trait conservatism across lineages. PMID:24455126

  19. Estimating phylogenetic trees from genome-scale data.

    PubMed

    Liu, Liang; Xi, Zhenxiang; Wu, Shaoyuan; Davis, Charles C; Edwards, Scott V

    2015-12-01

    The heterogeneity of signals in the genomes of diverse organisms poses challenges for traditional phylogenetic analysis. Phylogenetic methods known as "species tree" methods have been proposed to directly address one important source of gene tree heterogeneity, namely the incomplete lineage sorting that occurs when evolving lineages radiate rapidly, resulting in a diversity of gene trees from a single underlying species tree. Here we review theory and empirical examples that help clarify conflicts between species tree and concatenation methods, and misconceptions in the literature about the performance of species tree methods. Considering concatenation as a special case of the multispecies coalescent model helps explain differences in the behavior of the two methods on phylogenomic data sets. Recent work suggests that species tree methods are more robust than concatenation approaches to some of the classic challenges of phylogenetic analysis, including rapidly evolving sites in DNA sequences and long-branch attraction. We show that approaches, such as binning, designed to augment the signal in species tree analyses can distort the distribution of gene trees and are inconsistent. Computationally efficient species tree methods incorporating biological realism are a key to phylogenetic analysis of whole-genome data.

  20. The anatomy, affinity, and phylogenetic significance of Markuelia.

    PubMed

    Dong, Xi-Ping; Donoghue, Philip C J; Cunningham, John A; Liu, Jian-Bo; Cheng, Hong

    2005-01-01

    The fossil record provides a paucity of data on the development of extinct organisms, particularly for their embryology. The recovery of fossilized embryos heralds new insight into the evolution of development but advances are limited by an almost complete absence of phylogenetic constraint. Markuelia is an exception to this, known from cleavage and pre-hatchling stages as a vermiform and profusely annulated direct-developing bilaterian with terminal circumoral and posterior radial arrays of spines. Phylogenetic analyses have hitherto suggested assignment to stem-Scalidophora (phyla Kinorhyncha, Loricifera, Priapulida). We test this assumption with additional data and through the inclusion of additional taxa. The available evidence supports stem-Scalidophora affinity, leading to the conclusion that scalidophorans, cyclonerualians, and ecdysozoans are primitive direct developers, and the likelihood that scalidophorans are primitively metameric.

  1. Phylogenetic analysis of the nuclear alcohol dehydrogenase (Adh) gene family in Carex section Acrocystis (Cyperaceae) and combined analyses of Adh and nuclear ribosomal ITS and ETS sequences for inferring species relationships.

    PubMed

    Roalson, Eric H; Friar, Elizabeth A

    2004-12-01

    We analyzed sequence variation for the alcohol dehydrogenase (Adh) gene family in Carex section Acrocystis (Cyperaceae) to reconstruct Adh gene trees for Acrocystis species and to characterize the structure of the Adh gene family in Carex. Two Adh loci were included with ITS and ETS sequences in a combined Bayesian inference analysis of Carex section Acrocystis to gain a better understanding of species relationships in the section. In addition, we comment on how the results presented here contribute to our knowledge of the birth-death process of the Adh gene family in angiosperms. It appears that the structure of the Adh gene family in Carex is complex with possibly six loci present in the gene family. Additionally, variation among Acrocystis species within loci is quite low, and there is little phylogenetic resolution in the individual datasets. Bayesian inference analysis of the combined ITS, ETS, Adh1, and Adh2 datasets resulted in a moderately well-supported phylogenetic hypothesis of relationships in the section which is discussed in relation to previous hypotheses of relationships.

  2. Profiling phylogenetic informativeness.

    PubMed

    Townsend, Jeffrey P

    2007-04-01

    The resolution of four controversial topics in phylogenetic experimental design hinges upon the informativeness of characters about the historical relationships among taxa. These controversies regard the power of different classes of phylogenetic character, the relative utility of increased taxonomic versus character sampling, the differentiation between lack of phylogenetic signal and a historical rapid radiation, and the design of taxonomically broad phylogenetic studies optimized by taxonomically sparse genome-scale data. Quantification of the informativeness of characters for resolution of phylogenetic hypotheses during specified historical epochs is key to the resolution of these controversies. Here, such a measure of phylogenetic informativeness is formulated. The optimal rate of evolution of a character to resolve a dated four-taxon polytomy is derived. By scaling the asymptotic informativeness of a character evolving at a nonoptimal rate by the derived asymptotic optimum, and by normalizing so that net phylogenetic informativeness is equivalent for all rates when integrated across all of history, an informativeness profile across history is derived. Calculation of the informativeness per base pair allows estimation of the cost-effectiveness of character sampling. Calculation of the informativeness per million years allows comparison across historical radiations of the utility of a gene for the inference of rapid adaptive radiation. The theory is applied to profile the phylogenetic informativeness of the genes BRCA1, RAG1, GHR, and c-myc from a muroid rodent sequence data set. Bounded integrations of the phylogenetic profile of these genes over four epochs comprising the diversifications of the muroid rodents, the mammals, the lobe-limbed vertebrates, and the early metazoans demonstrate the differential power of these genes to resolve the branching order among ancestral lineages. This measure of phylogenetic informativeness yields a new kind of information

  3. Phylogenetic relationships amongst swifts and swiftlets: a multi locus approach.

    PubMed

    Thomassen, Henri A; den Tex, Robert-Jan; de Bakker, Merijn A G; Povel, G David E

    2005-10-01

    We recently reconstructed the troublesome swiftlet phylogeny using cytochrome-b mitochondrial DNA sequences. The relationship of the giant swiftlet (Hydrochous gigas) with swiftlets of the genus Aerodramus was, however, unresolved. In an attempt to clarify this issue, we now incorporated mitochondrial 12S rRNA and nuclear beta-fibrinogen intron 7 nuclear DNA sequences with the cyt-b sequences of six swiftlet, two swift, and one hummingbird outgroup species. A partition homogeneity (PH) test, used to determine the congruence of phylogenetic signal between two sets of sequences, suggested that cyt-b and Fib7 sequences were incongruent and therefore should not be combined. However, further analyses revealed that the apparent incongruence was probably due to the high amount of variation in cyt-b sequences. Separate and combined analyses of the three sequences unambiguously placed H. gigas as the sister-group of Aerodramus and supported monophyly of the swiftlets. These results were supported by analyses of combined NADH dehydrogenase subunit-2 (ND2) and cyt-b sequences of H. gigas in combination with sequences previously published by other workers. Recently, it was shown that the pygmy swiftlet (C. troglodytes)--in our phylogenetic analyses consistently placed with other, non-echolocating, Collocalia species--is in fact able to echolocate. Echolocation thereby lost its value to distinguish between different swiftlet genera. Furthermore, the phylogenetic distribution of echolocation can be explained either by its single evolution at the base of the swiftlets, with subsequent loss, or by independent evolution in Aerodramus and C. troglodytes. Because yet unpublished data suggest that only the auditory nuclei in swiftlet brains show adaptations to echolocation, the latter explanation seems the more likely one.

  4. The mitochondrial DNA of Xenoturbella bocki: genomic architecture and phylogenetic analysis.

    PubMed

    Perseke, Marleen; Hankeln, Thomas; Weich, Bettina; Fritzsch, Guido; Stadler, Peter F; Israelsson, Olle; Bernhard, Detlef; Schlegel, Martin

    2007-08-01

    The phylogenetic position of Xenoturbella bocki has been a matter of controversy since its description in 1949. We sequenced a second complete mitochondrial genome of this species and performed phylogenetic analyses based on the amino acid sequences of all 13 mitochondrial protein-coding genes and on its gene order. Our results confirm the deuterostome relationship of Xenoturbella. However, in contrast to a recently published study (Bourlat et al. in Nature 444:85-88, 2006), our data analysis suggests a more basal branching of Xenoturbella within the deuterostomes, rather than a sister-group relationship to the Ambulacraria (Hemichordata and Echinodermata).

  5. Phylogenetic Trees From Sequences

    NASA Astrophysics Data System (ADS)

    Ryvkin, Paul; Wang, Li-San

    In this chapter, we review important concepts and approaches for phylogeny reconstruction from sequence data.We first cover some basic definitions and properties of phylogenetics, and briefly explain how scientists model sequence evolution and measure sequence divergence. We then discuss three major approaches for phylogenetic reconstruction: distance-based phylogenetic reconstruction, maximum parsimony, and maximum likelihood. In the third part of the chapter, we review how multiple phylogenies are compared by consensus methods and how to assess confidence using bootstrapping. At the end of the chapter are two sections that list popular software packages and additional reading.

  6. Soft-tissue anatomy of the primates: phylogenetic analyses based on the muscles of the head, neck, pectoral region and upper limb, with notes on the evolution of these muscles

    PubMed Central

    Diogo, R; Wood, B

    2011-01-01

    Apart from molecular data, nearly all the evidence used to study primate relationships comes from hard tissues. Here, we provide details of the first parsimony and Bayesian cladistic analyses of the order Primates based exclusively on muscle data. The most parsimonious tree obtained from the cladistic analysis of 166 characters taken from the head, neck, pectoral and upper limb musculature is fully congruent with the most recent evolutionary molecular tree of Primates. That is, this tree recovers not only the relationships among the major groups of primates, i.e. Strepsirrhini {Tarsiiformes [Platyrrhini (Cercopithecidae, Hominoidea)]}, but it also recovers the relationships within each of these inclusive groups. Of the 301 character state changes occurring in this tree, ca. 30% are non-homoplasic evolutionary transitions; within the 220 changes that are unambiguously optimized in the tree, ca. 15% are reversions. The trees obtained by using characters derived from the muscles of the head and neck are more similar to the most recent evolutionary molecular tree than are the trees obtained by using characters derived from the pectoral and upper limb muscles. It was recently argued that since the Pan/Homo split, chimpanzees accumulated more phenotypic adaptations than humans, but our results indicate that modern humans accumulated more muscle character state changes than chimpanzees, and that both these taxa accumulated more changes than gorillas. This overview of the evolution of the primate head, neck, pectoral and upper limb musculature suggests that the only muscle groups for which modern humans have more muscles than most other extant primates are the muscles of the face, larynx and forearm. PMID:21689100

  7. Soft-tissue anatomy of the primates: phylogenetic analyses based on the muscles of the head, neck, pectoral region and upper limb, with notes on the evolution of these muscles.

    PubMed

    Diogo, R; Wood, B

    2011-09-01

    Apart from molecular data, nearly all the evidence used to study primate relationships comes from hard tissues. Here, we provide details of the first parsimony and Bayesian cladistic analyses of the order Primates based exclusively on muscle data. The most parsimonious tree obtained from the cladistic analysis of 166 characters taken from the head, neck, pectoral and upper limb musculature is fully congruent with the most recent evolutionary molecular tree of Primates. That is, this tree recovers not only the relationships among the major groups of primates, i.e. Strepsirrhini {Tarsiiformes [Platyrrhini (Cercopithecidae, Hominoidea)]}, but it also recovers the relationships within each of these inclusive groups. Of the 301 character state changes occurring in this tree, ca. 30% are non-homoplasic evolutionary transitions; within the 220 changes that are unambiguously optimized in the tree, ca. 15% are reversions. The trees obtained by using characters derived from the muscles of the head and neck are more similar to the most recent evolutionary molecular tree than are the trees obtained by using characters derived from the pectoral and upper limb muscles. It was recently argued that since the Pan/Homo split, chimpanzees accumulated more phenotypic adaptations than humans, but our results indicate that modern humans accumulated more muscle character state changes than chimpanzees, and that both these taxa accumulated more changes than gorillas. This overview of the evolution of the primate head, neck, pectoral and upper limb musculature suggests that the only muscle groups for which modern humans have more muscles than most other extant primates are the muscles of the face, larynx and forearm.

  8. Phylogenetic relationships and species circumscription in Trentepohlia and Printzina (Trentepohliales, Chlorophyta).

    PubMed

    Rindi, Fabio; Lam, Daryl W; López-Bautista, Juan M

    2009-08-01

    Subaerial green microalgae represent a polyphyletic complex of organisms, whose genetic diversity is much higher than their simple morphologies suggest. The order Trentepohliales is the only species-rich group of subaerial algae belonging to the class Ulvophyceae and represents an ideal model taxon to investigate evolutionary patterns of these organisms. We studied phylogenetic relationships in two common genera of Trentepohliales (Trentepohlia and Printzina) by separate and combined analyses of the rbcL and 18S rRNA genes. Trentepohlia and Printzina were not resolved as monophyletic groups. Three main clades were recovered in all analyses, but none corresponded to any trentepohlialean genus as defined based on morphological grounds. The rbcL and 18S rRNA datasets provided congruent phylogenetic signals and similar topologies were recovered in single-gene analyses. Analyses performed on the combined 2-gene dataset inferred generally higher nodal support. The results clarified several taxonomic problems and showed that the evolution of these algae has been characterized by considerable morphological convergence. Trentepohlia abietina and T. flava were shown to be separate species from T. aurea; Printzina lagenifera, T. arborum and T. umbrina were resolved as polyphyletic taxa, whose vegetative morphology appears to have evolved independently in separate lineages. Incongruence between phylogenetic relationships and traditional morphological classification was demonstrated, showing that the morphological characters commonly used in the taxonomy of the Trentepohliales are phylogenetically irrelevant.

  9. Phylogenetic lineages in Entomophthoromycota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Entomophthoromycota Humber is one of five major phylogenetic lineages among the former phylum Zygomycota. These early terrestrial fungi share evolutionarily ancestral characters such as coenocytic mycelium and gametangiogamy as a sexual process resulting in zygospore formation. Previous molecular st...

  10. Babesia bovis: a comprehensive phylogenetic analysis of plastid-encoded genes supports green algal origin of apicoplasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apicomplexan parasites commonly contain a unique, non-photosynthetic plastid-like organelle termed the apicoplast. Previous analyses of other plastid-containing organisms suggest that apicoplasts were derived from a red algal ancestor. In this report, we present an extensive phylogenetic study of ap...

  11. Molecular systematics of the Amazonian genus Aldina, a phylogenetically enigmatic ectomycorrhizal lineage of papilionoid legumes.

    PubMed

    Ramos, Gustavo; de Lima, Haroldo Cavalcante; Prenner, Gerhard; de Queiroz, Luciano Paganucci; Zartman, Charles E; Cardoso, Domingos

    2016-04-01

    Aldina (Leguminosae) is among the very few ecologically successful ectomycorrhizal lineages in a family largely marked by the evolution of nodulating symbiosis. The genus comprises 20 species predominantly distributed in Amazonia and has been traditionally classified in the tribe Swartzieae because of its radial flowers with an entire calyx and numerous free stamens. The taxonomy of Aldina is complicated due to its poor representation in herbaria and the lack of a robust phylogenetic hypothesis of relationship. Recent phylogenetic analyses of matK and trnL sequences confirmed the placement of Aldina in the 50-kb inversion clade, although the genus remained phylogenetically isolated or unresolved in the context of the evolutionary history of the main early-branching papilionoid lineages. We performed maximum likelihood and Bayesian analyses of combined chloroplast datasets (matK, rbcL, and trnL) and explored the effect of incomplete taxa or missing data in order to shed light on the enigmatic phylogenetic position of Aldina. Unexpectedly, a sister relationship of Aldina with the Andira clade (Andira and Hymenolobium) is revealed. We suggest that a new tribal phylogenetic classification of the papilionoid legumes should place Aldina along with Andira and Hymenolobium. These results highlight yet another example of the independent evolution of radial floral symmetry within the early-branching Papilionoideae, a large collection of florally heterogeneous lineages dominated by papilionate or bilaterally symmetric flower morphology.

  12. Octocoral mitochondrial genomes provide insights into the phylogenetic history of gene order rearrangements, order reversals, and cnidarian phylogenetics.

    PubMed

    Figueroa, Diego F; Baco, Amy R

    2014-12-24

    We use full mitochondrial genomes to test the robustness of the phylogeny of the Octocorallia, to determine the evolutionary pathway for the five known mitochondrial gene rearrangements in octocorals, and to test the suitability of using mitochondrial genomes for higher taxonomic-level phylogenetic reconstructions. Our phylogeny supports three major divisions within the Octocorallia and show that Paragorgiidae is paraphyletic, with Sibogagorgia forming a sister branch to the Coralliidae. Furthermore, Sibogagorgia cauliflora has what is presumed to be the ancestral gene order in octocorals, but the presence of a pair of inverted repeat sequences suggest that this gene order was not conserved but rather evolved back to this apparent ancestral state. Based on this we recommend the resurrection of the family Sibogagorgiidae to fix the paraphyly of the Paragorgiidae. This is the first study to show that in the Octocorallia, mitochondrial gene orders have evolved back to an ancestral state after going through a gene rearrangement, with at least one of the gene orders evolving independently in different lineages. A number of studies have used gene boundaries to determine the type of mitochondrial gene arrangement present. However, our findings suggest that this method known as gene junction screening may miss evolutionary reversals. Additionally, substitution saturation analysis demonstrates that while whole mitochondrial genomes can be used effectively for phylogenetic analyses within Octocorallia, their utility at higher taxonomic levels within Cnidaria is inadequate. Therefore for phylogenetic reconstruction at taxonomic levels higher than subclass within the Cnidaria, nuclear genes will be required, even when whole mitochondrial genomes are available.

  13. Influence of tree shape and evolutionary time-scale on phylogenetic diversity metrics

    PubMed Central

    Mazel, F.; Davies, T.J; Gallien, L.; Renaud, J.; Groussin, M.; Münkemüller, T.; Thuiller, W.

    2016-01-01

    During the last decades, describing, analysing and understanding the phylogenetic structure of species assemblages has been a central theme in both community ecology and macro-ecology. Among the wide variety of phylogenetic structure metrics, three have been predominant in the literature: Faith’s phylogenetic diversity (PDFaith), which represents the sum of the branch lengths of the phylogenetic tree linking all species of a particular assemblage, the mean pairwise distance between all species in an assemblage (MPD) and the pairwise distance between the closest relatives in an assemblage (MNTD). Comparisons between studies using one or several of these metrics are difficult because there has been no comprehensive evaluation of the phylogenetic properties each metric captures. In particular it is unknown how PDFaith relates to MDP and MNTD. Consequently, it is possible that apparently opposing patterns in different studies might simply reflect differences in metric properties. Here, we aim to fill this gap by comparing these metrics using simulations and empirical data. We first used simulation experiments to test the influence of community structure and size on the mismatch between metrics whilst varying the shape and size of the phylogenetic tree of the species pool. Second we investigated the mismatch between metrics for two empirical datasets (gut microbes and global carnivoran assemblages). We show that MNTD and PDFaith provide similar information on phylogenetic structure, and respond similarly to variation in species richness and assemblage structure. However, MPD demonstrate a very different behaviour, and is highly sensitive to deep branching structure. We suggest that by combining complementary metrics that are sensitive to processes operating at different phylogenetic depths (i.e. MPD and MNTD or PDFaith) we can obtain a better understanding of assemblage structure. PMID:27713599

  14. Influence of tree shape and evolutionary time-scale on phylogenetic diversity metrics.

    PubMed

    Mazel, F; Davies, T J; Gallien, L; Renaud, J; Groussin, M; Münkemüller, T; Thuiller, W

    2016-10-01

    During the last decades, describing, analysing and understanding the phylogenetic structure of species assemblages has been a central theme in both community ecology and macro-ecology. Among the wide variety of phylogenetic structure metrics, three have been predominant in the literature: Faith's phylogenetic diversity (PDFaith), which represents the sum of the branch lengths of the phylogenetic tree linking all species of a particular assemblage, the mean pairwise distance between all species in an assemblage (MPD) and the pairwise distance between the closest relatives in an assemblage (MNTD). Comparisons between studies using one or several of these metrics are difficult because there has been no comprehensive evaluation of the phylogenetic properties each metric captures. In particular it is unknown how PDFaith relates to MDP and MNTD. Consequently, it is possible that apparently opposing patterns in different studies might simply reflect differences in metric properties. Here, we aim to fill this gap by comparing these metrics using simulations and empirical data. We first used simulation experiments to test the influence of community structure and size on the mismatch between metrics whilst varying the shape and size of the phylogenetic tree of the species pool. Second we investigated the mismatch between metrics for two empirical datasets (gut microbes and global carnivoran assemblages). We show that MNTD and PDFaith provide similar information on phylogenetic structure, and respond similarly to variation in species richness and assemblage structure. However, MPD demonstrate a very different behaviour, and is highly sensitive to deep branching structure. We suggest that by combining complementary metrics that are sensitive to processes operating at different phylogenetic depths (i.e. MPD and MNTD or PDFaith) we can obtain a better understanding of assemblage structure.

  15. Genomic Repeat Abundances Contain Phylogenetic Signal

    PubMed Central

    Dodsworth, Steven; Chase, Mark W.; Kelly, Laura J.; Leitch, Ilia J.; Macas, Jiří; Novák, Petr; Piednoël, Mathieu; Weiss-Schneeweiss, Hanna; Leitch, Andrew R.

    2015-01-01

    A large proportion of genomic information, particularly repetitive elements, is usually ignored when researchers are using next-generation sequencing. Here we demonstrate the usefulness of this repetitive fraction in phylogenetic analyses, utilizing comparative graph-based clustering of next-generation sequence reads, which results in abundance estimates of different classes of genomic repeats. Phylogenetic trees are then inferred based on the genome-wide abundance of different repeat types treated as continuously varying characters; such repeats are scattered across chromosomes and in angiosperms can constitute a majority of nuclear genomic DNA. In six diverse examples, five angiosperms and one insect, this method provides generally well-supported relationships at interspecific and intergeneric levels that agree with results from more standard phylogenetic analyses of commonly used markers. We propose that this methodology may prove especially useful in groups where there is little genetic differentiation in standard phylogenetic markers. At the same time as providing data for phylogenetic inference, this method additionally yields a wealth of data for comparative studies of genome evolution. PMID:25261464

  16. Phylogenetic analysis of the genus Microbacterium based on 16S rRNA gene sequences.

    PubMed

    Takeuchi, M; Yokota, A

    1994-11-15

    16S rRNA gene (rDNA) studies of the six species of the genus Microbacterium, M. lacticum, M. laevaniformans, M. dextranolyticum, M. imperiale, M. arborescens and M. aurum, were performed and the primary structures were compared with those of 29 representative actinobacteria and related organisms. Phylogenetic analysis indicated that six species of the genus Microbacterium and representative four species of the genus Aureobacterium appear to be phylogenetically coherent as was suggested by Rainey et al., although the peptidoglycan types of these two genera are different (peptidoglycan type B1 or B2). Thus, the phylogenetical analyses revealed that members of actinobacteria with group B-peptidoglycan do not cluster according to their peptidoglycan types, but form compact cluster different from actinobacteria or actinomycetes with group A-peptidoglycan.

