Schönmann, Susan; Loy, Alexander; Wimmersberger, Céline; Sobek, Jens; Aquino, Catharine; Vandamme, Peter; Frey, Beat; Rehrauer, Hubert; Eberl, Leo
2009-04-01
For cultivation-independent and highly parallel analysis of members of the genus Burkholderia, an oligonucleotide microarray (phylochip) consisting of 131 hierarchically nested 16S rRNA gene-targeted oligonucleotide probes was developed. A novel primer pair was designed for selective amplification of a 1.3 kb 16S rRNA gene fragment of Burkholderia species prior to microarray analysis. The diagnostic performance of the microarray for identification and differentiation of Burkholderia species was tested with 44 reference strains of the genera Burkholderia, Pandoraea, Ralstonia and Limnobacter. Hybridization patterns based on presence/absence of probe signals were interpreted semi-automatically using the novel likelihood-based strategy of the web-tool Phylo- Detect. Eighty-eight per cent of the reference strains were correctly identified at the species level. The evaluated microarray was applied to investigate shifts in the Burkholderia community structure in acidic forest soil upon addition of cadmium, a condition that selected for Burkholderia species. The microarray results were in agreement with those obtained from phylogenetic analysis of Burkholderia 16S rRNA gene sequences recovered from the same cadmiumcontaminated soil, demonstrating the value of the Burkholderia phylochip for determinative and environmental studies.
Brodie, Eoin L; DeSantis, Todd Z; Karaoz, Ulas; Andersen, Gary L
2014-12-09
Herein is described methods for a high-sensitivity means to measure the incorporation of stable isotope labeled substrates into RNA following stable isotope probing experiments (SIP). RNA is hybridized to a set of probes such as phylogenetic microarrays and isotope incorporation is quantified such as by secondary ion mass spectrometer imaging (NanoSIMS).
LEEBENS-MACK, JIM; VISION, TODD; BRENNER, ERIC; BOWERS, JOHN E.; CANNON, STEVEN; CLEMENT, MARK J.; CUNNINGHAM, CLIFFORD W.; dePAMPHILIS, CLAUDE; deSALLE, ROB; DOYLE, JEFF J.; EISEN, JONATHAN A.; GU, XUN; HARSHMAN, JOHN; JANSEN, ROBERT K.; KELLOGG, ELIZABETH A.; KOONIN, EUGENE V.; MISHLER, BRENT D.; PHILIPPE, HERVÉ; PIRES, J. CHRIS; QIU, YIN-LONG; RHEE, SEUNG Y.; SJÖLANDER, KIMMEN; SOLTIS, DOUGLAS E.; SOLTIS, PAMELA S.; STEVENSON, DENNIS W.; WALL, KERR; WARNOW, TANDY; ZMASEK, CHRISTIAN
2011-01-01
In the eight years since phylogenomics was introduced as the intersection of genomics and phylogenetics, the field has provided fundamental insights into gene function, genome history and organismal relationships. The utility of phylogenomics is growing with the increase in the number and diversity of taxa for which whole genome and large transcriptome sequence sets are being generated. We assert that the synergy between genomic and phylogenetic perspectives in comparative biology would be enhanced by the development and refinement of minimal reporting standards for phylogenetic analyses. Encouraged by the development of the Minimum Information About a Microarray Experiment (MIAME) standard, we propose a similar roadmap for the development of a Minimal Information About a Phylogenetic Analysis (MIAPA) standard. Key in the successful development and implementation of such a standard will be broad participation by developers of phylogenetic analysis software, phylogenetic database developers, practitioners of phylogenomics, and journal editors. PMID:16901231
Bacterial identification and subtyping using DNA microarray and DNA sequencing.
Al-Khaldi, Sufian F; Mossoba, Magdi M; Allard, Marc M; Lienau, E Kurt; Brown, Eric D
2012-01-01
The era of fast and accurate discovery of biological sequence motifs in prokaryotic and eukaryotic cells is here. The co-evolution of direct genome sequencing and DNA microarray strategies not only will identify, isotype, and serotype pathogenic bacteria, but also it will aid in the discovery of new gene functions by detecting gene expressions in different diseases and environmental conditions. Microarray bacterial identification has made great advances in working with pure and mixed bacterial samples. The technological advances have moved beyond bacterial gene expression to include bacterial identification and isotyping. Application of new tools such as mid-infrared chemical imaging improves detection of hybridization in DNA microarrays. The research in this field is promising and future work will reveal the potential of infrared technology in bacterial identification. On the other hand, DNA sequencing by using 454 pyrosequencing is so cost effective that the promise of $1,000 per bacterial genome sequence is becoming a reality. Pyrosequencing technology is a simple to use technique that can produce accurate and quantitative analysis of DNA sequences with a great speed. The deposition of massive amounts of bacterial genomic information in databanks is creating fingerprint phylogenetic analysis that will ultimately replace several technologies such as Pulsed Field Gel Electrophoresis. In this chapter, we will review (1) the use of DNA microarray using fluorescence and infrared imaging detection for identification of pathogenic bacteria, and (2) use of pyrosequencing in DNA cluster analysis to fingerprint bacterial phylogenetic trees.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, Gary L.; Dubinsky, Eric A.
Herein are described 1058 different bacterial taxa that were unique to either human, grazing mammal, or bird fecal wastes. These identified taxa can serve as specific identifier taxa for these sources in environmental waters. Two field tests in marine waters demonstrate the capacity of phylogenetic microarray analysis to track multiple sources with one test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaing, C; Gardner, S
The goal of this project is to develop forensic genotyping assays for select agent viruses, enhancing the current capabilities for the viral bioforensics and law enforcement community. We used a multipronged approach combining bioinformatics analysis, PCR-enriched samples, microarrays and TaqMan assays to develop high resolution and cost effective genotyping methods for strain level forensic discrimination of viruses. We have leveraged substantial experience and efficiency gained through year 1 on software development, SNP discovery, TaqMan signature design and phylogenetic signature mapping to scale up the development of forensics signatures in year 2. In this report, we have summarized the whole genomemore » wide SNP analysis and microarray probe design for forensics characterization of South American hemorrhagic fever viruses, tick-borne encephalitis viruses and henipaviruses, Old World Arenaviruses, filoviruses, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus and Japanese encephalitis virus.« less
Wei, Kai-Fa; Chen, Juan; Chen, Yan-Feng; Wu, Ling-Juan; Xie, Dao-Xin
2012-01-01
The WRKY transcription factors function in plant growth and development, and response to the biotic and abiotic stresses. Although many studies have focused on the functional identification of the WRKY transcription factors, much less is known about molecular phylogenetic and global expression analysis of the complete WRKY family in maize. In this study, we identified 136 WRKY proteins coded by 119 genes in the B73 inbred line from the complete genome and named them in an orderly manner. Then, a comprehensive phylogenetic analysis of five species was performed to explore the origin and evolutionary patterns of these WRKY genes, and the result showed that gene duplication is the major driving force for the origin of new groups and subgroups and functional divergence during evolution. Chromosomal location analysis of maize WRKY genes indicated that 20 gene clusters are distributed unevenly in the genome. Microarray-based expression analysis has revealed that 131 WRKY transcripts encoded by 116 genes may participate in the regulation of maize growth and development. Among them, 102 transcripts are stably expressed with a coefficient of variation (CV) value of <15%. The remaining 29 transcripts produced by 25 WRKY genes with the CV value of >15% are further analysed to discover new organ- or tissue-specific genes. In addition, microarray analyses of transcriptional responses to drought stress and fungal infection showed that maize WRKY proteins are involved in stress responses. All these results contribute to a deep probing into the roles of WRKY transcription factors in maize growth and development and stress tolerance. PMID:22279089
Wei, Kai-Fa; Chen, Juan; Chen, Yan-Feng; Wu, Ling-Juan; Xie, Dao-Xin
2012-04-01
The WRKY transcription factors function in plant growth and development, and response to the biotic and abiotic stresses. Although many studies have focused on the functional identification of the WRKY transcription factors, much less is known about molecular phylogenetic and global expression analysis of the complete WRKY family in maize. In this study, we identified 136 WRKY proteins coded by 119 genes in the B73 inbred line from the complete genome and named them in an orderly manner. Then, a comprehensive phylogenetic analysis of five species was performed to explore the origin and evolutionary patterns of these WRKY genes, and the result showed that gene duplication is the major driving force for the origin of new groups and subgroups and functional divergence during evolution. Chromosomal location analysis of maize WRKY genes indicated that 20 gene clusters are distributed unevenly in the genome. Microarray-based expression analysis has revealed that 131 WRKY transcripts encoded by 116 genes may participate in the regulation of maize growth and development. Among them, 102 transcripts are stably expressed with a coefficient of variation (CV) value of <15%. The remaining 29 transcripts produced by 25 WRKY genes with the CV value of >15% are further analysed to discover new organ- or tissue-specific genes. In addition, microarray analyses of transcriptional responses to drought stress and fungal infection showed that maize WRKY proteins are involved in stress responses. All these results contribute to a deep probing into the roles of WRKY transcription factors in maize growth and development and stress tolerance.
Sarmiento-Rubiano, Luz-Adriana; Berger, Bernard; Moine, Déborah; Zúñiga, Manuel; Pérez-Martínez, Gaspar; Yebra, María J
2010-09-17
Comparative genomic hybridization (CGH) constitutes a powerful tool for identification and characterization of bacterial strains. In this study we have applied this technique for the characterization of a number of Lactobacillus strains isolated from the intestinal content of rats fed with a diet supplemented with sorbitol. Phylogenetic analysis based on 16S rRNA gene, recA, pheS, pyrG and tuf sequences identified five bacterial strains isolated from the intestinal content of rats as belonging to the recently described Lactobacillus taiwanensis species. DNA-DNA hybridization experiments confirmed that these five strains are distinct but closely related to Lactobacillus johnsonii and Lactobacillus gasseri. A whole genome DNA microarray designed for the probiotic L. johnsonii strain NCC533 was used for CGH analysis of L. johnsonii ATCC 33200T, L. johnsonii BL261, L. gasseri ATCC 33323T and L. taiwanensis BL263. In these experiments, the fluorescence ratio distributions obtained with L. taiwanensis and L. gasseri showed characteristic inter-species profiles. The percentage of conserved L. johnsonii NCC533 genes was about 83% in the L. johnsonii strains comparisons and decreased to 51% and 47% for L. taiwanensis and L. gasseri, respectively. These results confirmed the separate status of L. taiwanensis from L. johnsonii at the level of species, and also that L. taiwanensis is closer to L. johnsonii than L. gasseri is to L. johnsonii. Conventional taxonomic analyses and microarray-based CGH analysis have been used for the identification and characterization of the newly species L. taiwanensis. The microarray-based CGH technology has been shown as a remarkable tool for the identification and fine discrimination between phylogenetically close species, and additionally provided insight into the adaptation of the strain L. taiwanensis BL263 to its ecological niche.
PhylArray: phylogenetic probe design algorithm for microarray.
Militon, Cécile; Rimour, Sébastien; Missaoui, Mohieddine; Biderre, Corinne; Barra, Vincent; Hill, David; Moné, Anne; Gagne, Geneviève; Meier, Harald; Peyretaillade, Eric; Peyret, Pierre
2007-10-01
Microbial diversity is still largely unknown in most environments, such as soils. In order to get access to this microbial 'black-box', the development of powerful tools such as microarrays are necessary. However, the reliability of this approach relies on probe efficiency, in particular sensitivity, specificity and explorative power, in order to obtain an image of the microbial communities that is close to reality. We propose a new probe design algorithm that is able to select microarray probes targeting SSU rRNA at any phylogenetic level. This original approach, implemented in a program called 'PhylArray', designs a combination of degenerate and non-degenerate probes for each target taxon. Comparative experimental evaluations indicate that probes designed with PhylArray yield a higher sensitivity and specificity than those designed by conventional approaches. Applying the combined PhyArray/GoArrays strategy helps to optimize the hybridization performance of short probes. Finally, hybridizations with environmental targets have shown that the use of the PhylArray strategy can draw attention to even previously unknown bacteria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, Shea N.; McLoughlin, Kevin; Be, Nicholas A.
Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne alphavirus that has caused large outbreaks of severe illness in both horses and humans. New approaches are needed to rapidly infer the origin of a newly discovered VEEV strain, estimate its equine amplification and resultant epidemic potential, and predict human virulence phenotype. We performed whole genome single nucleotide polymorphism (SNP) analysis of all available VEE antigenic complex genomes, verified that a SNP-based phylogeny accurately captured the features of a phylogenetic tree based on multiple sequence alignment, and developed a high resolution genome-wide SNP microarray. We used the microarray to analyze a broadmore » panel of VEEV isolates, found excellent concordance between array- and sequence-based SNP calls, genotyped unsequenced isolates, and placed them on a phylogeny with sequenced genomes. The microarray successfully genotyped VEEV directly from tissue samples of an infected mouse, bypassing the need for viral isolation, culture and genomic sequencing. Lastly, we identified genomic variants associated with serotypes and host species, revealing a complex relationship between genotype and phenotype.« less
2010-01-01
Background Comparative genomic hybridization (CGH) constitutes a powerful tool for identification and characterization of bacterial strains. In this study we have applied this technique for the characterization of a number of Lactobacillus strains isolated from the intestinal content of rats fed with a diet supplemented with sorbitol. Results Phylogenetic analysis based on 16S rRNA gene, recA, pheS, pyrG and tuf sequences identified five bacterial strains isolated from the intestinal content of rats as belonging to the recently described Lactobacillus taiwanensis species. DNA-DNA hybridization experiments confirmed that these five strains are distinct but closely related to Lactobacillus johnsonii and Lactobacillus gasseri. A whole genome DNA microarray designed for the probiotic L. johnsonii strain NCC533 was used for CGH analysis of L. johnsonii ATCC 33200T, L. johnsonii BL261, L. gasseri ATCC 33323T and L. taiwanensis BL263. In these experiments, the fluorescence ratio distributions obtained with L. taiwanensis and L. gasseri showed characteristic inter-species profiles. The percentage of conserved L. johnsonii NCC533 genes was about 83% in the L. johnsonii strains comparisons and decreased to 51% and 47% for L. taiwanensis and L. gasseri, respectively. These results confirmed the separate status of L. taiwanensis from L. johnsonii at the level of species, and also that L. taiwanensis is closer to L. johnsonii than L. gasseri is to L. johnsonii. Conclusion Conventional taxonomic analyses and microarray-based CGH analysis have been used for the identification and characterization of the newly species L. taiwanensis. The microarray-based CGH technology has been shown as a remarkable tool for the identification and fine discrimination between phylogenetically close species, and additionally provided insight into the adaptation of the strain L. taiwanensis BL263 to its ecological niche. PMID:20849602
Paulin, Luis F; de los D Soto-Del Río, María; Sánchez, Iván; Hernández, Jesús; Gutiérrez-Ríos, Rosa M; López-Martínez, Irma; Wong-Chew, Rosa M; Parissi-Crivelli, Aurora; Isa, P; López, Susana; Arias, Carlos F
2014-03-01
Recent evidence suggests that most influenza A virus gene segments can contribute to the pathogenicity of the virus. In this regard, the hemagglutinin (HA) subtype of the circulating strains has been closely surveyed, but the reassortment of internal gene segments is usually not monitored as a potential source of an increased pathogenicity. In this work, an oligonucleotide DNA microarray (PhyloFlu) designed to determine the phylogenetic origins of the eight segments of the influenza virus genome was constructed and validated. Clades were defined for each segment and also for the 16 HA and 9 neuraminidase (NA) subtypes. Viral genetic material was amplified by reverse transcription-PCR (RT-PCR) with primers specific to the conserved 5' and 3' ends of the influenza A virus genes, followed by PCR amplification with random primers and Cy3 labeling. The microarray unambiguously determined the clades for all eight influenza virus genes in 74% (28/38) of the samples. The microarray was validated with reference strains from different animal origins, as well as from human, swine, and avian viruses from field or clinical samples. In most cases, the phylogenetic clade of each segment defined its animal host of origin. The genomic fingerprint deduced by the combined information of the individual clades allowed for the determination of the time and place that strains with the same genomic pattern were previously reported. PhyloFlu is useful for characterizing and surveying the genetic diversity and variation of animal viruses circulating in different environmental niches and for obtaining a more detailed surveillance and follow up of reassortant events that can potentially modify virus pathogenicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, G.L.; He, Z.; DeSantis, T.Z.
Microarrays have proven to be a useful and high-throughput method to provide targeted DNA sequence information for up to many thousands of specific genetic regions in a single test. A microarray consists of multiple DNA oligonucleotide probes that, under high stringency conditions, hybridize only to specific complementary nucleic acid sequences (targets). A fluorescent signal indicates the presence and, in many cases, the abundance of genetic regions of interest. In this chapter we will look at how microarrays are used in microbial ecology, especially with the recent increase in microbial community DNA sequence data. Of particular interest to microbial ecologists, phylogeneticmore » microarrays are used for the analysis of phylotypes in a community and functional gene arrays are used for the analysis of functional genes, and, by inference, phylotypes in environmental samples. A phylogenetic microarray that has been developed by the Andersen laboratory, the PhyloChip, will be discussed as an example of a microarray that targets the known diversity within the 16S rRNA gene to determine microbial community composition. Using multiple, confirmatory probes to increase the confidence of detection and a mismatch probe for every perfect match probe to minimize the effect of cross-hybridization by non-target regions, the PhyloChip is able to simultaneously identify any of thousands of taxa present in an environmental sample. The PhyloChip is shown to reveal greater diversity within a community than rRNA gene sequencing due to the placement of the entire gene product on the microarray compared with the analysis of up to thousands of individual molecules by traditional sequencing methods. A functional gene array that has been developed by the Zhou laboratory, the GeoChip, will be discussed as an example of a microarray that dynamically identifies functional activities of multiple members within a community. The recent version of GeoChip contains more than 24,000 50mer oligonucleotide probes and covers more than 10,000 gene sequences in 150 gene categories involved in carbon, nitrogen, sulfur, and phosphorus cycling, metal resistance and reduction, and organic contaminant degradation. GeoChip can be used as a generic tool for microbial community analysis, and also link microbial community structure to ecosystem functioning. Examples of the application of both arrays in different environmental samples will be described in the two subsequent sections.« less
Patel, Isha R.; Gangiredla, Jayanthi; Lacher, David W.; Mammel, Mark K.; Jackson, Scott A.; Lampel, Keith A.
2016-01-01
ABSTRACT Most Escherichia coli strains are nonpathogenic. However, for clinical diagnosis and food safety analysis, current identification methods for pathogenic E. coli either are time-consuming and/or provide limited information. Here, we utilized a custom DNA microarray with informative genetic features extracted from 368 sequence sets for rapid and high-throughput pathogen identification. The FDA Escherichia coli Identification (FDA-ECID) platform contains three sets of molecularly informative features that together stratify strain identification and relatedness. First, 53 known flagellin alleles, 103 alleles of wzx and wzy, and 5 alleles of wzm provide molecular serotyping utility. Second, 41,932 probe sets representing the pan-genome of E. coli provide strain-level gene content information. Third, approximately 125,000 single nucleotide polymorphisms (SNPs) of available whole-genome sequences (WGS) were distilled to 9,984 SNPs capable of recapitulating the E. coli phylogeny. We analyzed 103 diverse E. coli strains with available WGS data, including those associated with past foodborne illnesses, to determine robustness and accuracy. The array was able to accurately identify the molecular O and H serotypes, potentially correcting serological failures and providing better resolution for H-nontypeable/nonmotile phenotypes. In addition, molecular risk assessment was possible with key virulence marker identifications. Epidemiologically, each strain had a unique comparative genomic fingerprint that was extended to an additional 507 food and clinical isolates. Finally, a 99.7% phylogenetic concordance was established between microarray analysis and WGS using SNP-level data for advanced genome typing. Our study demonstrates FDA-ECID as a powerful tool for epidemiology and molecular risk assessment with the capacity to profile the global landscape and diversity of E. coli. IMPORTANCE This study describes a robust, state-of-the-art platform developed from available whole-genome sequences of E. coli and Shigella spp. by distilling useful signatures for epidemiology and molecular risk assessment into one assay. The FDA-ECID microarray contains features that enable comprehensive molecular serotyping and virulence profiling along with genome-scale genotyping and SNP analysis. Hence, it is a molecular toolbox that stratifies strain identification and pathogenic potential in the contexts of epidemiology and phylogeny. We applied this tool to strains from food, environmental, and clinical sources, resulting in significantly greater phylogenetic and strain-specific resolution than previously reported for available typing methods. PMID:27037122
Characterization of genetic variability of Venezuelan equine encephalitis viruses
Gardner, Shea N.; McLoughlin, Kevin; Be, Nicholas A.; ...
2016-04-07
Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne alphavirus that has caused large outbreaks of severe illness in both horses and humans. New approaches are needed to rapidly infer the origin of a newly discovered VEEV strain, estimate its equine amplification and resultant epidemic potential, and predict human virulence phenotype. We performed whole genome single nucleotide polymorphism (SNP) analysis of all available VEE antigenic complex genomes, verified that a SNP-based phylogeny accurately captured the features of a phylogenetic tree based on multiple sequence alignment, and developed a high resolution genome-wide SNP microarray. We used the microarray to analyze a broadmore » panel of VEEV isolates, found excellent concordance between array- and sequence-based SNP calls, genotyped unsequenced isolates, and placed them on a phylogeny with sequenced genomes. The microarray successfully genotyped VEEV directly from tissue samples of an infected mouse, bypassing the need for viral isolation, culture and genomic sequencing. Lastly, we identified genomic variants associated with serotypes and host species, revealing a complex relationship between genotype and phenotype.« less
RubisCO Gene Clusters Found in a Metagenome Microarray from Acid Mine Drainage
Guo, Xue; Yin, Huaqun; Cong, Jing; Dai, Zhimin; Liang, Yili
2013-01-01
The enzyme responsible for carbon dioxide fixation in the Calvin cycle, ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), is always detected as a phylogenetic marker to analyze the distribution and activity of autotrophic bacteria. However, such an approach provides no indication as to the significance of genomic content and organization. Horizontal transfers of RubisCO genes occurring in eubacteria and plastids may seriously affect the credibility of this approach. Here, we presented a new method to analyze the diversity and genomic content of RubisCO genes in acid mine drainage (AMD). A metagenome microarray containing 7,776 large-insertion fosmids was constructed to quickly screen genome fragments containing RubisCO form I large-subunit genes (cbbL). Forty-six cbbL-containing fosmids were detected, and six fosmids were fully sequenced. To evaluate the reliability of the metagenome microarray and understand the microbial community in AMD, the diversities of cbbL and the 16S rRNA gene were analyzed. Fosmid sequences revealed that the form I RubisCO gene cluster could be subdivided into form IA and IB RubisCO gene clusters in AMD, because of significant divergences in molecular phylogenetics and conservative genomic organization. Interestingly, the form I RubisCO gene cluster coexisted with the form II RubisCO gene cluster in one fosmid genomic fragment. Phylogenetic analyses revealed that horizontal transfers of RubisCO genes may occur widely in AMD, which makes the evolutionary history of RubisCO difficult to reconcile with organismal phylogeny. PMID:23335778
Defining objective clusters for rabies virus sequences using affinity propagation clustering
Fischer, Susanne; Freuling, Conrad M.; Pfaff, Florian; Bodenhofer, Ulrich; Höper, Dirk; Fischer, Mareike; Marston, Denise A.; Fooks, Anthony R.; Mettenleiter, Thomas C.; Conraths, Franz J.; Homeier-Bachmann, Timo
2018-01-01
Rabies is caused by lyssaviruses, and is one of the oldest known zoonoses. In recent years, more than 21,000 nucleotide sequences of rabies viruses (RABV), from the prototype species rabies lyssavirus, have been deposited in public databases. Subsequent phylogenetic analyses in combination with metadata suggest geographic distributions of RABV. However, these analyses somewhat experience technical difficulties in defining verifiable criteria for cluster allocations in phylogenetic trees inviting for a more rational approach. Therefore, we applied a relatively new mathematical clustering algorythm named ‘affinity propagation clustering’ (AP) to propose a standardized sub-species classification utilizing full-genome RABV sequences. Because AP has the advantage that it is computationally fast and works for any meaningful measure of similarity between data samples, it has previously been applied successfully in bioinformatics, for analysis of microarray and gene expression data, however, cluster analysis of sequences is still in its infancy. Existing (516) and original (46) full genome RABV sequences were used to demonstrate the application of AP for RABV clustering. On a global scale, AP proposed four clusters, i.e. New World cluster, Arctic/Arctic-like, Cosmopolitan, and Asian as previously assigned by phylogenetic studies. By combining AP with established phylogenetic analyses, it is possible to resolve phylogenetic relationships between verifiably determined clusters and sequences. This workflow will be useful in confirming cluster distributions in a uniform transparent manner, not only for RABV, but also for other comparative sequence analyses. PMID:29357361
Microbiome Analysis of Stool Samples from African Americans with Colon Polyps
Brim, Hassan; Yooseph, Shibu; Zoetendal, Erwin G.; Lee, Edward; Torralbo, Manolito; Laiyemo, Adeyinka O.; Shokrani, Babak; Nelson, Karen; Ashktorab, Hassan
2013-01-01
Background Colonic polyps are common tumors occurring in ~50% of Western populations with ~10% risk of malignant progression. Dietary agents have been considered the primary environmental exposure to promote colorectal cancer (CRC) development. However, the colonic mucosa is permanently in contact with the microbiota and its metabolic products including toxins that also have the potential to trigger oncogenic transformation. Aim To analyze fecal DNA for microbiota composition and functional potential in African Americans with pre-neoplastic lesions. Materials & Methods We analyzed the bacterial composition of stool samples from 6 healthy individuals and 6 patients with colon polyps using 16S ribosomal RNA-based phylogenetic microarray; the Human intestinal Tract Chip (HITChip) and 16S rRNA gene barcoded 454 pyrosequencing. The functional potential was determined by sequence-based metagenomics using 454 pyrosequencing. Results Fecal microbiota profiling of samples from the healthy and polyp patients using both a phylogenetic microarraying (HITChip) and barcoded 454 pyrosequencing generated similar results. A distinction between both sets of samples was only obtained when the analysis was performed at the sub-genus level. Most of the species leading to the dissociation were from the Bacteroides group. The metagenomic analysis did not reveal major differences in bacterial gene prevalence/abundances between the two groups even when the analysis and comparisons were restricted to available Bacteroides genomes. Conclusion This study reveals that at the pre-neoplastic stages, there is a trend showing microbiota changes between healthy and colon polyp patients at the sub-genus level. These differences were not reflected at the genome/functions levels. Bacteria and associated functions within the Bacteroides group need to be further analyzed and dissected to pinpoint potential actors in the early colon oncogenic transformation in a large sample size. PMID:24376500
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Liyou; Yi, T. Y.; Van Nostrand, Joy
Phylogenetic analyses were done for the Shewanella strains isolated from Baltic Sea (38 strains), US DOE Hanford Uranium bioremediation site [Hanford Reach of the Columbia River (HRCR), 11 strains], Pacific Ocean and Hawaiian sediments (8 strains), and strains from other resources (16 strains) with three out group strains, Rhodopseudomonas palustris, Clostridium cellulolyticum, and Thermoanaerobacter ethanolicus X514, using DNA relatedness derived from WCGA-based DNA-DNA hybridizations, sequence similarities of 16S rRNA gene and gyrB gene, and sequence similarities of 6 loci of Shewanella genome selected from a shared gene list of the Shewanella strains with whole genome sequenced based on the averagemore » nucleotide identity of them (ANI). The phylogenetic trees based on 16S rRNA and gyrB gene sequences, and DNA relatedness derived from WCGA hybridizations of the tested Shewanella strains share exactly the same sub-clusters with very few exceptions, in which the strains were basically grouped by species. However, the phylogenetic analysis based on DNA relatedness derived from WCGA hybridizations dramatically increased the differentiation resolution at species and strains level within Shewanella genus. When the tree based on DNA relatedness derived from WCGA hybridizations was compared to the tree based on the combined sequences of the selected functional genes (6 loci), we found that the resolutions of both methods are similar, but the clustering of the tree based on DNA relatedness derived from WMGA hybridizations was clearer. These results indicate that WCGA-based DNA-DNA hybridization is an idea alternative of conventional DNA-DNA hybridization methods and it is superior to the phylogenetics methods based on sequence similarities of single genes. Detailed analysis is being performed for the re-classification of the strains examined.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodie, Eoin L.; DeSantis, Todd Z.; Joyner, Dominique C.
2006-01-30
Reduction of soluble uranium U(VI) to less-soluble uraniumU(IV) is a promising approach to minimize migration from contaminatedaquifers. It is generally assumed that, under constant reducingconditions, U(IV) is stable and immobile; however, in a previous study,we documented reoxidation of U(IV) under continuous reducing conditions(Wan et al., Environ. Sci. Technol. 2005, 39:6162 6169). To determine ifchanges in microbial community composition were a factor in U(IV)reoxidation, we employed a high-density phylogenetic DNA microarray (16Smicroarray) containing 500,000 probes to monitor changes in bacterialpopulations during this remediation process. Comparison of the 16Smicroarray with clone libraries demonstrated successful detection andclassification of most clone groups. Analysis ofmore » the most dynamic groupsof 16S rRNA gene amplicons detected by the 16S microarray identified fiveclusters of bacterial subfamilies responding in a similar manner. Thisapproach demonstrated that amplicons of known metal-reducing bacteriasuch as Geothrix fermentans (confirmed by quantitative PCR) and thosewithin the Geobacteraceae were abundant during U(VI) reduction and didnot decline during the U(IV) reoxidation phase. Significantly, it appearsthat the observed reoxidation of uranium under reducing conditionsoccurred despite elevated microbial activity and the consistent presenceof metal-reducing bacteria. High-density phylogenetic microarraysconstitute a powerful tool, enabling the detection and monitoring of asubstantial portion of the microbial population in a routine, accurate,and reproducible manner.« less
Homogeneous versus heterogeneous probes for microbial ecological microarrays.
Bae, Jin-Woo; Park, Yong-Ha
2006-07-01
Microbial ecological microarrays have been developed for investigating the composition and functions of microorganism communities in environmental niches. These arrays include microbial identification microarrays, which use oligonucleotides, gene fragments or microbial genomes as probes. In this article, the advantages and disadvantages of each type of probe are reviewed. Oligonucleotide probes are currently useful for probing uncultivated bacteria that are not amenable to gene fragment probing, whereas the functional gene fragments amplified randomly from microbial genomes require phylogenetic and hierarchical categorization before use as microbial identification probes, despite their high resolution for both specificity and sensitivity. Until more bacteria are sequenced and gene fragment probes are thoroughly validated, heterogeneous bacterial genome probes will provide a simple, sensitive and quantitative tool for exploring the ecosystem structure.
Malenke, J R; Milash, B; Miller, A W; Dearing, M D
2013-07-01
Massively parallel sequencing has enabled the creation of novel, in-depth genetic tools for nonmodel, ecologically important organisms. We present the de novo transcriptome sequencing, analysis and microarray development for a vertebrate herbivore, the woodrat (Neotoma spp.). This genus is of ecological and evolutionary interest, especially with respect to ingestion and hepatic metabolism of potentially toxic plant secondary compounds. We generated a liver transcriptome of the desert woodrat (Neotoma lepida) using the Roche 454 platform. The assembled contigs were well annotated using rodent references (99.7% annotation), and biotransformation function was reflected in the gene ontology. The transcriptome was used to develop a custom microarray (eArray, Agilent). We tested the microarray with three experiments: one across species with similar habitat (thus, dietary) niches, one across species with different habitat niches and one across populations within a species. The resulting one-colour arrays had high technical and biological quality. Probes designed from the woodrat transcriptome performed significantly better than functionally similar probes from the Norway rat (Rattus norvegicus). There were a multitude of expression differences across the woodrat treatments, many of which related to biotransformation processes and activities. The pattern and function of the differences indicate shared ecological pressures, and not merely phylogenetic distance, play an important role in shaping gene expression profiles of woodrat species and populations. The quality and functionality of the woodrat transcriptome and custom microarray suggest these tools will be valuable for expanding the scope of herbivore biology, as well as the exploration of conceptual topics in ecology. © 2013 John Wiley & Sons Ltd.
Analysis of ripening-related gene expression in papaya using an Arabidopsis-based microarray
2012-01-01
Background Papaya (Carica papaya L.) is a commercially important crop that produces climacteric fruits with a soft and sweet pulp that contain a wide range of health promoting phytochemicals. Despite its importance, little is known about transcriptional modifications during papaya fruit ripening and their control. In this study we report the analysis of ripe papaya transcriptome by using a cross-species (XSpecies) microarray technique based on the phylogenetic proximity between papaya and Arabidopsis thaliana. Results Papaya transcriptome analyses resulted in the identification of 414 ripening-related genes with some having their expression validated by qPCR. The transcription profile was compared with that from ripening tomato and grape. There were many similarities between papaya and tomato especially with respect to the expression of genes encoding proteins involved in primary metabolism, regulation of transcription, biotic and abiotic stress and cell wall metabolism. XSpecies microarray data indicated that transcription factors (TFs) of the MADS-box, NAC and AP2/ERF gene families were involved in the control of papaya ripening and revealed that cell wall-related gene expression in papaya had similarities to the expression profiles seen in Arabidopsis during hypocotyl development. Conclusion The cross-species array experiment identified a ripening-related set of genes in papaya allowing the comparison of transcription control between papaya and other fruit bearing taxa during the ripening process. PMID:23256600
Holmes, Susan; Alekseyenko, Alexander; Timme, Alden; Nelson, Tyrrell; Pasricha, Pankaj Jay; Spormann, Alfred
2011-01-01
This article explains the statistical and computational methodology used to analyze species abundances collected using the LNBL Phylochip in a study of Irritable Bowel Syndrome (IBS) in rats. Some tools already available for the analysis of ordinary microarray data are useful in this type of statistical analysis. For instance in correcting for multiple testing we use Family Wise Error rate control and step-down tests (available in the multtest package). Once the most significant species are chosen we use the hypergeometric tests familiar for testing GO categories to test specific phyla and families. We provide examples of normalization, multivariate projections, batch effect detection and integration of phylogenetic covariation, as well as tree equalization and robustification methods.
Van Holle, Sofie; Rougé, Pierre; Van Damme, Els J M
2017-03-01
The Nictaba family groups all proteins that show homology to Nictaba, the tobacco lectin. So far, Nictaba and an Arabidopsis thaliana homologue have been shown to be implicated in the plant stress response. The availability of more than 50 sequenced plant genomes provided the opportunity for a genome-wide identification of Nictaba -like genes in 15 species, representing members of the Fabaceae, Poaceae, Solanaceae, Musaceae, Arecaceae, Malvaceae and Rubiaceae. Additionally, phylogenetic relationships between the different species were explored. Furthermore, this study included domain organization analysis, searching for orthologous genes in the legume family and transcript profiling of the Nictaba -like lectin genes in soybean. Using a combination of BLASTp, InterPro analysis and hidden Markov models, the genomes of Medicago truncatula , Cicer arietinum , Lotus japonicus , Glycine max , Cajanus cajan , Phaseolus vulgaris , Theobroma cacao , Solanum lycopersicum , Solanum tuberosum , Coffea canephora , Oryza sativa , Zea mays, Sorghum bicolor , Musa acuminata and Elaeis guineensis were searched for Nictaba -like genes. Phylogenetic analysis was performed using RAxML and additional protein domains in the Nictaba-like sequences were identified using InterPro. Expression analysis of the soybean Nictaba -like genes was investigated using microarray data. Nictaba -like genes were identified in all studied species and analysis of the duplication events demonstrated that both tandem and segmental duplication contributed to the expansion of the Nictaba gene family in angiosperms. The single-domain Nictaba protein and the multi-domain F-box Nictaba architectures are ubiquitous among all analysed species and microarray analysis revealed differential expression patterns for all soybean Nictaba-like genes. Taken together, the comparative genomics data contributes to our understanding of the Nictaba -like gene family in species for which the occurrence of Nictaba domains had not yet been investigated. Given the ubiquitous nature of these genes, they have probably acquired new functions over time and are expected to take on various roles in plant development and defence. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
2012-01-01
Acidobacteria, Actinobacteria , Bacteroidetes, Chloroflexi, Cyanobacteria, Firmicutes, and all classes of Proteobacteria accounted for 76% of this dynamic...the course of treatment (Figure 4). The dominant members in cluster group 2 were from Actinobacteria (24 subfamilies), Bacteroidetes (25 subfamilies
Satapathy, Lopamudra; Singh, Dharmendra; Ranjan, Prashant; Kumar, Dhananjay; Kumar, Manish; Prabhu, Kumble Vinod; Mukhopadhyay, Kunal
2014-12-01
WRKY, a plant-specific transcription factor family, has important roles in pathogen defense, abiotic cues and phytohormone signaling, yet little is known about their roles and molecular mechanism of function in response to rust diseases in wheat. We identified 100 TaWRKY sequences using wheat Expressed Sequence Tag database of which 22 WRKY sequences were novel. Identified proteins were characterized based on their zinc finger motifs and phylogenetic analysis clustered them into six clades consisting of class IIc and class III WRKY proteins. Functional annotation revealed major functions in metabolic and cellular processes in control plants; whereas response to stimuli, signaling and defense in pathogen inoculated plants, their major molecular function being binding to DNA. Tag-based expression analysis of the identified genes revealed differential expression between mock and Puccinia triticina inoculated wheat near isogenic lines. Gene expression was also performed with six rust-related microarray experiments at Gene Expression Omnibus database. TaWRKY10, 15, 17 and 56 were common in both tag-based and microarray-based differential expression analysis and could be representing rust specific WRKY genes. The obtained results will bestow insight into the functional characterization of WRKY transcription factors responsive to leaf rust pathogenesis that can be used as candidate genes in molecular breeding programs to improve biotic stress tolerance in wheat.
NASA Astrophysics Data System (ADS)
Vaishampayan, Parag; Osman, Shariff; Andersen, Gary; Venkateswaran, Kasthuri
2010-06-01
The bacterial diversity and comparative community structure of a clean room used for assembling the Phoenix spacecraft was characterized throughout the spacecraft assembly process by using 16S rRNA gene cloning/sequencing and DNA microarray (PhyloChip) technologies. Samples were collected from several locations of the clean room at three time points: before Phoenix's arrival (PHX-B), during hardware assembly (PHX-D), and after the spacecraft was removed for launch (PHX-A). Bacterial diversity comprised of all major bacterial phyla of PHX-B was found to be statistically different from PHX-D and PHX-A samples. Due to stringent cleaning and decontamination protocols during assembly, PHX-D bacterial diversity was dramatically reduced when compared to PHX-B and PHX-A samples. Comparative community analysis based on PhyloChip results revealed similar overall trends as were seen in clone libraries, but the high-density phylogenetic microarray detected larger diversity in all sampling events. The decrease in community complexity in PHX-D compared to PHX-B, and the subsequent recurrence of these organisms in PHX-A, speaks to the effectiveness of NASA cleaning protocols. However, the persistence of a subset of bacterial signatures throughout all spacecraft assembly phases underscores the need for continued refinement of sterilization technologies and the implementation of safeguards that monitor and inventory microbial contaminants.
Vaishampayan, Parag; Osman, Shariff; Andersen, Gary; Venkateswaran, Kasthuri
2010-06-01
The bacterial diversity and comparative community structure of a clean room used for assembling the Phoenix spacecraft was characterized throughout the spacecraft assembly process by using 16S rRNA gene cloning/sequencing and DNA microarray (PhyloChip) technologies. Samples were collected from several locations of the clean room at three time points: before Phoenix's arrival (PHX-B), during hardware assembly (PHX-D), and after the spacecraft was removed for launch (PHX-A). Bacterial diversity comprised of all major bacterial phyla of PHX-B was found to be statistically different from PHX-D and PHX-A samples. Due to stringent cleaning and decontamination protocols during assembly, PHX-D bacterial diversity was dramatically reduced when compared to PHX-B and PHX-A samples. Comparative community analysis based on PhyloChip results revealed similar overall trends as were seen in clone libraries, but the high-density phylogenetic microarray detected larger diversity in all sampling events. The decrease in community complexity in PHX-D compared to PHX-B, and the subsequent recurrence of these organisms in PHX-A, speaks to the effectiveness of NASA cleaning protocols. However, the persistence of a subset of bacterial signatures throughout all spacecraft assembly phases underscores the need for continued refinement of sterilization technologies and the implementation of safeguards that monitor and inventory microbial contaminants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franke-Whittle, Ingrid H., E-mail: ingrid.whittle@uibk.ac.at; Walter, Andreas; Ebner, Christian
Highlights: • Different methanogenic communities in mesophilic and thermophilic reactors. • High VFA levels do not cause major changes in archaeal communities. • Real-time PCR indicated greater diversity than ANAEROCHIP microarray. - Abstract: A study was conducted to determine whether differences in the levels of volatile fatty acids (VFAs) in anaerobic digester plants could result in variations in the indigenous methanogenic communities. Two digesters (one operated under mesophilic conditions, the other under thermophilic conditions) were monitored, and sampled at points where VFA levels were high, as well as when VFA levels were low. Physical and chemical parameters were measured, andmore » the methanogenic diversity was screened using the phylogenetic microarray ANAEROCHIP. In addition, real-time PCR was used to quantify the presence of the different methanogenic genera in the sludge samples. Array results indicated that the archaeal communities in the different reactors were stable, and that changes in the VFA levels of the anaerobic digesters did not greatly alter the dominating methanogenic organisms. In contrast, the two digesters were found to harbour different dominating methanogenic communities, which appeared to remain stable over time. Real-time PCR results were inline with those of microarray analysis indicating only minimal changes in methanogen numbers during periods of high VFAs, however, revealed a greater diversity in methanogens than found with the array.« less
Microarray Analysis of Microbiota of Gingival Lesions in Noma Patients
Huyghe, Antoine; François, Patrice; Mombelli, Andrea; Tangomo, Manuela; Girard, Myriam; Baratti-Mayer, Denise; Bolivar, Ignacio; Pittet, Didier; Schrenzel, Jacques
2013-01-01
Noma (cancrum oris) is a gangrenous disease of unknown etiology affecting the maxillo-facial region of young children in extremely limited resource countries. In an attempt to better understand the microbiological events occurring during this disease, we used phylogenetic and low-density microarrays targeting the 16S rRNA gene to characterize the gingival flora of acute noma and acute necrotizing gingivitis (ANG) lesions, and compared them to healthy control subjects of the same geographical and social background. Our observations raise doubts about Fusobacterium necrophorum, a previously suspected causative agent of noma, as this species was not associated with noma lesions. Various oral pathogens were more abundant in noma lesions, notably Atopobium spp., Prevotella intermedia, Peptostreptococcus spp., Streptococcus pyogenes and Streptococcus anginosus. On the other hand, pathogens associated with periodontal diseases such as Aggregatibacter actinomycetemcomitans, Capnocytophaga spp., Porphyromonas spp. and Fusobacteriales were more abundant in healthy controls. Importantly, the overall loss of bacterial diversity observed in noma samples as well as its homology to that of ANG microbiota supports the hypothesis that ANG might be the immediate step preceding noma. PMID:24086784
[Genome-wide identification and expression analysis of auxin-related gene families in grape].
Yuan, Hua-zhao; Zhao, Mi-zhen; Wu, Wei-min; Yu, Hong-Mei; Qian, Ya-ming; Wang, Zhuang-wei; Wang, Xi-cheng
2015-07-01
The auxin response gene family adjusts the auxin balance and the growth hormone signaling pathways in plants. Using bioinformatics methods, the auxin-response genes from the grape genome database are identified and their chromosomal location, gene collinearity and phylogenetic analysis are performed. Probable genes include 25 AUX_IAA, 19 ARF, 9 GH3 and 42 LBD genes, which are unevenly distributed on all 19 chromosomes and some of them formed distinct tandem duplicate gene clusters. The available grape microarray databases show that all of the auxin-response genes are expressed in fruit and leaf buds, and significant overexpressed during fruit color-changing, bud break and bud dormancy periods. This paper provides a resource for functional studies of auxin-response genes in grape leaf and fruit development.
Phylogenetically conserved resource partitioning in the coastal microbial loop
Bryson, Samuel; Li, Zhou; Chavez, Francisco; ...
2017-08-11
Resource availability influences marine microbial community structure, suggesting that population-specific resource partitioning defines discrete niches. Identifying how resources are partitioned among populations, thereby characterizing functional guilds within the communities, remains a challenge for microbial ecologists. We used proteomic stable isotope probing (SIP) and NanoSIMS analysis of phylogenetic microarrays (Chip-SIP) along with 16S rRNA gene amplicon and metagenomic sequencing to characterize the assimilation of six 13C-labeled common metabolic substrates and changes in the microbial community structure within surface water collected from Monterey Bay, CA. Both sequencing approaches indicated distinct substrate-specific community shifts. However, observed changes in relative abundance for individual populationsmore » did not correlate well with directly measured substrate assimilation. The complementary SIP techniques identified assimilation of all six substrates by diverse taxa, but also revealed differential assimilation of substrates into protein and ribonucleotide biomass between taxa. Substrate assimilation trends indicated significantly conserved resource partitioning among populations within the Flavobacteriia, Alphaproteobacteria and Gammaproteobacteria classes, suggesting that functional guilds within marine microbial communities are phylogenetically cohesive. However, populations within these classes exhibited heterogeneity in biosynthetic activity, which distinguished high-activity copiotrophs from low-activity oligotrophs. These results indicate distinct growth responses between populations that is not apparent by genome sequencing alone.« less
Phylogenetically conserved resource partitioning in the coastal microbial loop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryson, Samuel; Li, Zhou; Chavez, Francisco
Resource availability influences marine microbial community structure, suggesting that population-specific resource partitioning defines discrete niches. Identifying how resources are partitioned among populations, thereby characterizing functional guilds within the communities, remains a challenge for microbial ecologists. We used proteomic stable isotope probing (SIP) and NanoSIMS analysis of phylogenetic microarrays (Chip-SIP) along with 16S rRNA gene amplicon and metagenomic sequencing to characterize the assimilation of six 13C-labeled common metabolic substrates and changes in the microbial community structure within surface water collected from Monterey Bay, CA. Both sequencing approaches indicated distinct substrate-specific community shifts. However, observed changes in relative abundance for individual populationsmore » did not correlate well with directly measured substrate assimilation. The complementary SIP techniques identified assimilation of all six substrates by diverse taxa, but also revealed differential assimilation of substrates into protein and ribonucleotide biomass between taxa. Substrate assimilation trends indicated significantly conserved resource partitioning among populations within the Flavobacteriia, Alphaproteobacteria and Gammaproteobacteria classes, suggesting that functional guilds within marine microbial communities are phylogenetically cohesive. However, populations within these classes exhibited heterogeneity in biosynthetic activity, which distinguished high-activity copiotrophs from low-activity oligotrophs. These results indicate distinct growth responses between populations that is not apparent by genome sequencing alone.« less
Phylogenetically conserved resource partitioning in the coastal microbial loop
Bryson, Samuel; Li, Zhou; Chavez, Francisco; Weber, Peter K; Pett-Ridge, Jennifer; Hettich, Robert L; Pan, Chongle; Mayali, Xavier; Mueller, Ryan S
2017-01-01
Resource availability influences marine microbial community structure, suggesting that population-specific resource partitioning defines discrete niches. Identifying how resources are partitioned among populations, thereby characterizing functional guilds within the communities, remains a challenge for microbial ecologists. We used proteomic stable isotope probing (SIP) and NanoSIMS analysis of phylogenetic microarrays (Chip-SIP) along with 16S rRNA gene amplicon and metagenomic sequencing to characterize the assimilation of six 13C-labeled common metabolic substrates and changes in the microbial community structure within surface water collected from Monterey Bay, CA. Both sequencing approaches indicated distinct substrate-specific community shifts. However, observed changes in relative abundance for individual populations did not correlate well with directly measured substrate assimilation. The complementary SIP techniques identified assimilation of all six substrates by diverse taxa, but also revealed differential assimilation of substrates into protein and ribonucleotide biomass between taxa. Substrate assimilation trends indicated significantly conserved resource partitioning among populations within the Flavobacteriia, Alphaproteobacteria and Gammaproteobacteria classes, suggesting that functional guilds within marine microbial communities are phylogenetically cohesive. However, populations within these classes exhibited heterogeneity in biosynthetic activity, which distinguished high-activity copiotrophs from low-activity oligotrophs. These results indicate distinct growth responses between populations that is not apparent by genome sequencing alone. PMID:28800138
Han, Yahui; Ding, Ting; Su, Bo; Jiang, Haiyang
2016-01-01
Members of the chalcone synthase (CHS) family participate in the synthesis of a series of secondary metabolites in plants, fungi and bacteria. The metabolites play important roles in protecting land plants against various environmental stresses during the evolutionary process. Our research was conducted on comprehensive investigation of CHS genes in maize (Zea mays L.), including their phylogenetic relationships, gene structures, chromosomal locations and expression analysis. Fourteen CHS genes (ZmCHS01–14) were identified in the genome of maize, representing one of the largest numbers of CHS family members identified in one organism to date. The gene family was classified into four major classes (classes I–IV) based on their phylogenetic relationships. Most of them contained two exons and one intron. The 14 genes were unevenly located on six chromosomes. Two segmental duplication events were identified, which might contribute to the expansion of the maize CHS gene family to some extent. In addition, quantitative real-time PCR and microarray data analyses suggested that ZmCHS genes exhibited various expression patterns, indicating functional diversification of the ZmCHS genes. Our results will contribute to future studies of the complexity of the CHS gene family in maize and provide valuable information for the systematic analysis of the functions of the CHS gene family. PMID:26828478
Dai, Yilin; Guo, Ling; Li, Meng; Chen, Yi-Bu
2012-06-08
Microarray data analysis presents a significant challenge to researchers who are unable to use the powerful Bioconductor and its numerous tools due to their lack of knowledge of R language. Among the few existing software programs that offer a graphic user interface to Bioconductor packages, none have implemented a comprehensive strategy to address the accuracy and reliability issue of microarray data analysis due to the well known probe design problems associated with many widely used microarray chips. There is also a lack of tools that would expedite the functional analysis of microarray results. We present Microarray Я US, an R-based graphical user interface that implements over a dozen popular Bioconductor packages to offer researchers a streamlined workflow for routine differential microarray expression data analysis without the need to learn R language. In order to enable a more accurate analysis and interpretation of microarray data, we incorporated the latest custom probe re-definition and re-annotation for Affymetrix and Illumina chips. A versatile microarray results output utility tool was also implemented for easy and fast generation of input files for over 20 of the most widely used functional analysis software programs. Coupled with a well-designed user interface, Microarray Я US leverages cutting edge Bioconductor packages for researchers with no knowledge in R language. It also enables a more reliable and accurate microarray data analysis and expedites downstream functional analysis of microarray results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeSantis, Todd Z.; Stone, Carol E.; Murray, Sonya R.
2005-02-22
A microarray has been designed using 62,358 probes matched to both prokaryotic and eukaryotic small-subunit ribosomal RNA genes. The array categorized environmental DNA to specific phylogenetic clusters in under 9 h. To a background of DNA generated from natural outdoor aerosols, known quantities of rRNA gene copies from distinct organisms were added producing corresponding hybridization intensity scores that correlated well with their concentrations (r=0.917). Reproducible differences in microbial community composition were observed by altering the genomic DNA extraction method. Notably, gentle extractions produced peak intensities for Mycoplasmatales and Burkholderiales, whereas a vigorous disruption produced peak intensities for Vibrionales,Clostridiales, and Bacillales.
Bouskill, Nicholas J; Eveillard, Damien; Chien, Diana; Jayakumar, Amal; Ward, Bess B
2012-03-01
Ammonia-oxidizing bacteria (AOB) and archaea (AOA) play a vital role in bridging the input of fixed nitrogen, through N-fixation and remineralization, to its loss by denitrification and anammox. Yet the major environmental factors determining AOB and AOA population dynamics are little understood, despite both groups having a wide environmental distribution. This study examined the relative abundance of both groups of ammonia-oxidizing organisms (AOO) and the diversity of AOA across large-scale gradients in temperature, salinity and substrate concentration and dissolved oxygen. The relative abundance of AOB and AOA varied across environments, with AOB dominating in the freshwater region of the Chesapeake Bay and AOA more abundant in the water column of the coastal and open ocean. The highest abundance of the AOA amoA gene was recorded in the oxygen minimum zones (OMZs) of the Eastern Tropical South Pacific (ETSP) and the Arabian Sea (AS). The ratio of AOA : AOB varied from 0.7 in the Chesapeake Bay to 1600 in the Sargasso Sea. Relative abundance of both groups strongly correlated with ammonium concentrations. AOA diversity, as determined by phylogenetic analysis of clone library sequences and archetype analysis from a functional gene DNA microarray, detected broad phylogenetic differences across the study sites. However, phylogenetic diversity within physicochemically congruent stations was more similar than would be expected by chance. This suggests that the prevailing geochemistry, rather than localized dispersal, is the major driving factor determining OTU distribution. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, T.A.; Holmes, S.; Alekseyenko, A.V.
Irritable bowel syndrome (IBS) is a chronic, episodic gastrointestinal disorder that is prevalent in a significant fraction of western human populations; and changes in the microbiota of the large bowel have been implicated in the pathology of the disease. Using a novel comprehensive, high-density DNA microarray (PhyloChip) we performed a phylogenetic analysis of the microbial community of the large bowel in a rat model in which intracolonic acetic acid in neonates was used to induce long lasting colonic hypersensitivity and decreased stool water content and frequency, representing the equivalent of human constipation-predominant IBS. Our results revealed a significantly increased compositionalmore » difference in the microbial communities in rats with neonatal irritation as compared with controls. Even more striking was the dramatic change in the ratio of Firmicutes relative to Bacteroidetes, where neonatally irritated rats were enriched more with Bacteroidetes and also contained a different composition of species within this phylum. Our study also revealed differences at the level of bacterial families and species. The PhyloChip is a useful and convenient method to study enteric microflora. Further, this rat model system may be a useful experimental platform to study the causes and consequences of changes in microbial community composition associated with IBS.« less
2009-01-01
Background Sequence identification of ESTs from non-model species offers distinct challenges particularly when these species have duplicated genomes and when they are phylogenetically distant from sequenced model organisms. For the common carp, an environmental model of aquacultural interest, large numbers of ESTs remained unidentified using BLAST sequence alignment. We have used the expression profiles from large-scale microarray experiments to suggest gene identities. Results Expression profiles from ~700 cDNA microarrays describing responses of 7 major tissues to multiple environmental stressors were used to define a co-expression landscape. This was based on the Pearsons correlation coefficient relating each gene with all other genes, from which a network description provided clusters of highly correlated genes as 'mountains'. We show that these contain genes with known identities and genes with unknown identities, and that the correlation constitutes evidence of identity in the latter. This procedure has suggested identities to 522 of 2701 unknown carp ESTs sequences. We also discriminate several common carp genes and gene isoforms that were not discriminated by BLAST sequence alignment alone. Precision in identification was substantially improved by use of data from multiple tissues and treatments. Conclusion The detailed analysis of co-expression landscapes is a sensitive technique for suggesting an identity for the large number of BLAST unidentified cDNAs generated in EST projects. It is capable of detecting even subtle changes in expression profiles, and thereby of distinguishing genes with a common BLAST identity into different identities. It benefits from the use of multiple treatments or contrasts, and from the large-scale microarray data. PMID:19939286
Kothary, Mahendra H.; Gopinath, Gopal R.; Gangiredla, Jayanthi; Rallabhandi, Prasad V.; Harrison, Lisa M.; Yan, Qiong Q.; Chase, Hannah R.; Lee, Boram; Park, Eunbi; Yoo, YeonJoo; Chung, Taejung; Finkelstein, Samantha B.; Negrete, Flavia J.; Patel, Isha R.; Carter, Laurenda; Sathyamoorthy, Venugopal; Fanning, Séamus; Tall, Ben D.
2017-01-01
Little is known about secretion of outer membrane vesicles (OMVs) by Cronobacter. In this study, OMVs isolated from Cronobacter sakazakii, Cronobacter turicensis, and Cronobacter malonaticus were examined by electron microscopy (EM) and their associated outer membrane proteins (OMP) and genes were analyzed by SDS-PAGE, protein sequencing, BLAST, PCR, and DNA microarray. EM of stained cells revealed that the OMVs are secreted as pleomorphic micro-vesicles which cascade from the cell's surface. SDS-PAGE analysis identified protein bands with molecular weights of 18 kDa to >100 kDa which had homologies to OMPs such as GroEL; OmpA, C, E, F, and X; MipA proteins; conjugative plasmid transfer protein; and an outer membrane auto-transporter protein (OMATP). PCR analyses showed that most of the OMP genes were present in all seven Cronobacter species while a few genes (OMATP gene, groEL, ompC, mipA, ctp, and ompX) were absent in some phylogenetically-related species. Microarray analysis demonstrated sequence divergence among the OMP genes that was not captured by PCR. These results support previous findings that OmpA and OmpX may be involved in virulence of Cronobacter, and are packaged within secreted OMVs. These results also suggest that other OMV-packaged OMPs may be involved in roles such as stress response, cell wall and plasmid maintenance, and extracellular transport. PMID:28232819
Gene function in early mouse embryonic stem cell differentiation
Sene, Kagnew Hailesellasse; Porter, Christopher J; Palidwor, Gareth; Perez-Iratxeta, Carolina; Muro, Enrique M; Campbell, Pearl A; Rudnicki, Michael A; Andrade-Navarro, Miguel A
2007-01-01
Background Little is known about the genes that drive embryonic stem cell differentiation. However, such knowledge is necessary if we are to exploit the therapeutic potential of stem cells. To uncover the genetic determinants of mouse embryonic stem cell (mESC) differentiation, we have generated and analyzed 11-point time-series of DNA microarray data for three biologically equivalent but genetically distinct mESC lines (R1, J1, and V6.5) undergoing undirected differentiation into embryoid bodies (EBs) over a period of two weeks. Results We identified the initial 12 hour period as reflecting the early stages of mESC differentiation and studied probe sets showing consistent changes of gene expression in that period. Gene function analysis indicated significant up-regulation of genes related to regulation of transcription and mRNA splicing, and down-regulation of genes related to intracellular signaling. Phylogenetic analysis indicated that the genes showing the largest expression changes were more likely to have originated in metazoans. The probe sets with the most consistent gene changes in the three cell lines represented 24 down-regulated and 12 up-regulated genes, all with closely related human homologues. Whereas some of these genes are known to be involved in embryonic developmental processes (e.g. Klf4, Otx2, Smn1, Socs3, Tagln, Tdgf1), our analysis points to others (such as transcription factor Phf21a, extracellular matrix related Lama1 and Cyr61, or endoplasmic reticulum related Sc4mol and Scd2) that have not been previously related to mESC function. The majority of identified functions were related to transcriptional regulation, intracellular signaling, and cytoskeleton. Genes involved in other cellular functions important in ESC differentiation such as chromatin remodeling and transmembrane receptors were not observed in this set. Conclusion Our analysis profiles for the first time gene expression at a very early stage of mESC differentiation, and identifies a functional and phylogenetic signature for the genes involved. The data generated constitute a valuable resource for further studies. All DNA microarray data used in this study are available in the StemBase database of stem cell gene expression data [1] and in the NCBI's GEO database. PMID:17394647
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Zhili; Deng, Ye; Nostrand, Joy Van
2010-05-17
Microarray-based genomic technology has been widely used for microbial community analysis, and it is expected that microarray-based genomic technologies will revolutionize the analysis of microbial community structure, function and dynamics. A new generation of functional gene arrays (GeoChip 3.0) has been developed, with 27,812 probes covering 56,990 gene variants from 292 functional gene families involved in carbon, nitrogen, phosphorus and sulfur cycles, energy metabolism, antibiotic resistance, metal resistance, and organic contaminant degradation. Those probes were derived from 2,744, 140, and 262 species for bacteria, archaea, and fungi, respectively. GeoChip 3.0 has several other distinct features, such as a common oligomore » reference standard (CORS) for data normalization and comparison, a software package for data management and future updating, and the gyrB gene for phylogenetic analysis. Our computational evaluation of probe specificity indicated that all designed probes had a high specificity to their corresponding targets. Also, experimental analysis with synthesized oligonucleotides and genomic DNAs showed that only 0.0036percent-0.025percent false positive rates were observed, suggesting that the designed probes are highly specific under the experimental conditions examined. In addition, GeoChip 3.0 was applied to analyze soil microbial communities in a multifactor grassland ecosystem in Minnesota, USA, which demonstrated that the structure, composition, and potential activity of soil microbial communities significantly changed with the plant species diversity. All results indicate that GeoChip 3.0 is a high throughput powerful tool for studying microbial community functional structure, and linking microbial communities to ecosystem processes and functioning. To our knowledge, GeoChip 3.0 is the most comprehensive microarrays currently available for studying microbial communities associated with geobiochemical cycling, global climate change, bioenergy, agricuture, land use, ecosystem management, environmental cleanup and restoration, bioreactor systems, and human health.« less
A genome-wide analysis of the expansin genes in Malus × Domestica.
Zhang, Shizhong; Xu, Ruirui; Gao, Zheng; Chen, Changtian; Jiang, Zesheng; Shu, Huairui
2014-04-01
Expansins were first identified as cell wall-loosening proteins; they are involved in regulating cell expansion, fruits softening and many other physiological processes. However, our knowledge about the expansin family members and their evolutionary relationships in fruit trees, such as apple, is limited. In this study, we identified 41 members of the expansin gene family in the genome of apple (Malus × Domestica L. Borkh). Phylogenetic analysis revealed that expansin genes in apple could be divided into four subfamilies according to their gene structures and protein motifs. By phylogenetic analysis of the expansins in five plants (Arabidopsis, rice, poplar, grape and apple), the expansins were divided into 17 subgroups. Our gene duplication analysis revealed that whole-genome and chromosomal-segment duplications contributed to the expansion of Mdexpansins. The microarray and expressed sequence tag (EST) data showed that 34 Mdexpansin genes could be divided into five groups by the EST analysis; they may also play different roles during fruit development. An expression model for MdEXPA16 and MdEXPA20 showed their potential role in developing fruit. Overall, our study provides useful data and novel insights into the functions and regulatory mechanisms of the expansin genes in apple, as well as their evolution and divergence. As the first step towards genome-wide analysis of the expansin genes in apple, our results have established a solid foundation for future studies on the function of the expansin genes in fruit development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mangelsen, Elke; Kilian, Joachim; Berendzen, Kenneth W.
2008-02-01
WRKY proteins belong to the WRKY-GCM1 superfamily of zinc finger transcription factors that have been subject to a large plant-specific diversification. For the cereal crop barley (Hordeum vulgare), three different WRKY proteins have been characterized so far, as regulators in sucrose signaling, in pathogen defense, and in response to cold and drought, respectively. However, their phylogenetic relationship remained unresolved. In this study, we used the available sequence information to identify a minimum number of 45 barley WRKY transcription factor (HvWRKY) genes. According to their structural features the HvWRKY factors were classified into the previously defined polyphyletic WRKY subgroups 1 tomore » 3. Furthermore, we could assign putative orthologs of the HvWRKY proteins in Arabidopsis and rice. While in most cases clades of orthologous proteins were formed within each group or subgroup, other clades were composed of paralogous proteins for the grasses and Arabidopsis only, which is indicative of specific gene radiation events. To gain insight into their putative functions, we examined expression profiles of WRKY genes from publicly available microarray data resources and found group specific expression patterns. While putative orthologs of the HvWRKY transcription factors have been inferred from phylogenetic sequence analysis, we performed a comparative expression analysis of WRKY genes in Arabidopsis and barley. Indeed, highly correlative expression profiles were found between some of the putative orthologs. HvWRKY genes have not only undergone radiation in monocot or dicot species, but exhibit evolutionary traits specific to grasses. HvWRKY proteins exhibited not only sequence similarities between orthologs with Arabidopsis, but also relatedness in their expression patterns. This correlative expression is indicative for a putative conserved function of related WRKY proteins in mono- and dicot species.« less
He, Yi; Ahmad, Dawood; Zhang, Xu; Zhang, Yu; Wu, Lei; Jiang, Peng; Ma, Hongxiang
2018-04-19
Fusarium head blight (FHB), a devastating disease in wheat worldwide, results in yield loses and mycotoxin, such as deoxynivalenol (DON), accumulation in infected grains. DON also facilitates the pathogen colonization and spread of FHB symptoms during disease development. UDP-glycosyltransferase enzymes (UGTs) are known to contribute to detoxification and enhance FHB resistance by glycosylating DON into DON-3-glucoside (D3G) in wheat. However, a comprehensive investigation of wheat (Triticum aestivum) UGT genes is still lacking. In this study, we carried out a genome-wide analysis of family-1 UDP glycosyltransferases in wheat based on the PSPG conserved box that resulted in the identification of 179 putative UGT genes. The identified genes were clustered into 16 major phylogenetic groups with a lack of phylogenetic group K. The UGT genes were invariably distributed among all the chromosomes of the 3 genomes. At least 10 intron insertion events were found in the UGT sequences, where intron 4 was observed as the most conserved intron. The expression analysis of the wheat UGT genes using both online microarray data and quantitative real-time PCR verification suggested the distinct role of UGT genes in different tissues and developmental stages. The expression of many UGT genes was up-regulated after Fusarium graminearum inoculation, and six of the genes were further verified by RT-qPCR. We identified 179 UGT genes from wheat using the available sequenced wheat genome. This study provides useful insight into the phylogenetic structure, distribution, and expression patterns of family-1 UDP glycosyltransferases in wheat. The results also offer a foundation for future work aimed at elucidating the molecular mechanisms underlying the resistance to FHB and DON accumulation.
Analysis of High-Throughput ELISA Microarray Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Amanda M.; Daly, Don S.; Zangar, Richard C.
Our research group develops analytical methods and software for the high-throughput analysis of quantitative enzyme-linked immunosorbent assay (ELISA) microarrays. ELISA microarrays differ from DNA microarrays in several fundamental aspects and most algorithms for analysis of DNA microarray data are not applicable to ELISA microarrays. In this review, we provide an overview of the steps involved in ELISA microarray data analysis and how the statistically sound algorithms we have developed provide an integrated software suite to address the needs of each data-processing step. The algorithms discussed are available in a set of open-source software tools (http://www.pnl.gov/statistics/ProMAT).
Zhu, Yuerong; Zhu, Yuelin; Xu, Wei
2008-01-01
Background Though microarray experiments are very popular in life science research, managing and analyzing microarray data are still challenging tasks for many biologists. Most microarray programs require users to have sophisticated knowledge of mathematics, statistics and computer skills for usage. With accumulating microarray data deposited in public databases, easy-to-use programs to re-analyze previously published microarray data are in high demand. Results EzArray is a web-based Affymetrix expression array data management and analysis system for researchers who need to organize microarray data efficiently and get data analyzed instantly. EzArray organizes microarray data into projects that can be analyzed online with predefined or custom procedures. EzArray performs data preprocessing and detection of differentially expressed genes with statistical methods. All analysis procedures are optimized and highly automated so that even novice users with limited pre-knowledge of microarray data analysis can complete initial analysis quickly. Since all input files, analysis parameters, and executed scripts can be downloaded, EzArray provides maximum reproducibility for each analysis. In addition, EzArray integrates with Gene Expression Omnibus (GEO) and allows instantaneous re-analysis of published array data. Conclusion EzArray is a novel Affymetrix expression array data analysis and sharing system. EzArray provides easy-to-use tools for re-analyzing published microarray data and will help both novice and experienced users perform initial analysis of their microarray data from the location of data storage. We believe EzArray will be a useful system for facilities with microarray services and laboratories with multiple members involved in microarray data analysis. EzArray is freely available from . PMID:18218103
Franke-Whittle, Ingrid H.; Walter, Andreas; Ebner, Christian; Insam, Heribert
2014-01-01
A study was conducted to determine whether differences in the levels of volatile fatty acids (VFAs) in anaerobic digester plants could result in variations in the indigenous methanogenic communities. Two digesters (one operated under mesophilic conditions, the other under thermophilic conditions) were monitored, and sampled at points where VFA levels were high, as well as when VFA levels were low. Physical and chemical parameters were measured, and the methanogenic diversity was screened using the phylogenetic microarray ANAEROCHIP. In addition, real-time PCR was used to quantify the presence of the different methanogenic genera in the sludge samples. Array results indicated that the archaeal communities in the different reactors were stable, and that changes in the VFA levels of the anaerobic digesters did not greatly alter the dominating methanogenic organisms. In contrast, the two digesters were found to harbour different dominating methanogenic communities, which appeared to remain stable over time. Real-time PCR results were inline with those of microarray analysis indicating only minimal changes in methanogen numbers during periods of high VFAs, however, revealed a greater diversity in methanogens than found with the array. PMID:25164858
Chemiluminescence microarrays in analytical chemistry: a critical review.
Seidel, Michael; Niessner, Reinhard
2014-09-01
Multi-analyte immunoassays on microarrays and on multiplex DNA microarrays have been described for quantitative analysis of small organic molecules (e.g., antibiotics, drugs of abuse, small molecule toxins), proteins (e.g., antibodies or protein toxins), and microorganisms, viruses, and eukaryotic cells. In analytical chemistry, multi-analyte detection by use of analytical microarrays has become an innovative research topic because of the possibility of generating several sets of quantitative data for different analyte classes in a short time. Chemiluminescence (CL) microarrays are powerful tools for rapid multiplex analysis of complex matrices. A wide range of applications for CL microarrays is described in the literature dealing with analytical microarrays. The motivation for this review is to summarize the current state of CL-based analytical microarrays. Combining analysis of different compound classes on CL microarrays reduces analysis time, cost of reagents, and use of laboratory space. Applications are discussed, with examples from food safety, water safety, environmental monitoring, diagnostics, forensics, toxicology, and biosecurity. The potential and limitations of research on multiplex analysis by use of CL microarrays are discussed in this review.
NASA Astrophysics Data System (ADS)
Beazley, M. J.; Martinez, R.; Rajan, S.; Powell, J.; Piceno, Y.; Tom, L.; Andersen, G. L.; Hazen, T. C.; Van Nostrand, J. D.; Zhou, J.; Mortazavi, B.; Sobecky, P. A.
2011-12-01
Microbial community responses of an Alabama coastal salt marsh environment to the Deepwater Horizon oil spill were studied by 16S rRNA (PhyloChip) and functional gene (GeoChip) microarray-based analysis. Oil and tar balls associated with the oil spill arrived along the Alabama coast in June 2010. Marsh and inlet sediment samples collected in June, July, and September 2010 from a salt marsh ecosystem at Point Aux Pines Alabama were analyzed to determine if bacterial community structure changed as a result of oil perturbation. Sediment total petroleum hydrocarbon (TPH) concentrations ranged from below detection to 189 mg kg-1 and were randomly dispersed throughout the salt marsh sediments. Total DNA extracted from sediment and particulates were used for PhyloChip and GeoChip hybridization. A total of 4000 to 8000 operational taxonomic units (OTUs) were detected in marsh and inlet samples. Distinctive changes in the number of detectable OTUs were observed between June, July, and September 2010. Surficial inlet sediments demonstrated a significant increase in the total number of OTUs between June and September that correlated with TPH concentrations. The most significant increases in bacterial abundance were observed in the phyla Actinobacteria, Firmicutes, Gemmatimonadetes, Proteobacteria, and Verrucomicrobia. Bacterial richness in marsh sediments also correlated with TPH concentrations with significant changes primarily in Acidobacteria, Actinobacteria, Firmicutes, Fusobacteria, Nitrospirae, and Proteobacteria. GeoChip microarray analysis detected 5000 to 8300 functional genes in marsh and inlet samples. Surficial inlet sediments demonstrated distinctive increases in the number of detectable genes and gene signal intensities in July samples compared to June. Signal intensities increased (> 1.5-fold) in genes associated with petroleum degradation. Genes related to metal resistance, stress, and carbon cycling also demonstrated increases in oiled sediments. This study demonstrates the value of applying phylogenetic and functional gene microarray technology to characterize the extensive microbial diversity of marsh environments. Moreover, this technology provides significant insight into bacterial community responses to anthropogenic oil events.
Diversity Arrays Technology (DArT) for Pan-Genomic Evolutionary Studies of Non-Model Organisms
James, Karen E.; Schneider, Harald; Ansell, Stephen W.; Evers, Margaret; Robba, Lavinia; Uszynski, Grzegorz; Pedersen, Niklas; Newton, Angela E.; Russell, Stephen J.; Vogel, Johannes C.; Kilian, Andrzej
2008-01-01
Background High-throughput tools for pan-genomic study, especially the DNA microarray platform, have sparked a remarkable increase in data production and enabled a shift in the scale at which biological investigation is possible. The use of microarrays to examine evolutionary relationships and processes, however, is predominantly restricted to model or near-model organisms. Methodology/Principal Findings This study explores the utility of Diversity Arrays Technology (DArT) in evolutionary studies of non-model organisms. DArT is a hybridization-based genotyping method that uses microarray technology to identify and type DNA polymorphism. Theoretically applicable to any organism (even one for which no prior genetic data are available), DArT has not yet been explored in exclusively wild sample sets, nor extensively examined in a phylogenetic framework. DArT recovered 1349 markers of largely low copy-number loci in two lineages of seed-free land plants: the diploid fern Asplenium viride and the haploid moss Garovaglia elegans. Direct sequencing of 148 of these DArT markers identified 30 putative loci including four routinely sequenced for evolutionary studies in plants. Phylogenetic analyses of DArT genotypes reveal phylogeographic and substrate specificity patterns in A. viride, a lack of phylogeographic pattern in Australian G. elegans, and additive variation in hybrid or mixed samples. Conclusions/Significance These results enable methodological recommendations including procedures for detecting and analysing DArT markers tailored specifically to evolutionary investigations and practical factors informing the decision to use DArT, and raise evolutionary hypotheses concerning substrate specificity and biogeographic patterns. Thus DArT is a demonstrably valuable addition to the set of existing molecular approaches used to infer biological phenomena such as adaptive radiations, population dynamics, hybridization, introgression, ecological differentiation and phylogeography. PMID:18301759
Application of Broad-Spectrum Resequencing Microarray for Genotyping Rhabdoviruses▿
Dacheux, Laurent; Berthet, Nicolas; Dissard, Gabriel; Holmes, Edward C.; Delmas, Olivier; Larrous, Florence; Guigon, Ghislaine; Dickinson, Philip; Faye, Ousmane; Sall, Amadou A.; Old, Iain G.; Kong, Katherine; Kennedy, Giulia C.; Manuguerra, Jean-Claude; Cole, Stewart T.; Caro, Valérie; Gessain, Antoine; Bourhy, Hervé
2010-01-01
The rapid and accurate identification of pathogens is critical in the control of infectious disease. To this end, we analyzed the capacity for viral detection and identification of a newly described high-density resequencing microarray (RMA), termed PathogenID, which was designed for multiple pathogen detection using database similarity searching. We focused on one of the largest and most diverse viral families described to date, the family Rhabdoviridae. We demonstrate that this approach has the potential to identify both known and related viruses for which precise sequence information is unavailable. In particular, we demonstrate that a strategy based on consensus sequence determination for analysis of RMA output data enabled successful detection of viruses exhibiting up to 26% nucleotide divergence with the closest sequence tiled on the array. Using clinical specimens obtained from rabid patients and animals, this method also shows a high species level concordance with standard reference assays, indicating that it is amenable for the development of diagnostic assays. Finally, 12 animal rhabdoviruses which were currently unclassified, unassigned, or assigned as tentative species within the family Rhabdoviridae were successfully detected. These new data allowed an unprecedented phylogenetic analysis of 106 rhabdoviruses and further suggest that the principles and methodology developed here may be used for the broad-spectrum surveillance and the broader-scale investigation of biodiversity in the viral world. PMID:20610710
cDNA microarray analysis of esophageal cancer: discoveries and prospects.
Shimada, Yutaka; Sato, Fumiaki; Shimizu, Kazuharu; Tsujimoto, Gozoh; Tsukada, Kazuhiro
2009-07-01
Recent progress in molecular biology has revealed many genetic and epigenetic alterations that are involved in the development and progression of esophageal cancer. Microarray analysis has also revealed several genetic networks that are involved in esophageal cancer. However, clinical application of microarray techniques and use of microarray data have not yet occurred. In this review, we focus on the recent developments and problems with microarray analysis of esophageal cancer.
Parker, Craig T; Miller, William G; Horn, Sharon T; Lastovica, Albert J
2007-01-01
Background Campylobacter jejuni has been divided into two subspecies: C. jejuni subsp. jejuni (Cjj) and C. jejuni subsp. doylei (Cjd). Nearly all of the C. jejuni strains isolated are Cjj; nevertheless, although Cjd strains are isolated infrequently, they differ from Cjj in two key aspects: they are obtained primarily from human clinical samples and are associated often with bacteremia, in addition to gastroenteritis. In this study, we utilized multilocus sequence typing (MLST) and a DNA microarray-based comparative genomic indexing (CGI) approach to examine the genomic diversity and gene content of Cjd strains. Results A geographically diverse collection of eight Cjd strains was examined by MLST and determined to be phylogenetically distinct from Cjj strains. Microarray-based CGI approach also supported this. We were able to demonstrate that Cjd strains exhibited divergence from Cjj strains NCTC 11168 and RM1221 in many of the intraspecies hypervariable regions. Moreover, multiple metabolic, transport and virulence functions (e.g. cytolethal distending toxin) were shown to be absent in the Cjd strains examined. Conclusion Our data demonstrate that Cjd are phylogenetically distinct from Cjj strains. Using the CGI approach, we identified subsets of absent genes from amongst the C. jejuni genes that provide clues as to the potential evolutionary origin and unusual pathogenicity of Cjd. PMID:17535437
Importing MAGE-ML format microarray data into BioConductor.
Durinck, Steffen; Allemeersch, Joke; Carey, Vincent J; Moreau, Yves; De Moor, Bart
2004-12-12
The microarray gene expression markup language (MAGE-ML) is a widely used XML (eXtensible Markup Language) standard for describing and exchanging information about microarray experiments. It can describe microarray designs, microarray experiment designs, gene expression data and data analysis results. We describe RMAGEML, a new Bioconductor package that provides a link between cDNA microarray data stored in MAGE-ML format and the Bioconductor framework for preprocessing, visualization and analysis of microarray experiments. http://www.bioconductor.org. Open Source.
Genome-wide analysis of the WRKY gene family in cotton.
Dou, Lingling; Zhang, Xiaohong; Pang, Chaoyou; Song, Meizhen; Wei, Hengling; Fan, Shuli; Yu, Shuxun
2014-12-01
WRKY proteins are major transcription factors involved in regulating plant growth and development. Although many studies have focused on the functional identification of WRKY genes, our knowledge concerning many areas of WRKY gene biology is limited. For example, in cotton, the phylogenetic characteristics, global expression patterns, molecular mechanisms regulating expression, and target genes/pathways of WRKY genes are poorly characterized. Therefore, in this study, we present a genome-wide analysis of the WRKY gene family in cotton (Gossypium raimondii and Gossypium hirsutum). We identified 116 WRKY genes in G. raimondii from the completed genome sequence, and we cloned 102 WRKY genes in G. hirsutum. Chromosomal location analysis indicated that WRKY genes in G. raimondii evolved mainly from segmental duplication followed by tandem amplifications. Phylogenetic analysis of alga, bryophyte, lycophyta, monocot and eudicot WRKY domains revealed family member expansion with increasing complexity of the plant body. Microarray, expression profiling and qRT-PCR data revealed that WRKY genes in G. hirsutum may regulate the development of fibers, anthers, tissues (roots, stems, leaves and embryos), and are involved in the response to stresses. Expression analysis showed that most group II and III GhWRKY genes are highly expressed under diverse stresses. Group I members, representing the ancestral form, seem to be insensitive to abiotic stress, with low expression divergence. Our results indicate that cotton WRKY genes might have evolved by adaptive duplication, leading to sensitivity to diverse stresses. This study provides fundamental information to inform further analysis and understanding of WRKY gene functions in cotton species.
A low density microarray method for the identification of human papillomavirus type 18 variants.
