Sample records for phylogenetically based differences

  1. Disentangling environmental and spatial effects on phylogenetic structure of angiosperm tree communities in China.

    PubMed

    Qian, Hong; Chen, Shengbin; Zhang, Jin-Long

    2017-07-17

    Niche-based and neutrality-based theories are two major classes of theories explaining the assembly mechanisms of local communities. Both theories have been frequently used to explain species diversity and composition in local communities but their relative importance remains unclear. Here, we analyzed 57 assemblages of angiosperm trees in 0.1-ha forest plots across China to examine the effects of environmental heterogeneity (relevant to niche-based processes) and spatial contingency (relevant to neutrality-based processes) on phylogenetic structure of angiosperm tree assemblages distributed across a wide range of environment and space. Phylogenetic structure was quantified with six phylogenetic metrics (i.e., phylogenetic diversity, mean pairwise distance, mean nearest taxon distance, and the standardized effect sizes of these three metrics), which emphasize on different depths of evolutionary histories and account for different degrees of species richness effects. Our results showed that the variation in phylogenetic metrics explained independently by environmental variables was on average much greater than that explained independently by spatial structure, and the vast majority of the variation in phylogenetic metrics was explained by spatially structured environmental variables. We conclude that niche-based processes have played a more important role than neutrality-based processes in driving phylogenetic structure of angiosperm tree species in forest communities in China.

  2. Aquatic insect ecophysiological traits reveal phylogenetically based differences in dissolved cadmium susceptibility.

    PubMed

    Buchwalter, David B; Cain, Daniel J; Martin, Caitrin A; Xie, Lingtian; Luoma, Samuel N; Garland, Theodore

    2008-06-17

    We used a phylogenetically based comparative approach to evaluate the potential for physiological studies to reveal patterns of diversity in traits related to susceptibility to an environmental stressor, the trace metal cadmium (Cd). Physiological traits related to Cd bioaccumulation, compartmentalization, and ultimately susceptibility were measured in 21 aquatic insect species representing the orders Ephemeroptera, Plecoptera, and Trichoptera. We mapped these experimentally derived physiological traits onto a phylogeny and quantified the tendency for related species to be similar (phylogenetic signal). All traits related to Cd bioaccumulation and susceptibility exhibited statistically significant phylogenetic signal, although the signal strength varied among traits. Conventional and phylogenetically based regression models were compared, revealing great variability within orders but consistent, strong differences among insect families. Uptake and elimination rate constants were positively correlated among species, but only when effects of body size and phylogeny were incorporated in the analysis. Together, uptake and elimination rates predicted dramatic Cd bioaccumulation differences among species that agreed with field-based measurements. We discovered a potential tradeoff between the ability to eliminate Cd and the ability to detoxify it across species, particularly mayflies. The best-fit regression models were driven by phylogenetic parameters (especially differences among families) rather than functional traits, suggesting that it may eventually be possible to predict a taxon's physiological performance based on its phylogenetic position, provided adequate physiological information is available for close relatives. There appears to be great potential for evolutionary physiological approaches to augment our understanding of insect responses to environmental stressors in nature.

  3. Aquatic insect ecophysiological traits reveal phylogenetically based differences in dissolved cadmium susceptibility

    PubMed Central

    Buchwalter, David B.; Cain, Daniel J.; Martin, Caitrin A.; Xie, Lingtian; Luoma, Samuel N.; Garland, Theodore

    2008-01-01

    We used a phylogenetically based comparative approach to evaluate the potential for physiological studies to reveal patterns of diversity in traits related to susceptibility to an environmental stressor, the trace metal cadmium (Cd). Physiological traits related to Cd bioaccumulation, compartmentalization, and ultimately susceptibility were measured in 21 aquatic insect species representing the orders Ephemeroptera, Plecoptera, and Trichoptera. We mapped these experimentally derived physiological traits onto a phylogeny and quantified the tendency for related species to be similar (phylogenetic signal). All traits related to Cd bioaccumulation and susceptibility exhibited statistically significant phylogenetic signal, although the signal strength varied among traits. Conventional and phylogenetically based regression models were compared, revealing great variability within orders but consistent, strong differences among insect families. Uptake and elimination rate constants were positively correlated among species, but only when effects of body size and phylogeny were incorporated in the analysis. Together, uptake and elimination rates predicted dramatic Cd bioaccumulation differences among species that agreed with field-based measurements. We discovered a potential tradeoff between the ability to eliminate Cd and the ability to detoxify it across species, particularly mayflies. The best-fit regression models were driven by phylogenetic parameters (especially differences among families) rather than functional traits, suggesting that it may eventually be possible to predict a taxon's physiological performance based on its phylogenetic position, provided adequate physiological information is available for close relatives. There appears to be great potential for evolutionary physiological approaches to augment our understanding of insect responses to environmental stressors in nature. PMID:18559853

  4. Aquatic insect ecophysiological traits reveal phylogenetically based differences in dissolved cadmium susceptibility

    USGS Publications Warehouse

    Buchwalter, D.B.; Cain, D.J.; Martin, C.A.; Xie, Lingtian; Luoma, S.N.; Garland, T.

    2008-01-01

    We used a phylogenetically based comparative approach to evaluate the potential for physiological studies to reveal patterns of diversity in traits related to susceptibility to an environmental stressor, the trace metal cadmium (Cd). Physiological traits related to Cd bioaccumulation, compartmentalization, and ultimately susceptibility were measured in 21 aquatic insect species representing the orders Ephemeroptera, Plecoptera, and Trichoptera. We mapped these experimentally derived physiological traits onto a phylogeny and quantified the tendency for related species to be similar (phylogenetic signal). All traits related to Cd bioaccumulation and susceptibility exhibited statistically significant phylogenetic signal, although the signal strength varied among traits. Conventional and phylogenetically based regression models were compared, revealing great variability within orders but consistent, strong differences among insect families. Uptake and elimination rate constants were positively correlated among species, but only when effects of body size and phylogeny were incorporated in the analysis. Together, uptake and elimination rates predicted dramatic Cd bioaccumulation differences among species that agreed with field-based measurements. We discovered a potential tradeoff between the ability to eliminate Cd and the ability to detoxify it across species, particularly mayflies. The best-fit regression models were driven by phylogenetic parameters (especially differences among families) rather than functional traits, suggesting that it may eventually be possible to predict a taxon's physiological performance based on its phylogenetic position, provided adequate physiological information is available for close relatives. There appears to be great potential for evolutionary physiological approaches to augment our understanding of insect responses to environmental stressors in nature. ?? 2008 by The National Academy of Sciences of the USA.

  5. Phylogenetic tree construction based on 2D graphical representation

    NASA Astrophysics Data System (ADS)

    Liao, Bo; Shan, Xinzhou; Zhu, Wen; Li, Renfa

    2006-04-01

    A new approach based on the two-dimensional (2D) graphical representation of the whole genome sequence [Bo Liao, Chem. Phys. Lett., 401(2005) 196.] is proposed to analyze the phylogenetic relationships of genomes. The evolutionary distances are obtained through measuring the differences among the 2D curves. The fuzzy theory is used to construct phylogenetic tree. The phylogenetic relationships of H5N1 avian influenza virus illustrate the utility of our approach.

  6. Phylogenetic turnover during subtropical forest succession across environmental and phylogenetic scales.

    PubMed

    Purschke, Oliver; Michalski, Stefan G; Bruelheide, Helge; Durka, Walter

    2017-12-01

    Although spatial and temporal patterns of phylogenetic community structure during succession are inherently interlinked and assembly processes vary with environmental and phylogenetic scales, successional studies of community assembly have yet to integrate spatial and temporal components of community structure, while accounting for scaling issues. To gain insight into the processes that generate biodiversity after disturbance, we combine analyses of spatial and temporal phylogenetic turnover across phylogenetic scales, accounting for covariation with environmental differences. We compared phylogenetic turnover, at the species- and individual-level, within and between five successional stages, representing woody plant communities in a subtropical forest chronosequence. We decomposed turnover at different phylogenetic depths and assessed its covariation with between-plot abiotic differences. Phylogenetic turnover between stages was low relative to species turnover and was not explained by abiotic differences. However, within the late-successional stages, there was high presence-/absence-based turnover (clustering) that occurred deep in the phylogeny and covaried with environmental differentiation. Our results support a deterministic model of community assembly where (i) phylogenetic composition is constrained through successional time, but (ii) toward late succession, species sorting into preferred habitats according to niche traits that are conserved deep in phylogeny, becomes increasingly important.

  7. Open Reading Frame Phylogenetic Analysis on the Cloud

    PubMed Central

    2013-01-01

    Phylogenetic analysis has become essential in researching the evolutionary relationships between viruses. These relationships are depicted on phylogenetic trees, in which viruses are grouped based on sequence similarity. Viral evolutionary relationships are identified from open reading frames rather than from complete sequences. Recently, cloud computing has become popular for developing internet-based bioinformatics tools. Biocloud is an efficient, scalable, and robust bioinformatics computing service. In this paper, we propose a cloud-based open reading frame phylogenetic analysis service. The proposed service integrates the Hadoop framework, virtualization technology, and phylogenetic analysis methods to provide a high-availability, large-scale bioservice. In a case study, we analyze the phylogenetic relationships among Norovirus. Evolutionary relationships are elucidated by aligning different open reading frame sequences. The proposed platform correctly identifies the evolutionary relationships between members of Norovirus. PMID:23671843

  8. Mapping Phylogenetic Trees to Reveal Distinct Patterns of Evolution

    PubMed Central

    Kendall, Michelle; Colijn, Caroline

    2016-01-01

    Evolutionary relationships are frequently described by phylogenetic trees, but a central barrier in many fields is the difficulty of interpreting data containing conflicting phylogenetic signals. We present a metric-based method for comparing trees which extracts distinct alternative evolutionary relationships embedded in data. We demonstrate detection and resolution of phylogenetic uncertainty in a recent study of anole lizards, leading to alternate hypotheses about their evolutionary relationships. We use our approach to compare trees derived from different genes of Ebolavirus and find that the VP30 gene has a distinct phylogenetic signature composed of three alternatives that differ in the deep branching structure. Key words: phylogenetics, evolution, tree metrics, genetics, sequencing. PMID:27343287

  9. Genomic Repeat Abundances Contain Phylogenetic Signal

    PubMed Central

    Dodsworth, Steven; Chase, Mark W.; Kelly, Laura J.; Leitch, Ilia J.; Macas, Jiří; Novák, Petr; Piednoël, Mathieu; Weiss-Schneeweiss, Hanna; Leitch, Andrew R.

    2015-01-01

    A large proportion of genomic information, particularly repetitive elements, is usually ignored when researchers are using next-generation sequencing. Here we demonstrate the usefulness of this repetitive fraction in phylogenetic analyses, utilizing comparative graph-based clustering of next-generation sequence reads, which results in abundance estimates of different classes of genomic repeats. Phylogenetic trees are then inferred based on the genome-wide abundance of different repeat types treated as continuously varying characters; such repeats are scattered across chromosomes and in angiosperms can constitute a majority of nuclear genomic DNA. In six diverse examples, five angiosperms and one insect, this method provides generally well-supported relationships at interspecific and intergeneric levels that agree with results from more standard phylogenetic analyses of commonly used markers. We propose that this methodology may prove especially useful in groups where there is little genetic differentiation in standard phylogenetic markers. At the same time as providing data for phylogenetic inference, this method additionally yields a wealth of data for comparative studies of genome evolution. PMID:25261464

  10. Dynamically heterogenous partitions and phylogenetic inference: an evaluation of analytical strategies with cytochrome b and ND6 gene sequences in cranes.

    PubMed

    Krajewski, C; Fain, M G; Buckley, L; King, D G

    1999-11-01

    ki ctes over whether molecular sequence data should be partitioned for phylogenetic analysis often confound two types of heterogeneity among partitions. We distinguish historical heterogeneity (i.e., different partitions have different evolutionary relationships) from dynamic heterogeneity (i.e., different partitions show different patterns of sequence evolution) and explore the impact of the latter on phylogenetic accuracy and precision with a two-gene, mitochondrial data set for cranes. The well-established phylogeny of cranes allows us to contrast tree-based estimates of relevant parameter values with estimates based on pairwise comparisons and to ascertain the effects of incorporating different amounts of process information into phylogenetic estimates. We show that codon positions in the cytochrome b and NADH dehydrogenase subunit 6 genes are dynamically heterogenous under both Poisson and invariable-sites + gamma-rates versions of the F84 model and that heterogeneity includes variation in base composition and transition bias as well as substitution rate. Estimates of transition-bias and relative-rate parameters from pairwise sequence comparisons were comparable to those obtained as tree-based maximum likelihood estimates. Neither rate-category nor mixed-model partitioning strategies resulted in a loss of phylogenetic precision relative to unpartitioned analyses. We suggest that weighted-average distances provide a computationally feasible alternative to direct maximum likelihood estimates of phylogeny for mixed-model analyses of large, dynamically heterogenous data sets. Copyright 1999 Academic Press.

  11. Mapping Phylogenetic Trees to Reveal Distinct Patterns of Evolution.

    PubMed

    Kendall, Michelle; Colijn, Caroline

    2016-10-01

    Evolutionary relationships are frequently described by phylogenetic trees, but a central barrier in many fields is the difficulty of interpreting data containing conflicting phylogenetic signals. We present a metric-based method for comparing trees which extracts distinct alternative evolutionary relationships embedded in data. We demonstrate detection and resolution of phylogenetic uncertainty in a recent study of anole lizards, leading to alternate hypotheses about their evolutionary relationships. We use our approach to compare trees derived from different genes of Ebolavirus and find that the VP30 gene has a distinct phylogenetic signature composed of three alternatives that differ in the deep branching structure. phylogenetics, evolution, tree metrics, genetics, sequencing. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Long-term nitrogen addition affects the phylogenetic turnover of soil microbial community responding to moisture pulse

    DOE PAGES

    Liu, Chi; Yao, Minjie; Stegen, James C.; ...

    2017-12-13

    How press disturbance (long-term) influences the phylogenetic turnover of soil microbial communities responding to pulse disturbances (short-term) is not fully known. Understanding the complex connections between the history of environmental conditions, assembly processes and microbial community dynamics is necessary to predict microbial response to perturbation. Here, we started by investigating phylogenetic spatial turnover (based on DNA) of soil prokaryotic communities after long-term nitrogen (N) deposition and temporal turnover (based on RNA) of communities responding to pulse by conducting short-term rewetting experiments. The results showed that moderate N addition increased ecological stochasticity and phylogenetic diversity. In contrast, high N addition slightlymore » increased homogeneous selection and decreased phylogenetic diversity. Examining the system with higher phylogenetic resolution revealed a moderate contribution of variable selection across the whole N gradient. The moisture pulse experiment showed that high N soils had higher rates of phylogenetic turnover across short phylogenetic distances and significant changes in community compositions through time. Long-term N input history influenced spatial turnover of microbial communities, but the dominant community assembly mechanisms differed across different N deposition gradients. We further revealed an interaction between press and pulse disturbances whereby deterministic processes were particularly important following pulse disturbances in high N soils.« less

  13. Long-term nitrogen addition affects the phylogenetic turnover of soil microbial community responding to moisture pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chi; Yao, Minjie; Stegen, James C.

    How press disturbance (long-term) influences the phylogenetic turnover of soil microbial communities responding to pulse disturbances (short-term) is not fully known. Understanding the complex connections between the history of environmental conditions, assembly processes and microbial community dynamics is necessary to predict microbial response to perturbation. Here, we started by investigating phylogenetic spatial turnover (based on DNA) of soil prokaryotic communities after long-term nitrogen (N) deposition and temporal turnover (based on RNA) of communities responding to pulse by conducting short-term rewetting experiments. The results showed that moderate N addition increased ecological stochasticity and phylogenetic diversity. In contrast, high N addition slightlymore » increased homogeneous selection and decreased phylogenetic diversity. Examining the system with higher phylogenetic resolution revealed a moderate contribution of variable selection across the whole N gradient. The moisture pulse experiment showed that high N soils had higher rates of phylogenetic turnover across short phylogenetic distances and significant changes in community compositions through time. Long-term N input history influenced spatial turnover of microbial communities, but the dominant community assembly mechanisms differed across different N deposition gradients. We further revealed an interaction between press and pulse disturbances whereby deterministic processes were particularly important following pulse disturbances in high N soils.« less

  14. Long-term nitrogen addition affects the phylogenetic turnover of soil microbial community responding to moisture pulse.

    PubMed

    Liu, Chi; Yao, Minjie; Stegen, James C; Rui, Junpeng; Li, Jiabao; Li, Xiangzhen

    2017-12-13

    How press disturbance (long-term) influences the phylogenetic turnover of soil microbial communities responding to pulse disturbances (short-term) is not fully known. Understanding the complex connections between the history of environmental conditions, assembly processes and microbial community dynamics is necessary to predict microbial response to perturbation. We started by investigating phylogenetic spatial turnover (based on DNA) of soil prokaryotic communities after long-term nitrogen (N) deposition and temporal turnover (based on RNA) of communities responding to pulse by conducting short-term rewetting experiments. The results showed that moderate N addition increased ecological stochasticity and phylogenetic diversity. In contrast, high N addition slightly increased homogeneous selection and decreased phylogenetic diversity. Examining the system with higher phylogenetic resolution revealed a moderate contribution of variable selection across the whole N gradient. The moisture pulse experiment showed that high N soils had higher rates of phylogenetic turnover across short phylogenetic distances and significant changes in community compositions through time. Long-term N input history influenced spatial turnover of microbial communities, but the dominant community assembly mechanisms differed across different N deposition gradients. We further revealed an interaction between press and pulse disturbances whereby deterministic processes were particularly important following pulse disturbances in high N soils.

  15. Phylogenic inference using alignment-free methods for applications in microbial community surveys using 16s rRNA gene

    PubMed Central

    2017-01-01

    The diversity of microbiota is best explored by understanding the phylogenetic structure of the microbial communities. Traditionally, sequence alignment has been used for phylogenetic inference. However, alignment-based approaches come with significant challenges and limitations when massive amounts of data are analyzed. In the recent decade, alignment-free approaches have enabled genome-scale phylogenetic inference. Here we evaluate three alignment-free methods: ACS, CVTree, and Kr for phylogenetic inference with 16s rRNA gene data. We use a taxonomic gold standard to compare the accuracy of alignment-free phylogenetic inference with that of common microbiome-wide phylogenetic inference pipelines based on PyNAST and MUSCLE alignments with FastTree and RAxML. We re-simulate fecal communities from Human Microbiome Project data to evaluate the performance of the methods on datasets with properties of real data. Our comparisons show that alignment-free methods are not inferior to alignment-based methods in giving accurate and robust phylogenic trees. Moreover, consensus ensembles of alignment-free phylogenies are superior to those built from alignment-based methods in their ability to highlight community differences in low power settings. In addition, the overall running times of alignment-based and alignment-free phylogenetic inference are comparable. Taken together our empirical results suggest that alignment-free methods provide a viable approach for microbiome-wide phylogenetic inference. PMID:29136663

  16. Using phylogeny and functional traits for assessing community assembly along environmental gradients: A deterministic process driven by elevation.

    PubMed

    Xu, Jinshi; Chen, Yu; Zhang, Lixia; Chai, Yongfu; Wang, Mao; Guo, Yaoxin; Li, Ting; Yue, Ming

    2017-07-01

    Community assembly processes is the primary focus of community ecology. Using phylogenetic-based and functional trait-based methods jointly to explore these processes along environmental gradients are useful ways to explain the change of assembly mechanisms under changing world. Our study combined these methods to test assembly processes in wide range gradients of elevation and other habitat environmental factors. We collected our data at 40 plots in Taibai Mountain, China, with more than 2,300 m altitude difference in study area and then measured traits and environmental factors. Variance partitioning was used to distinguish the main environment factors leading to phylogeny and traits change among 40 plots. Principal component analysis (PCA) was applied to colligate other environment factors. Community assembly patterns along environmental gradients based on phylogenetic and functional methods were studied for exploring assembly mechanisms. Phylogenetic signal was calculated for each community along environmental gradients in order to detect the variation of trait performance on phylogeny. Elevation showed a better explanatory power than other environment factors for phylogenetic and most traits' variance. Phylogenetic and several functional structure clustered at high elevation while some conserved traits overdispersed. Convergent tendency which might be caused by filtering or competition along elevation was detected based on functional traits. Leaf dry matter content (LDMC) and leaf nitrogen content along PCA 1 axis showed conflicting patterns comparing to patterns showed on elevation. LDMC exhibited the strongest phylogenetic signal. Only the phylogenetic signal of maximum plant height showed explicable change along environmental gradients. Synthesis . Elevation is the best environment factors for predicting phylogeny and traits change. Plant's phylogenetic and some functional structures show environmental filtering in alpine region while it shows different assembly processes in middle- and low-altitude region by different trait/phylogeny. The results highlight deterministic processes dominate community assembly in large-scale environmental gradients. Performance of phylogeny and traits along gradients may be independent with each other. The novel method for calculating functional structure which we used in this study and the focus of phylogenetic signal change along gradients may provide more useful ways to detect community assembly mechanisms.

  17. Phylobetadiversity among forest types in the Brazilian Atlantic Forest complex.

    PubMed

    Duarte, Leandro Da Silva; Bergamin, Rodrigo Scarton; Marcilio-Silva, Vinícius; Seger, Guilherme Dubal Dos Santos; Marques, Márcia Cristina Mendes

    2014-01-01

    Phylobetadiversity is defined as the phylogenetic resemblance between communities or biomes. Analyzing phylobetadiversity patterns among different vegetation physiognomies within a single biome is crucial to understand the historical affinities between them. Based on the widely accepted idea that different forest physiognomies within the Southern Brazilian Atlantic Forest constitute different facies of a single biome, we hypothesize that more recent phylogenetic nodes should drive phylobetadiversity gradients between the different forest types within the Atlantic Forest, as the phylogenetic divergence among those forest types is biogeographically recent. We compiled information from 206 checklists describing the occurrence of shrub/tree species across three different forest physiognomies within the Southern Brazilian Atlantic Forest (Dense, Mixed and Seasonal forests). We analyzed intra-site phylogenetic structure (phylogenetic diversity, net relatedness index and nearest taxon index) and phylobetadiversity between plots located at different forest types, using five different methods differing in sensitivity to either basal or terminal nodes (phylogenetic fuzzy weighting, COMDIST, COMDISTNT, UniFrac and Rao's H). Mixed forests showed higher phylogenetic diversity and overdispersion than the other forest types. Furthermore, all forest types differed from each other in relation phylobetadiversity patterns, particularly when phylobetadiversity methods more sensitive to terminal nodes were employed. Mixed forests tended to show higher phylogenetic differentiation to Dense and Seasonal forests than these latter from each other. The higher phylogenetic diversity and phylobetadiversity levels found in Mixed forests when compared to the others likely result from the biogeographical origin of several taxa occurring in these forests. On one hand, Mixed forests shelter several temperate taxa, like the conifers Araucaria and Podocarpus. On the other hand, tropical groups, like Myrtaceae, are also very representative of this forest type. We point out to the need of more attention to Mixed forests as a conservation target within the Brazilian Atlantic Forest given their high phylogenetic uniqueness.

  18. Phylobetadiversity among Forest Types in the Brazilian Atlantic Forest Complex

    PubMed Central

    Duarte, Leandro Da Silva; Bergamin, Rodrigo Scarton; Marcilio-Silva, Vinícius; Seger, Guilherme Dubal Dos Santos; Marques, Márcia Cristina Mendes

    2014-01-01

    Phylobetadiversity is defined as the phylogenetic resemblance between communities or biomes. Analyzing phylobetadiversity patterns among different vegetation physiognomies within a single biome is crucial to understand the historical affinities between them. Based on the widely accepted idea that different forest physiognomies within the Southern Brazilian Atlantic Forest constitute different facies of a single biome, we hypothesize that more recent phylogenetic nodes should drive phylobetadiversity gradients between the different forest types within the Atlantic Forest, as the phylogenetic divergence among those forest types is biogeographically recent. We compiled information from 206 checklists describing the occurrence of shrub/tree species across three different forest physiognomies within the Southern Brazilian Atlantic Forest (Dense, Mixed and Seasonal forests). We analyzed intra-site phylogenetic structure (phylogenetic diversity, net relatedness index and nearest taxon index) and phylobetadiversity between plots located at different forest types, using five different methods differing in sensitivity to either basal or terminal nodes (phylogenetic fuzzy weighting, COMDIST, COMDISTNT, UniFrac and Rao’s H). Mixed forests showed higher phylogenetic diversity and overdispersion than the other forest types. Furthermore, all forest types differed from each other in relation phylobetadiversity patterns, particularly when phylobetadiversity methods more sensitive to terminal nodes were employed. Mixed forests tended to show higher phylogenetic differentiation to Dense and Seasonal forests than these latter from each other. The higher phylogenetic diversity and phylobetadiversity levels found in Mixed forests when compared to the others likely result from the biogeographical origin of several taxa occurring in these forests. On one hand, Mixed forests shelter several temperate taxa, like the conifers Araucaria and Podocarpus. On the other hand, tropical groups, like Myrtaceae, are also very representative of this forest type. We point out to the need of more attention to Mixed forests as a conservation target within the Brazilian Atlantic Forest given their high phylogenetic uniqueness. PMID:25121495

  19. Reconstruction of phylogenetic trees of prokaryotes using maximal common intervals.

    PubMed

    Heydari, Mahdi; Marashi, Sayed-Amir; Tusserkani, Ruzbeh; Sadeghi, Mehdi

    2014-10-01

    One of the fundamental problems in bioinformatics is phylogenetic tree reconstruction, which can be used for classifying living organisms into different taxonomic clades. The classical approach to this problem is based on a marker such as 16S ribosomal RNA. Since evolutionary events like genomic rearrangements are not included in reconstructions of phylogenetic trees based on single genes, much effort has been made to find other characteristics for phylogenetic reconstruction in recent years. With the increasing availability of completely sequenced genomes, gene order can be considered as a new solution for this problem. In the present work, we applied maximal common intervals (MCIs) in two or more genomes to infer their distance and to reconstruct their evolutionary relationship. Additionally, measures based on uncommon segments (UCS's), i.e., those genomic segments which are not detected as part of any of the MCIs, are also used for phylogenetic tree reconstruction. We applied these two types of measures for reconstructing the phylogenetic tree of 63 prokaryotes with known COG (clusters of orthologous groups) families. Similarity between the MCI-based (resp. UCS-based) reconstructed phylogenetic trees and the phylogenetic tree obtained from NCBI taxonomy browser is as high as 93.1% (resp. 94.9%). We show that in the case of this diverse dataset of prokaryotes, tree reconstruction based on MCI and UCS outperforms most of the currently available methods based on gene orders, including breakpoint distance and DCJ. We additionally tested our new measures on a dataset of 13 closely-related bacteria from the genus Prochlorococcus. In this case, distances like rearrangement distance, breakpoint distance and DCJ proved to be useful, while our new measures are still appropriate for phylogenetic reconstruction. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. On the information content of discrete phylogenetic characters.

    PubMed

    Bordewich, Magnus; Deutschmann, Ina Maria; Fischer, Mareike; Kasbohm, Elisa; Semple, Charles; Steel, Mike

    2017-12-16

    Phylogenetic inference aims to reconstruct the evolutionary relationships of different species based on genetic (or other) data. Discrete characters are a particular type of data, which contain information on how the species should be grouped together. However, it has long been known that some characters contain more information than others. For instance, a character that assigns the same state to each species groups all of them together and so provides no insight into the relationships of the species considered. At the other extreme, a character that assigns a different state to each species also conveys no phylogenetic signal. In this manuscript, we study a natural combinatorial measure of the information content of an individual character and analyse properties of characters that provide the maximum phylogenetic information, particularly, the number of states such a character uses and how the different states have to be distributed among the species or taxa of the phylogenetic tree.

  1. Metabolic Pathway Assignment of Plant Genes based on Phylogenetic Profiling–A Feasibility Study

    PubMed Central

    Weißenborn, Sandra; Walther, Dirk

    2017-01-01

    Despite many developed experimental and computational approaches, functional gene annotation remains challenging. With the rapidly growing number of sequenced genomes, the concept of phylogenetic profiling, which predicts functional links between genes that share a common co-occurrence pattern across different genomes, has gained renewed attention as it promises to annotate gene functions based on presence/absence calls alone. We applied phylogenetic profiling to the problem of metabolic pathway assignments of plant genes with a particular focus on secondary metabolism pathways. We determined phylogenetic profiles for 40,960 metabolic pathway enzyme genes with assigned EC numbers from 24 plant species based on sequence and pathway annotation data from KEGG and Ensembl Plants. For gene sequence family assignments, needed to determine the presence or absence of particular gene functions in the given plant species, we included data of all 39 species available at the Ensembl Plants database and established gene families based on pairwise sequence identities and annotation information. Aside from performing profiling comparisons, we used machine learning approaches to predict pathway associations from phylogenetic profiles alone. Selected metabolic pathways were indeed found to be composed of gene families of greater than expected phylogenetic profile similarity. This was particularly evident for primary metabolism pathways, whereas for secondary pathways, both the available annotation in different species as well as the abstraction of functional association via distinct pathways proved limiting. While phylogenetic profile similarity was generally not found to correlate with gene co-expression, direct physical interactions of proteins were reflected by a significantly increased profile similarity suggesting an application of phylogenetic profiling methods as a filtering step in the identification of protein-protein interactions. This feasibility study highlights the potential and challenges associated with phylogenetic profiling methods for the detection of functional relationships between genes as well as the need to enlarge the set of plant genes with proven secondary metabolism involvement as well as the limitations of distinct pathways as abstractions of relationships between genes. PMID:29163570

  2. Construction of phylogenetic trees by kernel-based comparative analysis of metabolic networks.

    PubMed

    Oh, S June; Joung, Je-Gun; Chang, Jeong-Ho; Zhang, Byoung-Tak

    2006-06-06

    To infer the tree of life requires knowledge of the common characteristics of each species descended from a common ancestor as the measuring criteria and a method to calculate the distance between the resulting values of each measure. Conventional phylogenetic analysis based on genomic sequences provides information about the genetic relationships between different organisms. In contrast, comparative analysis of metabolic pathways in different organisms can yield insights into their functional relationships under different physiological conditions. However, evaluating the similarities or differences between metabolic networks is a computationally challenging problem, and systematic methods of doing this are desirable. Here we introduce a graph-kernel method for computing the similarity between metabolic networks in polynomial time, and use it to profile metabolic pathways and to construct phylogenetic trees. To compare the structures of metabolic networks in organisms, we adopted the exponential graph kernel, which is a kernel-based approach with a labeled graph that includes a label matrix and an adjacency matrix. To construct the phylogenetic trees, we used an unweighted pair-group method with arithmetic mean, i.e., a hierarchical clustering algorithm. We applied the kernel-based network profiling method in a comparative analysis of nine carbohydrate metabolic networks from 81 biological species encompassing Archaea, Eukaryota, and Eubacteria. The resulting phylogenetic hierarchies generally support the tripartite scheme of three domains rather than the two domains of prokaryotes and eukaryotes. By combining the kernel machines with metabolic information, the method infers the context of biosphere development that covers physiological events required for adaptation by genetic reconstruction. The results show that one may obtain a global view of the tree of life by comparing the metabolic pathway structures using meta-level information rather than sequence information. This method may yield further information about biological evolution, such as the history of horizontal transfer of each gene, by studying the detailed structure of the phylogenetic tree constructed by the kernel-based method.

  3. A Genome-Scale Investigation of How Sequence, Function, and Tree-Based Gene Properties Influence Phylogenetic Inference.

    PubMed

    Shen, Xing-Xing; Salichos, Leonidas; Rokas, Antonis

    2016-09-02

    Molecular phylogenetic inference is inherently dependent on choices in both methodology and data. Many insightful studies have shown how choices in methodology, such as the model of sequence evolution or optimality criterion used, can strongly influence inference. In contrast, much less is known about the impact of choices in the properties of the data, typically genes, on phylogenetic inference. We investigated the relationships between 52 gene properties (24 sequence-based, 19 function-based, and 9 tree-based) with each other and with three measures of phylogenetic signal in two assembled data sets of 2,832 yeast and 2,002 mammalian genes. We found that most gene properties, such as evolutionary rate (measured through the percent average of pairwise identity across taxa) and total tree length, were highly correlated with each other. Similarly, several gene properties, such as gene alignment length, Guanine-Cytosine content, and the proportion of tree distance on internal branches divided by relative composition variability (treeness/RCV), were strongly correlated with phylogenetic signal. Analysis of partial correlations between gene properties and phylogenetic signal in which gene evolutionary rate and alignment length were simultaneously controlled, showed similar patterns of correlations, albeit weaker in strength. Examination of the relative importance of each gene property on phylogenetic signal identified gene alignment length, alongside with number of parsimony-informative sites and variable sites, as the most important predictors. Interestingly, the subsets of gene properties that optimally predicted phylogenetic signal differed considerably across our three phylogenetic measures and two data sets; however, gene alignment length and RCV were consistently included as predictors of all three phylogenetic measures in both yeasts and mammals. These results suggest that a handful of sequence-based gene properties are reliable predictors of phylogenetic signal and could be useful in guiding the choice of phylogenetic markers. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. Effects of phylogenetic reconstruction method on the robustness of species delimitation using single-locus data

    PubMed Central

    Tang, Cuong Q; Humphreys, Aelys M; Fontaneto, Diego; Barraclough, Timothy G; Paradis, Emmanuel

    2014-01-01

    Coalescent-based species delimitation methods combine population genetic and phylogenetic theory to provide an objective means for delineating evolutionarily significant units of diversity. The generalised mixed Yule coalescent (GMYC) and the Poisson tree process (PTP) are methods that use ultrametric (GMYC or PTP) or non-ultrametric (PTP) gene trees as input, intended for use mostly with single-locus data such as DNA barcodes. Here, we assess how robust the GMYC and PTP are to different phylogenetic reconstruction and branch smoothing methods. We reconstruct over 400 ultrametric trees using up to 30 different combinations of phylogenetic and smoothing methods and perform over 2000 separate species delimitation analyses across 16 empirical data sets. We then assess how variable diversity estimates are, in terms of richness and identity, with respect to species delimitation, phylogenetic and smoothing methods. The PTP method generally generates diversity estimates that are more robust to different phylogenetic methods. The GMYC is more sensitive, but provides consistent estimates for BEAST trees. The lower consistency of GMYC estimates is likely a result of differences among gene trees introduced by the smoothing step. Unresolved nodes (real anomalies or methodological artefacts) affect both GMYC and PTP estimates, but have a greater effect on GMYC estimates. Branch smoothing is a difficult step and perhaps an underappreciated source of bias that may be widespread among studies of diversity and diversification. Nevertheless, careful choice of phylogenetic method does produce equivalent PTP and GMYC diversity estimates. We recommend simultaneous use of the PTP model with any model-based gene tree (e.g. RAxML) and GMYC approaches with BEAST trees for obtaining species hypotheses. PMID:25821577

  5. Systematics of Plant-Pathogenic and Related Streptomyces Species Based on Phylogenetic Analyses of Multiple Gene Loci

    USDA-ARS?s Scientific Manuscript database

    The 10 species of Streptomyces implicated as the etiological agents in scab disease of potatoes or soft rot disease of sweet potatoes are distributed among 7 different phylogenetic clades in analyses based on 16S rRNA gene sequences, but high sequence similarity of this gene among Streptomyces speci...

  6. Tree-Based Unrooted Phylogenetic Networks.

    PubMed

    Francis, A; Huber, K T; Moulton, V

    2018-02-01

    Phylogenetic networks are a generalization of phylogenetic trees that are used to represent non-tree-like evolutionary histories that arise in organisms such as plants and bacteria, or uncertainty in evolutionary histories. An unrooted phylogenetic network on a non-empty, finite set X of taxa, or network, is a connected, simple graph in which every vertex has degree 1 or 3 and whose leaf set is X. It is called a phylogenetic tree if the underlying graph is a tree. In this paper we consider properties of tree-based networks, that is, networks that can be constructed by adding edges into a phylogenetic tree. We show that although they have some properties in common with their rooted analogues which have recently drawn much attention in the literature, they have some striking differences in terms of both their structural and computational properties. We expect that our results could eventually have applications to, for example, detecting horizontal gene transfer or hybridization which are important factors in the evolution of many organisms.

  7. A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data.

    PubMed

    Adams, Dean C

    2014-09-01

    Phylogenetic signal is the tendency for closely related species to display similar trait values due to their common ancestry. Several methods have been developed for quantifying phylogenetic signal in univariate traits and for sets of traits treated simultaneously, and the statistical properties of these approaches have been extensively studied. However, methods for assessing phylogenetic signal in high-dimensional multivariate traits like shape are less well developed, and their statistical performance is not well characterized. In this article, I describe a generalization of the K statistic of Blomberg et al. that is useful for quantifying and evaluating phylogenetic signal in highly dimensional multivariate data. The method (K(mult)) is found from the equivalency between statistical methods based on covariance matrices and those based on distance matrices. Using computer simulations based on Brownian motion, I demonstrate that the expected value of K(mult) remains at 1.0 as trait variation among species is increased or decreased, and as the number of trait dimensions is increased. By contrast, estimates of phylogenetic signal found with a squared-change parsimony procedure for multivariate data change with increasing trait variation among species and with increasing numbers of trait dimensions, confounding biological interpretations. I also evaluate the statistical performance of hypothesis testing procedures based on K(mult) and find that the method displays appropriate Type I error and high statistical power for detecting phylogenetic signal in high-dimensional data. Statistical properties of K(mult) were consistent for simulations using bifurcating and random phylogenies, for simulations using different numbers of species, for simulations that varied the number of trait dimensions, and for different underlying models of trait covariance structure. Overall these findings demonstrate that K(mult) provides a useful means of evaluating phylogenetic signal in high-dimensional multivariate traits. Finally, I illustrate the utility of the new approach by evaluating the strength of phylogenetic signal for head shape in a lineage of Plethodon salamanders. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Can treefrog phylogeographical clades and species' phylogenetic topologies be recovered by bioacoustical analyses?

    PubMed

    Forti, Lucas Rodriguez; Lingnau, Rodrigo; Encarnação, Lais Carvalho; Bertoluci, Jaime; Toledo, Luís Felipe

    2017-01-01

    Phenotypic traits, such as the frog advertisement call, are generally correlated with interspecific genetic variation, and, as a consequence of strong sexual selection, these behaviors may carry a phylogenetic signal. However, variation in acoustic traits is not always correlated with genetic differences between populations (intraspecific variation); phenotypic plasticity and environmental variables may explain part of such variation. For example, local processes can affect acoustic properties in different lineages due to differences in physical structure, climatic conditions, and biotic interactions, particularly when populations are isolated. However, acoustic traits can be used to test phylogenetic hypotheses. We analyzed the advertisement calls of Dendropsophus elegans males from 18 sites and compared them with those of four closely related congeneric species, in order to test for differences between inter and intraspecific variation. We analyzed 451 calls of 45 males of these five species. Because males from distant sites were grouped together without population congruence, differences found in advertisement calls among individuals were not correlated with phylogeographical clades. Phylogenetic and cluster analyses of the D. elegans clades and those of closely related species grouped all five species into the same topology, as reported by previous molecular and morphological phylogenies. However, the topology of the D. elegans phylogeographical clades did not match the topology previously reported. Acoustic communication in D. elegans seems to be conserved among populations, and the phylogeographical history of the species does not explain the variation among lineages in call properties, despite some congruent phylogenetic signals evident at the species level. Based on molecular clocks retrieved from the literature, it seems that more than 6.5 million years of divergence (late Miocene) are necessary to allow significant changes to occur in the acoustic properties of these treefrog calls, making it possible to recover their phylogenetic history only based on acoustic evidence.

  9. MASTtreedist: visualization of tree space based on maximum agreement subtree.

    PubMed

    Huang, Hong; Li, Yongji

    2013-01-01

    Phylogenetic tree construction process might produce many candidate trees as the "best estimates." As the number of constructed phylogenetic trees grows, the need to efficiently compare their topological or physical structures arises. One of the tree comparison's software tools, the Mesquite's Tree Set Viz module, allows the rapid and efficient visualization of the tree comparison distances using multidimensional scaling (MDS). Tree-distance measures, such as Robinson-Foulds (RF), for the topological distance among different trees have been implemented in Tree Set Viz. New and sophisticated measures such as Maximum Agreement Subtree (MAST) can be continuously built upon Tree Set Viz. MAST can detect the common substructures among trees and provide more precise information on the similarity of the trees, but it is NP-hard and difficult to implement. In this article, we present a practical tree-distance metric: MASTtreedist, a MAST-based comparison metric in Mesquite's Tree Set Viz module. In this metric, the efficient optimizations for the maximum weight clique problem are applied. The results suggest that the proposed method can efficiently compute the MAST distances among trees, and such tree topological differences can be translated as a scatter of points in two-dimensional (2D) space. We also provide statistical evaluation of provided measures with respect to RF-using experimental data sets. This new comparison module provides a new tree-tree pairwise comparison metric based on the differences of the number of MAST leaves among constructed phylogenetic trees. Such a new phylogenetic tree comparison metric improves the visualization of taxa differences by discriminating small divergences of subtree structures for phylogenetic tree reconstruction.

  10. Morphological, molecular and phylogenetic analyses of Diplotriaena bargusinica Skrjabin, 1917 (Nematoda: Diplotriaenidae).

    PubMed

    Dutra Vieira, Thainá; Pegoraro de Macedo, Marcia Raquel; Fedatto Bernardon, Fabiana; Müller, Gertrud

    2017-10-01

    The nematode Diplotriaena bargusinica is a bird air sac parasite, and its taxonomy is based mainly on morphological and morphometric characteristics. Increasing knowledge of genetic information variability has spurred the use of DNA markers in conjunction with morphological data for inferring phylogenetic relationships in different taxa. Considering the potential of molecular biology in taxonomy, this study presents the morphological and molecular characterization of D. bargusinica, and establishes the phylogenetic position of the nematode in Spirurina. Twenty partial sequences of the 18S region of D. bargusinica rDNA were generated. Phylogenetic trees were obtained through the Maximum Likelihood and Bayesian Inference methods where both had similar topology. The group Diplotriaenoidea is monophyletic and the topologies generated corroborate the phylogenetic studies based on traditional and previously performed molecular taxonomy. This study is the first to generate molecular data associated with the morphology of the species. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Molecular diversification of Trichuris spp. from Sigmodontinae (Cricetidae) rodents from Argentina based on mitochondrial DNA sequences.

    PubMed

    Callejón, Rocío; Robles, María Del Rosario; Panei, Carlos Javier; Cutillas, Cristina

    2016-08-01

    A molecular phylogenetic hypothesis is presented for the genus Trichuris based on sequence data from mitochondrial cytochrome c oxidase 1 (cox1) and cytochrome b (cob). The taxa consisted of nine populations of whipworm from five species of Sigmodontinae rodents from Argentina. Bayesian Inference, Maximum Parsimony, and Maximum Likelihood methods were used to infer phylogenies for each gene separately but also for the combined mitochondrial data and the combined mitochondrial and nuclear dataset. Phylogenetic results based on cox1 and cob mitochondrial DNA (mtDNA) revealed three clades strongly resolved corresponding to three different species (Trichuris navonae, Trichuris bainae, and Trichuris pardinasi) showing phylogeographic variation, but relationships among Trichuris species were poorly resolved. Phylogenetic reconstruction based on concatenated sequences had greater phylogenetic resolution for delimiting species and populations intra-specific of Trichuris than those based on partitioned genes. Thus, populations of T. bainae and T. pardinasi could be affected by geographical factors and co-divergence parasite-host.

  12. Constructing phylogenetic trees using interacting pathways.

    PubMed

    Wan, Peng; Che, Dongsheng

    2013-01-01

    Phylogenetic trees are used to represent evolutionary relationships among biological species or organisms. The construction of phylogenetic trees is based on the similarities or differences of their physical or genetic features. Traditional approaches of constructing phylogenetic trees mainly focus on physical features. The recent advancement of high-throughput technologies has led to accumulation of huge amounts of biological data, which in turn changed the way of biological studies in various aspects. In this paper, we report our approach of building phylogenetic trees using the information of interacting pathways. We have applied hierarchical clustering on two domains of organisms-eukaryotes and prokaryotes. Our preliminary results have shown the effectiveness of using the interacting pathways in revealing evolutionary relationships.

  13. Phylogenetic Framework and Molecular Signatures for the Main Clades of the Phylum Actinobacteria

    PubMed Central

    Gao, Beile

    2012-01-01

    Summary: The phylum Actinobacteria harbors many important human pathogens and also provides one of the richest sources of natural products, including numerous antibiotics and other compounds of biotechnological interest. Thus, a reliable phylogeny of this large phylum and the means to accurately identify its different constituent groups are of much interest. Detailed phylogenetic and comparative analyses of >150 actinobacterial genomes reported here form the basis for achieving these objectives. In phylogenetic trees based upon 35 conserved proteins, most of the main groups of Actinobacteria as well as a number of their superageneric clades are resolved. We also describe large numbers of molecular markers consisting of conserved signature indels in protein sequences and whole proteins that are specific for either all Actinobacteria or their different clades (viz., orders, families, genera, and subgenera) at various taxonomic levels. These signatures independently support the existence of different phylogenetic clades, and based upon them, it is now possible to delimit the phylum Actinobacteria (excluding Coriobacteriia) and most of its major groups in clear molecular terms. The species distribution patterns of these markers also provide important information regarding the interrelationships among different main orders of Actinobacteria. The identified molecular markers, in addition to enabling the development of a stable and reliable phylogenetic framework for this phylum, also provide novel and powerful means for the identification of different groups of Actinobacteria in diverse environments. Genetic and biochemical studies on these Actinobacteria-specific markers should lead to the discovery of novel biochemical and/or other properties that are unique to different groups of Actinobacteria. PMID:22390973

  14. Phylogenetic framework for coevolutionary studies: a compass for exploring jungles of tangled trees.

    PubMed

    Martínez-Aquino, Andrés

    2016-08-01

    Phylogenetics is used to detect past evolutionary events, from how species originated to how their ecological interactions with other species arose, which can mirror cophylogenetic patterns. Cophylogenetic reconstructions uncover past ecological relationships between taxa through inferred coevolutionary events on trees, for example, codivergence, duplication, host-switching, and loss. These events can be detected by cophylogenetic analyses based on nodes and the length and branching pattern of the phylogenetic trees of symbiotic associations, for example, host-parasite. In the past 2 decades, algorithms have been developed for cophylogetenic analyses and implemented in different software, for example, statistical congruence index and event-based methods. Based on the combination of these approaches, it is possible to integrate temporal information into cophylogenetical inference, such as estimates of lineage divergence times between 2 taxa, for example, hosts and parasites. Additionally, the advances in phylogenetic biogeography applying methods based on parametric process models and combined Bayesian approaches, can be useful for interpreting coevolutionary histories in a scenario of biogeographical area connectivity through time. This article briefly reviews the basics of parasitology and provides an overview of software packages in cophylogenetic methods. Thus, the objective here is to present a phylogenetic framework for coevolutionary studies, with special emphasis on groups of parasitic organisms. Researchers wishing to undertake phylogeny-based coevolutionary studies can use this review as a "compass" when "walking" through jungles of tangled phylogenetic trees.

  15. Phylogenetic framework for coevolutionary studies: a compass for exploring jungles of tangled trees

    PubMed Central

    2016-01-01

    Abstract Phylogenetics is used to detect past evolutionary events, from how species originated to how their ecological interactions with other species arose, which can mirror cophylogenetic patterns. Cophylogenetic reconstructions uncover past ecological relationships between taxa through inferred coevolutionary events on trees, for example, codivergence, duplication, host-switching, and loss. These events can be detected by cophylogenetic analyses based on nodes and the length and branching pattern of the phylogenetic trees of symbiotic associations, for example, host–parasite. In the past 2 decades, algorithms have been developed for cophylogetenic analyses and implemented in different software, for example, statistical congruence index and event-based methods. Based on the combination of these approaches, it is possible to integrate temporal information into cophylogenetical inference, such as estimates of lineage divergence times between 2 taxa, for example, hosts and parasites. Additionally, the advances in phylogenetic biogeography applying methods based on parametric process models and combined Bayesian approaches, can be useful for interpreting coevolutionary histories in a scenario of biogeographical area connectivity through time. This article briefly reviews the basics of parasitology and provides an overview of software packages in cophylogenetic methods. Thus, the objective here is to present a phylogenetic framework for coevolutionary studies, with special emphasis on groups of parasitic organisms. Researchers wishing to undertake phylogeny-based coevolutionary studies can use this review as a “compass” when “walking” through jungles of tangled phylogenetic trees. PMID:29491928

  16. Phylogenetic Trees and Networks Reduce to Phylogenies on Binary States: Does It Furnish an Explanation to the Robustness of Phylogenetic Trees against Lateral Transfers.

    PubMed

    Thuillard, Marc; Fraix-Burnet, Didier

    2015-01-01

    This article presents an innovative approach to phylogenies based on the reduction of multistate characters to binary-state characters. We show that the reduction to binary characters' approach can be applied to both character- and distance-based phylogenies and provides a unifying framework to explain simply and intuitively the similarities and differences between distance- and character-based phylogenies. Building on these results, this article gives a possible explanation on why phylogenetic trees obtained from a distance matrix or a set of characters are often quite reasonable despite lateral transfers of genetic material between taxa. In the presence of lateral transfers, outer planar networks furnish a better description of evolution than phylogenetic trees. We present a polynomial-time reconstruction algorithm for perfect outer planar networks with a fixed number of states, characters, and lateral transfers.

  17. An Improved Binary Differential Evolution Algorithm to Infer Tumor Phylogenetic Trees.

    PubMed

    Liang, Ying; Liao, Bo; Zhu, Wen

    2017-01-01

    Tumourigenesis is a mutation accumulation process, which is likely to start with a mutated founder cell. The evolutionary nature of tumor development makes phylogenetic models suitable for inferring tumor evolution through genetic variation data. Copy number variation (CNV) is the major genetic marker of the genome with more genes, disease loci, and functional elements involved. Fluorescence in situ hybridization (FISH) accurately measures multiple gene copy number of hundreds of single cells. We propose an improved binary differential evolution algorithm, BDEP, to infer tumor phylogenetic tree based on FISH platform. The topology analysis of tumor progression tree shows that the pathway of tumor subcell expansion varies greatly during different stages of tumor formation. And the classification experiment shows that tree-based features are better than data-based features in distinguishing tumor. The constructed phylogenetic trees have great performance in characterizing tumor development process, which outperforms other similar algorithms.

  18. Comparing Mycobacterium tuberculosis genomes using genome topology networks.

    PubMed

    Jiang, Jianping; Gu, Jianlei; Zhang, Liang; Zhang, Chenyi; Deng, Xiao; Dou, Tonghai; Zhao, Guoping; Zhou, Yan

    2015-02-14

    Over the last decade, emerging research methods, such as comparative genomic analysis and phylogenetic study, have yielded new insights into genotypes and phenotypes of closely related bacterial strains. Several findings have revealed that genomic structural variations (SVs), including gene gain/loss, gene duplication and genome rearrangement, can lead to different phenotypes among strains, and an investigation of genes affected by SVs may extend our knowledge of the relationships between SVs and phenotypes in microbes, especially in pathogenic bacteria. In this work, we introduce a 'Genome Topology Network' (GTN) method based on gene homology and gene locations to analyze genomic SVs and perform phylogenetic analysis. Furthermore, the concept of 'unfixed ortholog' has been proposed, whose members are affected by SVs in genome topology among close species. To improve the precision of 'unfixed ortholog' recognition, a strategy to detect annotation differences and complete gene annotation was applied. To assess the GTN method, a set of thirteen complete M. tuberculosis genomes was analyzed as a case study. GTNs with two different gene homology-assigning methods were built, the Clusters of Orthologous Groups (COG) method and the orthoMCL clustering method, and two phylogenetic trees were constructed accordingly, which may provide additional insights into whole genome-based phylogenetic analysis. We obtained 24 unfixable COG groups, of which most members were related to immunogenicity and drug resistance, such as PPE-repeat proteins (COG5651) and transcriptional regulator TetR gene family members (COG1309). The GTN method has been implemented in PERL and released on our website. The tool can be downloaded from http://homepage.fudan.edu.cn/zhouyan/gtn/ , and allows re-annotating the 'lost' genes among closely related genomes, analyzing genes affected by SVs, and performing phylogenetic analysis. With this tool, many immunogenic-related and drug resistance-related genes were found to be affected by SVs in M. tuberculosis genomes. We believe that the GTN method will be suitable for the exploration of genomic SVs in connection with biological features of bacterial strains, and that GTN-based phylogenetic analysis will provide additional insights into whole genome-based phylogenetic analysis.

  19. Comparative analysis of DNA polymorphisms and phylogenetic relationships among Syzygium cumini Skeels based on phenotypic characters and RAPD technique.

    PubMed

    Singh, Jitendra P; Singh, Ak; Bajpai, Anju; Ahmad, Iffat Zareen

    2014-01-01

    The Indian black berry (Syzygium cumini Skeels) has a great nutraceutical and medicinal properties. As in other fruit crops, the fruit characteristics are important attributes for differentiation were also determined for different accessions of S. cumini. The fruit weight, length, breadth, length: breadth ratio, pulp weight, pulp content, seed weight and pulp: seed ratio significantly varied in different accessions. Molecular characterization was carried out using PCR based RAPD technique. Out of 80 RAPD primers, only 18 primers produced stable polymorphisms that were used to examine the phylogenetic relationship. A sum of 207 loci were generated out of which 201 loci found polymorphic. The average genetic dissimilarity was 97 per cent among jamun accessions. The phylogenetic relationship was also determined by principal coordinates analysis (PCoA) that explained 46.95 per cent cumulative variance. The two-dimensional PCoA analysis showed grouping of the different accessions that were plotted into four sub-plots, representing clustering of accessions. The UPGMA (r = 0.967) and NJ (r = 0.987) dendrogram constructed based on the dissimilarity matrix revealed a good degree of fit with the cophenetic correlation value. The dendrogram grouped the accessions into three main clusters according to their eco-geographical regions which given useful insight into their phylogenetic relationships.

  20. Developing a statistically powerful measure for quartet tree inference using phylogenetic identities and Markov invariants.

    PubMed

    Sumner, Jeremy G; Taylor, Amelia; Holland, Barbara R; Jarvis, Peter D

    2017-12-01

    Recently there has been renewed interest in phylogenetic inference methods based on phylogenetic invariants, alongside the related Markov invariants. Broadly speaking, both these approaches give rise to polynomial functions of sequence site patterns that, in expectation value, either vanish for particular evolutionary trees (in the case of phylogenetic invariants) or have well understood transformation properties (in the case of Markov invariants). While both approaches have been valued for their intrinsic mathematical interest, it is not clear how they relate to each other, and to what extent they can be used as practical tools for inference of phylogenetic trees. In this paper, by focusing on the special case of binary sequence data and quartets of taxa, we are able to view these two different polynomial-based approaches within a common framework. To motivate the discussion, we present three desirable statistical properties that we argue any invariant-based phylogenetic method should satisfy: (1) sensible behaviour under reordering of input sequences; (2) stability as the taxa evolve independently according to a Markov process; and (3) explicit dependence on the assumption of a continuous-time process. Motivated by these statistical properties, we develop and explore several new phylogenetic inference methods. In particular, we develop a statistically bias-corrected version of the Markov invariants approach which satisfies all three properties. We also extend previous work by showing that the phylogenetic invariants can be implemented in such a way as to satisfy property (3). A simulation study shows that, in comparison to other methods, our new proposed approach based on bias-corrected Markov invariants is extremely powerful for phylogenetic inference. The binary case is of particular theoretical interest as-in this case only-the Markov invariants can be expressed as linear combinations of the phylogenetic invariants. A wider implication of this is that, for models with more than two states-for example DNA sequence alignments with four-state models-we find that methods which rely on phylogenetic invariants are incapable of satisfying all three of the stated statistical properties. This is because in these cases the relevant Markov invariants belong to a class of polynomials independent from the phylogenetic invariants.

  1. Phylogenetic Analyses of Armillaria Reveal at Least 15 Phylogenetic Lineages in China, Seven of Which Are Associated with Cultivated Gastrodia elata

    PubMed Central

    Guo, Ting; Wang, Han Chen; Xue, Wan Qiu; Zhao, Jun; Yang, Zhu L.

    2016-01-01

    Fungal species of Armillaria, which can act as plant pathogens and/or symbionts of the Chinese traditional medicinal herb Gastrodia elata (“Tianma”), are ecologically and economically important and have consequently attracted the attention of mycologists. However, their taxonomy has been highly dependent on morphological characterization and mating tests. In this study, we phylogenetically analyzed Chinese Armillaria samples using the sequences of the internal transcribed spacer region, translation elongation factor-1 alpha gene and beta-tubulin gene. Our data revealed at least 15 phylogenetic lineages of Armillaria from China, of which seven were newly discovered and two were recorded from China for the first time. Fourteen Chinese biological species of Armillaria, which were previously defined based on mating tests, could be assigned to the 15 phylogenetic lineages identified herein. Seven of the 15 phylogenetic lineages were found to be disjunctively distributed in different continents of the Northern Hemisphere, while eight were revealed to be endemic to certain continents. In addition, we found that seven phylogenetic lineages of Armillaria were used for the cultivation of Tianma, only two of which had been recorded to be associated with Tianma previously. We also illustrated that G. elata f. glauca (“Brown Tianma”) and G. elata f. elata (“Red Tianma”), two cultivars of Tianma grown in different regions of China, form symbiotic relationships with different phylogenetic lineages of Armillaria. These findings should aid the development of Tianma cultivation in China. PMID:27138686

  2. YBYRÁ facilitates comparison of large phylogenetic trees.

    PubMed

    Machado, Denis Jacob

    2015-07-01

    The number and size of tree topologies that are being compared by phylogenetic systematists is increasing due to technological advancements in high-throughput DNA sequencing. However, we still lack tools to facilitate comparison among phylogenetic trees with a large number of terminals. The "YBYRÁ" project integrates software solutions for data analysis in phylogenetics. It comprises tools for (1) topological distance calculation based on the number of shared splits or clades, (2) sensitivity analysis and automatic generation of sensitivity plots and (3) clade diagnoses based on different categories of synapomorphies. YBYRÁ also provides (4) an original framework to facilitate the search for potential rogue taxa based on how much they affect average matching split distances (using MSdist). YBYRÁ facilitates comparison of large phylogenetic trees and outperforms competing software in terms of usability and time efficiency, specially for large data sets. The programs that comprises this toolkit are written in Python, hence they do not require installation and have minimum dependencies. The entire project is available under an open-source licence at http://www.ib.usp.br/grant/anfibios/researchSoftware.html .

  3. Host specificity and phylogenetic relationships of chicken and turkey parvoviruses

    USDA-ARS?s Scientific Manuscript database

    Previous reports indicate that the newly discovered chicken parvoviruses (ChPV) and turkey parvoviruses (TuPV) are very similar to each other, yet they represent different species within a new genus of Parvoviridae. Currently, strain classification is based on the phylogenetic analysis of a 561 bas...

  4. Complete mitochondrial genome of Cuora trifasciata (Chinese three-striped box turtle), and a comparative analysis with other box turtles.

    PubMed

    Li, Wei; Zhang, Xin-Cheng; Zhao, Jian; Shi, Yan; Zhu, Xin-Ping

    2015-01-25

    Cuora trifasciata has become one of the most critically endangered species in the world. The complete mitochondrial genome of C. trifasciata (Chinese three-striped box turtle) was determined in this study. Its mitochondrial genome is a 16,575-bp-long circular molecule that consists of 37 genes that are typically found in other vertebrates. And the basic characteristics of the C. trifasciata mitochondrial genome were also determined. Moreover, a comparison of C. trifasciata with Cuora cyclornata, Cuora pani and Cuora aurocapitata indicated that the four mitogenomics differed in length, codons, overlaps, 13 protein-coding genes (PCGs), ND3, rRNA genes, control region, and other aspects. Phylogenetic analysis with Bayesian inference and maximum likelihood based on 12 protein-coding genes of the genus Cuora indicated the phylogenetic position of C. trifasciata within Cuora. The phylogenetic analysis also showed that C. trifasciata from Vietnam and China formed separate monophyletic clades with different Cuora species. The results of nucleotide base compositions, protein-coding genes and phylogenetic analysis showed that C. trifasciata from these two countries may represent different Cuora species. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Environmental and spatial drivers of taxonomic, functional, and phylogenetic characteristics of bat communities in human-modified landscapes.

    PubMed

    Cisneros, Laura M; Fagan, Matthew E; Willig, Michael R

    2016-01-01

    Assembly of species into communities following human disturbance (e.g., deforestation, fragmentation) may be governed by spatial (e.g., dispersal) or environmental (e.g., niche partitioning) mechanisms. Variation partitioning has been used to broadly disentangle spatial and environmental mechanisms, and approaches utilizing functional and phylogenetic characteristics of communities have been implemented to determine the relative importance of particular environmental (or niche-based) mechanisms. Nonetheless, few studies have integrated these quantitative approaches to comprehensively assess the relative importance of particular structuring processes. We employed a novel variation partitioning approach to evaluate the relative importance of particular spatial and environmental drivers of taxonomic, functional, and phylogenetic aspects of bat communities in a human-modified landscape in Costa Rica. Specifically, we estimated the amount of variation in species composition (taxonomic structure) and in two aspects of functional and phylogenetic structure (i.e., composition and dispersion) along a forest loss and fragmentation gradient that are uniquely explained by landscape characteristics (i.e., environment) or space to assess the importance of competing mechanisms. The unique effects of space on taxonomic, functional and phylogenetic structure were consistently small. In contrast, landscape characteristics (i.e., environment) played an appreciable role in structuring bat communities. Spatially-structured landscape characteristics explained 84% of the variation in functional or phylogenetic dispersion, and the unique effects of landscape characteristics significantly explained 14% of the variation in species composition. Furthermore, variation in bat community structure was primarily due to differences in dispersion of species within functional or phylogenetic space along the gradient, rather than due to differences in functional or phylogenetic composition. Variation among bat communities was related to environmental mechanisms, especially niche-based (i.e., environmental) processes, rather than spatial mechanisms. High variation in functional or phylogenetic dispersion, as opposed to functional or phylogenetic composition, suggests that loss or gain of niche space is driving the progressive loss or gain of species with particular traits from communities along the human-modified gradient. Thus, environmental characteristics associated with landscape structure influence functional or phylogenetic aspects of bat communities by effectively altering the ways in which species partition niche space.

  6. Environmental and spatial drivers of taxonomic, functional, and phylogenetic characteristics of bat communities in human-modified landscapes

    PubMed Central

    Fagan, Matthew E.; Willig, Michael R.

    2016-01-01

    Background Assembly of species into communities following human disturbance (e.g., deforestation, fragmentation) may be governed by spatial (e.g., dispersal) or environmental (e.g., niche partitioning) mechanisms. Variation partitioning has been used to broadly disentangle spatial and environmental mechanisms, and approaches utilizing functional and phylogenetic characteristics of communities have been implemented to determine the relative importance of particular environmental (or niche-based) mechanisms. Nonetheless, few studies have integrated these quantitative approaches to comprehensively assess the relative importance of particular structuring processes. Methods We employed a novel variation partitioning approach to evaluate the relative importance of particular spatial and environmental drivers of taxonomic, functional, and phylogenetic aspects of bat communities in a human-modified landscape in Costa Rica. Specifically, we estimated the amount of variation in species composition (taxonomic structure) and in two aspects of functional and phylogenetic structure (i.e., composition and dispersion) along a forest loss and fragmentation gradient that are uniquely explained by landscape characteristics (i.e., environment) or space to assess the importance of competing mechanisms. Results The unique effects of space on taxonomic, functional and phylogenetic structure were consistently small. In contrast, landscape characteristics (i.e., environment) played an appreciable role in structuring bat communities. Spatially-structured landscape characteristics explained 84% of the variation in functional or phylogenetic dispersion, and the unique effects of landscape characteristics significantly explained 14% of the variation in species composition. Furthermore, variation in bat community structure was primarily due to differences in dispersion of species within functional or phylogenetic space along the gradient, rather than due to differences in functional or phylogenetic composition. Discussion Variation among bat communities was related to environmental mechanisms, especially niche-based (i.e., environmental) processes, rather than spatial mechanisms. High variation in functional or phylogenetic dispersion, as opposed to functional or phylogenetic composition, suggests that loss or gain of niche space is driving the progressive loss or gain of species with particular traits from communities along the human-modified gradient. Thus, environmental characteristics associated with landscape structure influence functional or phylogenetic aspects of bat communities by effectively altering the ways in which species partition niche space. PMID:27761338

  7. [Phylogenetic and diversity analysis of Acidithiobacillus spp. based on 16S rRNA and RubisCO genes homologues].

    PubMed

    Liu, Minrui; Lin, Pengwu; Qi, Xing'e; Ni, Yongqing

    2016-04-14

    The purpose of the study was to reveal geographic region-related Acidithiobacillus spp. distribution and allopatric speciation. Phylogenetic and diversity analysis was done to expand our knowledge on microbial phylogeography, diversity-maintaining mechanisms and molecular biogeography. We amplified 16S rRNA gene and RubisCO genes to construct corresponding phylogenetic trees based on the sequence homology and analyzed genetic diversity of Acidithiobacillus spp.. Thirty-five strains were isolated from three different regions in China (Yunnan, Hubei, Xinjiang). The whole isolates were classified into five groups. Four strains were identified as A. ferrivorans, six as A. ferridurans, YNTR4-15 Leptspirillum ferrooxidans and HBDY3-31 as Leptospirillum ferrodiazotrophum. The remaining strains were identified as A. ferrooxidans. Analysis of cbbL and cbbM genes sequences of representative 26 strains indicated that cbbL gene of 19 were two copies (cbbL1 and cbbL2) and 7 possessed only cbbL1. cbbM gene was single copy. In nucleotide-based trees, cbbL1 gene sequences of strains were separated into three sequence types, and the cbbL2 was similar to cbbL1 with three types. Codon bias of RubisCO genes was not obvious in Acidithiobacillus spp.. Strains isolated from three different regions in China indicated a great genetic diversity in Acidithiobacillus spp. and their 16S rRNA/RubisCO genes sequence was of significant difference. Phylogenetic tree based on 16S rRNA genes and RubisCO genes was different in Acidithiobacillus spp..

  8. Molecular and phylogenetic characterizations of an Eimeria krijgsmanni Yakimoff & Gouseff, 1938 (Apicomplexa: Eimeriidae) mouse intestinal protozoan parasite by partial 18S ribosomal RNA gene sequence analysis.

    PubMed

    Takeo, Toshinori; Tanaka, Tetsuya; Matsubayashi, Makoto; Maeda, Hiroki; Kusakisako, Kodai; Matsui, Toshihiro; Mochizuki, Masami; Matsuo, Tomohide

    2014-08-01

    Previously, we characterized an undocumented strain of Eimeria krijgsmanni by morphological and biological features. Here, we present a detailed molecular phylogenetic analysis of this organism. Namely, 18S ribosomal RNA gene (rDNA) sequences of E. krijgsmanni were analyzed to incorporate this species into a comprehensive Eimeria phylogeny. As a result, partial 18S rDNA sequence from E. krijgsmanni was successfully determined, and two different types, Type A and Type B, that differed by 1 base pair were identified. E. krijgsmanni was originally isolated from a single oocyst, and thus the result show that the two types might have allelic sequence heterogeneity in the 18S rDNA. Based on phylogenetic analyses, the two types of E. krijgsmanni 18S rDNA formed one of two clades among murine Eimeria spp.; these Eimeria clades reflected morphological similarity among the Eimeria spp. This is the third molecular phylogenetic characterization of a murine Eimeria spp. in addition to E. falciformis and E. papillata. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Ecosystem Functions across Trophic Levels Are Linked to Functional and Phylogenetic Diversity

    PubMed Central

    Thompson, Patrick L.; Davies, T. Jonathan; Gonzalez, Andrew

    2015-01-01

    In experimental systems, it has been shown that biodiversity indices based on traits or phylogeny can outperform species richness as predictors of plant ecosystem function. However, it is unclear whether this pattern extends to the function of food webs in natural ecosystems. Here we tested whether zooplankton functional and phylogenetic diversity explains the functioning of 23 natural pond communities. We used two measures of ecosystem function: (1) zooplankton community biomass and (2) phytoplankton abundance (Chl a). We tested for diversity-ecosystem function relationships within and across trophic levels. We found a strong correlation between zooplankton diversity and ecosystem function, whereas local environmental conditions were less important. Further, the positive diversity-ecosystem function relationships were more pronounced for measures of functional and phylogenetic diversity than for species richness. Zooplankton and phytoplankton biomass were best predicted by different indices, suggesting that the two functions are dependent upon different aspects of diversity. Zooplankton community biomass was best predicted by zooplankton trait-based functional richness, while phytoplankton abundance was best predicted by zooplankton phylogenetic diversity. Our results suggest that the positive relationship between diversity and ecosystem function can extend across trophic levels in natural environments, and that greater insight into variation in ecosystem function can be gained by combining functional and phylogenetic diversity measures. PMID:25693188

  10. Ecosystem functions across trophic levels are linked to functional and phylogenetic diversity.

    PubMed

    Thompson, Patrick L; Davies, T Jonathan; Gonzalez, Andrew

    2015-01-01

    In experimental systems, it has been shown that biodiversity indices based on traits or phylogeny can outperform species richness as predictors of plant ecosystem function. However, it is unclear whether this pattern extends to the function of food webs in natural ecosystems. Here we tested whether zooplankton functional and phylogenetic diversity explains the functioning of 23 natural pond communities. We used two measures of ecosystem function: (1) zooplankton community biomass and (2) phytoplankton abundance (Chl a). We tested for diversity-ecosystem function relationships within and across trophic levels. We found a strong correlation between zooplankton diversity and ecosystem function, whereas local environmental conditions were less important. Further, the positive diversity-ecosystem function relationships were more pronounced for measures of functional and phylogenetic diversity than for species richness. Zooplankton and phytoplankton biomass were best predicted by different indices, suggesting that the two functions are dependent upon different aspects of diversity. Zooplankton community biomass was best predicted by zooplankton trait-based functional richness, while phytoplankton abundance was best predicted by zooplankton phylogenetic diversity. Our results suggest that the positive relationship between diversity and ecosystem function can extend across trophic levels in natural environments, and that greater insight into variation in ecosystem function can be gained by combining functional and phylogenetic diversity measures.

  11. Nonbinary Tree-Based Phylogenetic Networks.

    PubMed

    Jetten, Laura; van Iersel, Leo

    2018-01-01

    Rooted phylogenetic networks are used to describe evolutionary histories that contain non-treelike evolutionary events such as hybridization and horizontal gene transfer. In some cases, such histories can be described by a phylogenetic base-tree with additional linking arcs, which can, for example, represent gene transfer events. Such phylogenetic networks are called tree-based. Here, we consider two possible generalizations of this concept to nonbinary networks, which we call tree-based and strictly-tree-based nonbinary phylogenetic networks. We give simple graph-theoretic characterizations of tree-based and strictly-tree-based nonbinary phylogenetic networks. Moreover, we show for each of these two classes that it can be decided in polynomial time whether a given network is contained in the class. Our approach also provides a new view on tree-based binary phylogenetic networks. Finally, we discuss two examples of nonbinary phylogenetic networks in biology and show how our results can be applied to them.

  12. Can treefrog phylogeographical clades and species’ phylogenetic topologies be recovered by bioacoustical analyses?

    PubMed Central

    Forti, Lucas Rodriguez; Lingnau, Rodrigo; Encarnação, Lais Carvalho; Bertoluci, Jaime; Toledo, Luís Felipe

    2017-01-01

    Phenotypic traits, such as the frog advertisement call, are generally correlated with interspecific genetic variation, and, as a consequence of strong sexual selection, these behaviors may carry a phylogenetic signal. However, variation in acoustic traits is not always correlated with genetic differences between populations (intraspecific variation); phenotypic plasticity and environmental variables may explain part of such variation. For example, local processes can affect acoustic properties in different lineages due to differences in physical structure, climatic conditions, and biotic interactions, particularly when populations are isolated. However, acoustic traits can be used to test phylogenetic hypotheses. We analyzed the advertisement calls of Dendropsophus elegans males from 18 sites and compared them with those of four closely related congeneric species, in order to test for differences between inter and intraspecific variation. We analyzed 451 calls of 45 males of these five species. Because males from distant sites were grouped together without population congruence, differences found in advertisement calls among individuals were not correlated with phylogeographical clades. Phylogenetic and cluster analyses of the D. elegans clades and those of closely related species grouped all five species into the same topology, as reported by previous molecular and morphological phylogenies. However, the topology of the D. elegans phylogeographical clades did not match the topology previously reported. Acoustic communication in D. elegans seems to be conserved among populations, and the phylogeographical history of the species does not explain the variation among lineages in call properties, despite some congruent phylogenetic signals evident at the species level. Based on molecular clocks retrieved from the literature, it seems that more than 6.5 million years of divergence (late Miocene) are necessary to allow significant changes to occur in the acoustic properties of these treefrog calls, making it possible to recover their phylogenetic history only based on acoustic evidence. PMID:28235089

  13. Phylogenetic relationships of some species of the family Echinostomatidae Odner, 1910 (Trematoda), inferred from nuclear rDNA sequences and karyological analysis.

    PubMed

    Stanevičiūtė, Gražina; Stunžėnas, Virmantas; Petkevičiūtė, Romualda

    2015-01-01

    The family Echinostomatidae Looss, 1899 exhibits a substantial taxonomic diversity, morphological criteria adopted by different authors have resulted in its subdivision into an impressive number of subfamilies. The status of the subfamily Echinochasminae Odhner, 1910 was changed in various classifications. Genetic characteristics and phylogenetic analysis of four Echinostomatidae species - Echinochasmus sp., Echinochasmuscoaxatus Dietz, 1909, Stephanoprorapseudoechinata (Olsson, 1876) and Echinoparyphiummordwilkoi Skrjabin, 1915 were obtained to understand well enough the homogeneity of the Echinochasminae and phylogenetic relationships within the Echinostomatidae. Chromosome set and nuclear rDNA (ITS2 and 28S) sequences of parthenites of Echinochasmus sp. were studied. The karyotype of this species (2n=20, one pair of large bi-armed chromosomes and others are smaller-sized, mainly one-armed, chromosomes) differed from that previously described for two other representatives of the Echinochasminae, Echinochasmusbeleocephalus (von Linstow, 1893), 2n=14, and Episthmiumbursicola (Creplin, 1937), 2n=18. In phylogenetic trees based on ITS2 and 28S datasets, a well-supported subclade with Echinochasmus sp. and Stephanoprorapseudoechinata clustered with one well-supported clade together with Echinochasmusjaponicus Tanabe, 1926 (data only for 28S) and Echinochasmuscoaxatus. These results supported close phylogenetic relationships between Echinochasmus Dietz, 1909 and Stephanoprora Odhner, 1902. Phylogenetic analysis revealed a clear separation of related species of Echinostomatoidea restricted to prosobranch snails as first intermediate hosts, from other species of Echinostomatidae and Psilostomidae, developing in Lymnaeoidea snails as first intermediate hosts. According to the data based on rDNA phylogeny, it was supposed that evolution of parasitic flukes linked with first intermediate hosts. Digeneans parasitizing prosobranch snails showed higher dynamic of karyotype evolution provided by different chromosomal rearrangements including Robertsonian translocations and pericentric inversions than more stable karyotype of digenean worms parasitizing lymnaeoid pulmonate snails.

  14. Phylogenetic and Functional Structure of Wintering Waterbird Communities Associated with Ecological Differences.

    PubMed

    Che, Xianli; Zhang, Min; Zhao, Yanyan; Zhang, Qiang; Quan, Qing; Møller, Anders; Zou, Fasheng

    2018-01-19

    Ecological differences may be related to community component divisions between Oriental (west) and Sino-Japanese (east) realms, and such differences may result in weak geographical breaks in migratory species that are highly mobile. Here, we conducted comparative phylogenetic and functional structure analyses of wintering waterbird communities in southern China across two realms and subsequently examined possible climate drivers of the observed patterns. An analysis based on such highly migratory species is particularly telling because migration is bound to reduce or completely eliminate any divergence between communities. Phylogenetic and functional structure of eastern communities showed over-dispersion while western communities were clustered. Basal phylogenetic and functional turnover of western communities was significant lower than that of eastern communities. The break between eastern and western communities was masked by these two realms. Geographic patterns were related to mean temperature changes and temperature fluctuations, suggesting that temperature may filter waterbird lineages and traits, thus underlying geographical community divisions. These results suggest phylogenetic and functional divisions in southern China, coinciding with biogeography. This study shows that temperature fluctuations constitute an essential mechanism shaping geographical divisions that have largely gone undetected previously, even under climate change.

  15. Diversity of Phylogenetic Information According to the Locus and the Taxonomic Level: An Example from a Parasitic Mesostigmatid Mite Genus

    PubMed Central

    Roy, Lise; Dowling, Ashley P.G.; Chauve, Claude Marie; Buronfosse, Thierry

    2010-01-01

    Molecular markers for cladistic analyses may perform differently according to the taxonomic group considered and the historical level under investigation. Here we evaluate the phylogenetic potential of five different markers for resolving evolutionary relationships within the ectoparasitic genus Dermanyssus at the species level, and their ability to address questions about the evolution of specialization. COI provided 9–18% divergence between species (up to 9% within species), 16S rRNA 10–16% (up to 4% within species), ITS1 and 2 2–9% (up to 1% within species) and Tropomyosin intron n 8–20% (up to 6% within species). EF-1α revealed different non-orthologous copies within individuals of Dermanyssus and Ornithonyssus. Tropomyosin intron n was shown containing consistent phylogenetic signal at the specific level within Dermanyssus and represents a promising marker for future prospects in phylogenetics of Acari. Phylogenetic analyses revealed that the generalist condition is apomorphic and D. gallinae might represent a complex of hybridized lineages. The split into hirsutus-group and gallinae-group in Dermanyssus does not seem to be appropriate based upon these results and D. longipes appears to be composed of two different entities. PMID:20480038

  16. Phylogenetic relationship and species delimitation of matsutake and allied species based on multilocus phylogeny and haplotype analyses.

    PubMed

    Ota, Yuko; Yamanaka, Takashi; Murata, Hitoshi; Neda, Hitoshi; Ohta, Akira; Kawai, Masataka; Yamada, Akiyoshi; Konno, Miki; Tanaka, Chihiro

    2012-01-01

    Tricholoma matsutake (S. Ito & S. Imai) Singer and its allied species are referred to as matsutake worldwide and are the most economically important edible mushrooms in Japan. They are widely distributed in the northern hemisphere and established an ectomycorrhizal relationship with conifer and broadleaf trees. To clarify relationships among T. matsutake and its allies, and to delimit phylogenetic species, we analyzed multilocus datasets (ITS, megB1, tef, gpd) with samples that were correctly identified based on morphological characteristics. Phylogenetic analyses clearly identified four major groups: matsutake, T. bakamatsutake, T. fulvocastaneum and T. caligatum; the latter three species were outside the matsutake group. The haplotype analyses and median-joining haplotype network analyses showed that the matsutake group included four closely related but clearly distinct taxa (T. matsutake, T. anatolicum, Tricholoma sp. from Mexico and T. magnivelare) from different geographical regions; these were considered to be distinct phylogenetic species.

  17. Molecular Tracing of Hepatitis C Virus Genotype 1 Isolates in Iran: A NS5B Phylogenetic Analysis with Systematic Review.

    PubMed

    Hesamizadeh, Khashayar; Alavian, Seyed Moayed; Najafi Tireh Shabankareh, Azar; Sharafi, Heidar

    2016-12-01

    Hepatitis C virus (HCV) is characterized by a high degree of genetic heterogeneity and classified into 7 genotypes and different subtypes. It heterogeneously distributed through various risk groups and geographical regions. A well-established phylogenetic relationship can simplify the tracing of HCV hierarchical strata into geographical regions. The current study aimed to find genetic phylogeny of subtypes 1a and 1b of HCV isolates based on NS5B nucleotide sequences in Iran and other members of Eastern Mediterranean regional office of world health organization, as well as other Middle Eastern countries, with a systematic review of available published and unpublished studies. The phylogenetic analyses were performed based on the nucleotide sequences of NS5B gene of HCV genotype 1 (HCV-1), which were registered in the GenBank database. The literature review was performed in two steps: 1) searching studies evaluating the NS5B sequences of HCV-1, on PubMed, Scopus, and Web of Science, and 2) Searching sequences of unpublished studies registered in the GenBank database. In this study, 442 sequences from HCV-1a and 232 from HCV-1b underwent phylogenetic analysis. Phylogenetic analysis of all sequences revealed different clusters in the phylogenetic trees. The results showed that the proportion of HCV-1a and -1b isolates from Iranian patients probably originated from domestic sources. Moreover, the HCV-1b isolates from Iranian patients may have similarities with the European ones. In this study, phylogenetic reconstruction of HCV-1 sequences clearly indicated for molecular tracing and ancestral relationships of the HCV genotypes in Iran, and showed the likelihood of domestic origin for HCV-1a and various origin for HCV-1b.

  18. Phylogenetic analysis of two Plectus mitochondrial genomes (Nematoda: Plectida) supports a sister group relationship between Plectida and Rhabditida within Chromadorea.

    PubMed

    Kim, Jiyeon; Kern, Elizabeth; Kim, Taeho; Sim, Mikang; Kim, Jaebum; Kim, Yuseob; Park, Chungoo; Nadler, Steven A; Park, Joong-Ki

    2017-02-01

    Plectida is an important nematode order with species that occupy many different biological niches. The order includes free-living aquatic and soil-dwelling species, but its phylogenetic position has remained uncertain. We sequenced the complete mitochondrial genomes of two members of this order, Plectus acuminatus and Plectus aquatilis and compared them with those of other major nematode clades. The genome size and base composition of these species are similar to other nematodes; 14,831 and 14,372bp, respectively, with AT contents of 71.0% and 70.1%. Gene content was also similar to other nematodes, but gene order and coding direction of Plectus mtDNAs were dissimilar from other chromadorean species. P. acuminatus and P. aquatilis are the first chromadorean species found to contain a gene inversion. We reconstructed mitochondrial genome phylogenetic trees using nucleotide and amino acid datasets from 87 nematodes that represent major nematode clades, including the Plectus sequences. Trees from phylogenetic analyses using maximum likelihood and Bayesian methods depicted Plectida as the sister group to other sequenced chromadorean nematodes. This finding is consistent with several phylogenetic results based on SSU rDNA, but disagrees with a classification based on morphology. Mitogenomes representing other basal chromadorean groups (Araeolaimida, Monhysterida, Desmodorida, Chromadorida) are needed to confirm their phylogenetic relationships. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Phylogenetic patterns of climatic, habitat and trophic niches in a European avian assemblage

    PubMed Central

    Pearman, Peter B; Lavergne, Sébastien; Roquet, Cristina; Wüest, Rafael; Zimmermann, Niklaus E; Thuiller, Wilfried

    2014-01-01

    Aim The origins of ecological diversity in continental species assemblages have long intrigued biogeographers. We apply phylogenetic comparative analyses to disentangle the evolutionary patterns of ecological niches in an assemblage of European birds. We compare phylogenetic patterns in trophic, habitat and climatic niche components. Location Europe. Methods From polygon range maps and handbook data we inferred the realized climatic, habitat and trophic niches of 405 species of breeding birds in Europe. We fitted Pagel's lambda and kappa statistics, and conducted analyses of disparity through time to compare temporal patterns of ecological diversification on all niche axes together. All observed patterns were compared with expectations based on neutral (Brownian) models of niche divergence. Results In this assemblage, patterns of phylogenetic signal (lambda) suggest that related species resemble each other less in regard to their climatic and habitat niches than they do in their trophic niche. Kappa estimates show that ecological divergence does not gradually increase with divergence time, and that this punctualism is stronger in climatic niches than in habitat and trophic niches. Observed niche disparity markedly exceeds levels expected from a Brownian model of ecological diversification, thus providing no evidence for past phylogenetic niche conservatism in these multivariate niches. Levels of multivariate disparity are greatest for the climatic niche, followed by disparity of the habitat and the trophic niches. Main conclusions Phylogenetic patterns in the three niche components differ within this avian assemblage. Variation in evolutionary rates (degree of gradualism, constancy through the tree) and/or non-random macroecological sampling probably lead here to differences in the phylogenetic structure of niche components. Testing hypotheses on the origin of these patterns requires more complete phylogenetic trees of the birds, and extended ecological data on different niche components for all bird species. PMID:24790525

  20. Applying a multiobjective metaheuristic inspired by honey bees to phylogenetic inference.

    PubMed

    Santander-Jiménez, Sergio; Vega-Rodríguez, Miguel A

    2013-10-01

    The development of increasingly popular multiobjective metaheuristics has allowed bioinformaticians to deal with optimization problems in computational biology where multiple objective functions must be taken into account. One of the most relevant research topics that can benefit from these techniques is phylogenetic inference. Throughout the years, different researchers have proposed their own view about the reconstruction of ancestral evolutionary relationships among species. As a result, biologists often report different phylogenetic trees from a same dataset when considering distinct optimality principles. In this work, we detail a multiobjective swarm intelligence approach based on the novel Artificial Bee Colony algorithm for inferring phylogenies. The aim of this paper is to propose a complementary view of phylogenetics according to the maximum parsimony and maximum likelihood criteria, in order to generate a set of phylogenetic trees that represent a compromise between these principles. Experimental results on a variety of nucleotide data sets and statistical studies highlight the relevance of the proposal with regard to other multiobjective algorithms and state-of-the-art biological methods. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Diversity structure of culturable bacteria isolated from the Fildes Peninsula (King George Island, Antarctica): A phylogenetic analysis perspective

    PubMed Central

    González-Rocha, Gerardo; Muñoz-Cartes, Gabriel; Canales-Aguirre, Cristian B.; Lima, Celia A.; Domínguez-Yévenes, Mariana; Bello-Toledo, Helia

    2017-01-01

    It has been proposed that Antarctic environments select microorganisms with unique biochemical adaptations, based on the tenet ‘Everything is everywhere, but, the environment selects’ by Baas-Becking. However, this is a hypothesis that has not been extensively evaluated. This study evaluated the fundamental prediction contained in this hypothesis—in the sense that species are structured in the landscape according to their local habitats-, using as study model the phylogenetic diversity of the culturable bacteria of Fildes Peninsula (King George Island, Antarctica). Eighty bacterial strains isolated from 10 different locations in the area, were recovered. Based on phylogenetic analysis of 16S rRNA gene sequences, the isolates were grouped into twenty-six phylotypes distributed in three main clades, of which only six are exclusive to Antarctica. Results showed that phylotypes do not group significantly by habitat type; however, local habitat types had phylogenetic signal, which support the phylogenetic niche conservatism hypothesis and not a selective role of the environment like the Baas-Becking hypothesis suggests. We propose that, more than habitat selection resulting in new local adaptations and diversity, local historical colonization and species sorting (i.e. differences in speciation and extinction rates that arise by interaction of species level traits with the environment) play a fundamental role on the culturable bacterial diversity in Antarctica. PMID:28632790

  2. Diversity structure of culturable bacteria isolated from the Fildes Peninsula (King George Island, Antarctica): A phylogenetic analysis perspective.

    PubMed

    González-Rocha, Gerardo; Muñoz-Cartes, Gabriel; Canales-Aguirre, Cristian B; Lima, Celia A; Domínguez-Yévenes, Mariana; Bello-Toledo, Helia; Hernández, Cristián E

    2017-01-01

    It has been proposed that Antarctic environments select microorganisms with unique biochemical adaptations, based on the tenet 'Everything is everywhere, but, the environment selects' by Baas-Becking. However, this is a hypothesis that has not been extensively evaluated. This study evaluated the fundamental prediction contained in this hypothesis-in the sense that species are structured in the landscape according to their local habitats-, using as study model the phylogenetic diversity of the culturable bacteria of Fildes Peninsula (King George Island, Antarctica). Eighty bacterial strains isolated from 10 different locations in the area, were recovered. Based on phylogenetic analysis of 16S rRNA gene sequences, the isolates were grouped into twenty-six phylotypes distributed in three main clades, of which only six are exclusive to Antarctica. Results showed that phylotypes do not group significantly by habitat type; however, local habitat types had phylogenetic signal, which support the phylogenetic niche conservatism hypothesis and not a selective role of the environment like the Baas-Becking hypothesis suggests. We propose that, more than habitat selection resulting in new local adaptations and diversity, local historical colonization and species sorting (i.e. differences in speciation and extinction rates that arise by interaction of species level traits with the environment) play a fundamental role on the culturable bacterial diversity in Antarctica.

  3. Phylogenetic relationships within the cyst-forming nematodes (Nematoda, Heteroderidae) based on analysis of sequences from the ITS regions of ribosomal DNA.

    PubMed

    Subbotin, S A; Vierstraete, A; De Ley, P; Rowe, J; Waeyenberge, L; Moens, M; Vanfleteren, J R

    2001-10-01

    The ITS1, ITS2, and 5.8S gene sequences of nuclear ribosomal DNA from 40 taxa of the family Heteroderidae (including the genera Afenestrata, Cactodera, Heterodera, Globodera, Punctodera, Meloidodera, Cryphodera, and Thecavermiculatus) were sequenced and analyzed. The ITS regions displayed high levels of sequence divergence within Heteroderinae and compared to outgroup taxa. Unlike recent findings in root knot nematodes, ITS sequence polymorphism does not appear to complicate phylogenetic analysis of cyst nematodes. Phylogenetic analyses with maximum-parsimony, minimum-evolution, and maximum-likelihood methods were performed with a range of computer alignments, including elision and culled alignments. All multiple alignments and phylogenetic methods yielded similar basic structure for phylogenetic relationships of Heteroderidae. The cyst-forming nematodes are represented by six main clades corresponding to morphological characters and host specialization, with certain clades assuming different positions depending on alignment procedure and/or method of phylogenetic inference. Hypotheses of monophyly of Punctoderinae and Heteroderinae are, respectively, strongly and moderately supported by the ITS data across most alignments. Close relationships were revealed between the Avenae and the Sacchari groups and between the Humuli group and the species H. salixophila within Heteroderinae. The Goettingiana group occupies a basal position within this subfamily. The validity of the genera Afenestrata and Bidera was tested and is discussed based on molecular data. We conclude that ITS sequence data are appropriate for studies of relationships within the different species groups and less so for recovery of more ancient speciations within Heteroderidae. Copyright 2001 Academic Press.

  4. Classification of Complete Proteomes of Different Organisms and Protein Sets Based on Their Protein Distributions in Terms of Some Key Attributes of Proteins

    PubMed Central

    Ma, Yue; Tuskan, Gerald A.

    2018-01-01

    The existence of complete genome sequences makes it important to develop different approaches for classification of large-scale data sets and to make extraction of biological insights easier. Here, we propose an approach for classification of complete proteomes/protein sets based on protein distributions on some basic attributes. We demonstrate the usefulness of this approach by determining protein distributions in terms of two attributes: protein lengths and protein intrinsic disorder contents (ID). The protein distributions based on L and ID are surveyed for representative proteome organisms and protein sets from the three domains of life. The two-dimensional maps (designated as fingerprints here) from the protein distribution densities in the LD space defined by ln(L) and ID are then constructed. The fingerprints for different organisms and protein sets are found to be distinct with each other, and they can therefore be used for comparative studies. As a test case, phylogenetic trees have been constructed based on the protein distribution densities in the fingerprints of proteomes of organisms without performing any protein sequence comparison and alignments. The phylogenetic trees generated are biologically meaningful, demonstrating that the protein distributions in the LD space may serve as unique phylogenetic signals of the organisms at the proteome level. PMID:29686995

  5. Blastocystis phylogeny among various isolates from humans to insects.

    PubMed

    Yoshikawa, Hisao; Koyama, Yukiko; Tsuchiya, Erika; Takami, Kazutoshi

    2016-12-01

    Blastocystis is a common unicellular eukaryotic parasite found not only in humans, but also in various kinds of animal species worldwide. Since Blastocystis isolates are morphologically indistinguishable, many molecular biological approaches have been applied to classify these isolates. The complete or partial sequences of the small subunit rRNA gene (SSU rDNA) are mainly used for comparisons and phylogenetic analyses among Blastocystis isolates. However, various lengths of the partial SSU rDNA sequence have been used for phylogenetic inference among genetically different isolates. Based on the complete SSU rDNA sequences, consensus terminology of nine subtypes (STs) of Blastocystis sp. that were supported by phylogenetically monophyletic nine clades was proposed in 2007. Thereafter, eight additional kinds of STs comprising non-human mammalian Blastocystis isolates have been reported based on the phylogeny of SSU rDNA sequences, while STs 11 and 12 were only proposed on the base of partial sequences. Although many sequence data from mammalian and avian Blastocystis are registered in GenBank, only limited data on SSU rDNA are available for poikilotherm-derived Blastocystis isolates. Therefore, the phylogenetic positions of the reptilian/amphibian Blastocystis clades are unstable. The phylogenetic inference of various STs comprising mammalian and/or avian Blastocystis isolates was verified herein based on comparisons between partial and complete SSU rDNA sequences, and the phylogenetic positions of reptilian and amphibian Blastocystis isolates were also investigated using 14 new Blastocystis isolates from reptiles with all known isolates from other reptilians, amphibians, and insects registered in GenBank. Copyright © 2016. Published by Elsevier Ireland Ltd.