  17. The phylogenetic likelihood library.

    PubMed

    Flouri, T; Izquierdo-Carrasco, F; Darriba, D; Aberer, A J; Nguyen, L-T; Minh, B Q; Von Haeseler, A; Stamatakis, A

    2015-03-01

    We introduce the Phylogenetic Likelihood Library (PLL), a highly optimized application programming interface for developing likelihood-based phylogenetic inference and postanalysis software. The PLL implements appropriate data structures and functions that allow users to quickly implement common, error-prone, and labor-intensive tasks, such as likelihood calculations, model parameter as well as branch length optimization, and tree space exploration. The highly optimized and parallelized implementation of the phylogenetic likelihood function and a thorough documentation provide a framework for rapid development of scalable parallel phylogenetic software. By example of two likelihood-based phylogenetic codes we show that the PLL improves the sequential performance of current software by a factor of 2-10 while requiring only 1 month of programming time for integration. We show that, when numerical scaling for preventing floating point underflow is enabled, the double precision likelihood calculations in the PLL are up to 1.9 times faster than those in BEAGLE. On an empirical DNA dataset with 2000 taxa the AVX version of PLL is 4 times faster than BEAGLE (scaling enabled and required). The PLL is available at http://www.libpll.org under the GNU General Public License (GPL).

  18. Primary structure and phylogenetic relationships of a malate dehydrogenase gene from Giardia lamblia.

    PubMed

    Roger, A J; Morrison, H G; Sogin, M L

    1999-06-01

    The lactate and malate dehydrogenases comprise a complex protein superfamily with multiple enzyme homologues found in eubacteria, archaebacteria, and eukaryotes. In this study we describe the sequence and phylogenetic relationships of a malate dehydrogenase (MDH) gene from the amitochondriate diplomonad protist, Giardia lamblia. Parsimony, distance, and maximum-likelihood analyses of the MDH protein family solidly position G. lamblia MDH within a eukaryote cytosolic MDH clade, to the exclusion of chloroplast, mitochondrial, and peroxisomal homologues. Furthermore, G. lamblia MDH is specifically related to a homologue from Trichomonas vaginalis. This MDH topology, together with published phylogenetic analyses of beta-tubulin, chaperonin 60, valyl-tRNA synthetase, and EF-1alpha, suggests a sister-group relationship between diplomonads and parabasalids. Since these amitochondriate lineages contain genes encoding proteins which are characteristic of mitochondria and alpha-proteobacteria, their shared ancestry suggests that mitochondrial properties were lost in the common ancestor of both groups.

  19. Quantifying phylogenetic beta diversity: distinguishing between 'true' turnover of lineages and phylogenetic diversity gradients.

    PubMed

    Leprieur, Fabien; Albouy, Camille; De Bortoli, Julien; Cowman, Peter F; Bellwood, David R; Mouillot, David

    2012-01-01

    The evolutionary dissimilarity between communities (phylogenetic beta diversity PBD) has been increasingly explored by ecologists and biogeographers to assess the relative roles of ecological and evolutionary processes in structuring natural communities. Among PBD measures, the PhyloSor and UniFrac indices have been widely used to assess the level of turnover of lineages over geographical and environmental gradients. However, these indices can be considered as 'broad-sense' measures of phylogenetic turnover as they incorporate different aspects of differences in evolutionary history between communities that may be attributable to phylogenetic diversity gradients. In the present study, we extend an additive partitioning framework proposed for compositional beta diversity to PBD. Specifically, we decomposed the PhyloSor and UniFrac indices into two separate components accounting for 'true' phylogenetic turnover and phylogenetic diversity gradients, respectively. We illustrated the relevance of this framework using simple theoretical and archetypal examples, as well as an empirical study based on coral reef fish communities. Overall, our results suggest that using PhyloSor and UniFrac may greatly over-estimate the level of spatial turnover of lineages if the two compared communities show contrasting levels of phylogenetic diversity. We therefore recommend that future studies use the 'true' phylogenetic turnover component of these indices when the studied communities encompass a large phylogenetic diversity gradient.

  20. Phylogenetic and Recombination Analysis of Tomato Spotted Wilt Virus

    PubMed Central

    Yu, Jisuk; Kim, Mi-Kyeong; Choi, Hong-Soo; Kim, Kook-Hyung

    2013-01-01

    Tomato spotted wilt virus (TSWV) severely damages and reduces the yield of many economically important plants worldwide. In this study, we determined the whole-genome sequences of 10 TSWV isolates recently identified from various regions and hosts in Korea. Phylogenetic analysis of these 10 isolates as well as the three previously sequenced isolates indicated that the 13 Korean TSWV isolates could be divided into two groups reflecting either two different origins or divergences of Korean TSWV isolates. In addition, the complete nucleotide sequences for the 13 Korean TSWV isolates along with previously sequenced TSWV RNA segments from Korea and other countries were subjected to phylogenetic and recombination analysis. The phylogenetic analysis indicated that both the RNA L and RNA M segments of most Korean isolates might have originated in Western Europe and North America but that the RNA S segments for all Korean isolates might have originated in China and Japan. Recombination analysis identified a total of 12 recombination events among all isolates and segments and five recombination events among the 13 Korea isolates; among the five recombinants from Korea, three contained the whole RNA L segment, suggesting reassortment rather than recombination. Our analyses provide evidence that both recombination and reassortment have contributed to the molecular diversity of TSWV. PMID:23696821

  1. Phylogenetic and Evolutionary Patterns in Microbial Carotenoid Biosynthesis Are Revealed by Comparative Genomics

    PubMed Central

    Klassen, Jonathan L.

    2010-01-01

    Background Carotenoids are multifunctional, taxonomically widespread and biotechnologically important pigments. Their biosynthesis serves as a model system for understanding the evolution of secondary metabolism. Microbial carotenoid diversity and evolution has hitherto been analyzed primarily from structural and biosynthetic perspectives, with the few phylogenetic analyses of microbial carotenoid biosynthetic proteins using either used limited datasets or lacking methodological rigor. Given the recent accumulation of microbial genome sequences, a reappraisal of microbial carotenoid biosynthetic diversity and evolution from the perspective of comparative genomics is warranted to validate and complement models of microbial carotenoid diversity and evolution based upon structural and biosynthetic data. Methodology/Principal Findings Comparative genomics were used to identify and analyze in silico microbial carotenoid biosynthetic pathways. Four major phylogenetic lineages of carotenoid biosynthesis are suggested composed of: (i) Proteobacteria; (ii) Firmicutes; (iii) Chlorobi, Cyanobacteria and photosynthetic eukaryotes; and (iv) Archaea, Bacteroidetes and two separate sub-lineages of Actinobacteria. Using this phylogenetic framework, specific evolutionary mechanisms are proposed for carotenoid desaturase CrtI-family enzymes and carotenoid cyclases. Several phylogenetic lineage-specific evolutionary mechanisms are also suggested, including: (i) horizontal gene transfer; (ii) gene acquisition followed by differential gene loss; (iii) co-evolution with other biochemical structures such as proteorhodopsins; and (iv) positive selection. Conclusions/Significance Comparative genomics analyses of microbial carotenoid biosynthetic proteins indicate a much greater taxonomic diversity then that identified based on structural and biosynthetic data, and divides microbial carotenoid biosynthesis into several, well-supported phylogenetic lineages not evident previously. This

  2. Phylogenetic analysis of feline immunodeficiency virus in feral and companion domestic cats of New Zealand.

    PubMed

    Hayward, Jessica J; Taylor, John; Rodrigo, Allen G

    2007-03-01

    Nested PCR was used to amplify envelope V3-V6 gene fragments of feline immunodeficiency virus (FIV) from New Zealand cats. Phylogenetic analyses established that subtypes A and C predominate among New Zealand cats, with clear evidence of intersubtype recombination. In addition, 17 sequences were identified that were distinct from all known FIV clades, and we tentatively suggest these belong to a novel subtype.

  3. A Universal Phylogenetic Tree.

    ERIC Educational Resources Information Center

    Offner, Susan

    2001-01-01

    Presents a universal phylogenetic tree suitable for use in high school and college-level biology classrooms. Illustrates the antiquity of life and that all life is related, even if it dates back 3.5 billion years. Reflects important evolutionary relationships and provides an exciting way to learn about the history of life. (SAH)

  4. Molecular phylogenetics before sequences

    PubMed Central

    Ragan, Mark A; Bernard, Guillaume; Chan, Cheong Xin

    2014-01-01

    From 1971 to 1985, Carl Woese and colleagues generated oligonucleotide catalogs of 16S/18S rRNAs from more than 400 organisms. Using these incomplete and imperfect data, Carl and his colleagues developed unprecedented insights into the structure, function, and evolution of the large RNA components of the translational apparatus. They recognized a third domain of life, revealed the phylogenetic backbone of bacteria (and its limitations), delineated taxa, and explored the tempo and mode of microbial evolution. For these discoveries to have stood the test of time, oligonucleotide catalogs must carry significant phylogenetic signal; they thus bear re-examination in view of the current interest in alignment-free phylogenetics based on k-mers. Here we consider the aims, successes, and limitations of this early phase of molecular phylogenetics. We computationally generate oligonucleotide sets (e-catalogs) from 16S/18S rRNA sequences, calculate pairwise distances between them based on D2 statistics, compute distance trees, and compare their performance against alignment-based and k-mer trees. Although the catalogs themselves were superseded by full-length sequences, this stage in the development of computational molecular biology remains instructive for us today. PMID:24572375

  5. Phylogenetic Inference From Conserved sites Alignments

    SciTech Connect

    grundy, W.N.; Naylor, G.J.P.

    1999-08-15

    Molecular sequences provide a rich source of data for inferring the phylogenetic relationships among species. However, recent work indicates that even an accurate multiple alignment of a large sequence set may yield an incorrect phylogeny and that the quality of the phylogenetic tree improves when the input consists only of the highly conserved, motif regions of the alignment. This work introduces two methods of producing multiple alignments that include only the conserved regions of the initial alignment. The first method retains conserved motifs, whereas the second retains individual conserved sites in the initial alignment. Using parsimony analysis on a mitochondrial data set containing 19 species among which the phylogenetic relationships are widely accepted, both conserved alignment methods produce better phylogenetic trees than the complete alignment. Unlike any of the 19 inference methods used before to analyze this data, both methods produce trees that are completely consistent with the known phylogeny. The motif-based method employs far fewer alignment sites for comparable error rates. For a larger data set containing mitochondrial sequences from 39 species, the site-based method produces a phylogenetic tree that is largely consistent with known phylogenetic relationships and suggests several novel placements.

  6. Estimating Bayesian Phylogenetic Information Content

    PubMed Central

    Lewis, Paul O.; Chen, Ming-Hui; Kuo, Lynn; Lewis, Louise A.; Fučíková, Karolina; Neupane, Suman; Wang, Yu-Bo; Shi, Daoyuan

    2016-01-01

    Measuring the phylogenetic information content of data has a long history in systematics. Here we explore a Bayesian approach to information content estimation. The entropy of the posterior distribution compared with the entropy of the prior distribution provides a natural way to measure information content. If the data have no information relevant to ranking tree topologies beyond the information supplied by the prior, the posterior and prior will be identical. Information in data discourages consideration of some hypotheses allowed by the prior, resulting in a posterior distribution that is more concentrated (has lower entropy) than the prior. We focus on measuring information about tree topology using marginal posterior distributions of tree topologies. We show that both the accuracy and the computational efficiency of topological information content estimation improve with use of the conditional clade distribution, which also allows topological information content to be partitioned by clade. We explore two important applications of our method: providing a compelling definition of saturation and detecting conflict among data partitions that can negatively affect analyses of concatenated data. [Bayesian; concatenation; conditional clade distribution; entropy; information; phylogenetics; saturation.] PMID:27155008

  7. Phylogenetic conservatism of extinctions in marine bivalves.

    PubMed

    Roy, Kaustuv; Hunt, Gene; Jablonski, David

    2009-08-07

    Evolutionary histories of species and lineages can influence their vulnerabilities to extinction, but the importance of this effect remains poorly explored for extinctions in the geologic past. When analyzed using a standardized taxonomy within a phylogenetic framework, extinction rates of marine bivalves estimated from the fossil record for the last approximately 200 million years show conservatism at multiple levels of evolutionary divergence, both within individual families and among related families. The strength of such phylogenetic clustering varies over time and is influenced by earlier extinction history, especially by the demise of volatile taxa in the end-Cretaceous mass extinction. Analyses of the evolutionary roles of ancient extinctions and predictive models of vulnerability of taxa to future natural and anthropogenic stressors should take phylogenetic relationships and extinction history into account.

  8. A Comprehensive Phylogenetic Analysis of Deadenylases

    PubMed Central

    Pavlopoulou, Athanasia; Vlachakis, Dimitrios; Balatsos, Nikolaos A.A.; Kossida, Sophia

    2013-01-01

    Deadenylases catalyze the shortening of the poly(A) tail at the messenger ribonucleic acid (mRNA) 3′-end in eukaryotes. Therefore, these enzymes influence mRNA decay, and constitute a major emerging group of promising anti-cancer pharmacological targets. Herein, we conducted full phylogenetic analyses of the deadenylase homologs in all available genomes in an effort to investigate evolutionary relationships between the deadenylase families and to identify invariant residues, which probably play key roles in the function of deadenylation across species. Our study includes both major Asp-Glu-Asp-Asp (DEDD) and exonuclease-endonuclease-phospatase (EEP) deadenylase superfamilies. The phylogenetic analysis has provided us with important information regarding conserved and invariant deadenylase amino acids across species. Knowledge of the phylogenetic properties and evolution of the domain of deadenylases provides the foundation for the targeted drug design in the pharmaceutical industry and modern exonuclease anti-cancer scientific research. PMID:24348009

  9. On the origin of and phylogenetic relationships among living amphibians

    PubMed Central

    Zardoya, Rafael; Meyer, Axel

    2001-01-01

    The phylogenetic relationships among the three orders of modern amphibians (Caudata, Gymnophiona, and Anura) have been estimated based on both morphological and molecular evidence. Most morphological and paleontological studies of living and fossil amphibians support the hypothesis that salamanders and frogs are sister lineages (the Batrachia hypothesis) and that caecilians are more distantly related. Previous interpretations of molecular data based on nuclear and mitochondrial rRNA sequences suggested that salamanders and caecilians are sister groups to the exclusion of frogs. In an attempt to resolve this apparent conflict, the complete mitochondrial genomes of a salamander (Mertensiella luschani) and a caecilian (Typhlonectes natans) were determined (16,656 and 17,005 bp, respectively) and compared with previously published sequences from a frog (Xenopus laevis) and several other groups of vertebrates. Phylogenetic analyses of the mitochondrial data supported with high bootstrap values the monophyly of living amphibians with respect to other living groups of tetrapods, and a sister group relationship of salamanders and frogs. The lack of phylogenetically informative sites in the previous rRNA data sets (because of its shorter size and higher among-site rate variation) likely explains the discrepancy between our results and those based on previous molecular data. Strong support of the Batrachia hypothesis from both molecule- and morphology-based studies provides a robust phylogenetic framework that will be helpful to comparative studies among the three living orders of amphibians and will permit better understanding of the considerably divergent vertebral, brain, and digit developmental patterns found in frogs and salamanders. PMID:11390961

  10. On the origin of and phylogenetic relationships among living amphibians.

    PubMed

    Zardoya, R; Meyer, A

    2001-06-19

    The phylogenetic relationships among the three orders of modern amphibians (Caudata, Gymnophiona, and Anura) have been estimated based on both morphological and molecular evidence. Most morphological and paleontological studies of living and fossil amphibians support the hypothesis that salamanders and frogs are sister lineages (the Batrachia hypothesis) and that caecilians are more distantly related. Previous interpretations of molecular data based on nuclear and mitochondrial rRNA sequences suggested that salamanders and caecilians are sister groups to the exclusion of frogs. In an attempt to resolve this apparent conflict, the complete mitochondrial genomes of a salamander (Mertensiella luschani) and a caecilian (Typhlonectes natans) were determined (16,656 and 17,005 bp, respectively) and compared with previously published sequences from a frog (Xenopus laevis) and several other groups of vertebrates. Phylogenetic analyses of the mitochondrial data supported with high bootstrap values the monophyly of living amphibians with respect to other living groups of tetrapods, and a sister group relationship of salamanders and frogs. The lack of phylogenetically informative sites in the previous rRNA data sets (because of its shorter size and higher among-site rate variation) likely explains the discrepancy between our results and those based on previous molecular data. Strong support of the Batrachia hypothesis from both molecule- and morphology-based studies provides a robust phylogenetic framework that will be helpful to comparative studies among the three living orders of amphibians and will permit better understanding of the considerably divergent vertebral, brain, and digit developmental patterns found in frogs and salamanders.

  11. Evolution of specialization: a phylogenetic study of host range in the red milkweed beetle (Tetraopes tetraophthalmus).

    PubMed

    Rasmann, Sergio; Agrawal, Anurag A

    2011-06-01

    Specialization is common in most lineages of insect herbivores, one of the most diverse groups of organisms on earth. To address how and why specialization is maintained over evolutionary time, we hypothesized that plant defense and other ecological attributes of potential host plants would predict the performance of a specialist root-feeding herbivore (the red milkweed beetle, Tetraopes tetraophthalmus). Using a comparative phylogenetic and functional trait approach, we assessed the determinants of insect host range across 18 species of Asclepias. Larval survivorship decreased with increasing phylogenetic distance from the true host, Asclepias syriaca, suggesting that adaptation to plant traits drives specialization. Among several root traits measured, only cardenolides (toxic defense chemicals) correlated with larval survival, and cardenolides also explained the phylogenetic distance effect in phylogenetically controlled multiple regression analyses. Additionally, milkweed species having a known association with other Tetraopes beetles were better hosts than species lacking Tetraopes herbivores, and milkweeds with specific leaf area values (a trait related to leaf function and habitat affiliation) similar to those of A. syriaca were better hosts than species having divergent values. We thus conclude that phylogenetic distance is an integrated measure of phenotypic and ecological attributes of Asclepias species, especially defensive cardenolides, which can be used to explain specialization and constraints on host shifts over evolutionary time.

  12. Phylogenetic and functional dissimilarity does not increase during temporal heathland succession.

    PubMed

    Letten, Andrew D; Keith, David A; Tozer, Mark G

    2014-12-22

    Succession has been a focal point of ecological research for over a century, but thus far has been poorly explored through the lens of modern phylogenetic and trait-based approaches to community assembly. The vast majority of studies conducted to date have comprised static analyses where communities are observed at a single snapshot in time. Long-term datasets present a vantage point to compare established and emerging theoretical predictions on the phylogenetic and functional trajectory of communities through succession. We investigated within, and between, community measures of phylogenetic and functional diversity in a fire-prone heathland along a 21 year time series. Contrary to widely held expectations that increased competition through succession should inhibit the coexistence of species with high niche overlap, plots became more phylogenetically and functionally clustered with time since fire. There were significant directional shifts in individual traits through time indicating deterministic successional processes associated with changing abiotic and/or biotic conditions. However, relative to the observed temporal rate of taxonomic turnover, both phylogenetic and functional turnover were comparatively low, suggesting a degree of functional redundancy among close relatives. These results contribute to an emerging body of evidence indicating that limits to the similarity of coexisting species are rarely observed at fine spatial scales.

  13. Continental scale patterns and predictors of fern richness and phylogenetic diversity.

    PubMed

    Nagalingum, Nathalie S; Knerr, Nunzio; Laffan, Shawn W; González-Orozco, Carlos E; Thornhill, Andrew H; Miller, Joseph T; Mishler, Brent D

    2015-01-01

    Because ferns have a wide range of habitat preferences and are widely distributed, they are an ideal group for understanding how diversity is distributed. Here we examine fern diversity on a broad-scale using standard and corrected richness measures as well as phylogenetic indices; in addition we determine the environmental predictors of each diversity metric. Using the combined records of Australian herbaria, a dataset of over 60,000 records was obtained for 89 genera to infer richness. A molecular phylogeny of all the genera was constructed and combined with the herbarium records to obtain phylogenetic diversity patterns. A hotspot of both taxic and phylogenetic diversity occurs in the Wet Tropics of northeastern Australia. Although considerable diversity is distributed along the eastern coast, some important regions of diversity are identified only after sample-standardization of richness and through the phylogenetic metric. Of all of the metrics, annual precipitation was identified as the most explanatory variable, in part, in agreement with global and regional fern studies. However, precipitation was combined with a different variable for each different metric. For corrected richness, precipitation was combined with temperature seasonality, while correlation of phylogenetic diversity to precipitation plus radiation indicated support for the species-energy hypothesis. Significantly high and significantly low phylogenetic diversity were found in geographically separate areas. These separate areas correlated with different climatic conditions such as seasonality in precipitation. The phylogenetic metrics identified additional areas of significant diversity, some of which have not been revealed using traditional taxonomic analyses, suggesting that different ecological and evolutionary processes have operated over the continent. Our study demonstrates that it is possible and vital to incorporate evolutionary metrics when inferring biodiversity hotspots from large

  14. Continental scale patterns and predictors of fern richness and phylogenetic diversity

    PubMed Central

    Nagalingum, Nathalie S.; Knerr, Nunzio; Laffan, Shawn W.; González-Orozco, Carlos E.; Thornhill, Andrew H.; Miller, Joseph T.; Mishler, Brent D.