Meza-Menchaca, Thuluz; Williams, John; Rodríguez-Estrada, Rocío B; García-Bravo, Aracely; Ramos-Ligonio, Ángel; López-Monteon, Aracely; Zepeda, Rossana C
2013-09-26
We describe a novel microarray based-method for the screening of oncogenic human papillomavirus 18 (HPV-18) molecular variants. Due to the fact that sequencing methodology may underestimate samples containing more than one variant we designed a specific and sensitive stacking DNA hybridization assay. This technology can be used to discriminate between three possible phylogenetic branches of HPV-18. Probes were attached covalently on glass slides and hybridized with single-stranded DNA targets. Prior to hybridization with the probes, the target strands were pre-annealed with the three auxiliary contiguous oligonucleotides flanking the target sequences. Screening HPV-18 positive cell lines and cervical samples were used to evaluate the performance of this HPV DNA microarray. Our results demonstrate that the HPV-18's variants hybridized specifically to probes, with no detection of unspecific signals. Specific probes successfully reveal detectable point mutations in these variants. The present DNA oligoarray system can be used as a reliable, sensitive and specific method for HPV-18 variant screening. Furthermore, this simple assay allows the use of inexpensive equipment, making it accessible in resource-poor settings.
A Low Density Microarray Method for the Identification of Human Papillomavirus Type 18 Variants
Meza-Menchaca, Thuluz; Williams, John; Rodríguez-Estrada, Rocío B.; García-Bravo, Aracely; Ramos-Ligonio, Ángel; López-Monteon, Aracely; Zepeda, Rossana C.
2013-01-01
We describe a novel microarray based-method for the screening of oncogenic human papillomavirus 18 (HPV-18) molecular variants. Due to the fact that sequencing methodology may underestimate samples containing more than one variant we designed a specific and sensitive stacking DNA hybridization assay. This technology can be used to discriminate between three possible phylogenetic branches of HPV-18. Probes were attached covalently on glass slides and hybridized with single-stranded DNA targets. Prior to hybridization with the probes, the target strands were pre-annealed with the three auxiliary contiguous oligonucleotides flanking the target sequences. Screening HPV-18 positive cell lines and cervical samples were used to evaluate the performance of this HPV DNA microarray. Our results demonstrate that the HPV-18's variants hybridized specifically to probes, with no detection of unspecific signals. Specific probes successfully reveal detectable point mutations in these variants. The present DNA oligoarray system can be used as a reliable, sensitive and specific method for HPV-18 variant screening. Furthermore, this simple assay allows the use of inexpensive equipment, making it accessible in resource-poor settings. PMID:24077317
Killion, Patrick J; Sherlock, Gavin; Iyer, Vishwanath R
2003-01-01
Background The power of microarray analysis can be realized only if data is systematically archived and linked to biological annotations as well as analysis algorithms. Description The Longhorn Array Database (LAD) is a MIAME compliant microarray database that operates on PostgreSQL and Linux. It is a fully open source version of the Stanford Microarray Database (SMD), one of the largest microarray databases. LAD is available at Conclusions Our development of LAD provides a simple, free, open, reliable and proven solution for storage and analysis of two-color microarray data. PMID:12930545
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, S; Jaing, C
The goal of this project is to develop forensic genotyping assays for select agent viruses, addressing a significant capability gap for the viral bioforensics and law enforcement community. We used a multipronged approach combining bioinformatics analysis, PCR-enriched samples, microarrays and TaqMan assays to develop high resolution and cost effective genotyping methods for strain level forensic discrimination of viruses. We have leveraged substantial experience and efficiency gained through year 1 on software development, SNP discovery, TaqMan signature design and phylogenetic signature mapping to scale up the development of forensics signatures in year 2. In this report, we have summarized the Taqmanmore » signature development for South American hemorrhagic fever viruses, tick-borne encephalitis viruses and henipaviruses, Old World Arenaviruses, filoviruses, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus and Japanese encephalitis virus.« less
Van Damme, Els J. M.; Nakamura-Tsuruta, Sachiko; Smith, David F.; Ongenaert, Maté; Winter, Harry C.; Rougé, Pierre; Goldstein, Irwin J.; Mo, Hanqing; Kominami, Junko; Culerrier, Raphaël; Barre, Annick; Hirabayashi, Jun; Peumans, Willy J.
2007-01-01
A re-investigation of the occurrence and taxonomic distribution of proteins built up of protomers consisting of two tandem arrayed domains equivalent to the GNA [Galanthus nivalis (snowdrop) agglutinin] revealed that these are widespread among monotyledonous plants. Phylogenetic analysis of the available sequences indicated that these proteins do not represent a monophylogenetic group but most probably result from multiple independent domain duplication/in tandem insertion events. To corroborate the relationship between inter-domain sequence divergence and the widening of specificity range, a detailed comparative analysis was made of the sequences and specificity of a set of two-domain GNA-related lectins. Glycan microarray analyses, frontal affinity chromatography and surface plasmon resonance measurements demonstrated that the two-domain GNA-related lectins acquired a marked diversity in carbohydrate-binding specificity that strikingly contrasts the canonical exclusive specificity of their single domain counterparts towards mannose. Moreover, it appears that most two-domain GNA-related lectins interact with both high mannose and complex N-glycans and that this dual specificity relies on the simultaneous presence of at least two different independently acting binding sites. The combined phylogenetic, specificity and structural data strongly suggest that plants used domain duplication followed by divergent evolution as a mechanism to generate multispecific lectins from a single mannose-binding domain. Taking into account that the shift in specificity of some binding sites from high mannose to complex type N-glycans implies that the two-domain GNA-related lectins are primarily directed against typical animal glycans, it is tempting to speculate that plants developed two-domain GNA-related lectins for defence purposes. PMID:17288538
The Microarray Revolution: Perspectives from Educators
ERIC Educational Resources Information Center
Brewster, Jay L.; Beason, K. Beth; Eckdahl, Todd T.; Evans, Irene M.
2004-01-01
In recent years, microarray analysis has become a key experimental tool, enabling the analysis of genome-wide patterns of gene expression. This review approaches the microarray revolution with a focus upon four topics: 1) the early development of this technology and its application to cancer diagnostics; 2) a primer of microarray research,…
DuBuc, Timothy Q; Traylor-Knowles, Nikki; Martindale, Mark Q
2014-03-26
Wound healing is the first stage of a series of cellular events that are necessary to initiate a regenerative response. Defective wound healing can block regeneration even in animals with a high regenerative capacity. Understanding how signals generated during wound healing promote regeneration of lost structures is highly important, considering that virtually all animals have the ability to heal but many lack the ability to regenerate missing structures. Cnidarians are the phylogenetic sister taxa to bilaterians and are highly regenerative animals. To gain a greater understanding of how early animals generate a regenerative response, we examined the cellular and molecular components involved during wound healing in the anthozoan cnidarian Nematostella vectensis. Pharmacological inhibition of extracellular signal-regulated kinases (ERK) signaling blocks regeneration and wound healing in Nematostella. We characterized early and late wound healing events through genome-wide microarray analysis, quantitative PCR, and in situ hybridization to identify potential wound healing targets. We identified a number of genes directly related to the wound healing response in other animals (metalloproteinases, growth factors, transcription factors) and suggest that glycoproteins (mucins and uromodulin) play a key role in early wound healing events. This study also identified a novel cnidarian-specific gene, for a thiamine biosynthesis enzyme (vitamin B synthesis), that may have been incorporated into the genome by lateral gene transfer from bacteria and now functions during wound healing. Lastly, we suggest that ERK signaling is a shared element of the early wound response for animals with a high regenerative capacity. This research describes the temporal events involved during Nematostella wound healing, and provides a foundation for comparative analysis with other regenerative and non-regenerative species. We have shown that the same genes that heal puncture wounds are also activated after oral-aboral bisection, indicating a clear link with the initiation of regenerative healing. This study demonstrates the strength of using a forward approach (microarray) to characterize a developmental phenomenon (wound healing) at a phylogenetically important crossroad of animal evolution (cnidarian-bilaterian ancestor). Accumulation of data on the early wound healing events across numerous systems may provide clues as to why some animals have limited regenerative abilities.
2014-01-01
Background Wound healing is the first stage of a series of cellular events that are necessary to initiate a regenerative response. Defective wound healing can block regeneration even in animals with a high regenerative capacity. Understanding how signals generated during wound healing promote regeneration of lost structures is highly important, considering that virtually all animals have the ability to heal but many lack the ability to regenerate missing structures. Cnidarians are the phylogenetic sister taxa to bilaterians and are highly regenerative animals. To gain a greater understanding of how early animals generate a regenerative response, we examined the cellular and molecular components involved during wound healing in the anthozoan cnidarian Nematostella vectensis. Results Pharmacological inhibition of extracellular signal-regulated kinases (ERK) signaling blocks regeneration and wound healing in Nematostella. We characterized early and late wound healing events through genome-wide microarray analysis, quantitative PCR, and in situ hybridization to identify potential wound healing targets. We identified a number of genes directly related to the wound healing response in other animals (metalloproteinases, growth factors, transcription factors) and suggest that glycoproteins (mucins and uromodulin) play a key role in early wound healing events. This study also identified a novel cnidarian-specific gene, for a thiamine biosynthesis enzyme (vitamin B synthesis), that may have been incorporated into the genome by lateral gene transfer from bacteria and now functions during wound healing. Lastly, we suggest that ERK signaling is a shared element of the early wound response for animals with a high regenerative capacity. Conclusions This research describes the temporal events involved during Nematostella wound healing, and provides a foundation for comparative analysis with other regenerative and non-regenerative species. We have shown that the same genes that heal puncture wounds are also activated after oral-aboral bisection, indicating a clear link with the initiation of regenerative healing. This study demonstrates the strength of using a forward approach (microarray) to characterize a developmental phenomenon (wound healing) at a phylogenetically important crossroad of animal evolution (cnidarian-bilaterian ancestor). Accumulation of data on the early wound healing events across numerous systems may provide clues as to why some animals have limited regenerative abilities. PMID:24670243
Barton, G; Abbott, J; Chiba, N; Huang, DW; Huang, Y; Krznaric, M; Mack-Smith, J; Saleem, A; Sherman, BT; Tiwari, B; Tomlinson, C; Aitman, T; Darlington, J; Game, L; Sternberg, MJE; Butcher, SA
2008-01-01
Background Microarray experimentation requires the application of complex analysis methods as well as the use of non-trivial computer technologies to manage the resultant large data sets. This, together with the proliferation of tools and techniques for microarray data analysis, makes it very challenging for a laboratory scientist to keep up-to-date with the latest developments in this field. Our aim was to develop a distributed e-support system for microarray data analysis and management. Results EMAAS (Extensible MicroArray Analysis System) is a multi-user rich internet application (RIA) providing simple, robust access to up-to-date resources for microarray data storage and analysis, combined with integrated tools to optimise real time user support and training. The system leverages the power of distributed computing to perform microarray analyses, and provides seamless access to resources located at various remote facilities. The EMAAS framework allows users to import microarray data from several sources to an underlying database, to pre-process, quality assess and analyse the data, to perform functional analyses, and to track data analysis steps, all through a single easy to use web portal. This interface offers distance support to users both in the form of video tutorials and via live screen feeds using the web conferencing tool EVO. A number of analysis packages, including R-Bioconductor and Affymetrix Power Tools have been integrated on the server side and are available programmatically through the Postgres-PLR library or on grid compute clusters. Integrated distributed resources include the functional annotation tool DAVID, GeneCards and the microarray data repositories GEO, CELSIUS and MiMiR. EMAAS currently supports analysis of Affymetrix 3' and Exon expression arrays, and the system is extensible to cater for other microarray and transcriptomic platforms. Conclusion EMAAS enables users to track and perform microarray data management and analysis tasks through a single easy-to-use web application. The system architecture is flexible and scalable to allow new array types, analysis algorithms and tools to be added with relative ease and to cope with large increases in data volume. PMID:19032776
Tall, Ben Davies; Gangiredla, Jayanthi; Gopinath, Gopal R.; Yan, Qiongqiong; Chase, Hannah R.; Lee, Boram; Hwang, Seongeun; Trach, Larisa; Park, Eunbi; Yoo, YeonJoo; Chung, TaeJung; Jackson, Scott A.; Patel, Isha R.; Sathyamoorthy, Venugopal; Pava-Ripoll, Monica; Kotewicz, Michael L.; Carter, Laurenda; Iversen, Carol; Pagotto, Franco; Stephan, Roger; Lehner, Angelika; Fanning, Séamus; Grim, Christopher J.
2015-01-01
Cronobacter species cause infections in all age groups; however neonates are at highest risk and remain the most susceptible age group for life-threatening invasive disease. The genus contains seven species:Cronobacter sakazakii, Cronobacter malonaticus, Cronobacter turicensis, Cronobacter muytjensii, Cronobacter dublinensis, Cronobacter universalis, and Cronobacter condimenti. Despite an abundance of published genomes of these species, genomics-based epidemiology of the genus is not well established. The gene content of a diverse group of 126 unique Cronobacter and taxonomically related isolates was determined using a pan genomic-based DNA microarray as a genotyping tool and as a means to identify outbreak isolates for food safety, environmental, and clinical surveillance purposes. The microarray constitutes 19,287 independent genes representing 15 Cronobacter genomes and 18 plasmids and 2,371 virulence factor genes of phylogenetically related Gram-negative bacteria. The Cronobacter microarray was able to distinguish the seven Cronobacter species from one another and from non-Cronobacter species; and within each species, strains grouped into distinct clusters based on their genomic diversity. These results also support the phylogenic divergence of the genus and clearly highlight the genomic diversity among each member of the genus. The current study establishes a powerful platform for further genomics research of this diverse genus, an important prerequisite toward the development of future countermeasures against this foodborne pathogen in the food safety and clinical arenas. PMID:25984509
An Introduction to MAMA (Meta-Analysis of MicroArray data) System.
Zhang, Zhe; Fenstermacher, David
2005-01-01
Analyzing microarray data across multiple experiments has been proven advantageous. To support this kind of analysis, we are developing a software system called MAMA (Meta-Analysis of MicroArray data). MAMA utilizes a client-server architecture with a relational database on the server-side for the storage of microarray datasets collected from various resources. The client-side is an application running on the end user's computer that allows the user to manipulate microarray data and analytical results locally. MAMA implementation will integrate several analytical methods, including meta-analysis within an open-source framework offering other developers the flexibility to plug in additional statistical algorithms.
Dai, Zhimin; Guo, Xue; Yin, Huaqun; Liang, Yili; Cong, Jing; Liu, Xueduan
2014-01-01
Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community.
Yin, Huaqun; Liang, Yili; Cong, Jing; Liu, Xueduan
2014-01-01
Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community. PMID:24498417
Genome-wide identification and characterisation of F-box family in maize.
Jia, Fengjuan; Wu, Bingjiang; Li, Hui; Huang, Jinguang; Zheng, Chengchao
2013-11-01
F-box-containing proteins, as the key components of the protein degradation machinery, are widely distributed in higher plants and are considered as one of the largest known families of regulatory proteins. The F-box protein family plays a crucial role in plant growth and development and in response to biotic and abiotic stresses. However, systematic analysis of the F-box family in maize (Zea mays) has not been reported yet. In this paper, we identified and characterised the maize F-box genes in a genome-wide scale, including phylogenetic analysis, chromosome distribution, gene structure, promoter analysis and gene expression profiles. A total of 359 F-box genes were identified and divided into 15 subgroups by phylogenetic analysis. The F-box domain was relatively conserved, whereas additional motifs outside the F-box domain may indicate the functional diversification of maize F-box genes. These genes were unevenly distributed in ten maize chromosomes, suggesting that they expanded in the maize genome because of tandem and segmental duplication events. The expression profiles suggested that the maize F-box genes had temporal and spatial expression patterns. Putative cis-acting regulatory DNA elements involved in abiotic stresses were observed in maize F-box gene promoters. The gene expression profiles under abiotic stresses also suggested that some genes participated in stress responsive pathways. Furthermore, ten genes were chosen for quantitative real-time PCR analysis under drought stress and the results were consistent with the microarray data. This study has produced a comparative genomics analysis of the maize ZmFBX gene family that can be used in further studies to uncover their roles in maize growth and development.
Chang, Yan-Li; Li, Wen-Yan; Miao, Hai; Yang, Shuai-Qi; Li, Ri; Wang, Xiang; Li, Wen-Qiang; Chen, Kun-Ming
2016-02-23
Plasma membrane NADPH oxidases (NOXs) are key producers of reactive oxygen species under both normal and stress conditions in plants and they form functional subfamilies. Studies of these subfamilies indicated that they show considerable evolutionary selection. We performed a comparative genomic analysis that identified 50 ferric reduction oxidases (FRO) and 77 NOX gene homologs from 20 species representing the eight major plant lineages within the supergroup Plantae: glaucophytes, rhodophytes, chlorophytes, bryophytes, lycophytes, gymnosperms, monocots, and eudicots. Phylogenetic and structural analysis classified these FRO and NOX genes into four well-conserved groups represented as NOX, FRO I, FRO II, and FRO III. Further analysis of NOXs of phylogenetic and exon/intron structures showed that single intron loss and gain had occurred, yielding the diversified gene structures during the evolution of NOXs family genes and which were classified into four conserved subfamilies which are represented as Sub.I, Sub.II, Sub.III, and Sub.IV. Additionally, both available global microarray data analysis and quantitative real-time PCR experiments revealed that the NOX genes in Arabidopsis and rice (Oryza sativa) have different expression patterns in different developmental stages, various abiotic stresses and hormone treatments. Finally, coexpression network analysis of NOX genes in Arabidopsis and rice revealed that NOXs have significantly correlated expression profiles with genes which are involved in plants metabolic and resistance progresses. All these results suggest that NOX family underscores the functional diversity and divergence in plants. This finding will facilitate further studies of the NOX family and provide valuable information for functional validation of this family in plants. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Genome-wide identification and expression analysis of MAPK and MAPKK gene family in Malus domestica.
Zhang, Shizhong; Xu, Ruirui; Luo, Xiaocui; Jiang, Zesheng; Shu, Huairui
2013-12-01
MAPK signal transduction modules play crucial roles in regulating many biological processes in plants, which are composed of three classes of hierarchically organized protein kinases, namely MAPKKKs, MAPKKs, and MAPKs. Although genome-wide analysis of this family has been carried out in some species, little is known about MAPK and MAPKK genes in apple (Malus domestica). In this study, a total of 26 putative apple MAPK genes (MdMPKs) and 9 putative apple MAPKK genes (MdMKKs) have been identified and located within the apple genome. Phylogenetic analysis revealed that MdMAPKs and MdMAPKKs could be divided into 4 subfamilies (groups A, B, C and D), respectively. The predicted MdMAPKs and MdMAPKKs were distributed across 13 out of 17 chromosomes with different densities. In addition, analysis of exon-intron junctions and of intron phase inside the predicted coding region of each candidate gene has revealed high levels of conservation within and between phylogenetic groups. According to the microarray and expressed sequence tag (EST) analysis, the different expression patterns indicate that they may play different roles during fruit development and rootstock-scion interaction process. Moreover, MAPK and MAPKK genes were performed expression profile analyses in different tissues (root, stem, leaf, flower and fruit), and all of the selected genes were expressed in at least one of the tissues tested, indicating that the MAPKs and MAPKKs are involved in various aspects of physiological and developmental processes of apple. To our knowledge, this is the first report of a genome-wide analysis of the apple MAPK and MAPKK gene family. This study provides valuable information for understanding the classification and putative functions of the MAPK signal in apple. © 2013.
2012-01-01
Background GDSL esterases/lipases are a newly discovered subclass of lipolytic enzymes that are very important and attractive research subjects because of their multifunctional properties, such as broad substrate specificity and regiospecificity. Compared with the current knowledge regarding these enzymes in bacteria, our understanding of the plant GDSL enzymes is very limited, although the GDSL gene family in plant species include numerous members in many fully sequenced plant genomes. Only two genes from a large rice GDSL esterase/lipase gene family were previously characterised, and the majority of the members remain unknown. In the present study, we describe the rice OsGELP (Oryza sativa GDSL esterase/lipase protein) gene family at the genomic and proteomic levels, and use this knowledge to provide insights into the multifunctionality of the rice OsGELP enzymes. Results In this study, an extensive bioinformatics analysis identified 114 genes in the rice OsGELP gene family. A complete overview of this family in rice is presented, including the chromosome locations, gene structures, phylogeny, and protein motifs. Among the OsGELPs and the plant GDSL esterase/lipase proteins of known functions, 41 motifs were found that represent the core secondary structure elements or appear specifically in different phylogenetic subclades. The specification and distribution of identified putative conserved clade-common and -specific peptide motifs, and their location on the predicted protein three dimensional structure may possibly signify their functional roles. Potentially important regions for substrate specificity are highlighted, in accordance with protein three-dimensional model and location of the phylogenetic specific conserved motifs. The differential expression of some representative genes were confirmed by quantitative real-time PCR. The phylogenetic analysis, together with protein motif architectures, and the expression profiling were analysed to predict the possible biological functions of the rice OsGELP genes. Conclusions Our current genomic analysis, for the first time, presents fundamental information on the organization of the rice OsGELP gene family. With combination of the genomic, phylogenetic, microarray expression, protein motif distribution, and protein structure analyses, we were able to create supported basis for the functional prediction of many members in the rice GDSL esterase/lipase family. The present study provides a platform for the selection of candidate genes for further detailed functional study. PMID:22793791
Li, Dongmei; Le Pape, Marc A; Parikh, Nisha I; Chen, Will X; Dye, Timothy D
2013-01-01
Microarrays are widely used for examining differential gene expression, identifying single nucleotide polymorphisms, and detecting methylation loci. Multiple testing methods in microarray data analysis aim at controlling both Type I and Type II error rates; however, real microarray data do not always fit their distribution assumptions. Smyth's ubiquitous parametric method, for example, inadequately accommodates violations of normality assumptions, resulting in inflated Type I error rates. The Significance Analysis of Microarrays, another widely used microarray data analysis method, is based on a permutation test and is robust to non-normally distributed data; however, the Significance Analysis of Microarrays method fold change criteria are problematic, and can critically alter the conclusion of a study, as a result of compositional changes of the control data set in the analysis. We propose a novel approach, combining resampling with empirical Bayes methods: the Resampling-based empirical Bayes Methods. This approach not only reduces false discovery rates for non-normally distributed microarray data, but it is also impervious to fold change threshold since no control data set selection is needed. Through simulation studies, sensitivities, specificities, total rejections, and false discovery rates are compared across the Smyth's parametric method, the Significance Analysis of Microarrays, and the Resampling-based empirical Bayes Methods. Differences in false discovery rates controls between each approach are illustrated through a preterm delivery methylation study. The results show that the Resampling-based empirical Bayes Methods offer significantly higher specificity and lower false discovery rates compared to Smyth's parametric method when data are not normally distributed. The Resampling-based empirical Bayes Methods also offers higher statistical power than the Significance Analysis of Microarrays method when the proportion of significantly differentially expressed genes is large for both normally and non-normally distributed data. Finally, the Resampling-based empirical Bayes Methods are generalizable to next generation sequencing RNA-seq data analysis.
Transfection microarray and the applications.
Miyake, Masato; Yoshikawa, Tomohiro; Fujita, Satoshi; Miyake, Jun
2009-05-01
Microarray transfection has been extensively studied for high-throughput functional analysis of mammalian cells. However, control of efficiency and reproducibility are the critical issues for practical use. By using solid-phase transfection accelerators and nano-scaffold, we provide a highly efficient and reproducible microarray-transfection device, "transfection microarray". The device would be applied to the limited number of available primary cells and stem cells not only for large-scale functional analysis but also reporter-based time-lapse cellular event analysis.
Zhang, Zhaowei; Li, Peiwu; Hu, Xiaofeng; Zhang, Qi; Ding, Xiaoxia; Zhang, Wen
2012-01-01
Chemical contaminants in food have caused serious health issues in both humans and animals. Microarray technology is an advanced technique suitable for the analysis of chemical contaminates. In particular, immuno-microarray approach is one of the most promising methods for chemical contaminants analysis. The use of microarrays for the analysis of chemical contaminants is the subject of this review. Fabrication strategies and detection methods for chemical contaminants are discussed in detail. Application to the analysis of mycotoxins, biotoxins, pesticide residues, and pharmaceutical residues is also described. Finally, future challenges and opportunities are discussed.
Contributions to Statistical Problems Related to Microarray Data
ERIC Educational Resources Information Center
Hong, Feng
2009-01-01
Microarray is a high throughput technology to measure the gene expression. Analysis of microarray data brings many interesting and challenging problems. This thesis consists three studies related to microarray data. First, we propose a Bayesian model for microarray data and use Bayes Factors to identify differentially expressed genes. Second, we…
Genetics of PCOS: A systematic bioinformatics approach to unveil the proteins responsible for PCOS.
Panda, Pritam Kumar; Rane, Riya; Ravichandran, Rahul; Singh, Shrinkhla; Panchal, Hetalkumar
2016-06-01
Polycystic ovary syndrome (PCOS) is a hormonal imbalance in women, which causes problems during menstrual cycle and in pregnancy that sometimes results in fatality. Though the genetics of PCOS is not fully understood, early diagnosis and treatment can prevent long-term effects. In this study, we have studied the proteins involved in PCOS and the structural aspects of the proteins that are taken into consideration using computational tools. The proteins involved are modeled using Modeller 9v14 and Ab-initio programs. All the 43 proteins responsible for PCOS were subjected to phylogenetic analysis to identify the relatedness of the proteins. Further, microarray data analysis of PCOS datasets was analyzed that was downloaded from GEO datasets to find the significant protein-coding genes responsible for PCOS, which is an addition to the reported protein-coding genes. Various statistical analyses were done using R programming to get an insight into the structural aspects of PCOS that can be used as drug targets to treat PCOS and other related reproductive diseases.
Microarray platform for omics analysis
NASA Astrophysics Data System (ADS)
Mecklenburg, Michael; Xie, Bin
2001-09-01
Microarray technology has revolutionized genetic analysis. However, limitations in genome analysis has lead to renewed interest in establishing 'omic' strategies. As we enter the post-genomic era, new microarray technologies are needed to address these new classes of 'omic' targets, such as proteins, as well as lipids and carbohydrates. We have developed a microarray platform that combines self- assembling monolayers with the biotin-streptavidin system to provide a robust, versatile immobilization scheme. A hydrophobic film is patterned on the surface creating an array of tension wells that eliminates evaporation effects thereby reducing the shear stress to which biomolecules are exposed to during immobilization. The streptavidin linker layer makes it possible to adapt and/or develop microarray based assays using virtually any class of biomolecules including: carbohydrates, peptides, antibodies, receptors, as well as them ore traditional DNA based arrays. Our microarray technology is designed to furnish seamless compatibility across the various 'omic' platforms by providing a common blueprint for fabricating and analyzing arrays. The prototype microarray uses a microscope slide footprint patterned with 2 by 96 flat wells. Data on the microarray platform will be presented.
Metatranscriptome analysis of the microbial fermentation of dietary milk proteins in the murine gut.
Hugenholtz, Floor; Davids, Mark; Schwarz, Jessica; Müller, Michael; Tomé, Daniel; Schaap, Peter; Hooiveld, Guido J E J; Smidt, Hauke; Kleerebezem, Michiel
2018-01-01
Undigestible food ingredients are converted by the microbiota into a large range of metabolites, predominated by short chain fatty acids (SCFA). These microbial metabolites are subsequently available for absorption by the host mucosa and can serve as an energy source. Amino acids fermentation by the microbiota expands the spectrum of fermentation end-products beyond acetate, propionate and butyrate, to include in particular branched-SCFA. Here the long-term effects of high protein-diets on microbial community composition and functionality in mice were analyzed. Determinations of the microbiota composition using phylogenetic microarray (MITChip) technology were complemented with metatranscriptome and SCFA analyses to obtain insight in in situ expression of protein fermentation pathways and the phylogenetic groups involved. High protein diets led to increased luminal concentrations of branched-SCFA, in accordance with protein fermentation in the gut. Bacteria dominantly participating in protein catabolism belonged to the Lachnospiraceae, Erysipelotrichaceae and Clostridiaceae families in both normal- and high- protein diet regimes. This study identifies the microbial groups involved in protein catabolism in the intestine and underpins the value of in situ metatranscriptome analyses as an approach to decipher locally active metabolic networks and pathways as a function of the dietary regime, as well as the phylogeny of the microorganisms executing them.
Cell Wall Remodeling in Abscission Zone Cells during Ethylene-Promoted Fruit Abscission in Citrus
Merelo, Paz; Agustí, Javier; Arbona, Vicent; Costa, Mário L.; Estornell, Leandro H.; Gómez-Cadenas, Aurelio; Coimbra, Silvia; Gómez, María D.; Pérez-Amador, Miguel A.; Domingo, Concha; Talón, Manuel; Tadeo, Francisco R.
2017-01-01
Abscission is a cell separation process by which plants can shed organs such as fruits, leaves, or flowers. The process takes place in specific locations termed abscission zones. In fruit crops like citrus, fruit abscission represents a high percentage of annual yield losses. Thus, understanding the molecular regulation of abscission is of capital relevance to control production. To identify genes preferentially expressed within the citrus fruit abscission zone (AZ-C), we performed a comparative transcriptomics assay at the cell type resolution level between the AZ-C and adjacent fruit rind cells (non-abscising tissue) during ethylene-promoted abscission. Our strategy combined laser microdissection with microarray analysis. Cell wall modification-related gene families displayed prominent representation in the AZ-C. Phylogenetic analyses of such gene families revealed a link between phylogenetic proximity and expression pattern during abscission suggesting highly conserved roles for specific members of these families in abscission. Our transcriptomic data was validated with (and strongly supported by) a parallel approach consisting on anatomical, histochemical and biochemical analyses on the AZ-C during fruit abscission. Our work identifies genes potentially involved in organ abscission and provides relevant data for future biotechnology approaches aimed at controlling such crucial process for citrus yield. PMID:28228766
Identifying Fishes through DNA Barcodes and Microarrays.
Kochzius, Marc; Seidel, Christian; Antoniou, Aglaia; Botla, Sandeep Kumar; Campo, Daniel; Cariani, Alessia; Vazquez, Eva Garcia; Hauschild, Janet; Hervet, Caroline; Hjörleifsdottir, Sigridur; Hreggvidsson, Gudmundur; Kappel, Kristina; Landi, Monica; Magoulas, Antonios; Marteinsson, Viggo; Nölte, Manfred; Planes, Serge; Tinti, Fausto; Turan, Cemal; Venugopal, Moleyur N; Weber, Hannes; Blohm, Dietmar
2010-09-07
International fish trade reached an import value of 62.8 billion Euro in 2006, of which 44.6% are covered by the European Union. Species identification is a key problem throughout the life cycle of fishes: from eggs and larvae to adults in fisheries research and control, as well as processed fish products in consumer protection. This study aims to evaluate the applicability of the three mitochondrial genes 16S rRNA (16S), cytochrome b (cyt b), and cytochrome oxidase subunit I (COI) for the identification of 50 European marine fish species by combining techniques of "DNA barcoding" and microarrays. In a DNA barcoding approach, neighbour Joining (NJ) phylogenetic trees of 369 16S, 212 cyt b, and 447 COI sequences indicated that cyt b and COI are suitable for unambiguous identification, whereas 16S failed to discriminate closely related flatfish and gurnard species. In course of probe design for DNA microarray development, each of the markers yielded a high number of potentially species-specific probes in silico, although many of them were rejected based on microarray hybridisation experiments. None of the markers provided probes to discriminate the sibling flatfish and gurnard species. However, since 16S-probes were less negatively influenced by the "position of label" effect and showed the lowest rejection rate and the highest mean signal intensity, 16S is more suitable for DNA microarray probe design than cty b and COI. The large portion of rejected COI-probes after hybridisation experiments (>90%) renders the DNA barcoding marker as rather unsuitable for this high-throughput technology. Based on these data, a DNA microarray containing 64 functional oligonucleotide probes for the identification of 30 out of the 50 fish species investigated was developed. It represents the next step towards an automated and easy-to-handle method to identify fish, ichthyoplankton, and fish products.
Microarrays in brain research: the good, the bad and the ugly.
Mirnics, K
2001-06-01
Making sense of microarray data is a complex process, in which the interpretation of findings will depend on the overall experimental design and judgement of the investigator performing the analysis. As a result, differences in tissue harvesting, microarray types, sample labelling and data analysis procedures make post hoc sharing of microarray data a great challenge. To ensure rapid and meaningful data exchange, we need to create some order out of the existing chaos. In these ground-breaking microarray standardization and data sharing efforts, NIH agencies should take a leading role
Huang, Jianyan; Zhao, Xiaobo; Weng, Xiaoyu; Wang, Lei; Xie, Weibo
2012-01-01
Background The B-box (BBX) -containing proteins are a class of zinc finger proteins that contain one or two B-box domains and play important roles in plant growth and development. The Arabidopsis BBX gene family has recently been re-identified and renamed. However, there has not been a genome-wide survey of the rice BBX (OsBBX) gene family until now. Methodology/Principal Findings In this study, we identified 30 rice BBX genes through a comprehensive bioinformatics analysis. Each gene was assigned a uniform nomenclature. We described the chromosome localizations, gene structures, protein domains, phylogenetic relationship, whole life-cycle expression profile and diurnal expression patterns of the OsBBX family members. Based on the phylogeny and domain constitution, the OsBBX gene family was classified into five subfamilies. The gene duplication analysis revealed that only chromosomal segmental duplication contributed to the expansion of the OsBBX gene family. The expression profile of the OsBBX genes was analyzed by Affymetrix GeneChip microarrays throughout the entire life-cycle of rice cultivar Zhenshan 97 (ZS97). In addition, microarray analysis was performed to obtain the expression patterns of these genes under light/dark conditions and after three phytohormone treatments. This analysis revealed that the expression patterns of the OsBBX genes could be classified into eight groups. Eight genes were regulated under the light/dark treatments, and eleven genes showed differential expression under at least one phytohormone treatment. Moreover, we verified the diurnal expression of the OsBBX genes using the data obtained from the Diurnal Project and qPCR analysis, and the results indicated that many of these genes had a diurnal expression pattern. Conclusions/Significance The combination of the genome-wide identification and the expression and diurnal analysis of the OsBBX gene family should facilitate additional functional studies of the OsBBX genes. PMID:23118960
Trivedi, Prinal; Edwards, Jode W; Wang, Jelai; Gadbury, Gary L; Srinivasasainagendra, Vinodh; Zakharkin, Stanislav O; Kim, Kyoungmi; Mehta, Tapan; Brand, Jacob P L; Patki, Amit; Page, Grier P; Allison, David B
2005-04-06
Many efforts in microarray data analysis are focused on providing tools and methods for the qualitative analysis of microarray data. HDBStat! (High-Dimensional Biology-Statistics) is a software package designed for analysis of high dimensional biology data such as microarray data. It was initially developed for the analysis of microarray gene expression data, but it can also be used for some applications in proteomics and other aspects of genomics. HDBStat! provides statisticians and biologists a flexible and easy-to-use interface to analyze complex microarray data using a variety of methods for data preprocessing, quality control analysis and hypothesis testing. Results generated from data preprocessing methods, quality control analysis and hypothesis testing methods are output in the form of Excel CSV tables, graphs and an Html report summarizing data analysis. HDBStat! is a platform-independent software that is freely available to academic institutions and non-profit organizations. It can be downloaded from our website http://www.soph.uab.edu/ssg_content.asp?id=1164.
Genome-Wide Identification, Evolution and Expression Analysis of mTERF Gene Family in Maize
Zhao, Yanxin; Cai, Manjun; Zhang, Xiaobo; Li, Yurong; Zhang, Jianhua; Zhao, Hailiang; Kong, Fei; Zheng, Yonglian; Qiu, Fazhan
2014-01-01
Plant mitochondrial transcription termination factor (mTERF) genes comprise a large family with important roles in regulating organelle gene expression. In this study, a comprehensive database search yielded 31 potential mTERF genes in maize (Zea mays L.) and most of them were targeted to mitochondria or chloroplasts. Maize mTERF were divided into nine main groups based on phylogenetic analysis, and group IX represented the mitochondria and species-specific clade that diverged from other groups. Tandem and segmental duplication both contributed to the expansion of the mTERF gene family in the maize genome. Comprehensive expression analysis of these genes, using microarray data and RNA-seq data, revealed that these genes exhibit a variety of expression patterns. Environmental stimulus experiments revealed differential up or down-regulation expression of maize mTERF genes in seedlings exposed to light/dark, salts and plant hormones, respectively, suggesting various important roles of maize mTERF genes in light acclimation and stress-related responses. These results will be useful for elucidating the roles of mTERF genes in the growth, development and stress response of maize. PMID:24718683
ArrayNinja: An Open Source Platform for Unified Planning and Analysis of Microarray Experiments.
Dickson, B M; Cornett, E M; Ramjan, Z; Rothbart, S B
2016-01-01
Microarray-based proteomic platforms have emerged as valuable tools for studying various aspects of protein function, particularly in the field of chromatin biochemistry. Microarray technology itself is largely unrestricted in regard to printable material and platform design, and efficient multidimensional optimization of assay parameters requires fluidity in the design and analysis of custom print layouts. This motivates the need for streamlined software infrastructure that facilitates the combined planning and analysis of custom microarray experiments. To this end, we have developed ArrayNinja as a portable, open source, and interactive application that unifies the planning and visualization of microarray experiments and provides maximum flexibility to end users. Array experiments can be planned, stored to a private database, and merged with the imaged results for a level of data interaction and centralization that is not currently attainable with available microarray informatics tools. © 2016 Elsevier Inc. All rights reserved.
Resolution in forensic microbial genotyping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velsko, S P
2005-08-30
Resolution is a key parameter for differentiating among the large number of strain typing methods that could be applied to pathogens involved in bioterror events or biocrimes. In this report we develop a first-principles analysis of strain typing resolution using a simple mathematical model to provide a basis for the rational design of microbial typing systems for forensic applications. We derive two figures of merit that describe the resolving power and phylogenetic depth of a strain typing system. Rough estimates of these figures-of-merit for MLVA, MLST, IS element, AFLP, hybridization microarrays, and other bacterial typing methods are derived from mutationmore » rate data reported in the literature. We also discuss the general problem of how to construct a ''universal'' practical typing system that has the highest possible resolution short of whole-genome sequencing, and that is applicable with minimal modification to a wide range of pathogens.« less
Sequence Variability and Geographic Distribution of Lassa Virus, Sierra Leone
Stockelman, Michael G.; Moses, Lina M.; Park, Matthew; Stenger, David A.; Ansumana, Rashid; Bausch, Daniel G.; Lin, Baochuan
2015-01-01
Lassa virus (LASV) is endemic to parts of West Africa and causes highly fatal hemorrhagic fever. The multimammate rat (Mastomys natalensis) is the only known reservoir of LASV. Most human infections result from zoonotic transmission. The very diverse LASV genome has 4 major lineages associated with different geographic locations. We used reverse transcription PCR and resequencing microarrays to detect LASV in 41 of 214 samples from rodents captured at 8 locations in Sierra Leone. Phylogenetic analysis of partial sequences of nucleoprotein (NP), glycoprotein precursor (GPC), and polymerase (L) genes showed 5 separate clades within lineage IV of LASV in this country. The sequence diversity was higher than previously observed; mean diversity was 7.01% for nucleoprotein gene at the nucleotide level. These results may have major implications for designing diagnostic tests and therapeutic agents for LASV infections in Sierra Leone. PMID:25811712
NASA Astrophysics Data System (ADS)
Mason, O. U.; di Meo-Savoie, C. A.; Nakagawa, T.; van Nostrand, J. D.; Rosner, M.; Maruyama, A.; Zhou, J.; Fisk, M. R.; Giovannoni, S. J.
2008-12-01
Oceanic crust covers nearly 70% of the Earth's surface, of which, the upper, sediment layer is estimated to harbor substantial microbial biomass. Marine crust, however, extends several kilometers beyond this surficial layer, and includes the basalt and gabbro layers. The microbial diversity in basalts is well characterized, yet metabolic diversity is unknown. To date, the microflora associated with gabbros, including microbial and metabolic diversity has not been reported. In our analyses basaltic and gabbroic endoliths were analyzed using terminal restriction fragment length polymorphism, cloning and sequencing, and microarray analysis of functional genes. Our results suggest that despite nearly identical chemical compositions of basalt and gabbro the associated microflora did not overlap. Basalt samples harbor a surprising diversity of seemingly cosmopolitan microorganisms, some of which appear to be basalt specialists. Conversely, gabbros have a low diversity of endoliths, none of which appear to be specifically adapted to the gabbroic environment. Microarray analysis (GeoChip) was used to assay for functional gene diversity in basalts and gabbros. In basalt genes coding for previously unreported processes such as carbon fixation, methane-oxidation, methanogenesis, and nitrogen fixation were present, suggesting that basalts harbor previously unrecognized metabolic diversity. Similar processes were observed in gabbroic samples, yet metabolic inference from phylogenetic relationships of gabbroic endoliths with other microorganisms, suggests that hydrocarbon oxidation is the prevailing metabolism in this environment. Our analyses revealed that the basalt and gabbro layers harbor microorganisms with the genetic potential to significantly impact biogeochemical cycling in the lithosphere and overlying hydrosphere.
Atack, John M; Srikhanta, Yogitha N; Djoko, Karrera Y; Welch, Jessica P; Hasri, Norain H M; Steichen, Christopher T; Vanden Hoven, Rachel N; Grimmond, Sean M; Othman, Dk Seti Maimonah Pg; Kappler, Ulrike; Apicella, Michael A; Jennings, Michael P; Edwards, Jennifer L; McEwan, Alastair G
2013-06-01
NtrYX is a sensor-histidine kinase/response regulator two-component system that has had limited characterization in a small number of Alphaproteobacteria. Phylogenetic analysis of the response regulator NtrX showed that this two-component system is extensively distributed across the bacterial domain, and it is present in a variety of Betaproteobacteria, including the human pathogen Neisseria gonorrhoeae. Microarray analysis revealed that the expression of several components of the respiratory chain was reduced in an N. gonorrhoeae ntrX mutant compared to that in the isogenic wild-type (WT) strain 1291. These included the cytochrome c oxidase subunit (ccoP), nitrite reductase (aniA), and nitric oxide reductase (norB). Enzyme activity assays showed decreased cytochrome oxidase and nitrite reductase activities in the ntrX mutant, consistent with microarray data. N. gonorrhoeae ntrX mutants had reduced capacity to survive inside primary cervical cells compared to the wild type, and although they retained the ability to form a biofilm, they exhibited reduced survival within the biofilm compared to wild-type cells, as indicated by LIVE/DEAD staining. Analyses of an ntrX mutant in a representative alphaproteobacterium, Rhodobacter capsulatus, showed that cytochrome oxidase activity was also reduced compared to that in the wild-type strain SB1003. Taken together, these data provide evidence that the NtrYX two-component system may be a key regulator in the expression of respiratory enzymes and, in particular, cytochrome c oxidase, across a wide range of proteobacteria, including a variety of bacterial pathogens.
WebArray: an online platform for microarray data analysis
Xia, Xiaoqin; McClelland, Michael; Wang, Yipeng
2005-01-01
Background Many cutting-edge microarray analysis tools and algorithms, including commonly used limma and affy packages in Bioconductor, need sophisticated knowledge of mathematics, statistics and computer skills for implementation. Commercially available software can provide a user-friendly interface at considerable cost. To facilitate the use of these tools for microarray data analysis on an open platform we developed an online microarray data analysis platform, WebArray, for bench biologists to utilize these tools to explore data from single/dual color microarray experiments. Results The currently implemented functions were based on limma and affy package from Bioconductor, the spacings LOESS histogram (SPLOSH) method, PCA-assisted normalization method and genome mapping method. WebArray incorporates these packages and provides a user-friendly interface for accessing a wide range of key functions of limma and others, such as spot quality weight, background correction, graphical plotting, normalization, linear modeling, empirical bayes statistical analysis, false discovery rate (FDR) estimation, chromosomal mapping for genome comparison. Conclusion WebArray offers a convenient platform for bench biologists to access several cutting-edge microarray data analysis tools. The website is freely available at . It runs on a Linux server with Apache and MySQL. PMID:16371165
Issues in the analysis of oligonucleotide tiling microarrays for transcript mapping
NASA Technical Reports Server (NTRS)
Royce, Thomas E.; Rozowsky, Joel S.; Bertone, Paul; Samanta, Manoj; Stolc, Viktor; Weissman, Sherman; Snyder, Michael; Gerstein, Mark
2005-01-01
Traditional microarrays use probes complementary to known genes to quantitate the differential gene expression between two or more conditions. Genomic tiling microarray experiments differ in that probes that span a genomic region at regular intervals are used to detect the presence or absence of transcription. This difference means the same sets of biases and the methods for addressing them are unlikely to be relevant to both types of experiment. We introduce the informatics challenges arising in the analysis of tiling microarray experiments as open problems to the scientific community and present initial approaches for the analysis of this nascent technology.
Gong, Wei; He, Kun; Covington, Mike; Dinesh-Kumar, S. P.; Snyder, Michael; Harmer, Stacey L.; Zhu, Yu-Xian; Deng, Xing Wang
2009-01-01
We used our collection of Arabidopsis transcription factor (TF) ORFeome clones to construct protein microarrays containing as many as 802 TF proteins. These protein microarrays were used for both protein-DNA and protein-protein interaction analyses. For protein-DNA interaction studies, we examined AP2/ERF family TFs and their cognate cis-elements. By careful comparison of the DNA-binding specificity of 13 TFs on the protein microarray with previous non-microarray data, we showed that protein microarrays provide an efficient and high throughput tool for genome-wide analysis of TF-DNA interactions. This microarray protein-DNA interaction analysis allowed us to derive a comprehensive view of DNA-binding profiles of AP2/ERF family proteins in Arabidopsis. It also revealed four TFs that bound the EE (evening element) and had the expected phased gene expression under clock-regulation, thus providing a basis for further functional analysis of their roles in clock regulation of gene expression. We also developed procedures for detecting protein interactions using this TF protein microarray and discovered four novel partners that interact with HY5, which can be validated by yeast two-hybrid assays. Thus, plant TF protein microarrays offer an attractive high-throughput alternative to traditional techniques for TF functional characterization on a global scale. PMID:19802365
Karyotype versus microarray testing for genetic abnormalities after stillbirth.
Reddy, Uma M; Page, Grier P; Saade, George R; Silver, Robert M; Thorsten, Vanessa R; Parker, Corette B; Pinar, Halit; Willinger, Marian; Stoll, Barbara J; Heim-Hall, Josefine; Varner, Michael W; Goldenberg, Robert L; Bukowski, Radek; Wapner, Ronald J; Drews-Botsch, Carolyn D; O'Brien, Barbara M; Dudley, Donald J; Levy, Brynn
2012-12-06
Genetic abnormalities have been associated with 6 to 13% of stillbirths, but the true prevalence may be higher. Unlike karyotype analysis, microarray analysis does not require live cells, and it detects small deletions and duplications called copy-number variants. The Stillbirth Collaborative Research Network conducted a population-based study of stillbirth in five geographic catchment areas. Standardized postmortem examinations and karyotype analyses were performed. A single-nucleotide polymorphism array was used to detect copy-number variants of at least 500 kb in placental or fetal tissue. Variants that were not identified in any of three databases of apparently unaffected persons were then classified into three groups: probably benign, clinical significance unknown, or pathogenic. We compared the results of karyotype and microarray analyses of samples obtained after delivery. In our analysis of samples from 532 stillbirths, microarray analysis yielded results more often than did karyotype analysis (87.4% vs. 70.5%, P<0.001) and provided better detection of genetic abnormalities (aneuploidy or pathogenic copy-number variants, 8.3% vs. 5.8%; P=0.007). Microarray analysis also identified more genetic abnormalities among 443 antepartum stillbirths (8.8% vs. 6.5%, P=0.02) and 67 stillbirths with congenital anomalies (29.9% vs. 19.4%, P=0.008). As compared with karyotype analysis, microarray analysis provided a relative increase in the diagnosis of genetic abnormalities of 41.9% in all stillbirths, 34.5% in antepartum stillbirths, and 53.8% in stillbirths with anomalies. Microarray analysis is more likely than karyotype analysis to provide a genetic diagnosis, primarily because of its success with nonviable tissue, and is especially valuable in analyses of stillbirths with congenital anomalies or in cases in which karyotype results cannot be obtained. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development.).
Emerging Use of Gene Expression Microarrays in Plant Physiology
Wullschleger, Stan D.; Difazio, Stephen P.
2003-01-01
Microarrays have become an important technology for the global analysis of gene expression in humans, animals, plants, and microbes. Implemented in the context of a well-designed experiment, cDNA and oligonucleotide arrays can provide highthroughput, simultaneous analysis of transcript abundance for hundreds, if not thousands, of genes. However, despite widespread acceptance, the use of microarrays as a tool to better understand processes of interest to the plant physiologist is still being explored. To help illustrate current uses of microarrays in the plant sciences, several case studies that we believe demonstrate the emerging application of gene expression arrays in plant physiology weremore » selected from among the many posters and presentations at the 2003 Plant and Animal Genome XI Conference. Based on this survey, microarrays are being used to assess gene expression in plants exposed to the experimental manipulation of air temperature, soil water content and aluminium concentration in the root zone. Analysis often includes characterizing transcript profiles for multiple post-treatment sampling periods and categorizing genes with common patterns of response using hierarchical clustering techniques. In addition, microarrays are also providing insights into developmental changes in gene expression associated with fibre and root elongation in cotton and maize, respectively. Technical and analytical limitations of microarrays are discussed and projects attempting to advance areas of microarray design and data analysis are highlighted. Finally, although much work remains, we conclude that microarrays are a valuable tool for the plant physiologist interested in the characterization and identification of individual genes and gene families with potential application in the fields of agriculture, horticulture and forestry.« less
A genome-wide 20 K citrus microarray for gene expression analysis
Martinez-Godoy, M Angeles; Mauri, Nuria; Juarez, Jose; Marques, M Carmen; Santiago, Julia; Forment, Javier; Gadea, Jose
2008-01-01
Background Understanding of genetic elements that contribute to key aspects of citrus biology will impact future improvements in this economically important crop. Global gene expression analysis demands microarray platforms with a high genome coverage. In the last years, genome-wide EST collections have been generated in citrus, opening the possibility to create new tools for functional genomics in this crop plant. Results We have designed and constructed a publicly available genome-wide cDNA microarray that include 21,081 putative unigenes of citrus. As a functional companion to the microarray, a web-browsable database [1] was created and populated with information about the unigenes represented in the microarray, including cDNA libraries, isolated clones, raw and processed nucleotide and protein sequences, and results of all the structural and functional annotation of the unigenes, like general description, BLAST hits, putative Arabidopsis orthologs, microsatellites, putative SNPs, GO classification and PFAM domains. We have performed a Gene Ontology comparison with the full set of Arabidopsis proteins to estimate the genome coverage of the microarray. We have also performed microarray hybridizations to check its usability. Conclusion This new cDNA microarray replaces the first 7K microarray generated two years ago and allows gene expression analysis at a more global scale. We have followed a rational design to minimize cross-hybridization while maintaining its utility for different citrus species. Furthermore, we also provide access to a website with full structural and functional annotation of the unigenes represented in the microarray, along with the ability to use this site to directly perform gene expression analysis using standard tools at different publicly available servers. Furthermore, we show how this microarray offers a good representation of the citrus genome and present the usefulness of this genomic tool for global studies in citrus by using it to catalogue genes expressed in citrus globular embryos. PMID:18598343
A Java-based tool for the design of classification microarrays.
Meng, Da; Broschat, Shira L; Call, Douglas R
2008-08-04
Classification microarrays are used for purposes such as identifying strains of bacteria and determining genetic relationships to understand the epidemiology of an infectious disease. For these cases, mixed microarrays, which are composed of DNA from more than one organism, are more effective than conventional microarrays composed of DNA from a single organism. Selection of probes is a key factor in designing successful mixed microarrays because redundant sequences are inefficient and limited representation of diversity can restrict application of the microarray. We have developed a Java-based software tool, called PLASMID, for use in selecting the minimum set of probe sequences needed to classify different groups of plasmids or bacteria. The software program was successfully applied to several different sets of data. The utility of PLASMID was illustrated using existing mixed-plasmid microarray data as well as data from a virtual mixed-genome microarray constructed from different strains of Streptococcus. Moreover, use of data from expression microarray experiments demonstrated the generality of PLASMID. In this paper we describe a new software tool for selecting a set of probes for a classification microarray. While the tool was developed for the design of mixed microarrays-and mixed-plasmid microarrays in particular-it can also be used to design expression arrays. The user can choose from several clustering methods (including hierarchical, non-hierarchical, and a model-based genetic algorithm), several probe ranking methods, and several different display methods. A novel approach is used for probe redundancy reduction, and probe selection is accomplished via stepwise discriminant analysis. Data can be entered in different formats (including Excel and comma-delimited text), and dendrogram, heat map, and scatter plot images can be saved in several different formats (including jpeg and tiff). Weights generated using stepwise discriminant analysis can be stored for analysis of subsequent experimental data. Additionally, PLASMID can be used to construct virtual microarrays with genomes from public databases, which can then be used to identify an optimal set of probes.
Tra, Yolande V; Evans, Irene M
2010-01-01
BIO2010 put forth the goal of improving the mathematical educational background of biology students. The analysis and interpretation of microarray high-dimensional data can be very challenging and is best done by a statistician and a biologist working and teaching in a collaborative manner. We set up such a collaboration and designed a course on microarray data analysis. We started using Genome Consortium for Active Teaching (GCAT) materials and Microarray Genome and Clustering Tool software and added R statistical software along with Bioconductor packages. In response to student feedback, one microarray data set was fully analyzed in class, starting from preprocessing to gene discovery to pathway analysis using the latter software. A class project was to conduct a similar analysis where students analyzed their own data or data from a published journal paper. This exercise showed the impact that filtering, preprocessing, and different normalization methods had on gene inclusion in the final data set. We conclude that this course achieved its goals to equip students with skills to analyze data from a microarray experiment. We offer our insight about collaborative teaching as well as how other faculty might design and implement a similar interdisciplinary course.
Evans, Irene M.
2010-01-01
BIO2010 put forth the goal of improving the mathematical educational background of biology students. The analysis and interpretation of microarray high-dimensional data can be very challenging and is best done by a statistician and a biologist working and teaching in a collaborative manner. We set up such a collaboration and designed a course on microarray data analysis. We started using Genome Consortium for Active Teaching (GCAT) materials and Microarray Genome and Clustering Tool software and added R statistical software along with Bioconductor packages. In response to student feedback, one microarray data set was fully analyzed in class, starting from preprocessing to gene discovery to pathway analysis using the latter software. A class project was to conduct a similar analysis where students analyzed their own data or data from a published journal paper. This exercise showed the impact that filtering, preprocessing, and different normalization methods had on gene inclusion in the final data set. We conclude that this course achieved its goals to equip students with skills to analyze data from a microarray experiment. We offer our insight about collaborative teaching as well as how other faculty might design and implement a similar interdisciplinary course. PMID:20810954
Chromosomal Microarray versus Karyotyping for Prenatal Diagnosis
Wapner, Ronald J.; Martin, Christa Lese; Levy, Brynn; Ballif, Blake C.; Eng, Christine M.; Zachary, Julia M.; Savage, Melissa; Platt, Lawrence D.; Saltzman, Daniel; Grobman, William A.; Klugman, Susan; Scholl, Thomas; Simpson, Joe Leigh; McCall, Kimberly; Aggarwal, Vimla S.; Bunke, Brian; Nahum, Odelia; Patel, Ankita; Lamb, Allen N.; Thom, Elizabeth A.; Beaudet, Arthur L.; Ledbetter, David H.; Shaffer, Lisa G.; Jackson, Laird
2013-01-01
Background Chromosomal microarray analysis has emerged as a primary diagnostic tool for the evaluation of developmental delay and structural malformations in children. We aimed to evaluate the accuracy, efficacy, and incremental yield of chromosomal microarray analysis as compared with karyotyping for routine prenatal diagnosis. Methods Samples from women undergoing prenatal diagnosis at 29 centers were sent to a central karyotyping laboratory. Each sample was split in two; standard karyotyping was performed on one portion and the other was sent to one of four laboratories for chromosomal microarray. Results We enrolled a total of 4406 women. Indications for prenatal diagnosis were advanced maternal age (46.6%), abnormal result on Down’s syndrome screening (18.8%), structural anomalies on ultrasonography (25.2%), and other indications (9.4%). In 4340 (98.8%) of the fetal samples, microarray analysis was successful; 87.9% of samples could be used without tissue culture. Microarray analysis of the 4282 nonmosaic samples identified all the aneuploidies and unbalanced rearrangements identified on karyotyping but did not identify balanced translocations and fetal triploidy. In samples with a normal karyotype, microarray analysis revealed clinically relevant deletions or duplications in 6.0% with a structural anomaly and in 1.7% of those whose indications were advanced maternal age or positive screening results. Conclusions In the context of prenatal diagnostic testing, chromosomal microarray analysis identified additional, clinically significant cytogenetic information as compared with karyotyping and was equally efficacious in identifying aneuploidies and unbalanced rearrangements but did not identify balanced translocations and triploidies. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and others; ClinicalTrials.gov number, NCT01279733.) PMID:23215555
Huang, Jinguang; Zheng, Chengchao
2013-01-01
RNA helicases are enzymes that are thought to unwind double-stranded RNA molecules in an energy-dependent fashion through the hydrolysis of NTP. RNA helicases are associated with all processes involving RNA molecules, including nuclear transcription, editing, splicing, ribosome biogenesis, RNA export, and organelle gene expression. The involvement of RNA helicase in response to stress and in plant growth and development has been reported previously. While their importance in Arabidopsis and Oryza sativa has been partially studied, the function of RNA helicase proteins is poorly understood in Zea mays and Glycine max. In this study, we identified a total of RNA helicase genes in Arabidopsis and other crop species genome by genome-wide comparative in silico analysis. We classified the RNA helicase genes into three subfamilies according to the structural features of the motif II region, such as DEAD-box, DEAH-box and DExD/H-box, and different species showed different patterns of alternative splicing. Secondly, chromosome location analysis showed that the RNA helicase protein genes were distributed across all chromosomes with different densities in the four species. Thirdly, phylogenetic tree analyses identified the relevant homologs of DEAD-box, DEAH-box and DExD/H-box RNA helicase proteins in each of the four species. Fourthly, microarray expression data showed that many of these predicted RNA helicase genes were expressed in different developmental stages and different tissues under normal growth conditions. Finally, real-time quantitative PCR analysis showed that the expression levels of 10 genes in Arabidopsis and 13 genes in Zea mays were in close agreement with the microarray expression data. To our knowledge, this is the first report of a comparative genome-wide analysis of the RNA helicase gene family in Arabidopsis, Oryza sativa, Zea mays and Glycine max. This study provides valuable information for understanding the classification and putative functions of the RNA helicase gene family in crop growth and development. PMID:24265739
Xu, Ruirui; Zhang, Shizhong; Huang, Jinguang; Zheng, Chengchao
2013-01-01
RNA helicases are enzymes that are thought to unwind double-stranded RNA molecules in an energy-dependent fashion through the hydrolysis of NTP. RNA helicases are associated with all processes involving RNA molecules, including nuclear transcription, editing, splicing, ribosome biogenesis, RNA export, and organelle gene expression. The involvement of RNA helicase in response to stress and in plant growth and development has been reported previously. While their importance in Arabidopsis and Oryza sativa has been partially studied, the function of RNA helicase proteins is poorly understood in Zea mays and Glycine max. In this study, we identified a total of RNA helicase genes in Arabidopsis and other crop species genome by genome-wide comparative in silico analysis. We classified the RNA helicase genes into three subfamilies according to the structural features of the motif II region, such as DEAD-box, DEAH-box and DExD/H-box, and different species showed different patterns of alternative splicing. Secondly, chromosome location analysis showed that the RNA helicase protein genes were distributed across all chromosomes with different densities in the four species. Thirdly, phylogenetic tree analyses identified the relevant homologs of DEAD-box, DEAH-box and DExD/H-box RNA helicase proteins in each of the four species. Fourthly, microarray expression data showed that many of these predicted RNA helicase genes were expressed in different developmental stages and different tissues under normal growth conditions. Finally, real-time quantitative PCR analysis showed that the expression levels of 10 genes in Arabidopsis and 13 genes in Zea mays were in close agreement with the microarray expression data. To our knowledge, this is the first report of a comparative genome-wide analysis of the RNA helicase gene family in Arabidopsis, Oryza sativa, Zea mays and Glycine max. This study provides valuable information for understanding the classification and putative functions of the RNA helicase gene family in crop growth and development.
Kumar, Mukesh; Rath, Nitish Kumar; Rath, Santanu Kumar
2016-04-01
Microarray-based gene expression profiling has emerged as an efficient technique for classification, prognosis, diagnosis, and treatment of cancer. Frequent changes in the behavior of this disease generates an enormous volume of data. Microarray data satisfies both the veracity and velocity properties of big data, as it keeps changing with time. Therefore, the analysis of microarray datasets in a small amount of time is essential. They often contain a large amount of expression, but only a fraction of it comprises genes that are significantly expressed. The precise identification of genes of interest that are responsible for causing cancer are imperative in microarray data analysis. Most existing schemes employ a two-phase process such as feature selection/extraction followed by classification. In this paper, various statistical methods (tests) based on MapReduce are proposed for selecting relevant features. After feature selection, a MapReduce-based K-nearest neighbor (mrKNN) classifier is also employed to classify microarray data. These algorithms are successfully implemented in a Hadoop framework. A comparative analysis is done on these MapReduce-based models using microarray datasets of various dimensions. From the obtained results, it is observed that these models consume much less execution time than conventional models in processing big data. Copyright © 2016 Elsevier Inc. All rights reserved.
2012-01-01
Background High-resolution genetic maps are needed in many crops to help characterize the genetic diversity that determines agriculturally important traits. Hybridization to microarrays to detect single feature polymorphisms is a powerful technique for marker discovery and genotyping because of its highly parallel nature. However, microarrays designed for gene expression analysis rarely provide sufficient gene coverage for optimal detection of nucleotide polymorphisms, which limits utility in species with low rates of polymorphism such as lettuce (Lactuca sativa). Results We developed a 6.5 million feature Affymetrix GeneChip® for efficient polymorphism discovery and genotyping, as well as for analysis of gene expression in lettuce. Probes on the microarray were designed from 26,809 unigenes from cultivated lettuce and an additional 8,819 unigenes from four related species (L. serriola, L. saligna, L. virosa and L. perennis). Where possible, probes were tiled with a 2 bp stagger, alternating on each DNA strand; providing an average of 187 probes covering approximately 600 bp for each of over 35,000 unigenes; resulting in up to 13 fold redundancy in coverage per nucleotide. We developed protocols for hybridization of genomic DNA to the GeneChip® and refined custom algorithms that utilized coverage from multiple, high quality probes to detect single position polymorphisms in 2 bp sliding windows across each unigene. This allowed us to detect greater than 18,000 polymorphisms between the parental lines of our core mapping population, as well as numerous polymorphisms between cultivated lettuce and wild species in the lettuce genepool. Using marker data from our diversity panel comprised of 52 accessions from the five species listed above, we were able to separate accessions by species using both phylogenetic and principal component analyses. Additionally, we estimated the diversity between different types of cultivated lettuce and distinguished morphological types. Conclusion By hybridizing genomic DNA to a custom oligonucleotide array designed for maximum gene coverage, we were able to identify polymorphisms using two approaches for pair-wise comparisons, as well as a highly parallel method that compared all 52 genotypes simultaneously. PMID:22583801
Stoffel, Kevin; van Leeuwen, Hans; Kozik, Alexander; Caldwell, David; Ashrafi, Hamid; Cui, Xinping; Tan, Xiaoping; Hill, Theresa; Reyes-Chin-Wo, Sebastian; Truco, Maria-Jose; Michelmore, Richard W; Van Deynze, Allen
2012-05-14
High-resolution genetic maps are needed in many crops to help characterize the genetic diversity that determines agriculturally important traits. Hybridization to microarrays to detect single feature polymorphisms is a powerful technique for marker discovery and genotyping because of its highly parallel nature. However, microarrays designed for gene expression analysis rarely provide sufficient gene coverage for optimal detection of nucleotide polymorphisms, which limits utility in species with low rates of polymorphism such as lettuce (Lactuca sativa). We developed a 6.5 million feature Affymetrix GeneChip® for efficient polymorphism discovery and genotyping, as well as for analysis of gene expression in lettuce. Probes on the microarray were designed from 26,809 unigenes from cultivated lettuce and an additional 8,819 unigenes from four related species (L. serriola, L. saligna, L. virosa and L. perennis). Where possible, probes were tiled with a 2 bp stagger, alternating on each DNA strand; providing an average of 187 probes covering approximately 600 bp for each of over 35,000 unigenes; resulting in up to 13 fold redundancy in coverage per nucleotide. We developed protocols for hybridization of genomic DNA to the GeneChip® and refined custom algorithms that utilized coverage from multiple, high quality probes to detect single position polymorphisms in 2 bp sliding windows across each unigene. This allowed us to detect greater than 18,000 polymorphisms between the parental lines of our core mapping population, as well as numerous polymorphisms between cultivated lettuce and wild species in the lettuce genepool. Using marker data from our diversity panel comprised of 52 accessions from the five species listed above, we were able to separate accessions by species using both phylogenetic and principal component analyses. Additionally, we estimated the diversity between different types of cultivated lettuce and distinguished morphological types. By hybridizing genomic DNA to a custom oligonucleotide array designed for maximum gene coverage, we were able to identify polymorphisms using two approaches for pair-wise comparisons, as well as a highly parallel method that compared all 52 genotypes simultaneously.
Direct labeling of serum proteins by fluorescent dye for antibody microarray.
Klimushina, M V; Gumanova, N G; Metelskaya, V A
2017-05-06
Analysis of serum proteome by antibody microarray is used to identify novel biomarkers and to study signaling pathways including protein phosphorylation and protein-protein interactions. Labeling of serum proteins is important for optimal performance of the antibody microarray. Proper choice of fluorescent label and optimal concentration of protein loaded on the microarray ensure good quality of imaging that can be reliably scanned and processed by the software. We have optimized direct serum protein labeling using fluorescent dye Arrayit Green 540 (Arrayit Corporation, USA) for antibody microarray. Optimized procedure produces high quality images that can be readily scanned and used for statistical analysis of protein composition of the serum. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Amanda M.; Daly, Don S.; Willse, Alan R.
The Automated Microarray Image Analysis (AMIA) Toolbox for MATLAB is a flexible, open-source microarray image analysis tool that allows the user to customize analysis of sets of microarray images. This tool provides several methods of identifying and quantify spot statistics, as well as extensive diagnostic statistics and images to identify poor data quality or processing. The open nature of this software allows researchers to understand the algorithms used to provide intensity estimates and to modify them easily if desired.
ELISA-BASE: An Integrated Bioinformatics Tool for Analyzing and Tracking ELISA Microarray Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Amanda M.; Collett, James L.; Seurynck-Servoss, Shannon L.
ELISA-BASE is an open-source database for capturing, organizing and analyzing protein enzyme-linked immunosorbent assay (ELISA) microarray data. ELISA-BASE is an extension of the BioArray Soft-ware Environment (BASE) database system, which was developed for DNA microarrays. In order to make BASE suitable for protein microarray experiments, we developed several plugins for importing and analyzing quantitative ELISA microarray data. Most notably, our Protein Microarray Analysis Tool (ProMAT) for processing quantita-tive ELISA data is now available as a plugin to the database.
2010-01-01
Background Recent developments in high-throughput methods of analyzing transcriptomic profiles are promising for many areas of biology, including ecophysiology. However, although commercial microarrays are available for most common laboratory models, transcriptome analysis in non-traditional model species still remains a challenge. Indeed, the signal resulting from heterologous hybridization is low and difficult to interpret because of the weak complementarity between probe and target sequences, especially when no microarray dedicated to a genetically close species is available. Results We show here that transcriptome analysis in a species genetically distant from laboratory models is made possible by using MAXRS, a new method of analyzing heterologous hybridization on microarrays. This method takes advantage of the design of several commercial microarrays, with different probes targeting the same transcript. To illustrate and test this method, we analyzed the transcriptome of king penguin pectoralis muscle hybridized to Affymetrix chicken microarrays, two organisms separated by an evolutionary distance of approximately 100 million years. The differential gene expression observed between different physiological situations computed by MAXRS was confirmed by real-time PCR on 10 genes out of 11 tested. Conclusions MAXRS appears to be an appropriate method for gene expression analysis under heterologous hybridization conditions. PMID:20509979
A Human Lectin Microarray for Sperm Surface Glycosylation Analysis *
Sun, Yangyang; Cheng, Li; Gu, Yihua; Xin, Aijie; Wu, Bin; Zhou, Shumin; Guo, Shujuan; Liu, Yin; Diao, Hua; Shi, Huijuan; Wang, Guangyu; Tao, Sheng-ce
2016-01-01
Glycosylation is one of the most abundant and functionally important protein post-translational modifications. As such, technology for efficient glycosylation analysis is in high demand. Lectin microarrays are a powerful tool for such investigations and have been successfully applied for a variety of glycobiological studies. However, most of the current lectin microarrays are primarily constructed from plant lectins, which are not well suited for studies of human glycosylation because of the extreme complexity of human glycans. Herein, we constructed a human lectin microarray with 60 human lectin and lectin-like proteins. All of the lectins and lectin-like proteins were purified from yeast, and most showed binding to human glycans. To demonstrate the applicability of the human lectin microarray, human sperm were probed on the microarray and strong bindings were observed for several lectins, including galectin-1, 7, 8, GalNAc-T6, and ERGIC-53 (LMAN1). These bindings were validated by flow cytometry and fluorescence immunostaining. Further, mass spectrometry analysis showed that galectin-1 binds several membrane-associated proteins including heat shock protein 90. Finally, functional assays showed that binding of galectin-8 could significantly enhance the acrosome reaction within human sperms. To our knowledge, this is the first construction of a human lectin microarray, and we anticipate it will find wide use for a range of human or mammalian studies, alone or in combination with plant lectin microarrays. PMID:27364157
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gentry, T.; Schadt, C.; Zhou, J.
Microarray technology has the unparalleled potential tosimultaneously determine the dynamics and/or activities of most, if notall, of the microbial populations in complex environments such as soilsand sediments. Researchers have developed several types of arrays thatcharacterize the microbial populations in these samples based on theirphylogenetic relatedness or functional genomic content. Several recentstudies have used these microarrays to investigate ecological issues;however, most have only analyzed a limited number of samples withrelatively few experiments utilizing the full high-throughput potentialof microarray analysis. This is due in part to the unique analyticalchallenges that these samples present with regard to sensitivity,specificity, quantitation, and data analysis. Thismore » review discussesspecific applications of microarrays to microbial ecology research alongwith some of the latest studies addressing the difficulties encounteredduring analysis of complex microbial communities within environmentalsamples. With continued development, microarray technology may ultimatelyachieve its potential for comprehensive, high-throughput characterizationof microbial populations in near real-time.« less
Fully automated analysis of multi-resolution four-channel micro-array genotyping data
NASA Astrophysics Data System (ADS)
Abbaspour, Mohsen; Abugharbieh, Rafeef; Podder, Mohua; Tebbutt, Scott J.
2006-03-01
We present a fully-automated and robust microarray image analysis system for handling multi-resolution images (down to 3-micron with sizes up to 80 MBs per channel). The system is developed to provide rapid and accurate data extraction for our recently developed microarray analysis and quality control tool (SNP Chart). Currently available commercial microarray image analysis applications are inefficient, due to the considerable user interaction typically required. Four-channel DNA microarray technology is a robust and accurate tool for determining genotypes of multiple genetic markers in individuals. It plays an important role in the state of the art trend where traditional medical treatments are to be replaced by personalized genetic medicine, i.e. individualized therapy based on the patient's genetic heritage. However, fast, robust, and precise image processing tools are required for the prospective practical use of microarray-based genetic testing for predicting disease susceptibilities and drug effects in clinical practice, which require a turn-around timeline compatible with clinical decision-making. In this paper we have developed a fully-automated image analysis platform for the rapid investigation of hundreds of genetic variations across multiple genes. Validation tests indicate very high accuracy levels for genotyping results. Our method achieves a significant reduction in analysis time, from several hours to just a few minutes, and is completely automated requiring no manual interaction or guidance.
Kottom, Theodore J; Limper, Andrew H
2011-10-01
Pneumocystis carinii (Pc) undergoes morphological transitions between cysts and trophic forms. We have previously described two Pc serine/threonine kinases, termed PcCbk1 and PcSte20, with PcSte20 belonging to a family of kinases involved in yeast mating, while PcCbk1 is a member of a group of protein kinases involved in regulation of cell cycle, shape, and proliferation. As Pc remains genetically intractable, knowledge on specific substrates phosphorylated by these kinases remains limited. Utilizing the phylogenetic relatedness of Pc to Saccharomyces cerevisiae, we interrogated a yeast proteome microarray containing >4000 purified protein based peptides, leading to the identification of 18 potential PcCbk1 and 15 PcSte20 substrates (Z-score > 3.0). A number of these potential protein substrates are involved in bud site selection, polarized growth, and response to mating α factor and pseudohyphal and invasive growth. Full-length open reading frames suggested by the PcCbk1 and PcSte20 protoarrays were amplified and expressed. These five proteins were used as substrates for PcCbk1 or PcSte20, with each being highly phosphorylated by the respective kinase. Finally, to demonstrate the utility of this method to identify novel PcCbk1 and PcSte20 substrates, we analysed DNA sequence data from the partially complete Pc genome database and detected partial sequence information of potential PcCbk1 kinase substrates PcPxl1 and PcInt1. We additionally identified the potential PcSte20 kinase substrate PcBdf2. Full-length Pc substrates were cloned and expressed in yeast, and shown to be phosphorylated by the respective Pc kinases. In conclusion, the yeast protein microarray represents a novel crossover technique for identifying unique potential Pc kinase substrates. Copyright © 2011 John Wiley & Sons, Ltd.
Lévêque, Marianne; Marlin, Sandrine; Jonard, Laurence; Procaccio, Vincent; Reynier, Pascal; Amati-Bonneau, Patrizia; Baulande, Sylvain; Pierron, Denis; Lacombe, Didier; Duriez, Françoise; Francannet, Christine; Mom, Thierry; Journel, Hubert; Catros, Hélène; Drouin-Garraud, Valérie; Obstoy, Marie-Françoise; Dollfus, Hélène; Eliot, Marie-Madeleine; Faivre, Laurence; Duvillard, Christian; Couderc, Remy; Garabedian, Eréa-Noël; Petit, Christine; Feldmann, Delphine; Denoyelle, Françoise
2007-11-01
Mitochondrial DNA (mtDNA) mutations have been implicated in non-syndromic hearing loss either as primary or as predisposing factors. As only a part of the mitochondrial genome is usually explored in deafness, its prevalence is probably under-estimated. Among 1350 families with non-syndromic sensorineural hearing loss collected through a French collaborative network, we selected 29 large families with a clear maternal lineage and screened them for known mtDNA mutations in 12S rRNA, tRNASer(UCN) and tRNALeu(UUR) genes. When no mutation could be identified, a whole mitochondrial genome screening was performed, using a microarray resequencing chip: the MitoChip version 2.0 developed by Affymetrix Inc. Known mtDNA mutations was found in nine of the 29 families, which are described in the article: five with A1555G, two with the T7511C, one with 7472insC and one with A3243G mutation. In the remaining 20 families, the resequencing Mitochip detected 258 mitochondrial homoplasmic variants and 107 potentially heteroplasmic variants. Controls were made by direct sequencing on selected fragments and showed a high sensibility of the MitoChip but a low specificity, especially for heteroplasmic variations. An original analysis on the basis of species conservation, frequency and phylogenetic investigation was performed to select the more probably pathogenic variants. The entire genome analysis allowed us to identify five additional families with a putatively pathogenic mitochondrial variant: T669C, C1537T, G8078A, G12236A and G15077A. These results indicate that the new MitoChip platform is a rapid and valuable tool for identification of new mtDNA mutations in deafness.
Weinberg, Michael V.; Schut, Gerrit J.; Brehm, Scott; Datta, Susmita; Adams, Michael W. W.
2005-01-01
The hyperthermophilic archaeon, Pyrococcus furiosus, was grown on maltose near its optimal growth temperature, 95°C, and at the lower end of the temperature range for significant growth, 72°C. In addition, cultures were shocked by rapidly dropping the temperature from 95 to 72°C. This resulted in a 5-h lag phase, during which time little growth occurred. Transcriptional analyses using whole-genome DNA microarrays representing 2,065 open reading frames (ORFs) in the P. furiosus genome showed that cells undergo three very different responses at 72°C: an early shock (1 to 2 h), a late shock (5 h), and an adapted response (occurring after many generations at 72°C). Each response involved the up-regulation in the expression of more than 30 ORFs unique to that response. These included proteins involved in translation, solute transport, amino acid biosynthesis, and tungsten and intermediary carbon metabolism, as well as numerous conserved-hypothetical and/or membrane-associated proteins. Two major membrane proteins were evident after one-dimensional sodium dodecyl sulfate-gel analysis of cold-adapted cells, and staining revealed them to be glycoproteins. Their cold-induced expression evident from the DNA microarray analysis was confirmed by quantitative PCR. Termed CipA (PF0190) and CipB (PF1408), both appear to be solute-binding proteins. While the archaea do not contain members of the bacterial cold shock protein (Csp) family, they all contain homologs of CipA and CipB. These proteins are also related phylogenetically to some cold-responsive genes recently identified in certain bacteria. The Cip proteins may represent a general prokaryotic-type cold response mechanism that is present even in hyperthermophilic archaea. PMID:15601718
PRACTICAL STRATEGIES FOR PROCESSING AND ANALYZING SPOTTED OLIGONUCLEOTIDE MICROARRAY DATA
Thoughtful data analysis is as important as experimental design, biological sample quality, and appropriate experimental procedures for making microarrays a useful supplement to traditional toxicology. In the present study, spotted oligonucleotide microarrays were used to profile...
GeneXplorer: an interactive web application for microarray data visualization and analysis.
Rees, Christian A; Demeter, Janos; Matese, John C; Botstein, David; Sherlock, Gavin
2004-10-01
When publishing large-scale microarray datasets, it is of great value to create supplemental websites where either the full data, or selected subsets corresponding to figures within the paper, can be browsed. We set out to create a CGI application containing many of the features of some of the existing standalone software for the visualization of clustered microarray data. We present GeneXplorer, a web application for interactive microarray data visualization and analysis in a web environment. GeneXplorer allows users to browse a microarray dataset in an intuitive fashion. It provides simple access to microarray data over the Internet and uses only HTML and JavaScript to display graphic and annotation information. It provides radar and zoom views of the data, allows display of the nearest neighbors to a gene expression vector based on their Pearson correlations and provides the ability to search gene annotation fields. The software is released under the permissive MIT Open Source license, and the complete documentation and the entire source code are freely available for download from CPAN http://search.cpan.org/dist/Microarray-GeneXplorer/.
Nanotechnology: moving from microarrays toward nanoarrays.
Chen, Hua; Li, Jun
2007-01-01
Microarrays are important tools for high-throughput analysis of biomolecules. The use of microarrays for parallel screening of nucleic acid and protein profiles has become an industry standard. A few limitations of microarrays are the requirement for relatively large sample volumes and elongated incubation time, as well as the limit of detection. In addition, traditional microarrays make use of bulky instrumentation for the detection, and sample amplification and labeling are quite laborious, which increase analysis cost and delays the time for obtaining results. These problems limit microarray techniques from point-of-care and field applications. One strategy for overcoming these problems is to develop nanoarrays, particularly electronics-based nanoarrays. With further miniaturization, higher sensitivity, and simplified sample preparation, nanoarrays could potentially be employed for biomolecular analysis in personal healthcare and monitoring of trace pathogens. In this chapter, it is intended to introduce the concept and advantage of nanotechnology and then describe current methods and protocols for novel nanoarrays in three aspects: (1) label-free nucleic acids analysis using nanoarrays, (2) nanoarrays for protein detection by conventional optical fluorescence microscopy as well as by novel label-free methods such as atomic force microscopy, and (3) nanoarray for enzymatic-based assay. These nanoarrays will have significant applications in drug discovery, medical diagnosis, genetic testing, environmental monitoring, and food safety inspection.
A New Oligonucleotide Microarray for Detection of Pathogenic and Non-Pathogenic Legionella spp.