  6. Genome-wide comparisons of phylogenetic similarities between partial genomic regions and the full-length genome in Hepatitis E virus genotyping.

    PubMed

    Wang, Shuai; Wei, Wei; Luo, Xuenong; Cai, Xuepeng

    2014-01-01

    Besides the complete genome, different partial genomic sequences of Hepatitis E virus (HEV) have been used in genotyping studies, making it difficult to compare the results based on them. No commonly agreed partial region for HEV genotyping has been determined. In this study, we used a statistical method to evaluate the phylogenetic performance of each partial genomic sequence from a genome wide, by comparisons of evolutionary distances between genomic regions and the full-length genomes of 101 HEV isolates to identify short genomic regions that can reproduce HEV genotype assignments based on full-length genomes. Several genomic regions, especially one genomic region at the 3'-terminal of the papain-like cysteine protease domain, were detected to have relatively high phylogenetic correlations with the full-length genome. Phylogenetic analyses confirmed the identical performances between these regions and the full-length genome in genotyping, in which the HEV isolates involved could be divided into reasonable genotypes. This analysis may be of value in developing a partial sequence-based consensus classification of HEV species.

  7. Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests.

    PubMed

    Posada, David; Buckley, Thomas R

    2004-10-01

    Model selection is a topic of special relevance in molecular phylogenetics that affects many, if not all, stages of phylogenetic inference. Here we discuss some fundamental concepts and techniques of model selection in the context of phylogenetics. We start by reviewing different aspects of the selection of substitution models in phylogenetics from a theoretical, philosophical and practical point of view, and summarize this comparison in table format. We argue that the most commonly implemented model selection approach, the hierarchical likelihood ratio test, is not the optimal strategy for model selection in phylogenetics, and that approaches like the Akaike Information Criterion (AIC) and Bayesian methods offer important advantages. In particular, the latter two methods are able to simultaneously compare multiple nested or nonnested models, assess model selection uncertainty, and allow for the estimation of phylogenies and model parameters using all available models (model-averaged inference or multimodel inference). We also describe how the relative importance of the different parameters included in substitution models can be depicted. To illustrate some of these points, we have applied AIC-based model averaging to 37 mitochondrial DNA sequences from the subgenus Ohomopterus(genus Carabus) ground beetles described by Sota and Vogler (2001).

  8. Unrealistic phylogenetic trees may improve phylogenetic footprinting.

    PubMed

    Nettling, Martin; Treutler, Hendrik; Cerquides, Jesus; Grosse, Ivo

    2017-06-01

    The computational investigation of DNA binding motifs from binding sites is one of the classic tasks in bioinformatics and a prerequisite for understanding gene regulation as a whole. Due to the development of sequencing technologies and the increasing number of available genomes, approaches based on phylogenetic footprinting become increasingly attractive. Phylogenetic footprinting requires phylogenetic trees with attached substitution probabilities for quantifying the evolution of binding sites, but these trees and substitution probabilities are typically not known and cannot be estimated easily. Here, we investigate the influence of phylogenetic trees with different substitution probabilities on the classification performance of phylogenetic footprinting using synthetic and real data. For synthetic data we find that the classification performance is highest when the substitution probability used for phylogenetic footprinting is similar to that used for data generation. For real data, however, we typically find that the classification performance of phylogenetic footprinting surprisingly increases with increasing substitution probabilities and is often highest for unrealistically high substitution probabilities close to one. This finding suggests that choosing realistic model assumptions might not always yield optimal predictions in general and that choosing unrealistically high substitution probabilities close to one might actually improve the classification performance of phylogenetic footprinting. The proposed PF is implemented in JAVA and can be downloaded from https://github.com/mgledi/PhyFoo. : martin.nettling@informatik.uni-halle.de. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  9. Phylogenetic incongruence in the Drosophila melanogaster species group

    PubMed Central

    Wong, Alex; Jensen, Jeffrey D.; Pool, John E.; Aquadro, Charles F.

    2007-01-01

    Drosophila melanogaster and its close relatives are used extensively in comparative biology. Despite the importance of phylogenetic information for such studies, relationships between some melanogaster species group members are unclear due to conflicting phylogenetic signals at different loci. In this study, we use twelve nuclear loci (eleven coding and one non-coding) to assess the degree of phylogenetic incongruence in this model system. We focus on two nodes: (1) The node joining the D. erecta-D. orena, D. melanogaster-D. simulans, and D. yakuba-D. teissieri lineages, and (2) The node joining the lineages leading to the melanogaster, takahashii, and eugracilis subgroups. We find limited evidence for incongruence at the first node; our data, as well as those of several previous studies, strongly support monophyly of a clade consisting of D. erecta-D. orena and D. yakuba-D. teissieri. By contrast, using likelihood based tests of congruence, we find robust evidence for topological incongruence at the second node. Different loci support different relationships among the melanogaster, takahashii and eugracilis subgroups, and the observed incongruence is not easily attributable to homoplasy, non-equilibrium base composition, or positive selection on a subset of loci. We argue that lineage sorting in the common ancestor of these three subgroups is the most plausible explanation for our observations. Such lineage sorting may lead to biased estimation of tree topology and evolutionary rates, and may confound inferences of positive selection. PMID:17071113

  10. Two mitochondrial genomes in Alcedinidae (Ceryle rudis/Halcyon pileata) and the phylogenetic placement of Coraciiformes.

    PubMed

    Sun, Xiaomin; Zhao, Ruoping; Zhang, Ting; Gong, Jie; Jing, Meidong; Huang, Ling

    2017-10-01

    Coraciiformes comprises 209 species belonging to ten families with significant divergence on external morphologies and life styles. The phylogenetic placement of Coraciiformes was still in debate. Here, we determined the complete mitochondrial genomes (mitogenomes) of Crested Kingfisher (Ceryle rudis) and Black-capped Kingfisher (Halcyon pileata). The mitogenomes were 17,355 bp (C. rudis) and 17,612 bp (H. pileata) in length, and both of them contained 37 genes (two rRNA genes, 22 tRNA genes and 13 protein-coding genes) and one control region. The gene organizations and characters of two mitogenomes were similar with those of other mitogenomes in Coraciiformes, however the sizes and nucleotide composition of control regions in different mitogenomes were significantly different. Phylogenetic trees were constructed with both Bayesian and Maximum Likelihood methods based on mitogenome sequences from 11 families of six orders. The trees based on two different data sets supported the basal position of Psittacidae (Psittaciformes), the closest relationship between Cuculiformes (Cuculidae) and Trogoniformes (Trogonidae), and the close relationship between Coraciiformes and Piciformes. The phylogenetic placement of the clade including Cuculiformes and Trogoniformes has not been resolved in present study, which need further investigations with more molecular markers and species. The mitogenome sequences presented here provided valuable data for further taxonomic studies on Coraciiformes and other related groups.

  11. Phylogenetic relationships of Hemiptera inferred from mitochondrial and nuclear genes.

    PubMed

    Song, Nan; Li, Hu; Cai, Wanzhi; Yan, Fengming; Wang, Jianyun; Song, Fan

    2016-11-01

    Here, we reconstructed the Hemiptera phylogeny based on the expanded mitochondrial protein-coding genes and the nuclear 18S rRNA gene, separately. The differential rates of change across lineages may associate with long-branch attraction (LBA) effect and result in conflicting estimates of phylogeny from different types of data. To reduce the potential effects of systematic biases on inferences of topology, various data coding schemes, site removal method, and different algorithms were utilized in phylogenetic reconstruction. We show that the outgroups Phthiraptera, Thysanoptera, and the ingroup Sternorrhyncha share similar base composition, and exhibit "long branches" relative to other hemipterans. Thus, the long-branch attraction between these groups is suspected to cause the failure of recovering Hemiptera under the homogeneous model. In contrast, a monophyletic Hemiptera is supported when heterogeneous model is utilized in the analysis. Although higher level phylogenetic relationships within Hemiptera remain to be answered, consensus between analyses is beginning to converge on a stable phylogeny.

  12. A review of criticisms of phylogenetic nomenclature: is taxonomic freedom the fundamental issue?

    PubMed

    Bryant, Harold N; Cantino, Philip D

    2002-02-01

    The proposal to implement a phylogenetic nomenclatural system governed by the PhyloCode), in which taxon names are defined by explicit reference to common descent, has met with strong criticism from some proponents of phylogenetic taxonomy (taxonomy based on the principle of common descent in which only clades and species are recognized). We examine these criticisms and find that some of the perceived problems with phylogenetic nomenclature are based on misconceptions, some are equally true of the current rank-based nomenclatural system, and some will be eliminated by implementation of the PhyloCode. Most of the criticisms are related to an overriding concern that, because the meanings of names are associated with phylogenetic pattern which is subject to change, the adoption of phylogenetic nomenclature will lead to increased instability in the content of taxa. This concern is associated with the fact that, despite the widespread adoption of the view that taxa are historical entities that are conceptualized based on ancestry, many taxonomists also conceptualize taxa based on their content. As a result, critics of phylogenetic nomenclature have argued that taxonomists should be free to emend the content of taxa without constraints imposed by nomenclatural decisions. However, in phylogenetic nomenclature the contents of taxa are determined, not by the taxonomist, but by the combination of the phylogenetic definition of the name and a phylogenetic hypothesis. Because the contents of taxa, once their names are defined, can no longer be freely modified by taxonomists, phylogenetic nomenclature is perceived as limiting taxonomic freedom. We argue that the form of taxonomic freedom inherent to phylogenetic nomenclature is appropriate to phylogenetic taxonomy in which taxa are considered historical entities that are discovered through phylogenetic analysis and are not human constructs.

  13. Towards a formal genealogical classification of the Lezgian languages (North Caucasus): testing various phylogenetic methods on lexical data.

    PubMed

    Kassian, Alexei

    2015-01-01

    A lexicostatistical classification is proposed for 20 languages and dialects of the Lezgian group of the North Caucasian family, based on meticulously compiled 110-item wordlists, published as part of the Global Lexicostatistical Database project. The lexical data have been subsequently analyzed with the aid of the principal phylogenetic methods, both distance-based and character-based: Starling neighbor joining (StarlingNJ), Neighbor joining (NJ), Unweighted pair group method with arithmetic mean (UPGMA), Bayesian Markov chain Monte Carlo (MCMC), Unweighted maximum parsimony (UMP). Cognation indexes within the input matrix were marked by two different algorithms: traditional etymological approach and phonetic similarity, i.e., the automatic method of consonant classes (Levenshtein distances). Due to certain reasons (first of all, high lexicographic quality of the wordlists and a consensus about the Lezgian phylogeny among Caucasologists), the Lezgian database is a perfect testing area for appraisal of phylogenetic methods. For the etymology-based input matrix, all the phylogenetic methods, with the possible exception of UMP, have yielded trees that are sufficiently compatible with each other to generate a consensus phylogenetic tree of the Lezgian lects. The obtained consensus tree agrees with the traditional expert classification as well as some of the previously proposed formal classifications of this linguistic group. Contrary to theoretical expectations, the UMP method has suggested the least plausible tree of all. In the case of the phonetic similarity-based input matrix, the distance-based methods (StarlingNJ, NJ, UPGMA) have produced the trees that are rather close to the consensus etymology-based tree and the traditional expert classification, whereas the character-based methods (Bayesian MCMC, UMP) have yielded less likely topologies.

  14. Towards a Formal Genealogical Classification of the Lezgian Languages (North Caucasus): Testing Various Phylogenetic Methods on Lexical Data

    PubMed Central

    Kassian, Alexei

    2015-01-01

    A lexicostatistical classification is proposed for 20 languages and dialects of the Lezgian group of the North Caucasian family, based on meticulously compiled 110-item wordlists, published as part of the Global Lexicostatistical Database project. The lexical data have been subsequently analyzed with the aid of the principal phylogenetic methods, both distance-based and character-based: Starling neighbor joining (StarlingNJ), Neighbor joining (NJ), Unweighted pair group method with arithmetic mean (UPGMA), Bayesian Markov chain Monte Carlo (MCMC), Unweighted maximum parsimony (UMP). Cognation indexes within the input matrix were marked by two different algorithms: traditional etymological approach and phonetic similarity, i.e., the automatic method of consonant classes (Levenshtein distances). Due to certain reasons (first of all, high lexicographic quality of the wordlists and a consensus about the Lezgian phylogeny among Caucasologists), the Lezgian database is a perfect testing area for appraisal of phylogenetic methods. For the etymology-based input matrix, all the phylogenetic methods, with the possible exception of UMP, have yielded trees that are sufficiently compatible with each other to generate a consensus phylogenetic tree of the Lezgian lects. The obtained consensus tree agrees with the traditional expert classification as well as some of the previously proposed formal classifications of this linguistic group. Contrary to theoretical expectations, the UMP method has suggested the least plausible tree of all. In the case of the phonetic similarity-based input matrix, the distance-based methods (StarlingNJ, NJ, UPGMA) have produced the trees that are rather close to the consensus etymology-based tree and the traditional expert classification, whereas the character-based methods (Bayesian MCMC, UMP) have yielded less likely topologies. PMID:25719456

  15. Mitogenome Phylogenetics: The Impact of Using Single Regions and Partitioning Schemes on Topology, Substitution Rate and Divergence Time Estimation

    PubMed Central

    Duchêne, Sebastián; Archer, Frederick I.; Vilstrup, Julia; Caballero, Susana; Morin, Phillip A.

    2011-01-01

    The availability of mitochondrial genome sequences is growing as a result of recent technological advances in molecular biology. In phylogenetic analyses, the complete mitogenome is increasingly becoming the marker of choice, usually providing better phylogenetic resolution and precision relative to traditional markers such as cytochrome b (CYTB) and the control region (CR). In some cases, the differences in phylogenetic estimates between mitogenomic and single-gene markers have yielded incongruent conclusions. By comparing phylogenetic estimates made from different genes, we identified the most informative mitochondrial regions and evaluated the minimum amount of data necessary to reproduce the same results as the mitogenome. We compared results among individual genes and the mitogenome for recently published complete mitogenome datasets of selected delphinids (Delphinidae) and killer whales (genus Orcinus). Using Bayesian phylogenetic methods, we investigated differences in estimation of topologies, divergence dates, and clock-like behavior among genes for both datasets. Although the most informative regions were not the same for each taxonomic group (COX1, CYTB, ND3 and ATP6 for Orcinus, and ND1, COX1 and ND4 for Delphinidae), in both cases they were equivalent to less than a quarter of the complete mitogenome. This suggests that gene information content can vary among groups, but can be adequately represented by a portion of the complete sequence. Although our results indicate that complete mitogenomes provide the highest phylogenetic resolution and most precise date estimates, a minimum amount of data can be selected using our approach when the complete sequence is unavailable. Studies based on single genes can benefit from the addition of a few more mitochondrial markers, producing topologies and date estimates similar to those obtained using the entire mitogenome. PMID:22073275

  16. Phylogenetic relationships of some species of the family Echinostomatidae Odner, 1910 (Trematoda), inferred from nuclear rDNA sequences and karyological analysis

    PubMed Central

    Stanevičiūtė, Gražina; Stunžėnas, Virmantas; Petkevičiūtė, Romualda

    2015-01-01

    Abstract The family Echinostomatidae Looss, 1899 exhibits a substantial taxonomic diversity, morphological criteria adopted by different authors have resulted in its subdivision into an impressive number of subfamilies. The status of the subfamily Echinochasminae Odhner, 1910 was changed in various classifications. Genetic characteristics and phylogenetic analysis of four Echinostomatidae species – Echinochasmus sp., Echinochasmus coaxatus Dietz, 1909, Stephanoprora pseudoechinata (Olsson, 1876) and Echinoparyphium mordwilkoi Skrjabin, 1915 were obtained to understand well enough the homogeneity of the Echinochasminae and phylogenetic relationships within the Echinostomatidae. Chromosome set and nuclear rDNA (ITS2 and 28S) sequences of parthenites of Echinochasmus sp. were studied. The karyotype of this species (2n=20, one pair of large bi-armed chromosomes and others are smaller-sized, mainly one-armed, chromosomes) differed from that previously described for two other representatives of the Echinochasminae, Echinochasmus beleocephalus (von Linstow, 1893), 2n=14, and Episthmium bursicola (Creplin, 1937), 2n=18. In phylogenetic trees based on ITS2 and 28S datasets, a well-supported subclade with Echinochasmus sp. and Stephanoprora pseudoechinata clustered with one well-supported clade together with Echinochasmus japonicus Tanabe, 1926 (data only for 28S) and Echinochasmus coaxatus. These results supported close phylogenetic relationships between Echinochasmus Dietz, 1909 and Stephanoprora Odhner, 1902. Phylogenetic analysis revealed a clear separation of related species of Echinostomatoidea restricted to prosobranch snails as first intermediate hosts, from other species of Echinostomatidae and Psilostomidae, developing in Lymnaeoidea snails as first intermediate hosts. According to the data based on rDNA phylogeny, it was supposed that evolution of parasitic flukes linked with first intermediate hosts. Digeneans parasitizing prosobranch snails showed higher dynamic of karyotype evolution provided by different chromosomal rearrangements including Robertsonian translocations and pericentric inversions than more stable karyotype of digenean worms parasitizing lymnaeoid pulmonate snails. PMID:26140167

  17. The Phylogeny of Rickettsia Using Different Evolutionary Signatures: How Tree-Like is Bacterial Evolution?

    PubMed Central

    Murray, Gemma G. R.; Weinert, Lucy A.; Rhule, Emma L.; Welch, John J.

    2016-01-01

    Rickettsia is a genus of intracellular bacteria whose hosts and transmission strategies are both impressively diverse, and this is reflected in a highly dynamic genome. Some previous studies have described the evolutionary history of Rickettsia as non-tree-like, due to incongruity between phylogenetic reconstructions using different portions of the genome. Here, we reconstruct the Rickettsia phylogeny using whole-genome data, including two new genomes from previously unsampled host groups. We find that a single topology, which is supported by multiple sources of phylogenetic signal, well describes the evolutionary history of the core genome. We do observe extensive incongruence between individual gene trees, but analyses of simulations over a single topology and interspersed partitions of sites show that this is more plausibly attributed to systematic error than to horizontal gene transfer. Some conflicting placements also result from phylogenetic analyses of accessory genome content (i.e., gene presence/absence), but we argue that these are also due to systematic error, stemming from convergent genome reduction, which cannot be accommodated by existing phylogenetic methods. Our results show that, even within a single genus, tests for gene exchange based on phylogenetic incongruence may be susceptible to false positives. PMID:26559010

  18. Ghost-tree: creating hybrid-gene phylogenetic trees for diversity analyses.

    PubMed

    Fouquier, Jennifer; Rideout, Jai Ram; Bolyen, Evan; Chase, John; Shiffer, Arron; McDonald, Daniel; Knight, Rob; Caporaso, J Gregory; Kelley, Scott T

    2016-02-24

    Fungi play critical roles in many ecosystems, cause serious diseases in plants and animals, and pose significant threats to human health and structural integrity problems in built environments. While most fungal diversity remains unknown, the development of PCR primers for the internal transcribed spacer (ITS) combined with next-generation sequencing has substantially improved our ability to profile fungal microbial diversity. Although the high sequence variability in the ITS region facilitates more accurate species identification, it also makes multiple sequence alignment and phylogenetic analysis unreliable across evolutionarily distant fungi because the sequences are hard to align accurately. To address this issue, we created ghost-tree, a bioinformatics tool that integrates sequence data from two genetic markers into a single phylogenetic tree that can be used for diversity analyses. Our approach starts with a "foundation" phylogeny based on one genetic marker whose sequences can be aligned across organisms spanning divergent taxonomic groups (e.g., fungal families). Then, "extension" phylogenies are built for more closely related organisms (e.g., fungal species or strains) using a second more rapidly evolving genetic marker. These smaller phylogenies are then grafted onto the foundation tree by mapping taxonomic names such that each corresponding foundation-tree tip would branch into its new "extension tree" child. We applied ghost-tree to graft fungal extension phylogenies derived from ITS sequences onto a foundation phylogeny derived from fungal 18S sequences. Our analysis of simulated and real fungal ITS data sets found that phylogenetic distances between fungal communities computed using ghost-tree phylogenies explained significantly more variance than non-phylogenetic distances. The phylogenetic metrics also improved our ability to distinguish small differences (effect sizes) between microbial communities, though results were similar to non-phylogenetic methods for larger effect sizes. The Silva/UNITE-based ghost tree presented here can be easily integrated into existing fungal analysis pipelines to enhance the resolution of fungal community differences and improve understanding of these communities in built environments. The ghost-tree software package can also be used to develop phylogenetic trees for other marker gene sets that afford different taxonomic resolution, or for bridging genome trees with amplicon trees. ghost-tree is pip-installable. All source code, documentation, and test code are available under the BSD license at https://github.com/JTFouquier/ghost-tree .

  19. A Unique Box in 28S rRNA Is Shared by the Enigmatic Insect Order Zoraptera and Dictyoptera

    PubMed Central

    Dang, Kai; Wu, Haoyang; Wang, Ying; Xie, Qiang; Bu, Wenjun

    2013-01-01

    The position of the Zoraptera remains one of the most challenging and uncertain concerns in ordinal-level phylogenies of the insects. Zoraptera have been viewed as having a close relationship with five different groups of Polyneoptera, or as being allied to the Paraneoptera or even Holometabola. Although rDNAs have been widely used in phylogenetic studies of insects, the application of the complete 28S rDNA are still scattered in only a few orders. In this study, a secondary structure model of the complete 28S rRNAs of insects was reconstructed based on all orders of Insecta. It was found that one length-variable region, D3-4, is particularly distinctive. The length and/or sequence of D3-4 is conservative within each order of Polyneoptera, but it can be divided into two types between the different orders of the supercohort, of which the enigmatic order Zoraptera and Dictyoptera share one type, while the remaining orders of Polyneoptera share the other. Additionally, independent evidence from phylogenetic results support the clade (Zoraptera+Dictyoptera) as well. Thus, the similarity of D3-4 between Zoraptera and Dictyoptera can serve as potentially valuable autapomorphy or synapomorphy in phylogeny reconstruction. The clades of (Plecoptera+Dermaptera) and ((Grylloblattodea+Mantophasmatodea)+(Embiodea+Phasmatodea)) were also recovered in the phylogenetic study. In addition, considering the other studies based on rDNAs, this study reached the highest congruence with previous phylogenetic studies of Holometabola based on nuclear protein coding genes or morphology characters. Future comparative studies of secondary structures across deep divergences and additional taxa are likely to reveal conserved patterns, structures and motifs that can provide support for major phylogenetic lineages. PMID:23301099

  20. Evaluation of a Phylogenetic Marker Based on Genomic Segment B of Infectious Bursal Disease Virus: Facilitating a Feasible Incorporation of this Segment to the Molecular Epidemiology Studies for this Viral Agent.

    PubMed

    Alfonso-Morales, Abdulahi; Rios, Liliam; Martínez-Pérez, Orlando; Dolz, Roser; Valle, Rosa; Perera, Carmen L; Bertran, Kateri; Frías, Maria T; Ganges, Llilianne; Díaz de Arce, Heidy; Majó, Natàlia; Núñez, José I; Pérez, Lester J

    2015-01-01

    Infectious bursal disease (IBD) is a highly contagious and acute viral disease, which has caused high mortality rates in birds and considerable economic losses in different parts of the world for more than two decades and it still represents a considerable threat to poultry. The current study was designed to rigorously measure the reliability of a phylogenetic marker included into segment B. This marker can facilitate molecular epidemiology studies, incorporating this segment of the viral genome, to better explain the links between emergence, spreading and maintenance of the very virulent IBD virus (vvIBDV) strains worldwide. Sequences of the segment B gene from IBDV strains isolated from diverse geographic locations were obtained from the GenBank Database; Cuban sequences were obtained in the current work. A phylogenetic marker named B-marker was assessed by different phylogenetic principles such as saturation of substitution, phylogenetic noise and high consistency. This last parameter is based on the ability of B-marker to reconstruct the same topology as the complete segment B of the viral genome. From the results obtained from B-marker, demographic history for both main lineages of IBDV regarding segment B was performed by Bayesian skyline plot analysis. Phylogenetic analysis for both segments of IBDV genome was also performed, revealing the presence of a natural reassortant strain with segment A from vvIBDV strains and segment B from non-vvIBDV strains within Cuban IBDV population. This study contributes to a better understanding of the emergence of vvIBDV strains, describing molecular epidemiology of IBDV using the state-of-the-art methodology concerning phylogenetic reconstruction. This study also revealed the presence of a novel natural reassorted strain as possible manifest of change in the genetic structure and stability of the vvIBDV strains. Therefore, it highlights the need to obtain information about both genome segments of IBDV for molecular epidemiology studies.

  1. Contrasting biodiversity-ecosystem functioning relationships in phylogenetic and functional diversity.

    PubMed

    Steudel, Bastian; Hallmann, Christine; Lorenz, Maike; Abrahamczyk, Stefan; Prinz, Kathleen; Herrfurth, Cornelia; Feussner, Ivo; Martini, Johannes W R; Kessler, Michael

    2016-10-01

    It is well known that ecosystem functioning is positively influenced by biodiversity. Most biodiversity-ecosystem functioning experiments have measured biodiversity based on species richness or phylogenetic relationships. However, theoretical and empirical evidence suggests that ecosystem functioning should be more closely related to functional diversity than to species richness. We applied different metrics of biodiversity in an artificial biodiversity-ecosystem functioning experiment using 64 species of green microalgae in combinations of two to 16 species. We found that phylogenetic and functional diversity were positively correlated with biomass overyield, driven by their strong correlation with species richness. At low species richness, no significant correlation between overyield and functional and phylogenetic diversity was found. However, at high species richness (16 species), we found a positive relationship of overyield with functional diversity and a negative relationship with phylogenetic diversity. We show that negative phylogenetic diversity-ecosystem functioning relationships can result from interspecific growth inhibition. The opposing performances of facilitation (functional diversity) and inhibition (phylogenetic diversity) we observed at the 16 species level suggest that phylogenetic diversity is not always a good proxy for functional diversity and that results from experiments with low species numbers may underestimate negative species interactions. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  2. Impact of tree priors in species delimitation and phylogenetics of the genus Oligoryzomys (Rodentia: Cricetidae).

    PubMed

    da Cruz, Marcos de O R; Weksler, Marcelo

    2018-02-01

    The use of genetic data and tree-based algorithms to delimit evolutionary lineages is becoming an important practice in taxonomic identification, especially in morphologically cryptic groups. The effects of different phylogenetic and/or coalescent models in the analyses of species delimitation, however, are not clear. In this paper, we assess the impact of different evolutionary priors in phylogenetic estimation, species delimitation, and molecular dating of the genus Oligoryzomys (Mammalia: Rodentia), a group with complex taxonomy and morphological cryptic species. Phylogenetic and coalescent analyses included 20 of the 24 recognized species of the genus, comprising of 416 Cytochrome b sequences, 26 Cytochrome c oxidase I sequences, and 27 Beta-Fibrinogen Intron 7 sequences. For species delimitation, we employed the General Mixed Yule Coalescent (GMYC) and Bayesian Poisson tree processes (bPTP) analyses, and contrasted 4 genealogical and phylogenetic models: Pure-birth (Yule), Constant Population Size Coalescent, Multiple Species Coalescent, and a mixed Yule-Coalescent model. GMYC analyses of trees from different genealogical models resulted in similar species delimitation and phylogenetic relationships, with incongruence restricted to areas of poor nodal support. bPTP results, however, significantly differed from GMYC for 5 taxa. Oligoryzomys early diversification was estimated to have occurred in the Early Pleistocene, between 0.7 and 2.6 MYA. The mixed Yule-Coalescent model, however, recovered younger dating estimates for Oligoryzomys diversification, and for the threshold for the speciation-coalescent horizon in GMYC. Eight of the 20 included Oligoryzomys species were identified as having two or more independent evolutionary units, indicating that current taxonomy of Oligoryzomys is still unsettled. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Classification of Complete Proteomes of Different Organisms and Protein Sets Based on Their Protein Distributions in Terms of Some Key Attributes of Proteins

    DOE PAGES

    Guo, Hao-Bo; Ma, Yue; Tuskan, Gerald A.; ...

    2018-01-01

    The existence of complete genome sequences makes it important to develop different approaches for classification of large-scale data sets and to make extraction of biological insights easier. Here, we propose an approach for classification of complete proteomes/protein sets based on protein distributions on some basic attributes. We demonstrate the usefulness of this approach by determining protein distributions in terms of two attributes: protein lengths and protein intrinsic disorder contents (ID). The protein distributions based on L and ID are surveyed for representative proteome organisms and protein sets from the three domains of life. The two-dimensional maps (designated as fingerprints here)more » from the protein distribution densities in the LD space defined by ln( L ) and ID are then constructed. The fingerprints for different organisms and protein sets are found to be distinct with each other, and they can therefore be used for comparative studies. As a test case, phylogenetic trees have been constructed based on the protein distribution densities in the fingerprints of proteomes of organisms without performing any protein sequence comparison and alignments. The phylogenetic trees generated are biologically meaningful, demonstrating that the protein distributions in the LD space may serve as unique phylogenetic signals of the organisms at the proteome level.« less

  4. Classification of Complete Proteomes of Different Organisms and Protein Sets Based on Their Protein Distributions in Terms of Some Key Attributes of Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Hao-Bo; Ma, Yue; Tuskan, Gerald A.

    The existence of complete genome sequences makes it important to develop different approaches for classification of large-scale data sets and to make extraction of biological insights easier. Here, we propose an approach for classification of complete proteomes/protein sets based on protein distributions on some basic attributes. We demonstrate the usefulness of this approach by determining protein distributions in terms of two attributes: protein lengths and protein intrinsic disorder contents (ID). The protein distributions based on L and ID are surveyed for representative proteome organisms and protein sets from the three domains of life. The two-dimensional maps (designated as fingerprints here)more » from the protein distribution densities in the LD space defined by ln( L ) and ID are then constructed. The fingerprints for different organisms and protein sets are found to be distinct with each other, and they can therefore be used for comparative studies. As a test case, phylogenetic trees have been constructed based on the protein distribution densities in the fingerprints of proteomes of organisms without performing any protein sequence comparison and alignments. The phylogenetic trees generated are biologically meaningful, demonstrating that the protein distributions in the LD space may serve as unique phylogenetic signals of the organisms at the proteome level.« less

  5. Complete mitogenome of Asiatic lion resolves phylogenetic status within Panthera.

    PubMed

    Bagatharia, Snehal B; Joshi, Madhvi N; Pandya, Rohan V; Pandit, Aanal S; Patel, Riddhi P; Desai, Shivangi M; Sharma, Anu; Panchal, Omkar; Jasmani, Falguni P; Saxena, Akshay K

    2013-08-23

    The origin, evolution and speciation of the lion, has been subject of interest, debate and study. The present surviving lions of the genus Panthera comprise of eight sub-species inclusive of Asiatic lion Panthera leo persica of India's Gir forest. Except for the Asiatic lion, the other seven subspecies are found in different parts of Africa. There have been different opinions regarding the phylogenetic status of Panthera leo, as well as classifying lions of different geographic regions into subspecies and races. In the present study, mitogenome sequence of P. leo persica deduced, using Ion Torrent PGM to assess phylogeny and evolution which may play an increasingly important role in conservation biology. The mtDNA sequence of P. leo persica is 17,057 bp in length with 40.8% GC content. Annotation of mitogenome revealed total 37 genes, including 13 protein coding, 2 rRNA and 22 tRNA. Phylogenetic analysis based on whole mitogenome, suggests Panthera pardus as a neighbouring species to P. leo with species divergence at ~2.96 mya. This work presents first report on complete mitogenome of Panthera leo persica. It sheds light on the phylogenetic and evolutionary status within and across Felidae members. The result compared and evaluated with earlier reports of Felidae shows alteration of phylogenetic status and species evolution. This study may provide information on genetic diversity and population stability.

  6. Complete mitogenome of asiatic lion resolves phylogenetic status within Panthera

    PubMed Central

    2013-01-01

    Background The origin, evolution and speciation of the lion, has been subject of interest, debate and study. The present surviving lions of the genus Panthera comprise of eight sub-species inclusive of Asiatic lion Panthera leo persica of India's Gir forest. Except for the Asiatic lion, the other seven subspecies are found in different parts of Africa. There have been different opinions regarding the phylogenetic status of Panthera leo, as well as classifying lions of different geographic regions into subspecies and races. In the present study, mitogenome sequence of P. leo persica deduced, using Ion Torrent PGM to assess phylogeny and evolution which may play an increasingly important role in conservation biology. Results The mtDNA sequence of P. leo persica is 17,057 bp in length with 40.8% GC content. Annotation of mitogenome revealed total 37 genes, including 13 protein coding, 2 rRNA and 22 tRNA. Phylogenetic analysis based on whole mitogenome, suggests Panthera pardus as a neighbouring species to P. leo with species divergence at ~2.96 mya. Conclusion This work presents first report on complete mitogenome of Panthera leo persica. It sheds light on the phylogenetic and evolutionary status within and across Felidae members. The result compared and evaluated with earlier reports of Felidae shows alteration of phylogenetic status and species evolution. This study may provide information on genetic diversity and population stability. PMID:23968279

  7. Rearrangement moves on rooted phylogenetic networks

    PubMed Central

    Gambette, Philippe; van Iersel, Leo; Jones, Mark; Scornavacca, Celine

    2017-01-01

    Phylogenetic tree reconstruction is usually done by local search heuristics that explore the space of the possible tree topologies via simple rearrangements of their structure. Tree rearrangement heuristics have been used in combination with practically all optimization criteria in use, from maximum likelihood and parsimony to distance-based principles, and in a Bayesian context. Their basic components are rearrangement moves that specify all possible ways of generating alternative phylogenies from a given one, and whose fundamental property is to be able to transform, by repeated application, any phylogeny into any other phylogeny. Despite their long tradition in tree-based phylogenetics, very little research has gone into studying similar rearrangement operations for phylogenetic network—that is, phylogenies explicitly representing scenarios that include reticulate events such as hybridization, horizontal gene transfer, population admixture, and recombination. To fill this gap, we propose “horizontal” moves that ensure that every network of a certain complexity can be reached from any other network of the same complexity, and “vertical” moves that ensure reachability between networks of different complexities. When applied to phylogenetic trees, our horizontal moves—named rNNI and rSPR—reduce to the best-known moves on rooted phylogenetic trees, nearest-neighbor interchange and rooted subtree pruning and regrafting. Besides a number of reachability results—separating the contributions of horizontal and vertical moves—we prove that rNNI moves are local versions of rSPR moves, and provide bounds on the sizes of the rNNI neighborhoods. The paper focuses on the most biologically meaningful versions of phylogenetic networks, where edges are oriented and reticulation events clearly identified. Moreover, our rearrangement moves are robust to the fact that networks with higher complexity usually allow a better fit with the data. Our goal is to provide a solid basis for practical phylogenetic network reconstruction. PMID:28763439

  8. A proposal to rationalize within-species plant virus nomenclature: benefits and implications of inaction.

    PubMed

    Jones, Roger A C; Kehoe, Monica A

    2016-07-01

    Current approaches used to name within-species, plant virus phylogenetic groups are often misleading and illogical. They involve names based on biological properties, sequence differences and geographical, country or place-association designations, or any combination of these. This type of nomenclature is becoming increasingly unsustainable as numbers of sequences of the same virus from new host species and different parts of the world increase. Moreover, this increase is accelerating as world trade and agriculture expand, and climate change progresses. Serious consequences for virus research and disease management might arise from incorrect assumptions made when current within-species phylogenetic group names incorrectly identify properties of group members. This could result in development of molecular tools that incorrectly target dangerous virus strains, potentially leading to unjustified impediments to international trade or failure to prevent such strains being introduced to countries, regions or continents formerly free of them. Dangerous strains might be missed or misdiagnosed by diagnostic laboratories and monitoring programs, and new cultivars with incorrect strain-specific resistances released. Incorrect deductions are possible during phylogenetic analysis of plant virus sequences and errors from strain misidentification during molecular and biological virus research activities. A nomenclature system for within-species plant virus phylogenetic group names is needed which avoids such problems. We suggest replacing all other naming approaches with Latinized numerals, restricting biologically based names only to biological strains and removing geographically based names altogether. Our recommendations have implications for biosecurity authorities, diagnostic laboratories, disease-management programs, plant breeders and researchers.

  9. Phylogenetic diversity, functional trait diversity and extinction: avoiding tipping points and worst-case losses

    PubMed Central

    Faith, Daniel P.

    2015-01-01

    The phylogenetic diversity measure, (‘PD’), measures the relative feature diversity of different subsets of taxa from a phylogeny. At the level of feature diversity, PD supports the broad goal of biodiversity conservation to maintain living variation and option values. PD calculations at the level of lineages and features include those integrating probabilities of extinction, providing estimates of expected PD. This approach has known advantages over the evolutionarily distinct and globally endangered (EDGE) methods. Expected PD methods also have limitations. An alternative notion of expected diversity, expected functional trait diversity, relies on an alternative non-phylogenetic model and allows inferences of diversity at the level of functional traits. Expected PD also faces challenges in helping to address phylogenetic tipping points and worst-case PD losses. Expected PD may not choose conservation options that best avoid worst-case losses of long branches from the tree of life. We can expand the range of useful calculations based on expected PD, including methods for identifying phylogenetic key biodiversity areas. PMID:25561672

  10. Phylogenetic constrains on mycorrhizal specificity in eight Dendrobium (Orchidaceae) species.

    PubMed

    Xing, Xiaoke; Ma, Xueting; Men, Jinxin; Chen, Yanhong; Guo, Shunxing

    2017-05-01

    Plant phylogeny constrains orchid mycorrhizal (OrM) fungal community composition in some orchids. Here, we investigated the structures of the OrM fungal communities of eight Dendrobium species in one niche to determine whether similarities in the OrM fungal communities correlated with the phylogeny of the host plants and whether the Dendrobium-OrM fungal interactions are phylogenetically conserved. A phylogeny based on DNA data was constructed for the eight coexisting Dendrobium species, and the OrM fungal communities were characterized by their roots. There were 31 different fungal lineages associated with the eight Dendrobium species. In total, 82.98% of the identified associations belonging to Tulasnellaceae, and a smaller proportion involved members of the unknown Basidiomycota (9.67%). Community analyses revealed that phylogenetically related Dendrobium tended to interact with a similar set of Tulasnellaceae fungi. The interactions between Dendrobium and Tulasnellaceae fungi were significantly influenced by the phylogenetic relationships among the Dendrobium species. Our results provide evidence that the mycorrhizal specificity in the eight coexisting Dendrobium species was phylogenetically conserved.

  11. Discrimination and chemical phylogenetic study of seven species of Dendrobium using infrared spectroscopy combined with cluster analysis

    NASA Astrophysics Data System (ADS)

    Luo, Congpei; He, Tao; Chun, Ze

    2013-04-01

    Dendrobium is a commonly used and precious herb in Traditional Chinese Medicine. The high biodiversity of Dendrobium and the therapeutic needs require tools for the correct and fast discrimination of different Dendrobium species. This study investigates Fourier transform infrared spectroscopy followed by cluster analysis for discrimination and chemical phylogenetic study of seven Dendrobium species. Despite the general pattern of the IR spectra, different intensities, shapes, peak positions were found in the IR spectra of these samples, especially in the range of 1800-800 cm-1. The second derivative transformation and alcoholic extracting procedure obviously enlarged the tiny spectral differences among these samples. The results indicated each Dendrobium species had a characteristic IR spectra profile, which could be used to discriminate them. The similarity coefficients among the samples were analyzed based on their second derivative IR spectra, which ranged from 0.7632 to 0.9700, among the seven Dendrobium species, and from 0.5163 to 0.9615, among the ethanol extracts. A dendrogram was constructed based on cluster analysis the IR spectra for studying the chemical phylogenetic relationships among the samples. The results indicated that D. denneanum and D. crepidatum could be the alternative resources to substitute D. chrysotoxum, D. officinale and D. nobile which were officially recorded in Chinese Pharmacopoeia. In conclusion, with the advantages of high resolution, speediness and convenience, the experimental approach can successfully discriminate and construct the chemical phylogenetic relationships of the seven Dendrobium species.

  12. A multi-gene phylogeny of Chlorophyllum (Agaricaceae, Basidiomycota): new species, new combination and infrageneric classification

    PubMed Central

    Ge, Zai-Wei; Jacobs, Adriaana; Vellinga, Else C.; Sysouphanthong, Phongeun; van der Walt, Retha; Lavorato, Carmine; An, Yi-Feng; Yang, Zhu L.

    2018-01-01

    Abstract Taxonomic and phylogenetic studies of Chlorophyllum were carried out on the basis of morphological differences and molecular phylogenetic analyses. Based on the phylogeny inferred from the internal transcribed spacer (ITS), the partial large subunit nuclear ribosomal DNA (nrLSU), the second largest subunit of RNA polymerase II (rpb2) and translation elongation factor 1-α (tef1) sequences, six well-supported clades and 17 phylogenetic species are recognised. Within this phylogenetic framework and considering the diagnostic morphological characters, two new species, C. africanum and C. palaeotropicum, are described. In addition, a new infrageneric classification of Chlorophyllum is proposed, in which the genus is divided into six sections. One new combination is also made. This study provides a robust basis for a more detailed investigation of diversity and biogeography of Chlorophyllum. PMID:29681738

  13. Phylogenetic overdispersion of plant species in southern Brazilian savannas.

    PubMed

    Silva, I A; Batalha, M A

    2009-08-01

    Ecological communities are the result of not only present ecological processes, such as competition among species and environmental filtering, but also past and continuing evolutionary processes. Based on these assumptions, we may infer mechanisms of contemporary coexistence from the phylogenetic relationships of the species in a community. We studied the phylogenetic structure of plant communities in four cerrado sites, in southeastern Brazil. We calculated two raw phylogenetic distances among the species sampled. We estimated the phylogenetic structure by comparing the observed phylogenetic distances to the distribution of phylogenetic distances in null communities. We obtained null communities by randomizing the phylogenetic relationships of the regional pool of species. We found a phylogenetic overdispersion of the cerrado species. Phylogenetic overdispersion has several explanations, depending on the phylogenetic history of traits and contemporary ecological interactions. However, based on coexistence models between grasses and trees, density-dependent ecological forces, and the evolutionary history of the cerrado flora, we argue that the phylogenetic overdispersion of cerrado species is predominantly due to competitive interactions, herbivores and pathogen attacks, and ecological speciation. Future studies will need to include information on the phylogenetic history of plant traits.

  14. The complex roles of space and environment in structuring functional, taxonomic and phylogenetic beta diversity of frogs in the Atlantic Forest

    PubMed Central

    Luiz, Amom Mendes; Sawaya, Ricardo J.

    2018-01-01

    Ecological communities are complex entities that can be maintained and structured by niche-based processes such as environmental conditions, and spatial processes such as dispersal. Thus, diversity patterns may be shaped simultaneously at different spatial scales by very distinct processes. Herein we assess whether and how functional, taxonomic, and phylogenetic beta diversities of frog tadpoles are explained by environmental and/or spatial predictors. We implemented a distance–based redundancy analysis to explore variation in components of beta diversity explained by pure environmental and pure spatial predictors, as well as their interactions, at both fine and broad spatial scales. Our results indicated important but complex roles of spatial and environmental predictors in structuring phylogenetic, taxonomic and functional beta diversities. The pure fine-scales spatial fraction was more important in structuring all beta diversity components, especially to functional and taxonomical spatial turnover. Environmental variables such as canopy cover and vegetation structure were important predictors of all components, but especially to functional and taxonomic beta diversity. We emphasize that distinct factors related to environment and space are affecting distinct components of beta diversity in different ways. Although weaker, phylogenetic beta diversity, which is structured more on biogeographical scales, and thus can be represented by spatially structured processes, was more related to broad spatial processes than other components. However, selected fine-scale spatial predictors denoted negative autocorrelation, which may be revealing the existence of differences in unmeasured habitat variables among samples. Although overall important, local environmental-based processes explained better functional and taxonomic beta diversity, as these diversity components carry an important ecological value. We highlight the importance of assessing different components of diversity patterns at different scales by spatially explicit models in order to improve our understanding of community structure and help to unravel the complex nature of biodiversity. PMID:29672575

  15. Tandem repeats analysis for the high resolution phylogenetic analysis of Yersinia pestis

    PubMed Central

    Pourcel, C; André-Mazeaud, F; Neubauer, H; Ramisse, F; Vergnaud, G

    2004-01-01

    Background Yersinia pestis, the agent of plague, is a young and highly monomorphic species. Three biovars, each one thought to be associated with the last three Y. pestis pandemics, have been defined based on biochemical assays. More recently, DNA based assays, including DNA sequencing, IS typing, DNA arrays, have significantly improved current knowledge on the origin and phylogenetic evolution of Y. pestis. However, these methods suffer either from a lack of resolution or from the difficulty to compare data. Variable number of tandem repeats (VNTRs) provides valuable polymorphic markers for genotyping and performing phylogenetic analyses in a growing number of pathogens and have given promising results for Y. pestis as well. Results In this study we have genotyped 180 Y. pestis isolates by multiple locus VNTR analysis (MLVA) using 25 markers. Sixty-one different genotypes were observed. The three biovars were distributed into three main branches, with some exceptions. In particular, the Medievalis phenotype is clearly heterogeneous, resulting from different mutation events in the napA gene. Antiqua strains from Asia appear to hold a central position compared to Antiqua strains from Africa. A subset of 7 markers is proposed for the quick comparison of a new strain with the collection typed here. This can be easily achieved using a Web-based facility, specifically set-up for running such identifications. Conclusion Tandem-repeat typing may prove to be a powerful complement to the existing phylogenetic tools for Y. pestis. Typing can be achieved quickly at a low cost in terms of consumables, technical expertise and equipment. The resulting data can be easily compared between different laboratories. The number and selection of markers will eventually depend upon the type and aim of investigations. PMID:15186506

  16. On Tree-Based Phylogenetic Networks.

    PubMed

    Zhang, Louxin

    2016-07-01

    A large class of phylogenetic networks can be obtained from trees by the addition of horizontal edges between the tree edges. These networks are called tree-based networks. We present a simple necessary and sufficient condition for tree-based networks and prove that a universal tree-based network exists for any number of taxa that contains as its base every phylogenetic tree on the same set of taxa. This answers two problems posted by Francis and Steel recently. A byproduct is a computer program for generating random binary phylogenetic networks under the uniform distribution model.

  17. The evolution of laughter in great apes and humans

    PubMed Central

    Owren, Michael J; Zimmermann, Elke

    2010-01-01

    It has long been claimed that human emotional expressions, such as laughter, have evolved from nonhuman displays. The aim of the current study was to test this prediction by conducting acoustic and phylogenetic analyses based on the acoustics of tickle-induced vocalizations of orangutans, gorillas, chimpanzees, bonobos and humans. Results revealed both important similarities and differences among the various species’ vocalizations, with the phylogenetic tree reconstructed based on these acoustic data matching the well-established genetic relationships of great apes and humans. These outcomes provide evidence of a common phylogenetic origin of tickle-induced vocalizations in these taxa, which can therefore be termed “laughter” across all five species. Results are consistent with the claims of phylogenetic continuity of emotional expressions. Together with observations made on the use of laughter in great apes and humans, findings of this study further indicate that there were two main periods of selection-driven evolutionary change in laughter within the Hominidae, to a smaller degree, among the great apes and, most distinctively, after the separation of hominins from the last common ancestor with chimpanzees and bonobos. PMID:20585520

  18. Posterior Predictive Bayesian Phylogenetic Model Selection

    PubMed Central

    Lewis, Paul O.; Xie, Wangang; Chen, Ming-Hui; Fan, Yu; Kuo, Lynn

    2014-01-01

    We present two distinctly different posterior predictive approaches to Bayesian phylogenetic model selection and illustrate these methods using examples from green algal protein-coding cpDNA sequences and flowering plant rDNA sequences. The Gelfand–Ghosh (GG) approach allows dissection of an overall measure of model fit into components due to posterior predictive variance (GGp) and goodness-of-fit (GGg), which distinguishes this method from the posterior predictive P-value approach. The conditional predictive ordinate (CPO) method provides a site-specific measure of model fit useful for exploratory analyses and can be combined over sites yielding the log pseudomarginal likelihood (LPML) which is useful as an overall measure of model fit. CPO provides a useful cross-validation approach that is computationally efficient, requiring only a sample from the posterior distribution (no additional simulation is required). Both GG and CPO add new perspectives to Bayesian phylogenetic model selection based on the predictive abilities of models and complement the perspective provided by the marginal likelihood (including Bayes Factor comparisons) based solely on the fit of competing models to observed data. [Bayesian; conditional predictive ordinate; CPO; L-measure; LPML; model selection; phylogenetics; posterior predictive.] PMID:24193892

  19. The Development of Three Long Universal Nuclear Protein-Coding Locus Markers and Their Application to Osteichthyan Phylogenetics with Nested PCR

    PubMed Central

    Zhang, Peng

    2012-01-01

    Background Universal nuclear protein-coding locus (NPCL) markers that are applicable across diverse taxa and show good phylogenetic discrimination have broad applications in molecular phylogenetic studies. For example, RAG1, a representative NPCL marker, has been successfully used to make phylogenetic inferences within all major osteichthyan groups. However, such markers with broad working range and high phylogenetic performance are still scarce. It is necessary to develop more universal NPCL markers comparable to RAG1 for osteichthyan phylogenetics. Methodology/Principal Findings We developed three long universal NPCL markers (>1.6 kb each) based on single-copy nuclear genes (KIAA1239, SACS and TTN) that possess large exons and exhibit the appropriate evolutionary rates. We then compared their phylogenetic utilities with that of the reference marker RAG1 in 47 jawed vertebrate species. In comparison with RAG1, each of the three long universal markers yielded similar topologies and branch supports, all in congruence with the currently accepted osteichthyan phylogeny. To compare their phylogenetic performance visually, we also estimated the phylogenetic informativeness (PI) profile for each of the four long universal NPCL markers. The PI curves indicated that SACS performed best over the whole timescale, while RAG1, KIAA1239 and TTN exhibited similar phylogenetic performances. In addition, we compared the success of nested PCR and standard PCR when amplifying NPCL marker fragments. The amplification success rate and efficiency of the nested PCR were overwhelmingly higher than those of standard PCR. Conclusions/Significance Our work clearly demonstrates the superiority of nested PCR over the conventional PCR in phylogenetic studies and develops three long universal NPCL markers (KIAA1239, SACS and TTN) with the nested PCR strategy. The three markers exhibit high phylogenetic utilities in osteichthyan phylogenetics and can be widely used as pilot genes for phylogenetic questions of osteichthyans at different taxonomic levels. PMID:22720083

  20. Stochastic assembly in a subtropical forest chronosequence: evidence from contrasting changes of species, phylogenetic and functional dissimilarity over succession.

    PubMed

    Mi, Xiangcheng; Swenson, Nathan G; Jia, Qi; Rao, Mide; Feng, Gang; Ren, Haibao; Bebber, Daniel P; Ma, Keping

    2016-09-07

    Deterministic and stochastic processes jointly determine the community dynamics of forest succession. However, it has been widely held in previous studies that deterministic processes dominate forest succession. Furthermore, inference of mechanisms for community assembly may be misleading if based on a single axis of diversity alone. In this study, we evaluated the relative roles of deterministic and stochastic processes along a disturbance gradient by integrating species, functional, and phylogenetic beta diversity in a subtropical forest chronosequence in Southeastern China. We found a general pattern of increasing species turnover, but little-to-no change in phylogenetic and functional turnover over succession at two spatial scales. Meanwhile, the phylogenetic and functional beta diversity were not significantly different from random expectation. This result suggested a dominance of stochastic assembly, contrary to the general expectation that deterministic processes dominate forest succession. On the other hand, we found significant interactions of environment and disturbance and limited evidence for significant deviations of phylogenetic or functional turnover from random expectations for different size classes. This result provided weak evidence of deterministic processes over succession. Stochastic assembly of forest succession suggests that post-disturbance restoration may be largely unpredictable and difficult to control in subtropical forests.

  1. Phylogenetic analysis of different breeds of domestic chickens in selected area of Peninsular Malaysia inferred from partial cytochrome b gene information and RAPD markers.

    PubMed

    Yap, Fook Choy; Yan, Yap Jin; Loon, Kiung Teh; Zhen, Justina Lee Ning; Kamau, Nelly Warau; Kumaran, Jayaraj Vijaya

    2010-10-01

    The present investigation was carried out in an attempt to study the phylogenetic analysis of different breeds of domestic chickens in Peninsular Malaysia inferred from partial cytochrome b gene information and random amplified polymorphic DNA (RAPD) markers. Phylogenetic analysis using both neighbor-joining (NJ) and maximum parsimony (MP) methods produced three clusters that encompassed Type-I village chickens, the red jungle fowl subspecies and the Japanese Chunky broilers. The phylogenetic analysis also revealed that majority of the Malaysian commercial chickens were randomly assembled with the Type-II village chickens. In RAPD assay, phylogenetic analysis using neighbor-joining produced six clusters that were completely distinguished based on the locality of chickens. High levels of genetic variations were observed among the village chickens, the commercial broilers, and between the commercial broilers and layer chickens. In this study, it was found that Type-I village chickens could be distinguished from the commercial chickens and Type-II village chickens at the position of the 27th nucleotide of the 351 bp cytochrome b gene. This study also revealed that RAPD markers were unable to differentiate the type of chickens, but it showed the effectiveness of RAPD in evaluating the genetic variation and the genetic relationships between chicken lines and populations.

  2. Conservation Action Based on Threatened Species Capture Taxonomic and Phylogenetic Richness in Breeding and Wintering Populations of Central Asian Birds

    PubMed Central

    Schweizer, Manuel; Ayé, Raffael; Kashkarov, Roman; Roth, Tobias

    2014-01-01

    Although phylogenetic diversity has been suggested to be relevant from a conservation point of view, its role is still limited in applied nature conservation. Recently, the practice of investing conservation resources based on threatened species was identified as a reason for the slow integration of phylogenetic diversity in nature conservation planning. One of the main arguments is based on the observation that threatened species are not evenly distributed over the phylogenetic tree. However this argument seems to dismiss the fact that conservation action is a spatially explicit process, and even if threatened species are not evenly distributed over the phylogenetic tree, the occurrence of threatened species could still indicate areas with above average phylogenetic diversity and consequently could protect phylogenetic diversity. Here we aim to study the selection of important bird areas in Central Asia, which were nominated largely based on the presence of threatened bird species. We show that although threatened species occurring in Central Asia do not capture phylogenetically more distinct species than expected by chance, the current spatially explicit conservation approach of selecting important bird areas covers above average taxonomic and phylogenetic diversity of breeding and wintering birds. We conclude that the spatially explicit processes of conservation actions need to be considered in the current discussion of whether new prioritization methods are needed to complement conservation action based on threatened species. PMID:25337861

  3. Multilocus variable-number tandem repeat analysis for molecular typing and phylogenetic analysis of Shigella flexneri

    PubMed Central

    2009-01-01

    Background Shigella flexneri is one of the causative agents of shigellosis, a major cause of childhood mortality in developing countries. Multilocus variable-number tandem repeat (VNTR) analysis (MLVA) is a prominent subtyping method to resolve closely related bacterial isolates for investigation of disease outbreaks and provide information for establishing phylogenetic patterns among isolates. The present study aimed to develop an MLVA method for S. flexneri and the VNTR loci identified were tested on 242 S. flexneri isolates to evaluate their variability in various serotypes. The isolates were also analyzed by pulsed-field gel electrophoresis (PFGE) to compare the discriminatory power and to evaluate the usefulness of MLVA as a tool for phylogenetic analysis of S. flexneri. Results Thirty-six VNTR loci were identified by exploring the repeat sequence loci in genomic sequences of Shigella species and by testing the loci on nine isolates of different subserotypes. The VNTR loci in different serotype groups differed greatly in their variability. The discriminatory power of an MLVA assay based on four most variable VNTR loci was higher, though not significantly, than PFGE for the total isolates, a panel of 2a isolates, which were relatively diverse, and a panel of 4a/Y isolates, which were closely-related. Phylogenetic groupings based on PFGE patterns and MLVA profiles were considerably concordant. The genetic relationships among the isolates were correlated with serotypes. The phylogenetic trees constructed using PFGE patterns and MLVA profiles presented two distinct clusters for the isolates of serotype 3 and one distinct cluster for each of the serotype groups, 1a/1b/NT, 2a/2b/X/NT, 4a/Y, and 6. Isolates that had different serotypes but had closer genetic relatedness than those with the same serotype were observed between serotype Y and subserotype 4a, serotype X and subserotype 2b, subserotype 1a and 1b, and subserotype 3a and 3b. Conclusions The 36 VNTR loci identified exhibited considerably different degrees of variability among S. flexneri serotype groups. VNTR locus could be highly variable in a serotype but invariable in others. MLVA assay based on four highly variable loci could display a comparable resolving power to PFGE in discriminating isolates. MLVA is also a prominent molecular tool for phylogenetic analysis of S. flexneri; the resulting data are beneficial to establish clear clonal patterns among different serotype groups and to discern clonal groups among isolates within the same serotype. As highly variable VNTR loci could be serotype-specific, a common MLVA protocol that consists of only a small set of loci, for example four to eight loci, and that provides high resolving power to all S. flexneri serotypes may not be obtainable. PMID:20042119

  4. Evolutionary lineages of marine snails identified using molecular phylogenetics and geometric morphometric analysis of shells.

    PubMed

    Vaux, Felix; Trewick, Steven A; Crampton, James S; Marshall, Bruce A; Beu, Alan G; Hills, Simon F K; Morgan-Richards, Mary

    2018-06-15

    The relationship between morphology and inheritance is of perennial interest in evolutionary biology and palaeontology. Using three marine snail genera Penion, Antarctoneptunea and Kelletia, we investigate whether systematics based on shell morphology accurately reflect evolutionary lineages indicated by molecular phylogenetics. Members of these gastropod genera have been a taxonomic challenge due to substantial variation in shell morphology, conservative radular and soft tissue morphology, few known ecological differences, and geographical overlap between numerous species. Sampling all sixteen putative taxa identified across the three genera, we infer mitochondrial and nuclear ribosomal DNA phylogenetic relationships within the group, and compare this to variation in adult shell shape and size. Results of phylogenetic analysis indicate that each genus is monophyletic, although the status of some phylogenetically derived and likely more recently evolved taxa within Penion is uncertain. The recently described species P. lineatus is supported by genetic evidence. Morphology, captured using geometric morphometric analysis, distinguishes the genera and matches the molecular phylogeny, although using the same dataset, species and phylogenetic subclades are not identified with high accuracy. Overall, despite abundant variation, we find that shell morphology accurately reflects genus-level classification and the corresponding deep phylogenetic splits identified in this group of marine snails. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Cophenetic metrics for phylogenetic trees, after Sokal and Rohlf.

    PubMed

    Cardona, Gabriel; Mir, Arnau; Rosselló, Francesc; Rotger, Lucía; Sánchez, David

    2013-01-16

    Phylogenetic tree comparison metrics are an important tool in the study of evolution, and hence the definition of such metrics is an interesting problem in phylogenetics. In a paper in Taxon fifty years ago, Sokal and Rohlf proposed to measure quantitatively the difference between a pair of phylogenetic trees by first encoding them by means of their half-matrices of cophenetic values, and then comparing these matrices. This idea has been used several times since then to define dissimilarity measures between phylogenetic trees but, to our knowledge, no proper metric on weighted phylogenetic trees with nested taxa based on this idea has been formally defined and studied yet. Actually, the cophenetic values of pairs of different taxa alone are not enough to single out phylogenetic trees with weighted arcs or nested taxa. For every (rooted) phylogenetic tree T, let its cophenetic vectorφ(T) consist of all pairs of cophenetic values between pairs of taxa in T and all depths of taxa in T. It turns out that these cophenetic vectors single out weighted phylogenetic trees with nested taxa. We then define a family of cophenetic metrics dφ,p by comparing these cophenetic vectors by means of Lp norms, and we study, either analytically or numerically, some of their basic properties: neighbors, diameter, distribution, and their rank correlation with each other and with other metrics. The cophenetic metrics can be safely used on weighted phylogenetic trees with nested taxa and no restriction on degrees, and they can be computed in O(n2) time, where n stands for the number of taxa. The metrics dφ,1 and dφ,2 have positive skewed distributions, and they show a low rank correlation with the Robinson-Foulds metric and the nodal metrics, and a very high correlation with each other and with the splitted nodal metrics. The diameter of dφ,p, for p⩾1 , is in O(n(p+2)/p), and thus for low p they are more discriminative, having a wider range of values.

  6. SWPhylo - A Novel Tool for Phylogenomic Inferences by Comparison of Oligonucleotide Patterns and Integration of Genome-Based and Gene-Based Phylogenetic Trees.

    PubMed

    Yu, Xiaoyu; Reva, Oleg N

    2018-01-01

    Modern phylogenetic studies may benefit from the analysis of complete genome sequences of various microorganisms. Evolutionary inferences based on genome-scale analysis are believed to be more accurate than the gene-based alternative. However, the computational complexity of current phylogenomic procedures, inappropriateness of standard phylogenetic tools to process genome-wide data, and lack of reliable substitution models which correlates with alignment-free phylogenomic approaches deter microbiologists from using these opportunities. For example, the super-matrix and super-tree approaches of phylogenomics use multiple integrated genomic loci or individual gene-based trees to infer an overall consensus tree. However, these approaches potentially multiply errors of gene annotation and sequence alignment not mentioning the computational complexity and laboriousness of the methods. In this article, we demonstrate that the annotation- and alignment-free comparison of genome-wide tetranucleotide frequencies, termed oligonucleotide usage patterns (OUPs), allowed a fast and reliable inference of phylogenetic trees. These were congruent to the corresponding whole genome super-matrix trees in terms of tree topology when compared with other known approaches including 16S ribosomal RNA and GyrA protein sequence comparison, complete genome-based MAUVE, and CVTree methods. A Web-based program to perform the alignment-free OUP-based phylogenomic inferences was implemented at http://swphylo.bi.up.ac.za/. Applicability of the tool was tested on different taxa from subspecies to intergeneric levels. Distinguishing between closely related taxonomic units may be enforced by providing the program with alignments of marker protein sequences, eg, GyrA.

  7. SWPhylo – A Novel Tool for Phylogenomic Inferences by Comparison of Oligonucleotide Patterns and Integration of Genome-Based and Gene-Based Phylogenetic Trees

    PubMed Central

    Yu, Xiaoyu; Reva, Oleg N

    2018-01-01

    Modern phylogenetic studies may benefit from the analysis of complete genome sequences of various microorganisms. Evolutionary inferences based on genome-scale analysis are believed to be more accurate than the gene-based alternative. However, the computational complexity of current phylogenomic procedures, inappropriateness of standard phylogenetic tools to process genome-wide data, and lack of reliable substitution models which correlates with alignment-free phylogenomic approaches deter microbiologists from using these opportunities. For example, the super-matrix and super-tree approaches of phylogenomics use multiple integrated genomic loci or individual gene-based trees to infer an overall consensus tree. However, these approaches potentially multiply errors of gene annotation and sequence alignment not mentioning the computational complexity and laboriousness of the methods. In this article, we demonstrate that the annotation- and alignment-free comparison of genome-wide tetranucleotide frequencies, termed oligonucleotide usage patterns (OUPs), allowed a fast and reliable inference of phylogenetic trees. These were congruent to the corresponding whole genome super-matrix trees in terms of tree topology when compared with other known approaches including 16S ribosomal RNA and GyrA protein sequence comparison, complete genome-based MAUVE, and CVTree methods. A Web-based program to perform the alignment-free OUP-based phylogenomic inferences was implemented at http://swphylo.bi.up.ac.za/. Applicability of the tool was tested on different taxa from subspecies to intergeneric levels. Distinguishing between closely related taxonomic units may be enforced by providing the program with alignments of marker protein sequences, eg, GyrA. PMID:29511354

  8. The evolution of virulence in primate malaria parasites based on Bayesian reconstructions of ancestral states.

    PubMed

    Garamszegi, László Zsolt

    2011-02-01

    Plasmodium parasites, the causative agents of malaria, are generally considered as harmful parasites, but many of them cause mild symptoms. Little is known about the evolutionary history and phylogenetic constraints that generate this interspecific variation in virulence due to uncertainties about the phylogenetic associations of parasites. Here, to account for such phylogenetic uncertainty, phylogenetic methods based on Bayesian statistics were followed in combination with sequence data from five genes to estimate the ancestral state of virulence in primate Plasmodium parasites. When recent parasites were categorised according to the damage caused to the host, Bayesian estimates of ancestral states indicated that the acquisition of a harmful host exploitation strategy is more likely to be a recent evolutionary event than a result of an ancient change in a character state altering virulence. On the contrary, there was more evidence for moderate host exploitation having a deep origin along the phylogenetic tree. Moreover, the evolution of host severity is determined by the phylogenetic relationships of parasites, as severity gains did not appear randomly on the evolutionary tree. Such phylogenetic constraints can be mediated by the acquisition of virulence genes. As the impact of a parasite on a host is the result of both the parasite's investment in reproduction and host sensitivity, virulence was also estimated by calculating peak parasitemia after eliminating host effects. A directional random-walk evolutionary model showed that the ancestral primate malarias reproduced at very low parasitemia in their hosts. Consequently, the extreme variation in the outcome of malaria infection in different host species can be better understood in light of the phylogeny of parasites. Copyright © 2010 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  9. A guide to phylogenetic metrics for conservation, community ecology and macroecology.

    PubMed

    Tucker, Caroline M; Cadotte, Marc W; Carvalho, Silvia B; Davies, T Jonathan; Ferrier, Simon; Fritz, Susanne A; Grenyer, Rich; Helmus, Matthew R; Jin, Lanna S; Mooers, Arne O; Pavoine, Sandrine; Purschke, Oliver; Redding, David W; Rosauer, Dan F; Winter, Marten; Mazel, Florent

    2017-05-01

    The use of phylogenies in ecology is increasingly common and has broadened our understanding of biological diversity. Ecological sub-disciplines, particularly conservation, community ecology and macroecology, all recognize the value of evolutionary relationships but the resulting development of phylogenetic approaches has led to a proliferation of phylogenetic diversity metrics. The use of many metrics across the sub-disciplines hampers potential meta-analyses, syntheses, and generalizations of existing results. Further, there is no guide for selecting the appropriate metric for a given question, and different metrics are frequently used to address similar questions. To improve the choice, application, and interpretation of phylo-diversity metrics, we organize existing metrics by expanding on a unifying framework for phylogenetic information. Generally, questions about phylogenetic relationships within or between assemblages tend to ask three types of question: how much; how different; or how regular? We show that these questions reflect three dimensions of a phylogenetic tree: richness, divergence, and regularity. We classify 70 existing phylo-diversity metrics based on their mathematical form within these three dimensions and identify 'anchor' representatives: for α-diversity metrics these are PD (Faith's phylogenetic diversity), MPD (mean pairwise distance), and VPD (variation of pairwise distances). By analysing mathematical formulae and using simulations, we use this framework to identify metrics that mix dimensions, and we provide a guide to choosing and using the most appropriate metrics. We show that metric choice requires connecting the research question with the correct dimension of the framework and that there are logical approaches to selecting and interpreting metrics. The guide outlined herein will help researchers navigate the current jungle of indices. © 2016 The Authors. Biological Reviews published by John Wiley © Sons Ltd on behalf of Cambridge Philosophical Society.

  10. A guide to phylogenetic metrics for conservation, community ecology and macroecology

    PubMed Central

    Cadotte, Marc W.; Carvalho, Silvia B.; Davies, T. Jonathan; Ferrier, Simon; Fritz, Susanne A.; Grenyer, Rich; Helmus, Matthew R.; Jin, Lanna S.; Mooers, Arne O.; Pavoine, Sandrine; Purschke, Oliver; Redding, David W.; Rosauer, Dan F.; Winter, Marten; Mazel, Florent

    2016-01-01

    ABSTRACT The use of phylogenies in ecology is increasingly common and has broadened our understanding of biological diversity. Ecological sub‐disciplines, particularly conservation, community ecology and macroecology, all recognize the value of evolutionary relationships but the resulting development of phylogenetic approaches has led to a proliferation of phylogenetic diversity metrics. The use of many metrics across the sub‐disciplines hampers potential meta‐analyses, syntheses, and generalizations of existing results. Further, there is no guide for selecting the appropriate metric for a given question, and different metrics are frequently used to address similar questions. To improve the choice, application, and interpretation of phylo‐diversity metrics, we organize existing metrics by expanding on a unifying framework for phylogenetic information. Generally, questions about phylogenetic relationships within or between assemblages tend to ask three types of question: how much; how different; or how regular? We show that these questions reflect three dimensions of a phylogenetic tree: richness, divergence, and regularity. We classify 70 existing phylo‐diversity metrics based on their mathematical form within these three dimensions and identify ‘anchor’ representatives: for α‐diversity metrics these are PD (Faith's phylogenetic diversity), MPD (mean pairwise distance), and VPD (variation of pairwise distances). By analysing mathematical formulae and using simulations, we use this framework to identify metrics that mix dimensions, and we provide a guide to choosing and using the most appropriate metrics. We show that metric choice requires connecting the research question with the correct dimension of the framework and that there are logical approaches to selecting and interpreting metrics. The guide outlined herein will help researchers navigate the current jungle of indices. PMID:26785932

  11. Evaluation of a Phylogenetic Marker Based on Genomic Segment B of Infectious Bursal Disease Virus: Facilitating a Feasible Incorporation of this Segment to the Molecular Epidemiology Studies for this Viral Agent

    PubMed Central

    Martínez-Pérez, Orlando; Dolz, Roser; Valle, Rosa; Perera, Carmen L.; Bertran, Kateri; Frías, Maria T.; Ganges, Llilianne; Díaz de Arce, Heidy; Majó, Natàlia; Núñez, José I.; Pérez, Lester J.

    2015-01-01

    Background Infectious bursal disease (IBD) is a highly contagious and acute viral disease, which has caused high mortality rates in birds and considerable economic losses in different parts of the world for more than two decades and it still represents a considerable threat to poultry. The current study was designed to rigorously measure the reliability of a phylogenetic marker included into segment B. This marker can facilitate molecular epidemiology studies, incorporating this segment of the viral genome, to better explain the links between emergence, spreading and maintenance of the very virulent IBD virus (vvIBDV) strains worldwide. Methodology/Principal Findings Sequences of the segment B gene from IBDV strains isolated from diverse geographic locations were obtained from the GenBank Database; Cuban sequences were obtained in the current work. A phylogenetic marker named B-marker was assessed by different phylogenetic principles such as saturation of substitution, phylogenetic noise and high consistency. This last parameter is based on the ability of B-marker to reconstruct the same topology as the complete segment B of the viral genome. From the results obtained from B-marker, demographic history for both main lineages of IBDV regarding segment B was performed by Bayesian skyline plot analysis. Phylogenetic analysis for both segments of IBDV genome was also performed, revealing the presence of a natural reassortant strain with segment A from vvIBDV strains and segment B from non-vvIBDV strains within Cuban IBDV population. Conclusions/Significance This study contributes to a better understanding of the emergence of vvIBDV strains, describing molecular epidemiology of IBDV using the state-of-the-art methodology concerning phylogenetic reconstruction. This study also revealed the presence of a novel natural reassorted strain as possible manifest of change in the genetic structure and stability of the vvIBDV strains. Therefore, it highlights the need to obtain information about both genome segments of IBDV for molecular epidemiology studies. PMID:25946336

  12. Identification of Tunisian Leishmania spp. by PCR amplification of cysteine proteinase B (cpb) genes and phylogenetic analysis.

    PubMed

    Chaouch, Melek; Fathallah-Mili, Akila; Driss, Mehdi; Lahmadi, Ramzi; Ayari, Chiraz; Guizani, Ikram; Ben Said, Moncef; Benabderrazak, Souha

    2013-03-01

    Discrimination of the Old World Leishmania parasites is important for diagnosis and epidemiological studies of leishmaniasis. We have developed PCR assays that allow the discrimination between Leishmania major, Leishmania tropica and Leishmania infantum Tunisian species. The identification was performed by a simple PCR targeting cysteine protease B (cpb) gene copies. These PCR can be a routine molecular biology tools for discrimination of Leishmania spp. from different geographical origins and different clinical forms. Our assays can be an informative source for cpb gene studying concerning drug, diagnostics and vaccine research. The PCR products of the cpb gene and the N-acetylglucosamine-1-phosphate transferase (nagt) Leishmania gene were sequenced and aligned. Phylogenetic trees of Leishmania based cpb and nagt sequences are close in topology and present the classic distribution of Leishmania in the Old World. The phylogenetic analysis has enabled the characterization and identification of different strains, using both multicopy (cpb) and single copy (nagt) genes. Indeed, the cpb phylogenetic analysis allowed us to identify the Tunisian Leishmania killicki species, and a group which gathers the least evolved isolates of the Leishmania donovani complex, that was originated from East Africa. This clustering confirms the African origin for the visceralizing species of the L. donovani complex. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Plant DNA barcodes and assessment of phylogenetic community structure of a tropical mixed dipterocarp forest in Brunei Darussalam (Borneo)

    PubMed Central

    Abu Salim, Kamariah; Chase, Mark W.; Dexter, Kyle G.; Pennington, R. Toby; Tan, Sylvester; Kaye, Maria Ellen; Samuel, Rosabelle

    2017-01-01

    DNA barcoding is a fast and reliable tool to assess and monitor biodiversity and, via community phylogenetics, to investigate ecological and evolutionary processes that may be responsible for the community structure of forests. In this study, DNA barcodes for the two widely used plastid coding regions rbcL and matK are used to contribute to identification of morphologically undetermined individuals, as well as to investigate phylogenetic structure of tree communities in 70 subplots (10 × 10m) of a 25-ha forest-dynamics plot in Brunei (Borneo, Southeast Asia). The combined matrix (rbcL + matK) comprised 555 haplotypes (from ≥154 genera, 68 families and 25 orders sensu APG, Angiosperm Phylogeny Group, 2016), making a substantial contribution to tree barcode sequences from Southeast Asia. Barcode sequences were used to reconstruct phylogenetic relationships using maximum likelihood, both with and without constraining the topology of taxonomic orders to match that proposed by the Angiosperm Phylogeny Group. A third phylogenetic tree was reconstructed using the program Phylomatic to investigate the influence of phylogenetic resolution on results. Detection of non-random patterns of community assembly was determined by net relatedness index (NRI) and nearest taxon index (NTI). In most cases, community assembly was either random or phylogenetically clustered, which likely indicates the importance to community structure of habitat filtering based on phylogenetically correlated traits in determining community structure. Different phylogenetic trees gave similar overall results, but the Phylomatic tree produced greater variation across plots for NRI and NTI values, presumably due to noise introduced by using an unresolved phylogenetic tree. Our results suggest that using a DNA barcode tree has benefits over the traditionally used Phylomatic approach by increasing precision and accuracy and allowing the incorporation of taxonomically unidentified individuals into analyses. PMID:29049301

  14. Phylogenetic diversity, functional trait diversity and extinction: avoiding tipping points and worst-case losses.

    PubMed

    Faith, Daniel P

    2015-02-19

    The phylogenetic diversity measure, ('PD'), measures the relative feature diversity of different subsets of taxa from a phylogeny. At the level of feature diversity, PD supports the broad goal of biodiversity conservation to maintain living variation and option values. PD calculations at the level of lineages and features include those integrating probabilities of extinction, providing estimates of expected PD. This approach has known advantages over the evolutionarily distinct and globally endangered (EDGE) methods. Expected PD methods also have limitations. An alternative notion of expected diversity, expected functional trait diversity, relies on an alternative non-phylogenetic model and allows inferences of diversity at the level of functional traits. Expected PD also faces challenges in helping to address phylogenetic tipping points and worst-case PD losses. Expected PD may not choose conservation options that best avoid worst-case losses of long branches from the tree of life. We can expand the range of useful calculations based on expected PD, including methods for identifying phylogenetic key biodiversity areas. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. Phylogenetic context determines the role of competition in adaptive radiation

    PubMed Central

    Tan, Jiaqi; Slattery, Matthew R.; Yang, Xian; Jiang, Lin

    2016-01-01

    Understanding ecological mechanisms regulating the evolution of biodiversity is of much interest to ecologists and evolutionary biologists. Adaptive radiation constitutes an important evolutionary process that generates biodiversity. Competition has long been thought to influence adaptive radiation, but the directionality of its effect and associated mechanisms remain ambiguous. Here, we report a rigorous experimental test of the role of competition on adaptive radiation using the rapidly evolving bacterium Pseudomonas fluorescens SBW25 interacting with multiple bacterial species that differed in their phylogenetic distance to the diversifying bacterium. We showed that the inhibitive effect of competitors on the adaptive radiation of P. fluorescens decreased as their phylogenetic distance increased. To explain this phylogenetic dependency of adaptive radiation, we linked the phylogenetic distance between P. fluorescens and its competitors to their niche and competitive fitness differences. Competitive fitness differences, which showed weak phylogenetic signal, reduced P. fluorescens abundance and thus diversification, whereas phylogenetically conserved niche differences promoted diversification. These results demonstrate the context dependency of competitive effects on adaptive radiation, and highlight the importance of past evolutionary history for ongoing evolutionary processes. PMID:27335414

  16. Molecular characterization of the vitamin D receptor (VDR) gene in Holstein cows.

    PubMed

    Ali, Mayar O; El-Adl, Mohamed A; Ibrahim, Hussam M M; Elseedy, Youssef Y; Rizk, Mohamed A; El-Khodery, Sabry A

    2018-06-01

    Vitamin D plays a vital role in calcium homeostasis, growth, and immunoregulation. Because little is known about the vitamin D receptor (VDR) gene in cattle, the aim of the present investigation was to present the molecular characterization of exons 5 and 6 of the VDR gene in Holstein cows. DNA extraction, genomic sequencing, phylogenetic analysis, synteny mapping and single nucleotide gene polymorphism analysis of the VDR gene were performed to assess blood samples collected from 50 clinically healthy Holstein cows. The results revealed the presence of a 450-base pair (bp) nucleotide sequence that resembled exons 5 and 6 with intron 5 enclosed between these exons. Sequence alignment and phylogenetic analysis revealed a close relationship between the sequenced VDR region and that found in Hereford cattle. A close association between this region and the corresponding region in small ruminants was also documented. Moreover, a single nucleotide polymorphism (SNP) that caused the replacement of a glutamate with an arginine in the deduced amino acid sequence was detected at position 7 of exon 5. In conclusion, Holstein and Hereford cattle differ with respect to exon 5 of the VDR gene. Phylogenetic analysis of the VDR gene based on nucleotide sequence produced different results from prior analyses based on amino acid sequence. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Identification of Opportunistic Pathogenic Bacteria in Drinking Water Samples of Different Rural Health Centers and Their Clinical Impacts on Humans

    PubMed Central

    Pindi, Pavan Kumar; Raghuveer Yadav, P.; Shiva Shanker, A.

    2013-01-01

    International drinking water quality monitoring programs have been established in order to prevent or to reduce the risk of contracting water-related infections. A survey was performed on groundwater-derived drinking water from 13 different hospitals in the Mahabubnagar District. A total of 55 bacterial strains were isolated which belonged to both gram-positive and gram-negative bacteria. All the taxa were identified based on the 16S rRNA gene sequence analysis based on which they are phylogenetically close to 27 different taxa. Many of the strains are closely related to their phylogenetic neighbors and exhibit from 98.4 to 100% sequence similarity at the 16S rRNA gene sequence level. The most common group was similar to Acinetobacter junii (21.8%) and Acinetobacter calcoaceticus (10.9%) which were shared by 7 and 5 water samples, respectively. Out of 55 isolates, only 3 isolates belonged to coliform group which are Citrobacter freundii and Pantoea anthophila. More than half (52.7%, 29 strains) of the phylogenetic neighbors which belonged to 12 groups were reported to be pathogenic and isolated from clinical specimens. Out of 27 representative taxa are affiliated have eight representative genera in drinking water except for those affiliated with the genera Exiguobacterium, Delftia, Kocuria, and Lysinibacillus. PMID:23862144

  18. Phylogenetic resolution and habitat specificity of members of the Photobacterium phosphoreum species group.

    PubMed

    Ast, Jennifer C; Dunlap, Paul V

    2005-10-01

    Substantial ambiguity exists regarding the phylogenetic status of facultatively psychrophilic luminous bacteria identified as Photobacterium phosphoreum, a species thought to be widely distributed in the world's oceans and believed to be the specific bioluminescent light-organ symbiont of several deep-sea fishes. Members of the P. phosphoreum species group include luminous and non-luminous strains identified phenotypically from a variety of different habitats as well as phylogenetically defined lineages that appear to be evolutionarily distinct. To resolve this ambiguity and to begin developing a meaningful knowledge of the geographic distributions, habitats and symbiotic relationships of bacteria in the P. phosphoreum species group, we carried out a multilocus, fine-scale phylogenetic analysis based on sequences of the 16S rRNA, gyrB and luxABFE genes of many newly isolated luminous strains from symbiotic and saprophytic habitats, together with previously isolated luminous and non-luminous strains identified as P. phosphoreum from these and other habitats. Parsimony analysis unambiguously resolved three evolutionarily distinct clades, phosphoreum, iliopiscarium and kishitanii. The tight phylogenetic clustering within these clades and the distinct separation between them indicates they are different species, P. phosphoreum, Photobacterium iliopiscarium and the newly recognized 'Photobacterium kishitanii'. Previously reported non-luminous strains, which had been identified phenotypically as P. phosphoreum, resolved unambiguously as P. iliopiscarium, and all examined deep-sea fishes (specimens of families Chlorophthalmidae, Macrouridae, Moridae, Trachichthyidae and Acropomatidae) were found to harbour 'P. kishitanii', not P. phosphoreum, in their light organs. This resolution revealed also that 'P. kishitanii' is cosmopolitan in its geographic distribution. Furthermore, the lack of phylogenetic variation within 'P. kishitanii' indicates that this facultatively symbiotic bacterium is not cospeciating with its phylogenetically divergent host fishes. The results of this fine-scale phylogenetic analysis support the emerging view that bacterial species names should designate singular historical entities, i.e. discrete lineages diagnosed by a significant divergence of shared derived nucleotide characters.

  19. Phylogenetic relationships in Demodex mites (Acari: Demodicidae) based on mitochondrial 16S rDNA partial sequences.

    PubMed

    Zhao, Ya-E; Wu, Li-Ping

    2012-09-01

    To confirm phylogenetic relationships in Demodex mites based on mitochondrial 16S rDNA partial sequences, mtDNA 16S partial sequences of ten isolates of three Demodex species from China were amplified, recombined, and sequenced and then analyzed with two Demodex folliculorum isolates from Spain. Lastly, genetic distance was computed, and phylogenetic tree was reconstructed. MEGA 4.0 analysis showed high sequence identity among 16S rDNA partial sequences of three Demodex species, which were 95.85 % in D. folliculorum, 98.53 % in Demodex canis, and 99.71 % in Demodex brevis. The divergence, genetic distance, and transition/transversions of the three Demodex species reached interspecies level, whereas there was no significant difference of the divergence (1.1 %), genetic distance (0.011), and transition/transversions (3/1) of the two geographic D. folliculorum isolates (Spain and China). Phylogenetic trees reveal that the three Demodex species formed three separate branches of one clade, where D. folliculorum and D. canis gathered first, and then gathered with D. brevis. The two Spain and five China D. folliculorum isolates did not form sister clades. In conclusion, 16S mtDNA are suitable for phylogenetic relationship analysis in low taxa (genus or species), but not for intraspecies determination of Demodex. The differentiation among the three Demodex species has reached interspecies level.

  20. Phylogenetic analysis of the envelope protein (domain lll) of dengue 4 viruses

    PubMed Central

    Mota, Javier; Ramos-Castañeda, José; Rico-Hesse, Rebeca; Ramos, Celso

    2011-01-01

    Objective To evaluate the genetic variability of domain III of envelope (E) protein and to estimate phylogenetic relationships of dengue 4 (Den-4) viruses isolated in Mexico and from other endemic areas of the world. Material and Methods A phylogenetic study of domain III of envelope (E) protein of Den-4 viruses was conducted in 1998 using virus strains from Mexico and other parts of the world, isolated in different years. Specific primers were used to amplify by RT-PCR the domain III and to obtain nucleotide sequence. Based on nucleotide and deduced aminoacid sequence, genetic variability was estimated and a phylogenetic tree was generated. To make an easy genetic analysis of domain III region, a Restriction Fragment Length Polymorphism (RFLP) assay was performed, using six restriction enzymes. Results Study results demonstrate that nucleotide and aminoacid sequence analysis of domain III are similar to those reported from the complete E protein gene. Based on the RFLP analysis of domain III using the restriction enzymes Nla III, Dde I and Cfo I, Den-4 viruses included in this study were clustered into genotypes 1 and 2 previously reported. Conclusions Study results suggest that domain III may be used as a genetic marker for phylogenetic and molecular epidemiology studies of dengue viruses. The English version of this paper is available too at: http://www.insp.mx/salud/index.html PMID:12132320

  1. Exploring phylogenetic and functional signals in complex morphologies: the hamate of extant anthropoids as a test-case study.

    PubMed

    Almécija, Sergio; Orr, Caley M; Tocheri, Matthew W; Patel, Biren A; Jungers, William L

    2015-01-01

    Three-dimensional geometric morphometrics (3DGM) is a powerful tool for capturing and visualizing the "pure" shape of complex structures. However, these shape differences are sometimes difficult to interpret from a functional viewpoint, unless specific approaches (mostly based on biomechanical modeling) are employed. Here, we use 3DGM to explore the complex shape variation of the hamate, the disto-ulnar wrist bone, in anthropoid primates. Major trends of shape variation are explored using principal components analysis along with analyses of shape and size covariation. We also evaluate the phylogenetic patterning of hamate shape by plotting an anthropoid phylogenetic tree onto the shape space (i.e., phylomorphospace) and test against complete absence of phylogenetic signal using posterior permutation. Finally, the covariation of hamate shape and locomotor categories is explored by means of 2-block partial least squares (PLS) using shape coordinates and a matrix of data on arboreal locomotor behavior. Our results show that 3DGM is a valuable and versatile tool for characterizing the shape of complex structures such as wrist bones in anthropoids. For the hamate, a significant phylogenetic pattern is found in both hamate shape and size, indicating that closely related taxa are typically the most similar in hamate form. Our allometric analyses show that major differences in hamate shape among taxa are not a direct consequence of differences in hamate size. Finally, our PLS indicates a significant covariation of hamate shape and different types of arboreal locomotion, highlighting the relevance of this approach in future 3DGM studies seeking to capture a functional signal from complex biological structures. © 2014 Wiley Periodicals, Inc.

  2. HAlign-II: efficient ultra-large multiple sequence alignment and phylogenetic tree reconstruction with distributed and parallel computing.

    PubMed

    Wan, Shixiang; Zou, Quan

    2017-01-01

    Multiple sequence alignment (MSA) plays a key role in biological sequence analyses, especially in phylogenetic tree construction. Extreme increase in next-generation sequencing results in shortage of efficient ultra-large biological sequence alignment approaches for coping with different sequence types. Distributed and parallel computing represents a crucial technique for accelerating ultra-large (e.g. files more than 1 GB) sequence analyses. Based on HAlign and Spark distributed computing system, we implement a highly cost-efficient and time-efficient HAlign-II tool to address ultra-large multiple biological sequence alignment and phylogenetic tree construction. The experiments in the DNA and protein large scale data sets, which are more than 1GB files, showed that HAlign II could save time and space. It outperformed the current software tools. HAlign-II can efficiently carry out MSA and construct phylogenetic trees with ultra-large numbers of biological sequences. HAlign-II shows extremely high memory efficiency and scales well with increases in computing resource. THAlign-II provides a user-friendly web server based on our distributed computing infrastructure. HAlign-II with open-source codes and datasets was established at http://lab.malab.cn/soft/halign.

  3. Not a simple case - A first comprehensive phylogenetic hypothesis for the Midas cichlid complex in Nicaragua (Teleostei: Cichlidae: Amphilophus).

    PubMed

    Geiger, Matthias F; McCrary, Jeffrey K; Schliewen, Ulrich K

    2010-09-01

    Nicaraguan Midas cichlids from crater lakes have recently attracted attention as potential model systems for speciation research, but no attempt has been made to comprehensively reconstruct phylogenetic relationships of this highly diverse and recently evolved species complex. We present a first AFLP (2793 loci) and mtDNA based phylogenetic hypothesis including all described and several undescribed species from six crater lakes (Apoyeque, Apoyo, Asososca Leon, Masaya, Tiscapa and Xiloá), the two great Lakes Managua and Nicaragua and the San Juan River. Our analyses demonstrate that the relationships between the Midas cichlid members are complex, and that phylogenetic information from different markers and methods do not always yield congruent results. Nevertheless, monophyly support for crater lake assemblages from Lakes Apoyeque, Apoyo, A. Leon is high as compared to those from L. Xiloá indicating occurrence of sympatric speciation. Further, we demonstrate that a 'three species' concept for the Midas cichlid complex is inapplicable and consequently that an individualized and voucher based approach in speciation research of the Midas cichlid complex is necessary at least as long as there is no comprehensive revision of the species complex available. Copyright 2010 Elsevier Inc. All rights reserved.

  4. BIMLR: a method for constructing rooted phylogenetic networks from rooted phylogenetic trees.

    PubMed

    Wang, Juan; Guo, Maozu; Xing, Linlin; Che, Kai; Liu, Xiaoyan; Wang, Chunyu

    2013-09-15

    Rooted phylogenetic trees constructed from different datasets (e.g. from different genes) are often conflicting with one another, i.e. they cannot be integrated into a single phylogenetic tree. Phylogenetic networks have become an important tool in molecular evolution, and rooted phylogenetic networks are able to represent conflicting rooted phylogenetic trees. Hence, the development of appropriate methods to compute rooted phylogenetic networks from rooted phylogenetic trees has attracted considerable research interest of late. The CASS algorithm proposed by van Iersel et al. is able to construct much simpler networks than other available methods, but it is extremely slow, and the networks it constructs are dependent on the order of the input data. Here, we introduce an improved CASS algorithm, BIMLR. We show that BIMLR is faster than CASS and less dependent on the input data order. Moreover, BIMLR is able to construct much simpler networks than almost all other methods. BIMLR is available at http://nclab.hit.edu.cn/wangjuan/BIMLR/. © 2013 Elsevier B.V. All rights reserved.

  5. Extended molecular phylogenetics and revised systematics of Malagasy scincine lizards.

    PubMed

    Erens, Jesse; Miralles, Aurélien; Glaw, Frank; Chatrou, Lars W; Vences, Miguel

    2017-02-01

    Among the endemic biota of Madagascar, skinks are a diverse radiation of lizards that exhibit a striking ecomorphological variation, and could provide an interesting system to study body-form evolution in squamate reptiles. We provide a new phylogenetic hypothesis for Malagasy skinks of the subfamily Scincinae based on an extended molecular dataset comprising 8060bp from three mitochondrial and nine nuclear loci. Our analysis also increases taxon sampling of the genus Amphiglossus by including 16 out of 25 nominal species. Additionally, we examined whether the molecular phylogenetic patterns coincide with morphological differentiation in the species currently assigned to this genus. Various methods of inference recover a mostly strongly supported phylogeny with three main clades of Amphiglossus. However, relationships among these three clades and the limb-reduced genera Grandidierina, Voeltzkowia and Pygomeles remain uncertain. Supported by a variety of morphological differences (predominantly related to the degree of body elongation), but considering the remaining phylogenetic uncertainty, we propose a redefinition of Amphiglossus into three different genera (Amphiglossus sensu stricto, Flexiseps new genus, and Brachyseps new genus) to remove the non-monophyly of Amphiglossus sensu lato and to facilitate future studies on this fascinating group of lizards. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. On the relationship between phylogenetic diversity and trait diversity.