    2015-01-01

    Because ferns have a wide range of habitat preferences and are widely distributed, they are an ideal group for understanding how diversity is distributed. Here we examine fern diversity on a broad-scale using standard and corrected richness measures as well as phylogenetic indices; in addition we determine the environmental predictors of each diversity metric. Using the combined records of Australian herbaria, a dataset of over 60,000 records was obtained for 89 genera to infer richness. A molecular phylogeny of all the genera was constructed and combined with the herbarium records to obtain phylogenetic diversity patterns. A hotspot of both taxic and phylogenetic diversity occurs in the Wet Tropics of northeastern Australia. Although considerable diversity is distributed along the eastern coast, some important regions of diversity are identified only after sample-standardization of richness and through the phylogenetic metric. Of all of the metrics, annual precipitation was identified as the most explanatory variable, in part, in agreement with global and regional fern studies. However, precipitation was combined with a different variable for each different metric. For corrected richness, precipitation was combined with temperature seasonality, while correlation of phylogenetic diversity to precipitation plus radiation indicated support for the species-energy hypothesis. Significantly high and significantly low phylogenetic diversity were found in geographically separate areas. These separate areas correlated with different climatic conditions such as seasonality in precipitation. The phylogenetic metrics identified additional areas of significant diversity, some of which have not been revealed using traditional taxonomic analyses, suggesting that different ecological and evolutionary processes have operated over the continent. Our study demonstrates that it is possible and vital to incorporate evolutionary metrics when inferring biodiversity hotspots from large

  15. Worldwide Phylogenetic Relationship of Avian Poxviruses

    PubMed Central

    Foster, Jeffrey T.; Dán, Ádám; Ip, Hon S.; Egstad, Kristina F.; Parker, Patricia G.; Higashiguchi, Jenni M.; Skinner, Michael A.; Höfle, Ursula; Kreizinger, Zsuzsa; Dorrestein, Gerry M.; Solt, Szabolcs; Sós, Endre; Kim, Young Jun; Uhart, Marcela; Pereda, Ariel; González-Hein, Gisela; Hidalgo, Hector; Blanco, Juan-Manuel; Erdélyi, Károly

    2013-01-01

    Poxvirus infections have been found in 230 species of wild and domestic birds worldwide in both terrestrial and marine environments. This ubiquity raises the question of how infection has been transmitted and globally dispersed. We present a comprehensive global phylogeny of 111 novel poxvirus isolates in addition to all available sequences from GenBank. Phylogenetic analysis of the Avipoxvirus genus has traditionally relied on one gene region (4b core protein). In this study we expanded the analyses to include a second locus (DNA polymerase gene), allowing for a more robust phylogenetic framework, finer genetic resolution within specific groups, and the detection of potential recombination. Our phylogenetic results reveal several major features of avipoxvirus evolution and ecology and propose an updated avipoxvirus taxonomy, including three novel subclades. The characterization of poxviruses from 57 species of birds in this study extends the current knowledge of their host range and provides the first evidence of the phylogenetic effect of genetic recombination of avipoxviruses. The repeated occurrence of avian family or order-specific grouping within certain clades (e.g., starling poxvirus, falcon poxvirus, raptor poxvirus, etc.) indicates a marked role of host adaptation, while the sharing of poxvirus species within prey-predator systems emphasizes the capacity for cross-species infection and limited host adaptation. Our study provides a broad and comprehensive phylogenetic analysis of the Avipoxvirus genus, an ecologically and environmentally important viral group, to formulate a genome sequencing strategy that will clarify avipoxvirus taxonomy. PMID:23408635

  16. Primate molecular phylogenetics in a genomic era.

    PubMed

    Ting, Nelson; Sterner, Kirstin N

    2013-02-01

    A primary objective of molecular phylogenetics is to use molecular data to elucidate the evolutionary history of living organisms. Dr. Morris Goodman founded the journal Molecular Phylogenetics and Evolution as a forum where scientists could further our knowledge about the tree of life, and he recognized that the inference of species trees is a first and fundamental step to addressing many important evolutionary questions. In particular, Dr. Goodman was interested in obtaining a complete picture of the primate species tree in order to provide an evolutionary context for the study of human adaptations. A number of recent studies use multi-locus datasets to infer well-resolved and well-supported primate phylogenetic trees using consensus approaches (e.g., supermatrices). It is therefore tempting to assume that we have a complete picture of the primate tree, especially above the species level. However, recent theoretical and empirical work in the field of molecular phylogenetics demonstrates that consensus methods might provide a false sense of support at certain nodes. In this brief review we discuss the current state of primate molecular phylogenetics and highlight the importance of exploring the use of coalescent-based analyses that have the potential to better utilize information contained in multi-locus data.

  17. Worldwide phylogenetic relationship of avian poxviruses

    USGS Publications Warehouse

    Gyuranecz, Miklós; Foster, Jeffrey T.; Dán, Ádám; Ip, Hon S.; Egstad, Kristina F.; Parker, Patricia G.; Higashiguchi, Jenni M.; Skinner, Michael A.; Höfle, Ursula; Kreizinger, Zsuzsa; Dorrestein, Gerry M.; Solt, Szabolcs; Sós, Endre; Kim, Young Jun; Uhart, Marcela; Pereda, Ariel; González-Hein, Gisela; Hidalgo, Hector; Blanco, Juan-Manuel; Erdélyi, Károly

    2013-01-01

    Poxvirus infections have been found in 230 species of wild and domestic birds worldwide in both terrestrial and marine environments. This ubiquity raises the question of how infection has been transmitted and globally dispersed. We present a comprehensive global phylogeny of 111 novel poxvirus isolates in addition to all available sequences from GenBank. Phylogenetic analysis of Avipoxvirus genus has traditionally relied on one gene region (4b core protein). In this study we have expanded the analyses to include a second locus (DNA polymerase gene), allowing for a more robust phylogenetic framework, finer genetic resolution within specific groups and the detection of potential recombination. Our phylogenetic results reveal several major features of avipoxvirus evolution and ecology and propose an updated avipoxvirus taxonomy, including three novel subclades. The characterization of poxviruses from 57 species of birds in this study extends the current knowledge of their host range and provides the first evidence of the phylogenetic effect of genetic recombination of avipoxviruses. The repeated occurrence of avian family or order-specific grouping within certain clades (e.g. starling poxvirus, falcon poxvirus, raptor poxvirus, etc.) indicates a marked role of host adaptation, while the sharing of poxvirus species within prey-predator systems emphasizes the capacity for cross-species infection and limited host adaptation. Our study provides a broad and comprehensive phylogenetic analysis of the Avipoxvirus genus, an ecologically and environmentally important viral group, to formulate a genome sequencing strategy that will clarify avipoxvirus taxonomy.

  18. Phylogeny, phylogenetic inference, and cranial evolution in pitheciids and Aotus.

    PubMed

    Bjarnason, Alexander; Soligo, Christophe; Elton, Sarah

    2017-03-01

    Pitheciids, one of the major radiations of New World monkeys endemic to South and Central America, are distributed in the Amazon and Orinoco basins, and include Callicebus, Cacajao, Chiropotes, and Pithecia. Molecular phylogenetics strongly support pitheciid monophyly, whereas morphological analyses infer a range of phylogenies including a sister relationship between Aotus and Callicebus. We collected geometric morphometric cranial data from pitheciids and Aotus, and used cranial data for distance-based phylogenetic analysis and tests of phylogenetic signal. Phylogenetic analyses of pitheciids were repeated with Lagothrix, Callimico, and Saimiri outgroups for Procrustes shape with and without Aotus based on the whole cranium and six anatomical regions. All phylogenetic signal tests were significant, and tree lengths were shortest and had the least morphological change over the phylogeny for Procrustes residuals from the cranial base and palate. The majority of phylogenetic analyses of Procrustes shape for pitheciids without Aotus supported the molecular phylogeny, and with Aotus included the majority inferred an Aotus-Callicebus clade, although three analyses with Callimico as outgroup supported the molecular phylogeny. The morphological similarity of Aotus and Callicebus is likely a mix of plesiomorphy, allometry, and homoplasy, and future phylogenetic inference of living and extinct platyrrhine taxa should consider the impact of these factors alongside outgroup selection and cranial region.

  19. Phylogenetic signal in bone microstructure of sauropsids.

    PubMed

    Cubo, J; Ponton, F; Laurin, M; de Margerie, E; Castanet, J

    2005-08-01

    In spite of the fact that the potential usefulness of bone histology in systematics has been discussed for over one and a half centuries, the presence of a phylogenetic signal in the variation of histological characters has rarely been assessed. A quantitative assessment of phylogenetic signal in bone histological characters could provide a justification for performing optimizations of these traits onto independently generated phylogenetic trees (as has been done in recent years). Here we present an investigation on the quantification of the phylogenetic signal in the following bone histological, microanatomical, and morphological traits in a sample of femora of 35 species of sauropsids: vascular density, vascular orientation, index of Haversian remodeling, cortical thickness, and cross-sectional area (bone size). For this purpose, we use two methods, regressions on distance matrices tested for significance using permutations (a Mantel test) and random tree length distribution. Within sauropsids, these bone microstructural traits have an optimal systematic value in archosaurs. In this taxon, a Mantel test shows that the phylogeny explains 81.8% of the variation of bone size and 86.2% of the variation of cortical thickness. In contrast, a Mantel test suggests that the phylogenetic signal in histological traits is weak: although the phylogeny explains 18.7% of the variation of vascular density in archosaurs, the phylogenetic signal is not significant either for vascular orientation or for the index of Haversian remodeling. However, Mantel tests seem to underestimate the proportion of variance of the dependent character explained by the phylogeny, as suggested by a PVR (phylogenetic eigenvector) analysis. We also deal with some complementary questions. First, we evaluate the functional dependence of bone vascular density on bone size by using phylogenetically independent contrasts. Second, we perform a variation partitioning analysis and show that the phylogenetic

  20. Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees

    PubMed Central

    Llorens, Carlos; Muñoz-Pomer, Alfonso; Bernad, Lucia; Botella, Hector; Moya, Andrés

    2009-01-01

    Background Sequencing projects have allowed diverse retroviruses and LTR retrotransposons from different eukaryotic organisms to be characterized. It is known that retroviruses and other retro-transcribing viruses evolve from LTR retrotransposons and that this whole system clusters into five families: Ty3/Gypsy, Retroviridae, Ty1/Copia, Bel/Pao and Caulimoviridae. Phylogenetic analyses usually show that these split into multiple distinct lineages but what is yet to be understood is how deep evolution occurred in this system. Results We combined phylogenetic and graph analyses to investigate the history of LTR retroelements both as a tree and as a network. We used 268 non-redundant LTR retroelements, many of them introduced for the first time in this work, to elucidate all possible LTR retroelement phylogenetic patterns. These were superimposed over the tree of eukaryotes to investigate the dynamics of the system, at distinct evolutionary times. Next, we investigated phenotypic features such as duplication and variability of amino acid motifs, and several differences in genomic ORF organization. Using this information we characterized eight reticulate evolution markers to construct phenotypic network models. Conclusion The evolutionary history of LTR retroelements can be traced as a time-evolving network that depends on phylogenetic patterns, epigenetic host-factors and phenotypic plasticity. The Ty1/Copia and the Ty3/Gypsy families represent the oldest patterns in this network that we found mimics eukaryotic macroevolution. The emergence of the Bel/Pao, Retroviridae and Caulimoviridae families in this network can be related with distinct inflations of the Ty3/Gypsy family, at distinct evolutionary times. This suggests that Ty3/Gypsy ancestors diversified much more than their Ty1/Copia counterparts, at distinct geological eras. Consistent with the principle of preferential attachment, the connectivities among phenotypic markers, taken as network

  1. Understanding phylogenetic incongruence: lessons from phyllostomid bats

    PubMed Central

    Dávalos, Liliana M; Cirranello, Andrea L; Geisler, Jonathan H; Simmons, Nancy B

    2012-01-01

    All characters and trait systems in an organism share a common evolutionary history that can be estimated using phylogenetic methods. However, differential rates of change and the evolutionary mechanisms driving those rates result in pervasive phylogenetic conflict. These drivers need to be uncovered because mismatches between evolutionary processes and phylogenetic models can lead to high confidence in incorrect hypotheses. Incongruence between phylogenies derived from morphological versus molecular analyses, and between trees based on different subsets of molecular sequences has become pervasive as datasets have expanded rapidly in both characters and species. For more than a decade, evolutionary relationships among members of the New World bat family Phyllostomidae inferred from morphological and molecular data have been in conflict. Here, we develop and apply methods to minimize systematic biases, uncover the biological mechanisms underlying phylogenetic conflict, and outline data requirements for future phylogenomic and morphological data collection. We introduce new morphological data for phyllostomids and outgroups and expand previous molecular analyses to eliminate methodological sources of phylogenetic conflict such as taxonomic sampling, sparse character sampling, or use of different algorithms to estimate the phylogeny. We also evaluate the impact of biological sources of conflict: saturation in morphological changes and molecular substitutions, and other processes that result in incongruent trees, including convergent morphological and molecular evolution. Methodological sources of incongruence play some role in generating phylogenetic conflict, and are relatively easy to eliminate by matching taxa, collecting more characters, and applying the same algorithms to optimize phylogeny. The evolutionary patterns uncovered are consistent with multiple biological sources of conflict, including saturation in morphological and molecular changes, adaptive

  2. Neurogenesis suggests independent evolution of opercula in serpulid polychaetes

    PubMed Central

    2009-01-01

    Background The internal phylogenetic relationships of Annelida, one of the key lophotrochozoan lineages, are still heavily debated. Recent molecular analyses suggest that morphologically distinct groups, such as the polychaetes, are paraphyletic assemblages, thus questioning the homology of a number of polychaete morphological characters. Serpulid polychaetes are typically recognized by having fused anterior ends bearing a tentacular crown and an operculum. The latter is commonly viewed as a modified tentacle (= radiole) and is often used as an important diagnostic character in serpulid systematics. Results By reconstructing the developmental neuroanatomy of the serpulid polychaete Spirorbis cf. spirorbis (Spirorbinae), we found striking differences in the overall neural architecture, the innervation pattern, and the ontogenetic establishment of the nervous supply of the operculum and the radioles in this species. Accordingly, the spirorbin operculum might not be homologous to the radioles or to the opercula of other serpulid taxa such as Serpula and Pomatoceros and is thus probably not a part of the tentacular crown. Conclusion We demonstrate that common morphological traits such as the prostomial appendages may have evolved independently in respective serpulid sublineages and therefore require reassessment before being used in phylogenetic analyses. Our findings corroborate recent molecular studies that argue for a revision of serpulid systematics. In addition, our data on Spirorbis neurogenesis provide a novel set of characters that highlight the developmental plasticity of the segmented annelid nervous system. PMID:19930667

  3. Phylogenetic diversity of rhizobia associated with horsegram [Macrotyloma uniflorum (Lam.) Verdc.] grown in South India based on glnII, recA and 16S-23S intergenic sequence analyses.

    PubMed

    Appunu, Chinnaswamy; Ganesan, Govindan; Kalita, Michał; Kaushik, Raghavan; Saranya, Balamurugan; Prabavathy, Vaiyapuri Ramalingam; Sudha, Nair

    2011-04-01

    Horsegram [Macrotyloma uniflorum (Lam.) Verdc.) is an important grain legume and fodder crop in India. Information on root nodule endosymbionts of this legume in India is limited. In the present study, 69 isolates from naturally occurring root nodules of horsegram collected from two agro-eco-climatic regions of South India was analyzed by generation rate, acid/alkali reaction on YMA medium, restriction fragment length polymorphism analysis of 16S-23S rDNA intergenic spacer region (IGS), and sequence analyses of IGS and housekeeping genes glnII and recA. Based on the rDNA IGS RFLP by means of three restriction enzymes rhizobia were grouped in five clusters (I-V). By sequence analysis of 16S-23S rDNA IGS identified genotypes of horsegram rhizobia were distributed into five divergent lineages of Bradyrhizobium genus which comprised (I) the IGS type IV rhizobia and valid species B. yuanmingense, (II) the strains of IGS type I and Bradyrhizobium sp. ORS 3257 isolated from Vigna sp., (III) the strains of the IGS type II and Bradyrhizobium sp. CIRADAc12 from Acacia sp., (IV) the IGS type V strains and Bradyrhizobium sp. genospecies IV, and (V) comprising genetically distinct IGS type III strains which probably represent an uncharacterized new genomic species. Nearly, 87% of indigenous horsegram isolates (IGS types I, II, III, and V) could not be related to any other species within the genus Bradyrhizobium. Phylogeny based on housekeeping glnII and recA genes confirmed those results found by the analysis of the IGS sequence. All the isolated rhizobia nodulated Macrotyloma sp. and Vigna spp., and only some of them formed nodules on Arachis hypogeae. The isolates within each IGS type varied in their ability to fix nitrogen. Selection for high symbiotic effective strains could reward horsegram production in poor soils of South India where this legume is largely cultivated.

  4. Phylogenetic lineages in Pseudocercospora

    PubMed Central

    Crous, P.W.; Braun, U.; Hunter, G.C.; Wingfield, M.J.; Verkley, G.J.M.; Shin, H.-D.; Nakashima, C.; Groenewald, J.Z.

    2013-01-01

    Pseudocercospora is a large cosmopolitan genus of plant pathogenic fungi that are commonly associated with leaf and fruit spots as well as blights on a wide range of plant hosts. They occur in arid as well as wet environments and in a wide range of climates including cool temperate, sub-tropical and tropical regions. Pseudocercospora is now treated as a genus in its own right, although formerly recognised as either an anamorphic state of Mycosphaerella or having mycosphaerella-like teleomorphs. The aim of this study was to sequence the partial 28S nuclear ribosomal RNA gene of a selected set of isolates to resolve phylogenetic generic limits within the Pseudocercospora complex. From these data, 14 clades are recognised, six of which cluster in Mycosphaerellaceae. Pseudocercospora s. str. represents a distinct clade, sister to Passalora eucalypti, and a clade representing the genera Scolecostigmina, Trochophora and Pallidocercospora gen. nov., taxa formerly accommodated in the Mycosphaerella heimii complex and characterised by smooth, pale brown conidia, as well as the formation of red crystals in agar media. Other clades in Mycosphaerellaceae include Sonderhenia, Microcyclosporella, and Paracercospora. Pseudocercosporella resides in a large clade along with Phloeospora, Miuraea, Cercospora and Septoria. Additional clades represent Dissoconiaceae, Teratosphaeriaceae, Cladosporiaceae, and the genera Xenostigmina, Strelitziana, Cyphellophora and Thedgonia. The genus Phaeomycocentrospora is introduced to accommodate Mycocentrospora cantuariensis, primarily distinguished from Pseudocercospora based on its hyaline hyphae, broad conidiogenous loci and hila. Host specificity was considered for 146 species of Pseudocercospora occurring on 115 host genera from 33 countries. Partial nucleotide sequence data for three gene loci, ITS, EF-1α, and ACT suggest that the majority of these species are host specific. Species identified on the basis of host, symptomatology and general

  5. Specimen-level phylogenetics in paleontology using the Fossilized Birth-Death model with sampled ancestors

    PubMed Central

    2017-01-01

    Bayesian phylogenetic methods integrating simultaneously morphological and stratigraphic information have been applied increasingly among paleontologists. Most of these studies have used Bayesian methods as an alternative to the widely-used parsimony analysis, to infer macroevolutionary patterns and relationships among species-level or higher taxa. Among recently introduced Bayesian methodologies, the Fossilized Birth-Death (FBD) model allows incorporation of hypotheses on ancestor-descendant relationships in phylogenetic analyses including fossil taxa. Here, the FBD model is used to infer the relationships among an ingroup formed exclusively by fossil individuals, i.e., dipnoan tooth plates from four localities in the Ain el Guettar Formation of Tunisia. Previous analyses of this sample compared the results of phylogenetic analysis using parsimony with stratigraphic methods, inferred a high diversity (five or more genera) in the Ain el Guettar Formation, and interpreted it as an artifact inflated by depositional factors. In the analysis performed here, the uncertainty on the chronostratigraphic relationships among the specimens was included among the prior settings. The results of the analysis confirm the referral of most of the specimens to the taxa Asiatoceratodus, Equinoxiodus, Lavocatodus and Neoceratodus, but reject those to Ceratodus and Ferganoceratodus. The resulting phylogeny constrained the evolution of the Tunisian sample exclusively in the Early Cretaceous, contrasting with the previous scenario inferred by the stratigraphically-calibrated topology resulting from parsimony analysis. The phylogenetic framework also suggests that (1) the sampled localities are laterally equivalent, (2) but three localities are restricted to the youngest part of the section; both results are in agreement with previous stratigraphic analyses of these localities. The FBD model of specimen-level units provides a novel tool for phylogenetic inference among fossils but also

  6. Specimen-level phylogenetics in paleontology using the Fossilized Birth-Death model with sampled ancestors.

    PubMed

    Cau, Andrea

    2017-01-01

    Bayesian phylogenetic methods integrating simultaneously morphological and stratigraphic information have been applied increasingly among paleontologists. Most of these studies have used Bayesian methods as an alternative to the widely-used parsimony analysis, to infer macroevolutionary patterns and relationships among species-level or higher taxa. Among recently introduced Bayesian methodologies, the Fossilized Birth-Death (FBD) model allows incorporation of hypotheses on ancestor-descendant relationships in phylogenetic analyses including fossil taxa. Here, the FBD model is used to infer the relationships among an ingroup formed exclusively by fossil individuals, i.e., dipnoan tooth plates from four localities in the Ain el Guettar Formation of Tunisia. Previous analyses of this sample compared the results of phylogenetic analysis using parsimony with stratigraphic methods, inferred a high diversity (five or more genera) in the Ain el Guettar Formation, and interpreted it as an artifact inflated by depositional factors. In the analysis performed here, the uncertainty on the chronostratigraphic relationships among the specimens was included among the prior settings. The results of the analysis confirm the referral of most of the specimens to the taxa Asiatoceratodus, Equinoxiodus, Lavocatodus and Neoceratodus, but reject those to Ceratodus and Ferganoceratodus. The resulting phylogeny constrained the evolution of the Tunisian sample exclusively in the Early Cretaceous, contrasting with the previous scenario inferred by the stratigraphically-calibrated topology resulting from parsimony analysis. The phylogenetic framework also suggests that (1) the sampled localities are laterally equivalent, (2) but three localities are restricted to the youngest part of the section; both results are in agreement with previous stratigraphic analyses of these localities. The FBD model of specimen-level units provides a novel tool for phylogenetic inference among fossils but also

  7. A multi-locus phylogeny suggests an ancient hybridization event between Campephilus and melanerpine woodpeckers (Aves: Picidae).