Cao, Boyang; Liu, Xiangqian; Yu, Xiang; Chen, Min; Feng, Lu; Wang, Lei
2014-01-01
Legionella pneumophila has been recognized as the major cause of legionellosis since the discovery of the deadly disease. Legionella spp. other than L. pneumophila were later found to be responsible to many non-pneumophila infections. The non-L. pneumophila infections are likely under-detected because of a lack of effective diagnosis. In this report, we have sequenced the 16S-23S rRNA gene internal transcribed spacer (ITS) of 10 Legionella species and subspecies, including L. anisa, L. bozemanii, L. dumoffii, L. fairfieldensis, L. gormanii, L. jordanis, L. maceachernii, L. micdadei, L. pneumophila subspp. fraseri and L. pneumophila subspp. pasculleii, and developed a rapid oligonucleotide microarray detection technique accordingly to identify 12 most common Legionella spp., which consist of 11 pathogenic species of L. anisa, L. bozemanii, L. dumoffii, L. gormanii, L. jordanis, L. longbeachae, L. maceachernii, L. micdadei, and L. pneumophila (including subspp. pneumophila, subspp. fraseri, and subspp. pasculleii) and one non-pathogenic species, L. fairfieldensis. Twenty-nine probes that reproducibly detected multiple Legionella species with high specificity were included in the array. A total of 52 strains, including 30 target pathogens and 22 non-target bacteria, were used to verify the oligonucleotide microarray assay. The sensitivity of the detection was at 1.0 ng with genomic DNA or 13 CFU/100 mL with Legionella cultures. The microarray detected seven samples of air conditioner-condensed water with 100% accuracy, validating the technique as a promising method for applications in basic microbiology, clinical diagnosis, food safety, and epidemiological surveillance. The phylogenetic study based on the ITS has also revealed that the non-pathogenic L. fairfieldensis is the closest to L. pneumophila than the nine other pathogenic Legionella spp. PMID:25469776
A new oligonucleotide microarray for detection of pathogenic and non-pathogenic Legionella spp.
Cao, Boyang; Liu, Xiangqian; Yu, Xiang; Chen, Min; Feng, Lu; Wang, Lei
2014-01-01
Legionella pneumophila has been recognized as the major cause of legionellosis since the discovery of the deadly disease. Legionella spp. other than L. pneumophila were later found to be responsible to many non-pneumophila infections. The non-L. pneumophila infections are likely under-detected because of a lack of effective diagnosis. In this report, we have sequenced the 16S-23S rRNA gene internal transcribed spacer (ITS) of 10 Legionella species and subspecies, including L. anisa, L. bozemanii, L. dumoffii, L. fairfieldensis, L. gormanii, L. jordanis, L. maceachernii, L. micdadei, L. pneumophila subspp. fraseri and L. pneumophila subspp. pasculleii, and developed a rapid oligonucleotide microarray detection technique accordingly to identify 12 most common Legionella spp., which consist of 11 pathogenic species of L. anisa, L. bozemanii, L. dumoffii, L. gormanii, L. jordanis, L. longbeachae, L. maceachernii, L. micdadei, and L. pneumophila (including subspp. pneumophila, subspp. fraseri, and subspp. pasculleii) and one non-pathogenic species, L. fairfieldensis. Twenty-nine probes that reproducibly detected multiple Legionella species with high specificity were included in the array. A total of 52 strains, including 30 target pathogens and 22 non-target bacteria, were used to verify the oligonucleotide microarray assay. The sensitivity of the detection was at 1.0 ng with genomic DNA or 13 CFU/100 mL with Legionella cultures. The microarray detected seven samples of air conditioner-condensed water with 100% accuracy, validating the technique as a promising method for applications in basic microbiology, clinical diagnosis, food safety, and epidemiological surveillance. The phylogenetic study based on the ITS has also revealed that the non-pathogenic L. fairfieldensis is the closest to L. pneumophila than the nine other pathogenic Legionella spp.
A meta-data based method for DNA microarray imputation.
Jörnsten, Rebecka; Ouyang, Ming; Wang, Hui-Yu
2007-03-29
DNA microarray experiments are conducted in logical sets, such as time course profiling after a treatment is applied to the samples, or comparisons of the samples under two or more conditions. Due to cost and design constraints of spotted cDNA microarray experiments, each logical set commonly includes only a small number of replicates per condition. Despite the vast improvement of the microarray technology in recent years, missing values are prevalent. Intuitively, imputation of missing values is best done using many replicates within the same logical set. In practice, there are few replicates and thus reliable imputation within logical sets is difficult. However, it is in the case of few replicates that the presence of missing values, and how they are imputed, can have the most profound impact on the outcome of downstream analyses (e.g. significance analysis and clustering). This study explores the feasibility of imputation across logical sets, using the vast amount of publicly available microarray data to improve imputation reliability in the small sample size setting. We download all cDNA microarray data of Saccharomyces cerevisiae, Arabidopsis thaliana, and Caenorhabditis elegans from the Stanford Microarray Database. Through cross-validation and simulation, we find that, for all three species, our proposed imputation using data from public databases is far superior to imputation within a logical set, sometimes to an astonishing degree. Furthermore, the imputation root mean square error for significant genes is generally a lot less than that of non-significant ones. Since downstream analysis of significant genes, such as clustering and network analysis, can be very sensitive to small perturbations of estimated gene effects, it is highly recommended that researchers apply reliable data imputation prior to further analysis. Our method can also be applied to cDNA microarray experiments from other species, provided good reference data are available.
2010-01-01
Background The development of DNA microarrays has facilitated the generation of hundreds of thousands of transcriptomic datasets. The use of a common reference microarray design allows existing transcriptomic data to be readily compared and re-analysed in the light of new data, and the combination of this design with large datasets is ideal for 'systems'-level analyses. One issue is that these datasets are typically collected over many years and may be heterogeneous in nature, containing different microarray file formats and gene array layouts, dye-swaps, and showing varying scales of log2- ratios of expression between microarrays. Excellent software exists for the normalisation and analysis of microarray data but many data have yet to be analysed as existing methods struggle with heterogeneous datasets; options include normalising microarrays on an individual or experimental group basis. Our solution was to develop the Batch Anti-Banana Algorithm in R (BABAR) algorithm and software package which uses cyclic loess to normalise across the complete dataset. We have already used BABAR to analyse the function of Salmonella genes involved in the process of infection of mammalian cells. Results The only input required by BABAR is unprocessed GenePix or BlueFuse microarray data files. BABAR provides a combination of 'within' and 'between' microarray normalisation steps and diagnostic boxplots. When applied to a real heterogeneous dataset, BABAR normalised the dataset to produce a comparable scaling between the microarrays, with the microarray data in excellent agreement with RT-PCR analysis. When applied to a real non-heterogeneous dataset and a simulated dataset, BABAR's performance in identifying differentially expressed genes showed some benefits over standard techniques. Conclusions BABAR is an easy-to-use software tool, simplifying the simultaneous normalisation of heterogeneous two-colour common reference design cDNA microarray-based transcriptomic datasets. We show BABAR transforms real and simulated datasets to allow for the correct interpretation of these data, and is the ideal tool to facilitate the identification of differentially expressed genes or network inference analysis from transcriptomic datasets. PMID:20128918
van Huet, Ramon A. C.; Pierrache, Laurence H.M.; Meester-Smoor, Magda A.; Klaver, Caroline C.W.; van den Born, L. Ingeborgh; Hoyng, Carel B.; de Wijs, Ilse J.; Collin, Rob W. J.; Hoefsloot, Lies H.
2015-01-01
Purpose To determine the efficacy of multiple versions of a commercially available arrayed primer extension (APEX) microarray chip for autosomal recessive retinitis pigmentosa (arRP). Methods We included 250 probands suspected of arRP who were genetically analyzed with the APEX microarray between January 2008 and November 2013. The mode of inheritance had to be autosomal recessive according to the pedigree (including isolated cases). If the microarray identified a heterozygous mutation, we performed Sanger sequencing of exons and exon–intron boundaries of that specific gene. The efficacy of this microarray chip with the additional Sanger sequencing approach was determined by the percentage of patients that received a molecular diagnosis. We also collected data from genetic tests other than the APEX analysis for arRP to provide a detailed description of the molecular diagnoses in our study cohort. Results The APEX microarray chip for arRP identified the molecular diagnosis in 21 (8.5%) of the patients in our cohort. Additional Sanger sequencing yielded a second mutation in 17 patients (6.8%), thereby establishing the molecular diagnosis. In total, 38 patients (15.2%) received a molecular diagnosis after analysis using the microarray and additional Sanger sequencing approach. Further genetic analyses after a negative result of the arRP microarray (n = 107) resulted in a molecular diagnosis of arRP (n = 23), autosomal dominant RP (n = 5), X-linked RP (n = 2), and choroideremia (n = 1). Conclusions The efficacy of the commercially available APEX microarray chips for arRP appears to be low, most likely caused by the limitations of this technique and the genetic and allelic heterogeneity of RP. Diagnostic yields up to 40% have been reported for next-generation sequencing (NGS) techniques that, as expected, thereby outperform targeted APEX analysis. PMID:25999674
Principles of gene microarray data analysis.
Mocellin, Simone; Rossi, Carlo Riccardo
2007-01-01
The development of several gene expression profiling methods, such as comparative genomic hybridization (CGH), differential display, serial analysis of gene expression (SAGE), and gene microarray, together with the sequencing of the human genome, has provided an opportunity to monitor and investigate the complex cascade of molecular events leading to tumor development and progression. The availability of such large amounts of information has shifted the attention of scientists towards a nonreductionist approach to biological phenomena. High throughput technologies can be used to follow changing patterns of gene expression over time. Among them, gene microarray has become prominent because it is easier to use, does not require large-scale DNA sequencing, and allows for the parallel quantification of thousands of genes from multiple samples. Gene microarray technology is rapidly spreading worldwide and has the potential to drastically change the therapeutic approach to patients affected with tumor. Therefore, it is of paramount importance for both researchers and clinicians to know the principles underlying the analysis of the huge amount of data generated with microarray technology.
Support vector machine and principal component analysis for microarray data classification
NASA Astrophysics Data System (ADS)
Astuti, Widi; Adiwijaya
2018-03-01
Cancer is a leading cause of death worldwide although a significant proportion of it can be cured if it is detected early. In recent decades, technology called microarray takes an important role in the diagnosis of cancer. By using data mining technique, microarray data classification can be performed to improve the accuracy of cancer diagnosis compared to traditional techniques. The characteristic of microarray data is small sample but it has huge dimension. Since that, there is a challenge for researcher to provide solutions for microarray data classification with high performance in both accuracy and running time. This research proposed the usage of Principal Component Analysis (PCA) as a dimension reduction method along with Support Vector Method (SVM) optimized by kernel functions as a classifier for microarray data classification. The proposed scheme was applied on seven data sets using 5-fold cross validation and then evaluation and analysis conducted on term of both accuracy and running time. The result showed that the scheme can obtained 100% accuracy for Ovarian and Lung Cancer data when Linear and Cubic kernel functions are used. In term of running time, PCA greatly reduced the running time for every data sets.
Experimental Approaches to Microarray Analysis of Tumor Samples
ERIC Educational Resources Information Center
Furge, Laura Lowe; Winter, Michael B.; Meyers, Jacob I.; Furge, Kyle A.
2008-01-01
Comprehensive measurement of gene expression using high-density nucleic acid arrays (i.e. microarrays) has become an important tool for investigating the molecular differences in clinical and research samples. Consequently, inclusion of discussion in biochemistry, molecular biology, or other appropriate courses of microarray technologies has…
Multiplex cDNA quantification method that facilitates the standardization of gene expression data
Gotoh, Osamu; Murakami, Yasufumi; Suyama, Akira
2011-01-01
Microarray-based gene expression measurement is one of the major methods for transcriptome analysis. However, current microarray data are substantially affected by microarray platforms and RNA references because of the microarray method can provide merely the relative amounts of gene expression levels. Therefore, valid comparisons of the microarray data require standardized platforms, internal and/or external controls and complicated normalizations. These requirements impose limitations on the extensive comparison of gene expression data. Here, we report an effective approach to removing the unfavorable limitations by measuring the absolute amounts of gene expression levels on common DNA microarrays. We have developed a multiplex cDNA quantification method called GEP-DEAN (Gene expression profiling by DCN-encoding-based analysis). The method was validated by using chemically synthesized DNA strands of known quantities and cDNA samples prepared from mouse liver, demonstrating that the absolute amounts of cDNA strands were successfully measured with a sensitivity of 18 zmol in a highly multiplexed manner in 7 h. PMID:21415008
Spot detection and image segmentation in DNA microarray data.
Qin, Li; Rueda, Luis; Ali, Adnan; Ngom, Alioune
2005-01-01
Following the invention of microarrays in 1994, the development and applications of this technology have grown exponentially. The numerous applications of microarray technology include clinical diagnosis and treatment, drug design and discovery, tumour detection, and environmental health research. One of the key issues in the experimental approaches utilising microarrays is to extract quantitative information from the spots, which represent genes in a given experiment. For this process, the initial stages are important and they influence future steps in the analysis. Identifying the spots and separating the background from the foreground is a fundamental problem in DNA microarray data analysis. In this review, we present an overview of state-of-the-art methods for microarray image segmentation. We discuss the foundations of the circle-shaped approach, adaptive shape segmentation, histogram-based methods and the recently introduced clustering-based techniques. We analytically show that clustering-based techniques are equivalent to the one-dimensional, standard k-means clustering algorithm that utilises the Euclidean distance.
Split-plot microarray experiments: issues of design, power and sample size.
Tsai, Pi-Wen; Lee, Mei-Ling Ting
2005-01-01
This article focuses on microarray experiments with two or more factors in which treatment combinations of the factors corresponding to the samples paired together onto arrays are not completely random. A main effect of one (or more) factor(s) is confounded with arrays (the experimental blocks). This is called a split-plot microarray experiment. We utilise an analysis of variance (ANOVA) model to assess differentially expressed genes for between-array and within-array comparisons that are generic under a split-plot microarray experiment. Instead of standard t- or F-test statistics that rely on mean square errors of the ANOVA model, we use a robust method, referred to as 'a pooled percentile estimator', to identify genes that are differentially expressed across different treatment conditions. We illustrate the design and analysis of split-plot microarray experiments based on a case application described by Jin et al. A brief discussion of power and sample size for split-plot microarray experiments is also presented.
Druart, Céline; Dewulf, Evelyne M; Cani, Patrice D; Neyrinck, Audrey M; Thissen, Jean-Paul; Delzenne, Nathalie M
2014-04-01
The aim of this human study was to assess the influence of prebiotic-induced gut microbiota modulation on PUFA-derived bacterial metabolites production. Therefore, we analyzed the circulating fatty acid profile including CLA/CLnA in obese women treated during 3 months with inulin-type fructan prebiotics. In these patients, we had already determined gut microbiota composition by phylogenetic microarray and qPCR analysis of 16S rDNA. Some PUFA-derived bacterial metabolites were detected in the serum of obese patients. Despite the prebiotic-induced modulation of gut microbiota, including changes in CLA/CLnA-producing bacteria, the treatment did not impact significantly on the circulating level of these metabolites. However, some PUFA-derived bacterial metabolites were positively correlated with specific fecal bacteria (Bifidobacterium spp., Eubacterium ventriosum and Lactobacillus spp.) and inversely correlated with serum cholesterol (total, LDL, HDL). These correlations suggest a potential beneficial effect of some of these metabolites but this remains to be confirmed by further investigation.
Saliva Microbiota Carry Caries-Specific Functional Gene Signatures
Chang, Xingzhi; Yuan, Xiao; Tu, Qichao; Yuan, Tong; Deng, Ye; Hemme, Christopher L.; Van Nostrand, Joy; Cui, Xinping; He, Zhili; Chen, Zhenggang; Guo, Dawei; Yu, Jiangbo; Zhang, Yue; Zhou, Jizhong; Xu, Jian
2014-01-01
Human saliva microbiota is phylogenetically divergent among host individuals yet their roles in health and disease are poorly appreciated. We employed a microbial functional gene microarray, HuMiChip 1.0, to reconstruct the global functional profiles of human saliva microbiota from ten healthy and ten caries-active adults. Saliva microbiota in the pilot population featured a vast diversity of functional genes. No significant distinction in gene number or diversity indices was observed between healthy and caries-active microbiota. However, co-presence network analysis of functional genes revealed that caries-active microbiota was more divergent in non-core genes than healthy microbiota, despite both groups exhibited a similar degree of conservation at their respective core genes. Furthermore, functional gene structure of saliva microbiota could potentially distinguish caries-active patients from healthy hosts. Microbial functions such as Diaminopimelate epimerase, Prephenate dehydrogenase, Pyruvate-formate lyase and N-acetylmuramoyl-L-alanine amidase were significantly linked to caries. Therefore, saliva microbiota carried disease-associated functional signatures, which could be potentially exploited for caries diagnosis. PMID:24533043
Saliva microbiota carry caries-specific functional gene signatures.
Yang, Fang; Ning, Kang; Chang, Xingzhi; Yuan, Xiao; Tu, Qichao; Yuan, Tong; Deng, Ye; Hemme, Christopher L; Van Nostrand, Joy; Cui, Xinping; He, Zhili; Chen, Zhenggang; Guo, Dawei; Yu, Jiangbo; Zhang, Yue; Zhou, Jizhong; Xu, Jian
2014-01-01
Human saliva microbiota is phylogenetically divergent among host individuals yet their roles in health and disease are poorly appreciated. We employed a microbial functional gene microarray, HuMiChip 1.0, to reconstruct the global functional profiles of human saliva microbiota from ten healthy and ten caries-active adults. Saliva microbiota in the pilot population featured a vast diversity of functional genes. No significant distinction in gene number or diversity indices was observed between healthy and caries-active microbiota. However, co-presence network analysis of functional genes revealed that caries-active microbiota was more divergent in non-core genes than healthy microbiota, despite both groups exhibited a similar degree of conservation at their respective core genes. Furthermore, functional gene structure of saliva microbiota could potentially distinguish caries-active patients from healthy hosts. Microbial functions such as Diaminopimelate epimerase, Prephenate dehydrogenase, Pyruvate-formate lyase and N-acetylmuramoyl-L-alanine amidase were significantly linked to caries. Therefore, saliva microbiota carried disease-associated functional signatures, which could be potentially exploited for caries diagnosis.
Bruno, D L; Ganesamoorthy, D; Schoumans, J; Bankier, A; Coman, D; Delatycki, M; Gardner, R J M; Hunter, M; James, P A; Kannu, P; McGillivray, G; Pachter, N; Peters, H; Rieubland, C; Savarirayan, R; Scheffer, I E; Sheffield, L; Tan, T; White, S M; Yeung, A; Bowman, Z; Ngo, C; Choy, K W; Cacheux, V; Wong, L; Amor, D J; Slater, H R
2009-02-01
Microarray genome analysis is realising its promise for improving detection of genetic abnormalities in individuals with mental retardation and congenital abnormality. Copy number variations (CNVs) are now readily detectable using a variety of platforms and a major challenge is the distinction of pathogenic from ubiquitous, benign polymorphic CNVs. The aim of this study was to investigate replacement of time consuming, locus specific testing for specific microdeletion and microduplication syndromes with microarray analysis, which theoretically should detect all known syndromes with CNV aetiologies as well as new ones. Genome wide copy number analysis was performed on 117 patients using Affymetrix 250K microarrays. 434 CNVs (195 losses and 239 gains) were found, including 18 pathogenic CNVs and 9 identified as "potentially pathogenic". Almost all pathogenic CNVs were larger than 500 kb, significantly larger than the median size of all CNVs detected. Segmental regions of loss of heterozygosity larger than 5 Mb were found in 5 patients. Genome microarray analysis has improved diagnostic success in this group of patients. Several examples of recently discovered "new syndromes" were found suggesting they are more common than previously suspected and collectively are likely to be a major cause of mental retardation. The findings have several implications for clinical practice. The study revealed the potential to make genetic diagnoses that were not evident in the clinical presentation, with implications for pretest counselling and the consent process. The importance of contributing novel CNVs to high quality databases for genotype-phenotype analysis and review of guidelines for selection of individuals for microarray analysis is emphasised.
Hu, Ruibo; Chi, Xiaoyuan; Chai, Guohua; Kong, Yingzhen; He, Guo; Wang, Xiaoyu; Shi, Dachuan; Zhang, Dongyuan; Zhou, Gongke
2012-01-01
Background Homeodomain-leucine zipper (HD-ZIP) proteins are plant-specific transcriptional factors known to play crucial roles in plant development. Although sequence phylogeny analysis of Populus HD-ZIPs was carried out in a previous study, no systematic analysis incorporating genome organization, gene structure, and expression compendium has been conducted in model tree species Populus thus far. Principal Findings In this study, a comprehensive analysis of Populus HD-ZIP gene family was performed. Sixty-three full-length HD-ZIP genes were found in Populus genome. These Populus HD-ZIP genes were phylogenetically clustered into four distinct subfamilies (HD-ZIP I–IV) and predominately distributed across 17 linkage groups (LG). Fifty genes from 25 Populus paralogous pairs were located in the duplicated blocks of Populus genome and then preferentially retained during the sequential evolutionary courses. Genomic organization analyses indicated that purifying selection has played a pivotal role in the retention and maintenance of Populus HD-ZIP gene family. Microarray analysis has shown that 21 Populus paralogous pairs have been differentially expressed across different tissues and under various stresses, with five paralogous pairs showing nearly identical expression patterns, 13 paralogous pairs being partially redundant and three paralogous pairs diversifying significantly. Quantitative real-time RT-PCR (qRT-PCR) analysis performed on 16 selected Populus HD-ZIP genes in different tissues and under both drought and salinity stresses confirms their tissue-specific and stress-inducible expression patterns. Conclusions Genomic organizations indicated that segmental duplications contributed significantly to the expansion of Populus HD-ZIP gene family. Exon/intron organization and conserved motif composition of Populus HD-ZIPs are highly conservative in the same subfamily, suggesting the members in the same subfamilies may also have conservative functionalities. Microarray and qRT-PCR analyses showed that 89% (56 out of 63) of Populus HD-ZIPs were duplicate genes that might have been retained by substantial subfunctionalization. Taken together, these observations may lay the foundation for future functional analysis of Populus HD-ZIP genes to unravel their biological roles. PMID:22359569
Rode, Tone Mari; Berget, Ingunn; Langsrud, Solveig; Møretrø, Trond; Holck, Askild
2009-07-01
Microorganisms are constantly exposed to new and altered growth conditions, and respond by changing gene expression patterns. Several methods for studying gene expression exist. During the last decade, the analysis of microarrays has been one of the most common approaches applied for large scale gene expression studies. A relatively new method for gene expression analysis is MassARRAY, which combines real competitive-PCR and MALDI-TOF (matrix-assisted laser desorption/ionization time-of-flight) mass spectrometry. In contrast to microarray methods, MassARRAY technology is suitable for analysing a larger number of samples, though for a smaller set of genes. In this study we compare the results from MassARRAY with microarrays on gene expression responses of Staphylococcus aureus exposed to acid stress at pH 4.5. RNA isolated from the same stress experiments was analysed using both the MassARRAY and the microarray methods. The MassARRAY and microarray methods showed good correlation. Both MassARRAY and microarray estimated somewhat lower fold changes compared with quantitative real-time PCR (qRT-PCR). The results confirmed the up-regulation of the urease genes in acidic environments, and also indicated the importance of metal ion regulation. This study shows that the MassARRAY technology is suitable for gene expression analysis in prokaryotes, and has advantages when a set of genes is being analysed for an organism exposed to many different environmental conditions.
Microarray analysis of potential genes in the pathogenesis of recurrent oral ulcer.
Han, Jingying; He, Zhiwei; Li, Kun; Hou, Lu
2015-01-01
Recurrent oral ulcer seriously threatens patients' daily life and health. This study investigated potential genes and pathways that participate in the pathogenesis of recurrent oral ulcer by high throughput bioinformatic analysis. RT-PCR and Western blot were applied to further verify screened interleukins effect. Recurrent oral ulcer related genes were collected from websites and papers, and further found out from Human Genome 280 6.0 microarray data. Each pathway of recurrent oral ulcer related genes were got through chip hybridization. RT-PCR was applied to test four recurrent oral ulcer related genes to verify the microarray data. Data transformation, scatter plot, clustering analysis, and expression pattern analysis were used to analyze recurrent oral ulcer related gene expression changes. Recurrent oral ulcer gene microarray was successfully established. Microarray showed that 551 genes involved in recurrent oral ulcer activity and 196 genes were recurrent oral ulcer related genes. Of them, 76 genes up-regulated, 62 genes down-regulated, and 58 genes up-/down-regulated. Total expression level up-regulated 752 times (60%) and down-regulated 485 times (40%). IL-2 plays an important role in the occurrence, development and recurrence of recurrent oral ulcer on the mRNA and protein levels. Gene microarray can be used to analyze potential genes and pathways in recurrent oral ulcer. IL-2 may be involved in the pathogenesis of recurrent oral ulcer.
2010-01-01
Background Analysis of gene expression and gene mutation may add information to be different from ordinary pathological tissue diagnosis. Since samples obtained endoscopically are very small, it is desired that more sensitive technology is developed for gene analysis. We investigated whether gene expression and gene mutation analysis by newly developed ultra-sensitive three-dimensional (3D) microarray is possible using small amount samples from endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) specimens and pancreatic juices. Methods Small amount samples from 17 EUS-FNA specimens and 16 pancreatic juices were obtained. After nucleic acid extraction, the samples were amplified with labeling and analyzed by the 3D microarray. Results The analyzable rate with the microarray was 46% (6/13) in EUS-FNA specimens of RNAlater® storage, and RNA degradations were observed in all the samples of frozen storage. In pancreatic juices, the analyzable rate was 67% (4/6) in frozen storage samples and 20% (2/10) in RNAlater® storage. EUS-FNA specimens were classified into cancer and non-cancer by gene expression analysis and K-ras codon 12 mutations were also detected using the 3D microarray. Conclusions Gene analysis from small amount samples obtained endoscopically was possible by newly developed 3D microarray technology. High quality RNA from EUS-FNA samples were obtained and remained in good condition only using RNA stabilizer. In contrast, high quality RNA from pancreatic juice samples were obtained only in frozen storage without RNA stabilizer. PMID:20416107
MAAMD: a workflow to standardize meta-analyses and comparison of affymetrix microarray data
2014-01-01
Background Mandatory deposit of raw microarray data files for public access, prior to study publication, provides significant opportunities to conduct new bioinformatics analyses within and across multiple datasets. Analysis of raw microarray data files (e.g. Affymetrix CEL files) can be time consuming, complex, and requires fundamental computational and bioinformatics skills. The development of analytical workflows to automate these tasks simplifies the processing of, improves the efficiency of, and serves to standardize multiple and sequential analyses. Once installed, workflows facilitate the tedious steps required to run rapid intra- and inter-dataset comparisons. Results We developed a workflow to facilitate and standardize Meta-Analysis of Affymetrix Microarray Data analysis (MAAMD) in Kepler. Two freely available stand-alone software tools, R and AltAnalyze were embedded in MAAMD. The inputs of MAAMD are user-editable csv files, which contain sample information and parameters describing the locations of input files and required tools. MAAMD was tested by analyzing 4 different GEO datasets from mice and drosophila. MAAMD automates data downloading, data organization, data quality control assesment, differential gene expression analysis, clustering analysis, pathway visualization, gene-set enrichment analysis, and cross-species orthologous-gene comparisons. MAAMD was utilized to identify gene orthologues responding to hypoxia or hyperoxia in both mice and drosophila. The entire set of analyses for 4 datasets (34 total microarrays) finished in ~ one hour. Conclusions MAAMD saves time, minimizes the required computer skills, and offers a standardized procedure for users to analyze microarray datasets and make new intra- and inter-dataset comparisons. PMID:24621103
USDA-ARS?s Scientific Manuscript database
The amount of microarray gene expression data in public repositories has been increasing exponentially for the last couple of decades. High-throughput microarray data integration and analysis has become a critical step in exploring the large amount of expression data for biological discovery. Howeve...
Nikkilä, Janne; Immonen, Outi; Kekkonen, Riina; Lahti, Leo; Palva, Airi; de Vos, Willem M.
2011-01-01
Background While our knowledge of the intestinal microbiota during disease is accumulating, basic information of the microbiota in healthy subjects is still scarce. The aim of this study was to characterize the intestinal microbiota of healthy adults and specifically address its temporal stability, core microbiota and relation with intestinal symptoms. We carried out a longitudinal study by following a set of 15 healthy Finnish subjects for seven weeks and regularly assessed their intestinal bacteria and archaea with the Human Intestinal Tract (HIT)Chip, a phylogenetic microarray, in conjunction with qPCR analyses. The health perception and occurrence of intestinal symptoms was recorded by questionnaire at each sampling point. Principal Findings A high overall temporal stability of the microbiota was observed. Five subjects showed transient microbiota destabilization, which correlated not only with the intake of antibiotics but also with overseas travelling and temporary illness, expanding the hitherto known factors affecting the intestinal microbiota. We identified significant correlations between the microbiota and common intestinal symptoms, including abdominal pain and bloating. The most striking finding was the inverse correlation between Bifidobacteria and abdominal pain: subjects who experienced pain had over five-fold less Bifidobacteria compared to those without pain. Finally, a novel computational approach was used to define the common core microbiota, highlighting the role of the analysis depth in finding the phylogenetic core and estimating its size. The in-depth analysis suggested that we share a substantial number of our intestinal phylotypes but as they represent highly variable proportions of the total community, many of them often remain undetected. Conclusions/Significance A global and high-resolution microbiota analysis was carried out to determine the temporal stability, the associations with intestinal symptoms, and the individual and common core microbiota in healthy adults. The findings provide new approaches to define intestinal health and to further characterize the microbial communities inhabiting the human gut. PMID:21829582
NASA Astrophysics Data System (ADS)
Bogdanov, Valery L.; Boyce-Jacino, Michael
1999-05-01
Confined arrays of biochemical probes deposited on a solid support surface (analytical microarray or 'chip') provide an opportunity to analysis multiple reactions simultaneously. Microarrays are increasingly used in genetics, medicine and environment scanning as research and analytical instruments. A power of microarray technology comes from its parallelism which grows with array miniaturization, minimization of reagent volume per reaction site and reaction multiplexing. An optical detector of microarray signals should combine high sensitivity, spatial and spectral resolution. Additionally, low-cost and a high processing rate are needed to transfer microarray technology into biomedical practice. We designed an imager that provides confocal and complete spectrum detection of entire fluorescently-labeled microarray in parallel. Imager uses microlens array, non-slit spectral decomposer, and high- sensitive detector (cooled CCD). Two imaging channels provide a simultaneous detection of localization, integrated and spectral intensities for each reaction site in microarray. A dimensional matching between microarray and imager's optics eliminates all in moving parts in instrumentation, enabling highly informative, fast and low-cost microarray detection. We report theory of confocal hyperspectral imaging with microlenses array and experimental data for implementation of developed imager to detect fluorescently labeled microarray with a density approximately 103 sites per cm2.
NASA Astrophysics Data System (ADS)
Brazhnik, Kristina; Sokolova, Zinaida; Baryshnikova, Maria; Bilan, Regina; Nabiev, Igor; Sukhanova, Alyona
Multiplexed analysis of cancer markers is crucial for early tumor diagnosis and screening. We have designed lab-on-a-bead microarray for quantitative detection of three breast cancer markers in human serum. Quantum dots were used as bead-bound fluorescent tags for identifying each marker by means of flow cytometry. Antigen-specific beads reliably detected CA 15-3, CEA, and CA 125 in serum samples, providing clear discrimination between the samples with respect to the antigen levels. The novel microarray is advantageous over the routine single-analyte ones due to the simultaneous detection of various markers. Therefore the developed microarray is a promising tool for serum tumor marker profiling.
Uddin, Monica; Wildman, Derek E.; Liu, Guozhen; Xu, Wenbo; Johnson, Robert M.; Hof, Patrick R.; Kapatos, Gregory; Grossman, Lawrence I.; Goodman, Morris
2004-01-01
Gene expression profiles from the anterior cingulate cortex (ACC) of human, chimpanzee, gorilla, and macaque samples provide clues about genetic regulatory changes in human and other catarrhine primate brains. The ACC, a cerebral neocortical region, has human-specific histological features. Physiologically, an individual's ACC displays increased activity during that individual's performance of cognitive tasks. Of ≈45,000 probe sets on microarray chips representing transcripts of all or most human genes, ≈16,000 were commonly detected in human ACC samples and comparable numbers, 14,000–15,000, in gorilla and chimpanzee ACC samples. Phylogenetic results obtained from gene expression profiles contradict the traditional expectation that the non-human African apes (i.e., chimpanzee and gorilla) should be more like each other than either should be like humans. Instead, the chimpanzee ACC profiles are more like the human than like the gorilla; these profiles demonstrate that chimpanzees are the sister group of humans. Moreover, for those unambiguous expression changes mapping to important biological processes and molecular functions that statistically are significantly represented in the data, the chimpanzee clade shows at least as much apparent regulatory evolution as does the human clade. Among important changes in the ancestry of both humans and chimpanzees, but to a greater extent in humans, are the up-regulated expression profiles of aerobic energy metabolism genes and neuronal function-related genes, suggesting that increased neuronal activity required increased supplies of energy. PMID:14976249
Construction of a cDNA microarray derived from the ascidian Ciona intestinalis.
Azumi, Kaoru; Takahashi, Hiroki; Miki, Yasufumi; Fujie, Manabu; Usami, Takeshi; Ishikawa, Hisayoshi; Kitayama, Atsusi; Satou, Yutaka; Ueno, Naoto; Satoh, Nori
2003-10-01
A cDNA microarray was constructed from a basal chordate, the ascidian Ciona intestinalis. The draft genome of Ciona has been read and inferred to contain approximately 16,000 protein-coding genes, and cDNAs for transcripts of 13,464 genes have been characterized and compiled as the "Ciona intestinalis Gene Collection Release I". In the present study, we constructed a cDNA microarray of these 13,464 Ciona genes. A preliminary experiment with Cy3- and Cy5-labeled probes showed extensive differential gene expression between fertilized eggs and larvae. In addition, there was a good correlation between results obtained by the present microarray analysis and those from previous EST analyses. This first microarray of a large collection of Ciona intestinalis cDNA clones should facilitate the analysis of global gene expression and gene networks during the embryogenesis of basal chordates.
Implementation of GenePattern within the Stanford Microarray Database.
Hubble, Jeremy; Demeter, Janos; Jin, Heng; Mao, Maria; Nitzberg, Michael; Reddy, T B K; Wymore, Farrell; Zachariah, Zachariah K; Sherlock, Gavin; Ball, Catherine A
2009-01-01
Hundreds of researchers across the world use the Stanford Microarray Database (SMD; http://smd.stanford.edu/) to store, annotate, view, analyze and share microarray data. In addition to providing registered users at Stanford access to their own data, SMD also provides access to public data, and tools with which to analyze those data, to any public user anywhere in the world. Previously, the addition of new microarray data analysis tools to SMD has been limited by available engineering resources, and in addition, the existing suite of tools did not provide a simple way to design, execute and share analysis pipelines, or to document such pipelines for the purposes of publication. To address this, we have incorporated the GenePattern software package directly into SMD, providing access to many new analysis tools, as well as a plug-in architecture that allows users to directly integrate and share additional tools through SMD. In this article, we describe our implementation of the GenePattern microarray analysis software package into the SMD code base. This extension is available with the SMD source code that is fully and freely available to others under an Open Source license, enabling other groups to create a local installation of SMD with an enriched data analysis capability.
Genome-scale cluster analysis of replicated microarrays using shrinkage correlation coefficient.
Yao, Jianchao; Chang, Chunqi; Salmi, Mari L; Hung, Yeung Sam; Loraine, Ann; Roux, Stanley J
2008-06-18
Currently, clustering with some form of correlation coefficient as the gene similarity metric has become a popular method for profiling genomic data. The Pearson correlation coefficient and the standard deviation (SD)-weighted correlation coefficient are the two most widely-used correlations as the similarity metrics in clustering microarray data. However, these two correlations are not optimal for analyzing replicated microarray data generated by most laboratories. An effective correlation coefficient is needed to provide statistically sufficient analysis of replicated microarray data. In this study, we describe a novel correlation coefficient, shrinkage correlation coefficient (SCC), that fully exploits the similarity between the replicated microarray experimental samples. The methodology considers both the number of replicates and the variance within each experimental group in clustering expression data, and provides a robust statistical estimation of the error of replicated microarray data. The value of SCC is revealed by its comparison with two other correlation coefficients that are currently the most widely-used (Pearson correlation coefficient and SD-weighted correlation coefficient) using statistical measures on both synthetic expression data as well as real gene expression data from Saccharomyces cerevisiae. Two leading clustering methods, hierarchical and k-means clustering were applied for the comparison. The comparison indicated that using SCC achieves better clustering performance. Applying SCC-based hierarchical clustering to the replicated microarray data obtained from germinating spores of the fern Ceratopteris richardii, we discovered two clusters of genes with shared expression patterns during spore germination. Functional analysis suggested that some of the genetic mechanisms that control germination in such diverse plant lineages as mosses and angiosperms are also conserved among ferns. This study shows that SCC is an alternative to the Pearson correlation coefficient and the SD-weighted correlation coefficient, and is particularly useful for clustering replicated microarray data. This computational approach should be generally useful for proteomic data or other high-throughput analysis methodology.
Fabrication of Carbohydrate Microarrays by Boronate Formation.
Adak, Avijit K; Lin, Ting-Wei; Li, Ben-Yuan; Lin, Chun-Cheng
2017-01-01
The interactions between soluble carbohydrates and/or surface displayed glycans and protein receptors are essential to many biological processes and cellular recognition events. Carbohydrate microarrays provide opportunities for high-throughput quantitative analysis of carbohydrate-protein interactions. Over the past decade, various techniques have been implemented for immobilizing glycans on solid surfaces in a microarray format. Herein, we describe a detailed protocol for fabricating carbohydrate microarrays that capitalizes on the intrinsic reactivity of boronic acid toward carbohydrates to form stable boronate diesters. A large variety of unprotected carbohydrates ranging in structure from simple disaccharides and trisaccharides to considerably more complex human milk and blood group (oligo)saccharides have been covalently immobilized in a single step on glass slides, which were derivatized with high-affinity boronic acid ligands. The immobilized ligands in these microarrays maintain the receptor-binding activities including those of lectins and antibodies according to the structures of their pendant carbohydrates for rapid analysis of a number of carbohydrate-recognition events within 30 h. This method facilitates the direct construction of otherwise difficult to obtain carbohydrate microarrays from underivatized glycans.
The Glycan Microarray Story from Construction to Applications.
Hyun, Ji Young; Pai, Jaeyoung; Shin, Injae
2017-04-18
Not only are glycan-mediated binding processes in cells and organisms essential for a wide range of physiological processes, but they are also implicated in various pathological processes. As a result, elucidation of glycan-associated biomolecular interactions and their consequences is of great importance in basic biological research and biomedical applications. In 2002, we and others were the first to utilize glycan microarrays in efforts aimed at the rapid analysis of glycan-associated recognition events. Because they contain a number of glycans immobilized in a dense and orderly manner on a solid surface, glycan microarrays enable multiple parallel analyses of glycan-protein binding events while utilizing only small amounts of glycan samples. Therefore, this microarray technology has become a leading edge tool in studies aimed at elucidating roles played by glycans and glycan binding proteins in biological systems. In this Account, we summarize our efforts on the construction of glycan microarrays and their applications in studies of glycan-associated interactions. Immobilization strategies of functionalized and unmodified glycans on derivatized glass surfaces are described. Although others have developed immobilization techniques, our efforts have focused on improving the efficiencies and operational simplicity of microarray construction. The microarray-based technology has been most extensively used for rapid analysis of the glycan binding properties of proteins. In addition, glycan microarrays have been employed to determine glycan-protein interactions quantitatively, detect pathogens, and rapidly assess substrate specificities of carbohydrate-processing enzymes. More recently, the microarrays have been employed to identify functional glycans that elicit cell surface lectin-mediated cellular responses. Owing to these efforts, it is now possible to use glycan microarrays to expand the understanding of roles played by glycans and glycan binding proteins in biological systems.
EDGE3: A web-based solution for management and analysis of Agilent two color microarray experiments
Vollrath, Aaron L; Smith, Adam A; Craven, Mark; Bradfield, Christopher A
2009-01-01
Background The ability to generate transcriptional data on the scale of entire genomes has been a boon both in the improvement of biological understanding and in the amount of data generated. The latter, the amount of data generated, has implications when it comes to effective storage, analysis and sharing of these data. A number of software tools have been developed to store, analyze, and share microarray data. However, a majority of these tools do not offer all of these features nor do they specifically target the commonly used two color Agilent DNA microarray platform. Thus, the motivating factor for the development of EDGE3 was to incorporate the storage, analysis and sharing of microarray data in a manner that would provide a means for research groups to collaborate on Agilent-based microarray experiments without a large investment in software-related expenditures or extensive training of end-users. Results EDGE3 has been developed with two major functions in mind. The first function is to provide a workflow process for the generation of microarray data by a research laboratory or a microarray facility. The second is to store, analyze, and share microarray data in a manner that doesn't require complicated software. To satisfy the first function, EDGE3 has been developed as a means to establish a well defined experimental workflow and information system for microarray generation. To satisfy the second function, the software application utilized as the user interface of EDGE3 is a web browser. Within the web browser, a user is able to access the entire functionality, including, but not limited to, the ability to perform a number of bioinformatics based analyses, collaborate between research groups through a user-based security model, and access to the raw data files and quality control files generated by the software used to extract the signals from an array image. Conclusion Here, we present EDGE3, an open-source, web-based application that allows for the storage, analysis, and controlled sharing of transcription-based microarray data generated on the Agilent DNA platform. In addition, EDGE3 provides a means for managing RNA samples and arrays during the hybridization process. EDGE3 is freely available for download at . PMID:19732451
Vollrath, Aaron L; Smith, Adam A; Craven, Mark; Bradfield, Christopher A
2009-09-04
The ability to generate transcriptional data on the scale of entire genomes has been a boon both in the improvement of biological understanding and in the amount of data generated. The latter, the amount of data generated, has implications when it comes to effective storage, analysis and sharing of these data. A number of software tools have been developed to store, analyze, and share microarray data. However, a majority of these tools do not offer all of these features nor do they specifically target the commonly used two color Agilent DNA microarray platform. Thus, the motivating factor for the development of EDGE(3) was to incorporate the storage, analysis and sharing of microarray data in a manner that would provide a means for research groups to collaborate on Agilent-based microarray experiments without a large investment in software-related expenditures or extensive training of end-users. EDGE(3) has been developed with two major functions in mind. The first function is to provide a workflow process for the generation of microarray data by a research laboratory or a microarray facility. The second is to store, analyze, and share microarray data in a manner that doesn't require complicated software. To satisfy the first function, EDGE3 has been developed as a means to establish a well defined experimental workflow and information system for microarray generation. To satisfy the second function, the software application utilized as the user interface of EDGE(3) is a web browser. Within the web browser, a user is able to access the entire functionality, including, but not limited to, the ability to perform a number of bioinformatics based analyses, collaborate between research groups through a user-based security model, and access to the raw data files and quality control files generated by the software used to extract the signals from an array image. Here, we present EDGE(3), an open-source, web-based application that allows for the storage, analysis, and controlled sharing of transcription-based microarray data generated on the Agilent DNA platform. In addition, EDGE(3) provides a means for managing RNA samples and arrays during the hybridization process. EDGE(3) is freely available for download at http://edge.oncology.wisc.edu/.
Gupta, Surya; De Puysseleyr, Veronic; Van der Heyden, José; Maddelein, Davy; Lemmens, Irma; Lievens, Sam; Degroeve, Sven; Tavernier, Jan; Martens, Lennart
2017-05-01
Protein-protein interaction (PPI) studies have dramatically expanded our knowledge about cellular behaviour and development in different conditions. A multitude of high-throughput PPI techniques have been developed to achieve proteome-scale coverage for PPI studies, including the microarray based Mammalian Protein-Protein Interaction Trap (MAPPIT) system. Because such high-throughput techniques typically report thousands of interactions, managing and analysing the large amounts of acquired data is a challenge. We have therefore built the MAPPIT cell microArray Protein Protein Interaction-Data management & Analysis Tool (MAPPI-DAT) as an automated data management and analysis tool for MAPPIT cell microarray experiments. MAPPI-DAT stores the experimental data and metadata in a systematic and structured way, automates data analysis and interpretation, and enables the meta-analysis of MAPPIT cell microarray data across all stored experiments. MAPPI-DAT is developed in Python, using R for data analysis and MySQL as data management system. MAPPI-DAT is cross-platform and can be ran on Microsoft Windows, Linux and OS X/macOS. The source code and a Microsoft Windows executable are freely available under the permissive Apache2 open source license at https://github.com/compomics/MAPPI-DAT. jan.tavernier@vib-ugent.be or lennart.martens@vib-ugent.be. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.
What is the study? This study is the first to use microarray analysis in the Ames strains of Salmonella. The microarray chips were custom-designed for this study and are not commercially available, and we evaluated the well-studied drinking water mutagen, MX. Because much inform...
MICROARRAY ANALYSIS OF DICHLOROACETIC ACID-INDUCED CHANGES IN GENE EXPRESSION
MICROARRAY ANALYSIS OF DICHLOROACETIC ACID-INDUCED CHANGES IN GENE EXPRESSION
Dichloroacetic acid (DCA) is a major by-product of water disinfection by chlorination. Several studies have demonstrated the hepatocarcinogenicity of DCA in rodents when administered in dri...
Robust gene selection methods using weighting schemes for microarray data analysis.
Kang, Suyeon; Song, Jongwoo
2017-09-02
A common task in microarray data analysis is to identify informative genes that are differentially expressed between two different states. Owing to the high-dimensional nature of microarray data, identification of significant genes has been essential in analyzing the data. However, the performances of many gene selection techniques are highly dependent on the experimental conditions, such as the presence of measurement error or a limited number of sample replicates. We have proposed new filter-based gene selection techniques, by applying a simple modification to significance analysis of microarrays (SAM). To prove the effectiveness of the proposed method, we considered a series of synthetic datasets with different noise levels and sample sizes along with two real datasets. The following findings were made. First, our proposed methods outperform conventional methods for all simulation set-ups. In particular, our methods are much better when the given data are noisy and sample size is small. They showed relatively robust performance regardless of noise level and sample size, whereas the performance of SAM became significantly worse as the noise level became high or sample size decreased. When sufficient sample replicates were available, SAM and our methods showed similar performance. Finally, our proposed methods are competitive with traditional methods in classification tasks for microarrays. The results of simulation study and real data analysis have demonstrated that our proposed methods are effective for detecting significant genes and classification tasks, especially when the given data are noisy or have few sample replicates. By employing weighting schemes, we can obtain robust and reliable results for microarray data analysis.
The application of DNA microarrays in gene expression analysis.
van Hal, N L; Vorst, O; van Houwelingen, A M; Kok, E J; Peijnenburg, A; Aharoni, A; van Tunen, A J; Keijer, J
2000-03-31
DNA microarray technology is a new and powerful technology that will substantially increase the speed of molecular biological research. This paper gives a survey of DNA microarray technology and its use in gene expression studies. The technical aspects and their potential improvements are discussed. These comprise array manufacturing and design, array hybridisation, scanning, and data handling. Furthermore, it is discussed how DNA microarrays can be applied in the working fields of: safety, functionality and health of food and gene discovery and pathway engineering in plants.
Implementation of mutual information and bayes theorem for classification microarray data
NASA Astrophysics Data System (ADS)
Dwifebri Purbolaksono, Mahendra; Widiastuti, Kurnia C.; Syahrul Mubarok, Mohamad; Adiwijaya; Aminy Ma’ruf, Firda
2018-03-01
Microarray Technology is one of technology which able to read the structure of gen. The analysis is important for this technology. It is for deciding which attribute is more important than the others. Microarray technology is able to get cancer information to diagnose a person’s gen. Preparation of microarray data is a huge problem and takes a long time. That is because microarray data contains high number of insignificant and irrelevant attributes. So, it needs a method to reduce the dimension of microarray data without eliminating important information in every attribute. This research uses Mutual Information to reduce dimension. System is built with Machine Learning approach specifically Bayes Theorem. This theorem uses a statistical and probability approach. By combining both methods, it will be powerful for Microarray Data Classification. The experiment results show that system is good to classify Microarray data with highest F1-score using Bayesian Network by 91.06%, and Naïve Bayes by 88.85%.
Gene ARMADA: an integrated multi-analysis platform for microarray data implemented in MATLAB.
Chatziioannou, Aristotelis; Moulos, Panagiotis; Kolisis, Fragiskos N
2009-10-27
The microarray data analysis realm is ever growing through the development of various tools, open source and commercial. However there is absence of predefined rational algorithmic analysis workflows or batch standardized processing to incorporate all steps, from raw data import up to the derivation of significantly differentially expressed gene lists. This absence obfuscates the analytical procedure and obstructs the massive comparative processing of genomic microarray datasets. Moreover, the solutions provided, heavily depend on the programming skills of the user, whereas in the case of GUI embedded solutions, they do not provide direct support of various raw image analysis formats or a versatile and simultaneously flexible combination of signal processing methods. We describe here Gene ARMADA (Automated Robust MicroArray Data Analysis), a MATLAB implemented platform with a Graphical User Interface. This suite integrates all steps of microarray data analysis including automated data import, noise correction and filtering, normalization, statistical selection of differentially expressed genes, clustering, classification and annotation. In its current version, Gene ARMADA fully supports 2 coloured cDNA and Affymetrix oligonucleotide arrays, plus custom arrays for which experimental details are given in tabular form (Excel spreadsheet, comma separated values, tab-delimited text formats). It also supports the analysis of already processed results through its versatile import editor. Besides being fully automated, Gene ARMADA incorporates numerous functionalities of the Statistics and Bioinformatics Toolboxes of MATLAB. In addition, it provides numerous visualization and exploration tools plus customizable export data formats for seamless integration by other analysis tools or MATLAB, for further processing. Gene ARMADA requires MATLAB 7.4 (R2007a) or higher and is also distributed as a stand-alone application with MATLAB Component Runtime. Gene ARMADA provides a highly adaptable, integrative, yet flexible tool which can be used for automated quality control, analysis, annotation and visualization of microarray data, constituting a starting point for further data interpretation and integration with numerous other tools.
Microarray data mining using Bioconductor packages.
Nie, Haisheng; Neerincx, Pieter B T; van der Poel, Jan; Ferrari, Francesco; Bicciato, Silvio; Leunissen, Jack A M; Groenen, Martien A M
2009-07-16
This paper describes the results of a Gene Ontology (GO) term enrichment analysis of chicken microarray data using the Bioconductor packages. By checking the enriched GO terms in three contrasts, MM8-PM8, MM8-MA8, and MM8-MM24, of the provided microarray data during this workshop, this analysis aimed to investigate the host reactions in chickens occurring shortly after a secondary challenge with either a homologous or heterologous species of Eimeria. The results of GO enrichment analysis using GO terms annotated to chicken genes and GO terms annotated to chicken-human orthologous genes were also compared. Furthermore, a locally adaptive statistical procedure (LAP) was performed to test differentially expressed chromosomal regions, rather than individual genes, in the chicken genome after Eimeria challenge. GO enrichment analysis identified significant (raw p-value < 0.05) GO terms for all three contrasts included in the analysis. Some of the GO terms linked to, generally, primary immune responses or secondary immune responses indicating the GO enrichment analysis is a useful approach to analyze microarray data. The comparisons of GO enrichment results using chicken gene information and chicken-human orthologous gene information showed more refined GO terms related to immune responses when using chicken-human orthologous gene information, this suggests that using chicken-human orthologous gene information has higher power to detect significant GO terms with more refined functionality. Furthermore, three chromosome regions were identified to be significantly up-regulated in contrast MM8-PM8 (q-value < 0.01). Overall, this paper describes a practical approach to analyze microarray data in farm animals where the genome information is still incomplete. For farm animals, such as chicken, with currently limited gene annotation, borrowing gene annotation information from orthologous genes in well-annotated species, such as human, will help improve the pathway analysis results substantially. Furthermore, LAP analysis approach is a relatively new and very useful way to be applied in microarray analysis.
Polyadenylation state microarray (PASTA) analysis.
Beilharz, Traude H; Preiss, Thomas
2011-01-01
Nearly all eukaryotic mRNAs terminate in a poly(A) tail that serves important roles in mRNA utilization. In the cytoplasm, the poly(A) tail promotes both mRNA stability and translation, and these functions are frequently regulated through changes in tail length. To identify the scope of poly(A) tail length control in a transcriptome, we developed the polyadenylation state microarray (PASTA) method. It involves the purification of mRNA based on poly(A) tail length using thermal elution from poly(U) sepharose, followed by microarray analysis of the resulting fractions. In this chapter we detail our PASTA approach and describe some methods for bulk and mRNA-specific poly(A) tail length measurements of use to monitor the procedure and independently verify the microarray data.
The Use of Atomic Force Microscopy for 3D Analysis of Nucleic Acid Hybridization on Microarrays.
Dubrovin, E V; Presnova, G V; Rubtsova, M Yu; Egorov, A M; Grigorenko, V G; Yaminsky, I V
2015-01-01
Oligonucleotide microarrays are considered today to be one of the most efficient methods of gene diagnostics. The capability of atomic force microscopy (AFM) to characterize the three-dimensional morphology of single molecules on a surface allows one to use it as an effective tool for the 3D analysis of a microarray for the detection of nucleic acids. The high resolution of AFM offers ways to decrease the detection threshold of target DNA and increase the signal-to-noise ratio. In this work, we suggest an approach to the evaluation of the results of hybridization of gold nanoparticle-labeled nucleic acids on silicon microarrays based on an AFM analysis of the surface both in air and in liquid which takes into account of their three-dimensional structure. We suggest a quantitative measure of the hybridization results which is based on the fraction of the surface area occupied by the nanoparticles.
The Utility of Chromosomal Microarray Analysis in Developmental and Behavioral Pediatrics
ERIC Educational Resources Information Center
Beaudet, Arthur L.
2013-01-01
Chromosomal microarray analysis (CMA) has emerged as a powerful new tool to identify genomic abnormalities associated with a wide range of developmental disabilities including congenital malformations, cognitive impairment, and behavioral abnormalities. CMA includes array comparative genomic hybridization (CGH) and single nucleotide polymorphism…
2011-01-01
Background Cytogenetic evaluation is a key component of the diagnosis and prognosis of chronic lymphocytic leukemia (CLL). We performed oligonucleotide-based comparative genomic hybridization microarray analysis on 34 samples with CLL and known abnormal karyotypes previously determined by cytogenetics and/or fluorescence in situ hybridization (FISH). Results Using a custom designed microarray that targets >1800 genes involved in hematologic disease and other malignancies, we identified additional cryptic aberrations and novel findings in 59% of cases. These included gains and losses of genes associated with cell cycle regulation, apoptosis and susceptibility loci on 3p21.31, 5q35.2q35.3, 10q23.31q23.33, 11q22.3, and 22q11.23. Conclusions Our results show that microarray analysis will detect known aberrations, including microscopic and cryptic alterations. In addition, novel genomic changes will be uncovered that may become important prognostic predictors or treatment targets for CLL in the future. PMID:22087757
Putative DHHC-Cysteine-Rich Domain S-Acyltransferase in Plants
Sun, Meihong; Liu, Shiyang; Qi, Baoxiu; Li, Xinzheng
2013-01-01
Protein S-acyltransferases (PATs) containing Asp-His-His-Cys within a Cys-rich domain (DHHC-CRD) are polytopic transmembrane proteins that are found in eukaryotic cells and mediate the S-acylation of target proteins. S-acylation is an important secondary and reversible modification that regulates the membrane association, trafficking and function of target proteins. However, little is known about the characteristics of PATs in plants. Here, we identified 804 PATs from 31 species with complete genomes. The analysis of the phylogenetic relationships suggested that all of the PATs fell into 8 groups. In addition, we analysed the phylogeny, genomic organization, chromosome localisation and expression pattern of PATs in Arabidopsis, Oryza sative, Zea mays and Glycine max. The microarray data revealed that PATs genes were expressed in different tissues and during different life stages. The preferential expression of the ZmPATs in specific tissues and the response of Zea mays to treatments with phytohormones and abiotic stress demonstrated that the PATs play roles in plant growth and development as well as in stress responses. Our data provide a useful reference for the identification and functional analysis of the members of this protein family. PMID:24155879
Interim report on updated microarray probes for the LLNL Burkholderia pseudomallei SNP array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, S; Jaing, C
2012-03-27
The overall goal of this project is to forensically characterize 100 unknown Burkholderia isolates in the US-Australia collaboration. We will identify genome-wide single nucleotide polymorphisms (SNPs) from B. pseudomallei and near neighbor species including B. mallei, B. thailandensis and B. oklahomensis. We will design microarray probes to detect these SNP markers and analyze 100 Burkholderia genomic DNAs extracted from environmental, clinical and near neighbor isolates from Australian collaborators on the Burkholderia SNP microarray. We will analyze the microarray genotyping results to characterize the genetic diversity of these new isolates and triage the samples for whole genome sequencing. In this interimmore » report, we described the SNP analysis and the microarray probe design for the Burkholderia SNP microarray.« less
Generalized Correlation Coefficient for Non-Parametric Analysis of Microarray Time-Course Data.
Tan, Qihua; Thomassen, Mads; Burton, Mark; Mose, Kristian Fredløv; Andersen, Klaus Ejner; Hjelmborg, Jacob; Kruse, Torben
2017-06-06
Modeling complex time-course patterns is a challenging issue in microarray study due to complex gene expression patterns in response to the time-course experiment. We introduce the generalized correlation coefficient and propose a combinatory approach for detecting, testing and clustering the heterogeneous time-course gene expression patterns. Application of the method identified nonlinear time-course patterns in high agreement with parametric analysis. We conclude that the non-parametric nature in the generalized correlation analysis could be an useful and efficient tool for analyzing microarray time-course data and for exploring the complex relationships in the omics data for studying their association with disease and health.
Huerta, Mario; Munyi, Marc; Expósito, David; Querol, Enric; Cedano, Juan
2014-06-15
The microarrays performed by scientific teams grow exponentially. These microarray data could be useful for researchers around the world, but unfortunately they are underused. To fully exploit these data, it is necessary (i) to extract these data from a repository of the high-throughput gene expression data like Gene Expression Omnibus (GEO) and (ii) to make the data from different microarrays comparable with tools easy to use for scientists. We have developed these two solutions in our server, implementing a database of microarray marker genes (Marker Genes Data Base). This database contains the marker genes of all GEO microarray datasets and it is updated monthly with the new microarrays from GEO. Thus, researchers can see whether the marker genes of their microarray are marker genes in other microarrays in the database, expanding the analysis of their microarray to the rest of the public microarrays. This solution helps not only to corroborate the conclusions regarding a researcher's microarray but also to identify the phenotype of different subsets of individuals under investigation, to frame the results with microarray experiments from other species, pathologies or tissues, to search for drugs that promote the transition between the studied phenotypes, to detect undesirable side effects of the treatment applied, etc. Thus, the researcher can quickly add relevant information to his/her studies from all of the previous analyses performed in other studies as long as they have been deposited in public repositories. Marker-gene database tool: http://ibb.uab.es/mgdb © The Author 2014. Published by Oxford University Press.
Kawaura, Kanako; Mochida, Keiichi; Yamazaki, Yukiko; Ogihara, Yasunari
2006-04-01
In this study, we constructed a 22k wheat oligo-DNA microarray. A total of 148,676 expressed sequence tags of common wheat were collected from the database of the Wheat Genomics Consortium of Japan. These were grouped into 34,064 contigs, which were then used to design an oligonucleotide DNA microarray. Following a multistep selection of the sense strand, 21,939 60-mer oligo-DNA probes were selected for attachment on the microarray slide. This 22k oligo-DNA microarray was used to examine the transcriptional response of wheat to salt stress. More than 95% of the probes gave reproducible hybridization signals when targeted with RNAs extracted from salt-treated wheat shoots and roots. With the microarray, we identified 1,811 genes whose expressions changed more than 2-fold in response to salt. These included genes known to mediate response to salt, as well as unknown genes, and they were classified into 12 major groups by hierarchical clustering. These gene expression patterns were also confirmed by real-time reverse transcription-PCR. Many of the genes with unknown function were clustered together with genes known to be involved in response to salt stress. Thus, analysis of gene expression patterns combined with gene ontology should help identify the function of the unknown genes. Also, functional analysis of these wheat genes should provide new insight into the response to salt stress. Finally, these results indicate that the 22k oligo-DNA microarray is a reliable method for monitoring global gene expression patterns in wheat.
Bălăcescu, Loredana; Bălăcescu, O; Crişan, N; Fetica, B; Petruţ, B; Bungărdean, Cătălina; Rus, Meda; Tudoran, Oana; Meurice, G; Irimie, Al; Dragoş, N; Berindan-Neagoe, Ioana
2011-01-01
Prostate cancer represents the first leading cause of cancer among western male population, with different clinical behavior ranging from indolent to metastatic disease. Although many molecules and deregulated pathways are known, the molecular mechanisms involved in the development of prostate cancer are not fully understood. The aim of this study was to explore the molecular variation underlying the prostate cancer, based on microarray analysis and bioinformatics approaches. Normal and prostate cancer tissues were collected by macrodissection from prostatectomy pieces. All prostate cancer specimens used in our study were Gleason score 7. Gene expression microarray (Agilent Technologies) was used for Whole Human Genome evaluation. The bioinformatics and functional analysis were based on Limma and Ingenuity software. The microarray analysis identified 1119 differentially expressed genes between prostate cancer and normal prostate, which were up- or down-regulated at least 2-fold. P-values were adjusted for multiple testing using Benjamini-Hochberg method with a false discovery rate of 0.01. These genes were analyzed with Ingenuity Pathway Analysis software and were established 23 genetic networks. Our microarray results provide new information regarding the molecular networks in prostate cancer stratified as Gleason 7. These data highlighted gene expression profiles for better understanding of prostate cancer progression.
Liu, Jun-Ying; Fan, Hui-Yan; Wang, Ying; Zhang, Yong-Liang; Li, Da-Wei; Yu, Jia-Lin; Han, Cheng-Gui
2017-01-01
Plant microRNAs (miRNAs) are a class of non-coding RNAs that play important roles in plant development, defense, and symptom development. Here, 547 known miRNAs representing 129 miRNA families, and 282 potential novel miRNAs were identified in Beta macrocarpa using small RNA deep sequencing. A phylogenetic analysis was performed, and 8 Beta lineage-specific miRNAs were identified. Through a differential expression analysis, miRNAs associated with Beet necrotic yellow vein virus (BNYVV) infection were identified and confirmed using a microarray analysis and stem-loop RT-qPCR. In total, 103 known miRNAs representing 38 miRNA families, and 45 potential novel miRNAs were differentially regulated, with at least a two-fold change, in BNYVV-infected plants compared with that of the mock-inoculated control. Targets of these differentially expressed miRNAs were also predicted by degradome sequencing. These differentially expressed miRNAs were involved in hormone biosynthesis and signal transduction pathways, and enhanced axillary bud development and plant defenses. This work is the first to describe miRNAs of the plant genus Beta and may offer a reference for miRNA research in other species in the genus. It provides valuable information on the pathogenicity mechanisms of BNYVV.
Pourabed, Ehsan; Ghane Golmohamadi, Farzan; Soleymani Monfared, Peyman; Razavi, Seyed Morteza; Shobbar, Zahra-Sadat
2015-01-01
The basic leucine zipper (bZIP) family is one of the largest and most diverse transcription factors in eukaryotes participating in many essential plant processes. We identified 141 bZIP proteins encoded by 89 genes from the Hordeum vulgare genome. HvbZIPs were classified into 11 groups based on their DNA-binding motif. Amino acid sequence alignment of the HvbZIPs basic-hinge regions revealed some highly conserved residues within each group. The leucine zipper heptads were analyzed predicting their dimerization properties. 34 conserved motifs were identified outside the bZIP domain. Phylogenetic analysis indicated that major diversification within the bZIP family predated the monocot/dicot divergence, although intra-species duplication and parallel evolution seems to be occurred afterward. Localization of HvbZIPs on the barley chromosomes revealed that different groups have been distributed on seven chromosomes of barley. Six types of intron pattern were detected within the basic-hinge regions. Most of the detected cis-elements in the promoter and UTR sequences were involved in seed development or abiotic stress response. Microarray data analysis revealed differential expression pattern of HvbZIPs in response to ABA treatment, drought, and cold stresses and during barley grain development and germination. This information would be helpful for functional characterization of bZIP transcription factors in barley.
Shivaraj, S. M.; Deshmukh, Rupesh K.; Rai, Rhitu; Bélanger, Richard; Agrawal, Pawan K.; Dash, Prasanta K.
2017-01-01
Membrane intrinsic proteins (MIPs) form transmembrane channels and facilitate transport of myriad substrates across the cell membrane in many organisms. Majority of plant MIPs have water transporting ability and are commonly referred as aquaporins (AQPs). In the present study, we identified aquaporin coding genes in flax by genome-wide analysis, their structure, function and expression pattern by pan-genome exploration. Cross-genera phylogenetic analysis with known aquaporins from rice, arabidopsis, and poplar showed five subgroups of flax aquaporins representing 16 plasma membrane intrinsic proteins (PIPs), 17 tonoplast intrinsic proteins (TIPs), 13 NOD26-like intrinsic proteins (NIPs), 2 small basic intrinsic proteins (SIPs), and 3 uncharacterized intrinsic proteins (XIPs). Amongst aquaporins, PIPs contained hydrophilic aromatic arginine (ar/R) selective filter but TIP, NIP, SIP and XIP subfamilies mostly contained hydrophobic ar/R selective filter. Analysis of RNA-seq and microarray data revealed high expression of PIPs in multiple tissues, low expression of NIPs, and seed specific expression of TIP3 in flax. Exploration of aquaporin homologs in three closely related Linum species bienne, grandiflorum and leonii revealed presence of 49, 39 and 19 AQPs, respectively. The genome-wide identification of aquaporins, first in flax, provides insight to elucidate their physiological and developmental roles in flax. PMID:28447607
Shivaraj, S M; Deshmukh, Rupesh K; Rai, Rhitu; Bélanger, Richard; Agrawal, Pawan K; Dash, Prasanta K
2017-04-27
Membrane intrinsic proteins (MIPs) form transmembrane channels and facilitate transport of myriad substrates across the cell membrane in many organisms. Majority of plant MIPs have water transporting ability and are commonly referred as aquaporins (AQPs). In the present study, we identified aquaporin coding genes in flax by genome-wide analysis, their structure, function and expression pattern by pan-genome exploration. Cross-genera phylogenetic analysis with known aquaporins from rice, arabidopsis, and poplar showed five subgroups of flax aquaporins representing 16 plasma membrane intrinsic proteins (PIPs), 17 tonoplast intrinsic proteins (TIPs), 13 NOD26-like intrinsic proteins (NIPs), 2 small basic intrinsic proteins (SIPs), and 3 uncharacterized intrinsic proteins (XIPs). Amongst aquaporins, PIPs contained hydrophilic aromatic arginine (ar/R) selective filter but TIP, NIP, SIP and XIP subfamilies mostly contained hydrophobic ar/R selective filter. Analysis of RNA-seq and microarray data revealed high expression of PIPs in multiple tissues, low expression of NIPs, and seed specific expression of TIP3 in flax. Exploration of aquaporin homologs in three closely related Linum species bienne, grandiflorum and leonii revealed presence of 49, 39 and 19 AQPs, respectively. The genome-wide identification of aquaporins, first in flax, provides insight to elucidate their physiological and developmental roles in flax.
Tojo, Axel; Malm, Johan; Marko-Varga, György; Lilja, Hans; Laurell, Thomas
2014-01-01
The antibody microarrays have become widespread, but their use for quantitative analyses in clinical samples has not yet been established. We investigated an immunoassay based on nanoporous silicon antibody microarrays for quantification of total prostate-specific-antigen (PSA) in 80 clinical plasma samples, and provide quantitative data from a duplex microarray assay that simultaneously quantifies free and total PSA in plasma. To further develop the assay the porous silicon chips was placed into a standard 96-well microtiter plate for higher throughput analysis. The samples analyzed by this quantitative microarray were 80 plasma samples obtained from men undergoing clinical PSA testing (dynamic range: 0.14-44ng/ml, LOD: 0.14ng/ml). The second dataset, measuring free PSA (dynamic range: 0.40-74.9ng/ml, LOD: 0.47ng/ml) and total PSA (dynamic range: 0.87-295ng/ml, LOD: 0.76ng/ml), was also obtained from the clinical routine. The reference for the quantification was a commercially available assay, the ProStatus PSA Free/Total DELFIA. In an analysis of 80 plasma samples the microarray platform performs well across the range of total PSA levels. This assay might have the potential to substitute for the large-scale microtiter plate format in diagnostic applications. The duplex assay paves the way for a future quantitative multiplex assay, which analyses several prostate cancer biomarkers simultaneously. PMID:22921878
Wimmer, Isabella; Tröscher, Anna R; Brunner, Florian; Rubino, Stephen J; Bien, Christian G; Weiner, Howard L; Lassmann, Hans; Bauer, Jan
2018-04-20
Formalin-fixed paraffin-embedded (FFPE) tissues are valuable resources commonly used in pathology. However, formalin fixation modifies nucleic acids challenging the isolation of high-quality RNA for genetic profiling. Here, we assessed feasibility and reliability of microarray studies analysing transcriptome data from fresh, fresh-frozen (FF) and FFPE tissues. We show that reproducible microarray data can be generated from only 2 ng FFPE-derived RNA. For RNA quality assessment, fragment size distribution (DV200) and qPCR proved most suitable. During RNA isolation, extending tissue lysis time to 10 hours reduced high-molecular-weight species, while additional incubation at 70 °C markedly increased RNA yields. Since FF- and FFPE-derived microarrays constitute different data entities, we used indirect measures to investigate gene signal variation and relative gene expression. Whole-genome analyses revealed high concordance rates, while reviewing on single-genes basis showed higher data variation in FFPE than FF arrays. Using an experimental model, gene set enrichment analysis (GSEA) of FFPE-derived microarrays and fresh tissue-derived RNA-Seq datasets yielded similarly affected pathways confirming the applicability of FFPE tissue in global gene expression analysis. Our study provides a workflow comprising RNA isolation, quality assessment and microarray profiling using minimal RNA input, thus enabling hypothesis-generating pathway analyses from limited amounts of precious, pathologically significant FFPE tissues.
2016-01-01
Abstract Microarray gene expression data sets are jointly analyzed to increase statistical power. They could either be merged together or analyzed by meta-analysis. For a given ensemble of data sets, it cannot be foreseen which of these paradigms, merging or meta-analysis, works better. In this article, three joint analysis methods, Z -score normalization, ComBat and the inverse normal method (meta-analysis) were selected for survival prognosis and risk assessment of breast cancer patients. The methods were applied to eight microarray gene expression data sets, totaling 1324 patients with two clinical endpoints, overall survival and relapse-free survival. The performance derived from the joint analysis methods was evaluated using Cox regression for survival analysis and independent validation used as bias estimation. Overall, Z -score normalization had a better performance than ComBat and meta-analysis. Higher Area Under the Receiver Operating Characteristic curve and hazard ratio were also obtained when independent validation was used as bias estimation. With a lower time and memory complexity, Z -score normalization is a simple method for joint analysis of microarray gene expression data sets. The derived findings suggest further assessment of this method in future survival prediction and cancer classification applications. PMID:26504096
Oligonucleotide microarrays are a powerful tool for unsupervised analysis of chemical impacts on biological systems. However, the lack of well annotated biological pathways for many aquatic organisms, including fish, and the poor power of microarray-based analyses to detect diffe...
Ogunnaike, Babatunde A; Gelmi, Claudio A; Edwards, Jeremy S
2010-05-21
Gene expression studies generate large quantities of data with the defining characteristic that the number of genes (whose expression profiles are to be determined) exceed the number of available replicates by several orders of magnitude. Standard spot-by-spot analysis still seeks to extract useful information for each gene on the basis of the number of available replicates, and thus plays to the weakness of microarrays. On the other hand, because of the data volume, treating the entire data set as an ensemble, and developing theoretical distributions for these ensembles provides a framework that plays instead to the strength of microarrays. We present theoretical results that under reasonable assumptions, the distribution of microarray intensities follows the Gamma model, with the biological interpretations of the model parameters emerging naturally. We subsequently establish that for each microarray data set, the fractional intensities can be represented as a mixture of Beta densities, and develop a procedure for using these results to draw statistical inference regarding differential gene expression. We illustrate the results with experimental data from gene expression studies on Deinococcus radiodurans following DNA damage using cDNA microarrays. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Microarray-based screening of heat shock protein inhibitors.
Schax, Emilia; Walter, Johanna-Gabriela; Märzhäuser, Helene; Stahl, Frank; Scheper, Thomas; Agard, David A; Eichner, Simone; Kirschning, Andreas; Zeilinger, Carsten
2014-06-20
Based on the importance of heat shock proteins (HSPs) in diseases such as cancer, Alzheimer's disease or malaria, inhibitors of these chaperons are needed. Today's state-of-the-art techniques to identify HSP inhibitors are performed in microplate format, requiring large amounts of proteins and potential inhibitors. In contrast, we have developed a miniaturized protein microarray-based assay to identify novel inhibitors, allowing analysis with 300 pmol of protein. The assay is based on competitive binding of fluorescence-labeled ATP and potential inhibitors to the ATP-binding site of HSP. Therefore, the developed microarray enables the parallel analysis of different ATP-binding proteins on a single microarray. We have demonstrated the possibility of multiplexing by immobilizing full-length human HSP90α and HtpG of Helicobacter pylori on microarrays. Fluorescence-labeled ATP was competed by novel geldanamycin/reblastatin derivatives with IC50 values in the range of 0.5 nM to 4 μM and Z(*)-factors between 0.60 and 0.96. Our results demonstrate the potential of a target-oriented multiplexed protein microarray to identify novel inhibitors for different members of the HSP90 family. Copyright © 2014 Elsevier B.V. All rights reserved.
Hou, Hongmin; Li, Jun; Gao, Min; Singer, Stacy D.; Wang, Hao; Mao, Linyong; Fei, Zhangjun; Wang, Xiping
2013-01-01
Background The SBP-box gene family is specific to plants and encodes a class of zinc finger-containing transcription factors with a broad range of functions. Although SBP-box genes have been identified in numerous plants including green algae, moss, silver birch, snapdragon, Arabidopsis, rice and maize, there is little information concerning SBP-box genes, or the corresponding miR156/157, function in grapevine. Methodology/Principal Findings Eighteen SBP-box gene family members were identified in Vitis vinifera, twelve of which bore sequences that were complementary to miRNA156/157. Phylogenetic reconstruction demonstrated that plant SBP-domain proteins could be classified into seven subgroups, with the V. vinifera SBP-domain proteins being more closely related to SBP-domain proteins from dicotyledonous angiosperms than those from monocotyledonous angiosperms. In addition, synteny analysis between grape and Arabidopsis demonstrated that homologs of several grape SBP genes were found in corresponding syntenic blocks of Arabidopsis. Expression analysis of the grape SBP-box genes in various organs and at different stages of fruit development in V. quinquangularis ‘Shang-24’ revealed distinct spatiotemporal patterns. While the majority of the grape SBP-box genes lacking a miR156/157 target site were expressed ubiquitously and constitutively, most genes bearing a miR156/157 target site exhibited distinct expression patterns, possibly due to the inhibitory role of the microRNA. Furthermore, microarray data mining and quantitative real-time RT-PCR analysis identified several grape SBP-box genes that are potentially involved in the defense against biotic and abiotic stresses. Conclusion The results presented here provide a further understanding of SBP-box gene function in plants, and yields additional insights into the mechanism of stress management in grape, which may have important implications for the future success of this crop. PMID:23527172
Watson, Christopher M.; Crinnion, Laura A.; Gurgel‐Gianetti, Juliana; Harrison, Sally M.; Daly, Catherine; Antanavicuite, Agne; Lascelles, Carolina; Markham, Alexander F.; Pena, Sergio D. J.; Bonthron, David T.
2015-01-01
ABSTRACT Autozygosity mapping is a powerful technique for the identification of rare, autosomal recessive, disease‐causing genes. The ease with which this category of disease gene can be identified has greatly increased through the availability of genome‐wide SNP genotyping microarrays and subsequently of exome sequencing. Although these methods have simplified the generation of experimental data, its analysis, particularly when disparate data types must be integrated, remains time consuming. Moreover, the huge volume of sequence variant data generated from next generation sequencing experiments opens up the possibility of using these data instead of microarray genotype data to identify disease loci. To allow these two types of data to be used in an integrated fashion, we have developed AgileVCFMapper, a program that performs both the mapping of disease loci by SNP genotyping and the analysis of potentially deleterious variants using exome sequence variant data, in a single step. This method does not require microarray SNP genotype data, although analysis with a combination of microarray and exome genotype data enables more precise delineation of disease loci, due to superior marker density and distribution. PMID:26037133
Automatic Identification and Quantification of Extra-Well Fluorescence in Microarray Images.
Rivera, Robert; Wang, Jie; Yu, Xiaobo; Demirkan, Gokhan; Hopper, Marika; Bian, Xiaofang; Tahsin, Tasnia; Magee, D Mitchell; Qiu, Ji; LaBaer, Joshua; Wallstrom, Garrick
2017-11-03
In recent studies involving NAPPA microarrays, extra-well fluorescence is used as a key measure for identifying disease biomarkers because there is evidence to support that it is better correlated with strong antibody responses than statistical analysis involving intraspot intensity. Because this feature is not well quantified by traditional image analysis software, identification and quantification of extra-well fluorescence is performed manually, which is both time-consuming and highly susceptible to variation between raters. A system that could automate this task efficiently and effectively would greatly improve the process of data acquisition in microarray studies, thereby accelerating the discovery of disease biomarkers. In this study, we experimented with different machine learning methods, as well as novel heuristics, for identifying spots exhibiting extra-well fluorescence (rings) in microarray images and assigning each ring a grade of 1-5 based on its intensity and morphology. The sensitivity of our final system for identifying rings was found to be 72% at 99% specificity and 98% at 92% specificity. Our system performs this task significantly faster than a human, while maintaining high performance, and therefore represents a valuable tool for microarray image analysis.
Thermodynamically optimal whole-genome tiling microarray design and validation.
Cho, Hyejin; Chou, Hui-Hsien
2016-06-13
Microarray is an efficient apparatus to interrogate the whole transcriptome of species. Microarray can be designed according to annotated gene sets, but the resulted microarrays cannot be used to identify novel transcripts and this design method is not applicable to unannotated species. Alternatively, a whole-genome tiling microarray can be designed using only genomic sequences without gene annotations, and it can be used to detect novel RNA transcripts as well as known genes. The difficulty with tiling microarray design lies in the tradeoff between probe-specificity and coverage of the genome. Sequence comparison methods based on BLAST or similar software are commonly employed in microarray design, but they cannot precisely determine the subtle thermodynamic competition between probe targets and partially matched probe nontargets during hybridizations. Using the whole-genome thermodynamic analysis software PICKY to design tiling microarrays, we can achieve maximum whole-genome coverage allowable under the thermodynamic constraints of each target genome. The resulted tiling microarrays are thermodynamically optimal in the sense that all selected probes share the same melting temperature separation range between their targets and closest nontargets, and no additional probes can be added without violating the specificity of the microarray to the target genome. This new design method was used to create two whole-genome tiling microarrays for Escherichia coli MG1655 and Agrobacterium tumefaciens C58 and the experiment results validated the design.
Usadel, Björn; Nagel, Axel; Steinhauser, Dirk; Gibon, Yves; Bläsing, Oliver E; Redestig, Henning; Sreenivasulu, Nese; Krall, Leonard; Hannah, Matthew A; Poree, Fabien; Fernie, Alisdair R; Stitt, Mark
2006-12-18
Microarray technology has become a widely accepted and standardized tool in biology. The first microarray data analysis programs were developed to support pair-wise comparison. However, as microarray experiments have become more routine, large scale experiments have become more common, which investigate multiple time points or sets of mutants or transgenics. To extract biological information from such high-throughput expression data, it is necessary to develop efficient analytical platforms, which combine manually curated gene ontologies with efficient visualization and navigation tools. Currently, most tools focus on a few limited biological aspects, rather than offering a holistic, integrated analysis. Here we introduce PageMan, a multiplatform, user-friendly, and stand-alone software tool that annotates, investigates, and condenses high-throughput microarray data in the context of functional ontologies. It includes a GUI tool to transform different ontologies into a suitable format, enabling the user to compare and choose between different ontologies. It is equipped with several statistical modules for data analysis, including over-representation analysis and Wilcoxon statistical testing. Results are exported in a graphical format for direct use, or for further editing in graphics programs.PageMan provides a fast overview of single treatments, allows genome-level responses to be compared across several microarray experiments covering, for example, stress responses at multiple time points. This aids in searching for trait-specific changes in pathways using mutants or transgenics, analyzing development time-courses, and comparison between species. In a case study, we analyze the results of publicly available microarrays of multiple cold stress experiments using PageMan, and compare the results to a previously published meta-analysis.PageMan offers a complete user's guide, a web-based over-representation analysis as well as a tutorial, and is freely available at http://mapman.mpimp-golm.mpg.de/pageman/. PageMan allows multiple microarray experiments to be efficiently condensed into a single page graphical display. The flexible interface allows data to be quickly and easily visualized, facilitating comparisons within experiments and to published experiments, thus enabling researchers to gain a rapid overview of the biological responses in the experiments.