    PubMed

    Tucker, Caroline M; Davies, T Jonathan; Cadotte, Marc W; Pearse, William D

    2018-05-21

    Niche differences are key to understanding the distribution and structure of biodiversity. To examine niche differences, we must first characterize how species occupy niche space, and two approaches are commonly used in the ecological literature. The first uses species traits to estimate multivariate trait space (so-called functional trait diversity, FD); the second quantifies the amount of time or evolutionary history captured by a group of species (phylogenetic diversity, PD). It is often-but controversially-assumed that these putative measures of niche space are at a minimum correlated and perhaps redundant, since more evolutionary time allows for greater accumulation of trait changes. This theoretical expectation remains surprisingly poorly evaluated, particularly in the context of multivariate measures of trait diversity. We evaluated the relationship between phylogenetic diversity and trait diversity using analytical and simulation-based methods across common models of trait evolution. We show that PD correlates with FD increasingly strongly as more traits are included in the FD measure. Our results indicate that phylogenetic diversity can be a useful surrogate for high-dimensional trait diversity, but we also show that the correlation weakens when the underlying process of trait evolution includes variation in rate and optima. © 2018 by the Ecological Society of America.

  7. Different relationships between temporal phylogenetic turnover and phylogenetic similarity and in two forests were detected by a new null model.

    PubMed

    Huang, Jian-Xiong; Zhang, Jian; Shen, Yong; Lian, Ju-yu; Cao, Hong-lin; Ye, Wan-hui; Wu, Lin-fang; Bin, Yue

    2014-01-01

    Ecologists have been monitoring community dynamics with the purpose of understanding the rates and causes of community change. However, there is a lack of monitoring of community dynamics from the perspective of phylogeny. We attempted to understand temporal phylogenetic turnover in a 50 ha tropical forest (Barro Colorado Island, BCI) and a 20 ha subtropical forest (Dinghushan in southern China, DHS). To obtain temporal phylogenetic turnover under random conditions, two null models were used. The first shuffled names of species that are widely used in community phylogenetic analyses. The second simulated demographic processes with careful consideration on the variation in dispersal ability among species and the variations in mortality both among species and among size classes. With the two models, we tested the relationships between temporal phylogenetic turnover and phylogenetic similarity at different spatial scales in the two forests. Results were more consistent with previous findings using the second null model suggesting that the second null model is more appropriate for our purposes. With the second null model, a significantly positive relationship was detected between phylogenetic turnover and phylogenetic similarity in BCI at a 10 m×10 m scale, potentially indicating phylogenetic density dependence. This relationship in DHS was significantly negative at three of five spatial scales. This could indicate abiotic filtering processes for community assembly. Using variation partitioning, we found phylogenetic similarity contributed to variation in temporal phylogenetic turnover in the DHS plot but not in BCI plot. The mechanisms for community assembly in BCI and DHS vary from phylogenetic perspective. Only the second null model detected this difference indicating the importance of choosing a proper null model.

  8. Phylogenetic congruence of parasitic smut fungi (Anthracoidea, Anthracoideaceae) and their host plants (Carex, Cyperaceae): Cospeciation or host-shift speciation?

    PubMed

    Escudero, Marcial

    2015-07-01

    • Fahrenholz's rule states that common ancestors of extant parasites were parasites of the common ancestors of extant hosts. Consequently, parasite phylogeny should mirror host phylogeny. The smut fungi genus Anthracoidea (Anthracoideaceae) is mainly hosted by species of the genus Carex (Cyperaceae). Whether smut fungi phylogeny mirrors sedge phylogeny is still under debate.• The nuclear large subunit DNA region (LSU; 57 accessions) from 31 Anthracoidea species and the ITS, ETS, and trnL-F spacer-trnL intron complex from 41 Carex species were used to infer the phylogenetic history of parasites and their hosts using a maximum likelihood approach. Event-based and distance-based cophylogenetic methods were used to test the hypothesis of whether the phylogeny of smut fungi from the genus Anthracoidea matches the phylogeny of the sedge Carex species they host.• Cophylogenetic reconstructions taking into account phylogenetic uncertainties based on event-based analyses demonstrated that the Anthracoidea phylogeny has significant topological congruence with the phylogeny of their Carex hosts. A distance-based test was also significant; therefore, the phylogenies of Anthracoide and Carex are partially congruent.• The phylogenetic congruence of Anthracoidea and Carex is partially based on smut fungi species being preferentially hosted by closely related sedges (host conservatism). In addition, many different events rather than only codivergence events are inferred. All of this evidence suggests that host-shift speciation rather than cospeciation seems to explain the cophylogenetic patterns of Anthracoidea and Carex. © 2015 Botanical Society of America, Inc.

  9. Inquiry-Based Approach to Understanding Common Descent

    ERIC Educational Resources Information Center

    Parker, Monica

    2010-01-01

    In this inquiry-based activity, students catalog external and internal characteristics of four different classes of animals during dissection exercises. On the basis of their accumulated data, students compare and contrast the animals, devise a phylogenetic tree, and provide reasonable characteristics for extinct transitional organisms. (Contains…

  10. Odontonia plurellicola sp. n. and Odontonia bagginsi sp. n., two new ascidian-associated shrimp from Ternate and Tidore, Indonesia, with a phylogenetic reconstruction of the genus (Crustacea, Decapoda, Palaemonidae)

    PubMed Central

    de Gier, Werner; Fransen, Charles H.J.M.

    2018-01-01

    Abstract Two new species of palaemonid shrimp associated with ascidian hosts, Odontonia bagginsi sp. n. from Tidore and Odontonia plurellicola sp. n., from Ternate, Indonesia are described and figured. Through phylogenetic analyses based on both morphological and molecular datasets (mitochondrial Cytochrome c oxidase subunit I gene and the 16S mitochondrial ribosomal gene) of the genus Odontonia, the phylogenetic positions of the new species have been reconstructed. Scanning Electron Microscopy has been used to observe additional characters on dactyli of the ambulatory pereiopods. Odontonia plurellicola sp. n. appears to be more closely related to O. simplicipes and O. seychellensis, but it differs most notably in the morphology of the rostrum and mouthparts. Odontonia plurellicola sp. n. appears to be the only Odontonia species living inside a phlebobranch ascidian Plurella sp. Odontonia bagginsi sp. n. is closely related to O. sibogae, but differs markedly in the abundance of setae on the propodi of the ambulatory pereiopods. In the present paper, O. maldivensis Fransen, 2006 is regarded as a junior synonym of O. rufopunctata Fransen, 2002 based on both morphological and molecular aspects. PMID:29910665

  11. New endophytic Toxicocladosporium species from cacti in Brazil, and description of Neocladosporium gen. nov.

    PubMed

    Bezerra, Jadson D P; Sandoval-Denis, Marcelo; Paiva, Laura M; Silva, Gladstone A; Groenewald, Johannes Z; Souza-Motta, Cristina M; Crous, Pedro W

    2017-06-01

    Brazil harbours a unique ecosystem, the Caatinga, which belongs to the tropical dry forest biome. This region has an important diversity of organisms, and recently several new fungal species have been described from different hosts and substrates within it. During a survey of fungal endophyte diversity from cacti in this forest, we isolated cladosporium-like fungi that were subjected to morphological and multigene phylogenetic analyses including actA , ITS, LSU, rpb2 and tub2 gene sequences. Based on these analyses we identified two new species belonging to the genus Toxicocladosporium , described here as T. cacti and T. immaculatum spp. nov., isolated from Pilosocereus gounellei subsp. gounellei and Melocactus zehntneri , respectively. To improve the species recognition and assess species diversity in Toxicocladosporium we studied all ex-type strains of the genus, for which actA , rpb2 and tub2 barcodes were also generated. After phylogenetic reconstruction using five loci, we differentiated 13 species in the genus. Toxicocladosporium velox and T. chlamydosporum are synonymized based on their phylogenetic position and limited number of unique nucleotide differences. Six strains previously assigned to T. leucadendri , including the ex-type strain (CBS 131317) of that species, were found to belong to an undescribed genus here named as Neocladosporium gen. nov., with N. leucadendri comb. nov. as type species. Furthermore, this study proposes the actA , ITS, rpb2 and tub2 as main phylogenetic loci to recognise Toxicocladosporium species.

  12. [Phylogenetic analysis of closely related Leuconostoc citreum species based on partial housekeeping genes].

    PubMed

    Lv, Qiang; Chen, Ming; Xu, Haiyan; Song, Yuqin; Sun, Zhihong; Dan, Tong; Sun, Tiansong

    2013-07-04

    Using the 16S rRNA, dnaA, murC and pyrG gene sequences, we identified the phylogenetic relationship among closely related Leuconostoc citreum species. Seven Leu. citreum strains originally isolated from sourdough were characterized by PCR methods to amplify the dnaA, murC and pyrG gene sequences, which were determined to assess the suitability as phylogenetic markers. Then, we estimated the genetic distance and constructed the phylogenetic trees including 16S rRNA and above mentioned three housekeeping genes combining with published corresponding sequences. By comparing the phylogenetic trees, the topology of three housekeeping genes trees were consistent with that of 16S rRNA gene. The homology of closely related Leu. citreum species among dnaA, murC, pyrG and 16S rRNA gene sequences were different, ranged from75.5% to 97.2%, 50.2% to 99.7%, 65.0% to 99.8% and 98.5% 100%, respectively. The phylogenetic relationship of three housekeeping genes sequences were highly consistent with the results of 16S rRNA gene sequence, while the genetic distance of these housekeeping genes were extremely high than 16S rRNA gene. Consequently, the dnaA, murC and pyrG gene are suitable for classification and identification closely related Leu. citreum species.

  13. Maximum parsimony, substitution model, and probability phylogenetic trees.

    PubMed

    Weng, J F; Thomas, D A; Mareels, I

    2011-01-01

    The problem of inferring phylogenies (phylogenetic trees) is one of the main problems in computational biology. There are three main methods for inferring phylogenies-Maximum Parsimony (MP), Distance Matrix (DM) and Maximum Likelihood (ML), of which the MP method is the most well-studied and popular method. In the MP method the optimization criterion is the number of substitutions of the nucleotides computed by the differences in the investigated nucleotide sequences. However, the MP method is often criticized as it only counts the substitutions observable at the current time and all the unobservable substitutions that really occur in the evolutionary history are omitted. In order to take into account the unobservable substitutions, some substitution models have been established and they are now widely used in the DM and ML methods but these substitution models cannot be used within the classical MP method. Recently the authors proposed a probability representation model for phylogenetic trees and the reconstructed trees in this model are called probability phylogenetic trees. One of the advantages of the probability representation model is that it can include a substitution model to infer phylogenetic trees based on the MP principle. In this paper we explain how to use a substitution model in the reconstruction of probability phylogenetic trees and show the advantage of this approach with examples.

  14. Round and pointed-head grenadier fishes (Actinopterygii: Gadiformes) represent a single sister group: evidence from the complete mitochondrial genome sequences.

    PubMed

    Satoh, Takashi P; Miya, Masaki; Endo, Hiromitsu; Nishida, Mutsumi

    2006-07-01

    The gene order of mitochondrial genomes (mitogenomes) has been employed as a useful phylogenetic marker in various metazoan animals, because it may represent uniquely derived characters shared by members of monophyletic groups. During the course of molecular phylogenetic studies of the order Gadiformes (cods and their relatives) based on whole mitogenome sequences, we found that two deep-sea grenadiers (Squalogadus modificatus and Trachyrincus murrayi: family Macrouridae) revealed a unusually identical gene order (translocation of the tRNA(Leu (UUR))). Both are members of the same family, although their external morphologies differed so greatly (e.g., round vs. pointed head) that they have been placed in different subfamilies Macrouroidinae and Trachyrincinae, respectively. Additionally, we determined the whole mitogenome sequences of two other species, Bathygadus antrodes and Ventrifossa garmani, representing a total of four subfamilies currently recognized within Macrouridae. The latter two species also exhibited gene rearrangements, resulting in a total of three different patterns of unique gene order being observed in the four subfamilies. Partitioned Bayesian analysis was conducted using available whole mitogenome sequences from five macrourids plus five outgroups. The resultant trees clearly indicated that S. modificatus and T. murrayi formed a monophyletic group, having a sister relationship to other macrourids. Thus, monophyly of the two species with disparate head morphologies was corroborated by two different lines of evidence (nucleotide sequences and gene order). The overall topology of the present tree differed from any of the previously proposed, morphology-based phylogenetic hypotheses.

  15. Face shape differs in phylogenetically related populations.

    PubMed

    Hopman, Saskia M J; Merks, Johannes H M; Suttie, Michael; Hennekam, Raoul C M; Hammond, Peter

    2014-11-01

    3D analysis of facial morphology has delineated facial phenotypes in many medical conditions and detected fine grained differences between typical and atypical patients to inform genotype-phenotype studies. Next-generation sequencing techniques have enabled extremely detailed genotype-phenotype correlative analysis. Such comparisons typically employ control groups matched for age, sex and ethnicity and the distinction between ethnic categories in genotype-phenotype studies has been widely debated. The phylogenetic tree based on genetic polymorphism studies divides the world population into nine subpopulations. Here we show statistically significant face shape differences between two European Caucasian populations of close phylogenetic and geographic proximity from the UK and The Netherlands. The average face shape differences between the Dutch and UK cohorts were visualised in dynamic morphs and signature heat maps, and quantified for their statistical significance using both conventional anthropometry and state of the art dense surface modelling techniques. Our results demonstrate significant differences between Dutch and UK face shape. Other studies have shown that genetic variants influence normal facial variation. Thus, face shape difference between populations could reflect underlying genetic difference. This should be taken into account in genotype-phenotype studies and we recommend that in those studies reference groups be established in the same population as the individuals who form the subject of the study.

  16. Effects of species' similarity and dominance on the functional and phylogenetic structure of a plant meta-community.

    PubMed

    Chalmandrier, L; Münkemüller, T; Lavergne, S; Thuiller, W

    2015-01-01

    Different assembly processes drive the spatial structure of meta-communities (beta-diversity). Recently, functional and phylogenetic diversities have been suggested as indicators of these assembly processes. Assuming that diversity is a good proxy for niche overlap, high beta-diversity along environmental gradients should be the result of environmental filtering while low beta-diversity should stem from competitive interactions. So far, studies trying to disentangle the relative importance of these assembly processes have provided mixed results. One reason for this may be that these studies often rely on a single measure of diversity and thus implicitly make a choice on how they account for species relative abundances and how species similarities are captured by functional traits or phylogeny. Here, we tested the effect of gradually scaling the importance of dominance (the weight given to dominant vs. rare species) and species similarity (the weight given to small vs. large similarities) on resulting beta-diversity patterns of an alpine plant meta-community. To this end, we combined recent extensions of the Hill numbers framework with Pagel's phylogenetic tree transformation approach. We included functional (based on the leaf-height-seed spectrum) and phylogenetic facets of beta-diversity in our analysis and explicitly accounted for effects of environmental and spatial covariates. We found that functional beta-diversity, was high when the same weight was given to dominant vs. rare species and to large vs. small species' similarities. In contrast, phylogenetic beta-diversity was low when greater weight was given to dominant species and small species' similarities. Those results suggested that different environments along the gradients filtered different species according to their functional traits, while, the same competitive lineages dominated communities across the gradients. Our results highlight that functional vs. phylogenetic facets, presence-absence vs. abundance structure and different weights of species' dissimilarity provide complementary and important information on the drivers of meta-community structure. By utilizing the full extent of information provided by the flexible frameworks of Hill numbers and Pagel's tree transformation, we propose a new approach to disentangle the patterns resulting from different assembly processes.

  17. Phylogenetic analysis of Fusobacterium prausnitzii based upon the 16S rRNA gene sequence and PCR confirmation.

    PubMed

    Wang, R F; Cao, W W; Cerniglia, C E

    1996-01-01

    In order to develop a PCR method to detect Fusobacterium prausnitzii in human feces and to clarify the phylogenetic position of this species, its 16S rRNA gene sequence was determined. The sequence described in this paper is different from the 16S rRNA gene sequence is specific for F. prausnitzii, and the results of this assay confirmed that F. prausnitzii is the most common species in human feces. However, a PCR assay based on the original GenBank sequence was negative when it was performed with two strains of F. prausnitzii obtained from the American Type Culture Collection. A phylogenetic tree based on the new 16S rRNA gene sequence was constructed. On this tree F. prausnitzii was not a member of the Fusobacterium group but was closer to some Eubacterium spp. and located between Clostridium "clusters III and IV" (M.D. Collins, P.A. Lawson, A. Willems, J.J. Cordoba, J. Fernandez-Garayzabal, P. Garcia, J. Cai, H. Hippe, and J.A.E. Farrow, Int. J. Syst. Bacteriol. 44:812-826, 1994).

  18. Molecular Phylogenetics and Systematics of the Bivalve Family Ostreidae Based on rRNA Sequence-Structure Models and Multilocus Species Tree

    PubMed Central

    Salvi, Daniele; Macali, Armando; Mariottini, Paolo

    2014-01-01

    The bivalve family Ostreidae has a worldwide distribution and includes species of high economic importance. Phylogenetics and systematic of oysters based on morphology have proved difficult because of their high phenotypic plasticity. In this study we explore the phylogenetic information of the DNA sequence and secondary structure of the nuclear, fast-evolving, ITS2 rRNA and the mitochondrial 16S rRNA genes from the Ostreidae and we implemented a multi-locus framework based on four loci for oyster phylogenetics and systematics. Sequence-structure rRNA models aid sequence alignment and improved accuracy and nodal support of phylogenetic trees. In agreement with previous molecular studies, our phylogenetic results indicate that none of the currently recognized subfamilies, Crassostreinae, Ostreinae, and Lophinae, is monophyletic. Single gene trees based on Maximum likelihood (ML) and Bayesian (BA) methods and on sequence-structure ML were congruent with multilocus trees based on a concatenated (ML and BA) and coalescent based (BA) approaches and consistently supported three main clades: (i) Crassostrea, (ii) Saccostrea, and (iii) an Ostreinae-Lophinae lineage. Therefore, the subfamily Crassotreinae (including Crassostrea), Saccostreinae subfam. nov. (including Saccostrea and tentatively Striostrea) and Ostreinae (including Ostreinae and Lophinae taxa) are recognized. Based on phylogenetic and biogeographical evidence the Asian species of Crassostrea from the Pacific Ocean are assigned to Magallana gen. nov., whereas an integrative taxonomic revision is required for the genera Ostrea and Dendostrea. This study pointed out the suitability of the ITS2 marker for DNA barcoding of oyster and the relevance of using sequence-structure rRNA models and features of the ITS2 folding in molecular phylogenetics and taxonomy. The multilocus approach allowed inferring a robust phylogeny of Ostreidae providing a broad molecular perspective on their systematics. PMID:25250663

  19. Molecular phylogenetics and systematics of the bivalve family Ostreidae based on rRNA sequence-structure models and multilocus species tree.

    PubMed

    Salvi, Daniele; Macali, Armando; Mariottini, Paolo

    2014-01-01

    The bivalve family Ostreidae has a worldwide distribution and includes species of high economic importance. Phylogenetics and systematic of oysters based on morphology have proved difficult because of their high phenotypic plasticity. In this study we explore the phylogenetic information of the DNA sequence and secondary structure of the nuclear, fast-evolving, ITS2 rRNA and the mitochondrial 16S rRNA genes from the Ostreidae and we implemented a multi-locus framework based on four loci for oyster phylogenetics and systematics. Sequence-structure rRNA models aid sequence alignment and improved accuracy and nodal support of phylogenetic trees. In agreement with previous molecular studies, our phylogenetic results indicate that none of the currently recognized subfamilies, Crassostreinae, Ostreinae, and Lophinae, is monophyletic. Single gene trees based on Maximum likelihood (ML) and Bayesian (BA) methods and on sequence-structure ML were congruent with multilocus trees based on a concatenated (ML and BA) and coalescent based (BA) approaches and consistently supported three main clades: (i) Crassostrea, (ii) Saccostrea, and (iii) an Ostreinae-Lophinae lineage. Therefore, the subfamily Crassostreinae (including Crassostrea), Saccostreinae subfam. nov. (including Saccostrea and tentatively Striostrea) and Ostreinae (including Ostreinae and Lophinae taxa) are recognized [corrected]. Based on phylogenetic and biogeographical evidence the Asian species of Crassostrea from the Pacific Ocean are assigned to Magallana gen. nov., whereas an integrative taxonomic revision is required for the genera Ostrea and Dendostrea. This study pointed out the suitability of the ITS2 marker for DNA barcoding of oyster and the relevance of using sequence-structure rRNA models and features of the ITS2 folding in molecular phylogenetics and taxonomy. The multilocus approach allowed inferring a robust phylogeny of Ostreidae providing a broad molecular perspective on their systematics.

  20. The use of phylogeny to interpret cross-cultural patterns in plant use and guide medicinal plant discovery: an example from Pterocarpus (Leguminosae).

    PubMed

    Saslis-Lagoudakis, C Haris; Klitgaard, Bente B; Forest, Félix; Francis, Louise; Savolainen, Vincent; Williamson, Elizabeth M; Hawkins, Julie A

    2011-01-01

    The study of traditional knowledge of medicinal plants has led to discoveries that have helped combat diseases and improve healthcare. However, the development of quantitative measures that can assist our quest for new medicinal plants has not greatly advanced in recent years. Phylogenetic tools have entered many scientific fields in the last two decades to provide explanatory power, but have been overlooked in ethnomedicinal studies. Several studies show that medicinal properties are not randomly distributed in plant phylogenies, suggesting that phylogeny shapes ethnobotanical use. Nevertheless, empirical studies that explicitly combine ethnobotanical and phylogenetic information are scarce. In this study, we borrowed tools from community ecology phylogenetics to quantify significance of phylogenetic signal in medicinal properties in plants and identify nodes on phylogenies with high bioscreening potential. To do this, we produced an ethnomedicinal review from extensive literature research and a multi-locus phylogenetic hypothesis for the pantropical genus Pterocarpus (Leguminosae: Papilionoideae). We demonstrate that species used to treat a certain conditions, such as malaria, are significantly phylogenetically clumped and we highlight nodes in the phylogeny that are significantly overabundant in species used to treat certain conditions. These cross-cultural patterns in ethnomedicinal usage in Pterocarpus are interpreted in the light of phylogenetic relationships. This study provides techniques that enable the application of phylogenies in bioscreening, but also sheds light on the processes that shape cross-cultural ethnomedicinal patterns. This community phylogenetic approach demonstrates that similar ethnobotanical uses can arise in parallel in different areas where related plants are available. With a vast amount of ethnomedicinal and phylogenetic information available, we predict that this field, after further refinement of the techniques, will expand into similar research areas, such as pest management or the search for bioactive plant-based compounds.

  1. A methodological investigation of hominoid craniodental morphology and phylogenetics.

    PubMed

    Bjarnason, Alexander; Chamberlain, Andrew T; Lockwood, Charles A

    2011-01-01

    The evolutionary relationships of extant great apes and humans have been largely resolved by molecular studies, yet morphology-based phylogenetic analyses continue to provide conflicting results. In order to further investigate this discrepancy we present bootstrap clade support of morphological data based on two quantitative datasets, one dataset consisting of linear measurements of the whole skull from 5 hominoid genera and the second dataset consisting of 3D landmark data from the temporal bone of 5 hominoid genera, including 11 sub-species. Using similar protocols for both datasets, we were able to 1) compare distance-based phylogenetic methods to cladistic parsimony of quantitative data converted into discrete character states, 2) vary outgroup choice to observe its effect on phylogenetic inference, and 3) analyse male and female data separately to observe the effect of sexual dimorphism on phylogenies. Phylogenetic analysis was sensitive to methodological decisions, particularly outgroup selection, where designation of Pongo as an outgroup and removal of Hylobates resulted in greater congruence with the proposed molecular phylogeny. The performance of distance-based methods also justifies their use in phylogenetic analysis of morphological data. It is clear from our analyses that hominoid phylogenetics ought not to be used as an example of conflict between the morphological and molecular, but as an example of how outgroup and methodological choices can affect the outcome of phylogenetic analysis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Evaluating the phylogenetic signal limit from mitogenomes, slow evolving nuclear genes, and the concatenation approach. New insights into the Lacertini radiation using fast evolving nuclear genes and species trees.

    PubMed

    Mendes, Joana; Harris, D James; Carranza, Salvador; Salvi, Daniele

    2016-07-01

    Estimating the phylogeny of lacertid lizards, and particularly the tribe Lacertini has been challenging, possibly due to the fast radiation of this group resulting in a hard polytomy. However this is still an open question, as concatenated data primarily from mitochondrial markers have been used so far whereas in a recent phylogeny based on a compilation of these data within a squamate supermatrix the basal polytomy seems to be resolved. In this study, we estimate phylogenetic relationships between all Lacertini genera using for the first time DNA sequences from five fast evolving nuclear genes (acm4, mc1r, pdc, βfib and reln) and two mitochondrial genes (nd4 and 12S). We generated a total of 529 sequences from 88 species and used Maximum Likelihood and Bayesian Inference methods based on concatenated multilocus dataset as well as a coalescent-based species tree approach with the aim of (i) shedding light on the basal relationships of Lacertini (ii) assessing the monophyly of genera which were previously questioned, and (iii) discussing differences between estimates from this and previous studies based on different markers, and phylogenetic methods. Results uncovered (i) a new phylogenetic clade formed by the monotypic genera Archaeolacerta, Zootoca, Teira and Scelarcis; and (ii) support for the monophyly of the Algyroides clade, with two sister species pairs represented by western (A. marchi and A. fitzingeri) and eastern (A. nigropunctatus and A. moreoticus) lineages. In both cases the members of these groups show peculiar morphology and very different geographical distributions, suggesting that they are relictual groups that were once diverse and widespread. They probably originated about 11-13 million years ago during early events of speciation in the tribe, and the split between their members is estimated to be only slightly older. This scenario may explain why mitochondrial markers (possibly saturated at higher divergence levels) or slower nuclear markers used in previous studies (likely lacking enough phylogenetic signal) failed to recover these relationships. Finally, the phylogenetic position of most remaining genera was unresolved, corroborating the hypothesis of a hard polytomy in the Lacertini phylogeny due to a fast radiation. This is in agreement with all previous studies but in sharp contrast with a recent squamate megaphylogeny. We show that the supermatrix approach may provide high support for incorrect nodes that are not supported either by original sequence data or by new data from this study. This finding suggests caution when using megaphylogenies to integrate inter-generic relationships in comparative ecological and evolutionary studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Molecular identification and phylogenetic analysis of important medicinal plant species in genus Paeonia based on rDNA-ITS, matK, and rbcL DNA barcode sequences.

    PubMed

    Kim, W J; Ji, Y; Choi, G; Kang, Y M; Yang, S; Moon, B C

    2016-08-05

    This study was performed to identify and analyze the phylogenetic relationship among four herbaceous species of the genus Paeonia, P. lactiflora, P. japonica, P. veitchii, and P. suffruticosa, using DNA barcodes. These four species, which are commonly used in traditional medicine as Paeoniae Radix and Moutan Radicis Cortex, are pharmaceutically defined in different ways in the national pharmacopoeias in Korea, Japan, and China. To authenticate the different species used in these medicines, we evaluated rDNA-internal transcribed spacers (ITS), matK and rbcL regions, which provide information capable of effectively distinguishing each species from one another. Seventeen samples were collected from different geographic regions in Korea and China, and DNA barcode regions were amplified using universal primers. Comparative analyses of these DNA barcode sequences revealed species-specific nucleotide sequences capable of discriminating the four Paeonia species. Among the entire sequences of three barcodes, marker nucleotides were identified at three positions in P. lactiflora, eleven in P. japonica, five in P. veitchii, and 25 in P. suffruticosa. Phylogenetic analyses also revealed four distinct clusters showing homogeneous clades with high resolution at the species level. The results demonstrate that the analysis of these three DNA barcode sequences is a reliable method for identifying the four Paeonia species and can be used to authenticate Paeoniae Radix and Moutan Radicis Cortex at the species level. Furthermore, based on the assessment of amplicon sizes, inter/intra-specific distances, marker nucleotides, and phylogenetic analysis, rDNA-ITS was the most suitable DNA barcode for identification of these species.

  4. Phylogenetic Structure of Tree Species across Different Life Stages from Seedlings to Canopy Trees in a Subtropical Evergreen Broad-Leaved Forest.

    PubMed

    Jin, Yi; Qian, Hong; Yu, Mingjian

    2015-01-01

    Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate.

  5. Phylogenetic Structure of Tree Species across Different Life Stages from Seedlings to Canopy Trees in a Subtropical Evergreen Broad-Leaved Forest

    PubMed Central

    Jin, Yi; Qian, Hong; Yu, Mingjian

    2015-01-01

    Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate. PMID:26098916

  6. Brownian model of transcriptome evolution and phylogenetic network visualization between tissues.

    PubMed

    Gu, Xun; Ruan, Hang; Su, Zhixi; Zou, Yangyun

    2017-09-01

    While phylogenetic analysis of transcriptomes of the same tissue is usually congruent with the species tree, the controversy emerges when multiple tissues are included, that is, whether species from the same tissue are clustered together, or different tissues from the same species are clustered together. Recent studies have suggested that phylogenetic network approach may shed some lights on our understanding of multi-tissue transcriptome evolution; yet the underlying evolutionary mechanism remains unclear. In this paper we develop a Brownian-based model of transcriptome evolution under the phylogenetic network that can statistically distinguish between the patterns of species-clustering and tissue-clustering. Our model can be used as a null hypothesis (neutral transcriptome evolution) for testing any correlation in tissue evolution, can be applied to cancer transcriptome evolution to study whether two tumors of an individual appeared independently or via metastasis, and can be useful to detect convergent evolution at the transcriptional level. Copyright © 2017. Published by Elsevier Inc.

  7. Archaeal phylogeny: reexamination of the phylogenetic position of Archaeoglobus fulgidus in light of certain composition-induced artifacts

    NASA Technical Reports Server (NTRS)

    Woese, C. R.; Achenbach, L.; Rouviere, P.; Mandelco, L.

    1991-01-01

    A major and too little recognized source of artifact in phylogenetic analysis of molecular sequence data is compositional difference among sequences. The problem becomes particularly acute when alignments contain ribosomal RNAs from both mesophilic and thermophilic species. Among prokaryotes the latter are considerably higher in G + C content than the former, which often results in artificial clustering of thermophilic lineages and their being placed artificially deep in phylogenetic trees. In this communication we review archaeal phylogeny in the light of this consideration, focusing in particular on the phylogenetic position of the sulfate reducing species Archaeoglobus fulgidus, using both 16S rRNA and 23S rRNA sequences. The analysis shows clearly that the previously reported deep branching of the A. fulgidus lineage (very near the base of the euryarchaeal side of the archaeal tree) is incorrect, and that the lineage actually groups with a previously recognized unit that comprises the Methanomicrobiales and extreme halophiles.

  8. Kakusan4 and Aminosan: two programs for comparing nonpartitioned, proportional and separate models for combined molecular phylogenetic analyses of multilocus sequence data.

    PubMed

    Tanabe, Akifumi S

    2011-09-01

    Proportional and separate models able to apply different combination of substitution rate matrix (SRM) and among-site rate variation model (ASRVM) to each locus are frequently used in phylogenetic studies of multilocus data. A proportional model assumes that branch lengths are proportional among partitions and a separate model assumes that each partition has an independent set of branch lengths. However, the selection from among nonpartitioned (i.e., a common combination of models is applied to all-loci concatenated sequences), proportional and separate models is usually based on the researcher's preference rather than on any information criteria. This study describes two programs, 'Kakusan4' (for DNA sequences) and 'Aminosan' (for amino-acid sequences), which allow the selection of evolutionary models based on several types of information criteria. The programs can handle both multilocus and single-locus data, in addition to providing an easy-to-use wizard interface and a noninteractive command line interface. In the case of multilocus data, SRMs and ASRVMs are compared at each locus and at all-loci concatenated sequences, after which nonpartitioned, proportional and separate models are compared based on information criteria. The programs also provide model configuration files for mrbayes, paup*, phyml, raxml and Treefinder to support further phylogenetic analysis using a selected model. When likelihoods are optimized by Treefinder, the best-fit models were found to differ depending on the data set. Furthermore, differences in the information criteria among nonpartitioned, proportional and separate models were much larger than those among the nonpartitioned models. These findings suggest that selecting from nonpartitioned, proportional and separate models results in a better phylogenetic tree. Kakusan4 and Aminosan are available at http://www.fifthdimension.jp/. They are licensed under gnugpl Ver.2, and are able to run on Windows, MacOS X and Linux. © 2011 Blackwell Publishing Ltd.

  9. Detection and phylogenetic analysis of bacteriophage WO in spiders (Araneae).

    PubMed

    Yan, Qian; Qiao, Huping; Gao, Jin; Yun, Yueli; Liu, Fengxiang; Peng, Yu

    2015-11-01

    Phage WO is a bacteriophage found in Wolbachia. Herein, we represent the first phylogenetic study of WOs that infect spiders (Araneae). Seven species of spiders (Araneus alternidens, Nephila clavata, Hylyphantes graminicola, Prosoponoides sinensis, Pholcus crypticolens, Coleosoma octomaculatum, and Nurscia albofasciata) from six families were infected by Wolbachia and WO, followed by comprehensive sequence analysis. Interestingly, WO could be only detected Wolbachia-infected spiders. The relative infection rates of those seven species of spiders were 75, 100, 88.9, 100, 62.5, 72.7, and 100 %, respectively. Our results indicated that both Wolbachia and WO were found in three different body parts of N. clavata, and WO could be passed to the next generation of H. graminicola by vertical transmission. There were three different sequences for WO infected in A. alternidens and two different WO sequences from C. octomaculatum. Only one sequence of WO was found for the other five species of spiders. The discovered sequence of WO ranged from 239 to 311 bp. Phylogenetic tree was generated using maximum likelihood (ML) based on the orf7 gene sequences. According to the phylogenetic tree, WOs in N. clavata and H. graminicola were clustered in the same group. WOs from A. alternidens (WAlt1) and C. octomaculatum (WOct2) were closely related to another clade, whereas WO in P. sinensis was classified as a sole cluster.

  10. Karyotype Evolution in Birds: From Conventional Staining to Chromosome Painting

    PubMed Central

    Ferguson-Smith, Malcolm A.

    2018-01-01

    In the last few decades, there have been great efforts to reconstruct the phylogeny of Neoaves based mainly on DNA sequencing. Despite the importance of karyotype data in phylogenetic studies, especially with the advent of fluorescence in situ hybridization (FISH) techniques using different types of probes, the use of chromosomal data to clarify phylogenetic proposals is still minimal. Additionally, comparative chromosome painting in birds is restricted to a few orders, while in mammals, for example, virtually all orders have already been analyzed using this method. Most reports are based on comparisons using Gallus gallus probes, and only a small number of species have been analyzed with more informative sets of probes, such as those from Leucopternis albicollis and Gyps fulvus, which show ancestral macrochromosomes rearranged in alternative patterns. Despite this, it is appropriate to review the available cytogenetic information and possible phylogenetic conclusions. In this report, the authors gather both classical and molecular cytogenetic data and describe some interesting and unique characteristics of karyotype evolution in birds. PMID:29584697

  11. Motif-Based Text Mining of Microbial Metagenome Redundancy Profiling Data for Disease Classification.

    PubMed

    Wang, Yin; Li, Rudong; Zhou, Yuhua; Ling, Zongxin; Guo, Xiaokui; Xie, Lu; Liu, Lei

    2016-01-01

    Text data of 16S rRNA are informative for classifications of microbiota-associated diseases. However, the raw text data need to be systematically processed so that features for classification can be defined/extracted; moreover, the high-dimension feature spaces generated by the text data also pose an additional difficulty. Here we present a Phylogenetic Tree-Based Motif Finding algorithm (PMF) to analyze 16S rRNA text data. By integrating phylogenetic rules and other statistical indexes for classification, we can effectively reduce the dimension of the large feature spaces generated by the text datasets. Using the retrieved motifs in combination with common classification methods, we can discriminate different samples of both pneumonia and dental caries better than other existing methods. We extend the phylogenetic approaches to perform supervised learning on microbiota text data to discriminate the pathological states for pneumonia and dental caries. The results have shown that PMF may enhance the efficiency and reliability in analyzing high-dimension text data.

  12. A curated database of cyanobacterial strains relevant for modern taxonomy and phylogenetic studies.

    PubMed

    Ramos, Vitor; Morais, João; Vasconcelos, Vitor M

    2017-04-25

    The dataset herein described lays the groundwork for an online database of relevant cyanobacterial strains, named CyanoType (http://lege.ciimar.up.pt/cyanotype). It is a database that includes categorized cyanobacterial strains useful for taxonomic, phylogenetic or genomic purposes, with associated information obtained by means of a literature-based curation. The dataset lists 371 strains and represents the first version of the database (CyanoType v.1). Information for each strain includes strain synonymy and/or co-identity, strain categorization, habitat, accession numbers for molecular data, taxonomy and nomenclature notes according to three different classification schemes, hierarchical automatic classification, phylogenetic placement according to a selection of relevant studies (including this), and important bibliographic references. The database will be updated periodically, namely by adding new strains meeting the criteria for inclusion and by revising and adding up-to-date metadata for strains already listed. A global 16S rDNA-based phylogeny is provided in order to assist users when choosing the appropriate strains for their studies.

  13. A curated database of cyanobacterial strains relevant for modern taxonomy and phylogenetic studies

    PubMed Central

    Ramos, Vitor; Morais, João; Vasconcelos, Vitor M.

    2017-01-01

    The dataset herein described lays the groundwork for an online database of relevant cyanobacterial strains, named CyanoType (http://lege.ciimar.up.pt/cyanotype). It is a database that includes categorized cyanobacterial strains useful for taxonomic, phylogenetic or genomic purposes, with associated information obtained by means of a literature-based curation. The dataset lists 371 strains and represents the first version of the database (CyanoType v.1). Information for each strain includes strain synonymy and/or co-identity, strain categorization, habitat, accession numbers for molecular data, taxonomy and nomenclature notes according to three different classification schemes, hierarchical automatic classification, phylogenetic placement according to a selection of relevant studies (including this), and important bibliographic references. The database will be updated periodically, namely by adding new strains meeting the criteria for inclusion and by revising and adding up-to-date metadata for strains already listed. A global 16S rDNA-based phylogeny is provided in order to assist users when choosing the appropriate strains for their studies. PMID:28440791

  14. PoMo: An Allele Frequency-Based Approach for Species Tree Estimation

    PubMed Central

    De Maio, Nicola; Schrempf, Dominik; Kosiol, Carolin

    2015-01-01

    Incomplete lineage sorting can cause incongruencies of the overall species-level phylogenetic tree with the phylogenetic trees for individual genes or genomic segments. If these incongruencies are not accounted for, it is possible to incur several biases in species tree estimation. Here, we present a simple maximum likelihood approach that accounts for ancestral variation and incomplete lineage sorting. We use a POlymorphisms-aware phylogenetic MOdel (PoMo) that we have recently shown to efficiently estimate mutation rates and fixation biases from within and between-species variation data. We extend this model to perform efficient estimation of species trees. We test the performance of PoMo in several different scenarios of incomplete lineage sorting using simulations and compare it with existing methods both in accuracy and computational speed. In contrast to other approaches, our model does not use coalescent theory but is allele frequency based. We show that PoMo is well suited for genome-wide species tree estimation and that on such data it is more accurate than previous approaches. PMID:26209413

  15. Karyotype Evolution in Birds: From Conventional Staining to Chromosome Painting.

    PubMed

    Kretschmer, Rafael; Ferguson-Smith, Malcolm A; de Oliveira, Edivaldo Herculano Correa

    2018-03-27

    In the last few decades, there have been great efforts to reconstruct the phylogeny of Neoaves based mainly on DNA sequencing. Despite the importance of karyotype data in phylogenetic studies, especially with the advent of fluorescence in situ hybridization (FISH) techniques using different types of probes, the use of chromosomal data to clarify phylogenetic proposals is still minimal. Additionally, comparative chromosome painting in birds is restricted to a few orders, while in mammals, for example, virtually all orders have already been analyzed using this method. Most reports are based on comparisons using Gallus gallus probes, and only a small number of species have been analyzed with more informative sets of probes, such as those from Leucopternis albicollis and Gyps fulvus , which show ancestral macrochromosomes rearranged in alternative patterns. Despite this, it is appropriate to review the available cytogenetic information and possible phylogenetic conclusions. In this report, the authors gather both classical and molecular cytogenetic data and describe some interesting and unique characteristics of karyotype evolution in birds.

  16. Host influence in the genomic composition of flaviviruses: A multivariate approach.

    PubMed

    Simón, Diego; Fajardo, Alvaro; Sóñora, Martín; Delfraro, Adriana; Musto, Héctor

    2017-10-28

    Flaviviruses present substantial differences in their host range and transmissibility. We studied the evolution of base composition, dinucleotide biases, codon usage and amino acid frequencies in the genus Flavivirus within a phylogenetic framework by principal components analysis. There is a mutual interplay between the evolutionary history of flaviviruses and their respective vectors and/or hosts. Hosts associated to distinct phylogenetic groups may be driving flaviviruses at different pace and through various sequence landscapes, as can be seen for viruses associated with Aedes or Culex spp., although phylogenetic inertia cannot be ruled out. In some cases, viruses face even opposite forces. For instance, in tick-borne flaviviruses, while vertebrate hosts exert pressure to deplete their CpG, tick vectors drive them to exhibit GC-rich codons. Within a vertebrate environment, natural selection appears to be acting on the viral genome to overcome the immune system. On the other side, within an arthropod environment, mutational biases seem to be the dominant forces. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Phylogenetic relationships of Paradiclybothrium pacificum and Diclybothrium armatum (Monogenoidea: Diclybothriidae) inferred from 18S rDNA sequence data.

    PubMed

    Rozhkovan, Konstantin V; Shedko, Marina B

    2015-10-01

    The Diclybothriidae (Monogenoidea: Oligonchoinea) includes specific parasites of fishes assigned to the ancient order Acipenseriformes. Phylogeny of the Diclybothriidae is still unclear despite several systematic studies based on morphological characters. Together with the closely related Hexabothriidae represented by parasites of sharks and ray-fishes, the position of Diclybothriidae in different taxonomical systems has been matter of discussion. Here, we present the first molecular data on Diclybothriidae. The SSU rRNA gene was used to investigate the phylogenetic position of Paradiclybothrium pacificum and Diclybothrium armatum among the other Oligonchoinea. Complete nucleotide sequences of P. pacificum and D. armatum demonstrated high identity (98.53%) with no intraspecific sequence variability. Specimens of D. armatum were obtained from different hosts (Acipenser schrenckii and Huso dauricus); however, variation by host was not detected. The sequence divergence and phylogenetic trees data show that Diclybothriidae and Hexabothriidae are more closely related to each other than with other representatives of Oligonchoinea. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Pan-genome and phylogeny of Bacillus cereus sensu lato.

    PubMed

    Bazinet, Adam L

    2017-08-02

    Bacillus cereus sensu lato (s. l.) is an ecologically diverse bacterial group of medical and agricultural significance. In this study, I use publicly available genomes and novel bioinformatic workflows to characterize the B. cereus s. l. pan-genome and perform the largest phylogenetic and population genetic analyses of this group to date in terms of the number of genes and taxa included. With these fundamental data in hand, I identify genes associated with particular phenotypic traits (i.e., "pan-GWAS" analysis), and quantify the degree to which taxa sharing common attributes are phylogenetically clustered. A rapid k-mer based approach (Mash) was used to create reduced representations of selected Bacillus genomes, and a fast distance-based phylogenetic analysis of this data (FastME) was performed to determine which species should be included in B. cereus s. l. The complete genomes of eight B. cereus s. l. species were annotated de novo with Prokka, and these annotations were used by Roary to produce the B. cereus s. l. pan-genome. Scoary was used to associate gene presence and absence patterns with various phenotypes. The orthologous protein sequence clusters produced by Roary were filtered and used to build HaMStR databases of gene models that were used in turn to construct phylogenetic data matrices. Phylogenetic analyses used RAxML, DendroPy, ClonalFrameML, PAUP*, and SplitsTree. Bayesian model-based population genetic analysis assigned taxa to clusters using hierBAPS. The genealogical sorting index was used to quantify the phylogenetic clustering of taxa sharing common attributes. The B. cereus s. l. pan-genome currently consists of ≈60,000 genes, ≈600 of which are "core" (common to at least 99% of taxa sampled). Pan-GWAS analysis revealed genes associated with phenotypes such as isolation source, oxygen requirement, and ability to cause diseases such as anthrax or food poisoning. Extensive phylogenetic analyses using an unprecedented amount of data produced phylogenies that were largely concordant with each other and with previous studies. Phylogenetic support as measured by bootstrap probabilities increased markedly when all suitable pan-genome data was included in phylogenetic analyses, as opposed to when only core genes were used. Bayesian population genetic analysis recommended subdividing the three major clades of B. cereus s. l. into nine clusters. Taxa sharing common traits and species designations exhibited varying degrees of phylogenetic clustering. All phylogenetic analyses recapitulated two previously used classification systems, and taxa were consistently assigned to the same major clade and group. By including accessory genes from the pan-genome in the phylogenetic analyses, I produced an exceptionally well-supported phylogeny of 114 complete B. cereus s. l. genomes. The best-performing methods were used to produce a phylogeny of all 498 publicly available B. cereus s. l. genomes, which was in turn used to compare three different classification systems and to test the monophyly status of various B. cereus s. l. species. The majority of the methodology used in this study is generic and could be leveraged to produce pan-genome estimates and similarly robust phylogenetic hypotheses for other bacterial groups.

  19. From learning taxonomies to phylogenetic learning: integration of 16S rRNA gene data into FAME-based bacterial classification.

    PubMed

    Slabbinck, Bram; Waegeman, Willem; Dawyndt, Peter; De Vos, Paul; De Baets, Bernard

    2010-01-30

    Machine learning techniques have shown to improve bacterial species classification based on fatty acid methyl ester (FAME) data. Nonetheless, FAME analysis has a limited resolution for discrimination of bacteria at the species level. In this paper, we approach the species classification problem from a taxonomic point of view. Such a taxonomy or tree is typically obtained by applying clustering algorithms on FAME data or on 16S rRNA gene data. The knowledge gained from the tree can then be used to evaluate FAME-based classifiers, resulting in a novel framework for bacterial species classification. In view of learning in a taxonomic framework, we consider two types of trees. First, a FAME tree is constructed with a supervised divisive clustering algorithm. Subsequently, based on 16S rRNA gene sequence analysis, phylogenetic trees are inferred by the NJ and UPGMA methods. In this second approach, the species classification problem is based on the combination of two different types of data. Herein, 16S rRNA gene sequence data is used for phylogenetic tree inference and the corresponding binary tree splits are learned based on FAME data. We call this learning approach 'phylogenetic learning'. Supervised Random Forest models are developed to train the classification tasks in a stratified cross-validation setting. In this way, better classification results are obtained for species that are typically hard to distinguish by a single or flat multi-class classification model. FAME-based bacterial species classification is successfully evaluated in a taxonomic framework. Although the proposed approach does not improve the overall accuracy compared to flat multi-class classification, it has some distinct advantages. First, it has better capabilities for distinguishing species on which flat multi-class classification fails. Secondly, the hierarchical classification structure allows to easily evaluate and visualize the resolution of FAME data for the discrimination of bacterial species. Summarized, by phylogenetic learning we are able to situate and evaluate FAME-based bacterial species classification in a more informative context.

  20. From learning taxonomies to phylogenetic learning: Integration of 16S rRNA gene data into FAME-based bacterial classification

    PubMed Central

    2010-01-01

    Background Machine learning techniques have shown to improve bacterial species classification based on fatty acid methyl ester (FAME) data. Nonetheless, FAME analysis has a limited resolution for discrimination of bacteria at the species level. In this paper, we approach the species classification problem from a taxonomic point of view. Such a taxonomy or tree is typically obtained by applying clustering algorithms on FAME data or on 16S rRNA gene data. The knowledge gained from the tree can then be used to evaluate FAME-based classifiers, resulting in a novel framework for bacterial species classification. Results In view of learning in a taxonomic framework, we consider two types of trees. First, a FAME tree is constructed with a supervised divisive clustering algorithm. Subsequently, based on 16S rRNA gene sequence analysis, phylogenetic trees are inferred by the NJ and UPGMA methods. In this second approach, the species classification problem is based on the combination of two different types of data. Herein, 16S rRNA gene sequence data is used for phylogenetic tree inference and the corresponding binary tree splits are learned based on FAME data. We call this learning approach 'phylogenetic learning'. Supervised Random Forest models are developed to train the classification tasks in a stratified cross-validation setting. In this way, better classification results are obtained for species that are typically hard to distinguish by a single or flat multi-class classification model. Conclusions FAME-based bacterial species classification is successfully evaluated in a taxonomic framework. Although the proposed approach does not improve the overall accuracy compared to flat multi-class classification, it has some distinct advantages. First, it has better capabilities for distinguishing species on which flat multi-class classification fails. Secondly, the hierarchical classification structure allows to easily evaluate and visualize the resolution of FAME data for the discrimination of bacterial species. Summarized, by phylogenetic learning we are able to situate and evaluate FAME-based bacterial species classification in a more informative context. PMID:20113515

  1. Autumn Algorithm-Computation of Hybridization Networks for Realistic Phylogenetic Trees.

    PubMed

    Huson, Daniel H; Linz, Simone

    2018-01-01

    A minimum hybridization network is a rooted phylogenetic network that displays two given rooted phylogenetic trees using a minimum number of reticulations. Previous mathematical work on their calculation has usually assumed the input trees to be bifurcating, correctly rooted, or that they both contain the same taxa. These assumptions do not hold in biological studies and "realistic" trees have multifurcations, are difficult to root, and rarely contain the same taxa. We present a new algorithm for computing minimum hybridization networks for a given pair of "realistic" rooted phylogenetic trees. We also describe how the algorithm might be used to improve the rooting of the input trees. We introduce the concept of "autumn trees", a nice framework for the formulation of algorithms based on the mathematics of "maximum acyclic agreement forests". While the main computational problem is hard, the run-time depends mainly on how different the given input trees are. In biological studies, where the trees are reasonably similar, our parallel implementation performs well in practice. The algorithm is available in our open source program Dendroscope 3, providing a platform for biologists to explore rooted phylogenetic networks. We demonstrate the utility of the algorithm using several previously studied data sets.

  2. The complete mitochondrial genome of the tapeworm Cladotaenia vulturi (Cestoda: Paruterinidae): gene arrangement and phylogenetic relationships with other cestodes.

    PubMed

    Guo, Aijiang

    2016-08-31

    Tapeworms Cladotaenia spp. are among the most important wildlife pathogens in birds of prey. The genus Cladotaenia is placed in the family Paruterinidae based on morphological characteristics and hosts. However, limited molecular information is available for studying the phylogenetic position of this genus in relation to other cestodes. In this study, the complete mitochondrial (mt) genome of Cladotaenia vulturi was amplified using "Long-PCR" and then sequenced by primer walking. Sequence annotation and gene identification were performed by comparison with published flatworm mt genomes. The phylogenetic relationships of C. vulturi with other cestode species were established using the concatenated amino acid sequences of 12 protein-coding genes with Bayesian Inference and Maximum Likelihood methods. The complete mitochondrial genome of the Cladotaenia vulturi is 13,411 kb in size and contains 36 genes. The gene arrangement of C. vulturi is identical to those in Anoplocephala spp. (Anoplocephalidae), Hymenolepis spp. (Hymenolepididae) and Dipylidium caninum (Dipylidiidae), but different from that in taeniids owing to the order shift between the tRNA (L1) and tRNA (S2) genes. Phylogenetic analyses based on the amino acid sequences of the concatenated 12 protein-coding genes showed that the species in the Taeniidae form a group and C. vulturi is a sister taxon to the species of the family Taeniidae. To our knowledge, the present study provides the first molecular data to support the early proposal from morphological evidence that the Taeniidae is a sister group to the family Paruterinidae. This novel mt genome sequence will be useful for further investigations into the population genetics, phylogenetics and systematics of the family Paruterinidae and inferring phylogenetic relationships among several lineages within the order Cyclophyllidea.

  3. Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes

    PubMed Central

    Chase, Mark W.; Kim, Joo-Hwan

    2013-01-01

    Phylogenetic analysis aims to produce a bifurcating tree, which disregards conflicting signals and displays only those that are present in a large proportion of the data. However, any character (or tree) conflict in a dataset allows the exploration of support for various evolutionary hypotheses. Although data-display network approaches exist, biologists cannot easily and routinely use them to compute rooted phylogenetic networks on real datasets containing hundreds of taxa. Here, we constructed an original neighbour-net for a large dataset of Asparagales to highlight the aspects of the resulting network that will be important for interpreting phylogeny. The analyses were largely conducted with new data collected for the same loci as in previous studies, but from different species accessions and greater sampling in many cases than in published analyses. The network tree summarised the majority data pattern in the characters of plastid sequences before tree building, which largely confirmed the currently recognised phylogenetic relationships. Most conflicting signals are at the base of each group along the Asparagales backbone, which helps us to establish the expectancy and advance our understanding of some difficult taxa relationships and their phylogeny. The network method should play a greater role in phylogenetic analyses than it has in the past. To advance the understanding of evolutionary history of the largest order of monocots Asparagales, absolute diversification times were estimated for family-level clades using relaxed molecular clock analyses. PMID:23544071

  4. The complete mitochondrial genome of Koerneria sudhausi (Diplogasteromorpha: Nematoda) supports monophyly of Diplogasteromorpha within Rhabditomorpha.

    PubMed

    Kim, Taeho; Kim, Jiyeon; Nadler, Steven A; Park, Joong-Ki

    2016-05-01

    Testing hypotheses of monophyly for different nematode groups in the context of broad representation of nematode diversity is central to understanding the patterns and processes of nematode evolution. Herein sequence information from mitochondrial genomes is used to test the monophyly of diplogasterids, which includes an important nematode model organism. The complete mitochondrial genome sequence of Koerneria sudhausi, a representative of Diplogasteromorpha, was determined and used for phylogenetic analyses along with 60 other nematode species. The mtDNA of K. sudhausi is comprised of 16,005 bp that includes 36 genes (12 protein-coding genes, 2 ribosomal RNA genes and 22 transfer RNA genes) encoded in the same direction. Phylogenetic trees inferred from amino acid and nucleotide sequence data for the 12 protein-coding genes strongly supported the sister relationship of K. sudhausi with Pristionchus pacificus, supporting Diplogasteromorpha. The gene order of K. sudhausi is identical to that most commonly found in members of the Rhabditomorpha + Ascaridomorpha + Diplogasteromorpha clade, with an exception of some tRNA translocations. Both the gene order pattern and sequence-based phylogenetic analyses support a close relationship between the diplogasterid species and Rhabditomorpha. The nesting of the two diplogasteromorph species within Rhabditomorpha is consistent with most molecular phylogenies for the group, but inconsistent with certain morphology-based hypotheses that asserted phylogenetic affinity between diplogasteromorphs and tylenchomorphs. Phylogenetic analysis of mitochondrial genome sequences strongly supports monophyly of the diplogasteromorpha.

  5. A Format for Phylogenetic Placements

    PubMed Central

    Matsen, Frederick A.; Hoffman, Noah G.; Gallagher, Aaron; Stamatakis, Alexandros

    2012-01-01

    We have developed a unified format for phylogenetic placements, that is, mappings of environmental sequence data (e.g., short reads) into a phylogenetic tree. We are motivated to do so by the growing number of tools for computing and post-processing phylogenetic placements, and the lack of an established standard for storing them. The format is lightweight, versatile, extensible, and is based on the JSON format, which can be parsed by most modern programming languages. Our format is already implemented in several tools for computing and post-processing parsimony- and likelihood-based phylogenetic placements and has worked well in practice. We believe that establishing a standard format for analyzing read placements at this early stage will lead to a more efficient development of powerful and portable post-analysis tools for the growing applications of phylogenetic placement. PMID:22383988

  6. A format for phylogenetic placements.

    PubMed

    Matsen, Frederick A; Hoffman, Noah G; Gallagher, Aaron; Stamatakis, Alexandros

    2012-01-01

    We have developed a unified format for phylogenetic placements, that is, mappings of environmental sequence data (e.g., short reads) into a phylogenetic tree. We are motivated to do so by the growing number of tools for computing and post-processing phylogenetic placements, and the lack of an established standard for storing them. The format is lightweight, versatile, extensible, and is based on the JSON format, which can be parsed by most modern programming languages. Our format is already implemented in several tools for computing and post-processing parsimony- and likelihood-based phylogenetic placements and has worked well in practice. We believe that establishing a standard format for analyzing read placements at this early stage will lead to a more efficient development of powerful and portable post-analysis tools for the growing applications of phylogenetic placement.

  7. A case study for effects of operational taxonomic units from intracellular endoparasites and ciliates on the eukaryotic phylogeny: phylogenetic position of the haptophyta in analyses of multiple slowly evolving genes.

    PubMed

    Nozaki, Hisayoshi; Yang, Yi; Maruyama, Shinichiro; Suzaki, Toshinobu

    2012-01-01

    Recent multigene phylogenetic analyses have contributed much to our understanding of eukaryotic phylogeny. However, the phylogenetic positions of various lineages within the eukaryotes have remained unresolved or in conflict between different phylogenetic studies. These phylogenetic ambiguities might have resulted from mixtures or integration from various factors including limited taxon sampling, missing data in the alignment, saturations of rapidly evolving genes, mixed analyses of short- and long-branched operational taxonomic units (OTUs), intracellular endoparasite and ciliate OTUs with unusual substitution etc. In order to evaluate the effects from intracellular endoparasite and ciliate OTUs co-analyzed on the eukaryotic phylogeny and simplify the results, we here used two different sets of data matrices of multiple slowly evolving genes with small amounts of missing data and examined the phylogenetic position of the secondary photosynthetic chromalveolates Haptophyta, one of the most abundant groups of oceanic phytoplankton and significant primary producers. In both sets, a robust sister relationship between Haptophyta and SAR (stramenopiles, alveolates, rhizarians, or SA [stramenopiles and alveolates]) was resolved when intracellular endoparasite/ciliate OTUs were excluded, but not in their presence. Based on comparisons of character optimizations on a fixed tree (with a clade composed of haptophytes and SAR or SA), disruption of the monophyly between haptophytes and SAR (or SA) in the presence of intracellular endoparasite/ciliate OTUs can be considered to be a result of multiple evolutionary reversals of character positions that supported the synapomorphy of the haptophyte and SAR (or SA) clade in the absence of intracellular endoparasite/ciliate OTUs.

  8. Selection of organisms for the co-evolution-based study of protein interactions.

    PubMed

    Herman, Dorota; Ochoa, David; Juan, David; Lopez, Daniel; Valencia, Alfonso; Pazos, Florencio

    2011-09-12

    The prediction and study of protein interactions and functional relationships based on similarity of phylogenetic trees, exemplified by the mirrortree and related methodologies, is being widely used. Although dependence between the performance of these methods and the set of organisms used to build the trees was suspected, so far nobody assessed it in an exhaustive way, and, in general, previous works used as many organisms as possible. In this work we asses the effect of using different sets of organism (chosen according with various phylogenetic criteria) on the performance of this methodology in detecting protein interactions of different nature. We show that the performance of three mirrortree-related methodologies depends on the set of organisms used for building the trees, and it is not always directly related to the number of organisms in a simple way. Certain subsets of organisms seem to be more suitable for the predictions of certain types of interactions. This relationship between type of interaction and optimal set of organism for detecting them makes sense in the light of the phylogenetic distribution of the organisms and the nature of the interactions. In order to obtain an optimal performance when predicting protein interactions, it is recommended to use different sets of organisms depending on the available computational resources and data, as well as the type of interactions of interest.

  9. Identification of phylogenetic position in the Chlamydiaceae family for Chlamydia strains released from monkeys and humans with chlamydial pathology.

    PubMed

    Karaulov, Alexander; Aleshkin, Vladimir; Slobodenyuk, Vladimir; Grechishnikova, Olga; Afanasyev, Stanislav; Lapin, Boris; Dzhikidze, Eteri; Nesvizhsky, Yuriy; Evsegneeva, Irina; Voropayeva, Elena; Afanasyev, Maxim; Aleshkin, Andrei; Metelskaya, Valeria; Yegorova, Ekaterina; Bayrakova, Alexandra

    2010-01-01

    Based on the results of the comparative analysis concerning relatedness and evolutional difference of the 16S-23S nucleotide sequences of the middle ribosomal cluster and 23S rRNA I domain, and based on identification of phylogenetic position for Chlamydophila pneumoniae and Chlamydia trichomatis strains released from monkeys, relatedness of the above stated isolates with similar strains released from humans and with strains having nucleotide sequences presented in the GenBank electronic database has been detected for the first time ever. Position of these isolates in the Chlamydiaceae family phylogenetic tree has been identified. The evolutional position of the investigated original Chlamydia and Chlamydophila strains close to analogous strains from the Gen-Bank electronic database has been demonstrated. Differences in the 16S-23S nucleotide sequence of the middle ribosomal cluster and 23S rRNA I domain of plasmid and nonplasmid Chlamydia trachomatis strains released from humans and monkeys relative to different genotype groups (group B-B, Ba, D, Da, E, L1, L2, L2a; intermediate group-F, G, Ga) have been revealed for the first time ever. Abnormality in incA chromosomal gene expression resulting in Chlamydia life development cycle disorder, and decrease of Chlamydia virulence can be related to probable changes in the nucleotide sequence of the gene under consideration.

  10. Selection of organisms for the co-evolution-based study of protein interactions

    PubMed Central

    2011-01-01

    Background The prediction and study of protein interactions and functional relationships based on similarity of phylogenetic trees, exemplified by the mirrortree and related methodologies, is being widely used. Although dependence between the performance of these methods and the set of organisms used to build the trees was suspected, so far nobody assessed it in an exhaustive way, and, in general, previous works used as many organisms as possible. In this work we asses the effect of using different sets of organism (chosen according with various phylogenetic criteria) on the performance of this methodology in detecting protein interactions of different nature. Results We show that the performance of three mirrortree-related methodologies depends on the set of organisms used for building the trees, and it is not always directly related to the number of organisms in a simple way. Certain subsets of organisms seem to be more suitable for the predictions of certain types of interactions. This relationship between type of interaction and optimal set of organism for detecting them makes sense in the light of the phylogenetic distribution of the organisms and the nature of the interactions. Conclusions In order to obtain an optimal performance when predicting protein interactions, it is recommended to use different sets of organisms depending on the available computational resources and data, as well as the type of interactions of interest. PMID:21910884

  11. Tetrapods on the EDGE: Overcoming data limitations to identify phylogenetic conservation priorities

    PubMed Central

    Gray, Claudia L.; Wearn, Oliver R.; Owen, Nisha R.

    2018-01-01

    The scale of the ongoing biodiversity crisis requires both effective conservation prioritisation and urgent action. As extinction is non-random across the tree of life, it is important to prioritise threatened species which represent large amounts of evolutionary history. The EDGE metric prioritises species based on their Evolutionary Distinctiveness (ED), which measures the relative contribution of a species to the total evolutionary history of their taxonomic group, and Global Endangerment (GE), or extinction risk. EDGE prioritisations rely on adequate phylogenetic and extinction risk data to generate meaningful priorities for conservation. However, comprehensive phylogenetic trees of large taxonomic groups are extremely rare and, even when available, become quickly out-of-date due to the rapid rate of species descriptions and taxonomic revisions. Thus, it is important that conservationists can use the available data to incorporate evolutionary history into conservation prioritisation. We compared published and new methods to estimate missing ED scores for species absent from a phylogenetic tree whilst simultaneously correcting the ED scores of their close taxonomic relatives. We found that following artificial removal of species from a phylogenetic tree, the new method provided the closest estimates of their “true” ED score, differing from the true ED score by an average of less than 1%, compared to the 31% and 38% difference of the previous methods. The previous methods also substantially under- and over-estimated scores as more species were artificially removed from a phylogenetic tree. We therefore used the new method to estimate ED scores for all tetrapods. From these scores we updated EDGE prioritisation rankings for all tetrapod species with IUCN Red List assessments, including the first EDGE prioritisation for reptiles. Further, we identified criteria to identify robust priority species in an effort to further inform conservation action whilst limiting uncertainty and anticipating future phylogenetic advances. PMID:29641585

  12. Keeping All the PIECES: Phylogenetically Informed Ex Situ Conservation of Endangered Species.

    PubMed

    Larkin, Daniel J; Jacobi, Sarah K; Hipp, Andrew L; Kramer, Andrea T

    2016-01-01

    Ex situ conservation in germplasm and living collections is a major focus of global plant conservation strategies. Prioritizing species for ex situ collection is a necessary component of this effort for which sound strategies are needed. Phylogenetic considerations can play an important role in prioritization. Collections that are more phylogenetically diverse are likely to encompass more ecological and trait variation, and thus provide stronger conservation insurance and richer resources for future restoration efforts. However, phylogenetic criteria need to be weighed against other, potentially competing objectives. We used ex situ collection and threat rank data for North American angiosperms to investigate gaps in ex situ coverage and phylogenetic diversity of collections and to develop a flexible framework for prioritizing species across multiple objectives. We found that ex situ coverage of 18,766 North American angiosperm taxa was low with respect to the most vulnerable taxa: just 43% of vulnerable to critically imperiled taxa were in ex situ collections, far short of a year-2020 goal of 75%. In addition, species held in ex situ collections were phylogenetically clustered (P < 0.001), i.e., collections comprised less phylogenetic diversity than would be expected had species been drawn at random. These patterns support incorporating phylogenetic considerations into ex situ prioritization in a manner balanced with other criteria, such as vulnerability. To meet this need, we present the 'PIECES' index (Phylogenetically Informed Ex situ Conservation of Endangered Species). PIECES integrates phylogenetic considerations into a flexible framework for prioritizing species across competing objectives using multi-criteria decision analysis. Applying PIECES to prioritizing ex situ conservation of North American angiosperms, we show strong return on investment across multiple objectives, some of which are negatively correlated with each other. A spreadsheet-based decision support tool for North American angiosperms is provided; this tool can be customized to align with different conservation objectives.

  13. Invasions but not extinctions change phylogenetic diversity of angiosperm assemblage on southeastern Pacific Oceanic islands

    PubMed Central

    2017-01-01

    We assessed changes in phylogenetic diversity of angiosperm flora on six oceanic islands located in the southeastern Pacific Ocean, by comparing flora from two periods: the pre-European colonization of islands and current times. We hypothesize that, in the time between these periods, extinction of local plant species and addition of exotic plants modified phylogenetic-α-diversity at different levels (deeper and terminal phylogeny) and increased phylo-β-diversity among islands. Based on floristic studies, we assembled a phylogenetic tree from occurrence data that includes 921 species, of which 165 and 756 were native or exotic in origin, respectively. Then, we studied change in the phylo-α-diversity and phylo-β-diversity (1 –Phylosor) by comparing pre-European and current times. Despite extinction of 18 native angiosperm species, an increase in species richness and phylo-α-diversity was observed for all islands studied, attributed to introduction of exotic plants (between 6 to 477 species per island). We did not observe significant variation of mean phylogenetic distance (MPD), a measure of the ‘deeper’ phylogenetic diversity of assemblages (e.g., orders, families), suggesting that neither extinctions nor introductions altered phylogenetic structure of the angiosperms of these islands. In regard to phylo-β-diversity, we detected temporal turnover (variation in phylogenetic composition) between periods to flora (0.38 ± 0.11). However, when analyses were performed only considering native plants, we did not observe significant temporal turnover between periods (0.07 ± 0.06). These results indicate that introduction of exotic angiosperms has contributed more notably than extinctions to the configuration of plant assemblages and phylogenetic diversity on the studied islands. Because phylogenetic diversity is closely related to functional diversity (species trait variations and roles performed by organisms), our results suggests that the introduction of exotic plants to these islands could have detrimental impacts for ecosystem functions and ecosystem services that islands provide (e.g. productivity). PMID:28763508

  14. Keeping All the PIECES: Phylogenetically Informed Ex Situ Conservation of Endangered Species

    PubMed Central

    Larkin, Daniel J.; Jacobi, Sarah K.; Hipp, Andrew L.; Kramer, Andrea T.

    2016-01-01

    Ex situ conservation in germplasm and living collections is a major focus of global plant conservation strategies. Prioritizing species for ex situ collection is a necessary component of this effort for which sound strategies are needed. Phylogenetic considerations can play an important role in prioritization. Collections that are more phylogenetically diverse are likely to encompass more ecological and trait variation, and thus provide stronger conservation insurance and richer resources for future restoration efforts. However, phylogenetic criteria need to be weighed against other, potentially competing objectives. We used ex situ collection and threat rank data for North American angiosperms to investigate gaps in ex situ coverage and phylogenetic diversity of collections and to develop a flexible framework for prioritizing species across multiple objectives. We found that ex situ coverage of 18,766 North American angiosperm taxa was low with respect to the most vulnerable taxa: just 43% of vulnerable to critically imperiled taxa were in ex situ collections, far short of a year-2020 goal of 75%. In addition, species held in ex situ collections were phylogenetically clustered (P < 0.001), i.e., collections comprised less phylogenetic diversity than would be expected had species been drawn at random. These patterns support incorporating phylogenetic considerations into ex situ prioritization in a manner balanced with other criteria, such as vulnerability. To meet this need, we present the ‘PIECES’ index (Phylogenetically Informed Ex situ Conservation of Endangered Species). PIECES integrates phylogenetic considerations into a flexible framework for prioritizing species across competing objectives using multi-criteria decision analysis. Applying PIECES to prioritizing ex situ conservation of North American angiosperms, we show strong return on investment across multiple objectives, some of which are negatively correlated with each other. A spreadsheet-based decision support tool for North American angiosperms is provided; this tool can be customized to align with different conservation objectives. PMID:27257671

  15. Phylogenic study of Lemnoideae (duckweeds) through complete chloroplast genomes for eight accessions.

    PubMed

    Ding, Yanqiang; Fang, Yang; Guo, Ling; Li, Zhidan; He, Kaize; Zhao, Yun; Zhao, Hai

    2017-01-01

    Phylogenetic relationship within different genera of Lemnoideae, a kind of small aquatic monocotyledonous plants, was not well resolved, using either morphological characters or traditional markers. Given that rich genetic information in chloroplast genome makes them particularly useful for phylogenetic studies, we used chloroplast genomes to clarify the phylogeny within Lemnoideae. DNAs were sequenced with next-generation sequencing. The duckweeds chloroplast genomes were indirectly filtered from the total DNA data, or directly obtained from chloroplast DNA data. To test the reliability of assembling the chloroplast genome based on the filtration of the total DNA, two methods were used to assemble the chloroplast genome of Landoltia punctata strain ZH0202. A phylogenetic tree was built on the basis of the whole chloroplast genome sequences using MrBayes v.3.2.6 and PhyML 3.0. Eight complete duckweeds chloroplast genomes were assembled, with lengths ranging from 165,775 bp to 171,152 bp, and each contains 80 protein-coding sequences, four rRNAs, 30 tRNAs and two pseudogenes. The identity of L. punctata strain ZH0202 chloroplast genomes assembled through two methods was 100%, and their sequences and lengths were completely identical. The chloroplast genome comparison demonstrated that the differences in chloroplast genome sizes among the Lemnoideae primarily resulted from variation in non-coding regions, especially from repeat sequence variation. The phylogenetic analysis demonstrated that the different genera of Lemnoideae are derived from each other in the following order: Spirodela , Landoltia , Lemna , Wolffiella , and Wolffia . This study demonstrates potential of whole chloroplast genome DNA as an effective option for phylogenetic studies of Lemnoideae. It also showed the possibility of using chloroplast DNA data to elucidate those phylogenies which were not yet solved well by traditional methods even in plants other than duckweeds.

  16. Comparative analyses of plastid genomes from fourteen Cornales species: inferences for phylogenetic relationships and genome evolution.

    PubMed

    Fu, Chao-Nan; Li, Hong-Tao; Milne, Richard; Zhang, Ting; Ma, Peng-Fei; Yang, Jing; Li, De-Zhu; Gao, Lian-Ming

    2017-12-08

    The Cornales is the basal lineage of the asterids, the largest angiosperm clade. Phylogenetic relationships within the order were previously not fully resolved. Fifteen plastid genomes representing 14 species, ten genera and seven families of Cornales were newly sequenced for comparative analyses of genome features, evolution, and phylogenomics based on different partitioning schemes and filtering strategies. All plastomes of the 14 Cornales species had the typical quadripartite structure with a genome size ranging from 156,567 bp to 158,715 bp, which included two inverted repeats (25,859-26,451 bp) separated by a large single-copy region (86,089-87,835 bp) and a small single-copy region (18,250-18,856 bp) region. These plastomes encoded the same set of 114 unique genes including 31 transfer RNA, 4 ribosomal RNA and 79 coding genes, with an identical gene order across all examined Cornales species. Two genes (rpl22 and ycf15) contained premature stop codons in seven and five species respectively. The phylogenetic relationships among all sampled species were fully resolved with maximum support. Different filtering strategies (none, light and strict) of sequence alignment did not have an effect on these relationships. The topology recovered from coding and noncoding data sets was the same as for the whole plastome, regardless of filtering strategy. Moreover, mutational hotspots and highly informative regions were identified. Phylogenetic relationships among families and intergeneric relationships within family of Cornales were well resolved. Different filtering strategies and partitioning schemes do not influence the relationships. Plastid genomes have great potential to resolve deep phylogenetic relationships of plants.

  17. Phylogenic study of Lemnoideae (duckweeds) through complete chloroplast genomes for eight accessions

    PubMed Central

    Ding, Yanqiang; Fang, Yang; Guo, Ling; Li, Zhidan; He, Kaize

    2017-01-01

    Background Phylogenetic relationship within different genera of Lemnoideae, a kind of small aquatic monocotyledonous plants, was not well resolved, using either morphological characters or traditional markers. Given that rich genetic information in chloroplast genome makes them particularly useful for phylogenetic studies, we used chloroplast genomes to clarify the phylogeny within Lemnoideae. Methods DNAs were sequenced with next-generation sequencing. The duckweeds chloroplast genomes were indirectly filtered from the total DNA data, or directly obtained from chloroplast DNA data. To test the reliability of assembling the chloroplast genome based on the filtration of the total DNA, two methods were used to assemble the chloroplast genome of Landoltia punctata strain ZH0202. A phylogenetic tree was built on the basis of the whole chloroplast genome sequences using MrBayes v.3.2.6 and PhyML 3.0. Results Eight complete duckweeds chloroplast genomes were assembled, with lengths ranging from 165,775 bp to 171,152 bp, and each contains 80 protein-coding sequences, four rRNAs, 30 tRNAs and two pseudogenes. The identity of L. punctata strain ZH0202 chloroplast genomes assembled through two methods was 100%, and their sequences and lengths were completely identical. The chloroplast genome comparison demonstrated that the differences in chloroplast genome sizes among the Lemnoideae primarily resulted from variation in non-coding regions, especially from repeat sequence variation. The phylogenetic analysis demonstrated that the different genera of Lemnoideae are derived from each other in the following order: Spirodela, Landoltia, Lemna, Wolffiella, and Wolffia. Discussion This study demonstrates potential of whole chloroplast genome DNA as an effective option for phylogenetic studies of Lemnoideae. It also showed the possibility of using chloroplast DNA data to elucidate those phylogenies which were not yet solved well by traditional methods even in plants other than duckweeds. PMID:29302399

  18. Patterns of taxonomic, phylogenetic diversity during a long-term succession of forest on the Loess Plateau, China: insights into assembly process

    PubMed Central

    Chai, Yongfu; Yue, Ming; Liu, Xiao; Guo, Yaoxin; Wang, Mao; Xu, Jinshi; Zhang, Chenguang; Chen, Yu; Zhang, Lixia; Zhang, Ruichang

    2016-01-01

    Quantifying the drivers underlying the distribution of biodiversity during succession is a critical issue in ecology and conservation, and also can provide insights into the mechanisms of community assembly. Ninety plots were established in the Loess Plateau region of northern Shaanxi in China. The taxonomic and phylogenetic (alpha and beta) diversity were quantified within six succession stages. Null models were used to test whether phylogenetic distance observed differed from random expectations. Taxonomic beta diversity did not show a regular pattern, while phylogenetic beta diversity decreased throughout succession. The shrub stage occurred as a transition from phylogenetic overdispersion to clustering either for NRI (Net Relatedness Index) or betaNRI. The betaNTI (Nearest Taxon Index) values for early stages were on average phylogenetically random, but for the betaNRI analyses, these stages were phylogenetically overdispersed. Assembly of woody plants differed from that of herbaceous plants during late community succession. We suggest that deterministic and stochastic processes respectively play a role in different aspects of community phylogenetic structure for early succession stage, and that community composition of late succession stage is governed by a deterministic process. In conclusion, the long-lasting evolutionary imprints on the present-day composition of communities arrayed along the succession gradient. PMID:27272407

  19. Patterns of taxonomic, phylogenetic diversity during a long-term succession of forest on the Loess Plateau, China: insights into assembly process.

    PubMed

    Chai, Yongfu; Yue, Ming; Liu, Xiao; Guo, Yaoxin; Wang, Mao; Xu, Jinshi; Zhang, Chenguang; Chen, Yu; Zhang, Lixia; Zhang, Ruichang

    2016-06-08

    Quantifying the drivers underlying the distribution of biodiversity during succession is a critical issue in ecology and conservation, and also can provide insights into the mechanisms of community assembly. Ninety plots were established in the Loess Plateau region of northern Shaanxi in China. The taxonomic and phylogenetic (alpha and beta) diversity were quantified within six succession stages. Null models were used to test whether phylogenetic distance observed differed from random expectations. Taxonomic beta diversity did not show a regular pattern, while phylogenetic beta diversity decreased throughout succession. The shrub stage occurred as a transition from phylogenetic overdispersion to clustering either for NRI (Net Relatedness Index) or betaNRI. The betaNTI (Nearest Taxon Index) values for early stages were on average phylogenetically random, but for the betaNRI analyses, these stages were phylogenetically overdispersed. Assembly of woody plants differed from that of herbaceous plants during late community succession. We suggest that deterministic and stochastic processes respectively play a role in different aspects of community phylogenetic structure for early succession stage, and that community composition of late succession stage is governed by a deterministic process. In conclusion, the long-lasting evolutionary imprints on the present-day composition of communities arrayed along the succession gradient.

  20. Phylogeny and evolutionary histories of Pyrus L. revealed by phylogenetic trees and networks based on data from multiple DNA sequences

    USDA-ARS?s Scientific Manuscript database

    Reconstructing the phylogeny of Pyrus has been difficult due to the wide distribution of the genus and lack of informative data. In this study, we collected 110 accessions representing 25 Pyrus species and constructed both phylogenetic trees and phylogenetic networks based on multiple DNA sequence d...

  1. Replicate phylogenies and post-glacial range expansion of the pitcher-plant mosquito, Wyeomyia smithii, in North America.

    PubMed

    Merz, Clayton; Catchen, Julian M; Hanson-Smith, Victor; Emerson, Kevin J; Bradshaw, William E; Holzapfel, Christina M

    2013-01-01

    Herein we tested the repeatability of phylogenetic inference based on high throughput sequencing by increased taxon sampling using our previously published techniques in the pitcher-plant mosquito, Wyeomyia smithii in North America. We sampled 25 natural populations drawn from different localities nearby 21 previous collection localities and used these new data to construct a second, independent phylogeny, expressly to test the reproducibility of phylogenetic patterns. Comparison of trees between the two data sets based on both maximum parsimony and maximum likelihood with Bayesian posterior probabilities showed close correspondence in the grouping of the most southern populations into clear clades. However, discrepancies emerged, particularly in the middle of W. smithii's current range near the previous maximum extent of the Laurentide Ice Sheet, especially concerning the most recent common ancestor to mountain and northern populations. Combining all 46 populations from both studies into a single maximum parsimony tree and taking into account the post-glacial historical biogeography of associated flora provided an improved picture of W. smithii's range expansion in North America. In a more general sense, we propose that extensive taxon sampling, especially in areas of known geological disruption is key to a comprehensive approach to phylogenetics that leads to biologically meaningful phylogenetic inference.

  2. Spermatogenic and Phylo-molecular Characterizations of Isolated Fasciola Spp. From Cattle, North West Iran.

    PubMed

    Rouhani, Soheila; Raeghi, Saber; Spotin, Adel

    2017-01-01

    Fascioliasis is economically important to the livestock industry that caused with Fasciola hepatica and Fasciola gigantica. The objective of this study was to identify these two species F. hepatica and F. gigantica by using nuclear and mitochondrial markers (ITS1, ND1 and CO1) and have been employed to analyze intraspecific phylogenetic relations of Fasciola spp. Approximately 150 Fasciola specimens were collected, then stained with haematoxylin-carmine dye and observed under an optical microscope to examine for the existence of sperm. The ITS1 marker was used to identify different Fasciola and phylogenetic analysis based on ND1 and CO1 sequence data were conducted by maximum likelihood algorithm. Fasciola samples were separated into 2 groups. Almost all specimens had many sperms in the seminal vesicle (spermic fluke) and one fluke did not contain any sperm in the seminal vesicle. The aspermic sample had F. gigantica RFLP pattern with ITS1 gene. Phylogenetic analysis based on NDI and COI sequence data were conducted by maximum likelihood showed a similar topology of the trees obtained particularly for F. hepatica and F. gigantica. This study demonstrated that aspermic Fasciola found in this region of Iran has same genetic structures through the spermic F. gigantica populations in accordance to phylogenetic tree.

  3. Phylogenetic study of Oryzoideae species and related taxa of the Poaceae based on atpB-rbcL and ndhF DNA sequences.

    PubMed

    Zeng, Xu; Yuan, Zhengrong; Tong, Xin; Li, Qiushi; Gao, Weiwei; Qin, Minjian; Liu, Zhihua

    2012-05-01

    Oryzoideae (Poaceae) plants have economic and ecological value. However, the phylogenetic position of some plants is not clear, such as Hygroryza aristata (Retz.) Nees. and Porteresia coarctata (Roxb.) Tateoka (syn. Oryza coarctata). Comprehensive molecular phylogenetic studies have been carried out on many genera in the Poaceae. The different DNA sequences, including nuclear and chloroplast sequences, had been extensively employed to determine relationships at both higher and lower taxonomic levels in the Poaceae. Chloroplast DNA ndhF gene and atpB-rbcL spacer were used to construct phylogenetic trees and estimate the divergence time of Oryzoideae, Bambusoideae, Panicoideae, Pooideae and so on. Complete sequences of atpB-rbcL and ndhF were generated for 17 species representing six species of the Oryzoideae and related subfamilies. Nicotiana tabacum L. was the outgroup species. The two DNA datasets were analyzed, using Maximum Parsimony and Bayesian analysis methods. The molecular phylogeny revealed that H. aristata (Retz.) Nees was the sister to Chikusichloa aquatica Koidz. Moreover, P. coarctata (Roxb.) Tateoka was in the genus Oryza. Furthermore, the result of evolution analysis, which based on the ndhF marker, indicated that the time of origin of Oryzoideae might be 31 million years ago.

  4. Yeast species diversity in apple juice for cider production evidenced by culture-based method.

    PubMed

    Lorenzini, Marilinda; Simonato, Barbara; Zapparoli, Giacomo

    2018-05-07

    Identification of yeasts isolated from apple juices of two cider houses (one located in a plain area and one in an alpine area) was carried out by culture-based method. Wallerstein Laboratory Nutrient Agar was used as medium for isolation and preliminary yeasts identification. A total of 20 species of yeasts belonging to ten different genera were identified using both BLAST algorithm for pairwise sequence comparison and phylogenetic approaches. A wide variety of non-Saccharomyces species was found. Interestingly, Candida railenensis, Candida cylindracea, Hanseniaspora meyeri, Hanseniaspora pseudoguilliermondii, and Metschnikowia sinensis were recovered for the first time in the yeast community of an apple environment. Phylogenetic analysis revealed a better resolution in identifying Metschnikowia and Moesziomyces isolates than comparative analysis using the GenBank or YeastIP gene databases. This study provides important data on yeast microbiota of apple juice and evidenced differences between two geographical cider production areas in terms of species composition.

  5. Disentangling the drivers of taxonomic and phylogenetic beta diversities in disturbed and undisturbed subtropical forests

    NASA Astrophysics Data System (ADS)

    Liu, Jinliang; Qian, Hong; Jin, Yi; Wu, Chuping; Chen, Jianhua; Yu, Shuquan; Wei, Xinliang; Jin, Xiaofeng; Liu, Jiajia; Yu, Mingjian

    2016-10-01

    Understanding the relative importance of dispersal limitation and environmental filtering processes in structuring the beta diversities of subtropical forests in human disturbed landscapes is still limited. Here we used taxonomic (TBD) and phylogenetic (PBD), including terminal PBD (PBDt) and basal PBD (PBDb), beta diversity indices to quantify the taxonomic and phylogenetic turnovers at different depths of evolutionary history in disturbed and undisturbed subtropical forests. Multiple linear regression model and distance-based redundancy analysis were used to disentangle the relative importance of environmental and spatial variables. Environmental variables were significantly correlated with TBD and PBDt metrics. Temperature and precipitation were major environmental drivers of beta diversity patterns, which explained 7-27% of the variance in TBD and PBDt, whereas the spatial variables independently explained less than 1% of the variation for all forests. The relative importance of environmental and spatial variables differed between disturbed and undisturbed forests (e.g., when Bray-Curtis was used as a beta diversity metric, environmental variable had a significant effect on beta diversity for disturbed forests but had no effect on undisturbed forests). We conclude that environmental filtering plays a more important role than geographical limitation and disturbance history in driving taxonomic and terminal phylogenetic beta diversity.

  6. Computing all hybridization networks for multiple binary phylogenetic input trees.

    PubMed

    Albrecht, Benjamin

    2015-07-30

    The computation of phylogenetic trees on the same set of species that are based on different orthologous genes can lead to incongruent trees. One possible explanation for this behavior are interspecific hybridization events recombining genes of different species. An important approach to analyze such events is the computation of hybridization networks. This work presents the first algorithm computing the hybridization number as well as a set of representative hybridization networks for multiple binary phylogenetic input trees on the same set of taxa. To improve its practical runtime, we show how this algorithm can be parallelized. Moreover, we demonstrate the efficiency of the software Hybroscale, containing an implementation of our algorithm, by comparing it to PIRNv2.0, which is so far the best available software computing the exact hybridization number for multiple binary phylogenetic trees on the same set of taxa. The algorithm is part of the software Hybroscale, which was developed specifically for the investigation of hybridization networks including their computation and visualization. Hybroscale is freely available(1) and runs on all three major operating systems. Our simulation study indicates that our approach is on average 100 times faster than PIRNv2.0. Moreover, we show how Hybroscale improves the interpretation of the reported hybridization networks by adding certain features to its graphical representation.

  7. Disentangling the drivers of taxonomic and phylogenetic beta diversities in disturbed and undisturbed subtropical forests

    PubMed Central

    Liu, Jinliang; Qian, Hong; Jin, Yi; Wu, Chuping; Chen, Jianhua; Yu, Shuquan; Wei, Xinliang; Jin, Xiaofeng; Liu, Jiajia; Yu, Mingjian

    2016-01-01

    Understanding the relative importance of dispersal limitation and environmental filtering processes in structuring the beta diversities of subtropical forests in human disturbed landscapes is still limited. Here we used taxonomic (TBD) and phylogenetic (PBD), including terminal PBD (PBDt) and basal PBD (PBDb), beta diversity indices to quantify the taxonomic and phylogenetic turnovers at different depths of evolutionary history in disturbed and undisturbed subtropical forests. Multiple linear regression model and distance-based redundancy analysis were used to disentangle the relative importance of environmental and spatial variables. Environmental variables were significantly correlated with TBD and PBDt metrics. Temperature and precipitation were major environmental drivers of beta diversity patterns, which explained 7–27% of the variance in TBD and PBDt, whereas the spatial variables independently explained less than 1% of the variation for all forests. The relative importance of environmental and spatial variables differed between disturbed and undisturbed forests (e.g., when Bray-Curtis was used as a beta diversity metric, environmental variable had a significant effect on beta diversity for disturbed forests but had no effect on undisturbed forests). We conclude that environmental filtering plays a more important role than geographical limitation and disturbance history in driving taxonomic and terminal phylogenetic beta diversity. PMID:27775021

  8. One tree to link them all: a phylogenetic dataset for the European tetrapoda.

    PubMed

    Roquet, Cristina; Lavergne, Sébastien; Thuiller, Wilfried

    2014-08-08

    Since the ever-increasing availability of phylogenetic informative data, the last decade has seen an upsurge of ecological studies incorporating information on evolutionary relationships among species. However, detailed species-level phylogenies are still lacking for many large groups and regions, which are necessary for comprehensive large-scale eco-phylogenetic analyses. Here, we provide a dataset of 100 dated phylogenetic trees for all European tetrapods based on a mixture of supermatrix and supertree approaches. Phylogenetic inference was performed separately for each of the main Tetrapoda groups of Europe except mammals (i.e. amphibians, birds, squamates and turtles) by means of maximum likelihood (ML) analyses of supermatrix applying a tree constraint at the family (amphibians and squamates) or order (birds and turtles) levels based on consensus knowledge. For each group, we inferred 100 ML trees to be able to provide a phylogenetic dataset that accounts for phylogenetic uncertainty, and assessed node support with bootstrap analyses. Each tree was dated using penalized-likelihood and fossil calibration. The trees obtained were well-supported by existing knowledge and previous phylogenetic studies. For mammals, we modified the most complete supertree dataset available on the literature to include a recent update of the Carnivora clade. As a final step, we merged the phylogenetic trees of all groups to obtain a set of 100 phylogenetic trees for all European Tetrapoda species for which data was available (91%). We provide this phylogenetic dataset (100 chronograms) for the purpose of comparative analyses, macro-ecological or community ecology studies aiming to incorporate phylogenetic information while accounting for phylogenetic uncertainty.

  9. Molecular phylogeny of the Ellobiidae (Gastropoda: Panpulmonata) supports independent terrestrial invasions.

    PubMed

    Romero, Pedro E; Pfenninger, Markus; Kano, Yasunori; Klussmann-Kolb, Annette

    2016-04-01

    Gastropods of the family Ellobiidae are an interesting group in which to study transitions from intertidal to terrestrial realms. However, the phylogenetic relationships within this family still lack resolution. We present a phylogenetic hypothesis of the Ellobiidae based on Bayesian and maximum likelihood phylograms. We used nuclear (18S, 28S, H3) and mitochondrial (16S, 12S, COI) data, increasing the numbers of markers and data, and making this the most comprehensive phylogenetic study of the family to date. Our results support phylogenetic hypotheses derived from morphological data, and provide a supported framework to evaluate the internal relationships within Ellobiidae. The resulting phylogenetic trees support the previous hypothesis that the Ellobiidae are monophyletic only if the Trimusculinae (Otina, Smeagol and Trimusculus) are considered part of this family. In addition, we found that the Carychiinae, Ellobiinae and Pythiinae are reciprocally monophyletic and closely related, with the Carychiinae as sister group to Ellobiinae. Relationships within Melampodinae and Pedipedinae and their phylogenetic positions remain unresolved. Land invasion by the Ellobiidae occurred independently in Carychiinae and Pythia during different geological times (Mesozoic and Cenozoic, respectively). Diversification in the family does not appear to be related to past climate and biotic changes, neither the Cretaceous-Paleogene boundary nor the lowering of the sea level in the Oligocene. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Spatial phylogenetics of the native California flora.