    PubMed

    Fuchs, Jérôme; Pons, Jean-Marc; Liu, Liang; Ericson, Per G P; Couloux, Arnaud; Pasquet, Eric

    2013-06-01

    The ever increasing number of analysed loci in phylogenetics has not only allowed resolution of some parts of the Tree of Life but has also highlighted parts of the tree where incongruent signals among loci were detected. Previous molecular studies suggested conflicting relationships for the New World genus Campephilus, being either associated to the Megapicini or Dendropocini. Yet, the limited number of analysed loci and the use of the concatenation approach to reconstruct the phylogeny prevented the disentanglement of lineage sorting and introgression as causal explanation of this topological conflict. We sequenced four mitochondrial, nine autosomal and three Z-linked loci and used a method that incorporates population level processes into the phylogenetic framework to understand which process (lineage sorting of genetic polymorphism or hybridization/introgression) best explains this conflict. Our analyses revealed that the autosomal FGB intron-7 and to a lesser extent the Z-linked loci have a different phylogenetic history from the mitochondrial loci and some other nuclear loci we analysed. We suggest that this conflicting pattern is the result of introgression consecutive to a hybridization event at the time when members of the Campephilus and melanerpine (Melanerpes and Sphyrapicus) lineages colonized the New World. The case of Campephilus highlights that the mitochondrial genome does not always carry the 'wrong' phylogenetic signal after a past hybridization event. Indeed, we here emphasise that the signature of such event can also be detected in the nuclear genome. With the ongoing increase in the number of loci analysed in phylogenetic studies, it is very likely that further cases will be discovered. Our current results indicate that (1) the genus Campephilus is related to the Asian genera Blythipicus, Chrysocolaptes and Reinwardtipicus, in accordance with morphological data and (2) that the nuclear genome of Campephilus is likely the mixture of two

  8. Phylogenetic Conservatism in Plant Phenology

    NASA Technical Reports Server (NTRS)

    Davies, T. Jonathan; Wolkovich, Elizabeth M.; Kraft, Nathan J. B.; Salamin, Nicolas; Allen, Jenica M.; Ault, Toby R.; Betancourt, Julio L.; Bolmgren, Kjell; Cleland, Elsa E.; Cook, Benjamin I.; Crimmins, Theresa M.; Mazer, Susan J.; McCabe, Gregory J.; Pau, Stephanie; Regetz, Jim; Schwartz, Mark D.; Travers, Steven E.

    2013-01-01

    Phenological events defined points in the life cycle of a plant or animal have been regarded as highly plastic traits, reflecting flexible responses to various environmental cues. The ability of a species to track, via shifts in phenological events, the abiotic environment through time might dictate its vulnerability to future climate change. Understanding the predictors and drivers of phenological change is therefore critical. Here, we evaluated evidence for phylogenetic conservatism the tendency for closely related species to share similar ecological and biological attributes in phenological traits across flowering plants. We aggregated published and unpublished data on timing of first flower and first leaf, encompassing 4000 species at 23 sites across the Northern Hemisphere. We reconstructed the phylogeny for the set of included species, first, using the software program Phylomatic, and second, from DNA data. We then quantified phylogenetic conservatism in plant phenology within and across sites. We show that more closely related species tend to flower and leaf at similar times. By contrasting mean flowering times within and across sites, however, we illustrate that it is not the time of year that is conserved, but rather the phenological responses to a common set of abiotic cues. Our findings suggest that species cannot be treated as statistically independent when modelling phenological responses.Closely related species tend to resemble each other in the timing of their life-history events, a likely product of evolutionarily conserved responses to environmental cues. The search for the underlying drivers of phenology must therefore account for species' shared evolutionary histories.

  9. The phylogenetic position of the Critically Endangered Saint Croix ground lizard Ameiva polops: revisiting molecular systematics of West Indian Ameiva.

    PubMed

    Hurtado, Luis A; Santamaria, Carlos A; Fitzgerald, Lee A

    2014-05-06

    The phylogenetic position of the critically endangered Saint Croix ground lizard Ameiva polops is presently unknown and several hypotheses have been proposed. We investigated the phylogenetic position of this species using molecular phylogenetic methods. We obtained sequences of DNA fragments of the mitochondrial ribosomal genes 12S rDNA and 16S rDNA for this species. We aligned these sequences with published sequences of other Ameiva species, which include most of the Ameiva species from the West Indies, three Ameiva species from Central America and South America, and one from the teiid lizard Tupinambis teguixin, which was used as outgroup. We conducted Maximum Likelihood and Bayesian phylogenetic analyses. The phylogenetic reconstructions among the different methods were very similar, supporting the monophyly of West Indian Ameiva and showing within this lineage, a basal polytomy of four clades that are separated geographically. Ameiva polops grouped in a cluster that included the other two Ameiva species found in the Puerto Rican Bank: A. wetmorei and A. exsul. A sister relationship between A. polops and A. wetmorei is suggested by our analyses. We compare our results with a previous study on molecular systematics of West Indian Ameiva. 

  10. Molecular modeling and computational analyses suggests that the Sinorhizobium meliloti periplasmic regulator protein ExoR adopts a superhelical fold and is controlled by a unique mechanism of proteolysis.

    PubMed

    Wiech, Eliza M; Cheng, Hai-Ping; Singh, Shaneen M

    2015-03-01

    The Sinorhizobium meliloti periplasmic ExoR protein and the ExoS/ChvI two-component system form a regulatory mechanism that directly controls the transformation of free-living to host-invading cells. In the absence of crystal structures, understanding the molecular mechanism of interaction between ExoR and the ExoS sensor, which is believed to drive the key regulatory step in the invasion process, remains a major challenge. In this study, we present a theoretical structural model of the active form of ExoR protein, ExoRm , generated using computational methods. Our model suggests that ExoR possesses a super-helical fold comprising 12 α-helices forming six Sel1-like repeats, including two that were unidentified in previous studies. This fold is highly conducive to mediating protein-protein interactions and this is corroborated by the identification of putative protein binding sites on the surface of the ExoRm protein. Our studies reveal two novel insights: (a) an extended conformation of the third Sel1-like repeat that might be important for ExoR regulatory function and (b) a buried proteolytic site that implies a unique proteolytic mechanism. This study provides new and interesting insights into the structure of S. meliloti ExoR, lays the groundwork for elaborating the molecular mechanism of ExoRm cleavage, ExoRm -ExoS interactions, and studies of ExoR homologs in other bacterial host interactions.

  11. Conservation biology of Malagasy strepsirhines: a phylogenetic approach.

    PubMed

    Lehman, Shawn M

    2006-06-01

    The phylogenetic diversity of extant lemurs represents one of the most important but least studied aspects of the conservation biology of primates. The phylogenetic diversity of a species is inversely proportional to the relative number and closeness of its phylogenetic relatives. Phylogenetic diversity can then be used to determine conservation priorities for specific biogeographic regions. Although Malagasy strepsirhines represent the highest phylogenetic diversity among primates at the global level, there are few phylogenetic data on species-specific and regional conservation plans for lemurs in Madagascar. Therefore, in this paper the following questions are addressed for extant lemurs: 1) how does the measure of taxonomic uniqueness used by Mittermeier et al. (1992 Lemurs of Madagascar; Gland, Switzerland: IUCN) equate with an index of phylogenetic diversity, 2) what are the regional conservation priorities based on analyses of phylogenetic diversity in extant lemurs, and 3) what conservation recommendations can be made based on analyses of phylogenetic diversity in lemurs? Taxonomic endemicity standardized weight (TESW) indices of phylogenetic diversity were used to determine the evolutionary component of biodiversity and to prioritize regions for conserving lemur taxa. TESW refers to the standardization of phylogenetic diversity indices for widespread taxa and endemicity of species. The phylogenetic data came from recent genetic studies of Malagasy strepsirhines at the species level. Lemur species were assigned as being either present or absent in six biogeographic regions. TESW indices were combined with data on lemur complementarity and protected areas to assign conservation priorities at the regional level. Although there were no overall differences between taxonomic ranks and phylogenetic rankings, there were significant differences for the top-ranked taxa. The phylogenetic component of lemur diversity is greatest for Daubentonia madagascariensis

  12. Prioritizing Populations for Conservation Using Phylogenetic Networks

    PubMed Central

    Volkmann, Logan; Martyn, Iain; Moulton, Vincent; Spillner, Andreas; Mooers, Arne O.

    2014-01-01

    In the face of inevitable future losses to biodiversity, ranking species by conservation priority seems more than prudent. Setting conservation priorities within species (i.e., at the population level) may be critical as species ranges become fragmented and connectivity declines. However, existing approaches to prioritization (e.g., scoring organisms by their expected genetic contribution) are based on phylogenetic trees, which may be poor representations of differentiation below the species level. In this paper we extend evolutionary isolation indices used in conservation planning from phylogenetic trees to phylogenetic networks. Such networks better represent population differentiation, and our extension allows populations to be ranked in order of their expected contribution to the set. We illustrate the approach using data from two imperiled species: the spotted owl Strix occidentalis in North America and the mountain pygmy-possum Burramys parvus in Australia. Using previously published mitochondrial and microsatellite data, we construct phylogenetic networks and score each population by its relative genetic distinctiveness. In both cases, our phylogenetic networks capture the geographic structure of each species: geographically peripheral populations harbor less-redundant genetic information, increasing their conservation rankings. We note that our approach can be used with all conservation-relevant distances (e.g., those based on whole-genome, ecological, or adaptive variation) and suggest it be added to the assortment of tools available to wildlife managers for allocating effort among threatened populations. PMID:24586451

  13. Fungal phylogenetic diversity drives plant facilitation.

    PubMed

    Montesinos-Navarro, Alicia; Segarra-Moragues, J G; Valiente-Banuet, A; Verdú, M

    2016-06-01

    Plant-plant facilitation is a crucial ecological process, as many plant species (facilitated) require the presence of an established individual (nurse) to recruit. Some plant facilitative interactions disappear during the ontogenetic development of the facilitated plant but others persist, even when the two plants are adults. We test whether the persistence of plant facilitative interactions is explained by the phylogenetic diversity of mutualistic and non-mutualistic fungi that the nurse and the facilitated species add to the shared rhizosphere. We classify plant facilitative interactions as persistent and non-persistent interactions and quantify the phylogenetic diversity of mutualistic and non-mutualistic fungi added by the plant species to the shared rhizosphere. Our results show that the facilitated species add less phylogenetic diversity of non-mutualistic fungi when plant facilitative interactions persist than when they do not persist. However, persistent and non-persistent facilitative interactions did not differ in the phylogenetic diversity of mutualistic fungi added by the facilitated species to the shared rhizosphere. Finally, the fungal phylogenetic diversity added by the nurse to the shared rhizosphere did not differ between persistent and non-persistent interactions. This study suggests that considering the fungal associates of the plant species involved in facilitative interactions can shed light on the mechanisms of persistence for plant-plant interactions.

  14. Investigation of glycan evolution based on a comprehensive analysis of glycosyltransferases using phylogenetic profiling

    PubMed Central

    Tomono, Takayoshi; Kojima, Hisao; Fukuchi, Satoshi; Tohsato, Yukako; Ito, Masahiro

    2015-01-01

    Glycans play important roles in such cell-cell interactions as signaling and adhesion, including processes involved in pathogenic infections, cancers, and neurological diseases. Glycans are biosynthesized by multiple glycosyltransferases (GTs), which function sequentially. Excluding mucin-type O-glycosylation, the non-reducing terminus of glycans is biosynthesized in the Golgi apparatus after the reducing terminus is biosynthesized in the ER. In the present study, we performed genome-wide analyses of human GTs by investigating the degree of conservation of homologues in other organisms, as well as by elucidating the phylogenetic relationship between cephalochordates and urochordates, which has long been controversial in deuterostome phylogeny. We analyzed 173 human GTs and functionally linked glycan synthesis enzymes by phylogenetic profiling and clustering, compiled orthologous genes from the genomes of other organisms, and converted them into a binary sequence based on the presence (1) or absence (0) of orthologous genes in the genomes. Our results suggest that the non-reducing terminus of glycans is biosynthesized by newly evolved GTs. According to our analysis, the phylogenetic profiles of GTs resemble the phylogenetic tree of life, where deuterostomes, metazoans, and eukaryotes are resolved into separate branches. Lineage-specific GTs appear to play essential roles in the divergence of these particular lineages. We suggest that urochordates lose several genes that are conserved among metazoans, such as those expressing sialyltransferases, and that the Golgi apparatus acquires the ability to synthesize glycans after the ER acquires this function. PMID:27493855

  15. Phylogenetic Analysis and Epidemic History of Hepatitis C Virus Genotype 2 in Tunisia, North Africa.

    PubMed

    Rajhi, Mouna; Ghedira, Kais; Chouikha, Anissa; Djebbi, Ahlem; Cheikh, Imed; Ben Yahia, Ahlem; Sadraoui, Amel; Hammami, Walid; Azouz, Msaddek; Ben Mami, Nabil; Triki, Henda

    2016-01-01

    HCV genotype 2 (HCV-2) has a worldwide distribution with prevalence rates that vary from country to country. High genetic diversity and long-term endemicity were suggested in West African countries. A global dispersal of HCV-2 would have occurred during the 20th century, especially in European countries. In Tunisia, genotype 2 was the second prevalent genotype after genotype 1 and most isolates belong to subtypes 2c and 2k. In this study, phylogenetic analyses based on the NS5B genomic sequences of 113 Tunisian HCV isolates from subtypes 2c and 2k were carried out. A Bayesian coalescent-based framework was used to estimate the origin and the spread of these subtypes circulating in Tunisia. Phylogenetic analyses of HCV-2c sequences suggest the absence of country-specific or time-specific variants. In contrast, the phylogenetic grouping of HCV-2k sequences shows the existence of two major genetic clusters that may represent two distinct circulating variants. Coalescent analysis indicated a most recent common ancestor (tMRCA) of Tunisian HCV-2c around 1886 (1869-1902) before the introduction of HCV-2k in 1901 (1867-1931). Our findings suggest that the introduction of HCV-2c in Tunisia is possibly a result of population movements between Tunisia and European population following the French colonization.

  16. Exome sequencing and functional analyses suggest that SIX6 is a gene involved in an altered proliferation-differentiation balance early in life and optic nerve degeneration at old age.

    PubMed

    Iglesias, Adriana I; Springelkamp, Henriët; van der Linde, Herma; Severijnen, Lies-Anne; Amin, Najaf; Oostra, Ben; Kockx, Christel E M; van den Hout, Mirjam C G N; van Ijcken, Wilfred F J; Hofman, Albert; Uitterlinden, André G; Verdijk, Rob M; Klaver, Caroline C W; Willemsen, Rob; van Duijn, Cornelia M

    2014-03-01

    Primary open-angle glaucoma (POAG) is a hereditary neurodegenerative disease, characterized by optic nerve changes including increased excavation, notching and optic disc hemorrhages. The excavation can be described by the vertical cup-disc ratio (VCDR). Previously, genome-wide significant evidence for the association of rs10483727 in SIX1-SIX6 locus with VCDR and subsequent POAG was found. Using 1000 genomes-based imputation of four independent population-based cohorts in the Netherlands, we identified a missense variant rs33912345 (His141Asn) in SIX6 associated with VCDR (Pmeta = 7.74 × 10(-7), n = 11 473) and POAG (Pmeta = 6.09 × 10(-3), n = 292). Exome sequencing analysis revealed another missense variant rs146737847 (Glu129Lys) also in SIX6 associated with VCDR (P = 5.09 × 10(-3), n = 1208). These two findings point to SIX6 as the responsible gene for the previously reported association signal. Functional characterization of SIX6 in zebrafish revealed that knockdown of six6b led to a small eye phenotype. Histological analysis showed retinal lamination, implying an apparent normal development of the eye, but an underdeveloped lens, and reduced optic nerve diameter. Expression analysis of morphants at 3 dpf showed a 5.5-fold up-regulation of cdkn2b, a cyclin-dependent kinase inhibitor, involved in cell cycle regulation and previously associated with VCDR and POAG in genome-wide association studies (GWASs). Since both six6b and cdkn2b play a key role in cell proliferation, we assessed the proliferative activity in the eye of morphants and found an alteration in the proliferative pattern of retinal cells. Our findings in humans and zebrafish suggest a functional involvement of six6b in early eye development, and open new insights into the genetic architecture of POAG.

  17. Phylogenetic Comparative Assembly

    NASA Astrophysics Data System (ADS)

    Husemann, Peter; Stoye, Jens

    Recent high throughput sequencing technologies are capable of generating a huge amount of data for bacterial genome sequencing projects. Although current sequence assemblers successfully merge the overlapping reads, often several contigs remain which cannot be assembled any further. It is still costly and time consuming to close all the gaps in order to acquire the whole genomic sequence. Here we propose an algorithm that takes several related genomes and their phylogenetic relationships into account to create a contig adjacency graph. From this a layout graph can be computed which indicates putative adjacencies of the contigs in order to aid biologists in finishing the complete genomic sequence.

  18. Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (Inocybe; Agaricales).

    PubMed

    Matheny, P Brandon

    2005-04-01

    Approximately 3000 bp across 84 taxa have been analyzed for variable regions of RPB1, RPB2, and nLSU-rDNA to infer phylogenetic relationships in the large ectomycorrhizal mushroom genus Inocybe (Agaricales; Basidiomycota). This study represents the first effort to combine variable regions of RPB1 and RPB2 with nLSU-rDNA for low-level phylogenetic studies in mushroom-forming fungi. Combination of the three loci increases non-parametric bootstrap support, Bayesian posterior probabilities, and resolution for numerous clades compared to separate gene analyses. These data suggest the evolution of at least five major lineages in Inocybe-the Inocybe clade, the Mallocybe clade, the Auritella clade, the Inosperma clade, and the Pseudosperma clade. Additionally, many clades nested within each major lineage are strongly supported. These results also suggest the family Crepiodataceae sensu stricto is sister to Inocybe. Recognition of Inocybe at the family level, the Inocybaceae, is recommended.

  19. Phylogenetic relatedness limits co-occurrence at fine spatial scales: evidence from the schoenoid sedges (Cyperaceae: Schoeneae) of the Cape Floristic Region, South Africa.

    PubMed

    Slingsby, Jasper A; Verboom, G Anthony

    2006-07-01

    Species co-occurrence at fine spatial scales is expected to be nonrandom with respect to phylogeny because of the joint effects of evolutionary (trait convergence and conservatism) and ecological (competitive exclusion and habitat filtering) processes. We use data from 11 existing vegetation surveys to test whether co-occurrence in schoenoid sedge assemblages in the Cape Floristic Region shows significant phylogenetic structuring and to examine whether this changes with the phylogenetic scale of the analysis. We provide evidence for phylogenetic overdispersion in an alliance of closely related species (the reticulate-sheathed Tetraria clade) using both quantile regression analysis and a comparison between the mean observed and expected phylogenetic distances between co-occurring species. Similar patterns are not evident when the analyses are performed at a broader phylogenetic scale. Examination of six functional traits suggests a general pattern of trait conservatism within the reticulate-sheathed Tetraria clade, suggesting a potential role for interspecific competition in structuring co-occurrence within this group. We suggest that phylogenetic overdispersion of communities may be common throughout many of the Cape lineages, since interspecific interactions are likely intensified in lineages with large numbers of species restricted to a small geographic area, and we discuss the potential implications for patterns of diversity in the Cape.

  20. Octocoral Mitochondrial Genomes Provide Insights into the Phylogenetic History of Gene Order Rearrangements, Order Reversals, and Cnidarian Phylogenetics

    PubMed Central

    Figueroa, Diego F.; Baco, Amy R.

    2015-01-01

    We use full mitochondrial genomes to test the robustness of the phylogeny of the Octocorallia, to determine the evolutionary pathway for the five known mitochondrial gene rearrangements in octocorals, and to test the suitability of using mitochondrial genomes for higher taxonomic-level phylogenetic reconstructions. Our phylogeny supports three major divisions within the Octocorallia and show that Paragorgiidae is paraphyletic, with Sibogagorgia forming a sister branch to the Coralliidae. Furthermore, Sibogagorgia cauliflora has what is presumed to be the ancestral gene order in octocorals, but the presence of a pair of inverted repeat sequences suggest that this gene order was not conserved but rather evolved back to this apparent ancestral state. Based on this we recommend the resurrection of the family Sibogagorgiidae to fix the paraphyly of the Paragorgiidae. This is the first study to show that in the Octocorallia, mitochondrial gene orders have evolved back to an ancestral state after going through a gene rearrangement, with at least one of the gene orders evolving independently in different lineages. A number of studies have used gene boundaries to determine the type of mitochondrial gene arrangement present. However, our findings suggest that this method known as gene junction screening may miss evolutionary reversals. Additionally, substitution saturation analysis demonstrates that while whole mitochondrial genomes can be used effectively for phylogenetic analyses within Octocorallia, their utility at higher taxonomic levels within Cnidaria is inadequate. Therefore for phylogenetic reconstruction at taxonomic levels higher than subclass within the Cnidaria, nuclear genes will be required, even when whole mitochondrial genomes are available. PMID:25539723

  1. Patterns of taxonomic, phylogenetic diversity during a long-term succession of forest on the Loess Plateau, China: insights into assembly process.

    PubMed

    Chai, Yongfu; Yue, Ming; Liu, Xiao; Guo, Yaoxin; Wang, Mao; Xu, Jinshi; Zhang, Chenguang; Chen, Yu; Zhang, Lixia; Zhang, Ruichang

    2016-06-08

    Quantifying the drivers underlying the distribution of biodiversity during succession is a critical issue in ecology and conservation, and also can provide insights into the mechanisms of community assembly. Ninety plots were established in the Loess Plateau region of northern Shaanxi in China. The taxonomic and phylogenetic (alpha and beta) diversity were quantified within six succession stages. Null models were used to test whether phylogenetic distance observed differed from random expectations. Taxonomic beta diversity did not show a regular pattern, while phylogenetic beta diversity decreased throughout succession. The shrub stage occurred as a transition from phylogenetic overdispersion to clustering either for NRI (Net Relatedness Index) or betaNRI. The betaNTI (Nearest Taxon Index) values for early stages were on average phylogenetically random, but for the betaNRI analyses, these stages were phylogenetically overdispersed. Assembly of woody plants differed from that of herbaceous plants during late community succession. We suggest that deterministic and stochastic processes respectively play a role in different aspects of community phylogenetic structure for early succession stage, and that community composition of late succession stage is governed by a deterministic process. In conclusion, the long-lasting evolutionary imprints on the present-day composition of communities arrayed along the succession gradient.