Schluttenhofer, Craig; Pattanaik, Sitakanta; Patra, Barunava; Yuan, Ling
2014-06-20
To combat infection to biotic stress plants elicit the biosynthesis of numerous natural products, many of which are valuable pharmaceutical compounds. Jasmonate is a central regulator of defense response to pathogens and accumulation of specialized metabolites. Catharanthus roseus produces a large number of terpenoid indole alkaloids (TIAs) and is an excellent model for understanding the regulation of this class of valuable compounds. Recent work illustrates a possible role for the Catharanthus WRKY transcription factors (TFs) in regulating TIA biosynthesis. In Arabidopsis and other plants, the WRKY TF family is also shown to play important role in controlling tolerance to biotic and abiotic stresses, as well as secondary metabolism. Here, we describe the WRKY TF families in response to jasmonate in Arabidopsis and Catharanthus. Publically available Arabidopsis microarrays revealed at least 30% (22 of 72) of WRKY TFs respond to jasmonate treatments. Microarray analysis identified at least six jasmonate responsive Arabidopsis WRKY genes (AtWRKY7, AtWRKY20, AtWRKY26, AtWRKY45, AtWRKY48, and AtWRKY72) that have not been previously reported. The Catharanthus WRKY TF family is comprised of at least 48 members. Phylogenetic clustering reveals 11 group I, 32 group II, and 5 group III WRKY TFs. Furthermore, we found that at least 25% (12 of 48) were jasmonate responsive, and 75% (9 of 12) of the jasmonate responsive CrWRKYs are orthologs of AtWRKYs known to be regulated by jasmonate. Overall, the CrWRKY family, ascertained from transcriptome sequences, contains approximately 75% of the number of WRKYs found in other sequenced asterid species (pepper, tomato, potato, and bladderwort). Microarray and transcriptomic data indicate that expression of WRKY TFs in Arabidopsis and Catharanthus are under tight spatio-temporal and developmental control, and potentially have a significant role in jasmonate signaling. Profiling of CrWRKY expression in response to jasmonate treatment revealed potential associations with secondary metabolism. This study provides a foundation for further characterization of WRKY TFs in jasmonate responses and regulation of natural product biosynthesis.
Identification of candidate genes in osteoporosis by integrated microarray analysis.
Li, J J; Wang, B Q; Fei, Q; Yang, Y; Li, D
2016-12-01
In order to screen the altered gene expression profile in peripheral blood mononuclear cells of patients with osteoporosis, we performed an integrated analysis of the online microarray studies of osteoporosis. We searched the Gene Expression Omnibus (GEO) database for microarray studies of peripheral blood mononuclear cells in patients with osteoporosis. Subsequently, we integrated gene expression data sets from multiple microarray studies to obtain differentially expressed genes (DEGs) between patients with osteoporosis and normal controls. Gene function analysis was performed to uncover the functions of identified DEGs. A total of three microarray studies were selected for integrated analysis. In all, 1125 genes were found to be significantly differentially expressed between osteoporosis patients and normal controls, with 373 upregulated and 752 downregulated genes. Positive regulation of the cellular amino metabolic process (gene ontology (GO): 0033240, false discovery rate (FDR) = 1.00E + 00) was significantly enriched under the GO category for biological processes, while for molecular functions, flavin adenine dinucleotide binding (GO: 0050660, FDR = 3.66E-01) and androgen receptor binding (GO: 0050681, FDR = 6.35E-01) were significantly enriched. DEGs were enriched in many osteoporosis-related signalling pathways, including those of mitogen-activated protein kinase (MAPK) and calcium. Protein-protein interaction (PPI) network analysis showed that the significant hub proteins contained ubiquitin specific peptidase 9, X-linked (Degree = 99), ubiquitin specific peptidase 19 (Degree = 57) and ubiquitin conjugating enzyme E2 B (Degree = 57). Analysis of gene function of identified differentially expressed genes may expand our understanding of fundamental mechanisms leading to osteoporosis. Moreover, significantly enriched pathways, such as MAPK and calcium, may involve in osteoporosis through osteoblastic differentiation and bone formation.Cite this article: J. J. Li, B. Q. Wang, Q. Fei, Y. Yang, D. Li. Identification of candidate genes in osteoporosis by integrated microarray analysis. Bone Joint Res 2016;5:594-601. DOI: 10.1302/2046-3758.512.BJR-2016-0073.R1. © 2016 Fei et al.
Workflows for microarray data processing in the Kepler environment.
Stropp, Thomas; McPhillips, Timothy; Ludäscher, Bertram; Bieda, Mark
2012-05-17
Microarray data analysis has been the subject of extensive and ongoing pipeline development due to its complexity, the availability of several options at each analysis step, and the development of new analysis demands, including integration with new data sources. Bioinformatics pipelines are usually custom built for different applications, making them typically difficult to modify, extend and repurpose. Scientific workflow systems are intended to address these issues by providing general-purpose frameworks in which to develop and execute such pipelines. The Kepler workflow environment is a well-established system under continual development that is employed in several areas of scientific research. Kepler provides a flexible graphical interface, featuring clear display of parameter values, for design and modification of workflows. It has capabilities for developing novel computational components in the R, Python, and Java programming languages, all of which are widely used for bioinformatics algorithm development, along with capabilities for invoking external applications and using web services. We developed a series of fully functional bioinformatics pipelines addressing common tasks in microarray processing in the Kepler workflow environment. These pipelines consist of a set of tools for GFF file processing of NimbleGen chromatin immunoprecipitation on microarray (ChIP-chip) datasets and more comprehensive workflows for Affymetrix gene expression microarray bioinformatics and basic primer design for PCR experiments, which are often used to validate microarray results. Although functional in themselves, these workflows can be easily customized, extended, or repurposed to match the needs of specific projects and are designed to be a toolkit and starting point for specific applications. These workflows illustrate a workflow programming paradigm focusing on local resources (programs and data) and therefore are close to traditional shell scripting or R/BioConductor scripting approaches to pipeline design. Finally, we suggest that microarray data processing task workflows may provide a basis for future example-based comparison of different workflow systems. We provide a set of tools and complete workflows for microarray data analysis in the Kepler environment, which has the advantages of offering graphical, clear display of conceptual steps and parameters and the ability to easily integrate other resources such as remote data and web services.
Goodman, Corey W.; Major, Heather J.; Walls, William D.; Sheffield, Val C.; Casavant, Thomas L.; Darbro, Benjamin W.
2016-01-01
Chromosomal microarrays (CMAs) are routinely used in both research and clinical laboratories; yet, little attention has been given to the estimation of genome-wide true and false negatives during the assessment of these assays and how such information could be used to calibrate various algorithmic metrics to improve performance. Low-throughput, locus-specific methods such as fluorescence in situ hybridization (FISH), quantitative PCR (qPCR), or multiplex ligation-dependent probe amplification (MLPA) preclude rigorous calibration of various metrics used by copy number variant (CNV) detection algorithms. To aid this task, we have established a comparative methodology, CNV-ROC, which is capable of performing a high throughput, low cost, analysis of CMAs that takes into consideration genome-wide true and false negatives. CNV-ROC uses a higher resolution microarray to confirm calls from a lower resolution microarray and provides for a true measure of genome-wide performance metrics at the resolution offered by microarray testing. CNV-ROC also provides for a very precise comparison of CNV calls between two microarray platforms without the need to establish an arbitrary degree of overlap. Comparison of CNVs across microarrays is done on a per-probe basis and receiver operator characteristic (ROC) analysis is used to calibrate algorithmic metrics, such as log2 ratio threshold, to enhance CNV calling performance. CNV-ROC addresses a critical and consistently overlooked aspect of analytical assessments of genome-wide techniques like CMAs which is the measurement and use of genome-wide true and false negative data for the calculation of performance metrics and comparison of CNV profiles between different microarray experiments. PMID:25595567
Papaleo, Maria Cristiana; Russo, Edda; Fondi, Marco; Emiliani, Giovanni; Frandi, Antonio; Brilli, Matteo; Pastorelli, Roberta; Fani, Renato
2009-12-01
In this work a detailed analysis of the structure, the expression and the organization of his genes belonging to the core of histidine biosynthesis (hisBHAF) in 40 newly determined and 13 available sequences of Burkholderia strains was carried out. Data obtained revealed a strong conservation of the structure and organization of these genes through the entire genus. The phylogenetic analysis showed the monophyletic origin of this gene cluster and indicated that it did not undergo horizontal gene transfer events. The analysis of the intergenic regions, based on the substitution rate, entropy plot and bendability suggested the existence of a putative transcription promoter upstream of hisB, that was supported by the genetic analysis that showed that this cluster was able to complement Escherichia colihisA, hisB, and hisF mutations. Moreover, a preliminary transcriptional analysis and the analysis of microarray data revealed that the expression of the his core was constitutive. These findings are in agreement with the fact that the entire Burkholderiahis operon is heterogeneous, in that it contains "alien" genes apparently not involved in histidine biosynthesis. Besides, they also support the idea that the proteobacterial his operon was piece-wisely assembled, i.e. through accretion of smaller units containing only some of the genes (eventually together with their own promoters) involved in this biosynthetic route. The correlation existing between the structure, organization and regulation of his "core" genes and the function(s) they perform in cellular metabolism is discussed.
MICROARRAY DATA ANALYSIS USING MULTIPLE STATISTICAL MODELS
Microarray Data Analysis Using Multiple Statistical Models
Wenjun Bao1, Judith E. Schmid1, Amber K. Goetz1, Ming Ouyang2, William J. Welsh2,Andrew I. Brooks3,4, ChiYi Chu3,Mitsunori Ogihara3,4, Yinhe Cheng5, David J. Dix1. 1National Health and Environmental Effects Researc...
ERIC Educational Resources Information Center
Reiff, Marian; Giarelli, Ellen; Bernhardt, Barbara A.; Easley, Ebony; Spinner, Nancy B.; Sankar, Pamela L.; Mulchandani, Surabhi
2015-01-01
Clinical guidelines recommend chromosomal microarray analysis (CMA) for all children with autism spectrum disorders (ASDs). We explored the test's perceived usefulness among parents of children with ASD who had undergone CMA, and received a result categorized as pathogenic, variant of uncertain significance, or negative. Fifty-seven parents…
Oligonucleotide microarrays and other ‘omics’ approaches are powerful tools for unsupervised analysis of chemical impacts on biological systems. However, the lack of well annotated biological pathways for many aquatic organisms, including fish, and the poor power of microarray-b...
Bumm, Klaus; Zheng, Mingzhong; Bailey, Clyde; Zhan, Fenghuang; Chiriva-Internati, M; Eddlemon, Paul; Terry, Julian; Barlogie, Bart; Shaughnessy, John D
2002-02-01
Clinical GeneOrganizer (CGO) is a novel windows-based archiving, organization and data mining software for the integration of gene expression profiling in clinical medicine. The program implements various user-friendly tools and extracts data for further statistical analysis. This software was written for Affymetrix GeneChip *.txt files, but can also be used for any other microarray-derived data. The MS-SQL server version acts as a data mart and links microarray data with clinical parameters of any other existing database and therefore represents a valuable tool for combining gene expression analysis and clinical disease characteristics.
cluML: A markup language for clustering and cluster validity assessment of microarray data.
Bolshakova, Nadia; Cunningham, Pádraig
2005-01-01
cluML is a new markup language for microarray data clustering and cluster validity assessment. The XML-based format has been designed to address some of the limitations observed in traditional formats, such as inability to store multiple clustering (including biclustering) and validation results within a dataset. cluML is an effective tool to support biomedical knowledge representation in gene expression data analysis. Although cluML was developed for DNA microarray analysis applications, it can be effectively used for the representation of clustering and for the validation of other biomedical and physical data that has no limitations.
Gheit, Tarik; Tommasino, Massimo
2011-01-01
Epidemiological and functional studies have clearly demonstrated that certain types of human papillomavirus (HPV) from the genus alpha of the HPV phylogenetic tree, referred to as high-risk (HR) types, are the etiological cause of cervical cancer. Several methods for HPV detection and typing have been developed, and their importance in clinical and epidemiological studies has been well demonstrated. However, comparative studies have shown that several assays have different sensitivities for the detection of specific HPV types, particularly in the case of multiple infections. In this chapter, we describe a novel one-shot method for the detection and typing of 19 mucosal HR HPV types (types 16, 18, 26, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68, 70, 73, and 82). The assay combines the advantages of the multiplex PCR methods, i.e., high sensitivity and the possibility to perform multiple amplifications in a single reaction, with an array primer extension (APEX) assay. The latter method offers the benefits of Sanger dideoxy sequencing with the high-throughput potential of the microarray. Initial studies have revealed that the assay is very sensitive in detecting multiple HPV infections.
Kirby, Ralph; Herron, Paul; Hoskisson, Paul
2011-02-01
Based on available genome sequences, Actinomycetales show significant gene synteny across a wide range of species and genera. In addition, many genera show varying degrees of complex morphological development. Using the presence of gene synteny as a basis, it is clear that an analysis of gene conservation across the Streptomyces and various other Actinomycetales will provide information on both the importance of genes and gene clusters and the evolution of morphogenesis in these bacteria. Genome sequencing, although becoming cheaper, is still relatively expensive for comparing large numbers of strains. Thus, a heterologous DNA/DNA microarray hybridization dataset based on a Streptomyces coelicolor microarray allows a cheaper and greater depth of analysis of gene conservation. This study, using both bioinformatical and microarray approaches, was able to classify genes previously identified as involved in morphogenesis in Streptomyces into various subgroups in terms of conservation across species and genera. This will allow the targeting of genes for further study based on their importance at the species level and at higher evolutionary levels.
Cross species analysis of microarray expression data
Lu, Yong; Huggins, Peter; Bar-Joseph, Ziv
2009-01-01
Motivation: Many biological systems operate in a similar manner across a large number of species or conditions. Cross-species analysis of sequence and interaction data is often applied to determine the function of new genes. In contrast to these static measurements, microarrays measure the dynamic, condition-specific response of complex biological systems. The recent exponential growth in microarray expression datasets allows researchers to combine expression experiments from multiple species to identify genes that are not only conserved in sequence but also operated in a similar way in the different species studied. Results: In this review we discuss the computational and technical challenges associated with these studies, the approaches that have been developed to address these challenges and the advantages of cross-species analysis of microarray data. We show how successful application of these methods lead to insights that cannot be obtained when analyzing data from a single species. We also highlight current open problems and discuss possible ways to address them. Contact: zivbj@cs.cmu.edu PMID:19357096
Yamamura, Shohei; Yamada, Eriko; Kimura, Fukiko; Miyajima, Kumiko; Shigeto, Hajime
2017-10-21
A new single-cell microarray chip was designed and developed to separate and analyze single adherent and non-adherent cancer cells. The single-cell microarray chip is made of polystyrene with over 60,000 microchambers of 10 different size patterns (31-40 µm upper diameter, 11-20 µm lower diameter). A drop of suspension of adherent carcinoma (NCI-H1650) and non-adherent leukocyte (CCRF-CEM) cells was placed onto the chip, and single-cell occupancy of NCI-H1650 and CCRF-CEM was determined to be 79% and 84%, respectively. This was achieved by controlling the chip design and surface treatment. Analysis of protein expression in single NCI-H1650 and CCRF-CEM cells was performed on the single-cell microarray chip by multi-antibody staining. Additionally, with this system, we retrieved positive single cells from the microchambers by a micromanipulator. Thus, this system demonstrates the potential for easy and accurate separation and analysis of various types of single cells.
Jain, K K
2001-02-01
Cambridge Healthtech Institute's Third Annual Conference on Lab-on-a-Chip and Microarray technology covered the latest advances in this technology and applications in life sciences. Highlights of the meetings are reported briefly with emphasis on applications in genomics, drug discovery and molecular diagnostics. There was an emphasis on microfluidics because of the wide applications in laboratory and drug discovery. The lab-on-a-chip provides the facilities of a complete laboratory in a hand-held miniature device. Several microarray systems have been used for hybridisation and detection techniques. Oligonucleotide scanning arrays provide a versatile tool for the analysis of nucleic acid interactions and provide a platform for improving the array-based methods for investigation of antisense therapeutics. A method for analysing combinatorial DNA arrays using oligonucleotide-modified gold nanoparticle probes and a conventional scanner has considerable potential in molecular diagnostics. Various applications of microarray technology for high-throughput screening in drug discovery and single nucleotide polymorphisms (SNP) analysis were discussed. Protein chips have important applications in proteomics. With the considerable amount of data generated by the different technologies using microarrays, it is obvious that the reading of the information and its interpretation and management through the use of bioinformatics is essential. Various techniques for data analysis were presented. Biochip and microarray technology has an essential role to play in the evolving trends in healthcare, which integrate diagnosis with prevention/treatment and emphasise personalised medicines.
Wu, Baolin
2006-02-15
Differential gene expression detection and sample classification using microarray data have received much research interest recently. Owing to the large number of genes p and small number of samples n (p > n), microarray data analysis poses big challenges for statistical analysis. An obvious problem owing to the 'large p small n' is over-fitting. Just by chance, we are likely to find some non-differentially expressed genes that can classify the samples very well. The idea of shrinkage is to regularize the model parameters to reduce the effects of noise and produce reliable inferences. Shrinkage has been successfully applied in the microarray data analysis. The SAM statistics proposed by Tusher et al. and the 'nearest shrunken centroid' proposed by Tibshirani et al. are ad hoc shrinkage methods. Both methods are simple, intuitive and prove to be useful in empirical studies. Recently Wu proposed the penalized t/F-statistics with shrinkage by formally using the (1) penalized linear regression models for two-class microarray data, showing good performance. In this paper we systematically discussed the use of penalized regression models for analyzing microarray data. We generalize the two-class penalized t/F-statistics proposed by Wu to multi-class microarray data. We formally derive the ad hoc shrunken centroid used by Tibshirani et al. using the (1) penalized regression models. And we show that the penalized linear regression models provide a rigorous and unified statistical framework for sample classification and differential gene expression detection.
Best practices for hybridization design in two-colour microarray analysis.
Knapen, Dries; Vergauwen, Lucia; Laukens, Kris; Blust, Ronny
2009-07-01
Two-colour microarrays are a popular platform of choice in gene expression studies. Because two different samples are hybridized on a single microarray, and several microarrays are usually needed in a given experiment, there are many possible ways to combine samples on different microarrays. The actual combination employed is commonly referred to as the 'hybridization design'. Different types of hybridization designs have been developed, all aimed at optimizing the experimental setup for the detection of differentially expressed genes while coping with technical noise. Here, we first provide an overview of the different classes of hybridization designs, discussing their advantages and limitations, and then we illustrate the current trends in the use of different hybridization design types in contemporary research.
Takai, Ken; Horikoshi, Koki
1999-01-01
Molecular phylogenetic analysis of a naturally occurring microbial community in a deep-subsurface geothermal environment indicated that the phylogenetic diversity of the microbial population in the environment was extremely limited and that only hyperthermophilic archaeal members closely related to Pyrobaculum were present. All archaeal ribosomal DNA sequences contained intron-like sequences, some of which had open reading frames with repeated homing-endonuclease motifs. The sequence similarity analysis and the phylogenetic analysis of these homing endonucleases suggested the possible phylogenetic relationship among archaeal rRNA-encoded homing endonucleases. PMID:10584021
Jin, S J; Liu, M; Long, W J; Luo, X P
2016-12-02
Objective: To explore the clinical phenotypes and the genetic cause for a boy with unexplained growth retardation, nephrocalcinosis, auditory anomalies and multi-organ/system developmental disorders. Method: Routine G-banding and chromosome microarray analysis were applied to a child with unexplained growth retardation, nephrocalcinosis, auditory anomalies and multi-organ/system developmental disorders treated in the Department of Pediatrics of Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology in September 2015 and his parents to conduct the chromosomal karyotype analysis and the whole genome scanning. Deleted genes were searched in the Decipher and NCBI databases, and their relationships with the clinical phenotypes were analyzed. Result: A six-month-old boy was refered to us because of unexplained growth retardation and feeding intolerance.The affected child presented with abnormal manifestation such as special face, umbilical hernia, growth retardation, hypothyroidism, congenital heart disease, right ear sensorineural deafness, hypercalcemia and nephrocalcinosis. The child's karyotype was 46, XY, 16qh + , and his parents' karyotypes were normal. Chromosome microarray analysis revealed a 1 436 kb deletion on the 7q11.23(72701098_74136633) region of the child. This region included 23 protein-coding genes, which were reported to be corresponding to Williams-Beuren syndrome and its certain clinical phenotypes. His parents' results of chromosome microarray analysis were normal. Conclusion: A boy with characteristic manifestation of Williams-Beuren syndrome and rare nephrocalcinosis was diagnosed using chromosome microarray analysis. The deletion on the 7q11.23 might be related to the clinical phenotypes of Williams-Beuren syndrome, yet further studies are needed.
AFM 4.0: a toolbox for DNA microarray analysis
Breitkreutz, Bobby-Joe; Jorgensen, Paul; Breitkreutz, Ashton; Tyers, Mike
2001-01-01
We have developed a series of programs, collectively packaged as Array File Maker 4.0 (AFM), that manipulate and manage DNA microarray data. AFM 4.0 is simple to use, applicable to any organism or microarray, and operates within the familiar confines of Microsoft Excel. Given a database of expression ratios, AFM 4.0 generates input files for clustering, helps prepare colored figures and Venn diagrams, and can uncover aneuploidy in yeast microarray data. AFM 4.0 should be especially useful to laboratories that do not have access to specialized commercial or in-house software. PMID:11532221
Fully Automated Complementary DNA Microarray Segmentation using a Novel Fuzzy-based Algorithm.
Saberkari, Hamidreza; Bahrami, Sheyda; Shamsi, Mousa; Amoshahy, Mohammad Javad; Ghavifekr, Habib Badri; Sedaaghi, Mohammad Hossein
2015-01-01
DNA microarray is a powerful approach to study simultaneously, the expression of 1000 of genes in a single experiment. The average value of the fluorescent intensity could be calculated in a microarray experiment. The calculated intensity values are very close in amount to the levels of expression of a particular gene. However, determining the appropriate position of every spot in microarray images is a main challenge, which leads to the accurate classification of normal and abnormal (cancer) cells. In this paper, first a preprocessing approach is performed to eliminate the noise and artifacts available in microarray cells using the nonlinear anisotropic diffusion filtering method. Then, the coordinate center of each spot is positioned utilizing the mathematical morphology operations. Finally, the position of each spot is exactly determined through applying a novel hybrid model based on the principle component analysis and the spatial fuzzy c-means clustering (SFCM) algorithm. Using a Gaussian kernel in SFCM algorithm will lead to improving the quality in complementary DNA microarray segmentation. The performance of the proposed algorithm has been evaluated on the real microarray images, which is available in Stanford Microarray Databases. Results illustrate that the accuracy of microarray cells segmentation in the proposed algorithm reaches to 100% and 98% for noiseless/noisy cells, respectively.
Rato, Márcia G.; Nerlich, Andreas; Bergmann, René; Bexiga, Ricardo; Nunes, Sandro F.; Vilela, Cristina L.; Santos-Sanches, Ilda; Chhatwal, Gursharan S.
2011-01-01
A custom-designed microarray containing 220 virulence genes of Streptococcus pyogenes (group A Streptococcus [GAS]) was used to test group C Streptococcus dysgalactiae subsp. dysgalactiae (GCS) field strains causing bovine mastitis and group C or group G Streptococcus dysgalactiae subsp. equisimilis (GCS/GGS) isolates from human infections, with the latter being used for comparative purposes, for the presence of virulence genes. All bovine and all human isolates carried a fraction of the 220 genes (23% and 39%, respectively). The virulence genes encoding streptolysin S, glyceraldehyde-3-phosphate dehydrogenase, the plasminogen-binding M-like protein PAM, and the collagen-like protein SclB were detected in the majority of both bovine and human isolates (94 to 100%). Virulence factors, usually carried by human beta-hemolytic streptococcal pathogens, such as streptokinase, laminin-binding protein, and the C5a peptidase precursor, were detected in all human isolates but not in bovine isolates. Additionally, GAS bacteriophage-associated virulence genes encoding superantigens, DNase, and/or streptodornase were detected in bovine isolates (72%) but not in the human isolates. Determinants located in non-bacteriophage-related mobile elements, such as the gene encoding R28, were detected in all bovine and human isolates. Several virulence genes, including genes of bacteriophage origin, were shown to be expressed by reverse transcriptase PCR (RT-PCR). Phylogenetic analysis of superantigen gene sequences revealed a high level (>98%) of identity among genes of bovine GCS, of the horse pathogen Streptococcus equi subsp. equi, and of the human pathogen GAS. Our findings indicate that alpha-hemolytic bovine GCS, an important mastitis pathogen and considered to be a nonhuman pathogen, carries important virulence factors responsible for virulence and pathogenesis in humans. PMID:21525223
Large-scale analysis of gene expression using cDNA microarrays promises the
rapid detection of the mode of toxicity for drugs and other chemicals. cDNA
microarrays were used to examine chemically-induced alterations of gene
expression in HepG2 cells exposed to oxidative ...
Where statistics and molecular microarray experiments biology meet.
Kelmansky, Diana M
2013-01-01
This review chapter presents a statistical point of view to microarray experiments with the purpose of understanding the apparent contradictions that often appear in relation to their results. We give a brief introduction of molecular biology for nonspecialists. We describe microarray experiments from their construction and the biological principles the experiments rely on, to data acquisition and analysis. The role of epidemiological approaches and sample size considerations are also discussed.
Grenville-Briggs, Laura J; Stansfield, Ian
2011-01-01
This report describes a linked series of Masters-level computer practical workshops. They comprise an advanced functional genomics investigation, based upon analysis of a microarray dataset probing yeast DNA damage responses. The workshops require the students to analyse highly complex transcriptomics datasets, and were designed to stimulate active learning through experience of current research methods in bioinformatics and functional genomics. They seek to closely mimic a realistic research environment, and require the students first to propose research hypotheses, then test those hypotheses using specific sections of the microarray dataset. The complexity of the microarray data provides students with the freedom to propose their own unique hypotheses, tested using appropriate sections of the microarray data. This research latitude was highly regarded by students and is a strength of this practical. In addition, the focus on DNA damage by radiation and mutagenic chemicals allows them to place their results in a human medical context, and successfully sparks broad interest in the subject material. In evaluation, 79% of students scored the practical workshops on a five-point scale as 4 or 5 (totally effective) for student learning. More broadly, the general use of microarray data as a "student research playground" is also discussed. Copyright © 2011 Wiley Periodicals, Inc.
Singh, Amarjeet; Baranwal, Vinay; Shankar, Alka; Kanwar, Poonam; Ranjan, Rajeev; Yadav, Sandeep; Pandey, Amita; Kapoor, Sanjay; Pandey, Girdhar K.
2012-01-01
Background Phospholipase A (PLA) is an important group of enzymes responsible for phospholipid hydrolysis in lipid signaling. PLAs have been implicated in abiotic stress signaling and developmental events in various plants species. Genome-wide analysis of PLA superfamily has been carried out in dicot plant Arabidopsis. A comprehensive genome-wide analysis of PLAs has not been presented yet in crop plant rice. Methodology/Principal Findings A comprehensive bioinformatics analysis identified a total of 31 PLA encoding genes in the rice genome, which are divided into three classes; phospholipase A1 (PLA1), patatin like phospholipases (pPLA) and low molecular weight secretory phospholipase A2 (sPLA2) based on their sequences and phylogeny. A subset of 10 rice PLAs exhibited chromosomal duplication, emphasizing the role of duplication in the expansion of this gene family in rice. Microarray expression profiling revealed a number of PLA members expressing differentially and significantly under abiotic stresses and reproductive development. Comparative expression analysis with Arabidopsis PLAs revealed a high degree of functional conservation between the orthologs in two plant species, which also indicated the vital role of PLAs in stress signaling and plant development across different plant species. Moreover, sub-cellular localization of a few candidates suggests their differential localization and functional role in the lipid signaling. Conclusion/Significance The comprehensive analysis and expression profiling would provide a critical platform for the functional characterization of the candidate PLA genes in crop plants. PMID:22363522
Brodsky, Leonid; Leontovich, Andrei; Shtutman, Michael; Feinstein, Elena
2004-01-01
Mathematical methods of analysis of microarray hybridizations deal with gene expression profiles as elementary units. However, some of these profiles do not reflect a biologically relevant transcriptional response, but rather stem from technical artifacts. Here, we describe two technically independent but rationally interconnected methods for identification of such artifactual profiles. Our diagnostics are based on detection of deviations from uniformity, which is assumed as the main underlying principle of microarray design. Method 1 is based on detection of non-uniformity of microarray distribution of printed genes that are clustered based on the similarity of their expression profiles. Method 2 is based on evaluation of the presence of gene-specific microarray spots within the slides’ areas characterized by an abnormal concentration of low/high differential expression values, which we define as ‘patterns of differentials’. Applying two novel algorithms, for nested clustering (method 1) and for pattern detection (method 2), we can make a dual estimation of the profile’s quality for almost every printed gene. Genes with artifactual profiles detected by method 1 may then be removed from further analysis. Suspicious differential expression values detected by method 2 may be either removed or weighted according to the probabilities of patterns that cover them, thus diminishing their input in any further data analysis. PMID:14999086
Brunner, C; Hoffmann, K; Thiele, T; Schedler, U; Jehle, H; Resch-Genger, U
2015-04-01
Commercial platforms consisting of ready-to-use microarrays printed with target-specific DNA probes, a microarray scanner, and software for data analysis are available for different applications in medical diagnostics and food analysis, detecting, e.g., viral and bacteriological DNA sequences. The transfer of these tools from basic research to routine analysis, their broad acceptance in regulated areas, and their use in medical practice requires suitable calibration tools for regular control of instrument performance in addition to internal assay controls. Here, we present the development of a novel assay-adapted calibration slide for a commercialized DNA-based assay platform, consisting of precisely arranged fluorescent areas of various intensities obtained by incorporating different concentrations of a "green" dye and a "red" dye in a polymer matrix. These dyes present "Cy3" and "Cy5" analogues with improved photostability, chosen based upon their spectroscopic properties closely matching those of common labels for the green and red channel of microarray scanners. This simple tool allows to efficiently and regularly assess and control the performance of the microarray scanner provided with the biochip platform and to compare different scanners. It will be eventually used as fluorescence intensity scale for referencing of assays results and to enhance the overall comparability of diagnostic tests.
Stekel, Dov J.; Sarti, Donatella; Trevino, Victor; Zhang, Lihong; Salmon, Mike; Buckley, Chris D.; Stevens, Mark; Pallen, Mark J.; Penn, Charles; Falciani, Francesco
2005-01-01
A key step in the analysis of microarray data is the selection of genes that are differentially expressed. Ideally, such experiments should be properly replicated in order to infer both technical and biological variability, and the data should be subjected to rigorous hypothesis tests to identify the differentially expressed genes. However, in microarray experiments involving the analysis of very large numbers of biological samples, replication is not always practical. Therefore, there is a need for a method to select differentially expressed genes in a rational way from insufficiently replicated data. In this paper, we describe a simple method that uses bootstrapping to generate an error model from a replicated pilot study that can be used to identify differentially expressed genes in subsequent large-scale studies on the same platform, but in which there may be no replicated arrays. The method builds a stratified error model that includes array-to-array variability, feature-to-feature variability and the dependence of error on signal intensity. We apply this model to the characterization of the host response in a model of bacterial infection of human intestinal epithelial cells. We demonstrate the effectiveness of error model based microarray experiments and propose this as a general strategy for a microarray-based screening of large collections of biological samples. PMID:15800204
Hu, Guohong; Wang, Hui-Yun; Greenawalt, Danielle M.; Azaro, Marco A.; Luo, Minjie; Tereshchenko, Irina V.; Cui, Xiangfeng; Yang, Qifeng; Gao, Richeng; Shen, Li; Li, Honghua
2006-01-01
Microarray-based analysis of single nucleotide polymorphisms (SNPs) has many applications in large-scale genetic studies. To minimize the influence of experimental variation, microarray data usually need to be processed in different aspects including background subtraction, normalization and low-signal filtering before genotype determination. Although many algorithms are sophisticated for these purposes, biases are still present. In the present paper, new algorithms for SNP microarray data analysis and the software, AccuTyping, developed based on these algorithms are described. The algorithms take advantage of a large number of SNPs included in each assay, and the fact that the top and bottom 20% of SNPs can be safely treated as homozygous after sorting based on their ratios between the signal intensities. These SNPs are then used as controls for color channel normalization and background subtraction. Genotype calls are made based on the logarithms of signal intensity ratios using two cutoff values, which were determined after training the program with a dataset of ∼160 000 genotypes and validated by non-microarray methods. AccuTyping was used to determine >300 000 genotypes of DNA and sperm samples. The accuracy was shown to be >99%. AccuTyping can be downloaded from . PMID:16982644
The statistics of identifying differentially expressed genes in Expresso and TM4: a comparison
Sioson, Allan A; Mane, Shrinivasrao P; Li, Pinghua; Sha, Wei; Heath, Lenwood S; Bohnert, Hans J; Grene, Ruth
2006-01-01
Background Analysis of DNA microarray data takes as input spot intensity measurements from scanner software and returns differential expression of genes between two conditions, together with a statistical significance assessment. This process typically consists of two steps: data normalization and identification of differentially expressed genes through statistical analysis. The Expresso microarray experiment management system implements these steps with a two-stage, log-linear ANOVA mixed model technique, tailored to individual experimental designs. The complement of tools in TM4, on the other hand, is based on a number of preset design choices that limit its flexibility. In the TM4 microarray analysis suite, normalization, filter, and analysis methods form an analysis pipeline. TM4 computes integrated intensity values (IIV) from the average intensities and spot pixel counts returned by the scanner software as input to its normalization steps. By contrast, Expresso can use either IIV data or median intensity values (MIV). Here, we compare Expresso and TM4 analysis of two experiments and assess the results against qRT-PCR data. Results The Expresso analysis using MIV data consistently identifies more genes as differentially expressed, when compared to Expresso analysis with IIV data. The typical TM4 normalization and filtering pipeline corrects systematic intensity-specific bias on a per microarray basis. Subsequent statistical analysis with Expresso or a TM4 t-test can effectively identify differentially expressed genes. The best agreement with qRT-PCR data is obtained through the use of Expresso analysis and MIV data. Conclusion The results of this research are of practical value to biologists who analyze microarray data sets. The TM4 normalization and filtering pipeline corrects microarray-specific systematic bias and complements the normalization stage in Expresso analysis. The results of Expresso using MIV data have the best agreement with qRT-PCR results. In one experiment, MIV is a better choice than IIV as input to data normalization and statistical analysis methods, as it yields as greater number of statistically significant differentially expressed genes; TM4 does not support the choice of MIV input data. Overall, the more flexible and extensive statistical models of Expresso achieve more accurate analytical results, when judged by the yardstick of qRT-PCR data, in the context of an experimental design of modest complexity. PMID:16626497
ERIC Educational Resources Information Center
McGrew, Susan G.; Peters, Brittany R.; Crittendon, Julie A.; Veenstra-VanderWeele, Jeremy
2012-01-01
Genetic testing is recommended for patients with ASD; however specific recommendations vary by specialty. American Academy of Pediatrics and American Academy of Neurology guidelines recommend G-banded karyotype and Fragile X DNA. The American College of Medical Genetics recommends Chromosomal Microarray Analysis (CMA). We determined the yield of…
ERIC Educational Resources Information Center
Grenville-Briggs, Laura J.; Stansfield, Ian
2011-01-01
This report describes a linked series of Masters-level computer practical workshops. They comprise an advanced functional genomics investigation, based upon analysis of a microarray dataset probing yeast DNA damage responses. The workshops require the students to analyse highly complex transcriptomics datasets, and were designed to stimulate…
The observation of transcriptional changes following embryonic ethanol exposure may provide significant insights into the biological response to ethanol exposure. In this study, we used microarray analysis to examine the transcriptional response of the developing limb to a dose ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovacik, Meric A.; Sen, Banalata; Euling, Susan Y.
Pathway activity level analysis, the approach pursued in this study, focuses on all genes that are known to be members of metabolic and signaling pathways as defined by the KEGG database. The pathway activity level analysis entails singular value decomposition (SVD) of the expression data of the genes constituting a given pathway. We explore an extension of the pathway activity methodology for application to time-course microarray data. We show that pathway analysis enhances our ability to detect biologically relevant changes in pathway activity using synthetic data. As a case study, we apply the pathway activity level formulation coupled with significancemore » analysis to microarray data from two different rat testes exposed in utero to Dibutyl Phthalate (DBP). In utero DBP exposure in the rat results in developmental toxicity of a number of male reproductive organs, including the testes. One well-characterized mode of action for DBP and the male reproductive developmental effects is the repression of expression of genes involved in cholesterol transport, steroid biosynthesis and testosterone synthesis that lead to a decreased fetal testicular testosterone. Previous analyses of DBP testes microarray data focused on either individual gene expression changes or changes in the expression of specific genes that are hypothesized, or known, to be important in testicular development and testosterone synthesis. However, a pathway analysis may inform whether there are additional affected pathways that could inform additional modes of action linked to DBP developmental toxicity. We show that Pathway activity analysis may be considered for a more comprehensive analysis of microarray data.« less
Goodman, Corey W; Major, Heather J; Walls, William D; Sheffield, Val C; Casavant, Thomas L; Darbro, Benjamin W
2015-04-01
Chromosomal microarrays (CMAs) are routinely used in both research and clinical laboratories; yet, little attention has been given to the estimation of genome-wide true and false negatives during the assessment of these assays and how such information could be used to calibrate various algorithmic metrics to improve performance. Low-throughput, locus-specific methods such as fluorescence in situ hybridization (FISH), quantitative PCR (qPCR), or multiplex ligation-dependent probe amplification (MLPA) preclude rigorous calibration of various metrics used by copy number variant (CNV) detection algorithms. To aid this task, we have established a comparative methodology, CNV-ROC, which is capable of performing a high throughput, low cost, analysis of CMAs that takes into consideration genome-wide true and false negatives. CNV-ROC uses a higher resolution microarray to confirm calls from a lower resolution microarray and provides for a true measure of genome-wide performance metrics at the resolution offered by microarray testing. CNV-ROC also provides for a very precise comparison of CNV calls between two microarray platforms without the need to establish an arbitrary degree of overlap. Comparison of CNVs across microarrays is done on a per-probe basis and receiver operator characteristic (ROC) analysis is used to calibrate algorithmic metrics, such as log2 ratio threshold, to enhance CNV calling performance. CNV-ROC addresses a critical and consistently overlooked aspect of analytical assessments of genome-wide techniques like CMAs which is the measurement and use of genome-wide true and false negative data for the calculation of performance metrics and comparison of CNV profiles between different microarray experiments. Copyright © 2015 Elsevier Inc. All rights reserved.
Open Reading Frame Phylogenetic Analysis on the Cloud
2013-01-01
Phylogenetic analysis has become essential in researching the evolutionary relationships between viruses. These relationships are depicted on phylogenetic trees, in which viruses are grouped based on sequence similarity. Viral evolutionary relationships are identified from open reading frames rather than from complete sequences. Recently, cloud computing has become popular for developing internet-based bioinformatics tools. Biocloud is an efficient, scalable, and robust bioinformatics computing service. In this paper, we propose a cloud-based open reading frame phylogenetic analysis service. The proposed service integrates the Hadoop framework, virtualization technology, and phylogenetic analysis methods to provide a high-availability, large-scale bioservice. In a case study, we analyze the phylogenetic relationships among Norovirus. Evolutionary relationships are elucidated by aligning different open reading frame sequences. The proposed platform correctly identifies the evolutionary relationships between members of Norovirus. PMID:23671843
Mining microarrays for metabolic meaning: nutritional regulation of hypothalamic gene expression.
Mobbs, Charles V; Yen, Kelvin; Mastaitis, Jason; Nguyen, Ha; Watson, Elizabeth; Wurmbach, Elisa; Sealfon, Stuart C; Brooks, Andrew; Salton, Stephen R J
2004-06-01
DNA microarray analysis has been used to investigate relative changes in the level of gene expression in the CNS, including changes that are associated with disease, injury, psychiatric disorders, drug exposure or withdrawal, and memory formation. We have used oligonucleotide microarrays to identify hypothalamic genes that respond to nutritional manipulation. In addition to commonly used microarray analysis based on criteria such as fold-regulation, we have also found that simply carrying out multiple t tests then sorting by P value constitutes a highly reliable method to detect true regulation, as assessed by real-time polymerase chain reaction (PCR), even for relatively low abundance genes or relatively low magnitude of regulation. Such analyses directly suggested novel mechanisms that mediate effects of nutritional state on neuroendocrine function and are being used to identify regulated gene products that may elucidate the metabolic pathology of obese ob/ob, lean Vgf-/Vgf-, and other models with profound metabolic impairments.
Parallel human genome analysis: microarray-based expression monitoring of 1000 genes.
Schena, M; Shalon, D; Heller, R; Chai, A; Brown, P O; Davis, R W
1996-01-01
Microarrays containing 1046 human cDNAs of unknown sequence were printed on glass with high-speed robotics. These 1.0-cm2 DNA "chips" were used to quantitatively monitor differential expression of the cognate human genes using a highly sensitive two-color hybridization assay. Array elements that displayed differential expression patterns under given experimental conditions were characterized by sequencing. The identification of known and novel heat shock and phorbol ester-regulated genes in human T cells demonstrates the sensitivity of the assay. Parallel gene analysis with microarrays provides a rapid and efficient method for large-scale human gene discovery. Images Fig. 1 Fig. 2 Fig. 3 PMID:8855227
Chockalingam, Sriram; Aluru, Maneesha; Aluru, Srinivas
2016-09-19
Pre-processing of microarray data is a well-studied problem. Furthermore, all popular platforms come with their own recommended best practices for differential analysis of genes. However, for genome-scale network inference using microarray data collected from large public repositories, these methods filter out a considerable number of genes. This is primarily due to the effects of aggregating a diverse array of experiments with different technical and biological scenarios. Here we introduce a pre-processing pipeline suitable for inferring genome-scale gene networks from large microarray datasets. We show that partitioning of the available microarray datasets according to biological relevance into tissue- and process-specific categories significantly extends the limits of downstream network construction. We demonstrate the effectiveness of our pre-processing pipeline by inferring genome-scale networks for the model plant Arabidopsis thaliana using two different construction methods and a collection of 11,760 Affymetrix ATH1 microarray chips. Our pre-processing pipeline and the datasets used in this paper are made available at http://alurulab.cc.gatech.edu/microarray-pp.
Bikel, Shirley; Jacobo-Albavera, Leonor; Sánchez-Muñoz, Fausto; Cornejo-Granados, Fernanda; Canizales-Quinteros, Samuel; Soberón, Xavier; Sotelo-Mundo, Rogerio R; Del Río-Navarro, Blanca E; Mendoza-Vargas, Alfredo; Sánchez, Filiberto; Ochoa-Leyva, Adrian
2017-01-01
In spite of the emergence of RNA sequencing (RNA-seq), microarrays remain in widespread use for gene expression analysis in the clinic. There are over 767,000 RNA microarrays from human samples in public repositories, which are an invaluable resource for biomedical research and personalized medicine. The absolute gene expression analysis allows the transcriptome profiling of all expressed genes under a specific biological condition without the need of a reference sample. However, the background fluorescence represents a challenge to determine the absolute gene expression in microarrays. Given that the Y chromosome is absent in female subjects, we used it as a new approach for absolute gene expression analysis in which the fluorescence of the Y chromosome genes of female subjects was used as the background fluorescence for all the probes in the microarray. This fluorescence was used to establish an absolute gene expression threshold, allowing the differentiation between expressed and non-expressed genes in microarrays. We extracted the RNA from 16 children leukocyte samples (nine males and seven females, ages 6-10 years). An Affymetrix Gene Chip Human Gene 1.0 ST Array was carried out for each sample and the fluorescence of 124 genes of the Y chromosome was used to calculate the absolute gene expression threshold. After that, several expressed and non-expressed genes according to our absolute gene expression threshold were compared against the expression obtained using real-time quantitative polymerase chain reaction (RT-qPCR). From the 124 genes of the Y chromosome, three genes (DDX3Y, TXLNG2P and EIF1AY) that displayed significant differences between sexes were used to calculate the absolute gene expression threshold. Using this threshold, we selected 13 expressed and non-expressed genes and confirmed their expression level by RT-qPCR. Then, we selected the top 5% most expressed genes and found that several KEGG pathways were significantly enriched. Interestingly, these pathways were related to the typical functions of leukocytes cells, such as antigen processing and presentation and natural killer cell mediated cytotoxicity. We also applied this method to obtain the absolute gene expression threshold in already published microarray data of liver cells, where the top 5% expressed genes showed an enrichment of typical KEGG pathways for liver cells. Our results suggest that the three selected genes of the Y chromosome can be used to calculate an absolute gene expression threshold, allowing a transcriptome profiling of microarray data without the need of an additional reference experiment. Our approach based on the establishment of a threshold for absolute gene expression analysis will allow a new way to analyze thousands of microarrays from public databases. This allows the study of different human diseases without the need of having additional samples for relative expression experiments.
Chipster: user-friendly analysis software for microarray and other high-throughput data.
Kallio, M Aleksi; Tuimala, Jarno T; Hupponen, Taavi; Klemelä, Petri; Gentile, Massimiliano; Scheinin, Ilari; Koski, Mikko; Käki, Janne; Korpelainen, Eija I
2011-10-14
The growth of high-throughput technologies such as microarrays and next generation sequencing has been accompanied by active research in data analysis methodology, producing new analysis methods at a rapid pace. While most of the newly developed methods are freely available, their use requires substantial computational skills. In order to enable non-programming biologists to benefit from the method development in a timely manner, we have created the Chipster software. Chipster (http://chipster.csc.fi/) brings a powerful collection of data analysis methods within the reach of bioscientists via its intuitive graphical user interface. Users can analyze and integrate different data types such as gene expression, miRNA and aCGH. The analysis functionality is complemented with rich interactive visualizations, allowing users to select datapoints and create new gene lists based on these selections. Importantly, users can save the performed analysis steps as reusable, automatic workflows, which can also be shared with other users. Being a versatile and easily extendable platform, Chipster can be used for microarray, proteomics and sequencing data. In this article we describe its comprehensive collection of analysis and visualization tools for microarray data using three case studies. Chipster is a user-friendly analysis software for high-throughput data. Its intuitive graphical user interface enables biologists to access a powerful collection of data analysis and integration tools, and to visualize data interactively. Users can collaborate by sharing analysis sessions and workflows. Chipster is open source, and the server installation package is freely available.
Chipster: user-friendly analysis software for microarray and other high-throughput data
2011-01-01
Background The growth of high-throughput technologies such as microarrays and next generation sequencing has been accompanied by active research in data analysis methodology, producing new analysis methods at a rapid pace. While most of the newly developed methods are freely available, their use requires substantial computational skills. In order to enable non-programming biologists to benefit from the method development in a timely manner, we have created the Chipster software. Results Chipster (http://chipster.csc.fi/) brings a powerful collection of data analysis methods within the reach of bioscientists via its intuitive graphical user interface. Users can analyze and integrate different data types such as gene expression, miRNA and aCGH. The analysis functionality is complemented with rich interactive visualizations, allowing users to select datapoints and create new gene lists based on these selections. Importantly, users can save the performed analysis steps as reusable, automatic workflows, which can also be shared with other users. Being a versatile and easily extendable platform, Chipster can be used for microarray, proteomics and sequencing data. In this article we describe its comprehensive collection of analysis and visualization tools for microarray data using three case studies. Conclusions Chipster is a user-friendly analysis software for high-throughput data. Its intuitive graphical user interface enables biologists to access a powerful collection of data analysis and integration tools, and to visualize data interactively. Users can collaborate by sharing analysis sessions and workflows. Chipster is open source, and the server installation package is freely available. PMID:21999641
A database for the analysis of immunity genes in Drosophila: PADMA database.
Lee, Mark J; Mondal, Ariful; Small, Chiyedza; Paddibhatla, Indira; Kawaguchi, Akira; Govind, Shubha
2011-01-01
While microarray experiments generate voluminous data, discerning trends that support an existing or alternative paradigm is challenging. To synergize hypothesis building and testing, we designed the Pathogen Associated Drosophila MicroArray (PADMA) database for easy retrieval and comparison of microarray results from immunity-related experiments (www.padmadatabase.org). PADMA also allows biologists to upload their microarray-results and compare it with datasets housed within PADMA. We tested PADMA using a preliminary dataset from Ganaspis xanthopoda-infected fly larvae, and uncovered unexpected trends in gene expression, reshaping our hypothesis. Thus, the PADMA database will be a useful resource to fly researchers to evaluate, revise, and refine hypotheses.
ERIC Educational Resources Information Center
Tra, Yolande V.; Evans, Irene M.
2010-01-01
"BIO2010" put forth the goal of improving the mathematical educational background of biology students. The analysis and interpretation of microarray high-dimensional data can be very challenging and is best done by a statistician and a biologist working and teaching in a collaborative manner. We set up such a collaboration and designed a course on…
ERIC Educational Resources Information Center
Al-Mamari, Watfa; Al-Saegh, Abeer; Al-Kindy, Adila; Bruwer, Zandre; Al-Murshedi, Fathiya; Al-Thihli, Khalid
2015-01-01
Autism Spectrum Disorders are a complicated group of disorders characterized with heterogeneous genetic etiologies. The genetic investigations for this group of disorders have expanded considerably over the past decade. In our study we designed a tired approach and studied the diagnostic yield of chromosomal microarray analysis on patients…
Immunological Targeting of Tumor Initiating Prostate Cancer Cells
2014-10-01
clinically using well-accepted immuno-competent animal models. 2) Keywords: Prostate Cancer, Lymphocyte, Vaccine, Antibody 3) Overall Project Summary...castrate animals . Task 1: Identify and verify antigenic targets from CAstrate Resistant Luminal Epithelial Cells (CRLEC) (months 1-16... animals per group will be processed to derive sufficient RNA for microarray analysis; the experiment will be repeated x 3. Microarray analysis will
MiMiR – an integrated platform for microarray data sharing, mining and analysis
Tomlinson, Chris; Thimma, Manjula; Alexandrakis, Stelios; Castillo, Tito; Dennis, Jayne L; Brooks, Anthony; Bradley, Thomas; Turnbull, Carly; Blaveri, Ekaterini; Barton, Geraint; Chiba, Norie; Maratou, Klio; Soutter, Pat; Aitman, Tim; Game, Laurence
2008-01-01
Background Despite considerable efforts within the microarray community for standardising data format, content and description, microarray technologies present major challenges in managing, sharing, analysing and re-using the large amount of data generated locally or internationally. Additionally, it is recognised that inconsistent and low quality experimental annotation in public data repositories significantly compromises the re-use of microarray data for meta-analysis. MiMiR, the Microarray data Mining Resource was designed to tackle some of these limitations and challenges. Here we present new software components and enhancements to the original infrastructure that increase accessibility, utility and opportunities for large scale mining of experimental and clinical data. Results A user friendly Online Annotation Tool allows researchers to submit detailed experimental information via the web at the time of data generation rather than at the time of publication. This ensures the easy access and high accuracy of meta-data collected. Experiments are programmatically built in the MiMiR database from the submitted information and details are systematically curated and further annotated by a team of trained annotators using a new Curation and Annotation Tool. Clinical information can be annotated and coded with a clinical Data Mapping Tool within an appropriate ethical framework. Users can visualise experimental annotation, assess data quality, download and share data via a web-based experiment browser called MiMiR Online. All requests to access data in MiMiR are routed through a sophisticated middleware security layer thereby allowing secure data access and sharing amongst MiMiR registered users prior to publication. Data in MiMiR can be mined and analysed using the integrated EMAAS open source analysis web portal or via export of data and meta-data into Rosetta Resolver data analysis package. Conclusion The new MiMiR suite of software enables systematic and effective capture of extensive experimental and clinical information with the highest MIAME score, and secure data sharing prior to publication. MiMiR currently contains more than 150 experiments corresponding to over 3000 hybridisations and supports the Microarray Centre's large microarray user community and two international consortia. The MiMiR flexible and scalable hardware and software architecture enables secure warehousing of thousands of datasets, including clinical studies, from microarray and potentially other -omics technologies. PMID:18801157
MiMiR--an integrated platform for microarray data sharing, mining and analysis.
Tomlinson, Chris; Thimma, Manjula; Alexandrakis, Stelios; Castillo, Tito; Dennis, Jayne L; Brooks, Anthony; Bradley, Thomas; Turnbull, Carly; Blaveri, Ekaterini; Barton, Geraint; Chiba, Norie; Maratou, Klio; Soutter, Pat; Aitman, Tim; Game, Laurence
2008-09-18
Despite considerable efforts within the microarray community for standardising data format, content and description, microarray technologies present major challenges in managing, sharing, analysing and re-using the large amount of data generated locally or internationally. Additionally, it is recognised that inconsistent and low quality experimental annotation in public data repositories significantly compromises the re-use of microarray data for meta-analysis. MiMiR, the Microarray data Mining Resource was designed to tackle some of these limitations and challenges. Here we present new software components and enhancements to the original infrastructure that increase accessibility, utility and opportunities for large scale mining of experimental and clinical data. A user friendly Online Annotation Tool allows researchers to submit detailed experimental information via the web at the time of data generation rather than at the time of publication. This ensures the easy access and high accuracy of meta-data collected. Experiments are programmatically built in the MiMiR database from the submitted information and details are systematically curated and further annotated by a team of trained annotators using a new Curation and Annotation Tool. Clinical information can be annotated and coded with a clinical Data Mapping Tool within an appropriate ethical framework. Users can visualise experimental annotation, assess data quality, download and share data via a web-based experiment browser called MiMiR Online. All requests to access data in MiMiR are routed through a sophisticated middleware security layer thereby allowing secure data access and sharing amongst MiMiR registered users prior to publication. Data in MiMiR can be mined and analysed using the integrated EMAAS open source analysis web portal or via export of data and meta-data into Rosetta Resolver data analysis package. The new MiMiR suite of software enables systematic and effective capture of extensive experimental and clinical information with the highest MIAME score, and secure data sharing prior to publication. MiMiR currently contains more than 150 experiments corresponding to over 3000 hybridisations and supports the Microarray Centre's large microarray user community and two international consortia. The MiMiR flexible and scalable hardware and software architecture enables secure warehousing of thousands of datasets, including clinical studies, from microarray and potentially other -omics technologies.
Gillet, Jean-Pierre; Molina, Thierry Jo; Jamart, Jacques; Gaulard, Philippe; Leroy, Karen; Briere, Josette; Theate, Ivan; Thieblemont, Catherine; Bosly, Andre; Herin, Michel; Hamels, Jacques; Remacle, Jose
2009-03-01
Lymphomas are classified according to the World Health Organisation (WHO) classification which defines subtypes on the basis of clinical, morphological, immunophenotypic, molecular and cytogenetic criteria. Differential diagnosis of the subtypes is sometimes difficult, especially for small B-cell lymphoma (SBCL). Standardisation of molecular genetic assays using multiple gene expression analysis by microarrays could be a useful complement to the current diagnosis. The aim of the present study was to develop a low density DNA microarray for the analysis of 107 genes associated with B-cell non-Hodgkin lymphoma and to evaluate its performance in the diagnosis of SBCL. A predictive tool based on Fisher discriminant analysis using a training set of 40 patients including four different subtypes (follicular lymphoma n = 15, mantle cell lymphoma n = 7, B-cell chronic lymphocytic leukemia n = 6 and splenic marginal zone lymphoma n = 12) was designed. A short additional preliminary analysis to gauge the accuracy of this signature was then performed on an external set of nine patients. Using this model, eight of nine of those samples were classified successfully. This pilot study demonstrates that such a microarray tool may be a promising diagnostic approach for small B-cell non-Hodgkin lymphoma.
MAGMA: analysis of two-channel microarrays made easy.
Rehrauer, Hubert; Zoller, Stefan; Schlapbach, Ralph
2007-07-01
The web application MAGMA provides a simple and intuitive interface to identify differentially expressed genes from two-channel microarray data. While the underlying algorithms are not superior to those of similar web applications, MAGMA is particularly user friendly and can be used without prior training. The user interface guides the novice user through the most typical microarray analysis workflow consisting of data upload, annotation, normalization and statistical analysis. It automatically generates R-scripts that document MAGMA's entire data processing steps, thereby allowing the user to regenerate all results in his local R installation. The implementation of MAGMA follows the model-view-controller design pattern that strictly separates the R-based statistical data processing, the web-representation and the application logic. This modular design makes the application flexible and easily extendible by experts in one of the fields: statistical microarray analysis, web design or software development. State-of-the-art Java Server Faces technology was used to generate the web interface and to perform user input processing. MAGMA's object-oriented modular framework makes it easily extendible and applicable to other fields and demonstrates that modern Java technology is also suitable for rather small and concise academic projects. MAGMA is freely available at www.magma-fgcz.uzh.ch.
Tomato Expression Database (TED): a suite of data presentation and analysis tools
Fei, Zhangjun; Tang, Xuemei; Alba, Rob; Giovannoni, James
2006-01-01
The Tomato Expression Database (TED) includes three integrated components. The Tomato Microarray Data Warehouse serves as a central repository for raw gene expression data derived from the public tomato cDNA microarray. In addition to expression data, TED stores experimental design and array information in compliance with the MIAME guidelines and provides web interfaces for researchers to retrieve data for their own analysis and use. The Tomato Microarray Expression Database contains normalized and processed microarray data for ten time points with nine pair-wise comparisons during fruit development and ripening in a normal tomato variety and nearly isogenic single gene mutants impacting fruit development and ripening. Finally, the Tomato Digital Expression Database contains raw and normalized digital expression (EST abundance) data derived from analysis of the complete public tomato EST collection containing >150 000 ESTs derived from 27 different non-normalized EST libraries. This last component also includes tools for the comparison of tomato and Arabidopsis digital expression data. A set of query interfaces and analysis, and visualization tools have been developed and incorporated into TED, which aid users in identifying and deciphering biologically important information from our datasets. TED can be accessed at . PMID:16381976
Tomato Expression Database (TED): a suite of data presentation and analysis tools.
Fei, Zhangjun; Tang, Xuemei; Alba, Rob; Giovannoni, James
2006-01-01
The Tomato Expression Database (TED) includes three integrated components. The Tomato Microarray Data Warehouse serves as a central repository for raw gene expression data derived from the public tomato cDNA microarray. In addition to expression data, TED stores experimental design and array information in compliance with the MIAME guidelines and provides web interfaces for researchers to retrieve data for their own analysis and use. The Tomato Microarray Expression Database contains normalized and processed microarray data for ten time points with nine pair-wise comparisons during fruit development and ripening in a normal tomato variety and nearly isogenic single gene mutants impacting fruit development and ripening. Finally, the Tomato Digital Expression Database contains raw and normalized digital expression (EST abundance) data derived from analysis of the complete public tomato EST collection containing >150,000 ESTs derived from 27 different non-normalized EST libraries. This last component also includes tools for the comparison of tomato and Arabidopsis digital expression data. A set of query interfaces and analysis, and visualization tools have been developed and incorporated into TED, which aid users in identifying and deciphering biologically important information from our datasets. TED can be accessed at http://ted.bti.cornell.edu.
Molecular Phylogenetics: Concepts for a Newcomer.
Ajawatanawong, Pravech
Molecular phylogenetics is the study of evolutionary relationships among organisms using molecular sequence data. The aim of this review is to introduce the important terminology and general concepts of tree reconstruction to biologists who lack a strong background in the field of molecular evolution. Some modern phylogenetic programs are easy to use because of their user-friendly interfaces, but understanding the phylogenetic algorithms and substitution models, which are based on advanced statistics, is still important for the analysis and interpretation without a guide. Briefly, there are five general steps in carrying out a phylogenetic analysis: (1) sequence data preparation, (2) sequence alignment, (3) choosing a phylogenetic reconstruction method, (4) identification of the best tree, and (5) evaluating the tree. Concepts in this review enable biologists to grasp the basic ideas behind phylogenetic analysis and also help provide a sound basis for discussions with expert phylogeneticists.
Development and application of a microarray meter tool to optimize microarray experiments
Rouse, Richard JD; Field, Katrine; Lapira, Jennifer; Lee, Allen; Wick, Ivan; Eckhardt, Colleen; Bhasker, C Ramana; Soverchia, Laura; Hardiman, Gary
2008-01-01
Background Successful microarray experimentation requires a complex interplay between the slide chemistry, the printing pins, the nucleic acid probes and targets, and the hybridization milieu. Optimization of these parameters and a careful evaluation of emerging slide chemistries are a prerequisite to any large scale array fabrication effort. We have developed a 'microarray meter' tool which assesses the inherent variations associated with microarray measurement prior to embarking on large scale projects. Findings The microarray meter consists of nucleic acid targets (reference and dynamic range control) and probe components. Different plate designs containing identical probe material were formulated to accommodate different robotic and pin designs. We examined the variability in probe quality and quantity (as judged by the amount of DNA printed and remaining post-hybridization) using three robots equipped with capillary printing pins. Discussion The generation of microarray data with minimal variation requires consistent quality control of the (DNA microarray) manufacturing and experimental processes. Spot reproducibility is a measure primarily of the variations associated with printing. The microarray meter assesses array quality by measuring the DNA content for every feature. It provides a post-hybridization analysis of array quality by scoring probe performance using three metrics, a) a measure of variability in the signal intensities, b) a measure of the signal dynamic range and c) a measure of variability of the spot morphologies. PMID:18710498
Barvkar, Vitthal T; Pardeshi, Varsha C; Kale, Sandip M; Kadoo, Narendra Y; Gupta, Vidya S
2012-05-08
The glycosylation process, catalyzed by ubiquitous glycosyltransferase (GT) family enzymes, is a prevalent modification of plant secondary metabolites that regulates various functions such as hormone homeostasis, detoxification of xenobiotics and biosynthesis and storage of secondary metabolites. Flax (Linum usitatissimum L.) is a commercially grown oilseed crop, important because of its essential fatty acids and health promoting lignans. Identification and characterization of UDP glycosyltransferase (UGT) genes from flax could provide valuable basic information about this important gene family and help to explain the seed specific glycosylated metabolite accumulation and other processes in plants. Plant genome sequencing projects are useful to discover complexity within this gene family and also pave way for the development of functional genomics approaches. Taking advantage of the newly assembled draft genome sequence of flax, we identified 137 UDP glycosyltransferase (UGT) genes from flax using a conserved signature motif. Phylogenetic analysis of these protein sequences clustered them into 14 major groups (A-N). Expression patterns of these genes were investigated using publicly available expressed sequence tag (EST), microarray data and reverse transcription quantitative real time PCR (RT-qPCR). Seventy-three per cent of these genes (100 out of 137) showed expression evidence in 15 tissues examined and indicated varied expression profiles. The RT-qPCR results of 10 selected genes were also coherent with the digital expression analysis. Interestingly, five duplicated UGT genes were identified, which showed differential expression in various tissues. Of the seven intron loss/gain positions detected, two intron positions were conserved among most of the UGTs, although a clear relationship about the evolution of these genes could not be established. Comparison of the flax UGTs with orthologs from four other sequenced dicot genomes indicated that seven UGTs were flax diverged. Flax has a large number of UGT genes including few flax diverged ones. Phylogenetic analysis and expression profiles of these genes identified tissue and condition specific repertoire of UGT genes from this crop. This study would facilitate precise selection of candidate genes and their further characterization of substrate specificities and in planta functions.
2012-01-01
Background The glycosylation process, catalyzed by ubiquitous glycosyltransferase (GT) family enzymes, is a prevalent modification of plant secondary metabolites that regulates various functions such as hormone homeostasis, detoxification of xenobiotics and biosynthesis and storage of secondary metabolites. Flax (Linum usitatissimum L.) is a commercially grown oilseed crop, important because of its essential fatty acids and health promoting lignans. Identification and characterization of UDP glycosyltransferase (UGT) genes from flax could provide valuable basic information about this important gene family and help to explain the seed specific glycosylated metabolite accumulation and other processes in plants. Plant genome sequencing projects are useful to discover complexity within this gene family and also pave way for the development of functional genomics approaches. Results Taking advantage of the newly assembled draft genome sequence of flax, we identified 137 UDP glycosyltransferase (UGT) genes from flax using a conserved signature motif. Phylogenetic analysis of these protein sequences clustered them into 14 major groups (A-N). Expression patterns of these genes were investigated using publicly available expressed sequence tag (EST), microarray data and reverse transcription quantitative real time PCR (RT-qPCR). Seventy-three per cent of these genes (100 out of 137) showed expression evidence in 15 tissues examined and indicated varied expression profiles. The RT-qPCR results of 10 selected genes were also coherent with the digital expression analysis. Interestingly, five duplicated UGT genes were identified, which showed differential expression in various tissues. Of the seven intron loss/gain positions detected, two intron positions were conserved among most of the UGTs, although a clear relationship about the evolution of these genes could not be established. Comparison of the flax UGTs with orthologs from four other sequenced dicot genomes indicated that seven UGTs were flax diverged. Conclusions Flax has a large number of UGT genes including few flax diverged ones. Phylogenetic analysis and expression profiles of these genes identified tissue and condition specific repertoire of UGT genes from this crop. This study would facilitate precise selection of candidate genes and their further characterization of substrate specificities and in planta functions. PMID:22568875
Inoue, Daisuke; Hinoura, Takuji; Suzuki, Noriko; Pang, Junqin; Malla, Rabin; Shrestha, Sadhana; Chapagain, Saroj Kumar; Matsuzawa, Hiroaki; Nakamura, Takashi; Tanaka, Yasuhiro; Ike, Michihiko; Nishida, Kei; Sei, Kazunari
2015-01-01
Because of heavy dependence on groundwater for drinking water and other domestic use, microbial contamination of groundwater is a serious problem in the Kathmandu Valley, Nepal. This study investigated comprehensively the occurrence of pathogenic bacteria in shallow well groundwater in the Kathmandu Valley by applying DNA microarray analysis targeting 941 pathogenic bacterial species/groups. Water quality measurements found significant coliform (fecal) contamination in 10 of the 11 investigated groundwater samples and significant nitrogen contamination in some samples. The results of DNA microarray analysis revealed the presence of 1-37 pathogen species/groups, including 1-27 biosafety level 2 ones, in 9 of the 11 groundwater samples. While the detected pathogens included several feces- and animal-related ones, those belonging to Legionella and Arthrobacter, which were considered not to be directly associated with feces, were detected prevalently. This study could provide a rough picture of overall pathogenic bacterial contamination in the Kathmandu Valley, and demonstrated the usefulness of DNA microarray analysis as a comprehensive screening tool of a wide variety of pathogenic bacteria.
Microarray Analysis of Long Noncoding RNAs in Female Diabetic Peripheral Neuropathy Patients.
Luo, Lin; Ji, Lin-Dan; Cai, Jiang-Jia; Feng, Mei; Zhou, Mi; Hu, Su-Pei; Xu, Jin; Zhou, Wen-Hua
2018-01-01
Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes mellitus (DM). Because of its controversial pathogenesis, DPN is still not diagnosed or managed properly in most patients. In this study, human lncRNA microarrays were used to identify the differentially expressed lncRNAs in DM and DPN patients, and some of the discovered lncRNAs were further validated in additional 78 samples by quantitative realtime PCR (qRT-PCR). The microarray analysis identified 446 and 1327 differentially expressed lncRNAs in DM and DPN, respectively. The KEGG pathway analysis further revealed that the differentially expressed lncRNA-coexpressed mRNAs between DPN and DM groups were significantly enriched in the MAPK signaling pathway. The lncRNA/mRNA coexpression network indicated that BDNF and TRAF2 correlated with 6 lncRNAs. The qRT-PCR confirmed the initial microarray results. These findings demonstrated that the interplay between lncRNAs and mRNA may be involved in the pathogenesis of DPN, especially the neurotrophin-MAPK signaling pathway, thus providing relevant information for future studies. © 2018 The Author(s). Published by S. Karger AG, Basel.
MASQOT: a method for cDNA microarray spot quality control
Bylesjö, Max; Eriksson, Daniel; Sjödin, Andreas; Sjöström, Michael; Jansson, Stefan; Antti, Henrik; Trygg, Johan
2005-01-01
Background cDNA microarray technology has emerged as a major player in the parallel detection of biomolecules, but still suffers from fundamental technical problems. Identifying and removing unreliable data is crucial to prevent the risk of receiving illusive analysis results. Visual assessment of spot quality is still a common procedure, despite the time-consuming work of manually inspecting spots in the range of hundreds of thousands or more. Results A novel methodology for cDNA microarray spot quality control is outlined. Multivariate discriminant analysis was used to assess spot quality based on existing and novel descriptors. The presented methodology displays high reproducibility and was found superior in identifying unreliable data compared to other evaluated methodologies. Conclusion The proposed methodology for cDNA microarray spot quality control generates non-discrete values of spot quality which can be utilized as weights in subsequent analysis procedures as well as to discard spots of undesired quality using the suggested threshold values. The MASQOT approach provides a consistent assessment of spot quality and can be considered an alternative to the labor-intensive manual quality assessment process. PMID:16223442
Xia, Yu; Yang, Yongchao; Huang, Shufang; Wu, Yueheng; Li, Ping; Zhuang, Jian
2018-03-24
This study aimed to determine chromosomal abnormalities and copy number variations (CNVs) in fetuses with congenital heart disease (CHD) by chromosomal microarray analysis (CMA). One hundred and ten cases with CHD detected by prenatal echocardiography were enrolled in the study; 27 cases were simple CHDs, and 83 were complex CHDs. Chromosomal microarray analysis was performed on the Affymetrix CytoScan HD platform. All annotated CNVs were validated by quantitative PCR. Chromosomal microarray analysis identified 6 cases with chromosomal abnormalities, including 2 cases with trisomy 21, 2 cases with trisomy 18, 1 case with trisomy 13, and 1 unusual case of mosaic trisomy 21. Pathogenic CNVs were detected in 15.5% (17/110) of the fetuses with CHDs, including 13 cases with CHD-associated CNVs. We further identified 10 genes as likely novel CHD candidate genes through gene functional enrichment analysis. We also found that pathogenic CMA results impacted the rate of pregnancy termination. This study shows that CMA is particularly effective for identifying chromosomal abnormalities and CNVs in fetuses with CHDs as well as having an effect on obstetrical outcomes. The elucidation of the genetic basis of CHDs will continue to expand our understanding of the etiology of CHDs. © 2018 John Wiley & Sons, Ltd.
Karsten, Stanislav L.; Van Deerlin, Vivianna M. D.; Sabatti, Chiara; Gill, Lisa H.; Geschwind, Daniel H.
2002-01-01
Archival formalin-fixed, paraffin-embedded and ethanol-fixed tissues represent a potentially invaluable resource for gene expression analysis, as they are the most widely available material for studies of human disease. Little data are available evaluating whether RNA obtained from fixed (archival) tissues could produce reliable and reproducible microarray expression data. Here we compare the use of RNA isolated from human archival tissues fixed in ethanol and formalin to frozen tissue in cDNA microarray experiments. Since an additional factor that can limit the utility of archival tissue is the often small quantities available, we also evaluate the use of the tyramide signal amplification method (TSA), which allows the use of small amounts of RNA. Detailed analysis indicates that TSA provides a consistent and reproducible signal amplification method for cDNA microarray analysis, across both arrays and the genes tested. Analysis of this method also highlights the importance of performing non-linear channel normalization and dye switching. Furthermore, archived, fixed specimens can perform well, but not surprisingly, produce more variable results than frozen tissues. Consistent results are more easily obtainable using ethanol-fixed tissues, whereas formalin-fixed tissue does not typically provide a useful substrate for cDNA synthesis and labeling. PMID:11788730
Nishtala, Sneha; Neelamraju, Yaseswini; Janga, Sarath Chandra
2016-05-10
RNA-binding proteins (RBPs) are pivotal in orchestrating several steps in the metabolism of RNA in eukaryotes thereby controlling an extensive network of RBP-RNA interactions. Here, we employed CLIP (cross-linking immunoprecipitation)-seq datasets for 60 human RBPs and RIP-ChIP (RNP immunoprecipitation-microarray) data for 69 yeast RBPs to construct a network of genome-wide RBP- target RNA interactions for each RBP. We show in humans that majority (~78%) of the RBPs are strongly associated with their target transcripts at transcript level while ~95% of the studied RBPs were also found to be strongly associated with expression levels of target transcripts when protein expression levels of RBPs were employed. At transcript level, RBP - RNA interaction data for the yeast genome, exhibited a strong association for 63% of the RBPs, confirming the association to be conserved across large phylogenetic distances. Analysis to uncover the features contributing to these associations revealed the number of target transcripts and length of the selected protein-coding transcript of an RBP at the transcript level while intensity of the CLIP signal, number of RNA-Binding domains, location of the binding site on the transcript, to be significant at the protein level. Our analysis will contribute to improved modelling and prediction of post-transcriptional networks.
NASA Astrophysics Data System (ADS)
Nishtala, Sneha; Neelamraju, Yaseswini; Janga, Sarath Chandra
2016-05-01
RNA-binding proteins (RBPs) are pivotal in orchestrating several steps in the metabolism of RNA in eukaryotes thereby controlling an extensive network of RBP-RNA interactions. Here, we employed CLIP (cross-linking immunoprecipitation)-seq datasets for 60 human RBPs and RIP-ChIP (RNP immunoprecipitation-microarray) data for 69 yeast RBPs to construct a network of genome-wide RBP- target RNA interactions for each RBP. We show in humans that majority (~78%) of the RBPs are strongly associated with their target transcripts at transcript level while ~95% of the studied RBPs were also found to be strongly associated with expression levels of target transcripts when protein expression levels of RBPs were employed. At transcript level, RBP - RNA interaction data for the yeast genome, exhibited a strong association for 63% of the RBPs, confirming the association to be conserved across large phylogenetic distances. Analysis to uncover the features contributing to these associations revealed the number of target transcripts and length of the selected protein-coding transcript of an RBP at the transcript level while intensity of the CLIP signal, number of RNA-Binding domains, location of the binding site on the transcript, to be significant at the protein level. Our analysis will contribute to improved modelling and prediction of post-transcriptional networks.
Genome-wide identification and characterization of Fox genes in the silkworm, Bombyx mori.
Song, JiangBo; Li, ZhiQuan; Tong, XiaoLing; Chen, Cong; Chen, Min; Meng, Gang; Chen, Peng; Li, ChunLin; Xin, YaQun; Gai, TingTing; Dai, FangYin; Lu, Cheng
2015-09-01
The forkhead box (Fox) transcription factor family has a characteristic of forkhead domain, a winged DNA-binding domain. The Fox genes have been classified into 23 subfamilies, designated FoxA to FoxS, of which the FoxR and FoxS subfamilies are specific to vertebrates. In this review, using whole-genome scanning, we identified 17 distinct Fox genes distributed on 13 chromosomes of the silkworm, Bombyx mori. A phylogenetic tree showed that the silkworm Fox genes could be classified into 13 subfamilies. The FoxK subfamily is specifically absent from the silkworm, although it is present in other lepidopteran insects, including Danaus plexippus and Heliconius melpomene. Microarray data revealed that the Fox genes have distinct expression patterns in the tissues on day 3 of the 5th instar larva. A Gene Ontology analysis suggested that the Fox genes have roles in cellular components, molecular functions, and biological processes, except in pore complex biogenesis. An analysis of the selective pressure on the proteins indicated that most of the amino acid sites in the Fox proteins are undergoing strong purifying selection. Here, we summarize the general characteristics of the Fox genes in the silkworm, which should support further functional studies of the silkworm Fox proteins.
MIGS-GPU: Microarray Image Gridding and Segmentation on the GPU.
Katsigiannis, Stamos; Zacharia, Eleni; Maroulis, Dimitris
2017-05-01
Complementary DNA (cDNA) microarray is a powerful tool for simultaneously studying the expression level of thousands of genes. Nevertheless, the analysis of microarray images remains an arduous and challenging task due to the poor quality of the images that often suffer from noise, artifacts, and uneven background. In this study, the MIGS-GPU [Microarray Image Gridding and Segmentation on Graphics Processing Unit (GPU)] software for gridding and segmenting microarray images is presented. MIGS-GPU's computations are performed on the GPU by means of the compute unified device architecture (CUDA) in order to achieve fast performance and increase the utilization of available system resources. Evaluation on both real and synthetic cDNA microarray images showed that MIGS-GPU provides better performance than state-of-the-art alternatives, while the proposed GPU implementation achieves significantly lower computational times compared to the respective CPU approaches. Consequently, MIGS-GPU can be an advantageous and useful tool for biomedical laboratories, offering a user-friendly interface that requires minimum input in order to run.
2012-01-01
Over the last decade, the introduction of microarray technology has had a profound impact on gene expression research. The publication of studies with dissimilar or altogether contradictory results, obtained using different microarray platforms to analyze identical RNA samples, has raised concerns about the reliability of this technology. The MicroArray Quality Control (MAQC) project was initiated to address these concerns, as well as other performance and data analysis issues. Expression data on four titration pools from two distinct reference RNA samples were generated at multiple test sites using a variety of microarray-based and alternative technology platforms. Here we describe the experimental design and probe mapping efforts behind the MAQC project. We show intraplatform consistency across test sites as well as a high level of interplatform concordance in terms of genes identified as differentially expressed. This study provides a resource that represents an important first step toward establishing a framework for the use of microarrays in clinical and regulatory settings. PMID:16964229
Women's experiences receiving abnormal prenatal chromosomal microarray testing results.
Bernhardt, Barbara A; Soucier, Danielle; Hanson, Karen; Savage, Melissa S; Jackson, Laird; Wapner, Ronald J
2013-02-01
Genomic microarrays can detect copy-number variants not detectable by conventional cytogenetics. This technology is diffusing rapidly into prenatal settings even though the clinical implications of many copy-number variants are currently unknown. We conducted a qualitative pilot study to explore the experiences of women receiving abnormal results from prenatal microarray testing performed in a research setting. Participants were a subset of women participating in a multicenter prospective study "Prenatal Cytogenetic Diagnosis by Array-based Copy Number Analysis." Telephone interviews were conducted with 23 women receiving abnormal prenatal microarray results. We found that five key elements dominated the experiences of women who had received abnormal prenatal microarray results: an offer too good to pass up, blindsided by the results, uncertainty and unquantifiable risks, need for support, and toxic knowledge. As prenatal microarray testing is increasingly used, uncertain findings will be common, resulting in greater need for careful pre- and posttest counseling, and more education of and resources for providers so they can adequately support the women who are undergoing testing.
Fuzzy support vector machine: an efficient rule-based classification technique for microarrays.
Hajiloo, Mohsen; Rabiee, Hamid R; Anooshahpour, Mahdi
2013-01-01
The abundance of gene expression microarray data has led to the development of machine learning algorithms applicable for tackling disease diagnosis, disease prognosis, and treatment selection problems. However, these algorithms often produce classifiers with weaknesses in terms of accuracy, robustness, and interpretability. This paper introduces fuzzy support vector machine which is a learning algorithm based on combination of fuzzy classifiers and kernel machines for microarray classification. Experimental results on public leukemia, prostate, and colon cancer datasets show that fuzzy support vector machine applied in combination with filter or wrapper feature selection methods develops a robust model with higher accuracy than the conventional microarray classification models such as support vector machine, artificial neural network, decision trees, k nearest neighbors, and diagonal linear discriminant analysis. Furthermore, the interpretable rule-base inferred from fuzzy support vector machine helps extracting biological knowledge from microarray data. Fuzzy support vector machine as a new classification model with high generalization power, robustness, and good interpretability seems to be a promising tool for gene expression microarray classification.