    PubMed

    Thornhill, Andrew H; Baldwin, Bruce G; Freyman, William A; Nosratinia, Sonia; Kling, Matthew M; Morueta-Holme, Naia; Madsen, Thomas P; Ackerly, David D; Mishler, Brent D

    2017-10-26

    California is a world floristic biodiversity hotspot where the terms neo- and paleo-endemism were first applied. Using spatial phylogenetics, it is now possible to evaluate biodiversity from an evolutionary standpoint, including discovering significant areas of neo- and paleo-endemism, by combining spatial information from museum collections and DNA-based phylogenies. Here we used a distributional dataset of 1.39 million herbarium specimens, a phylogeny of 1083 operational taxonomic units (OTUs) and 9 genes, and a spatial randomization test to identify regions of significant phylogenetic diversity, relative phylogenetic diversity, and phylogenetic endemism (PE), as well as to conduct a categorical analysis of neo- and paleo-endemism (CANAPE). We found (1) extensive phylogenetic clustering in the South Coast Ranges, southern Great Valley, and deserts of California; (2) significant concentrations of short branches in the Mojave and Great Basin Deserts and the South Coast Ranges and long branches in the northern Great Valley, Sierra Nevada foothills, and the northwestern and southwestern parts of the state; (3) significant concentrations of paleo-endemism in Northwestern California, the northern Great Valley, and western Sonoran Desert, and neo-endemism in the White-Inyo Range, northern Mojave Desert, and southern Channel Islands. Multiple analyses were run to observe the effects on significance patterns of using different phylogenetic tree topologies (uncalibrated trees versus time-calibrated ultrametric trees) and using different representations of OTU ranges (herbarium specimen locations versus species distribution models). These analyses showed that examining the geographic distributions of branch lengths in a statistical framework adds a new dimension to California floristics that, in comparison with climatic data, helps to illuminate causes of endemism. In particular, the concentration of significant PE in more arid regions of California extends previous ideas about aridity as an evolutionary stimulus. The patterns seen are largely robust to phylogenetic uncertainty and time calibration but are sensitive to the use of occurrence data versus modeled ranges, indicating that special attention toward improving geographic distributional data should be top priority in the future for advancing understanding of spatial patterns of biodiversity.

  11. Treelink: data integration, clustering and visualization of phylogenetic trees.

    PubMed

    Allende, Christian; Sohn, Erik; Little, Cedric

    2015-12-29

    Phylogenetic trees are central to a wide range of biological studies. In many of these studies, tree nodes need to be associated with a variety of attributes. For example, in studies concerned with viral relationships, tree nodes are associated with epidemiological information, such as location, age and subtype. Gene trees used in comparative genomics are usually linked with taxonomic information, such as functional annotations and events. A wide variety of tree visualization and annotation tools have been developed in the past, however none of them are intended for an integrative and comparative analysis. Treelink is a platform-independent software for linking datasets and sequence files to phylogenetic trees. The application allows an automated integration of datasets to trees for operations such as classifying a tree based on a field or showing the distribution of selected data attributes in branches and leafs. Genomic and proteonomic sequences can also be linked to the tree and extracted from internal and external nodes. A novel clustering algorithm to simplify trees and display the most divergent clades was also developed, where validation can be achieved using the data integration and classification function. Integrated geographical information allows ancestral character reconstruction for phylogeographic plotting based on parsimony and likelihood algorithms. Our software can successfully integrate phylogenetic trees with different data sources, and perform operations to differentiate and visualize those differences within a tree. File support includes the most popular formats such as newick and csv. Exporting visualizations as images, cluster outputs and genomic sequences is supported. Treelink is available as a web and desktop application at http://www.treelinkapp.com .

  12. Phylogenetic diversity measures based on Hill numbers.

    PubMed

    Chao, Anne; Chiu, Chun-Huo; Jost, Lou

    2010-11-27

    We propose a parametric class of phylogenetic diversity (PD) measures that are sensitive to both species abundance and species taxonomic or phylogenetic distances. This work extends the conventional parametric species-neutral approach (based on 'effective number of species' or Hill numbers) to take into account species relatedness, and also generalizes the traditional phylogenetic approach (based on 'total phylogenetic length') to incorporate species abundances. The proposed measure quantifies 'the mean effective number of species' over any time interval of interest, or the 'effective number of maximally distinct lineages' over that time interval. The product of the measure and the interval length quantifies the 'branch diversity' of the phylogenetic tree during that interval. The new measures generalize and unify many existing measures and lead to a natural definition of taxonomic diversity as a special case. The replication principle (or doubling property), an important requirement for species-neutral diversity, is generalized to PD. The widely used Rao's quadratic entropy and the phylogenetic entropy do not satisfy this essential property, but a simple transformation converts each to our measures, which do satisfy the property. The proposed approach is applied to forest data for interpreting the effects of thinning.

  13. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree

    PubMed Central

    2010-01-01

    Background Likelihood-based phylogenetic inference is generally considered to be the most reliable classification method for unknown sequences. However, traditional likelihood-based phylogenetic methods cannot be applied to large volumes of short reads from next-generation sequencing due to computational complexity issues and lack of phylogenetic signal. "Phylogenetic placement," where a reference tree is fixed and the unknown query sequences are placed onto the tree via a reference alignment, is a way to bring the inferential power offered by likelihood-based approaches to large data sets. Results This paper introduces pplacer, a software package for phylogenetic placement and subsequent visualization. The algorithm can place twenty thousand short reads on a reference tree of one thousand taxa per hour per processor, has essentially linear time and memory complexity in the number of reference taxa, and is easy to run in parallel. Pplacer features calculation of the posterior probability of a placement on an edge, which is a statistically rigorous way of quantifying uncertainty on an edge-by-edge basis. It also can inform the user of the positional uncertainty for query sequences by calculating expected distance between placement locations, which is crucial in the estimation of uncertainty with a well-sampled reference tree. The software provides visualizations using branch thickness and color to represent number of placements and their uncertainty. A simulation study using reads generated from 631 COG alignments shows a high level of accuracy for phylogenetic placement over a wide range of alignment diversity, and the power of edge uncertainty estimates to measure placement confidence. Conclusions Pplacer enables efficient phylogenetic placement and subsequent visualization, making likelihood-based phylogenetics methodology practical for large collections of reads; it is freely available as source code, binaries, and a web service. PMID:21034504

  14. Molecular characterization and phylogenetic relationships among microsporidian isolates infecting silkworm, Bombyx mori using small subunit rRNA (SSU-rRNA) gene sequence analysis.

    PubMed

    Nath, B Surendra; Gupta, S K; Bajpai, A K

    2012-12-01

    The life cycle, spore morphology, pathogenicity, tissue specificity, mode of transmission and small subunit rRNA (SSU-rRNA) gene sequence analysis of the five new microsporidian isolates viz., NIWB-11bp, NIWB-12n, NIWB-13md, NIWB-14b and NIWB-15mb identified from the silkworm, Bombyx mori have been studied along with type species, NIK-1s_mys. The life cycle of the microsporidians identified exhibited the sequential developmental cycles that are similar to the general developmental cycle of the genus, Nosema. The spores showed considerable variations in their shape, length and width. The pathogenicity observed was dose-dependent and differed from each of the microsporidian isolates; the NIWB-15mb was found to be more virulent than other isolates. All of the microsporidians were found to infect most of the tissues examined and showed gonadal infection and transovarial transmission in the infected silkworms. SSU-rRNA sequence based phylogenetic tree placed NIWB-14b, NIWB-12n and NIWB-11bp in a separate branch along with other Nosema species and Nosema bombycis; while NIWB-15mb and NIWB-13md together formed another cluster along with other Nosema species. NIK-1s_mys revealed a signature sequence similar to standard type species, N. bombycis, indicating that NIK-1s_mys is similar to N. bombycis. Based on phylogenetic relationships, branch length information based on genetic distance and nucleotide differences, we conclude that the microsporidian isolates identified are distinctly different from the other known species and belonging to the genus, Nosema. This SSU-rRNA gene sequence analysis method is found to be more useful approach in detecting different and closely related microsporidians of this economically important domestic insect.

  15. Is geography an accurate predictor of evolutionary history in the millipede family Xystodesmidae?

    PubMed Central

    Marek, Paul E.

    2017-01-01

    For the past several centuries, millipede taxonomists have used the morphology of male copulatory structures (modified legs called gonopods), which are strongly variable and suggestive of species-level differences, as a source to understand taxon relationships. Millipedes in the family Xystodesmidae are blind, dispersal-limited and have narrow habitat requirements. Therefore, geographical proximity may instead be a better predictor of evolutionary relationship than morphology, especially since gonopodal anatomy is extremely divergent and similarities may be masked by evolutionary convergence. Here we provide a phylogenetics-based test of the power of morphological versus geographical character sets for resolving phylogenetic relationships in xystodesmid millipedes. Molecular data from 90 species-group taxa in the family were included in a six-gene phylogenetic analysis to provide the basis for comparing trees generated from these alternative character sets. The molecular phylogeny was compared to topologies representing three hypotheses: (1) a prior classification formulated using morphological and geographical data, (2) hierarchical groupings derived from Euclidean geographical distance, and (3) one based solely on morphological data. Euclidean geographical distance was not found to be a better predictor of evolutionary relationship than the prior classification, the latter of which was the most similar to the molecular topology. However, all three of the alternative topologies were highly divergent (Bayes factor >10) from the molecular topology, with the tree inferred exclusively from morphology being the most divergent. The results of this analysis show that a high degree of morphological convergence from substantial gonopod shape divergence generated spurious phylogenetic relationships. These results indicate the impact that a high degree of morphological homoplasy may have had on prior treatments of the family. Using the results of our phylogenetic analysis, we make several changes to the classification of the family, including transferring the rare state-threatened species Sigmoria whiteheadi Shelley, 1986 to the genus Apheloria Chamberlin, 1921—a relationship not readily apparent based on morphology alone. We show that while gonopod differences are a premier source of taxonomic characters to diagnose species pairwise, the traits should be viewed critically as taxonomic features uniting higher levels. PMID:29038750

  16. Phylogenetic impoverishment of plant communities following chronic human disturbances in the Brazilian Caatinga.

    PubMed

    Ribeiro, Elâine M S; Santos, Bráulio A; Arroyo-Rodríguez, Víctor; Tabarelli, Marcelo; Souza, Gustavo; Leal, Inara R

    2016-06-01

    Chronic disturbances, such as selective logging, firewood extraction and extensive grazing, may lead to the taxonomic and phylogenetic impoverishment of remaining old-growth forest communities worldwide; however, the empirical evidence on this topic is limited. We tested this hypothesis in the Caatinga vegetation--a seasonally dry tropical forest restricted to northeast Brazil. We sampled 11,653 individuals (adults, saplings, and seedlings) from 51 species in 29 plots distributed along a gradient of chronic disturbance. The gradient was assessed using a chronic disturbance index (CDI) based on five recognized indicators of chronic disturbances: proximity to urban center, houses and roads and the density of both people and livestock. We used linear models to test if mean effective number of lineages, mean phylogenetic distance and phylogenetic dispersion decreased with CDI and if such relationships differed among ontogenetic stages. As expected, the mean effective number of lineages and the mean phylogenetic distance were negatively related to CDI, and such diversity losses occurred irrespective of ontogeny. Yet the increase in phylogenetic clustering in more disturbed plots was only evident in seedlings and saplings, mostly because clades with more descendent taxa than expected by chance (e.g., Euphorbiaceae) thrived in more disturbed plots. This novel study indicates that chronic human disturbances are promoting the phylogenetic impoverishment of the irreplaceable woody flora of the Brazilian Caatinga forest. The highest impoverishment was observed in seedlings and saplings, indicating that if current chronic disturbances remain, they will result in increasingly poorer phylogenetically forests. This loss of evolutionary history will potentially limit the capacity of this ecosystem to respond to human disturbances (i.e., lower ecological resilience) and particularly their ability to adapt to rapid climatic changes in the region.

  17. ESTimating plant phylogeny: lessons from partitioning

    PubMed Central

    de la Torre, Jose EB; Egan, Mary G; Katari, Manpreet S; Brenner, Eric D; Stevenson, Dennis W; Coruzzi, Gloria M; DeSalle, Rob

    2006-01-01

    Background While Expressed Sequence Tags (ESTs) have proven a viable and efficient way to sample genomes, particularly those for which whole-genome sequencing is impractical, phylogenetic analysis using ESTs remains difficult. Sequencing errors and orthology determination are the major problems when using ESTs as a source of characters for systematics. Here we develop methods to incorporate EST sequence information in a simultaneous analysis framework to address controversial phylogenetic questions regarding the relationships among the major groups of seed plants. We use an automated, phylogenetically derived approach to orthology determination called OrthologID generate a phylogeny based on 43 process partitions, many of which are derived from ESTs, and examine several measures of support to assess the utility of EST data for phylogenies. Results A maximum parsimony (MP) analysis resulted in a single tree with relatively high support at all nodes in the tree despite rampant conflict among trees generated from the separate analysis of individual partitions. In a comparison of broader-scale groupings based on cellular compartment (ie: chloroplast, mitochondrial or nuclear) or function, only the nuclear partition tree (based largely on EST data) was found to be topologically identical to the tree based on the simultaneous analysis of all data. Despite topological conflict among the broader-scale groupings examined, only the tree based on morphological data showed statistically significant differences. Conclusion Based on the amount of character support contributed by EST data which make up a majority of the nuclear data set, and the lack of conflict of the nuclear data set with the simultaneous analysis tree, we conclude that the inclusion of EST data does provide a viable and efficient approach to address phylogenetic questions within a parsimony framework on a genomic scale, if problems of orthology determination and potential sequencing errors can be overcome. In addition, approaches that examine conflict and support in a simultaneous analysis framework allow for a more precise understanding of the evolutionary history of individual process partitions and may be a novel way to understand functional aspects of different kinds of cellular classes of gene products. PMID:16776834

  18. Comparative Analysis of Four Buckwheat Species Based on Morphology and Complete Chloroplast Genome Sequences.

    PubMed

    Wang, Cheng-Long; Ding, Meng-Qi; Zou, Chen-Yan; Zhu, Xue-Mei; Tang, Yu; Zhou, Mei-Liang; Shao, Ji-Rong

    2017-07-26

    Buckwheat is a nutritional and economically crop belonging to Polygonaceae, Fagopyrum. To better understand the mutation patterns and evolution trend in the chloroplast (cp) genome of buckwheat, and found sufficient number of variable regions to explore the phylogenetic relationships of this genus, two complete cp genomes of buckwheat including Fagopyrum dibotrys (F. dibotrys) and Fagopyrum luojishanense (F. luojishanense) were sequenced, and other two Fagopyrum cp genomes were used for comparative analysis. After morphological analysis, the main difference among these buckwheat were height, leaf shape, seeds and flower type. F. luojishanense was distinguishable from the cultivated species easily. Although the F. dibotrys and two cultivated species has some similarity, they different in habit and component contents. The cp genome of F. dibotrys was 159,320 bp while the F. luojishanense was 159,265 bp. 48 and 61 SSRs were found in F. dibotrys and F. luojishanense respectively. Meanwhile, 10 highly variable regions among these buckwheat species were located precisely. The phylogenetic relationships among four Fagopyrum species based on complete cp genomes was showed. The results suggested that F. dibotrys is more closely related to Fagopyrum tataricum. These data provided valuable genetic information for Fagopyrum species identification, taxonomy, phylogenetic study and molecular breeding.

  19. Phylogenetic analysis of Tibetan mastiffs based on mitochondrial hypervariable region I.

    PubMed

    Ren, Zhanjun; Chen, Huiling; Yang, Xuejiao; Zhang, Chengdong

    2017-03-01

    Recently, the number of Tibetan mastiffs, which is a precious germplasm resource and cultural heritage, is decreasing sharply. Therefore, the genetic diversity of Tibetan mastiffs needs to be studied to clarify its phylogenetics relationships and lay the foundation for resource protection, rational development and utilization of Tibetan mastiffs. We sequenced hypervariable region I of mitochondrial DNA (mtDNA) of 110 individuals from Tibet region and Gansu province. A total of 12 polymorphic sites were identified which defined eight haplotypes of which H4 and H8 were unique to Tibetan population with H8 being identified first. The haplotype diversity (Hd: 0.808), nucleotide diversity (Pi: 0.603%), the average number of nucleotide difference (K: 3.917) of Tibetan mastiffs from Gansu were higher than those from Tibet region (Hd: 0.794; Pi: 0.589%; K: 3.831), which revealed higher genetic diversity in Gansu. In terms of total population, the genetic variation was low. The median-joining network and phylogenetic tree based on the mtDNA hypervariable region I showed that Tibetan mastiffs originated from grey wolves, as the other domestic dogs and had different history of maternal origin. The mismatch distribution analysis and neutrality tests indicated that Tibetan mastiffs were in genetic equilibrium or in a population decline.

  20. Determining Phylogenetic Relationships Among Date Palm Cultivars Using Random Amplified Polymorphic DNA (RAPD) and Inter-Simple Sequence Repeat (ISSR) Markers.

    PubMed

    Haider, Nadia

    2017-01-01

    Investigation of genetic variation and phylogenetic relationships among date palm (Phoenix dactylifera L.) cultivars is useful for their conservation and genetic improvement. Various molecular markers such as restriction fragment length polymorphisms (RFLPs), simple sequence repeat (SSR), representational difference analysis (RDA), and amplified fragment length polymorphism (AFLP) have been developed to molecularly characterize date palm cultivars. PCR-based markers random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) are powerful tools to determine the relatedness of date palm cultivars that are difficult to distinguish morphologically. In this chapter, the principles, materials, and methods of RAPD and ISSR techniques are presented. Analysis of data generated from these two techniques and the use of these data to reveal phylogenetic relationships among date palm cultivars are also discussed.

  1. A Framework Phylogeny of the American Oak Clade Based on Sequenced RAD Data

    PubMed Central

    Hipp, Andrew L.; Eaton, Deren A. R.; Cavender-Bares, Jeannine; Fitzek, Elisabeth; Nipper, Rick; Manos, Paul S.

    2014-01-01

    Previous phylogenetic studies in oaks (Quercus, Fagaceae) have failed to resolve the backbone topology of the genus with strong support. Here, we utilize next-generation sequencing of restriction-site associated DNA (RAD-Seq) to resolve a framework phylogeny of a predominantly American clade of oaks whose crown age is estimated at 23–33 million years old. Using a recently developed analytical pipeline for RAD-Seq phylogenetics, we created a concatenated matrix of 1.40 E06 aligned nucleotides, constituting 27,727 sequence clusters. RAD-Seq data were readily combined across runs, with no difference in phylogenetic placement between technical replicates, which overlapped by only 43–64% in locus coverage. 17% (4,715) of the loci we analyzed could be mapped with high confidence to one or more expressed sequence tags in NCBI Genbank. A concatenated matrix of the loci that BLAST to at least one EST sequence provides approximately half as many variable or parsimony-informative characters as equal-sized datasets from the non-EST loci. The EST-associated matrix is more complete (fewer missing loci) and has slightly lower homoplasy than non-EST subsampled matrices of the same size, but there is no difference in phylogenetic support or relative attribution of base substitutions to internal versus terminal branches of the phylogeny. We introduce a partitioned RAD visualization method (implemented in the R package RADami; http://cran.r-project.org/web/packages/RADami) to investigate the possibility that suboptimal topologies supported by large numbers of loci—due, for example, to reticulate evolution or lineage sorting—are masked by the globally optimal tree. We find no evidence for strongly-supported alternative topologies in our study, suggesting that the phylogeny we recover is a robust estimate of large-scale phylogenetic patterns in the American oak clade. Our study is one of the first to demonstrate the utility of RAD-Seq data for inferring phylogeny in a 23–33 million year-old clade. PMID:24705617

  2. Understanding phylogenetic incongruence: lessons from phyllostomid bats

    PubMed Central

    Dávalos, Liliana M; Cirranello, Andrea L; Geisler, Jonathan H; Simmons, Nancy B

    2012-01-01

    All characters and trait systems in an organism share a common evolutionary history that can be estimated using phylogenetic methods. However, differential rates of change and the evolutionary mechanisms driving those rates result in pervasive phylogenetic conflict. These drivers need to be uncovered because mismatches between evolutionary processes and phylogenetic models can lead to high confidence in incorrect hypotheses. Incongruence between phylogenies derived from morphological versus molecular analyses, and between trees based on different subsets of molecular sequences has become pervasive as datasets have expanded rapidly in both characters and species. For more than a decade, evolutionary relationships among members of the New World bat family Phyllostomidae inferred from morphological and molecular data have been in conflict. Here, we develop and apply methods to minimize systematic biases, uncover the biological mechanisms underlying phylogenetic conflict, and outline data requirements for future phylogenomic and morphological data collection. We introduce new morphological data for phyllostomids and outgroups and expand previous molecular analyses to eliminate methodological sources of phylogenetic conflict such as taxonomic sampling, sparse character sampling, or use of different algorithms to estimate the phylogeny. We also evaluate the impact of biological sources of conflict: saturation in morphological changes and molecular substitutions, and other processes that result in incongruent trees, including convergent morphological and molecular evolution. Methodological sources of incongruence play some role in generating phylogenetic conflict, and are relatively easy to eliminate by matching taxa, collecting more characters, and applying the same algorithms to optimize phylogeny. The evolutionary patterns uncovered are consistent with multiple biological sources of conflict, including saturation in morphological and molecular changes, adaptive morphological convergence among nectar-feeding lineages, and incongruent gene trees. Applying methods to account for nucleotide sequence saturation reduces, but does not completely eliminate, phylogenetic conflict. We ruled out paralogy, lateral gene transfer, and poor taxon sampling and outgroup choices among the processes leading to incongruent gene trees in phyllostomid bats. Uncovering and countering the possible effects of introgression and lineage sorting of ancestral polymorphism on gene trees will require great leaps in genomic and allelic sequencing in this species-rich mammalian family. We also found evidence for adaptive molecular evolution leading to convergence in mitochondrial proteins among nectar-feeding lineages. In conclusion, the biological processes that generate phylogenetic conflict are ubiquitous, and overcoming incongruence requires better models and more data than have been collected even in well-studied organisms such as phyllostomid bats. PMID:22891620

  3. DNA-based identification and phylogeny of North American Armillaria species

    Treesearch

    Amy L. Ross-Davis; John W. Hanna; Ned B. Klopfenstein

    2011-01-01

    Because Armillaria species display different ecological behaviors across diverse forest ecosystems, it is critical to identify Armillaria species accurately for any assessment of forest health. To further develop DNA-based identification methods, partial sequences of the translation elongation factor-1 alpha (EF-1α) gene were used to examine the phylogenetic...

  4. A RAD-based phylogenetics for Orestias fishes from Lake Titicaca.

    PubMed

    Takahashi, Tetsumi; Moreno, Edmundo

    2015-12-01

    The fish genus Orestias is endemic to the Andes highlands, and Lake Titicaca is the centre of the species diversity of the genus. Previous phylogenetic studies based on a single locus of mitochondrial and nuclear DNA strongly support the monophyly of a group composed of many of species endemic to the Lake Titicaca basin (the Lake Titicaca radiation), but the relationships among the species in the radiation remain unclear. Recently, restriction site-associated DNA (RAD) sequencing, which can produce a vast number of short sequences from various loci of nuclear DNA, has emerged as a useful way to resolve complex phylogenetic problems. To propose a new phylogenetic hypothesis of Orestias fishes of the Lake Titicaca radiation, we conducted a cluster analysis based on morphological similarities among fish samples and a molecular phylogenetic analysis based on RAD sequencing. From a morphological cluster analysis, we recognised four species groups in the radiation, and three of the four groups were resolved as monophyletic groups in maximum-likelihood trees based on RAD sequencing data. The other morphology-based group was not resolved as a monophyletic group in molecular phylogenies, and some members of the group were diverged from its sister group close to the root of the Lake Titicaca radiation. The evolution of these fishes is discussed from the phylogenetic relationships. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Morphological characters are compatible with mitogenomic data in resolving the phylogeny of nymphalid butterflies (lepidoptera: papilionoidea: nymphalidae).

    PubMed

    Shi, Qing-Hui; Sun, Xiao-Yan; Wang, Yun-Liang; Hao, Jia-Sheng; Yang, Qun

    2015-01-01

    Nymphalidae is the largest family of butterflies with their phylogenetic relationships not adequately approached to date. The mitochondrial genomes (mitogenomes) of 11 new nymphalid species were reported and a comparative mitogenomic analysis was conducted together with other 22 available nymphalid mitogenomes. A phylogenetic analysis of the 33 species from all 13 currently recognized nymphalid subfamilies was done based on the mitogenomic data set with three Lycaenidae species as the outgroups. The mitogenome comparison showed that the eleven new mitogenomes were similar with those of other butterflies in gene content and order. The reconstructed phylogenetic trees reveal that the nymphalids are made up of five major clades (the nymphaline, heliconiine, satyrine, danaine and libytheine clades), with sister relationship between subfamilies Cyrestinae and Biblidinae, and most likely between subfamilies Morphinae and Satyrinae. This whole mitogenome-based phylogeny is generally congruent with those of former studies based on nuclear-gene and mitogenomic analyses, but differs considerably from the result of morphological cladistic analysis, such as the basal position of Libytheinae in morpho-phylogeny is not confirmed in molecular studies. However, we found that the mitogenomic phylogeny established herein is compatible with selected morphological characters (including developmental and adult morpho-characters).

  6. Phylogenetic study of Class Armophorea (Alveolata, Ciliophora) based on 18S-rDNA data.

    PubMed

    da Silva Paiva, Thiago; do Nascimento Borges, Bárbara; da Silva-Neto, Inácio Domingos

    2013-12-01

    The 18S rDNA phylogeny of Class Armophorea, a group of anaerobic ciliates, is proposed based on an analysis of 44 sequences (out of 195) retrieved from the NCBI/GenBank database. Emphasis was placed on the use of two nucleotide alignment criteria that involved variation in the gap-opening and gap-extension parameters and the use of rRNA secondary structure to orientate multiple-alignment. A sensitivity analysis of 76 data sets was run to assess the effect of variations in indel parameters on tree topologies. Bayesian inference, maximum likelihood and maximum parsimony phylogenetic analyses were used to explore how different analytic frameworks influenced the resulting hypotheses. A sensitivity analysis revealed that the relationships among higher taxa of the Intramacronucleata were dependent upon how indels were determined during multiple-alignment of nucleotides. The phylogenetic analyses rejected the monophyly of the Armophorea most of the time and consistently indicated that the Metopidae and Nyctotheridae were related to the Litostomatea. There was no consensus on the placement of the Caenomorphidae, which could be a sister group of the Metopidae + Nyctorheridae, or could have diverged at the base of the Spirotrichea branch or the Intramacronucleata tree.

  7. Phylogenetic study of Class Armophorea (Alveolata, Ciliophora) based on 18S-rDNA data

    PubMed Central

    da Silva Paiva, Thiago; do Nascimento Borges, Bárbara; da Silva-Neto, Inácio Domingos

    2013-01-01

    The 18S rDNA phylogeny of Class Armophorea, a group of anaerobic ciliates, is proposed based on an analysis of 44 sequences (out of 195) retrieved from the NCBI/GenBank database. Emphasis was placed on the use of two nucleotide alignment criteria that involved variation in the gap-opening and gap-extension parameters and the use of rRNA secondary structure to orientate multiple-alignment. A sensitivity analysis of 76 data sets was run to assess the effect of variations in indel parameters on tree topologies. Bayesian inference, maximum likelihood and maximum parsimony phylogenetic analyses were used to explore how different analytic frameworks influenced the resulting hypotheses. A sensitivity analysis revealed that the relationships among higher taxa of the Intramacronucleata were dependent upon how indels were determined during multiple-alignment of nucleotides. The phylogenetic analyses rejected the monophyly of the Armophorea most of the time and consistently indicated that the Metopidae and Nyctotheridae were related to the Litostomatea. There was no consensus on the placement of the Caenomorphidae, which could be a sister group of the Metopidae + Nyctorheridae, or could have diverged at the base of the Spirotrichea branch or the Intramacronucleata tree. PMID:24385862

  8. Multilocus inference of species trees and DNA barcoding.

    PubMed

    Mallo, Diego; Posada, David

    2016-09-05

    The unprecedented amount of data resulting from next-generation sequencing has opened a new era in phylogenetic estimation. Although large datasets should, in theory, increase phylogenetic resolution, massive, multilocus datasets have uncovered a great deal of phylogenetic incongruence among different genomic regions, due both to stochastic error and to the action of different evolutionary process such as incomplete lineage sorting, gene duplication and loss and horizontal gene transfer. This incongruence violates one of the fundamental assumptions of the DNA barcoding approach, which assumes that gene history and species history are identical. In this review, we explain some of the most important challenges we will have to face to reconstruct the history of species, and the advantages and disadvantages of different strategies for the phylogenetic analysis of multilocus data. In particular, we describe the evolutionary events that can generate species tree-gene tree discordance, compare the most popular methods for species tree reconstruction, highlight the challenges we need to face when using them and discuss their potential utility in barcoding. Current barcoding methods sacrifice a great amount of statistical power by only considering one locus, and a transition to multilocus barcodes would not only improve current barcoding methods, but also facilitate an eventual transition to species-tree-based barcoding strategies, which could better accommodate scenarios where the barcode gap is too small or inexistent.This article is part of the themed issue 'From DNA barcodes to biomes'. © 2016 The Authors.

  9. A Consistent Phylogenetic Backbone for the Fungi

    PubMed Central

    Ebersberger, Ingo; de Matos Simoes, Ricardo; Kupczok, Anne; Gube, Matthias; Kothe, Erika; Voigt, Kerstin; von Haeseler, Arndt

    2012-01-01

    The kingdom of fungi provides model organisms for biotechnology, cell biology, genetics, and life sciences in general. Only when their phylogenetic relationships are stably resolved, can individual results from fungal research be integrated into a holistic picture of biology. However, and despite recent progress, many deep relationships within the fungi remain unclear. Here, we present the first phylogenomic study of an entire eukaryotic kingdom that uses a consistency criterion to strengthen phylogenetic conclusions. We reason that branches (splits) recovered with independent data and different tree reconstruction methods are likely to reflect true evolutionary relationships. Two complementary phylogenomic data sets based on 99 fungal genomes and 109 fungal expressed sequence tag (EST) sets analyzed with four different tree reconstruction methods shed light from different angles on the fungal tree of life. Eleven additional data sets address specifically the phylogenetic position of Blastocladiomycota, Ustilaginomycotina, and Dothideomycetes, respectively. The combined evidence from the resulting trees supports the deep-level stability of the fungal groups toward a comprehensive natural system of the fungi. In addition, our analysis reveals methodologically interesting aspects. Enrichment for EST encoded data—a common practice in phylogenomic analyses—introduces a strong bias toward slowly evolving and functionally correlated genes. Consequently, the generalization of phylogenomic data sets as collections of randomly selected genes cannot be taken for granted. A thorough characterization of the data to assess possible influences on the tree reconstruction should therefore become a standard in phylogenomic analyses. PMID:22114356

  10. Plant traits determine the phylogenetic structure of arbuscular mycorrhizal fungal communities.

    PubMed

    López-García, Álvaro; Varela-Cervero, Sara; Vasar, Martti; Öpik, Maarja; Barea, José M; Azcón-Aguilar, Concepción

    2017-12-01

    Functional diversity in ecosystems has traditionally been studied using aboveground plant traits. Despite the known effect of plant traits on the microbial community composition, their effects on the microbial functional diversity are only starting to be assessed. In this study, the phylogenetic structure of arbuscular mycorrhizal (AM) fungal communities associated with plant species differing in life cycle and growth form, that is, plant life forms, was determined to unravel the effect of plant traits on the functional diversity of this fungal group. The results of the 454 pyrosequencing showed that the AM fungal community composition differed across plant life forms and this effect was dependent on the soil collection date. Plants with ruderal characteristics tended to associate with phylogenetically clustered AM fungal communities. By contrast, plants with resource-conservative traits associated with phylogenetically overdispersed AM fungal communities. Additionally, the soil collected in different seasons yielded AM fungal communities with different phylogenetic dispersion. In summary, we found that the phylogenetic structure, and hence the functional diversity, of AM fungal communities is dependent on plant traits. This finding adds value to the use of plant traits for the evaluation of belowground ecosystem diversity, functions and processes. © 2017 John Wiley & Sons Ltd.

  11. [Analysis of chloroplast rpS16 intron sequences in Lemnaceae].

    PubMed

    Martirosian, E V; Ryzhova, N N; Kochieva, E Z; Skriabin, K G

    2009-01-01

    Chloroplast rpS16 gene intron sequences were determined and characterized for twenty-five Lemnaceae accessions representing nine duckweed species. For each Lemnaceae species nucleotide substitutions and for Lemna minor, Lemna aequinoctialis, Wolffia arrhiza different indels were detected. Most of indels were found for Wolffia arrhiza and Lemna aequinoctialis. The analyses of intraspecific polymorphism resulted in identification of several gaplotypes in L. gibba and L. trisulca. Lemnaceae phylogenetic relationship based on rpS16 intron variability data has revealed significant differences between L. aequinoctialis and other Lemna species. Genetic distance values corroborated competence of Landoltia punctata separations from Spirodela into an independent generic taxon. The acceptability of rpS16 intron sequences for phylogenetic studies in Lemnaceae was shown.

  12. Assessing the influence of biogeographical region and phylogenetic history on chemical defences and herbivory in Quercus species.

    PubMed

    Moreira, Xoaquín; Abdala-Roberts, Luis; Galmán, Andrea; Francisco, Marta; Fuente, María de la; Butrón, Ana; Rasmann, Sergio

    2018-06-07

    Biogeographical factors and phylogenetic history are key determinants of inter-specific variation in plant defences. However, few studies have conducted broad-scale geographical comparisons of plant defences while controlling for phylogenetic relationships, and, in doing so, none have separated constitutive from induced defences. This gap has limited our understanding of how historical or large-scale processes mediate biogeographical patterns in plant defences since these may be contingent upon shared evolutionary history and phylogenetic constraints. We conducted a phylogenetically-controlled experiment testing for differences in constitutive leaf chemical defences and their inducibility between Palearctic and Nearctic oak species (Quercus, total 18 species). We induced defences in one-year old plants by inflicting damage by gypsy moth larvae (Lymantria dispar), estimated the amount of leaf area consumed, and quantified various groups of phenolic compounds. There was no detectable phylogenetic signal for constitutive or induced levels of most defensive traits except for constitutive condensed tannins, as well as no phylogenetic signal in leaf herbivory. We did, however, find marked differences in defence levels between oak species from each region: Palearctic species had higher levels of constitutive condensed tannins, but less constitutive lignins and less constitutive and induced hydrolysable tannins compared with Nearctic species. Additionally, Palearctic species had lower levels of leaf damage compared with Nearctic species. These differences in leaf damage, lignins and hydrolysable (but not condensed) tannins were lost after accounting for phylogeny, suggesting that geographical structuring of phylogenetic relationships mediated biogeographical differences in defences and herbivore resistance. Together, these findings suggest that historical processes and large-scale drivers have shaped differences in allocation to constitutive defences (and in turn resistance) between Palearctic and Nearctic oaks. Moreover, although evidence of phylogenetic conservatism in the studied traits is rather weak, shared evolutionary history appears to mediate some of these biogeographical patterns in allocation to chemical defences. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Stratification of co-evolving genomic groups using ranked phylogenetic profiles

    PubMed Central

    Freilich, Shiri; Goldovsky, Leon; Gottlieb, Assaf; Blanc, Eric; Tsoka, Sophia; Ouzounis, Christos A

    2009-01-01

    Background Previous methods of detecting the taxonomic origins of arbitrary sequence collections, with a significant impact to genome analysis and in particular metagenomics, have primarily focused on compositional features of genomes. The evolutionary patterns of phylogenetic distribution of genes or proteins, represented by phylogenetic profiles, provide an alternative approach for the detection of taxonomic origins, but typically suffer from low accuracy. Herein, we present rank-BLAST, a novel approach for the assignment of protein sequences into genomic groups of the same taxonomic origin, based on the ranking order of phylogenetic profiles of target genes or proteins across the reference database. Results The rank-BLAST approach is validated by computing the phylogenetic profiles of all sequences for five distinct microbial species of varying degrees of phylogenetic proximity, against a reference database of 243 fully sequenced genomes. The approach - a combination of sequence searches, statistical estimation and clustering - analyses the degree of sequence divergence between sets of protein sequences and allows the classification of protein sequences according to the species of origin with high accuracy, allowing taxonomic classification of 64% of the proteins studied. In most cases, a main cluster is detected, representing the corresponding species. Secondary, functionally distinct and species-specific clusters exhibit different patterns of phylogenetic distribution, thus flagging gene groups of interest. Detailed analyses of such cases are provided as examples. Conclusion Our results indicate that the rank-BLAST approach can capture the taxonomic origins of sequence collections in an accurate and efficient manner. The approach can be useful both for the analysis of genome evolution and the detection of species groups in metagenomics samples. PMID:19860884

  14. Building supertrees: an empirical assessment using the grass family (Poaceae).

    PubMed

    Salamin, Nicolas; Hodkinson, Trevor R; Savolainen, Vincent

    2002-02-01

    Large and comprehensive phylogenetic trees are desirable for studying macroevolutionary processes and for classification purposes. Such trees can be obtained in two different ways. Either the widest possible range of taxa can be sampled and used in a phylogenetic analysis to produce a "big tree," or preexisting topologies can be used to create a supertree. Although large multigene analyses are often favored, combinable data are not always available, and supertrees offer a suitable solution. The most commonly used method of supertree reconstruction, matrix representation with parsimony (MRP), is presented here. We used a combined data set for the Poaceae to (1) assess the differences between an approach that uses combined data and one that uses different MRP modifications based on the character partitions and (2) investigate the advantages and disadvantages of these modifications. Baum and Ragan and Purvis modifications gave similar results. Incorporating bootstrap support associated with pre-existing topologies improved Baum and Ragan modification and its similarity with a combined analysis. Finally, we used the supertree reconstruction approach on 55 published phylogenies to build one of most comprehensive phylogenetic trees published for the grass family including 403 taxa and discuss its strengths and weaknesses in relation to other published hypotheses.

  15. Morphological and molecular characterization of Eurytrema cladorchis parasitizing cattle (Bos indicus) in Bangladesh.

    PubMed

    Mohanta, Uday Kumar; Ichikawa-Seki, Madoka; Hayashi, Kei; Itagaki, Tadashi

    2015-06-01

    There is always controversy regarding identification of different species in the genus Eurytrema. Identification has been based mainly on morphology, which can be misleading and subject to differing interpretation among the scientists. Therefore, the aim of this study was to identify Eurytrema flukes both by morphology and molecular properties on the basis of 18-subunit ribosomal RNA (18S rRNA) gene as well as internal transcribed spacer 2 (ITS2) to clarify their phylogenetic status. Among six different agroecological areas of Bangladesh, 22 Eurytrema flukes were recovered from the bile ducts of 22 cattle in Bandarban, a hill district. The flukes were identified as Eurytrema cladorchis through morphometric and morphological studies. Phylogenetic analyses were conducted by neighbor-joining phylogram inferred from both 18S rRNA (1784 bp) gene and ITS2 (229 bp) sequences. A monophyletic clade was constructed by the E. cladorchis from Bangladesh; however, the clade was distinct from those formed by Eurytrema pancreaticum and Eurytrema coelomaticum. This study first described the existence of E. cladorchis from Bangladesh and may provide useful information for both morphological and molecular properties that may further help to clarify phylogenetic relationships within the genus Eurytrema and also for other digeneans.

  16. Comparative phylogenetic analyses of Halomonas variabilis and related organisms based on 16S rRNA, gyrB and ectBC gene sequences.

    PubMed

    Okamoto, Takuji; Maruyama, Akihiko; Imura, Satoshi; Takeyama, Haruko; Naganuma, Takeshi

    2004-05-01

    Halomonas variabilis and phylogenetically related organisms were isolated from various habitats such as Antarctic terrain and saline ponds, deep-sea sediment, deep-sea waters affected by hydrothermal plumes, and hydrothermal vent fluids. Ten strains were selected for physiological and phylogenetic characterization in detail. All of those strains were found to be piezotolerant and psychrotolerant, as well as euryhaline halophilic or halotolerant. Their stress tolerance may facilitate their wide occurrence, even in so-called extreme environments. The 16S rDNA-based phylogenetic relationship was complemented by analyses of the DNA gyrase subunit B gene (gyrB) and genes involved in the synthesis of the major compatible solute, ectoine: diaminobutyric acid aminotransferase gene (ectB) and ectoine synthase gene (ectC). The phylogenetic relationships of H. variabilis and related organisms were very similar in terms of 16S rDNA, gyrB, and ectB. The ectC-based tree was inconsistent with the other phylogenetic trees. For that reason, ectC was inferred to derive from horizontal transfer.

  17. Phylogenetic trees and Euclidean embeddings.

    PubMed

    Layer, Mark; Rhodes, John A

    2017-01-01

    It was recently observed by de Vienne et al. (Syst Biol 60(6):826-832, 2011) that a simple square root transformation of distances between taxa on a phylogenetic tree allowed for an embedding of the taxa into Euclidean space. While the justification for this was based on a diffusion model of continuous character evolution along the tree, here we give a direct and elementary explanation for it that provides substantial additional insight. We use this embedding to reinterpret the differences between the NJ and BIONJ tree building algorithms, providing one illustration of how this embedding reflects tree structures in data.

  18. Analysing taxonomic structures and local ecological processes in temperate forests in North Eastern China.

    PubMed

    Fan, Chunyu; Tan, Lingzhao; Zhang, Chunyu; Zhao, Xiuhai; von Gadow, Klaus

    2017-10-30

    One of the core issues of forest community ecology is the exploration of how ecological processes affect community structure. The relative importance of different processes is still under debate. This study addresses four questions: (1) how is the taxonomic structure of a forest community affected by spatial scale? (2) does the taxonomic structure reveal effects of local processes such as environmental filtering, dispersal limitation or interspecific competition at a local scale? (3) does the effect of local processes on the taxonomic structure vary with the spatial scale? (4) does the analysis based on taxonomic structures provide similar insights when compared with the use of phylogenetic information? Based on the data collected in two large forest observational field studies, the taxonomic structures of the plant communities were analyzed at different sampling scales using taxonomic ratios (number of genera/number of species, number of families/number of species), and the relationship between the number of higher taxa and the number of species. Two random null models were used and the "standardized effect size" (SES) of taxonomic ratios was calculated, to assess possible differences between the observed and simulated taxonomic structures, which may be caused by specific ecological processes. We further applied a phylogeny-based method to compare results with those of the taxonomic approach. As expected, the taxonomic ratios decline with increasing grain size. The quantitative relationship between genera/families and species, described by a linearized power function, showed a good fit. With the exception of the family-species relationship in the Jiaohe study area, the exponents of the genus/family-species relationships did not show any scale dependent effects. The taxonomic ratios of the observed communities had significantly lower values than those of the simulated random community under the test of two null models at almost all scales. Null Model 2 which considered the spatial dispersion of species generated a taxonomic structure which proved to be more consistent with that in the observed community. As sampling sizes increased from 20 m × 20 m to 50 m × 50 m, the magnitudes of SESs of taxonomic ratios increased. Based on the phylogenetic analysis, we found that the Jiaohe plot was phylogenetically clustered at almost all scales. We detected significant phylogenetically overdispersion at the 20 m × 20 m and 30 m × 30 m scales in the Liangshui plot. The results suggest that the effect of abiotic filtering is greater than the effects of interspecific competition in shaping the local community at almost all scales. Local processes influence the taxonomic structures, but their combined effects vary with the spatial scale. The taxonomic approach provides similar insights as the phylogenetic approach, especially when we applied a more conservative null model. Analysing taxonomic structure may be a useful tool for communities where well-resolved phylogenetic data are not available.

  19. Marinospirillum insulare sp. nov., a novel halophilic helical bacterium isolated from kusaya gravy.

    PubMed

    Satomi, M; Kimura, B; Hayashi, M; Okuzumi, M; Fujii, T

    2004-01-01

    A novel species that belongs to the genus Marinospirillum is described on the basis of phenotypic characteristics, phylogenetic analysis of 16S rRNA and gyrB gene sequences and DNA-DNA hybridization. Four strains of helical, halophilic, Gram-negative, heterotrophic bacteria were isolated from kusaya gravy, which is fermented brine that is used for the production of traditional dried fish in the Izu Islands of Japan. All of the new isolates were motile by means of bipolar tuft flagella, of small cell size, coccoid-body-forming and aerophilic; it was concluded that they belong to the same bacterial species, based on DNA-DNA hybridization values (>70% DNA relatedness). DNA G+C contents of the new strains were 42-43 mol% and they had isoprenoid quinone Q-8 as the major component. Phylogenetic analysis of 16S rRNA gene sequences indicated that the new isolates were members of the genus Marinospirillum; sequence similarity of the new isolates to Marinospirillum minutulum, Marinospirillum megaterium and Marinospirillum alkaliphilum was 98.5, 98.2 and 95.2%, respectively. Phylogenetic analysis based on the gyrB gene indicated that the new isolates had enough phylogenetic distance from M. minutulum and M. megaterium to be regarded as different species, with 84.7 and 78.7% sequence similarity, respectively. DNA-DNA hybridization showed that the new isolates had <36% DNA relatedness to M. minutulum and M. megaterium, supporting the phylogenetic conclusion. Thus, a novel species is proposed: Marinospirillum insulare sp. nov. (type strain, KT=LMG 21802T=NBRC 100033T).

  20. The Use of Phylogeny to Interpret Cross-Cultural Patterns in Plant Use and Guide Medicinal Plant Discovery: An Example from Pterocarpus (Leguminosae)

    PubMed Central

    Saslis-Lagoudakis, C. Haris; Klitgaard, Bente B.; Forest, Félix; Francis, Louise; Savolainen, Vincent; Williamson, Elizabeth M.; Hawkins, Julie A.

    2011-01-01

    Background The study of traditional knowledge of medicinal plants has led to discoveries that have helped combat diseases and improve healthcare. However, the development of quantitative measures that can assist our quest for new medicinal plants has not greatly advanced in recent years. Phylogenetic tools have entered many scientific fields in the last two decades to provide explanatory power, but have been overlooked in ethnomedicinal studies. Several studies show that medicinal properties are not randomly distributed in plant phylogenies, suggesting that phylogeny shapes ethnobotanical use. Nevertheless, empirical studies that explicitly combine ethnobotanical and phylogenetic information are scarce. Methodology/Principal Findings In this study, we borrowed tools from community ecology phylogenetics to quantify significance of phylogenetic signal in medicinal properties in plants and identify nodes on phylogenies with high bioscreening potential. To do this, we produced an ethnomedicinal review from extensive literature research and a multi-locus phylogenetic hypothesis for the pantropical genus Pterocarpus (Leguminosae: Papilionoideae). We demonstrate that species used to treat a certain conditions, such as malaria, are significantly phylogenetically clumped and we highlight nodes in the phylogeny that are significantly overabundant in species used to treat certain conditions. These cross-cultural patterns in ethnomedicinal usage in Pterocarpus are interpreted in the light of phylogenetic relationships. Conclusions/Significance This study provides techniques that enable the application of phylogenies in bioscreening, but also sheds light on the processes that shape cross-cultural ethnomedicinal patterns. This community phylogenetic approach demonstrates that similar ethnobotanical uses can arise in parallel in different areas where related plants are available. With a vast amount of ethnomedicinal and phylogenetic information available, we predict that this field, after further refinement of the techniques, will expand into similar research areas, such as pest management or the search for bioactive plant-based compounds. PMID:21789247

  1. Utility of COX1 phylogenetics to differentiate between locally acquired and imported Plasmodium knowlesi infections in Singapore

    PubMed Central

    Loh, Jin Phang; Gao, Qiu Han Christine; Lee, Vernon J; Tetteh, Kevin; Drakeley, Chris

    2016-01-01

    INTRODUCTION Although there have been several phylogenetic studies on Plasmodium knowlesi (P. knowlesi), only cytochrome c oxidase subunit 1 (COX1) gene analysis has shown some geographical differentiation between the isolates of different countries. METHODS Phylogenetic analysis of locally acquired P. knowlesi infections, based on circumsporozoite, small subunit ribosomal ribonucleic acid (SSU rRNA), merozoite surface protein 1 and COX1 gene targets, was performed. The results were compared with the published sequences of regional isolates from Malaysia and Thailand. RESULTS Phylogenetic analysis of the circumsporozoite, SSU rRNA and merozoite surface protein 1 gene sequences for regional P. knowlesi isolates showed no obvious differentiation that could be attributed to their geographical origin. However, COX1 gene analysis showed that it was possible to differentiate between Singapore-acquired P. knowlesi infections and P. knowlesi infections from Peninsular Malaysia and Sarawak, Borneo, Malaysia. CONCLUSION The ability to differentiate between locally acquired P. knowlesi infections and imported P. knowlesi infections has important utility for the monitoring of P. knowlesi malaria control programmes in Singapore. PMID:26805667

  2. Utility of COX1 phylogenetics to differentiate between locally acquired and imported Plasmodium knowlesi infections in Singapore.

    PubMed

    Loh, Jin Phang; Gao, Qiu Han Christine; Lee, Vernon J; Tetteh, Kevin; Drakeley, Chris

    2016-12-01

    Although there have been several phylogenetic studies on Plasmodium knowlesi (P. knowlesi), only cytochrome c oxidase subunit 1 (COX1) gene analysis has shown some geographical differentiation between the isolates of different countries. Phylogenetic analysis of locally acquired P. knowlesi infections, based on circumsporozoite, small subunit ribosomal ribonucleic acid (SSU rRNA), merozoite surface protein 1 and COX1 gene targets, was performed. The results were compared with the published sequences of regional isolates from Malaysia and Thailand. Phylogenetic analysis of the circumsporozoite, SSU rRNA and merozoite surface protein 1 gene sequences for regional P. knowlesi isolates showed no obvious differentiation that could be attributed to their geographical origin. However, COX1 gene analysis showed that it was possible to differentiate between Singapore-acquired P. knowlesi infections and P. knowlesi infections from Peninsular Malaysia and Sarawak, Borneo, Malaysia. The ability to differentiate between locally acquired P. knowlesi infections and imported P. knowlesi infections has important utility for the monitoring of P. knowlesi malaria control programmes in Singapore. Copyright: © Singapore Medical Association

  3. Comments on the gonotyl of Proctocaecum macroclemidis (Tkach and Snyder, 2003) n. comb. (Digenea: Acanthostomidae: Acanthostominae), with a key to the genera of acanthostominae and new phylogenetic tree for Proctocaecum Baugh, 1957.

    PubMed

    Brooks, Daniel R

    2004-06-01

    The species recently described as Acanthostomum macroclemidis possesses the gonotyl in the form of a solid muscular pad uniquely diagnostic for species of Proctocaecum and is accordingly transferred to that genus. An artificial key to the 5 acanthostomine genera, as well as an updated phylogenetic hypothesis for the 10 known species of Proctocaecum, based on 11 characters and including 2 species described since the last phylogenetic analysis, are presented. The single most parsimonious phylogenetic tree with a consistency index of 87.5% suggests that Proctocaecum originated in Africa and spread to North America and South America before the breakup of Pangaea. As a result, the 2 North American and 1 South American species are most closely related to different African members of the genus. African and Indo-Pacific species inhabit crocodylids; hence, the occurrence of North American species in alligatorids and chelonians and a South American species in alligatorids are the result of host switches.

  4. Juvenile morphology in baleen whale phylogeny.

    PubMed

    Tsai, Cheng-Hsiu; Fordyce, R Ewan

    2014-09-01

    Phylogenetic reconstructions are sensitive to the influence of ontogeny on morphology. Here, we use foetal/neonatal specimens of known species of living baleen whales (Cetacea: Mysticeti) to show how juvenile morphology of extant species affects phylogenetic placement of the species. In one clade (sei whale, Balaenopteridae), the juvenile is distant from the usual phylogenetic position of adults, but in the other clade (pygmy right whale, Cetotheriidae), the juvenile is close to the adult. Different heterochronic processes at work in the studied species have different influences on juvenile morphology and on phylogenetic placement. This study helps to understand the relationship between evolutionary processes and phylogenetic patterns in baleen whale evolution and, more in general, between phylogeny and ontogeny; likewise, this study provides a proxy how to interpret the phylogeny when fossils that are immature individuals are included. Juvenile individuals in the peramorphic acceleration clades would produce misleading phylogenies, whereas juvenile individuals in the paedomorphic neoteny clades should still provide reliable phylogenetic signals.

  5. Effective Online Bayesian Phylogenetics via Sequential Monte Carlo with Guided Proposals

    PubMed Central

    Fourment, Mathieu; Claywell, Brian C; Dinh, Vu; McCoy, Connor; Matsen IV, Frederick A; Darling, Aaron E

    2018-01-01

    Abstract Modern infectious disease outbreak surveillance produces continuous streams of sequence data which require phylogenetic analysis as data arrives. Current software packages for Bayesian phylogenetic inference are unable to quickly incorporate new sequences as they become available, making them less useful for dynamically unfolding evolutionary stories. This limitation can be addressed by applying a class of Bayesian statistical inference algorithms called sequential Monte Carlo (SMC) to conduct online inference, wherein new data can be continuously incorporated to update the estimate of the posterior probability distribution. In this article, we describe and evaluate several different online phylogenetic sequential Monte Carlo (OPSMC) algorithms. We show that proposing new phylogenies with a density similar to the Bayesian prior suffers from poor performance, and we develop “guided” proposals that better match the proposal density to the posterior. Furthermore, we show that the simplest guided proposals can exhibit pathological behavior in some situations, leading to poor results, and that the situation can be resolved by heating the proposal density. The results demonstrate that relative to the widely used MCMC-based algorithm implemented in MrBayes, the total time required to compute a series of phylogenetic posteriors as sequences arrive can be significantly reduced by the use of OPSMC, without incurring a significant loss in accuracy. PMID:29186587

  6. Phylogenetic groups among Klebsiella pneumoniae isolates from Brazil: relationship with antimicrobial resistance and origin.

    PubMed

    de Melo, Maíra Espíndola Silva; Cabral, Adriane Borges; Maciel, Maria Amélia Vieira; da Silveira, Vera Magalhães; de Souza Lopes, Ana Catarina

    2011-05-01

    The objectives of this study were to determine the distribution of phylogenetic groups among Klebsiella pneumoniae isolates from Recife, Brazil and to assess the relationship between the groups and the isolation sites and resistance profile. Ninety four isolates of K. pneumoniae from hospital or community infections and from normal microbiota were analyzed by gyrA PCR-RFLP, antibiotic susceptibility, and adonitol fermentation. The results revealed the distinction of three phylogenetic groups, as it has also been reported in Europe, showing that these clusters are highly conserved within K. pneumoniae. Group KpI was dominantly represented by hospital and community isolates while groups KpII and KpIII displayed mainly normal microbiota isolates. The resistance to third generation cephalosporins, aztreonam, imipenem, amoxicillin/clavulanic acid, and streptomycin was only observed in KpI. The percentage of resistance was higher in KpI, followed by KpII and KpIII. The differences in the distribution of K. pneumoniae phylogenetic groups observed in this study suggest distinctive clinical and epidemiological characteristics among the three groups, which is important to understand the epidemiology of infections caused by this organism. This is the first study in Brazil on K. pneumoniae isolates from normal microbiota and community infections regarding the distribution of phylogenetic groups based on the gyrA gene.

  7. Molecular phylogeny of the red panda (Ailurus fulgens).

    PubMed

    Slattery, J P; O'Brien, S J

    1995-01-01

    The phylogenetic placement of the red panda (Ailurus fulgens) and the giant panda (Ailuropoda melanoleuca) has been an evolutionary enigma since their original descriptions in the nineteenth century. A series of recent molecular analyses led to a consensus that the giant panda's ancestors were derived from early bears (Ursidae), but left unsettled the phylogenetic relationship of the red panda. Previous molecular and morphological phylogenies were inconclusive and varied among placement of the red panda within the raccoon family (Procyonidae), within the bear family (Ursidae), or in a separate family of carnivores equidistant between the two. To examine a relatively ancient (circa 20-30 million years before the present, MYBP) phylogenetic divergence, we used two slowly evolving genetic markers: mitochondrial 12S rRNA sequence and 592 fibroblast proteins resolved by two dimensional gel electrophoresis. Four different carnivore outgroup species, including dog (Canidae: Canis familiaris), cat (Felidae: Felis catus), fanaloka (Viverridae: Fossa fossa), and mongoose (Herpestidae: Galidia elegans), were selected to identify the root of the phylogenetic topologies. Phylogenetic reconstruction by distance-based methods, maximum parsimony, and maximum likelihood clearly indicate a distinct bifurcation forming the Ursidae and the Procyonidae. Further, our data consistently place the red panda as an early divergence within the Procyonidae radiation and confirm the inclusion of giant panda in the Ursidae lineage.

  8. Phylogeny and species traits predict bird detectability

    USGS Publications Warehouse

    Solymos, Peter; Matsuoka, Steven M.; Stralberg, Diana; Barker, Nicole K. S.; Bayne, Erin M.

    2018-01-01

    Avian acoustic communication has resulted from evolutionary pressures and ecological constraints. We therefore expect that auditory detectability in birds might be predictable by species traits and phylogenetic relatedness. We evaluated the relationship between phylogeny, species traits, and field‐based estimates of the two processes that determine species detectability (singing rate and detection distance) for 141 bird species breeding in boreal North America. We used phylogenetic mixed models and cross‐validation to compare the relative merits of using trait data only, phylogeny only, or the combination of both to predict detectability. We found a strong phylogenetic signal in both singing rates and detection distances; however the strength of phylogenetic effects was less than expected under Brownian motion evolution. The evolution of behavioural traits that determine singing rates was found to be more labile, leaving more room for species to evolve independently, whereas detection distance was mostly determined by anatomy (i.e. body size) and thus the laws of physics. Our findings can help in disentangling how complex ecological and evolutionary mechanisms have shaped different aspects of detectability in boreal birds. Such information can greatly inform single‐ and multi‐species models but more work is required to better understand how to best correct possible biases in phylogenetic diversity and other community metrics.

  9. DendroBLAST: approximate phylogenetic trees in the absence of multiple sequence alignments.

    PubMed

    Kelly, Steven; Maini, Philip K

    2013-01-01

    The rapidly growing availability of genome information has created considerable demand for both fast and accurate phylogenetic inference algorithms. We present a novel method called DendroBLAST for reconstructing phylogenetic dendrograms/trees from protein sequences using BLAST. This method differs from other methods by incorporating a simple model of sequence evolution to test the effect of introducing sequence changes on the reliability of the bipartitions in the inferred tree. Using realistic simulated sequence data we demonstrate that this method produces phylogenetic trees that are more accurate than other commonly-used distance based methods though not as accurate as maximum likelihood methods from good quality multiple sequence alignments. In addition to tests on simulated data, we use DendroBLAST to generate input trees for a supertree reconstruction of the phylogeny of the Archaea. This independent analysis produces an approximate phylogeny of the Archaea that has both high precision and recall when compared to previously published analysis of the same dataset using conventional methods. Taken together these results demonstrate that approximate phylogenetic trees can be produced in the absence of multiple sequence alignments, and we propose that these trees will provide a platform for improving and informing downstream bioinformatic analysis. A web implementation of the DendroBLAST method is freely available for use at http://www.dendroblast.com/.

  10. Phylogeny of Neotropical Cercosaura (Squamata: Gymnophthalmidae) lizards.

    PubMed

    Torres-Carvajal, Omar; Lobos, Simón E; Venegas, Pablo J

    2015-12-01

    Among Neotropical lizards, the geographically widespread gymnophthalmid Cercosaura as currently defined includes lowland and highland taxa from Panama to Argentina, with some species occurring in the northern Andes. In this study we analyze three mitochondrial (12S, 16S, ND4) and one nuclear (c-mos) gene using Bayesian methods to clarify the phylogenetic relationships among most species of Cercosaura based on a well-supported phylogenetic hypothesis that also includes a large sample of other taxa within Cercosaurini. The phylogenetic tree obtained in this paper shows that Cercosaura as currently defined is not monophyletic. Two species from the northern Andes (C. dicra and C. vertebralis) are nested within Pholidobolus, which has been formerly recognized as a major radiation along the Andes of Ecuador and Colombia. Therefore, Cercosaura has probably not diversified in the northern Andes, although the phylogenetic position of C. hypnoides from the Andes of Colombia remains unknown. Tree topology and genetic distances support both recognition of C. ocellata bassleri as a distinct species, C. bassleri, and recognition of C. argula and C. oshaughnessyi as two different species. In the interest of promoting clarity and precision regarding the names of clades of gymnophthalmid lizards, we propose a phylogenetic definition of Cercosaura. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Effects of Phylogenetic Tree Style on Student Comprehension

    NASA Astrophysics Data System (ADS)

    Dees, Jonathan Andrew

    Phylogenetic trees are powerful tools of evolutionary biology that have become prominent across the life sciences. Consequently, learning to interpret and reason from phylogenetic trees is now an essential component of biology education. However, students often struggle to understand these diagrams, even after explicit instruction. One factor that has been observed to affect student understanding of phylogenetic trees is style (i.e., diagonal or bracket). The goal of this dissertation research was to systematically explore effects of style on student interpretations and construction of phylogenetic trees in the context of an introductory biology course. Before instruction, students were significantly more accurate with bracket phylogenetic trees for a variety of interpretation and construction tasks. Explicit instruction that balanced the use of diagonal and bracket phylogenetic trees mitigated some, but not all, style effects. After instruction, students were significantly more accurate for interpretation tasks involving taxa relatedness and construction exercises when using the bracket style. Based on this dissertation research and prior studies on style effects, I advocate for introductory biology instructors to use only the bracket style. Future research should examine causes of style effects and variables other than style to inform the development of research-based instruction that best supports student understanding of phylogenetic trees.

  12. The phylogenetic structure of plant-pollinator networks increases with habitat size and isolation.

    PubMed

    Aizen, Marcelo A; Gleiser, Gabriela; Sabatino, Malena; Gilarranz, Luis J; Bascompte, Jordi; Verdú, Miguel

    2016-01-01

    Similarity among species in traits related to ecological interactions is frequently associated with common ancestry. Thus, closely related species usually interact with ecologically similar partners, which can be reinforced by diverse co-evolutionary processes. The effect of habitat fragmentation on the phylogenetic signal in interspecific interactions and correspondence between plant and animal phylogenies is, however, unknown. Here, we address to what extent phylogenetic signal and co-phylogenetic congruence of plant-animal interactions depend on habitat size and isolation by analysing the phylogenetic structure of 12 pollination webs from isolated Pampean hills. Phylogenetic signal in interspecific interactions differed among webs, being stronger for flower-visiting insects than plants. Phylogenetic signal and overall co-phylogenetic congruence increased independently with hill size and isolation. We propose that habitat fragmentation would erode the phylogenetic structure of interaction webs. A decrease in phylogenetic signal and co-phylogenetic correspondence in plant-pollinator interactions could be associated with less reliable mutualism and erratic co-evolutionary change. © 2015 John Wiley & Sons Ltd/CNRS.

  13. Discrimination of multilocus sequence typing-based Campylobacter jejuni subgroups by MALDI-TOF mass spectrometry.

    PubMed

    Zautner, Andreas Erich; Masanta, Wycliffe Omurwa; Tareen, Abdul Malik; Weig, Michael; Lugert, Raimond; Groß, Uwe; Bader, Oliver

    2013-11-07

    Campylobacter jejuni, the most common bacterial pathogen causing gastroenteritis, shows a wide genetic diversity. Previously, we demonstrated by the combination of multi locus sequence typing (MLST)-based UPGMA-clustering and analysis of 16 genetic markers that twelve different C. jejuni subgroups can be distinguished. Among these are two prominent subgroups. The first subgroup contains the majority of hyperinvasive strains and is characterized by a dimeric form of the chemotaxis-receptor Tlp7(m+c). The second has an extended amino acid metabolism and is characterized by the presence of a periplasmic asparaginase (ansB) and gamma-glutamyl-transpeptidase (ggt). Phyloproteomic principal component analysis (PCA) hierarchical clustering of MALDI-TOF based intact cell mass spectrometry (ICMS) spectra was able to group particular C. jejuni subgroups of phylogenetic related isolates in distinct clusters. Especially the aforementioned Tlp7(m+c)(+) and ansB+/ ggt+ subgroups could be discriminated by PCA. Overlay of ICMS spectra of all isolates led to the identification of characteristic biomarker ions for these specific C. jejuni subgroups. Thus, mass peak shifts can be used to identify the C. jejuni subgroup with an extended amino acid metabolism. Although the PCA hierarchical clustering of ICMS-spectra groups the tested isolates into a different order as compared to MLST-based UPGMA-clustering, the isolates of the indicator-groups form predominantly coherent clusters. These clusters reflect phenotypic aspects better than phylogenetic clustering, indicating that the genes corresponding to the biomarker ions are phylogenetically coupled to the tested marker genes. Thus, PCA clustering could be an additional tool for analyzing the relatedness of bacterial isolates.

  14. Degenerate primer MOB typing of multiresistant clinical isolates of E. coli uncovers new plasmid backbones.

    PubMed

    Garcillán-Barcia, M Pilar; Ruiz del Castillo, Belén; Alvarado, Andrés; de la Cruz, Fernando; Martínez-Martínez, Luis

    2015-01-01

    Degenerate Primer MOB Typing is a PCR-based protocol for the classification of γ-proteobacterial transmissible plasmids in five phylogenetic relaxase MOB families. It was applied to a multiresistant E. coli collection, previously characterized by PCR-based replicon-typing, in order to compare both methods. Plasmids from 32 clinical isolates of multiresistant E. coli (19 extended spectrum beta-lactamase producers and 13 non producers) and their transconjugants were analyzed. A total of 95 relaxases were detected, at least one per isolate, underscoring the high potential of these strains for antibiotic-resistance transmission. MOBP12 and MOBF12 plasmids were the most abundant. Most MOB subfamilies detected were present in both subsets of the collection, indicating a shared mobilome among multiresistant E. coli. The plasmid profile obtained by both methods was compared, which provided useful data upon which decisions related to the implementation of detection methods in the clinic could be based. The phylogenetic depth at which replicon and MOB-typing classify plasmids is different. While replicon-typing aims at plasmid replication regions with non-degenerate primers, MOB-typing classifies plasmids into relaxase subfamilies using degenerate primers. As a result, MOB-typing provides a deeper phylogenetic depth than replicon-typing and new plasmid groups are uncovered. Significantly, MOB typing identified 17 plasmids and an integrative and conjugative element, which were not detected by replicon-typing. Four of these backbones were different from previously reported elements. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. SNPhylo: a pipeline to construct a phylogenetic tree from huge SNP data.

    PubMed

    Lee, Tae-Ho; Guo, Hui; Wang, Xiyin; Kim, Changsoo; Paterson, Andrew H

    2014-02-26

    Phylogenetic trees are widely used for genetic and evolutionary studies in various organisms. Advanced sequencing technology has dramatically enriched data available for constructing phylogenetic trees based on single nucleotide polymorphisms (SNPs). However, massive SNP data makes it difficult to perform reliable analysis, and there has been no ready-to-use pipeline to generate phylogenetic trees from these data. We developed a new pipeline, SNPhylo, to construct phylogenetic trees based on large SNP datasets. The pipeline may enable users to construct a phylogenetic tree from three representative SNP data file formats. In addition, in order to increase reliability of a tree, the pipeline has steps such as removing low quality data and considering linkage disequilibrium. A maximum likelihood method for the inference of phylogeny is also adopted in generation of a tree in our pipeline. Using SNPhylo, users can easily produce a reliable phylogenetic tree from a large SNP data file. Thus, this pipeline can help a researcher focus more on interpretation of the results of analysis of voluminous data sets, rather than manipulations necessary to accomplish the analysis.

  16. Phylogeny and phylogenetic classification of the antbirds, ovenbirds, woodcreepers, and allies (Aves: Passeriformes: Infraorder Furnariides)

    USGS Publications Warehouse

    Moyle, R.G.; Chesser, R.T.; Brumfield, R.T.; Tello, J.G.; Marchese, D.J.; Cracraft, J.

    2009-01-01

    The infraorder Furnariides is a diverse group of suboscine passerine birds comprising a substantial component of the Neotropical avifauna. The included species encompass a broad array of morphologies and behaviours, making them appealing for evolutionary studies, but the size of the group (ca. 600 species) has limited well-sampled higher-level phylogenetic studies. Using DNA sequence data from the nuclear RAG-1 and RAG-2 exons, we undertook a phylogenetic analysis of the Furnariides sampling 124 (more than 88%) of the genera. Basal relationships among family-level taxa differed depending on phylogenetic method, but all topologies had little nodal support, mirroring the results from earlier studies in which discerning relationships at the base of the radiation was also difficult. In contrast, branch support for family-rank taxa and for many relationships within those clades was generally high. Our results support the Melanopareidae and Grallariidae as distinct from the Rhinocryptidae and Formicariidae, respectively. Within the Furnariides our data contradict some recent phylogenetic hypotheses and suggest that further study is needed to resolve these discrepancies. Of the few genera represented by multiple species, several were not monophyletic, indicating that additional systematic work remains within furnariine families and must include dense taxon sampling. We use this study as a basis for proposing a new phylogenetic classification for the group and in the process erect new family-group names for clades having high branch support across methods. ?? 2009 The Willi Hennig Society.

  17. Phylogenetically resolving epidemiologic linkage

    PubMed Central

    Romero-Severson, Ethan O.; Bulla, Ingo; Leitner, Thomas

    2016-01-01

    Although the use of phylogenetic trees in epidemiological investigations has become commonplace, their epidemiological interpretation has not been systematically evaluated. Here, we use an HIV-1 within-host coalescent model to probabilistically evaluate transmission histories of two epidemiologically linked hosts. Previous critique of phylogenetic reconstruction has claimed that direction of transmission is difficult to infer, and that the existence of unsampled intermediary links or common sources can never be excluded. The phylogenetic relationship between the HIV populations of epidemiologically linked hosts can be classified into six types of trees, based on cladistic relationships and whether the reconstruction is consistent with the true transmission history or not. We show that the direction of transmission and whether unsampled intermediary links or common sources existed make very different predictions about expected phylogenetic relationships: (i) Direction of transmission can often be established when paraphyly exists, (ii) intermediary links can be excluded when multiple lineages were transmitted, and (iii) when the sampled individuals’ HIV populations both are monophyletic a common source was likely the origin. Inconsistent results, suggesting the wrong transmission direction, were generally rare. In addition, the expected tree topology also depends on the number of transmitted lineages, the sample size, the time of the sample relative to transmission, and how fast the diversity increases after infection. Typically, 20 or more sequences per subject give robust results. We confirm our theoretical evaluations with analyses of real transmission histories and discuss how our findings should aid in interpreting phylogenetic results. PMID:26903617

  18. Phylogenetically resolving epidemiologic linkage

    DOE PAGES

    Romero-Severson, Ethan O.; Bulla, Ingo; Leitner, Thomas

    2016-02-22

    The use of phylogenetic trees in epidemiological investigations has become commonplace, but their epidemiological interpretation has not been systematically evaluated. Here, we use an HIV-1 within-host coalescent model to probabilistically evaluate transmission histories of two epidemiologically linked hosts. Previous critique of phylogenetic reconstruction has claimed that direction of transmission is difficult to infer, and that the existence of unsampled intermediary links or common sources can never be excluded. The phylogenetic relationship between the HIV populations of epidemiologically linked hosts can be classified into six types of trees, based on cladistic relationships and whether the reconstruction is consistent with the truemore » transmission history or not. We show that the direction of transmission and whether unsampled intermediary links or common sources existed make very different predictions about expected phylogenetic relationships: (i) Direction of transmission can often be established when paraphyly exists, (ii) intermediary links can be excluded when multiple lineages were transmitted, and (iii) when the sampled individuals’ HIV populations both are monophyletic a common source was likely the origin. Inconsistent results, suggesting the wrong transmission direction, were generally rare. In addition, the expected tree topology also depends on the number of transmitted lineages, the sample size, the time of the sample relative to transmission, and how fast the diversity increases after infection. Typically, 20 or more sequences per subject give robust results. Moreover, we confirm our theoretical evaluations with analyses of real transmission histories and discuss how our findings should aid in interpreting phylogenetic results.« less

  19. Variation in sulfide tolerance of photosystem II in phylogenetically diverse cyanobacteria from sulfidic habitats

    NASA Technical Reports Server (NTRS)

    Miller, Scott R.; Bebout, Brad M.

    2004-01-01

    Physiological and molecular phylogenetic approaches were used to investigate variation among 12 cyanobacterial strains in their tolerance of sulfide, an inhibitor of oxygenic photosynthesis. Cyanobacteria from sulfidic habitats were found to be phylogenetically diverse and exhibited an approximately 50-fold variation in photosystem II performance in the presence of sulfide. Whereas the degree of tolerance was positively correlated with sulfide levels in the environment, a strain's phenotype could not be predicted from the tolerance of its closest relatives. These observations suggest that sulfide tolerance is a dynamic trait primarily shaped by environmental variation. Despite differences in absolute tolerance, similarities among strains in the effects of sulfide on chlorophyll fluorescence induction indicated a common mode of toxicity. Based on similarities with treatments known to disrupt the oxygen-evolving complex, it was concluded that sulfide toxicity resulted from inhibition of the donor side of photosystem II.

  20. Phytoplasma phylogenetics based on analysis of secA and 23S rRNA gene sequences for improved resolution of candidate species of 'Candidatus Phytoplasma'.

    PubMed

    Hodgetts, Jennifer; Boonham, Neil; Mumford, Rick; Harrison, Nigel; Dickinson, Matthew

    2008-08-01

    Phytoplasma phylogenetics has focused primarily on sequences of the non-coding 16S rRNA gene and the 16S-23S rRNA intergenic spacer region (16-23S ISR), and primers that enable amplification of these regions from all phytoplasmas by PCR are well established. In this study, primers based on the secA gene have been developed into a semi-nested PCR assay that results in a sequence of the expected size (about 480 bp) from all 34 phytoplasmas examined, including strains representative of 12 16Sr groups. Phylogenetic analysis of secA gene sequences showed similar clustering of phytoplasmas when compared with clusters resolved by similar sequence analyses of a 16-23S ISR-23S rRNA gene contig or of the 16S rRNA gene alone. The main differences between trees were in the branch lengths, which were elongated in the 16-23S ISR-23S rRNA gene tree when compared with the 16S rRNA gene tree and elongated still further in the secA gene tree, despite this being a shorter sequence. The improved resolution in the secA gene-derived phylogenetic tree resulted in the 16SrII group splitting into two distinct clusters, while phytoplasmas associated with coconut lethal yellowing-type diseases split into three distinct groups, thereby supporting past proposals that they represent different candidate species within 'Candidatus Phytoplasma'. The ability to differentiate 16Sr groups and subgroups by virtual RFLP analysis of secA gene sequences suggests that this gene may provide an informative alternative molecular marker for pathogen identification and diagnosis of phytoplasma diseases.

  1. Diversity of Bradyrhizobium strains nodulating Lupinus micranthus on both sides of the Western Mediterranean: Algeria and Spain.

    PubMed

    Bourebaba, Yasmina; Durán, David; Boulila, Farida; Ahnia, Hadjira; Boulila, Abdelghani; Temprano, Francisco; Palacios, José M; Imperial, Juan; Ruiz-Argüeso, Tomás; Rey, Luis

    2016-06-01

    Lupinus micranthus is a lupine distributed in the Mediterranean basin whose nitrogen fixing symbiosis has not been described in detail. In this study, 101 slow-growing nodule isolates were obtained from L. micranthus thriving in soils on both sides of the Western Mediterranean. The diversity of the isolates, 60 from Algeria and 41 from Spain, was addressed by multilocus sequence analysis of housekeeping genes (16S rRNA, atpD, glnII and recA) and one symbiotic gene (nodC). Using genomic fingerprints from BOX elements, 37 different profiles were obtained (22 from Algeria and 15 from Spain). Phylogenetic analysis based on 16S rRNA and concatenated atpD, glnII and recA sequences of a representative isolate of each BOX profile displayed a homogeneous distribution of profiles in six different phylogenetic clusters. All isolates were taxonomically ascribed to the genus Bradyrhizobium. Three clusters comprising 24, 6, and 4 isolates, respectively, accounted for most of the profiles. The largest cluster was close to the Bradyrhizobium canariense lineage, while the other two were related to B. cytisi/B. rifense. The three remaining clusters included only one isolate each, and were close to B. canariense, B. japonicum and B. elkanii species, respectively. In contrast, phylogenetic clustering of BOX profiles based on nodC sequences yielded only two phylogenetic groups. One of them included all the profiles except one, and belonged to symbiovar genistearum. The remaining profile, constituted by a strain related to B. elkanii, was not related to any well-defined symbiotic lineage, and may constitute both a new symbiovar and a new genospecies. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Genetic Comparison of B. Anthracis and its Close Relatives Using AFLP and PCR Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, P.J.; Hill, K.K.; Laker, M.T.

    1999-02-01

    Amplified Fragment length Polymorphism (AFLP) analysis allows a rapid, relatively simple analysis of a large portion of a microbial genome, providing information about the species and its phylogenetic relationship to other microbes (Vos, et al., 1995). The method simply surveys the genome for length and sequence polymorphisms. The pattern identified can be used for comparison to the genomes of other species. Unlike other methods, it does not rely on analysis of a single genetic locus that may bias the interpretation of results and it does not require any prior knowledge of the targeted organism. Moreover, a standard set of reagentsmore » can be applied to any species without using species-specific information or molecular probes. The authors are using AFLP's to rapidly identify different bacterial species. A comparison of AFLP profiles generated from a large battery of B. anthracis strains shows very little variability among different isolates (Keim, et al., 1997). By contrast, there is a significant difference between AFLP profiles generated for any B. anthracis strain and even the most closely related Bacillus species. Sufficient variability is apparent among all known microbial species to allow phylogenetic analysis based on large numbers of genetically unlinked loci. These striking differences among AFLP profiles allow unambiguous identification of previously identified species and phylogenetic placement of newly characterized isolates relative to known species based on a large number of independent genetic loci. Data generated thus far show that the method provides phylogenetic analyses that are consistent with other widely accepted phylogenetic methods. However, AFLP analysis provides a more detailed analysis of the targets and samples a much larger portion of the genome. Consequently, it provides an inexpensive, rapid means of characterizing microbial isolates to further differentiate among strains and closely related microbial species. Such information cannot be rapidly generated by other means. AFLP sample analysis quickly generates a very large amount of molecular information about microbial genomes. However, this information cannot be analyzed rapidly using manual methods. The authors are developing a large archive of electronic AFLP signatures that is being used to identify isolates collected from medical, veterinary, forensic and environmental samples. They are also developing the computational packages necessary to rapidly and unambiguously analyze the AFLP profiles and conduct a phylogenetic comparison of these data relative to information already in the database. They will use this archive and the associated algorithms to determine the species identity of previously uncharacterized isolates and place them phylogenetically relative to other microbes based on their AFLP signatures. This study provides significant new information about microbes with environmental, veterinary and medical significance. This information can be used in further studies to understand the relationships among these species and the factors that distinguish them from one another. It should also allow identification of unique factors that contribute to important microbial traits including pathogenicity and virulence. They are also using AFLP data to identify, isolate and sequence DNA fragments that are unique to particular microbial species and strains. The fragment patterns and sequence information provide insights into the complexity and organization of bacterial genomes relative to one another. They also provide the information necessary for development of species-specific PCR primers that can be used to interrogate complex samples for the presence of B. anthracis, other microbial pathogens or their remnants.« less

  3. MOLECULAR DIVERSITY OF DRINKING WATER MICROBIAL COMMUNITIES: A PHYLOGENETIC APPROACH

    EPA Science Inventory

    The microbiological quality of drinking water is assessed using culture-based methods that are highly selective and that tend to underestimate the densities and diversity of microbial populations inhabiting distribution systems. In order to better understand the effect of differe...

  4. Ersiphe trifolii-a newly recognized powdery mildew pathogen of pea.

    USDA-ARS?s Scientific Manuscript database

    Population diversity of powdery mildews infecting pea (Pisum sativum) in the US Pacific Northwest was investigated in order to assess inconsistent resistance performances of pea genotypes in different environments. Phylogenetic analyses based on ITS sequences, in combination with assessment of morph...

  5. 16S partial gene mitochondrial DNA and internal transcribed spacers ribosomal DNA as differential markers of Trichuris discolor populations.

    PubMed

    Callejón, R; Halajian, A; de Rojas, M; Marrugal, A; Guevara, D; Cutillas, C

    2012-05-25

    Comparative morphological, biometrical and molecular studies of Trichuris discolor isolated from Bos taurus from Spain and Iran was carried out. Furthermore, Trichuris ovis isolated from B. taurus and Capra hircus from Spain has been, molecularly, analyzed. Morphological studies revealed clear differences between T. ovis and T. discolor isolated from B. taurus but differences were not observed between populations of T. discolor isolated from different geographical regions. Nevertheless, the molecular studies based on the amplification and sequencing of the internal transcribed spacers 1 and 2 ribosomal DNA and 16S partial gene mitochondrial DNA showed clear differences between both populations of T. discolor from Spain and Iran suggesting two cryptic species. Phylogenetic studies corroborated these data. Thus, phylogenetic trees based on ITS1, ITS2 and 16S partial gene sequences showed that individuals of T. discolor from B. taurus from Iran clustered together and separated, with high bootstrap values, of T. discolor isolated from B. taurus from Spain, while populations of T. ovis from B. taurus and C. hircus from Spain clustered together but separated with high bootstrap values of both populations of T. discolor. Furthermore, a comparative phylogenetic study has been carried out with the ITS1and ITS2 sequences of Trichuris species from different hosts. Three clades were observed: the first clustered all the species of Trichuris parasitizing herbivores (T. discolor, T. ovis, Trichuris leporis and Trichuris skrjabini), the second clustered all the species of Trichuris parasitizing omnivores (Trichuris trichiura and Trichuris suis) and finally, the third clustered species of Trichuris parasitizing carnivores (Trichuris muris, Trichuris arvicolae and Trichuris vulpis). Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Increased phylogenetic resolution using target enrichment in Rubus

    USDA-ARS?s Scientific Manuscript database

    Phylogenetic analyses in Rubus L. have been challenging due to polyploidy, hybridization, and apomixis within the genus. Wide morphological diversity occurs within and between species, contributing to challenges at lower and higher systematic levels. Phylogenetic inferences to date have been based o...

  7. The Impact of Media, Phylogenetic Classification, and E. coli Pathotypes on Biofilm Formation in Extraintestinal and Commensal E. coli From Humans and Animals.

    PubMed

    Nielsen, Daniel W; Klimavicz, James S; Cavender, Tia; Wannemuehler, Yvonne; Barbieri, Nicolle L; Nolan, Lisa K; Logue, Catherine M

    2018-01-01

    Extraintestinal pathogenic Escherichia coli (ExPEC) include avian pathogenic E. coli (APEC), neonatal meningitis E. coli (NMEC), and uropathogenic E. coli (UPEC) and are responsible for significant animal and human morbidity and mortality. This study sought to investigate if biofilm formation by ExPEC likely contributes to these losses since biofilms are associated with recurrent urinary tract infections, antibiotic resistance, and bacterial exchange of genetic material. Therefore, the goal of this study was to examine differences in biofilm formation among a collection of ExPEC and to ascertain if there is a relationship between their ability to produce biofilms and their assignment to phylogenetic groups in three media types - M63, diluted TSB, and BHI. Our results suggest that ExPEC produce relatively different levels of biofilm formation in the media tested as APEC (70.4%, p = 0.0064) and NMEC (84.4%, p = 0.0093) isolates were poor biofilm formers in minimal medium M63 while UPEC isolates produced significantly higher ODs under nutrient-limited conditions with 25% of strains producing strong biofilms in diluted TSB ( p = 0.0204). Additionally, E. coli phylogenetic assignment using Clermont's original and revised typing scheme demonstrated significant differences among the phylogenetic groups in the different media. When the original phylogenetic group isolates previously typed as group D were phylogenetically typed under the revised scheme and examined, they showed substantial variation in their ability to form biofilms, which may explain the significant values of revised phylogenetic groups E and F in M63 ( p = 0.0291, p = 0.0024). Our data indicates that biofilm formation is correlated with phylogenetic classification and subpathotype or commensal grouping of E. coli strains.

  8. Phylogenetic studies favour the unification of Pennisetum, Cenchrus and Odontelytrum (Poaceae): a combined nuclear, plastid and morphological analysis, and nomenclatural combinations in Cenchrus.

    PubMed

    Chemisquy, M Amelia; Giussani, Liliana M; Scataglini, María A; Kellogg, Elizabeth A; Morrone, Osvaldo

    2010-07-01

    Twenty-five genera having sterile inflorescence branches were recognized as the bristle clade within the x = 9 Paniceae (Panicoideae). Within the bristle clade, taxonomic circumscription of Cenchrus (20-25 species), Pennisetum (80-140) and the monotypic Odontelytrum is still unclear. Several criteria have been applied to characterize Cenchrus and Pennisetum, but none of these has proved satisfactory as the diagnostic characters, such as fusion of bristles in the inflorescences, show continuous variation. A phylogenetic analysis based on morphological, plastid (trnL-F, ndhF) and nuclear (knotted) data is presented for a representative species sampling of the genera. All analyses were conducted under parsimony, using heuristic searches with TBR branch swapping. Branch support was assessed with parsimony jackknifing. Based on plastid and morphological data, Pennisetum, Cenchrus and Odontelytrum were supported as a monophyletic group: the PCO clade. Only one section of Pennisetum (Brevivalvula) was supported as monophyletic. The position of P. lanatum differed among data partitions, although the combined plastid and morphology and nuclear analyses showed this species to be a member of the PCO clade. The basic chromosome number x = 9 was found to be plesiomorphic, and x = 5, 7, 8, 10 and 17 were derived states. The nuclear phylogenetic analysis revealed a reticulate pattern of relationships among Pennisetum and Cenchrus, suggesting that there are at least three different genomes. Because apomixis can be transferred among species through hybridization, its history most likely reflects crossing relationships, rather than multiple independent appearances. Due to the consistency between the present results and different phylogenetic hypotheses (including morphological, developmental and multilocus approaches), and the high support found for the PCO clade, also including the type species of the three genera, we propose unification of Pennisetum, Cenchrus and Odontelytrum. Species of Pennisetum and Odontelytrum are here transferred into Cenchrus, which has priority. Sixty-six new combinations are made here.

  9. Phylogenetic studies favour the unification of Pennisetum, Cenchrus and Odontelytrum (Poaceae): a combined nuclear, plastid and morphological analysis, and nomenclatural combinations in Cenchrus

    PubMed Central

    Chemisquy, M. Amelia; Giussani, Liliana M.; Scataglini, María A.; Kellogg, Elizabeth A.; Morrone, Osvaldo

    2010-01-01

    Backgrounds and Aims Twenty-five genera having sterile inflorescence branches were recognized as the bristle clade within the x = 9 Paniceae (Panicoideae). Within the bristle clade, taxonomic circumscription of Cenchrus (20–25 species), Pennisetum (80–140) and the monotypic Odontelytrum is still unclear. Several criteria have been applied to characterize Cenchrus and Pennisetum, but none of these has proved satisfactory as the diagnostic characters, such as fusion of bristles in the inflorescences, show continuous variation. Methods A phylogenetic analysis based on morphological, plastid (trnL-F, ndhF) and nuclear (knotted) data is presented for a representative species sampling of the genera. All analyses were conducted under parsimony, using heuristic searches with TBR branch swapping. Branch support was assessed with parsimony jackknifing. Key Results Based on plastid and morphological data, Pennisetum, Cenchrus and Odontelytrum were supported as a monophyletic group: the PCO clade. Only one section of Pennisetum (Brevivalvula) was supported as monophyletic. The position of P. lanatum differed among data partitions, although the combined plastid and morphology and nuclear analyses showed this species to be a member of the PCO clade. The basic chromosome number x = 9 was found to be plesiomorphic, and x = 5, 7, 8, 10 and 17 were derived states. The nuclear phylogenetic analysis revealed a reticulate pattern of relationships among Pennisetum and Cenchrus, suggesting that there are at least three different genomes. Because apomixis can be transferred among species through hybridization, its history most likely reflects crossing relationships, rather than multiple independent appearances. Conclusions Due to the consistency between the present results and different phylogenetic hypotheses (including morphological, developmental and multilocus approaches), and the high support found for the PCO clade, also including the type species of the three genera, we propose unification of Pennisetum, Cenchrus and Odontelytrum. Species of Pennisetum and Odontelytrum are here transferred into Cenchrus, which has priority. Sixty-six new combinations are made here. PMID:20570830

  10. Functional morphology of the bovid astragalus in relation to habitat: controlling phylogenetic signal in ecomorphology.

    PubMed

    Barr, W Andrew

    2014-11-01

    Bovid astragali are one of the most commonly preserved bones in the fossil record. Accordingly, astragali are an important target for studies seeking to predict the habitat preferences of fossil bovids based on bony anatomy. However, previous work has not tested functional hypotheses linking astragalar morphology with habitat while controlling for body size and phylogenetic signal. This article presents a functional framework relating the morphology of the bovid astragalus to habitat-specific locomotor ecology and tests four hypotheses emanating from this framework. Highly cursorial bovids living in structurally open habitats are hypothesized to differ from their less cursorial closed-habitat dwelling relatives in having (1) relatively short astragali to maintain rotational speed throughout the camming motion of the rotating astragalus, (2) a greater range of angular excursion at the hock, (3) relatively larger joint surface areas, and (4) a more pronounced "spline-and-groove" morphology promoting lateral joint stability. A diverse sample of 181 astragali from 50 extant species was scanned using a Next Engine laser scanner. Species were assigned to one of four habitat categories based on the published ecological literature. A series of 11 linear measurements and three joint surface areas were measured on each astragalus. A geometric mean body size proxy was used to size-correct the measurement data. Phylogenetic generalized least squares (PGLS) was used to test for differences between habitat categories while controlling for body size differences and phylogenetic signal. Statistically significant PGLS results support Hypotheses 1 and 2 (which are not mutually exclusive) as well as Hypothesis 3. No support was found for Hypothesis 4. These findings confirm that the morphology of the bovid astragalus is related to habitat-specific locomotor ecology, and that this relationship is statistically significant after controlling for body size and phylogeny. Thus, this study validates the use of this bone as an ecomorphological indicator. © 2014 Wiley Periodicals, Inc.

  11. Oral Region Homologies in Paleozoic Crinoids and Other Plesiomorphic Pentaradial Echinoderms

    PubMed Central

    Kammer, Thomas W.; Sumrall, Colin D.; Zamora, Samuel; Ausich, William I.; Deline, Bradley

    2013-01-01

    The phylogenetic relationships between major groups of plesiomorphic pentaradial echinoderms, the Paleozoic crinoids, blastozoans, and edrioasteroids, are poorly understood because of a lack of widely recognized homologies. Here, we present newly recognized oral region homologies, based on the Universal Elemental Homology model for skeletal plates, in a wide range of fossil taxa. The oral region of echinoderms is mainly composed of the axial, or ambulacral, skeleton, which apparently evolved more slowly than the extraxial skeleton that forms the majority of the body. Recent phylogenetic hypotheses have focused on characters of the extraxial skeleton, which may have evolved too rapidly to preserve obvious homologies across all these groups. The axial skeleton conserved homologous suites of characters shared between various edrioasteroids and specific blastozoans, and between other blastozoans and crinoids. Although individual plates can be inferred as homologous, no directly overlapping suites of characters are shared between edrioasteroids and crinoids. Six different systems of mouth (peristome) plate organization (Peristomial Border Systems) are defined. These include four different systems based on the arrangement of the interradially-positioned oral plates and their peristomial cover plates, where PBS A1 occurs only in plesiomorphic edrioasteroids, PBS A2 occurs in plesiomorphic edrioasteroids and blastozoans, and PBS A3 and PBS A4 occur in blastozoans and crinoids. The other two systems have radially-positioned uniserial oral frame plates in construction of the mouth frame. PBS B1 has both orals and uniserial oral frame plates and occurs in edrioasterid and possibly edrioblastoid edrioasteroids, whereas PBS B2 has exclusively uniserial oral frame plates and is found in isorophid edrioasteroids and imbricate and gogiid blastozoans. These different types of mouth frame construction offer potential synapomorphies to aid in parsimony-based phylogenetics for exploring branching order among stem groups on the echinoderm tree of life. PMID:24244284

  12. New insights into the phylogeny of Burasaieae (Menispermaceae) with the recognition of a new genus and emphasis on the southern Taiwanese and mainland Chinese disjunction.