  2. Patterns of taxonomic, phylogenetic diversity during a long-term succession of forest on the Loess Plateau, China: insights into assembly process

    PubMed Central

    Chai, Yongfu; Yue, Ming; Liu, Xiao; Guo, Yaoxin; Wang, Mao; Xu, Jinshi; Zhang, Chenguang; Chen, Yu; Zhang, Lixia; Zhang, Ruichang

    2016-01-01

    Quantifying the drivers underlying the distribution of biodiversity during succession is a critical issue in ecology and conservation, and also can provide insights into the mechanisms of community assembly. Ninety plots were established in the Loess Plateau region of northern Shaanxi in China. The taxonomic and phylogenetic (alpha and beta) diversity were quantified within six succession stages. Null models were used to test whether phylogenetic distance observed differed from random expectations. Taxonomic beta diversity did not show a regular pattern, while phylogenetic beta diversity decreased throughout succession. The shrub stage occurred as a transition from phylogenetic overdispersion to clustering either for NRI (Net Relatedness Index) or betaNRI. The betaNTI (Nearest Taxon Index) values for early stages were on average phylogenetically random, but for the betaNRI analyses, these stages were phylogenetically overdispersed. Assembly of woody plants differed from that of herbaceous plants during late community succession. We suggest that deterministic and stochastic processes respectively play a role in different aspects of community phylogenetic structure for early succession stage, and that community composition of late succession stage is governed by a deterministic process. In conclusion, the long-lasting evolutionary imprints on the present-day composition of communities arrayed along the succession gradient. PMID:27272407

  3. Entanglement, Invariants, and Phylogenetics

    NASA Astrophysics Data System (ADS)

    Sumner, J. G.

    2007-10-01

    This thesis develops and expands upon known techniques of mathematical physics relevant to the analysis of the popular Markov model of phylogenetic trees required in biology to reconstruct the evolutionary relationships of taxonomic units from biomolecular sequence data. The techniques of mathematical physics are plethora and have been developed for some time. The Markov model of phylogenetics and its analysis is a relatively new technique where most progress to date has been achieved by using discrete mathematics. This thesis takes a group theoretical approach to the problem by beginning with a remarkable mathematical parallel to the process of scattering in particle physics. This is shown to equate to branching events in the evolutionary history of molecular units. The major technical result of this thesis is the derivation of existence proofs and computational techniques for calculating polynomial group invariant functions on a multi-linear space where the group action is that relevant to a Markovian time evolution. The practical results of this thesis are an extended analysis of the use of invariant functions in distance based methods and the presentation of a new reconstruction technique for quartet trees which is consistent with the most general Markov model of sequence evolution.

  4. Phylogenetic trees in bioinformatics

    SciTech Connect

    Burr, Tom L

    2008-01-01

    Genetic data is often used to infer evolutionary relationships among a collection of viruses, bacteria, animal or plant species, or other operational taxonomic units (OTU). A phylogenetic tree depicts such relationships and provides a visual representation of the estimated branching order of the OTUs. Tree estimation is unique for several reasons, including: the types of data used to represent each OTU; the use ofprobabilistic nucleotide substitution models; the inference goals involving both tree topology and branch length, and the huge number of possible trees for a given sample of a very modest number of OTUs, which implies that fmding the best tree(s) to describe the genetic data for each OTU is computationally demanding. Bioinformatics is too large a field to review here. We focus on that aspect of bioinformatics that includes study of similarities in genetic data from multiple OTUs. Although research questions are diverse, a common underlying challenge is to estimate the evolutionary history of the OTUs. Therefore, this paper reviews the role of phylogenetic tree estimation in bioinformatics, available methods and software, and identifies areas for additional research and development.

  5. Phylemon 2.0: a suite of web-tools for molecular evolution, phylogenetics, phylogenomics and hypotheses testing.

    PubMed

    Sánchez, Rubén; Serra, François; Tárraga, Joaquín; Medina, Ignacio; Carbonell, José; Pulido, Luis; de María, Alejandro; Capella-Gutíerrez, Salvador; Huerta-Cepas, Jaime; Gabaldón, Toni; Dopazo, Joaquín; Dopazo, Hernán

    2011-07-01

    Phylemon 2.0 is a new release of the suite of web tools for molecular evolution, phylogenetics, phylogenomics and hypotheses testing. It has been designed as a response to the increasing demand of molecular sequence analyses for experts and non-expert users. Phylemon 2.0 has several unique features that differentiates it from other similar web resources: (i) it offers an integrated environment that enables evolutionary analyses, format conversion, file storage and edition of results; (ii) it suggests further analyses, thereby guiding the users through the web server; and (iii) it allows users to design and save phylogenetic pipelines to be used over multiple genes (phylogenomics). Altogether, Phylemon 2.0 integrates a suite of 30 tools covering sequence alignment reconstruction and trimming; tree reconstruction, visualization and manipulation; and evolutionary hypotheses testing.

  6. An evaluation of phylogenetic informativeness profiles and the molecular phylogeny of diplazontinae (Hymenoptera, Ichneumonidae).

    PubMed

    Klopfstein, Seraina; Kropf, Christian; Quicke, Donald L J

    2010-03-01

    How to quantify the phylogenetic information content of a data set is a longstanding question in phylogenetics, influencing both the assessment of data quality in completed studies and the planning of future phylogenetic projects. Recently, a method has been developed that profiles the phylogenetic informativeness (PI) of a data set through time by linking its site-specific rates of change to its power to resolve relationships at different timescales. Here, we evaluate the performance of this method in the case of 2 standard genetic markers for phylogenetic reconstruction, 28S ribosomal RNA and cytochrome oxidase subunit 1 (CO1) mitochondrial DNA, with maximum parsimony, maximum likelihood, and Bayesian analyses of relationships within a group of parasitoid wasps (Hymenoptera: Ichneumonidae, Diplazontinae). Retrieving PI profiles of the 2 genes from our own and from 3 additional data sets, we find that the method repeatedly overestimates the performance of the more quickly evolving CO1 compared with 28S. We explore possible reasons for this bias, including phylogenetic uncertainty, violation of the molecular clock assumption, model misspecification, and nonstationary nucleotide composition. As none of these provides a sufficient explanation of the observed discrepancy, we use simulated data sets, based on an idealized setting, to show that the optimum evolutionary rate decreases with increasing number of taxa. We suggest that this relationship could explain why the formula derived from the 4-taxon case overrates the performance of higher versus lower rates of evolution in our case and that caution should be taken when the method is applied to data sets including more than 4 taxa.

  7. Development of primer pairs from diverse chloroplast genomes for use in plant phylogenetic research.

    PubMed

    Yang, Y C; Kung, T L; Hu, C Y; Lin, S F

    2015-11-23

    Variation in the chloroplast DNA sequence is useful for plant phylogenetic studies. However, the number of variable sequences provided by chloroplast DNA for suggested genes or genomic regions in plant phylogenetic analyses is often inadequate. To identify conserved regions that can be used to design primers and amplify variable sequences for use in plant phylogenetic studies, the complete chloroplast genomic sequences of six plant species (including Oryza sativa, Arabidopsis thaliana, Glycine max, Lotus japonicus, Medicago truncatula, and Phaseolus vulgaris), searched from the taxonomy database of NCBI were investigated. A total of 93 conserved regions, 32 in large single copy and 61 in inverted repeat regions, were identified. A set of five primer pairs were designed according to the conserved sequences located in the psbA~trnK, psbB~psbH, rpl23~trnI, trnR~trnN, and trnY~trnD regions to amplify variable DNA fragments. An additional 18 plant accessions from 14 species were used to validate their utility. Each of the tested species could be distinguished by length polymorphisms of fragments amplified with the five primer pairs. trnR~trnN and rpl23~trnI amplified fragments specific to monocot and legume species, respectively. Three primer pairs located in the psbA~trnK, psbB~psbH, and trnR~trnN regions were applied to amplify variable DNA sequences for phylogenetic analysis using the maximum parsimony method. The consistent result between taxonomy and phylogenetic analysis on the variable sequences amplified with these three primer pairs was revealed. The five newly developed primer pairs are recommended as tools for use in the identification of plant species and in phylogenetic studies.

  8. Erosion of phylogenetic signal in tunicate mitochondrial genomes on different levels of analysis.

    PubMed

    Stach, Thomas; Braband, Anke; Podsiadlowski, Lars

    2010-06-01

    The molecular phylogenetic position of Tunicata and internal interrelationship of higher tunicate taxa is controversial. High substitution rates and extreme gene order variability hamper phylogenetic analyses. We describe the sequence and organization of the mitochondrial genome of the aplousobranch ascidian Clavelina lepadiformis and use mitochondrial genomes to investigate phylogenetic information content on different molecular levels of comparison. Despite agreement in phylogenetic analyses of nucleotide and amino acid sequences, split analyses revealed little phylogenetic signal. Split analyses on molecular data sets deemed increasingly conservative, demonstrated that the lack of signal pervades all levels and that it is Tunicata the taxon of interest that introduces noise in the data sets. The strongest signal present in our molecular data sets as revealed by split analyses is not present in the optimal cladograms and supports a sister group relationship between cephalochordates and craniates. Phylogenetic analysis of gene order using common interval algorithms shows that phylogenetic signal is also eroded in respect of gene positions. Even functional constraints, such as partial gene overlap as exemplified in the case of the commonly observed adjacency between cox2 and cytb are subjected to homoplasy. However, rare phylogenetic events like this hold some promise to retain phylogenetic information even in such cases of extreme variability. We therefore caution to rely on sequence analysis alone and recommend investigation into the signal content of molecular data sets in order to assess the strength of phylogenetic signal.

  9. Hypnosis, suggestion, and suggestibility: an integrative model.

    PubMed

    Lynn, Steven Jay; Laurence, Jean-Roch; Kirsch, Irving

    2015-01-01

    This article elucidates an integrative model of hypnosis that integrates social, cultural, cognitive, and neurophysiological variables at play both in and out of hypnosis and considers their dynamic interaction as determinants of the multifaceted experience of hypnosis. The roles of these variables are examined in the induction and suggestion stages of hypnosis, including how they are related to the experience of involuntariness, one of the hallmarks of hypnosis. It is suggested that studies of the modification of hypnotic suggestibility; cognitive flexibility; response sets and expectancies; the default-mode network; and the search for the neurophysiological correlates of hypnosis, more broadly, in conjunction with research on social psychological variables, hold much promise to further understanding of hypnosis.

  10. Disentangling the phylogenetic and ecological components of spider phenotypic variation.

    PubMed

    Gonçalves-Souza, Thiago; Diniz-Filho, José Alexandre Felizola; Romero, Gustavo Quevedo

    2014-01-01

    An understanding of how the degree of phylogenetic relatedness influences the ecological similarity among species is crucial to inferring the mechanisms governing the assembly of communities. We evaluated the relative importance of spider phylogenetic relationships and ecological niche (plant morphological variables) to the variation in spider body size and shape by comparing spiders at different scales: (i) between bromeliads and dicot plants (i.e., habitat scale) and (ii) among bromeliads with distinct architectural features (i.e., microhabitat scale). We partitioned the interspecific variation in body size and shape into phylogenetic (that express trait values as expected by phylogenetic relationships among species) and ecological components (that express trait values independent of phylogenetic relationships). At the habitat scale, bromeliad spiders were larger and flatter than spiders associated with the surrounding dicots. At this scale, plant morphology sorted out close related spiders. Our results showed that spider flatness is phylogenetically clustered at the habitat scale, whereas it is phylogenetically overdispersed at the microhabitat scale, although phylogenic signal is present in both scales. Taken together, these results suggest that whereas at the habitat scale selective colonization affect spider body size and shape, at fine scales both selective colonization and adaptive evolution determine spider body shape. By partitioning the phylogenetic and ecological components of phenotypic variation, we were able to disentangle the evolutionary history of distinct spider traits and show that plant architecture plays a role in the evolution of spider body size and shape. We also discussed the relevance in considering multiple scales when studying phylogenetic community structure.

  11. Spatial predictions of phylogenetic diversity in conservation decision making.

    PubMed

    Pio, Dorothea V; Broennimann, Olivier; Barraclough, Timothy G; Reeves, Gail; Rebelo, Anthony G; Thuiller, Wilfried; Guisan, Antoine; Salamin, Nicolas

    2011-12-01

    Considering genetic relatedness among species has long been argued as an important step toward measuring biological diversity more accurately, rather than relying solely on species richness. Some researchers have correlated measures of phylogenetic diversity and species richness across a series of sites and suggest that values of phylogenetic diversity do not differ enough from those of species richness to justify their inclusion in conservation planning. We compared predictions of species richness and 10 measures of phylogenetic diversity by creating distribution models for 168 individual species of a species-rich plant family, the Cape Proteaceae. When we used average amounts of land set aside for conservation to compare areas selected on the basis of species richness with areas selected on the basis of phylogenetic diversity, correlations between species richness and different measures of phylogenetic diversity varied considerably. Correlations between species richness and measures that were based on the length of phylogenetic tree branches and tree shape were weaker than those that were based on tree shape alone. Elevation explained up to 31% of the segregation of species rich versus phylogenetically rich areas. Given these results, the increased availability of molecular data, and the known ecological effect of phylogenetically rich communities, consideration of phylogenetic diversity in conservation decision making may be feasible and informative.

  12. Morphological and phylogenetic analyses of the Nectria cinnabarina species complex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Nectria is typified by Nectria cinnabarina, a wood-inhabiting fungus common in temperate regions of the northern hemisphere. To determine the diversity of N. cinnabarina, specimens and cultures from Asia, Europe and North America were obtained and examined. Their phylogeny was determined u...

  13. Phylogenetic analyses reveal the shady history of C4 grasses.

    PubMed

    Edwards, Erika J; Smith, Stephen A

    2010-02-09

    Grasslands cover more than 20% of the Earth's terrestrial surface, and their rise to dominance is one of the most dramatic events of biome evolution in Earth history. Grasses possess two main photosynthetic pathways: the C(3) pathway that is typical of most plants and a specialized C(4) pathway that minimizes photorespiration and thus increases photosynthetic performance in high-temperature and/or low-CO(2) environments. C(4) grasses dominate tropical and subtropical grasslands and savannas, and C(3) grasses dominate the world's cooler temperate grassland regions. This striking pattern has been attributed to C(4) physiology, with the implication that the evolution of the pathway enabled C(4) grasses to persist in warmer climates than their C(3) relatives. We combined geospatial and molecular sequence data from two public archives to produce a 1,230-taxon phylogeny of the grasses with accompanying climate data for all species, extracted from more than 1.1 million herbarium specimens. Here we show that grasses are ancestrally a warm-adapted clade and that C(4) evolution was not correlated with shifts between temperate and tropical biomes. Instead, 18 of 20 inferred C(4) origins were correlated with marked reductions in mean annual precipitation. These changes are consistent with a shift out of tropical forest environments and into tropical woodland/savanna systems. We conclude that C(4) evolution in grasses coincided largely with migration out of the understory and into open-canopy environments. Furthermore, we argue that the evolution of cold tolerance in certain C(3) lineages is an overlooked innovation that has profoundly influenced the patterning of grassland communities across the globe.

  14. Phylogenetic analyses reveal the shady history of C4 grasses

    PubMed Central

    Edwards, Erika J.; Smith, Stephen A.

    2010-01-01

    Grasslands cover more than 20% of the Earth's terrestrial surface, and their rise to dominance is one of the most dramatic events of biome evolution in Earth history. Grasses possess two main photosynthetic pathways: the C3 pathway that is typical of most plants and a specialized C4 pathway that minimizes photorespiration and thus increases photosynthetic performance in high-temperature and/or low-CO2 environments. C4 grasses dominate tropical and subtropical grasslands and savannas, and C3 grasses dominate the world's cooler temperate grassland regions. This striking pattern has been attributed to C4 physiology, with the implication that the evolution of the pathway enabled C4 grasses to persist in warmer climates than their C3 relatives. We combined geospatial and molecular sequence data from two public archives to produce a 1,230-taxon phylogeny of the grasses with accompanying climate data for all species, extracted from more than 1.1 million herbarium specimens. Here we show that grasses are ancestrally a warm-adapted clade and that C4 evolution was not correlated with shifts between temperate and tropical biomes. Instead, 18 of 20 inferred C4 origins were correlated with marked reductions in mean annual precipitation. These changes are consistent with a shift out of tropical forest environments and into tropical woodland/savanna systems. We conclude that C4 evolution in grasses coincided largely with migration out of the understory and into open-canopy environments. Furthermore, we argue that the evolution of cold tolerance in certain C3 lineages is an overlooked innovation that has profoundly influenced the patterning of grassland communities across the globe. PMID:20142480

  15. Mitochondrial phylogenetics and evolution of mysticete whales.

    PubMed

    Sasaki, Takeshi; Nikaido, Masato; Hamilton, Healy; Goto, Mutsuo; Kato, Hidehiro; Kanda, Naohisa; Pastene, Luis; Cao, Ying; Fordyce, R; Hasegawa, Masami; Okada, Norihiro

    2005-02-01

    The phylogenetic relationships among baleen whales (Order: Cetacea) remain uncertain despite extensive research in cetacean molecular phylogenetics and a potential morphological sample size of over 2 million animals harvested. Questions remain regarding the number of species and the monophyly of genera, as well as higher order relationships. Here, we approach mysticete phylogeny with complete mitochondrial genome sequence analysis. We determined complete mtDNA sequences of 10 extant Mysticeti species, inferred their phylogenetic relationships, and estimated node divergence times. The mtDNA sequence analysis concurs with previous molecular studies in the ordering of the principal branches, with Balaenidae (right whales) as sister to all other mysticetes base, followed by Neobalaenidae (pygmy right whale), Eschrichtiidae (gray whale), and finally Balaenopteridae (rorquals + humpback whale). The mtDNA analysis further suggests that four lineages exist within the clade of Eschrichtiidae + Balaenopteridae, including a sister relationship between the humpback and fin whales, and a monophyletic group formed by the blue, sei, and Bryde's whales, each of which represents a newly recognized phylogenetic relationship in Mysticeti. We also estimated the divergence times of all extant mysticete species, accounting for evolutionary rate heterogeneity among lineages. When the mtDNA divergence estimates are compared with the mysticete fossil record, several lineages have molecular divergence estimates strikingly older than indicated by paleontological data. We suggest this discrepancy reflects both a large amount of ancestral polymorphism and long generation times of ancestral baleen whale populations.

  16. The origin and maintenance of nuclear endosperms: viewing development through a phylogenetic lens.

    PubMed Central

    Geeta, R

    2003-01-01

    The endosperm develops in fertilized ovules of angiosperms following fertilization of the central cell and nuclei in the female gametophyte. Endosperms differ in whether, and which, nuclear divisions are followed by cellular divisions; the variants are classified as cellular, nuclear or helobial. Functional correlates of this variation are little understood. Phylogenetic methods provide a powerful means of exploring taxonomic variation and phylogenetic patterns, to frame questions regarding biological processes. Data on endosperms across angiosperms were analysed in a phylogenetic context in order to determine homologies and detect biases in the direction of evolutionary transitions. Analyses confirm that neither all nuclear nor all helobial endosperms are homologous, raise the possibility that cellular development is a reversal in some derived angiosperms (e.g. asterids) and show that a statistically significant bias towards evolution of nuclear endosperms (and against reversals) prevails in angiosperms as a whole. This bias suggests strong selective advantages to having nuclear endosperm, developmental constraints to reversals or both. Homologies suggest that the microtubular cycle and cellularization pattern characteristic of reproductive cells across land plants may have been independently co-opted during multiple origins of nuclear endosperms, but information on cellular endosperms is essential to investigate further. PMID:12590768

  17. The origin and maintenance of nuclear endosperms: viewing development through a phylogenetic lens.

    PubMed

    Geeta, R

    2003-01-07

    The endosperm develops in fertilized ovules of angiosperms following fertilization of the central cell and nuclei in the female gametophyte. Endosperms differ in whether, and which, nuclear divisions are followed by cellular divisions; the variants are classified as cellular, nuclear or helobial. Functional correlates of this variation are little understood. Phylogenetic methods provide a powerful means of exploring taxonomic variation and phylogenetic patterns, to frame questions regarding biological processes. Data on endosperms across angiosperms were analysed in a phylogenetic context in order to determine homologies and detect biases in the direction of evolutionary transitions. Analyses confirm that neither all nuclear nor all helobial endosperms are homologous, raise the possibility that cellular development is a reversal in some derived angiosperms (e.g. asterids) and show that a statistically significant bias towards evolution of nuclear endosperms (and against reversals) prevails in angiosperms as a whole. This bias suggests strong selective advantages to having nuclear endosperm, developmental constraints to reversals or both. Homologies suggest that the microtubular cycle and cellularization pattern characteristic of reproductive cells across land plants may have been independently co-opted during multiple origins of nuclear endosperms, but information on cellular endosperms is essential to investigate further.

  18. Inferring the phylogenetic position of Boa constrictor among the Boinae.

    PubMed

    Burbrink, Frank T

    2005-01-01

    Snakes of the subfamily Boinae are found in Madagascar, the Papuan-Pacific Islands, and the Neotropics. It has been suggested that genera within each of these particular areas do not form monophyletic groups. Further, it was proposed that the New World Boa constrictor is more closely related to boine genera in Madagascar than to boines in the Neotropics. Along with inferring the relationship of all boine genera using data from the cytochrome b gene and morphology, the placement of Boa was also examined. Phylogenetic inferences using maximum likelihood and Bayesian (BI) methods for combined data analyses and separate analyses of DNA sequence and morphological data were conducted. Priors, parametric bootstraps, and the Shimodaira-Hasegawa test were used to examine the previously proposed placement of Boa with Madagascan taxa using these DNA data. DNA data and combined data analyses strongly reject the hypothesis that Boa is more closely related to Old World genera than to other New World genera. Additionally, strong tree support suggests that all species within Madagascar, the Papuan-Pacific Islands, and the Neotropics each form a monophyletic group with respect to their geographic region.

  19. Phylogenetic Diversification of the Globin Gene Superfamily in Chordates

    PubMed Central

    Storz, Jay F.; Opazo, Juan C.; Hoffmann, Federico G.