Haitsma, Jack J.; Furmli, Suleiman; Masoom, Hussain; Liu, Mingyao; Imai, Yumiko; Slutsky, Arthur S.; Beyene, Joseph; Greenwood, Celia M. T.; dos Santos, Claudia
2012-01-01
Objectives To perform a meta-analysis of gene expression microarray data from animal studies of lung injury, and to identify an injury-specific gene expression signature capable of predicting the development of lung injury in humans. Methods We performed a microarray meta-analysis using 77 microarray chips across six platforms, two species and different animal lung injury models exposed to lung injury with or/and without mechanical ventilation. Individual gene chips were classified and grouped based on the strategy used to induce lung injury. Effect size (change in gene expression) was calculated between non-injurious and injurious conditions comparing two main strategies to pool chips: (1) one-hit and (2) two-hit lung injury models. A random effects model was used to integrate individual effect sizes calculated from each experiment. Classification models were built using the gene expression signatures generated by the meta-analysis to predict the development of lung injury in human lung transplant recipients. Results Two injury-specific lists of differentially expressed genes generated from our meta-analysis of lung injury models were validated using external data sets and prospective data from animal models of ventilator-induced lung injury (VILI). Pathway analysis of gene sets revealed that both new and previously implicated VILI-related pathways are enriched with differentially regulated genes. Classification model based on gene expression signatures identified in animal models of lung injury predicted development of primary graft failure (PGF) in lung transplant recipients with larger than 80% accuracy based upon injury profiles from transplant donors. We also found that better classifier performance can be achieved by using meta-analysis to identify differentially-expressed genes than using single study-based differential analysis. Conclusion Taken together, our data suggests that microarray analysis of gene expression data allows for the detection of “injury" gene predictors that can classify lung injury samples and identify patients at risk for clinically relevant lung injury complications. PMID:23071521
Addressable droplet microarrays for single cell protein analysis.
Salehi-Reyhani, Ali; Burgin, Edward; Ces, Oscar; Willison, Keith R; Klug, David R
2014-11-07
Addressable droplet microarrays are potentially attractive as a way to achieve miniaturised, reduced volume, high sensitivity analyses without the need to fabricate microfluidic devices or small volume chambers. We report a practical method for producing oil-encapsulated addressable droplet microarrays which can be used for such analyses. To demonstrate their utility, we undertake a series of single cell analyses, to determine the variation in copy number of p53 proteins in cells of a human cancer cell line.
Lee, Ann-Ying; Chen, Chun-Yi; Chang, Yao-Chien Alex; Chao, Ya-Ting; Shih, Ming-Che
2013-01-01
Previously we developed genomic resources for orchids, including transcriptomic analyses using next-generation sequencing techniques and construction of a web-based orchid genomic database. Here, we report a modified molecular model of flower development in the Orchidaceae based on functional analysis of gene expression profiles in Phalaenopsis aphrodite (a moth orchid) that revealed novel roles for the transcription factors involved in floral organ pattern formation. Phalaenopsis orchid floral organ-specific genes were identified by microarray analysis. Several critical transcription factors including AP3, PI, AP1 and AGL6, displayed distinct spatial distribution patterns. Phylogenetic analysis of orchid MADS box genes was conducted to infer the evolutionary relationship among floral organ-specific genes. The results suggest that gene duplication MADS box genes in orchid may have resulted in their gaining novel functions during evolution. Based on these analyses, a modified model of orchid flowering was proposed. Comparison of the expression profiles of flowers of a peloric mutant and wild-type Phalaenopsis orchid further identified genes associated with lip morphology and peloric effects. Large scale investigation of gene expression profiles revealed that homeotic genes from the ABCDE model of flower development classes A and B in the Phalaenopsis orchid have novel functions due to evolutionary diversification, and display differential expression patterns. PMID:24265826
Popescu, F; Jaslow, C R; Kutteh, W H
2018-04-01
Will the addition of 24-chromosome microarray analysis on miscarriage tissue combined with the standard American Society for Reproductive Medicine (ASRM) evaluation for recurrent miscarriage explain most losses? Over 90% of patients with recurrent pregnancy loss (RPL) will have a probable or definitive cause identified when combining genetic testing on miscarriage tissue with the standard ASRM evaluation for recurrent miscarriage. RPL is estimated to occur in 2-4% of reproductive age couples. A probable cause can be identified in approximately 50% of patients after an ASRM recommended workup including an evaluation for parental chromosomal abnormalities, congenital and acquired uterine anomalies, endocrine imbalances and autoimmune factors including antiphospholipid syndrome. Single-center, prospective cohort study that included 100 patients seen in a private RPL clinic from 2014 to 2017. All 100 women had two or more pregnancy losses, a complete evaluation for RPL as defined by the ASRM, and miscarriage tissue evaluated by 24-chromosome microarray analysis after their second or subsequent miscarriage. Frequencies of abnormal results for evidence-based diagnostic tests considered definite or probable causes of RPL (karyotyping for parental chromosomal abnormalities, and 24-chromosome microarray evaluation for products of conception (POC); pelvic sonohysterography, hysterosalpingogram, or hysteroscopy for uterine anomalies; immunological tests for lupus anticoagulant and anticardiolipin antibodies; and blood tests for thyroid stimulating hormone (TSH), prolactin and hemoglobin A1c) were evaluated. We excluded cases where there was maternal cell contamination of the miscarriage tissue or if the ASRM evaluation was incomplete. A cost analysis for the evaluation of RPL was conducted to determine whether a proposed procedure of 24-chromome microarray evaluation followed by an ASRM RPL workup (for those RPL patients who had a normal 24-chromosome microarray evaluation) was more cost-efficient than conducting ASRM RPL workups on RPL patients followed by 24-chromosome microarray analysis (for those RPL patients who had a normal RPL workup). A definite or probable cause of pregnancy loss was identified in the vast majority (95/100; 95%) of RPL patients when a 24-chromosome pair microarray evaluation of POC testing is combined with the standard ASRM RPL workup evaluation at the time of the second or subsequent loss. The ASRM RPL workup identified an abnormality and a probable explanation for pregnancy loss in only 45/100 or 45% of all patients. A definite abnormality was identified in 67/100 patients or 67% when initial testing was performed using 24-chromosome microarray analyses on the miscarriage tissue. Only 5/100 (5%) patients, who had a euploid loss and a normal ASRM RPL workup, had a pregnancy loss without a probable or definitive cause identified. All other losses were explained by an abnormal 24-chromosome microarray analysis of the miscarriage tissue, an abnormal finding of the RPL workup, or a combination of both. Results from the cost analysis indicated that an initial approach of using a 24-chromosome microarray analysis on miscarriage tissue resulted in a 50% savings in cost to the health care system and to the patient. This is a single-center study on a small group of well-characterized women with RPL. There was an incomplete follow-up on subsequent pregnancy outcomes after evaluation, however this should not affect our principal results. The maternal age of patients varied from 26 to 45 years old. More aneuploid pregnancy losses would be expected in older women, particularly over the age of 35 years old. Evaluation of POC using 24-chromosome microarray analysis adds significantly to the ASRM recommended evaluation of RPL. Genetic evaluation on miscarriage tissue obtained at the time of the second and subsequent pregnancy losses should be offered to all couples with two or more consecutive pregnancy losses. The combination of a genetic evaluation on miscarriage tissue with an evidence-based evaluation for RPL will identify a probable or definitive cause in over 90% of miscarriages. No funding was received for this study and there are no conflicts of interest to declare. Not applicable.
A Platform for Combined DNA and Protein Microarrays Based on Total Internal Reflection Fluorescence
Asanov, Alexander; Zepeda, Angélica; Vaca, Luis
2012-01-01
We have developed a novel microarray technology based on total internal reflection fluorescence (TIRF) in combination with DNA and protein bioassays immobilized at the TIRF surface. Unlike conventional microarrays that exhibit reduced signal-to-background ratio, require several stages of incubation, rinsing and stringency control, and measure only end-point results, our TIRF microarray technology provides several orders of magnitude better signal-to-background ratio, performs analysis rapidly in one step, and measures the entire course of association and dissociation kinetics between target DNA and protein molecules and the bioassays. In many practical cases detection of only DNA or protein markers alone does not provide the necessary accuracy for diagnosing a disease or detecting a pathogen. Here we describe TIRF microarrays that detect DNA and protein markers simultaneously, which reduces the probabilities of false responses. Supersensitive and multiplexed TIRF DNA and protein microarray technology may provide a platform for accurate diagnosis or enhanced research studies. Our TIRF microarray system can be mounted on upright or inverted microscopes or interfaced directly with CCD cameras equipped with a single objective, facilitating the development of portable devices. As proof-of-concept we applied TIRF microarrays for detecting molecular markers from Bacillus anthracis, the pathogen responsible for anthrax. PMID:22438738
Validation of MIMGO: a method to identify differentially expressed GO terms in a microarray dataset
2012-01-01
Background We previously proposed an algorithm for the identification of GO terms that commonly annotate genes whose expression is upregulated or downregulated in some microarray data compared with in other microarray data. We call these “differentially expressed GO terms” and have named the algorithm “matrix-assisted identification method of differentially expressed GO terms” (MIMGO). MIMGO can also identify microarray data in which genes annotated with a differentially expressed GO term are upregulated or downregulated. However, MIMGO has not yet been validated on a real microarray dataset using all available GO terms. Findings We combined Gene Set Enrichment Analysis (GSEA) with MIMGO to identify differentially expressed GO terms in a yeast cell cycle microarray dataset. GSEA followed by MIMGO (GSEA + MIMGO) correctly identified (p < 0.05) microarray data in which genes annotated to differentially expressed GO terms are upregulated. We found that GSEA + MIMGO was slightly less effective than, or comparable to, GSEA (Pearson), a method that uses Pearson’s correlation as a metric, at detecting true differentially expressed GO terms. However, unlike other methods including GSEA (Pearson), GSEA + MIMGO can comprehensively identify the microarray data in which genes annotated with a differentially expressed GO term are upregulated or downregulated. Conclusions MIMGO is a reliable method to identify differentially expressed GO terms comprehensively. PMID:23232071
The use of open source bioinformatics tools to dissect transcriptomic data.
Nitsche, Benjamin M; Ram, Arthur F J; Meyer, Vera
2012-01-01
Microarrays are a valuable technology to study fungal physiology on a transcriptomic level. Various microarray platforms are available comprising both single and two channel arrays. Despite different technologies, preprocessing of microarray data generally includes quality control, background correction, normalization, and summarization of probe level data. Subsequently, depending on the experimental design, diverse statistical analysis can be performed, including the identification of differentially expressed genes and the construction of gene coexpression networks.We describe how Bioconductor, a collection of open source and open development packages for the statistical programming language R, can be used for dissecting microarray data. We provide fundamental details that facilitate the process of getting started with R and Bioconductor. Using two publicly available microarray datasets from Aspergillus niger, we give detailed protocols on how to identify differentially expressed genes and how to construct gene coexpression networks.
NASA Astrophysics Data System (ADS)
Liu, Robin H.; Lodes, Mike; Fuji, H. Sho; Danley, David; McShea, Andrew
Microarray assays typically involve multistage sample processing and fluidic handling, which are generally labor-intensive and time-consuming. Automation of these processes would improve robustness, reduce run-to-run and operator-to-operator variation, and reduce costs. In this chapter, a fully integrated and self-contained microfluidic biochip device that has been developed to automate the fluidic handling steps for microarray-based gene expression or genotyping analysis is presented. The device consists of a semiconductor-based CustomArray® chip with 12,000 features and a microfluidic cartridge. The CustomArray was manufactured using a semiconductor-based in situ synthesis technology. The micro-fluidic cartridge consists of microfluidic pumps, mixers, valves, fluid channels, and reagent storage chambers. Microarray hybridization and subsequent fluidic handling and reactions (including a number of washing and labeling steps) were performed in this fully automated and miniature device before fluorescent image scanning of the microarray chip. Electrochemical micropumps were integrated in the cartridge to provide pumping of liquid solutions. A micromixing technique based on gas bubbling generated by electrochemical micropumps was developed. Low-cost check valves were implemented in the cartridge to prevent cross-talk of the stored reagents. Gene expression study of the human leukemia cell line (K562) and genotyping detection and sequencing of influenza A subtypes have been demonstrated using this integrated biochip platform. For gene expression assays, the microfluidic CustomArray device detected sample RNAs with a concentration as low as 0.375 pM. Detection was quantitative over more than three orders of magnitude. Experiment also showed that chip-to-chip variability was low indicating that the integrated microfluidic devices eliminate manual fluidic handling steps that can be a significant source of variability in genomic analysis. The genotyping results showed that the device identified influenza A hemagglutinin and neuraminidase subtypes and sequenced portions of both genes, demonstrating the potential of integrated microfluidic and microarray technology for multiple virus detection. The device provides a cost-effective solution to eliminate labor-intensive and time-consuming fluidic handling steps and allows microarray-based DNA analysis in a rapid and automated fashion.
Peterson, Leif E
2002-01-01
CLUSFAVOR (CLUSter and Factor Analysis with Varimax Orthogonal Rotation) 5.0 is a Windows-based computer program for hierarchical cluster and principal-component analysis of microarray-based transcriptional profiles. CLUSFAVOR 5.0 standardizes input data; sorts data according to gene-specific coefficient of variation, standard deviation, average and total expression, and Shannon entropy; performs hierarchical cluster analysis using nearest-neighbor, unweighted pair-group method using arithmetic averages (UPGMA), or furthest-neighbor joining methods, and Euclidean, correlation, or jack-knife distances; and performs principal-component analysis. PMID:12184816
NASA Technical Reports Server (NTRS)
Koizumi, Yoshikazu; Kelly, John J.; Nakagawa, Tatsunori; Urakawa, Hidetoshi; El-Fantroussi, Said; Al-Muzaini, Saleh; Fukui, Manabu; Urushigawa, Yoshikuni; Stahl, David A.
2002-01-01
A mesophilic toluene-degrading consortium (TDC) and an ethylbenzene-degrading consortium (EDC) were established under sulfate-reducing conditions. These consortia were first characterized by denaturing gradient gel electrophoresis (DGGE) fingerprinting of PCR-amplified 16S rRNA gene fragments, followed by sequencing. The sequences of the major bands (T-1 and E-2) belonging to TDC and EDC, respectively, were affiliated with the family Desulfobacteriaceae. Another major band from EDC (E-1) was related to an uncultured non-sulfate-reducing soil bacterium. Oligonucleotide probes specific for the 16S rRNAs of target organisms corresponding to T-1, E-1, and E-2 were designed, and hybridization conditions were optimized for two analytical formats, membrane and DNA microarray hybridization. Both formats were used to characterize the TDC and EDC, and the results of both were consistent with DGGE analysis. In order to assess the utility of the microarray format for analysis of environmental samples, oil-contaminated sediments from the coast of Kuwait were analyzed. The DNA microarray successfully detected bacterial nucleic acids from these samples, but probes targeting specific groups of sulfate-reducing bacteria did not give positive signals. The results of this study demonstrate the limitations and the potential utility of DNA microarrays for microbial community analysis.
Koizumi, Yoshikazu; Kelly, John J.; Nakagawa, Tatsunori; Urakawa, Hidetoshi; El-Fantroussi, Saïd; Al-Muzaini, Saleh; Fukui, Manabu; Urushigawa, Yoshikuni; Stahl, David A.
2002-01-01
A mesophilic toluene-degrading consortium (TDC) and an ethylbenzene-degrading consortium (EDC) were established under sulfate-reducing conditions. These consortia were first characterized by denaturing gradient gel electrophoresis (DGGE) fingerprinting of PCR-amplified 16S rRNA gene fragments, followed by sequencing. The sequences of the major bands (T-1 and E-2) belonging to TDC and EDC, respectively, were affiliated with the family Desulfobacteriaceae. Another major band from EDC (E-1) was related to an uncultured non-sulfate-reducing soil bacterium. Oligonucleotide probes specific for the 16S rRNAs of target organisms corresponding to T-1, E-1, and E-2 were designed, and hybridization conditions were optimized for two analytical formats, membrane and DNA microarray hybridization. Both formats were used to characterize the TDC and EDC, and the results of both were consistent with DGGE analysis. In order to assess the utility of the microarray format for analysis of environmental samples, oil-contaminated sediments from the coast of Kuwait were analyzed. The DNA microarray successfully detected bacterial nucleic acids from these samples, but probes targeting specific groups of sulfate-reducing bacteria did not give positive signals. The results of this study demonstrate the limitations and the potential utility of DNA microarrays for microbial community analysis. PMID:12088997
Ontology-based, Tissue MicroArray oriented, image centered tissue bank
Viti, Federica; Merelli, Ivan; Caprera, Andrea; Lazzari, Barbara; Stella, Alessandra; Milanesi, Luciano
2008-01-01
Background Tissue MicroArray technique is becoming increasingly important in pathology for the validation of experimental data from transcriptomic analysis. This approach produces many images which need to be properly managed, if possible with an infrastructure able to support tissue sharing between institutes. Moreover, the available frameworks oriented to Tissue MicroArray provide good storage for clinical patient, sample treatment and block construction information, but their utility is limited by the lack of data integration with biomolecular information. Results In this work we propose a Tissue MicroArray web oriented system to support researchers in managing bio-samples and, through the use of ontologies, enables tissue sharing aimed at the design of Tissue MicroArray experiments and results evaluation. Indeed, our system provides ontological description both for pre-analysis tissue images and for post-process analysis image results, which is crucial for information exchange. Moreover, working on well-defined terms it is then possible to query web resources for literature articles to integrate both pathology and bioinformatics data. Conclusions Using this system, users associate an ontology-based description to each image uploaded into the database and also integrate results with the ontological description of biosequences identified in every tissue. Moreover, it is possible to integrate the ontological description provided by the user with a full compliant gene ontology definition, enabling statistical studies about correlation between the analyzed pathology and the most commonly related biological processes. PMID:18460177
Richard, Arianne C; Lyons, Paul A; Peters, James E; Biasci, Daniele; Flint, Shaun M; Lee, James C; McKinney, Eoin F; Siegel, Richard M; Smith, Kenneth G C
2014-08-04
Although numerous investigations have compared gene expression microarray platforms, preprocessing methods and batch correction algorithms using constructed spike-in or dilution datasets, there remains a paucity of studies examining the properties of microarray data using diverse biological samples. Most microarray experiments seek to identify subtle differences between samples with variable background noise, a scenario poorly represented by constructed datasets. Thus, microarray users lack important information regarding the complexities introduced in real-world experimental settings. The recent development of a multiplexed, digital technology for nucleic acid measurement enables counting of individual RNA molecules without amplification and, for the first time, permits such a study. Using a set of human leukocyte subset RNA samples, we compared previously acquired microarray expression values with RNA molecule counts determined by the nCounter Analysis System (NanoString Technologies) in selected genes. We found that gene measurements across samples correlated well between the two platforms, particularly for high-variance genes, while genes deemed unexpressed by the nCounter generally had both low expression and low variance on the microarray. Confirming previous findings from spike-in and dilution datasets, this "gold-standard" comparison demonstrated signal compression that varied dramatically by expression level and, to a lesser extent, by dataset. Most importantly, examination of three different cell types revealed that noise levels differed across tissues. Microarray measurements generally correlate with relative RNA molecule counts within optimal ranges but suffer from expression-dependent accuracy bias and precision that varies across datasets. We urge microarray users to consider expression-level effects in signal interpretation and to evaluate noise properties in each dataset independently.
Weniger, Markus; Engelmann, Julia C; Schultz, Jörg
2007-01-01
Background Regulation of gene expression is relevant to many areas of biology and medicine, in the study of treatments, diseases, and developmental stages. Microarrays can be used to measure the expression level of thousands of mRNAs at the same time, allowing insight into or comparison of different cellular conditions. The data derived out of microarray experiments is highly dimensional and often noisy, and interpretation of the results can get intricate. Although programs for the statistical analysis of microarray data exist, most of them lack an integration of analysis results and biological interpretation. Results We have developed GEPAT, Genome Expression Pathway Analysis Tool, offering an analysis of gene expression data under genomic, proteomic and metabolic context. We provide an integration of statistical methods for data import and data analysis together with a biological interpretation for subsets of probes or single probes on the chip. GEPAT imports various types of oligonucleotide and cDNA array data formats. Different normalization methods can be applied to the data, afterwards data annotation is performed. After import, GEPAT offers various statistical data analysis methods, as hierarchical, k-means and PCA clustering, a linear model based t-test or chromosomal profile comparison. The results of the analysis can be interpreted by enrichment of biological terms, pathway analysis or interaction networks. Different biological databases are included, to give various information for each probe on the chip. GEPAT offers no linear work flow, but allows the usage of any subset of probes and samples as a start for a new data analysis. GEPAT relies on established data analysis packages, offers a modular approach for an easy extension, and can be run on a computer grid to allow a large number of users. It is freely available under the LGPL open source license for academic and commercial users at . Conclusion GEPAT is a modular, scalable and professional-grade software integrating analysis and interpretation of microarray gene expression data. An installation available for academic users can be found at . PMID:17543125
Development of DNA Microarrays for Metabolic Pathway and Bioprocess Monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory Stephanopoulos
Transcriptional profiling experiments utilizing DNA microarrays to study the intracellular accumulation of PHB in Synechocystis has proved difficult in large part because strains that show significant differences in PHB which would justify global analysis of gene expression have not been isolated.
Microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances.
Xu, Jianping
2006-06-01
Microbial ecology examines the diversity and activity of micro-organisms in Earth's biosphere. In the last 20 years, the application of genomics tools have revolutionized microbial ecological studies and drastically expanded our view on the previously underappreciated microbial world. This review first introduces the basic concepts in microbial ecology and the main genomics methods that have been used to examine natural microbial populations and communities. In the ensuing three specific sections, the applications of the genomics in microbial ecological research are highlighted. The first describes the widespread application of multilocus sequence typing and representational difference analysis in studying genetic variation within microbial species. Such investigations have identified that migration, horizontal gene transfer and recombination are common in natural microbial populations and that microbial strains can be highly variable in genome size and gene content. The second section highlights and summarizes the use of four specific genomics methods (phylogenetic analysis of ribosomal RNA, DNA-DNA re-association kinetics, metagenomics, and micro-arrays) in analysing the diversity and potential activity of microbial populations and communities from a variety of terrestrial and aquatic environments. Such analyses have identified many unexpected phylogenetic lineages in viruses, bacteria, archaea, and microbial eukaryotes. Functional analyses of environmental DNA also revealed highly prevalent, but previously unknown, metabolic processes in natural microbial communities. In the third section, the ecological implications of sequenced microbial genomes are briefly discussed. Comparative analyses of prokaryotic genomic sequences suggest the importance of ecology in determining microbial genome size and gene content. The significant variability in genome size and gene content among strains and species of prokaryotes indicate the highly fluid nature of prokaryotic genomes, a result consistent with those from multilocus sequence typing and representational difference analyses. The integration of various levels of ecological analyses coupled to the application and further development of high throughput technologies are accelerating the pace of discovery in microbial ecology.
Erickson, Kimberly D.; Detweiler, Corrella S.
2010-01-01
Summary Bacteria utilize phosphorelay systems to respond to environmental or intracellular stimuli. Salmonella enterica encodes a four-step phosphorelay system that involves two sensor kinase proteins, RcsC and RcsD, and a response regulator, RcsB. The physiological stimulus for Rcs phosphorelay activation is unknown; however, Rcs-regulated genes can be induced in vitro by osmotic shock, low temperature and antimicrobial peptide exposure. In this report we investigate the role of the Rcs pathway using phylogenetic analysis and experimental techniques. Phylogenetic analysis determined that full-length RcsC-and RcsD-like proteins are generally restricted to Enterobacteriaceae species that have an enteric pathogenic or commensal relationship with the host. Experimental data show that RcsD and RcsB, in addition to RcsC, are important for systemic infection in mice and polymyxin B resistance in vitro. To identify Rcs-regulated genes that confer these phenotypes, we took advantage of our observation that RcsA, a transcription factor and binding partner of RcsB, is not required for polymyxin B resistance or survival in mice. S. enterica serovar Typhimurium oligonucleotide microarrays were used to identify 18 loci that are activated by RcsC, RcsD and RcsB but not RcsA. Five of the 18 loci encode genes that contribute to polymyxin B resistance. One of these genes, ydeI, was shown by quantitative real-time PCR to be regulated by the Rcs pathway independently of RcsA. Additionally, the stationary-phase sigma factor, RpoS (sigmaS), regulates ydeI transcription. In vivo infections show that ydeI mutants are out-competed by wild type 10- to 100-fold after oral inoculation, but are only modestly attenuated after intraperitoneal inoculation. These data indicate that ydeI is an Rcs-activated gene that plays an important role in persistent infection of mice, possibly by increasing bacterial resistance to antimicrobial peptides. PMID:17010160
Erickson, Kimberly D; Detweiler, Corrella S
2006-11-01
Bacteria utilize phosphorelay systems to respond to environmental or intracellular stimuli. Salmonella enterica encodes a four-step phosphorelay system that involves two sensor kinase proteins, RcsC and RcsD, and a response regulator, RcsB. The physiological stimulus for Rcs phosphorelay activation is unknown; however, Rcs-regulated genes can be induced in vitro by osmotic shock, low temperature and antimicrobial peptide exposure. In this report we investigate the role of the Rcs pathway using phylogenetic analysis and experimental techniques. Phylogenetic analysis determined that full-length RcsC- and RcsD-like proteins are generally restricted to Enterobacteriaceae species that have an enteric pathogenic or commensal relationship with the host. Experimental data show that RcsD and RcsB, in addition to RcsC, are important for systemic infection in mice and polymyxin B resistance in vitro. To identify Rcs-regulated genes that confer these phenotypes, we took advantage of our observation that RcsA, a transcription factor and binding partner of RcsB, is not required for polymyxin B resistance or survival in mice. S. enterica serovar Typhimurium oligonucleotide microarrays were used to identify 18 loci that are activated by RcsC, RcsD and RcsB but not RcsA. Five of the 18 loci encode genes that contribute to polymyxin B resistance. One of these genes, ydeI, was shown by quantitative real-time PCR to be regulated by the Rcs pathway independently of RcsA. Additionally, the stationary-phase sigma factor, RpoS (sigmaS), regulates ydeI transcription. In vivo infections show that ydeI mutants are out-competed by wild type 10- to 100-fold after oral inoculation, but are only modestly attenuated after intraperitoneal inoculation. These data indicate that ydeI is an Rcs-activated gene that plays an important role in persistent infection of mice, possibly by increasing bacterial resistance to antimicrobial peptides.
Shekhar, M S; Gomathi, A; Gopikrishna, G; Ponniah, A G
2015-06-01
White spot syndrome virus (WSSV) continues to be the most devastating viral pathogen infecting penaeid shrimp the world over. The genome of WSSV has been deciphered and characterized from three geographical isolates and significant progress has been made in developing various molecular diagnostic methods to detect the virus. However, the information on host immune gene response to WSSV pathogenesis is limited. Microarray analysis was carried out as an approach to analyse the gene expression in black tiger shrimp Penaeus monodon in response to WSSV infection. Gill tissues collected from the WSSV infected shrimp at 6, 24, 48 h and moribund stage were analysed for differential gene expression. Shrimp cDNAs of 40,059 unique sequences were considered for designing the microarray chip. The Cy3-labeled cRNA derived from healthy and WSSV-infected shrimp was subjected to hybridization with all the DNA spots in the microarray which revealed 8,633 and 11,147 as up- and down-regulated genes respectively at different time intervals post infection. The altered expression of these numerous genes represented diverse functions such as immune response, osmoregulation, apoptosis, nucleic acid binding, energy and metabolism, signal transduction, stress response and molting. The changes in gene expression profiles observed by microarray analysis provides molecular insights and framework of genes which are up- and down-regulated at different time intervals during WSSV infection in shrimp. The microarray data was validated by Real Time analysis of four differentially expressed genes involved in apoptosis (translationally controlled tumor protein, inhibitor of apoptosis protein, ubiquitin conjugated enzyme E2 and caspase) for gene expression levels. The role of apoptosis related genes in WSSV infected shrimp is discussed herein.
Reuse of imputed data in microarray analysis increases imputation efficiency
Kim, Ki-Yeol; Kim, Byoung-Jin; Yi, Gwan-Su
2004-01-01
Background The imputation of missing values is necessary for the efficient use of DNA microarray data, because many clustering algorithms and some statistical analysis require a complete data set. A few imputation methods for DNA microarray data have been introduced, but the efficiency of the methods was low and the validity of imputed values in these methods had not been fully checked. Results We developed a new cluster-based imputation method called sequential K-nearest neighbor (SKNN) method. This imputes the missing values sequentially from the gene having least missing values, and uses the imputed values for the later imputation. Although it uses the imputed values, the efficiency of this new method is greatly improved in its accuracy and computational complexity over the conventional KNN-based method and other methods based on maximum likelihood estimation. The performance of SKNN was in particular higher than other imputation methods for the data with high missing rates and large number of experiments. Application of Expectation Maximization (EM) to the SKNN method improved the accuracy, but increased computational time proportional to the number of iterations. The Multiple Imputation (MI) method, which is well known but not applied previously to microarray data, showed a similarly high accuracy as the SKNN method, with slightly higher dependency on the types of data sets. Conclusions Sequential reuse of imputed data in KNN-based imputation greatly increases the efficiency of imputation. The SKNN method should be practically useful to save the data of some microarray experiments which have high amounts of missing entries. The SKNN method generates reliable imputed values which can be used for further cluster-based analysis of microarray data. PMID:15504240
Applying phylogenetic analysis to viral livestock diseases: moving beyond molecular typing.
Olvera, Alex; Busquets, Núria; Cortey, Marti; de Deus, Nilsa; Ganges, Llilianne; Núñez, José Ignacio; Peralta, Bibiana; Toskano, Jennifer; Dolz, Roser
2010-05-01
Changes in livestock production systems in recent years have altered the presentation of many diseases resulting in the need for more sophisticated control measures. At the same time, new molecular assays have been developed to support the diagnosis of animal viral disease. Nucleotide sequences generated by these diagnostic techniques can be used in phylogenetic analysis to infer phenotypes by sequence homology and to perform molecular epidemiology studies. In this review, some key elements of phylogenetic analysis are highlighted, such as the selection of the appropriate neutral phylogenetic marker, the proper phylogenetic method and different techniques to test the reliability of the resulting tree. Examples are given of current and future applications of phylogenetic reconstructions in viral livestock diseases. Copyright 2009 Elsevier Ltd. All rights reserved.
Hartmann, Luise; Stephenson, Christine F; Verkamp, Stephanie R; Johnson, Krystal R; Burnworth, Bettina; Hammock, Kelle; Brodersen, Lisa Eidenschink; de Baca, Monica E; Wells, Denise A; Loken, Michael R; Zehentner, Barbara K
2014-12-01
Array comparative genomic hybridization (aCGH) has become a powerful tool for analyzing hematopoietic neoplasms and identifying genome-wide copy number changes in a single assay. aCGH also has superior resolution compared with fluorescence in situ hybridization (FISH) or conventional cytogenetics. Integration of single nucleotide polymorphism (SNP) probes with microarray analysis allows additional identification of acquired uniparental disomy, a copy neutral aberration with known potential to contribute to tumor pathogenesis. However, a limitation of microarray analysis has been the inability to detect clonal heterogeneity in a sample. This study comprised 16 samples (acute myeloid leukemia, myelodysplastic syndrome, chronic lymphocytic leukemia, plasma cell neoplasm) with complex cytogenetic features and evidence of clonal evolution. We used an integrated manual peak reassignment approach combining analysis of aCGH and SNP microarray data for characterization of subclonal abnormalities. We compared array findings with results obtained from conventional cytogenetic and FISH studies. Clonal heterogeneity was detected in 13 of 16 samples by microarray on the basis of log2 values. Use of the manual peak reassignment analysis approach improved resolution of the sample's clonal composition and genetic heterogeneity in 10 of 13 (77%) patients. Moreover, in 3 patients, clonal disease progression was revealed by array analysis that was not evident by cytogenetic or FISH studies. Genetic abnormalities originating from separate clonal subpopulations can be identified and further characterized by combining aCGH and SNP hybridization results from 1 integrated microarray chip by use of the manual peak reassignment technique. Its clinical utility in comparison to conventional cytogenetic or FISH studies is demonstrated. © 2014 American Association for Clinical Chemistry.
Analysis and modelling of septic shock microarray data using Singular Value Decomposition.
Allanki, Srinivas; Dixit, Madhulika; Thangaraj, Paul; Sinha, Nandan Kumar
2017-06-01
Being a high throughput technique, enormous amounts of microarray data has been generated and there arises a need for more efficient techniques of analysis, in terms of speed and accuracy. Finding the differentially expressed genes based on just fold change and p-value might not extract all the vital biological signals that occur at a lower gene expression level. Besides this, numerous mathematical models have been generated to predict the clinical outcome from microarray data, while very few, if not none, aim at predicting the vital genes that are important in a disease progression. Such models help a basic researcher narrow down and concentrate on a promising set of genes which leads to the discovery of gene-based therapies. In this article, as a first objective, we have used the lesser known and used Singular Value Decomposition (SVD) technique to build a microarray data analysis tool that works with gene expression patterns and intrinsic structure of the data in an unsupervised manner. We have re-analysed a microarray data over the clinical course of Septic shock from Cazalis et al. (2014) and have shown that our proposed analysis provides additional information compared to the conventional method. As a second objective, we developed a novel mathematical model that predicts a set of vital genes in the disease progression that works by generating samples in the continuum between health and disease, using a simple normal-distribution-based random number generator. We also verify that most of the predicted genes are indeed related to septic shock. Copyright © 2017 Elsevier Inc. All rights reserved.
Biomarkers of the Hedgehog/Smoothened pathway in healthy volunteers
Kadam, Sunil K; Patel, Bharvin K R; Jones, Emma; Nguyen, Tuan S; Verma, Lalit K; Landschulz, Katherine T; Stepaniants, Sergey; Li, Bin; Brandt, John T; Brail, Leslie H
2012-01-01
The Hedgehog (Hh) pathway is involved in oncogenic transformation and tumor maintenance. The primary objective of this study was to select surrogate tissue to measure messenger ribonucleic acid (mRNA) levels of Hh pathway genes for measurement of pharmacodynamic effect. Expression of Hh pathway specific genes was measured by quantitative real time polymerase chain reaction (qRT-PCR) and global gene expression using Affymetrix U133 microarrays. Correlations were made between the expression of specific genes determined by qRT-PCR and normalized microarray data. Gene ontology analysis using microarray data for a broader set of Hh pathway genes was performed to identify additional Hh pathway-related markers in the surrogate tissue. RNA extracted from blood, hair follicle, and skin obtained from healthy subjects was analyzed by qRT-PCR for 31 genes, whereas 8 samples were analyzed for a 7-gene subset. Twelve sample sets, each with ≤500 ng total RNA derived from hair, skin, and blood, were analyzed using Affymetrix U133 microarrays. Transcripts for several Hh pathway genes were undetectable in blood using qRT-PCR. Skin was the most desirable matrix, followed by hair follicle. Whether processed by robust multiarray average or microarray suite 5 (MAS5), expression patterns of individual samples showed co-clustered signals; both normalization methods were equally effective for unsupervised analysis. The MAS5- normalized probe sets appeared better suited for supervised analysis. This work provides the basis for selection of a surrogate tissue and an expression analysis-based approach to evaluate pathway-related genes as markers of pharmacodynamic effect with novel inhibitors of the Hh pathway. PMID:22611475
Bikel, Shirley; Jacobo-Albavera, Leonor; Sánchez-Muñoz, Fausto; Cornejo-Granados, Fernanda; Canizales-Quinteros, Samuel; Soberón, Xavier; Sotelo-Mundo, Rogerio R.; del Río-Navarro, Blanca E.; Mendoza-Vargas, Alfredo; Sánchez, Filiberto
2017-01-01
Background In spite of the emergence of RNA sequencing (RNA-seq), microarrays remain in widespread use for gene expression analysis in the clinic. There are over 767,000 RNA microarrays from human samples in public repositories, which are an invaluable resource for biomedical research and personalized medicine. The absolute gene expression analysis allows the transcriptome profiling of all expressed genes under a specific biological condition without the need of a reference sample. However, the background fluorescence represents a challenge to determine the absolute gene expression in microarrays. Given that the Y chromosome is absent in female subjects, we used it as a new approach for absolute gene expression analysis in which the fluorescence of the Y chromosome genes of female subjects was used as the background fluorescence for all the probes in the microarray. This fluorescence was used to establish an absolute gene expression threshold, allowing the differentiation between expressed and non-expressed genes in microarrays. Methods We extracted the RNA from 16 children leukocyte samples (nine males and seven females, ages 6–10 years). An Affymetrix Gene Chip Human Gene 1.0 ST Array was carried out for each sample and the fluorescence of 124 genes of the Y chromosome was used to calculate the absolute gene expression threshold. After that, several expressed and non-expressed genes according to our absolute gene expression threshold were compared against the expression obtained using real-time quantitative polymerase chain reaction (RT-qPCR). Results From the 124 genes of the Y chromosome, three genes (DDX3Y, TXLNG2P and EIF1AY) that displayed significant differences between sexes were used to calculate the absolute gene expression threshold. Using this threshold, we selected 13 expressed and non-expressed genes and confirmed their expression level by RT-qPCR. Then, we selected the top 5% most expressed genes and found that several KEGG pathways were significantly enriched. Interestingly, these pathways were related to the typical functions of leukocytes cells, such as antigen processing and presentation and natural killer cell mediated cytotoxicity. We also applied this method to obtain the absolute gene expression threshold in already published microarray data of liver cells, where the top 5% expressed genes showed an enrichment of typical KEGG pathways for liver cells. Our results suggest that the three selected genes of the Y chromosome can be used to calculate an absolute gene expression threshold, allowing a transcriptome profiling of microarray data without the need of an additional reference experiment. Discussion Our approach based on the establishment of a threshold for absolute gene expression analysis will allow a new way to analyze thousands of microarrays from public databases. This allows the study of different human diseases without the need of having additional samples for relative expression experiments. PMID:29230367
DigOut: viewing differential expression genes as outliers.
Yu, Hui; Tu, Kang; Xie, Lu; Li, Yuan-Yuan
2010-12-01
With regards to well-replicated two-conditional microarray datasets, the selection of differentially expressed (DE) genes is a well-studied computational topic, but for multi-conditional microarray datasets with limited or no replication, the same task is not properly addressed by previous studies. This paper adopts multivariate outlier analysis to analyze replication-lacking multi-conditional microarray datasets, finding that it performs significantly better than the widely used limit fold change (LFC) model in a simulated comparative experiment. Compared with the LFC model, the multivariate outlier analysis also demonstrates improved stability against sample variations in a series of manipulated real expression datasets. The reanalysis of a real non-replicated multi-conditional expression dataset series leads to satisfactory results. In conclusion, a multivariate outlier analysis algorithm, like DigOut, is particularly useful for selecting DE genes from non-replicated multi-conditional gene expression dataset.
Wolff, Alexander; Bayerlová, Michaela; Gaedcke, Jochen; Kube, Dieter; Beißbarth, Tim
2018-01-01
Pipeline comparisons for gene expression data are highly valuable for applied real data analyses, as they enable the selection of suitable analysis strategies for the dataset at hand. Such pipelines for RNA-Seq data should include mapping of reads, counting and differential gene expression analysis or preprocessing, normalization and differential gene expression in case of microarray analysis, in order to give a global insight into pipeline performances. Four commonly used RNA-Seq pipelines (STAR/HTSeq-Count/edgeR, STAR/RSEM/edgeR, Sailfish/edgeR, TopHat2/Cufflinks/CuffDiff)) were investigated on multiple levels (alignment and counting) and cross-compared with the microarray counterpart on the level of gene expression and gene ontology enrichment. For these comparisons we generated two matched microarray and RNA-Seq datasets: Burkitt Lymphoma cell line data and rectal cancer patient data. The overall mapping rate of STAR was 98.98% for the cell line dataset and 98.49% for the patient dataset. Tophat's overall mapping rate was 97.02% and 96.73%, respectively, while Sailfish had only an overall mapping rate of 84.81% and 54.44%. The correlation of gene expression in microarray and RNA-Seq data was moderately worse for the patient dataset (ρ = 0.67-0.69) than for the cell line dataset (ρ = 0.87-0.88). An exception were the correlation results of Cufflinks, which were substantially lower (ρ = 0.21-0.29 and 0.34-0.53). For both datasets we identified very low numbers of differentially expressed genes using the microarray platform. For RNA-Seq we checked the agreement of differentially expressed genes identified in the different pipelines and of GO-term enrichment results. In conclusion the combination of STAR aligner with HTSeq-Count followed by STAR aligner with RSEM and Sailfish generated differentially expressed genes best suited for the dataset at hand and in agreement with most of the other transcriptomics pipelines.
Prediction of regulatory gene pairs using dynamic time warping and gene ontology.
Yang, Andy C; Hsu, Hui-Huang; Lu, Ming-Da; Tseng, Vincent S; Shih, Timothy K
2014-01-01
Selecting informative genes is the most important task for data analysis on microarray gene expression data. In this work, we aim at identifying regulatory gene pairs from microarray gene expression data. However, microarray data often contain multiple missing expression values. Missing value imputation is thus needed before further processing for regulatory gene pairs becomes possible. We develop a novel approach to first impute missing values in microarray time series data by combining k-Nearest Neighbour (KNN), Dynamic Time Warping (DTW) and Gene Ontology (GO). After missing values are imputed, we then perform gene regulation prediction based on our proposed DTW-GO distance measurement of gene pairs. Experimental results show that our approach is more accurate when compared with existing missing value imputation methods on real microarray data sets. Furthermore, our approach can also discover more regulatory gene pairs that are known in the literature than other methods.
Temperature Gradient Effect on Gas Discrimination Power of a Metal-Oxide Thin-Film Sensor Microarray
Sysoev, Victor V.; Kiselev, Ilya; Frietsch, Markus; Goschnick, Joachim
2004-01-01
The paper presents results concerning the effect of spatial inhomogeneous operating temperature on the gas discrimination power of a gas-sensor microarray, with the latter based on a thin SnO2 film employed in the KAMINA electronic nose. Three different temperature distributions over the substrate are discussed: a nearly homogeneous one and two temperature gradients, equal to approx. 3.3 °C/mm and 6.7 °C/mm, applied across the sensor elements (segments) of the array. The gas discrimination power of the microarray is judged by using the Mahalanobis distance in the LDA (Linear Discrimination Analysis) coordinate system between the data clusters obtained by the response of the microarray to four target vapors: ethanol, acetone, propanol and ammonia. It is shown that the application of a temperature gradient increases the gas discrimination power of the microarray by up to 35 %.
Chondrocyte channel transcriptomics
Lewis, Rebecca; May, Hannah; Mobasheri, Ali; Barrett-Jolley, Richard
2013-01-01
To date, a range of ion channels have been identified in chondrocytes using a number of different techniques, predominantly electrophysiological and/or biomolecular; each of these has its advantages and disadvantages. Here we aim to compare and contrast the data available from biophysical and microarray experiments. This letter analyses recent transcriptomics datasets from chondrocytes, accessible from the European Bioinformatics Institute (EBI). We discuss whether such bioinformatic analysis of microarray datasets can potentially accelerate identification and discovery of ion channels in chondrocytes. The ion channels which appear most frequently across these microarray datasets are discussed, along with their possible functions. We discuss whether functional or protein data exist which support the microarray data. A microarray experiment comparing gene expression in osteoarthritis and healthy cartilage is also discussed and we verify the differential expression of 2 of these genes, namely the genes encoding large calcium-activated potassium (BK) and aquaporin channels. PMID:23995703
Salehi, Reza; Tsoi, Stephen C M; Colazo, Marcos G; Ambrose, Divakar J; Robert, Claude; Dyck, Michael K
2017-01-30
Early embryonic loss is a large contributor to infertility in cattle. Moreover, bovine becomes an interesting model to study human preimplantation embryo development due to their similar developmental process. Although genetic factors are known to affect early embryonic development, the discovery of such factors has been a serious challenge. Microarray technology allows quantitative measurement and gene expression profiling of transcript levels on a genome-wide basis. One of the main decisions that have to be made when planning a microarray experiment is whether to use a one- or two-color approach. Two-color design increases technical replication, minimizes variability, improves sensitivity and accuracy as well as allows having loop designs, defining the common reference samples. Although microarray is a powerful biological tool, there are potential pitfalls that can attenuate its power. Hence, in this technical paper we demonstrate an optimized protocol for RNA extraction, amplification, labeling, hybridization of the labeled amplified RNA to the array, array scanning and data analysis using the two-color analysis strategy.
Clustering gene expression data based on predicted differential effects of GV interaction.
Pan, Hai-Yan; Zhu, Jun; Han, Dan-Fu
2005-02-01
Microarray has become a popular biotechnology in biological and medical research. However, systematic and stochastic variabilities in microarray data are expected and unavoidable, resulting in the problem that the raw measurements have inherent "noise" within microarray experiments. Currently, logarithmic ratios are usually analyzed by various clustering methods directly, which may introduce bias interpretation in identifying groups of genes or samples. In this paper, a statistical method based on mixed model approaches was proposed for microarray data cluster analysis. The underlying rationale of this method is to partition the observed total gene expression level into various variations caused by different factors using an ANOVA model, and to predict the differential effects of GV (gene by variety) interaction using the adjusted unbiased prediction (AUP) method. The predicted GV interaction effects can then be used as the inputs of cluster analysis. We illustrated the application of our method with a gene expression dataset and elucidated the utility of our approach using an external validation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeAngelis, K.M.; Gladden, J.G.; Allgaier, M.
2010-03-01
Producing cellulosic biofuels from plant material has recently emerged as a key U.S. Department of Energy goal. For this technology to be commercially viable on a large scale, it is critical to make production cost efficient by streamlining both the deconstruction of lignocellulosic biomass and fuel production. Many natural ecosystems efficiently degrade lignocellulosic biomass and harbor enzymes that, when identified, could be used to increase the efficiency of commercial biomass deconstruction. However, ecosystems most likely to yield relevant enzymes, such as tropical rain forest soil in Puerto Rico, are often too complex for enzyme discovery using current metagenomic sequencing technologies.more » One potential strategy to overcome this problem is to selectively cultivate the microbial communities from these complex ecosystems on biomass under defined conditions, generating less complex biomass-degrading microbial populations. To test this premise, we cultivated microbes from Puerto Rican soil or green waste compost under precisely defined conditions in the presence dried ground switchgrass (Panicum virgatum L.) or lignin, respectively, as the sole carbon source. Phylogenetic profiling of the two feedstock-adapted communities using SSU rRNA gene amplicon pyrosequencing or phylogenetic microarray analysis revealed that the adapted communities were significantly simplified compared to the natural communities from which they were derived. Several members of the lignin-adapted and switchgrass-adapted consortia are related to organisms previously characterized as biomass degraders, while others were from less well-characterized phyla. The decrease in complexity of these communities make them good candidates for metagenomic sequencing and will likely enable the reconstruction of a greater number of full length genes, leading to the discovery of novel lignocellulose-degrading enzymes adapted to feedstocks and conditions of interest.« less
GenePublisher: Automated analysis of DNA microarray data.
Knudsen, Steen; Workman, Christopher; Sicheritz-Ponten, Thomas; Friis, Carsten
2003-07-01
GenePublisher, a system for automatic analysis of data from DNA microarray experiments, has been implemented with a web interface at http://www.cbs.dtu.dk/services/GenePublisher. Raw data are uploaded to the server together with a specification of the data. The server performs normalization, statistical analysis and visualization of the data. The results are run against databases of signal transduction pathways, metabolic pathways and promoter sequences in order to extract more information. The results of the entire analysis are summarized in report form and returned to the user.
Song, Jian Bo; Wang, Yan Xiang; Li, Hai Bo; Li, Bo Wen; Zhou, Zhao Sheng; Gao, Shuai; Yang, Zhi Min
2015-07-01
F-box protein is a subunit of Skp1-Rbx1-Cul1-F-box protein (SCF) complex with typically conserved F-box motifs of approximately 40 amino acids and is one of the largest protein families in eukaryotes. F-box proteins play critical roles in selective and specific protein degradation through the 26S proteasome. In this study, we bioinformatically identified 972 putative F-box proteins from Medicago truncatula genome. Our analysis showed that in addition to the conserved motif, the F-box proteins have several other functional domains in their C-terminal regions (e.g., LRRs, Kelch, FBA, and PP2), some of which were found to be M. truncatula species-specific. By phylogenetic analysis of the F-box motifs, these proteins can be classified into three major families, and each family can be further grouped into more subgroups. Analysis of the genomic distribution of F-box genes on M. truncatula chromosomes revealed that the evolutional expansion of F-box genes in M. truncatula was probably due to localized gene duplications. To investigate the possible response of the F-box genes to abiotic stresses, both publicly available and customer-prepared microarrays were analyzed. Most of the F-box protein genes can be responding to salt and heavy metal stresses. Real-time PCR analysis confirmed that some of the F-box protein genes containing heat, drought, salicylic acid, and abscisic acid responsive cis-elements were able to respond to the abiotic stresses.
A reference guide for tree analysis and visualization
2010-01-01
The quantities of data obtained by the new high-throughput technologies, such as microarrays or ChIP-Chip arrays, and the large-scale OMICS-approaches, such as genomics, proteomics and transcriptomics, are becoming vast. Sequencing technologies become cheaper and easier to use and, thus, large-scale evolutionary studies towards the origins of life for all species and their evolution becomes more and more challenging. Databases holding information about how data are related and how they are hierarchically organized expand rapidly. Clustering analysis is becoming more and more difficult to be applied on very large amounts of data since the results of these algorithms cannot be efficiently visualized. Most of the available visualization tools that are able to represent such hierarchies, project data in 2D and are lacking often the necessary user friendliness and interactivity. For example, the current phylogenetic tree visualization tools are not able to display easy to understand large scale trees with more than a few thousand nodes. In this study, we review tools that are currently available for the visualization of biological trees and analysis, mainly developed during the last decade. We describe the uniform and standard computer readable formats to represent tree hierarchies and we comment on the functionality and the limitations of these tools. We also discuss on how these tools can be developed further and should become integrated with various data sources. Here we focus on freely available software that offers to the users various tree-representation methodologies for biological data analysis. PMID:20175922
Microarray characterization of gene expression changes in blood during acute ethanol exposure
2013-01-01
Background As part of the civil aviation safety program to define the adverse effects of ethanol on flying performance, we performed a DNA microarray analysis of human whole blood samples from a five-time point study of subjects administered ethanol orally, followed by breathalyzer analysis, to monitor blood alcohol concentration (BAC) to discover significant gene expression changes in response to the ethanol exposure. Methods Subjects were administered either orange juice or orange juice with ethanol. Blood samples were taken based on BAC and total RNA was isolated from PaxGene™ blood tubes. The amplified cDNA was used in microarray and quantitative real-time polymerase chain reaction (RT-qPCR) analyses to evaluate differential gene expression. Microarray data was analyzed in a pipeline fashion to summarize and normalize and the results evaluated for relative expression across time points with multiple methods. Candidate genes showing distinctive expression patterns in response to ethanol were clustered by pattern and further analyzed for related function, pathway membership and common transcription factor binding within and across clusters. RT-qPCR was used with representative genes to confirm relative transcript levels across time to those detected in microarrays. Results Microarray analysis of samples representing 0%, 0.04%, 0.08%, return to 0.04%, and 0.02% wt/vol BAC showed that changes in gene expression could be detected across the time course. The expression changes were verified by qRT-PCR. The candidate genes of interest (GOI) identified from the microarray analysis and clustered by expression pattern across the five BAC points showed seven coordinately expressed groups. Analysis showed function-based networks, shared transcription factor binding sites and signaling pathways for members of the clusters. These include hematological functions, innate immunity and inflammation functions, metabolic functions expected of ethanol metabolism, and pancreatic and hepatic function. Five of the seven clusters showed links to the p38 MAPK pathway. Conclusions The results of this study provide a first look at changing gene expression patterns in human blood during an acute rise in blood ethanol concentration and its depletion because of metabolism and excretion, and demonstrate that it is possible to detect changes in gene expression using total RNA isolated from whole blood. The analysis approach for this study serves as a workflow to investigate the biology linked to expression changes across a time course and from these changes, to identify target genes that could serve as biomarkers linked to pilot performance. PMID:23883607
Maslow, Bat-Sheva L; Budinetz, Tara; Sueldo, Carolina; Anspach, Erica; Engmann, Lawrence; Benadiva, Claudio; Nulsen, John C
2015-07-01
To compare the analysis of chromosome number from paraffin-embedded products of conception using single-nucleotide polymorphism (SNP) microarray with the recommended screening for the evaluation of couples presenting with recurrent pregnancy loss who do not have previous fetal cytogenetic data. We performed a retrospective cohort study including all women who presented for a new evaluation of recurrent pregnancy loss over a 2-year period (January 1, 2012, to December 31, 2013). All participants had at least two documented first-trimester losses and both the recommended screening tests and SNP microarray performed on at least one paraffin-embedded products of conception sample. Single-nucleotide polymorphism microarray identifies all 24 chromosomes (22 autosomes, X, and Y). Forty-two women with a total of 178 losses were included in the study. Paraffin-embedded products of conception from 62 losses were sent for SNP microarray. Single-nucleotide polymorphism microarray successfully diagnosed fetal chromosome number in 71% (44/62) of samples, of which 43% (19/44) were euploid and 57% (25/44) were noneuploid. Seven of 42 (17%) participants had abnormalities on recurrent pregnancy loss screening. The per-person detection rate for a cause of pregnancy loss was significantly higher in the SNP microarray (0.50; 95% confidence interval [CI] 0.36-0.64) compared with recurrent pregnancy loss evaluation (0.17; 95% CI 0.08-0.31) (P=.002). Participants with one or more euploid loss identified on paraffin-embedded products of conception were significantly more likely to have an abnormality on recurrent pregnancy loss screening than those with only noneuploid results (P=.028). The significance remained when controlling for age, number of losses, number of samples, and total pregnancies. These results suggest that SNP microarray testing of paraffin-embedded products of conception is a valuable tool for the evaluation of recurrent pregnancy loss in patients without prior fetal cytogenetic results. Recommended recurrent pregnancy loss screening was unnecessary in almost half the patients in our study. II.
NASA Astrophysics Data System (ADS)
Liu, Robin H.; Longiaru, Mathew
2009-05-01
DNA microarrays are becoming a widespread tool used in life science and drug screening due to its many benefits of miniaturization and integration. Microarrays permit a highly multiplexed DNA analysis. Recently, the development of new detection methods and simplified methodologies has rapidly expanded the use of microarray technologies from predominantly gene expression analysis into the arena of diagnostics. Osmetech's eSensor® is an electrochemical detection platform based on a low-to- medium density DNA hybridization array on a cost-effective printed circuit board substrate. eSensor® has been cleared by FDA for Warfarin sensitivity test and Cystic Fibrosis Carrier Detection. Other genetic-based diagnostic and infectious disease detection tests are under development. The eSensor® platform eliminates the need for an expensive laser-based optical system and fluorescent reagents. It allows one to perform hybridization and detection in a single and small instrument without any fluidic processing and handling. Furthermore, the eSensor® platform is readily adaptable to on-chip sample-to-answer genetic analyses using microfluidics technology. The eSensor® platform provides a cost-effective solution to direct sample-to-answer genetic analysis, and thus have a potential impact in the fields of point-of-care genetic analysis, environmental testing, and biological warfare agent detection.
Chavan, Shweta S; Bauer, Michael A; Peterson, Erich A; Heuck, Christoph J; Johann, Donald J
2013-01-01
Transcriptome analysis by microarrays has produced important advances in biomedicine. For instance in multiple myeloma (MM), microarray approaches led to the development of an effective disease subtyping via cluster assignment, and a 70 gene risk score. Both enabled an improved molecular understanding of MM, and have provided prognostic information for the purposes of clinical management. Many researchers are now transitioning to Next Generation Sequencing (NGS) approaches and RNA-seq in particular, due to its discovery-based nature, improved sensitivity, and dynamic range. Additionally, RNA-seq allows for the analysis of gene isoforms, splice variants, and novel gene fusions. Given the voluminous amounts of historical microarray data, there is now a need to associate and integrate microarray and RNA-seq data via advanced bioinformatic approaches. Custom software was developed following a model-view-controller (MVC) approach to integrate Affymetrix probe set-IDs, and gene annotation information from a variety of sources. The tool/approach employs an assortment of strategies to integrate, cross reference, and associate microarray and RNA-seq datasets. Output from a variety of transcriptome reconstruction and quantitation tools (e.g., Cufflinks) can be directly integrated, and/or associated with Affymetrix probe set data, as well as necessary gene identifiers and/or symbols from a diversity of sources. Strategies are employed to maximize the annotation and cross referencing process. Custom gene sets (e.g., MM 70 risk score (GEP-70)) can be specified, and the tool can be directly assimilated into an RNA-seq pipeline. A novel bioinformatic approach to aid in the facilitation of both annotation and association of historic microarray data, in conjunction with richer RNA-seq data, is now assisting with the study of MM cancer biology.
Gopinath, Gopal R; Chase, Hannah R; Gangiredla, Jayanthi; Eshwar, Athmanya; Jang, Hyein; Patel, Isha; Negrete, Flavia; Finkelstein, Samantha; Park, Eunbi; Chung, TaeJung; Yoo, YeonJoo; Woo, JungHa; Lee, YouYoung; Park, Jihyeon; Choi, Hyerim; Jeong, Seungeun; Jun, Soyoung; Kim, Mijeong; Lee, Chaeyoon; Jeong, HyeJin; Fanning, Séamus; Stephan, Roger; Iversen, Carol; Reich, Felix; Klein, Günter; Lehner, Angelika; Tall, Ben D
2018-01-01
Malonate utilization, an important differential trait, well recognized as being possessed by six of the seven Cronobacter species is thought to be largely absent in Cronobacter sakazakii (Csak). The current study provides experimental evidence that confirms the presence of a malonate utilization operon in 24 strains of sequence type (ST) 64, obtained from Europe, Middle East, China, and USA; it offers explanations regarding the genomic diversity and phylogenetic relatedness among these strains, and that of other C. sakazakii strains. In this study, the presence of a malonate utilization operon in these strains was initially identified by DNA microarray analysis (MA) out of a pool of 347 strains obtained from various surveillance studies involving clinical, spices, milk powder sources and powdered infant formula production facilities in Ireland and Germany, and dried dairy powder manufacturing facilities in the USA. All ST64 C. sakazakii strains tested could utilize malonate. Zebrafish embryo infection studies showed that C. sakazakii ST64 strains are as virulent as other Cronobacter species. Parallel whole genome sequencing (WGS) and MA showed that the strains phylogenetically grouped as a separate clade among the Csak species cluster. Additionally, these strains possessed the Csak O:2 serotype. The nine-gene, ~ 7.7 kbp malonate utilization operon was located in these strains between two conserved flanking genes, gyrB and katG. Plasmidotyping results showed that these strains possessed the virulence plasmid pESA3, but in contrast to the USA ST64 Csak strains, ST64 Csak strains isolated from sources in Europe and the Middle East, did not possess the type six secretion system effector vgrG gene. Until this investigation, the presence of malonate-positive Csak strains, which are associated with foods and clinical cases, was under appreciated. If this trait was used solely to identify Cronobacter strains, many strains would likely be misidentified. Parallel WGS and MA were useful in characterizing the total genome content of these Csak O:2, ST64, malonate-positive strains and further provides an understanding of their phylogenetic relatedness among other virulent C. sakazakii strains.
Optimization of cDNA microarrays procedures using criteria that do not rely on external standards.
Bruland, Torunn; Anderssen, Endre; Doseth, Berit; Bergum, Hallgeir; Beisvag, Vidar; Laegreid, Astrid
2007-10-18
The measurement of gene expression using microarray technology is a complicated process in which a large number of factors can be varied. Due to the lack of standard calibration samples such as are used in traditional chemical analysis it may be a problem to evaluate whether changes done to the microarray procedure actually improve the identification of truly differentially expressed genes. The purpose of the present work is to report the optimization of several steps in the microarray process both in laboratory practices and in data processing using criteria that do not rely on external standards. We performed a cDNA microarry experiment including RNA from samples with high expected differential gene expression termed "high contrasts" (rat cell lines AR42J and NRK52E) compared to self-self hybridization, and optimized a pipeline to maximize the number of genes found to be differentially expressed in the "high contrasts" RNA samples by estimating the false discovery rate (FDR) using a null distribution obtained from the self-self experiment. The proposed high-contrast versus self-self method (HCSSM) requires only four microarrays per evaluation. The effects of blocking reagent dose, filtering, and background corrections methodologies were investigated. In our experiments a dose of 250 ng LNA (locked nucleic acid) dT blocker, no background correction and weight based filtering gave the largest number of differentially expressed genes. The choice of background correction method had a stronger impact on the estimated number of differentially expressed genes than the choice of filtering method. Cross platform microarray (Illumina) analysis was used to validate that the increase in the number of differentially expressed genes found by HCSSM was real. The results show that HCSSM can be a useful and simple approach to optimize microarray procedures without including external standards. Our optimizing method is highly applicable to both long oligo-probe microarrays which have become commonly used for well characterized organisms such as man, mouse and rat, as well as to cDNA microarrays which are still of importance for organisms with incomplete genome sequence information such as many bacteria, plants and fish.
Optimization of cDNA microarrays procedures using criteria that do not rely on external standards
Bruland, Torunn; Anderssen, Endre; Doseth, Berit; Bergum, Hallgeir; Beisvag, Vidar; Lægreid, Astrid
2007-01-01
Background The measurement of gene expression using microarray technology is a complicated process in which a large number of factors can be varied. Due to the lack of standard calibration samples such as are used in traditional chemical analysis it may be a problem to evaluate whether changes done to the microarray procedure actually improve the identification of truly differentially expressed genes. The purpose of the present work is to report the optimization of several steps in the microarray process both in laboratory practices and in data processing using criteria that do not rely on external standards. Results We performed a cDNA microarry experiment including RNA from samples with high expected differential gene expression termed "high contrasts" (rat cell lines AR42J and NRK52E) compared to self-self hybridization, and optimized a pipeline to maximize the number of genes found to be differentially expressed in the "high contrasts" RNA samples by estimating the false discovery rate (FDR) using a null distribution obtained from the self-self experiment. The proposed high-contrast versus self-self method (HCSSM) requires only four microarrays per evaluation. The effects of blocking reagent dose, filtering, and background corrections methodologies were investigated. In our experiments a dose of 250 ng LNA (locked nucleic acid) dT blocker, no background correction and weight based filtering gave the largest number of differentially expressed genes. The choice of background correction method had a stronger impact on the estimated number of differentially expressed genes than the choice of filtering method. Cross platform microarray (Illumina) analysis was used to validate that the increase in the number of differentially expressed genes found by HCSSM was real. Conclusion The results show that HCSSM can be a useful and simple approach to optimize microarray procedures without including external standards. Our optimizing method is highly applicable to both long oligo-probe microarrays which have become commonly used for well characterized organisms such as man, mouse and rat, as well as to cDNA microarrays which are still of importance for organisms with incomplete genome sequence information such as many bacteria, plants and fish. PMID:17949480
Khan, Haseeb Ahmad
2004-01-01
The massive surge in the production of microarray data poses a great challenge for proper analysis and interpretation. In recent years numerous computational tools have been developed to extract meaningful interpretation of microarray gene expression data. However, a convenient tool for two-groups comparison of microarray data is still lacking and users have to rely on commercial statistical packages that might be costly and require special skills, in addition to extra time and effort for transferring data from one platform to other. Various statistical methods, including the t-test, analysis of variance, Pearson test and Mann-Whitney U test, have been reported for comparing microarray data, whereas the utilization of the Wilcoxon signed-rank test, which is an appropriate test for two-groups comparison of gene expression data, has largely been neglected in microarray studies. The aim of this investigation was to build an integrated tool, ArraySolver, for colour-coded graphical display and comparison of gene expression data using the Wilcoxon signed-rank test. The results of software validation showed similar outputs with ArraySolver and SPSS for large datasets. Whereas the former program appeared to be more accurate for 25 or fewer pairs (n < or = 25), suggesting its potential application in analysing molecular signatures that usually contain small numbers of genes. The main advantages of ArraySolver are easy data selection, convenient report format, accurate statistics and the familiar Excel platform.
2004-01-01
The massive surge in the production of microarray data poses a great challenge for proper analysis and interpretation. In recent years numerous computational tools have been developed to extract meaningful interpretation of microarray gene expression data. However, a convenient tool for two-groups comparison of microarray data is still lacking and users have to rely on commercial statistical packages that might be costly and require special skills, in addition to extra time and effort for transferring data from one platform to other. Various statistical methods, including the t-test, analysis of variance, Pearson test and Mann–Whitney U test, have been reported for comparing microarray data, whereas the utilization of the Wilcoxon signed-rank test, which is an appropriate test for two-groups comparison of gene expression data, has largely been neglected in microarray studies. The aim of this investigation was to build an integrated tool, ArraySolver, for colour-coded graphical display and comparison of gene expression data using the Wilcoxon signed-rank test. The results of software validation showed similar outputs with ArraySolver and SPSS for large datasets. Whereas the former program appeared to be more accurate for 25 or fewer pairs (n ≤ 25), suggesting its potential application in analysing molecular signatures that usually contain small numbers of genes. The main advantages of ArraySolver are easy data selection, convenient report format, accurate statistics and the familiar Excel platform. PMID:18629036
RECOVERING FILTER-BASED MICROARRAY DATA FOR PATHWAYS ANALYSIS USING A MULTIPOINT ALIGNMENT STRATEGY
The use of commercial microarrays are rapidly becoming the method of choice for profiling gene expression and assessing various disease states. Research Genetics has provided a series of well defined biological and software tools to the research community for these analyses. Th...
Estimating gene function with least squares nonnegative matrix factorization.
Wang, Guoli; Ochs, Michael F
2007-01-01
Nonnegative matrix factorization is a machine learning algorithm that has extracted information from data in a number of fields, including imaging and spectral analysis, text mining, and microarray data analysis. One limitation with the method for linking genes through microarray data in order to estimate gene function is the high variance observed in transcription levels between different genes. Least squares nonnegative matrix factorization uses estimates of the uncertainties on the mRNA levels for each gene in each condition, to guide the algorithm to a local minimum in normalized chi2, rather than a Euclidean distance or divergence between the reconstructed data and the data itself. Herein, application of this method to microarray data is demonstrated in order to predict gene function.
Microarray expression technology: from start to finish.
Elvidge, Gareth
2006-01-01
The recent introduction of new microarray expression technologies and the further development of established platforms ensure that the researcher is presented with a range of options for performing an experiment. Whilst this has opened up the possibilities for future applications, such as exon-specific arrays, increased sample throughput and 'chromatin immunoprecipitation (ChIP) on chip' experiments, the initial decision processes and experiment planning are made more difficult. This review will give an overview of the various technologies that are available to perform a microarray expression experiment, from the initial planning stages through to the final data analysis. Both practical aspects and data analysis options will be considered. The relative advantages and disadvantages will be discussed with insights provided for future directions of the technology.
Single molecule fluorescence microscopy for ultra-sensitive RNA expression profiling
NASA Astrophysics Data System (ADS)
Hesse, Jan; Jacak, Jaroslaw; Regl, Gerhard; Eichberger, Thomas; Aberger, Fritz; Schlapak, Robert; Howorka, Stefan; Muresan, Leila; Frischauf, Anna-Maria; Schütz, Gerhard J.
2007-02-01
We developed a microarray analysis platform for ultra-sensitive RNA expression profiling of minute samples. It utilizes a novel scanning system for single molecule fluorescence detection on cm2 size samples in combination with specialized biochips, optimized for low autofluorescence and weak unspecific adsorption. 20 μg total RNA was extracted from 10 6 cells of a human keratinocyte cell line (HaCaT) and reversely transcribed in the presence of Alexa647-aha-dUTP. 1% of the resulting labeled cDNA was used for complex hybridization to a custom-made oligonucleotide microarray representing a set of 125 different genes. For low abundant genes, individual cDNA molecules hybridized to the microarray spots could be resolved. Single cDNA molecules hybridized to the chip surface appeared as diffraction limited features in the fluorescence images. The à trous wavelet method was utilized for localization and counting of the separated cDNA signals. Subsequently, the degree of labeling of the localized cDNA molecules was determined by brightness analysis for the different genes. Variations by factors up to 6 were found, which in conventional microarray analysis would result in a misrepresentation of the relative abundance of mRNAs.
Schröder, Christoph; Jacob, Anette; Tonack, Sarah; Radon, Tomasz P.; Sill, Martin; Zucknick, Manuela; Rüffer, Sven; Costello, Eithne; Neoptolemos, John P.; Crnogorac-Jurcevic, Tatjana; Bauer, Andrea; Fellenberg, Kurt; Hoheisel, Jörg D.
2010-01-01
Antibody microarrays have the potential to enable comprehensive proteomic analysis of small amounts of sample material. Here, protocols are presented for the production, quality assessment, and reproducible application of antibody microarrays in a two-color mode with an array of 1,800 features, representing 810 antibodies that were directed at 741 cancer-related proteins. In addition to measures of array quality, we implemented indicators for the accuracy and significance of dual-color detection. Dual-color measurements outperform a single-color approach concerning assay reproducibility and discriminative power. In the analysis of serum samples, depletion of high-abundance proteins did not improve technical assay quality. On the contrary, depletion introduced a strong bias in protein representation. In an initial study, we demonstrated the applicability of the protocols to proteins derived from urine samples. We identified differences between urine samples from pancreatic cancer patients and healthy subjects and between sexes. This study demonstrates that biomedically relevant data can be produced. As demonstrated by the thorough quality analysis, the dual-color antibody array approach proved to be competitive with other proteomic techniques and comparable in performance to transcriptional microarray analyses. PMID:20164060
Estimating differential expression from multiple indicators
Ilmjärv, Sten; Hundahl, Christian Ansgar; Reimets, Riin; Niitsoo, Margus; Kolde, Raivo; Vilo, Jaak; Vasar, Eero; Luuk, Hendrik
2014-01-01
Regardless of the advent of high-throughput sequencing, microarrays remain central in current biomedical research. Conventional microarray analysis pipelines apply data reduction before the estimation of differential expression, which is likely to render the estimates susceptible to noise from signal summarization and reduce statistical power. We present a probe-level framework, which capitalizes on the high number of concurrent measurements to provide more robust differential expression estimates. The framework naturally extends to various experimental designs and target categories (e.g. transcripts, genes, genomic regions) as well as small sample sizes. Benchmarking in relation to popular microarray and RNA-sequencing data-analysis pipelines indicated high and stable performance on the Microarray Quality Control dataset and in a cell-culture model of hypoxia. Experimental-data-exhibiting long-range epigenetic silencing of gene expression was used to demonstrate the efficacy of detecting differential expression of genomic regions, a level of analysis not embraced by conventional workflows. Finally, we designed and conducted an experiment to identify hypothermia-responsive genes in terms of monotonic time-response. As a novel insight, hypothermia-dependent up-regulation of multiple genes of two major antioxidant pathways was identified and verified by quantitative real-time PCR. PMID:24586062
The effect of column purification on cDNA indirect labelling for microarrays
Molas, M Lia; Kiss, John Z
2007-01-01
Background The success of the microarray reproducibility is dependent upon the performance of standardized procedures. Since the introduction of microarray technology for the analysis of global gene expression, reproducibility of results among different laboratories has been a major problem. Two of the main contributors to this variability are the use of different microarray platforms and different laboratory practices. In this paper, we address the latter question in terms of how variation in one of the steps of a labelling procedure affects the cDNA product prior to microarray hybridization. Results We used a standard procedure to label cDNA for microarray hybridization and employed different types of column chromatography for cDNA purification. After purifying labelled cDNA, we used the Agilent 2100 Bioanalyzer and agarose gel electrophoresis to assess the quality of the labelled cDNA before its hybridization onto a microarray platform. There were major differences in the cDNA profile (i.e. cDNA fragment lengths and abundance) as a result of using four different columns for purification. In addition, different columns have different efficiencies to remove rRNA contamination. This study indicates that the appropriate column to use in this type of protocol has to be experimentally determined. Finally, we present new evidence establishing the importance of testing the method of purification used during an indirect labelling procedure. Our results confirm the importance of assessing the quality of the sample in the labelling procedure prior to hybridization onto a microarray platform. Conclusion Standardization of column purification systems to be used in labelling procedures will improve the reproducibility of microarray results among different laboratories. In addition, implementation of a quality control check point of the labelled samples prior to microarray hybridization will prevent hybridizing a poor quality sample to expensive micorarrays. PMID:17597522
The effect of column purification on cDNA indirect labelling for microarrays.
Molas, M Lia; Kiss, John Z
2007-06-27
The success of the microarray reproducibility is dependent upon the performance of standardized procedures. Since the introduction of microarray technology for the analysis of global gene expression, reproducibility of results among different laboratories has been a major problem. Two of the main contributors to this variability are the use of different microarray platforms and different laboratory practices. In this paper, we address the latter question in terms of how variation in one of the steps of a labelling procedure affects the cDNA product prior to microarray hybridization. We used a standard procedure to label cDNA for microarray hybridization and employed different types of column chromatography for cDNA purification. After purifying labelled cDNA, we used the Agilent 2100 Bioanalyzer and agarose gel electrophoresis to assess the quality of the labelled cDNA before its hybridization onto a microarray platform. There were major differences in the cDNA profile (i.e. cDNA fragment lengths and abundance) as a result of using four different columns for purification. In addition, different columns have different efficiencies to remove rRNA contamination. This study indicates that the appropriate column to use in this type of protocol has to be experimentally determined. Finally, we present new evidence establishing the importance of testing the method of purification used during an indirect labelling procedure. Our results confirm the importance of assessing the quality of the sample in the labelling procedure prior to hybridization onto a microarray platform. Standardization of column purification systems to be used in labelling procedures will improve the reproducibility of microarray results among different laboratories. In addition, implementation of a quality control check point of the labelled samples prior to microarray hybridization will prevent hybridizing a poor quality sample to expensive micorarrays.
Davey, Mark W; Graham, Neil S; Vanholme, Bartel; Swennen, Rony; May, Sean T; Keulemans, Johan
2009-01-01
Background 'Systems-wide' approaches such as microarray RNA-profiling are ideally suited to the study of the complex overlapping responses of plants to biotic and abiotic stresses. However, commercial microarrays are only available for a limited number of plant species and development costs are so substantial as to be prohibitive for most research groups. Here we evaluate the use of cross-hybridisation to Affymetrix oligonucleotide GeneChip® microarrays to profile the response of the banana (Musa spp.) leaf transcriptome to drought stress using a genomic DNA (gDNA)-based probe-selection strategy to improve the efficiency of detection of differentially expressed Musa transcripts. Results Following cross-hybridisation of Musa gDNA to the Rice GeneChip® Genome Array, ~33,700 gene-specific probe-sets had a sufficiently high degree of homology to be retained for transcriptomic analyses. In a proof-of-concept approach, pooled RNA representing a single biological replicate of control and drought stressed leaves of the Musa cultivar 'Cachaco' were hybridised to the Affymetrix Rice Genome Array. A total of 2,910 Musa gene homologues with a >2-fold difference in expression levels were subsequently identified. These drought-responsive transcripts included many functional classes associated with plant biotic and abiotic stress responses, as well as a range of regulatory genes known to be involved in coordinating abiotic stress responses. This latter group included members of the ERF, DREB, MYB, bZIP and bHLH transcription factor families. Fifty-two of these drought-sensitive Musa transcripts were homologous to genes underlying QTLs for drought and cold tolerance in rice, including in 2 instances QTLs associated with a single underlying gene. The list of drought-responsive transcripts also included genes identified in publicly-available comparative transcriptomics experiments. Conclusion Our results demonstrate that despite the general paucity of nucleotide sequence data in Musa and only distant phylogenetic relations to rice, gDNA probe-based cross-hybridisation to the Rice GeneChip® is a highly promising strategy to study complex biological responses and illustrates the potential of such strategies for gene discovery in non-model species. PMID:19758430
Kim, Chang Sup; Seo, Jeong Hyun; Cha, Hyung Joon
2012-08-07
The development of analytical tools is important for understanding the infection mechanisms of pathogenic bacteria or viruses. In the present work, a functional carbohydrate microarray combined with a fluorescence immunoassay was developed to analyze the interactions of Vibrio cholerae toxin (ctx) proteins and GM1-related carbohydrates. Ctx proteins were loaded onto the surface-immobilized GM1 pentasaccharide and six related carbohydrates, and their binding affinities were detected immunologically. The analysis of the ctx-carbohydrate interactions revealed that the intrinsic selectivity of ctx was GM1 pentasaccharide ≫ GM2 tetrasaccharide > asialo GM1 tetrasaccharide ≥ GM3trisaccharide, indicating that a two-finger grip formation and the terminal monosaccharides play important roles in the ctx-GM1 interaction. In addition, whole cholera toxin (ctxAB(5)) had a stricter substrate specificity and a stronger binding affinity than only the cholera toxin B subunit (ctxB). On the basis of the quantitative analysis, the carbohydrate microarray showed the sensitivity of detection of the ctxAB(5)-GM1 interaction with a limit-of-detection (LOD) of 2 ng mL(-1) (23 pM), which is comparable to other reported high sensitivity assay tools. In addition, the carbohydrate microarray successfully detected the actual toxin directly secreted from V. cholerae, without showing cross-reactivity to other bacteria. Collectively, these results demonstrate that the functional carbohydrate microarray is suitable for analyzing toxin protein-carbohydrate interactions and can be applied as a biosensor for toxin detection.
Rajakumaran, P; Vaseeharan, B; Jayakumar, R; Chidambara, R
2014-01-01
Understanding of accurate phylogenetic relationship among Penaeidae shrimp is important for academic and fisheries industry. The Morphometric and Randomly amplified polymorphic DNA (RAPD) analysis was used to make the phylogenetic relationsip among 13 Penaeidae shrimp. For morphometric analysis forty variables and total lengths of shrimp were measured for each species, and removed the effect of size variation. The size normalized values obtained was subjected to UPGMA (Unweighted Pair-Group Method with Arithmetic Mean) cluster analysis. For RAPD analysis, the four primers showed reliable differentiation between species, and used correlation coefficient between the DNA banding patterns of 13 Penaeidae species to construct UPGMA dendrogram. Phylogenetic relationship from morphometric and molecular analysis for Penaeidae species found to be congruent. We concluded that as the results from morphometry investigations concur with molecular one, phylogenetic relationship obtained for the studied Penaeidae are considered to be reliable.
2013-01-01
Background Analysis of global gene expression by DNA microarrays is widely used in experimental molecular biology. However, the complexity of such high-dimensional data sets makes it difficult to fully understand the underlying biological features present in the data. The aim of this study is to introduce a method for DNA microarray analysis that provides an intuitive interpretation of data through dimension reduction and pattern recognition. We present the first “Archetypal Analysis” of global gene expression. The analysis is based on microarray data from five integrated studies of Pseudomonas aeruginosa isolated from the airways of cystic fibrosis patients. Results Our analysis clustered samples into distinct groups with comprehensible characteristics since the archetypes representing the individual groups are closely related to samples present in the data set. Significant changes in gene expression between different groups identified adaptive changes of the bacteria residing in the cystic fibrosis lung. The analysis suggests a similar gene expression pattern between isolates with a high mutation rate (hypermutators) despite accumulation of different mutations for these isolates. This suggests positive selection in the cystic fibrosis lung environment, and changes in gene expression for these isolates are therefore most likely related to adaptation of the bacteria. Conclusions Archetypal analysis succeeded in identifying adaptive changes of P. aeruginosa. The combination of clustering and matrix factorization made it possible to reveal minor similarities among different groups of data, which other analytical methods failed to identify. We suggest that this analysis could be used to supplement current methods used to analyze DNA microarray data. PMID:24059747
Yang, Mingxing; Li, Xiumin; Li, Zhibin; Ou, Zhimin; Liu, Ming; Liu, Suhuan; Li, Xuejun; Yang, Shuyu
2013-01-01
DNA microarray analysis is characterized by obtaining a large number of gene variables from a small number of observations. Cluster analysis is widely used to analyze DNA microarray data to make classification and diagnosis of disease. Because there are so many irrelevant and insignificant genes in a dataset, a feature selection approach must be employed in data analysis. The performance of cluster analysis of this high-throughput data depends on whether the feature selection approach chooses the most relevant genes associated with disease classes. Here we proposed a new method using multiple Orthogonal Partial Least Squares-Discriminant Analysis (mOPLS-DA) models and S-plots to select the most relevant genes to conduct three-class disease classification and prediction. We tested our method using Golub's leukemia microarray data. For three classes with subtypes, we proposed hierarchical orthogonal partial least squares-discriminant analysis (OPLS-DA) models and S-plots to select features for two main classes and their subtypes. For three classes in parallel, we employed three OPLS-DA models and S-plots to choose marker genes for each class. The power of feature selection to classify and predict three-class disease was evaluated using cluster analysis. Further, the general performance of our method was tested using four public datasets and compared with those of four other feature selection methods. The results revealed that our method effectively selected the most relevant features for disease classification and prediction, and its performance was better than that of the other methods.