    PubMed

    Wang, Wei; Ortiz, Rosa Del C; Jacques, Frédéric M B; Chung, Shih-Wen; Liu, Yang; Xiang, Xiao-Guo; Chen, Zhi-Duan

    2017-04-01

    Taiwan is a continental island lying at the boundary between the Eurasian and the Philippine tectonic plates and possesses high biodiversity. Southern Taiwan, viz. Hengchun Peninsula, is notably floristically different from northern Taiwan. The floristic origin and relationships of the Hengchun Peninsula have been rarely investigated in a phylogenetic context. In this study, data from six plastid and nuclear sequences were used to reconstruct phylogenetic relationships within Burasaieae (Menispermaceae), which mainly inhabits tropical rainforests. The tree-based comparisons indicate that the position of Tinospora sensu stricto conflicts significantly between the cpDNA and ITS trees. However, alternative hypothesis tests from the ITS data did not reject the result of the cpDNA data, which suggests that tree-based comparisons might sometimes generate an artificial incongruence, especially when markers with high homoplasy are used. Based on the combined cpDNA and ITS data, we present an inter-generic phylogenetic framework for Burasaieae. Sampled species of Tinospora are placed in three different clades, including Tinospora dentata from southern Taiwan and T. sagittata from mainland China in an unresolved position alongside six lineages of Burasaieae. By integrating lines of evidence from molecular phylogeny, divergence times, and morphology, we recognize the three Tinospora clades as three different genera, including Tinospora sensu stricto, a new genus (Paratinospora) for T. dentata and T. sagittata, and Hyalosepalum resurrected. Tinospora dentata, now endemic to the Hengchun Peninsula, originated from the Late Eocene (ca. 39Ma), greatly predating the formation of Taiwan. Our study suggests that the flora of the Hengchun Peninsula contains some ancient components that might have migrated from mainland China. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Contrasting Taxonomic and Phylogenetic Diversity Responses to Forest Modifications: Comparisons of Taxa and Successive Plant Life Stages in South African Scarp Forest

    PubMed Central

    Grass, Ingo; Brandl, Roland; Botzat, Alexandra; Neuschulz, Eike Lena; Farwig, Nina

    2015-01-01

    The degradation of natural forests to modified forests threatens subtropical and tropical biodiversity worldwide. Yet, species responses to forest modification vary considerably. Furthermore, effects of forest modification can differ, whether with respect to diversity components (taxonomic or phylogenetic) or to local (α-diversity) and regional (β-diversity) spatial scales. This real-world complexity has so far hampered our understanding of subtropical and tropical biodiversity patterns in human-modified forest landscapes. In a subtropical South African forest landscape, we studied the responses of three successive plant life stages (adult trees, saplings, seedlings) and of birds to five different types of forest modification distinguished by the degree of within-forest disturbance and forest loss. Responses of the two taxa differed markedly. Thus, the taxonomic α-diversity of birds was negatively correlated with the diversity of all plant life stages and, contrary to plant diversity, increased with forest disturbance. Conversely, forest disturbance reduced the phylogenetic α-diversity of all plant life stages but not that of birds. Forest loss neither affected taxonomic nor phylogenetic diversity of any taxon. On the regional scale, taxonomic but not phylogenetic β-diversity of both taxa was well predicted by variation in forest disturbance and forest loss. In contrast to adult trees, the phylogenetic diversity of saplings and seedlings showed signs of contemporary environmental filtering. In conclusion, forest modification in this subtropical landscape strongly shaped both local and regional biodiversity but with contrasting outcomes. Phylogenetic diversity of plants may be more threatened than that of mobile species such as birds. The reduced phylogenetic diversity of saplings and seedlings suggests losses in biodiversity that are not visible in adult trees, potentially indicating time-lags and contemporary shifts in forest regeneration. The different responses of taxonomic and phylogenetic diversity to forest modifications imply that biodiversity conservation in this subtropical landscape requires the preservation of natural and modified forests. PMID:25719204

  14. The phylogenetic position of a new species of Plakobranchus from West Papua, Indonesia (Mollusca, Opisthobranchia, Sacoglossa)

    PubMed Central

    Meyers-Muñoz, María Angélica; van der Velde, Gerard; van der Meij, Sancia E.T.; Stoffels, Bart E.M.W.; van Alen, Theo; Tuti, Yosephine; Hoeksema, Bert W.

    2016-01-01

    Abstract Plakobranchus papua Meyers-Muñoz & van der Velde, sp. n. from West Papua (Papua Barat province, Indonesia), is described based on its external morphology, colour pattern, internal anatomy, radula and reproductive system. In a molecular phylogenetic study specimens of this new species were compared with those of ten candidate taxa under the name Plakobranchus ocellatus van Hasselt, 1824. DNA analyses of COI mtDNA showed a clear distinction between Plakobranchus papua sp. n. and “Plakobranchus ocellatus”. Plakobranchus papua, sp. n. also differed from all taxa that have been synonymised with Plakobranchus ocellatus. The genus is in dire need of taxonomic revision, preferably based on an integrative analysis involving morphology and DNA of all known Plakobranchus varieties. PMID:27408559

  15. A new earthworm species within a controversial genus: Eiseniona gerardoi sp. n. (Annelida, Lumbricidae) - description based on morphological and molecular data

    PubMed Central

    Díaz Cosín, Darío J.; Novo, Marta; Fernández, Rosa; Fernández Marchán, Daniel; Gutiérrez, Mónica

    2014-01-01

    Abstract The morphological and anatomical simplicity of soil dwelling animals, such as earthworms, has limited the establishment of a robust taxonomy making it sometimes subjective to authors’ criteria. Within this context, integrative approaches including molecular information are becoming more popular to solve the phylogenetic positioning of conflictive taxa. Here we present the description of a new lumbricid species from the region of Extremadura (Spain), Eiseniona gerardoi sp. n. The assignment to this genus is based on both a morphological and a phylogenetic study. The validity of the genus Eiseniona, one of the most controversial within Lumbricidae, is discussed. A synopsis of the differences between the type species and the west-European members of the genus is provided. PMID:24843253

  16. Helicobacter pylori from gastric cancer and duodenal ulcer show same phylogeographic origin in the Andean region in Colombia.

    PubMed

    Shiota, Seiji; Suzuki, Rumiko; Matsuo, Yuichi; Miftahussurur, Muhammad; Tran, Trang Thu Huyen; Binh, Tran Thanh; Yamaoka, Yoshio

    2014-01-01

    A recent report has shown that the phylogenetic origin of Helicobacter pylori based on multi-locus sequence typing (MLST) was significantly associated with the severity of gastritis in Colombia. However, the potential relationship between phylogenetic origin and clinical outcomes was not examined in that study. If the phylogenetic origin rather than virulence factors were truly associated with clinical outcomes, identifying a population at high risk for gastric cancer in Colombia would be relatively straightforward. In this study, we examined the phylogenetic origins of strains from gastric cancer and duodenal ulcer patients living in Bogota, Colombia. We included 35 gastric cancer patients and 31 duodenal ulcer patients, which are considered the variant outcomes. The genotypes of cagA and vacA were determined by polymerase chain reaction. The genealogy of these Colombian strains was analyzed by MLST. Bacterial population structure was analyzed using STRUCTURE software. H. pylori strains from gastric cancer and duodenal ulcer patients were scattered in the phylogenetic tree; thus, we did not detect any difference in phylogenetic distribution between gastric cancer and duodenal ulcer strains in the hpEurope group in Colombia. Sixty-six strains, with one exception, were classified as hpEurope irrespective of the cagA and vacA genotypes, and type of disease. STRUCTURE analysis revealed that Colombian hpEurope strains have a phylogenetic connection to Spanish strains. Our study showed that a phylogeographic origin determined by MLST was insufficient for distinguishing between gastric cancer and duodenal ulcer risk among hpEurope strains in the Andean region in Colombia. Our analysis also suggests that hpEurope strains in Colombia were primarily introduced by Spanish immigrants.

  17. Determinants of plant community assembly in a mosaic of landscape units in central Amazonia: ecological and phylogenetic perspectives.

    PubMed

    Umaña, María Natalia; Norden, Natalia; Cano, Angela; Stevenson, Pablo R

    2012-01-01

    The Amazon harbours one of the richest ecosystems on Earth. Such diversity is likely to be promoted by plant specialization, associated with the occurrence of a mosaic of landscape units. Here, we integrate ecological and phylogenetic data at different spatial scales to assess the importance of habitat specialization in driving compositional and phylogenetic variation across the Amazonian forest. To do so, we evaluated patterns of floristic dissimilarity and phylogenetic turnover, habitat association and phylogenetic structure in three different landscape units occurring in terra firme (Hilly and Terrace) and flooded forests (Igapó). We established two 1-ha tree plots in each of these landscape units at the Caparú Biological Station, SW Colombia, and measured edaphic, topographic and light variables. At large spatial scales, terra firme forests exhibited higher levels of species diversity and phylodiversity than flooded forests. These two types of forests showed conspicuous differences in species and phylogenetic composition, suggesting that environmental sorting due to flood is important, and can go beyond the species level. At a local level, landscape units showed floristic divergence, driven both by geographical distance and by edaphic specialization. In terms of phylogenetic structure, Igapó forests showed phylogenetic clustering, whereas Hilly and Terrace forests showed phylogenetic evenness. Within plots, however, local communities did not show any particular trend. Overall, our findings suggest that flooded forests, characterized by stressful environments, impose limits to species occurrence, whereas terra firme forests, more environmentally heterogeneous, are likely to provide a wider range of ecological conditions and therefore to bear higher diversity. Thus, Amazonia should be considered as a mosaic of landscape units, where the strength of habitat association depends upon their environmental properties.

  18. Determinants of Plant Community Assembly in a Mosaic of Landscape Units in Central Amazonia: Ecological and Phylogenetic Perspectives

    PubMed Central

    Umaña, María Natalia; Norden, Natalia; Cano, Ángela; Stevenson, Pablo R.

    2012-01-01

    The Amazon harbours one of the richest ecosystems on Earth. Such diversity is likely to be promoted by plant specialization, associated with the occurrence of a mosaic of landscape units. Here, we integrate ecological and phylogenetic data at different spatial scales to assess the importance of habitat specialization in driving compositional and phylogenetic variation across the Amazonian forest. To do so, we evaluated patterns of floristic dissimilarity and phylogenetic turnover, habitat association and phylogenetic structure in three different landscape units occurring in terra firme (Hilly and Terrace) and flooded forests (Igapó). We established two 1-ha tree plots in each of these landscape units at the Caparú Biological Station, SW Colombia, and measured edaphic, topographic and light variables. At large spatial scales, terra firme forests exhibited higher levels of species diversity and phylodiversity than flooded forests. These two types of forests showed conspicuous differences in species and phylogenetic composition, suggesting that environmental sorting due to flood is important, and can go beyond the species level. At a local level, landscape units showed floristic divergence, driven both by geographical distance and by edaphic specialization. In terms of phylogenetic structure, Igapó forests showed phylogenetic clustering, whereas Hilly and Terrace forests showed phylogenetic evenness. Within plots, however, local communities did not show any particular trend. Overall, our findings suggest that flooded forests, characterized by stressful environments, impose limits to species occurrence, whereas terra firme forests, more environmentally heterogeneous, are likely to provide a wider range of ecological conditions and therefore to bear higher diversity. Thus, Amazonia should be considered as a mosaic of landscape units, where the strength of habitat association depends upon their environmental properties. PMID:23028844

  19. Improved Maximum Parsimony Models for Phylogenetic Networks.

    PubMed

    Van Iersel, Leo; Jones, Mark; Scornavacca, Celine

    2018-05-01

    Phylogenetic networks are well suited to represent evolutionary histories comprising reticulate evolution. Several methods aiming at reconstructing explicit phylogenetic networks have been developed in the last two decades. In this article, we propose a new definition of maximum parsimony for phylogenetic networks that permits to model biological scenarios that cannot be modeled by the definitions currently present in the literature (namely, the "hardwired" and "softwired" parsimony). Building on this new definition, we provide several algorithmic results that lay the foundations for new parsimony-based methods for phylogenetic network reconstruction.

  20. The 'temporal effect' in hominids: Reinvestigating the nature of support for a chimp-human clade in bone morphology.

    PubMed

    Pearson, Alannah; Groves, Colin; Cardini, Andrea

    2015-11-01

    In 2004, an analysis by Lockwood and colleagues of hard-tissue morphology, using geometric morphometrics on the temporal bone, succeeded in recovering the correct phylogeny of living hominids without resorting to potentially problematic methods for transforming continuous shape variables into meristic characters. That work has increased hope that by using modern analytical methods and phylogenetically informative anatomical data we might one day be able to accurately infer the relationships of hominins, including the closest extinct relatives of modern humans. In the present study, using 3D virtually generated models of the hominid temporal bone and a larger suite of geometric morphometric and comparative techniques, we have re-examined the evidence for a Pan-Homo clade. Despite differences in samples, as well as the type of raw data, the effect of measurement error (and especially landmark digitization by a different operator), but also a broader perspective brought in by our diverse set of approaches, our reanalysis largely supports Lockwood and colleagues' original results. However, by focusing not only mainly on shape (as in the original 2004 analysis) but also on size and 'size-corrected' (non-allometric) shape, we demonstrate that the strong phylogenetic signal in the temporal bone is largely related to similarities in size. Thus, with this study, we are not suggesting the use of a single 'character', such as size, for phylogenetic inference, but we do challenge the common view that shape, with its highly complex and multivariate nature, is necessarily more phylogenetically informative than size and that actually size and size-related shape variation (i.e., allometry) confound phylogenetic inference based on morphology. This perspective may in fact be less generalizable than often believed. Thus, while we confirm the original findings by Lockwood et al., we provide a deep reinterpretation of their nature and potential implications for hominid phylogenetics and we show how crucial it is not to overlook size in geometric morphometric analyses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Phylogenetic relationships of Sarcocystis neurona of horses and opossums to other cyst-forming coccidia deduced from SSU rRNA gene sequences.

    PubMed

    Elsheikha, Hany M; Lacher, David W; Mansfield, Linda S

    2005-11-01

    Phylogenetic analyses based on sequences of the nuclear-encoded small subunit rRNA (ssurRNA) gene were performed to examine the origin, phylogeny, and biogeographic relationships of Sarcocystis neurona isolates from opossums and horses from the State of Michigan, USA, in relation to other cyst-forming coccidia. A total of 31 taxa representing all recognized subfamilies and genera of Sarcocystidae were included in the analyses with clonal isolates of two opossum and two horse S. neurona. Phylogenies obtained by the four tree-building methods were consistent with the classical taxonomy based on morphological criteria. The "isosporid" coccidia Neospora, Toxoplasma, Besnoitia, Isospora lacking stieda bodies, and Hyaloklossia formed a sister group to the Sarcocystis spp. Sarcocystis species were divided into three main lineages; S. neurona isolates were located in the second lineage and clustered with S. mucosa, S. dispersa, S. lacertae, S. rodentifelis, S. muris, and Frenkelia spp. Alignment of S. neurona SSU rRNA gene sequences of Michigan opossum isolates (MIOP5, MIOP20) and a S. neurona Michigan horse isolate (MIH8) showed 100% identity. These Michigan isolates differed in 2/1085 bp (0.2%) from a Kentucky S. neurona horse isolate (SN5). Additionally, S. neurona isolates from horses and opossums were identical based on the ultrastructural features and PCR-RFLP analyses thus forming a phylogenetically indistinct group in these regions. These findings revealed the concordance between the morphological and molecular data and confirmed that S. neurona from opossums and horses originated from the same phylogenetic origin.

  2. Morphology and Molecular Phylogeny of Raillietina spp. (Cestoda: Cyclophyllidea: Davaineidae) from Domestic Chickens in Thailand.

    PubMed

    Butboonchoo, Preeyaporn; Wongsawad, Chalobol; Rojanapaibul, Amnat; Chai, Jong-Yil

    2016-12-01

    Raillietina species are prevalent in domestic chickens ( Gallus gallus domesticus ) in Phayao province, northern Thailand. Their infection may cause disease and death, which affects the public health and economic situation in chicken farms. The identification of Raillietina has been based on morphology and molecular analysis. In this study, morphological observations using light (LM) and scanning electron microscopies (SEM) coupled with molecular analysis of the internal transcribed spacer 2 (ITS2) region and the nicotinamide adenine dinucleotide dehydrogenase subunit 1 (ND1) gene were employed for precise identification and phylogenetic relationship studies of Raillietina spp. Four Raillietina species, including R. echinobothrida, R. tetragona, R. cesticillus , and Raillietina sp., were recovered in domestic chickens from 4 districts in Phayao province, Thailand. LM and SEM observations revealed differences in the morphology of the scolex, position of the genital pore, number of eggs per egg capsule, and rostellar opening surface structures in all 4 species. Phylogenetic relationships were found among the phylogenetic trees obtained by the maximum likelihood and distance-based neighbor-joining methods. ITS2 and ND1 sequence data recorded from Raillietina sp. appeared to be monophyletic. The query sequences of R. echinobothrida, R. tetragona, R. cesticillus , and Raillietina sp. were separated according to the different morphological characters. This study confirmed that morphological studies combined with molecular analyses can differentiate related species within the genus Raillietina in Thailand.

  3. Variance Component Selection With Applications to Microbiome Taxonomic Data.

    PubMed

    Zhai, Jing; Kim, Juhyun; Knox, Kenneth S; Twigg, Homer L; Zhou, Hua; Zhou, Jin J

    2018-01-01

    High-throughput sequencing technology has enabled population-based studies of the role of the human microbiome in disease etiology and exposure response. Microbiome data are summarized as counts or composition of the bacterial taxa at different taxonomic levels. An important problem is to identify the bacterial taxa that are associated with a response. One method is to test the association of specific taxon with phenotypes in a linear mixed effect model, which incorporates phylogenetic information among bacterial communities. Another type of approaches consider all taxa in a joint model and achieves selection via penalization method, which ignores phylogenetic information. In this paper, we consider regression analysis by treating bacterial taxa at different level as multiple random effects. For each taxon, a kernel matrix is calculated based on distance measures in the phylogenetic tree and acts as one variance component in the joint model. Then taxonomic selection is achieved by the lasso (least absolute shrinkage and selection operator) penalty on variance components. Our method integrates biological information into the variable selection problem and greatly improves selection accuracies. Simulation studies demonstrate the superiority of our methods versus existing methods, for example, group-lasso. Finally, we apply our method to a longitudinal microbiome study of Human Immunodeficiency Virus (HIV) infected patients. We implement our method using the high performance computing language Julia. Software and detailed documentation are freely available at https://github.com/JingZhai63/VCselection.

  4. Morphology and Molecular Phylogeny of Raillietina spp. (Cestoda: Cyclophyllidea: Davaineidae) from Domestic Chickens in Thailand

    PubMed Central

    Butboonchoo, Preeyaporn; Wongsawad, Chalobol; Rojanapaibul, Amnat; Chai, Jong-Yil

    2016-01-01

    Raillietina species are prevalent in domestic chickens (Gallus gallus domesticus) in Phayao province, northern Thailand. Their infection may cause disease and death, which affects the public health and economic situation in chicken farms. The identification of Raillietina has been based on morphology and molecular analysis. In this study, morphological observations using light (LM) and scanning electron microscopies (SEM) coupled with molecular analysis of the internal transcribed spacer 2 (ITS2) region and the nicotinamide adenine dinucleotide dehydrogenase subunit 1 (ND1) gene were employed for precise identification and phylogenetic relationship studies of Raillietina spp. Four Raillietina species, including R. echinobothrida, R. tetragona, R. cesticillus, and Raillietina sp., were recovered in domestic chickens from 4 districts in Phayao province, Thailand. LM and SEM observations revealed differences in the morphology of the scolex, position of the genital pore, number of eggs per egg capsule, and rostellar opening surface structures in all 4 species. Phylogenetic relationships were found among the phylogenetic trees obtained by the maximum likelihood and distance-based neighbor-joining methods. ITS2 and ND1 sequence data recorded from Raillietina sp. appeared to be monophyletic. The query sequences of R. echinobothrida, R. tetragona, R. cesticillus, and Raillietina sp. were separated according to the different morphological characters. This study confirmed that morphological studies combined with molecular analyses can differentiate related species within the genus Raillietina in Thailand. PMID:28095663

  5. Variation in the cranium shape of wall lizards (Podarcis spp.): effects of phylogenetic constraints, allometric constraints and ecology.

    PubMed

    Urošević, Aleksandar; Ljubisavljević, Katarina; Jelić, Dušan; Ivanović, Ana

    2012-08-01

    We used geometric morphometrics to explore the influence of phylogenetic and allometric constraints as well as ecology on variation in cranium shape in five species of monophyletic, morphologically similar Podarcis lizards (Podarcis erhardii, Podarcis melisellensis, Podarcis muralis, Podarcis sicula and Podarcis taurica). These species belong to different clades, they differ in their habitat preferences and can be classified into two distinct morphotypes: saxicolous and terrestrial. We found (i) no phylogenetic signal in cranium shape, (ii) diverging allometric slopes among species, and (iii) a significant effect of habitat on cranium shape. The saxicolous species (P. erhardii and P. muralis) had crania with elongated parietals, elongated cranium bases, shortened anterior parts of the dorsal cranium, reduced chambers of the jaw adductor muscles and larger subocular foramina. These cranial features are adaptations that compensate for a flattened cranium, dwelling on vertical surfaces and seeking refuge in crevices. The crania of the terrestrial species (P. melisellensis, P. sicula and P. taurica) tended to be more elongate and robust, with enlarged chambers of the jaw adductor muscle, reduced skull bases and shortened parietals. Terrestrial species exhibited more variation in cranium shape than saxicolous species. Our study suggests that shape variation in Podarcis sp. lizards is largely influenced by ecology, which likely affects species-specific patterns of static allometry. Copyright © 2012 Elsevier GmbH. All rights reserved.

  6. Hidden and cryptic species reflect parallel and correlated evolution in the phylogeny of the genus Callyntra (Coleoptera: Tenebrionidae) of Central Chile.

    PubMed

    Zúñiga-Reinoso, Álvaro; Méndez, Marco A

    2018-04-24

    The origin of cryptic species has traditionally been associated with events of recent speciation, genetic constraints, selection of an adaptive character, sexual selection and/or convergent evolution. Species of the genus Callyntra inhabit coastal terraces, mountain slopes, and peaks; their elytral designs are associated with each of these habitats. However, cryptic species have been described within each of these habitats; the taxonomy of this group has been problematic, thus establishing the phylogenetic relationships in this group is fundamental to clarify the systematics and evolutionary patterns of Callyntra. We reconstructed the phylogeny of this group using two mitochondrial genes (COI, 16S) and one nuclear gene (Mp20). We also performed species delimitation using PTP based methods (PTP, mlPTP, bPTP) and GMYC, and evaluated the evolution of the elytral design related to habitat preference. The results showed a tree with five clades, that together with the different methods of species delimitation recovered the described species and suggested at least five new species. The elytral design and habitat preference showed phylogenetic signals. We propose a new classification based on monophyletic groups recovered by phylogenetic analyses. We also suggest that parallel evolution in different habitats and later stasis in the elytral design would be the cause of the origin of cryptic species in this group from central Chile. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Explosive radiation or uninformative genes? Origin and early diversification of tachinid flies (Diptera: Tachinidae).

    PubMed

    Winkler, Isaac S; Blaschke, Jeremy D; Davis, Daniel J; Stireman, John O; O'Hara, James E; Cerretti, Pierfilippo; Moulton, John K

    2015-07-01

    Molecular phylogenetic studies at all taxonomic levels often infer rapid radiation events based on short, poorly resolved internodes. While such rapid episodes of diversification are an important and widespread evolutionary phenomenon, much of this poor phylogenetic resolution may be attributed to the continuing widespread use of "traditional" markers (mitochondrial, ribosomal, and some nuclear protein-coding genes) that are often poorly suited to resolve difficult, higher-level phylogenetic problems. Here we reconstruct phylogenetic relationships among a representative set of taxa of the parasitoid fly family Tachinidae and related outgroups of the superfamily Oestroidea. The Tachinidae are one of the most species rich, yet evolutionarily recent families of Diptera, providing an ideal case study for examining the differential performance of loci in resolving phylogenetic relationships and the benefits of adding more loci to phylogenetic analyses. We assess the phylogenetic utility of nine genes including both traditional genes (e.g., CO1 mtDNA, 28S rDNA) and nuclear protein-coding genes newly developed for phylogenetic analysis. Our phylogenetic findings, based on a limited set of taxa, include: a close relationship between Tachinidae and the calliphorid subfamily Polleninae, monophyly of Tachinidae and the subfamilies Exoristinae and Dexiinae, subfamily groupings of Dexiinae+Phasiinae and Tachininae+Exoristinae, and robust phylogenetic placement of the somewhat enigmatic genera Strongygaster, Euthera, and Ceracia. In contrast to poor resolution and phylogenetic incongruence of "traditional genes," we find that a more selective set of highly informative genes is able to more precisely identify regions of the phylogeny that experienced rapid radiation of lineages, while more accurately depicting their phylogenetic context. Although much expanded taxon sampling is necessary to effectively assess the monophyly of and relationships among major tachinid lineages and their relatives, we show that a small number of well-chosen nuclear protein-coding genes can successfully resolve even difficult phylogenetic problems. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. TreSpEx—Detection of Misleading Signal in Phylogenetic Reconstructions Based on Tree Information

    PubMed Central

    Struck, Torsten H

    2014-01-01

    Phylogenies of species or genes are commonplace nowadays in many areas of comparative biological studies. However, for phylogenetic reconstructions one must refer to artificial signals such as paralogy, long-branch attraction, saturation, or conflict between different datasets. These signals might eventually mislead the reconstruction even in phylogenomic studies employing hundreds of genes. Unfortunately, there has been no program allowing the detection of such effects in combination with an implementation into automatic process pipelines. TreSpEx (Tree Space Explorer) now combines different approaches (including statistical tests), which utilize tree-based information like nodal support or patristic distances (PDs) to identify misleading signals. The program enables the parallel analysis of hundreds of trees and/or predefined gene partitions, and being command-line driven, it can be integrated into automatic process pipelines. TreSpEx is implemented in Perl and supported on Linux, Mac OS X, and MS Windows. Source code, binaries, and additional material are freely available at http://www.annelida.de/research/bioinformatics/software.html. PMID:24701118

  9. Development of a multiplex real-time PCR assay for phylogenetic analysis of Uropathogenic Escherichia coli.

    PubMed

    Hasanpour, Mojtaba; Najafi, Akram

    2017-06-01

    Uropathogenic Escherichia coli (UPEC) is among major pathogens causing 80-90% of all episodes of urinary tract infections (UTIs). Recently, E. coli strains are divided into eight main phylogenetic groups including A, B1, B2, C, D, E, F, and clade I. This study was aimed to develop a rapid, sensitive, and specific multiplex real time PCR method capable of detecting phylogenetic groups of E. coli strains. This study was carried out on E. coli strains (isolated from the patient with UTI) in which the presence of all seven target genes had been confirmed in our previous phylogenetic study. An EvaGreen-based singleplex and multiplex real-time PCR with melting curve analysis was designed for simultaneous detection and differentiation of these genes. The primers were selected mainly based on the production of amplicons with melting temperatures (T m ) ranging from 82°C to 93°C and temperature difference of more than 1.5°C between each peak.The multiplex real-time PCR assays that have been developed in the present study were successful in detecting the eight main phylogenetic groups. Seven distinct melting peaks were discriminated, with Tm value of 93±0.8 for arpA, 89.2±0.1for chuA, 86.5±0.1 for yjaA, 82.3±0.2 for TspE4C2, 87.8±0.1for trpAgpC, 85.4±0.6 for arpAgpE genes, and 91±0.5 for the internal control. To our knowledge, this study is the first melting curve-based real-time PCR assay developed for simultaneous and discrete detection of these seven target genes. Our findings showed that this assay has the potential to be a rapid, reliable and cost-effective alternative for routine phylotyping of E. coli strains. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Host range and community structure of avian nest parasites in the genus Philornis (Diptera: Muscidae) on the island of Trinidad.

    PubMed

    Bulgarella, Mariana; Heimpel, George E

    2015-09-01

    Parasite host range can be influenced by physiological, behavioral, and ecological factors. Combining data sets on host-parasite associations with phylogenetic information of the hosts and the parasites involved can generate evolutionary hypotheses about the selective forces shaping host range. Here, we analyzed associations between the nest-parasitic flies in the genus Philornis and their host birds on Trinidad. Four of ten Philornis species were only reared from one species of bird. Of the parasite species with more than one host bird species, P. falsificus was the least specific and P. deceptivus the most specific attacking only Passeriformes. Philornis flies in Trinidad thus include both specialists and generalists, with varying degrees of specificity within the generalists. We used three quantities to more formally compare the host range of Philornis flies: the number of bird species attacked by each species of Philornis, a phylogenetically informed host specificity index (Poulin and Mouillot's S TD), and a branch length-based S TD. We then assessed the phylogenetic signal of these measures of host range for 29 bird species. None of these measures showed significant phylogenetic signal, suggesting that clades of Philornis did not differ significantly in their ability to exploit hosts. We also calculated two quantities of parasite species load for the birds - the parasite species richness, and a variant of the S TD index based on nodes rather than on taxonomic levels - and assessed the signal of these measures on the bird phylogeny. We did not find significant phylogenetic signal for the parasite species load or the node-based S TD index. Finally, we calculated the parasite associations for all bird pairs using the Jaccard index and regressed these similarity values against the number of nodes in the phylogeny separating bird pairs. This analysis showed that Philornis on Trinidad tend to feed on closely related bird species more often than expected by chance.

  11. Molecular evidence for deep phylogenetic divergence in Mandrillus sphinx.

    PubMed

    Telfer, P T; Souquière, S; Clifford, S L; Abernethy, K A; Bruford, M W; Disotell, T R; Sterner, K N; Roques, P; Marx, P A; Wickings, E J

    2003-07-01

    Mandrills (Mandrillus sphinx) are forest primates indigenous to western central Africa. Phylogenetic analysis of 267 base pairs (bp) of the cytochrome b gene from 53 mandrills of known and 17 of unknown provenance revealed two phylogeographical groups, with haplotypes differentiated by 2.6% comprising seven synonymous transitions. The distribution of the haplotypes suggests that the Ogooué River, Gabon, which bisects their range, separates mandrill populations in Cameroon and northern Gabon from those in southern Gabon. The haplotype distribution is also concordant with that of two known mandrill simian immunodeficiency viruses, suggesting that these two mandrill phylogroups have followed different evolutionary trajectories since separation.

  12. Revising the phylogenetic position of the extinct Mascarene Parrot Mascarinus mascarin (Linnaeus 1771) (Aves: Psittaciformes: Psittacidae).

    PubMed

    Podsiadlowski, Lars; Gamauf, Anita; Töpfer, Till

    2017-02-01

    The phylogenetic position of the extinct Mascarene Parrot Mascarinus mascarin from La Réunion has been unresolved for centuries. A recent molecular study unexpectedly placed M. mascarin within the clade of phenotypically very different Vasa parrots Coracopsis. Based on DNA extracted from the only other preserved Mascarinus specimen, we show that the previously obtained cytb sequence is probably an artificial composite of partial sequences from two other parrot species and that M. mascarin is indeed a part of the Psittacula diversification, placed close to P. eupatria and P. wardi. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. A taxonomic and phylogenetic re-appraisal of the genus Curvularia

    USDA-ARS?s Scientific Manuscript database

    Species of Curvularia are important plant and human pathogens worldwide. In this study, the genus Curvularia is re-assessed based on molecular phylogenetic analysis and morphological observations of available isolates and specimens. A multi-gene phylogenetic tree inferred from ITS, TEF and GPDH gene...

  14. Phylogenetic analyses provide insights into the historical biogeography and evolution of Brachyrhaphis fishes.

    PubMed

    Ingley, Spencer J; Reina, Ruth G; Bermingham, Eldredge; Johnson, Jerald B

    2015-08-01

    The livebearing fish genus Brachyrhaphis (Poeciliidae) has become an increasingly important model in evolution and ecology research, yet the phylogeny of this group is not well understood, nor has it been examined thoroughly using modern phylogenetic methods. Here, we present the first comprehensive phylogenetic analysis of Brachyrhaphis by using four molecular markers (3mtDNA, 1nucDNA) to infer relationships among species in this genus. We tested the validity of this genus as a monophyletic group using extensive outgroup sampling based on recent phylogenetic hypotheses of Poeciliidae. We also tested the validity of recently described species of Brachyrhaphis that are part of the B. episcopi complex in Panama. Finally, we examined the impact of historical events on diversification of Brachyrhaphis, and made predictions regarding the role of different ecological environments on evolutionary diversification where known historical events apparently fail to explain speciation. Based on our results, we reject the monophyly of Brachyrhaphis, and question the validity of two recently described species (B. hessfeldi and B. roswithae). Historical biogeography of Brachyrhaphis generally agrees with patterns found in other freshwater taxa in Lower Central America, which show that geological barriers frequently predict speciation. Specifically, we find evidence in support of an 'island' model of Lower Central American formation, which posits that the nascent isthmus was partitioned by several marine connections before linking North and South America. In some cases where historic events (e.g., vicariance) fail to explain allopatric species breaks in Brachyrhaphis, ecological processes (e.g., divergent predation environments) offer additional insight into our understanding of phylogenetic diversification in this group. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Organellar phylogenomics of an emerging model system: Sphagnum (peatmoss).

    PubMed

    Jonathan Shaw, A; Devos, Nicolas; Liu, Yang; Cox, Cymon J; Goffinet, Bernard; Flatberg, Kjell Ivar; Shaw, Blanka

    2016-08-01

    Sphagnum-dominated peatlands contain approx. 30 % of the terrestrial carbon pool in the form of partially decomposed plant material (peat), and, as a consequence, Sphagnum is currently a focus of studies on biogeochemistry and control of global climate. Sphagnum species differ in ecologically important traits that scale up to impact ecosystem function, and sequencing of the genome from selected Sphagnum species is currently underway. As an emerging model system, these resources for Sphagnum will facilitate linking nucleotide variation to plant functional traits, and through those traits to ecosystem processes. A solid phylogenetic framework for Sphagnum is crucial to comparative analyses of species-specific traits, but relationships among major clades within Sphagnum have been recalcitrant to resolution because the genus underwent a rapid radiation. Herein a well-supported hypothesis for phylogenetic relationships among major clades within Sphagnum based on organellar genome sequences (plastid, mitochondrial) is provided. We obtained nucleotide sequences (273 753 nucleotides in total) from the two organellar genomes from 38 species (including three outgroups). Phylogenetic analyses were conducted using a variety of methods applied to nucleotide and amino acid sequences. The Sphagnum phylogeny was rooted with sequences from the related Sphagnopsida genera, Eosphagnum and Flatbergium Phylogenetic analyses of the data converge on the following subgeneric relationships: (Rigida (((Subsecunda) (Cuspidata)) ((Sphagnum) (Acutifolia))). All relationships were strongly supported. Species in the two major clades (i.e. Subsecunda + Cuspidata and Sphagnum + Acutifolia), which include >90 % of all Sphagnum species, differ in ecological niches and these differences correlate with other functional traits that impact biogeochemical cycling. Mitochondrial intron presence/absence are variable among species and genera of the Sphagnopsida. Two new nomenclatural combinations are made, in the genera Eosphagnum and Flatbergium Newly resolved relationships now permit phylogenetic analyses of morphological, biochemical and ecological traits among Sphagnum species. The results clarify long-standing disagreements about subgeneric relationships and intrageneric classification. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Organellar phylogenomics of an emerging model system: Sphagnum (peatmoss)

    PubMed Central

    Jonathan Shaw, A.; Devos, Nicolas; Liu, Yang; Cox, Cymon J.; Goffinet, Bernard; Flatberg, Kjell Ivar; Shaw, Blanka

    2016-01-01

    Background and Aims Sphagnum-dominated peatlands contain approx. 30 % of the terrestrial carbon pool in the form of partially decomposed plant material (peat), and, as a consequence, Sphagnum is currently a focus of studies on biogeochemistry and control of global climate. Sphagnum species differ in ecologically important traits that scale up to impact ecosystem function, and sequencing of the genome from selected Sphagnum species is currently underway. As an emerging model system, these resources for Sphagnum will facilitate linking nucleotide variation to plant functional traits, and through those traits to ecosystem processes. A solid phylogenetic framework for Sphagnum is crucial to comparative analyses of species-specific traits, but relationships among major clades within Sphagnum have been recalcitrant to resolution because the genus underwent a rapid radiation. Herein a well-supported hypothesis for phylogenetic relationships among major clades within Sphagnum based on organellar genome sequences (plastid, mitochondrial) is provided. Methods We obtained nucleotide sequences (273 753 nucleotides in total) from the two organellar genomes from 38 species (including three outgroups). Phylogenetic analyses were conducted using a variety of methods applied to nucleotide and amino acid sequences. The Sphagnum phylogeny was rooted with sequences from the related Sphagnopsida genera, Eosphagnum and Flatbergium. Key Results Phylogenetic analyses of the data converge on the following subgeneric relationships: (Rigida (((Subsecunda) (Cuspidata)) ((Sphagnum) (Acutifolia))). All relationships were strongly supported. Species in the two major clades (i.e. Subsecunda + Cuspidata and Sphagnum + Acutifolia), which include >90 % of all Sphagnum species, differ in ecological niches and these differences correlate with other functional traits that impact biogeochemical cycling. Mitochondrial intron presence/absence are variable among species and genera of the Sphagnopsida. Two new nomenclatural combinations are made, in the genera Eosphagnum and Flatbergium. Conclusions Newly resolved relationships now permit phylogenetic analyses of morphological, biochemical and ecological traits among Sphagnum species. The results clarify long-standing disagreements about subgeneric relationships and intrageneric classification. PMID:27268484

  17. Phylogenetic diversity and biodiversity indices on phylogenetic networks.

    PubMed

    Wicke, Kristina; Fischer, Mareike

    2018-04-01

    In biodiversity conservation it is often necessary to prioritize the species to conserve. Existing approaches to prioritization, e.g. the Fair Proportion Index and the Shapley Value, are based on phylogenetic trees and rank species according to their contribution to overall phylogenetic diversity. However, in many cases evolution is not treelike and thus, phylogenetic networks have been developed as a generalization of phylogenetic trees, allowing for the representation of non-treelike evolutionary events, such as hybridization. Here, we extend the concepts of phylogenetic diversity and phylogenetic diversity indices from phylogenetic trees to phylogenetic networks. On the one hand, we consider the treelike content of a phylogenetic network, e.g. the (multi)set of phylogenetic trees displayed by a network and the so-called lowest stable ancestor tree associated with it. On the other hand, we derive the phylogenetic diversity of subsets of taxa and biodiversity indices directly from the internal structure of the network. We consider both approaches that are independent of so-called inheritance probabilities as well as approaches that explicitly incorporate these probabilities. Furthermore, we introduce our software package NetDiversity, which is implemented in Perl and allows for the calculation of all generalized measures of phylogenetic diversity and generalized phylogenetic diversity indices established in this note that are independent of inheritance probabilities. We apply our methods to a phylogenetic network representing the evolutionary relationships among swordtails and platyfishes (Xiphophorus: Poeciliidae), a group of species characterized by widespread hybridization. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. The phylogenetic position of an Armillaria species from Amami-Oshima, a subtropical island of Japan, based on elongation factor and ITS sequences

    Treesearch

    Yuko Ota; Mee-Sook Kim; Hitoshi Neda; Ned B. Klopfenstein; Eri Hasegawa

    2011-01-01

    An undetermined Armillaria species was collected on Amami-Oshima, a subtropical island of Japan. The phylogenetic position of the Armillaria sp. was determined using sequences of the elongation factor-1a (EF-1a) gene and the internal transcribed spacer (ITS) region (ITS1-5.8S-ITS2) of ribosomal DNA (rDNA). The phylogenetic analyses based on EF-1a and ITS sequences...

  19. Molecular phylogeny of 21 tropical bamboo species reconstructed by integrating non-coding internal transcribed spacer (ITS1 and 2) sequences and their consensus secondary structure.

    PubMed

    Ghosh, Jayadri Sekhar; Bhattacharya, Samik; Pal, Amita

    2017-06-01

    The unavailability of the reproductive structure and unpredictability of vegetative characters for the identification and phylogenetic study of bamboo prompted the application of molecular techniques for greater resolution and consensus. We first employed internal transcribed spacer (ITS1, 5.8S rRNA and ITS2) sequences to construct the phylogenetic tree of 21 tropical bamboo species. While the sequence alone could grossly reconstruct the traditional phylogeny amongst the 21-tropical species studied, some anomalies were encountered that prompted a further refinement of the phylogenetic analyses. Therefore, we integrated the secondary structure of the ITS sequences to derive individual sequence-structure matrix to gain more resolution on the phylogenetic reconstruction. The results showed that ITS sequence-structure is the reliable alternative to the conventional phenotypic method for the identification of bamboo species. The best-fit topology obtained by the sequence-structure based phylogeny over the sole sequence based one underscores closer clustering of all the studied Bambusa species (Sub-tribe Bambusinae), while Melocanna baccifera, which belongs to Sub-Tribe Melocanneae, disjointedly clustered as an out-group within the consensus phylogenetic tree. In this study, we demonstrated the dependability of the combined (ITS sequence+structure-based) approach over the only sequence-based analysis for phylogenetic relationship assessment of bamboo.

  20. Effectiveness of protected areas for vertebrates based on taxonomic and phylogenetic diversity.

    PubMed

    Quan, Qing; Che, Xianli; Wu, Yongjie; Wu, Yuchun; Zhang, Qiang; Zhang, Min; Zou, Fasheng

    2018-04-01

    Establishing protected areas is the primary goal and tool for preventing irreversible biodiversity loss. However, the effectiveness of protected areas that target specific species has been questioned for some time because targeting key species for conservation may impair the integral regional pool of species diversity and phylogenetic and functional diversity are seldom considered. We assessed the efficacy of protected areas in China for the conservation of phylogenetic diversity based on the ranges and phylogenies of 2279 terrestrial vertebrates. Phylogenetic and taxonomic diversity were strongly and positively correlated, and only 12.1-43.8% of priority conservation areas are currently protected. However, the patterns and coverage of phylogenetic diversity were affected when weighted by species richness. These results indicated that in China, protected areas targeting high species richness protected phylogenetic diversity well overall but failed to do so in some regions with more unique or threatened communities (e.g., coastal areas of eastern China, where severely threatened avian communities were less protected). Our results suggest that the current distribution of protected areas could be improved, although most protected areas protect both taxonomic and phylogenetic diversity. © 2017 Society for Conservation Biology.

  1. Inferring Phylogenetic Networks Using PhyloNet.

    PubMed

    Wen, Dingqiao; Yu, Yun; Zhu, Jiafan; Nakhleh, Luay

    2018-07-01

    PhyloNet was released in 2008 as a software package for representing and analyzing phylogenetic networks. At the time of its release, the main functionalities in PhyloNet consisted of measures for comparing network topologies and a single heuristic for reconciling gene trees with a species tree. Since then, PhyloNet has grown significantly. The software package now includes a wide array of methods for inferring phylogenetic networks from data sets of unlinked loci while accounting for both reticulation (e.g., hybridization) and incomplete lineage sorting. In particular, PhyloNet now allows for maximum parsimony, maximum likelihood, and Bayesian inference of phylogenetic networks from gene tree estimates. Furthermore, Bayesian inference directly from sequence data (sequence alignments or biallelic markers) is implemented. Maximum parsimony is based on an extension of the "minimizing deep coalescences" criterion to phylogenetic networks, whereas maximum likelihood and Bayesian inference are based on the multispecies network coalescent. All methods allow for multiple individuals per species. As computing the likelihood of a phylogenetic network is computationally hard, PhyloNet allows for evaluation and inference of networks using a pseudolikelihood measure. PhyloNet summarizes the results of the various analyzes and generates phylogenetic networks in the extended Newick format that is readily viewable by existing visualization software.

  2. A molecular phylogenetic appraisal of the acanthostomines Acanthostomum and Timoniella and their position within Cryptogonimidae (Trematoda: Opisthorchioidea)

    PubMed Central

    Vidal-Martínez, Victor M.

    2017-01-01

    The phylogenetic position of three taxa from two trematode genera, belonging to the subfamily Acanthostominae (Opisthorchioidea: Cryptogonimidae), were analysed using partial 28S ribosomal DNA (Domains 1–2) and internal transcribed spacers (ITS1–5.8S–ITS2). Bayesian inference and Maximum likelihood analyses of combined 28S rDNA and ITS1 + 5.8S + ITS2 sequences indicated the monophyly of the genus Acanthostomum (A. cf. americanum and A. burminis) and paraphyly of the Acanthostominae. These phylogenetic relationships were consistent in analyses of 28S alone and concatenated 28S + ITS1 + 5.8S + ITS2 sequences analyses. Based on molecular phylogenetic analyses, the subfamily Acanthostominae is therefore a paraphyletic taxon, in contrast with previous classifications based on morphological data. Phylogenetic patterns of host specificity inferred from adult stages of other cryptogonimid taxa are also well supported. However, analyses using additional genera and species are necessary to support the phylogenetic inferences from this study. Our molecular phylogenetic reconstruction linked two larval stages of A. cf. americanum cercariae and metacercariae. Here, we present the evolutionary and ecological implications of parasitic infections in freshwater and brackish environments. PMID:29250471

  3. A molecular phylogenetic appraisal of the acanthostomines Acanthostomum and Timoniella and their position within Cryptogonimidae (Trematoda: Opisthorchioidea).

    PubMed

    Martínez-Aquino, Andrés; Vidal-Martínez, Victor M; Aguirre-Macedo, M Leopoldina

    2017-01-01

    The phylogenetic position of three taxa from two trematode genera, belonging to the subfamily Acanthostominae (Opisthorchioidea: Cryptogonimidae), were analysed using partial 28S ribosomal DNA (Domains 1-2) and internal transcribed spacers (ITS1-5.8S-ITS2). Bayesian inference and Maximum likelihood analyses of combined 28S rDNA and ITS1 + 5.8S + ITS2 sequences indicated the monophyly of the genus Acanthostomum ( A. cf. americanum and A. burminis ) and paraphyly of the Acanthostominae . These phylogenetic relationships were consistent in analyses of 28S alone and concatenated 28S + ITS1 + 5.8S + ITS2 sequences analyses. Based on molecular phylogenetic analyses, the subfamily Acanthostominae is therefore a paraphyletic taxon, in contrast with previous classifications based on morphological data. Phylogenetic patterns of host specificity inferred from adult stages of other cryptogonimid taxa are also well supported. However, analyses using additional genera and species are necessary to support the phylogenetic inferences from this study. Our molecular phylogenetic reconstruction linked two larval stages of A. cf. americanum cercariae and metacercariae. Here, we present the evolutionary and ecological implications of parasitic infections in freshwater and brackish environments.

  4. A comparative perspective on longevity: the effect of body size dominates over ecology in moths.

    PubMed

    Holm, S; Davis, R B; Javoiš, J; Õunap, E; Kaasik, A; Molleman, F; Tammaru, T

    2016-12-01

    Both physiologically and ecologically based explanations have been proposed to account for among-species differences in lifespan, but they remain poorly tested. Phylogenetically explicit comparative analyses are still scarce and those that exist are biased towards homoeothermic vertebrates. Insect studies can significantly contribute as lifespan can feasibly be measured in a high number of species, and the selective forces that have shaped it may differ largely between species and from those acting on larger animals. We recorded adult lifespan in 98 species of geometrid moths. Phylogenetic comparative analyses were applied to study variation in species-specific values of lifespan and to reveal its ecological and life-history correlates. Among-species and between-gender differences in lifespan were found to be notably limited; there was also no evidence of phylogenetic signal in this trait. Larger moth species were found to live longer, with this result supporting a physiological rather than ecological explanation of this relationship. Species-specific lifespan values could not be explained by traits such as reproductive season and larval diet breadth, strengthening the evidence for the dominance of physiological determinants of longevity over ecological ones. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  5. Phylogenetic relationships and taxonomic revision of Paranoplocephala Lühe, 1910 sensu lato (Cestoda, Cyclophyllidea, Anoplocephalidae)

    USDA-ARS?s Scientific Manuscript database

    An extensive phylogenetic analysis and genus-level taxonomic revision of Paranoplocephala Lühe, 1910 -like cestodes (Cyclophyllidea, Anoplocephalidae) are presented. The phylogenetic analysis is based on DNA sequences of two partial mitochondrial genes, i.e. cytochrome c oxidase subunit 1 (cox1) and...

  6. Evaluation of an Integrated Framework for Biodiversity with a New Metric for Functional Dispersion

    PubMed Central

    Presley, Steven J.; Scheiner, Samuel M.; Willig, Michael R.

    2014-01-01

    Growing interest in understanding ecological patterns from phylogenetic and functional perspectives has driven the development of metrics that capture variation in evolutionary histories or ecological functions of species. Recently, an integrated framework based on Hill numbers was developed that measures three dimensions of biodiversity based on abundance, phylogeny and function of species. This framework is highly flexible, allowing comparison of those diversity dimensions, including different aspects of a single dimension and their integration into a single measure. The behavior of those metrics with regard to variation in data structure has not been explored in detail, yet is critical for ensuring an appropriate match between the concept and its measurement. We evaluated how each metric responds to particular data structures and developed a new metric for functional biodiversity. The phylogenetic metric is sensitive to variation in the topology of phylogenetic trees, including variation in the relative lengths of basal, internal and terminal branches. In contrast, the functional metric exhibited multiple shortcomings: (1) species that are functionally redundant contribute nothing to functional diversity and (2) a single highly distinct species causes functional diversity to approach the minimum possible value. We introduced an alternative, improved metric based on functional dispersion that solves both of these problems. In addition, the new metric exhibited more desirable behavior when based on multiple traits. PMID:25148103

  7. Molecular phylogeny of the higher and lower taxonomy of the Fusarium genus and differences in the evolutionary histories of multiple genes

    PubMed Central

    2011-01-01

    Background Species of the Fusarium genus are important fungi which is associated with health hazards in human and animals. The taxonomy of this genus has been a subject of controversy for many years. Although many researchers have applied molecular phylogenetic analysis to examine the taxonomy of Fusarium species, their phylogenetic relationships remain unclear only few comprehensive phylogenetic analyses of the Fusarium genus and a lack of suitable nucleotides and amino acid substitution rates. A previous stugy with whole genome comparison among Fusairum species revealed the possibility that each gene in Fusarium genomes has a unique evolutionary history, and such gene may bring difficulty to the reconstruction of phylogenetic tree of Fusarium. There is a need not only to check substitution rates of genes but also to perform the exact evaluation of each gene-evolution. Results We performed phylogenetic analyses based on the nucleotide sequences of the rDNA cluster region (rDNA cluster), and the β-tubulin gene (β-tub), the elongation factor 1α gene (EF-1α), and the aminoadipate reductase gene (lys2). Although incongruence of the tree topologies between lys2 and the other genes was detected, all genes supported the classification of Fusarium species into 7 major clades, I to VII. To obtain a reliable phylogeny for Fusarium species, we excluded the lys2 sequences from our dataset, and re-constructed a maximum likelihood (ML) tree based on the combined data of the rDNA cluster, β-tub, and EF-1α. Our ML tree indicated some interesting relationships in the higher and lower taxa of Fusarium species and related genera. Moreover, we observed a novel evolutionary history of lys2. We suggest that the unique tree topologies of lys2 are not due to an analytical artefact, but due to differences in the evolutionary history of genomes caused by positive selection of particular lineages. Conclusion This study showed the reliable species tree of the higher and lower taxonomy in the lineage of the Fusarium genus. Our ML tree clearly indicated 7 major clades within the Fusarium genus. Furthermore, this study reported differences in the evolutionary histories among multiple genes within this genus for the first time. PMID:22047111

  8. Worldwide variation in hip fracture incidence weakly aligns with genetic divergence between populations.

    PubMed

    Wallace, I J; Botigué, L R; Lin, M; Smaers, J B; Henn, B M; Grine, F E

    2016-09-01

    This study investigates the influence of genetic differentiation in determining worldwide heterogeneity in osteoporosis-related hip fracture rates. The results indicate that global variation in fracture incidence exceeds that expected on the basis of random genetic variance. Worldwide, the incidence of osteoporotic hip fractures varies considerably. This variability is believed to relate mainly to non-genetic factors. It is conceivable, however, that genetic susceptibility indeed differs across populations. Here, we present the first quantitative assessment of the effects of genetic differentiation on global variability in hip fracture rates. We investigate the observed variance in publically reported age-standardized rates of hip fracture among 28 populations from around the world relative to the expected variance given the phylogenetic relatedness of these populations. The extent to which these variances are similar constitutes a "phylogenetic signal," which was measured using the K statistic. Population genetic divergence was calculated using a robust array of genome-wide single nucleotide polymorphisms. While phylogenetic signal is maximized when K > 1, a K value of only 0.103 was detected in the combined-sex fracture rate pattern across the 28 populations, indicating that fracture rates vary more than expected based on phylogenetic relationships. When fracture rates for the sexes were analyzed separately, the degree of phylogenetic signal was also found to be small (females: K = 0.102; males: K = 0.081). The lack of a strong phylogenetic signal underscores the importance of factors other than stochastic genetic diversity in shaping worldwide heterogeneity in hip fracture incidence.

  9. Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat.

    PubMed

    Harris, J Kirk; Caporaso, J Gregory; Walker, Jeffrey J; Spear, John R; Gold, Nicholas J; Robertson, Charles E; Hugenholtz, Philip; Goodrich, Julia; McDonald, Daniel; Knights, Dan; Marshall, Paul; Tufo, Henry; Knight, Rob; Pace, Norman R

    2013-01-01

    The microbial mats of Guerrero Negro (GN), Baja California Sur, Mexico historically were considered a simple environment, dominated by cyanobacteria and sulfate-reducing bacteria. Culture-independent rRNA community profiling instead revealed these microbial mats as among the most phylogenetically diverse environments known. A preliminary molecular survey of the GN mat based on only ∼1500 small subunit rRNA gene sequences discovered several new phylum-level groups in the bacterial phylogenetic domain and many previously undetected lower-level taxa. We determined an additional ∼119,000 nearly full-length sequences and 28,000 >200 nucleotide 454 reads from a 10-layer depth profile of the GN mat. With this unprecedented coverage of long sequences from one environment, we confirm the mat is phylogenetically stratified, presumably corresponding to light and geochemical gradients throughout the depth of the mat. Previous shotgun metagenomic data from the same depth profile show the same stratified pattern and suggest that metagenome properties may be predictable from rRNA gene sequences. We verify previously identified novel lineages and identify new phylogenetic diversity at lower taxonomic levels, for example, thousands of operational taxonomic units at the family-genus levels differ considerably from known sequences. The new sequences populate parts of the bacterial phylogenetic tree that previously were poorly described, but indicate that any comprehensive survey of GN diversity has only begun. Finally, we show that taxonomic conclusions are generally congruent between Sanger and 454 sequencing technologies, with the taxonomic resolution achieved dependent on the abundance of reference sequences in the relevant region of the rRNA tree of life.

  10. Beta-diversity of ectoparasites at two spatial scales: nested hierarchy, geography and habitat type.

    PubMed

    Warburton, Elizabeth M; van der Mescht, Luther; Stanko, Michal; Vinarski, Maxim V; Korallo-Vinarskaya, Natalia P; Khokhlova, Irina S; Krasnov, Boris R

    2017-06-01

    Beta-diversity of biological communities can be decomposed into (a) dissimilarity of communities among units of finer scale within units of broader scale and (b) dissimilarity of communities among units of broader scale. We investigated compositional, phylogenetic/taxonomic and functional beta-diversity of compound communities of fleas and gamasid mites parasitic on small Palearctic mammals in a nested hierarchy at two spatial scales: (a) continental scale (across the Palearctic) and (b) regional scale (across sites within Slovakia). At each scale, we analyzed beta-diversity among smaller units within larger units and among larger units with partitioning based on either geography or ecology. We asked (a) whether compositional, phylogenetic/taxonomic and functional dissimilarities of flea and mite assemblages are scale dependent; (b) how geographical (partitioning of sites according to geographic position) or ecological (partitioning of sites according to habitat type) characteristics affect phylogenetic/taxonomic and functional components of dissimilarity of ectoparasite assemblages and (c) whether assemblages of fleas and gamasid mites differ in their degree of dissimilarity, all else being equal. We found that compositional, phylogenetic/taxonomic, or functional beta-diversity was greater on a continental rather than a regional scale. Compositional and phylogenetic/taxonomic components of beta-diversity were greater among larger units than among smaller units within larger units, whereas functional beta-diversity did not exhibit any consistent trend regarding site partitioning. Geographic partitioning resulted in higher values of beta-diversity of ectoparasites than ecological partitioning. Compositional and phylogenetic components of beta-diversity were higher in fleas than mites but the opposite was true for functional beta-diversity in some, but not all, traits.

  11. A congruent phylogenomic signal places eukaryotes within the Archaea.

    PubMed

    Williams, Tom A; Foster, Peter G; Nye, Tom M W; Cox, Cymon J; Embley, T Martin

    2012-12-22

    Determining the relationships among the major groups of cellular life is important for understanding the evolution of biological diversity, but is difficult given the enormous time spans involved. In the textbook 'three domains' tree based on informational genes, eukaryotes and Archaea share a common ancestor to the exclusion of Bacteria. However, some phylogenetic analyses of the same data have placed eukaryotes within the Archaea, as the nearest relatives of different archaeal lineages. We compared the support for these competing hypotheses using sophisticated phylogenetic methods and an improved sampling of archaeal biodiversity. We also employed both new and existing tests of phylogenetic congruence to explore the level of uncertainty and conflict in the data. Our analyses suggested that much of the observed incongruence is weakly supported or associated with poorly fitting evolutionary models. All of our phylogenetic analyses, whether on small subunit and large subunit ribosomal RNA or concatenated protein-coding genes, recovered a monophyletic group containing eukaryotes and the TACK archaeal superphylum comprising the Thaumarchaeota, Aigarchaeota, Crenarchaeota and Korarchaeota. Hence, while our results provide no support for the iconic three-domain tree of life, they are consistent with an extended eocyte hypothesis whereby vital components of the eukaryotic nuclear lineage originated from within the archaeal radiation.

  12. Undergraduate Students’ Difficulties in Reading and Constructing Phylogenetic Tree

    NASA Astrophysics Data System (ADS)

    Sa'adah, S.; Tapilouw, F. S.; Hidayat, T.

    2017-02-01

    Representation is a very important communication tool to communicate scientific concepts. Biologists produce phylogenetic representation to express their understanding of evolutionary relationships. The phylogenetic tree is visual representation depict a hypothesis about the evolutionary relationship and widely used in the biological sciences. Phylogenetic tree currently growing for many disciplines in biology. Consequently, learning about phylogenetic tree become an important part of biological education and an interesting area for biology education research. However, research showed many students often struggle with interpreting the information that phylogenetic trees depict. The purpose of this study was to investigate undergraduate students’ difficulties in reading and constructing a phylogenetic tree. The method of this study is a descriptive method. In this study, we used questionnaires, interviews, multiple choice and open-ended questions, reflective journals and observations. The findings showed students experiencing difficulties, especially in constructing a phylogenetic tree. The students’ responds indicated that main reasons for difficulties in constructing a phylogenetic tree are difficult to placing taxa in a phylogenetic tree based on the data provided so that the phylogenetic tree constructed does not describe the actual evolutionary relationship (incorrect relatedness). Students also have difficulties in determining the sister group, character synapomorphy, autapomorphy from data provided (character table) and comparing among phylogenetic tree. According to them building the phylogenetic tree is more difficult than reading the phylogenetic tree. Finding this studies provide information to undergraduate instructor and students to overcome learning difficulties of reading and constructing phylogenetic tree.

  13. Novel Single Nucleotide Polymorphism-Based Assay for Genotyping Mycobacterium avium subsp. paratuberculosis

    PubMed Central

    Goldstone, Robert J.; McLuckie, Joyce; Smith, David G. E.

    2015-01-01

    Typing of Mycobacterium avium subspecies paratuberculosis strains presents a challenge, since they are genetically monomorphic and traditional molecular techniques have limited discriminatory power. The recent advances and availability of whole-genome sequencing have extended possibilities for the characterization of Mycobacterium avium subspecies paratuberculosis, and whole-genome sequencing can provide a phylogenetic context to facilitate global epidemiology studies. In this study, we developed a single nucleotide polymorphism (SNP) assay based on PCR and restriction enzyme digestion or sequencing of the amplified product. The SNP analysis was performed using genome sequence data from 133 Mycobacterium avium subspecies paratuberculosis isolates with different genotypes from 8 different host species and 17 distinct geographic regions around the world. A total of 28,402 SNPs were identified among all of the isolates. The minimum number of SNPs required to distinguish between all of the 133 genomes was 93 and between only the type C isolates was 41. To reduce the number of SNPs and PCRs required, we adopted an approach based on sequential detection of SNPs and a decision tree. By the analysis of 14 SNPs Mycobacterium avium subspecies paratuberculosis isolates can be characterized within 14 phylogenetic groups with a higher discriminatory power than mycobacterial interspersed repetitive unit–variable number tandem repeat assay and other typing methods. Continuous updating of genome sequences is needed in order to better characterize new phylogenetic groups and SNP profiles. The novel SNP assay is a discriminative, simple, reproducible method and requires only basic laboratory equipment for the large-scale global typing of Mycobacterium avium subspecies paratuberculosis isolates. PMID:26677250

  14. The Role of Edaphic Environment and Climate in Structuring Phylogenetic Pattern in Seasonally Dry Tropical Plant Communities

    PubMed Central

    Moro, Marcelo Freire; Silva, Igor Aurélio; de Araújo, Francisca Soares; Nic Lughadha, Eimear; Meagher, Thomas R.; Martins, Fernando Roberto

    2015-01-01

    Seasonally dry tropical plant formations (SDTF) are likely to exhibit phylogenetic clustering owing to niche conservatism driven by a strong environmental filter (water stress), but heterogeneous edaphic environments and life histories may result in heterogeneity in degree of phylogenetic clustering. We investigated phylogenetic patterns across ecological gradients related to water availability (edaphic environment and climate) in the Caatinga, a SDTF in Brazil. Caatinga is characterized by semiarid climate and three distinct edaphic environments – sedimentary, crystalline, and inselberg –representing a decreasing gradient in soil water availability. We used two measures of phylogenetic diversity: Net Relatedness Index based on the entire phylogeny among species present in a site, reflecting long-term diversification; and Nearest Taxon Index based on the tips of the phylogeny, reflecting more recent diversification. We also evaluated woody species in contrast to herbaceous species. The main climatic variable influencing phylogenetic pattern was precipitation in the driest quarter, particularly for herbaceous species, suggesting that environmental filtering related to minimal periods of precipitation is an important driver of Caatinga biodiversity, as one might expect for a SDTF. Woody species tended to show phylogenetic clustering whereas herbaceous species tended towards phylogenetic overdispersion. We also found phylogenetic clustering in two edaphic environments (sedimentary and crystalline) in contrast to phylogenetic overdispersion in the third (inselberg). We conclude that while niche conservatism is evident in phylogenetic clustering in the Caatinga, this is not a universal pattern likely due to heterogeneity in the degree of realized environmental filtering across edaphic environments. Thus, SDTF, in spite of a strong shared environmental filter, are potentially heterogeneous in phylogenetic structuring. Our results support the need for scientifically informed conservation strategies in the Caatinga and other SDTF regions that have not previously been prioritized for conservation in order to take into account this heterogeneity. PMID:25798584

  15. Diversity and Phylogenetic Distribution of Extracellular Microbial Peptidases

    NASA Astrophysics Data System (ADS)

    Nguyen, Trang; Mueller, Ryan; Myrold, David

    2017-04-01

    Depolymerization of proteinaceous compounds by extracellular proteolytic enzymes is a bottleneck in the nitrogen cycle, limiting the rate of the nitrogen turnover in soils. Protein degradation is accomplished by a diverse range of extracellular (secreted) peptidases. Our objective was to better understand the evolution of these enzymes and how their functional diversity corresponds to known phylogenetic diversity. Peptidase subfamilies from 110 archaeal, 1,860 bacterial, and 97 fungal genomes were extracted from the MEROPS database along with corresponding SSU sequences for each genome from the SILVA database, resulting in 43,177 secreted peptidases belonging to 34 microbial phyla and 149 peptidase subfamilies. We compared the distribution of each peptidase subfamily across all taxa to the phylogenetic relationships of these organisms based on their SSU gene sequences. The occurrence and abundance of genes coding for secreted peptidases varied across microbial taxa, distinguishing the peptidase complement of the three microbial kingdoms. Bacteria had the highest frequency of secreted peptidase coding genes per 1,000 genes and contributed from 1% to 6% of the gene content. Fungi only had a slightly higher number of secreted peptidase gene content than archaea, standardized by the total genes. The relative abundance profiles of secreted peptidases in each microbial kingdom also varied, in which aspartic family was found to be the greatest in fungi (25%), whereas it was only 12% in archaea and 4% in bacteria. Serine, metallo, and cysteine families consistently contributed widely up to 75% of the secreted peptidase abundance across the three kingdoms. Overall, bacteria had a much wider collection of secreted peptidases, whereas fungi and archaea shared most of their secreted peptidase families. Principle coordinate analysis of the peptidase subfamily-based dissimilarities showed distinguishable clusters for different groups of microorganisms. The distribution of secreted peptidases was found to be significantly correlated with phylogenetic relationships within kingdoms (archaea rMantel=0.364, p=0.001; bacteria rMantel=0.257, p=0.001, and fungi rMantel=0.281, p=0.005), inferring an evolutionary relationship where subsets of phylogenetically related organisms share similar types of secreted peptidases. We also tested the phylogenetic signal strength of each peptidase subfamily for each microbial kingdom based on the binary traits of the distribution (presence or absence of secreted peptidase subfamilies in individual species). About one-third of the peptidase subfamilies displayed a strong evolutionary signal; the rest were phylogenetically over-dispersed, suggesting that these subfamilies are randomly distributed across the tree of life or the result of events such as horizontal gene transfer. Study of the diversity and phylogenetic distribution of secreted peptidases offered a mechanistic basis to anticipate the proteolytic potential function of microbial communities.

  16. Molecular Phylogenetics: Concepts for a Newcomer.

    PubMed

    Ajawatanawong, Pravech

    Molecular phylogenetics is the study of evolutionary relationships among organisms using molecular sequence data. The aim of this review is to introduce the important terminology and general concepts of tree reconstruction to biologists who lack a strong background in the field of molecular evolution. Some modern phylogenetic programs are easy to use because of their user-friendly interfaces, but understanding the phylogenetic algorithms and substitution models, which are based on advanced statistics, is still important for the analysis and interpretation without a guide. Briefly, there are five general steps in carrying out a phylogenetic analysis: (1) sequence data preparation, (2) sequence alignment, (3) choosing a phylogenetic reconstruction method, (4) identification of the best tree, and (5) evaluating the tree. Concepts in this review enable biologists to grasp the basic ideas behind phylogenetic analysis and also help provide a sound basis for discussions with expert phylogeneticists.

  17. Taxonomic evaluation of selected Ganoderma species and database sequence validation

    PubMed Central

    Jargalmaa, Suldbold; Eimes, John A.; Park, Myung Soo; Park, Jae Young; Oh, Seung-Yoon

    2017-01-01

    Species in the genus Ganoderma include several ecologically important and pathogenic fungal species whose medicinal and economic value is substantial. Due to the highly similar morphological features within the Ganoderma, identification of species has relied heavily on DNA sequencing using BLAST searches, which are only reliable if the GenBank submissions are accurately labeled. In this study, we examined 113 specimens collected from 1969 to 2016 from various regions in Korea using morphological features and multigene analysis (internal transcribed spacer, translation elongation factor 1-α, and the second largest subunit of RNA polymerase II). These specimens were identified as four Ganoderma species: G. sichuanense, G. cf. adspersum, G. cf. applanatum, and G. cf. gibbosum. With the exception of G. sichuanense, these species were difficult to distinguish based solely on morphological features. However, phylogenetic analysis at three different loci yielded concordant phylogenetic information, and supported the four species distinctions with high bootstrap support. A survey of over 600 Ganoderma sequences available on GenBank revealed that 65% of sequences were either misidentified or ambiguously labeled. Here, we suggest corrected annotations for GenBank sequences based on our phylogenetic validation and provide updated global distribution patterns for these Ganoderma species. PMID:28761785

  18. Genetic characterization of Echinostoma revolutum and Echinoparyphium recurvatum (Trematoda: Echinostomatidae) in Thailand and phylogenetic relationships with other isolates inferred by ITS1 sequence.

    PubMed

    Saijuntha, Weerachai; Tantrawatpan, Chairat; Sithithaworn, Paiboon; Andrews, Ross H; Petney, Trevor N

    2011-03-01

    Echinostomatidae are common, widely distributed intestinal parasites causing significant disease in both animals and humans worldwide. In spite of their importance, the taxonomy of these echinostomes is still controversial. The taxonomic status of two species, Echinostoma revolutum and Echinoparyphium recurvatum, which commonly infect poultry and other birds, as well as human, is problematical. Previous phylogenetic analyses of Southeast Asian strains indicate that these species cluster as sister taxa. In the present study, the first internal transcribed spacer (ITS1) sequence was used for genetic characterization and to examine the phylogenetic relationships between an isolate from Thailand with other isolates available from GenBank database. Interspecies differences in ITS1 sequence between E. revolutum and E. recurvatum were detected at 6 (3%) of the 203 alignment positions. Of these, nucleotide deletion at positions 25, 26, and 27, pyrimidine transition at 50, 189, and pyrimidine transversion at 118 were observed. Phylogenetic analysis revealed that E. recurvatum from Thailand clustered as a sister taxa with E. revolutum and not with other members of the genus Echinoparyphium. Interestingly, this result confirms a previous report based on allozyme electrophoresis and mitochondrial DNA that E. revolutum and E. recurvatum in Southeast Asia are sister species. Hence, the taxonomic status of E. recurvatum in Thailand, as well as in Southeast Asian countries needs to be confirmed and revised using more comprehensive analyses based on morphology and other molecular techniques.

  19. Phylogeny predicts future habitat shifts due to climate change.

    PubMed

    Kuntner, Matjaž; Năpăruş, Magdalena; Li, Daiqin; Coddington, Jonathan A

    2014-01-01

    Taxa may respond differently to climatic changes, depending on phylogenetic or ecological effects, but studies that discern among these alternatives are scarce. Here, we use two species pairs from globally distributed spider clades, each pair representing two lifestyles (generalist, specialist) to test the relative importance of phylogeny versus ecology in predicted responses to climate change. We used a recent phylogenetic hypothesis for nephilid spiders to select four species from two genera (Nephilingis and Nephilengys) that match the above criteria, are fully allopatric but combined occupy all subtropical-tropical regions. Based on their records, we modeled each species niche spaces and predicted their ecological shifts 20, 40, 60, and 80 years into the future using customized GIS tools and projected climatic changes. Phylogeny better predicts the species current ecological preferences than do lifestyles. By 2080 all species face dramatic reductions in suitable habitat (54.8-77.1%) and adapt by moving towards higher altitudes and latitudes, although at different tempos. Phylogeny and life style explain simulated habitat shifts in altitude, but phylogeny is the sole best predictor of latitudinal shifts. Models incorporating phylogenetic relatedness are an important additional tool to predict accurately biotic responses to global change.

  20. Structure-Based Phylogenetic Analysis of the Lipocalin Superfamily.

    PubMed

    Lakshmi, Balasubramanian; Mishra, Madhulika; Srinivasan, Narayanaswamy; Archunan, Govindaraju

    2015-01-01

    Lipocalins constitute a superfamily of extracellular proteins that are found in all three kingdoms of life. Although very divergent in their sequences and functions, they show remarkable similarity in 3-D structures. Lipocalins bind and transport small hydrophobic molecules. Earlier sequence-based phylogenetic studies of lipocalins highlighted that they have a long evolutionary history. However the molecular and structural basis of their functional diversity is not completely understood. The main objective of the present study is to understand functional diversity of the lipocalins using a structure-based phylogenetic approach. The present study with 39 protein domains from the lipocalin superfamily suggests that the clusters of lipocalins obtained by structure-based phylogeny correspond well with the functional diversity. The detailed analysis on each of the clusters and sub-clusters reveals that the 39 lipocalin domains cluster based on their mode of ligand binding though the clustering was performed on the basis of gross domain structure. The outliers in the phylogenetic tree are often from single member families. Also structure-based phylogenetic approach has provided pointers to assign putative function for the domains of unknown function in lipocalin family. The approach employed in the present study can be used in the future for the functional identification of new lipocalin proteins and may be extended to other protein families where members show poor sequence similarity but high structural similarity.

  1. PHYLOGENETIC RELATIONSHIP OF ALEXANDRIUM MONILATUM (DINOPHYCEAE) TO OTHER ALEXANDRIUM SPECIES BASED ON 18S RIBOSOMAL RNA GENE SEQUENCES

    EPA Science Inventory

    The phylogenetic relationship of Alexandrium monilatum to other Alexandrium spp. was explored using 18S rDNA sequences. Maximum likelilhood phylogenetic analysis of the combined rDNA sequences established that A. monilatum paired with Alexandrium taylori and that the pair was the...

  2. PHYLOGENETIC RELATIONSHIP OF ALEXANDRIUM MONILATUM (DINOPHYCAE)TO OTHER ALEXANDRIUM SPECIES BASED ON 18S RIBOSOMAL RNA GENE SEQUENCES

    EPA Science Inventory

    The phylogenetic relationship of Alexandrium monilatum to other Alexandrium spp. was explored using 18S rDNA sequences. Maximum likelihood phylogenetic analysis of the combined rDNA sequences established that A. monilatum paired with Alexandrium taylori and that the pair was the ...

  3. Ultrastructure variation in the spermatozoa of Pseudopaludicola frogs (Amphibia, Anura, Leptodactylidae), with brief comments on its phylogenetic relevance.

    PubMed

    dos Santos, Julio Sérgio; Introíni, Gisele Orlandi; Veiga-Menoncello, Ana Cristina Prado; Recco-Pimentel, Shirlei Maria

    2015-12-01

    The taxonomic history of the small frogs of the genus Pseudopaludicola from South America has been controversial. Phylogenetic inferences based on molecular data have identified four Pseudopaludicola clades, correlating with the known variation in karyotypes (2n = 22, 20, 18, and 16). In this study, the ultrastructure of the spermatozoa was analyzed in 12 species of the Pseudopaludicola, with the aim of describing their morphology and identifying characters that may contribute to a better understanding of the phylogenetic relationships. The spermatozoa presented marked differences in tail structures. The tails of the spermatozoa of the species with 2n = 22 chromosomes (Pseudopaludicola sp. 1 [P. pusilla group], Pseudopaludicola falcipes, P. mineira, and Pseudopaludicola saltica), as well as Pseudopaludicola ameghini and Pseudopaludicola ternetzi (2n=20), have juxta-axonemal fibers, undulating membranes and axial fibers. In contrast, in the species with 2n = 18 (P. facureae, P. giarettai, Pseudopaludicola canga, P. atragula, and Pseudopaludicola sp. 2) and 2n = 16 (Pseudopaludicola mystacalis), there are no evident axial or juxta-axonemal fibers, but a paraxonemal rod with a thick undulating membrane, which is shorter than that found among Pseudopaludicola species. The ultrastructural morphological differences observed in the spermatozoa of these species may be phylogenetically informative, given that they coincide with the consensus phylogeny of the group and appear to represent a progressive simplification of the spermatozoon. © 2015 Wiley Periodicals, Inc.

  4. A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales)

    USDA-ARS?s Scientific Manuscript database

    Changes in Article 59 of the International Code of Nomenclature for algae, fungi, and plants (ICN) disallow the use of dual nomenclatural systems for fungi. This change requires the reconciliation of competing names, ideally linked through culture based or molecular methods. The phylogenetic syste...

  5. Assessment of Recombination in the S-segment Genome of Crimean-Congo Hemorrhagic Fever Virus in Iran.

    PubMed

    Chinikar, Sadegh; Shah-Hosseini, Nariman; Bouzari, Saeid; Shokrgozar, Mohammad Ali; Mostafavi, Ehsan; Jalali, Tahmineh; Khakifirouz, Sahar; Groschup, Martin H; Niedrig, Matthias

    2016-03-01

    Crimean-Congo Hemorrhagic Fever Virus (CCHFV) belongs to genus Nairovirus and family Bunyaviridae. The main aim of this study was to investigate the extent of recombination in S-segment genome of CCHFV in Iran. Samples were isolated from Iranian patients and those available in GenBank, and analyzed by phylogenetic and bootscan methods. Through comparison of the phylogenetic trees based on full length sequences and partial fragments in the S-segment genome of CCHFV, genetic switch was evident, due to recombination event. Moreover, evidence of multiple recombination events was detected in query isolates when bootscan analysis was used by SimPlot software. Switch of different genomic regions between different strains by recombination could contribute to CCHFV diversification and evolution. The occurrence of recombination in CCHFV has a critical impact on epidemiological investigations and vaccine design.

  6. Potential speciation of morphotypes in the photosymbiotic ascidian Didemnum molle in the Ryukyu Archipelago, Japan

    NASA Astrophysics Data System (ADS)

    Hirose, M.; Yokobori, S.; Hirose, E.

    2009-03-01

    Four morphotypes are recognized in the photosymbiotic ascidian Didemnum molle in the Ryukyu Archipelago: three color morphs (white, dark gray, and brown) of small-type colonies and one large-type colony (white with gray patches). The genetic variation among these four morphotypes was investigated by constructing phylogenetic trees based on a 401-bp fragment of the cytochrome oxidase subunit I (COI) gene of 29 specimens collected from five islands (Okinawajima, Sesokojima, Ikeijima, Kumejima, and Ishigakijima). The results support the monophyly of the genus Didemnum and that of the four morphotypes of D. molle. Moreover, the phylogenetic trees discriminated four clades corresponding to each morphotype. The geographic differences of the sequences were much smaller than the differences among the morphotypes, suggesting that the four morphotypes in D. molle are discrete sibling species.

  7. Genomic Comparative Study of Bovine Mastitis Escherichia coli.

    PubMed

    Kempf, Florent; Slugocki, Cindy; Blum, Shlomo E; Leitner, Gabriel; Germon, Pierre

    2016-01-01

    Escherichia coli, one of the main causative agents of bovine mastitis, is responsible for significant losses on dairy farms. In order to better understand the pathogenicity of E. coli mastitis, an accurate characterization of E. coli strains isolated from mastitis cases is required. By using phylogenetic analyses and whole genome comparison of 5 currently available mastitis E. coli genome sequences, we searched for genotypic traits specific for mastitis isolates. Our data confirm that there is a bias in the distribution of mastitis isolates in the different phylogenetic groups of the E. coli species, with the majority of strains belonging to phylogenetic groups A and B1. An interesting feature is that clustering of strains based on their accessory genome is very similar to that obtained using the core genome. This finding illustrates the fact that phenotypic properties of strains from different phylogroups are likely to be different. As a consequence, it is possible that different strategies could be used by mastitis isolates of different phylogroups to trigger mastitis. Our results indicate that mastitis E. coli isolates analyzed in this study carry very few of the virulence genes described in other pathogenic E. coli strains. A more detailed analysis of the presence/absence of genes involved in LPS synthesis, iron acquisition and type 6 secretion systems did not uncover specific properties of mastitis isolates. Altogether, these results indicate that mastitis E. coli isolates are rather characterized by a lack of bona fide currently described virulence genes.

  8. Genomic Comparative Study of Bovine Mastitis Escherichia coli

    PubMed Central

    Kempf, Florent; Slugocki, Cindy; Blum, Shlomo E.; Leitner, Gabriel; Germon, Pierre

    2016-01-01

    Escherichia coli, one of the main causative agents of bovine mastitis, is responsible for significant losses on dairy farms. In order to better understand the pathogenicity of E. coli mastitis, an accurate characterization of E. coli strains isolated from mastitis cases is required. By using phylogenetic analyses and whole genome comparison of 5 currently available mastitis E. coli genome sequences, we searched for genotypic traits specific for mastitis isolates. Our data confirm that there is a bias in the distribution of mastitis isolates in the different phylogenetic groups of the E. coli species, with the majority of strains belonging to phylogenetic groups A and B1. An interesting feature is that clustering of strains based on their accessory genome is very similar to that obtained using the core genome. This finding illustrates the fact that phenotypic properties of strains from different phylogroups are likely to be different. As a consequence, it is possible that different strategies could be used by mastitis isolates of different phylogroups to trigger mastitis. Our results indicate that mastitis E. coli isolates analyzed in this study carry very few of the virulence genes described in other pathogenic E. coli strains. A more detailed analysis of the presence/absence of genes involved in LPS synthesis, iron acquisition and type 6 secretion systems did not uncover specific properties of mastitis isolates. Altogether, these results indicate that mastitis E. coli isolates are rather characterized by a lack of bona fide currently described virulence genes. PMID:26809117

  9. Analyses of the radiation of birnaviruses from diverse host phyla and of their evolutionary affinities with other double-stranded RNA and positive strand RNA viruses using robust structure-based multiple sequence alignments and advanced phylogenetic methods

    PubMed Central

    2013-01-01

    Background Birnaviruses form a distinct family of double-stranded RNA viruses infecting animals as different as vertebrates, mollusks, insects and rotifers. With such a wide host range, they constitute a good model for studying the adaptation to the host. Additionally, several lines of evidence link birnaviruses to positive strand RNA viruses and suggest that phylogenetic analyses may provide clues about transition. Results We characterized the genome of a birnavirus from the rotifer Branchionus plicalitis. We used X-ray structures of RNA-dependent RNA polymerases and capsid proteins to obtain multiple structure alignments that allowed us to obtain reliable multiple sequence alignments and we employed “advanced” phylogenetic methods to study the evolutionary relationships between some positive strand and double-stranded RNA viruses. We showed that the rotifer birnavirus genome exhibited an organization remarkably similar to other birnaviruses. As this host was phylogenetically very distant from the other known species targeted by birnaviruses, we revisited the evolutionary pathways within the Birnaviridae family using phylogenetic reconstruction methods. We also applied a number of phylogenetic approaches based on structurally conserved domains/regions of the capsid and RNA-dependent RNA polymerase proteins to study the evolutionary relationships between birnaviruses, other double-stranded RNA viruses and positive strand RNA viruses. Conclusions We show that there is a good correlation between the phylogeny of the birnaviruses and that of their hosts at the phylum level using the RNA-dependent RNA polymerase (genomic segment B) on the one hand and a concatenation of the capsid protein, protease and ribonucleoprotein (genomic segment A) on the other hand. This correlation tends to vanish within phyla. The use of advanced phylogenetic methods and robust structure-based multiple sequence alignments allowed us to obtain a more accurate picture (in terms of probability of the tree topologies) of the evolutionary affinities between double-stranded RNA and positive strand RNA viruses. In particular, we were able to show that there exists a good statistical support for the claims that dsRNA viruses are not monophyletic and that viruses with permuted RdRps belong to a common evolution lineage as previously proposed by other groups. We also propose a tree topology with a good statistical support describing the evolutionary relationships between the Picornaviridae, Caliciviridae, Flaviviridae families and a group including the Alphatetraviridae, Nodaviridae, Permutotretraviridae, Birnaviridae, and Cystoviridae families. PMID:23865988

  10. The State of Phylogenetic Analysis: Narrow Visions and Simple Answers-Examples from the Diptera (flies).

    PubMed

    Borkent, Art

    2018-01-17

    The order Diptera is remarkably diverse, not only in species but in morphological variation in every life stage, making them excellent candidates for phylogenetic analysis. Such analysis has been hampered by methods that have severely restricted character state interpretation. Morphological-based phylogenies should be based on a deep understanding of the morphology, development and function of character states, and have extensive outgroup comparisons made to determine their polarity. Character states clearly vary in their value for determining phylogenetic relationships and this needs to be studied and utilized. Characters themselves need more explicit discussion, including how some may be developmentally or functionally related to other characters (and potentially not independent indicators of genealogical relationship). The current practice by many, of filling a matrix with poorly understood character states and highly limited outgroup comparisons, is unacceptable if the results are to be a valid reflection of the actual history of the group.Parsimony analysis is not an objective interpretation of phylogenetic relationships when all characters are treated as equal in value. Exact mathematical values applied to characters are entirely arbitrary and are generally used to produce a phylogeny that the author considers as reasonable. Mathematical appraisal of a given node is similarly inconsequential because characters do not have an intrinsic mathematical value. Bremer support, for example, provides values that have no biological reality but provide the pretence of objectivity. Cladists need to focus their attention on testing the validity of each synapomorphy proposed, as the basis for all further phylogenetic interpretation, rather than the testing of differing phylogenies through various comparative programs.Current phylogenetic analyses have come to increasingly depend on DNA sequence-based characters, in spite of their tumultuous history of inconsistent results. Until such time as sequences can be shown to produce predictive phylogenies (i.e., using Hennigian logic), independent of morphological analysis, they should be viewed with caution and certainly not as a panacea as they are commonly portrayed.The purported comprehensive analyses of phylogenetic relationships between families of Diptera by Wiegmann et al. (2011) and Lambkin et al. (2013) have serious flaws and cannot be considered as the "Periodic Table" of such relationships as originally heralded.Systematists working on Diptera have a plethora of complex and informative morphological synapomorphies in every life stage, either described or awaiting study. Many lineages have the potential of providing a wealth of evolutionary stories to share with other biologists if we produce stable phylogenies based on weighted synapomorphies and interpreted to elucidate the zoogeographic and bionomic divergence of the group. Some lineages are devoid of convincing synapomorphies and, in spite of our desires, should be recognized as being largely uninterpretable.

  11. First report of the post-fire morel, Morchella exuberans, in eastern North America

    USDA-ARS?s Scientific Manuscript database

    Reports of true morels (Morchella) fruiting on conifer burn sites are common in western North America where five different fire-adapted species of black morels (Elata Clade) have been documented based on multilocus phylogenetic analyses. Fruiting of post-fire morels in eastern North America, by comp...

  12. Phylogenetic congruence of lichenised fungi and algae is affected by spatial scale and taxonomic diversity.

    PubMed

    Buckley, Hannah L; Rafat, Arash; Ridden, Johnathon D; Cruickshank, Robert H; Ridgway, Hayley J; Paterson, Adrian M

    2014-01-01

    The role of species' interactions in structuring biological communities remains unclear. Mutualistic symbioses, involving close positive interactions between two distinct organismal lineages, provide an excellent means to explore the roles of both evolutionary and ecological processes in determining how positive interactions affect community structure. In this study, we investigate patterns of co-diversification between fungi and algae for a range of New Zealand lichens at the community, genus, and species levels and explore explanations for possible patterns related to spatial scale and pattern, taxonomic diversity of the lichens considered, and the level sampling replication. We assembled six independent datasets to compare patterns in phylogenetic congruence with varied spatial extent of sampling, taxonomic diversity and level of specimen replication. For each dataset, we used the DNA sequences from the ITS regions of both the fungal and algal genomes from lichen specimens to produce genetic distance matrices. Phylogenetic congruence between fungi and algae was quantified using distance-based redundancy analysis and we used geographic distance matrices in Moran's eigenvector mapping and variance partitioning to evaluate the effects of spatial variation on the quantification of phylogenetic congruence. Phylogenetic congruence was highly significant for all datasets and a large proportion of variance in both algal and fungal genetic distances was explained by partner genetic variation. Spatial variables, primarily at large and intermediate scales, were also important for explaining genetic diversity patterns in all datasets. Interestingly, spatial structuring was stronger for fungal than algal genetic variation. As the spatial extent of the samples increased, so too did the proportion of explained variation that was shared between the spatial variables and the partners' genetic variation. Different lichen taxa showed some variation in their phylogenetic congruence and spatial genetic patterns and where greater sample replication was used, the amount of variation explained by partner genetic variation increased. Our results suggest that the phylogenetic congruence pattern, at least at small spatial scales, is likely due to reciprocal co-adaptation or co-dispersal. However, the detection of these patterns varies among different lichen taxa, across spatial scales and with different levels of sample replication. This work provides insight into the complexities faced in determining how evolutionary and ecological processes may interact to generate diversity in symbiotic association patterns at the population and community levels. Further, it highlights the critical importance of considering sample replication, taxonomic diversity and spatial scale in designing studies of co-diversification.

  13. An attempt to reconstruct phylogenetic relationships within Caribbean nummulitids: simulating relationships and tracing character evolution

    NASA Astrophysics Data System (ADS)

    Eder, Wolfgang; Ives Torres-Silva, Ana; Hohenegger, Johann

    2017-04-01

    Phylogenetic analysis and trees based on molecular data are broadly applied and used to infer genetical and biogeographic relationship in recent larger foraminifera. Molecular phylogenetic is intensively used within recent nummulitids, however for fossil representatives these trees are only of minor informational value. Hence, within paleontological studies a phylogenetic approach through morphometric analysis is of much higher value. To tackle phylogenetic relationships within the nummulitid family, a much higher number of morphological character must be measured than are commonly used in biometric studies, where mostly parameters describing embryonic size (e.g., proloculus diameter, deuteroloculus diameter) and/or the marginal spiral (e.g., spiral diagrams, spiral indices) are studied. For this purpose 11 growth-independent and/or growth-invariant characters have been used to describe the morphological variability of equatorial thin sections of seven Carribbean nummulitid taxa (Nummulites striatoreticulatus, N. macgillavry, Palaeonummulites willcoxi, P.floridensis, P. soldadensis, P.trinitatensis and P.ocalanus) and one outgroup taxon (Ranikothalia bermudezi). Using these characters, phylogenetic trees were calculated using a restricted maximum likelihood algorithm (REML), and results are cross-checked by ordination and cluster analysis. Square-change parsimony method has been run to reconstruct ancestral states, as well as to simulate the evolution of the chosen characters along the calculated phylogenetic tree and, independent - contrast analysis was used to estimate confidence intervals. Based on these simulations, phylogenetic tendencies of certain characters proposed for nummulitids (e.g., Cope's rule or nepionic acceleration) can be tested, whether these tendencies are valid for the whole family or only for certain clades. At least, within the Carribean nummulitids, phylogenetic trends along some growth-independent characters of the embryo (e.g., first chamber length and P/D ratio) and some growth-invariant characters of the chamber sequence (e.g., backbend angle, initial chamber base length and chamber length increase) are evident.

  14. Molecular study on three morphotypes of Demodex mites (Acarina: Demodicidae) from dogs.

    PubMed

    de Rojas, Manuel; Riazzo, Cristina; Callejón, Rocío; Guevara, Diego; Cutillas, Cristina

    2012-11-01

    Canine demodicosis is a severe and highly prevalent dermatologic disease in dogs. Pet dogs can be affected by three recognized Demodex species that can produce clinical effects. In this paper, three morphological types of Demodex mites have been isolated from Spanish dogs. A complete morphobiometrical study of each one has been carried out. Morphological and biometrical studies revealed three closely related populations with some distinctive characteristics and could be identified as Demodex canis, Demodex injai, and Demodex sp. "cornei." Furthermore, one population of D. canis from China, different populations of Demodex folliculorum from human skin (Spain and China), D. folliculorum from human eyelashes (Spain), and Demodex brevis from human skin (China) were considered to find out the level of variation between different species and geographical origin. The aim of the present study is to assess the usefulness of mitochondrial DNA molecular markers in establishing phylogenetic relationships and resolve taxonomic questions in Demodex mites. Molecular studies based on the amplification and sequencing of the 16S rDNA and cytochrome oxidase I mitochondrial genes did not show clear differences between the three morphotypes considered. Furthermore, phylogenetic relationships in Demodex mites were analyzed. The resulting phylogenetic trees show that Demodex species from dogs were gathered together, and populations of D. folliculorum from humans appear together in a different branch; however, D. brevis from humans seemed to be more distant. Our results show that cytochrome oxidase I region is a useful tool to solve different taxonomic questions at the species and population level and to infer phylogenetic relationships in Demodex species. However, 16S mitochondrial rDNA seems a good marker for comparisons at an interspecies level, but not at a population level in this group of mites. Furthermore, from genetic distance and divergence data, we would suggest that D. canis, D. injai, and Demodex sp. cornei are polymorphisms of the same species.

  15. Lactobacillus gorillae sp. nov., isolated from the faeces of captive and wild western lowland gorillas (Gorilla gorilla gorilla).