    2015-01-01

    Summary Phylogenetic reconstructions provide a means of inferring the branching relationships among members of multigene families that have diversified via successive rounds of gene duplication and divergence. Such reconstructions can illuminate the pathways by which particular expression patterns and protein functions evolved. For example, phylogenetic analyses can reveal cases in which similar expression patterns or functional properties evolved independently in different lineages, either through convergence, parallelism, or evolutionary reversals. The purpose of this paper is to provide a robust phylogenetic framework for interpreting experimental data and for generating hypotheses about the functional evolution of globin proteins in chordate animals. To do this we present a consensus phylogeny of the chordate globin gene superfamily. We document the relative roles of gene duplication and whole-genome duplication in fueling the functional diversification of vertebrate globins, and we unravel patterns of shared ancestry among globin genes from representatives of the three chordate subphyla (Craniata, Urochordata, and Cephalochordata). Our results demonstrate the value of integrating phylogenetic analyses with genomic analyses of conserved synteny to infer the duplicative origins and evolutionary histories of globin genes. We also discuss a number of case studies that illustrate the importance of phylogenetic information when making inferences about the evolution of globin gene expression and protein function. Finally, we discuss why the globin gene superfamily presents special challenges for phylogenetic analysis, and we describe methodological approaches that can be used to meet those challenges. PMID:21557448

  20. A phylogenetic approach to disentangling the role of competition and habitat filtering in community assembly of Neotropical forest birds.

    PubMed

    Gómez, Juan Pablo; Bravo, Gustavo A; Brumfield, Robb T; Tello, José G; Cadena, Carlos Daniel

    2010-11-01

    1. Methods that assess patterns of phylogenetic relatedness, as well as character distribution and evolution, allow one to infer the ecological processes involved in community assembly. Assuming niche conservatism, assemblages should shift from phylogenetic clustering to evenness with decreasing geographic scale because the relative importance of mechanisms that shape assemblages is hypothesized to be scale-dependent. Whereas habitat filtering is more likely to act at regional scales because of increased habitat heterogeneity that allows sorting of ecologically similar species in contrasting environments, competition is more likely to act at local scales because low habitat heterogeneity provides few opportunities for niche partitioning. 2. We used species lists to assess assemblage composition, data on ecologically-relevant traits, and a molecular phylogeny, to examine the phylogenetic structure of antbird (Thamnophilidae) assemblages at three different geographical scales: regional (ecoregions), intermediate (100-ha plots) and local (mixed-flocks). In addition, we used patterns of phylogenetic beta diversity and beta diversity to separate the factors that structure antbird assemblages at regional scales. 3. Contrary to previous findings, we found a shift from phylogenetic evenness to clustering with decreasing geographical scale. We argue that this does not reject the hypothesis that habitat filtering is the predominant force in regional community assembly, because analyses of trait evolution and structure indicated a lack of niche conservatism in antbirds. 4. In some cases, phylogenetic evenness at regional scales can be an effect of historical biogeographic processes instead of niche-based processes. However, regional patterns of beta diversity and phylogenetic beta diversity suggested that phylogenetic structure in our study cannot be explained by the history of speciation and dispersal of antbirds, further supporting the habitat-filtering hypothesis. 5. Our

  1. Phylogenetic relationships within the lophophorate lineages (Ectoprocta, Brachiopoda and Phoronida).

    PubMed

    Hausdorf, Bernhard; Helmkampf, Martin; Nesnidal, Maximilian P; Bruchhaus, Iris

    2010-06-01

    We produced two new EST datasets of so far uncovered clades of ectoprocts to investigate the phylogenetic relationships within the lophophorate lineages, Ectoprocta, Brachiopoda and Phoronida. Maximum-likelihood analyses based on 78 ribosomal proteins of 62 metazoan taxa support the monophyly of Ectoprocta and a sister group relationship of Phylactolaemata living in freshwater and the mainly marine Gymnolaemata. Hypotheses suggesting that Ectoprocta is diphyletic with phylactolaemates forming a clade with phoronids or paraphyletic with respect to Entoprocta could be rejected by topology tests. The hypotheses that Stenolaemata are the sister group of all other ectoprocts, that Stenolaemata constitutes a monophyletic group with Cheilostomata, and that Phylactolaemata have been derived from Ctenostomata could also be excluded. However, the hypothesis that Phylactolaemata and Stenolaemata form a monophyletic group could not be rejected. Brachiopoda and Phoronida constitute a monophylum, Brachiozoa. The hypotheses that phoronids are the sister group of articulate or inarticulate brachiopods could be rejected by topology tests, thus confirming the monophyly of Brachiopoda.

  2. Detecting Network Communities: An Application to Phylogenetic Analysis

    PubMed Central

    Andrade, Roberto F. S.; Rocha-Neto, Ivan C.; Santos, Leonardo B. L.; de Santana, Charles N.; Diniz, Marcelo V. C.; Lobão, Thierry Petit; Goés-Neto, Aristóteles; Pinho, Suani T. R.; El-Hani, Charbel N.

    2011-01-01

    This paper proposes a new method to identify communities in generally weighted complex networks and apply it to phylogenetic analysis. In this case, weights correspond to the similarity indexes among protein sequences, which can be used for network construction so that the network structure can be analyzed to recover phylogenetically useful information from its properties. The analyses discussed here are mainly based on the modular character of protein similarity networks, explored through the Newman-Girvan algorithm, with the help of the neighborhood matrix . The most relevant networks are found when the network topology changes abruptly revealing distinct modules related to the sets of organisms to which the proteins belong. Sound biological information can be retrieved by the computational routines used in the network approach, without using biological assumptions other than those incorporated by BLAST. Usually, all the main bacterial phyla and, in some cases, also some bacterial classes corresponded totally (100%) or to a great extent (>70%) to the modules. We checked for internal consistency in the obtained results, and we scored close to 84% of matches for community pertinence when comparisons between the results were performed. To illustrate how to use the network-based method, we employed data for enzymes involved in the chitin metabolic pathway that are present in more than 100 organisms from an original data set containing 1,695 organisms, downloaded from GenBank on May 19, 2007. A preliminary comparison between the outcomes of the network-based method and the results of methods based on Bayesian, distance, likelihood, and parsimony criteria suggests that the former is as reliable as these commonly used methods. We conclude that the network-based method can be used as a powerful tool for retrieving modularity information from weighted networks, which is useful for phylogenetic analysis. PMID:21573202

  3. Incompletely resolved phylogenetic trees inflate estimates of phylogenetic conservatism.

    PubMed

    Davies, T Jonathan; Kraft, Nathan J B; Salamin, Nicolas; Wolkovich, Elizabeth M

    2012-02-01

    The tendency for more closely related species to share similar traits and ecological strategies can be explained by their longer shared evolutionary histories and represents phylogenetic conservatism. How strongly species traits co-vary with phylogeny can significantly impact how we analyze cross-species data and can influence our interpretation of assembly rules in the rapidly expanding field of community phylogenetics. Phylogenetic conservatism is typically quantified by analyzing the distribution of species values on the phylogenetic tree that connects them. Many phylogenetic approaches, however, assume a completely sampled phylogeny: while we have good estimates of deeper phylogenetic relationships for many species-rich groups, such as birds and flowering plants, we often lack information on more recent interspecific relationships (i.e., within a genus). A common solution has been to represent these relationships as polytomies on trees using taxonomy as a guide. Here we show that such trees can dramatically inflate estimates of phylogenetic conservatism quantified using S. P. Blomberg et al.'s K statistic. Using simulations, we show that even randomly generated traits can appear to be phylogenetically conserved on poorly resolved trees. We provide a simple rarefaction-based solution that can reliably retrieve unbiased estimates of K, and we illustrate our method using data on first flowering times from Thoreau's woods (Concord, Massachusetts, USA).

  4. Phylogenetic origins of Lophocereus (Cactaceae) and the senita cactus-senita moth pollination mutualism.

    PubMed

    Hartmann, Stefanie; Nason, John D; Bhattacharya, Debashish

    2002-07-01

    Recent ecological research has revealed that the Sonoran Desert columnar cactus Lophocereus and the pyralid moth Upiga virescens form an obligate pollination mutualism, a rare but important case of coevolution. To investigate the phylogenetic origins of this unusual pollination system, we used molecular sequence data to reconstruct the phylogeny of the four taxa within the genus Lophocereus and to determine the phylogenetic position of Lophocereus within the North American columnar cacti (tribe Pachycereeae). Our analysis included Lophocereus, six Pachycereus species, Carnegiea gigantea, and Neobuxbaumia tetetzo within the subtribe Pachycereinae, and Stenocereus thurberi as an outgroup within the Stenocereinae. Extensive screening of chloroplast and mitochondrial genomes failed to reveal sequence variation within Lophocereus. At a deeper phylogenetic level, however, we found strong support for the placement of Lophocereus within Pachycereus as sister group to the hummingbird-pollinated P. marginatus. We discuss possible hypotheses that may explain the transition from bat pollination (ancestral) to moth and hummingbird pollination in Lophocereus and P. marginatus, respectively. Additional phylogenetic analyses suggest that the genus Pachycereus should be expanded to include Lophocereus, Carnegiea, Neobuxbaumia, and perhaps other species, whereas P. hollianus may need to be excluded from this clade. Future study will be needed to test taxonomic distinctions within Lophocereus, to test for parallel cladogenesis between phylogroups within Lophocereus and Upiga, and to fully delineate the genus Pachycereus and relationships among genera in the Pachycereinae.

  5. Evolutionary history determines how plant productivity responds to phylogenetic diversity and species richness.

    PubMed

    Genung, Mark A; Schweitzer, Jennifer A; Bailey, Joseph K

    2014-01-01

    The relationship between biodiversity and ecosystem function has received a great deal of attention in ecological research and recent results, from re-analyses, suggest that ecosystem function improves with increases in phylogenetic diversity. However, many of these results have been generalized across a range of different species and clades, and plants with different evolutionary histories could display different relationships between biodiversity and ecosystem function. To experimentally test this hypothesis, we manipulated species richness and phylogenetic diversity using 26 species from two subgenera of the genus Eucalyptus (subgenus Eucalyptus and subgenus Symphyomyrtus). We found that plant biomass (a measurement of ecosystem function) sometimes, but not always, responded to increases in species richness and phylogenetic diversity. Specifically, Symphyomyrtus plants showed a positive response while no comparable effect was observed for Eucalyptus plants, showing that responses to biodiversity can vary across different phylogenetic groups. Our results show that the impacts of evolutionary history may complicate the relationship between the diversity of plant communities and plant biomass.

  6. Phylogenetic Information Content of Copepoda Ribosomal DNA Repeat Units: ITS1 and ITS2 Impact

    PubMed Central

    Zagoskin, Maxim V.; Lazareva, Valentina I.; Grishanin, Andrey K.; Mukha, Dmitry V.

    2014-01-01

    The utility of various regions of the ribosomal repeat unit for phylogenetic analysis was examined in 16 species representing four families, nine genera, and two orders of the subclass Copepoda (Crustacea). Fragments approximately 2000 bp in length containing the ribosomal DNA (rDNA) 18S and 28S gene fragments, the 5.8S gene, and the internal transcribed spacer regions I and II (ITS1 and ITS2) were amplified and analyzed. The DAMBE (Data Analysis in Molecular Biology and Evolution) software was used to analyze the saturation of nucleotide substitutions; this test revealed the suitability of both the 28S gene fragment and the ITS1/ITS2 rDNA regions for the reconstruction of phylogenetic trees. Distance (minimum evolution) and probabilistic (maximum likelihood, Bayesian) analyses of the data revealed that the 28S rDNA and the ITS1 and ITS2 regions are informative markers for inferring phylogenetic relationships among families of copepods and within the Cyclopidae family and associated genera. Split-graph analysis of concatenated ITS1/ITS2 rDNA regions of cyclopoid copepods suggested that the Mesocyclops, Thermocyclops, and Macrocyclops genera share complex evolutionary relationships. This study revealed that the ITS1 and ITS2 regions potentially represent different phylogenetic signals. PMID:25215300

  7. Phylogenetic information content of Copepoda ribosomal DNA repeat units: ITS1 and ITS2 impact.

    PubMed

    Zagoskin, Maxim V; Lazareva, Valentina I; Grishanin, Andrey K; Mukha, Dmitry V

    2014-01-01

    The utility of various regions of the ribosomal repeat unit for phylogenetic analysis was examined in 16 species representing four families, nine genera, and two orders of the subclass Copepoda (Crustacea). Fragments approximately 2000 bp in length containing the ribosomal DNA (rDNA) 18S and 28S gene fragments, the 5.8S gene, and the internal transcribed spacer regions I and II (ITS1 and ITS2) were amplified and analyzed. The DAMBE (Data Analysis in Molecular Biology and Evolution) software was used to analyze the saturation of nucleotide substitutions; this test revealed the suitability of both the 28S gene fragment and the ITS1/ITS2 rDNA regions for the reconstruction of phylogenetic trees. Distance (minimum evolution) and probabilistic (maximum likelihood, Bayesian) analyses of the data revealed that the 28S rDNA and the ITS1 and ITS2 regions are informative markers for inferring phylogenetic relationships among families of copepods and within the Cyclopidae family and associated genera. Split-graph analysis of concatenated ITS1/ITS2 rDNA regions of cyclopoid copepods suggested that the Mesocyclops, Thermocyclops, and Macrocyclops genera share complex evolutionary relationships. This study revealed that the ITS1 and ITS2 regions potentially represent different phylogenetic signals.

  8. Phylogenomic Analyses Support Traditional Relationships within Cnidaria.

    PubMed

    Zapata, Felipe; Goetz, Freya E; Smith, Stephen A; Howison, Mark; Siebert, Stefan; Church, Samuel H; Sanders, Steven M; Ames, Cheryl Lewis; McFadden, Catherine S; France, Scott C; Daly, Marymegan; Collins, Allen G; Haddock, Steven H D; Dunn, Casey W; Cartwright, Paulyn

    2015-01-01

    Cnidaria, the sister group to Bilateria, is a highly diverse group of animals in terms of morphology, lifecycles, ecology, and development. How this diversity originated and evolved is not well understood because phylogenetic relationships among major cnidarian lineages are unclear, and recent studies present contrasting phylogenetic hypotheses. Here, we use transcriptome data from 15 newly-sequenced species in combination with 26 publicly available genomes and transcriptomes to assess phylogenetic relationships among major cnidarian lineages. Phylogenetic analyses using different partition schemes and models of molecular evolution, as well as topology tests for alternative phylogenetic relationships, support the monophyly of Medusozoa, Anthozoa, Octocorallia, Hydrozoa, and a clade consisting of Staurozoa, Cubozoa, and Scyphozoa. Support for the monophyly of Hexacorallia is weak due to the equivocal position of Ceriantharia. Taken together, these results further resolve deep cnidarian relationships, largely support traditional phylogenetic views on relationships, and provide a historical framework for studying the evolutionary processes involved in one of the most ancient animal radiations.

  9. Homologous recombination in bovine pestiviruses. Phylogenetic and statistic evidence.

    PubMed

    Jones, Leandro Roberto; Weber, E Laura

    2004-12-01

    Bovine pestiviruses (Bovine Viral Diarrea Virus 1 (BVDV 1) and Bovine Viral Diarrea Virus 2 (BVDV 2)) belong to the genus Pestivirus (Flaviviridae), which is composed of positive stranded RNA viruses causing significant economic losses world-wide. We used phylogenetic and bootstrap analyses to systematically scan alignments of previously sequenced genomes in order to explore further the evolutionary mechanisms responsible for variation in the virus. Previously published data suggested that homologous crossover might be one of the mechanisms responsible for the genomic rearrangements observed in cytopathic (cp) strains of bovine pestiviruses. Nevertheless, homologous recombination involves not just homologous crossovers, but also replacement of a homologous region of the acceptor RNA. Furthermore, cytopathic strains represent dead paths in evolution, since they are isolated exclusively from the fatal cases of mucosal disease. Herein, we report evidence of homologous inter-genotype recombination in the genome of a non-cytopathic (ncp) strain of Bovine Viral Diarrea Virus 1, the type species of the genus Pestivirus. We also show that intra-genotype homologous recombination might be a common phenomenon in both species of Pestivirus. This evidence demonstrates that homologous recombination contribute to the diversification of bovine pestiviruses in nature. Implications for virus evolution, taxonomy and phylogenetics are discussed.

  10. Phylogenetic position of Guihaiothamnus (Rubiaceae): its evolutionary and ecological implications.

    PubMed

    Xie, Peiwu; Tu, Tieyao; Razafimandimbison, Sylvain G; Zhu, Chengjie; Zhang, Dianxiang

    2014-09-01

    Guihaiothamnus (Rubiaceae) is an enigmatic, monotypic genus endemic to southwestern China. Its generic status has never been doubted because it is morphologically unique by having rosette habit, showy, long-corolla-tubed flowers, and multi-seeded indehiscent berry-like fruits. The genus has been postulated to be a relict in the broad-leaved forests of China, and to be related to the genus Wendlandia, which was placed in the subfamily Cinchonoideae and recently classified in the tribe Augusteae of the subfamily Dialypetalanthoideae. Using combined evidence from palynology, cytology, and DNA sequences of nuclear ITS and four plastid markers (rps16, trnT-F, ndhF, rbcL), we assessed the phylogenetic position of Guihaiothamnus in Rubiaceae. Our molecular phylogenetic analyses placed the genus deeply nested within Wendlandia. This relationship is corroborated by evidence from palynology and cytology. Using a relaxed molecular clock method based on five fossil records, we dated the stem age of Wendlandia to be 17.46 my and, the split between G. acaulis and related Wendlandia species in southwestern China to be 2.11mya. This young age, coupled with the derived position in Wendlandia, suggests an evolutionary derivation rather than an evolutionary relict of G. acaulis. Its rosette habit and large showy flowers, which are very distinctive from other Wendlandias, are interpreted as a result of recent rapid adaptation to rock and cliff habitats.

  11. Phylogenetic trees and the future of mammalian biodiversity

    PubMed Central

    Davies, T. Jonathan; Fritz, Susanne A.; Grenyer, Richard; Orme, C. David L.; Bielby, Jon; Bininda-Emonds, Olaf R. P.; Cardillo, Marcel; Jones, Kate E.; Gittleman, John L.; Mace, Georgina M.; Purvis, Andy

    2008-01-01

    Phylogenies describe the origins and history of species. However, they can also help to predict species' fates and so can be useful tools for managing the future of biodiversity. This article starts by sketching how phylogenetic, geographic, and trait information can be combined to elucidate present mammalian diversity patterns and how they arose. Recent diversification rates and standing diversity show different geographic patterns, indicating that cradles of diversity have moved over time. Patterns in extinction risk reflect both biological differences among mammalian lineages and differences in threat intensity among regions. Phylogenetic comparative analyses indicate that for small-bodied mammals, extinction risk is governed mostly by where the species live and the intensity of the threats, whereas for large-bodied mammals, ecological differences also play an important role. This modeling approach identifies species whose intrinsic biology renders them particularly vulnerable to increased human pressure. We outline how the approach might be extended to consider future trends in anthropogenic drivers, to identify likely future battlegrounds of mammalian conservation, and the likely casualties. This framework could help to highlight consequences of choosing among different future climatic and socioeconomic scenarios. We end by discussing priority-setting, showing how alternative currencies for diversity can suggest very different priorities. We argue that aiming to maximize long-term evolutionary responses is inappropriate, that conservation planning needs to consider costs as well as benefits, and that proactive conservation of largely intact systems should be part of a balanced strategy. PMID:18695230

  12. Morphological Phylogenetics in the Genomic Age.

    PubMed

    Lee, Michael S Y; Palci, Alessandro

    2015-10-05

    Evolutionary trees underpin virtually all of biology, and the wealth of new genomic data has enabled us to reconstruct them with increasing detail and confidence. While phenotypic (typically morphological) traits are becoming less important in reconstructing evolutionary trees, they still serve vital and unique roles in phylogenetics, even for living taxa for which vast amounts of genetic information are available. Morphology remains a powerful independent source of evidence for testing molecular clades, and - through fossil phenotypes - the primary means for time-scaling phylogenies. Morphological phylogenetics is therefore vital for transforming undated molecular topologies into dated evolutionary trees. However, if morphology is to be employed to its full potential, biologists need to start scrutinising phenotypes in a more objective fashion, models of phenotypic evolution need to be improved, and approaches for analysing phenotypic traits and fossils together with genomic data need to be refined.

  13. Evidence for phylogenetic correlation of plant–AMF assemblages?

    PubMed Central

    Montesinos-Navarro, A.; Segarra-Moragues, J. G.; Valiente-Banuet, A.; Verdú, M.

    2015-01-01

    Background and Aims Specificity in biotic interactions is mediated' by functional traits inducing shifts in the community species composition. Functional traits are often evolutionarily conserved, resulting in closely related species tending to interact with similar species. This tendency may initially shape the phylogenetic composition of coexisting guilds, but other intraguild ecological processes may either blur or promote the mirroring of the phylogenetic compositions between guilds. The roles of intra- and interguild interactions in shaping the phylogenetic community composition are largely unknown, beyond the mere selectivity in the interguild interactions. Plant facilitation is a phylogenetically structured species-specific process involving interactions not only between the same guild of plants, but also between plants and other guilds such as arbuscular mycorrhizal fungi (AMF). In this study it is hypothesized that reciprocal plant–AMF interactions will leave an interdependent phylogenetic signal in the community composition of both plants and AMF. Methods A correlation was used to test for a relationship between the phylogenetic composition of plant and AMF assemblages in a patchy xeric shrubland environment shaped by plant facilitation. In addition, a null model was used to test whether this correlation can be solely explained by selectivity in plant–AMF interactions. Key Results A significant correlation was observed between the phylogenetic composition of plant and AMF assemblages. Plant phylogenetic composition in a patch was related to the predominance of plant species with high nursery quality that can influence the community assembly. AMF phylogenetic composition was related to the AMF phylogenetic diversity in each patch. Conclusions This study shows that shifts in the phylogenetic composition of plants and AMF assemblages do not occur independently. It is suggested that besides selectivity in plant–AMF interactions, inter-related succession

  14. Application of RAD-based phylogenetics to complex relationships among variously related taxa in a species flock.

    PubMed

    Takahashi, Tetsumi; Nagata, Nobuaki; Sota, Teiji

    2014-11-01

    Restriction site-associated DNA (RAD) sequences from entire genomes can be used to resolve complex phylogenetic problems. However, the processed data matrix varies depending on the strategies used to determine orthologous loci and to filter loci according to the number of taxa with sequence data for the loci, and often contains plenty of missing data. To explore the utility of RAD sequences for elucidating the phylogenetics of variously related species, we conducted RAD sequencing for the Ohomopterus ground beetles and attempted maximum-likelihood phylogenetic analyses using 42 data matrices ranging from 1.6×10(4) to 8.1×10(6) base pairs, with 11-72% missing data. We demonstrate that robust phylogenetic trees, in terms of bootstrap values, do not necessarily result from larger data matrices, as previously suggested. Robust trees for distantly related and closely related taxa resulted from different data matrices, and topologically different robust trees for distantly related taxa resulted from various data matrices. For closely related taxa, moderately large data matrices strongly supported a topology that is incompatible with morphological evidence, possibly due to the effect of introgressive hybridization. Practically, exploring variously prepared data matrices is an effective way to propose important alternative phylogenetic hypotheses for this study group.