2010-01-01
Background The large amount of high-throughput genomic data has facilitated the discovery of the regulatory relationships between transcription factors and their target genes. While early methods for discovery of transcriptional regulation relationships from microarray data often focused on the high-throughput experimental data alone, more recent approaches have explored the integration of external knowledge bases of gene interactions. Results In this work, we develop an algorithm that provides improved performance in the prediction of transcriptional regulatory relationships by supplementing the analysis of microarray data with a new method of integrating information from an existing knowledge base. Using a well-known dataset of yeast microarrays and the Yeast Proteome Database, a comprehensive collection of known information of yeast genes, we show that knowledge-based predictions demonstrate better sensitivity and specificity in inferring new transcriptional interactions than predictions from microarray data alone. We also show that comprehensive, direct and high-quality knowledge bases provide better prediction performance. Comparison of our results with ChIP-chip data and growth fitness data suggests that our predicted genome-wide regulatory pairs in yeast are reasonable candidates for follow-up biological verification. Conclusion High quality, comprehensive, and direct knowledge bases, when combined with appropriate bioinformatic algorithms, can significantly improve the discovery of gene regulatory relationships from high throughput gene expression data. PMID:20122245
Seok, Junhee; Kaushal, Amit; Davis, Ronald W; Xiao, Wenzhong
2010-01-18
The large amount of high-throughput genomic data has facilitated the discovery of the regulatory relationships between transcription factors and their target genes. While early methods for discovery of transcriptional regulation relationships from microarray data often focused on the high-throughput experimental data alone, more recent approaches have explored the integration of external knowledge bases of gene interactions. In this work, we develop an algorithm that provides improved performance in the prediction of transcriptional regulatory relationships by supplementing the analysis of microarray data with a new method of integrating information from an existing knowledge base. Using a well-known dataset of yeast microarrays and the Yeast Proteome Database, a comprehensive collection of known information of yeast genes, we show that knowledge-based predictions demonstrate better sensitivity and specificity in inferring new transcriptional interactions than predictions from microarray data alone. We also show that comprehensive, direct and high-quality knowledge bases provide better prediction performance. Comparison of our results with ChIP-chip data and growth fitness data suggests that our predicted genome-wide regulatory pairs in yeast are reasonable candidates for follow-up biological verification. High quality, comprehensive, and direct knowledge bases, when combined with appropriate bioinformatic algorithms, can significantly improve the discovery of gene regulatory relationships from high throughput gene expression data.
Vartanian, Kristina; Slottke, Rachel; Johnstone, Timothy; Casale, Amanda; Planck, Stephen R; Choi, Dongseok; Smith, Justine R; Rosenbaum, James T; Harrington, Christina A
2009-01-01
Background Peripheral blood is an accessible and informative source of transcriptomal information for many human disease and pharmacogenomic studies. While there can be significant advantages to analyzing RNA isolated from whole blood, particularly in clinical studies, the preparation of samples for microarray analysis is complicated by the need to minimize artifacts associated with highly abundant globin RNA transcripts. The impact of globin RNA transcripts on expression profiling data can potentially be reduced by using RNA preparation and labeling methods that remove or block globin RNA during the microarray assay. We compared four different methods for preparing microarray hybridization targets from human whole blood collected in PAXGene tubes. Three of the methods utilized the Affymetrix one-cycle cDNA synthesis/in vitro transcription protocol but varied treatment of input RNA as follows: i. no treatment; ii. treatment with GLOBINclear; or iii. treatment with globin PNA oligos. In the fourth method cDNA targets were prepared with the Ovation amplification and labeling system. Results We find that microarray targets generated with labeling methods that reduce globin mRNA levels or minimize the impact of globin transcripts during hybridization detect more transcripts in the microarray assay compared with the standard Affymetrix method. Comparison of microarray results with quantitative PCR analysis of a panel of genes from the NF-kappa B pathway shows good correlation of transcript measurements produced with all four target preparation methods, although method-specific differences in overall correlation were observed. The impact of freezing blood collected in PAXGene tubes on data reproducibility was also examined. Expression profiles show little or no difference when RNA is extracted from either fresh or frozen blood samples. Conclusion RNA preparation and labeling methods designed to reduce the impact of globin mRNA transcripts can significantly improve the sensitivity of the DNA microarray expression profiling assay for whole blood samples. While blockage of globin transcripts during first strand cDNA synthesis with globin PNAs resulted in the best overall performance in this study, we conclude that selection of a protocol for expression profiling studies in blood should depend on several factors, including implementation requirements of the method and study design. RNA isolated from either freshly collected or frozen blood samples stored in PAXGene tubes can be used without altering gene expression profiles. PMID:19123946
APPLICATION OF DNA MICROARRAYS TO REPRODUCTIVE TOXICOLOGY AND THE DEVELOPMENT OF A TESTIS ARRAY
With the advent of sequence information for entire mammalian genomes, it is now possible to analyze gene expression and gene polymorphisms on a genomic scale. The primary tool for analysis of gene expression is the DNA microarray. We have used commercially available cDNA micro...
Microarrays for Undergraduate Classes
ERIC Educational Resources Information Center
Hancock, Dale; Nguyen, Lisa L.; Denyer, Gareth S.; Johnston, Jill M.
2006-01-01
A microarray experiment is presented that, in six laboratory sessions, takes undergraduate students from the tissue sample right through to data analysis. The model chosen, the murine erythroleukemia cell line, can be easily cultured in sufficient quantities for class use. Large changes in gene expression can be induced in these cells by…
With the advent of sequence information for entire eukaryotic genomes, it is now possible to analyze gene expression on a genomic scale. The primary tool for genomic analysis of gene expression is the gene microarray. We have used commercially available and custom cDNA microarray...
Microarrays have the potential to significantly impact our ability to identify toxic hazards by the identification of mechanistically-relevant markers of toxicity. To be useful for risk assessment however, microarray data must be challenged to determine its reliability and inter...
USDA-ARS?s Scientific Manuscript database
To analyze transcriptome response to virus infection, we have assembled currently available microarray data on changes in gene expression levels in compatible Arabidopsis-virus interactions. We used the mean r (Pearson’s correlation coefficient) for neighboring pairs to estimate pairwise local simil...
Baumann, Antoine; Devaux, Yvan; Audibert, Gérard; Zhang, Lu; Bracard, Serge; Colnat-Coulbois, Sophie; Klein, Olivier; Zannad, Faiez; Charpentier, Claire; Longrois, Dan; Mertes, Paul-Michel
2013-01-01
Delayed cerebral ischemia (DCI) is a potentially devastating complication after intracranial aneurysm rupture and its mechanisms remain poorly elucidated. Early identification of the patients prone to developing DCI after rupture may represent a major breakthrough in its prevention and treatment. The single gene approach of DCI has demonstrated interest in humans. We hypothesized that whole genome expression profile of blood cells may be useful for better comprehension and prediction of aneurysmal DCI. Over a 35-month period, 218 patients with aneurysm rupture were included in this study. DCI was defined as the occurrence of a new delayed neurological deficit occurring within 2 weeks after aneurysm rupture with evidence of ischemia either on perfusion-diffusion MRI, CT angiography or CT perfusion imaging, or with cerebral angiography. DCI patients were matched against controls based on 4 out of 5 criteria (age, sex, Fisher grade, aneurysm location and smoking status). Genome-wide expression analysis of blood cells obtained at admission was performed by microarrays. Transcriptomic analysis was performed using long oligonucleotide microarrays representing 25,000 genes. Quantitative PCR: 1 µg of total RNA extracted was reverse-transcribed, and the resulting cDNA was diluted 10-fold before performing quantitative PCR. Microarray data were first analyzed by 'Significance Analysis of Microarrays' software which includes the Benjamini correction for multiple testing. In a second step, microarray data fold change was compared using a two-tailed, paired t test. Analysis of receiver-operating characteristic (ROC) curves and the area under the ROC curves were used for prediction analysis. Logistic regression models were used to investigate the additive value of multiple biomarkers. A total of 16 patients demonstrated DCI. Significance Analysis of Microarrays software failed to retrieve significant genes, most probably because of the heterogeneity of the patients included in the microarray experiments and the small size of the DCI population sample. Standard two-tailed paired t test and C-statistic revealed significant associations between gene expression and the occurrence of DCI: in particular, the expression of neuroregulin 1 was 1.6-fold upregulated in patients with DCI (p = 0.01) and predicted DCI with an area under the ROC curve of 0.96. Logistic regression analyses revealed a significant association between neuroregulin 1 and DCI (odds ratio 1.46, 95% confidence interval 1.02-2.09, p = 0.02). This pilot study suggests that blood cells may be a reservoir of prognostic biomarkers of DCI in patients with intracranial aneurysm rupture. Despite an evident lack of power, this study elicited neuroregulin 1, a vasoreactivity-, inflammation- and angiogenesis-related gene, as a possible candidate predictor of DCI. Larger cohort studies are needed but genome-wide microarray-based studies are promising research tools for the understanding of DCI after intracranial aneurysm rupture. © 2013 S. Karger AG, Basel.
Profiling In Situ Microbial Community Structure with an Amplification Microarray
Knickerbocker, Christopher; Bryant, Lexi; Golova, Julia; Wiles, Cory; Williams, Kenneth H.; Peacock, Aaron D.; Long, Philip E.
2013-01-01
The objectives of this study were to unify amplification, labeling, and microarray hybridization chemistries within a single, closed microfluidic chamber (an amplification microarray) and verify technology performance on a series of groundwater samples from an in situ field experiment designed to compare U(VI) mobility under conditions of various alkalinities (as HCO3−) during stimulated microbial activity accompanying acetate amendment. Analytical limits of detection were between 2 and 200 cell equivalents of purified DNA. Amplification microarray signatures were well correlated with 16S rRNA-targeted quantitative PCR results and hybridization microarray signatures. The succession of the microbial community was evident with and consistent between the two microarray platforms. Amplification microarray analysis of acetate-treated groundwater showed elevated levels of iron-reducing bacteria (Flexibacter, Geobacter, Rhodoferax, and Shewanella) relative to the average background profile, as expected. Identical molecular signatures were evident in the transect treated with acetate plus NaHCO3, but at much lower signal intensities and with a much more rapid decline (to nondetection). Azoarcus, Thaurea, and Methylobacterium were responsive in the acetate-only transect but not in the presence of bicarbonate. Observed differences in microbial community composition or response to bicarbonate amendment likely had an effect on measured rates of U reduction, with higher rates probable in the part of the field experiment that was amended with bicarbonate. The simplification in microarray-based work flow is a significant technological advance toward entirely closed-amplicon microarray-based tests and is generally extensible to any number of environmental monitoring applications. PMID:23160129
Mathematics make microbes beautiful, beneficial, and bountiful.
Jungck, John R
2012-01-01
Microbiology is a rich area for visualizing the importance of mathematics in terms of designing experiments, data mining, testing hypotheses, and visualizing relationships. Historically, Nobel Prizes have acknowledged the close interplay between mathematics and microbiology in such examples as the fluctuation test and mutation rates using Poisson statistics by Luria and Delbrück and the use of graph theory of polyhedra by Caspar and Klug. More and more contemporary microbiology journals feature mathematical models, computational algorithms and heuristics, and multidimensional visualizations. While revolutions in research have driven these initiatives, a commensurate effort needs to be made to incorporate much more mathematics into the professional preparation of microbiologists. In order not to be daunting to many educators, a Bloom-like "Taxonomy of Quantitative Reasoning" is shared with explicit examples of microbiological activities for engaging students in (a) counting, measuring, calculating using image analysis of bacterial colonies and viral infections on variegated leaves, measurement of fractal dimensions of beautiful colony morphologies, and counting vertices, edges, and faces on viral capsids and using graph theory to understand self assembly; (b) graphing, mapping, ordering by applying linear, exponential, and logistic growth models of public health and sanitation problems, revisiting Snow's epidemiological map of cholera with computational geometry, and using interval graphs to do complementation mapping, deletion mapping, food webs, and microarray heatmaps; (c) problem solving by doing gene mapping and experimental design, and applying Boolean algebra to gene regulation of operons; (d) analysis of the "Bacterial Bonanza" of microbial sequence and genomic data using bioinformatics and phylogenetics; (e) hypothesis testing-again with phylogenetic trees and use of Poisson statistics and the Luria-Delbrück fluctuation test; and (f) modeling of biodiversity by using game theory, of epidemics with algebraic models, bacterial motion by using motion picture analysis and fluid mechanics of motility in multiple dimensions through the physics of "Life at Low Reynolds Numbers," and pattern formation of quorum sensing bacterial populations. Through a developmental model for preprofessional education that emphasizes the beauty, utility, and diversity of microbiological systems, we hope to foster creativity as well as mathematically rigorous reasoning. Copyright © 2012 Elsevier Inc. All rights reserved.
Page, Grier P; Coulibaly, Issa
2008-01-01
Microarrays are a very powerful tool for quantifying the amount of RNA in samples; however, their ability to query essentially every gene in a genome, which can number in the tens of thousands, presents analytical and interpretative problems. As a result, a variety of software and web-based tools have been developed to help with these issues. This article highlights and reviews some of the tools for the first steps in the analysis of a microarray study. We have tried for a balance between free and commercial systems. We have organized the tools by topics including image processing tools (Section 2), power analysis tools (Section 3), image analysis tools (Section 4), database tools (Section 5), databases of functional information (Section 6), annotation tools (Section 7), statistical and data mining tools (Section 8), and dissemination tools (Section 9).
Bioinformatics and Microarray Data Analysis on the Cloud.
Calabrese, Barbara; Cannataro, Mario
2016-01-01
High-throughput platforms such as microarray, mass spectrometry, and next-generation sequencing are producing an increasing volume of omics data that needs large data storage and computing power. Cloud computing offers massive scalable computing and storage, data sharing, on-demand anytime and anywhere access to resources and applications, and thus, it may represent the key technology for facing those issues. In fact, in the recent years it has been adopted for the deployment of different bioinformatics solutions and services both in academia and in the industry. Although this, cloud computing presents several issues regarding the security and privacy of data, that are particularly important when analyzing patients data, such as in personalized medicine. This chapter reviews main academic and industrial cloud-based bioinformatics solutions; with a special focus on microarray data analysis solutions and underlines main issues and problems related to the use of such platforms for the storage and analysis of patients data.
Identification of differentially expressed genes and false discovery rate in microarray studies.
Gusnanto, Arief; Calza, Stefano; Pawitan, Yudi
2007-04-01
To highlight the development in microarray data analysis for the identification of differentially expressed genes, particularly via control of false discovery rate. The emergence of high-throughput technology such as microarrays raises two fundamental statistical issues: multiplicity and sensitivity. We focus on the biological problem of identifying differentially expressed genes. First, multiplicity arises due to testing tens of thousands of hypotheses, rendering the standard P value meaningless. Second, known optimal single-test procedures such as the t-test perform poorly in the context of highly multiple tests. The standard approach of dealing with multiplicity is too conservative in the microarray context. The false discovery rate concept is fast becoming the key statistical assessment tool replacing the P value. We review the false discovery rate approach and argue that it is more sensible for microarray data. We also discuss some methods to take into account additional information from the microarrays to improve the false discovery rate. There is growing consensus on how to analyse microarray data using the false discovery rate framework in place of the classical P value. Further research is needed on the preprocessing of the raw data, such as the normalization step and filtering, and on finding the most sensitive test procedure.
treespace: Statistical exploration of landscapes of phylogenetic trees.
Jombart, Thibaut; Kendall, Michelle; Almagro-Garcia, Jacob; Colijn, Caroline
2017-11-01
The increasing availability of large genomic data sets as well as the advent of Bayesian phylogenetics facilitates the investigation of phylogenetic incongruence, which can result in the impossibility of representing phylogenetic relationships using a single tree. While sometimes considered as a nuisance, phylogenetic incongruence can also reflect meaningful biological processes as well as relevant statistical uncertainty, both of which can yield valuable insights in evolutionary studies. We introduce a new tool for investigating phylogenetic incongruence through the exploration of phylogenetic tree landscapes. Our approach, implemented in the R package treespace, combines tree metrics and multivariate analysis to provide low-dimensional representations of the topological variability in a set of trees, which can be used for identifying clusters of similar trees and group-specific consensus phylogenies. treespace also provides a user-friendly web interface for interactive data analysis and is integrated alongside existing standards for phylogenetics. It fills a gap in the current phylogenetics toolbox in R and will facilitate the investigation of phylogenetic results. © 2017 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.
An evaluation of two-channel ChIP-on-chip and DNA methylation microarray normalization strategies
2012-01-01
Background The combination of chromatin immunoprecipitation with two-channel microarray technology enables genome-wide mapping of binding sites of DNA-interacting proteins (ChIP-on-chip) or sites with methylated CpG di-nucleotides (DNA methylation microarray). These powerful tools are the gateway to understanding gene transcription regulation. Since the goals of such studies, the sample preparation procedures, the microarray content and study design are all different from transcriptomics microarrays, the data pre-processing strategies traditionally applied to transcriptomics microarrays may not be appropriate. Particularly, the main challenge of the normalization of "regulation microarrays" is (i) to make the data of individual microarrays quantitatively comparable and (ii) to keep the signals of the enriched probes, representing DNA sequences from the precipitate, as distinguishable as possible from the signals of the un-enriched probes, representing DNA sequences largely absent from the precipitate. Results We compare several widely used normalization approaches (VSN, LOWESS, quantile, T-quantile, Tukey's biweight scaling, Peng's method) applied to a selection of regulation microarray datasets, ranging from DNA methylation to transcription factor binding and histone modification studies. Through comparison of the data distributions of control probes and gene promoter probes before and after normalization, and assessment of the power to identify known enriched genomic regions after normalization, we demonstrate that there are clear differences in performance between normalization procedures. Conclusion T-quantile normalization applied separately on the channels and Tukey's biweight scaling outperform other methods in terms of the conservation of enriched and un-enriched signal separation, as well as in identification of genomic regions known to be enriched. T-quantile normalization is preferable as it additionally improves comparability between microarrays. In contrast, popular normalization approaches like quantile, LOWESS, Peng's method and VSN normalization alter the data distributions of regulation microarrays to such an extent that using these approaches will impact the reliability of the downstream analysis substantially. PMID:22276688
Rai, Muhammad Farooq; Tycksen, Eric D; Sandell, Linda J; Brophy, Robert H
2018-01-01
Microarrays and RNA-seq are at the forefront of high throughput transcriptome analyses. Since these methodologies are based on different principles, there are concerns about the concordance of data between the two techniques. The concordance of RNA-seq and microarrays for genome-wide analysis of differential gene expression has not been rigorously assessed in clinically derived ligament tissues. To demonstrate the concordance between RNA-seq and microarrays and to assess potential benefits of RNA-seq over microarrays, we assessed differences in transcript expression in anterior cruciate ligament (ACL) tissues based on time-from-injury. ACL remnants were collected from patients with an ACL tear at the time of ACL reconstruction. RNA prepared from torn ACL remnants was subjected to Agilent microarrays (N = 24) and RNA-seq (N = 8). The correlation of biological replicates in RNA-seq and microarrays data was similar (0.98 vs. 0.97), demonstrating that each platform has high internal reproducibility. Correlations between the RNA-seq data and the individual microarrays were low, but correlations between the RNA-seq values and the geometric mean of the microarrays values were moderate. The cross-platform concordance for differentially expressed transcripts or enriched pathways was linearly correlated (r = 0.64). RNA-Seq was superior in detecting low abundance transcripts and differentiating biologically critical isoforms. Additional independent validation of transcript expression was undertaken using microfluidic PCR for selected genes. PCR data showed 100% concordance (in expression pattern) with RNA-seq and microarrays data. These findings demonstrate that RNA-seq has advantages over microarrays for transcriptome profiling of ligament tissues when available and affordable. Furthermore, these findings are likely transferable to other musculoskeletal tissues where tissue collection is challenging and cells are in low abundance. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:484-497, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Genetic Inventory Task Final Report. Volume 2
NASA Technical Reports Server (NTRS)
Venkateswaran, Kasthuri; LaDuc, Myron T.; Vaishampayan, Parag
2012-01-01
Contaminant terrestrial microbiota could profoundly impact the scientific integrity of extraterrestrial life-detection experiments. It is therefore important to know what organisms persist on spacecraft surfaces so that their presence can be eliminated or discriminated from authentic extraterrestrial biosignatures. Although there is a growing understanding of the biodiversity associated with spacecraft and cleanroom surfaces, it remains challenging to assess the risk of these microbes confounding life-detection or sample-return experiments. A key challenge is to provide a comprehensive inventory of microbes present on spacecraft surfaces. To assess the phylogenetic breadth of microorganisms on spacecraft and associated surfaces, the Genetic Inventory team used three technologies: conventional cloning techniques, PhyloChip DNA microarrays, and 454 tag-encoded pyrosequencing, together with a methodology to systematically collect, process, and archive nucleic acids. These three analysis methods yielded considerably different results: Traditional approaches provided the least comprehensive assessment of microbial diversity, while PhyloChip and pyrosequencing illuminated more diverse microbial populations. The overall results stress the importance of selecting sample collection and processing approaches based on the desired target and required level of detection. The DNA archive generated in this study can be made available to future researchers as genetic-inventory-oriented technologies further mature.
Prediction of Human Disease Genes by Human-Mouse Conserved Coexpression Analysis
Grassi, Elena; Damasco, Christian; Silengo, Lorenzo; Oti, Martin; Provero, Paolo; Di Cunto, Ferdinando
2008-01-01
Background Even in the post-genomic era, the identification of candidate genes within loci associated with human genetic diseases is a very demanding task, because the critical region may typically contain hundreds of positional candidates. Since genes implicated in similar phenotypes tend to share very similar expression profiles, high throughput gene expression data may represent a very important resource to identify the best candidates for sequencing. However, so far, gene coexpression has not been used very successfully to prioritize positional candidates. Methodology/Principal Findings We show that it is possible to reliably identify disease-relevant relationships among genes from massive microarray datasets by concentrating only on genes sharing similar expression profiles in both human and mouse. Moreover, we show systematically that the integration of human-mouse conserved coexpression with a phenotype similarity map allows the efficient identification of disease genes in large genomic regions. Finally, using this approach on 850 OMIM loci characterized by an unknown molecular basis, we propose high-probability candidates for 81 genetic diseases. Conclusion Our results demonstrate that conserved coexpression, even at the human-mouse phylogenetic distance, represents a very strong criterion to predict disease-relevant relationships among human genes. PMID:18369433
2012-01-01
Background DNA microarrays are used both for research and for diagnostics. In research, Affymetrix arrays are commonly used for genome wide association studies, resequencing, and for gene expression analysis. These arrays provide large amounts of data. This data is analyzed using statistical methods that quite often discard a large portion of the information. Most of the information that is lost comes from probes that systematically fail across chips and from batch effects. The aim of this study was to develop a comprehensive model for hybridization that predicts probe intensities for Affymetrix arrays and that could provide a basis for improved microarray analysis and probe development. The first part of the model calculates probe binding affinities to all the possible targets in the hybridization solution using the Langmuir isotherm. In the second part of the model we integrate details that are specific to each experiment and contribute to the differences between hybridization in solution and on the microarray. These details include fragmentation, wash stringency, temperature, salt concentration, and scanner settings. Furthermore, the model fits probe synthesis efficiency and target concentration parameters directly to the data. All the parameters used in the model have a well-established physical origin. Results For the 302 chips that were analyzed the mean correlation between expected and observed probe intensities was 0.701 with a range of 0.88 to 0.55. All available chips were included in the analysis regardless of the data quality. Our results show that batch effects arise from differences in probe synthesis, scanner settings, wash strength, and target fragmentation. We also show that probe synthesis efficiencies for different nucleotides are not uniform. Conclusions To date this is the most complete model for binding on microarrays. This is the first model that includes both probe synthesis efficiency and hybridization kinetics/cross-hybridization. These two factors are sequence dependent and have a large impact on probe intensity. The results presented here provide novel insight into the effect of probe synthesis errors on Affymetrix microarrays; furthermore, the algorithms developed in this work provide useful tools for the analysis of cross-hybridization, probe synthesis efficiency, fragmentation, wash stringency, temperature, and salt concentration on microarray intensities. PMID:23270536
Thormar, Hans G; Gudmundsson, Bjarki; Eiriksdottir, Freyja; Kil, Siyoen; Gunnarsson, Gudmundur H; Magnusson, Magnus Karl; Hsu, Jason C; Jonsson, Jon J
2013-04-01
The causes of imprecision in microarray expression analysis are poorly understood, limiting the use of this technology in molecular diagnostics. Two-dimensional strandness-dependent electrophoresis (2D-SDE) separates nucleic acid molecules on the basis of length and strandness, i.e., double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), and RNA·DNA hybrids. We used 2D-SDE to measure the efficiency of cDNA synthesis and its importance for the imprecision of an in vitro transcription-based microarray expression analysis. The relative amount of double-stranded cDNA formed in replicate experiments that used the same RNA sample template was highly variable, ranging between 0% and 72% of the total DNA. Microarray experiments showed an inverse relationship between the difference between sample pairs in probe variance and the relative amount of dsDNA. Approximately 15% of probes showed between-sample variation (P < 0.05) when the dsDNA percentage was between 12% and 35%. In contrast, only 3% of probes showed between-sample variation when the dsDNA percentage was 69% and 72%. Replication experiments of the 35% dsDNA and 72% dsDNA samples were used to separate sample variation from probe replication variation. The estimated SD of the sample-to-sample variation and of the probe replicates was lower in 72% dsDNA samples than in 35% dsDNA samples. Variation in the relative amount of double-stranded cDNA synthesized can be an important component of the imprecision in T7 RNA polymerase-based microarray expression analysis. © 2013 American Association for Clinical Chemistry
Li, Lingyun; Li, Qingbo; Rohlin, Lars; Kim, UnMi; Salmon, Kirsty; Rejtar, Tomas; Gunsalus, Robert P.; Karger, Barry L.; Ferry, James G.
2008-01-01
Summary Methanosarcina acetivorans strain C2A is an acetate- and methanol-utilizing methane-producing organism for which the genome, the largest yet sequenced among the Archaea, reveals extensive physiological diversity. LC linear ion trap-FTICR mass spectrometry was employed to analyze acetate- vs. methanol-grown cells metabolically labeled with 14N vs. 15N, respectively, to obtain quantitative protein abundance ratios. DNA microarray analyses of acetate- vs. methanol-grown cells was also performed to determine gene expression ratios. The combined approaches were highly complementary, extending the physiological understanding of growth and methanogenesis. Of the 1081 proteins detected, 255 were ≥ 3-fold differentially abundant. DNA microarray analysis revealed 410 genes that were ≥ 2.5-fold differentially expressed of 1972 genes with detected expression. The ratios of differentially abundant proteins were in good agreement with expression ratios of the encoding genes. Taken together, the results suggest several novel roles for electron transport components specific to acetate-grown cells, including two flavodoxins each specific for growth on acetate or methanol. Protein abundance ratios indicated that duplicate CO dehydrogenase/acetyl-CoA complexes function in the conversion of acetate to methane. Surprisingly, the protein abundance and gene expression ratios indicated a general stress response in acetate- vs. methanol-grown cells that included enzymes specific for polyphosphate accumulation and oxidative stress. The microarray analysis identified transcripts of several genes encoding regulatory proteins with identity to the PhoU, MarR, GlnK, and TetR families commonly found in the Bacteria domain. An analysis of neighboring genes suggested roles in controlling phosphate metabolism (PhoU), ammonia assimilation (GlnK), and molybdopterin cofactor biosynthesis (TetR). Finally, the proteomic and microarray results suggested roles for two-component regulatory systems specific for each growth substrate. PMID:17269732
Integrated analysis of chromosome copy number variation and gene expression in cervical carcinoma
Yan, Deng; Yi, Song; Chiu, Wang Chi; Qin, Liu Gui; Kin, Wong Hoi; Kwok Hung, Chung Tony; Linxiao, Han; Wai, Choy Kwong; Yi, Sui; Tao, Yang; Tao, Tang
2017-01-01
Objective This study was conducted to explore chromosomal copy number variations (CNV) and transcript expression and to examine pathways in cervical pathogenesis using genome-wide high resolution microarrays. Methods Genome-wide chromosomal CNVs were investigated in 6 cervical cancer cell lines by Human Genome CGH Microarray Kit (4x44K). Gene expression profiles in cervical cancer cell lines, primary cervical carcinoma and normal cervical epithelium tissues were also studied using the Whole Human Genome Microarray Kit (4x44K). Results Fifty common chromosomal CNVs were identified in the cervical cancer cell lines. Correlation analysis revealed that gene up-regulation or down-regulation is significantly correlated with genomic amplification (P=0.009) or deletion (P=0.006) events. Expression profiles were identified through cluster analysis. Gene annotation analysis pinpointed cell cycle pathways was significantly (P=1.15E-08) affected in cervical cancer. Common CNVs were associated with cervical cancer. Conclusion Chromosomal CNVs may contribute to their transcript expression in cervical cancer. PMID:29312578
BioconductorBuntu: a Linux distribution that implements a web-based DNA microarray analysis server.
Geeleher, Paul; Morris, Dermot; Hinde, John P; Golden, Aaron
2009-06-01
BioconductorBuntu is a custom distribution of Ubuntu Linux that automatically installs a server-side microarray processing environment, providing a user-friendly web-based GUI to many of the tools developed by the Bioconductor Project, accessible locally or across a network. System installation is via booting off a CD image or by using a Debian package provided to upgrade an existing Ubuntu installation. In its current version, several microarray analysis pipelines are supported including oligonucleotide, dual-or single-dye experiments, including post-processing with Gene Set Enrichment Analysis. BioconductorBuntu is designed to be extensible, by server-side integration of further relevant Bioconductor modules as required, facilitated by its straightforward underlying Python-based infrastructure. BioconductorBuntu offers an ideal environment for the development of processing procedures to facilitate the analysis of next-generation sequencing datasets. BioconductorBuntu is available for download under a creative commons license along with additional documentation and a tutorial from (http://bioinf.nuigalway.ie).
De Hertogh, Benoît; De Meulder, Bertrand; Berger, Fabrice; Pierre, Michael; Bareke, Eric; Gaigneaux, Anthoula; Depiereux, Eric
2010-01-11
Recent reanalysis of spike-in datasets underscored the need for new and more accurate benchmark datasets for statistical microarray analysis. We present here a fresh method using biologically-relevant data to evaluate the performance of statistical methods. Our novel method ranks the probesets from a dataset composed of publicly-available biological microarray data and extracts subset matrices with precise information/noise ratios. Our method can be used to determine the capability of different methods to better estimate variance for a given number of replicates. The mean-variance and mean-fold change relationships of the matrices revealed a closer approximation of biological reality. Performance analysis refined the results from benchmarks published previously.We show that the Shrinkage t test (close to Limma) was the best of the methods tested, except when two replicates were examined, where the Regularized t test and the Window t test performed slightly better. The R scripts used for the analysis are available at http://urbm-cluster.urbm.fundp.ac.be/~bdemeulder/.
Integrated analysis of chromosome copy number variation and gene expression in cervical carcinoma.
Yan, Deng; Yi, Song; Chiu, Wang Chi; Qin, Liu Gui; Kin, Wong Hoi; Kwok Hung, Chung Tony; Linxiao, Han; Wai, Choy Kwong; Yi, Sui; Tao, Yang; Tao, Tang
2017-12-12
This study was conducted to explore chromosomal copy number variations (CNV) and transcript expression and to examine pathways in cervical pathogenesis using genome-wide high resolution microarrays. Genome-wide chromosomal CNVs were investigated in 6 cervical cancer cell lines by Human Genome CGH Microarray Kit (4x44K). Gene expression profiles in cervical cancer cell lines, primary cervical carcinoma and normal cervical epithelium tissues were also studied using the Whole Human Genome Microarray Kit (4x44K). Fifty common chromosomal CNVs were identified in the cervical cancer cell lines. Correlation analysis revealed that gene up-regulation or down-regulation is significantly correlated with genomic amplification ( P =0.009) or deletion ( P =0.006) events. Expression profiles were identified through cluster analysis. Gene annotation analysis pinpointed cell cycle pathways was significantly ( P =1.15E-08) affected in cervical cancer. Common CNVs were associated with cervical cancer. Chromosomal CNVs may contribute to their transcript expression in cervical cancer.
USDA-ARS?s Scientific Manuscript database
An extensive phylogenetic analysis and genus-level taxonomic revision of Paranoplocephala Lühe, 1910 -like cestodes (Cyclophyllidea, Anoplocephalidae) are presented. The phylogenetic analysis is based on DNA sequences of two partial mitochondrial genes, i.e. cytochrome c oxidase subunit 1 (cox1) and...
Identifying novel glioma associated pathways based on systems biology level meta-analysis.
Hu, Yangfan; Li, Jinquan; Yan, Wenying; Chen, Jiajia; Li, Yin; Hu, Guang; Shen, Bairong
2013-01-01
With recent advances in microarray technology, including genomics, proteomics, and metabolomics, it brings a great challenge for integrating this "-omics" data to analysis complex disease. Glioma is an extremely aggressive and lethal form of brain tumor, and thus the study of the molecule mechanism underlying glioma remains very important. To date, most studies focus on detecting the differentially expressed genes in glioma. However, the meta-analysis for pathway analysis based on multiple microarray datasets has not been systematically pursued. In this study, we therefore developed a systems biology based approach by integrating three types of omics data to identify common pathways in glioma. Firstly, the meta-analysis has been performed to study the overlapping of signatures at different levels based on the microarray gene expression data of glioma. Among these gene expression datasets, 12 pathways were found in GeneGO database that shared by four stages. Then, microRNA expression profiles and ChIP-seq data were integrated for the further pathway enrichment analysis. As a result, we suggest 5 of these pathways could be served as putative pathways in glioma. Among them, the pathway of TGF-beta-dependent induction of EMT via SMAD is of particular importance. Our results demonstrate that the meta-analysis based on systems biology level provide a more useful approach to study the molecule mechanism of complex disease. The integration of different types of omics data, including gene expression microarrays, microRNA and ChIP-seq data, suggest some common pathways correlated with glioma. These findings will offer useful potential candidates for targeted therapeutic intervention of glioma.
Engelmann, Brett W
2017-01-01
The Src Homology 2 (SH2) domain family primarily recognizes phosphorylated tyrosine (pY) containing peptide motifs. The relative affinity preferences among competing SH2 domains for phosphopeptide ligands define "specificity space," and underpins many functional pY mediated interactions within signaling networks. The degree of promiscuity exhibited and the dynamic range of affinities supported by individual domains or phosphopeptides is best resolved by a carefully executed and controlled quantitative high-throughput experiment. Here, I describe the fabrication and application of a cellulose-peptide conjugate microarray (CPCMA) platform to the quantitative analysis of SH2 domain specificity space. Included herein are instructions for optimal experimental design with special attention paid to common sources of systematic error, phosphopeptide SPOT synthesis, microarray fabrication, analyte titrations, data capture, and analysis.
Kostić, Tanja; Sessitsch, Angela
2011-01-01
Reliable and sensitive pathogen detection in clinical and environmental (including food and water) samples is of greatest importance for public health. Standard microbiological methods have several limitations and improved alternatives are needed. Most important requirements for reliable analysis include: (i) specificity; (ii) sensitivity; (iii) multiplexing potential; (iv) robustness; (v) speed; (vi) automation potential; and (vii) low cost. Microarray technology can, through its very nature, fulfill many of these requirements directly and the remaining challenges have been tackled. In this review, we attempt to compare performance characteristics of the microbial diagnostic microarrays developed for the detection and typing of food and water pathogens, and discuss limitations, points still to be addressed and issues specific for the analysis of food, water and environmental samples. PMID:27605332
Wang, Wen; Li, Hao; Zhao, Zheng; Wang, Haoyuan; Zhang, Dong; Zhang, Yan; Lan, Qing; Wang, Jiangfei; Cao, Yong; Zhao, Jizong
2018-04-01
Abdominal aortic aneurysms (AAAs) and intracranial saccular aneurysms (IAs) are the most common types of aneurysms. This study was to investigate the common pathogenesis shared between these two kinds of aneurysms. We collected 12 IAs samples and 12 control arteries from the Beijing Tiantan Hospital and performed microarray analysis. In addition, we utilized the microarray datasets of IAs and AAAs from the Gene Expression Omnibus (GEO), in combination with our microarray results, to generate messenger RNA expression profiles for both AAAs and IAs in our study. Functional exploration and protein-protein interaction (PPI) analysis were performed. A total of 727 common genes were differentially expressed (404 was upregulated; 323 was downregulated) for both AAAs and IAs. The GO and pathway analyses showed that the common dysregulated genes were mainly enriched in vascular smooth muscle contraction, muscle contraction, immune response, defense response, cell activation, IL-6 signaling and chemokine signaling pathways, etc. The further protein-protein analysis identified 35 hub nodes, including TNF, IL6, MAPK13, and CCL5. These hub node genes were enriched in inflammatory response, positive regulation of IL-6 production, chemokine signaling pathway, and T/B cell receptor signaling pathway. Our study will gain new insight into the molecular mechanisms for the pathogenesis of both types of aneurysms and provide new therapeutic targets for the patients harboring AAAs and IAs.
Cloud-scale genomic signals processing classification analysis for gene expression microarray data.
Harvey, Benjamin; Soo-Yeon Ji
2014-01-01
As microarray data available to scientists continues to increase in size and complexity, it has become overwhelmingly important to find multiple ways to bring inference though analysis of DNA/mRNA sequence data that is useful to scientists. Though there have been many attempts to elucidate the issue of bringing forth biological inference by means of wavelet preprocessing and classification, there has not been a research effort that focuses on a cloud-scale classification analysis of microarray data using Wavelet thresholding in a Cloud environment to identify significantly expressed features. This paper proposes a novel methodology that uses Wavelet based Denoising to initialize a threshold for determination of significantly expressed genes for classification. Additionally, this research was implemented and encompassed within cloud-based distributed processing environment. The utilization of Cloud computing and Wavelet thresholding was used for the classification 14 tumor classes from the Global Cancer Map (GCM). The results proved to be more accurate than using a predefined p-value for differential expression classification. This novel methodology analyzed Wavelet based threshold features of gene expression in a Cloud environment, furthermore classifying the expression of samples by analyzing gene patterns, which inform us of biological processes. Moreover, enabling researchers to face the present and forthcoming challenges that may arise in the analysis of data in functional genomics of large microarray datasets.
Wang, Hong; Bi, Yongyi; Tao, Ning; Wang, Chunhong
2005-08-01
To detect the differential expression of cell signal transduction genes associated with benzene poisoning, and to explore the pathogenic mechanisms of blood system damage induced by benzene. Peripheral white blood cell gene expression profile of 7 benzene poisoning patients, including one aplastic anemia, was determined by cDNA microarray. Seven chips from normal workers were served as controls. Cluster analysis of gene expression profile was performed. Among the 4265 target genes, 176 genes associated with cell signal transduction were differentially expressed. 35 up-regulated genes including PTPRC, STAT4, IFITM1 etc were found in at least 6 pieces of microarray; 45 down-regulated genes including ARHB, PPP3CB, CDC37 etc were found in at least 5 pieces of microarray. cDNA microarray technology is an effective technique for screening the differentially expressed genes of cell signal transduction. Disorder in cell signal transduction may play certain role in the pathogenic mechanism of benzene poisoning.
A study of metaheuristic algorithms for high dimensional feature selection on microarray data
NASA Astrophysics Data System (ADS)
Dankolo, Muhammad Nasiru; Radzi, Nor Haizan Mohamed; Sallehuddin, Roselina; Mustaffa, Noorfa Haszlinna
2017-11-01
Microarray systems enable experts to examine gene profile at molecular level using machine learning algorithms. It increases the potentials of classification and diagnosis of many diseases at gene expression level. Though, numerous difficulties may affect the efficiency of machine learning algorithms which includes vast number of genes features comprised in the original data. Many of these features may be unrelated to the intended analysis. Therefore, feature selection is necessary to be performed in the data pre-processing. Many feature selection algorithms are developed and applied on microarray which including the metaheuristic optimization algorithms. This paper discusses the application of the metaheuristics algorithms for feature selection in microarray dataset. This study reveals that, the algorithms have yield an interesting result with limited resources thereby saving computational expenses of machine learning algorithms.
USDA-ARS?s Scientific Manuscript database
Puccinia striiformis f. sp. tritici (Pst) causes stripe rust, one of the most important diseases of wheat worldwide. To identify Pst genes involved in infection and sporulation, a custom oligonucleotide Genechip was made using sequences of 442 genes selected from Pst cDNA libraries. Microarray analy...
Alexiev, Borislav A; Zou, Ying S
2014-12-01
Chromosomal microarray analysis using novel Molecular Inversion Probe (MIP) technology demonstrated 2,570 kb copy neutral LOH of 10q11.22 in two clear cell papillary renal cell carcinomas. In addition, one of the tumors had a big 29,784 kb deletion of 13q11-q14.2. There were two variants of unknown significance, a 2,509 kb gain of Xp22.33 and a 257 kb homozygous deletion of 8p11.22. The somatic mutation panel containing 74 mutations in nine genes did not reveal any mutations. Besides identification of submicroscopic duplications or deletions, SNP microarrays can reveal abnormal allelic imbalances including LOH and copy neutral LOH, which cannot be recognized by chromosome, FISH, and non-SNP microarray arrays. To the best of our knowledge, this is the first study demonstrating copy neutral LOH of 10q11.22 in clear cell papillary renal cell carcinomas using the new MIP SNP OncoScan FFPE Assay Kit on formalin-fixed paraffin-embedded tumor samples. Copyright © 2014 Elsevier GmbH. All rights reserved.
Sugii, Yuh; Kasai, Tomonari; Ikeda, Masashi; Vaidyanath, Arun; Kumon, Kazuki; Mizutani, Akifumi; Seno, Akimasa; Tokutaka, Heizo; Kudoh, Takayuki; Seno, Masaharu
2016-01-01
To identify cell-specific markers, we designed a DNA microarray platform with oligonucleotide probes for human membrane-anchored proteins. Human glioma cell lines were analyzed using microarray and compared with normal and fetal brain tissues. For the microarray analysis, we employed a spherical self-organizing map, which is a clustering method suitable for the conversion of multidimensional data into two-dimensional data and displays the relationship on a spherical surface. Based on the gene expression profile, the cell surface characteristics were successfully mirrored onto the spherical surface, thereby distinguishing normal brain tissue from the disease model based on the strength of gene expression. The clustered glioma-specific genes were further analyzed by polymerase chain reaction procedure and immunocytochemical staining of glioma cells. Our platform and the following procedure were successfully demonstrated to categorize the genes coding for cell surface proteins that are specific to glioma cells. Our assessment demonstrates that a spherical self-organizing map is a valuable tool for distinguishing cell surface markers and can be employed in marker discovery studies for the treatment of cancer.
SNPhylo: a pipeline to construct a phylogenetic tree from huge SNP data.
Lee, Tae-Ho; Guo, Hui; Wang, Xiyin; Kim, Changsoo; Paterson, Andrew H
2014-02-26
Phylogenetic trees are widely used for genetic and evolutionary studies in various organisms. Advanced sequencing technology has dramatically enriched data available for constructing phylogenetic trees based on single nucleotide polymorphisms (SNPs). However, massive SNP data makes it difficult to perform reliable analysis, and there has been no ready-to-use pipeline to generate phylogenetic trees from these data. We developed a new pipeline, SNPhylo, to construct phylogenetic trees based on large SNP datasets. The pipeline may enable users to construct a phylogenetic tree from three representative SNP data file formats. In addition, in order to increase reliability of a tree, the pipeline has steps such as removing low quality data and considering linkage disequilibrium. A maximum likelihood method for the inference of phylogeny is also adopted in generation of a tree in our pipeline. Using SNPhylo, users can easily produce a reliable phylogenetic tree from a large SNP data file. Thus, this pipeline can help a researcher focus more on interpretation of the results of analysis of voluminous data sets, rather than manipulations necessary to accomplish the analysis.
Feng, Yinling; Wang, Xuefeng
2017-03-01
In order to investigate commonly disturbed genes and pathways in various brain regions of patients with Parkinson's disease (PD), microarray datasets from previous studies were collected and systematically analyzed. Different normalization methods were applied to microarray datasets from different platforms. A strategy combining gene co‑expression networks and clinical information was adopted, using weighted gene co‑expression network analysis (WGCNA) to screen for commonly disturbed genes in different brain regions of patients with PD. Functional enrichment analysis of commonly disturbed genes was performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). Co‑pathway relationships were identified with Pearson's correlation coefficient tests and a hypergeometric distribution‑based test. Common genes in pathway pairs were selected out and regarded as risk genes. A total of 17 microarray datasets from 7 platforms were retained for further analysis. Five gene coexpression modules were identified, containing 9,745, 736, 233, 101 and 93 genes, respectively. One module was significantly correlated with PD samples and thus the 736 genes it contained were considered to be candidate PD‑associated genes. Functional enrichment analysis demonstrated that these genes were implicated in oxidative phosphorylation and PD. A total of 44 pathway pairs and 52 risk genes were revealed, and a risk gene pathway relationship network was constructed. Eight modules were identified and were revealed to be associated with PD, cancers and metabolism. A number of disturbed pathways and risk genes were unveiled in PD, and these findings may help advance understanding of PD pathogenesis.
Gene set analysis approaches for RNA-seq data: performance evaluation and application guideline
Rahmatallah, Yasir; Emmert-Streib, Frank
2016-01-01
Transcriptome sequencing (RNA-seq) is gradually replacing microarrays for high-throughput studies of gene expression. The main challenge of analyzing microarray data is not in finding differentially expressed genes, but in gaining insights into the biological processes underlying phenotypic differences. To interpret experimental results from microarrays, gene set analysis (GSA) has become the method of choice, in particular because it incorporates pre-existing biological knowledge (in a form of functionally related gene sets) into the analysis. Here we provide a brief review of several statistically different GSA approaches (competitive and self-contained) that can be adapted from microarrays practice as well as those specifically designed for RNA-seq. We evaluate their performance (in terms of Type I error rate, power, robustness to the sample size and heterogeneity, as well as the sensitivity to different types of selection biases) on simulated and real RNA-seq data. Not surprisingly, the performance of various GSA approaches depends only on the statistical hypothesis they test and does not depend on whether the test was developed for microarrays or RNA-seq data. Interestingly, we found that competitive methods have lower power as well as robustness to the samples heterogeneity than self-contained methods, leading to poor results reproducibility. We also found that the power of unsupervised competitive methods depends on the balance between up- and down-regulated genes in tested gene sets. These properties of competitive methods have been overlooked before. Our evaluation provides a concise guideline for selecting GSA approaches, best performing under particular experimental settings in the context of RNA-seq. PMID:26342128
Comparison of RNA-seq and microarray-based models for clinical endpoint prediction.
Zhang, Wenqian; Yu, Ying; Hertwig, Falk; Thierry-Mieg, Jean; Zhang, Wenwei; Thierry-Mieg, Danielle; Wang, Jian; Furlanello, Cesare; Devanarayan, Viswanath; Cheng, Jie; Deng, Youping; Hero, Barbara; Hong, Huixiao; Jia, Meiwen; Li, Li; Lin, Simon M; Nikolsky, Yuri; Oberthuer, André; Qing, Tao; Su, Zhenqiang; Volland, Ruth; Wang, Charles; Wang, May D; Ai, Junmei; Albanese, Davide; Asgharzadeh, Shahab; Avigad, Smadar; Bao, Wenjun; Bessarabova, Marina; Brilliant, Murray H; Brors, Benedikt; Chierici, Marco; Chu, Tzu-Ming; Zhang, Jibin; Grundy, Richard G; He, Min Max; Hebbring, Scott; Kaufman, Howard L; Lababidi, Samir; Lancashire, Lee J; Li, Yan; Lu, Xin X; Luo, Heng; Ma, Xiwen; Ning, Baitang; Noguera, Rosa; Peifer, Martin; Phan, John H; Roels, Frederik; Rosswog, Carolina; Shao, Susan; Shen, Jie; Theissen, Jessica; Tonini, Gian Paolo; Vandesompele, Jo; Wu, Po-Yen; Xiao, Wenzhong; Xu, Joshua; Xu, Weihong; Xuan, Jiekun; Yang, Yong; Ye, Zhan; Dong, Zirui; Zhang, Ke K; Yin, Ye; Zhao, Chen; Zheng, Yuanting; Wolfinger, Russell D; Shi, Tieliu; Malkas, Linda H; Berthold, Frank; Wang, Jun; Tong, Weida; Shi, Leming; Peng, Zhiyu; Fischer, Matthias
2015-06-25
Gene expression profiling is being widely applied in cancer research to identify biomarkers for clinical endpoint prediction. Since RNA-seq provides a powerful tool for transcriptome-based applications beyond the limitations of microarrays, we sought to systematically evaluate the performance of RNA-seq-based and microarray-based classifiers in this MAQC-III/SEQC study for clinical endpoint prediction using neuroblastoma as a model. We generate gene expression profiles from 498 primary neuroblastomas using both RNA-seq and 44 k microarrays. Characterization of the neuroblastoma transcriptome by RNA-seq reveals that more than 48,000 genes and 200,000 transcripts are being expressed in this malignancy. We also find that RNA-seq provides much more detailed information on specific transcript expression patterns in clinico-genetic neuroblastoma subgroups than microarrays. To systematically compare the power of RNA-seq and microarray-based models in predicting clinical endpoints, we divide the cohort randomly into training and validation sets and develop 360 predictive models on six clinical endpoints of varying predictability. Evaluation of factors potentially affecting model performances reveals that prediction accuracies are most strongly influenced by the nature of the clinical endpoint, whereas technological platforms (RNA-seq vs. microarrays), RNA-seq data analysis pipelines, and feature levels (gene vs. transcript vs. exon-junction level) do not significantly affect performances of the models. We demonstrate that RNA-seq outperforms microarrays in determining the transcriptomic characteristics of cancer, while RNA-seq and microarray-based models perform similarly in clinical endpoint prediction. Our findings may be valuable to guide future studies on the development of gene expression-based predictive models and their implementation in clinical practice.
2009-01-01
Background Large discrepancies in signature composition and outcome concordance have been observed between different microarray breast cancer expression profiling studies. This is often ascribed to differences in array platform as well as biological variability. We conjecture that other reasons for the observed discrepancies are the measurement error associated with each feature and the choice of preprocessing method. Microarray data are known to be subject to technical variation and the confidence intervals around individual point estimates of expression levels can be wide. Furthermore, the estimated expression values also vary depending on the selected preprocessing scheme. In microarray breast cancer classification studies, however, these two forms of feature variability are almost always ignored and hence their exact role is unclear. Results We have performed a comprehensive sensitivity analysis of microarray breast cancer classification under the two types of feature variability mentioned above. We used data from six state of the art preprocessing methods, using a compendium consisting of eight diferent datasets, involving 1131 hybridizations, containing data from both one and two-color array technology. For a wide range of classifiers, we performed a joint study on performance, concordance and stability. In the stability analysis we explicitly tested classifiers for their noise tolerance by using perturbed expression profiles that are based on uncertainty information directly related to the preprocessing methods. Our results indicate that signature composition is strongly influenced by feature variability, even if the array platform and the stratification of patient samples are identical. In addition, we show that there is often a high level of discordance between individual class assignments for signatures constructed on data coming from different preprocessing schemes, even if the actual signature composition is identical. Conclusion Feature variability can have a strong impact on breast cancer signature composition, as well as the classification of individual patient samples. We therefore strongly recommend that feature variability is considered in analyzing data from microarray breast cancer expression profiling experiments. PMID:19941644
Ávila-Fernández, Almudena; Cantalapiedra, Diego; Aller, Elena; Vallespín, Elena; Aguirre-Lambán, Jana; Blanco-Kelly, Fiona; Corton, M; Riveiro-Álvarez, Rosa; Allikmets, Rando; Trujillo-Tiebas, María José; Millán, José M; Cremers, Frans P M; Ayuso, Carmen
2010-12-03
Retinitis pigmentosa (RP) is a genetically heterogeneous disorder characterized by progressive loss of vision. The aim of this study was to identify the causative mutations in 272 Spanish families using a genotyping microarray. 272 unrelated Spanish families, 107 with autosomal recessive RP (arRP) and 165 with sporadic RP (sRP), were studied using the APEX genotyping microarray. The families were also classified by clinical criteria: 86 juveniles and 186 typical RP families. Haplotype and sequence analysis were performed to identify the second mutated allele. At least one-gene variant was found in 14% and 16% of the juvenile and typical RP groups respectively. Further study identified four new mutations, providing both causative changes in 11% of the families. Retinol Dehydrogenase 12 (RDH12) was the most frequently mutated gene in the juvenile RP group, and Usher Syndrome 2A (USH2A) and Ceramide Kinase-Like (CERKL) were the most frequently mutated genes in the typical RP group. The only variant found in CERKL was p.Arg257Stop, the most frequent mutation. The genotyping microarray combined with segregation and sequence analysis allowed us to identify the causative mutations in 11% of the families. Due to the low number of characterized families, this approach should be used in tandem with other techniques.
Lovell, Peter V; Huizinga, Nicole A; Getachew, Abel; Mees, Brianna; Friedrich, Samantha R; Wirthlin, Morgan; Mello, Claudio V
2018-05-18
Zebra finches are a major model organism for investigating mechanisms of vocal learning, a trait that enables spoken language in humans. The development of cDNA collections with expressed sequence tags (ESTs) and microarrays has allowed for extensive molecular characterizations of circuitry underlying vocal learning and production. However, poor database curation can lead to errors in transcriptome and bioinformatics analyses, limiting the impact of these resources. Here we used genomic alignments and synteny analysis for orthology verification to curate and reannotate ~ 35% of the oligonucleotides and corresponding ESTs/cDNAs that make-up Agilent microarrays for gene expression analysis in finches. We found that: (1) 5475 out of 43,084 oligos (a) failed to align to the zebra finch genome, (b) aligned to multiple loci, or (c) aligned to Chr_un only, and thus need to be flagged until a better genome assembly is available, or (d) reflect cloning artifacts; (2) Out of 9635 valid oligos examined further, 3120 were incorrectly named, including 1533 with no known orthologs; and (3) 2635 oligos required name update. The resulting curated dataset provides a reference for correcting gene identification errors in previous finch microarrays studies, and avoiding such errors in future studies.
A Model-Based Joint Identification of Differentially Expressed Genes and Phenotype-Associated Genes
Seo, Minseok; Shin, Su-kyung; Kwon, Eun-Young; Kim, Sung-Eun; Bae, Yun-Jung; Lee, Seungyeoun; Sung, Mi-Kyung; Choi, Myung-Sook; Park, Taesung
2016-01-01
Over the last decade, many analytical methods and tools have been developed for microarray data. The detection of differentially expressed genes (DEGs) among different treatment groups is often a primary purpose of microarray data analysis. In addition, association studies investigating the relationship between genes and a phenotype of interest such as survival time are also popular in microarray data analysis. Phenotype association analysis provides a list of phenotype-associated genes (PAGs). However, it is sometimes necessary to identify genes that are both DEGs and PAGs. We consider the joint identification of DEGs and PAGs in microarray data analyses. The first approach we used was a naïve approach that detects DEGs and PAGs separately and then identifies the genes in an intersection of the list of PAGs and DEGs. The second approach we considered was a hierarchical approach that detects DEGs first and then chooses PAGs from among the DEGs or vice versa. In this study, we propose a new model-based approach for the joint identification of DEGs and PAGs. Unlike the previous two-step approaches, the proposed method identifies genes simultaneously that are DEGs and PAGs. This method uses standard regression models but adopts different null hypothesis from ordinary regression models, which allows us to perform joint identification in one-step. The proposed model-based methods were evaluated using experimental data and simulation studies. The proposed methods were used to analyze a microarray experiment in which the main interest lies in detecting genes that are both DEGs and PAGs, where DEGs are identified between two diet groups and PAGs are associated with four phenotypes reflecting the expression of leptin, adiponectin, insulin-like growth factor 1, and insulin. Model-based approaches provided a larger number of genes, which are both DEGs and PAGs, than other methods. Simulation studies showed that they have more power than other methods. Through analysis of data from experimental microarrays and simulation studies, the proposed model-based approach was shown to provide a more powerful result than the naïve approach and the hierarchical approach. Since our approach is model-based, it is very flexible and can easily handle different types of covariates. PMID:26964035
Liu, Xin; Li, Rong; Dai, Yaqing; Chen, Xuesen; Wang, Xiaoyun
2018-04-01
The B-box proteins (BBXs) are a family of zinc finger proteins containing one/two B-box domain(s). Compared with intensive studies of animal BBXs, investigations of the plant BBX family are limited, though some specific plant BBXs have been demonstrated to act as transcription factors in the regulation of flowering and photomorphogenesis. In this study, using a global search of the apple (Malus domestica Borkh.) genome, a total of 64 members of BBX (MdBBX) were identified. All the MdBBXs were divided into five groups based on the phylogenetic relationship, numbers of B-boxes contained and whether there was with an additional CCT domain. According to the characteristics of organ-specific expression, MdBBXs were divided into three groups based on the microarray information. An analysis of cis-acting elements showed that elements related to the stress response were prevalent in the promoter sequences of most MdBBXs. Twelve MdBBX members from different groups were randomly selected and exposed to abiotic stresses. Their expressions were up-regulated to some extent in the roots and leaves. Six among 12 MdBBXs were sensitive to osmotic pressure, salt, cold stress and exogenous abscisic acid treatment, with their expressions enhanced more than 20-fold. Our results suggested that MdBBXs may take part in response to abiotic stress.
Kuramae, Eiko; Gamper, Hannes; van Veen, Johannes; Kowalchuk, George
2011-08-01
Although soil pH has been shown to be an important factor driving microbial communities, relatively little is known about the other potentially important factors that shape soil-borne microbial community structure. This study examined plant and microbial communities across a series of neutral pH fields (pH=7.0-7.5) representing a chronosequence of secondary succession after former arable fields were taken out of production. These fields ranged from 17 to >66 years since the time of abandonment, and an adjacent arable field was included as a reference. Hierarchical clustering analysis, nonmetric multidimensional scaling and analysis of similarity of 52 different plant species showed that the plant community composition was significantly different in the different chronosequences, and that plant species richness and diversity increased with time since abandonment. The microbial community structure, as analyzed by phylogenetic microarrays (PhyloChips), was significantly different in arable field and the early succession stage, but no distinct microbial communities were observed for the intermediate and the late succession stages. The most determinant factors in shaping the soil-borne microbial communities were phosphorous and NH(4)(+). Plant community composition and diversity did not have a significant effect on the belowground microbial community structure or diversity. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Gao, Hui; Zhao, Chunyan
2018-01-01
Chromatin immunoprecipitation (ChIP) has become the most effective and widely used tool to study the interactions between specific proteins or modified forms of proteins and a genomic DNA region. Combined with genome-wide profiling technologies, such as microarray hybridization (ChIP-on-chip) or massively parallel sequencing (ChIP-seq), ChIP could provide a genome-wide mapping of in vivo protein-DNA interactions in various organisms. Here, we describe a protocol of ChIP-on-chip that uses tiling microarray to obtain a genome-wide profiling of ChIPed DNA.
Harvey, Benjamin Simeon; Ji, Soo-Yeon
2017-01-01
As microarray data available to scientists continues to increase in size and complexity, it has become overwhelmingly important to find multiple ways to bring forth oncological inference to the bioinformatics community through the analysis of large-scale cancer genomic (LSCG) DNA and mRNA microarray data that is useful to scientists. Though there have been many attempts to elucidate the issue of bringing forth biological interpretation by means of wavelet preprocessing and classification, there has not been a research effort that focuses on a cloud-scale distributed parallel (CSDP) separable 1-D wavelet decomposition technique for denoising through differential expression thresholding and classification of LSCG microarray data. This research presents a novel methodology that utilizes a CSDP separable 1-D method for wavelet-based transformation in order to initialize a threshold which will retain significantly expressed genes through the denoising process for robust classification of cancer patients. Additionally, the overall study was implemented and encompassed within CSDP environment. The utilization of cloud computing and wavelet-based thresholding for denoising was used for the classification of samples within the Global Cancer Map, Cancer Cell Line Encyclopedia, and The Cancer Genome Atlas. The results proved that separable 1-D parallel distributed wavelet denoising in the cloud and differential expression thresholding increased the computational performance and enabled the generation of higher quality LSCG microarray datasets, which led to more accurate classification results.
A hybrid approach to device integration on a genetic analysis platform
NASA Astrophysics Data System (ADS)
Brennan, Des; Jary, Dorothee; Kurg, Ants; Berik, Evgeny; Justice, John; Aherne, Margaret; Macek, Milan; Galvin, Paul
2012-10-01
Point-of-care (POC) systems require significant component integration to implement biochemical protocols associated with molecular diagnostic assays. Hybrid platforms where discrete components are combined in a single platform are a suitable approach to integration, where combining multiple device fabrication steps on a single substrate is not possible due to incompatible or costly fabrication steps. We integrate three devices each with a specific system functionality: (i) a silicon electro-wetting-on-dielectric (EWOD) device to move and mix sample and reagent droplets in an oil phase, (ii) a polymer microfluidic chip containing channels and reservoirs and (iii) an aqueous phase glass microarray for fluorescence microarray hybridization detection. The EWOD device offers the possibility of fully integrating on-chip sample preparation using nanolitre sample and reagent volumes. A key challenge is sample transfer from the oil phase EWOD device to the aqueous phase microarray for hybridization detection. The EWOD device, waveguide performance and functionality are maintained during the integration process. An on-chip biochemical protocol for arrayed primer extension (APEX) was implemented for single nucleotide polymorphism (SNiP) analysis. The prepared sample is aspirated from the EWOD oil phase to the aqueous phase microarray for hybridization. A bench-top instrumentation system was also developed around the integrated platform to drive the EWOD electrodes, implement APEX sample heating and image the microarray after hybridization.
Shavit Grievink, Liat; Penny, David; Holland, Barbara R.
2013-01-01
Phylogenetic studies based on molecular sequence alignments are expected to become more accurate as the number of sites in the alignments increases. With the advent of genomic-scale data, where alignments have very large numbers of sites, bootstrap values close to 100% and posterior probabilities close to 1 are the norm, suggesting that the number of sites is now seldom a limiting factor on phylogenetic accuracy. This provokes the question, should we be fussy about the sites we choose to include in a genomic-scale phylogenetic analysis? If some sites contain missing data, ambiguous character states, or gaps, then why not just throw them away before conducting the phylogenetic analysis? Indeed, this is exactly the approach taken in many phylogenetic studies. Here, we present an example where the decision on how to treat sites with missing data is of equal importance to decisions on taxon sampling and model choice, and we introduce a graphical method for illustrating this. PMID:23471508
Humic Acid-Oxidizing, Nitrate-Reducing Bacteria in Agricultural Soils
Van Trump, J. Ian; Wrighton, Kelly C.; Thrash, J. Cameron; Weber, Karrie A.; Andersen, Gary L.; Coates, John D.
2011-01-01
ABSTRACT This study demonstrates the prevalence, phylogenetic diversity, and physiology of nitrate-reducing microorganisms capable of utilizing reduced humic acids (HA) as electron donors in agricultural soils. Most probable number (MPN) enumeration of agricultural soils revealed large populations (104 to 106 cells g−1 soil) of microorganisms capable of reducing nitrate while oxidizing the reduced HA analog 2,6-anthrahydroquinone disulfonate (AH2DS) to its corresponding quinone. Nitrate-dependent HA-oxidizing organisms isolated from agricultural soils were phylogenetically diverse and included members of the Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Advective up-flow columns inoculated with corn plot soil and amended with reduced HA and nitrate supported both HA oxidation and enhanced nitrate reduction relative to no-donor or oxidized HA controls. The additional electron donating capacity of reduced HA could reasonably be attributed to the oxidation of reduced functional groups. Subsequent 16S rRNA gene-based high-density oligonucleotide microarray (PhyloChip) indicated that reduced HA columns supported the development of a bacterial community enriched with members of the Acidobacteria, Firmicutes, and Betaproteobacteria relative to the no-donor control and initial inoculum. This study identifies a previously unrecognized role for HA in stimulating denitrification processes in saturated soil systems. Furthermore, this study indicates that reduced humic acids impact soil geochemistry and the indigenous bacterial community composition. PMID:21750120
Howat, William J; Blows, Fiona M; Provenzano, Elena; Brook, Mark N; Morris, Lorna; Gazinska, Patrycja; Johnson, Nicola; McDuffus, Leigh‐Anne; Miller, Jodi; Sawyer, Elinor J; Pinder, Sarah; van Deurzen, Carolien H M; Jones, Louise; Sironen, Reijo; Visscher, Daniel; Caldas, Carlos; Daley, Frances; Coulson, Penny; Broeks, Annegien; Sanders, Joyce; Wesseling, Jelle; Nevanlinna, Heli; Fagerholm, Rainer; Blomqvist, Carl; Heikkilä, Päivi; Ali, H Raza; Dawson, Sarah‐Jane; Figueroa, Jonine; Lissowska, Jolanta; Brinton, Louise; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli‐Matti; Cox, Angela; Brock, Ian W; Cross, Simon S; Reed, Malcolm W; Couch, Fergus J; Olson, Janet E; Devillee, Peter; Mesker, Wilma E; Seyaneve, Caroline M; Hollestelle, Antoinette; Benitez, Javier; Perez, Jose Ignacio Arias; Menéndez, Primitiva; Bolla, Manjeet K; Easton, Douglas F; Schmidt, Marjanka K; Pharoah, Paul D; Sherman, Mark E
2014-01-01
Abstract Breast cancer risk factors and clinical outcomes vary by tumour marker expression. However, individual studies often lack the power required to assess these relationships, and large‐scale analyses are limited by the need for high throughput, standardized scoring methods. To address these limitations, we assessed whether automated image analysis of immunohistochemically stained tissue microarrays can permit rapid, standardized scoring of tumour markers from multiple studies. Tissue microarray sections prepared in nine studies containing 20 263 cores from 8267 breast cancers stained for two nuclear (oestrogen receptor, progesterone receptor), two membranous (human epidermal growth factor receptor 2 and epidermal growth factor receptor) and one cytoplasmic (cytokeratin 5/6) marker were scanned as digital images. Automated algorithms were used to score markers in tumour cells using the Ariol system. We compared automated scores against visual reads, and their associations with breast cancer survival. Approximately 65–70% of tissue microarray cores were satisfactory for scoring. Among satisfactory cores, agreement between dichotomous automated and visual scores was highest for oestrogen receptor (Kappa = 0.76), followed by human epidermal growth factor receptor 2 (Kappa = 0.69) and progesterone receptor (Kappa = 0.67). Automated quantitative scores for these markers were associated with hazard ratios for breast cancer mortality in a dose‐response manner. Considering visual scores of epidermal growth factor receptor or cytokeratin 5/6 as the reference, automated scoring achieved excellent negative predictive value (96–98%), but yielded many false positives (positive predictive value = 30–32%). For all markers, we observed substantial heterogeneity in automated scoring performance across tissue microarrays. Automated analysis is a potentially useful tool for large‐scale, quantitative scoring of immunohistochemically stained tissue microarrays available in consortia. However, continued optimization, rigorous marker‐specific quality control measures and standardization of tissue microarray designs, staining and scoring protocols is needed to enhance results. PMID:27499890
USDA-ARS?s Scientific Manuscript database
A computer algorithm was created to inspect scanned images from DNA microarray slides developed to rapidly detect and genotype E. Coli O157 virulent strains. The algorithm computes centroid locations for signal and background pixels in RGB space and defines a plane perpendicular to the line connect...
Microarray as a First Genetic Test in Global Developmental Delay: A Cost-Effectiveness Analysis
ERIC Educational Resources Information Center
Trakadis, Yannis; Shevell, Michael
2011-01-01
Aim: Microarray technology has a significantly higher clinical yield than karyotyping in individuals with global developmental delay (GDD). Despite this, it has not yet been routinely implemented as a screening test owing to the perception that this approach is more expensive. We aimed to evaluate the effect that replacing karyotype with…
Assessing probe-specific dye and slide biases in two-color microarray data
USDA-ARS?s Scientific Manuscript database
A primary reason for using two-color microarrays is that the use of two samples labeled with different dyes on the same slide and that bind to probes on the same spot is supposed to adjust for many factors that introduce noise and errors into the analysis. Most users assume that any differences bet...
Reif, David M.; Israel, Mark A.; Moore, Jason H.
2007-01-01
The biological interpretation of gene expression microarray results is a daunting challenge. For complex diseases such as cancer, wherein the body of published research is extensive, the incorporation of expert knowledge provides a useful analytical framework. We have previously developed the Exploratory Visual Analysis (EVA) software for exploring data analysis results in the context of annotation information about each gene, as well as biologically relevant groups of genes. We present EVA as a flexible combination of statistics and biological annotation that provides a straightforward visual interface for the interpretation of microarray analyses of gene expression in the most commonly occuring class of brain tumors, glioma. We demonstrate the utility of EVA for the biological interpretation of statistical results by analyzing publicly available gene expression profiles of two important glial tumors. The results of a statistical comparison between 21 malignant, high-grade glioblastoma multiforme (GBM) tumors and 19 indolent, low-grade pilocytic astrocytomas were analyzed using EVA. By using EVA to examine the results of a relatively simple statistical analysis, we were able to identify tumor class-specific gene expression patterns having both statistical and biological significance. Our interactive analysis highlighted the potential importance of genes involved in cell cycle progression, proliferation, signaling, adhesion, migration, motility, and structure, as well as candidate gene loci on a region of Chromosome 7 that has been implicated in glioma. Because EVA does not require statistical or computational expertise and has the flexibility to accommodate any type of statistical analysis, we anticipate EVA will prove a useful addition to the repertoire of computational methods used for microarray data analysis. EVA is available at no charge to academic users and can be found at http://www.epistasis.org. PMID:19390666
Autoregressive-model-based missing value estimation for DNA microarray time series data.
Choong, Miew Keen; Charbit, Maurice; Yan, Hong
2009-01-01
Missing value estimation is important in DNA microarray data analysis. A number of algorithms have been developed to solve this problem, but they have several limitations. Most existing algorithms are not able to deal with the situation where a particular time point (column) of the data is missing entirely. In this paper, we present an autoregressive-model-based missing value estimation method (ARLSimpute) that takes into account the dynamic property of microarray temporal data and the local similarity structures in the data. ARLSimpute is especially effective for the situation where a particular time point contains many missing values or where the entire time point is missing. Experiment results suggest that our proposed algorithm is an accurate missing value estimator in comparison with other imputation methods on simulated as well as real microarray time series datasets.
Drost, Derek R; Novaes, Evandro; Boaventura-Novaes, Carolina; Benedict, Catherine I; Brown, Ryan S; Yin, Tongming; Tuskan, Gerald A; Kirst, Matias
2009-06-01
Microarrays have demonstrated significant power for genome-wide analyses of gene expression, and recently have also revolutionized the genetic analysis of segregating populations by genotyping thousands of loci in a single assay. Although microarray-based genotyping approaches have been successfully applied in yeast and several inbred plant species, their power has not been proven in an outcrossing species with extensive genetic diversity. Here we have developed methods for high-throughput microarray-based genotyping in such species using a pseudo-backcross progeny of 154 individuals of Populus trichocarpa and P. deltoides analyzed with long-oligonucleotide in situ-synthesized microarray probes. Our analysis resulted in high-confidence genotypes for 719 single-feature polymorphism (SFP) and 1014 gene expression marker (GEM) candidates. Using these genotypes and an established microsatellite (SSR) framework map, we produced a high-density genetic map comprising over 600 SFPs, GEMs and SSRs. The abundance of gene-based markers allowed us to localize over 35 million base pairs of previously unplaced whole-genome shotgun (WGS) scaffold sequence to putative locations in the genome of P. trichocarpa. A high proportion of sampled scaffolds could be verified for their placement with independently mapped SSRs, demonstrating the previously un-utilized power that high-density genotyping can provide in the context of map-based WGS sequence reassembly. Our results provide a substantial contribution to the continued improvement of the Populus genome assembly, while demonstrating the feasibility of microarray-based genotyping in a highly heterozygous population. The strategies presented are applicable to genetic mapping efforts in all plant species with similarly high levels of genetic diversity.
Cruella: developing a scalable tissue microarray data management system.
Cowan, James D; Rimm, David L; Tuck, David P
2006-06-01
Compared with DNA microarray technology, relatively little information is available concerning the special requirements, design influences, and implementation strategies of data systems for tissue microarray technology. These issues include the requirement to accommodate new and different data elements for each new project as well as the need to interact with pre-existing models for clinical, biological, and specimen-related data. To design and implement a flexible, scalable tissue microarray data storage and management system that could accommodate information regarding different disease types and different clinical investigators, and different clinical investigation questions, all of which could potentially contribute unforeseen data types that require dynamic integration with existing data. The unpredictability of the data elements combined with the novelty of automated analysis algorithms and controlled vocabulary standards in this area require flexible designs and practical decisions. Our design includes a custom Java-based persistence layer to mediate and facilitate interaction with an object-relational database model and a novel database schema. User interaction is provided through a Java Servlet-based Web interface. Cruella has become an indispensable resource and is used by dozens of researchers every day. The system stores millions of experimental values covering more than 300 biological markers and more than 30 disease types. The experimental data are merged with clinical data that has been aggregated from multiple sources and is available to the researchers for management, analysis, and export. Cruella addresses many of the special considerations for managing tissue microarray experimental data and the associated clinical information. A metadata-driven approach provides a practical solution to many of the unique issues inherent in tissue microarray research, and allows relatively straightforward interoperability with and accommodation of new data models.
Evaluation of the skin irritation using a DNA microarray on a reconstructed human epidermal model.
Niwa, Makoto; Nagai, Kanji; Oike, Hideaki; Kobori, Masuko
2009-02-01
To avoid the need to use animals to test the skin irritancy potential of chemicals and cosmetics, it is important to establish an in vitro method based on the reconstructed human epidermal model. To evaluate skin irritancy efficiently and sensitively, we determined the gene expression induced by a topically-applied mild irritant sodium dodecyl sulfate (SDS) in a reconstructed human epidermal model LabCyte EPI-MODEL (LabCyte) using a DNA microarray carrying genes that were related to inflammation, immunity, stress and housekeeping. The expression and secretion of IL-1alpha in reconstructed human epidermal culture is known to be induced by irritation. We detected the induction of IL-1alpha expression and its secretion into the cell culture medium by treatment with 0.075% SDS for 18 h in LabCyte culture using DNA microarray, quantitative reverse-transcription polymerase chain reaction (RT-PCR) and ELISA. DNA microarray analysis indicated that the expression of 10 of the 205 genes carried on the DNA microarray was significantly induced in a LabCyte culture by 0.05% or 0.075% SDS irritation for 18 h. RT-PCR analysis confirmed that SDS treatment significantly induced the expressions of interleukin-1 receptor antagonist (IL-1RN), FOS-like antigen 1 (FOSL1), heat shock 70 kDa protein 1A (HSPA1) and myeloid differentiation primary response gene (88) (MYD88), as well as the known marker genes for irritation IL-1beta and IL-8 in a LabCyte culture. Our results showed that a DNA microarray is a useful tool for efficiently evaluating mild skin irritation using a reconstructed human epidermal model.
Booman, Marije; Borza, Tudor; Feng, Charles Y; Hori, Tiago S; Higgins, Brent; Culf, Adrian; Léger, Daniel; Chute, Ian C; Belkaid, Anissa; Rise, Marlies; Gamperl, A Kurt; Hubert, Sophie; Kimball, Jennifer; Ouellette, Rodney J; Johnson, Stewart C; Bowman, Sharen; Rise, Matthew L
2011-08-01
The collapse of Atlantic cod (Gadus morhua) wild populations strongly impacted the Atlantic cod fishery and led to the development of cod aquaculture. In order to improve aquaculture and broodstock quality, we need to gain knowledge of genes and pathways involved in Atlantic cod responses to pathogens and other stressors. The Atlantic Cod Genomics and Broodstock Development Project has generated over 150,000 expressed sequence tags from 42 cDNA libraries representing various tissues, developmental stages, and stimuli. We used this resource to develop an Atlantic cod oligonucleotide microarray containing 20,000 unique probes. Selection of sequences from the full range of cDNA libraries enables application of the microarray for a broad spectrum of Atlantic cod functional genomics studies. We included sequences that were highly abundant in suppression subtractive hybridization (SSH) libraries, which were enriched for transcripts responsive to pathogens or other stressors. These sequences represent genes that potentially play an important role in stress and/or immune responses, making the microarray particularly useful for studies of Atlantic cod gene expression responses to immune stimuli and other stressors. To demonstrate its value, we used the microarray to analyze the Atlantic cod spleen response to stimulation with formalin-killed, atypical Aeromonas salmonicida, resulting in a gene expression profile that indicates a strong innate immune response. These results were further validated by quantitative PCR analysis and comparison to results from previous analysis of an SSH library. This study shows that the Atlantic cod 20K oligonucleotide microarray is a valuable new tool for Atlantic cod functional genomics research.
REFGEN and TREENAMER: Automated Sequence Data Handling for Phylogenetic Analysis in the Genomic Era
Leonard, Guy; Stevens, Jamie R.; Richards, Thomas A.
2009-01-01
The phylogenetic analysis of nucleotide sequences and increasingly that of amino acid sequences is used to address a number of biological questions. Access to extensive datasets, including numerous genome projects, means that standard phylogenetic analyses can include many hundreds of sequences. Unfortunately, most phylogenetic analysis programs do not tolerate the sequence naming conventions of genome databases. Managing large numbers of sequences and standardizing sequence labels for use in phylogenetic analysis programs can be a time consuming and laborious task. Here we report the availability of an online resource for the management of gene sequences recovered from public access genome databases such as GenBank. These web utilities include the facility for renaming every sequence in a FASTA alignment file, with each sequence label derived from a user-defined combination of the species name and/or database accession number. This facility enables the user to keep track of the branching order of the sequences/taxa during multiple tree calculations and re-optimisations. Post phylogenetic analysis, these webpages can then be used to rename every label in the subsequent tree files (with a user-defined combination of species name and/or database accession number). Together these programs drastically reduce the time required for managing sequence alignments and labelling phylogenetic figures. Additional features of our platform include the automatic removal of identical accession numbers (recorded in the report file) and generation of species and accession number lists for use in supplementary materials or figure legends. PMID:19812722
Requeno, José Ignacio; Colom, José Manuel
2014-12-01
Model checking is a generic verification technique that allows the phylogeneticist to focus on models and specifications instead of on implementation issues. Phylogenetic trees are considered as transition systems over which we interrogate phylogenetic questions written as formulas of temporal logic. Nonetheless, standard logics become insufficient for certain practices of phylogenetic analysis since they do not allow the inclusion of explicit time and probabilities. The aim of this paper is to extend the application of model checking techniques beyond qualitative phylogenetic properties and adapt the existing logical extensions and tools to the field of phylogeny. The introduction of time and probabilities in phylogenetic specifications is motivated by the study of a real example: the analysis of the ratio of lactose intolerance in some populations and the date of appearance of this phenotype.
Requeno, José Ignacio; Colom, José Manuel
2014-10-23
Model checking is a generic verification technique that allows the phylogeneticist to focus on models and specifications instead of on implementation issues. Phylogenetic trees are considered as transition systems over which we interrogate phylogenetic questions written as formulas of temporal logic. Nonetheless, standard logics become insufficient for certain practices of phylogenetic analysis since they do not allow the inclusion of explicit time and probabilities. The aim of this paper is to extend the application of model checking techniques beyond qualitative phylogenetic properties and adapt the existing logical extensions and tools to the field of phylogeny. The introduction of time and probabilities in phylogenetic specifications is motivated by the study of a real example: the analysis of the ratio of lactose intolerance in some populations and the date of appearance of this phenotype.