    PubMed

    Tsuchida, Sayaka; Kitahara, Maki; Nguema, Pierre Philippe Mbehang; Norimitsu, Saeko; Fujita, Shiho; Yamagiwa, Juichi; Ngomanda, Alfred; Ohkuma, Moriya; Ushida, Kazunari

    2014-12-01

    Four strains of Gram-staining-positive, anaerobic rods were isolated from the faeces of western lowland gorillas (Gorilla gorilla gorilla). Three strains, KZ01(T), KZ02 and KZ03, were isolated at the Kyoto City Zoo, Japan, and one strain, GG02, was isolated in the Moukalaba-Doudou National Park, Gabon. These strains were investigated taxonomically. These strains belonged to the Lactobacillus reuteri phylogenetic group according to phylogenetic analysis based on 16S rRNA gene sequences and specific phenotypic characteristics. Phylogenetic analysis of their 16S rRNA gene sequences revealed that strains KZ01(T), KZ02, KZ03 and GG02 formed a single monophyletic cluster and had a distinct line of descent. Based on sequence similarity of the 16S rRNA gene, Lactobacillus fermentum JCM 1173(T) (96.6 %) was the closest neighbour to these novel strains, although it was clear that these strains belonged to a different species. Partial pheS sequences also supported these relationships. DNA-DNA relatedness between strain KZ01(T) and L. fermentum JCM 1173(T) was less than 22 % and the DNA G+C content of strain KZ01(T) was 50.7 mol%. The cell-wall peptidoglycan type was A4β (l-Orn-d-Asp) and the major fatty acids were C16 : 0, C18 : 1ω9c and C19 : 1 cyclo 9,10. Therefore, based on phylogenetic, phenotypic and physiological evidence, these strains represent a novel species of the genus Lactobacillus, for which the name Lactobacillus gorillae sp. nov. is proposed. The type strain is KZ01(T) ( = JCM 19575(T) = DSM 28356(T)). © 2014 IUMS.

  16. Distance-Based Phylogenetic Methods Around a Polytomy.

    PubMed

    Davidson, Ruth; Sullivant, Seth

    2014-01-01

    Distance-based phylogenetic algorithms attempt to solve the NP-hard least-squares phylogeny problem by mapping an arbitrary dissimilarity map representing biological data to a tree metric. The set of all dissimilarity maps is a Euclidean space properly containing the space of all tree metrics as a polyhedral fan. Outputs of distance-based tree reconstruction algorithms such as UPGMA and neighbor-joining are points in the maximal cones in the fan. Tree metrics with polytomies lie at the intersections of maximal cones. A phylogenetic algorithm divides the space of all dissimilarity maps into regions based upon which combinatorial tree is reconstructed by the algorithm. Comparison of phylogenetic methods can be done by comparing the geometry of these regions. We use polyhedral geometry to compare the local nature of the subdivisions induced by least-squares phylogeny, UPGMA, and neighbor-joining when the true tree has a single polytomy with exactly four neighbors. Our results suggest that in some circumstances, UPGMA and neighbor-joining poorly match least-squares phylogeny.

  17. Allometry of sexual size dimorphism in turtles: a comparison of mass and length data.

    PubMed

    Regis, Koy W; Meik, Jesse M

    2017-01-01

    The macroevolutionary pattern of Rensch's Rule (positive allometry of sexual size dimorphism) has had mixed support in turtles. Using the largest carapace length dataset and only large-scale body mass dataset assembled for this group, we determine (a) whether turtles conform to Rensch's Rule at the order, suborder, and family levels, and (b) whether inferences regarding allometry of sexual size dimorphism differ based on choice of body size metric used for analyses. We compiled databases of mean body mass and carapace length for males and females for as many populations and species of turtles as possible. We then determined scaling relationships between males and females for average body mass and straight carapace length using traditional and phylogenetic comparative methods. We also used regression analyses to evalutate sex-specific differences in the variance explained by carapace length on body mass. Using traditional (non-phylogenetic) analyses, body mass supports Rensch's Rule, whereas straight carapace length supports isometry. Using phylogenetic independent contrasts, both body mass and straight carapace length support Rensch's Rule with strong congruence between metrics. At the family level, support for Rensch's Rule is more frequent when mass is used and in phylogenetic comparative analyses. Turtles do not differ in slopes of sex-specific mass-to-length regressions and more variance in body size within each sex is explained by mass than by carapace length. Turtles display Rensch's Rule overall and within families of Cryptodires, but not within Pleurodire families. Mass and length are strongly congruent with respect to Rensch's Rule across turtles, and discrepancies are observed mostly at the family level (the level where Rensch's Rule is most often evaluated). At macroevolutionary scales, the purported advantages of length measurements over weight are not supported in turtles.

  18. Multi-gene phylogenetic analysis reveals that shochu-fermenting Saccharomyces cerevisiae strains form a distinct sub-clade of the Japanese sake cluster.

    PubMed

    Futagami, Taiki; Kadooka, Chihiro; Ando, Yoshinori; Okutsu, Kayu; Yoshizaki, Yumiko; Setoguchi, Shinji; Takamine, Kazunori; Kawai, Mikihiko; Tamaki, Hisanori

    2017-10-01

    Shochu is a traditional Japanese distilled spirit. The formation of the distinguishing flavour of shochu produced in individual distilleries is attributed to putative indigenous yeast strains. In this study, we performed the first (to our knowledge) phylogenetic classification of shochu strains based on nucleotide gene sequences. We performed phylogenetic classification of 21 putative indigenous shochu yeast strains isolated from 11 distilleries. All of these strains were shown or confirmed to be Saccharomyces cerevisiae, sharing species identification with 34 known S. cerevisiae strains (including commonly used shochu, sake, ale, whisky, bakery, bioethanol and laboratory yeast strains and clinical isolate) that were tested in parallel. Our analysis used five genes that reflect genome-level phylogeny for the strain-level classification. In a first step, we demonstrated that partial regions of the ZAP1, THI7, PXL1, YRR1 and GLG1 genes were sufficient to reproduce previous sub-species classifications. In a second step, these five analysed regions from each of 25 strains (four commonly used shochu strains and the 21 putative indigenous shochu strains) were concatenated and used to generate a phylogenetic tree. Further analysis revealed that the putative indigenous shochu yeast strains form a monophyletic group that includes both the shochu yeasts and a subset of the sake group strains; this cluster is a sister group to other sake yeast strains, together comprising a sake-shochu group. Differences among shochu strains were small, suggesting that it may be possible to correlate subtle phenotypic differences among shochu flavours with specific differences in genome sequences. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Molecular phylogenetic study at the generic boundary between the lichen-forming fungi Caloplaca and Xanthoria (Ascomycota, Teloschistaceae).

    PubMed

    Søchting, Ulrik; Lutzoni, François

    2003-11-01

    A molecular phylogenetic analysis of rDNA was performed for seven Caloplaca, seven Xanthoria, one Fulgensia and five outgroup species. Phylogenetic hypotheses are constructed based on nuclear small and large subunit rDNA, separately and in combination. Three strongly supported major monophyletic groups were revealed within the Teloschistaceae. One group represents the Xanthoria fallax-group. The second group includes three subgroups: (1) X. parietina and X. elegans; (2) basal placodioid Caloplaca species followed by speciations leading to X. polycarpa and X. candelaria; and (3) a mixture of placodioid and endolithic Caloplaca species. The third main monophyletic group represents a heterogeneous assemblage of Caloplaca and Fulgensia species with a drastically different metabolite content. We report here that the two genera Caloplaca and Xanthoria, as well as the subgenus Gasparrinia, are all polyphyletic. The taxonomic significance of thallus morphology in Teloschistaceae and the current delimitation of the genus Xanthoria is discussed in light of these results.

  20. Next-generation sequencing of the yellowfin tuna mitochondrial genome reveals novel phylogenetic relationships within the genus Thunnus.

    PubMed

    Guo, Liang; Li, Mingming; Zhang, Heng; Yang, Sen; Chen, Xinghan; Meng, Zining; Lin, Haoran

    2016-05-01

    Recently, the next-generation sequencing (NGS) technology has become a powerful tool for sequencing the teleost mitochondrial genome (mitogenome). Here, we used this technology to determine the mitogenome of the yellowfin tuna (Thunnus albacares). A total of 41,378 reads were generated by Illumina platform with an average depth of 250×. The mitogenome (16,528 bp in length) contained 37 mitochondrial genes with the similar gene order to other typical teleosts. These mitochondrial genes were encoded on the heavy strand except for ND6 and eight tRNA genes. The result of phylogenetic analysis supported two distinct clades dividing the genus Thunnus, but the tuna species of these two genetic clades were different from that of two recognized subgenus based on anatomical characters and geographical distribution. Our results might help to understand the structure, function, and evolutionary history of the yellowfin tuna mitogenome and also provide valuable new insights for phylogenetic affinity of tuna species.

  1. Homologization of the flight musculature of zygoptera (insecta: odonata) and neoptera (insecta).

    PubMed

    Büsse, Sebastian; Genet, Cécile; Hörnschemeyer, Thomas

    2013-01-01

    Among the winged insects (Pterygota) the Dragonflies and Damselflies (Odonata) are unique for several reasons. Behaviourally they are aerial predators that hunt and catch their prey in flight, only. Morphologically the flight apparatus of Odonata is significantly different from what is found in the remaining Pterygota. However, to understand the phylogenetic relationships of winged insects and the origin and evolution of insect flight in general, it is essential to know how the elements of the odonatan flight apparatus relate to those of the other Pterygota. Here we present a comprehensive, comparative morphological investigation of the thoracic flight musculature of damselflies (Zygoptera). Based on our new data we propose a homologization scheme for the thoracic musculature throughout Pterygota. The new homology hypotheses will allow for future comparative work and especially for phylogenetic analyses using characters of the thoracic musculature throughout all winged insects. This will contribute to understand the early evolution of pterygote insects and their basal phylogenetic relationship.

  2. Homologization of the Flight Musculature of Zygoptera (Insecta: Odonata) and Neoptera (Insecta)

    PubMed Central

    Büsse, Sebastian; Genet, Cécile; Hörnschemeyer, Thomas

    2013-01-01

    Among the winged insects (Pterygota) the Dragonflies and Damselflies (Odonata) are unique for several reasons. Behaviourally they are aerial predators that hunt and catch their prey in flight, only. Morphologically the flight apparatus of Odonata is significantly different from what is found in the remaining Pterygota. However, to understand the phylogenetic relationships of winged insects and the origin and evolution of insect flight in general, it is essential to know how the elements of the odonatan flight apparatus relate to those of the other Pterygota. Here we present a comprehensive, comparative morphological investigation of the thoracic flight musculature of damselflies (Zygoptera). Based on our new data we propose a homologization scheme for the thoracic musculature throughout Pterygota. The new homology hypotheses will allow for future comparative work and especially for phylogenetic analyses using characters of the thoracic musculature throughout all winged insects. This will contribute to understand the early evolution of pterygote insects and their basal phylogenetic relationship. PMID:23457479

  3. Functional & phylogenetic diversity of copepod communities

    NASA Astrophysics Data System (ADS)

    Benedetti, F.; Ayata, S. D.; Blanco-Bercial, L.; Cornils, A.; Guilhaumon, F.

    2016-02-01

    The diversity of natural communities is classically estimated through species identification (taxonomic diversity) but can also be estimated from the ecological functions performed by the species (functional diversity), or from the phylogenetic relationships among them (phylogenetic diversity). Estimating functional diversity requires the definition of specific functional traits, i.e., phenotypic characteristics that impact fitness and are relevant to ecosystem functioning. Estimating phylogenetic diversity requires the description of phylogenetic relationships, for instance by using molecular tools. In the present study, we focused on the functional and phylogenetic diversity of copepod surface communities in the Mediterranean Sea. First, we implemented a specific trait database for the most commonly-sampled and abundant copepod species of the Mediterranean Sea. Our database includes 191 species, described by seven traits encompassing diverse ecological functions: minimal and maximal body length, trophic group, feeding type, spawning strategy, diel vertical migration and vertical habitat. Clustering analysis in the functional trait space revealed that Mediterranean copepods can be gathered into groups that have different ecological roles. Second, we reconstructed a phylogenetic tree using the available sequences of 18S rRNA. Our tree included 154 of the analyzed Mediterranean copepod species. We used these two datasets to describe the functional and phylogenetic diversity of copepod surface communities in the Mediterranean Sea. The replacement component (turn-over) and the species richness difference component (nestedness) of the beta diversity indices were identified. Finally, by comparing various and complementary aspects of plankton diversity (taxonomic, functional, and phylogenetic diversity) we were able to gain a better understanding of the relationships among the zooplankton community, biodiversity, ecosystem function, and environmental forcing.

  4. Phylogenetic Copy-Number Factorization of Multiple Tumor Samples.

    PubMed

    Zaccaria, Simone; El-Kebir, Mohammed; Klau, Gunnar W; Raphael, Benjamin J

    2018-04-16

    Cancer is an evolutionary process driven by somatic mutations. This process can be represented as a phylogenetic tree. Constructing such a phylogenetic tree from genome sequencing data is a challenging task due to the many types of mutations in cancer and the fact that nearly all cancer sequencing is of a bulk tumor, measuring a superposition of somatic mutations present in different cells. We study the problem of reconstructing tumor phylogenies from copy-number aberrations (CNAs) measured in bulk-sequencing data. We introduce the Copy-Number Tree Mixture Deconvolution (CNTMD) problem, which aims to find the phylogenetic tree with the fewest number of CNAs that explain the copy-number data from multiple samples of a tumor. We design an algorithm for solving the CNTMD problem and apply the algorithm to both simulated and real data. On simulated data, we find that our algorithm outperforms existing approaches that either perform deconvolution/factorization of mixed tumor samples or build phylogenetic trees assuming homogeneous tumor samples. On real data, we analyze multiple samples from a prostate cancer patient, identifying clones within these samples and a phylogenetic tree that relates these clones and their differing proportions across samples. This phylogenetic tree provides a higher resolution view of copy-number evolution of this cancer than published analyses.

  5. Accounting for Uncertainty in Gene Tree Estimation: Summary-Coalescent Species Tree Inference in a Challenging Radiation of Australian Lizards.

    PubMed

    Blom, Mozes P K; Bragg, Jason G; Potter, Sally; Moritz, Craig

    2017-05-01

    Accurate gene tree inference is an important aspect of species tree estimation in a summary-coalescent framework. Yet, in empirical studies, inferred gene trees differ in accuracy due to stochastic variation in phylogenetic signal between targeted loci. Empiricists should, therefore, examine the consistency of species tree inference, while accounting for the observed heterogeneity in gene tree resolution of phylogenomic data sets. Here, we assess the impact of gene tree estimation error on summary-coalescent species tree inference by screening ${\\sim}2000$ exonic loci based on gene tree resolution prior to phylogenetic inference. We focus on a phylogenetically challenging radiation of Australian lizards (genus Cryptoblepharus, Scincidae) and explore effects on topology and support. We identify a well-supported topology based on all loci and find that a relatively small number of high-resolution gene trees can be sufficient to converge on the same topology. Adding gene trees with decreasing resolution produced a generally consistent topology, and increased confidence for specific bipartitions that were poorly supported when using a small number of informative loci. This corroborates coalescent-based simulation studies that have highlighted the need for a large number of loci to confidently resolve challenging relationships and refutes the notion that low-resolution gene trees introduce phylogenetic noise. Further, our study also highlights the value of quantifying changes in nodal support across locus subsets of increasing size (but decreasing gene tree resolution). Such detailed analyses can reveal anomalous fluctuations in support at some nodes, suggesting the possibility of model violation. By characterizing the heterogeneity in phylogenetic signal among loci, we can account for uncertainty in gene tree estimation and assess its effect on the consistency of the species tree estimate. We suggest that the evaluation of gene tree resolution should be incorporated in the analysis of empirical phylogenomic data sets. This will ultimately increase our confidence in species tree estimation using summary-coalescent methods and enable us to exploit genomic data for phylogenetic inference. [Coalescence; concatenation; Cryptoblepharus; exon capture; gene tree; phylogenomics; species tree.]. © The authors 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  6. Fusarium proliferatum - Causal agent of garlic bulb rot in Spain: Genetic variability and mycotoxin production.

    PubMed

    Gálvez, Laura; Urbaniak, Monika; Waśkiewicz, Agnieszka; Stępień, Łukasz; Palmero, Daniel

    2017-10-01

    Fusarium proliferatum is a world-wide occurring fungal pathogen affecting several crops included garlic bulbs. In Spain, this is the most frequent pathogenic fungus associated with garlic rot during storage. Moreover, F. proliferatum is an important mycotoxigenic species, producing a broad range of toxins, which may pose a risk for food safety. The aim of this study is to assess the intraspecific variability of the garlic pathogen in Spain implied by analyses of translation elongation factor (tef-1α) and FUM1 gene sequences as well as the differences in growth rates. Phylogenetic characterization has been complemented with the characterization of mating type alleles as well as the species potential as a toxin producer. Phylogenetic trees based on the sequence of the translation elongation factor and FUM1 genes from seventy nine isolates from garlic revealed a considerable intraspecific variability as well as high level of diversity in growth speed. Based on the MAT alleles amplified by PCR, F. proliferatum isolates were separated into different groups on both trees. All isolates collected from garlic in Spain proved to be fumonisin B 1 , B 2 , and B 3 producers. Quantitative analyses of fumonisins, beauvericin and moniliformin (common secondary metabolites of F. proliferatum) showed no correlation with phylogenetic analysis neither mycelial growth. This pathogen presents a high intraspecific variability within the same geographical region and host, which is necessary to be considered in the management of the disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Whole-proteome phylogeny of large dsDNA viruses and parvoviruses through a composition vector method related to dynamical language model

    PubMed Central

    2010-01-01

    Background The vast sequence divergence among different virus groups has presented a great challenge to alignment-based analysis of virus phylogeny. Due to the problems caused by the uncertainty in alignment, existing tools for phylogenetic analysis based on multiple alignment could not be directly applied to the whole-genome comparison and phylogenomic studies of viruses. There has been a growing interest in alignment-free methods for phylogenetic analysis using complete genome data. Among the alignment-free methods, a dynamical language (DL) method proposed by our group has successfully been applied to the phylogenetic analysis of bacteria and chloroplast genomes. Results In this paper, the DL method is used to analyze the whole-proteome phylogeny of 124 large dsDNA viruses and 30 parvoviruses, two data sets with large difference in genome size. The trees from our analyses are in good agreement to the latest classification of large dsDNA viruses and parvoviruses by the International Committee on Taxonomy of Viruses (ICTV). Conclusions The present method provides a new way for recovering the phylogeny of large dsDNA viruses and parvoviruses, and also some insights on the affiliation of a number of unclassified viruses. In comparison, some alignment-free methods such as the CV Tree method can be used for recovering the phylogeny of large dsDNA viruses, but they are not suitable for resolving the phylogeny of parvoviruses with a much smaller genome size. PMID:20565983

  8. Phylogenetic Analysis and Molecular Characterization of Xanthium sibiricum Using DNA Barcoding, PCR-RFLP, and Specific Primers.

    PubMed

    Tomasello, Salvatore; Heubl, Günther

    2017-07-01

    The fruits of Xanthium sibiricum have been widely used in traditional Chinese medicine for the treatment of nasal sinusitis and headaches. The genus Xanthium (cocklebur) is a taxonomically complex genus. Different taxonomic concepts have been proposed, some including several species, others lumping the different taxa in a few extremely polymorphic species. Due to the morphological similarities between species, the correct authentication of X. sibiricum is very difficult. Therefore, we established a polymerase chain reaction-restriction fragment length polymorphism method and diagnostic PCR based on nuclear internal transcribed spacer and chloroplast trnQ-rps16 barcodes to differentiate X. sibirium from related species.Results from the phylogenetic analyses based on sequence information from four marker regions (plastidal psbA-trnH and trnQ-rps16 and nuclear ITS and D35 ) support those taxonomic concepts accepting a reduced number of species, as four to five major clades are revealed in the phylogenetic reconstructions. X. sibiricum , together with some accessions from closely related taxa, is always supported as monophyletic, constituting a well-defined genetic entity. Allele-specific primer pairs for ITS and trnQ-rps16 were designed to amplify diagnostic products from the genomic DNA of X. sibiricum . Specific PCR in combination with digestion using the restriction enzyme Mse I allowed for the identification of X. sibiricum by producing specific restriction patterns. The results demonstrate that the applied techniques provide effective and accurate authentication of X. sibiricum . Georg Thieme Verlag KG Stuttgart · New York.

  9. Phylogenetic Analysis of Genome Rearrangements among Five Mammalian Orders

    PubMed Central

    Luo, Haiwei; Arndt, William; Zhang, Yiwei; Shi, Guanqun; Alekseyev, Max; Tang, Jijun; Hughes, Austin L.; Friedman, Robert

    2015-01-01

    Evolutionary relationships among placental mammalian orders have been controversial. Whole genome sequencing and new computational methods offer opportunities to resolve the relationships among 10 genomes belonging to the mammalian orders Primates, Rodentia, Carnivora, Perissodactyla and Artiodactyla. By application of the double cut and join distance metric, where gene order is the phylogenetic character, we computed genomic distances among the sampled mammalian genomes. With a marsupial outgroup, the gene order tree supported a topology in which Rodentia fell outside the cluster of Primates, Carnivora, Perissodactyla, and Artiodactyla. Results of breakpoint reuse rate and synteny block length analyses were consistent with the prediction of random breakage model, which provided a diagnostic test to support use of gene order as an appropriate phylogenetic character in this study. We the influence of rate differences among lineages and other factors that may contribute to different resolutions of mammalian ordinal relationships by different methods of phylogenetic reconstruction. PMID:22929217

  10. Linear programming model to construct phylogenetic network for 16S rRNA sequences of photosynthetic organisms and influenza viruses.

    PubMed

    Mathur, Rinku; Adlakha, Neeru

    2014-06-01

    Phylogenetic trees give the information about the vertical relationships of ancestors and descendants but phylogenetic networks are used to visualize the horizontal relationships among the different organisms. In order to predict reticulate events there is a need to construct phylogenetic networks. Here, a Linear Programming (LP) model has been developed for the construction of phylogenetic network. The model is validated by using data sets of chloroplast of 16S rRNA sequences of photosynthetic organisms and Influenza A/H5N1 viruses. Results obtained are in agreement with those obtained by earlier researchers.

  11. New high through put approach to study ancient microbial phylogenetic diversity in permafrost

    NASA Astrophysics Data System (ADS)

    Spirina, E.; Cole, J.; Chai, B.; Gilichinksy, D.; Tiedje, J.

    2003-04-01

    The study of microbial diversity in the deep ancient permafrost can help to answer many questions: (1) what kind of mechanisms keeps microbial cells alive, (2) how many of phylogenetic groups exist in situ and never had been cultivated, (3) what is the difference between modern and ancient microorganisms? From this point, distinct environments were examined: Arctic and Antarctic modern soil and permafrost. 16S rDNA genes were amplified from genomic DNA extracted from both original frozen samples and the same samples incubated at 10oC for 8 weeks under both aerobic and anaerobic conditions to determine those capable to grow. High throughput DNA sequencing was performed on the cloned PCR products to obtain partial 16S rDNA gene sequences. The unique script was written to automatically compare over 2,000 partial sequences with those rrn sequences in the Ribosomal Database Project (RDP) release 8.1 using the SEQUENCE MATCH. Sequences were grouped into categories from the RDPs phylogenetic hierarchy based on the closest database matches. Investigation revealed significant microbial diversity; two phylogenetic groups were predominant in all samples: Proteobacteria and Gram Positive Bacteria. Microbial community composition within those groups is different from sample to sample. However, similar genera, such as Arthrobacter, Bacillus, Citrobacter, Caulobacter, Comamonas, Flavobacterium, Nocardioides, Pseudomonas, Rhodocyclus, Rhodococcus, Sphingobacterium, Sphingomonas, Streptococcus, Terrabacter appeared in both polar regions. The greatest microbial diversity was detected in Arctic surface samples. According to RDPs phylogenetic hierarchy those organisms are related to Proteobacteria_SD, Gram Positive Bacteria_SD, Leptospirillum-Nitrospira, Nitrospina_SD, Flexibacter-Cytophaga-Bacteroides, Planctomyces and Relatives. Both the aerobic and anaerobic low temperatures soil incubation yielded some microbes not detected in the original samples. It should be possible, using phylogenetic diversity from the same organisms from modern top layers to the several millions years old, to find out what are the differences among members of the same species as we go back in time. Then, if we compare those mutations rate with geological time, we can speculate on how fast or slow evolution or adaptation takes place and for that particular type of organism. This is a beginning of studies concerning the biological clocks extending back the duration of the permanently frozen state in the terrestrial and extraterrestrial soils, i. e. the age of biota.

  12. Phylogenetic Status of an Unrecorded Species of Curvularia, C. spicifera, Based on Current Classification System of Curvularia and Bipolaris Group Using Multi Loci.

    PubMed

    Jeon, Sun Jeong; Nguyen, Thi Thuong Thuong; Lee, Hyang Burm

    2015-09-01

    A seed-borne fungus, Curvularia sp. EML-KWD01, was isolated from an indigenous wheat seed by standard blotter method. This fungus was characterized based on the morphological characteristics and molecular phylogenetic analysis. Phylogenetic status of the fungus was determined using sequences of three loci: rDNA internal transcribed spacer, large ribosomal subunit, and glyceraldehyde 3-phosphate dehydrogenase gene. Multi loci sequencing analysis revealed that this fungus was Curvularia spicifera within Curvularia group 2 of family Pleosporaceae.

  13. Studying the evolutionary relationships and phylogenetic trees of 21 groups of tRNA sequences based on complex networks.

    PubMed

    Wei, Fangping; Chen, Bowen

    2012-03-01

    To find out the evolutionary relationships among different tRNA sequences of 21 amino acids, 22 networks are constructed. One is constructed from whole tRNAs, and the other 21 networks are constructed from the tRNAs which carry the same amino acids. A new method is proposed such that the alignment scores of any two amino acids groups are determined by the average degree and the average clustering coefficient of their networks. The anticodon feature of isolated tRNA and the phylogenetic trees of 21 group networks are discussed. We find that some isolated tRNA sequences in 21 networks still connect with other tRNAs outside their group, which reflects the fact that those tRNAs might evolve by intercrossing among these 21 groups. We also find that most anticodons among the same cluster are only one base different in the same sites when S ≥ 70, and they stay in the same rank in the ladder of evolutionary relationships. Those observations seem to agree on that some tRNAs might mutate from the same ancestor sequences based on point mutation mechanisms.

  14. EAPhy: A Flexible Tool for High-throughput Quality Filtering of Exon-alignments and Data Processing for Phylogenetic Methods.

    PubMed

    Blom, Mozes P K

    2015-08-05

    Recently developed molecular methods enable geneticists to target and sequence thousands of orthologous loci and infer evolutionary relationships across the tree of life. Large numbers of genetic markers benefit species tree inference but visual inspection of alignment quality, as traditionally conducted, is challenging with thousands of loci. Furthermore, due to the impracticality of repeated visual inspection with alternative filtering criteria, the potential consequences of using datasets with different degrees of missing data remain nominally explored in most empirical phylogenomic studies. In this short communication, I describe a flexible high-throughput pipeline designed to assess alignment quality and filter exonic sequence data for subsequent inference. The stringency criteria for alignment quality and missing data can be adapted based on the expected level of sequence divergence. Each alignment is automatically evaluated based on the stringency criteria specified, significantly reducing the number of alignments that require visual inspection. By developing a rapid method for alignment filtering and quality assessment, the consistency of phylogenetic estimation based on exonic sequence alignments can be further explored across distinct inference methods, while accounting for different degrees of missing data.

  15. Using phylogenetically-informed annotation (PIA) to search for light-interacting genes in transcriptomes from non-model organisms.

    PubMed

    Speiser, Daniel I; Pankey, M Sabrina; Zaharoff, Alexander K; Battelle, Barbara A; Bracken-Grissom, Heather D; Breinholt, Jesse W; Bybee, Seth M; Cronin, Thomas W; Garm, Anders; Lindgren, Annie R; Patel, Nipam H; Porter, Megan L; Protas, Meredith E; Rivera, Ajna S; Serb, Jeanne M; Zigler, Kirk S; Crandall, Keith A; Oakley, Todd H

    2014-11-19

    Tools for high throughput sequencing and de novo assembly make the analysis of transcriptomes (i.e. the suite of genes expressed in a tissue) feasible for almost any organism. Yet a challenge for biologists is that it can be difficult to assign identities to gene sequences, especially from non-model organisms. Phylogenetic analyses are one useful method for assigning identities to these sequences, but such methods tend to be time-consuming because of the need to re-calculate trees for every gene of interest and each time a new data set is analyzed. In response, we employed existing tools for phylogenetic analysis to produce a computationally efficient, tree-based approach for annotating transcriptomes or new genomes that we term Phylogenetically-Informed Annotation (PIA), which places uncharacterized genes into pre-calculated phylogenies of gene families. We generated maximum likelihood trees for 109 genes from a Light Interaction Toolkit (LIT), a collection of genes that underlie the function or development of light-interacting structures in metazoans. To do so, we searched protein sequences predicted from 29 fully-sequenced genomes and built trees using tools for phylogenetic analysis in the Osiris package of Galaxy (an open-source workflow management system). Next, to rapidly annotate transcriptomes from organisms that lack sequenced genomes, we repurposed a maximum likelihood-based Evolutionary Placement Algorithm (implemented in RAxML) to place sequences of potential LIT genes on to our pre-calculated gene trees. Finally, we implemented PIA in Galaxy and used it to search for LIT genes in 28 newly-sequenced transcriptomes from the light-interacting tissues of a range of cephalopod mollusks, arthropods, and cubozoan cnidarians. Our new trees for LIT genes are available on the Bitbucket public repository ( http://bitbucket.org/osiris_phylogenetics/pia/ ) and we demonstrate PIA on a publicly-accessible web server ( http://galaxy-dev.cnsi.ucsb.edu/pia/ ). Our new trees for LIT genes will be a valuable resource for researchers studying the evolution of eyes or other light-interacting structures. We also introduce PIA, a high throughput method for using phylogenetic relationships to identify LIT genes in transcriptomes from non-model organisms. With simple modifications, our methods may be used to search for different sets of genes or to annotate data sets from taxa outside of Metazoa.

  16. Suprafamilial relationships among Rodentia and the phylogenetic effect of removing fast-evolving nucleotides in mitochondrial, exon and intron fragments.

    PubMed

    Montgelard, Claudine; Forty, Ellen; Arnal, Véronique; Matthee, Conrad A

    2008-11-26

    The number of rodent clades identified above the family level is contentious, and to date, no consensus has been reached on the basal evolutionary relationships among all rodent families. Rodent suprafamilial phylogenetic relationships are investigated in the present study using approximately 7600 nucleotide characters derived from two mitochondrial genes (Cytochrome b and 12S rRNA), two nuclear exons (IRBP and vWF) and four nuclear introns (MGF, PRKC, SPTBN, THY). Because increasing the number of nucleotides does not necessarily increase phylogenetic signal (especially if the data is saturated), we assess the potential impact of saturation for each dataset by removing the fastest-evolving positions that have been recognized as sources of inconsistencies in phylogenetics. Taxonomic sampling included multiple representatives of all five rodent suborders described. Fast-evolving positions for each dataset were identified individually using a discrete gamma rate category and sites belonging to the most rapidly evolving eighth gamma category were removed. Phylogenetic tree reconstructions were performed on individual and combined datasets using Parsimony, Bayesian, and partitioned Maximum Likelihood criteria. Removal of fast-evolving positions enhanced the phylogenetic signal to noise ratio but the improvement in resolution was not consistent across different data types. The results suggested that elimination of fastest sites only improved the support for nodes moderately affected by homoplasy (the deepest nodes for introns and more recent nodes for exons and mitochondrial genes). The present study based on eight DNA fragments supports a fully resolved higher level rodent phylogeny with moderate to significant nodal support. Two inter-suprafamilial associations emerged. The first comprised a monophyletic assemblage containing the Anomaluromorpha (Anomaluridae + Pedetidae) + Myomorpha (Muridae + Dipodidae) as sister clade to the Castorimorpha (Castoridae + Geomyoidea). The second suprafamilial clustering identified a novel association between the Sciuromorpha (Gliridae + (Sciuridae + Aplodontidae)) and the Hystricomorpha (Ctenodactylidae + Hystricognathi) which together represents the earliest dichotomy among Rodentia. Molecular time estimates using a relaxed Bayesian molecular clock dates the appearance of the five suborders nearly contemporaniously at the KT boundary and this is congruent with suggestions of an early explosion of rodent diversity. Based on these newly proposed phylogenetic relationships, the evolution of the zygomasseteric pattern that has been used for a long time in rodent systematics is evaluated.

  17. Suprafamilial relationships among Rodentia and the phylogenetic effect of removing fast-evolving nucleotides in mitochondrial, exon and intron fragments

    PubMed Central

    2008-01-01

    Background The number of rodent clades identified above the family level is contentious, and to date, no consensus has been reached on the basal evolutionary relationships among all rodent families. Rodent suprafamilial phylogenetic relationships are investigated in the present study using ~7600 nucleotide characters derived from two mitochondrial genes (Cytochrome b and 12S rRNA), two nuclear exons (IRBP and vWF) and four nuclear introns (MGF, PRKC, SPTBN, THY). Because increasing the number of nucleotides does not necessarily increase phylogenetic signal (especially if the data is saturated), we assess the potential impact of saturation for each dataset by removing the fastest-evolving positions that have been recognized as sources of inconsistencies in phylogenetics. Results Taxonomic sampling included multiple representatives of all five rodent suborders described. Fast-evolving positions for each dataset were identified individually using a discrete gamma rate category and sites belonging to the most rapidly evolving eighth gamma category were removed. Phylogenetic tree reconstructions were performed on individual and combined datasets using Parsimony, Bayesian, and partitioned Maximum Likelihood criteria. Removal of fast-evolving positions enhanced the phylogenetic signal to noise ratio but the improvement in resolution was not consistent across different data types. The results suggested that elimination of fastest sites only improved the support for nodes moderately affected by homoplasy (the deepest nodes for introns and more recent nodes for exons and mitochondrial genes). Conclusion The present study based on eight DNA fragments supports a fully resolved higher level rodent phylogeny with moderate to significant nodal support. Two inter-suprafamilial associations emerged. The first comprised a monophyletic assemblage containing the Anomaluromorpha (Anomaluridae + Pedetidae) + Myomorpha (Muridae + Dipodidae) as sister clade to the Castorimorpha (Castoridae + Geomyoidea). The second suprafamilial clustering identified a novel association between the Sciuromorpha (Gliridae + (Sciuridae + Aplodontidae)) and the Hystricomorpha (Ctenodactylidae + Hystricognathi) which together represents the earliest dichotomy among Rodentia. Molecular time estimates using a relaxed Bayesian molecular clock dates the appearance of the five suborders nearly contemporaniously at the KT boundary and this is congruent with suggestions of an early explosion of rodent diversity. Based on these newly proposed phylogenetic relationships, the evolution of the zygomasseteric pattern that has been used for a long time in rodent systematics is evaluated. PMID:19036132

  18. A comprehensive framework for functional diversity patterns of marine chromophytic phytoplankton using rbcL phylogeny

    PubMed Central

    Samanta, Brajogopal; Bhadury, Punyasloke

    2016-01-01

    Marine chromophytes are taxonomically diverse group of algae and contribute approximately half of the total oceanic primary production. To understand the global patterns of functional diversity of chromophytic phytoplankton, robust bioinformatics and statistical analyses including deep phylogeny based on 2476 form ID rbcL gene sequences representing seven ecologically significant oceanographic ecoregions were undertaken. In addition, 12 form ID rbcL clone libraries were generated and analyzed (148 sequences) from Sundarbans Biosphere Reserve representing the world’s largest mangrove ecosystem as part of this study. Global phylogenetic analyses recovered 11 major clades of chromophytic phytoplankton in varying proportions with several novel rbcL sequences in each of the seven targeted ecoregions. Majority of OTUs was found to be exclusive to each ecoregion, whereas some were shared by two or more ecoregions based on beta-diversity analysis. Present phylogenetic and bioinformatics analyses provide a strong statistical support for the hypothesis that different oceanographic regimes harbor distinct and coherent groups of chromophytic phytoplankton. It has been also shown as part of this study that varying natural selection pressure on form ID rbcL gene under different environmental conditions could lead to functional differences and overall fitness of chromophytic phytoplankton populations. PMID:26861415

  19. Isolation, Phylogenetic Analysis and Anti-infective Activity Screening of Marine Sponge-Associated Actinomycetes

    PubMed Central

    Abdelmohsen, Usama Ramadan; Pimentel-Elardo, Sheila M.; Hanora, Amro; Radwan, Mona; Abou-El-Ela, Soad H.; Ahmed, Safwat; Hentschel, Ute

    2010-01-01

    Terrestrial actinomycetes are noteworthy producers of a multitude of antibiotics, however the marine representatives are much less studied in this regard. In this study, 90 actinomycetes were isolated from 11 different species of marine sponges that had been collected from offshore Ras Mohamed (Egypt) and from Rovinj (Croatia). Phylogenetic characterization of the isolates based on 16S rRNA gene sequencing supported their assignment to 18 different actinomycete genera representing seven different suborders. Fourteen putatively novel species were identified based on sequence similarity values below 98.2% to other strains in the NCBI database. A putative new genus related to Rubrobacter was isolated on M1 agar that had been amended with sponge extract, thus highlighting the need for innovative cultivation protocols. Testing for anti-infective activities was performed against clinically relevant, Gram-positive (Enterococcus faecalis, Staphylococcus aureus) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria, fungi (Candida albicans) and human parasites (Leishmania major, Trypanosoma brucei). Bioactivities against these pathogens were documented for 10 actinomycete isolates. These results show a high diversity of actinomycetes associated with marine sponges as well as highlight their potential to produce anti-infective agents. PMID:20411105

  20. Phylogenetic diversity and ecological pattern of ammonia-oxidizing archaea in the surface sediments of the western Pacific.

    PubMed

    Cao, Huiluo; Hong, Yiguo; Li, Meng; Gu, Ji-Dong

    2011-11-01

    The phylogenetic diversity of ammonia-oxidizing archaea (AOA) was surveyed in the surface sediments from the northern part of the South China Sea (SCS). The distribution pattern of AOA in the western Pacific was discussed through comparing the SCS with other areas in the western Pacific including Changjiang Estuary and the adjacent East China Sea where high input of anthropogenic nitrogen was evident, the tropical West Pacific Continental Margins close to the Philippines, the deep-sea methane seep sediments in the Okhotsk Sea, the cold deep sea of Northeastern Japan Sea, and the hydrothermal field in the Southern Okinawa Trough. These various environments provide a wide spectrum of physical and chemical conditions for a better understanding of the distribution pattern and diversities of AOA in the western Pacific. Under these different conditions, the distinct community composition between shallow and deep-sea sediments was clearly delineated based on the UniFrac PCoA and Jackknife Environmental Cluster analyses. Phylogenetic analyses showed that a few ammonia-oxidizing archaeal subclades in the marine water column/sediment clade and endemic lineages were indicative phylotypes for some environments. Higher phylogenetic diversity was observed in the Philippines while lower diversity in the hydrothermal vent habitat. Water depth and possibly with other environmental factors could be the main driving forces to shape the phylogenetic diversity of AOA observed, not only in the SCS but also in the whole western Pacific. The multivariate regression tree analysis also supported this observation consistently. Moreover, the functions of current and other climate factors were also discussed in comparison of phylogenetic diversity. The information collectively provides important insights into the ecophysiological requirements of uncultured ammonia-oxidizing archaeal lineages in the western Pacific Ocean.

  1. aes, the gene encoding the esterase B in Escherichia coli, is a powerful phylogenetic marker of the species.

    PubMed

    Lescat, Mathilde; Hoede, Claire; Clermont, Olivier; Garry, Louis; Darlu, Pierre; Tuffery, Pierre; Denamur, Erick; Picard, Bertrand

    2009-12-29

    Previous studies have established a correlation between electrophoretic polymorphism of esterase B, and virulence and phylogeny of Escherichia coli. Strains belonging to the phylogenetic group B2 are more frequently implicated in extraintestinal infections and include esterase B2 variants, whereas phylogenetic groups A, B1 and D contain less virulent strains and include esterase B1 variants. We investigated esterase B as a marker of phylogeny and/or virulence, in a thorough analysis of the esterase B-encoding gene. We identified the gene encoding esterase B as the acetyl-esterase gene (aes) using gene disruption. The analysis of aes nucleotide sequences in a panel of 78 reference strains, including the E. coli reference (ECOR) strains, demonstrated that the gene is under purifying selection. The phylogenetic tree reconstructed from aes sequences showed a strong correlation with the species phylogenetic history, based on multi-locus sequence typing using six housekeeping genes. The unambiguous distinction between variants B1 and B2 by electrophoresis was consistent with Aes amino-acid sequence analysis and protein modelling, which showed that substituted amino acids in the two esterase B variants occurred mostly at different sites on the protein surface. Studies in an experimental mouse model of septicaemia using mutant strains did not reveal a direct link between aes and extraintestinal virulence. Moreover, we did not find any genes in the chromosomal region of aes to be associated with virulence. Our findings suggest that aes does not play a direct role in the virulence of E. coli extraintestinal infection. However, this gene acts as a powerful marker of phylogeny, illustrating the extensive divergence of B2 phylogenetic group strains from the rest of the species.

  2. Large-scale inference of gene function through phylogenetic annotation of Gene Ontology terms: case study of the apoptosis and autophagy cellular processes.

    PubMed

    Feuermann, Marc; Gaudet, Pascale; Mi, Huaiyu; Lewis, Suzanna E; Thomas, Paul D

    2016-01-01

    We previously reported a paradigm for large-scale phylogenomic analysis of gene families that takes advantage of the large corpus of experimentally supported Gene Ontology (GO) annotations. This 'GO Phylogenetic Annotation' approach integrates GO annotations from evolutionarily related genes across ∼100 different organisms in the context of a gene family tree, in which curators build an explicit model of the evolution of gene functions. GO Phylogenetic Annotation models the gain and loss of functions in a gene family tree, which is used to infer the functions of uncharacterized (or incompletely characterized) gene products, even for human proteins that are relatively well studied. Here, we report our results from applying this paradigm to two well-characterized cellular processes, apoptosis and autophagy. This revealed several important observations with respect to GO annotations and how they can be used for function inference. Notably, we applied only a small fraction of the experimentally supported GO annotations to infer function in other family members. The majority of other annotations describe indirect effects, phenotypes or results from high throughput experiments. In addition, we show here how feedback from phylogenetic annotation leads to significant improvements in the PANTHER trees, the GO annotations and GO itself. Thus GO phylogenetic annotation both increases the quantity and improves the accuracy of the GO annotations provided to the research community. We expect these phylogenetically based annotations to be of broad use in gene enrichment analysis as well as other applications of GO annotations.Database URL: http://amigo.geneontology.org/amigo. © The Author(s) 2016. Published by Oxford University Press.

  3. Phylogeny determines flower size-dependent sex allocation at flowering in a hermaphroditic family.

    PubMed

    Teixido, A L; Guzmán, B; Staggemeier, V G; Valladares, F

    2017-11-01

    In animal-pollinated hermaphroditic plants, optimal floral allocation determines relative investment into sexes, which is ultimately dependent on flower size. Larger flowers disproportionally increase maleness whereas smaller and less rewarding flowers favour female function. Although floral traits are considered strongly conserved, phylogenetic relationships in the interspecific patterns of resource allocation to floral sex remain overlooked. We investigated these patterns in Cistaceae, a hermaphroditic family. We reconstructed phylogenetic relationships among Cistaceae species and quantified phylogenetic signal for flower size, dry mass and nutrient allocation to floral structures in 23 Mediterranean species using Blomberg's K-statistic. Lastly, phylogenetically-controlled correlational and regression analyses were applied to examine flower size-based allometry in resource allocation to floral structures. Sepals received the highest dry mass allocation, followed by petals, whereas sexual structures increased nutrient allocation. Flower size and resource allocation to floral structures, except for carpels, showed a strong phylogenetic signal. Larger-flowered species allometrically allocated more resources to maleness, by increasing allocation to corollas and stamens. Our results suggest a major role of phylogeny in determining interspecific changes in flower size and subsequent floral sex allocation. This implies that flower size balances the male-female function over the evolutionary history of Cistaceae. While allometric resource investment in maleness is inherited across species diversification, allocation to the female function seems a labile trait that varies among closely related species that have diversified into different ecological niches. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  4. Reticulate evolutionary history and extensive introgression in mosquito species revealed by phylogenetic network analysis

    PubMed Central

    Wen, Dingqiao; Yu, Yun; Hahn, Matthew W.; Nakhleh, Luay

    2016-01-01

    The role of hybridization and subsequent introgression has been demonstrated in an increasing number of species. Recently, Fontaine et al. (Science, 347, 2015, 1258524) conducted a phylogenomic analysis of six members of the Anopheles gambiae species complex. Their analysis revealed a reticulate evolutionary history and pointed to extensive introgression on all four autosomal arms. The study further highlighted the complex evolutionary signals that the co-occurrence of incomplete lineage sorting (ILS) and introgression can give rise to in phylogenomic analyses. While tree-based methodologies were used in the study, phylogenetic networks provide a more natural model to capture reticulate evolutionary histories. In this work, we reanalyse the Anopheles data using a recently devised framework that combines the multispecies coalescent with phylogenetic networks. This framework allows us to capture ILS and introgression simultaneously, and forms the basis for statistical methods for inferring reticulate evolutionary histories. The new analysis reveals a phylogenetic network with multiple hybridization events, some of which differ from those reported in the original study. To elucidate the extent and patterns of introgression across the genome, we devise a new method that quantifies the use of reticulation branches in the phylogenetic network by each genomic region. Applying the method to the mosquito data set reveals the evolutionary history of all the chromosomes. This study highlights the utility of ‘network thinking’ and the new insights it can uncover, in particular in phylogenomic analyses of large data sets with extensive gene tree incongruence. PMID:26808290

  5. Environmental filtering and phylogenetic clustering correlate with the distribution patterns of cryptic protist species.

    PubMed

    Singer, David; Kosakyan, Anush; Seppey, Christophe V W; Pillonel, Amandine; Fernández, Leonardo D; Fontaneto, Diego; Mitchell, Edward A D; Lara, Enrique

    2018-04-01

    The community composition of any group of organisms should theoretically be determined by a combination of assembly processes including resource partitioning, competition, environmental filtering, and phylogenetic legacy. Environmental DNA studies have revealed a huge diversity of protists in all environments, raising questions about the ecological significance of such diversity and the degree to which they obey to the same rules as macroscopic organisms. The fast-growing cultivable protist species on which hypotheses are usually experimentally tested represent only a minority of the protist diversity. Addressing these questions for the lesser known majority can only be inferred through observational studies. We conducted an environmental DNA survey of the genus Nebela, a group of closely related testate (shelled) amoeba species, in different habitats within Sphagnum-dominated peatlands. Identification based on the mitochondrial cytochrome c oxidase 1 gene, allowed species-level resolution as well as phylogenetic reconstruction. Community composition varied strongly across habitats and associated environmental gradients. Species showed little overlap in their realized niche, suggesting resource partitioning, and a strong influence of environmental filtering driving community composition. Furthermore, phylogenetic clustering was observed in the most nitrogen-poor samples, supporting phylogenetic inheritance of adaptations in the group of N. guttata. This study showed that the studied free-living unicellular eukaryotes follow to community assembly rules similar to those known to determine plant and animal communities; the same may be true for much of the huge functional and taxonomic diversity of protists. © 2018 by the Ecological Society of America.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero-Severson, Ethan O.; Bulla, Ingo; Leitner, Thomas

    The use of phylogenetic trees in epidemiological investigations has become commonplace, but their epidemiological interpretation has not been systematically evaluated. Here, we use an HIV-1 within-host coalescent model to probabilistically evaluate transmission histories of two epidemiologically linked hosts. Previous critique of phylogenetic reconstruction has claimed that direction of transmission is difficult to infer, and that the existence of unsampled intermediary links or common sources can never be excluded. The phylogenetic relationship between the HIV populations of epidemiologically linked hosts can be classified into six types of trees, based on cladistic relationships and whether the reconstruction is consistent with the truemore » transmission history or not. We show that the direction of transmission and whether unsampled intermediary links or common sources existed make very different predictions about expected phylogenetic relationships: (i) Direction of transmission can often be established when paraphyly exists, (ii) intermediary links can be excluded when multiple lineages were transmitted, and (iii) when the sampled individuals’ HIV populations both are monophyletic a common source was likely the origin. Inconsistent results, suggesting the wrong transmission direction, were generally rare. In addition, the expected tree topology also depends on the number of transmitted lineages, the sample size, the time of the sample relative to transmission, and how fast the diversity increases after infection. Typically, 20 or more sequences per subject give robust results. Moreover, we confirm our theoretical evaluations with analyses of real transmission histories and discuss how our findings should aid in interpreting phylogenetic results.« less

  7. Applying phylogenetic analysis to viral livestock diseases: moving beyond molecular typing.

    PubMed

    Olvera, Alex; Busquets, Núria; Cortey, Marti; de Deus, Nilsa; Ganges, Llilianne; Núñez, José Ignacio; Peralta, Bibiana; Toskano, Jennifer; Dolz, Roser

    2010-05-01

    Changes in livestock production systems in recent years have altered the presentation of many diseases resulting in the need for more sophisticated control measures. At the same time, new molecular assays have been developed to support the diagnosis of animal viral disease. Nucleotide sequences generated by these diagnostic techniques can be used in phylogenetic analysis to infer phenotypes by sequence homology and to perform molecular epidemiology studies. In this review, some key elements of phylogenetic analysis are highlighted, such as the selection of the appropriate neutral phylogenetic marker, the proper phylogenetic method and different techniques to test the reliability of the resulting tree. Examples are given of current and future applications of phylogenetic reconstructions in viral livestock diseases. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. The space of ultrametric phylogenetic trees.

    PubMed

    Gavryushkin, Alex; Drummond, Alexei J

    2016-08-21

    The reliability of a phylogenetic inference method from genomic sequence data is ensured by its statistical consistency. Bayesian inference methods produce a sample of phylogenetic trees from the posterior distribution given sequence data. Hence the question of statistical consistency of such methods is equivalent to the consistency of the summary of the sample. More generally, statistical consistency is ensured by the tree space used to analyse the sample. In this paper, we consider two standard parameterisations of phylogenetic time-trees used in evolutionary models: inter-coalescent interval lengths and absolute times of divergence events. For each of these parameterisations we introduce a natural metric space on ultrametric phylogenetic trees. We compare the introduced spaces with existing models of tree space and formulate several formal requirements that a metric space on phylogenetic trees must possess in order to be a satisfactory space for statistical analysis, and justify them. We show that only a few known constructions of the space of phylogenetic trees satisfy these requirements. However, our results suggest that these basic requirements are not enough to distinguish between the two metric spaces we introduce and that the choice between metric spaces requires additional properties to be considered. Particularly, that the summary tree minimising the square distance to the trees from the sample might be different for different parameterisations. This suggests that further fundamental insight is needed into the problem of statistical consistency of phylogenetic inference methods. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. ESTs and EST-linked polymorphisms for genetic mapping and phylogenetic reconstruction in the guppy, Poecilia reticulata

    PubMed Central

    Dreyer, Christine; Hoffmann, Margarete; Lanz, Christa; Willing, Eva-Maria; Riester, Markus; Warthmann, Norman; Sprecher, Andrea; Tripathi, Namita; Henz, Stefan R; Weigel, Detlef

    2007-01-01

    Background The guppy, Poecilia reticulata, is a well-known model organism for studying inheritance and variation of male ornamental traits as well as adaptation to different river habitats. However, genomic resources for studying this important model were not previously widely available. Results With the aim of generating molecular markers for genetic mapping of the guppy, cDNA libraries were constructed from embryos and different adult organs to generate expressed sequence tags (ESTs). About 18,000 ESTs were annotated according to BLASTN and BLASTX results and the sequence information from the 3' UTRs was exploited to generate PCR primers for re-sequencing of genomic DNA from different wild type strains. By comparison of EST-linked genomic sequences from at least four different ecotypes, about 1,700 polymorphisms were identified, representing about 400 distinct genes. Two interconnected MySQL databases were built to organize the ESTs and markers, respectively. A robust phylogeny of the guppy was reconstructed, based on 10 different nuclear genes. Conclusion Our EST and marker databases provide useful tools for genetic mapping and phylogenetic studies of the guppy. PMID:17686157

  10. Threatened species and the potential loss of phylogenetic diversity: conservation scenarios based on estimated extinction probabilities and phylogenetic risk analysis.

    PubMed

    Faith, Daniel P

    2008-12-01

    New species conservation strategies, including the EDGE of Existence (EDGE) program, have expanded threatened species assessments by integrating information about species' phylogenetic distinctiveness. Distinctiveness has been measured through simple scores that assign shared credit among species for evolutionary heritage represented by the deeper phylogenetic branches. A species with a high score combined with a high extinction probability receives high priority for conservation efforts. Simple hypothetical scenarios for phylogenetic trees and extinction probabilities demonstrate how such scoring approaches can provide inefficient priorities for conservation. An existing probabilistic framework derived from the phylogenetic diversity measure (PD) properly captures the idea of shared responsibility for the persistence of evolutionary history. It avoids static scores, takes into account the status of close relatives through their extinction probabilities, and allows for the necessary updating of priorities in light of changes in species threat status. A hypothetical phylogenetic tree illustrates how changes in extinction probabilities of one or more species translate into changes in expected PD. The probabilistic PD framework provided a range of strategies that moved beyond expected PD to better consider worst-case PD losses. In another example, risk aversion gave higher priority to a conservation program that provided a smaller, but less risky, gain in expected PD. The EDGE program could continue to promote a list of top species conservation priorities through application of probabilistic PD and simple estimates of current extinction probability. The list might be a dynamic one, with all the priority scores updated as extinction probabilities change. Results of recent studies suggest that estimation of extinction probabilities derived from the red list criteria linked to changes in species range sizes may provide estimated probabilities for many different species. Probabilistic PD provides a framework for single-species assessment that is well-integrated with a broader measurement of impacts on PD owing to climate change and other factors.

  11. Taxonomic review of Argentine mackerel Scomber japonicus (Houttuyn, 1782) by phylogenetic analysis

    PubMed Central

    Trucco, María Inés; Buratti, Claudio César

    2017-01-01

    Taxonomically, Argentine mackerels were first considered as Scomber japonicus marplatensis and later as Scomber japonicus Houttuyn 1782, although, in the last years, different studies have suggested that South Atlantic mackerel species belongs to Scomber colias Gmelin 1789. These latter results, incorporated in the main fish databases (FishBase and Catalog of Fishes), promoted a phylogenetic study using cytochrome c oxidase I (COI) gene sequences taken from the Barcode of Life (FISH-BOL) database. Thus, 76 sequences of S. japonicus, S. colias, S. australasicus and S. scombrus from different regions were used; including 3 from Sarda sarda as outgroup. Among S. japonicus selected sequences are those corresponding to the Argentine mackerels collected in 2007. Phylogenetic trees were obtained by neighbor joining and maximum likelihood methods and a network of haplotypes was reconstructed to analyze the relationship between species. The results showed the clear differentiation of S. australasicus, S. scombrus and S. japonicus from the Pacific while S. japonicus from Argentina was included in the S. colias group, with genetic differences corresponding to conspecific populations (0.1%). Four of the five Argentine specimens shared the same haplotype with S. colias, and none were shared with S. japonicus from the Pacific. These results suggest that the current specific name of Argentine mackerel S. japonicus should be changed to S. colias, in agreement with several genetic studies carried out with species of the genus Scomber. PMID:29071283

  12. Phylogenetic analysis of HSP70 and cyt b gene sequences for Chinese Leishmania isolates and ultrastructural characteristics of Chinese Leishmania sp.

    PubMed

    Yuan, Dongmei; Qin, Hanxiao; Zhang, Jianguo; Liao, Lin; Chen, Qiwei; Chen, Dali; Chen, Jianping

    2017-02-01

    Leishmaniasis is a worldwide epidemic disease caused by the genus Leishmania, which is still endemic in the west and northwest areas of China. Some viewpoints of the traditional taxonomy of Chinese Leishmania have been challenged by recent phylogenetic researches based on different molecular markers. However, the taxonomic positions and phylogenetic relationships of Chinese Leishmania isolates remain controversial, which need for more data and further analysis. In this study, the heat shock protein 70 (HSP70) gene and cytochrome b (cyt b) gene were used for phylogenetic analysis of Chinese Leishmania isolates from patients, dogs, gerbils, and sand flies in different geographic origins. Besides, for the interesting Leishmania sp. in China, the ultrastructure of three Chinese Leishmania sp. strains (MHOM/CN/90/SC10H2, SD, GL) were observed by transmission electron microscopy. Bayesian trees from HSP70 and cyt b congruently indicated that the 14 Chinese Leishmania isolates belong to three Leishmania species including L. donovani complex, L. gerbilli, and L. (Sauroleishmania) sp. Their identity further confirmed that the undescribed Leishmania species causing visceral Leishmaniasis (VL) in China is closely related to L. tarentolae. The phylogenetic results from HSP70 also suggested the classification of subspecies within L. donovani complex: KXG-918, KXG-927, KXG-Liu, KXG-Xu, 9044, SC6, and KXG-65 belong to L. donovani; Cy, WenChuan, and 801 were proposed to be L. infantum. Through transmission electron microscopy, unexpectedly, the Golgi apparatus were not observed in SC10H2, SD, and GL, which was similar to previous reports of reptilian Leishmania. The statistical analysis of microtubule counts separated SC10H2, SD, and GL as one group from any other reference strain (L. donovani MHOM/IN/80/DD8; L. tropica MHOM/SU/74/K27; L. gerbilli MRHO/CN/60/GERBILLI). The ultrastructural characteristics of Leishmania sp. partly lend support to the phylogenetic inference that Chinese Leishmania sp. is in close relationship with reptilian Leishmania.

  13. Phylogeny of Castanea (Fagaceae) based on chloroplast trnT-L-F sequence data

    Treesearch

    Ping Lang; Fenny Dane; Thomas L. Kubisiak

    2005-01-01

    Species in the genus Castanea are widely distributed in the deciduous forests of the Northern Hemisphere from Asia to Europe and North America. They show floristic similarity but differences in chestnut blight resistance especially among eastern Asian and eastern North American species. Phylogenetic analyses were conducted in this study using...

  14. mtDNA ribosomal gene phylogeny of sea hares in the genus Aplysia (Gastropoda, Opisthobranchia, Anaspidea): Implications for comparative neurobiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medina, Monica; Collins, Timothy M.; Walsh, Patrick J.

    2000-08-10

    Sea hares within the genus Aplysia are important neurobiological model organisms, and as studies based on different Aplysia species appear in the literature, a phylogenetic framework has become essential. We present a phylogenetic hypothesis for this genus, based on portions of two mitochondrial genes (12S and 16S). In addition, we reconstruct the evolution of several behavioral characters of interest to neurobiologists in order to illustrate the potential benefits of a phylogeny for the genus Aplysia. These benefits include the determination of ancestral traits, the direction and timing of evolution of characters, prediction of the distribution of traits, and identification ofmore » cases of independent acquisition of traits within lineages. This last benefit may prove especially useful in understanding the linkage between behaviors and their underlying neurological basis.« less

  15. Trichoderma songyi sp. nov., a new species associated with the pine mushroom (Tricholoma matsutake).

    PubMed

    Park, Myung Soo; Oh, Seung-Yoon; Cho, Hae Jin; Fong, Jonathan J; Cheon, Woo-Jae; Lim, Young Woon

    2014-10-01

    A new species, Trichoderma songyi, was found to be associated with the pine mushroom (Tricholoma matsutake) in Korea. This species was isolated from three different substrates: Tricholoma matsutake basidiomata, as well as roots of Pinus densiflora and soil in the fairy ring. Based on its molecular and phenotypic characteristics, we demonstrate that Trichoderma songyi is unique and distinguishable from closely related species. We performed phylogenetic analyses based on two molecular markers, the genes for both translation elongation factor 1-alpha and the second largest subunit of RNA polymerase II. Phylogenetic analyses showed that Trichoderma songyi is closely related to Trichoderma koningii aggregate and Trichoderma caerulescens. Morphologically, Trichoderma songyi can be distinguished from these closely related taxa by its growth rates, colony morphology on PDA in darkness, and coconut-like odour. Due to the economic importance of the pine mushroom, the relationship between Trichoderma songyi and Tricholoma matsutake should be studied further.

  16. Phylogenetic analyses and morphological characteristics support the description of a second species of Tridimeris (Annonaceae)

    PubMed Central

    Ortiz-Rodriguez, Andres Ernesto; Escobar-Castellanos, Marcos Alberto; Pérez-Farrera, Miguel Angel

    2016-01-01

    Abstract Based on phylogenetic and morphological evidence, Tridimeris chiapensis Escobar-Castellanos & Ortiz-Rodr., sp. n. (Annonaceae), a new species from the karst forest of southern Mexico, is described and illustrated. The new species differs from Tridimeris hahniana, the only described species in the genus, in that the latter has flowers with sepals densely tomentose outside, one (rarely two) carpel(s) per flower and fruits densely covered with golden-brown hairs, while Tridimeris chiapensis has flowers with glabrous sepals outside, two to five carpels per flower and glabrous fruits. Furthermore, a shallow triangular white patch at the base of the inner petals is found in Tridimeris chiapensis, a morphological character shared with the sister genus Sapranthus but absent in Tridimeris hahniana. Geographically, both species occur allopatrically. With just one known locality and seven individuals of Tridimeris chiapensis recorded in one sampling hectare, and based on application of the criteria established by the IUCN, we conclude tentatively that the species is critically endangered. PMID:28127237

  17. Evolution of kin recognition mechanisms in a fish.

    PubMed

    Hain, Timothy J A; Garner, Shawn R; Ramnarine, Indar W; Neff, Bryan D

    2017-03-01

    Both selection and phylogenetic history can influence the evolution of phenotypic traits. Here we used recently characterized variation in kin recognition mechanisms among six guppy populations to explore the phylogenetic history of this trait. Guppies can use two different kin recognition mechanisms: either phenotype matching, in which individuals are identified based on comparison with a recognition template, or familiarity, in which individuals are remembered based on previous interactions. Across the six populations, we identified four transitions in recognition mechanism: phenotype matching evolved once and was subsequently lost in a single population, whereas familiarity evolved twice. Based on a molecular clock, these transitions occurred among populations that had diverged on a timescale of hundreds of thousands of years, which is two orders of magnitude faster than previously documented transitions in recognition mechanisms. A randomization test provided no evidence that recognition mechanisms were constrained by phylogeny, suggesting that recognition mechanisms have the capacity to evolve rapidly, although the specific selection pressures that may be contributing to variation in recognition mechanisms across populations remain unknown.

  18. Phylogeny and Evolutionary Patterns in the Dwarf Crayfish Subfamily (Decapoda: Cambarellinae)

    PubMed Central

    Pedraza-Lara, Carlos; Doadrio, Ignacio; Breinholt, Jesse W.; Crandall, Keith A.

    2012-01-01

    The Dwarf crayfish or Cambarellinae, is a morphologically singular subfamily of decapod crustaceans that contains only one genus, Cambarellus. Its intriguing distribution, along the river basins of the Gulf Coast of United States (Gulf Group) and into Central México (Mexican Group), has until now lacked of satisfactory explanation. This study provides a comprehensive sampling of most of the extant species of Cambarellus and sheds light on its evolutionary history, systematics and biogeography. We tested the impact of Gulf Group versus Mexican Group geography on rates of cladogenesis using a maximum likelihood framework, testing different models of birth/extinction of lineages. We propose a comprehensive phylogenetic hypothesis for the subfamily based on mitochondrial and nuclear loci (3,833 bp) using Bayesian and Maximum Likelihood methods. The phylogenetic structure found two phylogenetic groups associated to the two main geographic components (Gulf Group and Mexican Group) and is partially consistent with the historical structure of river basins. The previous hypothesis, which divided the genus into three subgenera based on genitalia morphology was only partially supported (P = 0.047), resulting in a paraphyletic subgenus Pandicambarus. We found at least two cases in which phylogenetic structure failed to recover monophyly of recognized species while detecting several cases of cryptic diversity, corresponding to lineages not assigned to any described species. Cladogenetic patterns in the entire subfamily are better explained by an allopatric model of speciation. Diversification analyses showed similar cladogenesis patterns between both groups and did not significantly differ from the constant rate models. While cladogenesis in the Gulf Group is coincident in time with changes in the sea levels, in the Mexican Group, cladogenesis is congruent with the formation of the Trans-Mexican Volcanic Belt. Our results show how similar allopatric divergence in freshwater organisms can be promoted through diverse vicariant factors. PMID:23155379

  19. Description of the first cryptic avian malaria parasite, Plasmodium homocircumflexum n. sp., with experimental data on its virulence and development in avian hosts and mosquitoes.

    PubMed

    Palinauskas, Vaidas; Žiegytė, Rita; Ilgūnas, Mikas; Iezhova, Tatjana A; Bernotienė, Rasa; Bolshakov, Casimir; Valkiūnas, Gediminas

    2015-01-01

    For over 100 years studies on avian haemosporidian parasite species have relied on similarities in their morphology to establish a species concept. Some exceptional cases have also included information about the life cycle and sporogonic development. More than 50 avian Plasmodium spp. have now been described. However, PCR-based studies show a much broader diversity of haemosporidian parasites, indicating the possible existence of a diverse group of cryptic species. In the present study, using both similarity and phylogenetic species definition concepts, we believe that we report the first characterised cryptic speciation case of an avian Plasmodium parasite. We used sequence information on the mitochondrial cytochrome b gene and constructed phylogenies of identified Plasmodium spp. to define their position in the phylogenetic tree. After analysis of blood stages, the morphology of the parasite was shown to be identical to Plasmodium circumflexum. However, the geographic distribution of the new parasite, the phylogenetic information, as well as patterns of development of infection, indicate that this parasite differs from P. circumflexum. Plasmodium homocircumflexum n. sp. was described based on information about genetic differences from described lineages, phylogenetic position and biological characters. This parasite develops parasitemia in experimentally infected birds - the domestic canary Serinus canaria domestica, siskin Carduelis spinus and crossbill Loxia curvirostra. Anaemia caused by high parasitemia, as well as cerebral paralysis caused by exoerythrocytic stages in the brain, are the main reasons for mortality. Exoerythrocytic stages also form in other organs (heart, kidneys, liver, lungs, spleen, intestines and pectoral muscles). DNA amplification was unsuccessful from faecal samples of heavily infected birds. The sporogonic development initiates, but is abortive, at the oocyst stage in two common European mosquito species, Culex pipiens pipiens (forms pipiens and molestus) and Aedes vexans. Vectors of this Plasmodium sp. remain unknown. Copyright © 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  20. Confusing dinosaurs with mammals: tetrapod phylogenetics and anatomical terminology in the world of homology.

    PubMed

    Harris, Jerald D

    2004-12-01

    At present, three different systems of anatomical nomenclature are available to researchers describing new tetrapod taxa: a nonstandardized traditional system erected in part by Sir Richard Owen and subsequently elaborated by Alfred Romer; a standardized system created for avians, the Nomina Anatomica Avium (NAA); and a standardized system for extant (crown-group) mammals, the Nomina Anatomica Veterinaria (NAV). Conserved homologous structures widely distributed within the Tetrapoda are often granted different names in each system. The recent shift toward a phylogenetic system based on homology requires a concomitant shift toward a single nomenclatural system also based on both evolutionary and functional morphological homology. Standardized terms employed in the NAA and NAV should be perpetuated as far as possible basally in their respective phylogenies. Thus, NAA terms apply to nonavian archosaurs (or even all diapsids) and NAV terms apply to noncrown-group mammals and more basal synapsids. Taxa equally distant from both avians and crown-group mammals may maintain the traditional nonstandardized terminology until a universal anatomical nomenclature for all tetrapods is constructed. (c) 2004 Wiley-Liss, Inc.

  1. Description and phylogenetic relationships of a new genus and two new species of lizards from Brazilian Amazonia, with nomenclatural comments on the taxonomy of Gymnophthalmidae (Reptilia: Squamata).

    PubMed

    Colli, Guarino R; Hoogmoed, Marinus S; Cannatella, David C; Cassimiro, José; Gomes, Jerriane Oliveira; Ghellere, José Mário; Gomes, Jerriane Oliveira; Ghellere, José Mário; Nunes, Pedro M Sales; Pellegrino, Kátia C M; Salerno, Patricia; Souza, Sergio Marques De; Rodrigues, Miguel Trefaut

    2015-08-18

    We describe a new genus and two new species of gymnophthalmid lizards based on specimens collected from Brazilian Amazonia, mostly in the "arc of deforestation". The new genus is easily distinguished from other Gymnophthalmidae by having very wide, smooth, and imbricate nuchals, arranged in two longitudinal and 6-10 transverse rows from nape to brachium level, followed by much narrower, strongly keeled, lanceolate, and mucronate scales. It also differs from all other Gymnophthalmidae, except Iphisa, by the presence of two longitudinal rows of ventrals. The new genus differs from Iphisa by having two pairs of enlarged chinshields (one in Iphisa); posterior dorsal scales lanceolate, strongly keeled and not arranged in longitudinal rows (dorsals broad, smooth and forming two longitudinal rows), and lateral scales keeled (smooth). Maximum parsimony, maximum likelihood, and Bayesian phylogenetic analyses based on morphological and molecular data indicate the new species form a clade that is most closely related to Iphisa. We also address several nomenclatural issues and present a revised classification of Gymnophthalmidae.

  2. Incorporating information on predicted solvent accessibility to the co-evolution-based study of protein interactions.

    PubMed

    Ochoa, David; García-Gutiérrez, Ponciano; Juan, David; Valencia, Alfonso; Pazos, Florencio

    2013-01-27

    A widespread family of methods for studying and predicting protein interactions using sequence information is based on co-evolution, quantified as similarity of phylogenetic trees. Part of the co-evolution observed between interacting proteins could be due to co-adaptation caused by inter-protein contacts. In this case, the co-evolution is expected to be more evident when evaluated on the surface of the proteins or the internal layers close to it. In this work we study the effect of incorporating information on predicted solvent accessibility to three methods for predicting protein interactions based on similarity of phylogenetic trees. We evaluate the performance of these methods in predicting different types of protein associations when trees based on positions with different characteristics of predicted accessibility are used as input. We found that predicted accessibility improves the results of two recent versions of the mirrortree methodology in predicting direct binary physical interactions, while it neither improves these methods, nor the original mirrortree method, in predicting other types of interactions. That improvement comes at no cost in terms of applicability since accessibility can be predicted for any sequence. We also found that predictions of protein-protein interactions are improved when multiple sequence alignments with a richer representation of sequences (including paralogs) are incorporated in the accessibility prediction.

  3. Genetic diversity of indigenous rhizobial symbionts of the Lupinus mariae-josephae endemism from alkaline-limed soils within its area of distribution in Eastern Spain.

    PubMed

    Durán, David; Rey, L; Sánchez-Cañizares, C; Navarro, A; Imperial, J; Ruiz-Argueso, T

    2013-03-01

    The genomic diversity of a collection of 103 indigenous rhizobia isolates from Lupinus mariae-josephae (Lmj), a recently described Lupinus species endemic to alkaline-limed soils from a restricted habitat in Eastern Spain, was investigated by molecular methods. Isolates were obtained from soils of four geographic locations in the Valencia province that harbored the known Lmj plant populations. Using an M13 RAPD fingerprinting technique, 19 distinct RAPD profiles were identified. Phylogenetic analysis based on 16S rDNA and the housekeeping genes glnII, recA and atpD showed a high diversity of native Bradyrhizobium strains that were able to establish symbiosis with Lmj. All the strains grouped in a clade unrelated to strains of the B. canariense and B. japonicum lineages that establish symbioses with lupines in acid soils of the Mediterranean area. The phylogenetic tree based on concatenated glnII, recA and atpD gene sequences grouped the Lmj isolates in six different operational taxonomic units (OTUs) at the 93% similarity level. These OTUs were not associated to any specific geographical location, and their observed divergence predicted the existence of different Bradyrhizobium genomic species. In contrast, phylogenetic analysis of symbiotic genes based on nodC and nodA gene sequences, defined only two distinct clusters among the Lmj strains. These two Lmj nod gene types were largely distinct from nod genes of bradyrhizobia nodulating other Old World lupine species. The singularity and large diversity of these strains in such a small geographical area makes this an attractive system for studying the evolution and adaptation of the rhizobial symbiont to the plant host. Copyright © 2012 Elsevier GmbH. All rights reserved.

  4. Phylogenetic position of the genus Perkinsus (Protista, Apicomplexa) based on small subunit ribosomal RNA.

    PubMed

    Goggin, C L; Barker, S C

    1993-07-01

    Parasites of the genus Perkinsus destroy marine molluscs worldwide. Their phylogenetic position within the kingdom Protista is controversial. Nucleotide sequence data (1792 bp) from the small subunit rRNA gene of Perkinsus sp. from Anadara trapezia (Mollusca: Bivalvia) from Moreton Bay, Queensland, was used to examine the phylogenetic affinities of this enigmatic genus. These data were aligned with nucleotide sequences from 6 apicomplexans, 3 ciliates, 3 flagellates, a dinoflagellate, 3 fungi, maize and human. Phylogenetic trees were constructed after analysis with maximum parsimony and distance matrix methods. Our analyses indicate that Perkinsus is phylogenetically closer to dinoflagellates and to coccidean and piroplasm apicomplexans than to fungi or flagellates.

  5. Polymorphism and selection in the major histocompatibility complex DRA and DQA genes in the family Equidae.

    PubMed

    Janova, Eva; Matiasovic, Jan; Vahala, Jiri; Vodicka, Roman; Van Dyk, Enette; Horin, Petr

    2009-07-01

    The major histocompatibility complex genes coding for antigen binding and presenting molecules are the most polymorphic genes in the vertebrate genome. We studied the DRA and DQA gene polymorphism of the family Equidae. In addition to 11 previously reported DRA and 24 DQA alleles, six new DRA sequences and 13 new DQA alleles were identified in the genus Equus. Phylogenetic analysis of both DRA and DQA sequences provided evidence for trans-species polymorphism in the family Equidae. The phylogenetic trees differed from species relationships defined by standard taxonomy of Equidae and from trees based on mitochondrial or neutral gene sequence data. Analysis of selection showed differences between the less variable DRA and more variable DQA genes. DRA alleles were more often shared by more species. The DQA sequences analysed showed strong amongst-species positive selection; the selected amino acid positions mostly corresponded to selected positions in rodent and human DQA genes.

  6. Expected time-invariant effects of biological traits on mammal species duration.

    PubMed

    Smits, Peter D

    2015-10-20

    Determining which biological traits influence differences in extinction risk is vital for understanding the differential diversification of life and for making predictions about species' vulnerability to anthropogenic impacts. Here I present a hierarchical Bayesian survival model of North American Cenozoic mammal species durations in relation to species-level ecological factors, time of origination, and phylogenetic relationships. I find support for the survival of the unspecialized as a time-invariant generalization of trait-based extinction risk. Furthermore, I find that phylogenetic and temporal effects are both substantial factors associated with differences in species durations. Finally, I find that the estimated effects of these factors are partially incongruous with how these factors are correlated with extinction risk of the extant species. These findings parallel previous observations that background extinction is a poor predictor of mass extinction events and suggest that attention should be focused on mass extinctions to gain insight into modern species loss.

  7. Assessment of Recombination in the S-segment Genome of Crimean-Congo Hemorrhagic Fever Virus in Iran

    PubMed Central

    Chinikar, Sadegh; Shah-Hosseini, Nariman; Bouzari, Saeid; Shokrgozar, Mohammad Ali; Mostafavi, Ehsan; Jalali, Tahmineh; Khakifirouz, Sahar; Groschup, Martin H; Niedrig, Matthias

    2016-01-01

    Background: Crimean-Congo Hemorrhagic Fever Virus (CCHFV) belongs to genus Nairovirus and family Bunyaviridae. The main aim of this study was to investigate the extent of recombination in S-segment genome of CCHFV in Iran. Methods: Samples were isolated from Iranian patients and those available in GenBank, and analyzed by phylogenetic and bootscan methods. Results: Through comparison of the phylogenetic trees based on full length sequences and partial fragments in the S-segment genome of CCHFV, genetic switch was evident, due to recombination event. Moreover, evidence of multiple recombination events was detected in query isolates when bootscan analysis was used by SimPlot software. Conclusion: Switch of different genomic regions between different strains by recombination could contribute to CCHFV diversification and evolution. The occurrence of recombination in CCHFV has a critical impact on epidemiological investigations and vaccine design. PMID:27047968

  8. Fossils matter: improved estimates of divergence times in Pinus reveal older diversification.

    PubMed

    Saladin, Bianca; Leslie, Andrew B; Wüest, Rafael O; Litsios, Glenn; Conti, Elena; Salamin, Nicolas; Zimmermann, Niklaus E

    2017-04-04

    The taxonomy of pines (genus Pinus) is widely accepted and a robust gene tree based on entire plastome sequences exists. However, there is a large discrepancy in estimated divergence times of major pine clades among existing studies, mainly due to differences in fossil placement and dating methods used. We currently lack a dated molecular phylogeny that makes use of the rich pine fossil record, and this study is the first to estimate the divergence dates of pines based on a large number of fossils (21) evenly distributed across all major clades, in combination with applying both node and tip dating methods. We present a range of molecular phylogenetic trees of Pinus generated within a Bayesian framework. We find the origin of crown Pinus is likely up to 30 Myr older (Early Cretaceous) than inferred in most previous studies (Late Cretaceous) and propose generally older divergence times for major clades within Pinus than previously thought. Our age estimates vary significantly between the different dating approaches, but the results generally agree on older divergence times. We present a revised list of 21 fossils that are suitable to use in dating or comparative analyses of pines. Reliable estimates of divergence times in pines are essential if we are to link diversification processes and functional adaptation of this genus to geological events or to changing climates. In addition to older divergence times in Pinus, our results also indicate that node age estimates in pines depend on dating approaches and the specific fossil sets used, reflecting inherent differences in various dating approaches. The sets of dated phylogenetic trees of pines presented here provide a way to account for uncertainties in age estimations when applying comparative phylogenetic methods.

  9. New Insights into Flavivirus Evolution, Taxonomy and Biogeographic History, Extended by Analysis of Canonical and Alternative Coding Sequences

    PubMed Central

    Moureau, Gregory; Cook, Shelley; Lemey, Philippe; Nougairede, Antoine; Forrester, Naomi L.; Khasnatinov, Maxim; Charrel, Remi N.; Firth, Andrew E.; Gould, Ernest A.; de Lamballerie, Xavier

    2015-01-01

    To generate the most diverse phylogenetic dataset for the flaviviruses to date, we determined the genomic sequences and phylogenetic relationships of 14 flaviviruses, of which 10 are primarily associated with Culex spp. mosquitoes. We analyze these data, in conjunction with a comprehensive collection of flavivirus genomes, to characterize flavivirus evolutionary and biogeographic history in unprecedented detail and breadth. Based on the presumed introduction of yellow fever virus into the Americas via the transatlantic slave trade, we extrapolated a timescale for a relevant subset of flaviviruses whose evolutionary history, shows that different Culex-spp. associated flaviviruses have been introduced from the Old World to the New World on at least five separate occasions, with 2 different sets of factors likely to have contributed to the dispersal of the different viruses. We also discuss the significance of programmed ribosomal frameshifting in a central region of the polyprotein open reading frame in some mosquito-associated flaviviruses. PMID:25719412

  10. Morphological and Molecular Characterization of a New Trichuris Species (Nematoda- Trichuridae), and Phylogenetic Relationships of Trichuris Species of Cricetid Rodents from Argentina

    PubMed Central

    Robles, María del Rosario; Cutillas, Cristina; Panei, Carlos Javier; Callejón, Rocío

    2014-01-01

    Populations of Trichuris spp. isolated from six species of sigmodontine rodents from Argentina were analyzed based on morphological characteristics and ITS2 (rDNA) region sequences. Molecular data provided an opportunity to discuss the phylogenetic relationships among the Trichuris spp. from Noth and South America (mainly from Argentina). Trichuris specimens were identified morphologically as Trichuris pardinasi, T. navonae, Trichuris sp. and Trichuris new species, described in this paper. Sequences analyzed by Maximum Parsimony, Maximum Likelihood and Bayesian inference methods showed four main clades corresponding with the four different species regardless of geographical origin and host species. These four species from sigmodontine rodents clustered together and separated from Trichuris species isolated from murine and arvicoline rodents (outgroup). Different genetic lineages observed among Trichuris species from sigmodontine rodents which supported the proposal of a new species. Moreover, host distribution showed correspondence with the different tribes within the subfamily Sigmodontinae. PMID:25393618

  11. Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification.

    PubMed

    Jones, Christopher M; Stres, Blaz; Rosenquist, Magnus; Hallin, Sara

    2008-09-01

    Denitrification is a facultative respiratory pathway in which nitrite (NO2(-)), nitric oxide (NO), and nitrous oxide (N2O) are successively reduced to nitrogen gas (N(2)), effectively closing the nitrogen cycle. The ability to denitrify is widely dispersed among prokaryotes, and this polyphyletic distribution has raised the possibility of horizontal gene transfer (HGT) having a substantial role in the evolution of denitrification. Comparisons of 16S rRNA and denitrification gene phylogenies in recent studies support this possibility; however, these results remain speculative as they are based on visual comparisons of phylogenies from partial sequences. We reanalyzed publicly available nirS, nirK, norB, and nosZ partial sequences using Bayesian and maximum likelihood phylogenetic inference. Concomitant analysis of denitrification genes with 16S rRNA sequences from the same organisms showed substantial differences between the trees, which were supported by examining the posterior probability of monophyletic constraints at different taxonomic levels. Although these differences suggest HGT of denitrification genes, the presence of structural variants for nirK, norB, and nosZ makes it difficult to determine HGT from other evolutionary events. Additional analysis using phylogenetic networks and likelihood ratio tests of phylogenies based on full-length sequences retrieved from genomes also revealed significant differences in tree topologies among denitrification and 16S rRNA gene phylogenies, with the exception of the nosZ gene phylogeny within the data set of the nirK-harboring genomes. However, inspection of codon usage and G + C content plots from complete genomes gave no evidence for recent HGT. Instead, the close proximity of denitrification gene copies in the genomes of several denitrifying bacteria suggests duplication. Although HGT cannot be ruled out as a factor in the evolution of denitrification genes, our analysis suggests that other phenomena, such gene duplication/divergence and lineage sorting, may have differently influenced the evolution of each denitrification gene.

  12. Discriminating micropathogen lineages and their reticulate evolution through graph theory-based network analysis: the case of Trypanosoma cruzi, the agent of Chagas disease.

    PubMed

    Arnaud-Haond, Sophie; Moalic, Yann; Barnabé, Christian; Ayala, Francisco José; Tibayrenc, Michel

    2014-01-01

    Micropathogens (viruses, bacteria, fungi, parasitic protozoa) share a common trait, which is partial clonality, with wide variance in the respective influence of clonality and sexual recombination on the dynamics and evolution of taxa. The discrimination of distinct lineages and the reconstruction of their phylogenetic history are key information to infer their biomedical properties. However, the phylogenetic picture is often clouded by occasional events of recombination across divergent lineages, limiting the relevance of classical phylogenetic analysis and dichotomic trees. We have applied a network analysis based on graph theory to illustrate the relationships among genotypes of Trypanosoma cruzi, the parasitic protozoan responsible for Chagas disease, to identify major lineages and to unravel their past history of divergence and possible recombination events. At the scale of T. cruzi subspecific diversity, graph theory-based networks applied to 22 isoenzyme loci (262 distinct Multi-Locus-Enzyme-Electrophoresis -MLEE) and 19 microsatellite loci (66 Multi-Locus-Genotypes -MLG) fully confirms the high clustering of genotypes into major lineages or "near-clades". The release of the dichotomic constraint associated with phylogenetic reconstruction usually applied to Multilocus data allows identifying putative hybrids and their parental lineages. Reticulate topology suggests a slightly different history for some of the main "near-clades", and a possibly more complex origin for the putative hybrids than hitherto proposed. Finally the sub-network of the near-clade T. cruzi I (28 MLG) shows a clustering subdivision into three differentiated lesser near-clades ("Russian doll pattern"), which confirms the hypothesis recently proposed by other investigators. The present study broadens and clarifies the hypotheses previously obtained from classical markers on the same sets of data, which demonstrates the added value of this approach. This underlines the potential of graph theory-based network analysis for describing the nature and relationships of major pathogens, thereby opening stimulating prospects to unravel the organization, dynamics and history of major micropathogen lineages.

  13. Incompletely resolved phylogenetic trees inflate estimates of phylogenetic conservatism.

    PubMed

    Davies, T Jonathan; Kraft, Nathan J B; Salamin, Nicolas; Wolkovich, Elizabeth M

    2012-02-01

    The tendency for more closely related species to share similar traits and ecological strategies can be explained by their longer shared evolutionary histories and represents phylogenetic conservatism. How strongly species traits co-vary with phylogeny can significantly impact how we analyze cross-species data and can influence our interpretation of assembly rules in the rapidly expanding field of community phylogenetics. Phylogenetic conservatism is typically quantified by analyzing the distribution of species values on the phylogenetic tree that connects them. Many phylogenetic approaches, however, assume a completely sampled phylogeny: while we have good estimates of deeper phylogenetic relationships for many species-rich groups, such as birds and flowering plants, we often lack information on more recent interspecific relationships (i.e., within a genus). A common solution has been to represent these relationships as polytomies on trees using taxonomy as a guide. Here we show that such trees can dramatically inflate estimates of phylogenetic conservatism quantified using S. P. Blomberg et al.'s K statistic. Using simulations, we show that even randomly generated traits can appear to be phylogenetically conserved on poorly resolved trees. We provide a simple rarefaction-based solution that can reliably retrieve unbiased estimates of K, and we illustrate our method using data on first flowering times from Thoreau's woods (Concord, Massachusetts, USA).

  14. Simultaneously estimating evolutionary history and repeated traits phylogenetic signal: applications to viral and host phenotypic evolution

    PubMed Central

    Vrancken, Bram; Lemey, Philippe; Rambaut, Andrew; Bedford, Trevor; Longdon, Ben; Günthard, Huldrych F.; Suchard, Marc A.

    2014-01-01

    Phylogenetic signal quantifies the degree to which resemblance in continuously-valued traits reflects phylogenetic relatedness. Measures of phylogenetic signal are widely used in ecological and evolutionary research, and are recently gaining traction in viral evolutionary studies. Standard estimators of phylogenetic signal frequently condition on data summary statistics of the repeated trait observations and fixed phylogenetics trees, resulting in information loss and potential bias. To incorporate the observation process and phylogenetic uncertainty in a model-based approach, we develop a novel Bayesian inference method to simultaneously estimate the evolutionary history and phylogenetic signal from molecular sequence data and repeated multivariate traits. Our approach builds upon a phylogenetic diffusion framework that model continuous trait evolution as a Brownian motion process and incorporates Pagel’s λ transformation parameter to estimate dependence among traits. We provide a computationally efficient inference implementation in the BEAST software package. We evaluate the synthetic performance of the Bayesian estimator of phylogenetic signal against standard estimators, and demonstrate the use of our coherent framework to address several virus-host evolutionary questions, including virulence heritability for HIV, antigenic evolution in influenza and HIV, and Drosophila sensitivity to sigma virus infection. Finally, we discuss model extensions that will make useful contributions to our flexible framework for simultaneously studying sequence and trait evolution. PMID:25780554

  15. Comparative Study of Lectin Domains in Model Species: New Insights into Evolutionary Dynamics

    PubMed Central

    Van Holle, Sofie; De Schutter, Kristof; Eggermont, Lore; Tsaneva, Mariya; Dang, Liuyi; Van Damme, Els J. M.

    2017-01-01

    Lectins are present throughout the plant kingdom and are reported to be involved in diverse biological processes. In this study, we provide a comparative analysis of the lectin families from model species in a phylogenetic framework. The analysis focuses on the different plant lectin domains identified in five representative core angiosperm genomes (Arabidopsis thaliana, Glycine max, Cucumis sativus, Oryza sativa ssp. japonica and Oryza sativa ssp. indica). The genomes were screened for genes encoding lectin domains using a combination of Basic Local Alignment Search Tool (BLAST), hidden Markov models, and InterProScan analysis. Additionally, phylogenetic relationships were investigated by constructing maximum likelihood phylogenetic trees. The results demonstrate that the majority of the lectin families are present in each of the species under study. Domain organization analysis showed that most identified proteins are multi-domain proteins, owing to the modular rearrangement of protein domains during evolution. Most of these multi-domain proteins are widespread, while others display a lineage-specific distribution. Furthermore, the phylogenetic analyses reveal that some lectin families evolved to be similar to the phylogeny of the plant species, while others share a closer evolutionary history based on the corresponding protein domain architecture. Our results yield insights into the evolutionary relationships and functional divergence of plant lectins. PMID:28587095

  16. Morphological and molecular diversity and phylogenetic relationships among anuran trypanosomes from the Amazonia, Atlantic Forest and Pantanal biomes in Brazil.

    PubMed

    Ferreira, R C; Campaner, M; Viola, L B; Takata, C S A; Takeda, G F; Teixeira, M M G

    2007-10-01

    We examined for the presence of trypanosomes in blood samples from 259 anurans (47 species from 8 families), the majority of which were from the Brazilian Amazonia, Atlantic Forest and Pantanal biomes. Trypanosomes were detected by a combination of microhaematocrit and haemoculture methods in 45% of the anurans, and 87 cultures were obtained: 44 from Hylidae, 22 from Leptodactylidae, 15 from Bufonidae, 5 from Leiuperidae and 1 from an unidentified anuran. High morphological diversity (11 morphotypes) was observed among blood trypanosomes from anurans of different species and of the same species as well as among trypanosomes from the same individual. Conversely, morphologically similar trypanosomes were found in anurans from distinct species and biomes. ITS and SSU rDNA polymorphisms revealed high diversity among the 82 isolates examined. Twenty-nine genotypes could be distinguished, the majority distributed in 11 groups. Phylogenetic relationships based on rDNA sequences indicated that isolates from more phylogenetically related anurans are more closely related. Comparison of anuran trypanosomes from Brazil and other countries revealed several new species among the isolates examined in this study. Phylogenetic relationships suggest that host restriction, host switching and overall ecogeographical structure may have played a role in the evolution of the anuran trypanosomes.

  17. Computational biomechanics changes our view on insect head evolution.

    PubMed

    Blanke, Alexander; Watson, Peter J; Holbrey, Richard; Fagan, Michael J

    2017-02-08

    Despite large-scale molecular attempts, the relationships of the basal winged insect lineages dragonflies, mayflies and neopterans, are still unresolved. Other data sources, such as morphology, suffer from unclear functional dependencies of the structures considered, which might mislead phylogenetic inference. Here, we assess this problem by combining for the first time biomechanics with phylogenetics using two advanced engineering techniques, multibody dynamics analysis and finite-element analysis, to objectively identify functional linkages in insect head structures which have been used traditionally to argue basal winged insect relationships. With a biomechanical model of unprecedented detail, we are able to investigate the mechanics of morphological characters under biologically realistic load, i.e. biting. We show that a range of head characters, mainly ridges, endoskeletal elements and joints, are indeed mechanically linked to each other. An analysis of character state correlation in a morphological data matrix focused on head characters shows highly significant correlation of these mechanically linked structures. Phylogenetic tree reconstruction under different data exclusion schemes based on the correlation analysis unambiguously supports a sistergroup relationship of dragonflies and mayflies. The combination of biomechanics and phylogenetics as it is proposed here could be a promising approach to assess functional dependencies in many organisms to increase our understanding of phenotypic evolution. © 2017 The Author(s).

  18. Phylogenetic Analysis of Shewanella Strains by DNA Relatedness Derived from Whole Genome Microarray DNA-DNA Hybridization and Comparison with Other Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Liyou; Yi, T. Y.; Van Nostrand, Joy

    Phylogenetic analyses were done for the Shewanella strains isolated from Baltic Sea (38 strains), US DOE Hanford Uranium bioremediation site [Hanford Reach of the Columbia River (HRCR), 11 strains], Pacific Ocean and Hawaiian sediments (8 strains), and strains from other resources (16 strains) with three out group strains, Rhodopseudomonas palustris, Clostridium cellulolyticum, and Thermoanaerobacter ethanolicus X514, using DNA relatedness derived from WCGA-based DNA-DNA hybridizations, sequence similarities of 16S rRNA gene and gyrB gene, and sequence similarities of 6 loci of Shewanella genome selected from a shared gene list of the Shewanella strains with whole genome sequenced based on the averagemore » nucleotide identity of them (ANI). The phylogenetic trees based on 16S rRNA and gyrB gene sequences, and DNA relatedness derived from WCGA hybridizations of the tested Shewanella strains share exactly the same sub-clusters with very few exceptions, in which the strains were basically grouped by species. However, the phylogenetic analysis based on DNA relatedness derived from WCGA hybridizations dramatically increased the differentiation resolution at species and strains level within Shewanella genus. When the tree based on DNA relatedness derived from WCGA hybridizations was compared to the tree based on the combined sequences of the selected functional genes (6 loci), we found that the resolutions of both methods are similar, but the clustering of the tree based on DNA relatedness derived from WMGA hybridizations was clearer. These results indicate that WCGA-based DNA-DNA hybridization is an idea alternative of conventional DNA-DNA hybridization methods and it is superior to the phylogenetics methods based on sequence similarities of single genes. Detailed analysis is being performed for the re-classification of the strains examined.« less

  19. Phylogenetic diversity of ceftriaxone resistance and the presence of extended-spectrum β-lactamase genes in the culturable soil resistome.