  15. Possible sister groups and phylogenetic relationships among selected North Pacific and North Atlantic Rhodophyta

    NASA Astrophysics Data System (ADS)

    Lindstrom, Sandra C.

    1987-09-01

    Although the cool temperate (boreal) waters of the N. Pacific and N. Atlantic share many similar if not identical species, there have been few studies to test the identity of these species pairs. Whereas such tests are important from a taxonomic perspective, they tell us little if anything about biogeographic relationships. A more useful approach is one employing phylogenetic systematics (cladistics). The interpretation of phylogenetic diagrams (cladograms) in terms of biogeographic area relationships is explained. It is argued that cladistic analyses of taxa occurring in the cool temperate waters of the northern oceans can provide biogeographic tracks, which in turn can suggest the origins and migrations of species and possibly even floras. A number of cool temperate taxa that appear particularly amenable to this approach are discussed, including genera in the Palmariaceae, Corallinaceae, Dumontiaceae, Solieriaceae, Petrocelidaceae, Ceramiaceae and Rhodomelaceae.

  16. Comparative evolutionary diversity and phylogenetic structure across multiple forest dynamics plots: a mega-phylogeny approach.

    PubMed

    Erickson, David L; Jones, Frank A; Swenson, Nathan G; Pei, Nancai; Bourg, Norman A; Chen, Wenna; Davies, Stuart J; Ge, Xue-Jun; Hao, Zhanqing; Howe, Robert W; Huang, Chun-Lin; Larson, Andrew J; Lum, Shawn K Y; Lutz, James A; Ma, Keping; Meegaskumbura, Madhava; Mi, Xiangcheng; Parker, John D; Fang-Sun, I; Wright, S Joseph; Wolf, Amy T; Ye, W; Xing, Dingliang; Zimmerman, Jess K; Kress, W John

    2014-01-01

    phylogenetic diversity in the mega-phylogeny were more consistent, thereby removing a potential source of bias at the plot-level, and demonstrating the value of assessing phylogenetic relationships simultaneously within a mega-phylogeny. An unexpected result of the comparisons among plots based on the mega-phylogeny was that the communities in the ForestGEO plots in general appear to be assemblages of more closely related species than expected by chance, and that differentiation among communities is very low, suggesting deep floristic connections among communities and new avenues for future analyses in community ecology.

  17. Comparative evolutionary diversity and phylogenetic structure across multiple forest dynamics plots: a mega-phylogeny approach

    PubMed Central

    Erickson, David L.; Jones, Frank A.; Swenson, Nathan G.; Pei, Nancai; Bourg, Norman A.; Chen, Wenna; Davies, Stuart J.; Ge, Xue-jun; Hao, Zhanqing; Howe, Robert W.; Huang, Chun-Lin; Larson, Andrew J.; Lum, Shawn K. Y.; Lutz, James A.; Ma, Keping; Meegaskumbura, Madhava; Mi, Xiangcheng; Parker, John D.; Fang-Sun, I.; Wright, S. Joseph; Wolf, Amy T.; Ye, W.; Xing, Dingliang; Zimmerman, Jess K.; Kress, W. John

    2014-01-01

    phylogenetic diversity in the mega-phylogeny were more consistent, thereby removing a potential source of bias at the plot-level, and demonstrating the value of assessing phylogenetic relationships simultaneously within a mega-phylogeny. An unexpected result of the comparisons among plots based on the mega-phylogeny was that the communities in the ForestGEO plots in general appear to be assemblages of more closely related species than expected by chance, and that differentiation among communities is very low, suggesting deep floristic connections among communities and new avenues for future analyses in community ecology. PMID:25414723

  18. Open to Suggestion.

    ERIC Educational Resources Information Center

    Journal of Reading, 1987

    1987-01-01

    Offers (1) suggestions for improving college students' study skills; (2) a system for keeping track of parent, teacher, and community contacts; (3) suggestions for motivating students using tic tac toe; (4) suggestions for using etymology to improve word retention; (5) a word search grid; and (6) suggestions for using postcards in remedial reading…

  19. Phylogenetic molecular function annotation

    NASA Astrophysics Data System (ADS)

    Engelhardt, Barbara E.; Jordan, Michael I.; Repo, Susanna T.; Brenner, Steven E.

    2009-07-01

    It is now easier to discover thousands of protein sequences in a new microbial genome than it is to biochemically characterize the specific activity of a single protein of unknown function. The molecular functions of protein sequences have typically been predicted using homology-based computational methods, which rely on the principle that homologous proteins share a similar function. However, some protein families include groups of proteins with different molecular functions. A phylogenetic approach for predicting molecular function (sometimes called "phylogenomics") is an effective means to predict protein molecular function. These methods incorporate functional evidence from all members of a family that have functional characterizations using the evolutionary history of the protein family to make robust predictions for the uncharacterized proteins. However, they are often difficult to apply on a genome-wide scale because of the time-consuming step of reconstructing the phylogenies of each protein to be annotated. Our automated approach for function annotation using phylogeny, the SIFTER (Statistical Inference of Function Through Evolutionary Relationships) methodology, uses a statistical graphical model to compute the probabilities of molecular functions for unannotated proteins. Our benchmark tests showed that SIFTER provides accurate functional predictions on various protein families, outperforming other available methods.

  20. Phylogenetic molecular function annotation

    PubMed Central

    Engelhardt, Barbara E; Jordan, Michael I; Repo, Susanna T; Brenner, Steven E

    2010-01-01

    It is now easier to discover thousands of protein sequences in a new microbial genome than it is to biochemically characterize the specific activity of a single protein of unknown function. The molecular functions of protein sequences have typically been predicted using homology-based computational methods, which rely on the principle that homologous proteins share a similar function. However, some protein families include groups of proteins with different molecular functions. A phylogenetic approach for predicting molecular function (sometimes called “phylogenomics”) is an effective means to predict protein molecular function. These methods incorporate functional evidence from all members of a family that have functional characterizations using the evolutionary history of the protein family to make robust predictions for the uncharacterized proteins. However, they are often difficult to apply on a genome-wide scale because of the time-consuming step of reconstructing the phylogenies of each protein to be annotated. Our automated approach for function annotation using phylogeny, the SIFTER (Statistical Inference of Function Through Evolutionary Relationships) methodology, uses a statistical graphical model to compute the probabilities of molecular functions for unannotated proteins. Our benchmark tests showed that SIFTER provides accurate functional predictions on various protein families, outperforming other available methods. PMID:20664722

  1. Phylogenetic placement of the enigmatic parasite, Polypodium hydriforme, within the Phylum Cnidaria

    PubMed Central

    2008-01-01

    Background Polypodium hydriforme is a parasite with an unusual life cycle and peculiar morphology, both of which have made its systematic position uncertain. Polypodium has traditionally been considered a cnidarian because it possesses nematocysts, the stinging structures characteristic of this phylum. However, recent molecular phylogenetic studies using 18S rDNA sequence data have challenged this interpretation, and have shown that Polypodium is a close relative to myxozoans and together they share a closer affinity to bilaterians than cnidarians. Due to the variable rates of 18S rDNA sequences, these results have been suggested to be an artifact of long-branch attraction (LBA). A recent study, using multiple protein coding markers, shows that the myxozoan Buddenbrockia, is nested within cnidarians. Polypodium was not included in this study. To further investigate the phylogenetic placement of Polypodium, we have performed phylogenetic analyses of metazoans with 18S and partial 28S rDNA sequences in a large dataset that includes Polypodium and a comprehensive sampling of cnidarian taxa. Results Analyses of a combined dataset of 18S and partial 28S sequences, and partial 28S alone, support the placement of Polypodium within Cnidaria. Removal of the long-branched myxozoans from the 18S dataset also results in Polypodium being nested within Cnidaria. These results suggest that previous reports showing that Polypodium and Myxozoa form a sister group to Bilateria were an artifact of long-branch attraction. Conclusion By including 28S rDNA sequences and a comprehensive sampling of cnidarian taxa, we demonstrate that previously conflicting hypotheses concerning the phylogenetic placement of Polypodium can be reconciled. Specifically, the data presented provide evidence that Polypodium is indeed a cnidarian and is either the sister taxon to Hydrozoa, or part of the hydrozoan clade, Leptothecata. The former hypothesis is consistent with the traditional view that Polypodium

  2. Isolation and phylogenetic analysis of novel γ-gliadin genes in genus Dasypyrum.

    PubMed

    Li, G R; Liu, C; Yang, E N; Yang, Z J

    2013-03-13

    As the most ancient member of the wheat gluten family, the γ-gliadin genes are suitable for phylogenetic analysis among wheat and related species. Species in the grass genus Dasypyrum have been widely used for wheat cross breeding. However, the genomic relationships among Dasypyrum species have been little studied. We isolated 22 novel γ-gliadin gene sequences, among which 10 are putatively functional. The open reading frame lengths of these sequences range from 642 to 933 bp, and these putative proteins consist of five domains. Phylogenetic analyses showed that all Dasypyrum γ-gliadin gene sequences clustered in a large group; D. villosum and tetraploid D. breviaristatum γ-gliadin gene sequences clustered in a subgroup, while diploid D. breviaristatum γ-gliadin gene sequences clustered at the edge of the subgroup. All of the Dasypyrum γ-gliadin gene sequences were absent in three major T cell-stimulatory epitopes binding to HLA-DQ2/8 in celiac disease patients. Based on the phylogenetic analyses, we suggest that D. villosum and tetraploid D. breviaristatum evolved in parallel from a diploid ancestor D. breviaristatum.

  3. Chromosome evolution in the annual killifish genus Cynolebias and mitochondrial phylogenetic analysis.

    PubMed

    García, G; Lalanne, A I; Aguirre, G; Cappetta, M

    2001-01-01

    Extensive chromosome variation involving Robertsonian and non-Robertsonian changes were proposed to explain chromosomal evolution within killifishes of the aplocheiloid group belonging to the order Cyprinodontiforms. In the present work we describe the karyotypes of four Cynolebias species and analyze chromosome changes by means of mitochondrial phylogenetic studies, including 10 taxa of this genus. Diploid numbers varied from 48 to 44 and the number of chromosome arms from 50 to 54. Molecular phylogenetic analyses allow us to corroborate previous hypothesis about chromosome evolution in aplocheiloid fishes. The tree topology based on a combined dataset of mitochondrial cytochrome b and 12S genes shows that recent cladogenetic events within the genus Cynolebias could have occurred by allopatric or 'in-situ' differentiation involving chromosomal rearrangements. Our analyses of approximately 10% of mitochondrial genome can be helpful in determining these recent cladogenetic events but it showed limited phylogenetic resolution at intermediate levels of divergence. This can be explained in part by the high levels of DNA sequence divergence (ranging from 0.015 to 0.245) detected at intrageneric level. Different methodological approaches suggest that chromosomal changes in Cynolebias have occurred during their differentiation, supporting the hypothesis that the unresolved basal polytomy could be the result of rapid speciation events, like a true 'star polytomy'.

  4. Suicidality and interrogative suggestibility.

    PubMed

    Pritchard-Boone, Lea; Range, Lillian M

    2005-01-01

    All people are subject to memory suggestibility, but suicidal individuals may be especially so. The link between suicidality and suggestibility is unclear given mixed findings and methodological weaknesses of past research. To test the link between suicidality and interrogative suggestibility, 149 undergraduates answered questions about suicidal thoughts and reasons for living, and participated in a direct suggestibility procedure. As expected, suggestibility correlated with suicidality but accounted for little overall variance (4%). Mental health professionals might be able to take advantage of client suggestibility by directly telling suicidal persons to refrain from suicidal thoughts or actions.

  5. Phylogenetic metrics of community similarity.

    PubMed

    Ives, Anthony R; Helmus, Matthew R

    2010-11-01

    We derive a new metric of community similarity that takes into account the phylogenetic relatedness among species. This metric, phylogenetic community dissimilarity (PCD), can be partitioned into two components, a nonphylogenetic component that reflects shared species between communities (analogous to Sørensen' s similarity metric) and a phylogenetic component that reflects the evolutionary relationships among nonshared species. Therefore, even if a species is not shared between two communities, it will increase the similarity of the two communities if it is phylogenetically related to species in the other community. We illustrate PCD with data on fish and aquatic macrophyte communities from 59 temperate lakes. Dissimilarity between fish communities associated with environmental differences between lakes often has a phylogenetic component, whereas this is not the case for macrophyte communities. With simulations, we then compare PCD with two other metrics of phylogenetic community similarity, II(ST) and UniFrac. Of the three metrics, PCD was best at identifying environmental drivers of community dissimilarity, showing lower variability and greater statistical power. Thus, PCD is a statistically powerful metric that separates the effects of environmental drivers on compositional versus phylogenetic components of community structure.

  6. wolfPAC: building a high-performance distributed computing network for phylogenetic analysis using 'obsolete' computational resources.

    PubMed

    Reeves, Patrick A; Friedman, Philip H; Richards, Christopher M

    2005-01-01

    wolfPAC is an AppleScript-based software package that facilitates the use of numerous, remotely located Macintosh computers to perform computationally-intensive phylogenetic analyses using the popular application PAUP* (Phylogenetic Analysis Using Parsimony). It has been designed to utilise readily available, inexpensive processors and to encourage sharing of computational resources within the worldwide phylogenetics community.

  7. Monogenean anchor morphometry: systematic value, phylogenetic signal, and evolution

    PubMed Central

    Soo, Oi Yoon Michelle; Tan, Wooi Boon; Lim, Lee Hong Susan

    2016-01-01

    Background. Anchors are one of the important attachment appendages for monogenean parasites. Common descent and evolutionary processes have left their mark on anchor morphometry, in the form of patterns of shape and size variation useful for systematic and evolutionary studies. When combined with morphological and molecular data, analysis of anchor morphometry can potentially answer a wide range of biological questions. Materials and Methods. We used data from anchor morphometry, body size and morphology of 13 Ligophorus (Monogenea: Ancyrocephalidae) species infecting two marine mugilid (Teleostei: Mugilidae) fish hosts: Moolgarda buchanani (Bleeker) and Liza subviridis (Valenciennes) from Malaysia. Anchor shape and size data (n = 530) were generated using methods of geometric morphometrics. We used 28S rRNA, 18S rRNA, and ITS1 sequence data to infer a maximum likelihood phylogeny. We discriminated species using principal component and cluster analysis of shape data. Adams’s Kmult was used to detect phylogenetic signal in anchor shape. Phylogeny-correlated size and shape changes were investigated using continuous character mapping and directional statistics, respectively. We assessed morphological constraints in anchor morphometry using phylogenetic regression of anchor shape against body size and anchor size. Anchor morphological integration was studied using partial least squares method. The association between copulatory organ morphology and anchor shape and size in phylomorphospace was used to test the Rohde-Hobbs hypothesis. We created monogeneaGM, a new R package that integrates analyses of monogenean anchor geometric morphometric data with morphological and phylogenetic data. Results. We discriminated 12 of the 13 Ligophorus species using anchor shape data. Significant phylogenetic signal was detected in anchor shape. Thus, we discovered new morphological characters based on anchor shaft shape, the length between the inner root point and the outer root

  8. The phylogenetic distribution of extrafloral nectaries in plants

    PubMed Central

    Weber, Marjorie G.; Keeler, Kathleen H.

    2013-01-01

    Background and Aims Understanding the evolutionary patterns of ecologically relevant traits is a central goal in plant biology. However, for most important traits, we lack the comprehensive understanding of their taxonomic distribution needed to evaluate their evolutionary mode and tempo across the tree of life. Here we evaluate the broad phylogenetic patterns of a common plant-defence trait found across vascular plants: extrafloral nectaries (EFNs), plant glands that secrete nectar and are located outside the flower. EFNs typically defend plants indirectly by attracting invertebrate predators who reduce herbivory. Methods Records of EFNs published over the last 135 years were compiled. After accounting for changes in taxonomy, phylogenetic comparative methods were used to evaluate patterns of EFN evolution, using a phylogeny of over 55 000 species of vascular plants. Using comparisons of parametric and non-parametric models, the true number of species with EFNs likely to exist beyond the current list was estimated. Key Results To date, EFNs have been reported in 3941 species representing 745 genera in 108 families, about 1–2 % of vascular plant species and approx. 21 % of families. They are found in 33 of 65 angiosperm orders. Foliar nectaries are known in four of 36 fern families. Extrafloral nectaries are unknown in early angiosperms, magnoliids and gymnosperms. They occur throughout monocotyledons, yet most EFNs are found within eudicots, with the bulk of species with EFNs being rosids. Phylogenetic analyses strongly support the repeated gain and loss of EFNs across plant clades, especially in more derived dicot families, and suggest that EFNs are found in a minimum of 457 independent lineages. However, model selection methods estimate that the number of unreported cases of EFNs may be as high as the number of species already reported. Conclusions EFNs are widespread and evolutionarily labile traits that have repeatedly evolved a remarkable number of times in

  9. Towards a better understanding of Apis mellifera and Varroa destructor microbiomes: introducing 'phyloh' as a novel phylogenetic diversity analysis tool.

    PubMed

    Sandionigi, A; Vicario, S; Prosdocimi, E M; Galimberti, A; Ferri, E; Bruno, A; Balech, B; Mezzasalma, V; Casiraghi, M

    2015-07-01

    The study of diversity in biological communities is an intriguing field. Huge amount of data are nowadays available (provided by the innovative DNA sequencing techniques), and management, analysis and display of results are not trivial. Here, we propose for the first time the use of phylogenetic entropy as a measure of bacterial diversity in studies of microbial community structure. We then compared our new method (i.e. the web tool phyloh) for partitioning phylogenetic diversity with the traditional approach in diversity analyses of bacteria communities. We tested phyloh to characterize microbiome in the honeybee (Apis mellifera, Insecta: Hymenoptera) and its parasitic mite varroa (Varroa destructor, Arachnida: Parasitiformes). The rationale is that the comparative analysis of honeybee and varroa microbiomes could open new perspectives concerning the role of the parasites on honeybee colonies health. Our results showed a dramatic change of the honeybee microbiome when varroa occurs, suggesting that this parasite is able to influence host microbiome. Among the different approaches used, only the entropy method, in conjunction with phylogenetic constraint as implemented in phyloh, was able to discriminate varroa microbiome from that of parasitized honeybees. In conclusion, we foresee that the use of phylogenetic entropy could become a new standard in the analyses of community structure, in particular to prove the contribution of each biological entity to the overall diversity.

  10. The Life of Suggestions

    ERIC Educational Resources Information Center

    Pearce, Cathie

    2010-01-01

    Using the notion of a suggestion, or rather charting the life of suggestions, this article considers the happenings of chance and embodiment as the "problems that got away." The life of suggestions helps us to ask how connectivities are made, how desire functions, and how "immanence" rather than "transcendence" can open up the politics and ethics…

  11. The evolution of HIV: Inferences using phylogenetics

    PubMed Central

    Castro-Nallar, Eduardo; Pérez-Losada, Marcos; Burton, Gregory F.; Crandall, Keith A.

    2011-01-01

    Molecular phylogenetics has revolutionized the study of not only evolution but also disparate fields such as genomics, bioinformatics, epidemiology, ecology, microbiology, molecular biology and biochemistry. Particularly significant are its achievements in population genetics as a result of the development of coalescent theory, which have contributed to more accurate model-based parameter estimation and explicit hypothesis testing. The study of the evolution of many microorganisms, and HIV in particular, have benefited from these new methodologies. HIV is well suited for such sophisticated population analyses because of its large population sizes, short generation times, high substitution rates and relatively small genomes. All these factors make HIV an ideal and fascinating model to study molecular evolution in real time. Here we review the significant advances made in HIV evolution through the application of phylogenetic approaches. We first examine the relative roles of mutation and recombination on the molecular evolution of HIV and its adaptive response to drug therapy and tissue allocation. We then review some of the fundamental questions in HIV evolution in relation to its origin and diversification and describe some of the insights gained using phylogenies. Finally, we show how phylogenetic analysis has advanced our knowledge of HIV dynamics (i.e., phylodynamics). PMID:22138161

  12. A Consistent Phylogenetic Backbone for the Fungi

    PubMed Central

    Ebersberger, Ingo; de Matos Simoes, Ricardo; Kupczok, Anne; Gube, Matthias; Kothe, Erika; Voigt, Kerstin; von Haeseler, Arndt

    2012-01-01

    The kingdom of fungi provides model organisms for biotechnology, cell biology, genetics, and life sciences in general. Only when their phylogenetic relationships are stably resolved, can individual results from fungal research be integrated into a holistic picture of biology. However, and despite recent progress, many deep relationships within the fungi remain unclear. Here, we present the first phylogenomic study of an entire eukaryotic kingdom that uses a consistency criterion to strengthen phylogenetic conclusions. We reason that branches (splits) recovered with independent data and different tree reconstruction methods are likely to reflect true evolutionary relationships. Two complementary phylogenomic data sets based on 99 fungal genomes and 109 fungal expressed sequence tag (EST) sets analyzed with four different tree reconstruction methods shed light from different angles on the fungal tree of life. Eleven additional data sets address specifically the phylogenetic position of Blastocladiomycota, Ustilaginomycotina, and Dothideomycetes, respectively. The combined evidence from the resulting trees supports the deep-level stability of the fungal groups toward a comprehensive natural system of the fungi. In addition, our analysis reveals methodologically interesting aspects. Enrichment for EST encoded data—a common practice in phylogenomic analyses—introduces a strong bias toward slowly evolving and functionally correlated genes. Consequently, the generalization of phylogenomic data sets as collections of randomly selected genes cannot be taken for granted. A thorough characterization of the data to assess possible influences on the tree reconstruction should therefore become a standard in phylogenomic analyses. PMID:22114356

  13. Complete mitochondrial genomes elucidate phylogenetic relationships of the deep-sea octocoral families Coralliidae and Paragorgiidae

    NASA Astrophysics Data System (ADS)

    Figueroa, Diego F.; Baco, Amy R.