Multi-membership gene regulation in pathway based microarray analysis
2011-01-01
Background Gene expression analysis has been intensively researched for more than a decade. Recently, there has been elevated interest in the integration of microarray data analysis with other types of biological knowledge in a holistic analytical approach. We propose a methodology that can be facilitated for pathway based microarray data analysis, based on the observation that a substantial proportion of genes present in biochemical pathway databases are members of a number of distinct pathways. Our methodology aims towards establishing the state of individual pathways, by identifying those truly affected by the experimental conditions based on the behaviour of such genes. For that purpose it considers all the pathways in which a gene participates and the general census of gene expression per pathway. Results We utilise hill climbing, simulated annealing and a genetic algorithm to analyse the consistency of the produced results, through the application of fuzzy adjusted rand indexes and hamming distance. All algorithms produce highly consistent genes to pathways allocations, revealing the contribution of genes to pathway functionality, in agreement with current pathway state visualisation techniques, with the simulated annealing search proving slightly superior in terms of efficiency. Conclusions We show that the expression values of genes, which are members of a number of biochemical pathways or modules, are the net effect of the contribution of each gene to these biochemical processes. We show that by manipulating the pathway and module contribution of such genes to follow underlying trends we can interpret microarray results centred on the behaviour of these genes. PMID:21939531
Multi-membership gene regulation in pathway based microarray analysis.
Pavlidis, Stelios P; Payne, Annette M; Swift, Stephen M
2011-09-22
Gene expression analysis has been intensively researched for more than a decade. Recently, there has been elevated interest in the integration of microarray data analysis with other types of biological knowledge in a holistic analytical approach. We propose a methodology that can be facilitated for pathway based microarray data analysis, based on the observation that a substantial proportion of genes present in biochemical pathway databases are members of a number of distinct pathways. Our methodology aims towards establishing the state of individual pathways, by identifying those truly affected by the experimental conditions based on the behaviour of such genes. For that purpose it considers all the pathways in which a gene participates and the general census of gene expression per pathway. We utilise hill climbing, simulated annealing and a genetic algorithm to analyse the consistency of the produced results, through the application of fuzzy adjusted rand indexes and hamming distance. All algorithms produce highly consistent genes to pathways allocations, revealing the contribution of genes to pathway functionality, in agreement with current pathway state visualisation techniques, with the simulated annealing search proving slightly superior in terms of efficiency. We show that the expression values of genes, which are members of a number of biochemical pathways or modules, are the net effect of the contribution of each gene to these biochemical processes. We show that by manipulating the pathway and module contribution of such genes to follow underlying trends we can interpret microarray results centred on the behaviour of these genes.
Motani, Ryosuke; Schmitz, Lars
2011-08-01
Phylogeny is deeply pertinent to evolutionary studies. Traits that perform a body function are expected to be strongly influenced by physical "requirements" of the function. We investigated if such traits exhibit phylogenetic signals, and, if so, how phylogenetic noises bias quantification of form-function relationships. A form-function system that is strongly influenced by physics, namely the relationship between eye morphology and visual optics in amniotes, was used. We quantified the correlation between form (i.e., eye morphology) and function (i.e., ocular optics) while varying the level of phylogenetic bias removal through adjusting Pagel's λ. Ocular soft-tissue dimensions exhibited the highest correlation with ocular optics when 1% of phylogenetic bias expected from Brownian motion was removed (i.e., λ= 0.01); the value for hard-tissue data were 8%. A small degree of phylogenetic bias therefore exists in morphology despite of the stringent functional constraints. We also devised a phylogenetically informed discriminant analysis and recorded the effects of phylogenetic bias on this method using the same data. Use of proper λ values during phylogenetic bias removal improved misidentification rates in resulting classifications when prior probabilities were assumed to be equal. Even a small degree of phylogenetic bias affected the classification resulting from phylogenetically informed discriminant analysis. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Klein, Hans-Ulrich; Ruckert, Christian; Kohlmann, Alexander; Bullinger, Lars; Thiede, Christian; Haferlach, Torsten; Dugas, Martin
2009-12-15
Multiple gene expression signatures derived from microarray experiments have been published in the field of leukemia research. A comparison of these signatures with results from new experiments is useful for verification as well as for interpretation of the results obtained. Currently, the percentage of overlapping genes is frequently used to compare published gene signatures against a signature derived from a new experiment. However, it has been shown that the percentage of overlapping genes is of limited use for comparing two experiments due to the variability of gene signatures caused by different array platforms or assay-specific influencing parameters. Here, we present a robust approach for a systematic and quantitative comparison of published gene expression signatures with an exemplary query dataset. A database storing 138 leukemia-related published gene signatures was designed. Each gene signature was manually annotated with terms according to a leukemia-specific taxonomy. Two analysis steps are implemented to compare a new microarray dataset with the results from previous experiments stored and curated in the database. First, the global test method is applied to assess gene signatures and to constitute a ranking among them. In a subsequent analysis step, the focus is shifted from single gene signatures to chromosomal aberrations or molecular mutations as modeled in the taxonomy. Potentially interesting disease characteristics are detected based on the ranking of gene signatures associated with these aberrations stored in the database. Two example analyses are presented. An implementation of the approach is freely available as web-based application. The presented approach helps researchers to systematically integrate the knowledge derived from numerous microarray experiments into the analysis of a new dataset. By means of example leukemia datasets we demonstrate that this approach detects related experiments as well as related molecular mutations and may help to interpret new microarray data.
Giancarlo, R; Scaturro, D; Utro, F
2015-02-01
The prediction of the number of clusters in a dataset, in particular microarrays, is a fundamental task in biological data analysis, usually performed via validation measures. Unfortunately, it has received very little attention and in fact there is a growing need for software tools/libraries dedicated to it. Here we present ValWorkBench, a software library consisting of eleven well known validation measures, together with novel heuristic approximations for some of them. The main objective of this paper is to provide the interested researcher with the full software documentation of an open source cluster validation platform having the main features of being easily extendible in a homogeneous way and of offering software components that can be readily re-used. Consequently, the focus of the presentation is on the architecture of the library, since it provides an essential map that can be used to access the full software documentation, which is available at the supplementary material website [1]. The mentioned main features of ValWorkBench are also discussed and exemplified, with emphasis on software abstraction design and re-usability. A comparison with existing cluster validation software libraries, mainly in terms of the mentioned features, is also offered. It suggests that ValWorkBench is a much needed contribution to the microarray software development/algorithm engineering community. For completeness, it is important to mention that previous accurate algorithmic experimental analysis of the relative merits of each of the implemented measures [19,23,25], carried out specifically on microarray data, gives useful insights on the effectiveness of ValWorkBench for cluster validation to researchers in the microarray community interested in its use for the mentioned task. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Nguyen, Doan H.; Toshida, Hiroshi; Schurr, Jill; Beuerman, Roger W.
2010-01-01
Previous studies showed that loss of muscarinic parasympathetic input to the lacrimal gland (LG) leads to a dramatic reduction in tear secretion and profound changes to LG structure. In this study, we used DNA microarrays to examine the regulation of the gene expression of the genes for secretory function and organization of the LG. Long-Evans rats anesthetized with a mixture of ketamine/xylazine (80:10 mg/kg) underwent unilateral sectioning of the greater superficial petrosal nerve, the input to the pterygopalatine ganglion. After 7 days, tear secretion was measured, the animals were killed, and structural changes in the LG were examined by light microscopy. Total RNA from control and experimental LGs (n = 5) was used for DNA microarray analysis employing the U34A GeneChip. Three statistical algorithms (detection, change call, and signal log ratio) were used to determine differential gene expression using the Microarray Suite (5.0) and Data Mining Tools (3.0). Tear secretion was significantly reduced and corneal ulcers developed in all experimental eyes. Light microscopy showed breakdown of the acinar structure of the LG. DNA microarray analysis showed downregulation of genes associated with the endoplasmic reticulum and Golgi, including genes involved in protein folding and processing. Conversely, transcripts for cytoskeleton and extracellular matrix components, inflammation, and apoptosis were upregulated. The number of significantly upregulated genes (116) was substantially greater than the number of downregulated genes (49). Removal of the main secretory input to the rat LG resulted in clinical symptoms associated with severe dry eye. Components of the secretory pathway were negatively affected, and the increase in cell proliferation and inflammation may lead to loss of organization in the parasympathectomized lacrimal gland. PMID:15084711
Vallée, Maud; Gravel, Catherine; Palin, Marie-France; Reghenas, Hélène; Stothard, Paul; Wishart, David S; Sirard, Marc-André
2005-07-01
The main objective of the present study was to identify novel oocyte-specific genes in three different species: bovine, mouse, and Xenopus laevis. To achieve this goal, two powerful technologies were combined: a polymerase chain reaction (PCR)-based cDNA subtraction, and cDNA microarrays. Three subtractive libraries consisting of 3456 clones were established and enriched for oocyte-specific transcripts. Sequencing analysis of the positive insert-containing clones resulted in the following classification: 53% of the clones corresponded to known cDNAs, 26% were classified as uncharacterized cDNAs, and a final 9% were classified as novel sequences. All these clones were used for cDNA microarray preparation. Results from these microarray analyses revealed that in addition to already known oocyte-specific genes, such as GDF9, BMP15, and ZP, known genes with unknown function in the oocyte were identified, such as a MLF1-interacting protein (MLF1IP), B-cell translocation gene 4 (BTG4), and phosphotyrosine-binding protein (xPTB). Furthermore, 15 novel oocyte-specific genes were validated by reverse transcription-PCR to confirm their preferential expression in the oocyte compared to somatic tissues. The results obtained in the present study confirmed that microarray analysis is a robust technique to identify true positives from the suppressive subtractive hybridization experiment. Furthermore, obtaining oocyte-specific genes from three species simultaneously allowed us to look at important genes that are conserved across species. Further characterization of these novel oocyte-specific genes will lead to a better understanding of the molecular mechanisms related to the unique functions found in the oocyte.
Glycome Diagnosis of Human Induced Pluripotent Stem Cells Using Lectin Microarray*
Tateno, Hiroaki; Toyota, Masashi; Saito, Shigeru; Onuma, Yasuko; Ito, Yuzuru; Hiemori, Keiko; Fukumura, Mihoko; Matsushima, Asako; Nakanishi, Mio; Ohnuma, Kiyoshi; Akutsu, Hidenori; Umezawa, Akihiro; Horimoto, Katsuhisa; Hirabayashi, Jun; Asashima, Makoto
2011-01-01
Induced pluripotent stem cells (iPSCs) can now be produced from various somatic cell (SC) lines by ectopic expression of the four transcription factors. Although the procedure has been demonstrated to induce global change in gene and microRNA expressions and even epigenetic modification, it remains largely unknown how this transcription factor-induced reprogramming affects the total glycan repertoire expressed on the cells. Here we performed a comprehensive glycan analysis using 114 types of human iPSCs generated from five different SCs and compared their glycomes with those of human embryonic stem cells (ESCs; nine cell types) using a high density lectin microarray. In unsupervised cluster analysis of the results obtained by lectin microarray, both undifferentiated iPSCs and ESCs were clustered as one large group. However, they were clearly separated from the group of differentiated SCs, whereas all of the four SCs had apparently distinct glycome profiles from one another, demonstrating that SCs with originally distinct glycan profiles have acquired those similar to ESCs upon induction of pluripotency. Thirty-eight lectins discriminating between SCs and iPSCs/ESCs were statistically selected, and characteristic features of the pluripotent state were then obtained at the level of the cellular glycome. The expression profiles of relevant glycosyltransferase genes agreed well with the results obtained by lectin microarray. Among the 38 lectins, rBC2LCN was found to detect only undifferentiated iPSCs/ESCs and not differentiated SCs. Hence, the high density lectin microarray has proved to be valid for not only comprehensive analysis of glycans but also diagnosis of stem cells under the concept of the cellular glycome. PMID:21471226
Microarray analysis of gene expression profiles in ripening pineapple fruits.
Koia, Jonni H; Moyle, Richard L; Botella, Jose R
2012-12-18
Pineapple (Ananas comosus) is a tropical fruit crop of significant commercial importance. Although the physiological changes that occur during pineapple fruit development have been well characterized, little is known about the molecular events that occur during the fruit ripening process. Understanding the molecular basis of pineapple fruit ripening will aid the development of new varieties via molecular breeding or genetic modification. In this study we developed a 9277 element pineapple microarray and used it to profile gene expression changes that occur during pineapple fruit ripening. Microarray analyses identified 271 unique cDNAs differentially expressed at least 1.5-fold between the mature green and mature yellow stages of pineapple fruit ripening. Among these 271 sequences, 184 share significant homology with genes encoding proteins of known function, 53 share homology with genes encoding proteins of unknown function and 34 share no significant homology with any database accession. Of the 237 pineapple sequences with homologs, 160 were up-regulated and 77 were down-regulated during pineapple fruit ripening. DAVID Functional Annotation Cluster (FAC) analysis of all 237 sequences with homologs revealed confident enrichment scores for redox activity, organic acid metabolism, metalloenzyme activity, glycolysis, vitamin C biosynthesis, antioxidant activity and cysteine peptidase activity, indicating the functional significance and importance of these processes and pathways during pineapple fruit development. Quantitative real-time PCR analysis validated the microarray expression results for nine out of ten genes tested. This is the first report of a microarray based gene expression study undertaken in pineapple. Our bioinformatic analyses of the transcript profiles have identified a number of genes, processes and pathways with putative involvement in the pineapple fruit ripening process. This study extends our knowledge of the molecular basis of pineapple fruit ripening and non-climacteric fruit ripening in general.
Microarray analysis of gene expression profiles in ripening pineapple fruits
2012-01-01
Background Pineapple (Ananas comosus) is a tropical fruit crop of significant commercial importance. Although the physiological changes that occur during pineapple fruit development have been well characterized, little is known about the molecular events that occur during the fruit ripening process. Understanding the molecular basis of pineapple fruit ripening will aid the development of new varieties via molecular breeding or genetic modification. In this study we developed a 9277 element pineapple microarray and used it to profile gene expression changes that occur during pineapple fruit ripening. Results Microarray analyses identified 271 unique cDNAs differentially expressed at least 1.5-fold between the mature green and mature yellow stages of pineapple fruit ripening. Among these 271 sequences, 184 share significant homology with genes encoding proteins of known function, 53 share homology with genes encoding proteins of unknown function and 34 share no significant homology with any database accession. Of the 237 pineapple sequences with homologs, 160 were up-regulated and 77 were down-regulated during pineapple fruit ripening. DAVID Functional Annotation Cluster (FAC) analysis of all 237 sequences with homologs revealed confident enrichment scores for redox activity, organic acid metabolism, metalloenzyme activity, glycolysis, vitamin C biosynthesis, antioxidant activity and cysteine peptidase activity, indicating the functional significance and importance of these processes and pathways during pineapple fruit development. Quantitative real-time PCR analysis validated the microarray expression results for nine out of ten genes tested. Conclusions This is the first report of a microarray based gene expression study undertaken in pineapple. Our bioinformatic analyses of the transcript profiles have identified a number of genes, processes and pathways with putative involvement in the pineapple fruit ripening process. This study extends our knowledge of the molecular basis of pineapple fruit ripening and non-climacteric fruit ripening in general. PMID:23245313
Visualizing Phylogenetic Treespace Using Cartographic Projections
NASA Astrophysics Data System (ADS)
Sundberg, Kenneth; Clement, Mark; Snell, Quinn
Phylogenetic analysis is becoming an increasingly important tool for biological research. Applications include epidemiological studies, drug development, and evolutionary analysis. Phylogenetic search is a known NP-Hard problem. The size of the data sets which can be analyzed is limited by the exponential growth in the number of trees that must be considered as the problem size increases. A better understanding of the problem space could lead to better methods, which in turn could lead to the feasible analysis of more data sets. We present a definition of phylogenetic tree space and a visualization of this space that shows significant exploitable structure. This structure can be used to develop search methods capable of handling much larger datasets.
Controlling false-negative errors in microarray differential expression analysis: a PRIM approach.
Cole, Steve W; Galic, Zoran; Zack, Jerome A
2003-09-22
Theoretical considerations suggest that current microarray screening algorithms may fail to detect many true differences in gene expression (Type II analytic errors). We assessed 'false negative' error rates in differential expression analyses by conventional linear statistical models (e.g. t-test), microarray-adapted variants (e.g. SAM, Cyber-T), and a novel strategy based on hold-out cross-validation. The latter approach employs the machine-learning algorithm Patient Rule Induction Method (PRIM) to infer minimum thresholds for reliable change in gene expression from Boolean conjunctions of fold-induction and raw fluorescence measurements. Monte Carlo analyses based on four empirical data sets show that conventional statistical models and their microarray-adapted variants overlook more than 50% of genes showing significant up-regulation. Conjoint PRIM prediction rules recover approximately twice as many differentially expressed transcripts while maintaining strong control over false-positive (Type I) errors. As a result, experimental replication rates increase and total analytic error rates decline. RT-PCR studies confirm that gene inductions detected by PRIM but overlooked by other methods represent true changes in mRNA levels. PRIM-based conjoint inference rules thus represent an improved strategy for high-sensitivity screening of DNA microarrays. Freestanding JAVA application at http://microarray.crump.ucla.edu/focus
Severgnini, Marco; Bicciato, Silvio; Mangano, Eleonora; Scarlatti, Francesca; Mezzelani, Alessandra; Mattioli, Michela; Ghidoni, Riccardo; Peano, Clelia; Bonnal, Raoul; Viti, Federica; Milanesi, Luciano; De Bellis, Gianluca; Battaglia, Cristina
2006-06-01
Meta-analysis of microarray data is increasingly important, considering both the availability of multiple platforms using disparate technologies and the accumulation in public repositories of data sets from different laboratories. We addressed the issue of comparing gene expression profiles from two microarray platforms by devising a standardized investigative strategy. We tested this procedure by studying MDA-MB-231 cells, which undergo apoptosis on treatment with resveratrol. Gene expression profiles were obtained using high-density, short-oligonucleotide, single-color microarray platforms: GeneChip (Affymetrix) and CodeLink (Amersham). Interplatform analyses were carried out on 8414 common transcripts represented on both platforms, as identified by LocusLink ID, representing 70.8% and 88.6% of annotated GeneChip and CodeLink features, respectively. We identified 105 differentially expressed genes (DEGs) on CodeLink and 42 DEGs on GeneChip. Among them, only 9 DEGs were commonly identified by both platforms. Multiple analyses (BLAST alignment of probes with target sequences, gene ontology, literature mining, and quantitative real-time PCR) permitted us to investigate the factors contributing to the generation of platform-dependent results in single-color microarray experiments. An effective approach to cross-platform comparison involves microarrays of similar technologies, samples prepared by identical methods, and a standardized battery of bioinformatic and statistical analyses.
Janse, Ingmar; Bok, Jasper M.; Hamidjaja, Raditijo A.; Hodemaekers, Hennie M.; van Rotterdam, Bart J.
2012-01-01
Microarrays provide a powerful analytical tool for the simultaneous detection of multiple pathogens. We developed diagnostic suspension microarrays for sensitive and specific detection of the biothreat pathogens Bacillus anthracis, Yersinia pestis, Francisella tularensis and Coxiella burnetii. Two assay chemistries for amplification and labeling were developed, one method using direct hybridization and the other using target-specific primer extension, combined with hybridization to universal arrays. Asymmetric PCR products for both assay chemistries were produced by using a multiplex asymmetric PCR amplifying 16 DNA signatures (16-plex). The performances of both assay chemistries were compared and their advantages and disadvantages are discussed. The developed microarrays detected multiple signature sequences and an internal control which made it possible to confidently identify the targeted pathogens and assess their virulence potential. The microarrays were highly specific and detected various strains of the targeted pathogens. Detection limits for the different pathogen signatures were similar or slightly higher compared to real-time PCR. Probit analysis showed that even a few genomic copies could be detected with 95% confidence. The microarrays detected DNA from different pathogens mixed in different ratios and from spiked or naturally contaminated samples. The assays that were developed have a potential for application in surveillance and diagnostics. PMID:22355407
Microarray platform affords improved product analysis in mammalian cell growth studies
Li, Lingyun; Migliore, Nicole; Schaefer, Eugene; Sharfstein, Susan T.; Dordick, Jonathan S.; Linhardt, Robert J.
2014-01-01
High throughput (HT) platforms serve as cost-efficient and rapid screening method for evaluating the effect of cell culture conditions and screening of chemicals. The aim of the current study was to develop a high-throughput cell-based microarray platform to assess the effect of culture conditions on Chinese hamster ovary (CHO) cells. Specifically, growth, transgene expression and metabolism of a GS/MSX CHO cell line, which produces a therapeutic monoclonal antibody, was examined using microarray system in conjunction with conventional shake flask platform in a non-proprietary medium. The microarray system consists of 60 nl spots of cells encapsulated in alginate and separated in groups via an 8-well chamber system attached to the chip. Results show the non-proprietary medium developed allows cell growth, production and normal glycosylation of recombinant antibody and metabolism of the recombinant CHO cells in both the microarray and shake flask platforms. In addition, 10.3 mM glutamate addition to the defined base media results in lactate metabolism shift in the recombinant GS/MSX CHO cells in the shake flask platform. Ultimately, the results demonstrate that the high-throughput microarray platform has the potential to be utilized for evaluating the impact of media additives on cellular processes, such as, cell growth, metabolism and productivity. PMID:24227746
Janse, Ingmar; Bok, Jasper M; Hamidjaja, Raditijo A; Hodemaekers, Hennie M; van Rotterdam, Bart J
2012-01-01
Microarrays provide a powerful analytical tool for the simultaneous detection of multiple pathogens. We developed diagnostic suspension microarrays for sensitive and specific detection of the biothreat pathogens Bacillus anthracis, Yersinia pestis, Francisella tularensis and Coxiella burnetii. Two assay chemistries for amplification and labeling were developed, one method using direct hybridization and the other using target-specific primer extension, combined with hybridization to universal arrays. Asymmetric PCR products for both assay chemistries were produced by using a multiplex asymmetric PCR amplifying 16 DNA signatures (16-plex). The performances of both assay chemistries were compared and their advantages and disadvantages are discussed. The developed microarrays detected multiple signature sequences and an internal control which made it possible to confidently identify the targeted pathogens and assess their virulence potential. The microarrays were highly specific and detected various strains of the targeted pathogens. Detection limits for the different pathogen signatures were similar or slightly higher compared to real-time PCR. Probit analysis showed that even a few genomic copies could be detected with 95% confidence. The microarrays detected DNA from different pathogens mixed in different ratios and from spiked or naturally contaminated samples. The assays that were developed have a potential for application in surveillance and diagnostics.
Yang, Yunfeng; Zhu, Mengxia; Wu, Liyou; Zhou, Jizhong
2008-09-16
Using genomic DNA as common reference in microarray experiments has recently been tested by different laboratories. Conflicting results have been reported with regard to the reliability of microarray results using this method. To explain it, we hypothesize that data processing is a critical element that impacts the data quality. Microarray experiments were performed in a gamma-proteobacterium Shewanella oneidensis. Pair-wise comparison of three experimental conditions was obtained either with two labeled cDNA samples co-hybridized to the same array, or by employing Shewanella genomic DNA as a standard reference. Various data processing techniques were exploited to reduce the amount of inconsistency between both methods and the results were assessed. We discovered that data quality was significantly improved by imposing the constraint of minimal number of replicates, logarithmic transformation and random error analyses. These findings demonstrate that data processing significantly influences data quality, which provides an explanation for the conflicting evaluation in the literature. This work could serve as a guideline for microarray data analysis using genomic DNA as a standard reference.
Employing image processing techniques for cancer detection using microarray images.
Dehghan Khalilabad, Nastaran; Hassanpour, Hamid
2017-02-01
Microarray technology is a powerful genomic tool for simultaneously studying and analyzing the behavior of thousands of genes. The analysis of images obtained from this technology plays a critical role in the detection and treatment of diseases. The aim of the current study is to develop an automated system for analyzing data from microarray images in order to detect cancerous cases. The proposed system consists of three main phases, namely image processing, data mining, and the detection of the disease. The image processing phase performs operations such as refining image rotation, gridding (locating genes) and extracting raw data from images the data mining includes normalizing the extracted data and selecting the more effective genes. Finally, via the extracted data, cancerous cell is recognized. To evaluate the performance of the proposed system, microarray database is employed which includes Breast cancer, Myeloid Leukemia and Lymphomas from the Stanford Microarray Database. The results indicate that the proposed system is able to identify the type of cancer from the data set with an accuracy of 95.45%, 94.11%, and 100%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Improved microarray methods for profiling the yeast knockout strain collection
Yuan, Daniel S.; Pan, Xuewen; Ooi, Siew Loon; Peyser, Brian D.; Spencer, Forrest A.; Irizarry, Rafael A.; Boeke, Jef D.
2005-01-01
A remarkable feature of the Yeast Knockout strain collection is the presence of two unique 20mer TAG sequences in almost every strain. In principle, the relative abundances of strains in a complex mixture can be profiled swiftly and quantitatively by amplifying these sequences and hybridizing them to microarrays, but TAG microarrays have not been widely used. Here, we introduce a TAG microarray design with sophisticated controls and describe a robust method for hybridizing high concentrations of dye-labeled TAGs in single-stranded form. We also highlight the importance of avoiding PCR contamination and provide procedures for detection and eradication. Validation experiments using these methods yielded false positive (FP) and false negative (FN) rates for individual TAG detection of 3–6% and 15–18%, respectively. Analysis demonstrated that cross-hybridization was the chief source of FPs, while TAG amplification defects were the main cause of FNs. The materials, protocols, data and associated software described here comprise a suite of experimental resources that should facilitate the use of TAG microarrays for a wide variety of genetic screens. PMID:15994458
An efficient method to identify differentially expressed genes in microarray experiments
Qin, Huaizhen; Feng, Tao; Harding, Scott A.; Tsai, Chung-Jui; Zhang, Shuanglin
2013-01-01
Motivation Microarray experiments typically analyze thousands to tens of thousands of genes from small numbers of biological replicates. The fact that genes are normally expressed in functionally relevant patterns suggests that gene-expression data can be stratified and clustered into relatively homogenous groups. Cluster-wise dimensionality reduction should make it feasible to improve screening power while minimizing information loss. Results We propose a powerful and computationally simple method for finding differentially expressed genes in small microarray experiments. The method incorporates a novel stratification-based tight clustering algorithm, principal component analysis and information pooling. Comprehensive simulations show that our method is substantially more powerful than the popular SAM and eBayes approaches. We applied the method to three real microarray datasets: one from a Populus nitrogen stress experiment with 3 biological replicates; and two from public microarray datasets of human cancers with 10 to 40 biological replicates. In all three analyses, our method proved more robust than the popular alternatives for identification of differentially expressed genes. Availability The C++ code to implement the proposed method is available upon request for academic use. PMID:18453554
Clustering approaches to identifying gene expression patterns from DNA microarray data.
Do, Jin Hwan; Choi, Dong-Kug
2008-04-30
The analysis of microarray data is essential for large amounts of gene expression data. In this review we focus on clustering techniques. The biological rationale for this approach is the fact that many co-expressed genes are co-regulated, and identifying co-expressed genes could aid in functional annotation of novel genes, de novo identification of transcription factor binding sites and elucidation of complex biological pathways. Co-expressed genes are usually identified in microarray experiments by clustering techniques. There are many such methods, and the results obtained even for the same datasets may vary considerably depending on the algorithms and metrics for dissimilarity measures used, as well as on user-selectable parameters such as desired number of clusters and initial values. Therefore, biologists who want to interpret microarray data should be aware of the weakness and strengths of the clustering methods used. In this review, we survey the basic principles of clustering of DNA microarray data from crisp clustering algorithms such as hierarchical clustering, K-means and self-organizing maps, to complex clustering algorithms like fuzzy clustering.
Shin, Hwa Hui; Hwang, Byeong Hee; Seo, Jeong Hyun
2014-01-01
It is important to rapidly and selectively detect and analyze pathogenic Salmonella enterica subsp. enterica in contaminated food to reduce the morbidity and mortality of Salmonella infection and to guarantee food safety. In the present work, we developed an oligonucleotide microarray containing duplicate specific capture probes based on the carB gene, which encodes the carbamoyl phosphate synthetase large subunit, as a competent biomarker evaluated by genetic analysis to selectively and efficiently detect and discriminate three S. enterica subsp. enterica serotypes: Choleraesuis, Enteritidis, and Typhimurium. Using the developed microarray system, three serotype targets were successfully analyzed in a range as low as 1.6 to 3.1 nM and were specifically discriminated from each other without nonspecific signals. In addition, the constructed microarray did not have cross-reactivity with other common pathogenic bacteria and even enabled the clear discrimination of the target Salmonella serotype from a bacterial mixture. Therefore, these results demonstrated that our novel carB-based oligonucleotide microarray can be used as an effective and specific detection system for S. enterica subsp. enterica serotypes. PMID:24185846
Shin, Hwa Hui; Hwang, Byeong Hee; Seo, Jeong Hyun; Cha, Hyung Joon
2014-01-01
It is important to rapidly and selectively detect and analyze pathogenic Salmonella enterica subsp. enterica in contaminated food to reduce the morbidity and mortality of Salmonella infection and to guarantee food safety. In the present work, we developed an oligonucleotide microarray containing duplicate specific capture probes based on the carB gene, which encodes the carbamoyl phosphate synthetase large subunit, as a competent biomarker evaluated by genetic analysis to selectively and efficiently detect and discriminate three S. enterica subsp. enterica serotypes: Choleraesuis, Enteritidis, and Typhimurium. Using the developed microarray system, three serotype targets were successfully analyzed in a range as low as 1.6 to 3.1 nM and were specifically discriminated from each other without nonspecific signals. In addition, the constructed microarray did not have cross-reactivity with other common pathogenic bacteria and even enabled the clear discrimination of the target Salmonella serotype from a bacterial mixture. Therefore, these results demonstrated that our novel carB-based oligonucleotide microarray can be used as an effective and specific detection system for S. enterica subsp. enterica serotypes.
Harlin-Cognato, April D; Honeycutt, Rodney L
2006-01-01
Background Dolphins of the genus Lagenorhynchus are anti-tropically distributed in temperate to cool waters. Phylogenetic analyses of cytochrome b sequences have suggested that the genus is polyphyletic; however, many relationships were poorly resolved. In this study, we present a combined-analysis phylogenetic hypothesis for Lagenorhynchus and members of the subfamily Lissodelphininae, which is derived from two nuclear and two mitochondrial data sets and the addition of 34 individuals representing 9 species. In addition, we characterize with parsimony and Bayesian analyses the phylogenetic utility and interaction of characters with statistical measures, including the utility of highly consistent (non-homoplasious) characters as a conservative measure of phylogenetic robustness. We also explore the effects of removing sources of character conflict on phylogenetic resolution. Results Overall, our study provides strong support for the monophyly of the subfamily Lissodelphininae and the polyphyly of the genus Lagenorhynchus. In addition, the simultaneous parsimony analysis resolved and/or improved resolution for 12 nodes including: (1) L. albirostris, L. acutus; (2) L. obscurus and L. obliquidens; and (3) L. cruciger and L. australis. In addition, the Bayesian analysis supported the monophyly of the Cephalorhynchus, and resolved ambiguities regarding the relationship of L. australis/L. cruciger to other members of the genus Lagenorhynchus. The frequency of highly consistent characters varied among data partitions, but the rate of evolution was consistent within data partitions. Although the control region was the greatest source of character conflict, removal of this data partition impeded phylogenetic resolution. Conclusion The simultaneous analysis approach produced a more robust phylogenetic hypothesis for Lagenorhynchus than previous studies, thus supporting a phylogenetic approach employing multiple data partitions that vary in overall rate of evolution. Even in cases where there was apparent conflict among characters, our data suggest a synergistic interaction in the simultaneous analysis, and speak against a priori exclusion of data because of potential conflicts, primarily because phylogenetic results can be less robust. For example, the removal of the control region, the putative source of character conflict, produced spurious results with inconsistencies among and within topologies from parsimony and Bayesian analyses. PMID:17078887
USDA-ARS?s Scientific Manuscript database
The long-term goal of our study is to understand the genetic and epigenetic mechanisms of breast cancer metastasis in human and to discover new possible genetic markers for use in clinical practice. We have used microarray technology (Human OneArray microarray, phylanxbiotech.com) to compare gene ex...
USDA-ARS?s Scientific Manuscript database
The objectives of this study were (1) to evaluate differential gene expression levels for resistance to A. flavus kernel infection in susceptible (Va35) and resistant (Mp313E) maize lines using Oligonucleotide and cDNA microarray analysis, (2) to evaluate differences in A. flavus accumulation betwee...
Microarrays have had a significant impact on many areas of biology. However, there are still many fertile research areas that would benefit from microarray analysis but are limited by the amount of biological material that can be obtained (e.g. samples obtained by small biopsy, f...
Customizing microarrays for neuroscience drug discovery.
Girgenti, Matthew J; Newton, Samuel S
2007-08-01
Microarray-based gene profiling has become the centerpiece of gene expression studies in the biological sciences. The ability to now interrogate the entire genome using a single chip demonstrates the progress in technology and instrumentation that has been made over the last two decades. Although this unbiased approach provides researchers with an immense quantity of data, obtaining meaningful insight is not possible without intensive data analysis and processing. Custom developed arrays have emerged as a viable and attractive alternative that can take advantage of this robust technology and tailor it to suit the needs and requirements of individual investigations. The ability to simplify data analysis, reduce noise and carefully optimize experimental conditions makes it a suitable tool that can be effectively utilized in neuroscience drug discovery efforts. Furthermore, incorporating recent advancements in fine focusing gene profiling to include specific cellular phenotypes can help resolve the complex cellular heterogeneity of the brain. This review surveys the use of microarray technology in neuroscience paying special attention to customized arrays and their potential in drug discovery. Novel applications of microarrays and ancillary techniques, such as laser microdissection, FAC sorting and RNA amplification, have also been discussed. The notion that a hypothesis-driven approach can be integrated into drug development programs is highlighted.
Peschl, Patrick; Ramberger, Melanie; Höftberger, Romana; Jöhrer, Karin; Baumann, Matthias; Rostásy, Kevin; Reindl, Markus
2017-01-01
Acute disseminated encephalomyelitis (ADEM) is a rare autoimmune-mediated demyelinating disease affecting mainly children and young adults. Differentiation to multiple sclerosis is not always possible, due to overlapping clinical symptoms and recurrent and multiphasic forms. Until now, immunoglobulins reactive to myelin oligodendrocyte glycoprotein (MOG antibodies) have been found in a subset of patients with ADEM. However, there are still patients lacking autoantibodies, necessitating the identification of new autoantibodies as biomarkers in those patients. Therefore, we aimed to identify novel autoantibody targets in ADEM patients. Sixteen ADEM patients (11 seronegative, 5 seropositive for MOG antibodies) were analysed for potential new biomarkers, using a protein microarray and immunohistochemistry on rat brain tissue to identify antibodies against intracellular and surface neuronal and glial antigens. Nine candidate antigens were identified in the protein microarray analysis in at least two patients per group. Immunohistochemistry on rat brain tissue did not reveal new target antigens. Although no new autoantibody targets could be found here, future studies should aim to identify new biomarkers for therapeutic and prognostic purposes. The microarray analysis and immunohistochemistry methods used here have several limitations, which should be considered in future searches for biomarkers. PMID:28327523
Microarray gene expression profiling analysis combined with bioinformatics in multiple sclerosis.
Liu, Mingyuan; Hou, Xiaojun; Zhang, Ping; Hao, Yong; Yang, Yiting; Wu, Xiongfeng; Zhu, Desheng; Guan, Yangtai
2013-05-01
Multiple sclerosis (MS) is the most prevalent demyelinating disease and the principal cause of neurological disability in young adults. Recent microarray gene expression profiling studies have identified several genetic variants contributing to the complex pathogenesis of MS, however, expressional and functional studies are still required to further understand its molecular mechanism. The present study aimed to analyze the molecular mechanism of MS using microarray analysis combined with bioinformatics techniques. We downloaded the gene expression profile of MS from Gene Expression Omnibus (GEO) and analysed the microarray data using the differentially coexpressed genes (DCGs) and links package in R and Database for Annotation, Visualization and Integrated Discovery. The regulatory impact factor (RIF) algorithm was used to measure the impact factor of transcription factor. A total of 1,297 DCGs between MS patients and healthy controls were identified. Functional annotation indicated that these DCGs were associated with immune and neurological functions. Furthermore, the RIF result suggested that IKZF1, BACH1, CEBPB, EGR1, FOS may play central regulatory roles in controlling gene expression in the pathogenesis of MS. Our findings confirm the presence of multiple molecular alterations in MS and indicate the possibility for identifying prognostic factors associated with MS pathogenesis.
Mining microarray data at NCBI's Gene Expression Omnibus (GEO)*.
Barrett, Tanya; Edgar, Ron
2006-01-01
The Gene Expression Omnibus (GEO) at the National Center for Biotechnology Information (NCBI) has emerged as the leading fully public repository for gene expression data. This chapter describes how to use Web-based interfaces, applications, and graphics to effectively explore, visualize, and interpret the hundreds of microarray studies and millions of gene expression patterns stored in GEO. Data can be examined from both experiment-centric and gene-centric perspectives using user-friendly tools that do not require specialized expertise in microarray analysis or time-consuming download of massive data sets. The GEO database is publicly accessible through the World Wide Web at http://www.ncbi.nlm.nih.gov/geo.
A methodological investigation of hominoid craniodental morphology and phylogenetics.
Bjarnason, Alexander; Chamberlain, Andrew T; Lockwood, Charles A
2011-01-01
The evolutionary relationships of extant great apes and humans have been largely resolved by molecular studies, yet morphology-based phylogenetic analyses continue to provide conflicting results. In order to further investigate this discrepancy we present bootstrap clade support of morphological data based on two quantitative datasets, one dataset consisting of linear measurements of the whole skull from 5 hominoid genera and the second dataset consisting of 3D landmark data from the temporal bone of 5 hominoid genera, including 11 sub-species. Using similar protocols for both datasets, we were able to 1) compare distance-based phylogenetic methods to cladistic parsimony of quantitative data converted into discrete character states, 2) vary outgroup choice to observe its effect on phylogenetic inference, and 3) analyse male and female data separately to observe the effect of sexual dimorphism on phylogenies. Phylogenetic analysis was sensitive to methodological decisions, particularly outgroup selection, where designation of Pongo as an outgroup and removal of Hylobates resulted in greater congruence with the proposed molecular phylogeny. The performance of distance-based methods also justifies their use in phylogenetic analysis of morphological data. It is clear from our analyses that hominoid phylogenetics ought not to be used as an example of conflict between the morphological and molecular, but as an example of how outgroup and methodological choices can affect the outcome of phylogenetic analysis. Copyright © 2010 Elsevier Ltd. All rights reserved.
Gene Expression Profiling of Gastric Cancer
Marimuthu, Arivusudar; Jacob, Harrys K.C.; Jakharia, Aniruddha; Subbannayya, Yashwanth; Keerthikumar, Shivakumar; Kashyap, Manoj Kumar; Goel, Renu; Balakrishnan, Lavanya; Dwivedi, Sutopa; Pathare, Swapnali; Dikshit, Jyoti Bajpai; Maharudraiah, Jagadeesha; Singh, Sujay; Sameer Kumar, Ghantasala S; Vijayakumar, M.; Veerendra Kumar, Kariyanakatte Veeraiah; Premalatha, Chennagiri Shrinivasamurthy; Tata, Pramila; Hariharan, Ramesh; Roa, Juan Carlos; Prasad, T.S.K; Chaerkady, Raghothama; Kumar, Rekha Vijay; Pandey, Akhilesh
2015-01-01
Gastric cancer is the second leading cause of cancer death worldwide, both in men and women. A genomewide gene expression analysis was carried out to identify differentially expressed genes in gastric adenocarcinoma tissues as compared to adjacent normal tissues. We used Agilent’s whole human genome oligonucleotide microarray platform representing ~41,000 genes to carry out gene expression analysis. Two-color microarray analysis was employed to directly compare the expression of genes between tumor and normal tissues. Through this approach, we identified several previously known candidate genes along with a number of novel candidate genes in gastric cancer. Testican-1 (SPOCK1) was one of the novel molecules that was 10-fold upregulated in tumors. Using tissue microarrays, we validated the expression of testican-1 by immunohistochemical staining. It was overexpressed in 56% (160/282) of the cases tested. Pathway analysis led to the identification of several networks in which SPOCK1 was among the topmost networks of interacting genes. By gene enrichment analysis, we identified several genes involved in cell adhesion and cell proliferation to be significantly upregulated while those corresponding to metabolic pathways were significantly downregulated. The differentially expressed genes identified in this study are candidate biomarkers for gastric adenoacarcinoma. PMID:27030788
Dolled-Filhart, Marisa P; Gustavson, Mark D
2012-11-01
Translational oncology has been improved by using tissue microarrays (TMAs), which facilitate biomarker analysis of large cohorts on a single slide. This has allowed for rapid analysis and validation of potential biomarkers for prognostic and predictive value, as well as for evaluation of biomarker prevalence. Coupled with quantitative analysis of immunohistochemical (IHC) staining, objective and standardized biomarker data from tumor samples can further advance companion diagnostic approaches for the identification of drug-responsive or resistant patient subpopulations. This review covers the advantages, disadvantages and applications of TMAs for biomarker research. Research literature and reviews of TMAs and quantitative image analysis methodology have been surveyed for this review (with an AQUA® analysis focus). Applications such as multi-marker diagnostic development and pathway-based biomarker subpopulation analyses are described. Tissue microarrays are a useful tool for biomarker analyses including prevalence surveys, disease progression assessment and addressing potential prognostic or predictive value. By combining quantitative image analysis with TMAs, analyses will be more objective and reproducible, allowing for more robust IHC-based diagnostic test development. Quantitative multi-biomarker IHC diagnostic tests that can predict drug response will allow for greater success of clinical trials for targeted therapies and provide more personalized clinical decision making.
The Evolutionary Ecology of Plant Disease: A Phylogenetic Perspective.
Gilbert, Gregory S; Parker, Ingrid M
2016-08-04
An explicit phylogenetic perspective provides useful tools for phytopathology and plant disease ecology because the traits of both plants and microbes are shaped by their evolutionary histories. We present brief primers on phylogenetic signal and the analytical tools of phylogenetic ecology. We review the literature and find abundant evidence of phylogenetic signal in pathogens and plants for most traits involved in disease interactions. Plant nonhost resistance mechanisms and pathogen housekeeping functions are conserved at deeper phylogenetic levels, whereas molecular traits associated with rapid coevolutionary dynamics are more labile at branch tips. Horizontal gene transfer disrupts the phylogenetic signal for some microbial traits. Emergent traits, such as host range and disease severity, show clear phylogenetic signals. Therefore pathogen spread and disease impact are influenced by the phylogenetic structure of host assemblages. Phylogenetically rare species escape disease pressure. Phylogenetic tools could be used to develop predictive tools for phytosanitary risk analysis and reduce disease pressure in multispecies cropping systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatazawa, Yukino; Research Fellow of Japan Society for the Promotion of Science, Tokyo; Minami, Kimiko
The expression of the transcriptional coactivator PGC1α is increased in skeletal muscles during exercise. Previously, we showed that increased PGC1α leads to prolonged exercise performance (the duration for which running can be continued) and, at the same time, increases the expression of branched-chain amino acid (BCAA) metabolism-related enzymes and genes that are involved in supplying substrates for the TCA cycle. We recently created mice with PGC1α knockout specifically in the skeletal muscles (PGC1α KO mice), which show decreased mitochondrial content. In this study, global gene expression (microarray) analysis was performed in the skeletal muscles of PGC1α KO mice compared withmore » that of wild-type control mice. As a result, decreased expression of genes involved in the TCA cycle, oxidative phosphorylation, and BCAA metabolism were observed. Compared with previously obtained microarray data on PGC1α-overexpressing transgenic mice, each gene showed the completely opposite direction of expression change. Bioinformatic analysis of the promoter region of genes with decreased expression in PGC1α KO mice predicted the involvement of several transcription factors, including a nuclear receptor, ERR, in their regulation. As PGC1α KO microarray data in this study show opposing findings to the PGC1α transgenic data, a loss-of-function experiment, as well as a gain-of-function experiment, revealed PGC1α’s function in the oxidative energy metabolism of skeletal muscles. - Highlights: • Microarray analysis was performed in the skeletal muscle of PGC1α KO mice. • Expression of genes in the oxidative energy metabolism was decreased. • Bioinformatic analysis of promoter region of the genes predicted involvement of ERR. • PGC1α KO microarray data in this study show the mirror image of transgenic data.« less
Expression profiling and pathway analysis of Krüppel-like factor 4 in mouse embryonic fibroblasts
Hagos, Engda G; Ghaleb, Amr M; Kumar, Amrita; Neish, Andrew S; Yang, Vincent W
2011-01-01
Background: Krüppel-like factor 4 (KLF4) is a zinc-finger transcription factor with diverse regulatory functions in proliferation, differentiation, and development. KLF4 also plays a role in inflammation, tumorigenesis, and reprogramming of somatic cells to induced pluripotent stem (iPS) cells. To gain insight into the mechanisms by which KLF4 regulates these processes, we conducted DNA microarray analyses to identify differentially expressed genes in mouse embryonic fibroblasts (MEFs) wild type and null for Klf4. Methods: Expression profiles of fibroblasts isolated from mouse embryos wild type or null for the Klf4 alleles were examined by DNA microarrays. Differentially expressed genes were subjected to the Database for Annotation, Visualization and Integrated Discovery (DAVID). The microarray data were also interrogated with the Ingenuity Pathway Analysis (IPA) and Gene Set Enrichment Analysis (GSEA) for pathway identification. Results obtained from the microarray analysis were confirmed by Western blotting for select genes with biological relevance to determine the correlation between mRNA and protein levels. Results: One hundred and sixty three up-regulated and 88 down-regulated genes were identified that demonstrated a fold-change of at least 1.5 and a P-value < 0.05 in Klf4-null MEFs compared to wild type MEFs. Many of the up-regulated genes in Klf4-null MEFs encode proto-oncogenes, growth factors, extracellular matrix, and cell cycle activators. In contrast, genes encoding tumor suppressors and those involved in JAK-STAT signaling pathways are down-regulated in Klf4-null MEFs. IPA and GSEA also identified various pathways that are regulated by KLF4. Lastly, Western blotting of select target genes confirmed the changes revealed by microarray data. Conclusions: These data are not only consistent with previous functional studies of KLF4's role in tumor suppression and somatic cell reprogramming, but also revealed novel target genes that mediate KLF4's functions. PMID:21892412
An efficient pseudomedian filter for tiling microrrays.
Royce, Thomas E; Carriero, Nicholas J; Gerstein, Mark B
2007-06-07
Tiling microarrays are becoming an essential technology in the functional genomics toolbox. They have been applied to the tasks of novel transcript identification, elucidation of transcription factor binding sites, detection of methylated DNA and several other applications in several model organisms. These experiments are being conducted at increasingly finer resolutions as the microarray technology enjoys increasingly greater feature densities. The increased densities naturally lead to increased data analysis requirements. Specifically, the most widely employed algorithm for tiling array analysis involves smoothing observed signals by computing pseudomedians within sliding windows, a O(n2logn) calculation in each window. This poor time complexity is an issue for tiling array analysis and could prove to be a real bottleneck as tiling microarray experiments become grander in scope and finer in resolution. We therefore implemented Monahan's HLQEST algorithm that reduces the runtime complexity for computing the pseudomedian of n numbers to O(nlogn) from O(n2logn). For a representative tiling microarray dataset, this modification reduced the smoothing procedure's runtime by nearly 90%. We then leveraged the fact that elements within sliding windows remain largely unchanged in overlapping windows (as one slides across genomic space) to further reduce computation by an additional 43%. This was achieved by the application of skip lists to maintaining a sorted list of values from window to window. This sorted list could be maintained with simple O(log n) inserts and deletes. We illustrate the favorable scaling properties of our algorithms with both time complexity analysis and benchmarking on synthetic datasets. Tiling microarray analyses that rely upon a sliding window pseudomedian calculation can require many hours of computation. We have eased this requirement significantly by implementing efficient algorithms that scale well with genomic feature density. This result not only speeds the current standard analyses, but also makes possible ones where many iterations of the filter may be required, such as might be required in a bootstrap or parameter estimation setting. Source code and executables are available at http://tiling.gersteinlab.org/pseudomedian/.
An efficient pseudomedian filter for tiling microrrays
Royce, Thomas E; Carriero, Nicholas J; Gerstein, Mark B
2007-01-01
Background Tiling microarrays are becoming an essential technology in the functional genomics toolbox. They have been applied to the tasks of novel transcript identification, elucidation of transcription factor binding sites, detection of methylated DNA and several other applications in several model organisms. These experiments are being conducted at increasingly finer resolutions as the microarray technology enjoys increasingly greater feature densities. The increased densities naturally lead to increased data analysis requirements. Specifically, the most widely employed algorithm for tiling array analysis involves smoothing observed signals by computing pseudomedians within sliding windows, a O(n2logn) calculation in each window. This poor time complexity is an issue for tiling array analysis and could prove to be a real bottleneck as tiling microarray experiments become grander in scope and finer in resolution. Results We therefore implemented Monahan's HLQEST algorithm that reduces the runtime complexity for computing the pseudomedian of n numbers to O(nlogn) from O(n2logn). For a representative tiling microarray dataset, this modification reduced the smoothing procedure's runtime by nearly 90%. We then leveraged the fact that elements within sliding windows remain largely unchanged in overlapping windows (as one slides across genomic space) to further reduce computation by an additional 43%. This was achieved by the application of skip lists to maintaining a sorted list of values from window to window. This sorted list could be maintained with simple O(log n) inserts and deletes. We illustrate the favorable scaling properties of our algorithms with both time complexity analysis and benchmarking on synthetic datasets. Conclusion Tiling microarray analyses that rely upon a sliding window pseudomedian calculation can require many hours of computation. We have eased this requirement significantly by implementing efficient algorithms that scale well with genomic feature density. This result not only speeds the current standard analyses, but also makes possible ones where many iterations of the filter may be required, such as might be required in a bootstrap or parameter estimation setting. Source code and executables are available at . PMID:17555595
Jani, Saurin D; Argraves, Gary L; Barth, Jeremy L; Argraves, W Scott
2010-04-01
An important objective of DNA microarray-based gene expression experimentation is determining inter-relationships that exist between differentially expressed genes and biological processes, molecular functions, cellular components, signaling pathways, physiologic processes and diseases. Here we describe GeneMesh, a web-based program that facilitates analysis of DNA microarray gene expression data. GeneMesh relates genes in a query set to categories available in the Medical Subject Headings (MeSH) hierarchical index. The interface enables hypothesis driven relational analysis to a specific MeSH subcategory (e.g., Cardiovascular System, Genetic Processes, Immune System Diseases etc.) or unbiased relational analysis to broader MeSH categories (e.g., Anatomy, Biological Sciences, Disease etc.). Genes found associated with a given MeSH category are dynamically linked to facilitate tabular and graphical depiction of Entrez Gene information, Gene Ontology information, KEGG metabolic pathway diagrams and intermolecular interaction information. Expression intensity values of groups of genes that cluster in relation to a given MeSH category, gene ontology or pathway can be displayed as heat maps of Z score-normalized values. GeneMesh operates on gene expression data derived from a number of commercial microarray platforms including Affymetrix, Agilent and Illumina. GeneMesh is a versatile web-based tool for testing and developing new hypotheses through relating genes in a query set (e.g., differentially expressed genes from a DNA microarray experiment) to descriptors making up the hierarchical structure of the National Library of Medicine controlled vocabulary thesaurus, MeSH. The system further enhances the discovery process by providing links between sets of genes associated with a given MeSH category to a rich set of html linked tabular and graphic information including Entrez Gene summaries, gene ontologies, intermolecular interactions, overlays of genes onto KEGG pathway diagrams and heatmaps of expression intensity values. GeneMesh is freely available online at http://proteogenomics.musc.edu/genemesh/.
High throughput gene expression profiling: a molecular approach to integrative physiology
Liang, Mingyu; Cowley, Allen W; Greene, Andrew S
2004-01-01
Integrative physiology emphasizes the importance of understanding multiple pathways with overlapping, complementary, or opposing effects and their interactions in the context of intact organisms. The DNA microarray technology, the most commonly used method for high-throughput gene expression profiling, has been touted as an integrative tool that provides insights into regulatory pathways. However, the physiology community has been slow in acceptance of these techniques because of early failure in generating useful data and the lack of a cohesive theoretical framework in which experiments can be analysed. With recent advances in both technology and analysis, we propose a concept of multidimensional integration of physiology that incorporates data generated by DNA microarray and other functional, genomic, and proteomic approaches to achieve a truly integrative understanding of physiology. Analysis of several studies performed in simpler organisms or in mammalian model animals supports the feasibility of such multidimensional integration and demonstrates the power of DNA microarray as an indispensable molecular tool for such integration. Evaluation of DNA microarray techniques indicates that these techniques, despite limitations, have advanced to a point where the question-driven profiling research has become a feasible complement to the conventional, hypothesis-driven research. With a keen sense of homeostasis, global regulation, and quantitative analysis, integrative physiologists are uniquely positioned to apply these techniques to enhance the understanding of complex physiological functions. PMID:14678487
Micro-Analyzer: automatic preprocessing of Affymetrix microarray data.
Guzzi, Pietro Hiram; Cannataro, Mario
2013-08-01
A current trend in genomics is the investigation of the cell mechanism using different technologies, in order to explain the relationship among genes, molecular processes and diseases. For instance, the combined use of gene-expression arrays and genomic arrays has been demonstrated as an effective instrument in clinical practice. Consequently, in a single experiment different kind of microarrays may be used, resulting in the production of different types of binary data (images and textual raw data). The analysis of microarray data requires an initial preprocessing phase, that makes raw data suitable for use on existing analysis platforms, such as the TIGR M4 (TM4) Suite. An additional challenge to be faced by emerging data analysis platforms is the ability to treat in a combined way those different microarray formats coupled with clinical data. In fact, resulting integrated data may include both numerical and symbolic data (e.g. gene expression and SNPs regarding molecular data), as well as temporal data (e.g. the response to a drug, time to progression and survival rate), regarding clinical data. Raw data preprocessing is a crucial step in analysis but is often performed in a manual and error prone way using different software tools. Thus novel, platform independent, and possibly open source tools enabling the semi-automatic preprocessing and annotation of different microarray data are needed. The paper presents Micro-Analyzer (Microarray Analyzer), a cross-platform tool for the automatic normalization, summarization and annotation of Affymetrix gene expression and SNP binary data. It represents the evolution of the μ-CS tool, extending the preprocessing to SNP arrays that were not allowed in μ-CS. The Micro-Analyzer is provided as a Java standalone tool and enables users to read, preprocess and analyse binary microarray data (gene expression and SNPs) by invoking TM4 platform. It avoids: (i) the manual invocation of external tools (e.g. the Affymetrix Power Tools), (ii) the manual loading of preprocessing libraries, and (iii) the management of intermediate files, such as results and metadata. Micro-Analyzer users can directly manage Affymetrix binary data without worrying about locating and invoking the proper preprocessing tools and chip-specific libraries. Moreover, users of the Micro-Analyzer tool can load the preprocessed data directly into the well-known TM4 platform, extending in such a way also the TM4 capabilities. Consequently, Micro Analyzer offers the following advantages: (i) it reduces possible errors in the preprocessing and further analysis phases, e.g. due to the incorrect choice of parameters or due to the use of old libraries, (ii) it enables the combined and centralized pre-processing of different arrays, (iii) it may enhance the quality of further analysis by storing the workflow, i.e. information about the preprocessing steps, and (iv) finally Micro-Analzyer is freely available as a standalone application at the project web site http://sourceforge.net/projects/microanalyzer/. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
A Versatile Microarray Platform for Capturing Rare Cells
NASA Astrophysics Data System (ADS)
Brinkmann, Falko; Hirtz, Michael; Haller, Anna; Gorges, Tobias M.; Vellekoop, Michael J.; Riethdorf, Sabine; Müller, Volkmar; Pantel, Klaus; Fuchs, Harald
2015-10-01
Analyses of rare events occurring at extremely low frequencies in body fluids are still challenging. We established a versatile microarray-based platform able to capture single target cells from large background populations. As use case we chose the challenging application of detecting circulating tumor cells (CTCs) - about one cell in a billion normal blood cells. After incubation with an antibody cocktail, targeted cells are extracted on a microarray in a microfluidic chip. The accessibility of our platform allows for subsequent recovery of targets for further analysis. The microarray facilitates exclusion of false positive capture events by co-localization allowing for detection without fluorescent labelling. Analyzing blood samples from cancer patients with our platform reached and partly outreached gold standard performance, demonstrating feasibility for clinical application. Clinical researchers free choice of antibody cocktail without need for altered chip manufacturing or incubation protocol, allows virtual arbitrary targeting of capture species and therefore wide spread applications in biomedical sciences.
He, Xianmin; Wei, Qing; Sun, Meiqian; Fu, Xuping; Fan, Sichang; Li, Yao
2006-05-01
Biological techniques such as Array-Comparative genomic hybridization (CGH), fluorescent in situ hybridization (FISH) and affymetrix single nucleotide pleomorphism (SNP) array have been used to detect cytogenetic aberrations. However, on genomic scale, these techniques are labor intensive and time consuming. Comparative genomic microarray analysis (CGMA) has been used to identify cytogenetic changes in hepatocellular carcinoma (HCC) using gene expression microarray data. However, CGMA algorithm can not give precise localization of aberrations, fails to identify small cytogenetic changes, and exhibits false negatives and positives. Locally un-weighted smoothing cytogenetic aberrations prediction (LS-CAP) based on local smoothing and binomial distribution can be expected to address these problems. LS-CAP algorithm was built and used on HCC microarray profiles. Eighteen cytogenetic abnormalities were identified, among them 5 were reported previously, and 12 were proven by CGH studies. LS-CAP effectively reduced the false negatives and positives, and precisely located small fragments with cytogenetic aberrations.
2013-01-01
Background The synthesis of information across microarray studies has been performed by combining statistical results of individual studies (as in a mosaic), or by combining data from multiple studies into a large pool to be analyzed as a single data set (as in a melting pot of data). Specific issues relating to data heterogeneity across microarray studies, such as differences within and between labs or differences among experimental conditions, could lead to equivocal results in a melting pot approach. Results We applied statistical theory to determine the specific effect of different means and heteroskedasticity across 19 groups of microarray data on the sign and magnitude of gene-to-gene Pearson correlation coefficients obtained from the pool of 19 groups. We quantified the biases of the pooled coefficients and compared them to the biases of correlations estimated by an effect-size model. Mean differences across the 19 groups were the main factor determining the magnitude and sign of the pooled coefficients, which showed largest values of bias as they approached ±1. Only heteroskedasticity across the pool of 19 groups resulted in less efficient estimations of correlations than did a classical meta-analysis approach of combining correlation coefficients. These results were corroborated by simulation studies involving either mean differences or heteroskedasticity across a pool of N > 2 groups. Conclusions The combination of statistical results is best suited for synthesizing the correlation between expression profiles of a gene pair across several microarray studies. PMID:23822712
Microarray analysis of genes associated with cell surface NIS protein levels in breast cancer.
Beyer, Sasha J; Zhang, Xiaoli; Jimenez, Rafael E; Lee, Mei-Ling T; Richardson, Andrea L; Huang, Kun; Jhiang, Sissy M
2011-10-11
Na+/I- symporter (NIS)-mediated iodide uptake allows radioiodine therapy for thyroid cancer. NIS is also expressed in breast tumors, raising potential for radionuclide therapy of breast cancer. However, NIS expression in most breast cancers is low and may not be sufficient for radionuclide therapy. We aimed to identify biomarkers associated with NIS expression such that mechanisms underlying NIS modulation in human breast tumors may be elucidated. Published oligonucleotide microarray data within the National Center for Biotechnology Information Gene Expression Omnibus database were analyzed to identify gene expression tightly correlated with NIS mRNA level among human breast tumors. NIS immunostaining was performed in a tissue microarray composed of 28 human breast tumors which had corresponding oligonucleotide microarray data available for each tumor such that gene expression associated with cell surface NIS protein level could be identified. NIS mRNA levels do not vary among breast tumors or when compared to normal breast tissues when detected by Affymetrix oligonucleotide microarray platforms. Cell surface NIS protein levels are much more variable than their corresponding NIS mRNA levels. Despite a limited number of breast tumors examined, our analysis identified cysteinyl-tRNA synthetase as a biomarker that is highly associated with cell surface NIS protein levels in the ER-positive breast cancer subtype. Further investigation on genes associated with cell surface NIS protein levels within each breast cancer molecular subtype may lead to novel targets for selectively increasing NIS expression/function in a subset of breast cancers patients.
Zinke, Ingo; Schütz, Christina S.; Katzenberger, Jörg D.; Bauer, Matthias; Pankratz, Michael J.
2002-01-01
We have identified genes regulated by starvation and sugar signals in Drosophila larvae using whole-genome microarrays. Based on expression profiles in the two nutrient conditions, they were organized into different categories that reflect distinct physiological pathways mediating sugar and fat metabolism, and cell growth. In the category of genes regulated in sugar-fed, but not in starved, animals, there is an upregulation of genes encoding key enzymes of the fat biosynthesis pathway and a downregulation of genes encoding lipases. The highest and earliest activated gene upon sugar ingestion is sugarbabe, a zinc finger protein that is induced in the gut and the fat body. Identification of potential targets using microarrays suggests that sugarbabe functions to repress genes involved in dietary fat breakdown and absorption. The current analysis provides a basis for studying the genetic mechanisms underlying nutrient signalling. PMID:12426388
Finding Groups in Gene Expression Data
2005-01-01
The vast potential of the genomic insight offered by microarray technologies has led to their widespread use since they were introduced a decade ago. Application areas include gene function discovery, disease diagnosis, and inferring regulatory networks. Microarray experiments enable large-scale, high-throughput investigations of gene activity and have thus provided the data analyst with a distinctive, high-dimensional field of study. Many questions in this field relate to finding subgroups of data profiles which are very similar. A popular type of exploratory tool for finding subgroups is cluster analysis, and many different flavors of algorithms have been used and indeed tailored for microarray data. Cluster analysis, however, implies a partitioning of the entire data set, and this does not always match the objective. Sometimes pattern discovery or bump hunting tools are more appropriate. This paper reviews these various tools for finding interesting subgroups. PMID:16046827
Relationships among genera of the Saccharomycotina from multigene sequence analysis
USDA-ARS?s Scientific Manuscript database
Most known species of the subphylum Saccharomycotina (budding ascomycetous yeasts) have now been placed in phylogenetically defined clades following multigene sequence analysis. Terminal clades, which are usually well supported from bootstrap analysis, are viewed as phylogenetically circumscribed ge...
Phylogenetic inference under varying proportions of indel-induced alignment gaps
Dwivedi, Bhakti; Gadagkar, Sudhindra R
2009-01-01
Background The effect of alignment gaps on phylogenetic accuracy has been the subject of numerous studies. In this study, we investigated the relationship between the total number of gapped sites and phylogenetic accuracy, when the gaps were introduced (by means of computer simulation) to reflect indel (insertion/deletion) events during the evolution of DNA sequences. The resulting (true) alignments were subjected to commonly used gap treatment and phylogenetic inference methods. Results (1) In general, there was a strong – almost deterministic – relationship between the amount of gap in the data and the level of phylogenetic accuracy when the alignments were very "gappy", (2) gaps resulting from deletions (as opposed to insertions) contributed more to the inaccuracy of phylogenetic inference, (3) the probabilistic methods (Bayesian, PhyML & "MLε, " a method implemented in DNAML in PHYLIP) performed better at most levels of gap percentage when compared to parsimony (MP) and distance (NJ) methods, with Bayesian analysis being clearly the best, (4) methods that treat gapped sites as missing data yielded less accurate trees when compared to those that attribute phylogenetic signal to the gapped sites (by coding them as binary character data – presence/absence, or as in the MLε method), and (5) in general, the accuracy of phylogenetic inference depended upon the amount of available data when the gaps resulted from mainly deletion events, and the amount of missing data when insertion events were equally likely to have caused the alignment gaps. Conclusion When gaps in an alignment are a consequence of indel events in the evolution of the sequences, the accuracy of phylogenetic analysis is likely to improve if: (1) alignment gaps are categorized as arising from insertion events or deletion events and then treated separately in the analysis, (2) the evolutionary signal provided by indels is harnessed in the phylogenetic analysis, and (3) methods that utilize the phylogenetic signal in indels are developed for distance methods too. When the true homology is known and the amount of gaps is 20 percent of the alignment length or less, the methods used in this study are likely to yield trees with 90–100 percent accuracy. PMID:19698168
van Haaften, Rachel I M; Luceri, Cristina; van Erk, Arie; Evelo, Chris T A
2009-06-01
Omics technology used for large-scale measurements of gene expression is rapidly evolving. This work pointed out the need of an extensive bioinformatics analyses for array quality assessment before and after gene expression clustering and pathway analysis. A study focused on the effect of red wine polyphenols on rat colon mucosa was used to test the impact of quality control and normalisation steps on the biological conclusions. The integration of data visualization, pathway analysis and clustering revealed an artifact problem that was solved with an adapted normalisation. We propose a possible point to point standard analysis procedure, based on a combination of clustering and data visualization for the analysis of microarray data.
MeV+R: using MeV as a graphical user interface for Bioconductor applications in microarray analysis
Chu, Vu T; Gottardo, Raphael; Raftery, Adrian E; Bumgarner, Roger E; Yeung, Ka Yee
2008-01-01
We present MeV+R, an integration of the JAVA MultiExperiment Viewer program with Bioconductor packages. This integration of MultiExperiment Viewer and R is easily extensible to other R packages and provides users with point and click access to traditionally command line driven tools written in R. We demonstrate the ability to use MultiExperiment Viewer as a graphical user interface for Bioconductor applications in microarray data analysis by incorporating three Bioconductor packages, RAMA, BRIDGE and iterativeBMA. PMID:18652698
ArrayWiki: an enabling technology for sharing public microarray data repositories and meta-analyses
Stokes, Todd H; Torrance, JT; Li, Henry; Wang, May D
2008-01-01
Background A survey of microarray databases reveals that most of the repository contents and data models are heterogeneous (i.e., data obtained from different chip manufacturers), and that the repositories provide only basic biological keywords linking to PubMed. As a result, it is difficult to find datasets using research context or analysis parameters information beyond a few keywords. For example, to reduce the "curse-of-dimension" problem in microarray analysis, the number of samples is often increased by merging array data from different datasets. Knowing chip data parameters such as pre-processing steps (e.g., normalization, artefact removal, etc), and knowing any previous biological validation of the dataset is essential due to the heterogeneity of the data. However, most of the microarray repositories do not have meta-data information in the first place, and do not have a a mechanism to add or insert this information. Thus, there is a critical need to create "intelligent" microarray repositories that (1) enable update of meta-data with the raw array data, and (2) provide standardized archiving protocols to minimize bias from the raw data sources. Results To address the problems discussed, we have developed a community maintained system called ArrayWiki that unites disparate meta-data of microarray meta-experiments from multiple primary sources with four key features. First, ArrayWiki provides a user-friendly knowledge management interface in addition to a programmable interface using standards developed by Wikipedia. Second, ArrayWiki includes automated quality control processes (caCORRECT) and novel visualization methods (BioPNG, Gel Plots), which provide extra information about data quality unavailable in other microarray repositories. Third, it provides a user-curation capability through the familiar Wiki interface. Fourth, ArrayWiki provides users with simple text-based searches across all experiment meta-data, and exposes data to search engine crawlers (Semantic Agents) such as Google to further enhance data discovery. Conclusions Microarray data and meta information in ArrayWiki are distributed and visualized using a novel and compact data storage format, BioPNG. Also, they are open to the research community for curation, modification, and contribution. By making a small investment of time to learn the syntax and structure common to all sites running MediaWiki software, domain scientists and practioners can all contribute to make better use of microarray technologies in research and medical practices. ArrayWiki is available at . PMID:18541053
Vaux, Felix; Trewick, Steven A; Crampton, James S; Marshall, Bruce A; Beu, Alan G; Hills, Simon F K; Morgan-Richards, Mary
2018-06-15
The relationship between morphology and inheritance is of perennial interest in evolutionary biology and palaeontology. Using three marine snail genera Penion, Antarctoneptunea and Kelletia, we investigate whether systematics based on shell morphology accurately reflect evolutionary lineages indicated by molecular phylogenetics. Members of these gastropod genera have been a taxonomic challenge due to substantial variation in shell morphology, conservative radular and soft tissue morphology, few known ecological differences, and geographical overlap between numerous species. Sampling all sixteen putative taxa identified across the three genera, we infer mitochondrial and nuclear ribosomal DNA phylogenetic relationships within the group, and compare this to variation in adult shell shape and size. Results of phylogenetic analysis indicate that each genus is monophyletic, although the status of some phylogenetically derived and likely more recently evolved taxa within Penion is uncertain. The recently described species P. lineatus is supported by genetic evidence. Morphology, captured using geometric morphometric analysis, distinguishes the genera and matches the molecular phylogeny, although using the same dataset, species and phylogenetic subclades are not identified with high accuracy. Overall, despite abundant variation, we find that shell morphology accurately reflects genus-level classification and the corresponding deep phylogenetic splits identified in this group of marine snails. Copyright © 2018 Elsevier Inc. All rights reserved.
Singh, Amarjeet; Kanwar, Poonam; Pandey, Amita; Tyagi, Akhilesh K.; Sopory, Sudhir K.; Kapoor, Sanjay; Pandey, Girdhar K.
2013-01-01
Background Phospholipase C (PLC) is one of the major lipid hydrolysing enzymes, implicated in lipid mediated signaling. PLCs have been found to play a significant role in abiotic stress triggered signaling and developmental processes in various plant species. Genome wide identification and expression analysis have been carried out for this gene family in Arabidopsis, yet not much has been accomplished in crop plant rice. Methodology/Principal Findings An exhaustive in-silico exploration of rice genome using various online databases and tools resulted in the identification of nine PLC encoding genes. Based on sequence, motif and phylogenetic analysis rice PLC gene family could be divided into phosphatidylinositol-specific PLCs (PI-PLCs) and phosphatidylcholine- PLCs (PC-PLC or NPC) classes with four and five members, respectively. A comparative analysis revealed that PLCs are conserved in Arabidopsis (dicots) and rice (monocot) at gene structure and protein level but they might have evolved through a separate evolutionary path. Transcript profiling using gene chip microarray and quantitative RT-PCR showed that most of the PLC members expressed significantly and differentially under abiotic stresses (salt, cold and drought) and during various developmental stages with condition/stage specific and overlapping expression. This finding suggested an important role of different rice PLC members in abiotic stress triggered signaling and plant development, which was also supported by the presence of relevant cis-regulatory elements in their promoters. Sub-cellular localization of few selected PLC members in Nicotiana benthamiana and onion epidermal cells has provided a clue about their site of action and functional behaviour. Conclusion/Significance The genome wide identification, structural and expression analysis and knowledge of sub-cellular localization of PLC gene family envisage the functional characterization of these genes in crop plants in near future. PMID:23638098
Singh, Amarjeet; Kanwar, Poonam; Pandey, Amita; Tyagi, Akhilesh K; Sopory, Sudhir K; Kapoor, Sanjay; Pandey, Girdhar K
2013-01-01
Phospholipase C (PLC) is one of the major lipid hydrolysing enzymes, implicated in lipid mediated signaling. PLCs have been found to play a significant role in abiotic stress triggered signaling and developmental processes in various plant species. Genome wide identification and expression analysis have been carried out for this gene family in Arabidopsis, yet not much has been accomplished in crop plant rice. An exhaustive in-silico exploration of rice genome using various online databases and tools resulted in the identification of nine PLC encoding genes. Based on sequence, motif and phylogenetic analysis rice PLC gene family could be divided into phosphatidylinositol-specific PLCs (PI-PLCs) and phosphatidylcholine- PLCs (PC-PLC or NPC) classes with four and five members, respectively. A comparative analysis revealed that PLCs are conserved in Arabidopsis (dicots) and rice (monocot) at gene structure and protein level but they might have evolved through a separate evolutionary path. Transcript profiling using gene chip microarray and quantitative RT-PCR showed that most of the PLC members expressed significantly and differentially under abiotic stresses (salt, cold and drought) and during various developmental stages with condition/stage specific and overlapping expression. This finding suggested an important role of different rice PLC members in abiotic stress triggered signaling and plant development, which was also supported by the presence of relevant cis-regulatory elements in their promoters. Sub-cellular localization of few selected PLC members in Nicotiana benthamiana and onion epidermal cells has provided a clue about their site of action and functional behaviour. The genome wide identification, structural and expression analysis and knowledge of sub-cellular localization of PLC gene family envisage the functional characterization of these genes in crop plants in near future.
On the use of cartographic projections in visualizing phylo-genetic tree space
2010-01-01
Phylogenetic analysis is becoming an increasingly important tool for biological research. Applications include epidemiological studies, drug development, and evolutionary analysis. Phylogenetic search is a known NP-Hard problem. The size of the data sets which can be analyzed is limited by the exponential growth in the number of trees that must be considered as the problem size increases. A better understanding of the problem space could lead to better methods, which in turn could lead to the feasible analysis of more data sets. We present a definition of phylogenetic tree space and a visualization of this space that shows significant exploitable structure. This structure can be used to develop search methods capable of handling much larger data sets. PMID:20529355
Digital microarray analysis for digital artifact genomics
NASA Astrophysics Data System (ADS)
Jaenisch, Holger; Handley, James; Williams, Deborah
2013-06-01
We implement a Spatial Voting (SV) based analogy of microarray analysis for digital gene marker identification in malware code sections. We examine a famous set of malware formally analyzed by Mandiant and code named Advanced Persistent Threat (APT1). APT1 is a Chinese organization formed with specific intent to infiltrate and exploit US resources. Manidant provided a detailed behavior and sting analysis report for the 288 malware samples available. We performed an independent analysis using a new alternative to the traditional dynamic analysis and static analysis we call Spatial Analysis (SA). We perform unsupervised SA on the APT1 originating malware code sections and report our findings. We also show the results of SA performed on some members of the families associated by Manidant. We conclude that SV based SA is a practical fast alternative to dynamics analysis and static analysis.
Hybrid genetic algorithm-neural network: feature extraction for unpreprocessed microarray data.
Tong, Dong Ling; Schierz, Amanda C
2011-09-01
Suitable techniques for microarray analysis have been widely researched, particularly for the study of marker genes expressed to a specific type of cancer. Most of the machine learning methods that have been applied to significant gene selection focus on the classification ability rather than the selection ability of the method. These methods also require the microarray data to be preprocessed before analysis takes place. The objective of this study is to develop a hybrid genetic algorithm-neural network (GANN) model that emphasises feature selection and can operate on unpreprocessed microarray data. The GANN is a hybrid model where the fitness value of the genetic algorithm (GA) is based upon the number of samples correctly labelled by a standard feedforward artificial neural network (ANN). The model is evaluated by using two benchmark microarray datasets with different array platforms and differing number of classes (a 2-class oligonucleotide microarray data for acute leukaemia and a 4-class complementary DNA (cDNA) microarray dataset for SRBCTs (small round blue cell tumours)). The underlying concept of the GANN algorithm is to select highly informative genes by co-evolving both the GA fitness function and the ANN weights at the same time. The novel GANN selected approximately 50% of the same genes as the original studies. This may indicate that these common genes are more biologically significant than other genes in the datasets. The remaining 50% of the significant genes identified were used to build predictive models and for both datasets, the models based on the set of genes extracted by the GANN method produced more accurate results. The results also suggest that the GANN method not only can detect genes that are exclusively associated with a single cancer type but can also explore the genes that are differentially expressed in multiple cancer types. The results show that the GANN model has successfully extracted statistically significant genes from the unpreprocessed microarray data as well as extracting known biologically significant genes. We also show that assessing the biological significance of genes based on classification accuracy may be misleading and though the GANN's set of extra genes prove to be more statistically significant than those selected by other methods, a biological assessment of these genes is highly recommended to confirm their functionality. Copyright © 2011 Elsevier B.V. All rights reserved.
arrayCGHbase: an analysis platform for comparative genomic hybridization microarrays
Menten, Björn; Pattyn, Filip; De Preter, Katleen; Robbrecht, Piet; Michels, Evi; Buysse, Karen; Mortier, Geert; De Paepe, Anne; van Vooren, Steven; Vermeesch, Joris; Moreau, Yves; De Moor, Bart; Vermeulen, Stefan; Speleman, Frank; Vandesompele, Jo
2005-01-01
Background The availability of the human genome sequence as well as the large number of physically accessible oligonucleotides, cDNA, and BAC clones across the entire genome has triggered and accelerated the use of several platforms for analysis of DNA copy number changes, amongst others microarray comparative genomic hybridization (arrayCGH). One of the challenges inherent to this new technology is the management and analysis of large numbers of data points generated in each individual experiment. Results We have developed arrayCGHbase, a comprehensive analysis platform for arrayCGH experiments consisting of a MIAME (Minimal Information About a Microarray Experiment) supportive database using MySQL underlying a data mining web tool, to store, analyze, interpret, compare, and visualize arrayCGH results in a uniform and user-friendly format. Following its flexible design, arrayCGHbase is compatible with all existing and forthcoming arrayCGH platforms. Data can be exported in a multitude of formats, including BED files to map copy number information on the genome using the Ensembl or UCSC genome browser. Conclusion ArrayCGHbase is a web based and platform independent arrayCGH data analysis tool, that allows users to access the analysis suite through the internet or a local intranet after installation on a private server. ArrayCGHbase is available at . PMID:15910681
2010-01-01
Background The zebra mussel (Dreissena polymorpha) has been well known for its expertise in attaching to substances under the water. Studies in past decades on this underwater adhesion focused on the adhesive protein isolated from the byssogenesis apparatus of the zebra mussel. However, the mechanism of the initiation, maintenance, and determination of the attachment process remains largely unknown. Results In this study, we used a zebra mussel cDNA microarray previously developed in our lab and a factorial analysis to identify the genes that were involved in response to the changes of four factors: temperature (Factor A), current velocity (Factor B), dissolved oxygen (Factor C), and byssogenesis status (Factor D). Twenty probes in the microarray were found to be modified by one of the factors. The transcription products of four selected genes, DPFP-BG20_A01, EGP-BG97/192_B06, EGP-BG13_G05, and NH-BG17_C09 were unique to the zebra mussel foot based on the results of quantitative reverse transcription PCR (qRT-PCR). The expression profiles of these four genes under the attachment and non-attachment were also confirmed by qRT-PCR and the result is accordant to that from microarray assay. The in situ hybridization with the RNA probes of two identified genes DPFP-BG20_A01 and EGP-BG97/192_B06 indicated that both of them were expressed by a type of exocrine gland cell located in the middle part of the zebra mussel foot. Conclusions The results of this study suggested that the changes of D. polymorpha byssogenesis status and the environmental factors can dramatically affect the expression profiles of the genes unique to the foot. It turns out that the factorial design and analysis of the microarray experiment is a reliable method to identify the influence of multiple factors on the expression profiles of the probesets in the microarray; therein it provides a powerful tool to reveal the mechanism of zebra mussel underwater attachment. PMID:20509938
Lengger, Sandra; Otto, Johannes; Elsässer, Dennis; Schneider, Oliver; Tiehm, Andreas; Fleischer, Jens; Niessner, Reinhard; Seidel, Michael
2014-05-01
Pathogenic viruses are emerging contaminants in water which should be analyzed for water safety to preserve public health. A strategy was developed to quantify RNA and DNA viruses in parallel on chemiluminescence flow-through oligonucleotide microarrays. In order to show the proof of principle, bacteriophage MS2, ΦX174, and the human pathogenic adenovirus type 2 (hAdV2) were analyzed in spiked tap water samples on the analysis platform MCR 3. The chemiluminescence microarray imaging unit was equipped with a Peltier heater for a controlled heating of the flow cell. The efficiency and selectivity of DNA hybridization could be increased resulting in higher signal intensities and lower cross-reactivities of polymerase chain reaction (PCR) products from other viruses. The total analysis time for DNA/RNA extraction, cDNA synthesis for RNA viruses, polymerase chain reaction, single-strand separation, and oligonucleotide microarray analysis was performed in 4-4.5 h. The parallel quantification was possible in a concentration range of 9.6 × 10(5)-1.4 × 10(10) genomic units (GU)/mL for bacteriophage MS2, 1.4 × 10(5)-3.7 × 10(8) GU/mL for bacteriophage ΦX174, and 6.5 × 10(3)-1.2 × 10(5) for hAdV2, respectively, by using a measuring temperature of 40 °C. Detection limits could be calculated to 6.6 × 10(5) GU/mL for MS2, 5.3 × 10(3) GU/mL for ΦX174, and 1.5 × 10(2) GU/mL for hAdV2, respectively. Real samples of surface water and treated wastewater were tested. Generally, found concentrations of hAdV2, bacteriophage MS2, and ΦX174 were at the detection limit. Nevertheless, bacteriophages could be identified with similar results by means of quantitative PCR and oligonucleotide microarray analysis on the MCR 3.