    PubMed

    Pagaling, Eulyn; Gatica, Joao; Yang, Kun; Cytryn, Eddie; Yan, Tao

    2016-09-01

    The aim of this study was to determine the phylogenetic diversity of ceftriaxone resistance and the presence of known extended-spectrum β-lactamase (ESBL) genes in culturable soil resistomes. Libraries of soil bacterial isolates resistant to ceftriaxone were established from six physicochemically diverse soils collected in Hawaii (USA) and Israel. The phylogenetic affiliation, ceftriaxone and multidrug resistance levels, and presence of known ESBL genes of the isolates were determined. The soil bacterial isolates were phylogenetically grouped with the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Actinobacteria, Firmicutes and Bacteroidetes. Ceftriaxone minimum inhibitory concentrations (MICs) largely followed the phylogeny structure and higher levels of ceftriaxone resistance corresponded to higher multidrug resistance. Three distinct blaTEM variants were detected in soil bacterial isolates belonging to nine different genera. In conclusion, the culturable soil resistomes for ceftriaxone exhibited high phylogenetic diversity and multidrug resistance. blaTEM was the only known ESBL detected in the soil resistomes, and its distribution in different phylogenetic groups suggests its ubiquitous presence and/or possible horizontal gene transfer within the soil microbiomes. Copyright © 2016 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  20. Phylogenetic fields through time: temporal dynamics of geographical co-occurrence and phylogenetic structure within species ranges

    PubMed Central

    Carotenuto, Francesco; Diniz-Filho, José Alexandre F.

    2016-01-01

    Species co-occur with different sets of other species across their geographical distribution, which can be either closely or distantly related. Such co-occurrence patterns and their phylogenetic structure within individual species ranges represent what we call the species phylogenetic fields (PFs). These PFs allow investigation of the role of historical processes—speciation, extinction and dispersal—in shaping species co-occurrence patterns, in both extinct and extant species. Here, we investigate PFs of large mammalian species during the last 3 Myr, and how these correlate with trends in diversification rates. Using the fossil record, we evaluate species' distributional and co-occurrence patterns along with their phylogenetic structure. We apply a novel Bayesian framework on fossil occurrences to estimate diversification rates through time. Our findings highlight the effect of evolutionary processes and past climatic changes on species' distributions and co-occurrences. From the Late Pliocene to the Recent, mammal species seem to have responded in an individualistic manner to climate changes and diversification dynamics, co-occurring with different sets of species from different lineages across their geographical ranges. These findings stress the difficulty of forecasting potential effects of future climate changes on biodiversity. PMID:26977061

  1. Phylogenetic and functional traits of ectomycorrhizal assemblages in top soil from different biogeographic regions and forest types.

    PubMed

    Pena, Rodica; Lang, Christa; Lohaus, Gertrud; Boch, Steffen; Schall, Peter; Schöning, Ingo; Ammer, Christian; Fischer, Markus; Polle, Andrea

    2017-04-01

    Ectomycorrhizal (EM) fungal taxonomic, phylogenetic, and trait diversity (exploration types) were analyzed in beech and conifer forests along a north-to-south gradient in three biogeographic regions in Germany. The taxonomic community structures of the ectomycorrhizal assemblages in top soil were influenced by stand density and forest type, by biogeographic environmental factors (soil physical properties, temperature, and precipitation), and by nitrogen forms (amino acids, ammonium, and nitrate). While α-diversity did not differ between forest types, β-diversity increased, leading to higher γ-diversity on the landscape level when both forest types were present. The highest taxonomic diversity of EM was found in forests in cool, moist climate on clay and silty soils and the lowest in the forests in warm, dry climate on sandy soils. In the region with higher taxonomic diversity, phylogenetic clustering was found, but not trait clustering. In the warm region, trait clustering occurred despite neutral phylogenetic effects. These results suggest that different forest types and favorable environmental conditions in forests promote high EM species richness in top soil presumably with both high functional diversity and phylogenetic redundancy, while stressful environmental conditions lead to lower species richness and functional redundancy.

  2. Phylogenetic fields through time: temporal dynamics of geographical co-occurrence and phylogenetic structure within species ranges.

    PubMed

    Villalobos, Fabricio; Carotenuto, Francesco; Raia, Pasquale; Diniz-Filho, José Alexandre F

    2016-04-05

    Species co-occur with different sets of other species across their geographical distribution, which can be either closely or distantly related. Such co-occurrence patterns and their phylogenetic structure within individual species ranges represent what we call the species phylogenetic fields (PFs). These PFs allow investigation of the role of historical processes--speciation, extinction and dispersal--in shaping species co-occurrence patterns, in both extinct and extant species. Here, we investigate PFs of large mammalian species during the last 3 Myr, and how these correlate with trends in diversification rates. Using the fossil record, we evaluate species' distributional and co-occurrence patterns along with their phylogenetic structure. We apply a novel Bayesian framework on fossil occurrences to estimate diversification rates through time. Our findings highlight the effect of evolutionary processes and past climatic changes on species' distributions and co-occurrences. From the Late Pliocene to the Recent, mammal species seem to have responded in an individualistic manner to climate changes and diversification dynamics, co-occurring with different sets of species from different lineages across their geographical ranges. These findings stress the difficulty of forecasting potential effects of future climate changes on biodiversity. © 2016 The Author(s).

  3. Conservation threats and the phylogenetic utility of IUCN Red List rankings in Incilius toads.

    PubMed

    Schachat, Sandra R; Mulcahy, Daniel G; Mendelson, Joseph R

    2016-02-01

    Phylogenetic analysis of extinction threat is an emerging tool in the field of conservation. However, there are problems with the methods and data as commonly used. Phylogenetic sampling usually extends to the level of family or genus, but International Union for Conservation of Nature (IUCN) rankings are available only for individual species, and, although different species within a taxonomic group may have the same IUCN rank, the species may have been ranked as such for different reasons. Therefore, IUCN rank may not reflect evolutionary history and thus may not be appropriate for use in a phylogenetic context. To be used appropriately, threat-risk data should reflect the cause of extinction threat rather than the IUCN threat ranking. In a case study of the toad genus Incilius, with phylogenetic sampling at the species level (so that the resolution of the phylogeny matches character data from the IUCN Red List), we analyzed causes of decline and IUCN threat rankings by calculating metrics of phylogenetic signal (such as Fritz and Purvis' D). We also analyzed the extent to which cause of decline and threat ranking overlap by calculating phylogenetic correlation between these 2 types of character data. Incilius species varied greatly in both threat ranking and cause of decline; this variability would be lost at a coarser taxonomic resolution. We found far more phylogenetic signal, likely correlated with evolutionary history, for causes of decline than for IUCN threat ranking. Individual causes of decline and IUCN threat rankings were largely uncorrelated on the phylogeny. Our results demonstrate the importance of character selection and taxonomic resolution when extinction threat is analyzed in a phylogenetic context. © 2015 Society for Conservation Biology.

  4. Which morphological characteristics are most influenced by the host matrix in downy mildews? A case study in Pseudoperonospora cubensis.

    PubMed

    Runge, Fabian; Ndambi, Beninweck; Thines, Marco

    2012-01-01

    Before the advent of molecular phylogenetics, species concepts in the downy mildews, an economically important group of obligate biotrophic oomycete pathogens, have mostly been based upon host range and morphology. While molecular phylogenetic studies have confirmed a narrow host range for many downy mildew species, others, like Pseudoperonospora cubensis affect even different genera. Although often morphological differences were found for new, phylogenetically distinct species, uncertainty prevails regarding their host ranges, especially regarding related plants that have been reported as downy mildew hosts, but were not included in the phylogenetic studies. In these cases, the basis for deciding if the divergence in some morphological characters can be deemed sufficient for designation as separate species is uncertain, as observed morphological divergence could be due to different host matrices colonised. The broad host range of P. cubensis (ca. 60 host species) renders this pathogen an ideal model organism for the investigation of morphological variations in relation to the host matrix and to evaluate which characteristics are best indicators for conspecificity or distinctiveness. On the basis of twelve morphological characterisitcs and a set of twelve cucurbits from five different Cucurbitaceae tribes, including the two species, Cyclanthera pedata and Thladiantha dubia, hitherto not reported as hosts of P. cubensis, a significant influence of the host matrix on pathogen morphology was found. Given the high intraspecific variation of some characteristics, also their plasticity has to be taken into account. The implications for morphological species determination and the confidence limits of morphological characteristics are discussed. For species delimitations in Pseudoperonospora it is shown that the ratio of the height of the first ramification to the sporangiophore length, ratio of the longer to the shorter ultimate branchlet, and especially the length and width of sporangia, as well as, with some reservations, their ratio, are the most suitable characteristics for species delimitation.

  5. Which Morphological Characteristics Are Most Influenced by the Host Matrix in Downy Mildews? A Case Study in Pseudoperonospora cubensis

    PubMed Central

    Runge, Fabian; Ndambi, Beninweck; Thines, Marco

    2012-01-01

    Before the advent of molecular phylogenetics, species concepts in the downy mildews, an economically important group of obligate biotrophic oomycete pathogens, have mostly been based upon host range and morphology. While molecular phylogenetic studies have confirmed a narrow host range for many downy mildew species, others, like Pseudoperonospora cubensis affect even different genera. Although often morphological differences were found for new, phylogenetically distinct species, uncertainty prevails regarding their host ranges, especially regarding related plants that have been reported as downy mildew hosts, but were not included in the phylogenetic studies. In these cases, the basis for deciding if the divergence in some morphological characters can be deemed sufficient for designation as separate species is uncertain, as observed morphological divergence could be due to different host matrices colonised. The broad host range of P. cubensis (ca. 60 host species) renders this pathogen an ideal model organism for the investigation of morphological variations in relation to the host matrix and to evaluate which characteristics are best indicators for conspecificity or distinctiveness. On the basis of twelve morphological characterisitcs and a set of twelve cucurbits from five different Cucurbitaceae tribes, including the two species, Cyclanthera pedata and Thladiantha dubia, hitherto not reported as hosts of P. cubensis, a significant influence of the host matrix on pathogen morphology was found. Given the high intraspecific variation of some characteristics, also their plasticity has to be taken into account. The implications for morphological species determination and the confidence limits of morphological characteristics are discussed. For species delimitations in Pseudoperonospora it is shown that the ratio of the height of the first ramification to the sporangiophore length, ratio of the longer to the shorter ultimate branchlet, and especially the length and width of sporangia, as well as, with some reservations, their ratio, are the most suitable characteristics for species delimitation. PMID:23166582

  6. Using tree diversity to compare phylogenetic heuristics.

    PubMed

    Sul, Seung-Jin; Matthews, Suzanne; Williams, Tiffani L

    2009-04-29

    Evolutionary trees are family trees that represent the relationships between a group of organisms. Phylogenetic heuristics are used to search stochastically for the best-scoring trees in tree space. Given that better tree scores are believed to be better approximations of the true phylogeny, traditional evaluation techniques have used tree scores to determine the heuristics that find the best scores in the fastest time. We develop new techniques to evaluate phylogenetic heuristics based on both tree scores and topologies to compare Pauprat and Rec-I-DCM3, two popular Maximum Parsimony search algorithms. Our results show that although Pauprat and Rec-I-DCM3 find the trees with the same best scores, topologically these trees are quite different. Furthermore, the Rec-I-DCM3 trees cluster distinctly from the Pauprat trees. In addition to our heatmap visualizations of using parsimony scores and the Robinson-Foulds distance to compare best-scoring trees found by the two heuristics, we also develop entropy-based methods to show the diversity of the trees found. Overall, Pauprat identifies more diverse trees than Rec-I-DCM3. Overall, our work shows that there is value to comparing heuristics beyond the parsimony scores that they find. Pauprat is a slower heuristic than Rec-I-DCM3. However, our work shows that there is tremendous value in using Pauprat to reconstruct trees-especially since it finds identical scoring but topologically distinct trees. Hence, instead of discounting Pauprat, effort should go in improving its implementation. Ultimately, improved performance measures lead to better phylogenetic heuristics and will result in better approximations of the true evolutionary history of the organisms of interest.

  7. Genetic diversity of Grapevine virus A in Washington and California vineyards.

    PubMed

    Alabi, Olufemi J; Al Rwahnih, Maher; Mekuria, Tefera A; Naidu, Rayapati A

    2014-05-01

    Grapevine virus A (GVA; genus Vitivirus, family Betaflexiviridae) has been implicated with the Kober stem grooving disorder of the rugose wood disease complex. In this study, 26 isolates of GVA recovered from wine grape (Vitis vinifera) cultivars from California and Washington were analyzed for their genetic diversity. An analysis of a portion of the RNA-dependent RNA polymerase (RdRp) and complete coat protein (CP) sequences revealed intra- and inter-isolate sequence diversity. Our results indicated that both RdRp and CP are under strong negative selection based on the normalized values for the ratio of nonsynonymous substitutions per nonsynonymous site to synonymous substitutions per synonymous site. A global phylogenetic analysis of CP sequences revealed segregation of virus isolates into four major clades with no geographic clustering. In contrast, the RdRp-based phylogenetic tree indicated segregation of GVA isolates from California and Washington into six clades, independent of geographic origin or cultivar. Phylogenetic network coupled with recombination analyses showed putative recombination events in both RdRp and CP sequence data sets, with more of these events located in the CP sequence. The preponderance of divergent variants of GVA co-replicating within individual grapevines could increase viral genotypic complexity with implications for phylogenetic analysis and evolutionary history of the virus. The knowledge of genetic diversity of GVA generated in this study will provide a foundation for elucidating the epidemiological characteristics of virus populations at different scales and implementing appropriate management strategies for minimizing the spread of genetic variants of the virus by vectors and via planting materials supplied to nurseries and grape growers.

  8. Biochemical characterization and phylogenetic analysis based on 16S rRNA sequences for V-factor dependent members of Pasteurellaceae derived from laboratory rats.

    PubMed

    Hayashimoto, Nobuhito; Ueno, Masami; Tkakura, Akira; Itoh, Toshio

    2007-06-01

    Phylogenetic analysis based on 16S rRNA sequences with sequence data of some bacterial species of Pasteurellaceae related to rodents deposited in GenBank was performed along with biochemical characterization for the 20 strains of V-factor dependent members of Pasteurellaceae derived from laboratory rats to obtain basic information and to investigate the taxonomic positions. The results of biochemical tests for all strains were identical except for three tests, the ornithine decarboxylase test, and fermentation tests of D(+) mannose and D(+) xylose. The biochemical properties of 8 of 20 strains that showed negative results for the fermentation test of D(+) xylose agreed with those of Haemophilus parainfluenzae complex. By phylogenetic analysis, the strains were divided into two clusters that agreed with the results of the fermentation test of xylose (group I: negative reaction for xylose, group II: positive reaction for xylose). The clusters were independent of other bacterial species of Pasteurellaceae tested. The sequences of the strains in group I showed 99.7-99.8% similarity and the strains in group II showed 99.3-99.7% similarity. None of the strains in group I had a close relation with Haemophilus parainfluenzae by phylogenetic analysis, although they showed the same biochemical properties. In conclusion, the strains had characteristic biochemical properties and formed two independent groups within the "rodent cluster" of Pasteurellaceae that differed in the results of the fermentation test of xylose. Therefore, they seemed to be hitherto undescribed taxa in Pasteurellaceae.

  9. Analysis of complete mitochondrial genome sequences increases phylogenetic resolution of bears (Ursidae), a mammalian family that experienced rapid speciation.

    PubMed

    Yu, Li; Li, Yi-Wei; Ryder, Oliver A; Zhang, Ya-Ping

    2007-10-24

    Despite the small number of ursid species, bear phylogeny has long been a focus of study due to their conservation value, as all bear genera have been classified as endangered at either the species or subspecies level. The Ursidae family represents a typical example of rapid evolutionary radiation. Previous analyses with a single mitochondrial (mt) gene or a small number of mt genes either provide weak support or a large unresolved polytomy for ursids. We revisit the contentious relationships within Ursidae by analyzing complete mt genome sequences and evaluating the performance of both entire mt genomes and constituent mtDNA genes in recovering a phylogeny of extremely recent speciation events. This mitochondrial genome-based phylogeny provides strong evidence that the spectacled bear diverged first, while within the genus Ursus, the sloth bear is the sister taxon of all the other five ursines. The latter group is divided into the brown bear/polar bear and the two black bears/sun bear assemblages. These findings resolve the previous conflicts between trees using partial mt genes. The ability of different categories of mt protein coding genes to recover the correct phylogeny is concordant with previous analyses for taxa with deep divergence times. This study provides a robust Ursidae phylogenetic framework for future validation by additional independent evidence, and also has significant implications for assisting in the resolution of other similarly difficult phylogenetic investigations. Identification of base composition bias and utilization of the combined data of whole mitochondrial genome sequences has allowed recovery of a strongly supported phylogeny that is upheld when using multiple alternative outgroups for the Ursidae, a mammalian family that underwent a rapid radiation since the mid- to late Pliocene. It remains to be seen if the reliability of mt genome analysis will hold up in studies of other difficult phylogenetic issues. Although the whole mitochondrial DNA sequence based phylogeny is robust, it remains in conflict with phylogenetic relationships suggested by analysis of limited nuclear-encoded data, a situation that will require gathering more nuclear DNA sequence information.

  10. Analysis of complete mitochondrial genome sequences increases phylogenetic resolution of bears (Ursidae), a mammalian family that experienced rapid speciation

    PubMed Central

    Yu, Li; Li, Yi-Wei; Ryder, Oliver A; Zhang, Ya-Ping

    2007-01-01

    Background Despite the small number of ursid species, bear phylogeny has long been a focus of study due to their conservation value, as all bear genera have been classified as endangered at either the species or subspecies level. The Ursidae family represents a typical example of rapid evolutionary radiation. Previous analyses with a single mitochondrial (mt) gene or a small number of mt genes either provide weak support or a large unresolved polytomy for ursids. We revisit the contentious relationships within Ursidae by analyzing complete mt genome sequences and evaluating the performance of both entire mt genomes and constituent mtDNA genes in recovering a phylogeny of extremely recent speciation events. Results This mitochondrial genome-based phylogeny provides strong evidence that the spectacled bear diverged first, while within the genus Ursus, the sloth bear is the sister taxon of all the other five ursines. The latter group is divided into the brown bear/polar bear and the two black bears/sun bear assemblages. These findings resolve the previous conflicts between trees using partial mt genes. The ability of different categories of mt protein coding genes to recover the correct phylogeny is concordant with previous analyses for taxa with deep divergence times. This study provides a robust Ursidae phylogenetic framework for future validation by additional independent evidence, and also has significant implications for assisting in the resolution of other similarly difficult phylogenetic investigations. Conclusion Identification of base composition bias and utilization of the combined data of whole mitochondrial genome sequences has allowed recovery of a strongly supported phylogeny that is upheld when using multiple alternative outgroups for the Ursidae, a mammalian family that underwent a rapid radiation since the mid- to late Pliocene. It remains to be seen if the reliability of mt genome analysis will hold up in studies of other difficult phylogenetic issues. Although the whole mitochondrial DNA sequence based phylogeny is robust, it remains in conflict with phylogenetic relationships suggested by analysis of limited nuclear-encoded data, a situation that will require gathering more nuclear DNA sequence information. PMID:17956639

  11. Stability and phylogenetic correlation in gut microbiota: lessons from ants and apes.

    PubMed

    Sanders, Jon G; Powell, Scott; Kronauer, Daniel J C; Vasconcelos, Heraldo L; Frederickson, Megan E; Pierce, Naomi E

    2014-03-01

    Correlation between gut microbiota and host phylogeny could reflect codiversification over shared evolutionary history or a selective environment that is more similar in related hosts. These alternatives imply substantial differences in the relationship between host and symbiont, but can they be distinguished based on patterns in the community data themselves? We explored patterns of phylogenetic correlation in the distribution of gut bacteria among species of turtle ants (genus Cephalotes), which host a dense gut microbial community. We used 16S rRNA pyrosequencing from 25 Cephalotes species to show that their gut community is remarkably stable, from the colony to the genus level. Despite this overall similarity, the existing differences among species' microbiota significantly correlated with host phylogeny. We introduced a novel analytical technique to test whether these phylogenetic correlations are derived from recent bacterial evolution, as would be expected in the case of codiversification, or from broader shifts more likely to reflect environmental filters imposed by factors such as diet or habitat. We also tested this technique on a published data set of ape microbiota, confirming earlier results while revealing previously undescribed patterns of phylogenetic correlation. Our results indicated a high degree of partner fidelity in the Cephalotes microbiota, suggesting that vertical transmission of the entire community could play an important role in the evolution and maintenance of the association. As additional comparative microbiota data become available, the techniques presented here can be used to explore trends in the evolution of host-associated microbial communities. © 2014 John Wiley & Sons Ltd.

  12. Temperate Snake Community in South America: Is Diet Determined by Phylogeny or Ecology?

    PubMed Central

    Etchepare, Eduardo G.

    2015-01-01

    Communities are complex and dynamic systems that change with time. The first attempts to explain how they were structured involve contemporary phenomena like ecological interactions between species (e.g., competition and predation) and led to the competition-predation hypothesis. Recently, the deep history hypothesis has emerged, which suggests that profound differences in the evolutionary history of organisms resulted in a number of ecological features that remain largely on species that are part of existing communities. Nevertheless, both phylogenetic structure and ecological interactions can act together to determine the structure of a community. Because diet is one of the main niche axes, in this study we evaluated, for the first time, the impact of ecological and phylogenetic factors on the diet of Neotropical snakes from the subtropical-temperate region of South America. Additionally, we studied their relationship with morphological and environmental aspects to understand the natural history and ecology of this community. A canonical phylogenetical ordination analysis showed that phylogeny explained most of the variation in diet, whereas ecological characters explained very little of this variation. Furthermore, some snakes that shared the habitat showed some degree of diet convergence, in accordance with the competition-predation hypothesis, although phylogeny remained the major determinant in structuring this community. The clade with the greatest variability was the subfamily Dipsadinae, whose members had a very different type of diet, based on soft-bodied invertebrates. Our results are consistent with the deep history hypothesis, and we suggest that the community under study has a deep phylogenetic effect that explains most of the variation in the diet. PMID:25945501

  13. Trends over time in tree and seedling phylogenetic diversity indicate regional differences in forest biodiversity change.

    PubMed

    Potter, Kevin M; Woodall, Christopher W

    2012-03-01

    Changing climate conditions may impact the short-term ability of forest tree species to regenerate in many locations. In the longer term, tree species may be unable to persist in some locations while they become established in new places. Over both time frames, forest tree biodiversity may change in unexpected ways. Using repeated inventory measurements five years apart from more than 7000 forested plots in the eastern United States, we tested three hypotheses: phylogenetic diversity is substantially different from species richness as a measure of biodiversity; forest communities have undergone recent changes in phylogenetic diversity that differ by size class, region, and seed dispersal strategy; and these patterns are consistent with expected early effects of climate change. Specifically, the magnitude of diversity change across broad regions should be greater among seedlings than in trees, should be associated with latitude and elevation, and should be greater among species with high dispersal capacity. Our analyses demonstrated that phylogenetic diversity and species richness are decoupled at small and medium scales and are imperfectly associated at large scales. This suggests that it is appropriate to apply indicators of biodiversity change based on phylogenetic diversity, which account for evolutionary relationships among species and may better represent community functional diversity. Our results also detected broadscale patterns of forest biodiversity change that are consistent with expected early effects of climate change. First, the statistically significant increase over time in seedling diversity in the South suggests that conditions there have become more favorable for the reproduction and dispersal of a wider variety of species, whereas the significant decrease in northern seedling diversity indicates that northern conditions have become less favorable. Second, we found weak correlations between seedling diversity change and latitude in both zones, with stronger relationships apparent in some ecoregions. Finally, we detected broadscale seedling diversity increases among species with longer-distance dispersal capacity, even in the northern zone, where overall seedling diversity declined. The statistical power and geographic extent of such analyses will increase as data become available over larger areas and as plot measurements are repeated at regular intervals over a longer period of time.

  14. Methodology capture: discriminating between the "best" and the rest of community practice

    PubMed Central

    Eales, James M; Pinney, John W; Stevens, Robert D; Robertson, David L

    2008-01-01

    Background The methodologies we use both enable and help define our research. However, as experimental complexity has increased the choice of appropriate methodologies has become an increasingly difficult task. This makes it difficult to keep track of available bioinformatics software, let alone the most suitable protocols in a specific research area. To remedy this we present an approach for capturing methodology from literature in order to identify and, thus, define best practice within a field. Results Our approach is to implement data extraction techniques on the full-text of scientific articles to obtain the set of experimental protocols used by an entire scientific discipline, molecular phylogenetics. Our methodology for identifying methodologies could in principle be applied to any scientific discipline, whether or not computer-based. We find a number of issues related to the nature of best practice, as opposed to community practice. We find that there is much heterogeneity in the use of molecular phylogenetic methods and software, some of which is related to poor specification of protocols. We also find that phylogenetic practice exhibits field-specific tendencies that have increased through time, despite the generic nature of the available software. We used the practice of highly published and widely collaborative researchers ("expert" researchers) to analyse the influence of authority on community practice. We find expert authors exhibit patterns of practice common to their field and therefore act as useful field-specific practice indicators. Conclusion We have identified a structured community of phylogenetic researchers performing analyses that are customary in their own local community and significantly different from those in other areas. Best practice information can help to bridge such subtle differences by increasing communication of protocols to a wider audience. We propose that the practice of expert authors from the field of evolutionary biology is the closest to contemporary best practice in phylogenetic experimental design. Capturing best practice is, however, a complex task and should also acknowledge the differences between fields such as the specific context of the analysis. PMID:18761740

  15. Small-scale spatial variability in phylogenetic community structure during early plant succession depends on soil properties.

    PubMed

    Ulrich, Werner; Piwczyński, Marcin; Zaplata, Markus Klemens; Winter, Susanne; Schaaf, Wolfgang; Fischer, Anton

    2014-07-01

    During early plant succession, the phylogenetic structure of a community changes in response to important environmental filters and emerging species interactions. We traced the development of temperate-zone plant communities during the first 7 years of primary succession on catchment soils to explore patterns of initial species assembly. We found pronounced small-scale differences in the phylogenetic composition of neighbouring plant assemblages and a large-scale trend towards phylogenetic evenness. This small-scale variability appears to be mediated by soil properties, particularly carbonate content. Therefore, abiotic environmental conditions might counteract or even supersede the effects of interspecific competition among closely related species, which are usually predicted to exhibit patterns of phylogenetic evenness. We conclude that theories on phylogenetic community composition need to incorporate effects of small-scale variability of environmental factors.

  16. Phylogenetic diversity anomaly in angiosperms between eastern Asia and eastern North America.

    PubMed

    Qian, Hong; Jin, Yi; Ricklefs, Robert E

    2017-10-24

    Although eastern Asia (EAS) and eastern North America (ENA) have similar climates, plant species richness in EAS greatly exceeds that in ENA. The degree to which this diversity difference reflects the ages of the floras or their rates of evolutionary diversification has not been quantified. Measures of species diversity that do not incorporate the ages of lineages disregard the evolutionary distinctiveness of species. In contrast, phylogenetic diversity integrates both the number of species and their history of evolutionary diversification. Here we compared species diversity and phylogenetic diversity in a large number of flowering plant (angiosperm) floras distributed across EAS and ENA, two regions with similar contemporary environments and broadly shared floristic history. After accounting for climate and sample area, we found both species diversity and phylogenetic diversity to be significantly higher in EAS than in ENA. When we controlled the number of species statistically, we found that phylogenetic diversity remained substantially higher in EAS than in ENA, although it tended to converge at high latitude. This pattern held independently for herbs, shrubs, and trees. The anomaly in species and phylogenetic diversity likely resulted from differences in regional processes, related in part to high climatic and topographic heterogeneity, and a strong monsoon climate, in EAS. The broad connection between tropical and temperate floras in southern Asia also might have played a role in creating the phylogenetic diversity anomaly.

  17. Phylogenetic Reconstruction and DNA Barcoding for Closely Related Pine Moth Species (Dendrolimus) in China with Multiple Gene Markers

    PubMed Central

    Dai, Qing-Yan; Gao, Qiang; Wu, Chun-Sheng; Chesters, Douglas; Zhu, Chao-Dong; Zhang, Ai-Bing

    2012-01-01

    Unlike distinct species, closely related species offer a great challenge for phylogeny reconstruction and species identification with DNA barcoding due to their often overlapping genetic variation. We tested a sibling species group of pine moth pests in China with a standard cytochrome c oxidase subunit I (COI) gene and two alternative internal transcribed spacer (ITS) genes (ITS1 and ITS2). Five different phylogenetic/DNA barcoding analysis methods (Maximum likelihood (ML)/Neighbor-joining (NJ), “best close match” (BCM), Minimum distance (MD), and BP-based method (BP)), representing commonly used methodology (tree-based and non-tree based) in the field, were applied to both single-gene and multiple-gene analyses. Our results demonstrated clear reciprocal species monophyly for three relatively distant related species, Dendrolimus superans, D. houi, D. kikuchii, as recovered by both single and multiple genes while the phylogenetic relationship of three closely related species, D. punctatus, D. tabulaeformis, D. spectabilis, could not be resolved with the traditional tree-building methods. Additionally, we find the standard COI barcode outperforms two nuclear ITS genes, whatever the methods used. On average, the COI barcode achieved a success rate of 94.10–97.40%, while ITS1 and ITS2 obtained a success rate of 64.70–81.60%, indicating ITS genes are less suitable for species identification in this case. We propose the use of an overall success rate of species identification that takes both sequencing success and assignation success into account, since species identification success rates with multiple-gene barcoding system were generally overestimated, especially by tree-based methods, where only successfully sequenced DNA sequences were used to construct a phylogenetic tree. Non-tree based methods, such as MD, BCM, and BP approaches, presented advantages over tree-based methods by reporting the overall success rates with statistical significance. In addition, our results indicate that the most closely related species D. punctatus, D. tabulaeformis, and D. spectabilis, may be still in the process of incomplete lineage sorting, with occasional hybridizations occurring among them. PMID:22509245

  18. Building Phylogenetic Trees from DNA Sequence Data: Investigating Polar Bear and Giant Panda Ancestry.

    ERIC Educational Resources Information Center

    Maier, Caroline Alexandra

    2001-01-01

    Presents an activity in which students seek answers to questions about evolutionary relationships by using genetic databases and bioinformatics software. Students build genetic distance matrices and phylogenetic trees based on molecular sequence data using web-based resources. Provides a flowchart of steps involved in accessing, retrieving, and…

  19. Phylogenetic classification of bony fishes.

    PubMed

    Betancur-R, Ricardo; Wiley, Edward O; Arratia, Gloria; Acero, Arturo; Bailly, Nicolas; Miya, Masaki; Lecointre, Guillaume; Ortí, Guillermo

    2017-07-06

    Fish classifications, as those of most other taxonomic groups, are being transformed drastically as new molecular phylogenies provide support for natural groups that were unanticipated by previous studies. A brief review of the main criteria used by ichthyologists to define their classifications during the last 50 years, however, reveals slow progress towards using an explicit phylogenetic framework. Instead, the trend has been to rely, in varying degrees, on deep-rooted anatomical concepts and authority, often mixing taxa with explicit phylogenetic support with arbitrary groupings. Two leading sources in ichthyology frequently used for fish classifications (JS Nelson's volumes of Fishes of the World and W. Eschmeyer's Catalog of Fishes) fail to adopt a global phylogenetic framework despite much recent progress made towards the resolution of the fish Tree of Life. The first explicit phylogenetic classification of bony fishes was published in 2013, based on a comprehensive molecular phylogeny ( www.deepfin.org ). We here update the first version of that classification by incorporating the most recent phylogenetic results. The updated classification presented here is based on phylogenies inferred using molecular and genomic data for nearly 2000 fishes. A total of 72 orders (and 79 suborders) are recognized in this version, compared with 66 orders in version 1. The phylogeny resolves placement of 410 families, or ~80% of the total of 514 families of bony fishes currently recognized. The ordinal status of 30 percomorph families included in this study, however, remains uncertain (incertae sedis in the series Carangaria, Ovalentaria, or Eupercaria). Comments to support taxonomic decisions and comparisons with conflicting taxonomic groups proposed by others are presented. We also highlight cases were morphological support exist for the groups being classified. This version of the phylogenetic classification of bony fishes is substantially improved, providing resolution for more taxa than previous versions, based on more densely sampled phylogenetic trees. The classification presented in this study represents, unlike any other, the most up-to-date hypothesis of the Tree of Life of fishes.

  20. Nodal distances for rooted phylogenetic trees.

    PubMed

    Cardona, Gabriel; Llabrés, Mercè; Rosselló, Francesc; Valiente, Gabriel

    2010-08-01

    Dissimilarity measures for (possibly weighted) phylogenetic trees based on the comparison of their vectors of path lengths between pairs of taxa, have been present in the systematics literature since the early seventies. For rooted phylogenetic trees, however, these vectors can only separate non-weighted binary trees, and therefore these dissimilarity measures are metrics only on this class of rooted phylogenetic trees. In this paper we overcome this problem, by splitting in a suitable way each path length between two taxa into two lengths. We prove that the resulting splitted path lengths matrices single out arbitrary rooted phylogenetic trees with nested taxa and arcs weighted in the set of positive real numbers. This allows the definition of metrics on this general class of rooted phylogenetic trees by comparing these matrices through metrics in spaces M(n)(R) of real-valued n x n matrices. We conclude this paper by establishing some basic facts about the metrics for non-weighted phylogenetic trees defined in this way using L(p) metrics on M(n)(R), with p [epsilon] R(>0).

  1. An arctic community of symbiotic fungi assembled by long-distance dispersers: phylogenetic diversity of ectomycorrhizal basidiomycetes in Svalbard based on soil and sporocarp DNA

    Treesearch

    J. Geml; I. Timling; C.H. Robinson; N. Lennon; H.C. Nusbaum; C. Brochmann; M.E. Noordeloos; D.L. Taylor

    2011-01-01

    Current evidence from temperate studies suggests that ectomycorrhizal (ECM) fungi require overland routes for migration because of their obligate symbiotic associations with woody plants. Despite their key roles in arctic ecosystems, the phylogenetic diversity and phylogeography of arctic ECM fungi remains little known. Here we assess the phylogenetic diversity of ECM...

  2. Afrobatrachian mitochondrial genomes: genome reorganization, gene rearrangement mechanisms, and evolutionary trends of duplicated and rearranged genes

    PubMed Central

    2013-01-01

    Background Mitochondrial genomic (mitogenomic) reorganizations are rarely found in closely-related animals, yet drastic reorganizations have been found in the Ranoides frogs. The phylogenetic relationships of the three major ranoid taxa (Natatanura, Microhylidae, and Afrobatrachia) have been problematic, and mitogenomic information for afrobatrachians has not been available. Several molecular models for mitochondrial (mt) gene rearrangements have been proposed, but observational evidence has been insufficient to evaluate them. Furthermore, evolutionary trends in rearranged mt genes have not been well understood. To gain molecular and phylogenetic insights into these issues, we analyzed the mt genomes of four afrobatrachian species (Breviceps adspersus, Hemisus marmoratus, Hyperolius marmoratus, and Trichobatrachus robustus) and performed molecular phylogenetic analyses. Furthermore we searched for two evolutionary patterns expected in the rearranged mt genes of ranoids. Results Extensively reorganized mt genomes having many duplicated and rearranged genes were found in three of the four afrobatrachians analyzed. In fact, Breviceps has the largest known mt genome among vertebrates. Although the kinds of duplicated and rearranged genes differed among these species, a remarkable gene rearrangement pattern of non-tandemly copied genes situated within tandemly-copied regions was commonly found. Furthermore, the existence of concerted evolution was observed between non-neighboring copies of triplicated 12S and 16S ribosomal RNA regions. Conclusions Phylogenetic analyses based on mitogenomic data support a close relationship between Afrobatrachia and Microhylidae, with their estimated divergence 100 million years ago consistent with present-day endemism of afrobatrachians on the African continent. The afrobatrachian mt data supported the first tandem and second non-tandem duplication model for mt gene rearrangements and the recombination-based model for concerted evolution of duplicated mt regions. We also showed that specific nucleotide substitution and compositional patterns expected in duplicated and rearranged mt genes did not occur, suggesting no disadvantage in employing these genes for phylogenetic inference. PMID:24053406

  3. The Forest behind the Tree: Phylogenetic Exploration of a Dominant Mycobacterium tuberculosis Strain Lineage from a High Tuberculosis Burden Country

    PubMed Central

    Cardoso Oelemann, Maranibia; Gomes, Harrison M.; Willery, Eve; Possuelo, Lia; Batista Lima, Karla Valéria; Allix-Béguec, Caroline; Locht, Camille; Goguet de la Salmonière, Yves-Olivier L.; Gutierrez, Maria Cristina; Suffys, Philip; Supply, Philip

    2011-01-01

    Background Genotyping of Mycobacterium tuberculosis isolates is a powerful tool for epidemiological control of tuberculosis (TB) and phylogenetic exploration of the pathogen. Standardized PCR-based typing, based on 15 to 24 mycobacterial interspersed repetitive unit-variable number of tandem repeat (MIRU-VNTR) loci combined with spoligotyping, has been shown to have adequate resolution power for tracing TB transmission and to be useful for predicting diverse strain lineages in European settings. Its informative value needs to be tested in high TB-burden countries, where the use of genotyping is often complicated by dominance of geographically specific, genetically homogeneous strain lineages. Methodology/Principal Findings We tested this genotyping system for molecular epidemiological analysis of 369 M. tuberculosis isolates from 3 regions of Brazil, a high TB-burden country. Deligotyping, targeting 43 large sequence polymorphisms (LSPs), and the MIRU-VNTRplus identification database were used to assess phylogenetic predictions. High congruence between the different typing results consistently revealed the countrywide supremacy of the Latin-American-Mediterranean (LAM) lineage, comprised of three main branches. In addition to an already known RDRio branch, at least one other branch characterized by a phylogenetically informative LAM3 spoligo-signature seems to be globally distributed beyond Brazil. Nevertheless, by distinguishing 321 genotypes in this strain population, combined MIRU-VNTR typing and spoligotyping demonstrated the presence of multiple distinct clones. The use of 15 to 24 loci discriminated 21 to 25% more strains within the LAM lineage, compared to a restricted lineage-specific locus set suggested to be used after SNP analysis. Noteworthy, 23 of the 28 molecular clusters identified were exclusively composed of patient isolates from a same region, consistent with expected patterns of mostly local TB transmission. Conclusions/Significance Standard MIRU-VNTR typing combined with spoligotyping can reveal epidemiologically meaningful clonal diversity behind a dominant M. tuberculosis strain lineage in a high TB-burden country and is useful to explore international phylogenetical ramifications. PMID:21464915

  4. Phylodiversity to inform conservation policy: An Australian example.

    PubMed

    Laity, Tania; Laffan, Shawn W; González-Orozco, Carlos E; Faith, Daniel P; Rosauer, Dan F; Byrne, Margaret; Miller, Joseph T; Crayn, Darren; Costion, Craig; Moritz, Craig C; Newport, Karl

    2015-11-15

    Phylodiversity measures summarise the phylogenetic diversity patterns of groups of organisms. By using branches of the tree of life, rather than its tips (e.g., species), phylodiversity measures provide important additional information about biodiversity that can improve conservation policy and outcomes. As a biodiverse nation with a strong legislative and policy framework, Australia provides an opportunity to use phylogenetic information to inform conservation decision-making. We explored the application of phylodiversity measures across Australia with a focus on two highly biodiverse regions, the south west of Western Australia (SWWA) and the South East Queensland bioregion (SEQ). We analysed seven diverse groups of organisms spanning five separate phyla on the evolutionary tree of life, the plant genera Acacia and Daviesia, mammals, hylid frogs, myobatrachid frogs, passerine birds, and camaenid land snails. We measured species richness, weighted species endemism (WE) and two phylodiversity measures, phylogenetic diversity (PD) and phylogenetic endemism (PE), as well as their respective complementarity scores (a measure of gains and losses) at 20 km resolution. Higher PD was identified within SEQ for all fauna groups, whereas more PD was found in SWWA for both plant groups. PD and PD complementarity were strongly correlated with species richness and species complementarity for most groups but less so for plants. PD and PE were found to complement traditional species-based measures for all groups studied: PD and PE follow similar spatial patterns to richness and WE, but highlighted different areas that would not be identified by conventional species-based biodiversity analyses alone. The application of phylodiversity measures, particularly the novel weighted complementary measures considered here, in conservation can enhance protection of the evolutionary history that contributes to present day biodiversity values of areas. Phylogenetic measures in conservation can include important elements of biodiversity in conservation planning, such as evolutionary potential and feature diversity that will improve decision-making and lead to better biodiversity conservation outcomes. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  5. Phylogenomic and Molecular Demarcation of the Core Members of the Polyphyletic Pasteurellaceae Genera Actinobacillus, Haemophilus, and Pasteurella

    PubMed Central

    Naushad, Sohail; Adeolu, Mobolaji; Goel, Nisha; Khadka, Bijendra; Al-Dahwi, Aqeel; Gupta, Radhey S.

    2015-01-01

    The genera Actinobacillus, Haemophilus, and Pasteurella exhibit extensive polyphyletic branching in phylogenetic trees and do not represent coherent clusters of species. In this study, we have utilized molecular signatures identified through comparative genomic analyses in conjunction with genome based and multilocus sequence based phylogenetic analyses to clarify the phylogenetic and taxonomic boundary of these genera. We have identified large clusters of Actinobacillus, Haemophilus, and Pasteurella species which represent the “sensu stricto” members of these genera. We have identified 3, 7, and 6 conserved signature indels (CSIs), which are specifically shared by sensu stricto members of Actinobacillus, Haemophilus, and Pasteurella, respectively. We have also identified two different sets of CSIs that are unique characteristics of the pathogen containing genera Aggregatibacter and Mannheimia, respectively. It is now possible to demarcate the genera Actinobacillus sensu stricto, Haemophilus sensu stricto, and Pasteurella sensu stricto on the basis of discrete molecular signatures. The other members of the genera Actinobacillus, Haemophilus, and Pasteurella that do not fall within the “sensu stricto” clades and do not contain these molecular signatures should be reclassified as other genera. The CSIs identified here also provide useful diagnostic targets for the identification of current and novel members of the indicated genera. PMID:25821780

  6. Positioning the red deer (Cervus elaphus) hunted by the Tyrolean Iceman into a mitochondrial DNA phylogeny.

    PubMed

    Olivieri, Cristina; Marota, Isolina; Rizzi, Ermanno; Ermini, Luca; Fusco, Letizia; Pietrelli, Alessandro; De Bellis, Gianluca; Rollo, Franco; Luciani, Stefania

    2014-01-01

    In the last years several phylogeographic studies of both extant and extinct red deer populations have been conducted. Three distinct mitochondrial lineages (western, eastern and North-African/Sardinian) have been identified reflecting different glacial refugia and postglacial recolonisation processes. However, little is known about the genetics of the Alpine populations and no mitochondrial DNA sequences from Alpine archaeological specimens are available. Here we provide the first mitochondrial sequences of an Alpine Copper Age Cervus elaphus. DNA was extracted from hair shafts which were part of the remains of the clothes of the glacier mummy known as the Tyrolean Iceman or Ötzi (5,350-5,100 years before present). A 2,297 base pairs long fragment was sequenced using a mixed sequencing procedure based on PCR amplifications and 454 sequencing of pooled amplification products. We analyzed the phylogenetic relationships of the Alpine Copper Age red deer's haplotype with haplotypes of modern and ancient European red deer. The phylogenetic analyses showed that the haplotype of the Alpine Copper Age red deer falls within the western European mitochondrial lineage in contrast with the current populations from the Italian Alps belonging to the eastern lineage. We also discussed the phylogenetic relationships of the Alpine Copper Age red deer with the populations from Mesola Wood (northern Italy) and Sardinia.

  7. Genetic Diversity and Population Structure of Cowpea (Vigna unguiculata L. Walp).

    PubMed

    Xiong, Haizheng; Shi, Ainong; Mou, Beiquan; Qin, Jun; Motes, Dennis; Lu, Weiguo; Ma, Jianbing; Weng, Yuejin; Yang, Wei; Wu, Dianxing

    2016-01-01

    The genetic diversity of cowpea was analyzed, and the population structure was estimated in a diverse set of 768 cultivated cowpea genotypes from the USDA GRIN cowpea collection, originally collected from 56 countries. Genotyping by sequencing was used to discover single nucleotide polymorphism (SNP) in cowpea and the identified SNP alleles were used to estimate the level of genetic diversity, population structure, and phylogenetic relationships. The aim of this study was to detect the gene pool structure of cowpea and to determine its relationship between different regions and countries. Based on the model-based ancestry analysis, the phylogenetic tree, and the principal component analysis, three well-differentiated genetic populations were postulated from 768 worldwide cowpea genotypes. According to the phylogenetic analyses between each individual, region, and country, we may trace the accession from off-original, back to the two candidate original areas (West and East of Africa) to predict the migration and domestication history during the cowpea dispersal and development. To our knowledge, this is the first report of the analysis of the genetic variation and relationship between globally cultivated cowpea genotypes. The results will help curators, researchers, and breeders to understand, utilize, conserve, and manage the collection for more efficient contribution to international cowpea research.

  8. Genetic Diversity and Population Structure of Cowpea (Vigna unguiculata L. Walp)

    PubMed Central

    Xiong, Haizheng; Shi, Ainong; Mou, Beiquan; Qin, Jun; Motes, Dennis; Lu, Weiguo; Ma, Jianbing; Weng, Yuejin; Yang, Wei; Wu, Dianxing

    2016-01-01

    The genetic diversity of cowpea was analyzed, and the population structure was estimated in a diverse set of 768 cultivated cowpea genotypes from the USDA GRIN cowpea collection, originally collected from 56 countries. Genotyping by sequencing was used to discover single nucleotide polymorphism (SNP) in cowpea and the identified SNP alleles were used to estimate the level of genetic diversity, population structure, and phylogenetic relationships. The aim of this study was to detect the gene pool structure of cowpea and to determine its relationship between different regions and countries. Based on the model-based ancestry analysis, the phylogenetic tree, and the principal component analysis, three well-differentiated genetic populations were postulated from 768 worldwide cowpea genotypes. According to the phylogenetic analyses between each individual, region, and country, we may trace the accession from off-original, back to the two candidate original areas (West and East of Africa) to predict the migration and domestication history during the cowpea dispersal and development. To our knowledge, this is the first report of the analysis of the genetic variation and relationship between globally cultivated cowpea genotypes. The results will help curators, researchers, and breeders to understand, utilize, conserve, and manage the collection for more efficient contribution to international cowpea research. PMID:27509049

  9. Systematics of marine brown alga Sargassum from Thailand: A preliminary study based on morphological data and nuclear ribosomal internal transcribed spacer 2 (ITS2) sequences

    NASA Astrophysics Data System (ADS)

    Kantachumpoo, Attachai; Uwai, Shinya; Noiraksar, Thidarat; Komatsu, Teruhisa

    2015-06-01

    The marine brown algal genus Sargassum has been investigated extensively based on genetic information. In this report, we performed the first comparative study of morphological and molecular data among common species of Sargassum found in Thailand and explored the phylogenetic diversity within the genus. Our results revealed an incongruent pattern for species classification in Thai Sargassum. Morphologically, our Sargassum specimens were distinguishable and represented 8 species, namely, S. aquifolium (Turner) C.Agardh, Sargassum baccularia (Mertens) C. Agardh, S. cinereum J. Agardh, S. ilicifolium (Turner) C.Agardh, S. oligocystum Montagne, S. plagiophyllum C. Agardh, S. polycystum C. Agardh and S. swartzii (Turuner) C. Agardh. In contrast, using three different methods, phylogenetic analysis of nuclear ribosomal internal transcribed spacer 2 (ITS2) revealed six distinct clades, including S. baccularia/ S. oligosyntum clade, S. aquifolium/ S. swartzii clade, S. cinereum clade, S. aquifolium/ S. ilicifolium clade, S. polycystum clade, and S. plagiophyllum clade, which was suggestive of a phenotypic plasticity species complex. Our molecular data also confirmed the paraphyletic relationship in the section Binderianae and suggested that this section requires reassessment. Overall, further studies are required to increase our understanding of the taxonomy, phylogenetic relationships and species boundaries among Sargassum species in Thailand.

  10. Species trees for the tree swallows (Genus Tachycineta): an alternative phylogenetic hypothesis to the mitochondrial gene tree.

    PubMed

    Dor, Roi; Carling, Matthew D; Lovette, Irby J; Sheldon, Frederick H; Winkler, David W

    2012-10-01

    The New World swallow genus Tachycineta comprises nine species that collectively have a wide geographic distribution and remarkable variation both within- and among-species in ecologically important traits. Existing phylogenetic hypotheses for Tachycineta are based on mitochondrial DNA sequences, thus they provide estimates of a single gene tree. In this study we sequenced multiple individuals from each species at 16 nuclear intron loci. We used gene concatenated approaches (Bayesian and maximum likelihood) as well as coalescent-based species tree inference to reconstruct phylogenetic relationships of the genus. We examined the concordance and conflict between the nuclear and mitochondrial trees and between concatenated and coalescent-based inferences. Our results provide an alternative phylogenetic hypothesis to the existing mitochondrial DNA estimate of phylogeny. This new hypothesis provides a more accurate framework in which to explore trait evolution and examine the evolution of the mitochondrial genome in this group. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. A Six Nuclear Gene Phylogeny of Citrus (Rutaceae) Taking into Account Hybridization and Lineage Sorting

    PubMed Central

    Keremane, Manjunath L.; Lee, Richard F.; Maureira-Butler, Ivan J.; Roose, Mikeal L.

    2013-01-01

    Background Genus Citrus (Rutaceae) comprises many important cultivated species that generally hybridize easily. Phylogenetic study of a group showing extensive hybridization is challenging. Since the genus Citrus has diverged recently (4–12 Ma), incomplete lineage sorting of ancestral polymorphisms is also likely to cause discrepancies among genes in phylogenetic inferences. Incongruence of gene trees is observed and it is essential to unravel the processes that cause inconsistencies in order to understand the phylogenetic relationships among the species. Methodology and Principal Findings (1) We generated phylogenetic trees using haplotype sequences of six low copy nuclear genes. (2) Published simple sequence repeat data were re-analyzed to study population structure and the results were compared with the phylogenetic trees constructed using sequence data and coalescence simulations. (3) To distinguish between hybridization and incomplete lineage sorting, we developed and utilized a coalescence simulation approach. In other studies, species trees have been inferred despite the possibility of hybridization having occurred and used to generate null distributions of the effect of lineage sorting alone (by coalescent simulation). Since this is problematic, we instead generate these distributions directly from observed gene trees. Of the six trees generated, we used the most resolved three to detect hybrids. We found that 11 of 33 samples appear to be affected by historical hybridization. Analysis of the remaining three genes supported the conclusions from the hybrid detection test. Conclusions We have identified or confirmed probable hybrid origins for several Citrus cultivars using three different approaches–gene phylogenies, population structure analysis and coalescence simulation. Hybridization and incomplete lineage sorting were identified primarily based on differences among gene phylogenies with reference to null expectations via coalescence simulations. We conclude that identifying hybridization as a frequent cause of incongruence among gene trees is critical to correctly infer the phylogeny among species of Citrus. PMID:23874615

  12. The performance of the Congruence Among Distance Matrices (CADM) test in phylogenetic analysis

    PubMed Central

    2011-01-01

    Background CADM is a statistical test used to estimate the level of Congruence Among Distance Matrices. It has been shown in previous studies to have a correct rate of type I error and good power when applied to dissimilarity matrices and to ultrametric distance matrices. Contrary to most other tests of incongruence used in phylogenetic analysis, the null hypothesis of the CADM test assumes complete incongruence of the phylogenetic trees instead of congruence. In this study, we performed computer simulations to assess the type I error rate and power of the test. It was applied to additive distance matrices representing phylogenies and to genetic distance matrices obtained from nucleotide sequences of different lengths that were simulated on randomly generated trees of varying sizes, and under different evolutionary conditions. Results Our results showed that the test has an accurate type I error rate and good power. As expected, power increased with the number of objects (i.e., taxa), the number of partially or completely congruent matrices and the level of congruence among distance matrices. Conclusions Based on our results, we suggest that CADM is an excellent candidate to test for congruence and, when present, to estimate its level in phylogenomic studies where numerous genes are analysed simultaneously. PMID:21388552

  13. Plane of nutrition affects the phylogenetic diversity and relative abundance of transcriptionally active methanogens in the bovine rumen.

    PubMed

    McGovern, Emily; McCabe, Matthew S; Cormican, Paul; Popova, Milka; Keogh, Kate; Kelly, Alan K; Kenny, David A; Waters, Sinead M

    2017-10-12

    Methane generated during enteric fermentation in ruminant livestock species is a major contributor to global anthropogenic greenhouse gas emissions. A period of moderate feed restriction followed by ad libitum access to feed is widely applied in cattle management to exploit the animal's compensatory growth potential and reduce feed costs. In the present study, we utilised microbial RNA from rumen digesta samples to assess the phylogenetic diversity of transcriptionally active methanogens from feed-restricted and non-restricted animals. To determine the contribution of different rumen methanogens to methanogenesis during dietary restriction of cattle, we conducted high-throughput mcrA cDNA amplicon sequencing on an Illumina MiSeq and analysed both the abundance and phylogenetic origin of different mcrA cDNA sequences. When compared to their unrestricted contemporaries, in feed-restricted animals, the methanogenic activity, based on mcrA transcript abundance, of Methanobrevibacter gottschalkii clade increased while the methanogenic activity of the Methanobrevibacter ruminantium clade and members of the Methanomassiliicoccaceae family decreased. This study shows that the quantity of feed consumed can evoke large effects on the composition of methanogenically active species in the rumen of cattle. These data potentially have major implications for targeted CH 4 mitigation approaches such as anti-methanogen vaccines and/or tailored dietary management.

  14. Automated subtyping of HIV-1 genetic sequences for clinical and surveillance purposes: performance evaluation of the new REGA version 3 and seven other tools.

    PubMed

    Pineda-Peña, Andrea-Clemencia; Faria, Nuno Rodrigues; Imbrechts, Stijn; Libin, Pieter; Abecasis, Ana Barroso; Deforche, Koen; Gómez-López, Arley; Camacho, Ricardo J; de Oliveira, Tulio; Vandamme, Anne-Mieke

    2013-10-01

    To investigate differences in pathogenesis, diagnosis and resistance pathways between HIV-1 subtypes, an accurate subtyping tool for large datasets is needed. We aimed to evaluate the performance of automated subtyping tools to classify the different subtypes and circulating recombinant forms using pol, the most sequenced region in clinical practice. We also present the upgraded version 3 of the Rega HIV subtyping tool (REGAv3). HIV-1 pol sequences (PR+RT) for 4674 patients retrieved from the Portuguese HIV Drug Resistance Database, and 1872 pol sequences trimmed from full-length genomes retrieved from the Los Alamos database were classified with statistical-based tools such as COMET, jpHMM and STAR; similarity-based tools such as NCBI and Stanford; and phylogenetic-based tools such as REGA version 2 (REGAv2), REGAv3, and SCUEAL. The performance of these tools, for pol, and for PR and RT separately, was compared in terms of reproducibility, sensitivity and specificity with respect to the gold standard which was manual phylogenetic analysis of the pol region. The sensitivity and specificity for subtypes B and C was more than 96% for seven tools, but was variable for other subtypes such as A, D, F and G. With regard to the most common circulating recombinant forms (CRFs), the sensitivity and specificity for CRF01_AE was ~99% with statistical-based tools, with phylogenetic-based tools and with Stanford, one of the similarity based tools. CRF02_AG was correctly identified for more than 96% by COMET, REGAv3, Stanford and STAR. All the tools reached a specificity of more than 97% for most of the subtypes and the two main CRFs (CRF01_AE and CRF02_AG). Other CRFs were identified only by COMET, REGAv2, REGAv3, and SCUEAL and with variable sensitivity. When analyzing sequences for PR and RT separately, the performance for PR was generally lower and variable between the tools. Similarity and statistical-based tools were 100% reproducible, but this was lower for phylogenetic-based tools such as REGA (~99%) and SCUEAL (~96%). REGAv3 had an improved performance for subtype B and CRF02_AG compared to REGAv2 and is now able to also identify all epidemiologically relevant CRFs. In general the best performing tools, in alphabetical order, were COMET, jpHMM, REGAv3, and SCUEAL when analyzing pure subtypes in the pol region, and COMET and REGAv3 when analyzing most of the CRFs. Based on this study, we recommend to confirm subtyping with 2 well performing tools, and be cautious with the interpretation of short sequences. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Assigning protein functions by comparative genome analysis protein phylogenetic profiles

    DOEpatents

    Pellegrini, Matteo; Marcotte, Edward M.; Thompson, Michael J.; Eisenberg, David; Grothe, Robert; Yeates, Todd O.

    2003-05-13

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  16. Reclassification of Pseudomonas mephitica Claydon and Hammer 1939 as a later heterotypic synonym of Janthinobacterium lividum (Eisenberg 1891) De Ley et al. 1978.

    PubMed

    Kämpfer, Peter; Falsen, Enevold; Busse, Hans-Jürgen

    2008-01-01

    Pseudomonas mephitica CCUG 2513(T) has been reinvestigated to clarify its taxonomic position. 16S rRNA gene sequence comparisons demonstrated that this strain clusters phylogenetically closely with Janthinobacterium lividum (99.8% sequence similarity to the type strain). Investigation of fatty acid patterns, polar lipid profiles, polyamine patterns and quinone systems supported this delineation. Substrate utilization profiles and biochemical characteristics displayed no differences from the type strain of J. lividum, CCUG 2344(T). Therefore, the reclassification of Pseudomonas mephitica as a later heterotypic synonym of Janthinobacterium lividum is proposed, based upon the estimated phylogenetic position derived from 16S rRNA gene sequence data and chemotaxonomic and biochemical data.

  17. The chordate proteome history database.

    PubMed

    Levasseur, Anthony; Paganini, Julien; Dainat, Jacques; Thompson, Julie D; Poch, Olivier; Pontarotti, Pierre; Gouret, Philippe

    2012-01-01

    The chordate proteome history database (http://ioda.univ-provence.fr) comprises some 20,000 evolutionary analyses of proteins from chordate species. Our main objective was to characterize and study the evolutionary histories of the chordate proteome, and in particular to detect genomic events and automatic functional searches. Firstly, phylogenetic analyses based on high quality multiple sequence alignments and a robust phylogenetic pipeline were performed for the whole protein and for each individual domain. Novel approaches were developed to identify orthologs/paralogs, and predict gene duplication/gain/loss events and the occurrence of new protein architectures (domain gains, losses and shuffling). These important genetic events were localized on the phylogenetic trees and on the genomic sequence. Secondly, the phylogenetic trees were enhanced by the creation of phylogroups, whereby groups of orthologous sequences created using OrthoMCL were corrected based on the phylogenetic trees; gene family size and gene gain/loss in a given lineage could be deduced from the phylogroups. For each ortholog group obtained from the phylogenetic or the phylogroup analysis, functional information and expression data can be retrieved. Database searches can be performed easily using biological objects: protein identifier, keyword or domain, but can also be based on events, eg, domain exchange events can be retrieved. To our knowledge, this is the first database that links group clustering, phylogeny and automatic functional searches along with the detection of important events occurring during genome evolution, such as the appearance of a new domain architecture.

  18. Plant Biodiversity Drivers in Brazilian Campos Rupestres: Insights from Phylogenetic Structure

    PubMed Central

    Zappi, Daniela C.; Moro, Marcelo F.; Meagher, Thomas R.; Nic Lughadha, Eimear

    2017-01-01

    Old, climate-buffered infertile landscapes (Ocbils) have attracted increasing levels of interest in recent years because of their exceptionally diverse plant communities. Brazil’s campos rupestres (rupestrian grasslands) are home to almost 15% of Brazil’s native flora in less than 0.8% of Brazil’s territory: an ideal study system for exploring variation in floristic diversity and phylogenetic structure in sites differing in geology and phytophysiognomy. We found significant differences in floristic diversity and phylogenetic structure across a range of study sites encompassing open vegetation and forest on quartzite (FQ) and on ironstone substrates, commonly termed canga. Substrate and physiognomy were key in structuring floristic diversity in the Espinhaço and physiognomy was more important than substrate in structuring phylogenetic diversity, with neither substrate nor its interaction with physiognomy accounting for significant variation in phylogenetic structure. Phylogenetic clustering was significant in open vegetation on both canga and quartzite, reflecting the potential role of environmental filtering in these exposed montane communities adapted to multiple environmental stressors. In forest communities, phylogenetic clustering was significant only at relatively deep nodes of the phylogeny in FQ while no significant phylogenetic clustering was detected across forest on canga (FC), which may be attributable to proximity to the megadiverse Atlantic forest biome and/or comparatively benign environmental conditions in FC with relatively deep, nutrient-rich soils and access to edaphic water reliable in comparison to those for open vegetation on canga and open or forest communities on quartzite. Clades representing relatively old lineages are significantly over-represented in campos rupestres on quartzite, consistent with the Gondwanan Heritage Hypothesis of Ocbil theory. In contrast, forested sites on canga are recognized as Yodfels. To be effective, conservation measures must take account of the distinct communities which are encompassed within the broad term campos rupestres, and the differing vulnerabilities of Ocbils and Yodfels. PMID:29312396

  19. Plant Biodiversity Drivers in Brazilian Campos Rupestres: Insights from Phylogenetic Structure.

    PubMed

    Zappi, Daniela C; Moro, Marcelo F; Meagher, Thomas R; Nic Lughadha, Eimear

    2017-01-01

    Old, climate-buffered infertile landscapes (Ocbils) have attracted increasing levels of interest in recent years because of their exceptionally diverse plant communities. Brazil's campos rupestres (rupestrian grasslands) are home to almost 15% of Brazil's native flora in less than 0.8% of Brazil's territory: an ideal study system for exploring variation in floristic diversity and phylogenetic structure in sites differing in geology and phytophysiognomy. We found significant differences in floristic diversity and phylogenetic structure across a range of study sites encompassing open vegetation and forest on quartzite (FQ) and on ironstone substrates, commonly termed canga . Substrate and physiognomy were key in structuring floristic diversity in the Espinhaço and physiognomy was more important than substrate in structuring phylogenetic diversity, with neither substrate nor its interaction with physiognomy accounting for significant variation in phylogenetic structure. Phylogenetic clustering was significant in open vegetation on both canga and quartzite, reflecting the potential role of environmental filtering in these exposed montane communities adapted to multiple environmental stressors. In forest communities, phylogenetic clustering was significant only at relatively deep nodes of the phylogeny in FQ while no significant phylogenetic clustering was detected across forest on canga (FC), which may be attributable to proximity to the megadiverse Atlantic forest biome and/or comparatively benign environmental conditions in FC with relatively deep, nutrient-rich soils and access to edaphic water reliable in comparison to those for open vegetation on canga and open or forest communities on quartzite. Clades representing relatively old lineages are significantly over-represented in campos rupestres on quartzite, consistent with the Gondwanan Heritage Hypothesis of Ocbil theory. In contrast, forested sites on canga are recognized as Yodfels. To be effective, conservation measures must take account of the distinct communities which are encompassed within the broad term campos rupestres , and the differing vulnerabilities of Ocbils and Yodfels.

  20. Resolving the Lophiostoma bipolare complex: Generic delimitations within Lophiostomataceae.

    PubMed

    Hashimoto, A; Hirayama, K; Takahashi, H; Matsumura, M; Okada, G; Chen, C Y; Huang, J W; Kakishima, M; Ono, T; Tanaka, K

    2018-06-01

    Lophiostoma bipolare was taxonomically revised based on the morphological observations and phylogenetic analyses of molecular data from nuclear rDNA SSU-ITS-LSU, TUB , tef1 , and rpb2 genes. Twenty-nine strains were morphologically similar to Lo . bipolare . A total of 174 sequences were generated from the Lo . bipolare complex. Phylogenetic analyses based on TUB sequence revealed 11 distinct species within the Lo. bipolare complex. Morphological features of the ascospores and the anatomical structure of the ascomata from both field collections as well as axenic culture, which have been reported previously as variable features at intraspecific levels, were compared to evaluate the taxonomic reliability of these features. To clarify the generic position of the 11 species, phylogenetic analyses were done on SSU-ITS-LSU- tef1 - rpb2 gene sequences. The Lo . bipolare complex shared phylogenetic relationships with Pseudolophiostoma and Vaginatispora , and formed an additional five distinct clades from other members of Lophiostomataceae . According to its phylogenetic position, Lo. bipolare sensu stricto was distantly related to Lophiostoma s. str., and formed an independent clade within Lophiostomataceae. Lophiostoma bipolare s. str. could be distinguished from the other lophiostomataceous genera by the clypeus around the ostiolar neck and by the thin and uniformly thick peridium. A novel genus described as Lentistoma was established to accommodate this species, and the epitypification of Lentistoma bipolare (basionym: Massarina bipolaris ) was proposed. Other lineages of the Lo. bipolare complex could not be separated on the basis of the ascospore size and sheath variations, but were distinguished based on ascomatal features, such as the existence of the clypeus, brown hyphae surrounding the peridium, and the contexture of the peridium, which were stable indicators of generic boundaries in Lophiostomataceae . Four additional new genera with five new species were recognised based on these morphological differences: Crassiclypeus ( C . aquaticus ), Flabellascoma ( F . cycadicola and F . minimum ), Leptoparies ( Lep . palmarum ), and Pseudopaucispora ( Pseudop . brunneospora ). Three new species were added to Pseudolophiostoma ( Pseudol . cornisporum , Pseudol . obtusisporum , and Pseudol . tropicum ) and two new species were added to Vaginatispora ( V . amygdali and V . scabrispora ). The re-evaluation of the validity of several previously recognised genera resulted in the introduction of two new genera with new combinations for Lophiostoma pseudoarmatisporum as Parapaucispora pseudoarmatispora and Vaginatispora fuckelii as Neovaginatispora fuckelii .

  1. Partitioning the impact of environment and spatial structure on alpha and beta components of taxonomic, functional, and phylogenetic diversity in European ants.

    PubMed

    Arnan, Xavier; Cerdá, Xim; Retana, Javier

    2015-01-01

    We analyze the relative contribution of environmental and spatial variables to the alpha and beta components of taxonomic (TD), phylogenetic (PD), and functional (FD) diversity in ant communities found along different climate and anthropogenic disturbance gradients across western and central Europe, in order to assess the mechanisms structuring ant biodiversity. To this aim we calculated alpha and beta TD, PD, and FD for 349 ant communities, which included a total of 155 ant species; we examined 10 functional traits and phylogenetic relatedness. Variation partitioning was used to examine how much variation in ant diversity was explained by environmental and spatial variables. Autocorrelation in diversity measures and each trait's phylogenetic signal were also analyzed. We found strong autocorrelation in diversity measures. Both environmental and spatial variables significantly contributed to variation in TD, PD, and FD at both alpha and beta scales; spatial structure had the larger influence. The different facets of diversity showed similar patterns along environmental gradients. Environment explained a much larger percentage of variation in FD than in TD or PD. All traits demonstrated strong phylogenetic signals. Our results indicate that environmental filtering and dispersal limitations structure all types of diversity in ant communities. Strong dispersal limitations appear to have led to clustering of TD, PD, and FD in western and central Europe, probably because different historical and evolutionary processes generated different pools of species. Remarkably, these three facets of diversity showed parallel patterns along environmental gradients. Trait-mediated species sorting and niche conservatism appear to structure ant diversity, as evidenced by the fact that more variation was explained for FD and that all traits had strong phylogenetic signals. Since environmental variables explained much more variation in FD than in PD, functional diversity should be a better indicator of community assembly processes than phylogenetic diversity.

  2. Phylogenetic Diversity in the Macromolecular Composition of Microalgae

    PubMed Central

    Finkel, Zoe V.; Follows, Mick J.; Liefer, Justin D.; Brown, Chris M.; Benner, Ina; Irwin, Andrew J.

    2016-01-01

    The elemental stoichiometry of microalgae reflects their underlying macromolecular composition and influences competitive interactions among species and their role in the food web and biogeochemistry. Here we provide a new estimate of the macromolecular composition of microalgae using a hierarchical Bayesian analysis of data compiled from the literature. The median macromolecular composition of nutrient-sufficient exponentially growing microalgae is 32.2% protein, 17.3% lipid, 15.0% carbohydrate, 17.3% ash, 5.7% RNA, 1.1% chlorophyll-a and 1.0% DNA as percent dry weight. Our analysis identifies significant phylogenetic differences in macromolecular composition undetected by previous studies due to small sample sizes and the large inherent variability in macromolecular pools. The phylogenetic differences in macromolecular composition lead to variations in carbon-to-nitrogen ratios that are consistent with independent observations. These phylogenetic differences in macromolecular and elemental composition reflect adaptations in cellular architecture and biochemistry; specifically in the cell wall, the light harvesting apparatus, and storage pools. PMID:27228080

  3. The spatial sensitivity of the spectral diversity-biodiversity relationship: an experimental test in a prairie grassland.

    PubMed

    Wang, Ran; Gamon, John A; Cavender-Bares, Jeannine; Townsend, Philip A; Zygielbaum, Arthur I

    2018-03-01

    Remote sensing has been used to detect plant biodiversity in a range of ecosystems based on the varying spectral properties of different species or functional groups. However, the most appropriate spatial resolution necessary to detect diversity remains unclear. At coarse resolution, differences among spectral patterns may be too weak to detect. In contrast, at fine resolution, redundant information may be introduced. To explore the effect of spatial resolution, we studied the scale dependence of spectral diversity in a prairie ecosystem experiment at Cedar Creek Ecosystem Science Reserve, Minnesota, USA. Our study involved a scaling exercise comparing synthetic pixels resampled from high-resolution images within manipulated diversity treatments. Hyperspectral data were collected using several instruments on both ground and airborne platforms. We used the coefficient of variation (CV) of spectral reflectance in space as the indicator of spectral diversity and then compared CV at different scales ranging from 1 mm 2 to 1 m 2 to conventional biodiversity metrics, including species richness, Shannon's index, Simpson's index, phylogenetic species variation, and phylogenetic species evenness. In this study, higher species richness plots generally had higher CV. CV showed higher correlations with Shannon's index and Simpson's index than did species richness alone, indicating evenness contributed to the spectral diversity. Correlations with species richness and Simpson's index were generally higher than with phylogenetic species variation and evenness measured at comparable spatial scales, indicating weaker relationships between spectral diversity and phylogenetic diversity metrics than with species diversity metrics. High resolution imaging spectrometer data (1 mm 2 pixels) showed the highest sensitivity to diversity level. With decreasing spatial resolution, the difference in CV between diversity levels decreased and greatly reduced the optical detectability of biodiversity. The optimal pixel size for distinguishing α diversity in these prairie plots appeared to be around 1 mm to 10 cm, a spatial scale similar to the size of an individual herbaceous plant. These results indicate a strong scale-dependence of the spectral diversity-biodiversity relationships, with spectral diversity best able to detect a combination of species richness and evenness, and more weakly detecting phylogenetic diversity. These findings can be used to guide airborne studies of biodiversity and develop more effective large-scale biodiversity sampling methods. ©2018 The Authors Ecological Applications published by Wiley Periodicals, Inc. on behalf of Ecological Society of America.

  4. Recreating a functional ancestral archosaur visual pigment.

    PubMed

    Chang, Belinda S W; Jönsson, Karolina; Kazmi, Manija A; Donoghue, Michael J; Sakmar, Thomas P

    2002-09-01

    The ancestors of the archosaurs, a major branch of the diapsid reptiles, originated more than 240 MYA near the dawn of the Triassic Period. We used maximum likelihood phylogenetic ancestral reconstruction methods and explored different models of evolution for inferring the amino acid sequence of a putative ancestral archosaur visual pigment. Three different types of maximum likelihood models were used: nucleotide-based, amino acid-based, and codon-based models. Where possible, within each type of model, likelihood ratio tests were used to determine which model best fit the data. Ancestral reconstructions of the ancestral archosaur node using the best-fitting models of each type were found to be in agreement, except for three amino acid residues at which one reconstruction differed from the other two. To determine if these ancestral pigments would be functionally active, the corresponding genes were chemically synthesized and then expressed in a mammalian cell line in tissue culture. The expressed artificial genes were all found to bind to 11-cis-retinal to yield stable photoactive pigments with lambda(max) values of about 508 nm, which is slightly redshifted relative to that of extant vertebrate pigments. The ancestral archosaur pigments also activated the retinal G protein transducin, as measured in a fluorescence assay. Our results show that ancestral genes from ancient organisms can be reconstructed de novo and tested for function using a combination of phylogenetic and biochemical methods.

  5. Selecting Species Traits for Biomonitoring Applications in light of Phylogenetic Relationships among Lotic Insects

    NASA Astrophysics Data System (ADS)

    Poff, N.; Vieira, N. K.; Simmons, M. P.; Olden, J. D.; Kondratieff, B. C.; Finn, D. S.

    2005-05-01

    The use of species traits as indicators of environmental disturbance is being considered for biomonitoring programs globally. As such, methods to select relevant and informative traits for inclusion in biometrics need to be developed. In this research, we identified 20 traits of aquatic insects within six trait groups: morphology, mobility, life-history strategy, thermal tolerance, feeding guild and ecology (e.g., habitat preference). We constructed phylogenetic trees for 1) all lotic insect species of North America and 2) all Ephemeroptera, Plecoptera and Trichoptera species based on morphology- and molecular-based analyses and classifications. We then measured variability (i.e., plasticity) of the 20 traits and six trait groups across the two phylogenetic trees. Traits with higher degrees of plasticity indicated traits that were less phylogenetically constrained, and were considered informative for biomonitoring purposes. Thermal tolerance, rheophily, body size at maturity and feeding guild showed the highest plasticity across both phylogenetic trees. Two mobility traits, occurrence in drift and adult dispersal distance, showed moderate plasticity. By contrast, adult exiting ability, degree of attachment, adult lifespan and body shape showed low variability and were thus less informative. Plastic species traits that are less phylogenetically constrained may be most useful in detecting community change along environmental gradients.

  6. Phylogenetic congruence between subtropical trees and their associated fungi.

    PubMed

    Liu, Xubing; Liang, Minxia; Etienne, Rampal S; Gilbert, Gregory S; Yu, Shixiao

    2016-12-01

    Recent studies have detected phylogenetic signals in pathogen-host networks for both soil-borne and leaf-infecting fungi, suggesting that pathogenic fungi may track or coevolve with their preferred hosts. However, a phylogenetically concordant relationship between multiple hosts and multiple fungi in has rarely been investigated. Using next-generation high-throughput DNA sequencing techniques, we analyzed fungal taxa associated with diseased leaves, rotten seeds, and infected seedlings of subtropical trees. We compared the topologies of the phylogenetic trees of the soil and foliar fungi based on the internal transcribed spacer (ITS) region with the phylogeny of host tree species based on matK , rbcL , atpB, and 5.8S genes. We identified 37 foliar and 103 soil pathogenic fungi belonging to the Ascomycota and Basidiomycota phyla and detected significantly nonrandom host-fungus combinations, which clustered on both the fungus phylogeny and the host phylogeny. The explicit evidence of congruent phylogenies between tree hosts and their potential fungal pathogens suggests either diffuse coevolution among the plant-fungal interaction networks or that the distribution of fungal species tracked spatially associated hosts with phylogenetically conserved traits and habitat preferences. Phylogenetic conservatism in plant-fungal interactions within a local community promotes host and parasite specificity, which is integral to the important role of fungi in promoting species coexistence and maintaining biodiversity of forest communities.

  7. Phylogeny and evolutionary histories of Pyrus L. revealed by phylogenetic trees and networks based on data from multiple DNA sequences.

    PubMed

    Zheng, Xiaoyan; Cai, Danying; Potter, Daniel; Postman, Joseph; Liu, Jing; Teng, Yuanwen

    2014-11-01

    Reconstructing the phylogeny of Pyrus has been difficult due to the wide distribution of the genus and lack of informative data. In this study, we collected 110 accessions representing 25 Pyrus species and constructed both phylogenetic trees and phylogenetic networks based on multiple DNA sequence datasets. Phylogenetic trees based on both cpDNA and nuclear LFY2int2-N (LN) data resulted in poor resolution, especially, only five primary species were monophyletic in the LN tree. A phylogenetic network of LN suggested that reticulation caused by hybridization is one of the major evolutionary processes for Pyrus species. Polytomies of the gene trees and star-like structure of cpDNA networks suggested rapid radiation is another major evolutionary process, especially for the occidental species. Pyrus calleryana and P. regelii were the earliest diverged Pyrus species. Two North African species, P. cordata, P. spinosa and P. betulaefolia were descendent of primitive stock Pyrus species and still share some common molecular characters. Southwestern China, where a large number of P. pashia populations are found, is probably the most important diversification center of Pyrus. More accessions and nuclear genes are needed for further understanding the evolutionary histories of Pyrus. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Cultural studies coupled with DNA based sequence analyses and its implication on pigmentation as a phylogenetic marker in Pestalotiopsis taxonomy.

    PubMed

    Liu, Ai-Rong; Chen, Shuang-Chen; Wu, Shang-Ying; Xu, Tong; Guo, Liang-Dong; Jeewon, Rajesh; Wei, Ji-Guang

    2010-11-01

    Previous phylogenetic studies based on DNA sequence data have partially resolved taxonomic relationships among Pestalotiopsis species. There are still some morphological characters whose phylogenetic significance have not been assessed properly due to limited taxon sampling, in particular the degree of pigmentation of median cells. In this study, the stability of pigmentation of median cells of conidia in Pestalotiopsis species was evaluated in subculture, and a molecular phylogenetic analysis was conducted on 45 strains belonging to 26 species in order to reappraise the pigmentation of median cells for its significance in the taxonomy of Pestalotiopsis. Phylogenetic relationships were inferred from nucleotide sequences in ITS regions (ITS1, 5.8S and ITS2) and β-tubulin 2 gene (tub2). The results showed that pigmentation of median cells was stable and it could be a key character in the taxonomy of Pestalotiopsis species. Instead of "concolorous" and "versicolor" proposed by Steyeart (1949), "brown to olivaceous" and "umber to fuliginous" are described and proposed in this paper. Copyright © 2010. Published by Elsevier Inc.

  9. Delimitation of the Thoracosphaeraceae (Dinophyceae), including the calcareous dinoflagellates, based on large amounts of ribosomal RNA sequence data.

    PubMed

    Gottschling, Marc; Soehner, Sylvia; Zinssmeister, Carmen; John, Uwe; Plötner, Jörg; Schweikert, Michael; Aligizaki, Katerina; Elbrächter, Malte

    2012-01-01

    The phylogenetic relationships of the Dinophyceae (Alveolata) are not sufficiently resolved at present. The Thoracosphaeraceae (Peridiniales) are the only group of the Alveolata that include members with calcareous coccoid stages; this trait is considered apomorphic. Although the coccoid stage apparently is not calcareous, Bysmatrum has been assigned to the Thoracosphaeraceae based on thecal morphology. We tested the monophyly of the Thoracosphaeraceae using large sets of ribosomal RNA sequence data of the Alveolata including the Dinophyceae. Phylogenetic analyses were performed using Maximum Likelihood and Bayesian approaches. The Thoracosphaeraceae were monophyletic, but included also a number of non-calcareous dinophytes (such as Pentapharsodinium and Pfiesteria) and even parasites (such as Duboscquodinium and Tintinnophagus). Bysmatrum had an isolated and uncertain phylogenetic position outside the Thoracosphaeraceae. The phylogenetic relationships among calcareous dinophytes appear complex, and the assumption of the single origin of the potential to produce calcareous structures is challenged. The application of concatenated ribosomal RNA sequence data may prove promising for phylogenetic reconstructions of the Dinophyceae in future. Copyright © 2011 Elsevier GmbH. All rights reserved.

  10. Phylogenetic study of Geitlerinema and Microcystis (Cyanobacteria) using PC-IGS and 16S-23S ITS as markers: investigation of horizontal gene transfer.

    PubMed

    Piccin-Santos, Viviane; Brandão, Marcelo Mendes; Bittencourt-Oliveira, Maria Do Carmo

    2014-08-01

    Selection of genes that have not been horizontally transferred for prokaryote phylogenetic inferences is regarded as a challenging task. The markers internal transcribed spacer of ribosomal genes (16S-23S ITS) and phycocyanin intergenic spacer (PC-IGS), based on the operons of ribosomal and phycocyanin genes respectively, are among the most used markers in cyanobacteria. The region of the ribosomal genes has been considered stable, whereas the phycocyanin operon may have undergone horizontal transfer. To investigate the occurrence of horizontal transfer of PC-IGS, phylogenetic trees of Geitlerinema and Microcystis strains were generated using PC-IGS and 16S-23S ITS and compared. Phylogenetic trees based on the two markers were mostly congruent for Geitlerinema and Microcystis, indicating a common evolutionary history among ribosomal and phycocyanin genes with no evidence for horizontal transfer of PC-IGS. Thus, PC-IGS is a suitable marker, along with 16S-23S ITS for phylogenetic studies of cyanobacteria. © 2014 Phycological Society of America.

  11. Patterns of species diversity and phylogenetic structure of vascular plants on the Qinghai-Tibetan Plateau.

    PubMed

    Yan, Yujing; Yang, Xian; Tang, Zhiyao

    2013-11-01

    Large-scale patterns of species richness and the underlying mechanisms regulating these patterns have long been the central issues in biogeography and macroecology. Phylogenetic community structure is a result of combined effects of contemporary ecological interactions, environmental filtering, and evolutionary history, and it links community ecology with biogeography and trait evolution. The Qinghai-Tibetan Plateau provides a good opportunity to test the influence of contemporary climate on shaping species richness because of its unique geological history, cold climate, and high biodiversity. In this study, based on high-resolution distributions of ˜9000 vascular plant species, we explored how species richness and phylogenetic structure of vascular plants correlate with climates on the highest (and species rich) plateau on the Earth. The results showed that most of the vascular plants were distributed on the eastern part of the plateau; there was a strong association between species richness and climate, even after the effects of habitat heterogeneity were controlled. However, the responses of richness to climate remarkably depended on life-forms. Richness of woody plants showed stronger climatic associations than that of herbaceous plants; energy and water availability together regulated richness pattern of woody plants; whereas water availability predominantly regulated richness pattern of herbaceous plants. The phylogenetic structure of vascular species clustered in most areas of the plateau, suggesting that rapid speciation and environment filtering dominated the assembly of communities on the plateau. We further propose that biodiversity conservation in this area should better take into account ecological features for different life-forms and phylogenetic lineages.

  12. Octocoral Mitochondrial Genomes Provide Insights into the Phylogenetic History of Gene Order Rearrangements, Order Reversals, and Cnidarian Phylogenetics

    PubMed Central

    Figueroa, Diego F.; Baco, Amy R.

    2015-01-01

    We use full mitochondrial genomes to test the robustness of the phylogeny of the Octocorallia, to determine the evolutionary pathway for the five known mitochondrial gene rearrangements in octocorals, and to test the suitability of using mitochondrial genomes for higher taxonomic-level phylogenetic reconstructions. Our phylogeny supports three major divisions within the Octocorallia and show that Paragorgiidae is paraphyletic, with Sibogagorgia forming a sister branch to the Coralliidae. Furthermore, Sibogagorgia cauliflora has what is presumed to be the ancestral gene order in octocorals, but the presence of a pair of inverted repeat sequences suggest that this gene order was not conserved but rather evolved back to this apparent ancestral state. Based on this we recommend the resurrection of the family Sibogagorgiidae to fix the paraphyly of the Paragorgiidae. This is the first study to show that in the Octocorallia, mitochondrial gene orders have evolved back to an ancestral state after going through a gene rearrangement, with at least one of the gene orders evolving independently in different lineages. A number of studies have used gene boundaries to determine the type of mitochondrial gene arrangement present. However, our findings suggest that this method known as gene junction screening may miss evolutionary reversals. Additionally, substitution saturation analysis demonstrates that while whole mitochondrial genomes can be used effectively for phylogenetic analyses within Octocorallia, their utility at higher taxonomic levels within Cnidaria is inadequate. Therefore for phylogenetic reconstruction at taxonomic levels higher than subclass within the Cnidaria, nuclear genes will be required, even when whole mitochondrial genomes are available. PMID:25539723

  13. Patterns of species diversity and phylogenetic structure of vascular plants on the Qinghai-Tibetan Plateau

    PubMed Central

    Yan, Yujing; Yang, Xian; Tang, Zhiyao

    2013-01-01

    Large-scale patterns of species richness and the underlying mechanisms regulating these patterns have long been the central issues in biogeography and macroecology. Phylogenetic community structure is a result of combined effects of contemporary ecological interactions, environmental filtering, and evolutionary history, and it links community ecology with biogeography and trait evolution. The Qinghai-Tibetan Plateau provides a good opportunity to test the influence of contemporary climate on shaping species richness because of its unique geological history, cold climate, and high biodiversity. In this study, based on high-resolution distributions of ˜9000 vascular plant species, we explored how species richness and phylogenetic structure of vascular plants correlate with climates on the highest (and species rich) plateau on the Earth. The results showed that most of the vascular plants were distributed on the eastern part of the plateau; there was a strong association between species richness and climate, even after the effects of habitat heterogeneity were controlled. However, the responses of richness to climate remarkably depended on life-forms. Richness of woody plants showed stronger climatic associations than that of herbaceous plants; energy and water availability together regulated richness pattern of woody plants; whereas water availability predominantly regulated richness pattern of herbaceous plants. The phylogenetic structure of vascular species clustered in most areas of the plateau, suggesting that rapid speciation and environment filtering dominated the assembly of communities on the plateau. We further propose that biodiversity conservation in this area should better take into account ecological features for different life-forms and phylogenetic lineages. PMID:24340197

  14. The impact of phenotypic and molecular data on the inference of Colletotrichum diversity associated with Musa.

    PubMed

    Vieira, Willie A S; Lima, Waléria G; Nascimento, Eduardo S; Michereff, Sami J; Câmara, Marcos P S; Doyle, Vinson P

    2017-01-01

    Developing a comprehensive and reliable taxonomy for the Colletotrichum gloeosporioides species complex will require adopting data standards on the basis of an understanding of how methodological choices impact morphological evaluations and phylogenetic inference. We explored the impact of methodological choices in a morphological and molecular evaluation of Colletotrichum species associated with banana in Brazil. The choice of alignment filtering algorithm has a significant impact on topological inference and the retention of phylogenetically informative sites. Similarly, the choice of phylogenetic marker affects the delimitation of species boundaries, particularly if low phylogenetic signal is confounded with strong discordance, and inference of the species tree from multiple-gene trees. According to both phylogenetic informativeness profiling and Bayesian concordance analyses, the most informative loci are DNA lyase (APN2), intergenic spacer (IGS) between DNA lyase and the mating-type locus MAT1-2-1 (APN2/MAT-IGS), calmodulin (CAL), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), glutamine synthetase (GS), β-tubulin (TUB2), and a new marker, the intergenic spacer between GAPDH and an hypothetical protein (GAP2-IGS). Cornmeal agar minimizes the variance in conidial dimensions compared with potato dextrose agar and synthetic nutrient-poor agar, such that species are more readily distinguishable based on phenotypic differences. We apply these insights to investigate the diversity of Colletotrichum species associated with banana anthracnose in Brazil and report C. musae, C. tropicale, C. theobromicola, and C. siamense in association with banana anthracnose. One lineage did not cluster with any previously described species and is described here as C. chrysophilum.

  15. On the phylogenetic placement of human T cell leukemia virus type 1 sequences associated with an Andean mummy.

    PubMed

    Coulthart, Michael B; Posada, David; Crandall, Keith A; Dekaban, Gregory A

    2006-03-01

    Recently, the putative finding of ancient human T cell leukemia virus type 1 (HTLV-1) long terminal repeat (LTR) DNA sequences in association with a 1500-year-old Chilean mummy has stirred vigorous debate. The debate is based partly on the inherent uncertainties associated with phylogenetic reconstruction when only short sequences of closely related genotypes are available. However, a full analysis of what phylogenetic information is present in the mummy data has not previously been published, leaving open the question of what precisely is the range of admissible interpretation. To fulfill this need, we re-analyzed the mummy data in a new way. We first performed phylogenetic analysis of 188 published LTR DNA sequences from extant strains belonging to the HTLV-1 Cosmopolitan clade, using the method of statistical parsimony which is designed both to optimize phylogenetic resolution among sequences with little evolutionary divergence, and to permit precise mapping of individual sequence mutations onto branches of a divergence network. We then deduced possible phylogenetic positions for the two main categories of published Chilean mummy sequences, based on their published 157-nucleotide LTR sequences. The possible phylogenetic placements for one of the mummy sequence categories are consistent with a modern origin. However, one of these placements for the other mummy sequence category falls very close to the root of the Cosmopolitan clade, consistent with an ancient origin for both this mummy sequence and the Cosmopolitan clade.

  16. Milk composition of free-ranging red hartebeest, giraffe, Southern reedbuck and warthog and a phylogenetic comparison of the milk of African Artiodactyla.

    PubMed

    Osthoff, G; Hugo, A; Madende, M; Deacon, F; Nel, P J

    2017-02-01

    The composition of major nutrients and fatty acids of the milk of three species, red hartebeest, Southern reedbuck and warthog, and milk fatty acids of giraffe, that have not been published before, are reported, and together with the same parameters of 11 species previously published, were incorporated in a phylogenetic comparison. Unique properties of milk composition have been observed. Southern reedbuck milk seems to have a complex casein composition, similar to that of sheep. Milk composition varies between species. Although some differences may be ascribed to biological condition, such as stage of lactation, or ecological factors, such as availability of certain nutrients, the contribution by evolutionary history is not well documented and the emphasis is usually on the composition of the macro nutrients. Phylogenetic comparisons often lack representatives of multiple species of taxonomic groups and sub-groups. To date phylogenetic comparisons of milk composition have been carried out by using data from different publications. The problem with this approach is that the ecological factors cannot be completely ruled out. A statistical phylogenetic comparison by PCA between 15 species representing 7 different suborders, families or subfamilies of African Artiodactyla was carried out. The phylogenetic properties showed that the milk composition of the Bovinae, represented here by the subfamilies Bovini and Tragelaphini, differs from the other taxonomic groups, in that the Alcelaphinae had a high milk fat content of the medium chain length fatty acids C8-C12 (>17% of total fatty acids) and the Hippotraginae high amounts of oligosaccharides (>0.4%). Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Evolutionary morphology in shape and size of haptoral anchors in 14 Ligophorus spp. (Monogenea: Dactylogyridae).

    PubMed

    Rodríguez-González, Abril; Sarabeev, Volodimir; Balbuena, Juan Antonio

    2017-01-01

    The search for phylogenetic signal in morphological traits using geometric morphometrics represents a powerful approach to estimate the relative weights of convergence and shared evolutionary history in shaping organismal form. We assessed phylogenetic signal in the form of ventral and dorsal haptoral anchors of 14 species of Ligophorus occurring on grey mullets (Osteichthyes: Mugilidae) from the Mediterranean, the Black Sea and the Sea of Azov. The phylogenetic relationships among these species were mapped onto the morphospaces of shape and size of dorsal and ventral anchors and two different tests were applied to establish whether the spatial positions in the morphospace were dictated by chance. Overall significant phylogenetic signal was found in the data. Allometric effects on anchor shape were moderate or non-significant in the case of evolutionary allometry. Relatively phylogenetically distant species occurring on the same host differed markedly in anchor morphology indicating little influence of host species on anchor form. Our results suggest that common descent and shared evolutionary history play a major role in determining the shape and, to a lesser degree in the size of haptoral anchors in Ligophorus spp. The present approach allowed tracing paths of morphological evolution in anchor shape. Species with narrow anchors and long shafts were associated predominately with Liza saliens. This morphology was considered to be ancestral relative to anchors of species occurring on Liza haematocheila and M. cephalus possessing shorter shafts and longer roots. Evidence for phylogenetic signal was more compelling for the ventral anchors, than for the dorsal ones, which could reflect different functional roles in attachment to the gills. Although phylogeny and homoplasy may act differently in other monogeneans, the present study delivers a common framework to address effectively the relationships among morphology, phylogeny and other traits, such as host specificity or niche occupancy.