    2014-01-01

    In the past decade, molecular phylogenetic analyses of octocorals have shown that the current morphological taxonomic classification of these organisms needs to be revised. The latest phylogenetic analyses show that most octocorals can be divided into three main clades. One of these clades contains the families Coralliidae and Paragorgiidae. These families share several taxonomically important characters and it has been suggested that they may not be monophyletic; with the possibility of the Coralliidae being a derived branch of the Paragorgiidae. Uncertainty exists not only in the relationship of these two families, but also in the classification of the two genera that make up the Coralliidae, Corallium and Paracorallium. Molecular analyses suggest that the genus Corallium is paraphyletic, and it can be divided into two main clades, with the Paracorallium as members of one of these clades. In this study we sequenced the whole mitochondrial genome of five species of Paragorgia and of five species of Corallium to use in a phylogenetic analysis to achieve two main objectives; the first to elucidate the phylogenetic relationship between the Paragorgiidae and Coralliidae and the second to determine whether the genera Corallium and Paracorallium are monophyletic. Our results show that other members of the Coralliidae share the two novel mitochondrial gene arrangements found in a previous study in Corallium konojoi and Paracorallium japonicum; and that the Corallium konojoi arrangement is also found in the Paragorgiidae. Our phylogenetic reconstruction based on all the protein coding genes and ribosomal RNAs of the mitochondrial genome suggest that the Coralliidae are not a derived branch of the Paragorgiidae, but rather a monophyletic sister branch to the Paragorgiidae. While our manuscript was in review a study was published using morphological data and several fragments from mitochondrial genes to redefine the taxonomy of the Coralliidae. Paracorallium was subsumed

  14. Phylogenetics and the Human Microbiome

    PubMed Central

    Matsen, Frederick A.

    2015-01-01

    The human microbiome is the ensemble of genes in the microbes that live inside and on the surface of humans. Because microbial sequencing information is now much easier to come by than phenotypic information, there has been an explosion of sequencing and genetic analysis of microbiome samples. Much of the analytical work for these sequences involves phylogenetics, at least indirectly, but methodology has developed in a somewhat different direction than for other applications of phylogenetics. In this article, I review the field and its methods from the perspective of a phylogeneticist, as well as describing current challenges for phylogenetics coming from this type of work. PMID:25102857

  15. Phylogenetics and the human microbiome.

    PubMed

    Matsen, Frederick A

    2015-01-01

    The human microbiome is the ensemble of genes in the microbes that live inside and on the surface of humans. Because microbial sequencing information is now much easier to come by than phenotypic information, there has been an explosion of sequencing and genetic analysis of microbiome samples. Much of the analytical work for these sequences involves phylogenetics, at least indirectly, but methodology has developed in a somewhat different direction than for other applications of phylogenetics. In this article, I review the field and its methods from the perspective of a phylogeneticist, as well as describing current challenges for phylogenetics coming from this type of work.

  16. [Foundations of the new phylogenetics].

    PubMed

    Pavlinov, I Ia

    2004-01-01

    Evolutionary idea is the core of the modern biology. Due to this, phylogenetics dealing with historical reconstructions in biology takes a priority position among biological disciplines. The second half of the 20th century witnessed growth of a great interest to phylogenetic reconstructions at macrotaxonomic level which replaced microevolutionary studies dominating during the 30s-60s. This meant shift from population thinking to phylogenetic one but it was not revival of the classical phylogenetics; rather, a new approach emerged that was baptized The New Phylogenetics. It arose as a result of merging of three disciplines which were developing independently during 60s-70s, namely cladistics, numerical phyletics, and molecular phylogenetics (now basically genophyletics). Thus, the new phylogenetics could be defined as a branch of evolutionary biology aimed at elaboration of "parsimonious" cladistic hypotheses by means of numerical methods on the basis of mostly molecular data. Classical phylogenetics, as a historical predecessor of the new one, emerged on the basis of the naturphilosophical worldview which included a superorganismal idea of biota. Accordingly to that view, historical development (the phylogeny) was thought an analogy of individual one (the ontogeny) so its most basical features were progressive parallel developments of "parts" (taxa), supplemented with Darwinian concept of monophyly. Two predominating traditions were diverged within classical phylogenetics according to a particular interpretation of relation between these concepts. One of them (Cope, Severtzow) belittled monophyly and paid most attention to progressive parallel developments of morphological traits. Such an attitude turned this kind of phylogenetics to be rather the semogenetics dealing primarily with evolution of structures and not of taxa. Another tradition (Haeckel) considered both monophyletic and parallel origins of taxa jointly: in the middle of 20th century it was split into

  17. Exploration of phylogenetic data using a global sequence analysis method

    PubMed Central

    Chapus, Charles; Dufraigne, Christine; Edwards, Scott; Giron, Alain; Fertil, Bernard; Deschavanne, Patrick

    2005-01-01

    Background Molecular phylogenetic methods are based on alignments of nucleic or peptidic sequences. The tremendous increase in molecular data permits phylogenetic analyses of very long sequences and of many species, but also requires methods to help manage large datasets. Results Here we explore the phylogenetic signal present in molecular data by genomic signatures, defined as the set of frequencies of short oligonucleotides present in DNA sequences. Although violating many of the standard assumptions of traditional phylogenetic analyses – in particular explicit statements of homology inherent in character matrices – the use of the signature does permit the analysis of very long sequences, even those that are unalignable, and is therefore most useful in cases where alignment is questionable. We compare the results obtained by traditional phylogenetic methods to those inferred by the signature method for two genes: RAG1, which is easily alignable, and 18S RNA, where alignments are often ambiguous for some regions. We also apply this method to a multigene data set of 33 genes for 9 bacteria and one archea species as well as to the whole genome of a set of 16 γ-proteobacteria. In addition to delivering phylogenetic results comparable to traditional methods, the comparison of signatures for the sequences involved in the bacterial example identified putative candidates for horizontal gene transfers. Conclusion The signature method is therefore a fast tool for exploring phylogenetic data, providing not only a pretreatment for discovering new sequence relationships, but also for identifying cases of sequence evolution that could confound traditional phylogenetic analysis. PMID:16280081

  18. Methods for analyzing the evolutionary relationship of NF-κB proteins using free, web-driven bioinformatics and phylogenetic tools.

    PubMed

    Finnerty, John R; Gilmore, Thomas D

    2015-01-01

    Phylogenetic analysis enables one to reconstruct the functional evolution of proteins. Current understanding of NF-κB signaling derives primarily from studies of a relatively small number of laboratory models-mainly vertebrates and insects-that represent a tiny fraction of animal evolution. As such, NF-κB has been the subject of limited phylogenetic analysis. The recent discovery of NF-κB proteins in "basal" marine animals (e.g., sponges, sea anemones, corals) and NF-κB-like proteins in non-metazoan lineages extends the origin of NF-κB signaling by several hundred million years and provides the opportunity to investigate the early evolution of this pathway using phylogenetic approaches. Here, we describe a combination of bioinformatic and phylogenetic analyses based on menu-driven, open-source computer programs that are readily accessible to molecular biologists without formal training in phylogenetic methods. These phylogenetically based comparisons of NF-κB proteins are powerful in that they reveal deep conservation and repeated instances of parallel evolution in the sequence and structure of NF-κB in distant animal groups, which suggest that important functional constraints limit the evolution of this protein.

  19. A phylogenetic comparative study of flowering phenology along an elevational gradient in the Canadian subarctic

    NASA Astrophysics Data System (ADS)

    Lessard-Therrien, Malie; Davies, T. Jonathan; Bolmgren, Kjell

    2014-05-01

    Climate change is affecting high-altitude and high-latitude communities in significant ways. In the short growing season of subarctic habitats, it is essential that the timing and duration of phenological phases match favorable environmental conditions. We explored the time of the first appearance of flowers (first flowering day, FFD) and flowering duration across subarctic species composing different communities, from boreal forest to tundra, along an elevational gradient (600-800 m). The study was conducted on Mount Irony (856 m), North-East Canada (54°90'N, 67°16'W) during summer 2012. First, we quantified phylogenetic signal in FFD at different spatial scales. Second, we used phylogenetic comparative methods to explore the relationship between FFD, flowering duration, and elevation. We found that the phylogenetic signal for FFD was stronger at finer spatial scales and at lower elevations, indicating that closely related species tend to flower at similar times when the local environment is less harsh. The comparatively weaker phylogenetic signal at higher elevation may be indicative of convergent evolution for FFD. Flowering duration was correlated significantly with mean FFD, with later-flowering species having a longer flowering duration, but only at the lowest elevation. Our results indicate significant evolutionary conservatism in responses to phenological cues, but high phenotypic plasticity in flowering times. We suggest that phylogenetic relationships should be considered in the search for predictions and drivers of flowering time in comparative analyses, because species cannot be considered as statistically independent. Further, phenological drivers should be measured at spatial scales such that variation in flowering matches variation in environment.

  20. The Complete Mitochondrial Genome of Aix galericulata and Tadorna ferruginea: Bearings on Their Phylogenetic Position in the Anseriformes

    PubMed Central

    Liu, Gang; Zhou, Lizhi; Li, Bo; Zhang, Lili

    2014-01-01

    Aix galericulata and Tadorna ferruginea are two Anatidae species representing different taxonomic groups of Anseriformes. We used a PCR-based method to determine the complete mtDNAs of both species, and estimated phylogenetic trees based on the complete mtDNA alignment of these and 14 other Anseriforme species, to clarify Anseriform phylogenetics. Phylogenetic trees were also estimated using a multiple sequence alignment of three mitochondrial genes (Cyt b, ND2, and COI) from 68 typical species in GenBank, to further clarify the phylogenetic relationships of several groups among the Anseriformes. The new mtDNAs are circular molecules, 16,651 bp (Aix galericulata) and 16,639 bp (Tadorna ferruginea) in length, containing the 37 typical genes, with an identical gene order and arrangement as those of other Anseriformes. Comparing the protein-coding genes among the mtDNAs of 16 Anseriforme species, ATG is generally the start codon, TAA is the most frequent stop codon, one of three, TAA, TAG, and T-, commonly observed. All tRNAs could be folded into canonical cloverleaf secondary structures except for tRNASer (AGY) and tRNALeu (CUN), which are missing the "DHU" arm.Phylogenetic relationships demonstrate that Aix galericula and Tadorna ferruginea are in the same group, the Tadorninae lineage, based on our analyses of complete mtDNAs and combined gene data. Molecular phylogenetic analysis suggests the 68 species of Anseriform birds be divided into three families: Anhimidae, Anatidae, and Anseranatidae. The results suggest Anatidae birds be divided into five subfamilies: Anatinae, Tadorninae, Anserinae, Oxyurinae, and Dendrocygninae. Oxyurinae and Dendrocygninae should not belong to Anserinae, but rather represent independent subfamilies. The Anatinae includes species from the tribes Mergini, Somaterini, Anatini, and Aythyini. The Anserinae includes species from the tribes Anserini and Cygnini. PMID:25375111

  1. 16S rRNA Phylogenetic Investigation of the Candidate Division “Korarchaeota”

    PubMed Central

    Auchtung, Thomas A.; Takacs-Vesbach, Cristina D.; Cavanaugh, Colleen M.

    2006-01-01

    The environmental distribution and phylogeny of “Korarchaeota,” a proposed ancient archaeal division, was investigated by using the 16S rRNA gene framework. Korarchaeota-specific primers were designed based on previously published sequences and used to screen a variety of environments. Korarchaeota 16S rRNA genes were amplified exclusively from high temperature Yellowstone National Park hot springs and a 9°N East Pacific Rise deep-sea hydrothermal vent. Phylogenetic analyses of these and all available sequences suggest that Korarchaeota exhibit a high level of endemicity. PMID:16820509

  2. Dentition of eight species of Mediterranean Sea Gobiidae: do dentition characters of gobies reflect phylogenetic relationships?

    PubMed

    Kramer, A; Kovačić, M; Patzner, R A

    2012-01-01

    Oral and pharyngeal dentition was analysed in eight Mediterranean species of five different genera using scanning electron microscopy (SEM). Number, position, shape and size of teeth in the jaws and the pharyngeal tooth plates were used as a basis for comparison among taxa. Three different groups could be established based on the dental morphology among the species investigated and homoplasy due to feeding ecology cannot be considered the reason for similarity among them. The established groups are suggested to reflect phylogenetic relationships and correspond with the scarce published data on the topic.

  3. Exploring hierarchical visualization designs using phylogenetic trees

    NASA Astrophysics Data System (ADS)

    Li, Shaomeng; Crouser, R. Jordan; Griffin, Garth; Gramazio, Connor; Schulz, Hans-Jörg; Childs, Hank; Chang, Remco

    2015-01-01

    Ongoing research on information visualization has produced an ever-increasing number of visualization designs. Despite this activity, limited progress has been made in categorizing this large number of information visualizations. This makes understanding their common design features challenging, and obscures the yet unexplored areas of novel designs. With this work, we provide categorization from an evolutionary perspective, leveraging a computational model to represent evolutionary processes, the phylogenetic tree. The result - a phylogenetic tree of a design corpus of hierarchical visualizations - enables better understanding of the various design features of hierarchical information visualizations, and further illuminates the space in which the visualizations lie, through support for interactive clustering and novel design suggestions. We demonstrate these benefits with our software system, where a corpus of two-dimensional hierarchical visualization designs is constructed into a phylogenetic tree. This software system supports visual interactive clustering and suggesting for novel designs; the latter capacity is also demonstrated via collaboration with an artist who sketched new designs using our system.

  4. Molecular phylogenetics of mastodon and Tyrannosaurus rex.

    PubMed

    Organ, Chris L; Schweitzer, Mary H; Zheng, Wenxia; Freimark, Lisa M; Cantley, Lewis C; Asara, John M

    2008-04-25

    We report a molecular phylogeny for a nonavian dinosaur, extending our knowledge of trait evolution within nonavian dinosaurs into the macromolecular level of biological organization. Fragments of collagen alpha1(I) and alpha2(I) proteins extracted from fossil bones of Tyrannosaurus rex and Mammut americanum (mastodon) were analyzed with a variety of phylogenetic methods. Despite missing sequence data, the mastodon groups with elephant and the T. rex groups with birds, consistent with predictions based on genetic and morphological data for mastodon and on morphological data for T. rex. Our findings suggest that molecular data from long-extinct organisms may have the potential for resolving relationships at critical areas in the vertebrate evolutionary tree that have, so far, been phylogenetically intractable.

  5. A phylogenetic analysis of the phylum Fibrobacteres.

    PubMed

    Jewell, Kelsea A; Scott, Jarrod J; Adams, Sandra M; Suen, Garret

    2013-09-01

    Members of the phylum Fibrobacteres are highly efficient cellulolytic bacteria, best known for their role in rumen function and as potential sources of novel enzymes for bioenergy applications. Despite being key members of ruminants and other digestive microbial communities, our knowledge of this phylum remains incomplete, as much of our understanding is focused on two recognized species, Fibrobacter succinogenes and F. intestinalis. As a result, we lack insights regarding the environmental niche, host range, and phylogenetic organization of this phylum. Here, we analyzed over 1000 16S rRNA Fibrobacteres sequences available from public databases to establish a phylogenetic framework for this phylum. We identify both species- and genus-level clades that are suggestive of previously unknown taxonomic relationships between Fibrobacteres in addition to their putative lifestyles as host-associated or free-living. Our results shed light on this poorly understood phylum and will be useful for elucidating the function, distribution, and diversity of these bacteria in their niches.

  6. Update of phylogenetic and genetic diversity of Sporothrix schenckii sensu lato.

    PubMed

    Rangel-Gamboa, Lucía; Martínez-Hernandez, Fernando; Maravilla, Pablo; Arenas-Guzmán, Roberto; Flisser, Ana

    2016-03-01

    Sporothrix schenckii sensu lato causes subcutaneous mycosis. In this article we analysed its phylogeny and genetic diversity using calmodulin DNA sequences deposited in GenBank database. Population genetics indices were calculated, plus phylogenetic and haplotype network trees were built. Five clades with high values of posterior probability, 47 haplotypes and high diversity in the complex were found. Analysis of partial calmodulin sequences alignment revealed conserved and polymorphic regions that could be used as reference for taxonomic identification. The use of population genetics analysis allowed understanding the phylogenetic proximity of S. schenckii s. str. and S. brasiliensis; scarce genetic flow among them with low migration index and high ancestry coefficient was found. Similarly, S. globosa, S. mexicana and S. pallida sequences showed highly differentiated species with no genetic exchange. The phylogenetic tree suggests that S. mexicana shared a common ancestor with S. pallida; while S. globosa and S. brasiliensis are more related to S. schenckii s. str. and showed less haplotype diversity and restrictions in geographic distribution. In the haplotype network tree S. schenckii s. str. species displayed worldwide distribution without dispersion centres; while S. brasiliensis and S. globosa, exhibited Brazil and Euro-Asia as dispersion centres, respectively. Our data suggest that S. schenckii complex has been submitted to a divergent evolution process, probably due to the pressure of the environment and of the host. In contrast, S. brasiliensis could have been submitted to purifying selection or expansion process.

  7. At the interface of phylogenetics and population genetics, the phylogeography of Dirca occidentalis (Thymelaeaceae).

    PubMed

    Graves, William R; Schrader, James A

    2008-11-01

    Dirca occidentalis is a rare shrub indigenous to only six counties near the San Francisco Bay in California, United States. We used intersimple sequence repeat (ISSR) markers and automated genotyping to probe 29 colonies of D. occidentalis from four geographically disjunct populations (East Bay, North Bay, Salmon Creek, and Peninsula) and used methods of phylogenetics and population genetics to model variation across the species. Results show that the four disjunct populations are genetically isolated and have undergone divergence. Phylogenetic analyses indicate that the East Bay population was the first to diverge, followed by the North Bay, then the Salmon Creek and Peninsula populations. This order of divergence suggests an intriguing natural history for D. occidentalis that is explained by the dynamic geological and climatic history of the Bay Area. Spatial genetic structure detected for the species suggests an interaction of four factors: limited seed dispersal, clonal regeneration, distances traveled by pollinators, and genetic isolation of the four populations. Genetic diversity within the North Bay and Salmon Creek populations is low, indicating poor ecological fitness and risk of decline. ISSRs resolved phylogeographic structure within D. occidentalis, results unattainable with ITS methods, and the integration of tools of phylogenetics and population biology led to an enhanced understanding of this endemic species.

  8. Testing for Divergent Transmission Histories among Cultural Characters: A Study Using Bayesian Phylogenetic Methods and Iranian Tribal Textile Data

    PubMed Central

    Matthews, Luke J.; Tehrani, Jamie J.; Jordan, Fiona M.; Collard, Mark; Nunn, Charles L.

    2011-01-01

    Background Archaeologists and anthropologists have long recognized that different cultural complexes may have distinct descent histories, but they have lacked analytical techniques capable of easily identifying such incongruence. Here, we show how Bayesian phylogenetic analysis can be used to identify incongruent cultural histories. We employ the approach to investigate Iranian tribal textile traditions. Methods We used Bayes factor comparisons in a phylogenetic framework to test two models of cultural evolution: the hierarchically integrated system hypothesis and the multiple coherent units hypothesis. In the hierarchically integrated system hypothesis, a core tradition of characters evolves through descent with modification and characters peripheral to the core are exchanged among contemporaneous populations. In the multiple coherent units hypothesis, a core tradition does not exist. Rather, there are several cultural units consisting of sets of characters that have different histories of descent. Results For the Iranian textiles, the Bayesian phylogenetic analyses supported the multiple coherent units hypothesis over the hierarchically integrated system hypothesis. Our analyses suggest that pile-weave designs represent a distinct cultural unit that has a different phylogenetic history compared to other textile characters. Conclusions The results from the Iranian textiles are consistent with the available ethnographic evidence, which suggests that the commercial rug market has influenced pile-rug designs but not the techniques or designs incorporated in the other textiles produced by the tribes. We anticipate that Bayesian phylogenetic tests for inferring cultural units will be of great value for researchers interested in studying the evolution of cultural traits including language, behavior, and material culture. PMID:21559083

  9. The Complete Chloroplast Genome Sequence of Ampelopsis: Gene Organization, Comparative Analysis, and Phylogenetic Relationships to Other Angiosperms

    PubMed Central

    Raman, Gurusamy; Park, SeonJoo

    2016-01-01

    Ampelopsis brevipedunculata is an economically important plant that belongs to the Vitaceae family of angiosperms. The phylogenetic placement of Vitaceae is still unresolved. Recent phylogenetic studies suggested that it should be placed in various alternative families including Caryophyllaceae, asteraceae, Saxifragaceae, Dilleniaceae, or with the rest of the rosid families. However, these analyses provided weak supportive results because they were based on only one of several genes. Accordingly, complete chloroplast genome sequences are required to resolve the phylogenetic relationships among angiosperms. Recent phylogenetic analyses based on the complete chloroplast genome sequence suggested strong support for the position of Vitaceae as the earliest diverging lineage of rosids and placed it as a sister to the remaining rosids. These studies also revealed relationships among several major lineages of angiosperms; however, they highlighted the significance of taxon sampling for obtaining accurate phylogenies. In the present study, we sequenced the complete chloroplast genome of A. brevipedunculata and used these data to assess the relationships among 32 angiosperms, including 18 taxa of rosids. The Ampelopsis chloroplast genome is 161,090 bp in length, and includes a pair of inverted repeats of 26,394 bp that are separated by small and large single copy regions of 19,036 bp and 89,266 bp, respectively. The gene content and order of Ampelopsis is identical to many other unrearranged angiosperm chloroplast genomes, including Vitis and tob