Galfalvy, Hanga C; Erraji-Benchekroun, Loubna; Smyrniotopoulos, Peggy; Pavlidis, Paul; Ellis, Steven P; Mann, J John; Sibille, Etienne; Arango, Victoria
2003-01-01
Background Genomic studies of complex tissues pose unique analytical challenges for assessment of data quality, performance of statistical methods used for data extraction, and detection of differentially expressed genes. Ideally, to assess the accuracy of gene expression analysis methods, one needs a set of genes which are known to be differentially expressed in the samples and which can be used as a "gold standard". We introduce the idea of using sex-chromosome genes as an alternative to spiked-in control genes or simulations for assessment of microarray data and analysis methods. Results Expression of sex-chromosome genes were used as true internal biological controls to compare alternate probe-level data extraction algorithms (Microarray Suite 5.0 [MAS5.0], Model Based Expression Index [MBEI] and Robust Multi-array Average [RMA]), to assess microarray data quality and to establish some statistical guidelines for analyzing large-scale gene expression. These approaches were implemented on a large new dataset of human brain samples. RMA-generated gene expression values were markedly less variable and more reliable than MAS5.0 and MBEI-derived values. A statistical technique controlling the false discovery rate was applied to adjust for multiple testing, as an alternative to the Bonferroni method, and showed no evidence of false negative results. Fourteen probesets, representing nine Y- and two X-chromosome linked genes, displayed significant sex differences in brain prefrontal cortex gene expression. Conclusion In this study, we have demonstrated the use of sex genes as true biological internal controls for genomic analysis of complex tissues, and suggested analytical guidelines for testing alternate oligonucleotide microarray data extraction protocols and for adjusting multiple statistical analysis of differentially expressed genes. Our results also provided evidence for sex differences in gene expression in the brain prefrontal cortex, supporting the notion of a putative direct role of sex-chromosome genes in differentiation and maintenance of sexual dimorphism of the central nervous system. Importantly, these analytical approaches are applicable to all microarray studies that include male and female human or animal subjects. PMID:12962547
Galfalvy, Hanga C; Erraji-Benchekroun, Loubna; Smyrniotopoulos, Peggy; Pavlidis, Paul; Ellis, Steven P; Mann, J John; Sibille, Etienne; Arango, Victoria
2003-09-08
Genomic studies of complex tissues pose unique analytical challenges for assessment of data quality, performance of statistical methods used for data extraction, and detection of differentially expressed genes. Ideally, to assess the accuracy of gene expression analysis methods, one needs a set of genes which are known to be differentially expressed in the samples and which can be used as a "gold standard". We introduce the idea of using sex-chromosome genes as an alternative to spiked-in control genes or simulations for assessment of microarray data and analysis methods. Expression of sex-chromosome genes were used as true internal biological controls to compare alternate probe-level data extraction algorithms (Microarray Suite 5.0 [MAS5.0], Model Based Expression Index [MBEI] and Robust Multi-array Average [RMA]), to assess microarray data quality and to establish some statistical guidelines for analyzing large-scale gene expression. These approaches were implemented on a large new dataset of human brain samples. RMA-generated gene expression values were markedly less variable and more reliable than MAS5.0 and MBEI-derived values. A statistical technique controlling the false discovery rate was applied to adjust for multiple testing, as an alternative to the Bonferroni method, and showed no evidence of false negative results. Fourteen probesets, representing nine Y- and two X-chromosome linked genes, displayed significant sex differences in brain prefrontal cortex gene expression. In this study, we have demonstrated the use of sex genes as true biological internal controls for genomic analysis of complex tissues, and suggested analytical guidelines for testing alternate oligonucleotide microarray data extraction protocols and for adjusting multiple statistical analysis of differentially expressed genes. Our results also provided evidence for sex differences in gene expression in the brain prefrontal cortex, supporting the notion of a putative direct role of sex-chromosome genes in differentiation and maintenance of sexual dimorphism of the central nervous system. Importantly, these analytical approaches are applicable to all microarray studies that include male and female human or animal subjects.
Ulrich, Reiner; Puff, Christina; Wewetzer, Konstantin; Kalkuhl, Arno; Deschl, Ulrich; Baumgärtner, Wolfgang
2014-01-01
Canine distemper virus (CDV)-induced demyelinating leukoencephalitis in dogs (Canis familiaris) is suggested to represent a naturally occurring translational model for subacute sclerosing panencephalitis and multiple sclerosis in humans. The aim of this study was a hypothesis-free microarray analysis of the transcriptional changes within cerebellar specimens of five cases of acute, six cases of subacute demyelinating, and three cases of chronic demyelinating and inflammatory CDV leukoencephalitis as compared to twelve non-infected control dogs. Frozen cerebellar specimens were used for analysis of histopathological changes including demyelination, transcriptional changes employing microarrays, and presence of CDV nucleoprotein RNA and protein using microarrays, RT-qPCR and immunohistochemistry. Microarray analysis revealed 780 differentially expressed probe sets. The dominating change was an up-regulation of genes related to the innate and the humoral immune response, and less distinct the cytotoxic T-cell-mediated immune response in all subtypes of CDV leukoencephalitis as compared to controls. Multiple myelin genes including myelin basic protein and proteolipid protein displayed a selective down-regulation in subacute CDV leukoencephalitis, suggestive of an oligodendrocyte dystrophy. In contrast, a marked up-regulation of multiple immunoglobulin-like expressed sequence tags and the delta polypeptide of the CD3 antigen was observed in chronic CDV leukoencephalitis, in agreement with the hypothesis of an immune-mediated demyelination in the late inflammatory phase of the disease. Analysis of pathways intimately linked to demyelination as determined by morphometry employing correlation-based Gene Set Enrichment Analysis highlighted the pathomechanistic importance of up-regulated genes comprised by the gene ontology terms “viral replication” and “humoral immune response” as well as down-regulated genes functionally related to “metabolite and energy generation”. PMID:24755553
Ulrich, Reiner; Puff, Christina; Wewetzer, Konstantin; Kalkuhl, Arno; Deschl, Ulrich; Baumgärtner, Wolfgang
2014-01-01
Canine distemper virus (CDV)-induced demyelinating leukoencephalitis in dogs (Canis familiaris) is suggested to represent a naturally occurring translational model for subacute sclerosing panencephalitis and multiple sclerosis in humans. The aim of this study was a hypothesis-free microarray analysis of the transcriptional changes within cerebellar specimens of five cases of acute, six cases of subacute demyelinating, and three cases of chronic demyelinating and inflammatory CDV leukoencephalitis as compared to twelve non-infected control dogs. Frozen cerebellar specimens were used for analysis of histopathological changes including demyelination, transcriptional changes employing microarrays, and presence of CDV nucleoprotein RNA and protein using microarrays, RT-qPCR and immunohistochemistry. Microarray analysis revealed 780 differentially expressed probe sets. The dominating change was an up-regulation of genes related to the innate and the humoral immune response, and less distinct the cytotoxic T-cell-mediated immune response in all subtypes of CDV leukoencephalitis as compared to controls. Multiple myelin genes including myelin basic protein and proteolipid protein displayed a selective down-regulation in subacute CDV leukoencephalitis, suggestive of an oligodendrocyte dystrophy. In contrast, a marked up-regulation of multiple immunoglobulin-like expressed sequence tags and the delta polypeptide of the CD3 antigen was observed in chronic CDV leukoencephalitis, in agreement with the hypothesis of an immune-mediated demyelination in the late inflammatory phase of the disease. Analysis of pathways intimately linked to demyelination as determined by morphometry employing correlation-based Gene Set Enrichment Analysis highlighted the pathomechanistic importance of up-regulated genes comprised by the gene ontology terms "viral replication" and "humoral immune response" as well as down-regulated genes functionally related to "metabolite and energy generation".
Tiwari, Jagesh Kumar; Devi, Sapna; Sundaresha, S; Chandel, Poonam; Ali, Nilofer; Singh, Brajesh; Bhardwaj, Vinay; Singh, Bir Pal
2015-06-01
Genes involved in photoassimilate partitioning and changes in hormonal balance are important for potato tuberization. In the present study, we investigated gene expression patterns in the tuber-bearing potato somatic hybrid (E1-3) and control non-tuberous wild species Solanum etuberosum (Etb) by microarray. Plants were grown under controlled conditions and leaves were collected at eight tuber developmental stages for microarray analysis. A t-test analysis identified a total of 468 genes (94 up-regulated and 374 down-regulated) that were statistically significant (p ≤ 0.05) and differentially expressed in E1-3 and Etb. Gene Ontology (GO) characterization of the 468 genes revealed that 145 were annotated and 323 were of unknown function. Further, these 145 genes were grouped based on GO biological processes followed by molecular function and (or) PGSC description into 15 gene sets, namely (1) transport, (2) metabolic process, (3) biological process, (4) photosynthesis, (5) oxidation-reduction, (6) transcription, (7) translation, (8) binding, (9) protein phosphorylation, (10) protein folding, (11) ubiquitin-dependent protein catabolic process, (12) RNA processing, (13) negative regulation of protein, (14) methylation, and (15) mitosis. RT-PCR analysis of 10 selected highly significant genes (p ≤ 0.01) confirmed the microarray results. Overall, we show that candidate genes induced in leaves of E1-3 were implicated in tuberization processes such as transport, carbohydrate metabolism, phytohormones, and transcription/translation/binding functions. Hence, our results provide an insight into the candidate genes induced in leaf tissues during tuberization in E1-3.
Informatic selection of a neural crest-melanocyte cDNA set for microarray analysis
Loftus, S. K.; Chen, Y.; Gooden, G.; Ryan, J. F.; Birznieks, G.; Hilliard, M.; Baxevanis, A. D.; Bittner, M.; Meltzer, P.; Trent, J.; Pavan, W.
1999-01-01
With cDNA microarrays, it is now possible to compare the expression of many genes simultaneously. To maximize the likelihood of finding genes whose expression is altered under the experimental conditions, it would be advantageous to be able to select clones for tissue-appropriate cDNA sets. We have taken advantage of the extensive sequence information in the dbEST expressed sequence tag (EST) database to identify a neural crest-derived melanocyte cDNA set for microarray analysis. Analysis of characterized genes with dbEST identified one library that contained ESTs representing 21 neural crest-expressed genes (library 198). The distribution of the ESTs corresponding to these genes was biased toward being derived from library 198. This is in contrast to the EST distribution profile for a set of control genes, characterized to be more ubiquitously expressed in multiple tissues (P < 1 × 10−9). From library 198, a subset of 852 clustered ESTs were selected that have a library distribution profile similar to that of the 21 neural crest-expressed genes. Microarray analysis demonstrated the majority of the neural crest-selected 852 ESTs (Mel1 array) were differentially expressed in melanoma cell lines compared with a non-neural crest kidney epithelial cell line (P < 1 × 10−8). This was not observed with an array of 1,238 ESTs that was selected without library origin bias (P = 0.204). This study presents an approach for selecting tissue-appropriate cDNAs that can be used to examine the expression profiles of developmental processes and diseases. PMID:10430933
Comparative Analysis of Begonia Plastid Genomes and Their Utility for Species-Level Phylogenetics
Harrison, Nicola; Harrison, Richard J.
2016-01-01
Recent, rapid radiations make species-level phylogenetics difficult to resolve. We used a multiplexed, high-throughput sequencing approach to identify informative genomic regions to resolve phylogenetic relationships at low taxonomic levels in Begonia from a survey of sixteen species. A long-range PCR method was used to generate draft plastid genomes to provide a strong phylogenetic backbone, identify fast evolving regions and provide informative molecular markers for species-level phylogenetic studies in Begonia. PMID:27058864
SALAD database: a motif-based database of protein annotations for plant comparative genomics
Mihara, Motohiro; Itoh, Takeshi; Izawa, Takeshi
2010-01-01
Proteins often have several motifs with distinct evolutionary histories. Proteins with similar motifs have similar biochemical properties and thus related biological functions. We constructed a unique comparative genomics database termed the SALAD database (http://salad.dna.affrc.go.jp/salad/) from plant-genome-based proteome data sets. We extracted evolutionarily conserved motifs by MEME software from 209 529 protein-sequence annotation groups selected by BLASTP from the proteome data sets of 10 species: rice, sorghum, Arabidopsis thaliana, grape, a lycophyte, a moss, 3 algae, and yeast. Similarity clustering of each protein group was performed by pairwise scoring of the motif patterns of the sequences. The SALAD database provides a user-friendly graphical viewer that displays a motif pattern diagram linked to the resulting bootstrapped dendrogram for each protein group. Amino-acid-sequence-based and nucleotide-sequence-based phylogenetic trees for motif combination alignment, a logo comparison diagram for each clade in the tree, and a Pfam-domain pattern diagram are also available. We also developed a viewer named ‘SALAD on ARRAYs’ to view arbitrary microarray data sets of paralogous genes linked to the same dendrogram in a window. The SALAD database is a powerful tool for comparing protein sequences and can provide valuable hints for biological analysis. PMID:19854933
Vigneron, Adrien; Cruaud, Perrine; Roussel, Erwan G.; Pignet, Patricia; Caprais, Jean-Claude; Callac, Nolwenn; Ciobanu, Maria-Cristina; Godfroy, Anne; Cragg, Barry A.; Parkes, John R.; Van Nostrand, Joy D.; He, Zhili; Zhou, Jizhong; Toffin, Laurent
2014-01-01
Subsurface sediments of the Sonora Margin (Guaymas Basin), located in proximity of active cold seep sites were explored. The taxonomic and functional diversity of bacterial and archaeal communities were investigated from 1 to 10 meters below the seafloor. Microbial community structure and abundance and distribution of dominant populations were assessed using complementary molecular approaches (Ribosomal Intergenic Spacer Analysis, 16S rRNA libraries and quantitative PCR with an extensive primers set) and correlated to comprehensive geochemical data. Moreover the metabolic potentials and functional traits of the microbial community were also identified using the GeoChip functional gene microarray and metabolic rates. The active microbial community structure in the Sonora Margin sediments was related to deep subsurface ecosystems (Marine Benthic Groups B and D, Miscellaneous Crenarchaeotal Group, Chloroflexi and Candidate divisions) and remained relatively similar throughout the sediment section, despite defined biogeochemical gradients. However, relative abundances of bacterial and archaeal dominant lineages were significantly correlated with organic carbon quantity and origin. Consistently, metabolic pathways for the degradation and assimilation of this organic carbon as well as genetic potentials for the transformation of detrital organic matters, hydrocarbons and recalcitrant substrates were detected, suggesting that chemoorganotrophic microorganisms may dominate the microbial community of the Sonora Margin subsurface sediments. PMID:25099369
Pramila, Tata; Wu, Wei; Miles, Shawna; Noble, William Stafford; Breeden, Linda L
2006-08-15
Transcription patterns shift dramatically as cells transit from one phase of the cell cycle to another. To better define this transcriptional circuitry, we collected new microarray data across the cell cycle of budding yeast. The combined analysis of these data with three other cell cycle data sets identifies hundreds of new highly periodic transcripts and provides a weighted average peak time for each transcript. Using these data and phylogenetic comparisons of promoter sequences, we have identified a late S-phase-specific promoter element. This element is the binding site for the forkhead protein Hcm1, which is required for its cell cycle-specific activity. Among the cell cycle-regulated genes that contain conserved Hcm1-binding sites, there is a significant enrichment of genes involved in chromosome segregation, spindle dynamics, and budding. This may explain why Hcm1 mutants show 10-fold elevated rates of chromosome loss and require the spindle checkpoint for viability. Hcm1 also induces the M-phase-specific transcription factors FKH1, FKH2, and NDD1, and two cell cycle-specific transcriptional repressors, WHI5 and YHP1. As such, Hcm1 fills a significant gap in our understanding of the transcriptional circuitry that underlies the cell cycle.
Identification of the soybean HyPRP family and specific gene response to Asian soybean rust disease.
Neto, Lauro Bücker; de Oliveira, Rafael Rodrigues; Wiebke-Strohm, Beatriz; Bencke, Marta; Weber, Ricardo Luís Mayer; Cabreira, Caroline; Abdelnoor, Ricardo Vilela; Marcelino, Francismar Correa; Zanettini, Maria Helena Bodanese; Passaglia, Luciane Maria Pereira
2013-07-01
Soybean [Glycine max (L.) Merril], one of the most important crop species in the world, is very susceptible to abiotic and biotic stress. Soybean plants have developed a variety of molecular mechanisms that help them survive stressful conditions. Hybrid proline-rich proteins (HyPRPs) constitute a family of cell-wall proteins with a variable N-terminal domain and conserved C-terminal domain that is phylogenetically related to non-specific lipid transfer proteins. Members of the HyPRP family are involved in basic cellular processes and their expression and activity are modulated by environmental factors. In this study, microarray analysis and real time RT-qPCR were used to identify putative HyPRP genes in the soybean genome and to assess their expression in different plant tissues. Some of the genes were also analyzed by time-course real time RT-qPCR in response to infection by Phakopsora pachyrhizi, the causal agent of Asian soybean rust disease. Our findings indicate that the time of induction of a defense pathway is crucial in triggering the soybean resistance response to P. pachyrhizi. This is the first study to identify the soybean HyPRP group B family and to analyze disease-responsive GmHyPRP during infection by P. pachyrhizi.
SALAD database: a motif-based database of protein annotations for plant comparative genomics.
Mihara, Motohiro; Itoh, Takeshi; Izawa, Takeshi
2010-01-01
Proteins often have several motifs with distinct evolutionary histories. Proteins with similar motifs have similar biochemical properties and thus related biological functions. We constructed a unique comparative genomics database termed the SALAD database (http://salad.dna.affrc.go.jp/salad/) from plant-genome-based proteome data sets. We extracted evolutionarily conserved motifs by MEME software from 209,529 protein-sequence annotation groups selected by BLASTP from the proteome data sets of 10 species: rice, sorghum, Arabidopsis thaliana, grape, a lycophyte, a moss, 3 algae, and yeast. Similarity clustering of each protein group was performed by pairwise scoring of the motif patterns of the sequences. The SALAD database provides a user-friendly graphical viewer that displays a motif pattern diagram linked to the resulting bootstrapped dendrogram for each protein group. Amino-acid-sequence-based and nucleotide-sequence-based phylogenetic trees for motif combination alignment, a logo comparison diagram for each clade in the tree, and a Pfam-domain pattern diagram are also available. We also developed a viewer named 'SALAD on ARRAYs' to view arbitrary microarray data sets of paralogous genes linked to the same dendrogram in a window. The SALAD database is a powerful tool for comparing protein sequences and can provide valuable hints for biological analysis.
Diversity of anaerobic microbes in spacecraft assembly clean rooms.
Probst, Alexander; Vaishampayan, Parag; Osman, Shariff; Moissl-Eichinger, Christine; Andersen, Gary L; Venkateswaran, Kasthuri
2010-05-01
Although the cultivable and noncultivable microbial diversity of spacecraft assembly clean rooms has been previously documented using conventional and state-of-the-art molecular techniques, the occurrence of obligate anaerobes within these clean rooms is still uncertain. Therefore, anaerobic bacterial communities of three clean-room facilities were analyzed during assembly of the Mars Science Laboratory rover. Anaerobic bacteria were cultured on several media, and DNA was extracted from suitable anaerobic enrichments and examined with conventional 16S rRNA gene clone library, as well as high-density phylogenetic 16S rRNA gene microarray (PhyloChip) technologies. The culture-dependent analyses predominantly showed the presence of clostridial and propionibacterial strains. The 16S rRNA gene sequences retrieved from clone libraries revealed distinct microbial populations associated with each clean-room facility, clustered exclusively within gram-positive organisms. PhyloChip analysis detected a greater microbial diversity, spanning many phyla of bacteria, and provided a deeper insight into the microbial community structure of the clean-room facilities. This study presents an integrated approach for assessing the anaerobic microbial population within clean-room facilities, using both molecular and cultivation-based analyses. The results reveal that highly diverse anaerobic bacterial populations persist in the clean rooms even after the imposition of rigorous maintenance programs and will pose a challenge to planetary protection implementation activities.
Separate-channel analysis of two-channel microarrays: recovering inter-spot information.
Smyth, Gordon K; Altman, Naomi S
2013-05-26
Two-channel (or two-color) microarrays are cost-effective platforms for comparative analysis of gene expression. They are traditionally analysed in terms of the log-ratios (M-values) of the two channel intensities at each spot, but this analysis does not use all the information available in the separate channel observations. Mixed models have been proposed to analyse intensities from the two channels as separate observations, but such models can be complex to use and the gain in efficiency over the log-ratio analysis is difficult to quantify. Mixed models yield test statistics for the null distributions can be specified only approximately, and some approaches do not borrow strength between genes. This article reformulates the mixed model to clarify the relationship with the traditional log-ratio analysis, to facilitate information borrowing between genes, and to obtain an exact distributional theory for the resulting test statistics. The mixed model is transformed to operate on the M-values and A-values (average log-expression for each spot) instead of on the log-expression values. The log-ratio analysis is shown to ignore information contained in the A-values. The relative efficiency of the log-ratio analysis is shown to depend on the size of the intraspot correlation. A new separate channel analysis method is proposed that assumes a constant intra-spot correlation coefficient across all genes. This approach permits the mixed model to be transformed into an ordinary linear model, allowing the data analysis to use a well-understood empirical Bayes analysis pipeline for linear modeling of microarray data. This yields statistically powerful test statistics that have an exact distributional theory. The log-ratio, mixed model and common correlation methods are compared using three case studies. The results show that separate channel analyses that borrow strength between genes are more powerful than log-ratio analyses. The common correlation analysis is the most powerful of all. The common correlation method proposed in this article for separate-channel analysis of two-channel microarray data is no more difficult to apply in practice than the traditional log-ratio analysis. It provides an intuitive and powerful means to conduct analyses and make comparisons that might otherwise not be possible.
Identification of new autoantigens for primary biliary cirrhosis using human proteome microarrays.
Hu, Chao-Jun; Song, Guang; Huang, Wei; Liu, Guo-Zhen; Deng, Chui-Wen; Zeng, Hai-Pan; Wang, Li; Zhang, Feng-Chun; Zhang, Xuan; Jeong, Jun Seop; Blackshaw, Seth; Jiang, Li-Zhi; Zhu, Heng; Wu, Lin; Li, Yong-Zhe
2012-09-01
Primary biliary cirrhosis (PBC) is a chronic cholestatic liver disease of unknown etiology and is considered to be an autoimmune disease. Autoantibodies are important tools for accurate diagnosis of PBC. Here, we employed serum profiling analysis using a human proteome microarray composed of about 17,000 full-length unique proteins and identified 23 proteins that correlated with PBC. To validate these results, we fabricated a PBC-focused microarray with 21 of these newly identified candidates and nine additional known PBC antigens. By screening the PBC microarrays with additional cohorts of 191 PBC patients and 321 controls (43 autoimmune hepatitis, 55 hepatitis B virus, 31 hepatitis C virus, 48 rheumatoid arthritis, 45 systematic lupus erythematosus, 49 systemic sclerosis, and 50 healthy), six proteins were confirmed as novel PBC autoantigens with high sensitivities and specificities, including hexokinase-1 (isoforms I and II), Kelch-like protein 7, Kelch-like protein 12, zinc finger and BTB domain-containing protein 2, and eukaryotic translation initiation factor 2C, subunit 1. To facilitate clinical diagnosis, we developed ELISA for Kelch-like protein 12 and zinc finger and BTB domain-containing protein 2 and tested large cohorts (297 PBC and 637 control sera) to confirm the sensitivities and specificities observed in the microarray-based assays. In conclusion, our research showed that a strategy using high content protein microarray combined with a smaller but more focused protein microarray can effectively identify and validate novel PBC-specific autoantigens and has the capacity to be translated to clinical diagnosis by means of an ELISA-based method.
Li, Xiang; Harwood, Valerie J.; Nayak, Bina
2016-01-01
Pathogen identification and microbial source tracking (MST) to identify sources of fecal pollution improve evaluation of water quality. They contribute to improved assessment of human health risks and remediation of pollution sources. An MST microarray was used to simultaneously detect genes for multiple pathogens and indicators of fecal pollution in freshwater, marine water, sewage-contaminated freshwater and marine water, and treated wastewater. Dead-end ultrafiltration (DEUF) was used to concentrate organisms from water samples, yielding a recovery efficiency of >95% for Escherichia coli and human polyomavirus. Whole-genome amplification (WGA) increased gene copies from ultrafiltered samples and increased the sensitivity of the microarray. Viruses (adenovirus, bocavirus, hepatitis A virus, and human polyomaviruses) were detected in sewage-contaminated samples. Pathogens such as Legionella pneumophila, Shigella flexneri, and Campylobacter fetus were detected along with genes conferring resistance to aminoglycosides, beta-lactams, and tetracycline. Nonmetric dimensional analysis of MST marker genes grouped sewage-spiked freshwater and marine samples with sewage and apart from other fecal sources. The sensitivity (percent true positives) of the microarray probes for gene targets anticipated in sewage was 51 to 57% and was lower than the specificity (percent true negatives; 79 to 81%). A linear relationship between gene copies determined by quantitative PCR and microarray fluorescence was found, indicating the semiquantitative nature of the MST microarray. These results indicate that ultrafiltration coupled with WGA provides sufficient nucleic acids for detection of viruses, bacteria, protozoa, and antibiotic resistance genes by the microarray in applications ranging from beach monitoring to risk assessment. PMID:26729716
NASA Astrophysics Data System (ADS)
Eder, Wolfgang; Ives Torres-Silva, Ana; Hohenegger, Johann
2017-04-01
Phylogenetic analysis and trees based on molecular data are broadly applied and used to infer genetical and biogeographic relationship in recent larger foraminifera. Molecular phylogenetic is intensively used within recent nummulitids, however for fossil representatives these trees are only of minor informational value. Hence, within paleontological studies a phylogenetic approach through morphometric analysis is of much higher value. To tackle phylogenetic relationships within the nummulitid family, a much higher number of morphological character must be measured than are commonly used in biometric studies, where mostly parameters describing embryonic size (e.g., proloculus diameter, deuteroloculus diameter) and/or the marginal spiral (e.g., spiral diagrams, spiral indices) are studied. For this purpose 11 growth-independent and/or growth-invariant characters have been used to describe the morphological variability of equatorial thin sections of seven Carribbean nummulitid taxa (Nummulites striatoreticulatus, N. macgillavry, Palaeonummulites willcoxi, P.floridensis, P. soldadensis, P.trinitatensis and P.ocalanus) and one outgroup taxon (Ranikothalia bermudezi). Using these characters, phylogenetic trees were calculated using a restricted maximum likelihood algorithm (REML), and results are cross-checked by ordination and cluster analysis. Square-change parsimony method has been run to reconstruct ancestral states, as well as to simulate the evolution of the chosen characters along the calculated phylogenetic tree and, independent - contrast analysis was used to estimate confidence intervals. Based on these simulations, phylogenetic tendencies of certain characters proposed for nummulitids (e.g., Cope's rule or nepionic acceleration) can be tested, whether these tendencies are valid for the whole family or only for certain clades. At least, within the Carribean nummulitids, phylogenetic trends along some growth-independent characters of the embryo (e.g., first chamber length and P/D ratio) and some growth-invariant characters of the chamber sequence (e.g., backbend angle, initial chamber base length and chamber length increase) are evident.
Kohlmann, Alexander; Kipps, Thomas J; Rassenti, Laura Z; Downing, James R; Shurtleff, Sheila A; Mills, Ken I; Gilkes, Amanda F; Hofmann, Wolf-Karsten; Basso, Giuseppe; Dell’Orto, Marta Campo; Foà, Robin; Chiaretti, Sabina; De Vos, John; Rauhut, Sonja; Papenhausen, Peter R; Hernández, Jesus M; Lumbreras, Eva; Yeoh, Allen E; Koay, Evelyn S; Li, Rachel; Liu, Wei-min; Williams, Paul M; Wieczorek, Lothar; Haferlach, Torsten
2008-01-01
Gene expression profiling has the potential to enhance current methods for the diagnosis of haematological malignancies. Here, we present data on 204 analyses from an international standardization programme that was conducted in 11 laboratories as a prephase to the Microarray Innovations in LEukemia (MILE) study. Each laboratory prepared two cell line samples, together with three replicate leukaemia patient lysates in two distinct stages: (i) a 5-d course of protocol training, and (ii) independent proficiency testing. Unsupervised, supervised, and r2 correlation analyses demonstrated that microarray analysis can be performed with remarkably high intra-laboratory reproducibility and with comparable quality and reliability. PMID:18573112
Mining Microarray Data at NCBI’s Gene Expression Omnibus (GEO)*
Barrett, Tanya; Edgar, Ron
2006-01-01
Summary The Gene Expression Omnibus (GEO) at the National Center for Biotechnology Information (NCBI) has emerged as the leading fully public repository for gene expression data. This chapter describes how to use Web-based interfaces, applications, and graphics to effectively explore, visualize, and interpret the hundreds of microarray studies and millions of gene expression patterns stored in GEO. Data can be examined from both experiment-centric and gene-centric perspectives using user-friendly tools that do not require specialized expertise in microarray analysis or time-consuming download of massive data sets. The GEO database is publicly accessible through the World Wide Web at http://www.ncbi.nlm.nih.gov/geo. PMID:16888359
Integrative missing value estimation for microarray data.
Hu, Jianjun; Li, Haifeng; Waterman, Michael S; Zhou, Xianghong Jasmine
2006-10-12
Missing value estimation is an important preprocessing step in microarray analysis. Although several methods have been developed to solve this problem, their performance is unsatisfactory for datasets with high rates of missing data, high measurement noise, or limited numbers of samples. In fact, more than 80% of the time-series datasets in Stanford Microarray Database contain less than eight samples. We present the integrative Missing Value Estimation method (iMISS) by incorporating information from multiple reference microarray datasets to improve missing value estimation. For each gene with missing data, we derive a consistent neighbor-gene list by taking reference data sets into consideration. To determine whether the given reference data sets are sufficiently informative for integration, we use a submatrix imputation approach. Our experiments showed that iMISS can significantly and consistently improve the accuracy of the state-of-the-art Local Least Square (LLS) imputation algorithm by up to 15% improvement in our benchmark tests. We demonstrated that the order-statistics-based integrative imputation algorithms can achieve significant improvements over the state-of-the-art missing value estimation approaches such as LLS and is especially good for imputing microarray datasets with a limited number of samples, high rates of missing data, or very noisy measurements. With the rapid accumulation of microarray datasets, the performance of our approach can be further improved by incorporating larger and more appropriate reference datasets.
Fiber-optic microarray for simultaneous detection of multiple harmful algal bloom species.
Ahn, Soohyoun; Kulis, David M; Erdner, Deana L; Anderson, Donald M; Walt, David R
2006-09-01
Harmful algal blooms (HABs) are a serious threat to coastal resources, causing a variety of impacts on public health, regional economies, and ecosystems. Plankton analysis is a valuable component of many HAB monitoring and research programs, but the diversity of plankton poses a problem in discriminating toxic from nontoxic species using conventional detection methods. Here we describe a sensitive and specific sandwich hybridization assay that combines fiber-optic microarrays with oligonucleotide probes to detect and enumerate the HAB species Alexandrium fundyense, Alexandrium ostenfeldii, and Pseudo-nitzschia australis. Microarrays were prepared by loading oligonucleotide probe-coupled microspheres (diameter, 3 mum) onto the distal ends of chemically etched imaging fiber bundles. Hybridization of target rRNA from HAB cells to immobilized probes on the microspheres was visualized using Cy3-labeled secondary probes in a sandwich-type assay format. We applied these microarrays to the detection and enumeration of HAB cells in both cultured and field samples. Our study demonstrated a detection limit of approximately 5 cells for all three target organisms within 45 min, without a separate amplification step, in both sample types. We also developed a multiplexed microarray to detect the three HAB species simultaneously, which successfully detected the target organisms, alone and in combination, without cross-reactivity. Our study suggests that fiber-optic microarrays can be used for rapid and sensitive detection and potential enumeration of HAB species in the environment.
A proposed metric for assessing the measurement quality of individual microarrays
Kim, Kyoungmi; Page, Grier P; Beasley, T Mark; Barnes, Stephen; Scheirer, Katherine E; Allison, David B
2006-01-01
Background High-density microarray technology is increasingly applied to study gene expression levels on a large scale. Microarray experiments rely on several critical steps that may introduce error and uncertainty in analyses. These steps include mRNA sample extraction, amplification and labeling, hybridization, and scanning. In some cases this may be manifested as systematic spatial variation on the surface of microarray in which expression measurements within an individual array may vary as a function of geographic position on the array surface. Results We hypothesized that an index of the degree of spatiality of gene expression measurements associated with their physical geographic locations on an array could indicate the summary of the physical reliability of the microarray. We introduced a novel way to formulate this index using a statistical analysis tool. Our approach regressed gene expression intensity measurements on a polynomial response surface of the microarray's Cartesian coordinates. We demonstrated this method using a fixed model and presented results from real and simulated datasets. Conclusion We demonstrated the potential of such a quantitative metric for assessing the reliability of individual arrays. Moreover, we showed that this procedure can be incorporated into laboratory practice as a means to set quality control specifications and as a tool to determine whether an array has sufficient quality to be retained in terms of spatial correlation of gene expression measurements. PMID:16430768
Variation of gene expression in Bacillus subtilis samples of fermentation replicates.
Zhou, Ying; Yu, Wen-Bang; Ye, Bang-Ce
2011-06-01
The application of comprehensive gene expression profiling technologies to compare wild and mutated microorganism samples or to assess molecular differences between various treatments has been widely used. However, little is known about the normal variation of gene expression in microorganisms. In this study, an Agilent customized microarray representing 4,106 genes was used to quantify transcript levels of five-repeated flasks to assess normal variation in Bacillus subtilis gene expression. CV analysis and analysis of variance were employed to investigate the normal variance of genes and the components of variance, respectively. The results showed that above 80% of the total variation was caused by biological variance. For the 12 replicates, 451 of 4,106 genes exhibited variance with CV values over 10%. The functional category enrichment analysis demonstrated that these variable genes were mainly involved in cell type differentiation, cell type localization, cell cycle and DNA processing, and spore or cyst coat. Using power analysis, the minimal biological replicate number for a B. subtilis microarray experiment was determined to be six. The results contribute to the definition of the baseline level of variability in B. subtilis gene expression and emphasize the importance of replicate microarray experiments.
Taminau, Jonatan; Meganck, Stijn; Lazar, Cosmin; Steenhoff, David; Coletta, Alain; Molter, Colin; Duque, Robin; de Schaetzen, Virginie; Weiss Solís, David Y; Bersini, Hugues; Nowé, Ann
2012-12-24
With an abundant amount of microarray gene expression data sets available through public repositories, new possibilities lie in combining multiple existing data sets. In this new context, analysis itself is no longer the problem, but retrieving and consistently integrating all this data before delivering it to the wide variety of existing analysis tools becomes the new bottleneck. We present the newly released inSilicoMerging R/Bioconductor package which, together with the earlier released inSilicoDb R/Bioconductor package, allows consistent retrieval, integration and analysis of publicly available microarray gene expression data sets. Inside the inSilicoMerging package a set of five visual and six quantitative validation measures are available as well. By providing (i) access to uniformly curated and preprocessed data, (ii) a collection of techniques to remove the batch effects between data sets from different sources, and (iii) several validation tools enabling the inspection of the integration process, these packages enable researchers to fully explore the potential of combining gene expression data for downstream analysis. The power of using both packages is demonstrated by programmatically retrieving and integrating gene expression studies from the InSilico DB repository [https://insilicodb.org/app/].
A phylogenetic analysis of the megadiverse Chalcidoidea (Hymenoptera)
USDA-ARS?s Scientific Manuscript database
Chalcidoidea (Hymenoptera) are extremely diverse with an estimated 500,000 species. We present the first phylogenetic analysis of the superfamily based on a cladistic analysis of both morphological and molecular data. A total of 233 morphological characters were scored for 300 taxa and 265 genera, a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaing, Crystal; Vergez, Lisa; Hinckley, Aubree
2011-06-21
The objective of this project is to provide DHS a comprehensive evaluation of the current genomic technologies including genotyping, Taqman PCR, multiple locus variable tandem repeat analysis (MLVA), microarray and high-throughput DNA sequencing in the analysis of biothreat agents from complex environmental samples. As the result of a different DHS project, we have selected for and isolated a large number of ciprofloxacin resistant B. anthracis Sterne isolates. These isolates vary in the concentrations of ciprofloxacin that they can tolerate, suggesting multiple mutations in the samples. In collaboration with University of Houston, Eureka Genomics and Oak Ridge National Laboratory, we analyzedmore » the ciprofloxacin resistant B. anthracis Sterne isolates by microarray hybridization, Illumina and Roche 454 sequencing to understand the error rates and sensitivity of the different methods. The report provides an assessment of the results and a complete set of all protocols used and all data generated along with information to interpret the protocols and data sets.« less
Shi, Xiang Yang; Dumenyo, C Korsi; Hernandez-Martinez, Rufina; Azad, Hamid; Cooksey, Donald A
2007-11-01
Many virulence genes in plant bacterial pathogens are coordinately regulated by "global" regulatory genes. Conducting DNA microarray analysis of bacterial mutants of such genes, compared with the wild type, can help to refine the list of genes that may contribute to virulence in bacterial pathogens. The regulatory gene algU, with roles in stress response and regulation of the biosynthesis of the exopolysaccharide alginate in Pseudomonas aeruginosa and many other bacteria, has been extensively studied. The role of algU in Xylella fastidiosa, the cause of Pierce's disease of grapevines, was analyzed by mutation and whole-genome microarray analysis to define its involvement in aggregation, biofilm formation, and virulence. In this study, an algU::nptII mutant had reduced cell-cell aggregation, attachment, and biofilm formation and lower virulence in grapevines. Microarray analysis showed that 42 genes had significantly lower expression in the algU::nptII mutant than in the wild type. Among these are several genes that could contribute to cell aggregation and biofilm formation, as well as other physiological processes such as virulence, competition, and survival.
DNA Microarray Data Analysis: A Novel Biclustering Algorithm Approach
NASA Astrophysics Data System (ADS)
Tchagang, Alain B.; Tewfik, Ahmed H.
2006-12-01
Biclustering algorithms refer to a distinct class of clustering algorithms that perform simultaneous row-column clustering. Biclustering problems arise in DNA microarray data analysis, collaborative filtering, market research, information retrieval, text mining, electoral trends, exchange analysis, and so forth. When dealing with DNA microarray experimental data for example, the goal of biclustering algorithms is to find submatrices, that is, subgroups of genes and subgroups of conditions, where the genes exhibit highly correlated activities for every condition. In this study, we develop novel biclustering algorithms using basic linear algebra and arithmetic tools. The proposed biclustering algorithms can be used to search for all biclusters with constant values, biclusters with constant values on rows, biclusters with constant values on columns, and biclusters with coherent values from a set of data in a timely manner and without solving any optimization problem. We also show how one of the proposed biclustering algorithms can be adapted to identify biclusters with coherent evolution. The algorithms developed in this study discover all valid biclusters of each type, while almost all previous biclustering approaches will miss some.
Wang, Yang; Weng, Tingting; Gou, Deming; Chen, Zhongming; Chintagari, Narendranath Reddy; Liu, Lin
2007-01-24
An important mechanism for gene regulation utilizes small non-coding RNAs called microRNAs (miRNAs). These small RNAs play important roles in tissue development, cell differentiation and proliferation, lipid and fat metabolism, stem cells, exocytosis, diseases and cancers. To date, relatively little is known about functions of miRNAs in the lung except lung cancer. In this study, we utilized a rat miRNA microarray containing 216 miRNA probes, printed in-house, to detect the expression of miRNAs in the rat lung compared to the rat heart, brain, liver, kidney and spleen. Statistical analysis using Significant Analysis of Microarray (SAM) and Tukey Honestly Significant Difference (HSD) revealed 2 miRNAs (miR-195 and miR-200c) expressed specifically in the lung and 9 miRNAs co-expressed in the lung and another organ. 12 selected miRNAs were verified by Northern blot analysis. The identified lung-specific miRNAs from this work will facilitate functional studies of miRNAs during normal physiological and pathophysiological processes of the lung.
Phylogenetic Analysis of Ruminant Theileria spp. from China Based on 28S Ribosomal RNA Gene
Gou, Huitian; Guan, Guiquan; Ma, Miling; Liu, Aihong; Liu, Zhijie; Xu, Zongke; Ren, Qiaoyun; Li, Youquan; Yang, Jifei; Chen, Ze
2013-01-01
Species identification using DNA sequences is the basis for DNA taxonomy. In this study, we sequenced the ribosomal large-subunit RNA gene sequences (3,037-3,061 bp) in length of 13 Chinese Theileria stocks that were infective to cattle and sheep. The complete 28S rRNA gene is relatively difficult to amplify and its conserved region is not important for phylogenetic study. Therefore, we selected the D2-D3 region from the complete 28S rRNA sequences for phylogenetic analysis. Our analyses of 28S rRNA gene sequences showed that the 28S rRNA was useful as a phylogenetic marker for analyzing the relationships among Theileria spp. in ruminants. In addition, the D2-D3 region was a short segment that could be used instead of the whole 28S rRNA sequence during the phylogenetic analysis of Theileria, and it may be an ideal DNA barcode. PMID:24327775
Phylogenetic analysis of ruminant Theileria spp. from China based on 28S ribosomal RNA gene.
Gou, Huitian; Guan, Guiquan; Ma, Miling; Liu, Aihong; Liu, Zhijie; Xu, Zongke; Ren, Qiaoyun; Li, Youquan; Yang, Jifei; Chen, Ze; Yin, Hong; Luo, Jianxun
2013-10-01
Species identification using DNA sequences is the basis for DNA taxonomy. In this study, we sequenced the ribosomal large-subunit RNA gene sequences (3,037-3,061 bp) in length of 13 Chinese Theileria stocks that were infective to cattle and sheep. The complete 28S rRNA gene is relatively difficult to amplify and its conserved region is not important for phylogenetic study. Therefore, we selected the D2-D3 region from the complete 28S rRNA sequences for phylogenetic analysis. Our analyses of 28S rRNA gene sequences showed that the 28S rRNA was useful as a phylogenetic marker for analyzing the relationships among Theileria spp. in ruminants. In addition, the D2-D3 region was a short segment that could be used instead of the whole 28S rRNA sequence during the phylogenetic analysis of Theileria, and it may be an ideal DNA barcode.
Phylogeny, host-parasite relationship and zoogeography
1999-01-01
Phylogeny is the evolutionary history of a group or the lineage of organisms and is reconstructed based on morphological, molecular and other characteristics. The genealogical relationship of a group of taxa is often expressed as a phylogenetic tree. The difficulty in categorizing the phylogeny is mainly due to the existence of frequent homoplasies that deceive observers. At the present time, cladistic analysis is believed to be one of the most effective methods of reconstructing a phylogenetic tree. Excellent computer program software for phylogenetic analysis is available. As an example, cladistic analysis was applied for nematode genera of the family Acuariidae, and the phylogenetic tree formed was compared with the system used currently. Nematodes in the genera Nippostrongylus and Heligmonoides were also analyzed, and the validity of the reconstructed phylogenetic trees was observed from a zoogeographical point of view. Some of the theories of parasite evolution were briefly reviewed as well. Coevolution of parasites and humans was discussed with special reference to the evolutionary relationship between Enterobius and primates. PMID:10634036
D'Arrigo, Stefano; Gavazzi, Francesco; Alfei, Enrico; Zuffardi, Orsetta; Montomoli, Cristina; Corso, Barbara; Buzzi, Erika; Sciacca, Francesca L; Bulgheroni, Sara; Riva, Daria; Pantaleoni, Chiara
2016-05-01
Microarray-based comparative genomic hybridization is a method of molecular analysis that identifies chromosomal anomalies (or copy number variants) that correlate with clinical phenotypes. The aim of the present study was to apply a clinical score previously designated by de Vries to 329 patients with intellectual disability/developmental disorder (intellectual disability/developmental delay) referred to our tertiary center and to see whether the clinical factors are associated with a positive outcome of aCGH analyses. Another goal was to test the association between a positive microarray-based comparative genomic hybridization result and the severity of intellectual disability/developmental delay. Microarray-based comparative genomic hybridization identified structural chromosomal alterations responsible for the intellectual disability/developmental delay phenotype in 16% of our sample. Our study showed that causative copy number variants are frequently found even in cases of mild intellectual disability (30.77%). We want to emphasize the need to conduct microarray-based comparative genomic hybridization on all individuals with intellectual disability/developmental delay, regardless of the severity, because the degree of intellectual disability/developmental delay does not predict the diagnostic yield of microarray-based comparative genomic hybridization. © The Author(s) 2015.
Genome Consortium for Active Teaching: Meeting the Goals of BIO2010
Ledbetter, Mary Lee S.; Hoopes, Laura L.M.; Eckdahl, Todd T.; Heyer, Laurie J.; Rosenwald, Anne; Fowlks, Edison; Tonidandel, Scott; Bucholtz, Brooke; Gottfried, Gail
2007-01-01
The Genome Consortium for Active Teaching (GCAT) facilitates the use of modern genomics methods in undergraduate education. Initially focused on microarray technology, but with an eye toward diversification, GCAT is a community working to improve the education of tomorrow's life science professionals. GCAT participants have access to affordable microarrays, microarray scanners, free software for data analysis, and faculty workshops. Microarrays provided by GCAT have been used by 141 faculty on 134 campuses, including 21 faculty that serve large numbers of underrepresented minority students. An estimated 9480 undergraduates a year will have access to microarrays by 2009 as a direct result of GCAT faculty workshops. Gains for students include significantly improved comprehension of topics in functional genomics and increased interest in research. Faculty reported improved access to new technology and gains in understanding thanks to their involvement with GCAT. GCAT's network of supportive colleagues encourages faculty to explore genomics through student research and to learn a new and complex method with their undergraduates. GCAT is meeting important goals of BIO2010 by making research methods accessible to undergraduates, training faculty in genomics and bioinformatics, integrating mathematics into the biology curriculum, and increasing participation by underrepresented minority students. PMID:17548873
Genome Consortium for Active Teaching: meeting the goals of BIO2010.
Campbell, A Malcolm; Ledbetter, Mary Lee S; Hoopes, Laura L M; Eckdahl, Todd T; Heyer, Laurie J; Rosenwald, Anne; Fowlks, Edison; Tonidandel, Scott; Bucholtz, Brooke; Gottfried, Gail
2007-01-01
The Genome Consortium for Active Teaching (GCAT) facilitates the use of modern genomics methods in undergraduate education. Initially focused on microarray technology, but with an eye toward diversification, GCAT is a community working to improve the education of tomorrow's life science professionals. GCAT participants have access to affordable microarrays, microarray scanners, free software for data analysis, and faculty workshops. Microarrays provided by GCAT have been used by 141 faculty on 134 campuses, including 21 faculty that serve large numbers of underrepresented minority students. An estimated 9480 undergraduates a year will have access to microarrays by 2009 as a direct result of GCAT faculty workshops. Gains for students include significantly improved comprehension of topics in functional genomics and increased interest in research. Faculty reported improved access to new technology and gains in understanding thanks to their involvement with GCAT. GCAT's network of supportive colleagues encourages faculty to explore genomics through student research and to learn a new and complex method with their undergraduates. GCAT is meeting important goals of BIO2010 by making research methods accessible to undergraduates, training faculty in genomics and bioinformatics, integrating mathematics into the biology curriculum, and increasing participation by underrepresented minority students.
SUNPLIN: Simulation with Uncertainty for Phylogenetic Investigations
2013-01-01
Background Phylogenetic comparative analyses usually rely on a single consensus phylogenetic tree in order to study evolutionary processes. However, most phylogenetic trees are incomplete with regard to species sampling, which may critically compromise analyses. Some approaches have been proposed to integrate non-molecular phylogenetic information into incomplete molecular phylogenies. An expanded tree approach consists of adding missing species to random locations within their clade. The information contained in the topology of the resulting expanded trees can be captured by the pairwise phylogenetic distance between species and stored in a matrix for further statistical analysis. Thus, the random expansion and processing of multiple phylogenetic trees can be used to estimate the phylogenetic uncertainty through a simulation procedure. Because of the computational burden required, unless this procedure is efficiently implemented, the analyses are of limited applicability. Results In this paper, we present efficient algorithms and implementations for randomly expanding and processing phylogenetic trees so that simulations involved in comparative phylogenetic analysis with uncertainty can be conducted in a reasonable time. We propose algorithms for both randomly expanding trees and calculating distance matrices. We made available the source code, which was written in the C++ language. The code may be used as a standalone program or as a shared object in the R system. The software can also be used as a web service through the link: http://purl.oclc.org/NET/sunplin/. Conclusion We compare our implementations to similar solutions and show that significant performance gains can be obtained. Our results open up the possibility of accounting for phylogenetic uncertainty in evolutionary and ecological analyses of large datasets. PMID:24229408
SUNPLIN: simulation with uncertainty for phylogenetic investigations.
Martins, Wellington S; Carmo, Welton C; Longo, Humberto J; Rosa, Thierson C; Rangel, Thiago F
2013-11-15
Phylogenetic comparative analyses usually rely on a single consensus phylogenetic tree in order to study evolutionary processes. However, most phylogenetic trees are incomplete with regard to species sampling, which may critically compromise analyses. Some approaches have been proposed to integrate non-molecular phylogenetic information into incomplete molecular phylogenies. An expanded tree approach consists of adding missing species to random locations within their clade. The information contained in the topology of the resulting expanded trees can be captured by the pairwise phylogenetic distance between species and stored in a matrix for further statistical analysis. Thus, the random expansion and processing of multiple phylogenetic trees can be used to estimate the phylogenetic uncertainty through a simulation procedure. Because of the computational burden required, unless this procedure is efficiently implemented, the analyses are of limited applicability. In this paper, we present efficient algorithms and implementations for randomly expanding and processing phylogenetic trees so that simulations involved in comparative phylogenetic analysis with uncertainty can be conducted in a reasonable time. We propose algorithms for both randomly expanding trees and calculating distance matrices. We made available the source code, which was written in the C++ language. The code may be used as a standalone program or as a shared object in the R system. The software can also be used as a web service through the link: http://purl.oclc.org/NET/sunplin/. We compare our implementations to similar solutions and show that significant performance gains can be obtained. Our results open up the possibility of accounting for phylogenetic uncertainty in evolutionary and ecological analyses of large datasets.
BATS: a Bayesian user-friendly software for analyzing time series microarray experiments.
Angelini, Claudia; Cutillo, Luisa; De Canditiis, Daniela; Mutarelli, Margherita; Pensky, Marianna
2008-10-06
Gene expression levels in a given cell can be influenced by different factors, namely pharmacological or medical treatments. The response to a given stimulus is usually different for different genes and may depend on time. One of the goals of modern molecular biology is the high-throughput identification of genes associated with a particular treatment or a biological process of interest. From methodological and computational point of view, analyzing high-dimensional time course microarray data requires very specific set of tools which are usually not included in standard software packages. Recently, the authors of this paper developed a fully Bayesian approach which allows one to identify differentially expressed genes in a 'one-sample' time-course microarray experiment, to rank them and to estimate their expression profiles. The method is based on explicit expressions for calculations and, hence, very computationally efficient. The software package BATS (Bayesian Analysis of Time Series) presented here implements the methodology described above. It allows an user to automatically identify and rank differentially expressed genes and to estimate their expression profiles when at least 5-6 time points are available. The package has a user-friendly interface. BATS successfully manages various technical difficulties which arise in time-course microarray experiments, such as a small number of observations, non-uniform sampling intervals and replicated or missing data. BATS is a free user-friendly software for the analysis of both simulated and real microarray time course experiments. The software, the user manual and a brief illustrative example are freely available online at the BATS website: http://www.na.iac.cnr.it/bats.
Yuen, Peter S.T.; Jo, Sang-Kyung; Holly, Mikaela K.; Hu, Xuzhen; Star, Robert A.
2006-01-01
Acute renal failure (ARF) has a high morbidity and mortality. In animal ARF models, effective treatments must be administered before or shortly after the insult, limiting their clinical potential. We used microarrays to identify early biomarkers that distinguish ischemic from nephrotoxic ARF, or biomarkers that detect both injury types. We compared rat kidney transcriptomes 2 and 8 hours after ischemia/reperfusion and after mercuric chloride. Quality control and statistical analyses were necessary to normalize microarrays from different lots, eliminate outliers, and exclude unaltered genes. Principal component analysis revealed distinct ischemic and nephrotoxic trajectories, and clear array groupings. Therefore, we used supervised analysis, t-tests and fold changes, to compile gene lists for each group, exclusive or non-exclusive, alone or in combination. There was little network connectivity, even in the largest group. Some microarray-identified genes were validated by TaqMan assay, ruling out artifacts. Western blotting confirmed that HO-1 and ATF3 proteins were upregulated; however, unexpectedly, their localization changed within the kidney. HO-1 staining shifted from cortical (early) to outer stripe of the outer medulla (late), primarily in detaching cells, after mercuric chloride, but not ischemia/reperfusion. ATF3 staining was similar, but with additional early transient expression in the outer stripe after ischemia/reperfusion. We conclude that microarray-identified genes must be evaluated not only for protein levels, but also for anatomical distribution among different zones, nephron segments, or cell types. Although protein detection reagents are limited, microarray data lay a rich foundation to explore biomarkers, therapeutics, and pathophysiology of ARF. PMID:16507785
Systematic Omics Analysis Review (SOAR) Tool to Support Risk Assessment
McConnell, Emma R.; Bell, Shannon M.; Cote, Ila; Wang, Rong-Lin; Perkins, Edward J.; Garcia-Reyero, Natàlia; Gong, Ping; Burgoon, Lyle D.
2014-01-01
Environmental health risk assessors are challenged to understand and incorporate new data streams as the field of toxicology continues to adopt new molecular and systems biology technologies. Systematic screening reviews can help risk assessors and assessment teams determine which studies to consider for inclusion in a human health assessment. A tool for systematic reviews should be standardized and transparent in order to consistently determine which studies meet minimum quality criteria prior to performing in-depth analyses of the data. The Systematic Omics Analysis Review (SOAR) tool is focused on assisting risk assessment support teams in performing systematic reviews of transcriptomic studies. SOAR is a spreadsheet tool of 35 objective questions developed by domain experts, focused on transcriptomic microarray studies, and including four main topics: test system, test substance, experimental design, and microarray data. The tool will be used as a guide to identify studies that meet basic published quality criteria, such as those defined by the Minimum Information About a Microarray Experiment standard and the Toxicological Data Reliability Assessment Tool. Seven scientists were recruited to test the tool by using it to independently rate 15 published manuscripts that study chemical exposures with microarrays. Using their feedback, questions were weighted based on importance of the information and a suitability cutoff was set for each of the four topic sections. The final validation resulted in 100% agreement between the users on four separate manuscripts, showing that the SOAR tool may be used to facilitate the standardized and transparent screening of microarray literature for environmental human health risk assessment. PMID:25531884
El-Ashker, Maged; Hotzel, Helmut; Gwida, Mayada; El-Beskawy, Mohamed; Silaghi, Cornelia; Tomaso, Herbert
2015-01-30
In this preliminary study, a novel DNA microarray system was tested for the diagnosis of bovine piroplasmosis and anaplasmosis in comparison with microscopy and PCR assay results. In the Dakahlia Governorate, Egypt, 164 cattle were investigated for the presence of piroplasms and Anaplasma species. All investigated cattle were clinically examined. Blood samples were screened for the presence of blood parasites using microscopy and PCR assays. Seventy-one animals were acutely ill, whereas 93 were apparently healthy. In acutely ill cattle, Babesia/Theileria species (n=11) and Anaplasma marginale (n=10) were detected. Mixed infections with Babesia/Theileria spp. and A. marginale were present in two further cases. A. marginale infections were also detected in apparently healthy subjects (n=23). The results of PCR assays were confirmed by DNA sequencing. All samples that were positive by PCR for Babesia/Theileria spp. gave also positive results in the microarray analysis. The microarray chips identified Babesia bovis (n=12) and Babesia bigemina (n=2). Cattle with babesiosis were likely to have hemoglobinuria and nervous signs when compared to those with anaplasmosis that frequently had bloody feces. We conclude that clinical examination in combination with microscopy are still very useful in diagnosing acute cases of babesiosis and anaplasmosis, but a combination of molecular biological diagnostic assays will detect even asymptomatic carriers. In perspective, parallel detection of Babesia/Theileria spp. and A. marginale infections using a single microarray system will be a valuable improvement. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Microarray Meta-Analysis of RNA-Binding Protein Functions in Alternative Polyadenylation
Hu, Wenchao; Liu, Yuting; Yan, Jun
2014-01-01
Alternative polyadenylation (APA) is a post-transcriptional mechanism to generate diverse mRNA transcripts with different 3′UTRs from the same gene. In this study, we systematically searched for the APA events with differential expression in public mouse microarray data. Hundreds of genes with over-represented differential APA events and the corresponding experiments were identified. We further revealed that global APA differential expression occurred prevalently in tissues such as brain comparing to peripheral tissues, and biological processes such as development, differentiation and immune responses. Interestingly, we also observed widespread differential APA events in RNA-binding protein (RBP) genes such as Rbm3, Eif4e2 and Elavl1. Given the fact that RBPs are considered as the main regulators of differential APA expression, we constructed a co-expression network between APAs and RBPs using the microarray data. Further incorporation of CLIP-seq data of selected RBPs showed that Nova2 represses and Mbnl1 promotes the polyadenylation of closest poly(A) sites respectively. Altogether, our study is the first microarray meta-analysis in a mammal on the regulation of APA by RBPs that integrated massive mRNA expression data under a wide-range of biological conditions. Finally, we present our results as a comprehensive resource in an online website for the research community. PMID:24622240
In vitro study of the effects of ELF electric fields on gene expression in human epidermal cells.
Collard, Jean-Francois; Mertens, Benjamin; Hinsenkamp, Maurice
2011-01-01
An acceleration of differentiation, at the expense of proliferation, is observed after exposure of various biological models to low frequency and low amplitude electric and electromagnetic fields. Following these results showing significant modifications, we try to identify the biological mechanism involved at the cell level through microarray screening. For this study, we use epidermis cultures harvested from human abdominoplasty. Two platinum electrodes are used to apply the electric signal. The gene expressions of 38,500 well-characterized human genes are analyzed using Affymetrix(®) microarray U133 Plus 2.0 chips. The protocol is repeated on three different patients. After three periods of exposure, a total of 24 chips have been processed. After the application of ELF electric fields, the microarray analysis confirms a modification of the gene expression of epidermis cells. Particularly, four up-regulated genes (DKK1, TXNRD1, ATF3, and MME) and one down-regulated gene (MACF1) are involved in the regulation of proliferation and differentiation. Expression of these five genes was also confirmed by real-time rtPCR in all samples used for microarray analysis. These results corroborate an acceleration of cell differentiation at the expense of cell proliferation. © 2010 Wiley-Liss, Inc.
Walter, Andreas; Knapp, Brigitte A.; Farbmacher, Theresa; Ebner, Christian; Insam, Heribert; Franke‐Whittle, Ingrid H.
2012-01-01
Summary To find links between the biotic characteristics and abiotic process parameters in anaerobic digestion systems, the microbial communities of nine full‐scale biogas plants in South Tyrol (Italy) and Vorarlberg (Austria) were investigated using molecular techniques and the physical and chemical properties were monitored. DNA from sludge samples was subjected to microarray hybridization with the ANAEROCHIP microarray and results indicated that sludge samples grouped into two main clusters, dominated either by Methanosarcina or by Methanosaeta, both aceticlastic methanogens. Hydrogenotrophic methanogens were hardly detected or if detected, gave low hybridization signals. Results obtained using denaturing gradient gel electrophoresis (DGGE) supported the findings of microarray hybridization. Real‐time PCR targeting Methanosarcina and Methanosaeta was conducted to provide quantitative data on the dominating methanogens. Correlation analysis to determine any links between the microbial communities found by microarray analysis, and the physicochemical parameters investigated was conducted. It was shown that the sludge samples dominated by the genus Methanosarcina were positively correlated with higher concentrations of acetate, whereas sludge samples dominated by representatives of the genus Methanosaeta had lower acetate concentrations. No other correlations between biotic characteristics and abiotic parameters were found. Methanogenic communities in each reactor were highly stable and resilient over the whole year. PMID:22950603
BμG@Sbase—a microbial gene expression and comparative genomic database
Witney, Adam A.; Waldron, Denise E.; Brooks, Lucy A.; Tyler, Richard H.; Withers, Michael; Stoker, Neil G.; Wren, Brendan W.; Butcher, Philip D.; Hinds, Jason
2012-01-01
The reducing cost of high-throughput functional genomic technologies is creating a deluge of high volume, complex data, placing the burden on bioinformatics resources and tool development. The Bacterial Microarray Group at St George's (BμG@S) has been at the forefront of bacterial microarray design and analysis for over a decade and while serving as a hub of a global network of microbial research groups has developed BμG@Sbase, a microbial gene expression and comparative genomic database. BμG@Sbase (http://bugs.sgul.ac.uk/bugsbase/) is a web-browsable, expertly curated, MIAME-compliant database that stores comprehensive experimental annotation and multiple raw and analysed data formats. Consistent annotation is enabled through a structured set of web forms, which guide the user through the process following a set of best practices and controlled vocabulary. The database currently contains 86 expertly curated publicly available data sets (with a further 124 not yet published) and full annotation information for 59 bacterial microarray designs. The data can be browsed and queried using an explorer-like interface; integrating intuitive tree diagrams to present complex experimental details clearly and concisely. Furthermore the modular design of the database will provide a robust platform for integrating other data types beyond microarrays into a more Systems analysis based future. PMID:21948792
BμG@Sbase--a microbial gene expression and comparative genomic database.
Witney, Adam A; Waldron, Denise E; Brooks, Lucy A; Tyler, Richard H; Withers, Michael; Stoker, Neil G; Wren, Brendan W; Butcher, Philip D; Hinds, Jason
2012-01-01
The reducing cost of high-throughput functional genomic technologies is creating a deluge of high volume, complex data, placing the burden on bioinformatics resources and tool development. The Bacterial Microarray Group at St George's (BμG@S) has been at the forefront of bacterial microarray design and analysis for over a decade and while serving as a hub of a global network of microbial research groups has developed BμG@Sbase, a microbial gene expression and comparative genomic database. BμG@Sbase (http://bugs.sgul.ac.uk/bugsbase/) is a web-browsable, expertly curated, MIAME-compliant database that stores comprehensive experimental annotation and multiple raw and analysed data formats. Consistent annotation is enabled through a structured set of web forms, which guide the user through the process following a set of best practices and controlled vocabulary. The database currently contains 86 expertly curated publicly available data sets (with a further 124 not yet published) and full annotation information for 59 bacterial microarray designs. The data can be browsed and queried using an explorer-like interface; integrating intuitive tree diagrams to present complex experimental details clearly and concisely. Furthermore the modular design of the database will provide a robust platform for integrating other data types beyond microarrays into a more Systems analysis based future.
Development and Validation of Sandwich ELISA Microarrays with Minimal Assay Interference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, Rachel M.; Servoss, Shannon; Crowley, Sheila A.
Sandwich enzyme-linked immunosorbent assay (ELISA) microarrays are emerging as a strong candidate platform for multiplex biomarker analysis because of the ELISA’s ability to quantitatively measure rare proteins in complex biological fluids. Advantages of this platform are high-throughput potential, assay sensitivity and stringency, and the similarity to the standard ELISA test, which facilitates assay transfer from a research setting to a clinical laboratory. However, a major concern with the multiplexing of ELISAs is maintaining high assay specificity. In this study, we systematically determine the amount of assay interference and noise contributed by individual components of the multiplexed 24-assay system. We findmore » that non-specific reagent cross-reactivity problems are relatively rare. We did identify the presence of contaminant antigens in a “purified antigen”. We tested the validated ELISA microarray chip using paired serum samples that had been collected from four women at a 6-month interval. This analysis demonstrated that protein levels typically vary much more between individuals then within an individual over time, a result which suggests that longitudinal studies may be useful in controlling for biomarker variability across a population. Overall, this research demonstrates the importance of a stringent screening protocol and the value of optimizing the antibody and antigen concentrations when designing chips for ELISA microarrays.« less
Gerns Storey, Helen L; Richardson, Barbra A; Singa, Benson; Naulikha, Jackie; Prindle, Vivian C; Diaz-Ochoa, Vladimir E; Felgner, Phil L; Camerini, David; Horton, Helen; John-Stewart, Grace; Walson, Judd L
2014-01-01
The role of HIV-1-specific antibody responses in HIV disease progression is complex and would benefit from analysis techniques that examine clusterings of responses. Protein microarray platforms facilitate the simultaneous evaluation of numerous protein-specific antibody responses, though excessive data are cumbersome in analyses. Principal components analysis (PCA) reduces data dimensionality by generating fewer composite variables that maximally account for variance in a dataset. To identify clusters of antibody responses involved in disease control, we investigated the association of HIV-1-specific antibody responses by protein microarray, and assessed their association with disease progression using PCA in a nested cohort design. Associations observed among collections of antibody responses paralleled protein-specific responses. At baseline, greater antibody responses to the transmembrane glycoprotein (TM) and reverse transcriptase (RT) were associated with higher viral loads, while responses to the surface glycoprotein (SU), capsid (CA), matrix (MA), and integrase (IN) proteins were associated with lower viral loads. Over 12 months greater antibody responses were associated with smaller decreases in CD4 count (CA, MA, IN), and reduced likelihood of disease progression (CA, IN). PCA and protein microarray analyses highlighted a collection of HIV-specific antibody responses that together were associated with reduced disease progression, and may not have been identified by examining individual antibody responses. This technique may be useful to explore multifaceted host-disease interactions, such as HIV coinfections.
Benschop, Corina C G; Quaak, Frederike C A; Boon, Mathilde E; Sijen, Titia; Kuiper, Irene
2012-03-01
Forensic analysis of biological traces generally encompasses the investigation of both the person who contributed to the trace and the body site(s) from which the trace originates. For instance, for sexual assault cases, it can be beneficial to distinguish vaginal samples from skin or saliva samples. In this study, we explored the use of microbial flora to indicate vaginal origin. First, we explored the vaginal microbiome for a large set of clinical vaginal samples (n = 240) by next generation sequencing (n = 338,184 sequence reads) and found 1,619 different sequences. Next, we selected 389 candidate probes targeting genera or species and designed a microarray, with which we analysed a diverse set of samples; 43 DNA extracts from vaginal samples and 25 DNA extracts from samples from other body sites, including sites in close proximity of or in contact with the vagina. Finally, we used the microarray results and next generation sequencing dataset to assess the potential for a future approach that uses microbial markers to indicate vaginal origin. Since no candidate genera/species were found to positively identify all vaginal DNA extracts on their own, while excluding all non-vaginal DNA extracts, we deduce that a reliable statement about the cellular origin of a biological trace should be based on the detection of multiple species within various genera. Microarray analysis of a sample will then render a microbial flora pattern that is probably best analysed in a probabilistic approach.
Simpson, Julie E; Hosny, Ola; Wharton, Stephen B; Heath, Paul R; Holden, Hazel; Fernando, Malee S; Matthews, Fiona; Forster, Gill; O'Brien, John T; Barber, Robert; Kalaria, Raj N; Brayne, Carol; Shaw, Pamela J; Lewis, Claire E; Ince, Paul G
2009-02-01
White matter lesions (WML) in brain aging are linked to dementia and depression. Ischemia contributes to their pathogenesis but other mechanisms may contribute. We used RNA microarray analysis with functional pathway grouping as an unbiased approach to investigate evidence for additional pathogenetic mechanisms. WML were identified by MRI and pathology in brains donated to the Medical Research Council Cognitive Function and Ageing Study Cognitive Function and Aging Study. RNA was extracted to compare WML with nonlesional white matter samples from cases with lesions (WM[L]), and from cases with no lesions (WM[C]) using RNA microarray and pathway analysis. Functional pathways were validated for selected genes by quantitative real-time polymerase chain reaction and immunocytochemistry. We identified 8 major pathways in which multiple genes showed altered RNA transcription (immune regulation, cell cycle, apoptosis, proteolysis, ion transport, cell structure, electron transport, metabolism) among 502 genes that were differentially expressed in WML compared to WM[C]. In WM[L], 409 genes were altered involving the same pathways. Genes selected to validate this microarray data all showed the expected changes in RNA levels and immunohistochemical expression of protein. WML represent areas with a complex molecular phenotype. From this and previous evidence, WML may arise through tissue ischemia but may also reflect the contribution of additional factors like blood-brain barrier dysfunction. Differential expression of genes in WM[L] compared to WM[C] indicate a "field effect" in the seemingly normal surrounding white matter.
Li, Xiaoying; Korir, Nicholas Kibet; Liu, Lili; Shangguan, Lingfei; Wang, Yuzhu; Han, Jian; Chen, Ming; Fang, Jinggui
2012-11-15
Microarray analysis is a technique that can be employed to provide expression profiles of single genes and new insights to elucidate the biological mechanisms responsible for fruit development. To evaluate expression of genes mostly engaged in fruit development between Prunus mume and Prunus armeniaca, we first identified differentially expressed transcripts along the entire fruit life cycle by using microarrays spotted with 10,641 ESTs collected from P. mume and other Prunus EST sequences. A total of 1418 ESTs were selected after quality control of microarray spots and analysis for differential gene expression patterns during fruit development of P. mume and P. Armeniaca. From these, 707 up-regulated and 711 down-regulated genes showing more than two-fold differences in expression level were annotated by GO based on biological processes, molecular functions and cellular components. These differentially expressed genes were found to be involved in several important pathways of carbohydrate, galactose, and starch and sucrose metabolism as well as in biosynthesis of other secondary metabolites via KEGG. This could provide detailed information on the fruit quality differences during development and ripening of these two species. With the results obtained, we provide a practical database for comprehensive understanding of molecular events during fruit development and also lay a theoretical foundation for the cloning of genes regulating in a series of important rate-limiting enzymes involved in vital metabolic pathways during fruit development. Copyright © 2012 Elsevier GmbH. All rights reserved.
Topcuoglu, Nursen; Kulekci, Guven
2015-10-01
DNA microarray analysis is a computer based technology, that a reverse capture, which targets 10 periodontal bacteria (ParoCheck) is available for rapid semi-quantitative determination. The aim of this three-year retrospective study was to display the microarray analysis results for the subgingival biofilm samples taken from patient cases diagnosed with different forms of periodontitis. A total of 84 patients with generalized aggressive periodontitis (GAP,n:29), generalized chronic periodontitis (GCP, n:25), peri-implantitis (PI,n:14), localized aggressive periodontitis (LAP,n:8) and refractory chronic periodontitis (RP,n:8) were consecutively selected from the archives of the Oral Microbiological Diagnostic Laboratory. The subgingival biofilm samples were analyzed by the microarray-based identification of 10 selected species. All the tested species were detected in the samples. The red complex bacteria were the most prevalent with very high levels in all groups. Fusobacterium nucleatum was detected in all samples at high levels. The green and blue complex bacteria were less prevalent compared with red and orange complex, except Aggregatibacter actinomycetemcomitas was detected in all LAP group. Positive correlations were found within all the red complex bacteria and between red and orange complex bacteria especially in GCP and GAP groups. Parocheck enables to monitoring of periodontal pathogens in all forms of periodontal disease and can be alternative to other guiding and reliable microbiologic tests. Copyright © 2015 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Franklin, Wilfred A.
2010-01-01
In a flexible multisession laboratory, students investigate concepts of phylogenetic analysis at both the molecular and the morphological level. Students finish by conducting their own analysis on a collection of skeletons representing the major phyla of vertebrates, a collection of primate skulls, or a collection of hominid skulls.
Ren, Chong; Zhang, Zhan; Wang, Yi; Li, Shaohua; Liang, Zhenchang
2016-08-11
Nuclear factor Y (NF-Y) transcription factor is composed of three distinct subunits: NF-YA, NF-YB and NF-YC. Many members of NF-Y family have been reported to be key regulators in plant development, phytohormone signaling and drought tolerance. However, the function of the NF-Y family is less known in grape (Vitis vinifera L.). A total of 34 grape NF-Y genes that distributed unevenly on grape (V. vinifera) chromosomes were identified in this study. Phylogenetic analysis was performed to predict functional similarities between Arabidopsis thaliana and grape NF-Y genes. Comparison of the structures of grape NF-Y genes (VvNF-Ys) revealed their functional conservation and alteration. Furthermore, we investigated the expression profiles of VvNF-Ys in response to various stresses, phytohormone treatments, and in leaves and grape berries with various sugar contents at different developmental stages. The relationship between VvNF-Y transcript levels and sugar content was examined to select candidates for exogenous sugar treatments. Quantitative real-time PCR (qPCR) indicated that many VvNF-Ys responded to different sugar stimuli with variations in transcript abundance. qPCR and publicly available microarray data suggest that VvNF-Ys exhibit distinct expression patterns in different grape organs and developmental stages, and a number of VvNF-Ys may participate in responses to multiple abiotic and biotic stresses, phytohormone treatments and sugar accumulation or metabolism. In this study, we characterized 34 VvNF-Ys based on their distributions on chromosomes, gene structures, phylogenetic relationship with Arabidopsis NF-Y genes, and their expression patterns. The potential roles of VvNF-Ys in sugar accumulation or metabolism were also investigated. Altogether, the data provide significant insights on VvNF-Ys, and lay foundations for further functional studies of NF-Y genes in grape.
Dewulf, Evelyne M; Cani, Patrice D; Claus, Sandrine P; Fuentes, Susana; Puylaert, Philippe G B; Neyrinck, Audrey M; Bindels, Laure B; de Vos, Willem M; Gibson, Glenn R; Thissen, Jean-Paul; Delzenne, Nathalie M
2013-08-01
To highlight the contribution of the gut microbiota to the modulation of host metabolism by dietary inulin-type fructans (ITF prebiotics) in obese women. A double blind, placebo controlled, intervention study was performed with 30 obese women treated with ITF prebiotics (inulin/oligofructose 50/50 mix; n=15) or placebo (maltodextrin; n=15) for 3 months (16 g/day). Blood, faeces and urine sampling, oral glucose tolerance test, homeostasis model assessment and impedancemetry were performed before and after treatment. The gut microbial composition in faeces was analysed by phylogenetic microarray and qPCR analysis of 16S rDNA. Plasma and urine metabolic profiles were analysed by 1H-NMR spectroscopy. Treatment with ITF prebiotics, but not the placebo, led to an increase in Bifidobacterium and Faecalibacterium prausnitzii; both bacteria negatively correlated with serum lipopolysaccharide levels. ITF prebiotics also decreased Bacteroides intestinalis, Bacteroides vulgatus and Propionibacterium, an effect associated with a slight decrease in fat mass and with plasma lactate and phosphatidylcholine levels. No clear treatment clustering could be detected for gut microbial analysis or plasma and urine metabolomic profile analyses. However, ITF prebiotics led to subtle changes in the gut microbiota that may importantly impact on several key metabolites implicated in obesity and/or diabetes. ITF prebiotics selectively changed the gut microbiota composition in obese women, leading to modest changes in host metabolism, as suggested by the correlation between some bacterial species and metabolic endotoxaemia or metabolomic signatures.
Korpela, Katri; Mutanen, Annika; Salonen, Anne; Savilahti, Erkki; de Vos, Willem M; Pakarinen, Mikko P
2017-02-01
Intestinal failure (IF)-associated liver disease (IFALD) is the major cause of mortality in IF. The link between intestinal microbiota and IFALD is unclear. We compared intestinal microbiota of patients with IF (n = 23) with healthy controls (n = 58) using culture-independent phylogenetic microarray analysis. The microbiota was related to histological liver injury, fecal markers of intestinal inflammation, matrix metalloproteinase 9 and calprotectin, and disease characteristics. Overabundance of Lactobacilli, Proteobacteria, and Actinobacteria was observed in IF, whereas bacteria related to Clostridium clusters III, IV, and XIVa along with overall diversity and richness were reduced. Patients were segregated into 3 subgroups based on dominating bacteria: Clostridium cluster XIVa, Proteobacteria, and bacteria related to Lactobacillus plantarum. In addition to liver steatosis and fibrosis, Proteobacteria were associated with prolonged current parenteral nutrition (PN) as well as liver and intestinal inflammation. Lactobacilli were related to advanced steatosis and fibrosis mostly after weaning off PN without associated inflammation. In multivariate permutational analysis of variance, liver steatosis, bowel length, PN calories, and antibiotic treatment best explained the microbiota variation among patients with IF. Intestinal microbiota composition was associated with liver steatosis in IF and better predicted steatosis than duration of PN or length of the remaining intestine. Our results may be explained by a model in which steatosis is initiated during PN in response to proinflammatory lipopolysaccharides produced by Proteobacteria and progresses after weaning off PN, as the L plantarum group Lactobacilli becomes dominant and affects lipid metabolism by altering bile acid signaling.
Kawaida, Hitomi; Ohba, Kohki; Koutake, Yuhki; Shimizu, Hiroshi; Tachida, Hidenori; Kobayakawa, Yoshitaka
2013-03-01
Although many physiological studies have been reported on the symbiosis between hydra and green algae, very little information from a molecular phylogenetic aspect of symbiosis is available. In order to understand the origin and evolution of symbiosis between the two organisms, we compared the phylogenetic relationships among symbiotic green algae with the phylogenetic relationships among host hydra strains. To do so, we reconstructed molecular phylogenetic trees of several strains of symbiotic chlorella harbored in the endodermal epithelial cells of viridissima group hydra strains and investigated their congruence with the molecular phylogenetic trees of the host hydra strains. To examine the species specificity between the host and the symbiont with respect to the genetic distance, we also tried to introduce chlorella strains into two aposymbiotic strains of viridissima group hydra in which symbiotic chlorella had been eliminated in advance. We discussed the origin and history of symbiosis between hydra and green algae based on the analysis. Copyright © 2012 Elsevier Inc. All rights reserved.
Nonlinear matching measure for the analysis of on-off type DNA microarray images
NASA Astrophysics Data System (ADS)
Kim, Jong D.; Park, Misun; Kim, Jongwon
2003-07-01
In this paper, we propose a new nonlinear matching measure for automatic analysis of the on-off type DNA microarray images in which the hybridized spots are detected by the template matching method. The targeting spots of HPV DNA chips are designed for genotyping the human papilloma virus(HPV). The proposed measure is obtained by binarythresholding over the whole template region and taking the number of white pixels inside the spotted area. This measure is evaluated in terms of the accuracy of the estimated marker location to show better performance than the normalized covariance.
2013-01-01
Background The Grooved Carpet shell clam Ruditapes decussatus is the autochthonous European clam and the most appreciated from a gastronomic and economic point of view. The production is in decline due to several factors such as Perkinsiosis and habitat invasion and competition by the introduced exotic species, the manila clam Ruditapes philippinarum. After we sequenced R. decussatus transcriptome we have designed an oligo microarray capable of contributing to provide some clues on molecular response of the clam to Perkinsiosis. Results A database consisting of 41,119 unique transcripts was constructed, of which 12,479 (30.3%) were annotated by similarity. An oligo-DNA microarray platform was then designed and applied to profile gene expression in R. decussatus heavily infected by Perkinsus olseni. Functional annotation of differentially expressed genes between those two conditionswas performed by gene set enrichment analysis. As expected, microarrays unveil genes related with stress/infectious agents such as hydrolases, proteases and others. The extensive role of innate immune system was also analyzed and effect of parasitosis upon expression of important molecules such as lectins reviewed. Conclusions This study represents a first attempt to characterize Ruditapes decussatus transcriptome, an important marine resource for the European aquaculture. The trancriptome sequencing and consequent annotation will increase the available tools and resources for this specie, introducing the possibility of high throughput experiments such as microarrays analysis. In this specific case microarray approach was used to unveil some important aspects of host-parasite interaction between the Carpet shell clam and Perkinsus, two non-model species, highlighting some genes associated with this interaction. Ample information was obtained to identify biological processes significantly enriched among differentially expressed genes in Perkinsus infected versus non-infected gills. An overview on the genes related with the immune system on R. decussatus transcriptome is also reported. PMID:24168212