  18. On the quirks of maximum parsimony and likelihood on phylogenetic networks.

    PubMed

    Bryant, Christopher; Fischer, Mareike; Linz, Simone; Semple, Charles

    2017-03-21

    Maximum parsimony is one of the most frequently-discussed tree reconstruction methods in phylogenetic estimation. However, in recent years it has become more and more apparent that phylogenetic trees are often not sufficient to describe evolution accurately. For instance, processes like hybridization or lateral gene transfer that are commonplace in many groups of organisms and result in mosaic patterns of relationships cannot be represented by a single phylogenetic tree. This is why phylogenetic networks, which can display such events, are becoming of more and more interest in phylogenetic research. It is therefore necessary to extend concepts like maximum parsimony from phylogenetic trees to networks. Several suggestions for possible extensions can be found in recent literature, for instance the softwired and the hardwired parsimony concepts. In this paper, we analyze the so-called big parsimony problem under these two concepts, i.e. we investigate maximum parsimonious networks and analyze their properties. In particular, we show that finding a softwired maximum parsimony network is possible in polynomial time. We also show that the set of maximum parsimony networks for the hardwired definition always contains at least one phylogenetic tree. Lastly, we investigate some parallels of parsimony to different likelihood concepts on phylogenetic networks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Utilizing novel diversity estimators to quantify multiple dimensions of microbial biodiversity across domains

    PubMed Central

    2013-01-01

    Background Microbial ecologists often employ methods from classical community ecology to analyze microbial community diversity. However, these methods have limitations because microbial communities differ from macro-organismal communities in key ways. This study sought to quantify microbial diversity using methods that are better suited for data spanning multiple domains of life and dimensions of diversity. Diversity profiles are one novel, promising way to analyze microbial datasets. Diversity profiles encompass many other indices, provide effective numbers of diversity (mathematical generalizations of previous indices that better convey the magnitude of differences in diversity), and can incorporate taxa similarity information. To explore whether these profiles change interpretations of microbial datasets, diversity profiles were calculated for four microbial datasets from different environments spanning all domains of life as well as viruses. Both similarity-based profiles that incorporated phylogenetic relatedness and naïve (not similarity-based) profiles were calculated. Simulated datasets were used to examine the robustness of diversity profiles to varying phylogenetic topology and community composition. Results Diversity profiles provided insights into microbial datasets that were not detectable with classical univariate diversity metrics. For all datasets analyzed, there were key distinctions between calculations that incorporated phylogenetic diversity as a measure of taxa similarity and naïve calculations. The profiles also provided information about the effects of rare species on diversity calculations. Additionally, diversity profiles were used to examine thousands of simulated microbial communities, showing that similarity-based and naïve diversity profiles only agreed approximately 50% of the time in their classification of which sample was most diverse. This is a strong argument for incorporating similarity information and calculating diversity with a range of emphases on rare and abundant species when quantifying microbial community diversity. Conclusions For many datasets, diversity profiles provided a different view of microbial community diversity compared to analyses that did not take into account taxa similarity information, effective diversity, or multiple diversity metrics. These findings are a valuable contribution to data analysis methodology in microbial ecology. PMID:24238386

  20. Complete, accurate, mammalian phylogenies aid conservation planning, but not much

    PubMed Central

    Rodrigues, Ana S. L.; Grenyer, Richard; Baillie, Jonathan E. M.; Bininda-Emonds, Olaf R. P.; Gittlemann, John L.; Hoffmann, Michael; Safi, Kamran; Schipper, Jan; Stuart, Simon N.; Brooks, Thomas

    2011-01-01

    In the face of unprecedented global biodiversity loss, conservation planning must balance between refining and deepening knowledge versus acting on current information to preserve species and communities. Phylogenetic diversity (PD), a biodiversity measure that takes into account the evolutionary relationships between species, is arguably a more meaningful measure of biodiversity than species diversity, but cannot yet be applied to conservation planning for the majority of taxa for which phylogenetic trees have not yet been developed. Here, we investigate how the quality of data on the taxonomy and/or phylogeny of species affects the results of spatial conservation planning in terms of the representation of overall mammalian PD. The results show that the better the quality of the biodiversity data the better they can serve as a basis for conservation planning. However, decisions based on incomplete data are remarkably robust across different levels of degrading quality concerning the description of new species and the availability of phylogenetic information. Thus, given the level of urgency and the need for action, conservation planning can safely make use of the best available systematic data, limited as these data may be. PMID:21844044

  1. Phylogenetics beyond biology.

    PubMed

    Retzlaff, Nancy; Stadler, Peter F

    2018-06-21

    Evolutionary processes have been described not only in biology but also for a wide range of human cultural activities including languages and law. In contrast to the evolution of DNA or protein sequences, the detailed mechanisms giving rise to the observed evolution-like processes are not or only partially known. The absence of a mechanistic model of evolution implies that it remains unknown how the distances between different taxa have to be quantified. Considering distortions of metric distances, we first show that poor choices of the distance measure can lead to incorrect phylogenetic trees. Based on the well-known fact that phylogenetic inference requires additive metrics, we then show that the correct phylogeny can be computed from a distance matrix [Formula: see text] if there is a monotonic, subadditive function [Formula: see text] such that [Formula: see text] is additive. The required metric-preserving transformation [Formula: see text] can be computed as the solution of an optimization problem. This result shows that the problem of phylogeny reconstruction is well defined even if a detailed mechanistic model of the evolutionary process remains elusive.

  2. A multi-omic future for microbiome studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jansson, Janet K.; Baker, Erin S.

    2016-04-26

    Microbes constitute about a third of the Earth’s biomass and play critical roles in sustaining life. While results from multiple sequence-based studies have illustrated the importance of microbial communities for human health and the environment, additional technological developments are still needed to gain more insight into their functions [1]. To date, the majority of sequencing studies have focused on the 16S rRNA gene as a phylogenetic marker. This approach has enabled exploration of microbial compositions in a range of sample types, while bypassing the need for cultivation. 16S rRNA gene sequencing has also enabled a vast majority of microorganisms nevermore » previously isolated in culture to be identified and placed into a phylogenetic context [2]. These technologies have been utilized to map the locations of microbes inhabiting various locations of the body [3]. Similarly, sequencing has been used to determine the identities and distributions of microorganisms inhabiting different ecosystems [4, 5], and efforts in single cell sequencing of the microbiome have helped fill in missing branches of the phylogenetic tree [6].« less

  3. Ebolavirus Classification Based on Natural Vectors

    PubMed Central

    Zheng, Hui; Yin, Changchuan; Hoang, Tung; He, Rong Lucy; Yang, Jie

    2015-01-01

    According to the WHO, ebolaviruses have resulted in 8818 human deaths in West Africa as of January 2015. To better understand the evolutionary relationship of the ebolaviruses and infer virulence from the relationship, we applied the alignment-free natural vector method to classify the newest ebolaviruses. The dataset includes three new Guinea viruses as well as 99 viruses from Sierra Leone. For the viruses of the family of Filoviridae, both genus label classification and species label classification achieve an accuracy rate of 100%. We represented the relationships among Filoviridae viruses by Unweighted Pair Group Method with Arithmetic Mean (UPGMA) phylogenetic trees and found that the filoviruses can be separated well by three genera. We performed the phylogenetic analysis on the relationship among different species of Ebolavirus by their coding-complete genomes and seven viral protein genes (glycoprotein [GP], nucleoprotein [NP], VP24, VP30, VP35, VP40, and RNA polymerase [L]). The topology of the phylogenetic tree by the viral protein VP24 shows consistency with the variations of virulence of ebolaviruses. The result suggests that VP24 be a pharmaceutical target for treating or preventing ebolaviruses. PMID:25803489

  4. Nurse plants transfer more nitrogen to distantly related species.

    PubMed

    Montesinos-Navarro, Alicia; Verdú, Miguel; Querejeta, José Ignacio; Valiente-Banuet, Alfonso

    2017-05-01

    Plant facilitative interactions enhance co-occurrence between distant relatives, partly due to limited overlap in resource requirements. We propose a different mechanism for the coexistence of distant relatives based on positive interactions of nutrient sharing. Nutrients move between plants following source-sink gradients driven by plant traits that allow these gradients to establish. Specifically, nitrogen (N) concentration gradients can arise from variation in leaf N content across plants species. As many ecologically relevant traits, we hypothesize that leaf N content is phylogenetically conserved and can result in N gradients promoting N transfer among distant relatives. In a Mexican desert community governed by facilitation, we labelled nurse plants (Mimosa luisana) with 15 N and measured its transfer to 14 other species in the community, spanning the range of phylogenetic distances to the nurse plant. Nurses established steeper N source-sink gradients with distant relatives, increasing 15 N transfer toward these species. Nutrient sharing may provide long-term benefits to facilitated plants and may be an overlooked mechanism maintaining coexistence and increasing the phylogenetic diversity of plant communities. © 2017 by the Ecological Society of America.

  5. Taxonomic and Phylogenetic Determinants of Functional Composition of Bolivian Bat Assemblages

    PubMed Central

    Aguirre, Luis F.; Montaño-Centellas, Flavia A.; Gavilanez, M. Mercedes; Stevens, Richard D.

    2016-01-01

    Understanding diversity patterns and the potential mechanisms driving them is a fundamental goal in ecology. Examination of different dimensions of biodiversity can provide insights into the relative importance of different processes acting upon biotas to shape communities. Unfortunately, patterns of diversity are still poorly understood in hyper-diverse tropical countries. Here, we assess spatial variation of taxonomic, functional and phylogenetic diversity of bat assemblages in one of the least studied Neotropical countries, Bolivia, and determine whether changes in biodiversity are explained by the replacement of species or functional groups, or by differences in richness (i.e., gain or loss of species or functional groups). Further, we evaluate the contribution of phylogenetic and taxonomic changes in the resulting patterns of functional diversity of bats. Using well-sampled assemblages from published studies we examine noctilionoid bats at ten study sites across five ecoregions in Bolivia. Bat assemblages differed from each other in all dimensions of biodiversity considered; however, diversity patterns for each dimension were likely structured by different mechanisms. Within ecoregions, differences were largely explained by species richness, suggesting that the gain or loss of species or functional groups (as opposed to replacement) was driving dissimilarity patterns. Overall, our results suggest that whereas evolutionary processes (i.e., historical connection and dispersal routes across Bolivia) create a template of diversity patterns across the country, ecological mechanisms modify these templates, decoupling the observed patterns of functional, taxonomic and phylogenetic diversity in Bolivian bats. Our results suggests that elevation represents an important source of variability among diversity patterns for each dimension of diversity considered. Further, we found that neither phylogenetic nor taxonomic diversity can fully account for patterns of functional diversity, highlighting the need for examining different dimensions of biodiversity of bats in hyperdiverse ecosystems. PMID:27384441

  6. Taxonomic and Phylogenetic Determinants of Functional Composition of Bolivian Bat Assemblages.

    PubMed

    Aguirre, Luis F; Montaño-Centellas, Flavia A; Gavilanez, M Mercedes; Stevens, Richard D

    2016-01-01

    Understanding diversity patterns and the potential mechanisms driving them is a fundamental goal in ecology. Examination of different dimensions of biodiversity can provide insights into the relative importance of different processes acting upon biotas to shape communities. Unfortunately, patterns of diversity are still poorly understood in hyper-diverse tropical countries. Here, we assess spatial variation of taxonomic, functional and phylogenetic diversity of bat assemblages in one of the least studied Neotropical countries, Bolivia, and determine whether changes in biodiversity are explained by the replacement of species or functional groups, or by differences in richness (i.e., gain or loss of species or functional groups). Further, we evaluate the contribution of phylogenetic and taxonomic changes in the resulting patterns of functional diversity of bats. Using well-sampled assemblages from published studies we examine noctilionoid bats at ten study sites across five ecoregions in Bolivia. Bat assemblages differed from each other in all dimensions of biodiversity considered; however, diversity patterns for each dimension were likely structured by different mechanisms. Within ecoregions, differences were largely explained by species richness, suggesting that the gain or loss of species or functional groups (as opposed to replacement) was driving dissimilarity patterns. Overall, our results suggest that whereas evolutionary processes (i.e., historical connection and dispersal routes across Bolivia) create a template of diversity patterns across the country, ecological mechanisms modify these templates, decoupling the observed patterns of functional, taxonomic and phylogenetic diversity in Bolivian bats. Our results suggests that elevation represents an important source of variability among diversity patterns for each dimension of diversity considered. Further, we found that neither phylogenetic nor taxonomic diversity can fully account for patterns of functional diversity, highlighting the need for examining different dimensions of biodiversity of bats in hyperdiverse ecosystems.

  7. Microbes on mountainsides: Contrasting elevational patterns of bacterial and plant diversity

    PubMed Central

    Bryant, Jessica A.; Lamanna, Christine; Morlon, Hélène; Kerkhoff, Andrew J.; Enquist, Brian J.; Green, Jessica L.

    2008-01-01

    The study of elevational diversity gradients dates back to the foundation of biogeography. Although elevational patterns of plant and animal diversity have been studied for centuries, such patterns have not been reported for microorganisms and remain poorly understood. Here, in an effort to assess the generality of elevational diversity patterns, we examined soil bacterial and plant diversity along an elevation gradient. To gain insight into the forces that structure these patterns, we adopted a multifaceted approach to incorporate information about the structure, diversity, and spatial turnover of montane communities in a phylogenetic context. We found that observed patterns of plant and bacterial diversity were fundamentally different. While bacterial taxon richness and phylogenetic diversity decreased monotonically from the lowest to highest elevations, plants followed a unimodal pattern, with a peak in richness and phylogenetic diversity at mid-elevations. At all elevations bacterial communities had a tendency to be phylogenetically clustered, containing closely related taxa. In contrast, plant communities did not exhibit a uniform phylogenetic structure across the gradient: they became more overdispersed with increasing elevation, containing distantly related taxa. Finally, a metric of phylogenetic beta-diversity showed that bacterial lineages were not randomly distributed, but rather exhibited significant spatial structure across the gradient, whereas plant lineages did not exhibit a significant phylogenetic signal. Quantifying the influence of sample scale in intertaxonomic comparisons remains a challenge. Nevertheless, our findings suggest that the forces structuring microorganism and macroorganism communities along elevational gradients differ. PMID:18695215

  8. Phylogeny of Collembola based on cuticular compounds:inherent usefulness and limitation of a character type

    NASA Astrophysics Data System (ADS)

    Porco, David; Deharveng, Louis

    2009-08-01

    The phylogeny of Collembola, originally discussed from a morphological point of view, has more recently benefited from novel insights brought by molecular analyses. Both morphological and molecular characters produced a well-resolved phylogenetic hypothesis including all orders, most families, and a large number of genera. However, several conflicting points exist between molecular and morphological data, and new characters are clearly needed to resolve these inconsistencies. In this study the usefulness of a new character type not previously used in the phylogenetic study of Collembola was tested: the epicuticular chemical compounds. Our phylogenetic analysis was based on 380 compounds from 26 Collembola species. The results show good resolution for terminal branches but not for internal nodes. This is probably due to the partial involvement of epicuticular lipids in ecological functions such as water conservation and sexual attraction. Thus, this character type is appropriate for reconstructing phylogenetic relationships among recently diversified groups.

  9. COI (cytochrome oxidase-I) sequence based studies of Carangid fishes from Kakinada coast, India.

    PubMed

    Persis, M; Chandra Sekhar Reddy, A; Rao, L M; Khedkar, G D; Ravinder, K; Nasruddin, K

    2009-09-01

    Mitochondrial DNA, cytochrome oxidase-1 gene sequences were analyzed for species identification and phylogenetic relationship among the very high food value and commercially important Indian carangid fish species. Sequence analysis of COI gene very clearly indicated that all the 28 fish species fell into five distinct groups, which are genetically distant from each other and exhibited identical phylogenetic reservation. All the COI gene sequences from 28 fishes provide sufficient phylogenetic information and evolutionary relationship to distinguish the carangid species unambiguously. This study proves the utility of mtDNA COI gene sequence based approach in identifying fish species at a faster pace.

  10. Comprehensive Phylogenetic Analysis of Bovine Non-aureus Staphylococci Species Based on Whole-Genome Sequencing

    PubMed Central

    Naushad, Sohail; Barkema, Herman W.; Luby, Christopher; Condas, Larissa A. Z.; Nobrega, Diego B.; Carson, Domonique A.; De Buck, Jeroen

    2016-01-01

    Non-aureus staphylococci (NAS), a heterogeneous group of a large number of species and subspecies, are the most frequently isolated pathogens from intramammary infections in dairy cattle. Phylogenetic relationships among bovine NAS species are controversial and have mostly been determined based on single-gene trees. Herein, we analyzed phylogeny of bovine NAS species using whole-genome sequencing (WGS) of 441 distinct isolates. In addition, evolutionary relationships among bovine NAS were estimated from multilocus data of 16S rRNA, hsp60, rpoB, sodA, and tuf genes and sequences from these and numerous other single genes/proteins. All phylogenies were created with FastTree, Maximum-Likelihood, Maximum-Parsimony, and Neighbor-Joining methods. Regardless of methodology, WGS-trees clearly separated bovine NAS species into five monophyletic coherent clades. Furthermore, there were consistent interspecies relationships within clades in all WGS phylogenetic reconstructions. Except for the Maximum-Parsimony tree, multilocus data analysis similarly produced five clades. There were large variations in determining clades and interspecies relationships in single gene/protein trees, under different methods of tree constructions, highlighting limitations of using single genes for determining bovine NAS phylogeny. However, based on WGS data, we established a robust phylogeny of bovine NAS species, unaffected by method or model of evolutionary reconstructions. Therefore, it is now possible to determine associations between phylogeny and many biological traits, such as virulence, antimicrobial resistance, environmental niche, geographical distribution, and host specificity. PMID:28066335

  11. The Evolution of Tyrosine-Recombinase Elements in Nematoda

    PubMed Central

    Szitenberg, Amir; Koutsovoulos, Georgios; Blaxter, Mark L.; Lunt, David H.

    2014-01-01

    Transposable elements can be categorised into DNA and RNA elements based on their mechanism of transposition. Tyrosine recombinase elements (YREs) are relatively rare and poorly understood, despite sharing characteristics with both DNA and RNA elements. Previously, the Nematoda have been reported to have a substantially different diversity of YREs compared to other animal phyla: the Dirs1-like YRE retrotransposon was encountered in most animal phyla but not in Nematoda, and a unique Pat1-like YRE retrotransposon has only been recorded from Nematoda. We explored the diversity of YREs in Nematoda by sampling broadly across the phylum and including 34 genomes representing the three classes within Nematoda. We developed a method to isolate and classify YREs based on both feature organization and phylogenetic relationships in an open and reproducible workflow. We also ensured that our phylogenetic approach to YRE classification identified truncated and degenerate elements, informatively increasing the number of elements sampled. We identified Dirs1-like elements (thought to be absent from Nematoda) in the nematode classes Enoplia and Dorylaimia indicating that nematode model species do not adequately represent the diversity of transposable elements in the phylum. Nematode Pat1-like elements were found to be a derived form of another Pat1-like element that is present more widely in animals. Several sequence features used widely for the classification of YREs were found to be homoplasious, highlighting the need for a phylogenetically-based classification scheme. Nematode model species do not represent the diversity of transposable elements in the phylum. PMID:25197791

  12. The evolution of tyrosine-recombinase elements in Nematoda.

    PubMed

    Szitenberg, Amir; Koutsovoulos, Georgios; Blaxter, Mark L; Lunt, David H

    2014-01-01

    Transposable elements can be categorised into DNA and RNA elements based on their mechanism of transposition. Tyrosine recombinase elements (YREs) are relatively rare and poorly understood, despite sharing characteristics with both DNA and RNA elements. Previously, the Nematoda have been reported to have a substantially different diversity of YREs compared to other animal phyla: the Dirs1-like YRE retrotransposon was encountered in most animal phyla but not in Nematoda, and a unique Pat1-like YRE retrotransposon has only been recorded from Nematoda. We explored the diversity of YREs in Nematoda by sampling broadly across the phylum and including 34 genomes representing the three classes within Nematoda. We developed a method to isolate and classify YREs based on both feature organization and phylogenetic relationships in an open and reproducible workflow. We also ensured that our phylogenetic approach to YRE classification identified truncated and degenerate elements, informatively increasing the number of elements sampled. We identified Dirs1-like elements (thought to be absent from Nematoda) in the nematode classes Enoplia and Dorylaimia indicating that nematode model species do not adequately represent the diversity of transposable elements in the phylum. Nematode Pat1-like elements were found to be a derived form of another Pat1-like element that is present more widely in animals. Several sequence features used widely for the classification of YREs were found to be homoplasious, highlighting the need for a phylogenetically-based classification scheme. Nematode model species do not represent the diversity of transposable elements in the phylum.

  13. Accurate Phylogenetic Tree Reconstruction from Quartets: A Heuristic Approach

    PubMed Central

    Reaz, Rezwana; Bayzid, Md. Shamsuzzoha; Rahman, M. Sohel

    2014-01-01

    Supertree methods construct trees on a set of taxa (species) combining many smaller trees on the overlapping subsets of the entire set of taxa. A ‘quartet’ is an unrooted tree over taxa, hence the quartet-based supertree methods combine many -taxon unrooted trees into a single and coherent tree over the complete set of taxa. Quartet-based phylogeny reconstruction methods have been receiving considerable attentions in the recent years. An accurate and efficient quartet-based method might be competitive with the current best phylogenetic tree reconstruction methods (such as maximum likelihood or Bayesian MCMC analyses), without being as computationally intensive. In this paper, we present a novel and highly accurate quartet-based phylogenetic tree reconstruction method. We performed an extensive experimental study to evaluate the accuracy and scalability of our approach on both simulated and biological datasets. PMID:25117474

  14. Sperm ultrastructure of shrimps from the family Penaeidae (Crustacea: Dendrobranchiata) in a phylogenetic context.

    PubMed

    Camargo, Tavani Rocha; Rossi, Natalia; Castilho, Antonio L; Costa, Rogério C; Mantelatto, Fernando L; Zara, Fernando José

    2017-07-01

    We describe the sperm ultrastructure of six penaeid species, including at least one member of each tribe (Penaeini, Parapenaeini and Trachypenaeini). Fragments of the vas deferens of the Penaeidae Farfantepenaeus brasiliensis, Farfantepenaeus paulensis, Litopenaeus schmitti, Parapenaeus americanus, Rimapenaeus constrictus and Xiphopenaeus kroyeri were fixed and processed according to the routine for transmission electron microscopy. The morphological results were contextualized in an evolutionary perspective using molecular markers for the phylogenetic reconstruction of this group. A phylogram was proposed by Bayesian inference based on 1007 bp of 33 sequences of the combined genes (16S rDNA and COI mtDNA) from 27 dendrobranchiate specimens. Our findings show that morphological differences in the sperm ultrastructures of members among the tribes of Penaeidae can be used as a baseline to understand their evolutionary relationships. Individuals from the Penaeini tribe show plesiomorphic characteristics in the sperm ultrastructure compared to the Trachypenaeini tribe from which they were derived, such as shrimp from family Sicyoniidae. The morphological complexity of the sperm of the different penaeid members corroborated with the genetic phylogeny, which showed different clades for each tribe and the close relationship with Sicyoniidae. The sperm features of the selected species studied here reflected their evolutionary history. These features confirm the previous phylogenetic hypothesis and question the monophyly of Penaeidae, which should be verified in the future with a more complete set of representative members of each tribe. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Cophenetic correlation analysis as a strategy to select phylogenetically informative proteins: an example from the fungal kingdom

    PubMed Central

    Kuramae, Eiko E; Robert, Vincent; Echavarri-Erasun, Carlos; Boekhout, Teun

    2007-01-01

    Background The construction of robust and well resolved phylogenetic trees is important for our understanding of many, if not all biological processes, including speciation and origin of higher taxa, genome evolution, metabolic diversification, multicellularity, origin of life styles, pathogenicity and so on. Many older phylogenies were not well supported due to insufficient phylogenetic signal present in the single or few genes used in phylogenetic reconstructions. Importantly, single gene phylogenies were not always found to be congruent. The phylogenetic signal may, therefore, be increased by enlarging the number of genes included in phylogenetic studies. Unfortunately, concatenation of many genes does not take into consideration the evolutionary history of each individual gene. Here, we describe an approach to select informative phylogenetic proteins to be used in the Tree of Life (TOL) and barcoding projects by comparing the cophenetic correlation coefficients (CCC) among individual protein distance matrices of proteins, using the fungi as an example. The method demonstrated that the quality and number of concatenated proteins is important for a reliable estimation of TOL. Approximately 40–45 concatenated proteins seem needed to resolve fungal TOL. Results In total 4852 orthologous proteins (KOGs) were assigned among 33 fungal genomes from the Asco- and Basidiomycota and 70 of these represented single copy proteins. The individual protein distance matrices based on 531 concatenated proteins that has been used for phylogeny reconstruction before [14] were compared one with another in order to select those with the highest CCC, which then was used as a reference. This reference distance matrix was compared with those of the 70 single copy proteins selected and their CCC values were calculated. Sixty four KOGs showed a CCC above 0.50 and these were further considered for their phylogenetic potential. Proteins belonging to the cellular processes and signaling KOG category seem more informative than those belonging to the other three categories: information storage and processing; metabolism; and the poorly characterized category. After concatenation of 40 proteins the topology of the phylogenetic tree remained stable, but after concatenation of 60 or more proteins the bootstrap support values of some branches decreased, most likely due to the inclusion of proteins with lowers CCC values. The selection of protein sequences to be used in various TOL projects remains a critical and important process. The method described in this paper will contribute to a more objective selection of phylogenetically informative protein sequences. Conclusion This study provides candidate protein sequences to be considered as phylogenetic markers in different branches of fungal TOL. The selection procedure described here will be useful to select informative protein sequences to resolve branches of TOL that contain few or no species with completely sequenced genomes. The robust phylogenetic trees resulting from this method may contribute to our understanding of organismal diversification processes. The method proposed can be extended easily to other branches of TOL. PMID:17688684

  16. Distribution of Bathyarchaeota Communities Across Different Terrestrial Settings and Their Potential Ecological Functions

    NASA Astrophysics Data System (ADS)

    Xiang, Xing; Wang, Ruicheng; Wang, Hongmei; Gong, Linfeng; Man, Baiying; Xu, Ying

    2017-03-01

    High abundance and widespread distribution of the archaeal phylum Bathyarchaeota in marine environment have been recognized recently, but knowledge about Bathyarchaeota in terrestrial settings and their correlation with environmental parameters is fairly limited. Here we reported the abundance of Bathyarchaeota members across different ecosystems and their correlation with environmental factors by constructing 16S rRNA clone libraries of peat from the Dajiuhu Peatland, coupling with bioinformatics analysis of 16S rRNA data available to date in NCBI database. In total, 1456 Bathyarchaeota sequences from 28 sites were subjected to UniFrac analysis based on phylogenetic distance and multivariate regression tree analysis of taxonomy. Both phylogenetic and taxon-based approaches showed that salinity, total organic carbon and temperature significantly influenced the distribution of Bathyarchaeota across different terrestrial habitats. By applying the ecological concept of ‘indicator species’, we identify 9 indicator groups among the 6 habitats with the most in the estuary sediments. Network analysis showed that members of Bathyarchaeota formed the “backbone” of archaeal community and often co-occurred with Methanomicrobia. These results suggest that Bathyarchaeota may play an important ecological role within archaeal communities via a potential symbiotic association with Methanomicrobia. Our results shed light on understanding of the biogeography, potential functions of Bathyarchaeota and environment conditions that influence Bathyarchaea distribution in terrestrial settings.

  17. Integration of vessel traits, wood density, and height in angiosperm shrubs and trees.

    PubMed

    Martínez-Cabrera, Hugo I; Schenk, H Jochen; Cevallos-Ferriz, Sergio R S; Jones, Cynthia S

    2011-05-01

    Trees and shrubs tend to occupy different niches within and across ecosystems; therefore, traits related to their resource use and life history are expected to differ. Here we analyzed how growth form is related to variation in integration among vessel traits, wood density, and height. We also considered the ecological and evolutionary consequences of such differences. In a sample of 200 woody plant species (65 shrubs and 135 trees) from Argentina, Mexico, and the United States, standardized major axis (SMA) regression, correlation analyses, and ANOVA were used to determine whether relationships among traits differed between growth forms. The influence of phylogenetic relationships was examined with a phylogenetic ANOVA and phylogenetically independent contrasts (PICs). A principal component analysis was conducted to determine whether trees and shrubs occupy different portions of multivariate trait space. Wood density did not differ between shrubs and trees, but there were significant differences in vessel diameter, vessel density, theoretical conductivity, and as expected, height. In addition, relationships between vessel traits and wood density differed between growth forms. Trees showed coordination among vessel traits, wood density, and height, but in shrubs, wood density and vessel traits were independent. These results hold when phylogenetic relationships were considered. In the multivariate analyses, these differences translated as significantly different positions in multivariate trait space occupied by shrubs and trees. Differences in trait integration between growth forms suggest that evolution of growth form in some lineages might be associated with the degree of trait interrelation.

  18. Biological pattern and transcriptomic exploration and phylogenetic analysis in the odd floral architecture tree: Helwingia willd.

    PubMed

    Sun, Cheng; Yu, Guoliang; Bao, Manzhu; Zheng, Bo; Ning, Guogui

    2014-06-27

    Odd traits in few of plant species usually implicate potential biology significances in plant evolutions. The genus Helwingia Willd, a dioecious medical shrub in Aquifoliales order, has an odd floral architecture-epiphyllous inflorescence. The potential significances and possible evolutionary origin of this specie are not well understood due to poorly available data of biological and genetic studies. In addition, the advent of genomics-based technologies has widely revolutionized plant species with unknown genomic information. Morphological and biological pattern were detailed via anatomical and pollination analyses. An RNA sequencing based transcriptomic analysis were undertaken and a high-resolution phylogenetic analysis was conducted based on single-copy genes in more than 80 species of seed plants, including H. japonica. It is verified that a potential fusion of rachis to the leaf midvein facilitates insect pollination. RNA sequencing yielded a total of 111450 unigenes; half of them had significant similarity with proteins in the public database, and 20281 unigenes were mapped to 119 pathways. Deduced from the phylogenetic analysis based on single-copy genes, the group of Helwingia is closer with Euasterids II and rather than Euasterids, congruent with previous reports using plastid sequences. The odd flower architecture make H. Willd adapt to insect pollination by hosting those insects larger than the flower in size via leave, which has little common character that other insect pollination plants hold. Further the present transcriptome greatly riches genomics information of Helwingia species and nucleus genes based phylogenetic analysis also greatly improve the resolution and robustness of phylogenetic reconstruction in H. japonica.

  19. CDAO-Store: Ontology-driven Data Integration for Phylogenetic Analysis

    PubMed Central

    2011-01-01

    Background The Comparative Data Analysis Ontology (CDAO) is an ontology developed, as part of the EvoInfo and EvoIO groups supported by the National Evolutionary Synthesis Center, to provide semantic descriptions of data and transformations commonly found in the domain of phylogenetic analysis. The core concepts of the ontology enable the description of phylogenetic trees and associated character data matrices. Results Using CDAO as the semantic back-end, we developed a triple-store, named CDAO-Store. CDAO-Store is a RDF-based store of phylogenetic data, including a complete import of TreeBASE. CDAO-Store provides a programmatic interface, in the form of web services, and a web-based front-end, to perform both user-defined as well as domain-specific queries; domain-specific queries include search for nearest common ancestors, minimum spanning clades, filter multiple trees in the store by size, author, taxa, tree identifier, algorithm or method. In addition, CDAO-Store provides a visualization front-end, called CDAO-Explorer, which can be used to view both character data matrices and trees extracted from the CDAO-Store. CDAO-Store provides import capabilities, enabling the addition of new data to the triple-store; files in PHYLIP, MEGA, nexml, and NEXUS formats can be imported and their CDAO representations added to the triple-store. Conclusions CDAO-Store is made up of a versatile and integrated set of tools to support phylogenetic analysis. To the best of our knowledge, CDAO-Store is the first semantically-aware repository of phylogenetic data with domain-specific querying capabilities. The portal to CDAO-Store is available at http://www.cs.nmsu.edu/~cdaostore. PMID:21496247

  20. CDAO-store: ontology-driven data integration for phylogenetic analysis.

    PubMed

    Chisham, Brandon; Wright, Ben; Le, Trung; Son, Tran Cao; Pontelli, Enrico

    2011-04-15

    The Comparative Data Analysis Ontology (CDAO) is an ontology developed, as part of the EvoInfo and EvoIO groups supported by the National Evolutionary Synthesis Center, to provide semantic descriptions of data and transformations commonly found in the domain of phylogenetic analysis. The core concepts of the ontology enable the description of phylogenetic trees and associated character data matrices. Using CDAO as the semantic back-end, we developed a triple-store, named CDAO-Store. CDAO-Store is a RDF-based store of phylogenetic data, including a complete import of TreeBASE. CDAO-Store provides a programmatic interface, in the form of web services, and a web-based front-end, to perform both user-defined as well as domain-specific queries; domain-specific queries include search for nearest common ancestors, minimum spanning clades, filter multiple trees in the store by size, author, taxa, tree identifier, algorithm or method. In addition, CDAO-Store provides a visualization front-end, called CDAO-Explorer, which can be used to view both character data matrices and trees extracted from the CDAO-Store. CDAO-Store provides import capabilities, enabling the addition of new data to the triple-store; files in PHYLIP, MEGA, nexml, and NEXUS formats can be imported and their CDAO representations added to the triple-store. CDAO-Store is made up of a versatile and integrated set of tools to support phylogenetic analysis. To the best of our knowledge, CDAO-Store is the first semantically-aware repository of phylogenetic data with domain-specific querying capabilities. The portal to CDAO-Store is available at http://www.cs.nmsu.edu/~cdaostore.

  1. Human Papillomavirus Type 16 Genetic Variants: Phylogeny and Classification Based on E6 and LCR

    PubMed Central

    Gheit, Tarik; Franceschi, Silvia; Vignat, Jerome; Burk, Robert D.; Sylla, Bakary S.; Tommasino, Massimo; Clifford, Gary M.

    2012-01-01

    Naturally occurring genetic variants of human papillomavirus type 16 (HPV16) are common and have previously been classified into 4 major lineages; European-Asian (EAS), including the sublineages European (EUR) and Asian (As), African 1 (AFR1), African 2 (AFR2), and North-American/Asian-American (NA/AA). We aimed to improve the classification of HPV16 variant lineages by using a large resource of HPV16-positive cervical samples collected from geographically diverse populations in studies on HPV and/or cervical cancer undertaken by the International Agency for Research on Cancer. In total, we sequenced the entire E6 genes and long control regions (LCRs) of 953 HPV16 isolates from 27 different countries worldwide. Phylogenetic analyses confirmed previously described variant lineages and subclassifications. We characterized two new sublineages within each of the lineages AFR1 and AFR2 that are robustly classified using E6 and/or the LCR. We could differentiate previously identified AA1, AA2, and NA sublineages, although they could not be distinguished by E6 alone, requiring the LCR for correct phylogenetic classification. We thus provide a classification system for HPV16 genomes based on 13 and 32 phylogenetically distinguishing positions in E6 and the LCR, respectively, that distinguish nine HPV16 variant sublineages (EUR, As, AFR1a, AFR1b, AFR2a, AFR2b, NA, AA1, and AA2). Ninety-seven percent of all 953 samples fitted this classification perfectly. Other positions were frequently polymorphic within one or more lineages but did not define phylogenetic subgroups. Such a standardized classification of HPV16 variants is important for future epidemiological and biological studies of the carcinogenic potential of HPV16 variant lineages. PMID:22491459

  2. Human papillomavirus type 16 genetic variants: phylogeny and classification based on E6 and LCR.

    PubMed

    Cornet, Iris; Gheit, Tarik; Franceschi, Silvia; Vignat, Jerome; Burk, Robert D; Sylla, Bakary S; Tommasino, Massimo; Clifford, Gary M

    2012-06-01

    Naturally occurring genetic variants of human papillomavirus type 16 (HPV16) are common and have previously been classified into 4 major lineages; European-Asian (EAS), including the sublineages European (EUR) and Asian (As), African 1 (AFR1), African 2 (AFR2), and North-American/Asian-American (NA/AA). We aimed to improve the classification of HPV16 variant lineages by using a large resource of HPV16-positive cervical samples collected from geographically diverse populations in studies on HPV and/or cervical cancer undertaken by the International Agency for Research on Cancer. In total, we sequenced the entire E6 genes and long control regions (LCRs) of 953 HPV16 isolates from 27 different countries worldwide. Phylogenetic analyses confirmed previously described variant lineages and subclassifications. We characterized two new sublineages within each of the lineages AFR1 and AFR2 that are robustly classified using E6 and/or the LCR. We could differentiate previously identified AA1, AA2, and NA sublineages, although they could not be distinguished by E6 alone, requiring the LCR for correct phylogenetic classification. We thus provide a classification system for HPV16 genomes based on 13 and 32 phylogenetically distinguishing positions in E6 and the LCR, respectively, that distinguish nine HPV16 variant sublineages (EUR, As, AFR1a, AFR1b, AFR2a, AFR2b, NA, AA1, and AA2). Ninety-seven percent of all 953 samples fitted this classification perfectly. Other positions were frequently polymorphic within one or more lineages but did not define phylogenetic subgroups. Such a standardized classification of HPV16 variants is important for future epidemiological and biological studies of the carcinogenic potential of HPV16 variant lineages.

  3. Phylogenetic analysis of a spontaneous cocoa bean fermentation metagenome reveals new insights into its bacterial and fungal community diversity.

    PubMed

    Illeghems, Koen; De Vuyst, Luc; Papalexandratou, Zoi; Weckx, Stefan

    2012-01-01

    This is the first report on the phylogenetic analysis of the community diversity of a single spontaneous cocoa bean box fermentation sample through a metagenomic approach involving 454 pyrosequencing. Several sequence-based and composition-based taxonomic profiling tools were used and evaluated to avoid software-dependent results and their outcome was validated by comparison with previously obtained culture-dependent and culture-independent data. Overall, this approach revealed a wider bacterial (mainly γ-Proteobacteria) and fungal diversity than previously found. Further, the use of a combination of different classification methods, in a software-independent way, helped to understand the actual composition of the microbial ecosystem under study. In addition, bacteriophage-related sequences were found. The bacterial diversity depended partially on the methods used, as composition-based methods predicted a wider diversity than sequence-based methods, and as classification methods based solely on phylogenetic marker genes predicted a more restricted diversity compared with methods that took all reads into account. The metagenomic sequencing analysis identified Hanseniaspora uvarum, Hanseniaspora opuntiae, Saccharomyces cerevisiae, Lactobacillus fermentum, and Acetobacter pasteurianus as the prevailing species. Also, the presence of occasional members of the cocoa bean fermentation process was revealed (such as Erwinia tasmaniensis, Lactobacillus brevis, Lactobacillus casei, Lactobacillus rhamnosus, Lactococcus lactis, Leuconostoc mesenteroides, and Oenococcus oeni). Furthermore, the sequence reads associated with viral communities were of a restricted diversity, dominated by Myoviridae and Siphoviridae, and reflecting Lactobacillus as the dominant host. To conclude, an accurate overview of all members of a cocoa bean fermentation process sample was revealed, indicating the superiority of metagenomic sequencing over previously used techniques.

  4. Web-Based Phylogenetic Assignment Tool for Analysis of Terminal Restriction Fragment Length Polymorphism Profiles of Microbial Communities

    PubMed Central

    Kent, Angela D.; Smith, Dan J.; Benson, Barbara J.; Triplett, Eric W.

    2003-01-01

    Culture-independent DNA fingerprints are commonly used to assess the diversity of a microbial community. However, relating species composition to community profiles produced by community fingerprint methods is not straightforward. Terminal restriction fragment length polymorphism (T-RFLP) is a community fingerprint method in which phylogenetic assignments may be inferred from the terminal restriction fragment (T-RF) sizes through the use of web-based resources that predict T-RF sizes for known bacteria. The process quickly becomes computationally intensive due to the need to analyze profiles produced by multiple restriction digests and the complexity of profiles generated by natural microbial communities. A web-based tool is described here that rapidly generates phylogenetic assignments from submitted community T-RFLP profiles based on a database of fragments produced by known 16S rRNA gene sequences. Users have the option of submitting a customized database generated from unpublished sequences or from a gene other than the 16S rRNA gene. This phylogenetic assignment tool allows users to employ T-RFLP to simultaneously analyze microbial community diversity and species composition. An analysis of the variability of bacterial species composition throughout the water column in a humic lake was carried out to demonstrate the functionality of the phylogenetic assignment tool. This method was validated by comparing the results generated by this program with results from a 16S rRNA gene clone library. PMID:14602639

  5. Armillaria phylogeny based on tef-1α sequences suggests ongoing divergent speciation within the boreal floristic kingdom

    Treesearch

    Ned B. Klopfenstein; John W. Hanna; Amy L. Ross-Davis; Jane E. Stewart; Yuko Ota; Rosario Medel-Ortiz; Miguel Armando Lopez-Ramirez; Ruben Damian Elias-Roman; Dionicio Alvarado-Rosales; Mee-Sook Kim

    2013-01-01

    Armillaria plays diverse ecological roles in forests worldwide, which has inspired interest in understanding phylogenetic relationships within and among species of this genus. Previous rDNA sequence-based phylogenetic analyses of Armillaria have shown general relationships among widely divergent taxa, but rDNA sequences were not reliable for separating closely related...

  6. Phylogenetic turnover along local environmental gradients in tropical forest communities.

    PubMed

    Baldeck, C A; Kembel, S W; Harms, K E; Yavitt, J B; John, R; Turner, B L; Madawala, S; Gunatilleke, N; Gunatilleke, S; Bunyavejchewin, S; Kiratiprayoon, S; Yaacob, A; Supardi, M N N; Valencia, R; Navarrete, H; Davies, S J; Chuyong, G B; Kenfack, D; Thomas, D W; Dalling, J W

    2016-10-01

    While the importance of local-scale habitat niches in shaping tree species turnover along environmental gradients in tropical forests is well appreciated, relatively little is known about the influence of phylogenetic signal in species' habitat niches in shaping local community structure. We used detailed maps of the soil resource and topographic variation within eight 24-50 ha tropical forest plots combined with species phylogenies created from the APG III phylogeny to examine how phylogenetic beta diversity (indicating the degree of phylogenetic similarity of two communities) was related to environmental gradients within tropical tree communities. Using distance-based redundancy analysis we found that phylogenetic beta diversity, expressed as either nearest neighbor distance or mean pairwise distance, was significantly related to both soil and topographic variation in all study sites. In general, more phylogenetic beta diversity within a forest plot was explained by environmental variables this was expressed as nearest neighbor distance versus mean pairwise distance (3.0-10.3 % and 0.4-8.8 % of variation explained among plots, respectively), and more variation was explained by soil resource variables than topographic variables using either phylogenetic beta diversity metric. We also found that patterns of phylogenetic beta diversity expressed as nearest neighbor distance were consistent with previously observed patterns of niche similarity among congeneric species pairs in these plots. These results indicate the importance of phylogenetic signal in local habitat niches in shaping the phylogenetic structure of tropical tree communities, especially at the level of close phylogenetic neighbors, where similarity in habitat niches is most strongly preserved.

  7. Exobasidium maculosum, a new species causing leaf and fruit spots on blueberry in the southeastern USA and its relationship with other Exobasidium spp. parasitic to blueberry and cranberry.

    PubMed

    Brewer, Marin Talbot; Turner, Ashley N; Brannen, Phillip M; Cline, William O; Richardson, Elizabeth A

    2014-01-01

    Exobasidium leaf and fruit spot of blueberry (Vaccinium section Cyanococcus) is an emerging disease that has rapidly increased in prevalence throughout the southeastern USA. To determine whether this disease is caused by a new species of Exobasidium, we studied the morphology and phylogenetic relationship of the causal fungus compared with other members of the genus, including the type species E. vaccinii and other species that parasitize blueberry and cranberry (V. macrocarpon). Both scanning electron microscopy and light microscopy were used for morphological characterization. For phylogenetic analyses, we sequenced the large subunit of the rDNA (LSU) from 10 isolates collected from leaf or fruit spots of rabbiteye blueberry (V. virgatum), highbush blueberry (V. corymbosum) and southern highbush blueberry (Vaccinium interspecific hybrid) from Georgia and North Carolina and six isolates from leaf spots of lowbush blueberry (V. angustifolium) from Maine and Nova Scotia, Canada. LSU was sequenced from isolates causing red leaf disease of lowbush blueberry and red leaf spot (E. rostrupii) and red shoot (E. perenne) of cranberry. In addition, LSU sequences from GenBank, including sequences with high similarity to the emerging parasite and from Exobasidium spp. parasitizing other Vaccinium spp. and related hosts, were obtained. All sequences were aligned and subjected to phylogenetic analyses. Results indicated that the emerging parasite in the southeastern USA differs morphologically and phylogenetically from other described species and is described herein as Exobasidium maculosum. Within the southeastern USA, clustering based on host species, host tissue type (leaf or fruit) or geographic region was not detected; however, leaf spot isolates from lowbush blueberry were genetically different and likely represent a unique species. © 2014 by The Mycological Society of America.

  8. The Complete Mitochondrial Genome of Corizus tetraspilus (Hemiptera: Rhopalidae) and Phylogenetic Analysis of Pentatomomorpha

    PubMed Central

    Guo, Zhong-Long; Wang, Juan; Shen, Yu-Ying

    2015-01-01

    Insect mitochondrial genome (mitogenome) are the most extensively used genetic information for molecular evolution, phylogenetics and population genetics. Pentatomomorpha (>14,000 species) is the second largest infraorder of Heteroptera and of great economic importance. To better understand the diversity and phylogeny within Pentatomomorpha, we sequenced and annotated the complete mitogenome of Corizus tetraspilus (Hemiptera: Rhopalidae), an important pest of alfalfa in China. We analyzed the main features of the C. tetraspilus mitogenome, and provided a comparative analysis with four other Coreoidea species. Our results reveal that gene content, gene arrangement, nucleotide composition, codon usage, rRNA structures and sequences of mitochondrial transcription termination factor are conserved in Coreoidea. Comparative analysis shows that different protein-coding genes have been subject to different evolutionary rates correlated with the G+C content. All the transfer RNA genes found in Coreoidea have the typical clover leaf secondary structure, except for trnS1 (AGN) which lacks the dihydrouridine (DHU) arm and possesses a unusual anticodon stem (9 bp vs. the normal 5 bp). The control regions (CRs) among Coreoidea are highly variable in size, of which the CR of C. tetraspilus is the smallest (440 bp), making the C. tetraspilus mitogenome the smallest (14,989 bp) within all completely sequenced Coreoidea mitogenomes. No conserved motifs are found in the CRs of Coreoidea. In addition, the A+T content (60.68%) of the CR of C. tetraspilus is much lower than that of the entire mitogenome (74.88%), and is lowest among Coreoidea. Phylogenetic analyses based on mitogenomic data support the monophyly of each superfamily within Pentatomomorpha, and recognize a phylogenetic relationship of (Aradoidea + (Pentatomoidea + (Lygaeoidea + (Pyrrhocoroidea + Coreoidea)))). PMID:26042898

  9. Are humans the initial source of canine mange?

    PubMed

    Andriantsoanirina, Valérie; Fang, Fang; Ariey, Frédéric; Izri, Arezki; Foulet, Françoise; Botterel, Françoise; Bernigaud, Charlotte; Chosidow, Olivier; Huang, Weiyi; Guillot, Jacques; Durand, Rémy

    2016-03-25

    Scabies, or mange as it is called in animals, is an ectoparasitic contagious infestation caused by the mite Sarcoptes scabiei. Sarcoptic mange is an important veterinary disease leading to significant morbidity and mortality in wild and domestic animals. A widely accepted hypothesis, though never substantiated by factual data, suggests that humans were the initial source of the animal contamination. In this study we performed phylogenetic analyses of populations of S. scabiei from humans and from canids to validate or not the hypothesis of a human origin of the mites infecting domestic dogs. Mites from dogs and foxes were obtained from three French sites and from other countries. A part of cytochrome c oxidase subunit 1 (cox1) gene was amplified and directly sequenced. Other sequences corresponding to mites from humans, raccoon dogs, foxes, jackal and dogs from various geographical areas were retrieved from GenBank. Phylogenetic analyses were performed using the Otodectes cynotis cox1 sequence as outgroup. Maximum Likelihood and Bayesian Inference analysis approaches were used. To visualize the relationship between the haplotypes, a median joining haplotype network was constructed using Network v4.6 according to host. Twenty-one haplotypes were observed among mites collected from five different host species, including humans and canids from nine geographical areas. The phylogenetic trees based on Maximum Likelihood and Bayesian Inference analyses showed similar topologies with few differences in node support values. The results were not consistent with a human origin of S. scabiei mites in dogs and, on the contrary, did not exclude the opposite hypothesis of a host switch from dogs to humans. Phylogenetic relatedness may have an impact in terms of epidemiological control strategy. Our results and other recent studies suggest to re-evaluate the level of transmission between domestic dogs and humans.

  10. Morphometric and ultrastructural comparison of the olfactory system in elasmobranchs: the significance of structure-function relationships based on phylogeny and ecology.

    PubMed

    Schluessel, Vera; Bennett, Michael B; Bleckmann, Horst; Blomberg, Simon; Collin, Shaun P

    2008-11-01

    This study investigated the relationship between olfactory morphology, habitat occupancy, and lifestyle in 21 elasmobranch species in a phylogenetic context. Four measures of olfactory capability, that is, the number of olfactory lamellae, the surface area of the olfactory epithelium, the mass of the olfactory bulb, and the mass of the olfactory rosette were compared between individual species and groups, comprised of species with similar habitat and/or lifestyle. Statistical analyses using generalized least squares phylogenetic regression revealed that bentho-pelagic sharks and rays possess significantly more olfactory lamellae and larger sensory epithelial surface areas than benthic species. There was no significant correlation between either olfactory bulb or rosette mass and habitat type. There was also no significant difference between the number of lamellae or the size of the sensory surface area in groups comprised of species with similar diets, that is, groups preying predominantly on crustaceans, cephalopods, echinoderms, polychaetes, molluscs, or teleosts. However, some groups had significantly larger olfactory bulb or rosette masses than others. There was little evidence to support a correlation between phylogeny and morphology, indicating that differences in olfactory capabilities are the result of functional rather than phylogenetic adaptations. All olfactory epithelia exhibited microvilli and cilia, with microvilli in both nonsensory and sensory areas, and cilia only in sensory areas. Cilia over the sensory epithelia originated from supporting cells. In contrast to teleosts, which possess ciliated and microvillous olfactory receptor types, no ciliated olfactory receptor cells were observed. This is the first comprehensive study comparing olfactory morphology to several aspects of elasmobranch ecology in a phylogenetic context.

  11. Pollination Mode and Mating System Explain Patterns in Genetic Differentiation in Neotropical Plants

    PubMed Central

    Ballesteros-Mejia, Liliana; Lima, Natácia E.; Lima-Ribeiro, Matheus S.

    2016-01-01

    We studied genetic diversity and differentiation patterns in Neotropical plants to address effects of life history traits (LHT) and ecological attributes based on an exhaustive literature survey. We used generalized linear mixed models (GLMMs) to test the effects as fixed and random factors of growth form, pollination and dispersal modes, mating and breeding systems, geographical range and habitat on patterns of genetic diversity (HS, HeS, π and h), inbreeding coefficient (FIS), allelic richness (AR) and differentiation among populations (FST) for both nuclear and chloroplast genomes. In addition, we used phylogenetic generalized least squares (pGLS) to account for phylogenetic independence on predictor variables and verify the robustness of the results from significant GLMMs. In general, GLMM revealed more significant relationships among LHTs and genetic patterns than pGLS. After accounting for phylogenetic independence (i.e., using pGLS), FST for nuclear microsatellites was significantly related to pollination mode, mating system and habitat. Plants specifically with outcrossing mating system had lower FST. Moreover, AR was significantly related to pollination mode and geographical range and HeS for nuclear dominant markers was significantly related to habitat. Our findings showed that different results might be retrieved when phylogenetic non-independence is taken into account and that LHTs and ecological attributes affect substantially the genetic pattern in Neotropical plants, hence may drive key evolutionary processes in plants. PMID:27472384

  12. A novel model for DNA sequence similarity analysis based on graph theory.

    PubMed

    Qi, Xingqin; Wu, Qin; Zhang, Yusen; Fuller, Eddie; Zhang, Cun-Quan

    2011-01-01

    Determination of sequence similarity is one of the major steps in computational phylogenetic studies. As we know, during evolutionary history, not only DNA mutations for individual nucleotide but also subsequent rearrangements occurred. It has been one of major tasks of computational biologists to develop novel mathematical descriptors for similarity analysis such that various mutation phenomena information would be involved simultaneously. In this paper, different from traditional methods (eg, nucleotide frequency, geometric representations) as bases for construction of mathematical descriptors, we construct novel mathematical descriptors based on graph theory. In particular, for each DNA sequence, we will set up a weighted directed graph. The adjacency matrix of the directed graph will be used to induce a representative vector for DNA sequence. This new approach measures similarity based on both ordering and frequency of nucleotides so that much more information is involved. As an application, the method is tested on a set of 0.9-kb mtDNA sequences of twelve different primate species. All output phylogenetic trees with various distance estimations have the same topology, and are generally consistent with the reported results from early studies, which proves the new method's efficiency; we also test the new method on a simulated data set, which shows our new method performs better than traditional global alignment method when subsequent rearrangements happen frequently during evolutionary history.

  13. A detailed phylogeny for the Methanomicrobiales

    NASA Technical Reports Server (NTRS)

    Rouviere, P.; Mandelco, L.; Winker, S.; Woese, C. R.

    1992-01-01

    The small subunit rRNA sequence of twenty archaea, members of the Methanomicrobiales, permits a detailed phylogenetic tree to be inferred for the group. The tree confirms earlier studies, based on far fewer sequences, in showing the group to be divided into two major clusters, temporarily designated the "methanosarcina" group and the "methanogenium" group. The tree also defines phylogenetic relationships within these two groups, which in some cases do not agree with the phylogenetic relationships implied by current taxonomic names--a problem most acute for the genus Methanogenium and its relatives. The present phylogenetic characterization provides the basis for a consistent taxonomic restructuring of this major methanogenic taxon.

  14. Polyphyly of the extinct family Oviparosiphidae and its implications for inferring aphid evolution (Hemiptera, Sternorrhyncha)

    PubMed Central

    Żyła, Dagmara; Homan, Agnieszka; Wegierek, Piotr

    2017-01-01

    Aphidoidea, the so-called "true aphids" are one of the most challenging groups in terms of solving the phylogenetic relationships. Morphology-based analyses were strongly affected by widespread homoplasy, while the molecular-based attempts struggled with the lack of sufficient phylogenetic signal. Despite significant improvements, the higher classification still remains unresolved and rather controversial. However, the use of the fossil record, one of the most valuable sources of information, was mainly limited to calibration of a phylogenetic tree, without a direct inclusion into the analysis. The extinct family Oviparosiphidae has long been considered as the common ancestor of all recent Aphidoidea and it was used as a calibration point in several analyses, but it has been never analyzed in a phylogenetic context. The family has been treated as a monophyletic group purely based on the simultaneous presence of two abdominal structures, ovipositor and siphunculi. However, it has been shown recently that at least one more extinct lineage, present at the same time, was characterized by the same features. For these reasons, we performed a maximum parsimony analysis using morphological data for extinct aphid taxa to prove the monophyly of Oviparosiphidae. Our analysis shows that the presumed ancestor lineage of recent aphids is a polyphyletic group. Our results support the hypothesis of an early Mesozoic rapid radiation of aphids, which led to several different lineages characterized by both ovipositor and siphunculi. The results indicate the necessity of examining the other extinct families, and shows that the diversity of aphids before the Cretaceous Terrestrial Revolution (KTR) was higher than expected. Even though there is not enough data to perform a formal analysis, fossils seem to suggest a significant impact of the KTR on aphid diversification. Additionally, we have made a redescription of two genera and description of a new species, Vitimaphis subridens sp. nov. PMID:28445493

  15. The relationships within the Chaitophorinae and Drepanosiphinae (Hemiptera, Aphididae) inferred from molecular-based phylogeny and comprehensive morphological data

    PubMed Central

    Wieczorek, Karina; Lachowska-Cierlik, Dorota; Kajtoch, Łukasz; Kanturski, Mariusz

    2017-01-01

    The Chaitophorinae is a bionomically diverse Holarctic subfamily of Aphididae. The current classification includes two tribes: the Chaitophorini associated with deciduous trees and shrubs, and Siphini that feed on monocotyledonous plants. We present the first phylogenetic hypothesis for the subfamily, based on molecular and morphological datasets. Molecular analyses were based on the mitochondrial gene cytochrome oxidase subunit I (COI) and the nuclear gene elongation factor-1α (EF-1α). Phylogenetic inferences were obtained individually on each of genes and joined alignments using Bayesian inference (BI) and Maximum likelihood (ML). In phylogenetic trees reconstructed on the basis of nuclear and mitochondrial genes as well as a morphological dataset, the monophyly of Siphini and the genus Chaitophorus was supported. Periphyllus forms independent lineages from Chaitophorus and Siphini. Within this genus two clades comprising European and Asiatic species, respectively, were indicated. Concerning relationships within the subfamily, EF-1α and joined COI and EF-1α genes analysis strongly supports the hypothesis that Chaitophorini do not form a monophyletic clade. Periphyllus is a sister group to a clade containing Chaitophorus and Siphini. The Asiatic unit of Periphyllus also includes Trichaitophorus koyaensis. The analysis of morphological dataset under equally weighted parsimony also supports the view that Chaitophorini is an artificial taxon, as Lambersaphis pruinosae and Pseudopterocomma hughi, both traditionally included in the Chaitophorini, formed independent lineages. COI analyses support consistent groups within the subfamily, but relationships between groups are poorly resolved. These analyses were extended to include the species of closely related and phylogenetically unstudied subfamily Drepanosiphinae, which produced congruent results. Genera Drepanosiphum and Depanaphis are monophyletic and sister. The position of Yamatocallis tokyoensis differs in the molecular and morphological analyses, i.e. it is either an independent lineage (EF-1α, COI, joined COI and EF-1α genes) or is nested inside this unit (morphology). Our data also support separation of Chaitophorinae from Drepanosiphinae. PMID:28288166

  16. Phylogenetic diversity and biological activity of culturable Actinobacteria isolated from freshwater fish gut microbiota.

    PubMed

    Jami, Mansooreh; Ghanbari, Mahdi; Kneifel, Wolfgang; Domig, Konrad J

    2015-06-01

    The diversity of Actinobacteria isolated from the gut microbiota of two freshwater fish species namely Schizothorax zarudnyi and Schizocypris altidorsalis was investigated employing classical cultivation techniques, repetitive sequence-based PCR (rep-PCR), partial and full 16S rDNA sequencing followed by phylogenetic analysis. A total of 277 isolates were cultured by applying three different agar media. Based on rep-PCR profile analysis a subset of 33 strains was selected for further phylogenetic investigations, antimicrobial activity testing and diversity analysis of secondary-metabolite biosynthetic genes. The identification based on 16S rRNA gene sequencing revealed that the isolates belong to eight genera distributed among six families. At the family level, 72% of the 277 isolates belong to the family Streptomycetaceae. Among the non-streptomycetes group, the most dominant group could be allocated to the family of Pseudonocardiaceae followed by the members of Micromonosporaceae. Phylogenetic analysis clearly showed that many of the isolates in the genera Streptomyces, Saccharomonospora, Micromonospora, Nocardiopsis, Arthrobacter, Kocuria, Microbacterium and Agromyces formed a single and distinct cluster with the type strains. Notably, there is no report so far about the occurrence of these Actinobacteria in the microbiota of freshwater fish. Of the 33 isolates, all the strains exhibited antibacterial activity against a set of tested human and fish pathogenic bacteria. Then, to study their associated potential capacity to synthesize diverse bioactive natural products, diversity of genes associated with secondary-metabolite biosynthesis including PKS I, PKS II, NRPS, the enzyme PhzE of the phenazine pathways, the enzyme dTGD of 6-deoxyhexoses glycosylation pathway, the enzyme Halo of halogenation pathway and the enzyme CYP in polyene polyketide biosynthesis were investigated among the isolates. All the strains possess at least two types of the investigated biosynthetic genes, one-fourth of them harbours more than four. This study demonstrates the significant diversity of Actinobacteria in the fish gut microbiota and it's potential to produce biologically active compounds. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. Testing for Divergent Transmission Histories among Cultural Characters: A Study Using Bayesian Phylogenetic Methods and Iranian Tribal Textile Data

    PubMed Central

    Matthews, Luke J.; Tehrani, Jamie J.; Jordan, Fiona M.; Collard, Mark; Nunn, Charles L.

    2011-01-01

    Background Archaeologists and anthropologists have long recognized that different cultural complexes may have distinct descent histories, but they have lacked analytical techniques capable of easily identifying such incongruence. Here, we show how Bayesian phylogenetic analysis can be used to identify incongruent cultural histories. We employ the approach to investigate Iranian tribal textile traditions. Methods We used Bayes factor comparisons in a phylogenetic framework to test two models of cultural evolution: the hierarchically integrated system hypothesis and the multiple coherent units hypothesis. In the hierarchically integrated system hypothesis, a core tradition of characters evolves through descent with modification and characters peripheral to the core are exchanged among contemporaneous populations. In the multiple coherent units hypothesis, a core tradition does not exist. Rather, there are several cultural units consisting of sets of characters that have different histories of descent. Results For the Iranian textiles, the Bayesian phylogenetic analyses supported the multiple coherent units hypothesis over the hierarchically integrated system hypothesis. Our analyses suggest that pile-weave designs represent a distinct cultural unit that has a different phylogenetic history compared to other textile characters. Conclusions The results from the Iranian textiles are consistent with the available ethnographic evidence, which suggests that the commercial rug market has influenced pile-rug designs but not the techniques or designs incorporated in the other textiles produced by the tribes. We anticipate that Bayesian phylogenetic tests for inferring cultural units will be of great value for researchers interested in studying the evolution of cultural traits including language, behavior, and material culture. PMID:21559083

  18. The Perchlorate Reduction Genomic Island: Mechanisms and Pathways of Evolution by Horizontal Gene Transfer.

    PubMed

    Melnyk, Ryan A; Coates, John D

    2015-10-26

    Perchlorate is a widely distributed anion that is toxic to humans, but serves as a valuable electron acceptor for several lineages of bacteria. The ability to utilize perchlorate is conferred by a horizontally transferred piece of DNA called the perchlorate reduction genomic island (PRI). We compared genomes of perchlorate reducers using phylogenomics, SNP mapping, and differences in genomic architecture to interrogate the evolutionary history of perchlorate respiration. Here we report on the PRI of 13 genomes of perchlorate-reducing bacteria from four different classes of Phylum Proteobacteria (the Alpha-, Beta-, Gamma- and Epsilonproteobacteria). Among the different phylogenetic classes, the island varies considerably in genetic content as well as in its putative mechanism and location of integration. However, the islands of the densely sampled genera Azospira and Magnetospirillum have striking nucleotide identity despite divergent genomes, implying horizontal transfer and positive selection within narrow phylogenetic taxa. We also assess the phylogenetic origin of accessory genes in the various incarnations of the island, which can be traced to chromosomal paralogs from phylogenetically similar organisms. These observations suggest a complex phylogenetic history where the island is rarely transferred at the class level but undergoes frequent and continuous transfer within narrow phylogenetic groups. This restricted transfer is seen directly by the independent integration of near-identical islands within a genus and indirectly due to the acquisition of lineage-specific accessory genes. The genomic reversibility of perchlorate reduction may present a unique equilibrium for a metabolism that confers a competitive advantage only in the presence of an electron acceptor, which although widely distributed, is generally present at low concentrations in nature.

  19. Experimental evidence that evolutionary relatedness does not affect the ecological mechanisms of coexistence in freshwater green algae.

    PubMed

    Narwani, Anita; Alexandrou, Markos A; Oakley, Todd H; Carroll, Ian T; Cardinale, Bradley J

    2013-11-01

    The coexistence of competing species depends on the balance between their fitness differences, which determine their competitive inequalities, and their niche differences, which stabilise their competitive interactions. Darwin proposed that evolution causes species' niches to diverge, but the influence of evolution on relative fitness differences, and the importance of both niche and fitness differences in determining coexistence have not yet been studied together. We tested whether the phylogenetic distances between species of green freshwater algae determined their abilities to coexist in a microcosm experiment. We found that niche differences were more important in explaining coexistence than relative fitness differences, and that phylogenetic distance had no effect on either coexistence or on the sizes of niche and fitness differences. These results were corroborated by an analysis of the frequency of the co-occurrence of 325 pairwise combinations of algal taxa in > 1100 lakes across North America. Phylogenetic distance may not explain the coexistence of freshwater green algae. © 2013 John Wiley & Sons Ltd/CNRS.

  20. Mitochondrial DNA haplogroup phylogeny of the dog: Proposal for a cladistic nomenclature.

    PubMed

    Fregel, Rosa; Suárez, Nicolás M; Betancor, Eva; González, Ana M; Cabrera, Vicente M; Pestano, José

    2015-05-01

    Canis lupus familiaris mitochondrial DNA analysis has increased in recent years, not only for the purpose of deciphering dog domestication but also for forensic genetic studies or breed characterization. The resultant accumulation of data has increased the need for a normalized and phylogenetic-based nomenclature like those provided for human maternal lineages. Although a standardized classification has been proposed, haplotype names within clades have been assigned gradually without considering the evolutionary history of dog mtDNA. Moreover, this classification is based only on the D-loop region, proven to be insufficient for phylogenetic purposes due to its high number of recurrent mutations and the lack of relevant information present in the coding region. In this study, we design 1) a refined mtDNA cladistic nomenclature from a phylogenetic tree based on complete sequences, classifying dog maternal lineages into haplogroups defined by specific diagnostic mutations, and 2) a coding region SNP analysis that allows a more accurate classification into haplogroups when combined with D-loop sequencing, thus improving the phylogenetic information obtained in dog mitochondrial DNA studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. I-HEDGE: determining the optimum complementary sets of taxa for conservation using evolutionary isolation

    PubMed Central

    Mooers, Arne Ø.; Caccone, Adalgisa; Russello, Michael A.

    2016-01-01

    In the midst of the current biodiversity crisis, conservation efforts might profitably be directed towards ensuring that extinctions do not result in inordinate losses of evolutionary history. Numerous methods have been developed to evaluate the importance of species based on their contribution to total phylogenetic diversity on trees and networks, but existing methods fail to take complementarity into account, and thus cannot identify the best order or subset of taxa to protect. Here, we develop a novel iterative calculation of the heightened evolutionary distinctiveness and globally endangered metric (I-HEDGE) that produces the optimal ranked list for conservation prioritization, taking into account complementarity and based on both phylogenetic diversity and extinction probability. We applied this metric to a phylogenetic network based on mitochondrial control region data from extant and recently extinct giant Galápagos tortoises, a highly endangered group of closely related species. We found that the restoration of two extinct species (a project currently underway) will contribute the greatest gain in phylogenetic diversity, and present an ordered list of rankings that is the optimum complementarity set for conservation prioritization. PMID:27635324

  2. I-HEDGE: determining the optimum complementary sets of taxa for conservation using evolutionary isolation.

    PubMed

    Jensen, Evelyn L; Mooers, Arne Ø; Caccone, Adalgisa; Russello, Michael A

    2016-01-01

    In the midst of the current biodiversity crisis, conservation efforts might profitably be directed towards ensuring that extinctions do not result in inordinate losses of evolutionary history. Numerous methods have been developed to evaluate the importance of species based on their contribution to total phylogenetic diversity on trees and networks, but existing methods fail to take complementarity into account, and thus cannot identify the best order or subset of taxa to protect. Here, we develop a novel iterative calculation of the heightened evolutionary distinctiveness and globally endangered metric (I-HEDGE) that produces the optimal ranked list for conservation prioritization, taking into account complementarity and based on both phylogenetic diversity and extinction probability. We applied this metric to a phylogenetic network based on mitochondrial control region data from extant and recently extinct giant Galápagos tortoises, a highly endangered group of closely related species. We found that the restoration of two extinct species (a project currently underway) will contribute the greatest gain in phylogenetic diversity, and present an ordered list of rankings that is the optimum complementarity set for conservation prioritization.

  3. Phylogenetic relationship of Paenibacillus species based on putative replication origin regions and analysis of an yheCD-like sequence found in this region.

    PubMed

    Iiyama, Kazuhiro; Otao, Masahiro; Mori, Kazuki; Mon, Hiroaki; Lee, Jae Man; Kusakabe, Takahiro; Tashiro, Kousuke; Asano, Shin-Ichiro; Yasunaga-Aoki, Chisa

    2014-01-01

    To determine the phylogenetic relationship among Paenibacillus species, putative replication origin regions were compared. In the rsmG-gyrA region, gene arrangements in Paenibacillus species were identical to those of Bacillus species, with the exception of an open reading frame (orf14) positioned between gyrB and gyrA, which was observed only in Paenibacillus species. The orf14 product was homologous to the endospore-associated proteins YheC and YheD of Bacillus subtilis. Phylogenetic analysis based on the YheCD proteins suggested that Orf14 could be categorized into the YheC group. In the Paenibacillus genome, DnaA box clusters were found in rpmH-dnaA and dnaA-dnaN intergenic regions, known as box regions C and R, respectively; this localization was similar to that observed in B. halodurans. A phylogenetic tree based on the nucleotide sequences of the whole replication origin regions suggested that P. popilliae, P. thiaminolyticus, and P. dendritiformis are closely related species.

  4. Trichoderma stromaticum and its overseas relatives

    USDA-ARS?s Scientific Manuscript database

    Trichoderma stromaticum, T. rossicum and newly discovered species form a new lineage in Trichoderma. Phylogenetic and phenotypic diversity in Trichoderma stromaticum are examined in light of reported differences in ecological parameters and AFLP patterns. Multilocus phylogenetic analysis using 4 gen...

  5. Multivariate Phylogenetic Comparative Methods: Evaluations, Comparisons, and Recommendations.

    PubMed

    Adams, Dean C; Collyer, Michael L

    2018-01-01

    Recent years have seen increased interest in phylogenetic comparative analyses of multivariate data sets, but to date the varied proposed approaches have not been extensively examined. Here we review the mathematical properties required of any multivariate method, and specifically evaluate existing multivariate phylogenetic comparative methods in this context. Phylogenetic comparative methods based on the full multivariate likelihood are robust to levels of covariation among trait dimensions and are insensitive to the orientation of the data set, but display increasing model misspecification as the number of trait dimensions increases. This is because the expected evolutionary covariance matrix (V) used in the likelihood calculations becomes more ill-conditioned as trait dimensionality increases, and as evolutionary models become more complex. Thus, these approaches are only appropriate for data sets with few traits and many species. Methods that summarize patterns across trait dimensions treated separately (e.g., SURFACE) incorrectly assume independence among trait dimensions, resulting in nearly a 100% model misspecification rate. Methods using pairwise composite likelihood are highly sensitive to levels of trait covariation, the orientation of the data set, and the number of trait dimensions. The consequences of these debilitating deficiencies are that a user can arrive at differing statistical conclusions, and therefore biological inferences, simply from a dataspace rotation, like principal component analysis. By contrast, algebraic generalizations of the standard phylogenetic comparative toolkit that use the trace of covariance matrices are insensitive to levels of trait covariation, the number of trait dimensions, and the orientation of the data set. Further, when appropriate permutation tests are used, these approaches display acceptable Type I error and statistical power. We conclude that methods summarizing information across trait dimensions, as well as pairwise composite likelihood methods should be avoided, whereas algebraic generalizations of the phylogenetic comparative toolkit provide a useful means of assessing macroevolutionary patterns in multivariate data. Finally, we discuss areas in which multivariate phylogenetic comparative methods are still in need of future development; namely highly multivariate Ornstein-Uhlenbeck models and approaches for multivariate evolutionary model comparisons. © The Author(s) 2017. Published by Oxford University Press on behalf of the Systematic Biology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Phylogenetic analysis of widely cultivated Ganoderma in China based on the mitochondrial V4-V6 region of SSU rDNA.

    PubMed

    Zhou, X W; Su, K Q; Zhang, Y M

    2015-02-02

    Ganoderma mushroom is one of the most prescribed traditional medicines and has been used for centuries, particularly in China, Japan, Korea, and other Asian countries. In this study, different strains of Ganoderma spp and the genetic relationships of the closely related strains were identified and investigated based on the V4-V6 region of mitochondrial small subunit ribosomal DNA of the Ganoderma species. The sizes of the mitochondrial ribosomal DNA regions from different Ganoderma species showed 2 types of sequences, 2.0 or 0.5 kb. A phylogenetic tree was constructed, which revealed a high level of genetic diversity in Ganoderma species. Ganoderma lucidum G05 and G. eupense G09 strains were clustered into a G. resinaceum group. Ganoderma spp G29 and G22 strains were clustered into a G. lucidum group. However, Ganoderma spp G19, G20, and G21 strains were clustered into a single group, the G. lucidum AF214475, G. sinense, G. strum G17, G. strum G36, and G. sinense G10 strains contained an intron and were clustered into other groups.

  7. Further Effects of Phylogenetic Tree Style on Student Comprehension in an Introductory Biology Course.

    PubMed

    Dees, Jonathan; Bussard, Caitlin; Momsen, Jennifer L

    2018-06-01

    Phylogenetic trees have become increasingly important across the life sciences, and as a result, learning to interpret and reason from these diagrams is now an essential component of biology education. Unfortunately, students often struggle to understand phylogenetic trees. Style (i.e., diagonal or bracket) is one factor that has been observed to impact how students interpret phylogenetic trees, and one goal of this research was to investigate these style effects across an introductory biology course. In addition, we investigated the impact of instruction that integrated diagonal and bracket phylogenetic trees equally. Before instruction, students were significantly more accurate with the bracket style for a variety of interpretation and construction tasks. After instruction, however, students were significantly more accurate only for construction tasks and interpretations involving taxa relatedness when using the bracket style. Thus, instruction that used both styles equally mitigated some, but not all, style effects. These results inform the development of research-based instruction that best supports student understanding of phylogenetic trees.

  8. Missing Data and Influential Sites: Choice of Sites for Phylogenetic Analysis Can Be As Important As Taxon Sampling and Model Choice

    PubMed Central

    Shavit Grievink, Liat; Penny, David; Holland, Barbara R.

    2013-01-01

    Phylogenetic studies based on molecular sequence alignments are expected to become more accurate as the number of sites in the alignments increases. With the advent of genomic-scale data, where alignments have very large numbers of sites, bootstrap values close to 100% and posterior probabilities close to 1 are the norm, suggesting that the number of sites is now seldom a limiting factor on phylogenetic accuracy. This provokes the question, should we be fussy about the sites we choose to include in a genomic-scale phylogenetic analysis? If some sites contain missing data, ambiguous character states, or gaps, then why not just throw them away before conducting the phylogenetic analysis? Indeed, this is exactly the approach taken in many phylogenetic studies. Here, we present an example where the decision on how to treat sites with missing data is of equal importance to decisions on taxon sampling and model choice, and we introduce a graphical method for illustrating this. PMID:23471508

  9. Symbiosis between hydra and chlorella: molecular phylogenetic analysis and experimental study provide insight into its origin and evolution.

    PubMed

    Kawaida, Hitomi; Ohba, Kohki; Koutake, Yuhki; Shimizu, Hiroshi; Tachida, Hidenori; Kobayakawa, Yoshitaka

    2013-03-01

    Although many physiological studies have been reported on the symbiosis between hydra and green algae, very little information from a molecular phylogenetic aspect of symbiosis is available. In order to understand the origin and evolution of symbiosis between the two organisms, we compared the phylogenetic relationships among symbiotic green algae with the phylogenetic relationships among host hydra strains. To do so, we reconstructed molecular phylogenetic trees of several strains of symbiotic chlorella harbored in the endodermal epithelial cells of viridissima group hydra strains and investigated their congruence with the molecular phylogenetic trees of the host hydra strains. To examine the species specificity between the host and the symbiont with respect to the genetic distance, we also tried to introduce chlorella strains into two aposymbiotic strains of viridissima group hydra in which symbiotic chlorella had been eliminated in advance. We discussed the origin and history of symbiosis between hydra and green algae based on the analysis. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Prioritizing Populations for Conservation Using Phylogenetic Networks

    PubMed Central

    Volkmann, Logan; Martyn, Iain; Moulton, Vincent; Spillner, Andreas; Mooers, Arne O.

    2014-01-01

    In the face of inevitable future losses to biodiversity, ranking species by conservation priority seems more than prudent. Setting conservation priorities within species (i.e., at the population level) may be critical as species ranges become fragmented and connectivity declines. However, existing approaches to prioritization (e.g., scoring organisms by their expected genetic contribution) are based on phylogenetic trees, which may be poor representations of differentiation below the species level. In this paper we extend evolutionary isolation indices used in conservation planning from phylogenetic trees to phylogenetic networks. Such networks better represent population differentiation, and our extension allows populations to be ranked in order of their expected contribution to the set. We illustrate the approach using data from two imperiled species: the spotted owl Strix occidentalis in North America and the mountain pygmy-possum Burramys parvus in Australia. Using previously published mitochondrial and microsatellite data, we construct phylogenetic networks and score each population by its relative genetic distinctiveness. In both cases, our phylogenetic networks capture the geographic structure of each species: geographically peripheral populations harbor less-redundant genetic information, increasing their conservation rankings. We note that our approach can be used with all conservation-relevant distances (e.g., those based on whole-genome, ecological, or adaptive variation) and suggest it be added to the assortment of tools available to wildlife managers for allocating effort among threatened populations. PMID:24586451

  11. Molecular characterization and phylogenetic inferences of Dermanyssus gallinae isolates in Italy within an European framework.

    PubMed

    Marangi, M; Cantacessi, C; Sparagano, O A E; Camarda, A; Giangaspero, A

    2014-12-01

    In order to investigate the genetic relationships between Dermanyssus gallinae (Metastigmata: Dermanyssidae) (de Geer) isolates from poultry farms in Italy and other European countries, phylogenetic analysis was performed using a portion of the cytochrome c oxidase subunit 1 (cox1) gene of the mitochondrial DNA and the internal transcribed spacers (ITS1+5.8S+ITS2) of the ribosomal DNA. A total of 360 cox1 sequences and 360 ITS+ sequences were obtained from mites collected on 24 different poultry farms in 10 different regions of Northern and Southern Italy. Phylogenetic analysis of the cox1 sequences resulted in the clustering of two groups (A and B), whereas phylogenetic analysis of the ITS+ resulted in largely unresolved clusters. Knowledge of the genetic make-up of mite populations within countries, together with comparative analyses of D. gallinae isolates from different countries, will provide better understanding of the population dynamics of D. gallinae. This will also allow the identification of genetic markers of emerging acaricide resistance and the development of alternative strategies for the prevention and treatment of infestations. © 2014 The Royal Entomological Society.

  12. Phylogenetic Placement of Exact Amplicon Sequences Improves Associations with Clinical Information

    PubMed Central

    McDonald, Daniel; Gonzalez, Antonio; Navas-Molina, Jose A.; Jiang, Lingjing; Xu, Zhenjiang Zech; Winker, Kevin; Kado, Deborah M.; Orwoll, Eric; Manary, Mark; Mirarab, Siavash

    2018-01-01

    ABSTRACT Recent algorithmic advances in amplicon-based microbiome studies enable the inference of exact amplicon sequence fragments. These new methods enable the investigation of sub-operational taxonomic units (sOTU) by removing erroneous sequences. However, short (e.g., 150-nucleotide [nt]) DNA sequence fragments do not contain sufficient phylogenetic signal to reproduce a reasonable tree, introducing a barrier in the utilization of critical phylogenetically aware metrics such as Faith’s PD or UniFrac. Although fragment insertion methods do exist, those methods have not been tested for sOTUs from high-throughput amplicon studies in insertions against a broad reference phylogeny. We benchmarked the SATé-enabled phylogenetic placement (SEPP) technique explicitly against 16S V4 sequence fragments and showed that it outperforms the conceptually problematic but often-used practice of reconstructing de novo phylogenies. In addition, we provide a BSD-licensed QIIME2 plugin (https://github.com/biocore/q2-fragment-insertion) for SEPP and integration into the microbial study management platform QIITA. IMPORTANCE The move from OTU-based to sOTU-based analysis, while providing additional resolution, also introduces computational challenges. We demonstrate that one popular method of dealing with sOTUs (building a de novo tree from the short sequences) can provide incorrect results in human gut metagenomic studies and show that phylogenetic placement of the new sequences with SEPP resolves this problem while also yielding other benefits over existing methods. PMID:29719869

  13. Inference of Transmission Network Structure from HIV Phylogenetic Trees

    DOE PAGES

    Giardina, Federica; Romero-Severson, Ethan Obie; Albert, Jan; ...

    2017-01-13

    Phylogenetic inference is an attractive means to reconstruct transmission histories and epidemics. However, there is not a perfect correspondence between transmission history and virus phylogeny. Both node height and topological differences may occur, depending on the interaction between within-host evolutionary dynamics and between-host transmission patterns. To investigate these interactions, we added a within-host evolutionary model in epidemiological simulations and examined if the resulting phylogeny could recover different types of contact networks. To further improve realism, we also introduced patient-specific differences in infectivity across disease stages, and on the epidemic level we considered incomplete sampling and the age of the epidemic.more » Second, we implemented an inference method based on approximate Bayesian computation (ABC) to discriminate among three well-studied network models and jointly estimate both network parameters and key epidemiological quantities such as the infection rate. Our ABC framework used both topological and distance-based tree statistics for comparison between simulated and observed trees. Overall, our simulations showed that a virus time-scaled phylogeny (genealogy) may be substantially different from the between-host transmission tree. This has important implications for the interpretation of what a phylogeny reveals about the underlying epidemic contact network. In particular, we found that while the within-host evolutionary process obscures the transmission tree, the diversification process and infectivity dynamics also add discriminatory power to differentiate between different types of contact networks. We also found that the possibility to differentiate contact networks depends on how far an epidemic has progressed, where distance-based tree statistics have more power early in an epidemic. Finally, we applied our ABC inference on two different outbreaks from the Swedish HIV-1 epidemic.« less

  14. Inference of Transmission Network Structure from HIV Phylogenetic Trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giardina, Federica; Romero-Severson, Ethan Obie; Albert, Jan

    Phylogenetic inference is an attractive means to reconstruct transmission histories and epidemics. However, there is not a perfect correspondence between transmission history and virus phylogeny. Both node height and topological differences may occur, depending on the interaction between within-host evolutionary dynamics and between-host transmission patterns. To investigate these interactions, we added a within-host evolutionary model in epidemiological simulations and examined if the resulting phylogeny could recover different types of contact networks. To further improve realism, we also introduced patient-specific differences in infectivity across disease stages, and on the epidemic level we considered incomplete sampling and the age of the epidemic.more » Second, we implemented an inference method based on approximate Bayesian computation (ABC) to discriminate among three well-studied network models and jointly estimate both network parameters and key epidemiological quantities such as the infection rate. Our ABC framework used both topological and distance-based tree statistics for comparison between simulated and observed trees. Overall, our simulations showed that a virus time-scaled phylogeny (genealogy) may be substantially different from the between-host transmission tree. This has important implications for the interpretation of what a phylogeny reveals about the underlying epidemic contact network. In particular, we found that while the within-host evolutionary process obscures the transmission tree, the diversification process and infectivity dynamics also add discriminatory power to differentiate between different types of contact networks. We also found that the possibility to differentiate contact networks depends on how far an epidemic has progressed, where distance-based tree statistics have more power early in an epidemic. Finally, we applied our ABC inference on two different outbreaks from the Swedish HIV-1 epidemic.« less

  15. Phylogenetic search through partial tree mixing

    PubMed Central

    2012-01-01

    Background Recent advances in sequencing technology have created large data sets upon which phylogenetic inference can be performed. Current research is limited by the prohibitive time necessary to perform tree search on a reasonable number of individuals. This research develops new phylogenetic algorithms that can operate on tens of thousands of species in a reasonable amount of time through several innovative search techniques. Results When compared to popular phylogenetic search algorithms, better trees are found much more quickly for large data sets. These algorithms are incorporated in the PSODA application available at http://dna.cs.byu.edu/psoda Conclusions The use of Partial Tree Mixing in a partition based tree space allows the algorithm to quickly converge on near optimal tree regions. These regions can then be searched in a methodical way to determine the overall optimal phylogenetic solution. PMID:23320449

  16. High-Throughput Sequencing of Six Bamboo Chloroplast Genomes: Phylogenetic Implications for Temperate Woody Bamboos (Poaceae: Bambusoideae)

    PubMed Central

    Li, De-Zhu

    2011-01-01

    Background Bambusoideae is the only subfamily that contains woody members in the grass family, Poaceae. In phylogenetic analyses, Bambusoideae, Pooideae and Ehrhartoideae formed the BEP clade, yet the internal relationships of this clade are controversial. The distinctive life history (infrequent flowering and predominance of asexual reproduction) of woody bamboos makes them an interesting but taxonomically difficult group. Phylogenetic analyses based on large DNA fragments could only provide a moderate resolution of woody bamboo relationships, although a robust phylogenetic tree is needed to elucidate their evolutionary history. Phylogenomics is an alternative choice for resolving difficult phylogenies. Methodology/Principal Findings Here we present the complete nucleotide sequences of six woody bamboo chloroplast (cp) genomes using Illumina sequencing. These genomes are similar to those of other grasses and rather conservative in evolution. We constructed a phylogeny of Poaceae from 24 complete cp genomes including 21 grass species. Within the BEP clade, we found strong support for a sister relationship between Bambusoideae and Pooideae. In a substantial improvement over prior studies, all six nodes within Bambusoideae were supported with ≥0.95 posterior probability from Bayesian inference and 5/6 nodes resolved with 100% bootstrap support in maximum parsimony and maximum likelihood analyses. We found that repeats in the cp genome could provide phylogenetic information, while caution is needed when using indels in phylogenetic analyses based on few selected genes. We also identified relatively rapidly evolving cp genome regions that have the potential to be used for further phylogenetic study in Bambusoideae. Conclusions/Significance The cp genome of Bambusoideae evolved slowly, and phylogenomics based on whole cp genome could be used to resolve major relationships within the subfamily. The difficulty in resolving the diversification among three clades of temperate woody bamboos, even with complete cp genome sequences, suggests that these lineages may have diverged very rapidly. PMID:21655229

  17. On Determining if Tree-based Networks Contain Fixed Trees.

    PubMed

    Anaya, Maria; Anipchenko-Ulaj, Olga; Ashfaq, Aisha; Chiu, Joyce; Kaiser, Mahedi; Ohsawa, Max Shoji; Owen, Megan; Pavlechko, Ella; St John, Katherine; Suleria, Shivam; Thompson, Keith; Yap, Corrine

    2016-05-01

    We address an open question of Francis and Steel about phylogenetic networks and trees. They give a polynomial time algorithm to decide if a phylogenetic network, N, is tree-based and pose the problem: given a fixed tree T and network N, is N based on T? We show that it is [Formula: see text]-hard to decide, by reduction from 3-Dimensional Matching (3DM) and further that the problem is fixed-parameter tractable.

  18. Positioning the Red Deer (Cervus elaphus) Hunted by the Tyrolean Iceman into a Mitochondrial DNA Phylogeny

    PubMed Central

    Olivieri, Cristina; Marota, Isolina; Rizzi, Ermanno; Ermini, Luca; Fusco, Letizia; Pietrelli, Alessandro; De Bellis, Gianluca; Rollo, Franco; Luciani, Stefania

    2014-01-01

    In the last years several phylogeographic studies of both extant and extinct red deer populations have been conducted. Three distinct mitochondrial lineages (western, eastern and North-African/Sardinian) have been identified reflecting different glacial refugia and postglacial recolonisation processes. However, little is known about the genetics of the Alpine populations and no mitochondrial DNA sequences from Alpine archaeological specimens are available. Here we provide the first mitochondrial sequences of an Alpine Copper Age Cervus elaphus. DNA was extracted from hair shafts which were part of the remains of the clothes of the glacier mummy known as the Tyrolean Iceman or Ötzi (5,350–5,100 years before present). A 2,297 base pairs long fragment was sequenced using a mixed sequencing procedure based on PCR amplifications and 454 sequencing of pooled amplification products. We analyzed the phylogenetic relationships of the Alpine Copper Age red deer's haplotype with haplotypes of modern and ancient European red deer. The phylogenetic analyses showed that the haplotype of the Alpine Copper Age red deer falls within the western European mitochondrial lineage in contrast with the current populations from the Italian Alps belonging to the eastern lineage. We also discussed the phylogenetic relationships of the Alpine Copper Age red deer with the populations from Mesola Wood (northern Italy) and Sardinia. PMID:24988290

  19. Butyrate production in phylogenetically diverse Firmicutes isolated from the chicken caecum

    PubMed Central

    Eeckhaut, Venessa; Van Immerseel, Filip; Croubels, Siska; De Baere, Siegrid; Haesebrouck, Freddy; Ducatelle, Richard; Louis, Petra; Vandamme, Peter

    2011-01-01

    Summary Sixteen butyrate‐producing bacteria were isolated from the caecal content of chickens and analysed phylogenetically. They did not represent a coherent phylogenetic group, but were allied to four different lineages in the Firmicutes phylum. Fourteen strains appeared to represent novel species, based on a level of ≤ 98.5% 16S rRNA gene sequence similarity towards their nearest validly named neighbours. The highest butyrate concentrations were produced by the strains belonging to clostridial clusters IV and XIVa, clusters which are predominant in the chicken caecal microbiota. In only one of the 16 strains tested, the butyrate kinase operon could be amplified, while the butyryl‐CoA : acetate CoA‐transferase gene was detected in eight strains belonging to clostridial clusters IV, XIVa and XIVb. None of the clostridial cluster XVI isolates carried this gene based on degenerate PCR analyses. However, another CoA‐transferase gene more similar to propionate CoA‐transferase was detected in the majority of the clostridial cluster XVI isolates. Since this gene is located directly downstream of the remaining butyrate pathway genes in several human cluster XVI bacteria, it may be involved in butyrate formation in these bacteria. The present study indicates that butyrate producers related to cluster XVI may play a more important role in the chicken gut than in the human gut. PMID:21375722

  20. Mitochondrial Genetic Differentiation of Spirlin (Actinopterigii: Cyprinidae) in the South Caspian Sea basin of Iran

    PubMed Central

    Seifali, Mahvash; Arshad, Aziz; Moghaddam, Faezeh Yazdani; Esmaeili, Hamid Reza; Kiabi, Bahram H.; Daud, Siti Khalijah; Aliabadian, Mansour

    2012-01-01

    Background Knowledge about Alburnoides remains lacking relative to many other species, resulting in a lack of a systematic position and taxonomic diagnosis. Basic biological information for Alburnoides has been constructed, and it is necessary to understand further and obtain more information about this species. Its phylogenetic relationships are still debated and no molecular data have been used to study this taxon in Iran. A holistic approach for genetic methods was adopted to analyze possible spirlin population differences at selected centers in the south Caspian Sea basin of Iran. Methods The phylogenetic relationships were determined based on 774 base pairs of the mitochondrial cytochrome b gene of 32 specimens of spirlin from nine locations in the south Caspian Sea drainage basin of Iran. The nucleotide sequences were subjected to phylogenetic analysis using the neighbor-joining, maximum parsimony, maximum likelihood, and Bayesian methods. Results The mitochondrial gene tree largely supports the existence of three major clades. The western populations (clade I) may be considered as Alburnoides eichwaldii, whereas the Talar river populations (clade II) are represented as Alburnoides sp.1 and the eastern populations (clade III) may be distinct taxa of Alburnoides sp.2. Conclusion This molecular evidence supports the hypothesis that A. bipunctatus does not exist in the south Caspian Sea basin of Iran, and that the western and eastern populations are distinct taxa. PMID:22654487

Top